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Résumé

Le traitement parallele est tres important pour certaines applications
car elles pourraient mettre a profit une augmentation de plusieurs or-
dres de grandeur de la performance des ordinateurs les plus puissants
disponibles. Or. I'amélioration des technologies et de ['architecture des
ordinateurs mono-processeurs ne permet pas ce niveau d 'augmentation de
performance. D'un autre coté, la parallélisation automatique d’applica-
tions pose de nombreux problemes. Dans la présente these, trois de ces

problemes sont abordés soient:

e le calcul rapide d’adresses,
e la programmation a haut niveau d’ordinateurs SIMD et

e le partitionnement automatique de tableaux.

Le traitement structuré de tableaux permet une plus grande perfor-

mance que le traitement non-structuré puisqu’il permet:

e le transfert des données avant qu’elles ne soient requises.
e ['utilisation d’instructions vectorielles et

e une meilleure utilisation d’une hiérarchie de mémoire.

Pour que le transfert de données entre la mémoire et le processeur
ne ralentisse pas leur traitement par le processeur, le calcul des adresses
doit étre efficace et il doit étre effectué par un organe de calcul autre
que le processeur. Par contre, les transformations sur les tableaux qui
modifient leur adressage sont des transformations qui sont tres souvent
linéaires. En conséquence, on propose un algorithme qui supporte ce type
de calcul d’adresses. On montre que cet algorithme est efficace et qu’il
peut étre implanté en matériel avec une faible complexité.

Les architectures SIMD sont tres appropriées pour le traitement struc-
turé de tableaux puisque cette architecture matérielle reflete la structure
des calculs. Cependant, a ce jour, aucun langage de programmation

n’a été proposé qui permette de décrire un traitement structuré sur des
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tableaux en utilisant des opérateurs sur des tableaux (i.e. en utilisant
le niveau d’abstraction le plus judicieux) tout en visant la compilation
vers les architectures SIMD. On propose un tel langage et on démontre
comment on peut rendre efficace le code généré par un compilateur. En
particulier, on montre comment |'utilisation de tampons circulaires et
d’instructions vectorielles peut améliorer la performance lorsqu’on ef-
fectue des convolutions.

Le traitement structuré de tableaux implique essentiellement le trai-
tement de sections de tableaux. Or. le fait que trouver la meilleure
distribution des données entre les processeurs est NP-complet peut étre
contourné en limitant 'analyse des calculs a effectuer a I’analyse des
opérations sur les sections de tableaux et en utilisant le modele de paral-
lélisme du langage HPF. De plus. comme ce modeéle impose une structure
réguliere a la distribution des tableaux. son utilisation ne diminue pas la
performance des applications qui effectuent un traitement régulier. Dans
cette thése, on propose une méthode et des algorithmes de parallélisation
qui vont dans le sens décrit. On montre que ces algorithmes on une faible
complexité temporelle et qu’ils permettent de générer des directives de
parallélisation HPF qui peuvent améliorer la performance. Cependant.
cette amélioration est mitigée par le manque de maturité du compilateur
HPF utilisé.

Finalement. on montre comment formaliser et généraliser le modele
de partitionnement HPF a ’aide de MOA et du A-calcul.
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Abstract

Parallel processing is very important to many applications. because
they can take advantage of an improvement of more than one order of
magnitude over the performance of the most powerful computers cur-
rently available. and because technological and architectural improve-
ments cannot provide such a sharp increase in performance. On the
other hand, automatic distribution of applications is difficult in many

respects. In this thesis, three of these difficulties are tackled. namely:

e fast address computations,
e high-level programming of SIMD computers. and

e automatic distribution of arrays.

Structured array processing can achieve higher performance than un-

structured processing because it allows:

e prefetching data,
e the use of vector instructions. and

e a better use of a memory hierarchy.

In order to prevent data transfers between the memory and the proces-
sor from slowing down the processing of that data, address computations
must be efficient and they must not be performed by the processor. On
the other hand. transformations on arrays that modify the way arrays are
accessed are often linear. Thus, an algorithm is proposed that support
these types of transformations. It is shown that this algorithm is efficient
and that it can be implemented in hardware at a very small cost.

SIMD architectures are very appropriate for structured array pro-
cessing because this type of architecture is similar to the structure of the
computations. On the other hand, to this day, no programming language
has been proposed that allows the description of structured computations
through support of array operators while aiming at compiling for SIMD

architectures. Such a language is proposed in this thesis, and it is shown
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how a compiler for that language can generate efficient code. In particu-
lar. it is shown how to improve performance through the use of circular
buffers and vector instructions.

Structured array processing is essentially the processing of array sec-
tions. Also, the NP-completeness of the automatic distribution problem
can be circumvented by limiting the analysis to array section interac-
tions and by using the HPF model of parallelism. Furthermore, since
this model imposes a regular structure to the distribution of arrays. its
use does not lower performance of (parallelized) applications if they per-
form structured processing. In this thesis, a partitioning method and
algorithms are proposed. It is shown that the algorithms have a low time
complexity and that they allow generating HPF directives that can im-
prove performance but that this improvement is mitigated by the lack of
maturity of the HPF compiler used.

Finally, it is shown how to formalize and generalize the HPF model
of parallelism by using MOA and the A-calculus.
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Chapitre 1
Introduction

Avant tout, il convient de signaler que presque tous les travaux présentés dans la
présente these ont été effectués dans le cadre du projet Pulse. Ce projet consiste a
concevoir un ordinateur SIMD ainsi que des logiciels (par exemple, un compilateur,

un assembleur et des applications) permettant de programmer ledit ordinateur.

Certaines applications pourraient mettre a profit une puissance de calcul de quel-
ques ordres de grandeur supérieure a celle des ordinateurs les plus puissants présen-
tement disponibles (par exemple. la prévision météorologique, la modélisation de cli-
mat, la simulation de fluides ou de champs de particules tel qu atomes et molécules ou
corps planétaires). Etant donné que l'architecture des ordinateurs mono-processeurs
est déja fortement contrainte par la vitesse de propagation des signaux et qu’aucune
nouvelle technologie (qui permettrait des fréquences d’horloge nettement plus éle-
vées) n’est sur le point de prendre la reléve, on se doit de se tourner vers les ordina-
teurs multi-processeurs si on veut maintenir le taux d’augmentation de performance
que l'on connait depuis quelques décennies [22].

Cependant, pour exécuter plus rapidement les programmes. il faut diviser le
travail de fagon équilibrée entre les processeurs. Pour le cas général, trouver la
répartition optimale est un probleme NP-complet [37]. Par contre, sachant que la
plupart des applications concernées traitent des tableaux, on peut limiter le champ
des applications & supporter a ces dernieres. Ce champ d’applications comprend
la solution d’équation(s) différentielle(s) ordinaire(s) ou aux dérivées partielles, la
solution de systémes d’équations linéaires (ces deux types d’équations sont utilisés

pour modéliser et simuler différents aspects de notre univers) et la minimisation de
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fonctions a “plusieurs™ variables (ce qui permet d’extraire de I'information d'un si-
gnal comme. par exemple, analyser le signal d’'un radar météorologique pour détecter
les tornades en formation et prévenir la population — ces problemes sont dits de

déconvolution).

Les langages de programmation Fortran 90, HPF (High Performance Fortran) et.
plus récemment, Fortran 95 ont pour objectif, entre autres, de permettre l'expression
d’algorithmes sous forme intrinséquement paralléle et de faciliter la parallélisation
des programmes. Cependant, la génération de code paralléle présente des problemes
qui ne sont pas encore résolus: comment doit-on distribuer le travail et les données
entre les processeurs de facon a minimiser le temps nécessaire a ’exécution d’un

programme?

De plus, le modele de programmation Fortran 90/HPF semble trés approprié a la
mise en oeuvre d’applications de traitement de signal sur ordinateur SIMD (Single
[nstruction Multiple Data) mais peu de travaux ont été effectués dans ce sens (pour

une description des architectures SIMD. voir [19]).

Finalement, les tableaux traités demandent généralement une quantité considéra-
ble de mémoire et accéder rapidement a ces données représente un grand défi parce
que, premierement, lorsqu’une mémoire a une grande capacité, elle est aussi lente et,
deuxiemement, le calcul d’adresse des éléments des tableaux demande un effort de

calcul substantiel.

Dans cette these, on présente des méthodes permettant de résoudre ces trois
probléemes (partitionnement, programmation de SIMD & haut niveau et acces rapide
aux éléments de tableaux). Le chapitre 2 présente une revue de la littérature sur
ces trois sujets alors que le chapitre 3 décrit les besoins des applications qu’on vise
a supporter. Le chapitre 4 traite de la génération d’adresses alors que le chapitre 3
aborde le sujet de la programmation a haut niveau d’ordinateurs SIMD et que le
chapitre 6 décrit la méthode de parallélisation de programmes HPF proposée. Au
chapitre 7, on généralise et formalise le modeéle de parallélisme du HPF. Finalement,
le chapitre 8 tire les conclusions de cette thése. En annexe A, on trouve une intro-
duction a MOA (qui est utilisé dans le chapitre 7) alors que I’annexe C contient la
grammaire du langage HPCP (qui est décrit dans le chapitre 5). Il est & noter que le
chapitre 5 vise spécifiquement les architectures SIMD alors que les autres chapitres

font abstraction de I’architecture de I’ordinateur.



1.1 Modele de parallélisme de HPF

Etant donné que cette thése présente des travaux relatifs au langage de programma-
tion HPF et que ce dernier est présentement relativement peu utilisé. cette section
décrit brievement le modele de parallélisme supporté par ce langage.

Ce modele de parallélisme consiste uniquement en un parallélisme sur les don-
nées. Pour paralléliser un programme HPF, un programmeur doit, dans un premier
temps, indiquer au compilateur comment aligner les tableaux. Deux éléments de
tableaux (différents) qui sont alignés I'un par rapport a I"autre seront traités par le
méme processeur (une fois que les tableaux seront distribués). Cette étape permet
de forcer des éléments de tableaux qui interagissent a étre situés dans la mémoire du
meéme processeur (sur un ordinateur a mémoire distribuée), ce qui, en général. permet
de réduire les communications. Dans le cas d’un ordinateur a mémoire partagee, cela
permet d’améliorer |'efficacité des antémémoires qu'on y retrouve généralement.

La deuxieme étape de description de la parallélisation consiste a indiquer au
compilateur comment effectuer le partitionnement des tableaux. Le modele de par-
titionnement consiste a décrire 'ordinateur sous forme d'un tableau de processeurs
et de diviser certaines des dimensions des tableaux de données selon la longueur des
dimensions du tableau de processeurs. Une dimension d un tableau de données peut
étre divisée en blocs, de fagon cyclique (avec des groupes d’un élément ou plus par
processeur) ou elle peut ne pas étre partitionnée du tout. Finalement, les dimensions
du tableau de processeurs sont utilisées en ordre lexicographique. Le programmeur
peut décider de ne pas spécifier la forme du tableau de processeurs, auquel cas, le
compilateur est libre de générer le code de fagon a profiter au mieux du systéme

utilisé.

1.1.1 Directives de parallélisation HPF

La description du partitionnement selon le modele décrit ci-haut se fait a l'aide
de directives, c’est-a-dire des instructions qui n’effectuent aucun traitement sur les
variables impliquées mais qui donnent des indications (suggestions) au compilateur
au sujet du partitionnement (que le compilateur peut décider d’ignorer).

La description de ces directives, dans ce qui suit, est partielle et est fonction des

besoins présents; pour une description compléte voir [24]. Les exemples de directives



REAL EX1(100, 100, 100, 100)
REAL EX2(100, 100, 100)
REAL EX3(100, 100)

'HPF$ TEMPLATE :: TEMPO(200, 200, 200, 200)
'HPF$ DISTRIBUTE(BLOCK, CYCLIC, CYCLIC(5), *) :: TEMPO
'HPF$ ALIGN EX1(i0, i1, i2, :) WITH TEMPO(ii, i0 + 3, 2 * i2, :)

'HPF$ PROCESSORS PROCO(10)
'HPF$ DISTRIBUTE(BLOCK, *) ONTO PROCO :: EX3
'HPF$ ALIGN EX2(:, =, :) WITH EX3(:, :)

Figure 1.1: Exemples de directives HPF

qui accompagnent les explications qui suivent sont données a la figure L.1.

Les directives sont vues par un compilateur Fortran 90 comme des commeuntaires:
pour ce faire, elles débutent par le caractéres "C” ou ~!” selon le format utilisé (fixe
ou libre — voir {2]). Pour indiquer & un compilateur HPF que ce sont des directives.

ce premier caractére est immédiatement suivi par la chaine de caracteres “HPF$™.

La directive permettant d’aligner deux tableaux ou un tableau et un gabarit
(“template™ — voir le prochain paragraphe) est “align”. Cette directive permet,
a l'aide de variables présentes dans les expressions des deux entités. de spécifier
quelles dimensions sont alignées, avec quel déphasage et avec quel pas relatif. Par
exemple. la directive de la figure 1.1, qui aligne la variable EX1 et le gabarit TEMPO,
aligne les dimensious 1, 2. 3 et 4 de EX1 avec les dimensions 2, 1, 3 et 4 de TEMPO
respectivement. De plus, le déphasage entre les éléments du gabarit selon sa premiere
dimension et de la variable selon sa deuxieme dimension est de 3 alors qu’il est de 0
pour les autres dimensions (i.e. les éléments (i,J,k,{) de EX! sont sur le méme
processeur que les éléments (7,: + 3. k,{) de TEMPO et ce, pour j, k, et | allant de 1
a 100 inclusivement et i allant de 1 a 97 inclusivement). Un raisonnement similaire
s'applique au fait que le pas selon la troisieme dimension de TEMPO est deux fois
plus grand que celui de EX]1 selon cette méme dimension. Finalement, pour indiquer
qu’on ne doit pas tenir compte d’une dimension lors de |'alignement, le caractere **”

est utilisé (voir 'alignement de EX2 avec EX3).

Un gabarit est un tableau fictif (i.e. il ne cause aucune allocation de mémoire)
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permettant d’aligner différents tableaux entre eux et de leur donner la méme distri-
bution. Ceci est nécessaire lorsque l'on veut distribuer des tableaux alignés entre-
eux avec un déphasage non-nul ou avec des dimensions permutées parce qu'alors les
frontieres des tableaux ne sont pas toujours situées au méme endroit dans l'espace
d’indexation donc une directive de distribution ne serait pas suffisante pour spécifier
completement la distribution des tableaux. Un gabarit est décrit par la directive
“template” (voir la figure 1.1).

La directive permettant de décrire la distribution d’un tableau ou d'un gabarit
est “distribute™. Pour chaque dimension de l'entité a distribuer. il faut utiliser soit
“block™. soit ~*”, soit “cyclic” (ce dernier avec ou sans un entier entre parentheses).
La premiere de ces possibilités permet d’indiquer qu'on veut que la dimension soit
divisée en groupes de sous-tableaux les plus gros possibles a raison d’un groupe par
processeur. La deuxieme alternative permet de spécifier que la dimension ne doit
pas étre distribuée alors que la troisieme permet de forcer le nombre d’éléments
par processeur a une valeur égale au parametre spécifié ou a 1 si ce dernier est
absent. Pour la distribution cyclique, si le nombre de processeurs selon la dimension
concernée multiplié par le nombre d'éléments par processeur est inférieur au nombre
d’éléments du tableau selon cette dimension, on continue la distribution a partir
du premier processeur et ce, jusqu'a ce qu’il ne reste plus d’éléments du tableau a
distribuer. Ainsi, pour TEMPO, le processeur (1, 1, 1. 1) (i.e. le “premier” processeur)
recevra la section (L : 200/py,l : 200 : p2, 1 +3 X p3 X ¢ : 5345 %X p3 X t,:) ot
0 <:<200/(5 x p3). Les p; indiquent la forme du réseau de processeur.

La directive “processors” permet de décrire la forme d’un réseau de processeurs
(tel PROCO dans I'exemple) et ce réseau peut étre utilisé ensuite pour distribuer un
tableau ou un gabarit (EX3 dans I'exemple). Le réseau est vue comme un tableau

de processeurs.

1.2 Architecture du SIMD de Pulse

Etant donné que certaines explications contenues dans la présente thése font référence
a certains aspects de I’architecture du SIMD de Pulse, on présente ici un résumé
de cette architecture. La figure 1.2 contient un diagramme-bloc représentant ladite

architecture. On y remarque que les processeurs élémentaires (PE) communiquent



canal Nord

PE 0 PE L PE PE 3

(3]

canal Sud

Figure 1.2: Architecture du SIMD de Pulse

via des canaux de communication nommés Nord et Sud. Ces canaux fonctionnent
sous forme de registre a décalage c’est-a-dire que. lorsqu’une instruction de commu-
nication est effectuée. les données présentes dans le canal affecté par ['instruction
vont d'un processeur a son voisin de droite. Les instructions de communication sont
appelées nsr et ssr (~“North shift right™ et “South shift right™).

Le répertoire d’instructions de Pulse comprend les instructions arithmétiques
et logiques habituelles ainsi que les instructions de contréle qu'on retrouve sur les
processeurs SIMD. En plus, I’architecture Pulse comprend des instructions dédiées
au traitement d’images qui utilisent plus de deux opérandes et/ou produisent plus
d’un résultat (par exemple, “Compare-and-swap”, “rank”. “min” et “max” a trois
sources). Egalement a signaler est le fait que les PEs peuvent effectuer des instruc-
tions vectoriels. Les informations contenues dans les instructions vectorielles sont
les mémes que dans les instructions scalaires auxquelles on ajoute le nombre de fois
que l'instruction est répétées ainsi que l'incrément aux numeéros de registre ou aux

adresses utilisés dans ['instruction.
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Chapitre 2

Revue de la littérature

2.1 Partitionnement de boucles imbriquées

Par le passé, la plupart des travaux qui visaient 2 paralléliser le traitement de
tableaux s’attachaient aux algorithmes implantés sous forme de boucles imbriquées
comme c’est le cas lorsqu’on utilise des langages de programmation comme le FOR-
TRAN 77 ou le langage C (par exemple, voir [47]). Dans ce cas. on utilise souvent le
concept de vecteur de dépendance [48]. Si I'on partitionne le tableau parallelement
aux vecteurs de dépendance (si c’est possible), alors il n'y a2 aucune communication
causee par le partitionnement. Cependant, ces conditions ne sont presque jamais
rencontrées en pratique, ce qui fait qu’on doit trouver des heuristiques qui permet-
tent de faire un compromis entre les différents vecteurs de dépendance et assembler

les itérations en groupes qui seront assignés aux différents processeurs [17. 31, 46].

Il y a trois problemes associés a cette approche: le premier est qu’on peut diffi-
cilement qualifier la qualité de la solution parce qu’on utilise des heuristiques et que
la solution optimale n'est pas connue. Le deuxiéme probléme est qu’'on n’utilise pas
une approche systématique et, donc, que la solution ne s’intégre pas dans un cadre
conceptuel clair et bien défini. Ceci peut avoir plusieurs résultats négatifs; par exem-
ple, certains chercheurs reproduisent essentiellement les mémes travaux que d’autres
mais utilisent un vocabulaire différent: comme les concepts véhiculés dans [44] par
rapport au concept de vecteur de dépendance [46]. Le troisiéme probléme est que
certains de ces travaux ne tiennent pas compte de la répartition équitable de la

charge de travail entre les processeurs. Or, ceci est un probléme important puisque,



si un seul processeur est occupé pendant un temps (méme petit), le gain de vitesse
peut se dégrader considérablement. Ce phénomene est mis en lumiere par la loi
d’Amdahl [23, p. 575]. Par exemple. si un seul processeur. dans un ordinateur qui en
contient [00. a une tache qui est de 10% plus longue que celle des autres processeurs.
alors le gain de vitesse est d’environ ﬁm—io_:go__gog— =~ 91. Donc. dans cet exemple. pres
de 10% du gain de vitesse potentiel est perdue a cause d'une petite différence entre
les charges de travail. Il apparait donc plus important d’avoir une bonne répartition
du travail que d’avoir un algorithme de partitionnement optimal au niveau des com-
munications. [l est a noter, cependant. que le modele HPF ne permet pas de séparer
les tableaux de fagon a bien répartir le travail car, dans le cas général, les frontieres

des tableaux nécessitent un moins grand effort de calcul que le “centre”.

2.2 Partitionnement de code de haut niveau

La deuxieme approche de partitionnement consiste a utiliser un langage de program-
mation qui contient des opérateurs sur les tableaux comme. par exemple, ['APL [26],
le langage J [27], NIAL [28] ou Fortran 90 {2]. Bien que certains chercheurs aient
exploré cette avenue par le passé (par exemple, [14]). c’est la venue du Fortran 90 et
du HPF qui a suscité un intérét marqué parmi les chercheurs vis-a-vis cette approche.

Les chercheurs s'entendent pour dire que le partitionnement automatique de-
mande beaucoup d’effort de calcul ce qui fait que plusieurs utilisent des heuris-
tiques pour diminuer cet effort. Les approches préconisées peuvent étre classées
en deux catégories: celles qui sont basées sur l'évaluation de partitionnements-
candidats et celles qui “calculent” la meilleure solution possible (en éliminant les con-
traintes les moins cotliteuses — voir chapitre 6). Dans [29], une méthode du premier
groupe est proposée. Malgré que cette méthode ne considere pas l'alignement intra-
dimensionnel, les heuristiques utilisées ont une complexité temporelle trop élevée
pour étre implantées dans un compilateur. Chatterjee [13, 11, 12] propose des al-
gorithmes pour calculer I'alignement et la distribution des tableaux. Cependant,
bien que la méthode utilisée permette une redistribution dynamique, les alignements
sont choisis avant les distributions donc, méme si une dimension n’est, a la fin, pas
distribuée, elle influencera, malgré tout, I’alignement des tableaux puisque toutes les
dimensions sont utilisées pour calculer le coit des différents alignements considérés.



Bau et al. [7] proposent une approche algébrique dont la complexité est faible; cepen-
dant, ils n’abordent pas le probléme de la sélection des contraintes a satisfaire (ou
non) et ils ne résolvent que le probléme de |'alignement sans traiter la distribution
des tableaux. Finalement, Knobe [32, 33] utilise un graphe pour décrire les con-
traintes. Les contraintes qui seront satisfaites sont sélectionnées en construisant un
arbre recouvrant qui est ensuite augmenté des autres contraintes qui ne causent pas
de conflits. Cette méthode est trés performante mais elle est limitée aux systémes
SIMD et elle utilise (comme [29]) un modele plus général que celui du HPF. I est
a noter que le fait que cette méthode soit limitée aux systemes SIMD est important
puisque la synchronisation rigide des processeurs rend l’efficacité du partitionnement
plus sensible a la répartition de la tache car un déséquilibre dans les sous-easembles
de chaque taches ralentit le traitement alors que, dans le cas d’un ordinateur MIMD,
le ralentissement n’est fonction que du déséquilibre entre I’ensemnble des taches des
processeurs. Or, comme il a été souligné précédemment, le modele HPF se préte mal
a l’équilibrage fin des taches, donc, viser & supporter le modele HPF et les archi-
tectures SIMD sont des objectifs relativement conflictuels et c’est pourquoi il a été
décidé, dans cette these, de mettre 'emphase sur le modele HPF uniquement.

Donc, aucune méthode, a la fois:

e ne supporte le modele de partitionnement du HPF,

® a une faible complexité temporelle,

@ permet tant ['alignement que la distribution des tableaux et
e vise les calculs structurés (voir chapitre 3).

On vise, dans cette thése, a proposer une solution qui rencontre ces besoins.

2.3 Géneration d’adresse pour les tableaux

La génération d’adresses pour le traitement de tableaux n’a pas attiré |'attention
de beaucoup de chercheurs. En fait, aucune référence sur ce sujet n’a été trouvée.
Par contre, il existe un circuit intégré, le TMC2301 [45], qui effectue le calcul de
coordonées de matrices. Etant donné qu’on ne dispose d’aucune information sur le

fonctionnement interne de ce circuit, on ne peut en discuter.
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2.4 Langages de haut niveau pour la program-

mation SIMD

Plusieurs langages de haut niveau ont été proposés pour la programmation d’ordi-
nateurs SIMD et MIMD. Fortran 90 [2], HPF (High Performance Fortran) [24] et
APL [26] sont des exemples des langages a usage général qui, de par leur généralité,
ne sont pas appropriés au traitement structuré de tableau parce que cette généralité
nuit a la génération de code compact et efficace.

Un des objectifs de la présente these est de permettre la distribution automatique
des données et du traitement entre les processeurs. Donc, des structures de controle
définissant des blocs séquentiels et d’autres paralléles (comme dans Occam [38], Uc [6]
et BLAZE [34]) doivent étre évitées. Egalement, il est préférable d'inclure dans le
langage les expressions sur des tableaux pour permettre un niveau d’abstraction
plus élevé ainsi que pour faciliter la distribution automatique des tableaux donc, les
boucles imbriquées (comme dans Apply [21] et AL [50]) sont a éviter. Evidemment,
le “forall’ (comme dans BLAZE) et le concept d’ensemble d’index (comme dans Uc)
sont intéressants mais ne sont pas suffisants dans le présent contexte. Donc, aucun
langage ne possede toutes les caractéristiques requises pour décrire le traitement
structuré de tableaux a un niveau d’abstraction éleve et qui permettrait la génération
de code parallele efficace (en mémoire et en temps). Un nouveau langage est proposé

dans la présente these dans le but de combler ce vide.
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Chapitre 3
Analyse des besoins

Dans ce chapitre, on tente de donner un apergu des besoins typiques des applications
qui traitent des tableaux et qui requierent une grande puissance de calcul. Les besoins
des applications different beaucoup, évidemment. Par contre. on peut diviser les
algorithmes de traitement de tableaux en deux grandes catégories: ceux qui effectuent

un traitement régulier et ceux dont la structure est irréguliere.

Les méthodes numériques qui discrétisent des équations mathématiques et en font
des systemes d’équations algébriques linéaires sont trés répandues et comprennent
(entre autres): les méthodes aux différences finies, la méthode des éléments finis,
les méthodes de volumes finis ainsi que les méthodes multi-grille. Ces méthodes
ont en commun une importante caractéristique: les systemes d’équations généreés
sont creux (au sens ou chaque équation dépend d’une petite fraction seulement des
variables). Ceci est dit au fait que les relations entre les variables sont de nature tres
localisée (seuls des éléments voisins dans des tableaux de données interagissent). Un
bon exemple de cette situation est montré dans [25] aux pages 417 et suivantes. [l
s'agit de la solution d’une équation aux dérivées partielles a 1'aide d’'une méthode
de différences finies. La matrice qui décrit ce systéme est creuse a cause de la fagon
dont la solution est exprimée; plus précisément, les inconnues sont assemblées en un

vecteur plutot qu’en une matrice (qui représente la forme du probléme).

Il existe d’autres situations pour lesquelles la représentation matricielle produit
une matrice creuse; par exemple, un probleme dont la structure est un réseau (comme

un réseau de distribution d’énergie) dont la connectivité est faible.
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Pour ces deux types de situations (structures régulieres ou non mais représen-
tées sous forme matricielle), les chercheurs s’entendent pour dire que les méthodes
itératives sont plus efficaces (du point de vue de l'effort de calcul nécessaire pour
obtenir une solution a la précision désirée) que les méthodes directes [36]. Donec.
sachant que la représentation matricielle n’est utile que pour les méthodes directes.
il est plus important de supporter les méthodes itératives que les méthodes directes
{i.e. le calcul sur des tableaux plutét que sur des matrices). Cette assertion est aussi
supportée par le fait que beaucoup de méthodes ont été proposées pour solutionner
des systemes dont la structure est particuliére (par exemple, les systémes tridiago-
naux et pentadiagonaux). Ces systémes ont la méme structure que ceux créés par
des méthodes itératives. mais ils sont parfois solutionnés en n’ayant pas recours a
une méthode itérative (exemple: méthode des éléments finis sur une grille réguliere).

Donc, supporter le traitement de tableaux fait a la maniére des méthodes itéra-
tives est important car ces dernieres sont plus faciles a supporter (car le traitement
est régulier — voir section 3.1), elles sont de plus en plus répandues et certaines

meéthodes directes ont une structure de calcul similaire.

3.1 Meéthodes itératives

Les méthodes itératives (ainsi que d’autres algorithmes qui ont une structure de
calculs similaire) sont trées répandues (e.g. méthodes aux différences finies. méthodes
multi-grilles, méthodes de volumes finis, algorithmes de traitement de signal). L’équa-
tion A X T + B = 0 est la représentation sous forme matricielle d’'un systeme a
résoudre (ou A est la matrice, T est le vecteur des inconnues et B est un vecteur de
constantes). Solutionner ce systéeme de facon itérative consiste a assigner une valeur
initiale quelconque a T et de calculer la valeur du membre de gauche de |'équation.
Le résultat ne sera pas zéro comme dans l'équation mais un certain AT qui sera
ajouté a T pour obtenir une deuxiéme valeur & T qui soit plus pres de la véritable
solution. Autrement dit, T4y = T, + AT pour chaque itération et ou AT est calculé
a l'aide du membre de gauche de I’équation. Il existe différentes variantes a cette
méthode de base pour accélérer la convergence et la précision, mais elles ne seront
pas décrites ici puisque cela dépasse le cadre des présents travaux. Il est important

de noter que, comme ces systémes d’équations représentent des calculs structurés sur
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des éléments de tableau qui sont voisins. 4 x T est, en fait. une convolution.

3.2 Meéthodes directes

Les méthodes directes les plus connues sont la décomposition LU et I'élimination
gaussienne. Ces méthodes ont en commun un probleme qui est celui dit de remplis-
sage (“fill-in”). Ce probleme vient du fait que ces méthodes transforment la matrice
qui décrit la solution en une autre qui a un taux de remplissage plus élevé. Donc,
solutionner le systéme une fois la matrice transformée impose plus de calculs que
requis par la structure du probléme.

Ces méthodes sont souvent utilisées lorsque |'on veut décrire de facon simple un
probléeme non-structuré, par exemple, des graphes ou réseaux. Ces graphes et réseaux
peuvent décrire beaucoup de types de systemes différents comme: des systémes con-
tinus mais discrétisés de maniere non-structurée, des systemes discrets comme des
réseaux logiques ou de distribution de puissance ou des systémes composés de “par-
ticules” comme des molécules et/ou atomes ou des corps planétaires.

Dans ce genre de situation, ’approche la plus judicieuse est un algorithme ou
les données ne sont pas structurées (par exemple, en graphe) et oit la méthode de

solution est itérative.

3.3 Contexte matériel

Il a été démontré que, parmi la classe de réseau “k-ary n-cube”, le choix optimal
consiste a utiliser un réseau de deux (rarement trois) dimensions lorsqu’on désire
minimiser la latence des communications, maximiser la bande passante et/ou mini-
miser I'impact des points chauds sur la performance globale [16]. Etant donné que
la plupart des ordinateurs fabriqués a ce jour utilisent ce genre de réseau et que
cette structure correspond treés bien au matérial disponible (en terme de forme), il
est raisonnable de penser que de ne supporter, au niveau logiciel, que des réseaux en
forme de tableaux est un choix judicieux, puisqu’il inclut ces “k-ary n-cube”.
D’autre part, les problemes qui demandent un grand effort de calcul traitent des
données sous forme de tableaux d’au moins deux dimensions (généralement trois).

Donc, la dimensionalité des tableaux de données est normalement au moins aussi
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grande que celle du réseau de processeurs. Ceci implique qu’il est raisonnable de ne
pas permettre a2 une dimension de tableau de données d’étre partitionnée plus d’une
fois. Donc, a cet égard. le modele HPF ne limite la performance que dans des cas

particuliers.

3.4 Discussion

Etant donné que la convolution est I’'opération la plus utile pour les méthodes itérati-
ves (avec les opérations arithmétiques, évidemment), il est important de s’y attarder.
La caractéristique principale de cette opération est l’extréme régularité de la struc-
ture des calculs et du patron d’acces a la mémoire. Ce point est intéressant puisqu’il
permet d’effectuer beaucoup d’optimisations a la compilation (par exemple, utiliser
les unités fonctionnelles et leur pipeline au maximum, transférer de fagon optimale
les données entre la mémoire et les antémémoires). Egalement, et c'est 1a un des
points qui nous intéressent, trouver le partitionnement idéal est beaucoup plus facile
que pour des structures de calculs moins régulieres. En effet, la forme du noyau de
convolution donne directement la forme des sous-tableaux (ou sections) qui devront
étre transférés d’'un processeur a un autre si un tableau est partitionne.

Il est a noter que la convolution est l'opération principale de plusieurs algorithmes
de traitement de signal. En effet, cette opération constitue la structure de base des
filtres (par exemple, FIR, IIR, filtres polyphasés) et que ces filtres implantent les
fonctions de base du traitement de signal (par exemple, lissage, détection d’arétes,
réduction du bruit). Ceci rend la classe des applications qui effectuent un traitement
régulier sur des tableaux encore plus importante.

La seule autre opération qui soit souvent utilisée et qui puisse causer des commu-
nications, lorsqu’un programme est parallélisé, est la réduction. Celle-ci est surtout
utilisée dans des problemes de déconvolution. Cette opération est également re-
lativement simple a gérer (lorsqu’il s’agit de trouver le partitionnement optimal)
puisque, si une seule dimension est réduite, une quantité considérable de données
devrait étre transférée si on partitionnait cette dimension. De plus, si un tableau
est réduit au complet, on ne peut pas avoir une quantité “raisonnable” de commu-
nications, si on utilise un des langages impératifs les plus utilisés, quelles que soient

les dimensions partitionnées. En effet, les langages les plus courants doivent définir
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dans quel ordre sont effectuées les opérations de calcul puisqu'un des besoins les plus
importants des usagers des applications est que les résultats doivent étre les mémes
quel que soit I'ordinateur qui a exécuté I'application. Il s’en suit qu'on ne peut pas,
normalement, effectuer la réduction des partitions pour, ensuite, faire la réduction
de ces résultats. Donc, la quantité de communication est strictement fonction de la
forme du réseau de processeurs et des dimensions partitionnées et réduites.
Finalement, il est 4 noter que de supporter efficacement le traitement de matrices
creuses n’'est pas désirable puisque la répartition des taches entre les processeurs est
tres difficile (et qu’elle doit étre modifiée pendant 'exécution) et qu’il est plus difficile
d’utiliser efficacement les ressources d’un ordinateur (par exemple, les antémémoires

et les unités fonctionnelles) a cause de |’absence de régularité dans le traitement.

3.5 Mise en oeuvre d’un objet-tableau C++

Dans le but de déterminer quels opérateurs sur les tableaux sont les plus utiles. un
object-tablcau a été implanté dans le langage C++. Les opérateurs implantés a priori
sont les opérateurs arithmétiques, les opérateurs les plus usuels de MOA [4!] (voir
I'annexe A) ainsi qu'un opérateur de convolution.

Egalement, deux applications ont été traduites en C++ en utilisant cet objet.

3.5.1 Opérateurs implantés

Lcs opératcurs implantés sont:

o les opérateurs arithmeétiques habituels (4, —, *, /) entre deux tableaux et entre

un tableau ct un scalairc.
® les assignations C++ suivantes =, + =, — =, * =, | =,
® les comparaisons >, <, ==, ! =, <=, >=,
® dcs opérateurs dc lecture ct d'écriture de tablcaux: <<, >>,
e des opérateurs logiques: set_gt, set_lt, set_eq, set_ne, set_le et set_ge,

® des fonctions mathématiques usuelles: max, pow, sqrt et abs,
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o des opérateurs MOA: reshape. delta. rho, tau. iota. red_add. red_mult.
take; ainsi que deux opérateurs effectuant le travail combiné de deux opéra-

teurs omega_mult. omega_add.
® un opérateur d’indexation [ ] et

e deux opérateurs de convolution.

3.5.2 Applications implantées

Les applications implantées consistent en un probleme aux différences finies et un
probleme de déconvolution. Le premier consiste a simuler un écoulement de fluide
a ['aide du scheme de MacCormack [20]. alors que le deuxieme consiste i extraire
un estimé du champ de vent a partir de données de précipitation provenant d’un
radar Doppler [35]. Dans ce deuxieme cas. le schéma semi-lagrangien a été remplacé
par un schéma de différences finies parce qu'il régularise la structure des calculs et

demande un effort de calcul moindre.

3.6 Conclusions
Les opérateurs qui se sont révélés utiles sont:
o . — % [/ = k= 4=, —=
o [/O (<<, >>).
e convolution,
e réduction additive,
e omega_mult (i.e. le “spread” du Fortran 90 ou »Q en MOA),
e set_lt,
e take, rho, delta,

e sqrt, pow.
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L utilité de la plupart de ces opérateurs n’est pas étonnante. Cependant, il est a
noter que certains opérateurs ne se sont avérés utiles que parce que le cadre de cette
implantation est plus contraignant que les langages de programmation impératifs
usuels; en particulier, set_It, omega mult et take ne seraient pas utiles en For-
tran 90, par exemple.

Aussi. la convolution peut étre exprimée assez facilement & |'aide de sections de
tableaux en Fortran 90 (bien que I'expression peut devenir tres longue dans certains
cas); de plus, un opérateur de convolution souffre d'un certain manque de souplesse.
En efet. le traitement des frontiéres des tableaux requiert un traitement spécifique
qui peut difficilement étre exprimé a l'aide d’un opérateur. Il semble donc que la
solution idéale pour ’expression de la convolution reste a trouver.

En conclusion, l'objectif de ce chapitre est d’identifier les opérateurs les plus
importants pour les applications typiques. On constate que ces opérateurs sont les
opérateurs de calculs (arithmetiques, sqrt. pow etc.), la convolution, la réduction

et le “spread” du Fortran 90.



Chapitre 4

Génération d’adresses

4.1 Introduction

Une des difficultés majeures rencontrées lorsqu'on vise 2 maximiser la performance
d’un processeur consiste a transférer les données entre la mémoire principale et le
processeur de facon a ne pas ralentir ce dernier dans I’exécution de ses taches. Ce
ralentissement peut survenir dans deux situations: l. les données dont le processeur
a besoin ne sont pas encore disponibles et 2. les données dont le processeur n'a plus
besoin engorgent la mémoire locale (comme, par exemple, dans une anté-mémoire
ou dans des registres) et empéchent le chargement de données dont le processeur
a besoin. De plus, les technologies courantes ne permettent pas de fabriquer des
mémoires principales qui soient aussi rapides que les processeurs. tout en ayant une
capacité de stockage suffisante pour contenir les programmes et données associées
des applications usuelles. Ceci a pour conséquence |'utilisation d'une hiérarchie de
mémoires dans la plupart des ordinateurs de haute-performance (par exemple, anté-
mémoires, mémoires statiques sur la puce, registres vectoriels) pour diminuer I'impact
de cette différence de vitesse.

Un défi majeur dans la conception d’un ordinateur consiste a compenser la latence
élevée de la mémoire principale qui résulte des caractéristiques de la technologie
utilisée. Par contre, la bande passante de cette mémoire peut étre augmentée de
facon relativement simple en améliorant la structure du sous-systéme-mémoire (par
exemple, en utilisant des bus plus larges, des mémoires entrelacées ou un mode

de transfert en rafale). En d’autres mots, bien que la bande passante puisse étre
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améliorée assez facilement. diminuer la latence nécessite une technologie plus rapide
et dispendieuse. sauf si on peut effectuer des chargernents et déchargements anticipés
(ce qui est la seule autre alternative). Evidemment, ces deux solutions peuvent étre
utilisées simultanément.

Le traitement de tableaux permet d'effectuer ces transferts anticipés puisque les
patrons d’adresses qu’ils entrainent sont réguliers donc prévisibles. Dans ce chapitre.
on discute d’un algorithme permettant de transférer efficacement un tableau entre
un processeur et sa mémoire. Deux implantations de cet algorithme (une logicielle
et une matérielle) sont décrites et on démontre leur efficacité ainsi que la complexité
de I'implantation matérielle.

L’algorithme proposé est intimement lié a ['adressage symeétrique de tableaux
tel que proposé par Becker [3]. L’adressage symétrique consiste & décrire l"adresse
d’un élément d’un tableau comme une somme pondérée des indices de I'élément (a
laquelle on ajoute une adresse de base). Certains des gains apportés par l'adressage

symétrique sont:

e éviter de copier de grandes quantités de données lorsqu’un tableau est trans-

formé.

e permettre de fusionner plusieurs transformations en une seule par la compo-
sition de celles-ci (¢’est-a-dire que ces transformations peuvent étre combinées
en une seule au moment de la compilation et que le temps d’exécution peut

étre réeduit au temps d’une seule transformation),

e permettre de traiter des tableaux non-contigus en mémoire.

On peut éviter de copier les données parce qu’une transformation qui ne modifie
que l’adressage d’un tableau (par exemple, la transposition, ou extraire une section)
est effectuée en modifiant simplement les facteurs de pondération.

L’algorithme proposé utilise une transformation linéaire d’'un ensemble de vec-
teurs d’indices en une séquence d’adresses et calcule cette séquence de fagon tres
efficace. On prouve cette efficacité en montrant que le temps nécessaire pour cal-
culer les adresses pour un cas complexe (c’est-a-dire pour un tableau ayant de nom-
breuses dimensions) est presque aussi rapide que pour le cas simple (c’est-a-dire un

vecteur). Un gain majeur apporté par cet algorithme est qu’il ne nécessite aucune



20

multiplication au moment de |’exécution contrairement a I’algorithme classique per-
mettant de calculer une adresse a partir d'un vecteur d’indices [3]. Evidemment. un
sous-systeme-meémoire de haute performance est nécessaire pour utiliser au mieux les
capacités d'un tel algorithme mais ce sujet dépasse le cadre de cette these.

La section 4.2 décrit les types de transformations qui doivent étre supportés
pour que l'algorithme soit suffisamment Hexible et performant pour étre considéré
utile et général pour le traitement de tableaux. La section 4.3 décrit |'algorithme
proposé tandis que la section 1.4 contient une description de I'implantation logi-
cielle et du niveau de performance qu’elle permet. La section 4.3 fait de méme
pour l'implantation matérielle. Dans la section 4.6. différentes transformations sont
decrites alors que la section 4.7 définit les équations nécessaires au calcul des pas
utilisés par le générateur d’adresses (c'est-a-dire I'implantation matérielle). Finale-
ment. [a section 4.8 tire des conclusions sur ce sujet.

Dans ce chapitre, on utilise une notation basée sur la syntaxe du Fortran 90 [2].
Les dimensions sont numeérotées de 1 pour la dimension de poids fort au nombre de

dimensions du tableau pour la dimension de poids faible.

4.2 Patrons d’adresses

Lorsque des tableaux sont transformés dans une application, ils le sont par un
operateur ou, dans le cas du Fortran 90, ils peuvent aussi l'étre par une fonction
intrinseque. Le Fortran 90 est utilisé en guise de référence parce que les différents
dialectes de Fortran sont utilisés pour programmer la plupart des applications scien-
tifiques qui nécessitent beaucoup de temps de calcul et que ces applications traitent
généralement des tableaux. Les fonctions intrinseques du Fortran 90 qui transfor-
ment un tableau sont: CSHIFT. EOSHIFT, TRANSPOSE, MATMUL, SPREAD et
RESHAPE.

Il existe une autre fagon de transformer un tableau: utiliser seulement une partie
du tableau soit une section (selon le vocabulaire du Fortran 90). En Fortran 90, on
décrit une section par une borne inférieure, une borne supérieure et un pas selon
chacune des dimensions.

Toutes ces opérations (sauf CSHIFT) impliquent une transformation linéaire d’un

ensemble de vecteurs d’indices vers un ensemble d’adresses ce qui fait que, pour
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accéder aux tableaux sans les copier en mémoire (donc. en les accédant sur

place) on n’a besoin que de:

I. I'adresse du premier élément (apres la transformation).
2. la forme du tableau transformé et

3. la distance en mémoire entre deux éléments contigus selon chacune des dimen-

sions du tableau.

Autrement dit. bien que les différentes opérations impliquent différents patrons
d’accés en mémoire (par exemple, TRANSPOSE peut introduire un pas négatif),
les données énumérées ci-dessus sont les seules requises pour effectuer les calculs
d’adresses. [l est a noter que CSHIFT nécessite 'acceés a deux sous-tableaux qui.
chacun, impliquent une transformation linéaire. Ces deux transformations. si elles

étaient combinées ne constitueraient pas une transformation linéaire.

4.3 Algorithme

L'agorithme de la figure 4.1 implante les calculs désirés et il est proche de I'algorithme
désiré. La différence est qu’il ne supporte pas un nombre variable de dimensions.

Cet algorithme montre que:

® le vecteur “cur” est utilisé pour mémoriser les indices de I'élément courant du

tableau,

e le tableau entier est traversé (c'est-a-dire du vecteur d’indices 0 au vecteur

d’indices sha‘;.)e - 1).

L’algorithme proposé est énoncé a la figure 1.2. Le “while” extérieur (lignes T
a 28) est exécuté jusqu’a ce que le traitement du tableau soit complété. Le premier
“while” intérieur (lignes 10 a 14 transfére une rangée du tableau et le deuxieme
(lignes 20 a 27) gere les indices de ['élément courant (sauf le dernier qui est géré par
le premier “while” intérieur). La condition de fin de traitement est j < 0, puisque
cela veut dire qu'un sous-tableau de dimensionalité ¢gale a celle du tableau a été

traité (donc, le tableau lui-méme). Le vecteur “shape” contient la forme du tableau



Adresses(start. shape[ndim]. incr{ndim])
integer : i. res
integer : cur[ndim]

res = start

cur[0] =0
Do while cur[0] < shape[0]
cur[l] =0
Do while cur{l] < shape[l]
curf2] =0

Do while cur[?] < shape[2]

cur{ndim — 2] =0
Do while cur[ndim — 2| < shape[ndim — 2]
curfndim — 1] =0
Do while cur[ndim — 1] < shape{ndim — 1]
Move memory/res]
res = res + incr[ndim — 1]
cur[ndim — 1] = cur[ndim — 1] + |
end do
res = res + incr{ndim — 2]
cur[ndim — 2] = cur[ndim — 2] + |
end do

res = res + incr{l]
cur[l] = cur{l] + |
end do
res = res + incr[0]
cur[0] = cur[0] + 1
end do

Figure 4.1: Algorithme de calcul d’adresse simplifie

by
8V
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transformé tandis que “cur” est le vecteur d’indices de |’élément de tableau qui est
en cours de traitement. “Incr” contient les incréments d'adresse dont on a besoin
pour aller du dernier élément d’un sous-tableau au premier élément du sous-tableau
suivant (dont la dimensionalité correspond a la position de l'incrément dans son
vecteur). [l est & noter que ces incréments sont exprimeés en terme de la granularité
de la mémoire plutét que selon le nombre d’éléments de tableaux. Finalement. “res”
est le résultat des calculs d’adresses (donc, c’est 'adresse de 'élément courant): sa
valeur initiale est celle de I’adresse du premier élément a transférer.

Cet algorithme est équivalent a ['algorithme de la figure 1.1 sauf qu’il permet de
gérer un nombre variable de dimensions.

Le deuxieme algorithme gere les boucles imbriquées grace a une boucle qui gere
les indices de boucles et les incréments d’adresses. Il a aussi les caractéristiques

suivantes:

o il peut effectuer n'importe quelle transformation linéaire entre un ensemble de

vecteurs d’indices et une séquence d’adresses,

e il n’utilise que des additions, des comparaisons et des boucles (et aucune mul-

tiplication) et

e il peut étre facilement divisé en plusieurs portions qui peuvent étre exécutées

en parallele (comme démontré ci-apres).

La capacité de cet algorithme d’implanter toutes les transformations linéaires
vient du fait que. lorsqu'on se déplace selon une dimension, un pas est ajouté a
I'adresse courante. Cette addition et les autres effectuées pour les dimensions de
poids plus faible effectuent le travail du facteur de pondération de cette dimension
dans I’équation de la transformation linéaire.

Le fait que 'algorithme n’utilise aucune multiplication est un facteur important
en ce qui a trait a la vitesse d’exécution parce que la multiplication requiert typique-
ment plus d’un étage de pipeline contrairement aux opérations logiques, de controle
et arithmétiques simples. Par exemple, le R10000 a besoin de 6 étages de pipeline
pour effectuer une multiplication de nombres entiers de 32 bits [40].

L’absence de multiplication dans ’algorithme implique également qu'une implan-

tation matérielle doit avoir une complexité faible puisqu’un multiplieur rapide est un
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Adresses(start. ndim, shape[ndim], incr{ndim])
integer : i. j, res
integer : cur[ndimy]

res = start
cur =0
j = adim — 1

Do while j >=0
j =ndim — 1
i=0
Do while i < shapefj]
acceés a mémoire[res|
res = res + incr(j]
=41
end do
Ifj >=0
I=1-1
res = res + incrfj]
end if
curfj] = curfj] +1
Do while j >= 0 and cur[j] = shape]j]
cur[j] = 0
i=j-1
[fj>=0
res = res + incrfj]
curfj] = curfj] +1
end if
end do
end do

Figure 1.2: Algorithme de calcul d’adresses
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module complexe. tant par le nombre de transistors que par son architecture (il s’agit

d’une structure semi-réguliere).

4.4 Implantation logicielle

4.4.1 Code et modele temporel

Dans le but de caractériser I'efficacité de ['algorithme, il a été traduit dans le lan-
gage C. La partie du programme qui effectue les calculs d’adresses proprement dits
est montré a la figure 4.3. Dans ce code, la variable “reg” signifie un registre alors

que “res” est l'adresse ou est effectué 'accés en mémoire.

while(j >= 0)
{for(i = 0; i < shapelndim-1]; i++)
{reg = *res;
res += incr[ndim-1];

}

j = ndim - 2;
res += incr(j];
while(j >= 0 && ++(cur[j]) == shape(j])
{curljl = 0;
==
if(j >= 0)
res += incr(j];

}

Figure 1.3: Boucles principales de I'algorithme en langage C

Il est & noter que ce fragment de programme nécessite un tableau a deux dimen-
sions ou plus, méme si le cas général traité a la section 4.3 supporte tous les cas y
compris les tableaux a une seule dimension (qui ne requiert pas un algorithme aussi
complexe que celui proposé ici).

L’intérét principal de ce code est que son temps d’exécution peut étre modélisé

facilement. Ce modéle ne requiert que quatre parametres:
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t,: temps nécessaire a |'exécution du “while” extérieur moins le temps d’exécution

du ~while” intérieur et du “for”.

t.: temps d’exécution d’une itération du “while” intérieur incluant 'exécution de la

condition du “if” mais pas celui de 'instruction du corps de ce ~if”.
t;g: temps d’exécution de I'instruction du corps du “if~ et
t;: temps d’exécution d’une itération du “for™.
Le modele du temps d’exécution complet est le suivant:
T,=t, +t;+t + ¢

ou

T,: temps total.

t,: temps du “while” extérieur,

ty: temps du “for”,

t,: temps du “while™ intérieur et

t;: temps du “if .

to,=n; xt,
n; =n=/l,.
tj =n, Xt

t-=n, xt,
t,—=n,xtif

n. dim. =2 1
r = Te Z n. dim. —1

=0 j=i syl

ou

n;: est le nombre d’itérations du “while” extérieur,



n.: est le nombre d’éléments du tableau transformé et
[,: est le nombre d’éléments dans une rangée du tableau.
s: est la forme du tableau.

Dans I'équation de n.. le produit {[]) calcule le nombre d’éléments d'un sous-
tableau de ¢ dimensions, donc n, divisé par ce nombre d’éléments donne le nombre de
sous-tableaux de ¢ dimensions contenus dans le tableau. En conséquence, additionner
le nombre de sous-tableaux pour toutes les dimensions sauf celle de poids faible donne

le nombre de fois qu'une itération du “while” intérieur a été effectuée (i.e. n,).

4.4.2 Evaluation du temps d’exécution

Dans le but d’obtenir un cstimé des valeurs des parametres du modeéle temporel de
'algorithme, une version du code a été écrite dans un pseudo-langage d’assemblée.
Un pseudo-langage a été choisi plutét qu'un langage réel dans le but d’obtenir un
estimé de performance préliminaire et pour déterminer si un modele réel et des simu-
lations seraient nécessaires (di, entre autres, a la latence variable des anté-mémoires).
Le programme en question est donné a ['annexe B. Ce programme suppose qu’il y a

suffisamment de registres pour contenir les variables suivantes:

1. les scalaires 1. j et res,

2. la constante ndim,

3. les vecteurs shape. cur et incr et
4. un scalaire temporaire.

Le nombre de registres nécessaires s'éleve a 26 si le tableau transféré a 7 dimen-
sions (ce qui est le maximum permis par le Fortran 90). Etant donné que la plupart
des processeurs de haute-performance contiennent 32 registres entiers, il est réaliste
de supposer que ces variables y sont maintenues.

Pour compléter le calcul de parameétres du modéle temporel, il ne manque qu'un
estimé du nombre de cycles nécessaires a I’'exécution des différentes instructions. Les

regles suivantes ont été appliquées:

e une instruction registre-registre a une latence d'un cycle d’horloge,
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e une instruction mémoire-registre a une latence de deux cycles d horloge.

e une instruction de saut a une latence d’un cycle.

Ces valeurs ont été choisies parce que |'étape d'exécution du pipeline d'un pro-
cesseur requiert généralement un cycle d’horloge pour étre complétée pour une in-
struction registre-registre (sauf pour la multiplication, la division et les opérations en
virgule flottante qui n'apparaissent pas dans le code) et qu'une opération mémoire-
registre est plus lente. en général, mais est quand méme rapide a cause de la présence
d’anté-mémoires sur la plupart des processeurs. Il est & noter que la seconde hy-
pothese nécessite que les adresses successives soient souvent contigues en mémoire
pour obtenir un taux de succés d’accés aux anté-mémoires suffisamment élevé. Etant
donné que la destination des instructions de saut est prédite avec un taux de succes
élevé par la plupart des processeurs de haute-performance, on a supposé que leur la-
tence est d'un seul cycle d’horloge (c’est-a-dire que la pénalité de mauvaise prédiction
est, en moyenne, négligeable). De toute évidence, on suppose que le processeur a
une structure en pipeline. E:Igalement, on suppose, dans un premier temps. que le
processeur n'est pas super-scalaire; cette hypotheése sera modifiée plus tard.

A partir de ces hypotheses et du code de I'annexe B. les valeurs des parametres

suivantes ont été calculées:
t, 1cycles

ty T cycles
tif 1 cycles

t;, 3 cycles

A I'analyse de ces valeurs, il est évident que ['essentiel du temps d'exécution sera
utilisé par la boucle “for”. puisqu’elle nécessite 5 cycles pour traiter chaque élément
de tableau, alors que le temps de traitement d'une rangée est du méme ordre de
grandeur.

Cette constatation est corroborée par le calcul des temps d’acces (grace au modele
décrit a la section 4.1.1) pour un tableau de forme n par 8 par m ou n x m = 1024
et n prend les valeurs: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 et 1024. La longueur de
la deuxieme dimension a été fixée a 8 dans le but de garder le temps de gestion des
dimensions supérieures a4 une valeur relativement constante. La figure 4.4 montre
que, pour des longueurs de rangée raisonables, la perte de temps pour la gestion

des dimensions supérieures est faible (en comparaison du cas oti les rangées ont une
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Figure 4.4: Temps moyen de traitement par élément pour un tableau de n x 8 x m
ounxm=1024

longueur de 1024, la perte est de ~ 10.5% pour des rangées de longueur 16 et de

~ 5% lorsque cette longueur est de 32).

Dans le but de confirmer cette conclusion, des temps ont été calculés pour un
cas ou le nombre de dimensions est varié. Un tableau de 4096 par 4096 par n a été
changé en un tableau de 5 dimensions de longueur 64 dans chaque dimension, puis
en un tableau de 9 dimensions de longueur 8 sauf la dimension de poids faible qui
est restée constante. De plus, n a été fixé a 8, 16 et 32. Pour toutes ces situations,
la perte de vitesse totale est restée faible (au maximum, ~ 32% pour des rangées
de 8, ~ 21% pour des rangées de 16 et ~ 16% pour des rangées de 32 éléments)
tel que démontré par la figure 4.5. Cette perte est définie comme étant le temps
passé a effectuer d’autres opérations que celles de la boucle “for” (en I'occurence, le
“for” demande 5 cycles d’horloge par élément). Ces valeurs de perte sont considérées
faibles parce que la longueur des rangées est anormalement faible et que le nombre
de dimensions est anormalement élevé (donc, il s’agit d’une situation pessimiste) et

que, malgré tout, la perte reste acceptable.

Finalement, une troisieme expérience a été effectuée avec une matrice carrée de
grandeur réaliste. La figure 4.6 montre que le temps supplémentaire par rapport au

traitement d’un vecteur contenant le méme nombre d’éléments est négligeable.
ghg
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Tableau 4.1: Résumé des pcrtes de vitesse pour le processeur simple (S) et pour le
processeur super-scalaire (SS) pour les deux premiéres expériences

Expérience | longueur des rangées || S SS

El 16 10.5% | 18.5%
El 32 5% | 9%
E2 8 2% | 55%
E2 16 21% | 33%
E2 32 16% | 23%

L'étape suivante consiste & caractériser le comportement d'un processeur super-
scalaire. En supposant un processeur pouvant exécuter une opération en virgule flot-
tante, deux instructions en nombre entier et une opération registre-mémoire en méme
temps (ce qui constitue un processeur minimalement super-scalaire), les parametres

deviennent:
t, 2cycles

ty, 5 cycles
tit 1 cycles
ty 2 cycles

Dans ce nouveau contexte, les deux premieéres expériences (c’est-a-dire une forme
de n x8xm et de 4096 x 4096 1 64 x 64 x 64 x 64 x 64 et a un tableau 9-D de longueur 8
pour toutes les dimensions) entrainent des pertes plus grandes, tel que démontré par
le tableau 4.1, quoique suffisamment faible dans le présent contexte. Donc, le temps
de transfert d’un élément est toujours le parametre dominant (il prend maintenant
deux cycles d’horloge). La perte pour la troisitme expérience reste négligeable (elle

est du méme ordre de grandeur).

Trois conclusions se dégagent de ces résultats:

1. pour un processeur super-scalaire, le goulot d’étranglement est le temps d’acces
a la mémoire,

2. cet algorithme demande un effort de calcul important (~ 2 instructions par cy-
cle pour un processeur super-scalaire qui peut effectuer une opération mémoire-
registre en paralléle avec une addition entiére suivi d'un saut) et
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Figure 4.7: Diagramme-bloc du générateur d’adresse

dimension courante (c’est-a-dire une partie du “while” intérieur). Il est a noter que.
a cause du parallélisme inhérent du générateur d’adresses, la valeur de I'élément de
Stride pour la deuxieme dimension de poids faible ne doit pas tenir compte du pas
de la dimension de poids faible, puisque les incrémentations de cette derniére sont
memorisées dans SrcAddr plutét que TempAddr. Donc, les valeurs contenues
dans Stride sont la différence entre les adresses du premier tableau de n — 1 dimen-
sions du nouveau sous-tableau de n dimensions et de I’adresses du sous-tableau qui
suivrait le dernier sous-tableau de n — 1 dimensions du sous-tableau de n dimensions
précédent sauf pour la deuxieéme dimension de poids faible pour qui le pas est la

différence entre deux éléments qui sont voisins selon cette dimension.

Le paraliélisme de cette implantation permet a ce module de générer une adresse
par cycle d’horloge a la condition que la longueur des rangées du tableau soit
supérieure au nombre de dimensions du méme tableau. En pratique, cette condi-
tion devrait généralement étre respectée puisqu’il est rare d’avoir des rangées plus
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courtes que 8 éléments (qui est le nombre maximum de dimensions de cette implan-
tation).

Par opposition a ce niveau de performance, une unité DMA classique devrait étre
reprogrammée pour chaque rangée de tableau plutét qu’une fois pour tout le tableau.
Ceci réduirait significativement le niveau de performance a cause des communications
nécessaires entre le processeur et I’'unité DMA et parce que cela imposerait un effort
de calcul substantiel au processeur. Par contre, si les rangées sont longues et si le
tableau a un faible nombre de dimensions, alors |'effort de calcul requis peut étre
assez faible mais ceci demande que le processeur ait beaucoup de mémoire locale
(e.g. 16Koctets pour chaque tableau si les tableaux ont des rangées de 1024 éléments
double-précision) ou que le tableau soit traité séquentiellement (i.e. chaque élément
de tableau-résultat est calculé a2 partir de quelques éléments d'une meme rangée).

Cependant, les situations usuelles n’ont pas ces caractéristiques.

4.6 Transformations

Dans cette section, différentes transformations sur des tableaux couramment utili-
sées sont décrites. Etant donné que ces transformations créent une transformation
linéaire entre un ensemble de vecteurs d’indices et une séquence d’adresses, elles
peuvent étre composées, c'est-a-dire qu’apres avoir appliqué une transformation a
un tableau, une autre transformation peut lui étre appliquée et on peut calculer les

parametres décrivant la transformation composée (voir [8])-

Il est a noter que, di au parallélisme des opérations du générateur d’adresses (tel
qu’expliqué précédemment), les distances pour un tableau non-transformé sont: 1
pour la dimension de poids faible, la longueur des rangées pour la deuxiéme dimension
de poids faible et de 0 pour les autres dimensions. En effet, comme les éléments
et sous-tableaux sont placés séquentiellement en mémoire, la distance entre deux
rangées est identique a leur longueur et l’adresse du sous-tableau qui suivrait le
dernier sous-tableau (selon une dimension donnée) est la méme que celle du premier

sous-tableau lorsqu’on passe au sous-tableau de dimensionalité supérieure suivant.

La section 4.6.1 décrit des transformations supportées par le Fortran 90 alors que

la section 4.6.2 décrit des transformations autres.
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Figure 4.8: Section (2:9,2:9) d'un tableau de forme (10,10)

4.6.1 Transformations du Fortran 90

De toutes les transformations sur des tableaux supportées par le Fortran 90, la seule
qui ne soit pas supportée par le générateur d’adresses est la fonction intrinséque
cshift parce qu'il s’agit d’'une transformation qui est linéaire par morceaux seule-
ment. L'implantation des autres transformations est donnée ci-apres. Il est a noter
que la fonction intrinséque eoshift n’est pas décrite mais qu'elle est sémantiquement
identique a une section et un appel a la fonction intrinseque spread et que ces

dernieres sont décrites.

Section

Une section en Fortran 90 est une portion de tableau en forme de parallélépipede
paralléle aux axes du tableau. Elle est décrite par une borne inférieure, une borne
supérieure et un pas, et ce, pour chaque dimension du tableau.

La figure 4.8 contient un exemple de section. Les nombres présents dans les
emplacements des éléments du tableau sont leur position dans la séquence d’adresses.
Les distances pour ce tableau transformé sont 10 pour la dimension de poids fort et 1
pour la dimension de poids faible parce que, comme il a été expliqué précédemment,
le pas de la dimension de poids faible est la distance en mémoire entre deux éléments
consécutifs d’une rangée alors que le pas de la deuxiéme dimension de poids faible est

la distance entre deux éléments situés au méme endroit dans deux rangées successives.
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Figure 4.9: Tableau de forme (10,10) transposé

Transposition

La transformation qui sera décrite est la transposition généralisée c’est-a-dire une
permutation des axes d’un tableau (la fonction intrinséque Fortran 90 transpose
est une transposition particuliere). Cette transformation est décrite par un vecteur
de permutation c’est-a-dire un vecteur contenant les valeurs de 1 au nombre de
dimensions du tableau dans ['ordre désiré.

La figure 4.9 contient un exemple de tableau transposé. Les distances pour cet

exemple sont [ et 10.

Spread

Il s’agit de la fonction intrinséque Fortran 90 spread. Cette transformation peut
aussi étre utilisée implicitement dans la fonction matmul. Elle crée une nouvelle
dimension en répétant une dimension du tableau. L’information qui décrit cette
transformation est la dimension qui est dupliquée et le nombre de fois ou elle I'est.

La figure 4.10 montre un exemple de cette transformation. La forme du tableau
transformé est (10,3,10) et les distances sont 10, 0, et 1.

Reshape

Etant donné que la mémoire d’un ordinateur est adressée comme un vecteur et que la
fonction intrinseque Fortran 90 reshape transforme un vecteur en un tableau ayant
un nombre de dimensions arbitraire, cette fonction est I’équivalent de la création d’un
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Figure 4.10: Un tableau de forme (10,10) dupliqué trois fois selon la dimension 2

tableau a partir d’'une zone de mémoire. Donc, il s’agit d’une fonction trés générale
et qui est équivalente a ce qui est décrit a la section 4.7.5 donc on ne discutera pas

de cette fonction séparément.

4.6.2 Autres transformations
Partition

Cette transformation est utilisée lorsqu’on veut diviser une dimension en plusieurs
parties d’égale longueur et qu’'on veut créer une nouvelle dimension pour pouvoir
accéder les différents parties en séquence. Ceci peut étre utile lorsqu’on veut ef-
fectuer un traitement par blocs (pour des exemples de calculs par blocs, voir [18,
Section 5.4]). L’information nécessaire pour décrire la transformation est la dimen-
sion a partitionner et en combien de parties elle sera découpée.

Il est également possible de diviser le tableau en créant des régions de recouvre-
ment. Ceci est utile lorsque le traitement effectué fait en sorte que des éléments
du tableau interagissent avec des éléments qui sont situés dans différentes parties.
L'information additionnelle nécessaire est la longueur du recouvrement.

La figure 4.11 donne un exemple de partition. Dans cet exemple, la forme du
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Figure 4.11: Un tableau de (10,10) partitionné selon la dimension 2 en 2 parties

tableau transformé est (5,10,2) et les distances sont -95, 10 et 1.

“Warping”

Le type de “warping” supporté consiste en un partitionnement selon une dimension
du tableau et un décalage proportionnel a la position des parties selon une autre
dimension. L’information nécessaire est la dimension partionnée, la direction du
décalage (le numéro de la dimension) et la magnitude du décalage exprimée selon le
nombre de positions de décalage 4 la fin du tableau.

La figure 4.12 donne un exemple de cette transformation. Il est a noter qu’il est
nécessaire d’extraire une section du tableau avant d’effectuer le “warping™ parce que
le générateur d’adresses ne peut pas effectuer de bouclage (“wrap-around™) donc la
séquence d’adresses contiendrait des valeurs illégales. Ce tableau transformé a une

forme de (2,3,6) et les distances sont -26, 12 et 1.

Renversement

Renverser un tableau signifie I'accéder en traversant un de ses axes en partant de
la fin. En Fortran 90, on décrit cette transformation a l’aide d’une section dont
le pas est négatif mais, comme cette transformation est implantée sous forme d’'un
opérateur dans certains langages (par exemple, I’APL), elle est décrite séparément.
La seule information nécessaire pour décrire cette transformation est la dimension

renversée.
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Figure 4.12: “Warping” de la section (3:8,3:8) d’un tableau de forme (10,10) selon
la dimension 2 et en décalant de 2 selon la dimension 1

-111]10

999897196t - 1

Figure 4.13: Reversement d’un tableau de forme (10,10) selon la dimension 2

La figure 4.13 donne un exemple de cette transformation. Les distances pour ce
cas sont 10 et -1.

Damier

Dans le but de montrer la flexibilité du générateur d’adresses, on montre qu’il peut
générer la séquence d’adresses nécessaire au parcours des cases d’une méme couleur
sur un damier. Une des nombreuses manieres par laquelle on peut décrire cette
transformation consiste & indiquer en combien de zones doit étre diviser le tableau

selon chaque dimension (c’est-a-dire qu’on ne se limite pas a des damiers “classiques”
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de 8 cases sur 8 mais qu’on peut spécifier un nombre de cases arbitraire — a condition
qu'il soit un diviseur de la longueur du tableau selon la dimension pertinente).

La figure 4.14 donne un exemple de damier. La forme du tableau transformé est
(2,4,4,2,2) et les distances sont -4, 50, -60, 16 et 1.

Le pas pour la dimension 5 est de 1 parce que c’est la distance entre, par exemple,
les éléments étiquetés 0 et 1. Le pas de la dimension 4 est la distance entre deux
éléments successifs d’une colonne (par exemple, 0 et 2) ce qui est la méme chose que
la longueur d’une rangée (c’est-a-dire 16).

Les pas de la dimension 3 est la distance entre la rangée qui, par exemple, suit
la rangée qui débute par I’élément nommé 6 et celle qui débute avec I’élément 8,
c’est-a-dire —4 x 16 + 4.

Le pas de la dimension 2 est la distance entre le premier élément du sous-
tableau 2D qui suivrait celui qui commence par I'élément 24 et celui qui débute
par I’élément 32. Mais, comme les rangées se suivent en mémoire, le “17°” élément
de la premiére rangée est I’élément 2, donc la distance est 3 x 16 4+ 2 c’est-a-dire 50.

Finalement, le pas de la dimension 1 est la distance entre le troisieme sous-tableau
3D, s’il y en avait un (qui débute, par hasard, par I’élément 72), et I'élément 64
(soit —4).

4.7 Parametres

Avant de calculer les pas nécessaires au travail du générateur d adresses. il faut
calculer la distance (en mémoire) entre des éléments adjacents du tableau transformeé
selon chacune de ses dimensions, ainsi que sa forme et son adresse de départ. Ensuite.
on peut calculer les pas a partir de ces données. Les pas sont différents des distances
parce que ces premiers tiennent compte du fait qu’une partie de la distance a été
parcourue lors de 1’accés aux sous-tableaux de plus faible dimensionalité (voir page
34). Les pas et distances sont assemblés en deux vecteurs ou [’élément 7 est 1’élément
qui concerne la dimension :.

Il est & noter que, lorsqu’une nouvelle dimension est créée, les anciennes dimen-
sions sont décalées d’une position si elles ont un poids plus faible que la nouvelle di-
mension. E".galement a noter, la dimension 1 est celle de poids fort dans les équations
et I’élément 1 des vecteurs de distance (d), de forme (S,) et de pas (S;) correspondent
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Figure 4.14: Damier de 4 cases sur 8 fait a partir d’un tableau de forme (16,16)

a la dimension de poids fort. Le caractere “/”, dans les équations, indique le nouveau

contenu d’un vecteur (par opposition a celui d’avant la transformation).

4.7.1 Distance

Les nouvelles distances sont identiques aux anciennes sauf:

transposition: d'[i] = d[T,[i]] V1 < i < Ny ou T, est le vecteur de permutation et

N, est le nombre de dimensions du tableau,

partition: d'{1] = d[D,] * Si[D,]/p ol p est le nombre de partitions et D, est la

dimension partitionnée,

partition avec recouvrement: d'[1] = d[D,] * (Si[Dp} — O,)/p ot O, est la valeur du

recouvrement,

“warping”: &'[D,] = (d[Dy] * Sa[Du])/(INpl + 1) + Np/|Np| * d[Dg] o D, est
la dimension partitionnée, Dy est la dimension selon laquelle est effectué le
décalage et NV, est I'amplitude du décalage a I’extrémité du tableau,
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spread: d'[D, + 1] =0 ol D, est la dimension dupliquée,
damier: d'[5] = d[2], d'[4] = d[l], &[3] = d[2] * 2 = S,[2]/N.[2], d'[2] = d[1] =
Si[1]/N:[1]+d[2] * Sa[2]/N.[2], d'[1] = d[L1] *2* S,[1]/N.[l] ol N, est le nombre

de zones selon chaque dimension,

renversement: d'[D,] = —d[D,] ou D, est la dimension renversée.

4.7.2 Forme

La forme du tableau reste inchangée sauf pour:

section: S;[i] = uli] — l[{] + | V1 < i < Ny ou ! et u sont les bornes inférieures et

supérieures respectivement de la section,
transpose: Sp[i] = Sa[T,[{]] VI < i < Ny,
partition: Si[l] = p, Si[Dy] = Sa(Dy)/p,
partition avec recouvrement: S;[l] = p, Si[D,] = (Sa[D;p] — O.)/p + O,
“warping™: SyDu] = Nyl + 1, Sa[Dy + 1] = SalDul/(N, + 1),
spread: S;[D,] = N,, ou N, est le nombre de répétitions de la dimension,
damier: S3[1] = N.[1]/2, §3[2] = 2, Si[3] = N:[2]/2, S;[4] = Sa[L}/N:(1], Si[5] =

Sa[2]/N:(2].

4.7.3 Adresse de départ

L’adresse de départ n’est pas modifiée sauf pour:

section: S, = L1, I[] * d[1],

renversement: S, = S, +d[D,] * (Si[D,] — 1).



4.7.4 Pas

Les pas sont calculés a I'aide de I’équation 1 sauf pour S,[1] = d[1] et S[2] = d[2].
Il est & noter que, pour calculer Si[i]. on a besoin de la valeur des S,[j] tels que
t < j < N,donc les pas doivent étre calculés en commengant par celui de la dimension
de poids faible et en allant vers la dimension de poids fort. Ega.lement, il est évident
que le calcul du produit ([T)de chacun des pas peut utiliser celui du pas de poids

faible précédent en guise de résultat partiel.

Ny—1
sil=dil- S sil+ I Sl vs<i< (1
J=t+1 k=i+1

4.7.5 Généralisation

La maniere la plus générale d’exprimer I'adressage d’un tableau est de spécifier:
e ’adresse de départ,
¢ le nombre de dimensions du tableau,
¢ la forme du tableau (i.e. un vecteur) et
e un vecteur de distances.

Ctiliser de tels parametres permet des transformation arbitraires (au sens ou elles
n'ont pas de signification particuliere). La figure 4.15 montre une de ces transfor-
mations. Il est a noter que, pour simplifier la représentation, le tableau est montré
comme une matrice de forme (10,8} qui aurait été modifiée mais cette forme n’est
pas pertinente du point de vue de l’algorithme.

Cet exemple crée un tableau de trois dimensions de forme 4 par 4 par 4 en
utilisant un vecteur de distances égal a -9 pour la dimension de poids fort, 10 pour la
dimension intermédiaire et 1 pour la dimension de poids faible. Il est & remarquer que
les quatres sous-tableaux a deux dimensions qui composent ce tableau sont identifiés
par les nombres 0, I, ..., 15 pour le premier plan, 16, 17, ..., 31 pour le deuxieme
plan, 32, 33, ..., 47 pour le troisieme plan et 48, 49, ..., 63 pour le dernier plan.
Les trois fleches de la figure 4.15 représentent les directions des trois dimensions du

tableau transformé (i.e. la o menent les éléments du vecteur de distances).
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Figure 1.15: Transformation arbitraire

4.8 Conclusions

Dans ce chapitre, on a décrit un algorithme qui permet de transférer efficacement
un tableau transformé entre la mémoire d’un ordinateur et son processeur. On a
montré qu’il permet de transférer un élément de tableau par cycle de mémoire s’il
est implanté en logiciel sur un processeur super-scalaire et qu'il permet un trans-
fert par cycle d’horloge s’il est implanté en matériel. Cet algorithme supporte
toutes les transformations linéaires entre un ensemble de vecteurs d’indices et une
séquence d’adresses en mémoire ce qui le rend tres flexible. Egalement, il peut
étre facilement augmenté pour supporter les transformations polynomiales de degré
plus élevé puisque les paramétres quadratiques impliquent une modification des pas
(parametres linéaires) et de méme pour les parameétres d’ordre supérieur. Donc, en
ajoutant des fichiers de registres pour contenir les nouveaux parametres et en util-
isant un algorithme similaire & celui utilisé par le générateur d’adresses qui a été
décrit, on pourrait supporter les transformations polynomiales avec une vitesse de
calcul essentiellement aussi grande mais qui nécessiterait substantiellement plus de

ressources matérielles.
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Le générateur d’adresses proposé est tres rapide (normalement, une adresse par
cycle d’horloge) et flexible et calculer les parametres qui lui sont nécessaires est

simple & cause du cadre conceptuel (i.e. transformations linéaires).
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Chapitre 5

Un langage de haut niveau pour
les ordinateurs SIMD

A la section 2.4, on a constaté qu’aucun des langages de programmation existants

ne rencontre tous les objectifs suivants:

1. autiliser les tableaux (et les opérations sur ceux-ci) en guise d’abstraction de
haut niveau ainsi que de paradigme de parallélisme (i.e. parallélisme sur les

données),

X

permettre la compilation et la parallélisation automatique d’applications en un

code exécutable de haute performance,
3. cibler les architectures SIMD et

4. évaluer quelles limitations peuvent étre imposées sur la grammaire d’un langage

pour faciliter la parallélisation sans contraindre indiment la programmation.

Pour combier ce vide, le langage HPCP (“High Performance C for Pulse”) est
proposé. Ce langage contient les éléments du langage C [30] qui sont appropriés pour
la description (parallele) d’applications traitant de fagon structurée des tableaux, et
ce, sur un processeur SIMD et il est étendu la ou le C est déficient.

Dans le but de produire des programmes exécutables performants et compacts, le
compilateur HPCP qui a été créé dans le cadre du présent travail utilise des tampons
circulaires (pour stocker localement des éléments de tableaux) et des instructions

vectorielles (pour obtenir du code rapide et compact).
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La section 5.1 contient une description du langage, alors que la section 5.2 décrit
la sémantique de certaines de ses composantes. La section 5.3 explique pourquoi une
mémoire est, dans le contexte présent, plus appropriée que les registres vectoriels
pour contenir des vecteurs; la méthode de gestion des tampons circulaires qui est
utilisée par le compilateur est également décrite. La section 5.4 donne un exemple
de programme source et de programme généré, alors que la section 5.5 contient une
étude du niveau de performance (en temps et en espace-mémoire) du code généré.

Finalement, la section 3.6 énonce les conclusions de ce chapitre.

5.1 Description du langage

Cette section est divisée en deux parties: la premiere décrit la portion du langage C
qui a été retenue pour HPCP, alors que la deuxieme décrit les extensions qui lui ont

été ajoutées. La grammaire compléte du langage est donnée a 'annexe C.

5.1.1 Sous-ensemble du C supporté

Les seuls types de données supportés sont “int” et “long”, parce que les applications
DSP traitent habituellement des nombres entiers et parce que |’architecture ciblée
(Pulse) ne supporte que ces types de données. Les types de données définis par
'usager ne sont pas supportés; ce sont “struct”, “union”, “enum”, “fields™ ainsi que
la directive typedef. Le qualificatif “register” n’est pas supporté non plus, parce qu'’il
n’est pertinent qu’a un niveau d’abstraction plus bas (i.e. pour des langages comme
AL [29]). Les constantes symboliques sont supportées via le qualificatif “const”.

Les structures de controle séquentielles (i.e. les boucles “while”. “do” et “for”)
ne sont pas permises a cause de l'objectif visant a décrire les algorithmes de fagon
paralléle (d'un autre coté, un énoncé “loop” a été ajouté — voir la section 5.1.2).
Egalement, I’énoncé “switch” n’est pas supporté parce qu'il est trop général pour les
besoins spécialisés d’un ordinateur SIMD. De plus, les énoncés “goto”, “break” et
“continue” ne sont pas supportés. Donc, le seul énoncé de contréle qui soit supporté
est le “if”.

Tous les opérateurs (arithmétiques, logiques et relationnels) sont supportés sauf
“447, “—=" (parce qu'ils ont un effet secondaire), 'opérateur conditionnel (parce

qu'il est sémantiquement identique au “if” bien qu’ils aient un contexte syntaxique
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“.” (parce qu'il est surtout utilisé dans des énoncés qui ne

différent), 'opérateur
sont pas supportés) et la division et 'opérateur “modulo” (parce qu’ils ne sont pas
supportés par Pulse). Les assignations ne sont pas permises dans les expressions
conditionnelles.

Les pointeurs ne sont pas supportés parce qu'ils ne sont pas utiles dans le contexte
de Pulse et parce qu’ils rendent la parallélisation plus difficile & cause de |’équivalence
qu’'ils peuvent entrainer. Les chaines de caractéres ne sont pas supportées parce
qu’elles ne seraient pas utiles (encore une fois, dans le contexte de Pulse). Par
contre, les tableaux multi-dimensionnels sont supportés évidemment et ils ont une

structure ou la dimension de gauche est celle de poids fort (comme en C).

5.1.2 Extensions ajoutées au C

Les ajouts au langage C sont regroupés en quatres catégories:

1. support pour les instructions des processeurs élémentaires (PE) de Pulse qui

ne sont pas supportées par le C,

~

des structures permettant une description plus compacte de traitement de

tableaux (pour permettre une description a haut niveau des algorithmes),
3. un nouvel énonce de controle et
4. deux directives (“pragmas”).

Les instructions des PE qui ne sont pas supportées par le C sont implantées sous
forme de fonctions intrinséques (ces instructions incluent, par exemple, “compare-
and-swap”, “clip” et “median”). Les structures de support pour les tableaux sont
tirées du Fortran 90, parce que c’est le langage qui, parmi ceux qui ont les caracté-
ristiques désirées, est le plus proche du langage C. Les structures en question sont de
trois types: les sections de tableaux, les opérateurs sur les tableaux et une structure
de contréle parallele. Une section de tableau est un morceau de tableau décrit par
une borne inférieure et une borne supérieure pour chaque dimension du tableau. Par
exemple, si le tableau A a une forme de [10][10][10] alors A[1:5][2:6]{3:9] est un sous-
tableau de forme [5][5][7] qui débute a I’élément A[1][2][3], i.e. le deuxieme élément

de la premiere dimension, le troisieme de la seconde et le quatrieme de la derniere
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dimension. Il est a noter que, contrairement au Fortran 90, le pas n’est pas supporté
parce qu’il fallait limiter le langage le plus possible a cause du manque de ressources
et que, sachant que les algorithmes DSP ne I'utiliserait pas souvent, on ne prévoit
que peu d'intérét a avoir cette caractéristiques. Les opérateurs sur les tableaux sont

les mémes que sur les scalaires et leur sémantique est expliquée a la section 5.2.

La structure de controle parallele supportée est le “where”; il s’agit d’'un énoncé
de contréle (plus spécifiquement, de sélection) parallele de haut niveau d’abstrac-
tion (voir la section 5.2 pour une description de sa sémantique). Un énoncé “forall”
(comme en HPF) serait probablement utile, mais il n’est pas supporté par les al-
gorithmes de parallélisation du chapitre 6 (parce que ce chapitre traite de la par-
allélisation de traitement structuré de tableaux alors que le “forall” permet le traite-

ment non-structuré) donc, il n’a pas été ajouté.

Les deux directives supportées sont: “distribute” et “configuration”. La directive
“distribute” permet au programmeur d’indiquer comment les tableaux doivent étre
distribués entre les PE, alors que “configuration” décrit la configuration matérielle

nécessaire a 'exécution du programme.

La forme de la directive “distribute™ est: le mot-clé “#pragma” suivi du mot-
cle “distribute” et, pour chaque tableau utilisé dans ’énoncé, son nom suivi, pour
chacune de ses dimensions, de la description de la distribution (qui peut étre “block”,

“cyclic(n), ou **7)

entre crochets (le “(n)” associé a la distribution cyclique est
optionnel). Les descriptions de distribution des différents tableaux a I'intérieur d’une

meme directive sont séparés par une virgule.

Finalement, le nouvel énoncé de contrdle est le “loop”. Il est sémantiquement
identique a I’énoncé C “while(1)”; c’est-a-dire qu’il s’agit d’une boucle sans fin qui
ne peut étre interrompue que par une interruption du SIMD. Ceci est utile lorsqu’on

traite des flots de données.

5.2 Sémantique

Cette section décrit la sémantique de certains éléments de HPCP qui peuvent étre

plus obscurs a quelqu’un qui est familier avec le C.



51

5.2.1 Structures de support pour les tableaux
Opérateurs

Tous les opérateurs ont la méme sémantique qu’en langage C, sauf lorsqu’ils sont
utilisés avec des tableaux ou des sections auquel cas, elle est étendue de la fagon
suivante: ['opérateur scalaire est appliqué a chaque paire d’éléments de tableaux (un
de chaque tableau/section) et chacun de ces éléments provient de la méme position
dans chaque tableau/section. Donc, les tableaux/sections doivent avoir la méme
forme. Si une condition utilise un ou des opérateurs logiques sur des tableaux, alors
la sémantique de la condition devient: la condition est vraie si le tableau de valeurs
booléennes généré ne contient que des valeurs vraies, sinon, elle est fausse. Il pourrait
étre utile d’obtenir une valeur vraie lorsqu’au moins un élément du tableau génére;
ce cas peut étre traité en utilisant, dans ’expression de la condition, les opérateurs
de comparaison complémentaires a ceux désirés et en inversant le résultat de ces
comparaisons.

Les opérateurs d’assignation voient leur sémantique étendue de la méme fagon,
sauf que les assignations (scalaires) sont effectuées, conceptuellement, en méme

temps. Par exemple,
A[1:10][1:10] = Af0:9]1[0:9] + B + C
a la méme sémantique que le programme C suivant:

for(i = 1; i € 10; i++)
for(j = 1; j < 10; j++)
temp[il[j] = A[i-1][j-1] + BL{i-11[3-1] + c[i-1]1[j-1];

for(i = 1; 1 € 10; i++)
for(j = 1; j < 10; j++)
Alil(j] = templ[il(j];

Ce qui signifie que les expressions sur des tableaux n’introduisent aucune dépen-
dance entre les éléments des tableaux de la partie droite de |’assignaiion et ceux du

tableau de la partie gauche.



52

L’énoncé “where”

Les énonceés contrdlés par un “where” doivent avoir la méme forme que la condition.
Un élément d’une expression a la droite d’une assignation (ou un élément d’une con-
dition) de la partie “where” de ’énoncé “where” est calculé seulement si I’élément
correspondant de la conditiorn du “where” est vrai; ceci est également le cas pour
I’assignation a un élément de ['expression du coté gauche d’une assignation. Les cal-
culs et assignations situés dans la partie “else where” sont effectués lorsque 1’élément

correspondant de la condition est faux.

Fonction intrinséques d’entrée/sortie

Les fonctions intrinséques read, write, input et output sont utilisées pour lire
ou écrire une variable (scalaire ou tableau) en mémoire externe et pour recevoir ou

envoyer un tableau au monde extérieur respectivement.

5.2.2 Distribution

Le modele de distribution est adapté de celui du HPF [24] de la fagon suivante: tous
les tableaux d’une expression doivent avoir la méme distribution. Dans le cas d’une
distribution par blocs, les éléments de tableaux qui sont utilisés par plus d’un PE
sont répliqués. La distribution cyclique est utilisée pour réduire la pression sur les
meémoires internes. Cela signifie qu’il ne s’agit pas d’une distribution entre les PE
mais plutét d’une distribution dans le temps, c’est-a-dire qu'une portion seulement
de la dimension du tableau sera traitée a la fois. Le résultat est une forme de
traitement par blocs (pour des exemples de traitement par blocs, voir [18]). Il a été
décidé d’adapter le modéle de distribution du HPF parce que ce modele est orienté
vers le traitement structuré de tableaux et que la plupart des algorithmes DSP sont
de type structuré.

Etant donné que la mémoire disponible sur le méme circuit intégré que le SIMD
est normalement trés limitée et que les tableaux sont gérés sous forme de tampons
circulaires (tel qu’expliqué a la section 5.3), une distribution par blocs implique que
les tableaux ne sont pas accédés en ordre lexicographique mais, plutét, que chaque
PE regoit un élément a la fois et que tous les PE en recoivent un en méme temps

(donc, un générateur d’adresses comme celui décrit au chapitre 4 est nécessaire). Un
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effet important de cette stratégie est que les tableaux doivent étre stockés localement
par opposition a étre regus directement du monde extérieur. Cette contrainte, qui
découle simplement d’'un manque de temps pour I'implantation du prototype de
compulateur, pourra étre levée dans I’avenir.

Il est a noter que, dans le présent modele de partitionnement, tous les tableaux
ont le méme alignement (i.e. I’alignement est de 0 entre eux) donc, il n’est pas décrit

dans le programme-source (contrairement au modele HPF).

5.3 Tampons circulaires

Etant donné que les instructions vectorielles permettent une plus grande densité de
code (i.e. moins d’espace-mémoire nécessaire pour exprimer le méme algorithme),
elles sont supportées par l’architecture Pulse. Cependant, les processeurs vectoriels
utilisent en général des registres vectoriels qui ne seraient pas efficaces dans le con-
texte du projet Pulse. Dans la présente section, il est démontré que les registres
vectoriels sont inefficaces et qu'une mémoire locale gérée correctement est plus ap-
propriée pour les applications basées sur des convolutions. La technique de gestion
de la mémoire proposée est basée sur le concept de tampon circulaire; on montre

comment [’adapter pour permettre 'utilisation efficace d’instructions vectorielles.

5.3.1 Bande passante requise par les registres vectoriels

L'utilisation de registres vectoriels nécessite parfois plus de bande passante a la
mémoire principale parce que la structure des processeurs qui les utilisent fait en

sorte que:

1. on ne peut les accéder qu’a partir de leur premier élément,

1

on doit les recharger en entier a chaque fois qu’au moins un
3. nouvel élément de donnée est requis et

4. lorsqu’on calcule une convolution, il arrive souvent que deux registres doivent
contenir les méme éléments mis & part quelques-uns aux extrémités des reg-

istres.
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Ce plus grand besoin de bande passante est illustré par les résultats du programme
d’évaluation de performance STREAM [39, 49] qui montrent que, par exemple, les
ordinateurs vectoriels CRAY et NEC SX ont une valeur d’équilibre (“balance” — le
rapport entre le nombre maximum d’opérations que le processeur peut effectuer en
une secoude et la bande passante utilisable de la mémoire exprimée en nombre de
mots par secondes) d’environ | alors que la plupart des microprocesseurs ont une
valeur d’équilibre d’environ 10 (mis a part la famille d’ordinateurs IBM RS6000 qui
ont une valeur d’environ 3). Evidemment, le fait que différents marchés sont visés
par ces ordinateurs est une raison significative pour expliquer cette différence mais
une valeur aussi faible que ! ne serait pas utile si les données étaient réutilisées selon
les besoins (e.g. éviter de recharger un registre vectoriel complet lorsqu’on n’a besoin
que d’un seul nombre) car la bande passante disponible ne serait pas utilisée a pleine
capacité. Ce plus grand besoin de bande passante est également illustré par le fait que
'architecture Torrent [5, 4] (qui est aussi une architecture vectorielle basée sur des
registres) vise les calculs matriciels {51] ou deux matrices différentes interagissent
(i.e. lorsque les vecteurs sont réutilisés, ils le sont en entier) donc, l'utilisation de

registres vectoriels dans ce contexte est efficace.

Dans le but de quantifier la bande passante gaspillée (pour le calcul de convolu-
tions 2D) lorsqu’on utilise des registres vectoriels, p représente la longeur des rangées
du tableau a traiter, n est le nombre de colonnes dans le noyau de convolution, m est
le nombre de rangées de ce noyau et [, est le nombre d’éléments que peut contenir
un registre vectoriel. Pour obtenir le maximum de performance d’un processeur vec-
toriel, il est généralement conseillé d’avoir des rangées de tableaux dont la longueur
est un multiple de {,. Dans le cas de la convolution, il faut que p — (n — 1) soit un
multiple de {,. Puisqu’il s’agit 13 du meilleur cas, du point de vue de la performance,

cette hypothese sera utilisée dans le reste de cette section.

Dans les paragraphes qui suivent, la bande passante requise pour calculer une
rangée du tableau résultant d'une convolution est calculée et comparée au nombre
minimum de transferts nécessaires. On fait I’hypothése que le contenu des registres
ne peut étre réutilisée pour calculer plus d’une rangée du tableau-résultat (ce qui est
réaliste puisque les registres doivent étre rechargés pour calculer chaque élément du
résultat). Pour calculer un vecteur du tableau-résultat, r x m x n vecteurs doivent

étre chargés, ou r est le rapport entre le nombre de coefficients non-nuls sur le nombre
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de coefficients total du novau de convolution (nm). Aussi, P"(,—':"ll vecteurs doivent

étre calculés pour obtenir une rangée du résultat. Donc,

p—(n—1)
—l—u-——)lu

rmn(
chargements (d’éléments de tableaux) sont effectués alors que seulement pm
éléments de tableaux sont nécessaires. Cela signifie que la surcharge relative est
rmn(27E)l, — pm

pm

Apres simplification, cette équation devient Z(p —n+1) — 1 mais, lorsque p >
n (ce qui normalement le cas), cette équation tends vers rn — 1. Lorsque r est
raisonablement élevé (par exemple, r > 0.5), la surcharge est plus élevée que le
nombre d’éléments de tableau requis dans un rapport de plusieurs fois. De plus,
ceci s’aggrave tres rapidement 2 mesure que n s’accroit (ce qui est le cas pour les
applications DSP lorsque la puissance de calcul croit puisque cela permet de réaliser,
par exemple, des filtres de taille plus grande) donc, cette surcharge doit étre évitée

a tout prix.

5.3.2 Stratégie d’allocation dans les tampons circulaires

Dans la section qui précede, on discute d’une facon de vectoriser les calculs sur
des tableaux qui consiste a diviser les tableaux en vecteurs et d’effectuer les calculs
sur ces derniers. Dans ce contexte, allouer séquentiellement des éléments de tampon
circulaire aux éléments d'un tableau est efficace. Cependant, cette méthode nécessite
I'utilisation de plus de résultats temporaires si on veut éviter de recharger les éléments
des tableaux. Par contre, si la convolution utilise un noyau suffisamment grand
et dense, utiliser une instruction vectorielle pour calculer chacun des éléments du
tableau-résultat permet de minimiser la quantité de mémoire locale requise tout
en étant aussi efficace du point de vue de la vitesse de calcul. Cette méthode de
vectorisation nécessite, cependant, une nouvelle stratégie d’allocation des éléments
de tampon circulaire aux éléments de tableau.

Le but de la stratégie d’allocation est de stocker les éléments d'un tableau 2D dans
un tampon circulaire, de fagon a ce que les €éléments nécessaires au calcul d’'un élément

du résultat d’'une convolution soient dans des positions situées a égale distance entre
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eux dans le tampon circulaire et ce, dans le but de permettre de calculer chaque
élément du résultat a I'aide d’une seule instruction vectorielle. On se limite a des
tableaux 2D parce que la quantité de mémoire locale a un processeur ne permet pas,
en général, de conserver suffisamment d’éléments pour éviter de les recharger dans
le cas d’un tableau a plus de deux dimensions. Cependant, la section 5.3.4 esquisse
une solution pour le cas ou le tableau a trois dimensions.

Une maniére directe d’effectuer |’allocation (et qui ne fonctionne pas) consiste
a utiliser un tampon de longueur p — 1 — m, ou p est la longueur d’une rangée de
tableau et m est le nombre de colonnes du noyau de convolution et d’allouer les
éléments de tampon séquentiellement. On obtient alors l'allocation suivante si un
noyau de 3 par 3 est utilisé (ot les valeurs présentent dans le tableau représentent la

position de I’élément correspondant du tableau dans le tampon):

0123 --- p—4012
3 456 2 345
6 789 56 7 8

Le probleme qui se pose avec cette allocation est que, par exemple, pour calculer
[’élément [L][1] (selon la notation du langage C) du résultat nécessite, entre autres,
les éléments [0][0]. [0][1] et [0]{2]. Ces éléments seraient mis aux positions 0, 1 et 2 du
tampon respectivement mais, lorsque vient le temps de calculer le dit élément, ces
positions du tampon ont déja été modifiées par |’écriture des trois derniers éléments
de la premiére rangée du tableau. Donc, un tampon pouvant contenir plus d’éléments
de tableaux est nécessaire.

La longueur minimale du tampon nécessaire pour éviter d’effacer prématurément
des éléments du tableau est p(n —1)+m ou n est le nombre de rangées dans le noyau

de convolution. Avec un tampon de cette taille et un noyau de 3 par 3, I’allocation

devient:
[0 L 2 3 --- p—4 p=3 p—2 p—1]
p p+l p+2 p+3 --- 2p—4 2p-3 2p—-2 2p-—1
2p 2p+1 2p+2 0 --- 3p—4 3p-3 3p—-2 3p-—-1

3p 3p+1 3p+2 0 --- 4p—4 4p—-3 4p—-2 4p-1
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On constate que chacune des portions de rangée de tableau utilisées forme un
vecteur dans le tampon (si on tient compte du bouclage — “wraparound”). Ceci
signifie que n instructions vectorielles et n — 1 instructions scalaires sont nécessaires
pour calculer un élément du résultat. Ceci est sous-optimal puisqu’il faut redémarrer
le pipeline pour chaque instruction vectorielle donc, calculer un élément du résultat
avec une seule instruction vectorielle augmenterait la performance (et la densité
de code). En conséquence, une nouvelle stratégie d’allocation est nécessaire. La
stratégie qui vient d’étre décrite sera appelée “allocation séquentielle” dans le reste

de cette section.

L'idée de base de la nouvelle stratégie d’allocation consiste a allouer les élé-
ments consécutifs d’une colonne du tableau (par opposition a ceux d’une rangée
dans la stratégie séquentielle) & des positions consécutives du tampon et d’allouer
les éléments d’une rangée a des positions dont la distance est égale au nombre de
rangées du noyau (i.e. n). La longueur du tampon doit alors étre de np — | pour
obtenir le bon bouclage a la fin du tampon. Le résultat de cette allocation pour un

noyau de 3 par 3 est:

0 36 9 --- n(p-3) n(p—2) n(p —1)
| 4 7T 10 --- n(p=3)+1 n(p—2)+1 n(p—-1)+1
2 5 8 11 --- n(p—3)+2 n(p—2)+2 n(p—1)+2
3 9 12 --- n(p—3)+3 n(p—2)+3 n(p-1)+3
np—6 np—-3 1 4
np—35 np—2 2 5
np — 4 0 3

Cette stratégie satisfait donc les deux objectifs: le tampon est géré correctement
(i.e. il suffisamment long pour éviter |'effacement prématuré des données contraire-
ment a la premiere méthode decrite) et les éléments nécessaires au calcul d’un élément

du résultat sont dans des positions successives du tampon.
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Figure 5.1: Gain de vitesse entre les vectorisations partielle et totale

5.3.3 Evaluation de la stratégie d’allocation
Gain de vitesse

Pour évaluer le gain de vitesse de la nouvelle stratégie d’allocation, le nombre de
cycles nécessaire pour calculer un élément de résultat a I’aide d’un processeur vec-
toriel pour un noyau carré de k x k est calculé pour I'allocation séquentielle et pour
la nouvelle stratégie. On suppose que le débit établi est égal a un. L’équation du
temps pour l'allocation séquentielle est ¢, = & x (s, + (k — 1)) + k£ — 1 et, pour la

nouvelle stratégie, elle est ¢, = s; + k x k — 1 ou s, est le temps de démarrage.

La différence relative entre ces deux vitesses de calcul est montrée a la figure 5.1.
Le temps de démarrage pour les instructions vectorielles, s;, prend les valeurs 1 a 4.
Ces valeurs sont tres petites (i.e. elles supposent un processeur trés performant) mais
elles sont réalistes pour un processeur visant & supporter les applications DSP sur
des nombres entiers. Augmenter ces valeurs ne ferait qu’améliorer le gain de vitesse
de la nouvelle stratégie aonc, ceci est le pire scénario pour la nouvelle stratégie et,

malgré tout, le gain de vitesse varie entre 7% et 40%.



Quantité de mémoire 03
supplémentaire utilisée(_25

lativi
(relative) 0.2

9 11

L ld I o

Figure 5.2: Quantité supplémentaire de mémoire requise

Quantité de mémoire utilisée

Cette nouvelle stratégie permet une grande efficacité d’utilisation de la puissance de
calcul d’un processeur vectoriel (si le noyau de convolution est grand par rapport au
temps de démarrage). Elle permet aussi une grande densité de code par l'utilisation
efficace d’instructions vectorielles. Cependant, son désavantage est |’utilisation d 'une
plus grande quantité de mémoire que le minimum absolument nécessaire. Ce min-
imum est celui requis par l’allocation séquentielle et il est de p(n — 1) + m (voir

la section 3.3.2). Donc, la quantité supplémentaire de mémoire requise est de
np—1—{p(n—1)+m)
p(n—1}+m

tive. Simplifier ces expressions donne p—m — 1 et —E-m=! _ Lespectivement.
p P p p
p(n=1}+m

en valeur rela-

np — 1 — (p(n — 1) + m), en valeur absolue, et de

La figure 5.2 montre la quantité de mémoire supplémentaire relative nécessaire
pour des valeurs raisonables de p et £ (ol £ = n = m, i.e. on ne montre le résultat
que pour des noyaux carrés car les conclusions tiennent pour les noyaux non-carrés).

Cette figure montre que la quantité de mémoire supplémentaire requise peut étre
assez grande. La quantité de mémoire excédentaire est d’autant plus grande (en
valeur relative) que le noyau est petit. Aussi, il est évident a I’étude des équations

qu’effectuer les calculs par blocs est nécessaire lorsque le tableau a de longues rangées
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(par exemple, 1024 éléments) puisque la quantité de mémoire requise devient tres
grande par rapport 2 la quantité de mémoire locale habituellement disponible a un

processeur.

5.3.4 Etude du cas 3D

Utiliser cette stratégie pour les tableaux tridimensionnels peut étre utile mais elle
do:t étre modifiée pour étre correcte. La raison en est que le premier élément d’un
plan doit étre situé 2 la position dans le tampon qui suit le premier élément du
plan précédent donc, le premier élément d’une rangée du tableau doit étre a une
distance de [ (le nombre de plans du noyau de convolution) du premier élément de
la rangée précédente pour que les éléments nécessaires au calcul d’un élément du
résultat soient & des positions successives du tampon. Selon le méme raisonnement,
des éléments successifs d’une rangée du tableau doivent étre a une distance de in (ou
n est le nombre de rangées du noyau). Ceci implique que le tampon devrait avoir une
longueur de pin —{ (ou {(pn — 1)). Dans ce contexte, le bouclage a la fin du tampon
ne peut revenir a la position 1 (tel que nécessaire) parce que le pas d’allocation (In)
et la longueur du tampon ({(prn — 1)) sont tous deux des multiples de . Ceci implique
que la stratégie doit étre modifiée pour qu’elle puisse fonctionner tel que désiré. La
situation désirée, lorsque le noyau a une forme de 3 par 3 par 3, est la suivante:

0 9 18 27 --- (p—2)ln (p—1)in

3 12 21 30 --- (p—=2)in+! (p—-1)in+l

6 15 24 33 --- (p=2)ln+2 (p—1)in+2
1 10 19 28 --- (p—2)in+1 (p—1)in+1
4 13 22 31 --- (p=2)n+l+1 (p—-1l)in+i+1
716 25 4 --- (p=2)in+20+1 (p—1in+21+1

Une fagon simple d’adapter la stratégie est de remarquer que la position du
premier élément de chaque plan du tableau est indépendante de la position courante
. si on décide de les mettre dans des positions du tampon qui soient successives. Par

conséquent, une solution consiste a utiliser un deuxieme compteur qui est incrémenté
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de 1 2 la fin de chaque plan et qui est utilisé en guise d’adresse de départ pour chaque

nouveau plan.

5.4 Exemple de programme

La figure 5.3 montre un exemple de programme HPCP. Ce programme consiste en
une paire de convolutions classiques. On peut y voir des appels aux fonctions read et
write ainsi que |’énoncé “loop” qui a été expliqué ci-haut. Aussi, on peut remarquer
comment les convolutions sont décrites: elles consistent en des sections de méme
forme mais situées a différents endroits a l'intérieur du tableau.

Le compilateur génere du code C-PULSE [1]. La figure 5.4 montre le code généré
a partir du code-source de la figure 5.3 (certaines modifications y ont été apportées
pour que |'’exemple ne dépasse pas une page). On peut constater que ce code généré
contient des tampons circulaires (implantés par les fonctions intrinseques dont le nom
contient “bufA” ou “bufB”) plutét que des tableaux lorsque plus d’un élément du
tableau sont nécessaires en méme temps, sinon, une variable scalaire (par exemple, la
variable h) est utilisée. En particulier, dans cet exemple, le tableau d s’est vu attribué
le tampon A et le tableau g utilise le tampon B. Les convolutions sont générées en
calculant les valeurs des constantes utilisées (en effectuant leur distribution — au
sens mathématique — lorsque nécessaire) pour permettre de décrire la convolution
sous forme de somme de produits. Les valeurs ainsi calculées sont stockées dans un
vecteur constant (par exemple, _hpcp_coeffD) alors que les calculs sont implantés
sous forme d’une fonction intrinseque (-convollterbufAw et _convollterbufBw).
La distribution des constantes n’est pas effectuée pour un opérateur situé a la fin des
calculs d’une expression (par exemple, >> 4 dans I'’exemple) parce qu’il peut servir
a faire une mise a |’échelle des résultats donc la distribution des constantes pourrait
diminuer la précision des calculs si elle était effectuée.

Il est & noter comment les tampons circulaires sont initialisés (_initbuf) et utilisés
(-writebuf). Egalement a remarquer, la fonction _convollterbuf qui extrait une
portion d’un tampon circulaire et effectue un produit scalaire avec un vecteur en une
seule instruction vectorielle. Finalement, il est & remarquer que le tableau est lu et
certains de ses éléments sont transférés entre les PE en utilisant le méme canal de

communication (i.e. North).
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main
{int d[10]([10], gl10]([10], h{10]1(10];

#pragma distribute d[*][block], gl*][block]l, h[*][block];

read(d);

gl1:8]1[1:8] = (d[0:7]1[0:7] + d[0:7]1{2:9] + d[2:9][0:7] +
d[2:9][2:9] + (d[2:9](1:8] + d[0:7][1:8] +
d[1:8][2:9] + d[1:8]1[0:7]1) * 2 +
d[1:8][1:8] * 4) > 4;

h(1:9][1:9]1 = max(abs(g[0:8][1:9] - gf1:91[1:9]),

abs(g{1:9][0:8] - gl1:9][1:9]1));
write(h);
}

Figure 5.3: Exemple de code HPCP
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void main ()
{
int h, _hpcp_idx0, _hpcp_idx1, _hpcp_nshift, _hpcp_temp[3];
const int _hpep_coefzo[9) = {1, 2, 1, 2, 4, 2, 1, 2, 1};
const int _hpcp_coeff£1[2] = {-1, 1}, _hpcp_coeff2[3] = {-1, 0, 1};

_initbufAr(3, 0);
_initbufAw(3, 0);
_initbufBr(2, 0);
_initbafBw(2, 0);

for(_hpcp_idx0 = 0; _hpcp_idx0 < 10; _hpcp_idx0++){
for(_hpcp_idx1l = 0; _hpcp_idx1l < 4; _hpcp_idx1++){
i2(_hpcp_idx0 >= 0 && _hpcp_idx0 <= 9)
if(_hpep_idx1l >= O && _hpcp_idxi <= 9){
for(_hpcp_nshift = 0; _hpcp_nshift < &; _hpcp_nshift++)
_Northshift();
_writebufAw(_North);
it (_hpcp_idx1 <= 2)
_hpcp_temp[_hpcp_idx1] = _North;
if(_hpcp_idx1 >= 1){
_Forth = _hpcp_temp[_hpcp_idxi - 2];
_Northshift();
}
if(_hpcp_idx0 >= 1 && _hpcp_idx0 <= 8)
if(_hpcp_idx1 >= 1 && _hpcp_idxi <= 8)
_writebufBw(_convolIlterbufAw(_hpcp_coeff0, 9) >> 4);
if(_hpcp_idx0 >= 1 && _hpcp_idx0 <= 9)
if(_hpcp_idx1 >= 1 && _hpcp_idx1 <= 9)
h = _max(_abs(_convolIterbufBw(_hpcp_coeffl, 2))},
_abs(_convolIterbufBw(_hpcp_coeff2, 3)), -32768);
if(_hpcp_idx0 >= O && _hpcp_idx0 <= 9)
if(_hpcp_idx1l >= O && _hpcp_idxl <= 9){
South = h;
for(_hpcp_nshift = 0; _hpcp_nshift < 4; _hpcp_nshift++)
_SouthsShift();
}

Figure 5.4: Code C-Pulse généré



5.5 Analyse des performances obtenues

Etant donné que le compilateur créé ne comprend pas les optimisations habituelles, le
code généré n’est pas tres performant. En particulier, 4 ’analyse du code de la figu-
re 5.4, on constate que les boucles imbriquées traversent tout I'espace d’indexation et
qu’un énoncé “if” est utilisé pour les énoncés qui correspondent & chaque énoncé du
source HPCP. 1l serait beaucoup plus efficace d’extraire les itérations qui ne font que
le traitement des frontieres et de limiter I’espace d’indexation parcouru. [:Iga.lement,

“wr

certains de ces énoncés “if” pourraient étre éliminés par fusion ou par élimination
(lorsque leur condition est toujours vraie i.e. lorsque le traitement a faire doit I’étre
sur tout le nouvel espace d'indexation — apres optimisation). Finalement, le code
assembleur généré pourrait aussi étre amélioré. La principale amélioration consiste &
utiliser les instructions “push”, “pop” et “dbr” pour implaater les boucles imbriquées
plutot que des “Sub”, “Ifc”, *BNPA” et “BU”.

Puisque la performance du code généré est surtout limité par I’absence d’optimi-
sations classiques et que ces dernieres dépassent le cadre des présents travaux, on ne
comparera pas la performance du code généré avec celle de code écrit directement en
assembleur. On s’attardera plutét sur le temps ajouté pour effectuer un traitement
par rapport a n’'effectuer que le transfert d’un tableau de I’entrée vers la sortie (i.e.
d’un canal vers un autre) en assignant un tableau lu & un autre tableau et en effec-
tuant I’écriture de ce deuxieme tableau vers |’extérieur. Le programme utilisé pour
effectuer ce transfert est donné a la figure 5.5.

Le code C-PULSE et le code assembleur générés sont donnés a l'annexe D. Le

main(){
int df8](8], n[8][8];

#pragma distribute d[*][block], h[*][block];
read(d);
h =d;

write(h);
}

Figure 5.5: Premier programme de test HPCP
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main(){
int d[10][10], h{10][10];

#pragma distribute d[*][block], h[*][block];
read(d);

h[1:8]1[1:8] = (d[0:71[0:7] + d[0:71[2:9] + d[2:9][0:7] +
d[2:91[2:9]1 + (d[2:9][1:8] + d[0:7]1[1:8] +
d[1:8][2:9] + d[1:8]1[0:7]) * 2 +
d[1:8][1:8] * 4) > 4;

write(h);
}

Figure 5.6: Deuxiéeme programme de test HPCP

deuxiéme programme de test utilisé est celui de la figure 5.6 (les codes assembleur
et C-PULSE sont également donnés en annexe).
En comparant les deux programmes assembleurs générés, on constate que:

e il y a quelques instructions supplémentaires pour l'initialisation des tampons
quelq PP p po

circulaires,

e une instruction “Ld” (Load) a été remplacé par un appel a “_writebufAw”

(qui sera remplacé par une seule instruction dans un avenir prochain) et

e une instruction “Ld” (pour effectuer 'assignation “h = d;”) est remplacée par
un appel & “_convollterbufAw” (qui deviendra une seule instruction vectorielle

sous peu) et par une instruction “Srl”.

Donc, la seule perte en vitesse de transfert est due au temps de calcul et ce dernier
est minimal puisqu’il ne consiste qu’en une instruction vectorielle et une instruction
de mise a 1’échelle. Ceci implique que le code généré pour une convolution aurait un
niveau de performance maximale si les compilateurs utilisés contenaient toutes les
optimisations qu’on retrouve habituellement dans un compilateur.

Pour corroborer cette conclusion, un programme un peu plus élaboré (celui de la
figure 5.3) a été compilé (le fichiers assembleur est également donné dans I’annexe D).
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On constate que d’avoir deux assignations contenant des convolutions ne diminue en
rien I'afficacité du code généré donc le compilateur HPCP créé supporte efficacement

les convolutions.

5.6 Conclusions

Un nouveau langage de programmation (HPCP) qui rencontre des objectifs qu'aucun
autre langage ne supporte a été décrit. On a également démontré qu'une mémoire
locale gérée sous forme de tampon circulaire est plus appropriée que des registres vec-
toriels dans les cas ou on effectue des convolutions. De plus, 'efficacité des tampons
circulaires (en vitesse de calcul et espace-mémoire) a été quantifiée.

Finalement. on a démontré que la performance du code C-PULSE génére par le
compilateur HPCP concu dans le cadre du présent travail n’est essentiellement limitée
que par l’absence d’optimisations classiques qui dépassent le cadre des présents

travaux.



Chapitre 6

Génération automatique de
directives HPF

La parallélisation automatique de programmes est une tache difficile. Les travaux
de plusieurs chercheurs ent permis la mise au point d’algorithmes permettant d’y
arriver dans certains contextes et selon certains objectifs. Il a été montré a la sec-
tion 2.2 qu’aucune des méthodes proposées ne permet de rencontrer simultanément

les objectifs suivants:

® supporter le modele d’alignement et de distribution du HPF,
e étre faite d’algorithmes dont la complexité temporelle est faible et

e calculer tant 'alignement que la distribution des tableaux.

Dans ce chapitre, une méthode qui rencontre ces objectifs est décrite. La sec-
tion 6.1 décrit le cadre conceptuel utilisé, ainsi que les algorithmes permettant la
parallélisation automatique, alors que la section 6.2 décrit le traducteur qui a été im-
planté pour valider les algorithmes proposés, ainsi que le résultats des tests effectués
pour évaluer la qualité de la parallélisation. Finalement, la section 6.3 énonce les

conclusions de ce chapitre.

6.1 Cadre conceptuel et algorithmes

Dans cette section, on décrit la fonction de coiits (de communications) utilisée dans
les algorithmes d’alignement et de distribution des tableaux. On énonce également
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comment |'information nécessaire a la prise de décision est extraite du programme a

paralléliser. Finalement, les algorithmes utilisés sont décrits et expliqués.

6.1.1 Fonction de coit

Le résumé du modele HPF de parallélisation de la section 1.1 montre que ce modele

supporte surtout les calculs basés sur les sections de tableaux parce que:

1. les partitions possibles sont des sections,

o

le réseau de processeurs est décrit comrme un tableau et

3. le modele ne permet de réduire les communications que de deux fagons, soient:
utiliser des partitions “épaisses”! et permuter les dimensions lors de I’aligne-

ment.

Par contre, l'utilisation d’une distribution cyclique avec des partitions minces
peut réduire 'impact d’'un mauvais équilibre des charges de calcul lorsque le traite-
ment n’'est pas totalement structuré. Ceci est possible parce que les portions de
tableaux qui requierent un plus grand effort de calcul sont réparties entre les pro-
cesseurs (par exemple, la décomposition LU). De toute évidence, il s’agit d’un com-
promis entre la répartition de la charge de calcul et la quantité de communications
requise.

Ceci implique qu’un outil de génération automatique d’alignements et de distribu-
tions (qui vise les applications effectuant un traitement structuré) pourrait supporter
les sections définies au moment de I’exécution de l'application ou il pourrait étre
limité aux sections définies au moment de la compilation (i.e. les sections définies
a l'aide de constantes). La premiere situation nécessiterait soit une compilation
speculative, soit la redistribution ou soit une recompilation basée sur le profilage de
I'exécution des applications. Par contre, les sections définies a I'exécution ont un
comportement plus dynamique (par définition) donc, les utiliser avec un modeéle de
parallélisation aussi restrictif que celui du HPF est, dans une certaine mesure, ten-
ter I'impossible parce que le modéle n’a pas le niveau d’expressivité nécessaire pour

supporter ces sections. Donc, il a été décidé de limiter ’analyse des applications aux

1 Les sections de tableau qui représentent les partitions n'ont une faible longueur (e.g. |, 2 ou 3)
pour aucune de leurs dimensions.
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sections définies a la compilation seulement. Néanmoins, ceci devrait étre suffisant
pour supporter les applications visées comme, par exemple, les applications DSP et
celles basées sur une grille structurée et une méthode de calcul itérative (par exemple,
une méthode aux différences finies avec ou sans une méthode multi-grille).

De cette discussion, il se dégage que ce dont on a besoin pour trouver le meilleur
alignement et la meilleure distribution pour chaque tableau est les sections qui in-
teragissent. Ces relations forment un graphe dont les sommets sont les tableaux et
les arcs sont les alignements nécessaires pour éviter les communications. Le graphe
d’une application contient habituellement des alignements qui sont conflictuels donc,
un arbre recouvrant doit étre extrait du graphe dans le but d’éliminer ces conflits.
Cela signifie qu’on doit choisir quels alignements seront satisfaits ce qui, en retour,
implique qu’une fonction de coit doit étre mise au point pour effectuer cette sélection.

Le modele de cout est le suivant: une relation qui n’est pas satisfaite impose des
communications pour transférer un nombre d’éléments de tableau égal a la somme,
pour chaque dimension, du produit de la surface d’une coupe (de partitionnement)
par la différence entre la valeur d’alignement de la relation et I'alignement effec-
tif. Parce que le résultat de ce calcul est linéaire par morceaux en fonction de la
différence entre les alignements des relations et ’alignement effectif, la fonction de
cout devient la somme, pour toutes les dimensions, du produit de la surface de coupe
par P'alignement requis par la relation. Il est a noter que cette fonction évalue le coit
des communications des processeurs qui ont le coiit le plus élevé; a I'opposé, les pro-
cesseurs situés aux extrémités du réseau ont moins de communications car ils ont
moins de voisins. Ceci n’entraine pas d’imprécision de la fonction de cout puisque

les processeurs qui effectuent moins de communications devront attendre les autres.

6.1.2 Extraction de ’information

L’unique information utilisée, pour chaque relation, est les tableaux qui interagissent
et la borne inférieure, pour chaque dimension, des sections de ces tableaux. Seule la

borne inférieure est utilisée parce que:

1. gérer les cas ou le pas n’est pas | rendrait |'analyse beaucoup plus complexe

alors que cette situation ne se produit pas souvent en pratique et



Tableau 6.1: Liste des relations de I'exemple de I'équation 2

tableau alignement
al al -1 -3
al a2 -1 0
al a2 0 3
al a3 -2 -1
al aj -1 2
a2 al -1 -1

2. le fait que les sections ont la méme forme et qu’on ne considere pas le pas
implique que la borne supérieure n’est pas utile (i.e. la différence entre les

bornes inférieures est la méme que la différence entre les bornes supérieures).

Il existe une exception notable ou le pas est utile; il s’agit de I’ensemble des
méthodes multi-grille mais ces derniéres utilisent différents pas pour des sections
d'un méme tableau donc, il s’agit de relations inutiles pour |'alignement.

En guise d’exemple, I'énoncé suivant:

al{l1:5,1:53)=a2(2:6,1:5)+a3(3:7,2:6)+al(2:6,4:8) (2)

contient les relations présentées au tableau 6.1.

Les opérations supportées par les algorithmes qui sont décrits dans le reste
de la présente section sont les sections, les opérateurs ainsi que les fonctions in-
trinseques CSHIFT, EOSHIFT, TRANSPOSE, ALL, ANY, COUNT, PRODUCT,
SUM, MAXVAL, MINVAL, SIZE et SPREAD. Ces opérations effectuent (explicite-
ment ou implicitement) soit 'extraction d’une section, soit la déduction d’un tableau
(sauf SPREAD qui fait 'opération inverse d'une réduction).

6.1.3 Algorithmes

Cette section contient, dans I'ordre, la description des étapes a franchir pour effectuer
I’alignement et la distribution ainsi que les algorithmes qui implantent ces étapes.
La premiére étape consiste a recueillir I'information sur les relations. Dans le
but de mieux représenter les cotits de communications, si une relation entre les deux
meéme tableaux et avec le meéme alignement apparait plus d‘une fois dans le méme
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énoncé, elle est considérée comme étant une seule relation parce qu’un compilateur
optimisant regroupe les communications dues a un énoncé (autant que possible}); ce
qui signifie que les communications ne se produisent qu'une fois par énoncé (dans
le pire cas). Donc, considérer qu'une telle relation est présente a plus d’une reprise
serait trop pessimiste.

La deuxiéme étape consiste a trier les relations selon I'identificateur du premier
tableau, puis celui du second et, finalement, de la norme euclidienne de I’alignement
désiré. Ce tri permet, ensuite, de regrouper les relations entre les mémes tableaux qui
ont le méme alignement désiré (le nombre d’apparitions de la relation est conserve).

L’étape suivante consiste a créer les gabarits. L’algorithme suivant est utilisé:

1. trouver la dimensionalité la plus élevée parmi les tableaux qui n’ont pas encore

de gabarit,
2. utiliser un tableau parmi ceux-1a en guise de référence,
3. trouver tous les tableaux qui sont liés a cette référence,
4. créer un gabarit ayant la dimensionalité requise et lui lier tous ces tableaux,

5. répéter les étapes 1 4 4 jusqu'a ce que tous les tableaux aient un gabarit.

Ensuite, on doit choisir les dimensions a partitionner. Si la forme du réseau de
processeurs est inconnue, toutes les dimensions (des gabarits) sont partitionnées,

sinon, |'algorithme suivant est utilisé pour effectuer la sélection des dimensions:

pour toutes les dimensions du réseau
pour tous les gabarits
pour toutes les relations
si le gabarit de la relation courante est le gabarit courant
pour toutes les dimensions du gabarit
si ’alignement de la relation courante selon la dimension courante est
grand
le coiit de la dimension courante est fixé a I'infini
sinon, si le cout de la dimension courante n'est pas infini

calculer la surface de coupe des tableaux de la relation



additionner au cout de la dimension courante le produit de
'alignement par la surface de coupe et par le nombre
d’apparitions de la relation courante
trouver la dimension au plus faible cout (en cas d’égalité, choisir celle qui a la
meilleure répartition de I'effort de calcul)
assigner a la permutation de cette dimension (de gabarit) le numéro de
dimension courante du réseau

remettre a zéro les couts des dimensions

Lorsqu'on dit que I’alignement est grand, cela signifie qu'une opération de trans-
position ou de réduction est utilisée donc que les éléments des tableaux interagissent
de fagon plus complexes que celle supportée par le modele (i.e. des sections qui
interagissent).

L étape suivante consiste a extraire I’arbre recouvrant; il s’agit, dans un premier

temps, de trier les relations selon:

1. le produit de la norme euclidienne pour les dimensions partitionnées par le
nombre d’apparitions de la relation et

2. selon le nombre d’apparitions de la relation uniquement.

Le deuxieme critere a été choisi parce que, pour une quantité de communica-
tions donnée, utiliser un moins grand nombre de blocs de données (de plus grande
dimension) diminue, habituellement, la charge imposée au réseau. Deuxiémement,
les relations qui ont les coiits les plus élevés sont choisies (dans le but d’éviter ces
colits) jusqu’a ce que I’arbre recouvrant soit complet.

Finalement, les tableaux doivent étre alignés; ceci est effectué par I’algorithme

suivant:

pour tous les gabarits
trouver un tableau qui utilise le gabarit courant et utiliser ce tableau en guise
de référence
mettre & zéro tous les éléments de 1’alignement de cette référence

tant qu'on n’a pas terminé



indiquer que, par défaut, on a terminé
pour toutes les relations qui lient deux tableaux différents
si le gabarit de la relation courante est le gabarit courant et si
un seul des tableaux de la relation courante a été aligné
aligner 'autre tableau en utilisant I'alignement de la relation courante
accumuler les valeurs minimales et maximales des alignements pour
chaque dimension
indiquer qu’on n’a pas terminé
soustraire la valeur minimale des alignements de chacun des alignements (des
tableaux) dans le but de ramener a zéro celui qui a la valeur la plus petite
créer la forme du gabarit courant (qui est la forme de la référence plus les

maximums des décalages moins leurs minimums)

6.1.4 Complexité temporelle des algorithmes

La compiexiié des différentes étapes décrites a la section précédente sont:

trouver les relations: O(nombre d’opérateurs par expression fois nombre d’ex-

pressions)
trier les relations: O(nombre de relations fois son logarithme)
créer les gabarits: O(nombre de tableaux)

choisir les dimensions a partitionner: O(nombre de dimensions du réseau fois

le nombre de gabarits fois le nombre de relations)

trier les relations (a2 nouveau): O(nombre de relations conservées fois son loga-
rithme) (le nombre de relations conservées est O(nombre de tableaux))

créer les alignements: O(nombre de relations conservées)

Etant donné que le nombre de relations est beaucoup plus grand que le nombre
de gabarits, que le nombre de dimensions du réseau et que le nombre d’occurences
des opérateurs, le temps de tri des relations domine (i.e. la complexité temporelle est

O(nombre de relations multiplié par son logarithme)).
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6.2 Implantation

L'implantation a été faite sous forme d’un traducteur source-source qui ajoute des
directives de parallélisation HPF a un programme Fortran 90. Le but étant de
prouver le concept, le traducteur n’est pas un compilateur complet.

La grammaire implantée est celle de [2, pp. 665-689] mais elle a été modifiée dans
le but d’éliminer certaines ambiguités et pour rendre I’analyse syntaxique plus facile.

Donc, le traducteur ne supporte pas le Fortran 90 complet.

6.2.1 Bancs d’essais

Deux applications ont été utilisées en guise de bancs d’essai: la premiere est une
simulation de fluides qui utilise le schéme de différences finies de MacCormack [20]
alors que la seconde est une application de déconvolution de signal qui calcule un
estimé d'un champ de vent a partir de données de précipitations provenant d’un
radar Doppler [35] (cette application sera dénomée Semad ci-apres). Dans cette
deuxieéme application, le schéme semi-lagrangien a été remplacé par un schéme aux
différences finies dans le but de rendre le traitement plus régulier et pour diminuer
'effort de calcul requis.

Les deux applications consistent en 291 et 376 lignes de code respectivement (en
une seule fonction car le compilateur xlhpf qui a été utilisé semble produire du code
erroné lorsqu’il y a des appels a des fonctions définies par I'usager). Aussi, le temps
d’exécution du traducteur (pour ces applications) est négligeable (i.e. quelques se-
condes) sur un SparcStation 2. Ceci confirme la faible complexité temporelle des
algorithmes.

Les tableaux 6.2 et 6.3 donne les temps d’exécution des applications sur un or-
dinateur IBM SP/2 qui contient quatre processeurs. Les applications ont été com-
pilées avec xlhpf et ont été exécutées sous ’environnement POE (mais ont été
soumise par l'intermédiaire de LoadLeveler). Chaque donnée représente le temps
moyen de 9 exécutions au minimum. La colonne “temps sans alignement” est le
temps d’exécution lorsque l'alignement est fixé a 0 pour tous les tableaux alors
que la colonne “charge” indique combien d’autres applications étaient exécutées en
méme temps que celle sous étude (une valeur de 0.75 signifie que 3 applications

séquentielles étaient exécutées sur 3 des 4 processeurs).



Tableau 6.2: Temps d'exécution pour I’application MacCormack

nombre de | temps avec | temps sans | amélioration | charge
processeurs | alignement | alignement | (%)
Réseau de forme non-spécifiée
1 310 310 0 0
2 203 204 0.49 0
4 300 312 3.3 1
Réseau de forme spccifiée
2 294 203 -43 0
4 673 667 -0.9 1
2x2 818 325 -152 1

Tableau 6.3: Temps d’exécution pour I'application Semad

nombre de | temps avec | temps sans | amélioration | charge
processeurs | alignement | alignement | (%)
Réseau de forme non-spécifiée
1 110 105 -4.8 0
2 75 60 -25 0
4 99 64 -35 0.75
Réseau de forme spécifiée
2 38 47 19 0
4 68 935 28 1
2x2 80 63 -18 1

=]

-t



76

A P'analyse de ces tableaux, on constate que:

® il y a peu de cohérence dans les résultats,

@ utiliser le réseau du SP/2 comme avec une forme de 2 x 2 entraine une perte

de performance,

® la qualité du code généré par xlhpf semble variable et cette variabilité semble

dominer le changement de performance di a la qualité de la parallélisation,

® Semad a une structure des calculs plus complexe et le gain de performance
associé a l'utilisation de I'outil de parallélisation semble plus grand donc il

semble que l'outil soit profitable lorsque les applications sont complexes,

® la structure des calculs de 'application MacCormack (qui est trés réguliére)
fait en sorte que plusieurs alignements entrainent les méme coits de communi-
cations ce qui fait que la différence de performance est souvent tres faible entre

les cas avec alignement et ceux sans alignement.

6.3 Conclusions

Des algorithmes d’alignement et de distribution ont été décrits et on a démontré
qu’ils ont une faible complexité temporelle.

Des applications ont été compilées a ’aide d’un outil qui implante ces algorithmes
et leur exécution semble montrer que les compilateurs HPF ne sont pas suffisamment
matures pour permettre de prédire le niveau de performance selon la configura-
tion du systéme et les directives de parallélisation. Il semble donc qu’un outil de
génération de directives de parallélisation doive tenir compte du compilateur pour

pouvoir génerer des directives judicieuses.



Chapitre 7

Généralisation et formalisation du

modele de partitionnement

Le modéle de partitionnement utilisé jusqu’a présent est celui du HPF. Au chapitre 6.
des algorithmes qui permettent de calculer ce partitionnement de facon automatique
ont été décrits. Une version plus contrainte de ce modele a également été utilisée
dans le chapitre 5. Cependant, le modele HPF est trés contraignant, en particulier,
en ce qui concerne le fait qu'une dimension ne puisse étre partitionnée qu’'une seule
fois. Bien que, dans le cas général, ceci ne cause pas de probleme, il est bon de
rendre le modele plus flexible pour mieux supporter les cas qui seraient pathologiques
avec le modele HPF. C’est-a-dire que, méme si ces cas sont plutot rares. une perte
potentielle de performance qui serait dramatique mérite qu'on améliore le support

pour ces applications.

Dans le présent chapitre, on montre comment généraliser le modele de distribution
(i.e. le modele d’alignement n'est pas modifié). La description du nouveau modele de
distribution est faite en utilisant MOA (qui est décrit a ’annexe A) et le A-calcul [15]

dans le but de formaliser le modele.

Pour pouvoir effectuer une distribution selon la méthode qui sera décrite dans ce
chapitre, la seule information nécessaire concernant le réseau de communication est
sa forme, c’est-a-dire qu’on se limite & des réseaux pouvant étre décrit sous forme de
tableau et 'information spécifique dont on a besoin est la forme de ce tableau (i.e.
on utilise le méme modele de réseau que celui supporté par HPF). Cette restriction

permet malgré tout l'utilisation des réseaux les plus courants soient les réseaux a
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mailles et les “k-ary n-cubes”. Dans le premier cas, la forme du réseau s’obtient
directement par inspection alors que dans le deuxieme cas, la forme du réseau est un
vecteur de n éléments valant tous k.

La section 7.1 décrit quel type de distribution on veut supporter alors que la
section 7.2 décrit les algorithmes nécessaires a 'implantation de la distribution. Fi-
nalement, la section 7.3 tire des conclusions sur ce chapitre.

Il est a noter que ce chapitre est une généralisation de ce qui a été décrit dans [10].

7.1 Classe de distribution

L’'objectif premier étant de définir un environnement de travail pour décrire et im-
planter des algorithmes de distribution, on vise a solutionner ces problemes pour
un sous-ensemble des types de distribution possibles. Puisqu’on vise a supporter
les applications qui effectuent un traitement structuré (régulier) sur des tableaux,
on se penche sur une classe de distribution qui se décrit facilement en termes de
transformations sur des tableaux.

La classe de distribution visée est celle qui consiste a diviser un tableau perpendi-
culairement  un de ses axes. Etant donné qu’un ordinateur paralléle a souvent plus
d’une dimension, ce processus de subdivision sera effectué pour chaque dimension du
réseau. Plus précisement, pour chaque dimension du réseau, le tableau de données
sera partitionné en un nombre de parties égal 4 la longueur du réseau dans cette
dimension. Ceci est une modification au modele HPF puisque ¢a permet de distribuer
une dimension du tableau de données plus d’une fois. La distribution sera exprimé

par un vecteur nommeé o, et utilisera les informations suivantes:
5p: forme du réseau,
§,: forme du tableau de données (qui sera noté §,).

U, définit la distribution a effectuer de la facon suivante: #,[:] indique quelle
dimension de £, est partitionnée par la dimension ¢ du réseau. Cette dimension de
&, est donc partitionnée en §,[¢] sous-tableaux.

On voit donc que 7, doit respecter les conditions suivantes:

- P
TUp = TSy



0 < v,[i] < 6& =75,

Cette classe de distribution est intéressante parce qu’elle supporte les applica-
tions qui effectuent un traitement structuré sur des tableaux puisqu’elle favorise les

communications locales tout en étant plus générale que celle du HPF.

7.2 Algorithmes

Etant donné v,. Partition (qui est exprimée a l'aide du A-calcul) calcule la forme

des partitions a partir de la forme du tableau de données et de la forme du réseau.
Partition : A3,.7,.5, if [7, =0,3,
Partition(1 7 3, 1  Tp., 5,[0] A 5:H >4
(5[0] + 1) ¥ 3t)]

Cette expression s appelle elle-méme récursivement et, a chaque fois, elie divise

0
0 *

L/
P

’élément pertinent de la forme temporaire §; par le bon élément de la forme du
réseau donc, si 3, vaut 3, au début, il contient la forme des partitions Sy, a la fin.
Dans le but d’exprimer la distribution en fonction de transformations sur un tableau,
elle sera exprimée comme une opération qui transforme un tableau de forme $; en
un tableau dont la forme est la concaténation de 5, et de Sp,.. Donc, si Spew est la

forme du tableau apres la distribution:

Snew = Spt-Partition(s,, vy, 5;)

= sp‘H'spart

Maintenant, on doit trouver comment transformer £, en &,.., (le tableau de forme
Snew). On ne peut pas simplement faire un “reshape” (p) de £, parce que cet
opérateur préserve l'ordre lexicographique. Si, par exemple, p§;, =< 4 6 >, pé, =<
23> et

86 24 53 45 T4 90
6 56 43 15 84 82
83 51 76 47 25 32
35 68 79 42 21 91

{a
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Alors, avec le “reshape”. on obtiendrait (en notant que Sp,¢ est <22 >):

26 24 | [74 901 [ 43 15
53 45 || 6 56 || 84 82

Enew =

- - - 1r -

83 31 25 32 9 42
6 47 35 68 21 91

L L .. L. - ke e -

Mais on doit avoir:

86 24 33 45 4 90
6 56 43 15 84 82

ETLCW
83 3l 6 47 25 32
35 68 79 42 21 91

L. L - b 4 L - -

si on veut implanter I’algorithme décrit ci-haut.

Etant donné qu'une dimension du tableau de données est divisée pour “créer”
chaque dimension du réseau, on doit entrelacer les dimensions des partitions avec
celles du tableau de processeurs pour obtenir la forme de tableau dans laquelle les
partitions sont intactes. Pour le démontrer, on a besoin du théoreme 1 ou £, est un
tableau de données non-vide, j est la dimension de & qui est partitionnée, d indique
comment la dimension j de £. est partitionnée (par exemple, si elle est partitionnée
en 3 et que les partitions résultantes sont partitionnées en 5 et que les partitions
résultantes sont partitionnées en 4 alors d=<354 éff—g{% >) et U, est la forme
apres que la dimension j ait été partitionnée.

Le théoreme montre que., si on effectue un “reshape” d’un tableau en remplagant
une de ses dimensions par un certain nombre de dimensions pour lequel le nombre
total de sous-tableaux reste le méme, alors ces sous-tableaux (indexés par 7 dans le
théoréme) restent les mémes parce que le “reshape” préserve I’ordre lexicographique.
Ce qui change est I'ordre dans lequel ces sous-tableaux sont combinés pour former
le tableau complet. Il est a noter que ce théoréme montre que chaque dimension est
indépendante des autres sous cette transformation et, donc, qu’on peut appliquer la

distribution a plusieurs dimensions a la fois.

Théoréme 1 Si 3j, 0 < j < 6&, tel que xd = (pE)J] et que 0 <™ T<* (7+1) A pke,
0< k< d 0< <7,



St on pose

Ty = (j O p&)HdH((j + 1) ¥ pE.)
E=((C1A9[0] 5 d)

Alors

e, = ((T1 7 DHE)b(T, pE.)

Preuve:

p((T1 v D4k (7, 5 E.)

(T D)+E)w(F, 5E.)

et
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((r7) — L + (7F)) v p(7, p€.) Définition de v et 5
((j+1)=1+7d)v 5, Définition de p

et Psi Correspondence Theorem[42]

(j +7d) 7 ((j & p€)#dH((j + 1) v pE.))

Définition de v,

(j +1) v p€. Définition de A 7

77 p. Substitution
p(€.) Définition de @

((T1 v D)+k+#0)w(7, 5€.) Définition de v
("1 v D4+k4Dw(7, 5 rave,)
(ravé)ly((T1 v k41 ; 7.) mod Té&]

lyiE, = (rave)[y(TH#T; p€.) mod r€.]

Donc, on doit montrer que

v(CL kT 7,) = y(@THT pe.)

y(Cl g ik 7)) =

AW((C1 7 DHEHT j A pbetrdH-(G + 1) ¥ pEe)



A1V DHCLADHT: (A ple)H{pE )il +
((J +1) v {pE)))

Parce que y(k:d) = ("1 A 7)[0]

et vd = (p€)[j]

(@ #; ((G+ 1) A pl)+((J + 1) 7 (pE.)))
Définition de +

]

7(?+l—l~; p€.) Définition de +-
CQFD

Ce théoreme montre que, pour distribuer un tableau en le divisant selon une de
ses dimensions, on doit faire un “reshape” en utilisant, en guise de nouvelle forme, le
vecteur obtenu par la concaténation de la longueur du tableau de processeurs selon
chaque dimension qui partitionne la premiére dimension du tableau de données et
de la dimension de cette premiere dimension (apres la distribution) et en répétant
pour chaque dimension du tableau de données.

La lambda-expression suivante donne la forme désirée:

Init : A3,.0,.5part-Gv-Sinit f  [TGy = 1, Sinie + 35 (Fu[0]] H 5pare (0]
if [#,(3[0]] = 5p[g,{1]], Init(3p, 5y, Spart, L V G0,
SinitH55(4[0]])
Init(3,, T,y 1 7 Sparts 1 7 Gu» SinieH5p[§0[0]] 4 Spare[0])]]

Donc. le tableau apres cette opération est donnée par:

Eim't = Init(gpy t-;pa 5'pn:n'h gu ap’ e) ﬁEa.

gim't ﬁ Ea
Il ne reste plus alors qu'a transposer &,;; pour obtenir &,.., parce que, dans &y,
les dimensions du tableau de processeurs sont entrelacées avec celles des partitions
alors qu’on les veut séparées. Le résuitat de Gentv, donnée ci-dessous, est le vecteur
qui donne la permutation nécessaire.
Gentv : AG,.§,.I,.end if [r§, = 1,,#7,[0]+ end
if [Tp[3.[0]] = Fp[gu[1]], Gentv(Fy, 1 V Gu, b -#50(0], end)
Gentv(7,.1 V §,, t,+3.[0] 4 end, end + 1)]]




Donc, le tableau partitionné est donné par:

fnew

Gentv(&p.gu ,, 0, 75, ) (Init(S,, 7, Partition(3,, 7, 5, ),8u 75,0) 5 &)

Ez@(ginit 566 )
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Avec ces expressions, tout ce qui manque pour effectuer une distribution parti-

culiere est la valeur de 7, pour cette distribution. Ce dernier peut étre calculé grace

a l'algorithme de sélection de dimensions de la section 6.1.3 (page 70) dans lequel

la sélection de la dimension serait modifiée pour permettre la répétition d’une ou

plusieurs dimensions.

7.2.1 Exemple

Dans cette section, on montre comment utiliser Partition, Init et Gentv pour

calculer Spere, Sinie €t £, a partir de s, 5, et v,

Supposons que:

»
o
1]

<53433453>
< 900 576 >
<00101101>

Alors, chaque appel récursif de Partition donne:

Sp

<533433453>
<3433453>
<4334533>
<33453>
<3453>
<433>
<53>

<3>

o

5 7
<900576 > |<00101L 101>
< 180 576 > <0l101101>
< 60 576 > <101101>
< 60 144 > <0l101l>
<20 144 > <ll01>
<2048 > <101l>
<2012 > <01l>
<412> <l>

<44 > S]

Donc, Spere =< 44 >.
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Etant donné que gu v, =<01362457 >, chaque appel récursif de Init donne:

Spart Go Sinit
<44>|<01362457> o
<44>| <136245T7> <35>
<44> <362457> <53>
<44> <62457> <5333>

<4> <243537> <33354>

<4> <457> <533544>
<4> <H5T>| <5335443>
<4> <7T>|<53354434>

Donc, §;; =<5335443434>.
Chaque appel récursif de Gentv donne:

s b, end
<01362457> O] 8
<1362457> <0>1! 8
<362457> <01>}| 8
<62457> <013>] 8
<2457> <01368>]| 9
<457> <0136382>| 9
<H7T>| <0136824+4>] 9
<7T>|<01368245>| 9

Donc, {, =<0136824579>.

Pour montrer que ces résultats sont corrects, on dérive ;.-

Snew p(EQ® Einit)

(PEinit)[gu i;]

5.:‘mt[8u f::]
Simit[<0152673849 >]
<5343345344>

in

It

- -
3p+|‘8part
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7.3 Conclusions

On a montré comment MOA et le A-calcul permettent de décrire la distribution d’un
tableau de maniére rigoureuse et conceptuellement simple.

La seule donnée a calculer pour utiliser cette méthode de distribution est v,.
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Chapitre 8
Conclusions

Tel que discuté dans cette these, le traitement structuré (régulier) de tableaux en-
globe un grand nombre d’applications et ces applications forment une classe impor-

tante (au sens de l'utilité) en pratique.

Dans le but d’accélérer le traitement de ces applications, on a décrit un algo-
rithme permettant d’effectuer rapidement et a peu de frais le calcul d’adresses des
éléments de tableaux transformés. On a également décrit un générateur d’adresses
qui implante une version parallele de cet algorithme. Ce générateur d’adresses sup-
porte toutes les transformations linéaires entre un vecteur d’indice et une adresse.
De plus, on a montré que I'implantation matérielle a une tres faible complexité et
qu’elle permet de calculer une adresse par cycle d’horloge normalement (ce qui est
tres rapide).

On a démontré que les registres vectoriels sont une forme de mémoire locale
qui n’est pas appropriée pour les convolutions, puisqu'ils forcent un gaspillage de
la bande passante entre la mémoire et le processeur. Une méthode de gestion de
mémoire locale sous forme de tampons circulaires a été décrite. Elle consiste a
charger les éléments successifs de tableaux a des positions dans le tampon circulaire
qui sont a une distance égale au nombre de rangées dans le noyau de convolution
et a utiliser un tampon dont la taille force un “wrap-around”, de fagon a ce que les
éléments d’une colonne du tableau soient a des positions successives dans le tampon.
On a démontré que cette méthode permet d’extraire un maximum de performance
d’instructions vectorielles. Le seul compromis de cette méthode est qu’elle nécessite

légerement plus de mémoire que le minimum nécessaire pour éviter de charger des



éléments de tableaux plus d’une fois.

On a également proposé un langage de programmation qui permet de décrire
les applications qui traitent des tableaux de facon structurée a2 un haut niveau
d’abstraction, tout en permettant tant la génération de code performant (pour des
algorithmes basés sur des convolutions), ainsi que la parallélisation des applications
pour des architectures SIMD. Pour permettre la génération de code performant, on
s’appuie sur 'utilisation efficace de tampons circulaires et d’instructions vectorielles
qui permettent d’effectuer une multiplication-accumulation par cycle d’horloge sur
une architecture qui supporte ce type d’instruction.

Il a également été montré qu'’il est possible de paralléliser les applications grace a
des algorithmes dont la complexité temporelle est faible. Pour ce faire, on utilise la
forme et la position des sections de tableaux qui sont utilisées dans le programme &
paralléliser et on trouve les sections qui doivent étre alignées ainsi que les dimensions
qui doivent étre partitionnées de fagon a minimiser les communications. Cependant,
comme le langage HPF a été utilisé pour en faire la démonstration et que le compila-
teur utilisé manque de maturité, il n’a pas été possible de quantifier la qualité de la
parallélisation obtenue. Une avenue intéressante pour y parvenir consiste a utiliser
les dits algorithmes dans le compilateur HPCP créé dans le cadre de la présente
thése. Evidemment, comme |'environnement HPCP est plus contraint que celui du
HPF, les conclusions de tels travaux ne pourraient pas étre aussi générales.

Finalement, on a décrit comment formaliser et généraliser le modele de partition-
nement du HPF de facon a permettre de partitionner une dimension de tableau de
données plus d’une fois.

Les pistes de recherche les plus intéressantes qui découlent des travaux de cette

thése sont:

® intégrer les algorithmes de parallélisation au compilateur HPCP et évaluer leur

qualité tel que décrit ci-haut et

e étendre |’ensemble des fonctions intrinseques du HPCP pour supporter des
réductions et le “spread” du Fortran 90 (ceci permettrait de supporter un
plus large ensemble d’applications incluant la solution de systémes d’équations

linéaires denses et les applications de déconvolution),

. e supporter I’énoncé “forall” dans les algorithmes de parallélisation HPF,
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e rendre le générateur d’adresses plus général en faisant en sorte qu’il supporte
les transformations quadratiques dont les parametres peuvent étre rationnels
(ceci permettrait de supporter plusieurs transformations utilisées en traitement
d’images).
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Annexe A

Introduction a MOA

MOA [41] est un formalisme mathématique permettant de manipuler les tableaux
monolithiques c’est-a-dire des structures de données orthogonales dont les éléments
sont des scalaires. De I'utilisation de tableaux monolithiques et des concepts véhicu-
lés par la définition d’un tableau, il découle un certain nombre d’opérateurs: § donne
le nombre de dimension d’un tableau; par exemple, si le tableau £. est un tableau
de 4 par 5 par 6, alors 86. = 3. L’opérateur p donne le vecteur qui décrit la forme
d’un tableau; par exemple, pf. =< 4 5 6 >. L’opérateur 7 calcule le nombre total
d’éléments contenu dans un tableau; soit 7§, = 4 x 5 x 6 = 120. L’opérateur v
donne le produit des éléments du tableau donc 7p€ = 7€ est toujours vrai et indique
que le nombre total d’éléments de £ est égal au produit des éléments de sa forme.
L’opérateur 3 est 'opérateur d’indexation de MOA. Le résultat de cet indexation
est le sous-tableau obtenu en accédant le tableau a I'aide du deuxieme argument.
Par exemple, toujours en utilisant le méme tableau, Vn tel que 0 < n < 4. p(<
n>yYL) =< 56 >. AussiVn,m telsque 0 <n<4 et 0 <m<5. p(<
n m > ¥€.) =< 6 >. L'opérateur rav transforme un tableau en un vecteur ayant
les mémes éléments placés dans le méme ordre lexicographique (avec la dimension 0

qui a le poids le plus grand). Par exemple, si
1 2 4 6
o= [ 12 14 16]

ravfy=<24 6 12 14 16 >

alors
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Les opérateurs vy et ¥ permettent respectivement d’adresser un tableau trans-
formé par rav et d’adresser un élément dans un tableau sachant sa position dans le

tableau un fois transformé avec rav. Plus précisément,
(Tav A)[y(7; pA)] = TwA

Y (n; pA)YA = (rav A)[n]

ou les crochets([ ]) dénotent les indices de I’élément qu’on accéde dans un tableau.
Finalement, notons qu’un tableau vide est appelé O.

L'opérateur p est utilisé pour changer la forme d’un tableau; par exemple:

2 4
<32>p6=| 6 12
14 16

L’opérateur ¢ produit un tableau dont les sous-tableaux contiennent leurs propres
coordonées dans le tableau. On notera que I’argument de ¢ ne peut étre qu'un scalaire

ou un vecteur. Par exemple, t10 =<01234567 89 > ou encore

aane[30][12]

L opérateur +# effectue la concaténation de deux tableaux qui consiste a abouter
les tableaux selon la dimension 0 donc les tableaux doivent avoir la méme longueur
pour les dimensions autres que 0 pour que le résultat soit toujours un tableau. Par
exemple. si i =< 2468 >et b=<135> alors aHb=<2468135>.

L'opérateur A divise un tableau en deux selon la dimension 0 et ne conserve
qu’un des deux tableaux résultants. La longueur du tableau résultant est donné en
argument: si ce scalaire est positif alurs le résultat est pris & partir de la coordonée 0
s’il est négatif alors le résultat est pris a la fin du tableau et s'il est zéro, le résultat
est vide (©). Par exemple, p(2 A £.) =< 2 5 6 >. L’opérateur 7 a sensiblement
le méme effet sauf que ’argument scalaire indique quelle partie du tableau doit étre
enlevée; par exemple, p(l V £.) =< 356 >.

L'opérateur ¢ inverse I'ordre des éléments d’un tableau selon la dimension 0. Par

exemple:

12 14 16]

"56’5[ 2 4 6
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L'opérateur () effectue une permutation des dimensions d’un tableau. Cette
permutation est effectuer selon le contenu d’un vecteur @ de la facon suivante: la si®™
dimension du tableau devient la dimension < ¢ > ¢d. Par exmple, avec @ =< 01 >,

<01>Q0é=€5etaveca=<10>:

2 12
<10>0®&=|4 14
6 16

L’opérateur @ effectue une rotation des éléments d’un tableau. Si I'opérande qui

spécifie la rotation est un scalaire o alors:
< i > (o) =< (¢t + o) mod (p€)[0] > ¢€

Si I'opérande est un tableau, on effectue une rotation sur chaque vecteur selon la
dimension 0 du tableau et Iamplitude de la rotation sur chacun des vecteurs est
donnée par un des éléments de la deuxieme opérande.

L’opérateur gu crée le vecteur qui contient les index dont on a besoin pour accéder
le vecteur (donné en opérande) en ordre croissant. Autrement dit, 7]gu ¥] est en ordre
croissant.

MOA défini également des opérateurs a haut niveau. Le premier est 2; cet
opérateur permet d’appliquer un autre opérateur a des sous-tableaux. Lorsqu’on

I'utilise avec un opérateur binaire, il nécessite les opérandes suivantes:

& 7 &

ou g est |'opérateur binaire, d=<o0, 0,>et o > 0, o, > 0. Dans cette situa-
tion, (2 divise & en sous-tableaux de oy dimensions (en laissant intactes les dimensions
de plus faible poids), il divise également &, en sous-tableaux de o, dimensions. Fi-
nalement, apres avoir appliqué 'opérateur g sur les paires de sous-tableaux (un de
& et un de &), il effectue la concaténation des tableaux résultants.

Lorsqu’on l'utilise avec un opérateur unaire, il nécessite les opérandes suivantes:

7€

-

ol f est 'opérateur unaire,d =< o > et o > 0. Dans cette situation, 2 divise { en
sous-tableaux de ¢ dimensions, il applique ensuite f sur ces tableaux et, finalement,

il effectue la concaténation des tableaux resultants.
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L’opérateur ® est le produit externe généralisé. Les opérandes dont il a besoin
sont deux tableaux et un opérateur scalaire. Le résultat de cet opérateur est un
tableau qui contient le résultat de 'opérateur scalaire appliqué a toutes les paires
d’éléments possibles (un de chaque tableau}. Donc, la forme du tableau résultant
est la concatenation des formes des opérandes. Par exemple, si v =< [ 3 4 > et

U=<2567> alors p(v @+ d) =<3 4> et

36 7 8
58 9 10
6 9 10 11

i

U Q4 U



Annexe B

Code pseudo-assembleur pour la

génération d’adresse

for.nit: ADD R, Rshape_j 1. #0 : while overhead

for: LOAD R, R, ; loop time
ADD  Res, Res, Rincrj 1 ; loop time
SUB R:.. R;, #! : loop time
JNZ R;, for : loop time
SUB R, R dim: #2 : while overhead
ADD R.,,R.,. Rincr_j 9 ; while overhead
JGE R;, o_while ; while time
ADD Ry j: Beyr j- #1 ; while time
SUB  Rtemp: Rcur j- Rshape j ; while time
JNE  Rtemp. o-while ; while time
SUB Rcur_jv Rcur_j , Rcur_j ; while time
SUB R;,R;, #1 ; while time
JLT R;, i_while : while time
ADD R.,R.,. Rincr_j ; if time

i-while: JGE R;, o_while ; while time

ADD RCUI‘_j_] ’ Rcur_j_l ) #1 ' while time



SUB
JNE

SUB
SUB
JLT

ADD

i_while_n_1:

o_while:

JGE

Rtemp: Rcur.j-l* Rshape_j_l ; while time
Rtemp, o-while ; while time

Rcur.j_l-'Rcur_j _I»Rcur_j-l : while time

R;, R;. #1 ; while time
R;, i_while_1 ; while time
Res, Res, Riper j 1 ; if time

R;, for_init ; while overhead
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Annexe C

Grammaire de HPCP

primary_expr: identifier
| constant
| (" conditional_expr )’

postfix_expr: primary_expr
| identifier duos
| identifier ’(’ argument_expr list ')’

duos : duo
| duos duo
duo: [’ duo-elem ™’ duo_elem ']’

| [ duo_elem '}’

duo_elem: constant_expr
argument _expr.list: conditional_expr
| argument_expr.list ’," conditional_expr

unary_expr: postfix_expr

| unary operator cast_expr



unary_operator:

cast_expr:

multiplicative_expr:

additive_expr:

shift _expr:

relational expr:

equality _expr:

and_expr:

exclusive_or_expr:

101

unary_expr

cast_expr

| multiplicative_expr "™’ cast_expr

multiplicative_expr
| additive_expr "+’ multiplicative_expr

| additive_expr -’ multiplicative_expr

additive_expr

| shift_expr '<<’ additive_expr

| shift_expr '>>" additive_expr
shift_expr

| relational_expr "<’ shift_expr

| relational expr ">’ shift_expr

| relational expr '<=" shift_expr
| relational _expr '>=" shift_expr

relational_expr
| equality_expr '==" relational_expr

| equality_expr "!="relational expr

equality_expr
| and_expr '&’ equality_expr

and_expr
| exclusive_or_expr '~ ’ and_expr



inclusive_or_expr:

logical_and _expr:

logical_or_expr:

conditional_expr:

assignment _expr:

assignment_operator:

constant_expr:
declaration:

declaration_specifiers:

init_declarator_list:
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exclusive_or_expr

| inclusive_or_expr ’|" exclusive_or_expr

inclusive_or_expr

| logical_and_expr '&&’ inclusive_or_expr

logical_and_expr
| logical or_expr ’||’ logical_and_expr

logical_or_expr
identifier assignment_operator conditional_expr

| identifier duos assignment_operator conditional_expr

| identifier ’(’ argument_expr_list ')’

conditional_expr
declaration_specifiers init_declarator_list '}’

type.specifier
| declaration_specifiers type_specifier

init_declarator

| init_declaratorlist ’,” init_declarator



103

init_declarator: declarator

| identifier '=" initializer

initializer: constant_expr
type.specifier: long’

| int’

| *const’
declarator: identifier

| declarator [ constant_expr |’

statement: compound_statement
| expression_statement
| selection_statement
| pragma_statement
| where_statement

| loop_statement

compound_ statement: {" '}’
| {* statement_list '}’
| '{’ declarations statement_list '}’

| "{” declarations dist_list statement_list '}’
declarations: declaration_list

dist list: distribute_pragma
| distlist distribute_pragma



distribute_pragma:

pragma.list:

pragma_item:

dist_descs:

dist _desc:

qualif:

declaration_list:

statement list:

expression_statement:

selection_statement:

where_statement:

loop _statement:

pragma_statement:

'#pragma’ ‘distribute’ pragma._list *;’

pragma_item

| pragma.list ’,’ pragma._item
identifier dist_descs

dist_desc
| dist_descs dist_desc

[ qualif '}’
| ‘block’

| eyclic’
| 'eyclic’ ’(" constant_expr ’)’

declaration
| declaration_list declaration
statement

| statement_list statement

assignment_expr ’;’

if” ’(° conditional_expr ’)’ statement
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| 'if” ’(° conditional_expr ')’ statement ’else’ statement

'where’ ’(’ conditional _expr ')’ statement

"loop’ statement

'#pragma’ 'configuration’ constant_expr



file:

function_definition:

function_body:

identifier:

alpha:

digit:

constant:

xdigit:

function_definition

identifier ’(" °)’ function_body
compound_statement

(alpha | "")(alpha | digit [ "")"
[a-zA-7Z]

[0-9]

0 [xX] xdigit+

| 0 digit+

| digit+

| xdigit+

(0-9a-fA-F]
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Annexe D

Code C-PULSE et assembleur des

programmes de test
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void main (){
int d, h;
int _hpcp_idx0, int _hpcp_idxi, _hpcp_nshift, _hpcp_templi];

for(_hpcp_idx0 = O; _hpep_idx0 < 8; _hpcp_idx0++){
for(_hpcp_idxi = 0; _hpcp_idxi < 2; _hpcp_idxi++){
if(_hpcp_idx0 >= 0 && _hpcp_idx0 <= 7)
if(_hpcp_idx1l >= O && _hpcp_idx1 <= 7){
for(_hpcp_nshift = O; _hpcp_nshift < 4; _hpcp_nshift++)
~Horthshift();
d = _Horth;
if (_hpecp_idx1 <= 0)
_hpep_temp[_hpcp_idxi] = _North;
if(_hpcp_idxi >= 1){
_North = _hpcp_temp[_hpcp_idx1 - 2];
_NorthsShift();
}
if(_hpcp_idx0 >= 0 &k _hpcp_idx0 <= 7)
if(_hpcp_idxl >= 0 && _hpcp_idxl <= 7)
h =d;
if(_hpcp_idx0 >= 0 && _hpcp_idx0 <= 7)
if(_hpcp_idx1 >= 0 && _hpcp_idxl <= 7){
_South = h;
for(_hpcp_nshift = O
_SouthShift();

; _hpcp_nshift < 4; _hpcp_nshift++)

}

Figure D.1: Code C-PULSE généré pour le programme de la figure 5.5



Ld
Label
Sudb
Ifc

#0 rbil

LO

rbi #8 rb3
rb3 r0

BNPA L2

Ld
Label
Sub
Ifc

#0 rail

L3

ral #2 ra4
ra% r0

BNPA L5

Ld
Sub
Sub
Ifc

Ld
Sub
Sub
Ifc

Ld

Label
Sub
Ifc

#0 rb4

bl #7 ras5
rbi #0 rbs
rb5 #65536 r0
#0 raé

ral #7 rbé
ral #0 ra?7
ra7 #65536 r0
#0 ra2

L6

ra2 #4 rb7
rb7 ro0

BNPA LB

NSR
Restore
Label
Inc

L7
ra2 0

BU L6

Label
Ld

Ifc
ResetSP
Ld

Ld
Restore
Ifc
Sub
ResetSP
Ld

St

NSR
Restore
Ld

Sub

Figure D.2: Code assembleur généré pour le programme de la figure 3.5

L8

nport ra3

ral #0 r0
-hpcp_temp
ra8 _hpcp_temp
nport ra8

ral #1 x0

ral #2 rb8
-hpcp_temp

ra9 _hpcp_temp
raS nport

#0 rb9
rbi #7 raio
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Sub
Itfc
Ld
Sub
Sub
Ifc
Ld
Restore
Restore
Ld
Sub
Sub
Ifc
Ld
Sub
Sub
Ifc
St

Ld
Label
Sub
Ifc

rbl #0 rbio
rb10 #65536
#0 rail

ral #7 rbii
ral #0 ral2
ral2 #6856536
ra3d rb2

#0 rbi12

rbl #7 rai3
rbl #0 rbi3
rbl3 #65536
#0 ral4
rail #7 rbi4
ral #0 rais
ralb #65536
rb2 sport
#0 ra2

L9

ra2 #4 rbis
rbi5 r0

BNPA L1i1

SSR
Restore
Label
Inc

Li10
ra2 r0

BU L9

Label
Restore
Restore
Restore
Restore
Restore

Label

Inc

L11

L4
ral 0

BU L3

Label
Restore
Label
Inc

LS

L1
rbl r0

BU LO

Label
Ret

L2

r0

0
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Figure D.3: Code assembleur généré pour le programme de la figure 5.5 (suite)



void main (){
int h, _hpcp_idx0, _hpcp_idx1l, _hpcp_nshift, _hpcp_temp[3];
const int _hpcp_coeff0[9] = {1, 2, 1, 2, 4, 2, 1, 2, 1};

_initbufAr(3, 0);
_initbufAw(3, 0);

for(_hpcp_idx0 = 0; _hpcp_idx0 < 10; _hpcp_idx0++){
for(_hpcp_idxl = 0; _hpcp_idxl < 4; _hpcp_idxi++){
if(_bhpcp.idx0 >= O &k _hpcp_idx0 <= 9)
if (_hpcp_idx1l >= 0 && _hpcp_idx1 <= 9){
for(_hpcp_nshift = 0; _hpcp_nshift < 4; _hpcp_nshift++)
_NorthShift();
_writebufAw(_North);
if(_hpcp_idx1 <= 2)
_hpcp_temp[_hpep_idx1i] = _North;
if(_hpep_idx1 >= 1){
_North = _hpcp_temp[_ hpcp_idxi - 2];
_NorthShift();
}
i£(_hpcp_idx0 >= 1 && _hpcp_idx0 <= 8)
if(_hpcp_idx1t >= 1 && _hpcp_idxi <= 8)
h = _convollterbufAw(_hpcp_coeff0, 9) >> 4;
if(_hpcp_idx0 >= O && _hpcp_idxQ <= 9)
if(_hpcp.idx1l >= 0 && _hpcp_idx1 <= 9){
_South = h;
for(_hpcp_nshift = 0; _hpcp_nshift < 4; _hpcp_nshift++)
_SouthShift();
}

Figure D.4: Code C-PULSE généré pour le programme de la figure 5.6
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Call _initbufAr
Call _initbufAw
Ld #0 rbi
Label LO
Sub rbi #10 ra3
Ifc ra3 r0
BEPA L2
Ld #0 rai
Label L3
Sub rai #4 rb3
Ifc rb3 r0
BNPA LS
Ld #0 ra4
Sub rbil #9 rbg
Sub rbl #0 rab
Ifc rab #65536 r0
Ld #0 rbsS
Sub ral #9 ra6
Sub rai #0 rb6
Ifc rb6 #65536 r0
Ld #0 ra2
Label L6
Sub ra2 #4 ra?
Ifc ra7 r0
BNPA L8
NSR
Restore

Figure D.5: Code assembleur généré pour le programme de la figure 5.6
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Label
Inc

L7
ra2 r0

BU L6

Label
Call
Ifc
Sra
ResetSP
Ld

Ld
Restore
Ifc
Sub
ResetSP
Ld

St

NSR
Restore
Ld

Sub
Sub
Iftc

Ld

Sub
Sub
Itc
Call
Srl

d
Restore
Restore

Figure D.6:

L8
_writebufAv
rai #2 r0

r8 nport r8
hpcp_temp
rb7 _hpcp_temp
8 rb7

ral #1 r0

ral #2 rag
-hpcp_temp
rb9 _hpcp_temp
rb9 nport

#0 ral0

rbl #8 rbi0
rbl #1 raiil
rall #65536 r0
#0 rbii

ral #8 rai2
ral #1 rbi2
rb12 #65536 r0
_convollterbufAw
r0 #4 rai3
ral3d rb2
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Code assembleur généré pour le programme de la figure 5.6 (suite)
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Ld #0 rbi3
Sub rbl #9 rai4
Sub rb1l #0 rbis
Ifc rbi4 #65536 r0
Ld #0 rats
Sub ral #9 rbis
Sub ral #0 rai6
Ifc ral6é #65536 r0
St rb2 sport
Ld #0 ra2
Label LS
Sub ra2 #4 rbié
Ifc rbié r0
BNPA L11
SSR
Restore
Label L10
Inc ra2 o
BU L9
Label L11
Restore
Restore
Restore
Restore
Restore
Label L4
Inc ral r0
BU L3
Label LS
Restore
Label L1
Inc rbl ro
BU LO
Label L2
Ret

Figure D.7: Code assembleur généré pour le programme de la figure 5.6 (fin)



Call _initbufAr
Call _initbufAw
Call _initbufBr
Call _initbufBw
Ld #0 rbi
Label LO
Sub rbl #10 ra3
Ifc ra3 r0
BNPA L2
Ld #0 ral
Label L3
Sub rai #4 rb3
Ifc rb3 r0
BEPA L5
Ld #0 ra4
Sub rbi #9 rb4d
Sub rbl #0 rab
Ifc rab #65536 r0
Ld #0 rbs
Sub rail #9 raé
Sub ral #0 rbé6
Ifc rb6 #66536 ro0
Ld #0 ra2
Label L6
Sub ra2 #4 ra?7
Ifc ra7 0
BNPA L8
¥SR
Restore
Label L7
Inc ra2 r0
BU Lé
Label L8
Call _writebufAw
Ifc ral #2 x0
Sra r8 nport r8
ResetSP _hpcp_temp
Ld rb7 _hpcp_temp
Ld r8 rb?7
Restore
Ifc ral #1 r0
Sub rai #2 ra9

Figure D.8: Code assembleur généré pour le programme de la figure 5.3
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ResetSP
Ld

St

NSR
Restore
Ld

Sub
Sub

Ifc

Ld

Sub
Sub
Ifc
Call
Srl
Call
Restore
Restore
Ld

Sub
Sub
Ifc

Ld

Sub
Sub
Ifc
Call
Abs
Call
Abs
Max

Ld
Restore
Restore

Figure D.9:

_hpcp_temp
rb9 _hpcp_temp
rbd nport

#0 ral0

rbl #8 rbl0
rb1 #1 raii
rall #65536 r0
#0 rbilil

ral #8 rai2
ral #1 rbi2
rb12 #66536 r0
_convollIterbufAw
r0 #4 ral3
_writebufBw

#0 rbi3

rbl #9 rai4d

rbl #1 rbi4
rbi4 #65536 ro0
#0 raib

ral #9 rbid

ral #1 raié

ral6 #65538 rO
_convollterbufBe
r0 r0
_convollterbufBw
r0 ro

r0 r0 #-32768
#-32768 rb2
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Code assembleur généré pour le programme de la figure 5.3 (suite)
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