
Titre:
Title:

Outils et méthodes pour le traitement parallèle de calculs sur des
tableaux

Auteur:
Author:

Normand Bélanger

Date: 1997

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Bélanger, N. (1997). Outils et méthodes pour le traitement parallèle de calculs
sur des tableaux [Thèse de doctorat, École Polytechnique de Montréal].
PolyPublie. https://publications.polymtl.ca/6937/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/6937/

Directeurs de
recherche:

Advisors:
Yvon Savaria

Programme:
Program:

Non spécifié

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/6937/
https://publications.polymtl.ca/6937/

OUTILS ET MÉTHODES POUR LE TRAITEMENT

PARALLÈLE DE CALCULS SUR DES TABLEAUX

NORMAND BÉLANGER

DÉPARTEMENT DE GÉNE ÉLECTRIQUE

ET DE G É ~ INFORMATIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈsE PRÉsENTÉE EN VUE DE L'OBTENTION

DU DIPLÔME DE PHILOSPHIÆ DOCTOR (PL~.D.)

(GÉNIE ÉLECTRIQUE)

DÉCEMBRE 1997

ONomand Bélanger 1997.

National Library Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. nie Wellington
Ottawa ON KtAON4 OttawaON K1AOW
Canada Canada

The author has granted a non- L'auteur a accordé une licence non
exclusive licence dowing the exclusive permettant B la
National Lïbrary of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sell reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/nlm, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantid extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or othecwise de celle-ci ne doivent être imprimés -
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Cette thèse intitulée:

OUTILS ET &THODES POUR LE TRAITEMENT

PARALLÈLE DE CALCULS SUR DES TABLEAUX

présenté par: BELANGER Normand

en vue de l'obtention du diplôme de: Philosoohiae Do-
a été dûment acceptée par le jury d'examen constitué de:

M. BOIS Guy, PhD., président

M. Y v m Phl)., directeur de recherche

M. DACrENAEMi&& PhD., membre

M. KRQPF P e w Ph.D., membre externe

M. e, Ph.D., membre

Remerciements

.Je voudrais remercier mon directeur. Yvon Savaria, pour m'avoir

fourni un environnement où mes idées ont. non seulement germé& mais x

aussi où elles ont pu arriver à maturité. J e voudrais également le re-

mercier pour m'avoir appuyé au cours de toutes ces rrnnées.

Je voudrais aussi signifier ma gratitude à ma conjointe. Sylvie Fortin.

pour m'avoir soutenu au cours de mes études doctorales et pour avoir

fait preuve de patience dans l'attente du moment où la présente thèse

serait terminée. Je voudrais aussi souligner l'aide qu'elle m'a apportée

dans l'amélioration de cette thèse par une patiente et méticuleuse revue

du texte.

Résumé

Le traitement parallèle est très important pour certaines applications

car elles pourraient mettre à profit une augmentation de plusieurs or-

dres de grandeur de la performance des ordinateurs les plus puissants

disponibles. Or. l'amélioration des technologies et de l'architecture des

ordinateurs mono-processeurs ne permet pas ce niveau d'augmentation de

performance. D'un autre côté, la pardlélisation automatique d'applica-

tions pose de nombreux problèmes. Dans la présente thèse, trois de ces

problèmes sont abordés soient:

a le calcul rapide d'adresses,

a la programmation à haut niveau d'ordinateurs SILID et

a le partit ionnement automatique de tableaux.

Le traitement structuré de tableaux permet une plus grande perfor-

mance que le traitement non-st ruct uré puisqu'ii permet:

a le transfert des données avant qu'elles ne soient requises.

a I'utilisation d'instructions vectorielles et

a une meilleure utilisation d'une hiérarchie de mémoire.

Pour que le transfert de données entre la mémoire et le processeur

ne ralentisse pas leur traitement par le processeur, le calcul des adresses

doit être efficace et il doit être effectué par un organe de calcul autre

que le processeur. Par contre, Les transformations sur les tableaux qui

modifient leur adressage sont des transformations qui sont très souvent

linéaires. En conséquence, on propose un algorithme qui supporte ce type

de calcul d'adresses. On montre que cet algorithme est efficace et qu'il

peut être implanté en matériel avec une faible complexité.

Les architectures SIMD sont très appropriées pour le traitement struc-

t uré de tableaux puisque cet te architecture matérielle reflète la structure

des calculs. Cependant, à ce jour, aucun langage de programmation

n'a été proposé qui permette de décrire un traitement structuré sur des

tableaux en utilisant des opérateurs sur des tableaux (i-e. en utilisant

le niveau d'abstraction le plus judicieux) tout en visant la compilation

vers les architectures SIMD. On propose un tel langage et on démontre

comment on peut rendre efficace le code généré par un compilateur. En

particulier, on montre comment lotit ilisat ion de tampons circulaires et

d'instructions vectorielles peut améliorer la performance lorsqu'on ef-

fect ue des convolut ions.

Le traitement structuré de tableaux implique essentiellement le t rai-

tement de sections de tableaux. Or. le fait que trouver la meilleure

distribution des données entre les processeurs est YP-complet peut être

contourné en limitant l'analyse des calculs à effectuer à l'analyse des

opérations sur les sections de tableaux et en utilisant le modèle de paral-

lélisme du langage HPF. De plus. comme ce modèle impose une structure

régulière à la distribution des tableaux. son ut.ilisat.inn ni. dimin~e pas la

performance des applications qui effectuent un traitement régulier. Dans

cette thèse. on propose une méthode et des algorithmes de parallélisation

qui vont dans le sens décrit. On montre que ces algorithmes on une faible

complexité temporelle et qu'ils permettent de générer des directives de

pardlélisat ion HP F qui peuvent améliorer la performance. Cependant.

cette amélioration est mitigée par le manque de maturité du compilateur

HPF utilisé.

Finalement. on montre comment formaliser et généraliser le modèle

de partitionnement HPF à l'aide de -vZOA et du A-cdcul.

vii

Abstract

Parallel processing is very important to many applications. because

they can take advantage of an improvernent of more than one order of

magnitude over the performance of the most powerful cornputers cur-

rent ly available. and because technological and architectural irnprore

ments cannot provide such a sharp increase in performance. On the

other hand. automatic distribution of applications is difficuit in many

respects. In this thesis, three of these difficulties are tackled. namely:

a fast address computat ions,

high-level programming of SIMD cornputers. and

a automatic distribution of arrays.

Structured array processing can achieve higher performance than un-

st mct ured processing because i t allows:

a prefetching data,

a the use of vector instructions. and

0 a better use of a memory hierarchy.

In order to prevent data t ransfers between t h e memory and the proces-

sor from slowing down the processing of that data, address cornputations

must be efficient and they must not be performed by the processor. On
the ot her hand, t ransforrnat ions on arrays t hat modify the way arrays are

accessed are often iinear. Thus, an algorithm is proposed that support

these types of transformations. It is shown that this algont hm is efficient

and that it can be implemented in hardware a t a very small cost.

SIàID architectures are very appropriate for structured array pr*

cessing because this type of architecture is sirnilar to the structure of the

computations. On the other hand. to this day, no prograrnrning language

has been proposed t hat dlows the description of structured computations

through support of array operators while aiming at compiling for SIMD
architectures. Such a language is proposed in this thesis, and it is shown

how a compiler for that language can geaerate efficient code. In particu-

lar. it is shown how to improve performance through the use of circular

buffers and vector instructions.

Stmctured array processing is essentiaily the processing of array sec-

tions. Also, the NP-completeness of the automatic distribution problem

can be circumvented by lirniting the analysis to array section interac-

tions and by using the HPF model of parallelism. Furthemore, since

this model imposes a regular structure to the distribution of arrays. its

use does not lower performance of (parallelized) applications if they per-

form structured processing. In this thesis, a partitioning method and

algorit hms are proposed. It is shown that the algorit hms have a low tirne

complexity aud that they allow generatiog HPF directives that can im-

prove performance but t hat this improvement is mitigated by the lack of

rnaturity of the HPF compiler used.

Finally, it is shown kow to formalize and geaeralize the HPF model

of parallelism by using MOA and the A-calculus.

Table des Matières

Remerciements ... iv

Résumé .. v

Abstract ... vii

Liste des Tableaux .. xii

... Liste des Figures .. xixi

Liste des Annexes ... xv

1 Introduction ... 1

1.1 kl odèle de parallélisme de HPF :3

1.1.1 Directives de parallélisation HPF 3

1.2 Architecture du SlMD de Pulse 5

2 Revue de la littérature .. 7
c. 2.1 Partitionnement de boucles imbriquées i

2.3 Parti tionnement de code de haut niveau 8

2.3 Géneration d'adresse pour les tableaux 9

2.4 Langages de haut niveau pour la programmation SIMD 10

Analyse des besoins .. 11

3.1 Méthodesitératives .. 12

3.2 Méthodes directes ... 13

3.3 Contexte matériel .. 13

3.4 Discussion ... 14

3.5 Mise en oeuvre d'un objet-tableau C++ 15

3.5.1 Opérateurs implantés ... 15

....................................... 3.5.2 Applications implantées 16

3.6 Conclusions .. 16

4 Génération d'adresses 18

4.1 Introduction ... 18

3.2 Patrons d-adresses 20

4.3 Algorithme .. 21

4.4 Implantation logicielle ... 25

4.4.1 Code et modèle temporel 25

..................... 4.4.2 Evaluation du temps d'exécution 27
4.5 Implantation matérielle .. 32

4.6 Transformations 35

4.6.1 Transformations du Fortran 90 36
... Section 36

... Transposition 37

... Spread 37

Reshape 37

4.6.2 Autres transformations 38

... Partition 38
'Warping" 39

Renversement .. 39

... Damier 40

... 4.7 Paramètres 41

4.7.1 Distance .. 42

4 . 2 Fome .. 43

4.7.3 Adresse de départ 43

.. 4.7.4 Pas 44

... 4.7.5 Généralisation 44

4.8 Conclusions ... 45

5 U n langage de haut niveau pour les ordinateurs SIMD 47

.. 5.1 Descript ion du langage 48

5.1.1 Sous-ensemble du C supporté 48

5.1.2 Extensions ajoutées au C 49

............................ 5.2 Sémantique 50

5.2.1 Structures de support pour les tableaux 51

... Opérateurs 51

... Lënoncé -wheren 52

Fonction intrinsèques d'ent rée/sort ie 52
5 - 2 2 Distribution .. $2

5.3 Tampons circulaires ... 53

5.3.1 Bande passante requise par les registres vectoriels 53
5.3.2 Stratégie d'allocation dans les tampons circulaires 55

53.3 Évaluation de la stratégie d'allocation 58

... Gain de vitesse -58

Quantité de mémoire utilisée XI
5.3.4 Étudeducas3D ... 60

... j.4 Exemple de programme 61

5-5 Analyse des performances obtenues 64
... 5.6 Conclusions 66

6 Génération automatique de directives HPF 67

6.1 Cadre conceptuel et algorithmes 67

6.1.1 Fonctiondecoût ... 68
................................... 6.12 Extraction de l'information 69

6.1.3 Algorithmes ... 70

6.1 -4 Complexité temporelle des algorithmes 73
.. 6.2 implantation 74

6.2.1 Bancs d'essais .. 74

... 6.3 Conclusions 76

7 Généralisation et formalisation du modèle de partitionnement ... 77

7.1 Classe de distribution ... 78
c. .. i . 2 Algorithmes 79

7.2.1 Exemple ... 83
... 7.3 Conclusions 85

..................................... 8 Conciusions 86

.. Bibliographie 89

.. Annexes 94

Liste des Tableaux

Tableau 4.1 Résumé des pertes de vitesse pour le processeur simple (S) et

pour le processeur super-scalaire (SS) pour les deux premières

expériences . - . - . - - . - . 31

Tableau 6.1 Liste des relations de l'exemple de l'équation 2 70
-* Tableau 6.2 Temps d'exécution pour L'application MacCormack ra
-c Tableau 6.3 Temps d'exécution pour l'application Semad r a

Liste des Figures

Figure 1.1 Exemples de directives HPF 1

Figure 1.2 Architecture du SIMD de Pulse 6

Figure 4.1 Algorithme de calcul d'adresse simplifié 22

Figure 4.2 Algorithme de calcul d'adresses 24

Figure 1.3 Boucles principales de l'algorithme en langage C 35

Figure 4.4 Temps moyen de traitement par élément pour un tableau
d e n x 8 x m o u n x m = 1 0 * 2 4 ,... 29

Figure 4.5 Temps de traitement pour un nombre variable de dimen-

sions et un nombre d'éléments constant 30

Figure 4.6 Temps de traitement moyen par élément pour une matrice

carrée .. 30

.................. Figure 4.7 Diagramme-bloc du générateur d'adresse 34

Figure 4.6 Section (2.9, 2.9) d'un tableau de forme (10, 10) 36

Figure 4.9 Tableau de forme (10, 10) transposé 37

Figure 4.10 Un tableau de forme (10, 10) dupliqué trois fois selon la

dimension 2 .. 38

Figure 4.1 1 Un tableau de (10. 10) partitionné selon la dimension 2 en

2 parties ... 39

Figure 4.12 'Warping" de la section (38 .38) d'un tableau de forme

(10. 10) selon la dimension 2 et en décalant de 2 seIon la

dimension 1 .. 40

Figure 4.13 Reversement d'un tableau de forme (10. 10) selon la dimen-

sion 2 ... 40

Figure 4.14 Damier de 4 cases sur 8 fait à partir d'un tableau de forme

......................... (i6J6) 12

Figure 4.15 Transformation arbitraire 45

Figure 5.1 Gain de vitesse entre les vectorisations partielle et totale . . 58

Figure 5.2 Quantité supplémentaire de mémoire requise 59

Figure 5.3 Exemple de code HPCP 62

Figure 5.4 Code C-Pulse généré 63

Figure 5.5 Premier programmede test HPCP 64

Figure 5.6 Deuxième programme de test HPCP 65

Figure D. 1

Figure D.2

Figure D.3

Figure D.4
Figure D.5

Figure D.6

Figure D.7

Figure D.8
Figure D.9

Figure D.10

Code C-PULSE généré pour le programme de la figure 5.5 . 107

Code assembleur généré pour le programine de la figure 5.8 108

Code assembleur généré pour le programme de la figure 5.5
......... (suite) 109

Code C-PULSE généré pour le programme de La figure 5-6 . 110

Code assembleur généré pour le programme de la figure 5.6 11 1

Code assembleur généré pour le programme de la figure 5.6

(suite) .. 11'2

Code assembleur généré pour le programme de la figure 5-6

(fin) .. 1 13

Code assembleur généré pour le programme de la figure 5.3 114

Code assembleur généré pour le programme de la figure 5.3

(suite) .. 1 15

Code assembleur généré pour le programme de la figure 5.3

(fin) .. 116

Liste des Annexes

.. A Introduction à MOA 94

............. B Code pseudo-assembleur pour la génération d'adresse 98

.. C Grammaire de HPCP -100

D Code C-PULSE et assembleur des programmes de test 106

Chapitre 1

Introduction

.Avant tout, il convient de signaler que presque tous les travaux présentés dans la

présente thèse ont été effectués dans le cadre du projet Pulsa. Ce projet consiste à

concevoir un ordinateur SIMD ainsi que des logiciels (par exemple, un compilateur.

un assembleur et des applications) permettant de programmer ledit ordinateur.

Certaines applications pourraient mettre à profit une puissance de calcul de quel-

ques ordres de grandeur supérieure à celle des ordinateurs les plus puissants présen-

tement disponibles (par exemple. la prévision météorologique, la modélisation de cli-

mat. la simulation de fluides ou de champs de particules tel qu'atomes et molécules ou
,

corps planétaires). Etant donné que l'architecture des ordinateurs mono-processeurs

est déjà fortement contrainte par la vitesse de propagation des signaux et qu'aucune

nouvelle technologie (qui permettrait des fréquences d'horloge nettement plus éle-

vées) n'est sur le point de prendre la relève, on se doit de se tourner vers les ordina-

teurs mult i- processeurs si on veut maintenir le taux d'augrnentat ion de performance

que l'on connait depuis quelques décennies r2%].

Cependant, pour exécuter plus rapidement les programmes. il faut diviser le

travail de façon équilibrée entre les processeurs. Pour le cas général, trouver la

répartition optimale est un problème NP-complet [37]. Par contre, sachant que la

plupart des applications concernées traitent des tableaux, ou peut limiter le champ

des applications à supporter à ces dernières. Ce champ d'applications comprend

la solution d'équation(s) différentielle(s) ordinaire(s) ou aux dérivées partielles, la

solution de systèmes d'équations linéaires (ces deux types d'équations sont utilisés

pour modéliser et simuler différents aspects de notre univers) et la minimisation de

fonctions à 'plusieursw variables (ce qui permet d'extraire de l'information d'un si-

gnal comme. par exemple, analyser le signal d'un radar météorologique pour détecter

les tornades en formation et prévenir la population - ces problèmes sont dits de

déconvolut ion).

Les langages de programmation Fortran 90, HPF (High Performance Fortran) et.

plus récemment, Fortran 95 ont pour objectif, entre autres, de permettre L'expression

d'algorit hrnes sous forme intrinsèquement parallèle et de faciliter la pardlélisat ion

des programmes. Cependant, la génération de code parailèle présente des problèmes

qui ne sont pas encore résolus: comment doit-on distribuer le travail et les données

entre les processeurs de façon à minimiser le temps nécessaire à l'exécution d'un

programme?

De plus, le modèle de programmation Fortran 90/HPI semble très approprié à la

mise en oeuvre d'applications de traitement de signal sur ordinateur SIMD (Single

Instruction Multiple Data) mais peu de travaux ont été effectués dans ce sens (pour

une description des architectures SIMD. voir [Hl).

Finalement, les tableaux traités demandent généralement une quantité considéra-

ble de mémoire et accéder rapidement à ces données représente un grand défi parce

que, premièrement, lorsqu'une mémoire a une grande capacité, elle est aussi lente et,

deuxièmement, le calcul d'adresse des éléments des tableaux demande un effort de

calcul substantiel.

Dans cette thèse, on présente des méthodes permettant de résoudre ces trois

problèmes (partitionnement, programmation de SIMD à haut niveau et accès rapide

aux éléments de tableaux). Le chapitre 2 présente une revue de la littérature sur

ces trois sujets alors que le chapitre 3 décrit les besoins des applications qu'on vise

à supporter. Le chapitre 4 traite de la génération d'adresses alors que le chapitre 5
aborde le sujet de la programmation à haut niveau d'ordinateurs SIMD et que le

chapitre 6 décrit La méthode de parailélisation de programmes HPF proposée. Au

chapitre 7, on généralise et formalise le modèle de parallélisme du HPF. Findement,

le chapitre 8 tire les conclusions de cette thèse. En annexe A, on trouve une intro-

duction à MOA (qui est utilisé dans le chapitre 7) alors que l'annexe C contient la

grammaire du langage HPCP (qui est décrit dans le chapitre 5). 11 est à noter que le

chapitre 5 vise spécifiquement les architectures SIMD alors que les autres chapitres

font abstraction de l'architecture de l'ordinateur.

1.1 Modèle de parallélisme de HPF

Étant donné que cette thèse présente des travaux relatifs au langage de progamma-

tion HPF et que ce dernier est présentement relativement peu utilisé. cette section

décrit brièvement le modèle de pardlékme supporté par ce langage.

Ce modèle de parallélisme consiste uniquement en un parallélisme sur les don-

nées. Pour paralléliser un programme HPF, un programmeur doit, dans un premier

temps. indiquer au compilateur comment aligner les tableaux. Deux éléments de

tableaux (différents) qui sont alignés l'un par rapport à l'autre seront traités par le

même processeur (une fois que les tableaux seront distribués). Cette étape permet

de forcer des éléments de tableaux qui interagissent à ètre situés dans la mémoire du

même processeur (sur un ordinateur à mémoire distribuée). ce qui. en général. permet

de réduire les communications. Dans le cas d'un ordinateur à mémoire partagée, cela

permet d'améliorer l'efficacité des antémémoires qu'on y retrouve généralement.

La deuxième étape de description de la parallélisation consiste à indiquer au

compilateur comment effectuer le partit ionnement des tableaux. Le modèle de par-

titionnement consiste a décrire l'ordinateur sous forme d'un tableau de processeurs

et de diviser certaines des dimensions des tableaux de données selon la longueur des

dimensions du tableau de processeurs. Cne dimension d ü n tabIeau de données peut

être divisée en blocs, de façon cyclique (avec des groupes d'un élément ou plus par

processeur) ou elle peut ne pas être partitionnée du tout. Finalement, les dimensions

du tableau de processeurs sont utilisées en ordre lexicographique. Le programmeur

peut décider de ne pas spécifier la forme du tableau de processeurs, auquel cas, le

compilateur est libre de générer le code de façon à profiter au mieux du système

utilisé.

1.1.1 Directives de parallélisation HPF

La description du partitionnement selon le modèle décrit ci-haut se fait à l'aide

de directives, c'est-à-dire des instructions qui n'effectuent aucun traitement sur les

variables impliquées mais qui donnent des indications (suggestions) au compilateur

au sujet du partitionnement (que le compilateur peut décider d'ignorer).

L a description de ces direct ives, dans ce qui suit, est partielle et est fonction des

besoins présents; pour une description complète voir [24]. Les exemples de directives

REAL EXI(lO0, 100, 100, 100)
REAL EX2(100, 100, 100)
REAL EX3(lOO, 100)

! HPF$ TEMPLATE : : TEWO(200, 200, 200, 200)
! HPF$ DISTRIBUTE(BLOCK, CYCLIC , C I C L 1 C (5) , *) : : TEMPO
!HPF$ ALIGN EXi(i0, il, i2, :) WITH TEHPO(i1, iO + 3, 2 * i2, :)

!WF$ PROCESSORS PROCO(10)
!KPF$ DLSTRIBUTE(BLOCK, *) ONT0 PROCO : : EX3
!KPF$ ALIGN EX2(:, *, :) WITH EX3(: , :)

Figure 1-1: Exemples de directives HPF

qui accompagnent les explications qui suivent sont données à la figure L. 1.

Les directives sont vues par un compilateur Fortran 90 comme des corr,nieutaires:

pour ce faire, elles débutent par le caractères T" ou !̂" selon le format utilisé (fixe

ou libre - voir ['l]). Pour indiquer à un compilateur HPF que ce sont des directives.

ce premier caractère est immédiatement suivi par la chaine de caractères *HPFSa.

L a directive permettant d'aligner deux tableaux ou un tableau et un gabarit

(-template- - voir le prochain paragraphe) est "align' . Cet t e directive permet.

à I'aide de variables présentes dans les expressions des deux entités. de spécifier

quelles dimensions sont alignées. avec quel déphasage et avec quel pas relatif. Par

exemple. la direct ive de la figure 1. f , qui aligne la variable EX 1 e t le gabarit TEàI PO,
aligne les dimensions 1, 2. 3 et 4 de EX 1 avec les dimensions 2, 1, 3 et 4 d e TEMPO
respectivement. De plus, le déphasage entre les éléments du gabarit selon sa première

dimension et de la variable selon sa deuxième dimension est de 3 alors qu'il est de 0

pour les aut ces dimensions (Le. les éléments (i, j , C, 1) de EX1 sont sur le même

processeur que les éléments (j, i + 3. k, 1) de TEMPO et ce, pour j, k, et 1 allant de 1

à 100 inclusivement et i allant de 1 à 95 inclusivement). U n raisonnement similaire

s'applique au fait que le pas selon la troisième dimension de TEMPO est deux fois

plus grand que celui de EX1 selon cette même dimension. Finalement, pour indiquer

qu'on ne doit pas tenir compte d'une dimension lors de l'alignement, le caractère "*"
est utilisé (voir l'alignement de EX2 avec EX3).

Un gabarit est un tableau fictif (Le. il ne cause aucune allocation de mémoire)

permettant d'aligner différents tableaux entre eux et de leur donner la même distri-

bution. Ceci est nécessaire lorsque l'on veut distribuer des tableaux alignés entre-

eux avec un déphasage non-nul ou avec des dimensions permutées parce qu'alors les

frontières des tableaux ne sont pas toujours situées au même endroit dans l'espace

d'indexation donc une directive de distribution ne serait pas suffisante pour spécifier

complètement la distribution des tableaux. En gabarit est décrit par la directive

'template' (voir la figure 1.1).

La directive permettant de décrire la distribution d'un tableau ou d'un gabarit

est *distributem. Pour chaque dimension de l'entité à distribuer. il faut utiliser soit

"block'. soit -". soit -cyclic7 (ce dernier avec ou sans un entier entre parenthèses).

L a première de ces possibilités permet d'indiquer qu'on veut que la dimension soit

divisée en groupes de sous-tableaux les plus gros possibles à raison d'un groupe par

processeur. L a deuxième alternative permet de spécifier que la dimension ne doit

pas être distribuée alors que la troisième permet de forcer le nombre d'éléments

par processeur à une valeur égale au paramètre spécifié ou à t si ce dernier est

absent. Pour la distribution cyclique, si le nombre de processeurs selon la dimension

concernée multiplié par le nombre d'éléments par processeur est inférieur au nombre

d'éléments di1 tableau selon cette dimension, on continue la distribution à partir

du premier processeur et ce. jusqu'à ce qu'il ne reste plus d'éléments du tableau à

distribuer. Ainsi, pour TEMPO, le processeur (1.1, 1.1) (i.e. le -premierq processeur)

recevra la section (L : 2 O O / f i , L : 200 : pz, 1 + 5 x p3 x i : 5 + 5 x p3 x i,:) où
O 5 i < 200/(.j x h). Les pi indiquent la forme du réseau de processeur.

La directive 'processors" permet de décrire la forme d'un réseau de processeurs

(tel PROCO dans l'exemple) et ce réseau peut être utilisé ensuite pour distribuer un

tableau ou un gabarit (EX3 dans l'exempte). L e réseau est vue comme un tableau

de processeurs.

1.2 Architecture du SIMD de Pulse
a

Etant donné que certaines explications contenues dans la présente thèse font référence

à certains aspects de l'architecture du SIMD de Pulse, on présente ici un résumé

de cette architecture. L a figure 1.2 contient un diagramme-bloc représentant ladite

architecture. On y remarque que les processeurs élémentaires (PE) communiquent

c canai Xorcl

O canai srici

Figure 1.2: .Architecture du SIMD de Pulse

via des canaux de communication nonrmés Nord e t Sud. C'es canaux fonctionnent

sous forme de registre à décalage c'est-à-dire que. lorsqu'une instruction de commu-

nication est effectuée. les données présentes dans le canal affecté par l'instruction

vont d'un processeur à son voisin de droite. Les instructions de communication sont

appelées nsr et ssr ('North shift right' et "South shift right').

Le répertoire d'instructions de Pulse comprend les inst ruct ions arit hrnét iques

et logiques habituelles ainsi que les instructions de contrôle qu'on retrouve sur les

processeurs SDID. En plus, l'architecture Pulse comprend des inst ruct ions dédiées

au traitement d'images qui utilisent plus de deux opérandes etfou produisent plus

d'un résultat (par exemple. Tompare-and-swap", -rank9. 'min- et 'max" à trois

sources). Egalement à signaler est le fait que les PEs peuvent effectuer des instruc-

tions vectoriels. Les informations contenues dans les instructions vectorielks sont

les mêmes que dans les instructions scalaires auxquelles on ajoute le nombre de fois

que l'instruction est répétées ainsi que l'incrément aux numéros de registre ou aux

adresses utilisés dans I'inst ruction.

Chapitre 2

Revue de la littérature

2.1 Partit ionnement de boucles imbriquées

Par le passé, la plupart des travaux qui visaient à paralléliser le traitement de

tableaux s'attachaient aux algorithmes implantés sous forme de boucles imbriquées

comme c'est le cas lorsqu'on utilise des langages de programmation comme le FOR-
TR.4N 77 ou le langage C (par exemple. voir [d'il). Dans ce cas. on utilise souvent le

concept de vecteur de dépendance [48]. Si l'on partitionne le tableau parallèlement

aux vecteurs de dépendance (si c'est possible), alors i l n'y a aucune communication

causée par le part itionnement . Cependant, ces conditions ne sont presque jamais

rencontrées en pratique. ce qui fait qu'on doit trouver des heuristiques qui permet-

tent de faire un compromis entre les différents vecteurs de dépendance et assembler

les itérations en groupes qui seront assignés aux différents processeurs [17. 31, 461.

Il y a trois problèmes associés à cette approche: le premier est qu'on peut diHi-

cilement qualifier la qualité de la solution parce qu'on utilise des heuristiques et que

la solution optimale n'est pas connue. Le deuxième problème est qu'on n'utilise pas

une approche systématique et, donc, que la solution ne s'intègre pas dans un cadre

conceptuel clair et bien défini. Ceci peut avoir plusieurs résultats négatifs: par exem-

ple, certains chercheurs reproduisent essentiellement les mêmes travaux que d'autres

mais utilisent un vocabulaire différent: comme les concepts véhiculés dans [44] par

rapport au concept de vecteur de dépendance [46]. Le troisième probième est que

certains de ces travaux ne tiennent pas compte de la répartition équitable de la

charge de travail entre les processeurs. Or, ceci est un problème important puisque,

si un seul processeur est occupé pendant un temps (même petit), le gain de vitesse

peut se dégrader considérablement. Ce phénomène est mis en lumière par la loi

dTAmdahl [23. p. .i'i-i]. Par exemple. si un seul processeur. dans un ordinateur qui en

contient 100. a une tâche qui est de 10% plus longue que celle des autres processeurs.
1 alors le gain de vitesse est d'environ o.mi s 991. Donc. dans cet exemple. près

de 10% du gain de vitesse potentiel e s t perdue à cause d'une petite différence entre

les charges de travail. 11 apparaît donc plus important d'avoir une bonne répartition

du travail que d'avoir un algorithme de partit ionnement optimal au niveau des corn-

munications. Il est à noter. cependant. que le modèle HPF ne permet pas de séparer

les tableaux de façon à bien répartir le travail car, dans le cas général, les frontières

des tableaux nécessitent un moins grand effort de calcul que le 'centre".

2.2 Partitionnement de code de haut niveau

La deuxième approche de partitionnement consiste à utiliser un langage de program-

mation qui contient des opérateurs sur les tableaux comme. par exemple, I'AP L p61.
Le langage J ['I'i], NIAL ['BI ou Fortran 90 [-1. Bien que certains chercheurs aient

exploré cet te avenue par le passé (par exemple, (141). c'est la venue du Fortran 90 et

du HPF qui a suscité un intérêt marqué parmi les chercheurs vis-à-vis cette approche.

Les chercheurs s'entendent pour dire que le partit ionnement automatique de-

mande beaucoup d'effort de calcul ce qui fait que plusieurs utilisent des heuris-

tiques pour diminuer cet effort. Les approches préconisées peuvent être classées

en deux catégories: celles qui sont basées sur l'évaluation de partit ionnements-

candidats et celles qui "calculent" la meilleure solution possible (en éliminant les con-

traintes les moins coYteuses - voir chapitre 6). Dans [-91, une méthode du premier

groupe est proposée. Maigré que cette méthode ne considère pas t'alignement intra-

dimensionnel. les heuristiques utilisées ont une complexité temporelle trop élevée

pour être implantées dans un compilateur. Chatterjee [13, 11, 191 propose des al-

gorithmes pour calculer l'alignement et la distribution des tableaux. Cependant,

bien que la méthode utilisée permette une redistribution dynamique. les alignements

sont choisis avant les distributions donc, même si une dimension n'est, à la fin, pas

distribuée, elle influencera, maigré tout, l'alignement des tableaux puisque toutes les

dimensions sont utilisées pour calculer le coût des différents alignements considérés.

Bau et al. [ï] proposent une approche algébrique dont la complexité est faible: cepen-

dant, ils n'abordent pas le problème de la sélection des contraintes à satisfaire (ou

non) et ils ne résolvent que le problème de l'alignement sans traiter la distribution

des tableaux. Finalement. Knobe [32, 331 utilise un graphe pour décrire les con-

traintes. Les contraintes qui seront satisfaites sont sdectionnées en construisant un

arbre recouvrant qui est ensuite augmenté des autres contraintes qui ne causent pas

de conflits. Cette méthode est très performante mais elle est limitée aux systèmes

SIMD et eue utilise (comme [-91) un modèle plus général que celui du HPF. 11 est

à noter que le fait que cette méthode soit limitée aux systèmes SIMD est important

puisque la synchronisation rigide des processeurs rend l'efficacité du partit ionnement

plus sensible à la répartition de la tâche car un déséquilibre dans les sous-ensembles

de chaque tâches ralentit le traitement alors que, dans le cas d'un ordinateur MIMD.
le ralentissement n'est fonction que du déséquilibre entre l'ensemble des tâches des

processeurs. Or, comme il a été souligné précédemment, le modèle HPF se prête mal

à l'équilibrage fin des tâches, donc, viser à supporter le modèle HPF et les archi-

tectures SIMD sont des objectifs relativement conflictuels et c'est pourquoi il a été

décidé, dans cette thèse, de mettre l'emphase sur le modèle HPF uniquement.

Donc, aucune méthode, à la fois:

O ne supporte le modèle de partitionnement du HPF,

0 a une faible complexité temporelle,

permet tant l'alignement que la distribution des tableaux et

0 vise les calculs structurés (voir chapitre %).

On vise, dans cette thèse, à proposer une solution qui rencontre ces besoins.

2.3 Génerat ion d'adresse pour les tableaux

La génération d'adresses pour le traitement de tableaux n'a pas attiré l'attention

de beaucoup de chercheurs. En fait, aucune référence sur ce sujet n'a été trouvée.

Par contre, il existe un circuit intégré, le TMC2301 [45], qui effectue le calcul de

coordonées de matrices. Étant donné qu'on ne dispose d'aucune information sur le

fonctionnement interne de ce circuit, on ne peut en discuter.

2.4 Langages de haut niveau pour la program-

mation SIMD

Plusieurs langages de haut niveau ont été proposés pour la programmation d'ordi-

nateurs SIMD et MIMD. Fortran 90 r2], HPF (High Performance Fortran) 1241 et

APL [26] sont des exemples des langages à usage générai qui, de par leur généralité,

ne sont pas appropriés au traitement structuré de tableau parce que cette généralité

nuit à la génération de code compact et efficace.

Un des objectifs de la présente thèse est de permettre la distribution automatique

des données et du traitement entre les processeurs- Donc, des structures de contrôle

définissant des blocs séquentiels et d'autres parallèles (comme dans Occam [38], Uc [61

et BLAZE (341) doivent être évitées. Egalement. il est préférable d'inclure dans le

langage les expressions sur des tableaux pour permettre un niveau d'abstraction

plus élevé ainsi que pour faciliter la distribution automatique des tableaux donc, les

boucles imbriquées (comme dans Apply 1211 et AL [50]) sont à éviter. Évidemment,

le 'Tord' (comme dans BLAZE) et le concept d'ensemble d'index (comme dans Uc)

sont intéressants mais ne sont pas suffisants dans le présent contexte. Donc, aucun

langage ne possède toutes les caractéristiques requises pour décrire le traitement

structuré de tableaux à un niveau d'abstraction élevé et qui permettrait la génération

de code parallèle efficace (en mémoire et en temps). Un nouveau langage est proposé

dans la présente thèse dans le but de combler ce vide.

Chapitre 3

Analyse des besoins

Dans ce chapitre. on tente de donner un aperçu des besoins typiques des applications

qui traitent des tableaux e t qui requièrent une grande puissance de calcul. Les besoins

des applications different beaucoup. évidemment. Par contre. on peut diviser les

algorithmes de traitement de tableaux en deux grandes catégories: ceux qui effectuent

un traitement régulier et ceux dont la structure est irrégulière.

Les méthodes numériques qui discrétisent des équations mathématiques et en font

des systèmes d'équations algébriques linéaires sont très répandues et comprennent

(entre autres): les méthodes aux différences finies, la méthode des éléments finis.

les méthodes de volumes finis ainsi que les méthodes multi-grille. Ces méthodes

ont en commun une importante caractéristique: les systèmes d'équations générés

sont creux (au sens où chaque équation dépend d'une petite fraction seulement des

variables). Ceci est dîi au fait que les relations entre les variables sont de nature très

localisée (seuls des éléments voisins dans des tableaux de données interagissent). Cn

bon exemple de cette situation est montré dans [25] aux pages 41 7 et suivantes. 11

s'agit de la solution d'une équation aux dérivées partielles à l'aide d'une méthode

de différences finies. La matrice qui décrit ce système est creuse à cause de la façon

dont la solution est exprimée; plus précisément, les inconnues sont assemblées en un

vecteur plutôt qu'en une matrice (qui représente la forme du problème).

Il existe d'autres situations pour lesquelies la représentation matricielle produit

une matrice creuse; par exemple, un problème dont la structure est un réseau (comme

un réseau de distribution d'énergie) dont la connectivité est faible.

Pour ces dertlt types de situations (structures régulières ou non mais représen-

tées sous forme matricielle), les chercheurs s'entendent pour dire que les méthodes

itératives sont plus efficaces (du point de vue de l'effort de calcul nécessaire pour

obtenir une solution à la précision désirée) que les méthodes directes [36]. Donc.

sachant que la représentation matricielle nést utile que pour les méthodes directes.

il est plus important de supporter les méthodes itératives que les méthodes directes

(i-e. le calcul sur des tableaux plutôt que sur des matrices). Cette assertion est aussi

supportée par le fait que beaucoup de méthodes ont été proposées pour solutionner

des systèmes dont la structure est particulière (par esemple. les systèmes tridiage
naux et pentadiagonaus). Ces systèmes ont la même structure que ceux créés par

des méthodes itératives. mais ils sont parfois solutionnés en n'ayant pas recours à

une méthode itérative (exemple: méthode des éléments finis sur une grille régulière).

Donct supporter le traitement de tabIeaux fait à la manière des méthodes itéra-

tives est important car ces dernières sont plus faciles a supporter (car le traitement

est régulier - voir section Xl), elles sont de plus en plus répandues et certaines

méthodes directes ont une structure de calcul similaire.

3.1 Méthodes itératives

Les méthodes itératives (ainsi que d'autres algorithmes qui ont une structure de

calculs similaire) sont très répandues (cg. méthodes aux différences finies. méthodes

multi-griIles. méthodes de volumes finis. algorithmes de traitement de signai). L'équa-

tion A x T + B = O est la représentation sous forme matricielle d'un système à

résoudre (où A est la matrice, 7' est le vecteur des inconnues et B est un vecteur de

constantes). Solutionner ce système de façon itérative consiste à assigner une d e u r

initiale quelconque à T et de calculer la valeur du membre de gauche de l'équation.

Le résultat ne sera pas zéro comme dans l'équation mais un certain AT qui sera

ajouté à T pour obtenir une deuxième valeur à T qui soit plus près de la véritable

solution. Autrement dit, T,+* = T. + AT pour chaque itération et où AT est calculé

à l'aide du membre de gauche de l'équation. Il existe différentes \-&antes à cette

méthode de base pour accélérer la convergece et la précision, mais elles ne seront

pas décrites ici puisque cela dépasse Le cadre des présents travaux. Il est important

de noter que, comme ces systèmes d'équations représentent des calculs structurés sur

des éléments de tableau qui sont voisins. A x T est. en fait. une convolutio~i.

3.2 Méthodes directes

Les méthodes directes les plus connues sont la décomposition LU et L'élimination

gaussienne. Ces méthodes ont en commun un problème qui est celui dit de rernplis-

sage (%&in7). Ce problème vient du fait que ces méthodes transforment la mat nce

qui décrit la solution en une autre qui a un taux de remplissage plus élevé. Donc.

solutionner le système une fois la matrice transformée impose plus de calculs que

requis par la structure du problème.

Ces méthodes sont souvent utilisées lorsque l'on veut décrire de façon simple un

problème non-st ruct uré, par exemple, des graphes ou réseaux. Ces graphes et réseaux

peuvent décrire beaucoup de types de systèmes différents comme: des systèmes con-

t inus mais discrét isés de manière non-st ructurée, des systèmes discrets comme des

réseaux Logiques ou de distribution de puissance ou des systèmes composés de *par-

ticules" comme des molécules et/ou atomes ou des corps planétaires.

Dans ce genre de situation, l'approche la plus judicieuse est un algorithme oii

les données ne sont pas strticturées (par exemple, en graphe) et où la méthode de

sohtion est itérative.

3.3 Contexte matériel

11 a été démontré queo parmi la classe de réseau 'k-ary n-cube7, le choix optimal

consiste à utiliser un réseau de deux (rarement trois) dimensions lorsqu'on désire

minimiser la latence des communications, maximiser la bande passante et/ou mini-

miser l'impact des points chauds sur la performance globale [16]. Étant donné que

la plupart des ordinateurs fabriqués à ce jour utilisent ce genre de réseau et que

cette structure correspond très bien au matérial disponible (en terme de forme), il

est raisonnable de penser que de ne supporter, au niveau logiciel, que des réseaux en

forme de tableaux est un choix judicieux, puisqu'il inclut ces Yk-ary n-cube".

D'autre part, les problèmes qui demandent un grand effort de calcul traitent des

données sous forme de tableaux d'au moins deux dimensions (généralement trois).

Donc, la dimensionalité des tableaux de données est normalement au moins aussi

grande que celle du réseau de processeurs. Ceci implique qu'il est raisonnable de ne

pas permettre à une dimension de tableau de données d'être part itiomée plus d'une

fois. Donc, à cet égard. le modèle HPF ne limite la performance que dans des cas

particuliers.

3.4 Discussion

Étant donné que la convolution est l'opération la plus utile pour les méthodes itérati-

ves (avec les opérations arithmétiques, évidemment). il est important de s'y attarder.

L a caractéristique principale de cette opération est l'extrême régularité de la struc-

ture des calculs et du patron d'accès à la mémoire. Ce point est intéressant puisqu'il

permet d'effectuer beaucoup d'optimisations à la compilation (par exemple, utiliser

les unités fonctionnelles et leur pipeline au maximum, transférer de façon optimale

les données entre la mémoire e t les antémémoires). Également, et c'est là un des

points qui nous intéressent, trouver le partitionnement idéal est beaucoup plus facile

que pour des structures de calculs moins régulières. En effet, la forme du noyau de

convolut ion donne directement la forme des sous-tableaux (ou sections) qui devront

être transférés d'un processeur à un autre si un tableau est partitionné.

11 est à noter que la convolution est l'opération principale de plusieurs algont hmes

de traitement de signal. En effet, cette opération constitue la structure de base des

filtres (par exemple. FIR, IIR, filtres polyphasés) e t que ces filtres implantent les

fonctions de base du traitement de signal (par exemple, lissage, détection d'arêtes,

réduction du bruit). Ceci rend la classe des applications qui effectuent un traitement

régulier sur des tableaux encore plus importante.

La seule autre opération qui soit souvent utilisée e t qui puisse causer des cornmu-

nicat ions, lorsqu'un programme est parallélisé, est la réduction. Celle-ci est surtout

utilisée dans des problèmes de déconvoiution. Cette opération est également re-

lativement simple à gérer (lorsqu'il s'agit de trouver le partitionnement optimal)

puisque, si une seule dimension est réduite, une quantité considérable de données

devrait être transférée si on partitionnait cette dimension. D e plus, si un tableau

est réduit au complet, on ne peut pas avoir une quantité "raisonnablen de commu-

nications, si on utilise un des langages impératifs les plus utilisés, quelles que soient

les dimensions partitionnées. En effet, les langages les plus courants doivent définir

dans quel ordre sont e f k t u é e s les opérations de calcul puisqu'un des besoins les plus

importants des usagers des applications est que les résultats doivent être les mêmes

quel que soit l'ordinateur qui a exécuté l'application. II s'en suit qu'on ne peut pas,

normalement, effectuer la réduction des partit ions pour, ensuite. faire ta réduction

de ces résultats. Donc, la quantité de communication est strictement fonction de la

forme du réseau de processeurs et des dimensions partitionnées et réduites.

Finalement, il est à noter que dc supporter efficacement te traitement de matrices

creuses n'est pas désirable puisque la répartition des tâches entre les processeurs est

très difficile (et qu'elle doit être modifiée pendant l'exécution) et qu'il est plus difficile

d'utiliser efficacement les ressources d'un ordinateur (par exemple. les antémémoires

et les unités fonctionnelles) à cause de l'absence de régularité dans le traitement.

3.5 Mise en oeuvre d'un objet-tableau C++

Dans le but de déterminer quels opérateurs sur les tableaux sont les plus utiles. un

objcct-tableau a été implant6 dans lc langage Cc+. Lcs opbratcurs implantés a priori

sont les opérateurs arithmétiques, les opérateurs les plus usuels de h1O.A [-LI] (voir

l'annexe A) ainsi qu'un opérateur de convolution.

Également. deux applications ont été traduites en C++ en utilisant cet objet.

3.5.1 Opérateurs implantés

Lcs opbratcurs implant& sont:

0 les opérateurs arithmétiques habituels (+' -, r, /) entre deux tableaux et entre

un tableau ct un scalctirc.

les assiguations C++ suivantes =, + =, - =, * =- / =.

les comparaisons >, <, ==, ! =, <=, >=,

dcs opérateurs dc lecture ct d'fcriturc dc tablcaux: <<? >>:

des opérateurs logiques: set-@, se tAt , setrq, setne, set-le et setge,

des fonctions mathématiques usuelles: rnax, pow, sqrt et abs,

a des opérateurs 410A: reshape, delta. rho, tau. iota. red-add. r e d m u l t .

take; ainsi que deux opérateurs effectuant le travail combiné de deux opéra-

teurs o r n e g a m u l t . omegaadd.

un opérateur d'indexation [] et

a deux opérateurs de convolut ion.

3.5.2 Applications implantées

Les applications implantées consistent en un problème aux diffkrences finies et uri

problème de déconvolution. Le premier consiste à simuler un écoulement de fluide

à ['aide du schème de MacCormack [?O]. dors que le deuxième consiste à extraire

un estimé du champ de vent à partir de données de précipitation provenant d'un

radar Doppler [RS]. Dans ce deuxième cas. le schéma semi-lagrangien a été remplacé

par un schéma de différences finies parce qu'il régularise la structure des calculs et

demande un effort de calcul moindre.

3.6 Conclusions

Les opérateurs qui se sont révélés ut iles sont:

O convolut ion.

O réduction additive,

a o r n e g a m u l t (Le. le "spread" du Fortran 90 ou .Q en MOA),

a take, rho, de l t a ,

O sqrt, pow.

L'utilité de la plupart de ces opérateurs n'est pas étonnante. Cependant. il est à

noter que certains opérateurs ne se sont avérés utiles que parce que le cadre de cette

implantation est plus cont caignant que les lugages de programmation impératifs

usuels; en particulier, setAt, omegasmlt et take ne seraient pas utiles en For-

t ran 90, par exemple.

Aussi. la convolution peut être exprimée a s s a facilement à l'aide de sections de

tableaux en Fortran 90 (bien que l'expression peut devenir très longue dans certains

cas); de plus, un opérateur de convolution souffre d'un certain manque de souplesse.

En effet. le traitement des frontières des tableaux requiert un traitement spécifique

qui peut difficilement être exprimé à I'aide d'un opérateur. II semble donc que la

solution idéale pour Iéxpression de la convolution reste à trouver.

En conclusion, l'objectif de ce chapitre est d'identifier les opérateurs les plus

importants pour les applications typiques. On constate que ces opérateurs sont les

opérateurs de colculs (a d hmetiques, sqrt. pow etc.), la convolut ion, la réduction

et le 'spread" du Fortran 90.

Chapitre 4

Génération d'adresses

4.1 Introduction

Une des difficultés majeures rencontrées lorsqu'on vise à maximiser la performance

d'un processeur consiste à transférer les données entre la mémoire principale et le

processeur de façon à ne pas ralentir ce dernier dans l'exécution de ses tâches. Ce
ralentissement peut survenir dans deux situations: 1. les données dont le processeur

a besoin ne sont pas encore disponibles et 2. les données dont le processeur n'a plus

besoin engorgent la mémoire locale (comme. par exemple, dans une anté-mémoire

ou dans des registres) et empêchent le chargement de données dont le processeur

a besoin. De plus, les technologies courantes ne permettent pas de fabriquer des

mémoires principales qui soient aussi rapides que les processeurs. tout en ayant une

capacité de stockage sufisante pour contenir les programmes et données associées

des applications usuelles. Ceci a pour conséquence l'utilisation d'une hiérarchie de

mémoires dans la plupart des ordinateurs de haute-performance (par exemple. anté-

mémoires, mémoires statiques sur la puce, registres vectoriels) pour diminuer l'impact

de cette différence de vitesse.

Un défi majeur dans la conception d'un ordinateur consiste à compenser la latence

élevée de la mémoire principale qui résulte des caractéristiques de la technologie

utilisée. Par contre, la bande passante de cette mémoire peut être augmentée de

façon relativement simple en améliorant la structure du sous-système-mémoire (par

exemple, en utilisant des bus plus Larges, des mémoires entrelacées ou un mode

de transfert en rafale). En d'autres mots, bien que la bande passante puisse être

améliorée assez facilement. diminuer la latence nécessite une technologie plus rapide

et dispendieuse. sauf si on peut effectuer des chargements et déchargements anticipés

(ce qui est la seule autre alternative). Evidemrnent, ces deux soliitions peuvent Stre

utilisées simultanément.

Le traitement de tableaux permet d'effectuer ces transferts anticipés puisque Les

pat tons d'adresses qu'ils entrainent sont réguliers donc prévis; bles. Daris ce chapit ce.

on discute d'un algorithme permettant de transférer efficacement un tableau entre

un processeur et sa mémoire. Deux implantations de cet algorithme (une logicielle

et une matérielle) sont décrites et on démontre leur efficacité ainsi que la complexité

de loimplantat ion matérielle.

L'algorithme proposé est intimement Lié à l'adressage symétrique de tableaux

tel que proposé par Becker [SI. L-adressage symétrique consiste à décrire l'adresse

d'un élément d'un tableau comme une somme pondérée des indices de l'élément (à

laquelle on ajoute une adresse de base). Certains des gains apportés par l'adressage

symétrique sont:

a éviter de copier de grandes quantités de données lorsqu'un tableau est trans-

formé,

a permettre de fusionner plusieurs transformations en une seule par la compo-

sit ion de celles-ci (c'est-à-dire que ces transformations peuvent être combinées

en une seule au moment de la compilation et que le temps d'exécution peut

être réduit au temps d'une seule t ransiormat ion),

a permettre de traiter des tableaux non-contigus en mémoire.

On peut éviter de copier les données parce qu'une transformation qui ne modifie

que l'adressage d'un tableau (par exemple, la transposition, ou extraire une section)

est effectuée en modifiant simplement les facteurs de pondération-

L'algorithme proposé utilise une transformation linéaire d'un ensemble de vec-

teurs d'indices en une séquence d'adresses e t calcule cette séquence de façon très

efficace. On prouve cette efficacité en montrant que le temps nécessaire pour cal-

culer les adresses pour un cas complexe (c'est-à-dire pour un tableau ayant de nom-

breuses dimensions) est presque aussi rapide que pour le cas simple (c'est-à-dire un

vecteur). Un gain majeur apporté par cet dgorithme est qu'il ne nécessite aucune

rnultiplicat ion au moment de l'exécution contrairement a l'algorit hme classique per-

met tant de calculer une adresse à partir d'un vecteur d'indices [3]. Évidemment. un

sous-syst ème-mémoire d e haute performance est nécessaire pour utiliser au mieux les

capacités d'un tel algorithme mais ce sujet dépasse le cadre d e cette thèse.

La section 4.2 décrit les types de transformations qui doivent être supportés

pour que lœe!gsrit hine soit suffisamment flexible et performant pour être considéré

utile et général pour le traitement de tableaux. La section 4.n décrit I'algorithme

proposé tandis que la section 4.4 contient une description de l'implantation logi-

cielie et du niveau de performance qu'elle permet. L a section 4.5 fait de même

pour l'implantation matérielle. Dans la section 4.6. différentes transformations sont

décrites a lon que la section 4.7 définit les équations nécessaires au calcul des pas

utilisés par le générateur d'adresses (c'est-à-dire l'implantation matérielle). Finale-

ment. la section 4.8 tire des conclusions sur ce sujet.

Dans ce chapitre. on utilise une notation basée sur la syntaxe du Fortran 90 ['2].

Les dimensions sont numérotées de 1 pour la dimension de poids fort au nombre de

dimensions d u tableau pour la dimension de poids faible.

4.2 Patrons d'adresses

Lorsque des tableaux sont transformés dans une application. ils le sont par un

opérateur ou, dans le cas du Fortran 90, ils peuvent aussi l ë t r e par une fonction

intrinsèque. Le Fortran 90 est utilisé en guise de référence parce que les différents

dialectes de Fortran sont utilisés pour programmer la plupart des applications scien-

tifiques qui nécessitent beaucoup de temps de calcul et que ces applications traitent

généralement des tableaux. Les fonctions intrinsèques du Fort tan 90 qui t ransfor-

ment un tableau sont: CSHIFT, EOSHIFT, TRANSPOSE, MATMC'L, SPREAD et

RESHAPE.

II existe une autre façon d e transformer un tableau: utiliser seulement une partie

du tableau soit une section (selon le vocabulaire du Fortran 90). En Fortran 90, on

décrit une section par une borne inférieure, une borne supérieure et un pas selon

chacune des dimensions.

Toutes ces opérations (sauf CSHIFT) impliquent une transformation linéaire d'un

ensemble de vecteurs d'indices vers un ensemble d'adresses ce qui fait que, pour

accéder aux tableaux sans les copier en mémoire (donc. en les accédant sur

place) on n'a besoin que de:

L . l'adresse du premier élément (après la transformation).

-2. la forme du tableau transformé et

9. la distance en mémoire entre deux éléments contigus selon chacune des dimen-

sions du tableau-

Autrement dit. bien que les différentes opérations impliquent différents patrons

d'accès en mémoire (par exemple. TR.4.ISPOSE peut introduire un pas négatif),

les données énumérées ci-dessus sont les seules requises pour effectuer tes calculs

d'adresses. Il est à noter que CSHIFT nécessite l'accès à deux sous-tableaux qui.

chacun. impliquent une transformation linéaire. Ces deux transformations. si elles

étaient combinées ne constitueraient pas une transformation linéaire.

4.3 Algorithme

L'agorithme de la figure 4.1 implante les calculs désirés et il est proche de I'algorithme

désiré. La différence est qu'il ne supporte pas un nombre variable de dimensions.

Cet algorithme montre que:

rn le vecteur 'cura est utilisé pour mémoriser les indices de l'élément courant du

tableau,

le tableau entier est traversé (c'est-à-dire du vecteur d'indices O au vecteur
-.

d'indices shape - 2).

L'algorithme proposé est énoncé à la figure 4.2. L e -whileV extérieur (lignes 7

à 23) est exécuté jusqdà ce que le traitement du tableau soit complété. Le premier

"while" intérieur (lignes 10 à 14 transfère une rangée du tableau et le deuxième

(lignes 20 à '17) gère les indices de l'élément courant (sauf le dernier qui est géré par

le premier "while" intérieur). La condition de fin de traitement est j < 0, puisque

cela veut dire qu'un sous-tableau de dimensionalite >gale à celle du tableau a été

traité (donc, le tableau lui-même). Le vecteur *shapeV contient la forme du tableau

Adresses(start . shape[ndimj. incr[ndim])
integer : i. res
integer : cur[ndim]

res = start
cur[O] = O
Do while cur[O] < shape[O]

cur[l] = O
Do whilc ciir(1l < shape[l]

cm[-] = O
Do while cur['l] < shape['l]

Do while cur[ndim - 21 < shape[ndim - 21
cur[ndim - 11 = O
Do while cur[ndim - 11 < shapeindim - 11

Move memory [res]
res = res + incr[ndim - 11
ciir[ndim - 11 = cur[ndini - I] + 1

end do
res = res + incr[ndim - 21
cur[ndim - 21 = cur[ndim - 21 + 1

end do

res = res + incr[l]
cur[L] = cur[l] + L

end do
res = res + incr[O]
cur[O] = cur[O] + 1

end do

Figure 4.1: Algorithme de calcul d'adresse simplifié

transformé tandis que "cur" est le vecteur d'indices de lëlément de tableau qui est

en cours de traitement, -1ncr" contient les incréments d'adresse dont on a besoin

pour aller du dernier élément d'un sous-tableau au premier élément du sous-tableau

suivant (dont la dimensiondité correspond à la position de l'incrément dans son

vecteur). Il est à noter que ces incréments sont exprimés en terme de la granularité

de la mémoire plutôt que selon le nombre d'éléments de tableaux. Finalement. "resv

est le résultat des calciils d'adresses (donc. c'est l'adresse de l'élément courant): sa

valeur initiale est celle de l'adresse du premier élément à transférer.

Cet aigorit hmc est équinlent à l'algorithme de la figure 1. I sauf qu'il permet de

gérer un nombre variable de dimensions.

Le deuxième algorithme gère les boucles imbriquées grâce à une boucle qui gère

les indices de boucles et les incréments d'adresses. II a aussi les caractéristiques

suivantes:

0 i l peut effectuer n'importe quelle transformation linéaire entre un ensemble de

vecteurs d'indices et une séquence d'adresses,

0 il n'utilise que des additions, des comparaisons et des boucles (et aucune mul-

t iplication) et

0 il peut être facilement divisé en plusieurs portions qui peuvent être exécutées

en parallèle (comme démontré ci-après).

La capacité de cet algorithme d'implanter toutes les transformations linéaires

vient du fait que. lorsqu'on se déplace selon une dimension, un pas est ajouté à

l'adresse courante. Cette addition et les autres effectuées pour les dimensions de

poids plus faible effectuent le travail du facteur de pondération de cette dimension

dans l'équation de la t ransfonnation linéaire.

Le fait que I'algorit hme n'utilise aucune multiplication est un facteur important

en ce qui a trait à la vitesse d'exécution parce que la multiplication requiert typique-

ment plus d'un étage de pipeline contrairement aux opérations logiques. de contrôle

et arithmétiques simples. Par exemple, le RlOOOO a besoin de 6 étages de pipeline

pour effectuer une multiplication de nombres entiers de 52 bits [40].

L'absence de multiplication dans l'algorithme implique également qu'une implan-

tation matérielle doit avoir une complexité faible puisqu'un multiplieur rapide est un

1 Adresses(start . ndim. shape[ndim], incr[ndini])
3 - integer : i. jr res
3 integer : ciir[ndini]

res = start
cur = O
j = ndim - 1
Do while j >= O

j = ndim - 1
i = O
Do whilc i < shapeb]

accès à mémoire[res]
res = res + incrbl
i = i + l
end do

If j >= O
j = j - 1
res = res + incr[j]

end if
curb] = curb] + i
Do while j >= O and curb] = shapeb]

curb] = O
j = j - 1
I f j > = O

res = res + incr[j]
curb] = curb] + i
end i f

end do
end do

Figure -1 2: Aigori t hme de calcul d'adresses

module complexe. tant par le nombre de transistors que par son architecture (i l swagit

d'une structure semi-régulière) .

4.4 Implantation logicielle

4.4.1 Code et modèle temporel

Dans le but de caractériser l'efficacité de l'algorithme. il a été traduit dans le lan-

gage C. La partie du programme qui effectue les calculs d'adresses proprement dits

est montré à la figure 4.3. Dans ce code. la variable "reg" signifie un registre alors

que 'res" est l'adresse où est effectué l'accès en mémoire.

while(j >= O)
{f or(i = 0; i < shape [ndim-11 ; i++)

{reg = *res ;
res += incr[ndim-11;
1

j = ndim - 2;
ras += incrCj];
vhile(j >= O && ++(cur[j]) == shapeCj])

CcurCj3 = O;
J--;
i f (j >= O)

res += incrCj1;
3

>

Figure 4.3: Boucles principales de I'algorithme en tangage C

II est à noter que ce fragment de programme nécessite un tableau à deux dimen-

sions ou plus, même si le cas général traité à la section 4.3 supporte tous Les cas y

compris les tableaux à une seule dimension (qui ne requiert pas un algorithme aussi

complexe que celui proposé ici).

L'intérêt principal de ce code est que son temps d'exécution peut être modélisé

facilement. Ce modèle ne requiert que quatre paramètres:

t,: temps nécessaire à l'exécution du "while' extérieur moins le temps d'exécution

du -while7 intérieur et du -fory.

t ,: temps d'exécution d'une itération du %hile- intérieur incluant l'exécution de la

condition du - i f mais pas celui de l'instruction du corps de ce -if".

t i f : temps d'exécution de l'instruction dii corps du &iT et

t l : temps d'exécution d'une itération du -forœ.

Le modèle du temps d'exécution complet est le suivant:

O i l

Tt: temps total.

t , : temps du -while7 extérieur,

tl: temps d u "foru,

t,: temps du "whi!e9 intérieur et

ti: temps du ;if".

où

ni: est le nombre d'itérations du "while" extérieur,

ne: est le nombre dëléments du tableau transformé et

1,: eçt le nombre d'éléments dans une rangée du tableau.

s : est la forme du tableau.

Dans l'équation de n,. le produit (n) calcule le nombre d'éléments d'un sous-

tableau de i dimensions. donc ne divisé par ce nombre d7(.lénents donne le nombre de

sous- t ableaux de i dimensions contenus dans le tableau. En conséquence. additionner

le nombre de sous-tableaux pour toutes les dimensions sauf celle de poids faible donne

Ie nombre de fois qu'une itération du "while" intérieur a été effectuée (i.e. n,).

4.4.2 Évaluation du temps d'exécution

Dans le but d'obtenir un n t imé des valeurs des paramètres du modèle temporel de

l'algorithme, une version du code a été écrite dans un pseudo-langage d'assemblée.

Un pseudo-langage a été choisi plutôt qu'un langage réel dans le but d'obtenir un

estimé de performance préliminaire et pour déterminer si un modèle réel et des sirnu-

lat ions seraient nécessaires (dû, entre autres, à la latence variable des anté- mémoires) -
L e programme en question est donné à l'annexe B. Ce programme suppose qu'il y a

suffisamment de registres pour contenir les variables suivantes:

1. les scalaires i. j et res,

'2. la constante ndim,

3. les vecteurs shape. cur et incr et

4. un scalaire temporaire.

Le nombre de registres nécessaires s'élève à 16 si le tableau transféré a 7 dimen-

sions (ce qui est le maximum permis par le Fortran 90). Etant donné que la plupart

des processeurs de haute-performance contiennent 3% registres entiers, il est réaliste

de supposer que ces variables y sont maintenues.

Pour compléter le calcul de paramètres du modèle temporel, il ne manque qu'un

estimé du nombre de cycles nécessaires à l'exécution des différentes instructions. Les

règles suivantes ont été appliquées:

0 une instruction registreregistre a une latence d'un cycle d'horloge,

a une instruction mémoire-registre a une latence de deux cycles d'horloge.

une instruction de saut a une latence d'un cycle.

Ces valeurs ont été choisies parce que Iëtape d'exécution du pipeline d'un pro-

cesseur requiert généralement un cycle d'horloge pour être complétée pour une in-

st ruct ion regist re-regist re (sauf pour la multiplication. la division et les opérations en

r-irgule flottante qui n'apparaissent pas dans le code) et qu'une opération mémoire-

registre est plus lente. en général, mais est quand même rapide à cause de la présence

d'anté-mémoires sur la plupart des processeurs. Il est à noter que la seconde hy-

pot hèse nécessi te que les adresses successives soient souvent cont igues en mémoire

pour obtenir un taux de succès d'accès aux anté-mémoires suffisamment élevé. Etant

donne que la destination des instmctions de saut est prédite avec un taux de succès

élevé par la plupart des processeurs de haute-performance. on a supposé que leur la-

tence est d'un seul cycle d'horloge (c'est-à-dire que la pénalité de mauvaise prédiction

est. en moyenne. négligeable). De toute évidence. on suppose que le processeur a .
une structure en pipeline. Egalement, on suppose, dans un premier temps. que le

processeur nés t pas super-scalaire: cette hypothèse sera modifiée plus tard.

;\ partir de ces hypothèses et d u code de l'annexe B. les valeurs des paramètres

suivantes ont été calculées:
IV 4 cycles

LI t , r cycles

tif 1 cycles

t 1 5cycles

.i l'analyse de ces valeurs. il est évident que I'essentiel du temps d'exécution sera

utilisé par la boucle "for*. puisqu'elle nécessite 5 cycles pour traiter chaque élément

de tableau, alors que le temps de traitement d'une rangée est du même ordre d e

grandeur.

Cette constatation est corroborée par le calcul des temps d'accès (grâce au modèle

décrit à la section 4.1.1) pour un tableau de forme n par 8 par m où n x m = 1024

et n prend les valeurs: 1, 2, 4, 8, 16, 32, 64, 125, '256, 512 et 10.24. La longueur de

la deuxième dimension a été fixée à Y dans le but de garder le temps de gestion des

dimensions supérieures à une valeur relativement constante. La figure 4.4 montre

que, pour des longueurs de rangée raisonables, la perte de temps pour la gestion

des dimensions supérieures est faible (en comparaison du cas où les rangées ont une

O
Cycles d'horloge 8

par dénient
O

6 ?
1 2 4 8 16 32 64 128 256 .512 L024

longueur des rangées (n)

Figure 4.4: Temps moyen de traitement par élément pour un tableau de n x 8 x m
où n x m = 1024

longueur de 1024, la perte est de - 10.5% pour des rangées de longueur 16 et de - 5% lorsque cette longueur est de 32).

Dans le but de confirmer cette conclusion, des temps ont été calculés pour un

cas où le nombre de dimensions est varié. Un tableau de 4096 par 4096 par n a été

changé en un tableau de 5 dimensions de longueur 64 dans chaque dimension. puis

en un tableau de 9 dimensions de longueur 13 sauf la dimension de poids faible qui

est restée constante. De plus, n a été fixé à 8, 16 et 32. Pour toutes ces situations,

la perte de vitesse totale est restée faible (au maximum, - 32% pour des rangées

de 8, - 21% pour des rangées de 16 et .- 16% pour des rangées de 32 éléments)

tel que démontré par la figure 4.5. Cette perte est définie comme étant le temps

passé à effectuer d'autres opérations que celles de la boucle "for" (en l'occurence. le

rifor" demande 5 cycles d'horloge par élément). Ces valeurs de perte sont considérées

faibles parce que la longueur des rangées est anormalement faible et que le nombre

de dimensions est anormalement élevé (donc, il s'agit d'une situation pessimiste) et

que, malgré tout, la perte reste acceptable.

Finalement, une troisième expérience a été effectuk avec une matrice carrée de

grandeur réaliste. La figure 4.6 montre que le temps supplémentaire par rapport au

traitement d'un vecteur contenant le même nombre d'éléments est négligeable.

O 1 1 I I I I 1
3 4 9 1 8 9

-
6 -

nombre de dimensions

-
1 I 1 I I i

6

Figure 4.5: Temps de traitement pour un nombre variable de dimensions et lin

norcbre d'éléments constant

-
3

Cycles d'horloge 4
par Clément

2

1

Cycles d'horloge -5.06

par dément 5.05
.5.04

- -
- -
- -

- 8 0 -
- 16 +

32 O -

-5.03
5.02
5.0 1

.5
L28 256 512 1024 2048 4096 8192

Longueur des rangées

Figure 4.6: Temps de traitement moyen par élément pour une mat rice carrée

Tableau 4.1: RCsumé des pcrtcs de vitcsse pour le processeur simplc (S) et pour le
processeur super-scalaire (SS) pour les deux premières expf riences

L'étape suivante consis te à caractériser le comportement d'un processeur super-

scalaire. En supposant un processeur pouvant exécuter une opération en virgule flot-

tante, deux instructions en nombre entier et une opération registremémoire en même
temps (ce qui constitue un processeur rninimdement super-scalaire), les paramètres
deviennent:

t , 2 cycles
t, 5 cycles

tif 1 cycles

t l 2 cycles

Dans ce nouveau contexte, les deux premières expériences (c'est-à-dire une forme
de n x 8 x m et de 4096 x 4096 à 64 x 64 x 64 x 64 x 64 et à un tableau 9-D de longueur 8

pour toutes les dimensions) entraînent des pertes plus grandes, tel que démontré par

le tableau 4.1, quoique suffisamment faible dans le présent contexte. Donc, le temps
de transfert d'un élément est toujours le paramètre dominant (il prend maintenant

deux cycles d'horloge). La perte pour la troisii.mc expériencc reste négligeable (elle
est du même ordre de grandeur).

Trois conclusions se dégagent de ces résultats:

Expérience
El

1. pour un processeur super-scalaire, le goulot d'étranglement est Le temps d'accès

à la mémoire,

S
103%

longueur des rangées
16

2. cet algorithme demande un effort de calcul important (- 2 instructions par cy-

cle pour un processeur super-scalaire qui peut effectuer une opération mémoire-

registre en parallèle avec une addition entière suivi d'un saut) et

SS
18.5%

NOTE TO USERS

Page(s) not included in the original manuscripi are
unavailable from the author or university. The manuscript

was microfilmed as received.

Stride C)
Temp Addr P

SrcAddr StrideElem IDQ
W adresse

Length 'a Current
Indices

Figure 4.7: Diagramme-bloc du générateur d'adresse

dimension courante (c'est-à-dire une partie du ïvhile" intérieur). II est à noter que.

à cause du parallélisme inhérent du générateur d'adresses. la valeur de l'élément de

Stride pour la deuxième dimension de poids faible ne doit pas tenir rori~ptr du pas

de la dimension de poids faible, puisque les incrémentations de cette drrnièrc sont

mémorisées dans SrcAddr plutôt que TempAddr. Donc, les valeurs contenues

dans Stride sont la différence entre les adresses du premier tableau de n - 1 dimen-

sions du nouveau sous-tableau de n dimensions et de l'adresses du sous-tableau qui

suivrait le dernier sous-tableau de n - 1 dimensions du sous-tableau de n dimensions

précédent sauf pour la deuxième dimension de poids faible pour qui le pas est la

différence entre deux éléments qui sont voisins selon cette dimension.

Le parallélisme de cette implantation permet à ce module de générer une adresse

par cycle d'horloge à la condition que la longueur des rangées du tableau soit
supérieure au nombre de dimensions du même tableau. En pratique, cette condi-

tion devrait généralement être respectée puisqu'il est rare d'&voir des rangées plus

courtes que 8 éléments (qui est le nombre maximum de dimensions de cette implan-

t at ion).

Par opposition à ce niveau de performance, une unité DMA classique devrait être

reprogrammée pour chaque rangée de tableau plutôt qu'une fois pour tout le tableau.

Ceci réduirait significativement le niveau de performance à cause des communications

nécessaires entre le processeur et l'unité DMA et parce que cela imposerait un effort

de calcd substantiel au processeur. Par contre, si les rangées sont longues et si le

tableau a un faible nombre de dimensions, dors l'effort de calcul requis peut être

assez faible mais ceci demande que le processeur ait beaucoup de mémoire locale

(e.g. 16Koctets pour chaque tableau si les tableaux ont des rangées de 1024 éléments

double-précision) ou que le tableau soif traité séquentiellement (Le. chaque élément

de tableau-résultat est calculé à partir de quelques éléments d'une même rangée).

Cependant, les situations usuelles n'ont pas ces caractéristiques.

4.6 Transformations

Dans cette section. différentes transfomat ions sur des tableaux couramment utili-

sées sont décrites. Étant donné que ces transformations créent une transformation

linéaire entre un ensemble de vecteurs d'indices et une séquence d'adresses, elles

peuvent être composées, c'est -a-dire qu'après avoir appliqué une transformation à

un tableau, une autre transformation peut lui être appliquée et on peut calculer les

paramètres décrivant la transformation composée (voir (8)).

Il est à noter que, dû au parallélisme des opérations du générateur d'adresses (tel

qu'expliqué précédemment), les distances pour un tableau non- transformé sont: 1

pour la dimension de poids faible, la longueur des rangées pour la deuxième dimension

de poids faible et de O pour les autres dimensions. En effet, comme les éléments

et sous-tableaux sont placés séquentiellement en mémoire, la distance entre deux

rangées est identique à leur longueur et l'adresse du sous-tableau qui suivrait le

dernier sous-tableau (selon une dimension donnée) est la même que celle du premier

sous-tableau lorsqu'on passe au sous-tableau de dimensionalité supérieure suivant.

La section 4.6.1 décrit des transformations supportées par le Fortran 90 alors que

la section 4.62 décrit des transformations autres.

Figure 4.8: Section (2:9,2:9) d'un tableau de forme (10,lO)

4.6.1 Transformations du Fortran 90

De toutes les transformations sur des tableaux supportées par le Fortran 90, la seule

qui ne soit pas supportée par le générateur d'adresses est la fonction intrinsèque

cshift parce qu'il s'agit d'une transformation qui est linéaire par morceaux seule-

ment. L'implantation des autres transformations est dom& ci-après. Il est à noter

que la fonction intrinsèque eoshift n'est pas décrite mais qu'elle est sémant iquement

identique à une section et un appel à la fonction intrinsèque spread et que ces

dernières sont décri tes.

Section

Une section en Fortran 90 est une portion de tableau en forme de parallélépipède

parallèle aux axes du tableau. Elle est décrite par une borne inférieure, une borne

supérieure et un pas, et ce, pour chaque dimension du tableau.

La figure 4.8 contient un exemple de section. Les nombres présents dans les

emplacements des éléments du tableau sont leur position dans la séquence d'adresses.

Les distances pour ce tableau transformé sont 10 pour la dimension de poids fort et 1

pour la dimension de poids faible parce que, comme il a été expliqué précédemment,

le pas de la dimension de poids faible est la distance en mémoire entre deux éléments

consécutifs d'une rangée alors que le pas de la deuxième dimension de poids faible est

la distance entre deux éléments situés au même endroit daos deux rangées successives.

Figure 4.9: Tableau de forme (10,lO) tramposé

Transposition

La transformation qui sera décri te est la transposition généralisée c'est-à-dire une

permutation des axes d'un tableau (la fonction intrinsèque Fortran 90 transpose

est une transposition particulière). Cette t ransfomat ion est décrite par un vecteur

de permutation c'est-à-dire un vecteur contenant les valeurs de 1 au nombre de

dimensions du tableau dans l'ordre désiré.

La figure 4.9 contient un exemple de tableau transposé. Les distances pour cet

exemple sont 1 et 10.

Spread

Il s'agit de la fonction intrinsèque Fortran 90 spread. Cette transformation peut

aussi être utilisée implicitement dans Ia fonction matmul. Elle crée une nouvelle

dimension en répétant une dimension du tableau. L'information qu i décrit cette

transformation est la dimension qui est dupliquée et le nombre de fois où elle l'est.

La figure 4.10 montre un exemple de cette transformation. La forme du tableau

transformé est (10,3,10) et les distances sont 10, 0, et 1.

Reshape

Étant donné que la mémoire d'un ordinateur est adressée comme un vecteur et que la

fonction intrinsèque Fortran 90 reshape transforme un vecteur en un tableau ayant

un nombre de dimensions arbitraire, cette fonction est l'équivalent de la création d'un

Figure 4.10: Un tabieau de forme (10,10) dupliqué trois fois selon la dimension 2

tableau à partir d'une zone de mémoire. Donc, il s'agit d'une fonction très générale

et qui est équivalente à ce qui est décrit à la section 4.7.5 donc on ne discutera pas

de cet te fonction séparément.

4.6.2 Autres transformations

Partition

Cette transformation est utilisée lorsqu'on veut diviser une dimension en plusieurs

parties d'égale longueur et qu'on veut créer une nouvelle dimension pour pouvoir

accéder les différents parties en séquence. Ceci peut être utile lonquTon veut ef-

fectuer un traitement par blocs (pour des exemples de calculs par blocs, voir [l8,
Section 5.41). L'information nécessaire pour décrire la transformation est la dimen-

sion a partitionner et en combien de parties elle sera découpée.

II est également possible de diviser le tableau en créant des régions de recouvre-

ment. Ceci est utile lorsque le traitement effectué fait en sorte que des éIéments

du tableau interagissent avec des éléments qui sont situés dans différentes parties.

L'information additionnelle nécessaire est la longueur du recouvrement.

La figure 4.11 donne un exemple de partition. Dans cet exemple, la forme du

Figure 4.11: Un tableau de (10,lO) partitionné selon la dimension 2 en 3 parties

tableau transformé est (5,10,2) et les distances sont -95, 10 et 1.

"Warping"

Le type de "warping" supporté consiste en un partitionnement selon une dimension

du tableau et un décalage proportionnel à la position des parties selon une autre

dimension. L'information nécessaire est la dimension partionnée, la direction du

décalage (le numéro de la dimension) et la magnitude du décalage exprimée selon le

nombre de positions de décalage à la fin du tableau.

La figure 4.12 donne un exemple de cet te t ransfomat ion. Il est à noter qu'il est

nécessaire d'extraire une section du tableau avant d'effectuer le "warping" parce que

le générateur d'adresses ne peut pas effectuer de bouclage ('wrap-amund") donc la

séquence d'adresses contiendrait des valeurs illégales. Ce tableau transformé a une

forme de (2,3,6) et les distances sont -26, 12 et 1.

Renversement

Renverser un tableau signifie l'accéder en traversant u r de ses axes en partant de

la fin. En Fortran 90, on décrit cette transformation à l'aide d'une section dont

le pas est négatif mais, comme cette transformation est implantée sous forme d'un

opérateur dans certains langages (par exemple, 17AP L) eile est décrite séparément.

La seule information nécessaire pour décrire cette transformation est la dimension

renversée.

Figure 4.12:
la dimension

'Warpingn de la section (3:8,3:8) d'un tableau de forme (10,lO) selon
2 et en décaiant de 2 selon la dimension 1

Figure 4.13: Reversement d'un tableau de forme (10, IO) selon la dimension 2

La figure 4.13 donne un exemple de cette transformation. Les distances pour ce

cas sont 10 et -1.

Damier

Dans le but de montrer la flexibilité du générateur d'adresses, on montre qu'il peut

générer la séquence d'adresses nécessaire au parcours des cases d'une même couleur

sur un damier. Une des nombreuses manières par laquelle on peut décrire cette

transformation consiste à indiquer en combien de zones doit être diviser le tableau

selon chaque dimension (c'est-à-dire qu'on ne se Limite pas à des damiers "classiques"

de 8 cases sur 8 mais qu'on peut spécifier un nombre de cases arbitraire - à condition

qu'il soit un diviseur de la longueur du tableau selon la dimension pertinente).

La figure 4.14 donne un exemple de damier. La forme du tableau transformé est

(2,4,4,2,2) et les distances sont -4, 50, -60, 16 et 1.

Le pas pour la dimension 5 est de 1 parce que c'est la distance entre. par exemple,

les éléments étiquetés O et 1. Le pas de la dimension 4 est la distance entre deux

éléments successifs d'une colonne (par exemple, O et 2) ce qui est la même chose que

la longueur d'une rangée (c'est-à-dire 16)-

Les pas de la dimension 3 est la distance entre la rangée qui, par exemple, suit

la rangée qui débute par l'élément nommé 6 et celle qui débute avec 17élément 8,

c'est-à-dire -4 x 16 + 4.

Le pas de la dimension 2 est la distance entre le premier élément du sous-

tableau 2D qui suivrait celui qui commence par L'élément 24 et celui qui débute

par l'éléme~t 32. Mais, comme les rangées se suivent en mémoire, le "17'" élément

de la première rangée est l'élémat 2, donc la distance est 3 x 16 + 2 c'est-à-dire 50.

Finalement, le pas de la dimension 1 est la distance entre le troisième sous-t ableau

3D, s'il y en avait un (qui débute, par hasard, par l'élément 72), et l'élément 64

(soit -4).

4.7 Paramètres

Avant de calculer les pas nécessaires au travail du générateur d'adrrsws. i l faut

calculer la distance (en mémoire) entre des éléments adjacents du tableau t ransfornié

selon chacune de ses dimensions, ainsi que sa forme et son adresse de départ. Ensui te.

on peut calculer les pas à partir de ces données. Les pas sont différents des distances

parce que ces premiers tiennent compte du fait qu'une partie de la distance a été

parcourue lors de 17ac& aux sous-tableaux de plus faible dimensiondité (voir page

34). Les pas et distances sont assemblés en deux vecteurs où I'élément i est l'élément

qui concerne la dimension i.

Il est à noter que, lorsqu'une nouvelle dimension est créée, les anciennes dirnen-

sions sont décalées d'une position si elles ont un poids plus faible que la nouvelle di-

mension. Également à noter, la dimension 1 est celle de poids fort dans les équations

et l'élément 1 des vecteurs de distance (d), de forme (S h) et de pas (S,) correspondent

Figure 4.14: Damier de 4 cases sur 8 fait à partir d'un tableau de forme (16.16)

à la dimension de poids fort. Le caractère #", dans les équations, indique le nouveau

contenu d'un vecteur (par opposition à celui d'avant la transformation).

4.7.1 Distance

Les nouvelles distances sont identiques aux anciemes saufi

transposition: d'[il = d[T,[i]] Vl < i 5 Nd où TV est le vecteur de permutation et

Nd est le nombre de dimensions du tableau,

partition: d'[Il = d[Dp] * Sh [D,] /p où p est le nombre de partitions et D, est la

dimension part itionnée,

partition avec recouvrement: d f [l] = d[D,] * (Sh [D,] - O J l p où 0. est la valeur du

recouvrement,

'warpingn: dr[D,] = (d[D,] * Sh[Dw])/(INpI + 1) + Np/INpI * d[&] où D, est

la dimension partitionnée, Dd est la dimension selon laquelle est effectué le

décalage et Np est l'amplitude du décalage à l'extrémité du tableau,

spread: dr[Ds + 11 = O où Ds est la din~msiori dupliqute,

damier: dt[5] = dpj, d1[4] = d[l], dJ[3] = d[Z] * 5 $$>]/!\-#], dr[2] = d[l] *
sh[l] /K[l] + d[2] * Sh['L]/Nz[2], dr[l] = d[l] *:! * S,,[l]/Nz[l] ou 1V, est le nombre

de zones selon chaque dimension,

renversement: d'[Dr] = -d[D,] où Dr est la dimension renversée.

4.7.2 Forme

La forme du tableau reste inchangée sauf pour:

section: Si[i] = u[i] - [[il + 1 V l < i 5 Nd oii 1 et u sont les bornes inférieures et

supérieures respect ivement de la section,

spread: Si [D,] = N,, o ù Nr est le nombre de répétitions de la dimension,

4.7.3 Adresse de départ

L'adresse de départ n'est pas modifiée sauf pour:

section: S: = ~ 2 , L[i] * d[i] ,

renversement: SL = S. + d[D,] * (Sh [Dr] - 1).

4.7.4 Pas

Les pas sont calculés à l'aide de l'équation 1 sauf pour St[l] = d [l] et S@] = d p] .
Il est à noter que. pour calculer St[i]. on a besoin de la valeur des Stb] tels que

i < j < .Vd donc les pas doivent être calculés en commençant par celui de la dimension

de poids faible et en allant vers la dimension de poids fort. Égaiementt il est évident

que le calcul du produit (n)de chacun des pas peut utiliser celui du pas de poids

faible précédent en guise de résultat partiel.

4.7.5 Généralisation

La manière la plus générale d'exprimer l'adressage d'un tableau est de spécifier:

0 l'adresse de départ.

O le nombre de dimensions du tableau,

O la forme du tableau (i-e. un vecteur) et

O un vecteur de distances-

Utiliser de tels paramètres permet des transformation arbitraires (au sens oh elles

n'ont pas de signification particulière). L a figure 4.15 montre une de ces transfor-

mations. 11 est à noter que. pour simplifier la représentation, le tableau est montré

comme une matrice de forme (10,s) qui aurait été modifiée mais cette forme n'est

pas pertinente du point de vue de I'algorit hme.

Cet exemple crée un tableau de trois dimensions de forme 4 par 4 par 3 en

utilisant un vecteur de distances égal à -9 pour la dimension de poids fort, 10 pour la

dimension intermédiaire et 1 pour la dimension de poids faible. 11 est à remarquer que

les quatres sous-tableaux a deux dimensions qui composent ce tableau sont identifiés

par les nombres O, 1, ..., 15 pour le premier plan, 16, 17, ..., 31 pour le deuxième

plan, 32, 33, ..., 47 pour le troisième plan et 48, 49, ..., 63 pour le dernier plan.

Les trois flèches de la figure 4.15 représentent les directions des tmis dimensions du

tableau transformé (i.e. là où mènent les éléments du vecteur de distances).

Figure 4.15: Transformation arbitraire

4.8 Conclusions

Dans ce chapitre, on a décrit un algorithme qui permet de transférer efficacement

un tableau transformé entre la mémoire d'un ordinateur et son processeur. On a

montré qu'il permet de transférer un élément de tableau par cycle de mémoire s'il

est implanté en logiciel sur un processeur super-scalaire et qu'il permet un trans-

fert par cycle d'horloge s'il est implanté en matériel. Cet algorithme supporte

toutes les transformations linéaires entre un ensemble de vecteurs d'indices et une

séquence d-adresses en mémoire ce qui le rend très flexible. Également, il peut

être Facilement augmenté pour supporter les transformations polynomiales de degré

plus élevé puisque les paramètres quadratiques impliquent une modification des pas

(paramètres linéaires) et de même pour les paramètres d'ordre supérieur. Donc, en

ajoutant des fichiers de registres pour contenir les nouveaux paramètres et en util-

isant un algorithme similaire à celui utilisé par le générateur d'adresses qui a été

décrit, on pourrait supporter les t ransfomations polynomiales avec une vitesse de

calcul essentiellement aussi grande mais qui nécessiterait substantiellement plus de

ressources matérielles.

Le générateur d'adresses proposé est très rapide (normalement, une adresse par

cycle d'horloge) et flexible et calculer les paramètres qui lui sont nécessaires est

simple à cause du cadre conceptuel (Le. transfomat ions linéaires).

Chapitre 5

Un langage de haut niveau pour

les ordinateurs SIMD

.
A la section 2.4, on a constaté qu'aucun des langages de programmation existants

ne rencontre tous les objectifs suivants:

1. utiliser les tableaux (et les opérations sur ceux-ci) en guise d'abstraction de

haut niveau ainsi que de paradigme de parallélisme (Le. parallélisme sur les

données),

2. permettre la compilation et la parallélisat ion autornat ique d'applications en un

code exécutable de haute performance.

3. cibler les architectures SIMD et

4. évaluer quelles limitations peuvent être imposées sur la grammaire d'un langage

pour faciliter la parallélisation sans contraindre indûment la programmation.

Pour combier ce vide, le langage HPCP ("High Performance C for Pulse") est

proposé. Ce langage contient les éléments du lang~ge C [30] qui sont appropriés pour

la description (parallèle) d'applications traitant de façon structurée des tableaux, et

ce, sur un processeur SIMD et il est étendu Ià où le C est déficient.

Dans le but de produire des programmes exécutables performants et compacts, le

compilateur HPCP qui a été créé dans le cadre du présent travail utilise des tampons

circulaires (pour stocker localement des éléments de tableaux) et des instructions

vectorielles (pour obtenir du code rapide et compact).

L a section 5.1 contient une description du langage, alors que la section 5.2 décrit

la sémantique de certaines de ses composantes. La section 5.3 explique pourquoi une

mémoire est, dans le contexte présent, plus appropriée que les registres vectoriels

pour contenir des vecteurs; la méthode de gestion des tampons circulaires qui est

utilisée par le compilateur est également décrite. La section 5.4 donne un exemple

de programme source et de programme généré. alors que la section 5.5 contient une

étude du niveau de performance (en temps et en espacemémoire) du code généré.

Finalement, la section 5.6 énonce les conclusions de ce chapitre.

5.1 Description du langage

Cette section est divisée en deux parties: la première décrit la portion du langage C
qui a été retenue pour HPCP, alors que la deuxième décrit les extensions qui lui ont

été ajoutées. La grammaire complète du langage est donnée à l'annexe C.

5.1.1 Sous-ensemble du C supporté

Les seuls types de données supportés sont "intn et 'long", parce que les applications

DSP traitent habituellement des nombres entiers e t parce que l'architecture ciblée

(Pulse) ne supporte que ces types de données. Les types de données définis par

l'usager ne sont pas supportés; ce sont %tnictn, "union", 'enum", Tields" ainsi que

la direct ive typedef. Le qualificatif "register" n'est pas supporté non plus, parce qu'il

n'est pertinent qu'à un niveau d'abstraction plus bas (Le. pour des langages comme

AL [-91). Les constantes symboliques sont supportées via le qualificatif "const" .
Les structures de contrôle séquentielles (i.e. les boucles "while". *do' et 9orn)

ne sont pas permises à cause de l'objectif visant a décrire les algorithmes de faqon

parallèle (d'un autre côté. un énoncé uloopn a été ajouté - voir la section 5.1.2).

Également, l'énoncé *switchq n'est pas supporté parce qu'il est trop général pour les

besoins spécialisés d'un ordinateur SIMD. De plus, les énoncés "goton, &break' et

scontinue" n e sont pas supportés. Donc, le seul énoncé de contrôle qui soit supporté

est le "if".

Tous les opérateurs (arithmétiques, logiques et relationnels) sont supportés sauf

&++", "--" (parce qu'ils ont un effet secondaire), l'opérateur conditionnel (parce

qu'il est sémantiquement identique au "if" bien qu'ils aient un contexte syntaxique

différent), l'opérateur "." (parce qu'il est surtout utilisé dans des énoncés qui ne

sont pas supportés) et la division et ['opérateur "modulo" (parce qu'ils ne sont pas

supportés par Pulse). Les assignations ne sont pas permises dans les expressions

conditionnelles.

Les pointeurs ne sont pas supportés parce qu'ils ne sont pas utiles dans le contexte

de Pulse et parce qu'ils rendent la parallélisation plus difficile à cause de l'équivalence

qu'ils peuvent entraîner. Les chaînes de caractères ne sont pas supportées parce

qu'elles ne seraient pas utiles (encore une fois, dans le contexte de Pulse). Par

contre, les tableaux rnulti-dimensionnels sont supportés évidemment et ils ont une

structure où la dimension de gauche est celle de poids fort (comme en C).

5.1.2 Extensions ajoutées au C

Les ajouts au langage C sont regroupés en quatres catégories:

1. support pour les instructions des processeurs élémentaires (PE) de Pulse qui

ne sont pas supportées par le C,

2. des structures permettant une description plus compacte de traitement de

tableaux (pour permettre une description à haut niveau des algorithmes),

:3. un nouvel énoncé de contrôle et

4. deux directives ('pragmas").

Les instructions des PE qui ne sont pas supportées par le C sont implantées sous

forme de fonctions intrinsèques (ces instructions incluent, par exemple, 'compare-

and-swap", "clipn et 'median"). Les structures de support pour les tableaux sont

tirées du Fortran 90, parce que c'est le langage qui, parmi ceux qui ont les caracté-

ristiques désirées, est le plus proche du langage C. tes structures en question sont de

trois types: les sections de tableaux, les opérateurs sur les tableaux et une structure

de contrôle parallèle. Une section de tableau est un morceau de tableau décrit par

une borne inférieure et une borne supérieure pour chaque dimension du tableau. Par
exemple, si le tableau A a une forme de [10][10][10] alors A[1:5][2:6][3:9] est un sous-

tableau de forme [5][5][7] qui débute à l'élément A[l][2][3], i.e. le deuxième élément

de la première dimension, le troisième de la seconde et le quatrième de la dernière

dimension. Il est à noter que, contrairement au Fortran 90, le pas n'est pas supporté

parce qu'il fallait limiter le langage le plus possibie à cause du manque de ressources

et que, sachant que les algorithmes DSP ne l'utiliserait pas souvent, on ne prévoit

que peu d'intérêt à avoir cet te caractéristiques. Les opérateurs sur les tableaux sont

les mêmes que sur les scalaires et Ieur sémantique est expliquée à la section 5.2.

La structure de contrôle parallèle supportée est le *wheren; il s'agit d'un énoncé

de contrôle (plus spécifiquement, de sélection) parallèle de haut niveau d'abst'rac-

tion (voir la section 5.2 pour une description de sa sémantique). Un énoncé "foralln

(comme en HPF) serait probablement utile, mais il n'est pas supporté par les al-

gorit hmes de parallélisation du chapitre 6 (parce que ce chapitre traite de la par-

allélisat ion de traitement structuré de tableaux d o n que le Yorall" permet le traite-

ment non-structuré) donc, il n'a pas été ajouté.

Les deux directives supportées sont: 'distribute" et 'configuration". La directive

"distributen permet au programmeur d'indiquer comment les tableaux doivent être

distribués entre les P E, alors que 'configurationn décrit la configuration matérielle

nécessaire à 1 'exécution du programme.

La forme de la directive Gdistribute" est: le mot-clé "#pragman suivi du mot-

clé "distribute" et, pour chaque tableau utilisé dans l'énoncé, son nom suivi, pour

chacune de ses dimensions, de la description de la distribution (qui peut être 'block",

*cyclic(n), ou **") entre crochets (le '(n)" associé à la distribution cyclique est

optionnel). Les descriptions de distribution des différents tableaux à l'intérieur d'une

même directive sont séparés par une virgule.

Finalement, le nouvel énoncé de contrôle est le "loop". Il est sémantiquement

identique à l'énoncé C "while(1)"; c'est-à-dire qu'il s'agit d'une boucle sans fin qui

ne peut être interrompue que par une interruption du SIiMD. Ceci est utile lorsqu'on

traite des flots de données.

5.2 Sémantique

Cette section décrit la sémantique de certains éléments de HPCP qui peuvent être

plus obscurs à quelqu'un qui est familier avec le C.

5.2.1 Structures de support pour les tableaux

Opérateurs

Tous les opérateurs ont la même sémantique qu'en langage C, sauf lorsqu'ils sont

utilisés avec des tableaux ou des sections auquel cas, elle est étendue de la façon

suivante: l'opérateur scalaire est appliqué à chaque paire d'éléments de tableaux (un

de chaque tableau/section) et chacun de ces éléments provient de la même position

dans chaque tableau/section. Donc, les tableaux/sections doivent avoir la même

forme. Si une condition utilise un ou des opérateurs logiques sur des tableaux, alors

la sémantique de la condition devient: la condition est vraie si le tableau de valeurs

booléennes généré ne contient que des valeurs vraies, sinon, elle est fausse. Il pourrait

être utile d'obtenir une valeur vraie lorsqu'au moins un élément du tableau généré;

ce cas peut être traité en utilisant, dans l'expression de la condition, les opérateurs

de comparaison complémentaires à ceux désirés et en inversant le résultat de ces

comparaisons.

Les opérateurs d'assignation voient leur sémantique étendue de la même façon.

sauf que les assignations (scalaires) sont effectuées, conceptuellement, en même

temps. Par exempIe,

a la même sémantique que le programme C suivant:

Ce qui signifie que les expressions sur des tableaux n'introduisent aucune dépen-

dance entre les éléments des tableaux de la partie droite de l'assignation et ceux du

tableau de la partie gauche.

L'énoncé "where"

Les énoncés contrôlés par un "where" doivent avoir la même forme que la condition.

Un élément d'une expression à la droite d'une assignation (ou un élément d'une con-

dition) de la partie "where" de l'énoncé 'where* est calculé seulement si l'élément

correspondant de la condition du "where" est vrai; ceci est également le cas pour

l'assignation à un élément de l'expression du côté gauche d'une assignation. Les cal-

culs et assignations situés dans la partie "else wheren sont effectués lorsque l'élément

correspondant de la condition est faux-

Fonction intrinsèques d'entrée/sortie

Les fonctions intrinsèques read, write, input et output sont utilisées pour lire

ou écrire une variable (scalaire ou tableau) en mémoire externe et pour recevoir ou

envoyer un tableau au monde ext érïeur respect ivement.

5.2.2 Distribution

Le modèle de distribution est adapté de celui du HPF [24] de la façon suivante: tous

les tableaux d'une expression doivent avoir la même distribution. Dans Ie cas d'une

distribution par blocs, les éléments de tableaux qui sont utilisés par plus d'un PE
sont répliqués. L a distribution cyclique est utilisée pour réduire la pression sur les

mémoires internes. Cela signifie qu'il ne s'agit pas d'une distribution entre les PE
mais plutôt d'une distribution dasis le temps, c'est-à-dire qu'une portion seulement

de la dimension d u tableau sera traitée à la fois. Le résultat est une forme de

traitement par blocs (pour des exemples de traitement par blocs, voir [18]). 11 a été

dkidé d'adapter le modèle de distribution du HPF parce que ce modèle est orienté

vers le traitement structuré de tableaux et que la plupart des algorithmes DSP sont

de type structuré.

Étant donné que la mémoire disponible sur le même circuit intégré que le SIMD
est normalement très limitée et que les tableaux sont gérés sous forme de tampons

circulaires (tel qu'expliqué à la section 5.3), une distribution par blocs implique que

les tableaux ne sont pas accédés en ordre lexicographique mais, plutôt, que chaque

PE reçoit un élément à la fois et que tous les PE en reçoivent un en même temps

(donc, un générateur d'adresses comme celui décrit au chapitre 4 est nécessaire). Un

effet important de cette stratégie est que les tableaux doivent être stockés localement

par opposition à être r q u s directement du monde extérieur. Cette contrainte, qui

découle simplement d'un manque de temps p o u l'implantation du prototype de

compulateur, pourra être levée dans l'avenir.

Il est à noter que, dans le présent modèle de partitionnement, tous les tableaux

ont le même alignement (i.e. l'alignement est de O entre eux) donc, il n'est pas décrit

dans le programmesource (contrairement a u modèle HPF).

5.3 Tampons circulaires

Étant donné que les instructions vectorielles permettent une plus grande densité de

code (i.e. moins d'espace-mémoire nécessaire pour exprimer le même aigorit hme),
elles sont supportées par l'architecture Pulse. Cependant, les processeurs vectoriels

utilisent en général des registres vectoriels qui ne seraient pas efficaces dans le con-

texte du projet Pulse. Dans la présente section, il est démontré que les registres

vectoriels sont inefficaces et qu'une mémoire locale gérée correctement est plus ap-

propriée pour les applications basées sur des convolutions. La technique de gestion

de la mémoire proposée est basée sur le concept de tampon circulaire; on montre

comment L'adapter pour permettre l'utilisation efficace d'iostructions vectorielles.

5.3.1 Bande passante requise par les registres vectoriels

L'utilisation de registres vectoriels nécessite parfois plus de bande passante à Ia

mémoire principale parce que la structure des processeurs qui les utilisent fait en

sorte que:

1. on ne peut les accéder qu'à partir de leur premier élément,

2. on doit les recharger en entier à chaque fois qu'au moins un

3. nouvel élément de donnée est requis et

4. lorsqu'on calcule une convolution, il arrive souvent que deux registres doivent

contenir les même éléments mis à part quelques-uns aux extrémités des reg-

istres.

Ce plus grand besoin de bande passante est illustré par les résultats du programme

d'évaluation de performance STREAM [39, 491 qui montrent que, par exemple, les

ordinateurs vectoriels CRAY et NEC SX ont une valeur d'équilibre ("balance" - le

rapport entre le nombre maximum d'opérations que le processeur peut effectuer en

une secoude et la bande passante utilisable de la mémoire eauprimée en nombre de

mots par secondes) d'environ 1 alors que la plupart des microprocesseurs ont une

valeur d'équilibre d'environ 10 (mis à part la famille d'ordinateurs IBM RS6000 qui

ont une valeur d'environ 3). Évidemment, le fait que différents marchés sont visés

par ces ordinateurs est une raison significative pour expliquer cette différence mais

une valeur aussi faible que 1 ne serait pas utile si les données étaient réutilisées selon

les besoins (e-g. éviter de recharger un registre vectoriel complet lorsqu'on n'a besoin

que d'un seul nombre) car la bande passante disponible ne serait pas utilisée à pleine

capacité. Ce plus grand besoin de bande passante est également illustré par le fait que

l'architecture Torrent 15, 41 (qui est aussi une architecture vectorielle basée sur des

registres) vise les calculs matriciels [5 il où deux matrices différentes interagissent

(i.e. lorsque les vecteurs sont réutilisés, ils le sont en entier) donc, l'utilisation de

registres vectoriels dans ce contexte est efficace.

Dans le but de quantifier la bande passante gaspillée (pour le calcul de convolu-

tions 2D) lorsqu'on utilise des registres vectorielsl p représente la longeur des rangées

du tableau à traiter, n est le nombre de colonnes dans le noyau de coov~lution~ m est

le nombre de rangées de ce noyau et 1, est le nombre d'éléments que peut contenir

un registre vectoriel. Pour obtenir le maximum de performance d'un processeur vec-

toriel, il est généralement conseillé d'avoir des rangées de tableaux dont la longueur

est un multiple de 1,. Dans le cas de la convolution, il faut que p - (n - 1) soit un

multiple de 1,. Puisqu'il s'agit là du meilleur cas, du point de vue de la performance,

cette hypothèse sera utilisée dans le reste de cette section.

Dans les paragraphes qui suivent, la bande passante requise pour calculer une

rangée du tableau résultant d'une convolution est calculée et comparée au nombre

minimum de transferts nécessaires. On fait l'hypothèse que le contenu des registres

ne peut être réutilisée pour calculer plus d'une rangée du tableau-résultat (ce qui est

réaliste puisque les registres doivent être rechargés pour calculer chaque élément du

résultat). Pour calculer un vecteur du tableau-résultat, r x n x n vecteurs doivent

être chargés, où r est le rapport entre le nombre de coefficients non-nuls sur le nombre

de coefficients total du noyau de convolution (nm). Aussi, - vecteurs doivent

être calculés pour obtenir une rangée du résultat. Donc,

rmn(P - (n- 1) r,
1,

chargements (d'éléments de tableaux) sont effectués alors que seulement pm

éléments de tableaux sont nécessaires. Cela signifie que la surcharge relative est

Après simplification,

n (ce qui normalement

cette équation devient y (p - n + 1) - 1 mais, lorsque p >
le cas), cette équation tends vers rn - 1. Lorsque r est

raisonablement élevé (par exemple, r > 0.5), la surcharge est plus élevée que le

nombre d'éléments de tableau requis dans un rapport de plusieurs fois. De plus.

ceci s'aggrave très rapidement à mesure que n s'accroît (ce qui est le cas pour les

applications DSP lorsque la puissance de calcul croît puisque cela permet de réaliser,

par exemple, des filtres de taille plus grande) donc, cette surcharge doit être évitée

à tout prix.

5.3.2 Stratégie d'allocation dans les tampons circulaires

Dans la section qui précède, on discute d'une façon de vectoriser les calculs sur

des tableaux qui consiste à diviser les tableaux en vecteurs et d'effectuer les calculs

sur ces derniers. Dans ce contexte, allouer séquentiellement des éléments de tampon

circulaire aux éléments d'un tableau est efficace. Cependant, cet te méthode nécessite

l'utilisation de plus de résultats temporaires si on veut éviter de recharger les éléments

des tableaux. Par contre, si la convolution utilise un noyau suffisamment grand

et dense, utiliser une instruction vectorielle pour calculer chacun des éléments du

tableau-résultat permet de minimiser la quantité de mémoire locale requise tout

en étant aussi efficace du point de vue de la vitesse de calcul. Cette méthode de

vectorisat ion nécessi te, cependant, une nouvelle stratégie d'aliocat ion des éIérnent s

de tampon circulaire aux éléments de tableau.

Le but de la stratégie d'allocation est de stocker les éléments d'un tableau 2D dans

un tampon circulaire, de façon à ce que les éléments nécessaires au calcul d'un élément

du résultat d'une convolut ion soient dans des positions situées à égale distance entre

eux dans le tampon circulaire et ce, dans le but de permettre de calculer chaque

élément du résultat à l'aide d'une seule instruction vectorielle. On se Limite à des

tabieaux 2D parce que la quantité de mémoire locale à un processeur ne permet pas,

en général, de conserver suffisamment d'éléments pour éviter de les recharger dans

le cas d'un tableau à plus de deux dimensions. Cependant, la section 5.3.4 esquisse

une solution pour le cas où le tableau a trois dimensions.

Une manière directe d'effectuer l'allocation (et qui ne fonctionne pas) consiste

à utiliser un tampon de longueur p - 1 - rn, où p est la longueur d'une rangée de

tableau et m est le nombre de colonnes du noyau de convolution et d'allouer les

éléments de tampon séquentiellement. On obtient alors l'atlocat ion suivante si un

noyau de 3 par 3 est utilisé (où les valeurs présentent dans le tableau représentent la

position de l'élément correspondant du tableau dans le tampon):

Le problème qui se pose avec cette allocation est que, par exemple. pour calculer

l'élément [L][l] (selon la notation du Langage C) du résultat nécessite, entre autres,

les éléments [O] [O]. [O] [1] et [O] [2]. Ces éléments seraient mis aux positions O, 1 et 2 du

tampon respectivement mais, lorsque vient le temps de calculer le dit élément, ces

positions du tampon ont déjà été modifiées par l'écriture des trois derniers éléments

de la première rangée du tableau. Donc, un tampon pouvant contenir plus d'éléments

de tableaux est nécessaire.

La longueur minimale du tampon nécessaire pour éviter d'effacer prématurément

des éléments du tableau est p(n - 1) + rn où n est le nombre de rangées dans le noyau

de convolution. Avec un tampon de cette taille et un noyau de 3 par 3, l'allocation

devient:

On constate que chacune des portions de rangée de tableau utilisées forme un

vecteur dans le tampon (si on tient compte du bouclage - "wraparound"). Ceci

signifie que n instructions vectorielles et n - 1 instructions scalaires sont nécessaires

pour calculer un élément du résultat. Ceci est sous-optimal puisqu'il faut redémarrer

le pipeline pour chaque instruction vectorielle donc. calculer un élément du résultat

avec une seule instruction vectorielle augmenterait la performance (et la densité

de code). En conséquence, une nouvelle stratégie d'allocation est nécessaire. La

stratégie qui vient d'être décri te sera appelée "allocation séquentielleF dans le reste

de cette section.

Lïdée de base de la nouvelle stratégie d'allocation consiste à allouer les dé-

ments consécutifs d'une colonne du tableau (par opposition à ceux d'une rangée

dans la stratégie séquentielle) à des positions consécutives du tampon et d'allouer

les éléments d'une rangée à des positions dont la distance est égale au nombre de

rangées du noyau (Le. n). L a longueur du tampon doit alors être de np - 1 pour

obtenir le bon bouclage à la fin du tampon. Le résultat de cette allocation pour un

noyau de 3 par 3 est:

Cette stratégie satisfait donc les deux objectifs: le tampon est géré correctement

(Le. il suflisarnrnent long pour éviter l'effacement prématuré des données contraire-

ment à la première méthode décrite) et les éléments nécessaires au calcul d'un élément

du rkul ta t sont dans des positions successives du tampon.

s t = i -
S c = ? - -
St = :j -
St = 4 M . - -

0.25 -

Gain de vitesse 0.2 -

Figure 5.1: Gain de vitesse entre les vectorisations partielle et totale

5.3.3 Évaluation de la stratégie d'allocation

Gain de vitesse

Pour évaluer le gain de vitesse de la nouvelle stratégie d'allocation, le nombre de

cycles nécessaire pour calculer un élément de résultat à l'aide d'un processeur vec-

toriel pour un noyau carré de k x k est calculé pour l'allocation séquentielle et pour

la nouvelle stratégie. On suppose que le débit établi est égal à un. L'équation du

temps pour I'allocation séquentielle est t , = k x (s t + (k - 1)) + k - 1 et, pour la

nouvelle stratégie, elle est t , = st + k x k - 1 où st est le temps de démarrage.

La différence relative entre ces deux vitesses de calcul est montrée à la figure 5.1.
Le temps de démarrage pour les instructions vectorielles, sl, prend les valeurs 1 à 4.

Ces valeurs sont très petites (Le. elles supposent un processeur très performant) mais

elles sont réalistes pour un processeur visant à supporter les applications DSP sur
des nombres entiers. Augmenter ces valeurs ne ferait qu'améliorer le gain de vitesse

de la nouvelle stratégie aonc, ceci est le pire scénario pour la nouvelle stratégie et,

malgré tout, le gain de vitesse varie entre 7% et 40%.

Quantité de mémoire O -3

supplémentaire utilisée0-25
(relative)

0.2

Figure -5.2: Quantité supplémentaire de mémoire requise

Quantité de mémoire utilisée

Cette nouvelle stratégie permet une grande efficacité d'utilisation de la puissance de

calcul d'un processeur vectoriel (si le noyau de convolution est grand par rapport au

temps de démarrage). Elle permet aussi une grande densité de code par l'utilisation

efficace d'instructions vectorielles. Cependant, son désavantage est l'utilisation d'une

plus grande quantité de mémoire que le minimum absolument nécessaire. Ce min-

imum est celui requis par l'allocation séquentielle e t il est de p(n - 1) + rn (voir

la section 5.3.2). Donc, la quantité supplémentaire de mémoire requise est de
n -1- n-1 +ml np - 1 - (p (n - 1) + m), en valeur absolue, et de

p('~(l,+'
en valeur rela-

-m-1 tive. Simplifier ces expressions donne p - rn - 1 et pfn-l,+m respect ivement.

La figure 5.2 montre la quantité de mémoire supplémentaire relative nécessaire

p o u . des valeurs raisonables de p et k (où k = n = rn, Le. on ne montre le résultat

que pour des noyaux carrés car les conclusions tiennent pour les noyaux non-carrés).

Cette figure montre que la quantité de mémoire supplémentaire requise peut être

a s s a grande. La quantité de mémoire excédentaire est d'autant plus grande (en

valeur relative) que le noyau est petit. Aussi, il est évident à l'étude des équations

qu'effectuer les calculs par blocs est nécessaire lorsque le tableau a de longues rangées

(par exemple, 10a24 éléments) puisque la quantité de mémoire requise devient très

grande par rapport à la quantité de mémoire locale habituellement disponible à un

processeur.

5.3.4 Étude du cas 3D

Utiliser cette stratégie pour les tableaux tridimensionnels peut être utile mais elle

doit être modifiée pour être correcte. La raison en est que le premier élément d'un

plan doit être situé à la position dans le tampon qui suit le premier élément du

plan précédent donc, le premier élément d'une rangée du tableau doit être à une

distance de 1 (le nombre de pians du noyau de convolution) du premier élément de

la rangée précédente pour que les éléments nécessaires au calcul d'un élément du

résultat soient à des positions successives du tampon. Selon le même raisonnement,

des éléments successifs d'une rangée du tableau doivent être à une distaoce de ln (où

n est le nombre de rangées du noyau). Ceci implique que le tampon devrait avoir une

longueur de pln - 1 (ou l(p - 1)). Dans ce contexte, le bouclage à la fin du tampon

ne peut revenir à la position 1 (tel que nécessaire) parce que le pas d'allocation (ln)

et la longueur du tampon (l(pn - 1)) sont tous deux des multiples de 1. Ceci implique

que la stratégie doit être modifiée pour qu'elle puisse fonctionner tel que désiré. La

situation désirée, lorsque le noyau a une forme de 3 par :3 pax 3, est la suivante:

Une façon simple d'adapter la stratégie est de remarquer que la position du

premier élément de chaque plan du tableau est indépendante de la position courante

si on décide de les mettre dans des positions du tampon qui soient successives. Par

conséquent, une solution consiste à utiliser un deuxième compteur qui est incrémenté

de I à la fin de chaque plan et qui est utilisé en guise d'adresse de départ pour chaque

nouveau plan.

5.4 Exemple de programme

La figure 5.3 montre un exemple de programme HPCP. Ce programme consiste en

une paire de convoIutions classiques. On peut y voir des appels aux fonctions read et

write ainsi que l'énoncé uloopn qui a été expliqué ci-haut. Aussi, on peut remarquer

comment les convolutions sont décrites: elles consistent en des sections de même

forrne mais situées à différents endroits à l'intérieur du tableau.

Le compilateur génère du code C-PULSE (11. L a figure 5.4 montre le code généré

à partir du code-source de la figure 5.3 (certaines modifications y ont été apportées

pour que l'exemple ne dépasse pas une page). On peut constater que ce code généré

contient des tampons circulaires (implantés par les fonctions intrinsèques dont le nom

contient *bufil" ou "bufB") plutôt que des tableaux lorsque plus d'un élément du

tableau sont nécessaires en même temps, sinon, une variable scalaire (par exemple, la

variable h) est utilisée. En particulier, dans cet exemple, le tableau d s'est vu attribué

le tampon A et le tableau g utilise le tampon B. Les convolutions sont générées en

calculant les vaieurs des constantes utilisées (en effectuant leur distribution - au

sens mathématique - lorsque nécessaire) pour permettre de décrire la convolution

sous forme de somme de produits. Les valeurs ainsi calculées sont stockées dans un

vecteur constant (par exemple, fipcproeffû) alon que les calculs sont implantés

sous forme d'une fonction intrinsèque (ronvo l I t e rbu fAw et -convolIterbufBw).

La distribution des constantes n'est pas effectuée pour un opérateur situé à la fin des

calculs d'une expression (par exemple, >> 4 dans l'exemple) parce qu'il peut servir

à faire une mise à l'échelle des résultats donc la distribution des constantes pourrait

diminuer la précision des calculs si elle était effectuée.

Il est à noter comment les tampons circulaires sont initialisés (init buf) et utilisés

(-writ ebuf). Égalernent à remarquer, la fonction ronvolIterbuf qui extrait une

portion d'un tampon circulaire et effectue un produit scalaire avec un vecteur en une

seule instruction vectorielle. Finalement, il est à remarquer que le tableau est lu et

certains de ses éléments sont transférés entre les PE en utilisant le même canal de

communication (Le. North).

itpragma distribute d[*l [block] , g[*] [bloclt] , hc*] Cblock] ;

t

Figure 5.3: Exemple de code HPCP

void raain 0
C
i n t h , ,hpcp,idxO . ,hpcp,idxl . ,hpcp,nshif t , ,hpcp,t emp C31;
const iat ,hpcp,coeff0[9] = €1, 2, 1, 2, 4, 2, 1, 2, 13;
const int ,hpcp,coeff 1[2] = <-I, 13, ,hpcp,coeffZf3] = {-1, 0 , 1);

fo r (,hpcp,idxO = 0 ; ,hpcp,idxO < 10 ; -hpcP-idxO++) (
for(,hpcp,idrl = 0; ,hpcp,idxl < 4; ,hpcp-ihl++)<

if(,hpcp,idxO >= 0 && ,hpcp,idxO <= 9)
if(,hpcp,idxl >= 0 Lt ,hpcp,idxi <= 9){

f or(,hpcp,nshift = 0; ,hpcp,nshift < 4; ,hpcp,nshif t++)

JorthShif t () ;
,aritebuf~w(,Eorth) ;
i f (,hpcp,idxl <= 2)

,hpcp,temp Lhpcp-idxi] = ,Horth;
i f (,hpcp,idxl >= 1) (

,north = -hpcp-temp Lhpcp-i-1 - 21 ;
JorthShif t () ;

1
if(,bpcp,idx0 >= 1 && Jpcp,i&O <= 8)

if(,hpcp,idxl >= 1 && ,hpcp,idxl C= 8)
,ariteb~~u(,convolIterb~Au(,hpcp,coef f 0 , 9) >> 4) ;

i f (,hpcp,idxO >= 1 && ,hpcp,idxO <= 9)
if (,hpcp,idxl >= 1 && ,hpcp,idxl <= 9)

h = ,mar(,abs (,convolIterbIlfBu(,hpcp,coef f 1 , 2)) ,
-abs (,convolIterb~fBu(~hpcp,coeff2 , 3)) , -32768) ;

if(,hpcp,idxO >= 0 U ,hpcp,idxO <= 9)
if(,hpcp,idxl >= 0 && ,hpcp,idxl <= 9)C

,South = h;
for(,hpcp,nshift = 0 ; ,hpcp,nshift C 4; ,hpcp,nshift++)

,SouthShift () ;
1

1
1

1

Figure 5.1: Code C-Pulse g6nkrk

5.5 Analyse des performances obtenues

Etant donné que le compilateur créé ne comprend pas les optimisations habituelles, le

code généré n'est pas très performant. En particulier, à l'analyse du code de la figu-

re 5.4, on constate que les boucles imbriquées traversent tout l'espace d'indexation et

qu'un énoncé "if" est utilisé pour les énoncés qui correspondent à chaque énoncé du

source HPCP- Il serait beaucoup plus efficace d'extraire les itérations qui ne font que

le t rai ternent des frontières et de limiter l'espace d'indexai ion parcouru. Également,

certains de ces énoncés "if" pourraient être éliminés par fusion ou par élimination

(lorsque leur condition est toujours vraie i.e. lorsque le traitement à faire doit l'être

sur tout le nouvel espace d'indexation - après optimisation). Finalement, le code

assembleur généré pourrait aussi être amélioré. La principale amélioration consiste à

utiliser les instructions 'push*, 'pop" et 'dbr' pour implanter les boucles imbriquées

plutôt que des "Sub", "[fc", 'BNPA" et "BU*.

Puisque la performance du code généré est surtout limité par l'absence d'optimi-

sations classiques et que ces dernières dépassent le cadre des présents travaux, on ne

comparera pas la performance du code généré avec celle de code écrit directement en

assembleur. On s'attardera plutôt sur le temps ajouté pour effectuer un traitement

par rapport à n'effectuer que le transfert d'un tableau de l'entrée vers la sortie (Le.

d'un canal vers un autre) en assignant un tableau lu à un autre tableau et en effec-

tuant l'écriture de ce deuxième tableau vers l'extérieur. Le programme utilisé pour

effectuer ce transfert est donné à la figure 5.5.

Le code C-PULSE et le code assembleur générés sont donnés à l'annexe D. Le

üpragma d i s t r ibute d C*] [block] , h [*1 [block] ;

Figure 5.5: Premier programme de test HPCP

Xpragma distribute d [*] [block] , h[*] [block] ;

Figure 5.6: Deuxième programme de test HPCP

deuxième programme de test utilisé est celui de la figure 5.6 (les codes assembleur

et C-PULSE sont également donnés en annexe).

En comparant les deux programmes assembleurs générés, on constate que:

a il y a quelques instructions supplémentaires pour l'initialisat ion des tampons

circulaires.

une instruction "Ld" (Load) a été remplacé par un appel à '-writebufAwn

(qui sera remplacé par une seule instruction dans un avenir prochain) et

a une instruction "Ld" (pour effectuer l'assignation 'h = d;") est remplacée par

un appel à '~convolIterbufAwn (qui deviendra une seule instruction vectorielle

sous peu) et par une instruction 'Sri".

Donc, la seule perte en vitesse de transfert est due au temps de calcul et ce dernier

est minimal puisqu'il ne consiste qu'en une instruction vectorielle et une instruction

de mise à l'échelle. Ceci implique que le code généré pour une convolution aurait un

niveau de performance maximale si les compilateurs utilisés contenaient toutes les

optimisations qu'on retrouve habituellement dans un compilateur.

Pour corroborer cette conclusion, un programme un peu plus élaboré (celui de la

figure 5.3) a été compilé (le fichiers assembleur est également donné dans l'annexe D).

On constate que d'avoir deux assignations contenant des convolutions ne diminue en

rien l'afficaci té du code généré donc le compilateur HPCP créé supporte efficacement

les convohtions.

5.6 Conclusions

Un nouveau langage de progranmat ion (HPCP) qui rencontre des objectifs qu'aucun

autre langage ne supporte a été décrit. On a également démontré qu'une mémoire

locale gérée sous forme de tampon circulaire est plus appropriée que des registres vec-

toriels dans les cas où on effectue des convolutions. De plus, l'efficacité des tampons

circulaires (en vitesse de calcul et espace-mémoire) a été quantifiée.

Finalement. on a démontré que la performance du code C-PULSE généré par le

compilateur HPCP conçu dans le cadre du présent travail n'est essentiellement limitée

que par l'absence d'optimisations classiques qui dépassent le cadre des présents

travaux.

Chapitre 6

Génération automatique de

directives HPF

L a pardélisation automatique de programmes est une tâche difficile. Les travaux

de plusieurs chercheurs cnt permis la mise au point d'algorithmes permettant d'y

arriver dans certains contextes et selon certains objectifs. 11 a été montré à la sec-

tion 2.2 qu'aucune des méthodes proposées ne permet de rencontrer simultanément

les objectifs suivants:

supporter le modèle d'alignement et de distribution du HPF,

a être faite d'algorithmes dont la complexité temporelle est faible et

a calculer tant i'alignement que la distribution des tableaux.

Dans ce chapitre, une méthode qui rencontre ces objectifs est décrite. La sec-

tion 6.1 décrit le cadre conceptuel utilisé, ainsi que les algorithmes permettant la

parallélisation automatique, alors que la section 6.2 décrit le traducteur qui a été im-

planté pour valider les algorithmes proposés, ainsi que le résultats des tests effectués

pour évaluer la qualité de La parallélisation. Finalement, la section 6.3 énonce les

conclusions de ce chapitre.

6.1 Cadre conceptuel et algorithmes

Dans cette section, on décrit la fonction de coûts (de communications) utilisée dans

les algorithmes d'alignement et de distribution des tableaux. On énonce également

comment l'information nécessaire à la prise de décision est extraite du programme à

paralléliser. Finalement, les algorithmes utilisés sont décrits et expliqués.

6.11 Fonction de coût

Le résumé du modèle HPF de parallélisation de la section 1.1 montre que ce modèle

supporte surtout les calculs basés sur les sections de tableaux parce que:

2. les partitions possibles sont des sections,

2. le réseau de processeurs est décrit comme un tableau et

3. le modèle ne permet de réduire les communications que de deux façons. soient:

utiliser des partitions %paissesn ' et permuter les dimensions lors de l'aligne-

ment -

Pax contre, l'utilisation d'une distribution cyclique avec des partit ions minces

peut réduire 17impact d'un mauvais équilibre des charges de calcul lorsque Le traite-

ment n'est pas totalement structuré. Ceci est possible parce que les portions de

tableaux qui requierent un plus grand effort de calcul sont réparties entre les pro-

cesseurs (par exemple, la décomposition LU). De toute évidence, il s'agit d'un com-

promis entre la répartition de la charge de calcul et la quantité de communications

requise.

Ceci implique qu'un out il de génération automatique d'alignements et de distribu-

tions (qui vise les applications effectuant un traitement structuré) pourrait supporter

les sections définies au moment de l'exécution de l'application ou il pourrait être

limité aux sections définies au moment de la compilation (Le. les sections définies

à l'aide de constantes). La première situation nécessiterait soit une compilation

spéculative, soit la redistribution ou soit une recompilation basée sur le profilage de

l'exécution des applications. Par contre, les sections définies à I'exécution ont un

comportement plus dynamique (par définition) donc, les utiliser avec un modèle de

parallélisation aussi restrictif que celui du HPF est, dans une certaine mesure, ten-

ter l'impossible parce que le modèle n'a pas le niveau d'expressivité nécessaire pour

supporter ces sections. Donc, il a été décidé de limiter l'analyse des applications aux

'Les sections de tableau qui représentent les partitions n'ont une faible longueur (e.g. 1, 2 ou 3)
pour aucune de leurs dimensions.

sections définies à la compilation seulement. Xéanmoins, ceci devrait être suffisant

pour supporter les applications visées comme, par exemple, les applications DSP et

celles basées sur une grille structurée et une méthode de calcul itérative (par exemple,

une méthode aux différences finies avec ou sans une méthode multi-grille).

De cette discussion, il se dégage que ce dont on a besoin pour trouver le meilleur

alignement et la meilleure distribution pour chaque tableau est les sections qui in-

teragissent. Ces relations forment un graphe dont les sommets sont les tableaux et

les arcs sont les alignements nécessaires pour éviter les communications. Le graphe

d'une application contient habituellement des alignements qui sont conflictuels donc,

un arbre recouvrant doit être extrait du graphe dans le but d'éliminer ces conflits.

Cela signifie qu'on doit choisir quels alignements seront satisfaits ce qui, en retour,

implique qu'une fonction de coût doit être mise au point pour effectuer cette sélection.

Le modèle de coût est le suivant: une relation qui n'est pas satisfaite impose des

communications pour transférer un nombre d'éléments de tableau égal à la somme,

pour chaque dimension, du produit de la surface d'une coupe (de partitionnement)

par la différence entre la vaieur d'alignement de la relation et l'alignement effec-

tif. Parce que le résultat de ce calcul est linéaire par morceaux en fonction de la

différence entre les alignements des relations et l'alignement effectif, la fonction de

coût devient la somme, pour toutes les dimensions, du produit de la surface de coupe

par l'alignement requis par la relation. II est à noter que cette fonction évalue le coût

des communications des processeurs qui ont le coût le plus élevé; à l'opposé, les pro-

cesseurs situés aux extrémités du réseau ont moins de communications car ils ont

moins de voisins. Ceci n'entraîne pas d'imprécision de la fonction de coût puisque

les processeurs qui effectuent moins de communications devront attendre les autres.

6.1.2 Extraction de l'information

L'unique information utilisée, pour chaque relation, est les tabieaux qui interagissent

et la borne inférieure, pour chaque dimension, des sections de ces tableaux. Seule la
borne inférieure est utilisée parce que:

1. gérer les cas ok le pas n'est pas 1 rendrait l'analyse beaucoup plus complexe

alors que cette situation ne se produit pas souvent en pratique et

Taldcau 6.1 : Liste dcs relations dc I'cxemplc dc Iëqiiation 2

2. le fait que les sections ont la même forme et qu'on ne considère pas le pas

implique que la borne supérieure n'est pas utile (i.c. la différence entre les

bornes inférieures est la même que la différence entrc les bornes supérieures).

tableau
al 1 al

Il existe une exception notable où le pas est utile: il s'agit de l'ensemble des

méthodes multi-grille mais ces dernières utilisent différents pas pour des sections

d'un même tableau donc, il s'agit de relations inutiles pour l'alignement.

En guise d'exemple, l'énoncé suivant:

al igncmcn~
- 1 -3

contient Ics relations présentées au tableau 6.1.

Les opérations supportées par les algorithmes qui sont décrits dans le reste

de la présente section sont les sections, les opérateurs ainsi que les fonctions in-

trinsèques CSHIFT, EOSHIFT, TRASSPOSE, ALL, ASY, COUNT, PRODUCT,
SUM, MAXVAL, MIXVAL, SIZE et SPREAD. Ces opérations effectuent (explicite-

ment ou implicitement) soit l'extraction d'une section, soit la déduction d'un tableau

(sauf SPREAD qui fait l'opération inwrse d'une réduction).

6 J.3 Algorithmes

Cettc section contient, dans l'ordre, la description des étapes à franchir pour effectuer

l'alignement et la distribution ainsi que les algorithmes qui implantent ces étapes.

La première étape consiste à recueillir l'information sur les relations. Dans le

but de mieux représenter les coûts de communications, si une reIation entre tes deux

même tableaux et avec le même alignement apparaît plus d'une fois dans le même

énoncé, elle est considérée comme étant une seule relation parce qu'un compilateur

optimisant regroupe les comrminications dues à un énoncé (autant que possible); ce

qui signifie que les cornmunications ne se produisent qu'une fois par énoncé (dans

le pire cas). Donc, considérer qu'une telle relation est présente à plus d'une reprise

serait trop pessimiste.

La deuxième étape consiste à trier les relations selon l'identificateur du premier

tableau, puis celui du second et, finalement, de la norme euclidienne de l'alignement

désiré. Ce tri permet, ensui te, de regrouper les relations eut re les mêmes tableaux qui

ont le même alignement désiré (le nombre d'apparitions de la relation est conservé).

Lëtape suivante consiste à créer les gabarits. L'algont hme suivant est utilisé:

1. trouver la dimensionalité la plus élevée panni les tableaux qui n'ont pas encore

de gabaxit,

2. utiliser un tableau parmi ceux-là en guise de référence,

3. trouver tous les tableaux qui sont liés à cette référence,

4. créer un gabarit ayant la dimensionalité requise et lui lier tous ces tableaux,

5. répéter les étapes 1 à 4 jusqu'à ce que tous les tableaux aient un gabarit.

Ensuite, on doit choisir les dimensions à partitionner. Si la forme du réseau de

processeurs est inconnue, toutes les dimensions (des gabarits) sont partitionnées,

sinon, l'algorithme suivant est utilisé pour effectuer la sélection des dimensions:

pour toutes les dimensions du réseau

pour tous les gabarits

pour toutes les relations

si le gabarit de la relation courante est le gabarit courant

pour toutes les dimensions du gabarit

si l'alignement de la relation courante selon la dimension courante est

grand
le coût de la dimension courante est fixé à l'infini

sinon, si le coût de la dimension courante n'est pas infini

caiculer la surface de coupe des tableaux de la relation

additionner au coût de la dimension courante le produit de

l'alignement par la surface de coupe et par le nombre

d'apparitions de la relation courante

trouver la dimension au plus faible coût (en cas d'égalité, choisir celle qui a la

meilleure répartit ion de l'effort de calcul)
assigner à la permutation de cette dimension (de gabarit) le numéro de

dimension courante du réseau

remettre à zéro les coûts des dimensions

Lorsqu'on dit que l'alignement est grand, cela signifie qu'une opération de traos-

position ou de réduction est utilisée donc que les éléments des tableaux interagissent

de façon plus complexes que celle supportée par le modèle (Le. des sections qui

interagissent).

L'étape suivante consiste à extraire l'arbre recouvrant; il s'agit, dans un premier

temps, de trier les relations selon:

1. le produit de la n o m e euclidienne pour les dimensions partitionnées par le

nombre d'apparitions de la relation e t

3. selon le nombre d'apparitions de la relation uniquement.

Le deuxième critère a été choisi-parce que, pour une quantité de communica-

tions donnée, utiliser un moins grand nombre de blocs de données (de plus grande

dimension) diminue, habituellement, la charge imposée au réseau. Deuxièmement,

les relations qui ont les coûts les plus élevés sont choisies (dans le but d'éviter ces

coûts) jusqu'à ce que l'arbre recouvrant soit complet.

Finalement, les tableaux doivent être alignés; ceci est effectué par I'algorit hme

suivant:

pour tous les gabarits

trouver un tableau qui utilise le gabarit courant et utiliser ce tableau en guise

de référence

mettre à zéro tous les éléments de I'alignement de cette référence

tant qu'on n'a pas terminé

indiquer que, par défaut, on a terminé

pour toutes les relations qui lient deux tableaux différents

si le gabarit de la relation courante est le gabaxit courant et si

un seul des tableaux de la relation courante a été aligné

aligner l'autre tableau en utilisant l'dignement de la relation courante

accumuler les valeurs minimales et maximales des alignements pour

chaque dimension

indiquer qu'on n'a pas terminé

soustraire la valeur minimale des alignements de chacun des alignements (des

tableaux) dans le but de ramener à zéro celui qui a la valeur la plus petite

créer la forme du gabarit courant (qui est la forme de la référence plus les

maximums des décalages moins leurs minimums)

6.1.4 Complexité temporelle des algorithmes

La compiexiié d a diffcke-tes étapes décrites à la section précédente sont:

trouver les relations: O(nombre d'opérateurs par expression fois nombre d'ex-

pressions)

trier les relations: O(nombre de relations fois son loganthme)

créer les gabarits: O(nombre de tableau)

choisir les dimensions à partitionner: O(nombre de dimensions du réseau fois

le nombre de gabarits fois le nombre de relations)

trier les relations (à nouveau): O(nombre de relations conservées fois son loga-

rithme) (le nombre de relations conservées est O(nombre de tableaux))

créer les alignements: O(nombre de relations conservées)

,
Etant donné que le nombre de relations est beaucoup plus grand que le nombre

de gabarits, que le nombre de dimensions du réseau et que le nombre d'occurences

des opérateurs, le temps de tri des relations domine (Le. la complexité temporelle est

O(nombre de relations multiplié par son logarithme)).

6.2 Implantation

L'implantation a été faite sous forme d'un traducteur source-source qui ajoute des

directives de parallélisation HPF à un programme Fortran 90. Le but étant de

prouver le concept, le traducteur n'est pas un compilateur complet.

La grammaire implantée est celle de [2, pp. 665-6891 mais elle a été modifiée dans

le but d'éliminer certaines arnbiguités et pour rendre l'analyse syntaxique plus facile.

Donc, le traducteur ne supporte pas le Fortran 90 complet.

6.2.1 Bancs d'essais

Deux applications ont été utilisées en guise de bancs d'essai: la première est une

simulation de fluides qui utilise le schème de différences finies de MacCormack [20]
alors que la seconde est une application de déconvolution de signal qui calcule un

estimé d'un champ de vent à partir de données de précipitations provenant d'un

radar Doppler [35] (cette application sera dénomée Semad ci-après). Dans cette

deuxième application, le schème semi-lagrangien a été remplacé par un schème aux

différences finies dans le but de rendre le traitement plus régulier et pour diminuer

i ' e h r t de t d c d requis.

Les deux applications consistent en 29 1 et 376 lignes de code respectivement (en

une seule fonction car le compilateur xlhpf qui a été utilisé semble produire du code

erroné lonqu'il y a des appels a des fonctions définies par l'usager). Aussi, le temps

d'exécution du traducteur (pour ces applications) est négligeable (i.e. quelques se-

condes) sur un SparcStation 2. Ceci confirme la faible complexité temporelle des

algo rit hmes .
Les tableaux 6.2 et 6.3 donne les temps d'exécution des applications sur un or-

dinateur IBM SPI2 qui contient quatre processeurs. Les applications ont été com-

pilées avec xlhpf et ont été exécutées sous l'environnement POE (mais ont été

soumise par l'intermédiaire de LoadLeveler). Chaque donnée représente le temps

moyen de 9 exécutions au minimum. La colonne "temps sans alignement" est le

temps d'exécution lorsque l'alignement est fixé à O pour tous les tableaux alors

que la colonne "chargen indique combien d'autres applications étaient exécutées en

même temps que celle sous étude (une valeur de 0.75 signifie que 3 applications

séquentielles étaient exécutées sur 3 des 4 processeurs).

Tableau 6.2: Tcnips d'cxkution pour I'applicatioii irIac<'orniack

Tableau 6.3: Temps d'exécution pour l'application Semad

charge

t Réseau dc forme soécifiée l

amélioratioii
(%)

nombre de
processeurs

temps sans
alignerncnt

R <&au dc forille iiou-s péci fiée

temps avec
alignement

/ riomhrc de
processeurs

O
O
1

temps avec
alignement

Réseau de forme non-spécifiée

O
0.49
3.S

amélioration

(%)
temps sans
alignement

1
2
4

310
204
312

I
2
4

Réseau dc forme spkifiée

310
'203
300

charge

O
1
1

.

110
15
99

-45
-0-9
-152

-? -
4
2 x 3

IO3
GO
64

1

-4 .tS
-25
-5s

'394
6'13
818

O
O
0.7.5

303
661
325

À t'analyse de ces tableaux. on constate que:

r il y a peu de cohérence dans les résultats,

a utiliser le réseau du SPI2 comme avec une forme de 3 x 2 entraîne une perte

de performance,

a la qualité du code généré par xlhpf semble Msiable et cette variabilité semble

dominer le changement de performance dû à la qualité de la parallélisation,

0 Semad a une structure des calculs plus complexe et le gain de performance

associé à l'utilisation de l'outil de parallélisation semble plus grand donc il

semble que l'outil soit profitable lorsque les applications sont complexes,

0 la structure des calculs de l'application MacCormack (qui est très régulière)

fait en sorte que p!usieurs alignements entraînent les même coûts de communi-

cations ce qui fait que la différence de performance est souvent très faible entre

les cas avec alignement et ceux sans dignement.

6.3 Conclusions

Des algorithmes d'alignement et de distribution ont été décrits et on a démontré

qu'ils ont une faible complexité temporelle.

Des applications ont été compilées à l'aide d'un outil qui implante ces algorithmes

et leur exécution semble montrer que les compilateurs HPF ne sont pas suffisamment

matures pour permettre de prédire le niveau de performance selon la configura-

tion du système et les directives de parallélisation. II semble donc qu'un outil de

génération de directives de parallélisation doive tenir compte du compilateur pour

pouvoir générer des direct ives judicieuses.

Chapitre 7

Généralisation et forrnalisat ion du
modèle de partit ionnement

Le modèle de partitionnement utilisé jusqu'à présent est celui du HPF. Au chapitre 6.

des algorithmes qui permettent de cdculer ce partitionnement de façon automatique

ont été décrits. Une version plus contrainte de ce modèle a également été utilisée

dans le chapitre 5. Cependant, le modèle HPF est très contraignant, en particulier,

en ce qui concerne le fait qu'une dimension ne puisse être partitionnée qu'une seule

fois. Bien que, dans le cas général, ceci ne cause pas de problème. il est bon de

rendre le modèle plus flexible pour mieux supporter les cas qui seraient pathologiques

avec le modèle HPF. C'est-à-dire que, même si ces cas sont plut& rares. iiti<- pcrte

potentielle de performance qui serait dramatique mérite qu'oii aridiorc~ Ir support

pour ces applications.

Dans le présent chapitre, on montre comment généraliser le modcle de distribut ioti

(Le. le modèle d'alignement n'est pas modifié). La description du nouveau modèle de

distribution est faite en utilisant MOA (qui est décrit à l'annexe A) et le A-calcul [i5]

dans le but de formaliser le modèle.

Pour pouvoir effectuer une distribution selon la méthode qui sera décrite dans ce

chapitre, la seule informat ion nécessaire concernant le réseau de communication est

sa forme, c'est-à-dire qu'on se limite à des réseaux pouvant être décrit sous forme de

tableau et l'information spécifique dont on a besoin est la forme de ce tableau (Le.

on utilise le merne modèle de réseau que celui supporté par HPF). Cette restriction

permet malgré tout l'utilisation des réseaux les plus courants soient les réseaux à

mailles et les "k-ary n-cubes". Dans le premier cas, la forme du réseau s'obtient

directement par inspection alors que dans le deuxième cas, la forme du réseau est un

vecteur de n éléments valant tous k-

La section 7.1 décrit quel type de distribution on veut supporter alors que la

section 7.2 décrit les algorithmes nécessaires à I'irnplantat ion de la distribution. Fi-
nalement, la section 7.3 tire des conclusions sur ce chapitre.

11 est à noter que ce chapitre est une généralisation d e ce qui a été décrit dans [LOI.

7.1 Classe de distribution

L'objectif premier étant de définir un environnement de travail pour décrire et im-

planter des algorithmes de distribution, on vise à solutionner ces problèmes pour

un sous-ensemble des types d e distribution possibles. Puisqu'on vise à supporter

les applications qui effectuent un traitement structuré (régulier) sur des tableaux,

on se penche sur une classe de distribution qui se décrit facilement en termes de

transformations sur des tableaux.

La classe de distribution visée est celle qui consiste à diviser un tableau perpendi-
C

culairement à un de ses axes. Etant donné qu'un ordinateur parallèle a souvent plus

d'une dimension. ce processus de subdivision sera effectué pour chaque dimension du

réseau. Plus précisement, pour chaque dimension du réseau, le tableau de données

sera partitionné en un nombre de parties égal à la longueur du réseau dans cette

dimension. Ceci est une modification au modèle HPF puisque ça permet de distribuer

une dimension du tableau de données plus d'une fois. La distribution sera exprimé

par un vecteur nommé Üp et utilisera les informations suivantes:

4

s,: forme du réseau,

s',: forme du tableau de données (qui sera noté &).

Û, définit la distribution à effectuer de la façon suivante: GP[i] indique quelle

dimension de ta est partitionnée par la dimension i du réseau. Cette dimension de

& est donc partitionnée en ;,[il sous-tableaux.

On voit donc que üp doit respecter les conditions suivantes:

Cette classe de distribution est intéressante parce qu'elle supporte les applica-

tions qui effectuent un traitement structuré sur des tableaux puisqu'elle favorise les

communications locales tout en étant plus générale que celle du HPF.

7.2 Algorithmes

Étant donné U,. Partition (qui est exprimée à l'aide du kcdcul) calcule la forme

des partitions à partir de la forme du tableau de données et de la forme du réseau.

Cette expression s'appelle elle-même récursivement et, à chaque fois, elie divise

l'élément pertinent de la forme temporaire st par le bon élément de la forme du

réseau donc, si vaut Sa au début, il contient la forme des partitions Z,,, à la fin.

Dans le but d'exprimer la distribution en fonction de transformations sur un tableau,

elle sera exprimée comme une opération qui transforme un tableau de forme s', en

un tableau dont la forme est la concaténation de s', et de Spart. Donc, si G, est la

forme du tableau après la distribution:

Maintenant. on doit trouver comment transformer eu en crin, (le tableau de forme
+
S) On ne peut pas simplement faire un "reshapen (P) de Cu parce que cet

opérateur préserve l'ordre lexicographique. Si, par exemple, G< 4 6 >. ptP E<

2 3 > e t

Alors, avec le "reshape" . on obtiendrait (en notant que s',& est < 2 2 >):

Mais on doit avoir:

si on veut implanter l'algorithme décrit ci-haut.

Étant donné qu'une dimension du tableau de données est divisée pour "créer"

chaque dimension du réseau, on doit entrelacer les dimensions des partitions avec

celles du tableau de processeurs pour obtenir la forme de tableau dans laquelle les

partitions sont intactes. Pour le démontrer, on a besoin du théorème 1 où est iin
4

tableau de données non-vide, j est la dimension de qui est partitionnée, d indique

comment la dimension j de ce est partitionnée (par exemple, si elle est partitionnée

en 3 et que les partitions résultantes sont partitionnées en 5 et que les partitions
-b

résultantes sont partitionnées en 4 alors d =< 3 5 4 >) et O. est la forme

après que la dimension j ait été partitionnée.

Le théorème montre que. si on effectue un "reshapen d'un tableau en remplqant

une de ses dimensions par un certain nombre de dimensions pour lequel le nombre

total de sous-tableaux reste le même, alors ces sous-tableaux (indexés par l dans le

théorème) restent les mêmes parce que le 'reshapen préserve l'ordre lexicographique.

Ce qui change est l'ordre dans lequel ces sous-tableaux sont combinés pour former

le tableau complet. Il est à noter que ce théorème montre que chaque dimension est

indépendante des autres sous cette transformation et, donc, qu'on peut appliquer la
distribution à plusieurs dimensions à la fois.

Théorème i Si 3 j , O 5 j < bCe tel que rd= (p &) b] et que O 5' i'<' (j + 1) A p&,

Si on pose

Alors

Preuve:

((v + u s) f ((ri) - I + (TL)) v p(Üs F e e) Définition de + et

((j + l) - L + r d t) v ü S Définitiondep

et Psi Correspondence Theorern[4%1

p(îi&) Définit ion de t,!~

Donc, on doit montrer que

Ce théorème montre que, pour distribuer un tableau en le divisant selon une de

ses dimensions, on doit faire un "reshape" en utilisant, en guise de nouvelle forme, le

vecteur obtenu par la concaténation de la longueur du tableau de processeurs selon

chaque dimension qui partitionne la première dimension du tableau de données et

de la dimension de cette première dimension (après la distribution) et en répétant

pour chaque dimension du tableau de données.

La lambda-expression suivante donne la forme désirée:

Init : AZp.$.5,,,t.&.~nit if [r& i 1, Y;:,& ++s',[g,[O]]+s'Patt [O]

if [~ p [g v [o l l = q ! T v [~]] , 1nit(Zp, Ü p , s,,, 0 &,
Gnit +$ [li, [O]])

rnit(zp, üp, 1 v spart, 1 v su, ~ , , i t ~ ~ ~ ~ [o]

Donc. le tableau après cette opération est donnée par:

11 ne reste plus alors qu'à transposer <,nit pour obtenir if,,, parce que, dans ejnit,
les dimensions du tableau de processeurs sont entrelacées avec celles des partitions

alors qu'on les veut séparées. Le résultat de Gentv, donnée ci-dessous, est le vecteur

qui donne la permutation nécessaire.

Donc, le tableau part itionné est donné par:

Avec ces expressions, tout ce qui manque pour e f f ~ t u e r une distribution parti-

culière est la valeur de ü, pour cet te distribution. Ce dernier peut être calculé grâce

à l'algorithme de sélection de dimensions de la section 6.1.3 (page 70) dans lequel

la sélection de la dimension serait modifiée pour permettre la répétition d'une ou

plusieurs dimensions.

7.2.1 Exemple

Dans cette section, on montre comment utiliser Partition, Init et Gentv pour - -D -e

calculer s',a,t, ski(et 1 , à partir de &,o J, et v,.

Supposons que:

s', < * 5 3 4 : 3 3 4 5 3 >

s', < 900 576 >
üp G < 0 0 1 0 1 1 0 i >

Alors, chaque appel récursif de Païtition donne:

Donc, r< 4 4 >.

Étant donné que gu VP E< O 1 3 6 2 4 5 7 >, chaque appel récursif de Init donne:

Donc, =< 5 3 3 5 4 4 3 3 3 4 >.
Chaque appel récursif de Gentv donne:

-
sV t, 1 enci 1

~ o n c , & r < 0 1 3 6 8 2 4 5 7 9 > .

Pour montrer que ces résultats sont corrects, on dérive s',,,.

7.3 Conclusions

On a mont ré comment MUA et le A-calcul permettent de décrire la dist nbution d'un
tableau de manière rigoureuse et conceptuellement simple.

La seule donnée à calculer pour utiliser cet te méthode de distribution est Üp.

Chapitre 8

Conclusions

Tel que discuté dans cette thèse, le traitement structuré (régulier) de tableaux en-

globe un grand nombre d'applications et ces applications forment une classe impor-

tante (au sers de l'utilité) en pratique.

Dans le but d'accélérer le traitement de ces applications, on a décrit un algo-

rithme permettant d'effectuer rapidement et à peu de frais le calcul d'adresses des

éléments de tableaux transformés. On a égaiement décrit un générateur d'adresses

qui implante une version parallele de cet algorithme. Ce générateur d'adresses sup-

porte toutes les transformations linéaires entre un vecteur d'indice et une adresse.

De plus, on a montré que 1.implantation matérielle a une très faible complexité et

qu'elle permet de calculer une adresse par cycle d'horloge normalement (ce qui est

très rapide).

On a démontré que les registres vectoriels sont une forme de mémoire locale

qui n'est pas appropriée pour les convolutions, puisqu'ils forcent un gaspillage de

la bande passante entre la mémoire et le processeur. Une méthode de gestion de

mémoire locale sous forme de tampons circulaires a été décrite. Elle consiste à

charger les éléments successifs de tableaux a des positions dans le tampon circulaire

qui sont à une distance égale au nombre de rangées dans le noyau de convolution

et à utiliser un tampon d m t la taille force un "wraparound", de façon à ce que les

éléments d'une colonne du tableau soient à des positions successives dans le tampon.

On a démontré que cette méthode permet d'extraire un maximum de performance

d'instructions vectorielles. Le seul compromis de cet te rnét hode est qu'elle nécessite

légèrement plus de mémoire que le minimum nécessaire pour éviter de charger des

éléments de tableaux plus d'une fois.

On a également proposé un langage de programmation qui permet de décrire

les applications qui traitent des tableaux de façon structurée à un haut niveau

d'abstraction, tout en permettant tant la génération de code performant (pour des

algorithmes basés sur des convolutions), ainsi que la parallélisation des applications

pour des architectures SIMD. Pour permettre la génération de code performant, on

s'appuie sur l'utilisation efficace d e tampons circulaires e t d'instructions vectoriella

qui permettent d'effectuer une mult i plicat ion-accumulat ion par cycle d'horloge sur

une architecture qui supporte ce type d'instruction.

Il a également été montré qu'il est possible de paralléliser les applications grâce à

des algorithmes dont la complexité temporelle est faible. Pour ce faire, on utilise la

forme et la position des sections de tableaux qui sont utilisées dans le programme à

paralléliser et on trouve les sections qui doivent être alignées ainsi que les dimensions

qui doivent être partitionnées de façon à minimiser les communications. Cependant,

comme le langage HP F a été utilisé pour en faire la démonstration e t que le compila-

teur utilisé manque de maturité, il n'a pas été possible de quantifier la qualité d e la
parallélisation obtenue. Une avenue intéressante pour y parvenir consiste à utiliser

les dits algorithmes dans le compilateur HPCP créé dans le cadre de la présente

thèse. Évidemment, comme l'environnement HPCP est plus contraint que celui du

HPF, les conclusions de tels travaux ne pourraient pas être aussi générales.

Finalement, on a décrit comment formaliser et généraliser le modèle de partition-

nement du HPF de façon à permettre de partitionner une dimension de tableau de

données plus d'une fois.

Les pistes de recherche les plus intéressantes qui découlent des travaux de cette

thèse sont:

intégrer les algorithmes de parallélisation au compilateur HPCP et évaluer leur

qualité tel que décrit ci-haut et

étendre l'ensemble des fonctions intrinsèques du HPCP pour supporter des

réductions et le "spread" d u Fortran 90 (ceci permettrait d e supporter un

plus large ensemble d'applications incluant la solution de systèmes d'équations

linéaires denses et les applications de déconvolution),

supporter l'énoncé Voralln dans les algorithmes de parallélisation HPF,

rendre le générateur d'adresses plus général en faisant en sorte qu'il supporte

les transformations quadratiques dont les paramètres peuvent être rationnels

(ceci permet trait de supporter plusieurs t raosformations utilisées en traitement

d'images).

Bibliographie

[II ACHIM, M., BONELLO, C., VAN DONGEN, V.. C-Pulse - a language for

parallel DSP systems. In Pmceedings of the 1 lth Annual International Sympo-

sium on High Perfomance Cornputing Systems (HPCS797), 1997.

r2j ADAMS, J., BRAINERD, W., MARTIN. J., SMITH, B., WAGENER, J., For-

tmn 90 Handbook McGraw-Hill, New-York, 1992.

[3] AHO, A., SETHI, R., ULLMAN, J. D., Compilers: Prineiples, Techniques, and

Tools. Addison- Wesley, 1986.

[4] ASANOVIC, K.. BECK, J.. TO engineering data. Technical Report TR-96-057,

International Computer Science Intit ute, Berkeley, California, USA, December

1996.

[5] ASANOVIC, K., JONSHON, D., Torrent architecture manual. Technical Re-
port TR-96-056, International Computer Science Intitute, Berkeley, California,

USA, December 1996.

[6] BAGRODIA, R., CHANDY, K. M., KWAN, E., Uc: a language for the con-

nect ion machine. In IEEE Computer Society Press, editor, Pmeeedings of Su-

percomputing '90. pages 525-534, November 1990.

[7] BAU, D., KODUKULA, I., KOTLYAR, V., PINGALI, K., STODGHILL? P.,
Solving alignment using elementary linear algebra. Lecture Notes in Computer

Science, 892 (Proceedings 7th International Workshop on Languages and Corn-
piiers for Pardel Computing):46-60, August 1994.

[8] BECKER, G., MURRAY, N., Syrnmetric indexing of arrays. ki Proceedings of

MASPLAS '96 The Mid-Atlantic Student Workshop on Pmgramming languages

and Systerns, pages 4.1-4.10. SUNY at New-Paitz, April 1996.

Available at URL: http : //wu .mcs .newpaïtz. edu/masplas96.

[9] BÉLANGER, N., ANTAKI, B., SAVARIA, Y., An a l p i t h for fast array

tramfers. In Prvceedings of the 1 1 th Annual In ternational Symposium on High
Performance Computing Systerns (HPCSJ97), 1997.

[IO] BÉLANGER. N . , MULLIN, L.. SAVARIA, Y., Forma1 rnethods for the parti-

tioning, scheduling and routing of arrays on a hierarchical bus muitiprocessing

architecture. Technical Report 841, Universi té de Montréal, June 1992. Pro-

ceedings of ATABLE'92.

[il] CHATTERJEE, S.. GILBERT, J., SCHREIBER, R., The aiignment and distri-

bution graph. Lecture Notes in Cornputer Science, 768 (Proceedings 6th Inter-

national Workshop on Languages and Compilers for Parailel Comput ing) :ZM-
252? August 1993.

[12] CHATTERJEE, S., GILBERT, J., SCHREIBER, R., SHEFFLER, T., Array

distribution in data-pardiel programs. Lecture Notes in Cornputer Science,

892 (Proceedings 7th lnternationd Workshop on Languages and Cornpilers for

ParaIlel Computing) :7&9 1, August 1994.

[13] CHATTERJEE, S., GILBERT, J., SCHREIBER, R., TENG, S., Automatic a.r-

ray alignment in data-parallel programs. In Conference Record of the Twentieth

ilnnuol A CM SIGPLA N-SICA CT Symposium on Principles of Pmgmmrning

Languages, pages 16-28. ACM, January 1993.

[14] CHING, W., Automatic parallelization of APL-style programs. A P L Qoute

Quad, 20(4):76-80, July 1990.

[15] CHURCH, A., The Calculi O/ Lambda Conversion. Princeton University Press.

1941.

[16] DALLY, W., Performance andysis of k-ary n-cube interconnection networks.

IEEE Transactions on Comput ers, 39(6):775-785, J une 1990.

[17] D'HOLLANDER, E., Partitioning and labeling of index sets in do loops with

constant dependance vectors. In Proceedings of the 1989 International Conjer-

en ce on Parailel Processing, 1989.

[ls] DONGARRA, J., DUFF, I., SORENSEN, D., VAN DER VORST, H., Solving

linear systems on vector and Shamd Mernory Cornputers. SIAM, 1991.

[19] FLYNN, M., Very high-speed cornput ing systerns. Pmc. IEEE, 54(12): 190 1-
1909, December 1966.

[20] GARCIA, R., KAHAWITA, R., Numerical solution of the St. Venant equa-

tions wit h the MacCormack fini te-difference scheme. International Journal for

Numerical Methods in Fuids, 6:259-274, 1986.

['Zl] HAMEY, L., WEBB, J., WU, I., An architecture independant programming

language for low level vision. Computer vision, Gmphics, and Image Pmessing,

48246-364, 1989.

[22] HENNESSY. J., JOUPPI, N., Computer technology and architecture: an evolv-

ing interaction. Comput er, 24(9): l&S9, September 199 1.

[23] HENNESSY, J., PATTERSON, D., Computer Architecture: a Quantitative

A p p m c h . Morgan Kaufmann pubiishers, Pa10 Alto, 1990.

[24] HIGH PERFORMANCE FORTRAN FORUM, High performance fortran lan-

p a g e specification, version 1.0. Technical Report CRCP-TR92225, Center for

Research on Parallel Computation, Rice University, Houston, TX, May 1993.

[25] HOFFMAN, J . , Numerical Methods for Engineers and Scientists. McGraw- Hill,

1992.

[26] IVERSON, K., A Pmgramming Language. Wiley, New-York, 1962.

[27] IVERSON, K.. ISI Dicizonary of J . Iverson Software Inc., 1990.

[28] JENKINS, M., The Q'Nial Reference Manual. Nia1 systems Ltd., Ottawa,

Canada, 1985.

[29] KENNEDY, K., KREMER, K., Automatic data layout for high performance

fortran. Technical Report CRPC-TR944984, Rice University, December 1994.

[30] KERNIGHAN, B., RITCHIE, D., The C pmgmmming language. Prentice Hall,

Englewood Cliffs, N. J., 1988.

[31] KING, C., NI, L., Grouping in nested loops for parallel execution on mul-
ticomputers. In Pnmedings of the 1989 International Conferrnce on Parallel
Processing, 1989.

[3L] KNOBE, K.. LUKAS, J., STEELE, G., Data optirnization: Allocation ol ar-

rays to reduce communication on SIMD machines. Journal of Pamllel and

Distributed Computing, 8: 102-1 18, 1990.

[331 KNOBE, K., NATARAJAN, V., Automatic data ailocation to minimize com-

munication on SIMD machines. The Journal of Supercomputnig, 7(4):38'Xl6,

December 1993.

[34] KOELBEL, C., MEHTROTRA, P.. ROSENDALE, J ., Semi-automatic domain

decomposition in BLAZE. In Pmceedings O/ the 1988 International Conference

on Paralie1 Proeessing, pages 521-524, August 1988.

[35] LAROCHE,S., ZAWADZKI, 1.. A variationnal analysis method for retrieval

of three-dimensional wind field from single-doppler radar data. Journal of the

Atmospheric Sciences, 51 (18):2664-2682, September 1994.

[36] LEISS, E., Parullel and Vector Computing: a pmctical Introduction. McGraw-

Hill, 1995. ISBN 0-07-037692- 1.

[37] MACE. M., Memory Stomge Patterns in Pamllel Processing. Kluwer Academic.

Boston, MA, 1987.

[38] MAY. D., Occam. ACM Sigplan Notices, 18(4):69-79, April 1983.

[39] MCCALPIN, J., Memory bandwidth and machine balance in current high per-

formance cornputers. IEEE Technical Committeo on Computer Architect u n

Newslett er. December 1995.

[40] MIPS., RIO000 Micmprocessor User's Manual. Available at URL:
http: //me sgi . com/HIPS/products/r1Ok/üi4ax~V2.O/ü'RâL/tS. Ver. 2, O. boolt4. html

Section 1-9.

[41] MULLIN, L., A Mathematics of A m y s . Ph.D. dissertation, Syracuse üniver-

si ty, December 1988.

[42] MULLIN, L., The psi correspondence theorem: Array mapping using the Psi

calculus, 1992. Private communication.

[43] PERRY, D ., VHDL. Computer Engineering. McGraw-Hill, 1994.

[44] RAMANUJAM, J., SADAYAPPAN. P., Compile-time techniques for data dis-

tribut ion in distributed memory machines. IEEE Tmnsactions on Pamllel and

Distributed Systems, 2(4):472-482, October 1991.

[45] RAYTHEON ELECTRONICS (SEMICONDIJCTOR DIVISION), TMC2301
Image Resampling Sequencer Pmduct specification.

[46] SHANG, W., FORTES, J., Independent partitionning of aigorithms with uni-
form depedencies. IEEE Tmnsactions on Comput ers, 4 1(2): lW-;?O6, Febmary

1992.

[47] SHEU, J.? CHANG, C., Synthesizing nested loops algorit hms using nonlinear
transformation rnethod. IEEE Trnnsactions on Panillei and Distributed Sys-

tems, 2(3):304-317, July 1991.

[48] SHEU, J., TAI, T., Partitioning and mapping nested loops on multiprocessor

systems. IEEE Tmnsactions on Pamllel and Distributed Systerns, 2(4):43&439,
October 1991.

[49] STREAM results available at URL: http : //m. C S . virginia. e d u h t r e d .

[50] TSENG, P., A Systolic A m y Pamlleliring Compiler. Kluwer Acadernic Pub-

lishers, 1990.

[si] WAWRZYNEK, J., ASANOVIC, K., KINGSBURY, B.? DNIDSON, J, BECK,
J., MORGAN, N., Spert-II: A vector microprocessor system. IEEE Cornputer.

pages 79-86, Mach 1996.

Annexe A

Introduction à MOA

MOA [41] est un formalisme mathématique permettant de manipuler les tableaux

monolithiques c'est -%-dire des st mct ures de données orthogonales dont les éléments

sont des scalaires. De l'utilisation de tableaux monolithiques et des concepts vébicu-

lés par la définit ion d'un tableau, il découle un certain nombre d'opérateurs: 6 donne

le nombre de dimension d'un tableau; par exemple, si le tableau 5. est un tableau

de 4 par 5 par 6, alors 6& 3. L'opérateur p donne le vecteur qui décrit la forme

d'un tableau; par exemple, p& =< 4 5 6 >. L'opérateur r calcule le nombre total

d'éléments contenu dans un tableau; soit rte G 4 x 5 x 6 120. L'opérateur a

donne le produit des éléments du tableau donc n p c T E est toujours vrai et indique

que le nombre total d'éléments de (est égal au produit des éléments de sa fornie.

L'opérateur ii, est l'opérateur d'indexation de MOA. Le résultat de cct iiidrsat ion

est le sous-tableau obtenu en accédant le tableau à l'aide du deuxiènic argurrtcnt.

Par exemple, toujours en utilisant le même tableau, Vn tel que O 5 rt < 4. p(<

n > +et) = < 5 6 >. AussiVn,m telsque O s n < 4 et O 5 m < 5. p(<

n m > ii>te) =< 6 >. L'opérateur rav transforme un tableau en un vecteur ayant

les mêmes éléments placés dans le même ordre lexicographique (avec la dimension O

qui a le poids le plus grand). Par exemple, si

alors

Les opérateurs y e t y' permettent respectivement d'adresser un tableau trans-

formé par rav et d'adresser un élément dans un tableau sachant sa position dans le

tableau un fois transformé avec rav . Plus précisément,

y f (n : pA)*A (rav .4)[n]

où les crochets([1) dénotent les indices de l'élément qu'on accède dans un tableau.

Finalement, notons qu'un tableau vide est appelé 8.
L'opérateur P est utilisé pour changer la forme d'un tableau; par exemple:

L'opérateur L produit un tableau dont les sous-tableaux contiennent leurs propres

coordonées dans le tableau. On notera que l'argument de r ne peut être qu'un scdaire

ou un vecteur. Par exemple, i l0 z< O 1 2 3 4 -5 6 7 8 9 > ou encore

L'opérateur ++ effectue la concaténation de deux tableaux qui consiste à abouter

les tableaux selon la dimension O donc les tableaux doivent avoir la même longueur

pour les dimensions autres que O pour que le résultat soit toujours un tableau. Par -
exernple.si Z = < 2 4 6 8 > e t b=< 1 3 5 > a l o r s Z + b ~ < 2 4 6 8 1 3 5 > .

L'opérateur A divise un tableau en deux selon la dimension O et ne conserve

qu'un des deux tableaux résultants. La longueur du tableau résultant est donné en

argument: si ce scalaire est positif alors le résultat est pris à partir de la coordonée O

s'il est négatif alors le résultat est pris à la fin du tableau et s'il est zéro, le résultat

est vide (8). Par exemple, p (2 A ce) rc 2 5 6 >. L'opérateur v a sensiblement

le même effet sauf que l'argument scalaire indique quelle partie du tableau doit être

enlevée; par exemple, p(1 v ce) =< 3 5 6 >.
L'opérateur 4 inverse l'ordre des éléments d'un tableau selon la dimension O. Par

exemple:

L'opérateur Q effectue une permutation des dimensions d'un tableau. Cette

permutation est effectuer selon le contenu d'un vecteur i? de la façon suivante: la iiMe

dimension du

< 0 1 > U) C j

tableau devient ia dimension < i > JlZ. Par exmple, avec Zr< O 1 >?

C j et avec =< 1 O >:

2 12

L'opérateur 0 effectue une rotation des éléments d'un tableau. Si l'opérande qui

spécifie la rotation est un scalaire a alors:

Si l'opérande est un tableau, on effectue une rotation sur chaque vecteur selon la

dimension O du tableau et l'amplitude de la rotation sur chacun des vecteurs est

donnée par un des éléments de la deuxième opérande.

L'opérateur gu crée le vecteur qui contient les index dont on a besoin pour accéder

le vecteur (donné en opérande) en ordre croissant. Autrement dit, q p i7J est en ordre

croissant,

MOA défini également des opérateurs à haut niveau. Le premier est 0; cet

opérateur permet d'appliquer un autre opérateur à des sous-tableaux. Lorsqu'on

l'utilise avec un opérateur binaire, il nécessite les opérandes suivantes:

-
où g est l'opérateur binaire, d G< al a, > et q 2 O, o; 2 O. Dans cette situa-

t ion, R divise t1 en sous- tableaux de ai dimensions (en laissant intactes les dimensions

de plus faible poids), il divise également Er en sous-tableaux de gr dimensions. Fi-

naiement, après avoir appliqué l'opérateur g sur les paires de sous-tableaux (un de

ci et un de Cr), il effectue la concaténation des tableaux résultants.

Lorsqu'on l'utilise avec un opérateur unaire, il nécessite les opérandes suivantes:

Ar E

OU f est l'opérateur unaire, d=< o > et o 2 O. Dans cette situation, R divise 5 en

sous-tableaux de a dimensions, il applique ensuite f sur ces tableaux et, finalement,

il effectue la concaténation des tableaux résultants.

L'opérateur 18 est le produit externe généralisé. Les opérandes dont il a besoin

sont deux tableaux et un opérateur scalaire. Le résultat de cet opérateur est un

tableau qui contient le résultat de l'opérateur scalaire appliqué à toutes les paires

d'éléments possibles (un de chaque tableau). Donc, la forme du tableau résultant

est la concatenation des formes des opérandes. Par exemple, si u' GC L 3 4 > et

Ü ~ < 2 5 6 7 > a l o t s p (Ü @ + ~ ~ < t i . i > e t

Annexe B

Code pseudo-assembleur pour la
génération d'adresse

forinit: ADD R, Rshape-j_l #O : while overhead

for: LOAD R e g , Res ; loop time

ADD Res7Res,Rincrjl ; 100p time

SUB & . & , # l ; loop time

JNZ R;, for : loop time

: while overhead

: while overhead

JGE Rj,o-while ; while time

ADD Rcur-j &Ur-j 7 # 1 ; while tirne

SUB Rte,P? Rcur-j Rshape-j ; while time

JNE Rtemp, O-while ; while time

; while tirne

; while time

; while time

; if time

; while time

; while time

; whiIe overhead

Annexe C

Grarnmaîre de HPCP

prirnaxy-expr: identifier

1 constant

1 '(' conditional-expr ')'

post fix-expr: primaryxx y r

1 identifier duos

1 identifier '(' argument axprlist ')'

duos :

duo:

duo

1 duos duo

'[' duoalem ':' duo-elem '1'
1 '[' duoalem '1'

duoxlem: constant xxpr

argument axprlist : condit ionalaxpr

1 argument -exprlist ',' conditional-expr

unary-expr: postfixsxpr

1 unary ~perator cast -expr

cast xxpr: unary-expr

mult iplicativeaxpr: cast ,expr

(multiplicativerxpr '"' cast xxpr

addit ive-expr:

shift axpr:

relat ionalxxpr:

equali ty-expr:

and-expr:

m d t iplicat ive-expr

1 additive-expr '+' multiplicative~xpr
. . 1 additivemxpr - mult iplicat iveaxpr

addit ivemxpr

1 shift-expr 'CC' additive-expr

1 shift-expr '> >' additive-expr

shift mxpr

1 relationalaxpr '<' shift -expr

1 relationalaxpr '>' shift-expr

1 relatiooalaxpr '< =' shift xxpr

1 relationalaxpr '> =' shiftaxpr

relat ionalaxpr

1 equality-expr '==? relationalaxpr

1 equality-expr ' !=' relat ional-expr

equali ty-expr

1 andmxpr '&' equalitymxpr

exclusive_ormxpr: andxxpr

1 exclusivearaxpr '- ' and-expr

inclusive-or-expr: exclusive,or-expr

1 inclusive-or-expr '1' exclusive-oraxpr

logkaland-eapr: inclusive-oraxpr

1 IogicaLand-e-xpr '%&' inclusive~raxpr

condit ionalaxpr: logicalar -expr

assignment -expr: identifier assignment -operator condit ionalaxpr

1 identifier duos assignment -operator condit ionai-expr

1 identifier '(' argument-exprlist ')'

- 7 assignment -operator: =

I '*=<

constant-expr:

dedarat ion : declarationspecifiers init-declaratorlist ';'

declarationspecifiers: typespecifier

1 declarat ionspecifiers typespecifier

init-declaratorlist: init -declarator

1 init-declaratorlist ',' init declarator

init ,dedarator:

init ializer:

ty pespecifier:

dec larat or:

st at ernent :

declarat or

1 identifier '=' ioitializer

constant -expr

'long'

1 k t '

1 'const'

identifier

1 declarator '[' constant a x p r '1'

cornpoundstatement

1 expressionst aternent

1 select ions t at ernent

1 pragmastatement

1 wherestatement

1 loopstatement

compoundrtatement : '{' ' }'
1 ' { ? statement-list '}'
1 '{' declarations st aternentlist ')'
1 '{' declarations dist 1 s t statement l i s t ' }'

declarat ions:

dist list:

declarat ionlis t

dist ribute-pragma

1 distlist distributepragma

distribute-pragma: '#pragmaY 'distribute pragrna-list ' : O

pragmalist :

pragmaitem:

dist ,descs:

dist ,desc:

qualif:

decfarat ionlist:

statement Jist :

pragmaitem

1 pragmalist ',' pragmaitern

identifier dist -descs

dist ,desc

1 dist -descs dist desc

.[' qualif '1'

1 'block'
1 'cyclic'

1 'cyciic? '(' constantaxpr ')'

declarat ion

J declaration Jist declarat ion

statement

1 s t a t emen th t statement

expressionst atement: assignment a x p r ';'

select ionst at ement : 'if' ' (' condit ionalnxpr O) ' s t atement

1 'if' '(' conditional-expr ') ' statement 'else' st atement

w herestatement : 'where' '(' conditional-expr ')' statement

ioopstatement: 'loop' statement

pragmastatement : '#pragmaT 'configuration' constant -expr

file: funct ion-definit ion

funct ion-definit ion: identifier '(' ')' function-body

funct ion-body: compoundstatement

identifier: (alpha 1 '-')(alpha 1 digit '-')'

alpha: [a-z A- Z]

digit: [O-91

constant: O [xX] xdigit+

1 O digit+

1 digit+

1 xdigit +

xdigi t :

Annexe D

Code C-PULSE et assembleur des
programmes de test

Figure D. 1: Code C-PULSE généré pour le programme de la figure 3.5

Ld #O rbl
Label LO

Sub rbl 118 rb3
Ifc rb3 rO

BBPA L2
Ld #O ral

Label L3
Snb ral #2 ra4
Ifc ra4 rO

B W A L5
Ld #O rb4
Sub rbl #7 ras
Sub rbl #O rb5
Ifc rb5 WS536 rO
Ld #O ra6
Snb rai #7 rb6
Sub ral #O ra7
Ifc ra7 #65536 rO
Ld #O ra2

Label L6
Snb ra2 #4 rb7
If c rb7 rO

BHPA L8
%SR

Bestore
Label L7
Znc ra2 rO

BU L6
Label L8

Ld nport ra3
Ifc ral #O rO

Aes e f SP -hpcp,t mp
Ld ra8 -hpcp,temp
Ld nport ra8

Restore
Ifc rai #1 rO
Sub rai #2 rb8

ResetSP -hpcp-t emp
Ld ra9 ,hpcp,temp
S t ra9 nport
BSR

Restore
Ld #O rb9
Snb rbl #7 rai0

Figure D.2: Code assembleur généré pour le programme de la figure 5.5

Sub r b l #O rblO
Ifc rb1O #65636 rO
Ld #O r a l l

Sub r a l #7 r b l l
Sub r a i #O r a l 2
Ifc r a i 2 #65536 rO
Ld ra3 rb2

Restore
Restore

Ld #O rb12
Sab rb1 #7 ra13
Sub r b l #O rb13
Ifc rb13 #65536 rO
Ld IO ra14

Snb ral #7 rb14
Sub rai #O r a i 5
Ifc r a l 6 a65536 rO
St rb2 spo r t
Ld #O ra2

Label L9
Sub ra2 #4 rb15
Ifc rb15 rO

BIWA LI1
SSR

Restore
Label LI0
Inc ra2 r O

BU L9
Label L 1 1

Restore
Restore
Restore
Restore
Restore

Label L4
Inc r a l r O

BU L 3
Label L 5

Restore
Label L1
ïnc r b l rO

BU LO
Label L2

Ret

Figure D.3: Code assembleur généré pour le programme de la figure 5.5 (suite)

Figure DA: Code C-PULSE généré pour le programme de la figure 5.6

C a l l ,initbufAr
C a l l ,initbufAa

M #O r b l
Label LO

Sub rb1 #IO ra3
Ifc ra3 r O

BEPA t2
M #O rai

Label L3
Sub ral #4 rb3
If c rb3 r O

BIWA L5
L d #O ra4

Sub r b l #9 rb4
Sub rb1 #O ra5
If c ra5 #es536 rO
Ld #O rbS

Sub rai #9 ra6
Sub ral #O rb6
Ifc rb6 a65536 rO
Ld #O sa2

Label L6
Sub ra2 ü4 ra?
Ifc ra7 rO

BEPA L8
ESB

Restore

Figure D.5: Code assembleur généré pour le programme de la figure 5.6

Label L7
ïnc ra2 rO
BU L6

Label L8
C a l 1 ,uritebufAw
Ifc ral #2 rO
Sra r8 nport r8

ResetSP ,hpcp,temp
Ld rbT ,hpcp,tenip
Ld r8 rb7

Restore
If c ral #1 rO
Sab rai #2 ra9

ResetSP ,hpcp,temp
Ld rb9 ,hpcp,temp
St rb9 nport

ESB
Bestore

Ld #O ralO
Sub rbl #8 rbl0
Sub rbl #1 rall
Ifc rall #es536 rO
Ld #O rbli

Sub rai #8 ra12
Sub ral tl rb12
Ifc rbl2 a65636 rO
Cal1 ~convolIterbafAu
Sr1 rO ü4 ra13
Là ra13 rb2

Restore
Restoxe

Figure D.6: Code assembleur généré pour le programme de la figure 5.6 (suite)

Ld #O rb13
Sub rb1 #9 rai4
Sub rbi #O rb14
Ifc rb14 a65536 rO
Ld #O ra15
Sub rai #Q rb15
Snb rai #O ra16
Ifc rai6 #65536 rO
St rb2 sport
Ld #O ra2

Label L9
Sub ra2 ü4 rb16
Ifc rb16 rO

BHPA Li1
SSB

Restore
Label L i 0
ïnc ra2 rO

BU L9
Label Lli

Restore
Restore
Restore
Restore
Bestore

Label L 4
Inc ral rO

BU L3
Label L5

Best ore
Label Li

Iac rbi rO
BU LO

Label L 2
Bet

Figure D.5: Code assembleur généré pour le programme de la figure 5.6 (fin)

C a l 1 , i n i t b a i b
Call ,initbPfAu
Caïl -initbaiBr
Call - i n i t b r i i B a
Ld #O rbl

Label LO
Sub rbi #1O ra3
Ifc ra3 rû
BBPb L2
Li #û rai

Label L3
Snb rai S4 rb3
Ifc rb3 rO

BBPA L5
Ld #O ra4
Sub rbi #9 rb4
Sub rb1 #O raS
Ifc ra5 #es536 r O
Cd #O rb5

Sub rai #9 ra6
Sub rai #O rb6
Ifc rb6 #65536 rO
M #O ra2

Label L 6
Sub ra2 #4 ra7
If c ra7 rO
BBPA L8

BSB
Restore

Label L7
Inc ra2 rO
BU L6

Label L8
Call ,vritebnfAu
Ifc rai #2 rO
Sra r8 nport r8

ResetSP ,hpcp,temp
Ld rb7 ,hpcp,temp
Ld r8 rb7

Restore
Ifc ral #1 rû
Sob ral #2 ras

Figure D.8: Code assembleur généré pour le programme de la figure 5.3

BesetSP -hpcp,temp
Ld rb9 -hpcp,temp
St rb9 nport

BSR
Restore

Ld #O rat0
Sub rb1 #8 rblO
Sub rbl #1 rall
Ifc rall #es536 rO
Ld #O rbll

Snb rai #8 ra12
Sub rai #1 rb12
Ifc rb12 #6S536 rO

Cal1 -convolIt erbnfAu
Sr1 rO #4 ra13

C a l 1 -mit ebuf Bo
Restore
Restore

Ld #O rb13
Sub rbl #9 rai4
Sub rb1 #1 rb14
If c rbl4 #65536 rO
Ld #O ra15
Sub ral #9 rblS
Sub rai #1 ral6
Ifc ral6 #65536 rO
Cal1 ,convolIterbafBu
Abs rO rO

C a l 1 ,convolIterbnfBu
Abs rO rO
H a x rO rO #-32768
LA #-32768 rb2

Restore
Restore

Figure D.9: Code assembleur généré pour le programme de la figure 5.3 (suite)

l MAGE EVALUATI ON
TEST TARGET (QA-3)

APPLIED IMAGE . lnc
1653EastMainStmt - -.

,- Rodiastet. NY 14609 USA -- -- - - Phone: 71 W482-0300 -- -- - - Fax: 71W2û8-5989

