
Titre:
Title:

Outils et méthodes pour le traitement parallèle de calculs sur des 
tableaux

Auteur:
Author:

Normand Bélanger 

Date: 1997

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Bélanger, N. (1997). Outils et méthodes pour le traitement parallèle de calculs 
sur des tableaux [Thèse de doctorat, École Polytechnique de Montréal]. 
PolyPublie. https://publications.polymtl.ca/6937/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/6937/

Directeurs de
recherche:

Advisors:
Yvon Savaria 

Programme:
Program:

Non spécifié

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/6937/
https://publications.polymtl.ca/6937/


OUTILS ET MÉTHODES POUR LE TRAITEMENT 

PARALLÈLE DE CALCULS SUR DES TABLEAUX 

NORMAND BÉLANGER 

DÉPARTEMENT DE GÉNE ÉLECTRIQUE 

ET DE G É ~  INFORMATIQUE 

ÉCOLE POLYTECHNIQUE DE MONTRÉAL 

THÈsE PRÉsENTÉE EN VUE DE L'OBTENTION 

DU DIPLÔME DE PHILOSPHIÆ DOCTOR (PL~.D.) 

(GÉNIE ÉLECTRIQUE) 

DÉCEMBRE 1997 

ONomand Bélanger 1997. 



National Library Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services services bibliographiques 

395 Wellington Street 395. nie Wellington 
Ottawa ON KtAON4 OttawaON K1AOW 
Canada Canada 

The author has granted a non- L'auteur a accordé une licence non 
exclusive licence dowing the exclusive permettant B la 
National Lïbrary of Canada to Bibliothèque nationale du Canada de 
reproduce, loan, distribute or sell reproduire, prêter, distribuer ou 
copies of this thesis in microform, vendre des copies de cette thèse sous 
paper or electronic formats. la forme de microfiche/nlm, de 

reproduction sur papier ou sur format 
électronique. 

The author retains ownership of the L'auteur conserve la propriété du 
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. 
thesis nor substantid extracts fiom it Ni la thèse ni des extraits substantiels 
may be printed or othecwise de celle-ci ne doivent être imprimés - 
reproduced without the author's ou autrement reproduits sans son 
permission. autorisation. 



Cette thèse intitulée: 

OUTILS ET &THODES POUR LE TRAITEMENT 

PARALLÈLE DE CALCULS SUR DES TABLEAUX 

présenté par: BELANGER Normand 

en vue de l'obtention du diplôme de: Philosoohiae Do- 
a été dûment acceptée par le jury d'examen constitué de: 

M. BOIS Guy, PhD., président 

M. Y v m  Phl)., directeur de recherche 

M. DACrENAEMi&& PhD., membre 

M. KRQPF P e w  Ph.D., membre externe 

M. e, Ph.D., membre 



Remerciements 

.Je voudrais remercier mon directeur. Yvon Savaria, pour m'avoir 

fourni un environnement où mes idées ont. non seulement germé& mais x 

aussi où elles ont pu arriver à maturité. J e  voudrais également le re- 

mercier pour m'avoir appuyé au cours de toutes ces rrnnées. 

Je voudrais aussi signifier ma gratitude à ma conjointe. Sylvie Fortin. 

pour m'avoir soutenu au cours de mes études doctorales et pour avoir 

fait preuve de patience dans l'attente du moment où la présente thèse  

serait terminée. Je voudrais aussi souligner l'aide qu'elle m'a apportée 

dans l'amélioration de cette thèse par une patiente et méticuleuse revue 

du texte. 



Résumé 

Le traitement parallèle est très important pour certaines applications 

car elles pourraient mettre à profit une augmentation de  plusieurs or- 

dres de grandeur de la performance des ordinateurs les plus puissants 

disponibles. Or. l'amélioration des technologies et de l'architecture des 

ordinateurs mono-processeurs ne permet pas ce niveau d'augmentation de 

performance. D'un autre côté, la pardlélisation automatique d'applica- 

tions pose de nombreux problèmes. Dans la présente thèse, trois de ces 

problèmes sont abordés soient: 

a le calcul rapide d'adresses, 

a la programmation à haut niveau d'ordinateurs SILID et 

a le partit ionnement automatique de tableaux. 

Le traitement structuré de tableaux permet une plus grande perfor- 

mance que le traitement non-st ruct uré puisqu'ii permet: 

a le transfert des données avant qu'elles ne soient requises. 

a I'utilisation d'instructions vectorielles et  

a une meilleure utilisation d'une hiérarchie de mémoire. 

Pour que le transfert de données entre la mémoire et le processeur 

ne ralentisse pas leur traitement par le processeur, le calcul des adresses 

doit être efficace et  il doit être effectué par un organe de calcul autre 

que le processeur. Par contre, Les transformations sur les tableaux qui 

modifient leur adressage sont des transformations qui sont très souvent 

linéaires. En conséquence, on propose un algorithme qui supporte ce type 

de calcul d'adresses. On montre que cet algorithme est efficace et  qu'il 

peut être implanté en matériel avec une faible complexité. 

Les architectures SIMD sont très appropriées pour le traitement struc- 

t uré de tableaux puisque cet te architecture matérielle reflète la structure 

des calculs. Cependant, à ce jour, aucun langage de programmation 

n'a été proposé qui permette de décrire un traitement structuré sur des 



tableaux en utilisant des opérateurs sur des tableaux (i-e. en utilisant 

le niveau d'abstraction le plus judicieux) tout en visant la compilation 

vers les architectures SIMD. On propose un tel langage et on démontre 

comment on peut rendre efficace le code généré par un compilateur. En 

particulier, on montre comment lotit ilisat ion de tampons circulaires et 

d'instructions vectorielles peut améliorer la performance lorsqu'on ef- 

fect ue des convolut ions. 

Le  traitement structuré de tableaux implique essentiellement le t rai- 

tement de sections de tableaux. Or. le fait que trouver la meilleure 

distribution des données entre les processeurs est YP-complet peut être 

contourné en limitant l'analyse des calculs à effectuer à l'analyse des 

opérations sur les sections de  tableaux et en utilisant le modèle de paral- 

lélisme du langage HPF. De plus. comme ce modèle impose une structure 

régulière à la distribution des tableaux. son ut.ilisat.inn ni. dimin~e pas la 

performance des applications qui effectuent un traitement régulier. Dans 

cette thèse. on propose une méthode et des algorithmes de parallélisation 

qui vont dans le sens décrit. On montre que ces algorithmes on une faible 

complexité temporelle et qu'ils permettent de générer des directives de 

pardlélisat ion HP F qui peuvent améliorer la performance. Cependant. 

cette amélioration est mitigée par le manque de maturité du compilateur 

HPF utilisé. 

Finalement. on montre comment formaliser et généraliser le modèle 

de partitionnement HPF à l'aide de -vZOA et du A-cdcul. 
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Abstract 

Parallel processing is very important to many applications. because 

they can take advantage of an improvernent of more than one order of 

magnitude over the performance of the most powerful cornputers cur- 

rent ly available. and because technological and architectural irnprore 

ments cannot provide such a sharp increase in performance. On the 

other hand. automatic distribution of applications is difficuit in many 

respects. In this thesis, three of these difficulties are tackled. namely: 

a fast address computat ions, 

high-level programming of SIMD cornputers. and 

a automatic distribution of arrays. 

Structured array processing can achieve higher performance than un- 

st mct ured processing because i t allows: 

a prefetching data, 

a the use of vector instructions. and 

0 a better use of a memory hierarchy. 

In order to prevent data t ransfers between t h e  memory and the proces- 

sor from slowing down the processing of that data, address cornputations 

must be efficient and they must not be performed by the  processor. On 
the ot her hand, t ransforrnat ions on arrays t hat modify the way arrays are 

accessed are often iinear. Thus, an  algorithm is proposed that support 

these types of transformations. It is shown that this algont hm is efficient 

and that it can be implemented in hardware a t  a very small cost. 

SIàID architectures are very appropriate for structured array pr* 

cessing because this type of architecture is sirnilar to the structure of the 

computations. On the other hand. to  this day, no prograrnrning language 

has been proposed t hat dlows the description of structured computations 

through support of array operators while aiming at compiling for SIMD 
architectures. Such a language is proposed in this thesis, and it is shown 



how a compiler for that language can geaerate efficient code. In particu- 

lar. it is shown how to improve performance through the use of circular 

buffers and vector instructions. 

Stmctured array processing is essentiaily the processing of array sec- 

tions. Also, the NP-completeness of the automatic distribution problem 

can be circumvented by lirniting the analysis to array section interac- 

tions and by using the HPF model of parallelism. Furthemore, since 

this model imposes a regular structure to the  distribution of arrays. its 

use does not lower performance of (parallelized) applications if they per- 

form structured processing. In this thesis, a partitioning method and 

algorit hms are proposed. It is shown that the algorit hms have a low tirne 

complexity aud that they allow generatiog HPF directives that can im- 

prove performance but t hat this improvement is mitigated by the lack of 

rnaturity of the HPF compiler used. 

Finally, it is shown kow to formalize and geaeralize the HPF model 

of parallelism by using MOA and the A-calculus. 
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Chapitre 1 

Introduction 

.Avant tout, il convient de signaler que presque tous les travaux présentés dans la 

présente thèse ont été effectués dans le cadre du projet Pulsa. Ce projet consiste à 

concevoir un ordinateur SIMD ainsi que des logiciels (par exemple, un compilateur. 

un assembleur et des applications) permettant de programmer ledit ordinateur. 

Certaines applications pourraient mettre à profit une puissance de calcul de quel- 

ques ordres de grandeur supérieure à celle des ordinateurs les plus puissants présen- 

tement disponibles (par exemple. la prévision météorologique, la modélisation de cli- 

mat. la simulation de fluides ou de champs de particules tel qu'atomes et molécules ou 
, 

corps planétaires). Etant donné que l'architecture des ordinateurs mono-processeurs 

est déjà fortement contrainte par la vitesse de propagation des signaux et qu'aucune 

nouvelle technologie (qui permettrait des fréquences d'horloge nettement plus éle- 

vées) n'est sur le point de prendre la relève, on se doit de se tourner vers les ordina- 

teurs mult i- processeurs si on veut maintenir le taux d'augrnentat ion de performance 

que l'on connait depuis quelques décennies r2%]. 

Cependant, pour exécuter plus rapidement les programmes. il faut diviser le 

travail de façon équilibrée entre les processeurs. Pour le cas général, trouver la 

répartition optimale est un problème NP-complet [37]. Par contre, sachant que la 

plupart des applications concernées traitent des tableaux, ou peut limiter le champ 

des applications à supporter à ces dernières. Ce champ d'applications comprend 

la solution d'équation(s) différentielle(s) ordinaire(s) ou aux dérivées partielles, la 

solution de systèmes d'équations linéaires (ces deux types d'équations sont utilisés 

pour modéliser et  simuler différents aspects de notre univers) et la minimisation de 



fonctions à 'plusieursw variables (ce qui permet d'extraire de l'information d'un si- 

gnal comme. par exemple, analyser le signal d'un radar météorologique pour détecter 

les tornades en formation et prévenir la population - ces problèmes sont dits de 

déconvolut ion). 

Les langages de programmation Fortran 90, HPF (High Performance Fortran) et. 

plus récemment, Fortran 95 ont pour objectif, entre autres, de permettre L'expression 

d'algorit hrnes sous forme intrinsèquement parallèle et de faciliter la pardlélisat ion 

des programmes. Cependant, la génération de code parailèle présente des problèmes 

qui ne sont pas encore résolus: comment doit-on distribuer le travail et les données 

entre les processeurs de façon à minimiser le temps nécessaire à l'exécution d'un 

programme? 

De plus, le modèle de programmation Fortran 90/HPI semble très approprié à la 

mise en oeuvre d'applications de traitement de signal sur ordinateur SIMD (Single 

Instruction Multiple Data) mais peu de travaux ont été effectués dans ce sens (pour 

une description des architectures SIMD. voir [Hl). 

Finalement, les tableaux traités demandent généralement une quantité considéra- 

ble de mémoire et accéder rapidement à ces données représente un grand défi parce 

que, premièrement, lorsqu'une mémoire a une grande capacité, elle est aussi lente et, 

deuxièmement, le calcul d'adresse des éléments des tableaux demande un effort de 

calcul substantiel. 

Dans cette thèse, on présente des méthodes permettant de résoudre ces trois 

problèmes ( partitionnement, programmation de SIMD à haut niveau et accès rapide 

aux éléments de tableaux). Le chapitre 2 présente une revue de la littérature sur 

ces trois sujets alors que le chapitre 3 décrit les besoins des applications qu'on vise 

à supporter. Le chapitre 4 traite de la génération d'adresses alors que le chapitre 5 
aborde le sujet de la programmation à haut niveau d'ordinateurs SIMD et que le 

chapitre 6 décrit La méthode de parailélisation de programmes HPF proposée. Au 

chapitre 7, on généralise et formalise le modèle de parallélisme du  HPF. Findement, 

le chapitre 8 tire les conclusions de cette thèse. En annexe A, on trouve une intro- 

duction à MOA (qui est utilisé dans le chapitre 7) alors que l'annexe C contient la 

grammaire du langage HPCP (qui est décrit dans le chapitre 5). 11 est à noter que le 

chapitre 5 vise spécifiquement les architectures SIMD alors que les autres chapitres 

font abstraction de l'architecture de l'ordinateur. 



1.1 Modèle de parallélisme de HPF 

Étant donné que cette thèse présente des travaux relatifs au langage de progamma- 

tion HPF et que ce dernier est présentement relativement peu utilisé. cette section 

décrit brièvement le modèle de pardlékme supporté par ce langage. 

Ce modèle de parallélisme consiste uniquement en un parallélisme sur les don- 

nées. Pour paralléliser un programme HPF, un programmeur doit, dans un premier 

temps. indiquer au compilateur comment aligner les tableaux. Deux éléments de 

tableaux (différents) qui sont alignés l'un par rapport à l'autre seront traités par le 

même processeur (une fois que les tableaux seront distribués). Cette étape permet 

de forcer des éléments de  tableaux qui interagissent à ètre situés dans la mémoire du 

même processeur (sur un ordinateur à mémoire distribuée). ce qui. en général. permet 

de réduire les communications. Dans le cas d'un ordinateur à mémoire partagée, cela 

permet d'améliorer l'efficacité des antémémoires qu'on y retrouve généralement. 

La deuxième étape de description de la parallélisation consiste à indiquer au  

compilateur comment effectuer le partit ionnement des tableaux. Le modèle de par- 

titionnement consiste a décrire l'ordinateur sous forme d'un tableau de processeurs 

et de diviser certaines des dimensions des tableaux de données selon la longueur des 

dimensions du tableau de processeurs. Cne dimension d ü n  tabIeau de données peut 

être divisée en blocs, de façon cyclique (avec des groupes d'un élément ou plus par 

processeur) ou elle peut ne pas être partitionnée du tout. Finalement, les dimensions 

du tableau de processeurs sont utilisées en ordre lexicographique. Le programmeur 

peut décider de ne pas spécifier la forme du tableau de processeurs, auquel cas, le 

compilateur est libre de générer le code de façon à profiter au mieux du système 

utilisé. 

1.1.1 Directives de parallélisation HPF 

La description du partitionnement selon le modèle décrit ci-haut se fait à l'aide 

de directives, c'est-à-dire des instructions qui n'effectuent aucun traitement sur les 

variables impliquées mais qui donnent des indications (suggestions) au compilateur 

au sujet du partitionnement (que le compilateur peut décider d'ignorer). 

L a  description de ces direct ives, dans ce qui suit, est partielle et est fonction des 

besoins présents; pour une description complète voir [24]. Les exemples de directives 



REAL EXI(lO0, 100, 100, 100) 
REAL EX2(100, 100, 100) 
REAL EX3(lOO, 100) 

! HPF$ TEMPLATE : : TEWO(200, 200, 200, 200) 
! HPF$ DISTRIBUTE(BLOCK, CYCLIC , C I C L 1  C ( 5 )  , *) : : TEMPO 
!HPF$ ALIGN EXi(i0, il, i2, :) WITH TEHPO(i1, iO + 3, 2 * i2, :) 

!WF$ PROCESSORS PROCO(10) 
!KPF$ DLSTRIBUTE(BLOCK, *) ONT0 PROCO : : EX3 
!KPF$ ALIGN EX2(:, *, :) WITH EX3(: ,  :) 

Figure 1-1: Exemples de directives HPF 

qui accompagnent les explications qui suivent sont données à la figure L. 1. 

Les directives sont vues par un compilateur Fortran 90 comme des corr,nieutaires: 

pour ce faire, elles débutent par le caractères T" ou !̂" selon le format utilisé (fixe 

ou libre - voir ['l]). Pour indiquer à un compilateur HPF que ce sont des directives. 

ce premier caractère est immédiatement suivi par la chaine de caractères *HPFSa. 

L a  directive permettant d'aligner deux tableaux ou un tableau et  un gabarit 

( -template- - voir le prochain paragraphe) est "align' . Cet t e  directive permet. 

à I'aide de variables présentes dans les expressions des deux entités. de  spécifier 

quelles dimensions sont alignées. avec quel déphasage et avec quel pas relatif. Par 

exemple. la direct ive de la figure 1. f , qui aligne la variable EX 1 e t  le gabarit TEàI PO, 
aligne les dimensions 1, 2. 3 et  4 de EX 1 avec les dimensions 2, 1, 3 et  4 d e  TEMPO 
respectivement. De plus, le déphasage entre les éléments du gabarit selon sa première 

dimension et de la variable selon sa deuxième dimension est de 3 alors qu'il est de 0 

pour les aut ces dimensions (Le. les éléments (i, j ,  C, 1 )  de EX1 sont sur le même 

processeur que les éléments (j, i + 3. k, 1) de TEMPO et ce, pour j, k, et 1 allant de 1 

à 100 inclusivement et i allant de 1 à 95 inclusivement). U n  raisonnement similaire 

s'applique au  fait que le pas selon la troisième dimension de TEMPO est deux fois 

plus grand que celui de EX1 selon cette même dimension. Finalement, pour indiquer 

qu'on ne doit pas tenir compte d'une dimension lors de l'alignement, le caractère "*" 
est utilisé (voir l'alignement de EX2 avec EX3). 

Un gabarit est un tableau fictif (Le. il ne cause aucune allocation de mémoire) 



permettant d'aligner différents tableaux entre eux et de leur donner la même distri- 

bution. Ceci est nécessaire lorsque l'on veut distribuer des tableaux alignés entre- 

eux avec un déphasage non-nul ou avec des dimensions permutées parce qu'alors les 

frontières des tableaux ne sont pas toujours situées au même endroit dans l'espace 

d'indexation donc une directive de distribution ne serait pas suffisante pour spécifier 

complètement la distribution des tableaux. En gabarit est décrit par la directive 

'template' (voir la figure 1.1). 

La directive permettant de décrire la distribution d'un tableau ou d'un gabarit 

est *distributem. Pour chaque dimension de l'entité à distribuer. il faut utiliser soit 

"block'. soit -". soit -cyclic7 (ce dernier avec ou sans un entier entre parenthèses). 

L a  première de ces possibilités permet d'indiquer qu'on veut que la dimension soit 

divisée en groupes de sous-tableaux les plus gros possibles à raison d'un groupe par 

processeur. L a  deuxième alternative permet de spécifier que la dimension ne doit 

pas être distribuée alors que la troisième permet de forcer le nombre d'éléments 

par processeur à une valeur égale au paramètre spécifié ou à t si ce dernier est 

absent. Pour la distribution cyclique, si le nombre de processeurs selon la dimension 

concernée multiplié par le nombre d'éléments par processeur est inférieur au nombre 

d'éléments di1 tableau selon cette dimension, on continue la distribution à partir 

du premier processeur et ce. jusqu'à ce qu'il ne reste plus d'éléments du tableau à 

distribuer. Ainsi, pour TEMPO, le processeur ( 1.1, 1.1) (i.e. le -premierq processeur) 

recevra la section ( L  : 2 O O / f i ,  L : 200 : pz, 1 + 5 x p3 x i : 5 + 5 x p3 x i,:) où 
O 5 i < 200/(.j x h). Les pi indiquent la forme du réseau de processeur. 

La directive 'processors" permet de décrire la forme d'un réseau de processeurs 

(tel PROCO dans l'exemple) et ce réseau peut être utilisé ensuite pour distribuer un 

tableau ou un gabarit (EX3 dans l'exempte). L e  réseau est vue comme un tableau 

de processeurs. 

1.2 Architecture du SIMD de Pulse 
a 

Etant donné que certaines explications contenues dans la présente thèse font référence 

à certains aspects de l'architecture du SIMD de Pulse, on présente ici un résumé 

de cette architecture. L a  figure 1.2 contient un diagramme-bloc représentant ladite 

architecture. On y remarque que les processeurs élémentaires (PE) communiquent 



c canai Xorcl 
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Figure 1.2: .Architecture du SIMD de Pulse 

via des canaux de communication nonrmés Nord e t  Sud. C'es canaux fonctionnent 

sous forme de registre à décalage c'est-à-dire que. lorsqu'une instruction de commu- 

nication est effectuée. les données présentes dans le canal affecté par l'instruction 

vont d'un processeur à son voisin de droite. Les instructions de communication sont 

appelées nsr et ssr ( 'North shift right' et "South shift right'). 

Le répertoire d'instructions de Pulse comprend les inst ruct ions arit hrnét iques 

et logiques habituelles ainsi que les instructions de contrôle qu'on retrouve sur les 

processeurs SDID. En plus, l'architecture Pulse comprend des inst ruct ions dédiées 

au traitement d'images qui utilisent plus de deux opérandes etfou produisent plus 

d'un résultat (par exemple. Tompare-and-swap", -rank9. 'min- et 'max" à trois 

sources). Egalement à signaler est le fait que les PEs peuvent effectuer des instruc- 

tions vectoriels. Les informations contenues dans les instructions vectorielks sont 

les mêmes que dans les instructions scalaires auxquelles on ajoute le nombre de fois 

que l'instruction est répétées ainsi que l'incrément aux numéros de registre ou aux 

adresses utilisés dans I'inst ruction. 



Chapitre 2 

Revue de la littérature 

2.1 Partit ionnement de boucles imbriquées 

Par le passé, la plupart des travaux qui visaient à paralléliser le traitement de 

tableaux s'attachaient aux algorithmes implantés sous forme de boucles imbriquées 

comme c'est le cas lorsqu'on utilise des langages de programmation comme le FOR- 
TR.4N 77 ou le langage C (par exemple. voir [d'il). Dans ce cas. on utilise souvent le 

concept de vecteur de dépendance [48]. Si l'on partitionne le tableau parallèlement 

aux vecteurs de dépendance (si c'est possible), alors i l  n'y a aucune communication 

causée par le part itionnement . Cependant, ces conditions ne sont presque jamais 

rencontrées en pratique. ce qui fait qu'on doit trouver des heuristiques qui permet- 

tent de faire un compromis entre les différents vecteurs de dépendance et assembler 

les itérations en groupes qui seront assignés aux différents processeurs [17. 31, 461. 

Il y a trois problèmes associés à cette approche: le premier est qu'on peut diHi- 

cilement qualifier la qualité de la solution parce qu'on utilise des heuristiques et que 

la solution optimale n'est pas connue. Le deuxième problème est qu'on n'utilise pas 

une approche systématique et, donc, que la solution ne s'intègre pas dans un cadre 

conceptuel clair et bien défini. Ceci peut avoir plusieurs résultats négatifs: par exem- 

ple, certains chercheurs reproduisent essentiellement les mêmes travaux que d'autres 

mais utilisent un vocabulaire différent: comme les concepts véhiculés dans [44] par 

rapport au concept de vecteur de dépendance [46]. Le troisième probième est que 

certains de ces travaux ne tiennent pas compte de la répartition équitable de la 

charge de travail entre les processeurs. Or, ceci est un problème important puisque, 



si un seul processeur est occupé pendant un temps (même petit), le gain de vitesse 

peut se dégrader considérablement. Ce phénomène est mis en lumière par la loi 

dTAmdahl [23. p. .i'i-i]. Par exemple. si un seul processeur. dans un ordinateur qui en 

contient 100. a une tâche qui est de 10% plus longue que celle des autres processeurs. 
1 alors le gain de vitesse est d'environ o.mi s 991. Donc. dans cet exemple. près 

de 10% du gain de vitesse potentiel e s t  perdue à cause d'une petite différence entre 

les charges de travail. 11 apparaît donc plus important d'avoir une bonne répartition 

du travail que d'avoir un algorithme de partit ionnement optimal au niveau des corn- 

munications. Il est à noter. cependant. que le modèle HPF ne permet pas de séparer 

les tableaux de façon à bien répartir le travail car, dans le cas général, les frontières 

des tableaux nécessitent un moins grand effort de calcul que le 'centre". 

2.2 Partitionnement de code de haut niveau 

La deuxième approche de partitionnement consiste à utiliser un langage de program- 

mation qui contient des opérateurs sur les tableaux comme. par exemple, I'AP L p61. 
Le langage J ['I'i], NIAL ['BI ou Fortran 90 [-1. Bien que certains chercheurs aient 

exploré cet te  avenue par le passé (par exemple, (141). c'est la venue du Fortran 90 et 

du HPF qui a suscité un intérêt marqué parmi les chercheurs vis-à-vis cette approche. 

Les chercheurs s'entendent pour dire que le partit ionnement automatique de- 

mande beaucoup d'effort de calcul ce qui fait que plusieurs utilisent des heuris- 

tiques pour diminuer cet effort. Les approches préconisées peuvent être classées 

en deux catégories: celles qui sont basées sur l'évaluation de partit ionnements- 

candidats et celles qui "calculent" la meilleure solution possible (en éliminant les con- 

traintes les moins coYteuses - voir chapitre 6). Dans [-91, une méthode du premier 

groupe est proposée. Maigré que cette méthode ne considère pas t'alignement intra- 

dimensionnel. les heuristiques utilisées ont une complexité temporelle trop élevée 

pour être implantées dans un compilateur. Chatterjee [13, 11, 191 propose des al- 

gorithmes pour calculer l'alignement et la distribution des tableaux. Cependant, 

bien que la méthode utilisée permette une redistribution dynamique. les alignements 

sont choisis avant les distributions donc, même si une dimension n'est, à la fin, pas 

distribuée, elle influencera, maigré tout, l'alignement des tableaux puisque toutes les 

dimensions sont utilisées pour calculer le coût des différents alignements considérés. 



Bau et al. [ï] proposent une approche algébrique dont la complexité est faible: cepen- 

dant, ils n'abordent pas le problème de la sélection des contraintes à satisfaire (ou 

non) et ils ne résolvent que le problème de l'alignement sans traiter la distribution 

des tableaux. Finalement. Knobe [32, 331 utilise un graphe pour décrire les con- 

traintes. Les contraintes qui seront satisfaites sont sdectionnées en construisant un 

arbre recouvrant qui est ensuite augmenté des autres contraintes qui ne causent pas 

de conflits. Cette méthode est très performante mais elle est limitée aux systèmes 

SIMD et eue utilise (comme [-91) un modèle plus général que celui du HPF. 11 est 

à noter que le fait que cette méthode soit limitée aux systèmes SIMD est important 

puisque la synchronisation rigide des processeurs rend l'efficacité du partit ionnement 

plus sensible à la répartition de la tâche car un déséquilibre dans les sous-ensembles 

de chaque tâches ralentit le traitement alors que, dans le cas d'un ordinateur MIMD. 
le ralentissement n'est fonction que du déséquilibre entre l'ensemble des tâches des 

processeurs. Or, comme il a été souligné précédemment, le modèle HPF se prête mal 

à l'équilibrage fin des tâches, donc, viser à supporter le modèle HPF et les archi- 

tectures SIMD sont des objectifs relativement conflictuels et c'est pourquoi il a été 

décidé, dans cette thèse, de mettre l'emphase sur le modèle HPF uniquement. 

Donc, aucune méthode, à la fois: 

O ne supporte le modèle de partitionnement du HPF, 

0 a une faible complexité temporelle, 

permet tant l'alignement que la distribution des tableaux et 

0 vise les calculs structurés (voir chapitre %). 

On vise, dans cette thèse, à proposer une solution qui rencontre ces besoins. 

2.3 Génerat ion d'adresse pour les tableaux 

La génération d'adresses pour le traitement de tableaux n'a pas attiré l'attention 

de beaucoup de chercheurs. En fait, aucune référence sur ce sujet n'a été trouvée. 

Par contre, il existe un circuit intégré, le TMC2301 [45], qui effectue le calcul de 

coordonées de matrices. Étant donné qu'on ne dispose d'aucune information sur le 

fonctionnement interne de ce circuit, on ne peut en discuter. 



2.4 Langages de haut niveau pour la program- 

mation SIMD 

Plusieurs langages de haut niveau ont été proposés pour la programmation d'ordi- 

nateurs SIMD et MIMD. Fortran 90 r2], HPF (High Performance Fortran) 1241 et 

APL [26] sont des exemples des langages à usage générai qui, de par leur généralité, 

ne sont pas appropriés au traitement structuré de  tableau parce que cette généralité 

nuit à la génération de  code compact et efficace. 

Un des objectifs de la présente thèse est de permettre la distribution automatique 

des données et du traitement entre les processeurs- Donc, des structures de  contrôle 

définissant des blocs séquentiels et d'autres parallèles (comme dans Occam [38], Uc [61 

et BLAZE (341) doivent être évitées. Egalement. il est préférable d'inclure dans le 

langage les expressions sur des tableaux pour permettre un niveau d'abstraction 

plus élevé ainsi que pour faciliter la distribution automatique des tableaux donc, les 

boucles imbriquées (comme dans Apply 1211 et AL [50]) sont à éviter. Évidemment, 

le 'Tord' (comme dans BLAZE) et le concept d'ensemble d'index (comme dans Uc) 

sont intéressants mais ne sont pas suffisants dans le présent contexte. Donc, aucun 

langage ne possède toutes les caractéristiques requises pour décrire le traitement 

structuré de tableaux à un niveau d'abstraction élevé et qui permettrait la génération 

de code parallèle efficace (en mémoire et en temps). Un nouveau langage est proposé 

dans la présente thèse dans le but de combler ce vide. 



Chapitre 3 

Analyse des besoins 

Dans ce chapitre. on tente de donner un aperçu des besoins typiques des applications 

qui traitent des tableaux e t  qui requièrent une grande puissance de calcul. Les besoins 

des applications different beaucoup. évidemment. Par contre. on peut diviser les 

algorithmes de traitement de tableaux en deux grandes catégories: ceux qui effectuent 

un traitement régulier et ceux dont la structure est irrégulière. 

Les méthodes numériques qui discrétisent des équations mathématiques et  en font 

des systèmes d'équations algébriques linéaires sont très répandues et  comprennent 

(entre autres): les méthodes aux différences finies, la méthode des éléments finis. 

les méthodes de volumes finis ainsi que les méthodes multi-grille. Ces méthodes 

ont en commun une importante caractéristique: les systèmes d'équations générés 

sont creux (au sens où chaque équation dépend d'une petite fraction seulement des 

variables). Ceci est dîi au fait que les relations entre les variables sont de nature très 

localisée (seuls des éléments voisins dans des tableaux de données interagissent). Cn 

bon exemple de cette situation est montré dans [25] aux pages 41 7 et suivantes. 11 

s'agit de la solution d'une équation aux dérivées partielles à l'aide d'une méthode 

de différences finies. La matrice qui décrit ce système est creuse à cause de la façon 

dont la solution est exprimée; plus précisément, les inconnues sont assemblées en un 

vecteur plutôt qu'en une matrice (qui représente la forme du problème). 

Il existe d'autres situations pour lesquelies la représentation matricielle produit 

une matrice creuse; par exemple, un problème dont la structure est un réseau (comme 

un réseau de distribution d'énergie) dont la connectivité est faible. 



Pour ces dertlt types de situations (structures régulières ou non mais représen- 

tées sous forme matricielle), les chercheurs s'entendent pour dire que les méthodes 

itératives sont plus efficaces (du point de vue de l'effort de calcul nécessaire pour 

obtenir une solution à la précision désirée) que les méthodes directes [36]. Donc. 

sachant que la représentation matricielle nést  utile que pour les méthodes directes. 

il est plus important de supporter les méthodes itératives que les méthodes directes 

(i-e. le calcul sur des tableaux plutôt que sur des matrices). Cette assertion est aussi 

supportée par le fait que beaucoup de méthodes ont été proposées pour solutionner 

des systèmes dont la structure est particulière (par esemple. les systèmes tridiage 
naux et pentadiagonaus). Ces systèmes ont la même structure que ceux créés par 

des méthodes itératives. mais ils sont parfois solutionnés en n'ayant pas recours à 

une méthode itérative (exemple: méthode des éléments finis sur une grille régulière). 

Donct supporter le traitement de tabIeaux fait à la manière des méthodes itéra- 

tives est important car ces dernières sont plus faciles a supporter (car le traitement 

est régulier - voir section Xl), elles sont de plus en plus répandues et certaines 

méthodes directes ont une structure de calcul similaire. 

3.1 Méthodes itératives 

Les méthodes itératives (ainsi que d'autres algorithmes qui ont une structure de 

calculs similaire) sont très répandues (cg. méthodes aux différences finies. méthodes 

multi-griIles. méthodes de volumes finis. algorithmes de traitement de signai). L'équa- 

tion A x T + B = O est la représentation sous forme matricielle d'un système à 

résoudre (où A est la matrice, 7' est le vecteur des inconnues et B est un vecteur de 

constantes). Solutionner ce système de façon itérative consiste à assigner une d e u r  

initiale quelconque à T et de calculer la valeur du membre de gauche de l'équation. 

Le résultat ne sera pas zéro comme dans l'équation mais un certain AT qui sera 

ajouté à T pour obtenir une deuxième valeur à T qui soit plus près de la véritable 

solution. Autrement dit, T,+* = T. + AT pour chaque itération et où AT est calculé 

à l'aide du membre de gauche de l'équation. Il existe différentes \-&antes à cette 

méthode de base pour accélérer la convergece et la précision, mais elles ne seront 

pas décrites ici puisque cela dépasse Le cadre des présents travaux. Il est important 

de noter que, comme ces systèmes d'équations représentent des calculs structurés sur 



des éléments de tableau qui sont voisins. A x T est. en fait. une convolutio~i. 

3.2 Méthodes directes 

Les méthodes directes les plus connues sont la décomposition LU et L'élimination 

gaussienne. Ces méthodes ont en commun un problème qui est celui dit de rernplis- 

sage ( %&in7). Ce problème vient du fait que ces méthodes transforment la mat nce 

qui décrit la solution en une autre qui a un taux de  remplissage plus élevé. Donc. 

solutionner le système une fois la matrice transformée impose plus de calculs que 

requis par la structure du problème. 

Ces méthodes sont souvent utilisées lorsque l'on veut décrire de façon simple un 

problème non-st ruct uré, par exemple, des graphes ou réseaux. Ces graphes et réseaux 

peuvent décrire beaucoup de types de systèmes différents comme: des systèmes con- 

t inus mais discrét isés de manière non-st ructurée, des systèmes discrets comme des 

réseaux Logiques ou de distribution de puissance ou des systèmes composés de  *par- 

ticules" comme des molécules et/ou atomes ou des corps planétaires. 

Dans ce genre de  situation, l'approche la plus judicieuse est un algorithme oii 

les données ne sont pas strticturées (par exemple, en graphe) et où la méthode de 

sohtion est itérative. 

3.3 Contexte matériel 

11 a été démontré queo parmi la classe de  réseau 'k-ary n-cube7, le choix optimal 

consiste à utiliser un réseau de deux (rarement trois) dimensions lorsqu'on désire 

minimiser la latence des communications, maximiser la bande passante et/ou mini- 

miser l'impact des points chauds sur la performance globale [16]. Étant donné que 

la plupart des ordinateurs fabriqués à ce jour utilisent ce genre de réseau et que 

cette structure correspond très bien au matérial disponible (en terme de forme), il 

est raisonnable de penser que de ne supporter, au niveau logiciel, que des réseaux en 

forme de tableaux est un choix judicieux, puisqu'il inclut ces Yk-ary n-cube". 

D'autre part, les problèmes qui demandent un grand effort de calcul traitent des 

données sous forme de  tableaux d'au moins deux dimensions (généralement trois). 

Donc, la dimensionalité des tableaux de  données est normalement au moins aussi 



grande que celle du réseau de processeurs. Ceci implique qu'il est raisonnable de ne 

pas permettre à une dimension de tableau de données d'être part itiomée plus d'une 

fois. Donc, à cet égard. le modèle HPF ne limite la performance que dans des cas 

particuliers. 

3.4 Discussion 

Étant donné que la convolution est l'opération la plus utile pour les méthodes itérati- 

ves (avec les opérations arithmétiques, évidemment). il est important de s'y attarder. 

L a  caractéristique principale de cette opération est l'extrême régularité de la struc- 

ture des calculs et  du patron d'accès à la mémoire. Ce  point est intéressant puisqu'il 

permet d'effectuer beaucoup d'optimisations à la compilation (par exemple, utiliser 

les unités fonctionnelles et  leur pipeline au maximum, transférer de  façon optimale 

les données entre la mémoire e t  les antémémoires). Également, et c'est là un des 

points qui nous intéressent, trouver le partitionnement idéal est beaucoup plus facile 

que pour des structures de calculs moins régulières. En effet, la forme du noyau de 

convolut ion donne directement la forme des sous-tableaux (ou sections) qui devront 

être transférés d'un processeur à un autre si un tableau est partitionné. 

11 est à noter que la convolution est l'opération principale de plusieurs algont hmes 

de traitement de signal. En effet, cette opération constitue la structure de base des 

filtres (par exemple. FIR, IIR, filtres polyphasés) e t  que ces filtres implantent les 

fonctions de base du traitement de signal (par exemple, lissage, détection d'arêtes, 

réduction du bruit). Ceci rend la classe des applications qui effectuent un traitement 

régulier sur des tableaux encore plus importante. 

La  seule autre opération qui soit souvent utilisée e t  qui puisse causer des cornmu- 

nicat ions, lorsqu'un programme est parallélisé, est la réduction. Celle-ci est surtout 

utilisée dans des problèmes de déconvoiution. Cette opération est également re- 

lativement simple à gérer (lorsqu'il s'agit de  trouver le partitionnement optimal) 

puisque, si une seule dimension est réduite, une quantité considérable de  données 

devrait être transférée si on partitionnait cette dimension. D e  plus, si un tableau 

est réduit au complet, on ne peut pas avoir une quantité "raisonnablen de commu- 

nications, si on utilise un des langages impératifs les plus utilisés, quelles que soient 

les dimensions partitionnées. En effet, les langages les plus courants doivent définir 



dans quel ordre sont e f k t u é e s  les opérations de  calcul puisqu'un des besoins les plus 

importants des usagers des applications est que les résultats doivent être les mêmes 

quel que soit l'ordinateur qui a exécuté l'application. II s'en suit qu'on ne peut pas, 

normalement, effectuer la réduction des partit ions pour, ensuite. faire ta réduction 

de ces résultats. Donc, la quantité de communication est strictement fonction de la 

forme du  réseau de processeurs et des dimensions partitionnées et réduites. 

Finalement, il est à noter que dc supporter efficacement te traitement de matrices 

creuses n'est pas désirable puisque la répartition des tâches entre les processeurs est 

très difficile (et qu'elle doit être modifiée pendant l'exécution) et qu'il est plus difficile 

d'utiliser efficacement les ressources d'un ordinateur (par exemple. les antémémoires 

et les unités fonctionnelles) à cause de l'absence de régularité dans le traitement. 

3.5 Mise en oeuvre d'un objet-tableau C++ 

Dans le but de  déterminer quels opérateurs sur les tableaux sont les plus utiles. un 

objcct-tableau a été implant6 dans lc langage Cc+. Lcs opbratcurs implantés a priori 

sont les opérateurs arithmétiques, les opérateurs les plus usuels de h1O.A [-LI] (voir 

l'annexe A )  ainsi qu'un opérateur de convolution. 

Également. deux applications ont été traduites en C++ en utilisant cet objet. 

3.5.1 Opérateurs implantés 

Lcs opbratcurs implant& sont: 

0 les opérateurs arithmétiques habituels (+' -, r, /) entre deux tableaux et entre 

un tableau ct un scalctirc. 

les assiguations C++ suivantes =, + =, - =, * =- / =. 

les comparaisons >, <, ==, ! =, <=, >=, 

dcs opérateurs dc lecture ct d'fcriturc dc tablcaux: <<? >>: 

des opérateurs logiques: set-@, se tAt ,  setrq, setne, set-le et setge, 

des fonctions mathématiques usuelles: rnax, pow, sqrt et abs, 



a des opérateurs 410A: reshape,  delta. rho, tau. iota. red-add. r e d m u l t .  

take; ainsi que deux opérateurs effectuant le travail combiné de deux opéra- 

teurs o r n e g a m u l t .  omegaadd. 

un opérateur d'indexation [ ] et 

a deux opérateurs de convolut ion. 

3.5.2 Applications implantées 

Les applications implantées consistent en un problème aux diffkrences finies et uri 

problème de déconvolution. Le premier consiste à simuler un écoulement de fluide 

à ['aide du schème de MacCormack [?O]. dors que le deuxième consiste à extraire 

un estimé du champ de vent à partir de données de précipitation provenant d'un 

radar Doppler [RS]. Dans ce deuxième cas. le schéma semi-lagrangien a été remplacé 

par un schéma de  différences finies parce qu'il régularise la structure des calculs et 

demande un effort de calcul moindre. 

3.6 Conclusions 

Les opérateurs qui se sont révélés ut  iles sont: 

O convolut ion. 

O réduction additive, 

a o r n e g a m u l t  (Le. le "spread" du  Fortran 90 ou .Q en MOA), 

a take, rho, de l t a ,  

O sqrt, pow. 



L'utilité de la plupart de ces opérateurs n'est pas étonnante. Cependant. il est à 

noter que certains opérateurs ne se sont avérés utiles que parce que le cadre de cette 

implantation est plus cont caignant que les lugages de programmation impératifs 

usuels; en particulier, setAt, omegasmlt et take ne seraient pas utiles en For- 

t ran 90, par exemple. 

Aussi. la convolution peut être exprimée a s s a  facilement à l'aide de sections de 

tableaux en Fortran 90 (bien que l'expression peut devenir très longue dans certains 

cas); de plus, un opérateur de convolution souffre d'un certain manque de souplesse. 

En effet. le traitement des frontières des tableaux requiert un traitement spécifique 

qui peut difficilement être exprimé à I'aide d'un opérateur. II semble donc que la 

solution idéale pour Iéxpression de la convolution reste à trouver. 

En conclusion, l'objectif de ce chapitre est d'identifier les opérateurs les plus 

importants pour les applications typiques. On constate que ces opérateurs sont les 

opérateurs de colculs ( a d  hmetiques, sqrt. pow etc.), la convolut ion, la réduction 

et le 'spread" du Fortran 90. 



Chapitre 4 

Génération d'adresses 

4.1 Introduction 

Une des difficultés majeures rencontrées lorsqu'on vise à maximiser la performance 

d'un processeur consiste à transférer les données entre la mémoire principale et le 

processeur de façon à ne pas ralentir ce dernier dans l'exécution de ses tâches. Ce 
ralentissement peut survenir dans deux situations: 1. les données dont le processeur 

a besoin ne sont pas encore disponibles et 2. les données dont le processeur n'a plus 

besoin engorgent la mémoire locale (comme. par exemple, dans une anté-mémoire 

ou dans des registres) et empêchent le chargement de données dont le processeur 

a besoin. De plus, les technologies courantes ne permettent pas de fabriquer des 

mémoires principales qui soient aussi rapides que les processeurs. tout en ayant une 

capacité de stockage sufisante pour contenir les programmes et données associées 

des applications usuelles. Ceci a pour conséquence l'utilisation d'une hiérarchie de 

mémoires dans la plupart des ordinateurs de haute-performance (par exemple. anté- 

mémoires, mémoires statiques sur la puce, registres vectoriels) pour diminuer l'impact 

de cette différence de vitesse. 

Un défi majeur dans la conception d'un ordinateur consiste à compenser la latence 

élevée de la mémoire principale qui résulte des caractéristiques de la technologie 

utilisée. Par contre, la bande passante de cette mémoire peut être augmentée de 

façon relativement simple en améliorant la structure du sous-système-mémoire (par 

exemple, en  utilisant des bus plus Larges, des mémoires entrelacées ou un mode 

de transfert en rafale). En d'autres mots, bien que la bande passante puisse être 



améliorée assez facilement. diminuer la latence nécessite une technologie plus rapide 

et dispendieuse. sauf si on peut effectuer des chargements et déchargements anticipés 

(ce qui est la seule autre alternative). Evidemrnent, ces deux soliitions peuvent Stre 

utilisées simultanément. 

Le traitement de tableaux permet d'effectuer ces transferts anticipés puisque Les 

pat tons d'adresses qu'ils entrainent sont réguliers donc prévis; bles. Daris ce chapit ce. 

on discute d'un algorithme permettant de transférer efficacement un tableau entre 

un processeur et sa mémoire. Deux implantations de cet algorithme (une logicielle 

et une matérielle) sont décrites et on démontre leur efficacité ainsi que  la complexité 

de loimplantat ion matérielle. 

L'algorithme proposé est intimement Lié à l'adressage symétrique de tableaux 

tel que proposé par Becker [SI. L-adressage symétrique consiste à décrire l'adresse 

d'un élément d'un tableau comme une somme pondérée des indices de l'élément (à 

laquelle on ajoute une adresse de base). Certains des gains apportés par l'adressage 

symétrique sont: 

a éviter de copier de grandes quantités de données lorsqu'un tableau est trans- 

formé, 

a permettre de fusionner plusieurs transformations en une seule par la compo- 

sit ion de celles-ci (c'est-à-dire que ces transformations peuvent être combinées 

en une seule au moment de la compilation et que le temps d'exécution peut 

être réduit au temps d'une seule t ransiormat ion), 

a permettre de traiter des tableaux non-contigus en mémoire. 

On peut éviter de copier les données parce qu'une transformation qui ne  modifie 

que l'adressage d'un tableau (par exemple, la transposition, ou extraire une section) 

est effectuée en  modifiant simplement les facteurs de pondération- 

L'algorithme proposé utilise une transformation linéaire d'un ensemble de vec- 

teurs d'indices en une séquence d'adresses e t  calcule cette séquence de façon très 

efficace. On prouve cette efficacité en montrant que le temps nécessaire pour cal- 

culer les adresses pour un cas complexe (c'est-à-dire pour un tableau ayant de nom- 

breuses dimensions) est presque aussi rapide que pour le cas simple (c'est-à-dire un 

vecteur). Un gain majeur apporté par cet dgorithme est qu'il ne nécessite aucune 



rnultiplicat ion au moment de  l'exécution contrairement a l'algorit hme classique per- 

met tant de calculer une adresse à partir d'un vecteur d'indices [3]. Évidemment. un 

sous-syst ème-mémoire d e  haute performance est nécessaire pour utiliser au mieux les 

capacités d'un tel algorithme mais ce sujet dépasse le cadre d e  cette thèse. 

La section 4.2 décrit les types de  transformations qui doivent être supportés 

pour que lœe!gsrit hine soit suffisamment flexible et performant pour être considéré 

utile et général pour le traitement de  tableaux. La section 4.n décrit I'algorithme 

proposé tandis que la section 4.4 contient une description de  l'implantation logi- 

cielie et du niveau de performance qu'elle permet. L a  section 4.5 fait de même 

pour l'implantation matérielle. Dans la section 4.6. différentes transformations sont 

décrites a lon que la section 4.7 définit les équations nécessaires au calcul des pas 

utilisés par le générateur d'adresses (c'est-à-dire l'implantation matérielle). Finale- 

ment. la section 4.8 tire des conclusions sur ce sujet. 

Dans ce chapitre. on utilise une notation basée sur la syntaxe du Fortran 90 ['2]. 

Les dimensions sont numérotées de 1 pour la dimension de poids fort au nombre de 

dimensions d u  tableau pour la dimension de poids faible. 

4.2 Patrons d'adresses 

Lorsque des tableaux sont transformés dans une application. ils le sont par un 

opérateur ou, dans le cas du Fortran 90, ils peuvent aussi l ë t r e  par une fonction 

intrinsèque. Le Fortran 90 est utilisé en guise de référence parce que les différents 

dialectes de Fortran sont utilisés pour programmer la plupart des applications scien- 

tifiques qui nécessitent beaucoup de temps de calcul et  que ces applications traitent 

généralement des tableaux. Les fonctions intrinsèques du Fort tan 90 qui t ransfor- 

ment un tableau sont: CSHIFT, EOSHIFT, TRANSPOSE, MATMC'L, SPREAD et 

RESHAPE. 

II existe une autre façon d e  transformer un tableau: utiliser seulement une partie 

du tableau soit une section (selon le vocabulaire du Fortran 90). En Fortran 90, on 

décrit une section par une borne inférieure, une borne supérieure et  un pas selon 

chacune des dimensions. 

Toutes ces opérations (sauf CSHIFT) impliquent une transformation linéaire d'un 

ensemble de vecteurs d'indices vers un ensemble d'adresses ce qui fait que, pour 



accéder aux tableaux sans les copier en mémoire (donc. en les accédant sur 

place) on n'a besoin que de: 

L . l'adresse du premier élément (après la transformation). 

-2. la forme du tableau transformé et 

9. la distance en mémoire entre deux éléments contigus selon chacune des dimen- 

sions du tableau- 

Autrement dit. bien que  les différentes opérations impliquent différents patrons 

d'accès en mémoire (par exemple. TR.4.ISPOSE peut introduire un pas négatif), 

les données énumérées ci-dessus sont les seules requises pour effectuer tes calculs 

d'adresses. Il est à noter que CSHIFT nécessite l'accès à deux sous-tableaux qui. 

chacun. impliquent une transformation linéaire. Ces deux transformations. si elles 

étaient combinées ne constitueraient pas une transformation linéaire. 

4.3 Algorithme 

L'agorithme de la figure 4.1 implante les calculs désirés et il est proche de I'algorithme 

désiré. La différence est qu'il ne supporte pas un nombre variable de dimensions. 

Cet algorithme montre que: 

rn le vecteur 'cura est utilisé pour mémoriser les indices de l'élément courant du 

tableau, 

le tableau entier est traversé (c'est-à-dire du vecteur d'indices O au vecteur 
-. 

d'indices shape - 2 ). 

L'algorithme proposé est énoncé à la figure 4.2. L e  -whileV extérieur (lignes 7 

à 23)  est exécuté jusqdà ce que le traitement du tableau soit complété. Le premier 

"while" intérieur (lignes 10 à 14 transfère une rangée du tableau et le deuxième 

(lignes 20 à '17) gère les indices de l'élément courant (sauf le dernier qui est géré par 

le premier "while" intérieur). La condition de fin de traitement est j < 0, puisque 

cela veut dire qu'un sous-tableau de dimensionalite >gale à celle du tableau a été 

traité (donc, le tableau lui-même). Le vecteur *shapeV contient la forme du tableau 



Adresses( start . shape[ndimj. incr[ndim]) 
integer : i. res 
integer : cur[ndim] 

res = start 
cur[O] = O 
Do while cur[O] < shape[O] 

cur[l] = O 
Do whilc ciir(1l < shape[l] 

cm[-] = O 
Do while cur['l] < shape['l] 

Do while cur[ndim - 21 < shape[ndim - 21 
cur[ndim - 11 = O 
Do while cur[ndim - 11 < shapeindim - 11 

Move memory [res] 
res = res + incr[ndim - 11 
ciir[ndim - 11 = cur[ndini - I ]  + 1 

end do 
res = res + incr[ndim - 21 
cur[ndim - 21 = cur[ndim - 21 + 1 

end do 

res = res + incr[l] 
cur[L] = cur[l] + L 

end do 
res = res + incr[O] 
cur[O] = cur[O] + 1 

end do 

Figure 4.1: Algorithme de  calcul d'adresse simplifié 



transformé tandis que "cur" est le vecteur d'indices de lëlément de tableau qui est 

en cours de traitement, -1ncr" contient les incréments d'adresse dont on a besoin 

pour aller du dernier élément d'un sous-tableau au premier élément du sous-tableau 

suivant (dont la dimensiondité correspond à la position de l'incrément dans son 

vecteur). Il est à noter que ces incréments sont exprimés en terme de la granularité 

de la mémoire plutôt que selon le nombre d'éléments de tableaux. Finalement. "resv 

est le résultat des calciils d'adresses (donc. c'est l'adresse de l'élément courant): sa 

valeur initiale est celle de l'adresse du premier élément à transférer. 

Cet aigorit hmc est équinlent à l'algorithme de la figure 1. I sauf qu'il permet de 

gérer un nombre variable de dimensions. 

Le deuxième algorithme gère les boucles imbriquées grâce à une boucle qui gère 

les indices de boucles et les incréments d'adresses. II a aussi les caractéristiques 

suivantes: 

0 i l  peut effectuer n'importe quelle transformation linéaire entre un ensemble de 

vecteurs d'indices et une séquence d'adresses, 

0 il n'utilise que des additions, des comparaisons et des boucles (et aucune mul- 

t iplication) et 

0 il peut être facilement divisé en plusieurs portions qui peuvent être exécutées 

en parallèle (comme démontré ci-après). 

La capacité de cet algorithme d'implanter toutes les transformations linéaires 

vient du fait que. lorsqu'on se déplace selon une dimension, un pas est ajouté à 

l'adresse courante. Cette addition et les autres effectuées pour les dimensions de 

poids plus faible effectuent le travail du facteur de pondération de cette dimension 

dans l'équation de la t ransfonnation linéaire. 

Le fait que I'algorit hme n'utilise aucune multiplication est un facteur important 

en ce qui a trait à la vitesse d'exécution parce que la multiplication requiert typique- 

ment plus d'un étage de pipeline contrairement aux opérations logiques. de contrôle 

et arithmétiques simples. Par exemple, le RlOOOO a besoin de 6 étages de pipeline 

pour effectuer une multiplication de nombres entiers de 52 bits [40]. 

L'absence de multiplication dans l'algorithme implique également qu'une implan- 

tation matérielle doit avoir une complexité faible puisqu'un multiplieur rapide est un 



1 Adresses(start . ndim. shape[ndim], incr[ndini]) 
3 - integer : i. jr res 
3 integer : ciir[ndini] 

res = start 
cur = O 
j = ndim - 1 
Do while j >= O 

j = ndim - 1 
i = O  
Do whilc i < shapeb] 

accès à mémoire[res] 
res = res + incrbl 
i = i + l  
end do 

If j >= O 
j = j - 1  
res = res + incr[j] 

end if 
curb] = curb] + i  
Do while j >= O and curb] = shapeb] 

curb] = O 
j = j - 1  
I f j  > = O  

res = res + incr[j] 
curb] = curb] + i  
end i f  

end do 
end do 

Figure -1 2: Aigori t hme de calcul d'adresses 



module complexe. tant par le nombre de transistors que par son architecture ( i l  swagit 

d'une structure semi-régulière) . 

4.4 Implantation logicielle 

4.4.1 Code et modèle temporel 

Dans le but de caractériser l'efficacité de l'algorithme. il a été traduit dans le lan- 

gage C. La  partie du programme qui effectue les calculs d'adresses proprement dits 

est montré à la figure 4.3. Dans ce code. la variable "reg" signifie un registre alors 

que 'res" est l'adresse où est effectué l'accès en mémoire. 

while(j >= O) 
{f or(i = 0; i < shape [ndim-11 ; i++) 

{reg = *res ; 
res += incr[ndim-11; 
1 

j = ndim - 2; 
ras += incrCj]; 
vhile(j >= O && ++(cur[j]) == shapeCj]) 

CcurCj3 = O; 
J--; 
i f ( j  >= O )  

res += incrCj1; 
3 

> 

Figure 4.3: Boucles principales de I'algorithme en tangage C 

II est à noter que ce fragment de programme nécessite un tableau à deux dimen- 

sions ou plus, même si le cas général traité à la section 4.3 supporte tous Les cas y 

compris les tableaux à une seule dimension (qui ne requiert pas un algorithme aussi 

complexe que celui proposé ici). 

L'intérêt principal de ce code est que son temps d'exécution peut être modélisé 

facilement. Ce modèle ne requiert que quatre paramètres: 



t,: temps nécessaire à l'exécution du "while' extérieur moins le temps d'exécution 

du -while7 intérieur et du -fory. 

t ,: temps d'exécution d'une itération du %hile- intérieur incluant l'exécution de la 

condition du - i f  mais pas celui de l'instruction du  corps de ce -if". 

t i f :  temps d'exécution de l'instruction dii corps du &iT et 

t l :  temps d'exécution d'une itération du -forœ. 

Le modèle du temps d'exécution complet est le suivant: 

O i l  

Tt: temps total. 

t , :  temps du  -while7 extérieur, 

tl: temps d u  "foru, 

t,: temps du  "whi!e9 intérieur et 

ti: temps du ;if". 

où 

ni: est le nombre d'itérations du "while" extérieur, 



ne: est le nombre dëléments du tableau transformé et 

1,: eçt le nombre d'éléments dans une rangée du tableau. 

s :  est la forme du tableau. 

Dans l'équation de n,. le produit (n) calcule le nombre d'éléments d'un sous- 

tableau de i dimensions. donc ne divisé par ce nombre d7(.lénents donne le nombre de 

sous- t ableaux de i dimensions contenus dans le tableau. En conséquence. additionner 

le nombre de sous-tableaux pour toutes les dimensions sauf celle de poids faible donne 

Ie nombre de fois qu'une itération du "while" intérieur a été effectuée (i.e. n,). 

4.4.2 Évaluation du temps d'exécution 

Dans le but d'obtenir un n t imé  des valeurs des paramètres du modèle temporel de 

l'algorithme, une version du code a été écrite dans un pseudo-langage d'assemblée. 

Un pseudo-langage a été choisi plutôt qu'un langage réel dans le but d'obtenir un 

estimé de performance préliminaire et pour déterminer si un modèle réel et des sirnu- 

lat ions seraient nécessaires (dû, entre autres, à la latence variable des anté- mémoires) - 
L e  programme en question est donné à l'annexe B. Ce programme suppose qu'il y a 

suffisamment de  registres pour contenir les variables suivantes: 

1. les scalaires i. j et res, 

'2. la constante ndim, 

3. les vecteurs shape. cur et incr et 

4. un scalaire temporaire. 

Le nombre de registres nécessaires s'élève à 16 si le tableau transféré a 7 dimen- 

sions (ce qui est le maximum permis par le Fortran 90). Etant donné que la plupart 

des processeurs de haute-performance contiennent 3% registres entiers, il est réaliste 

de supposer que ces variables y sont maintenues. 

Pour compléter le calcul de paramètres du modèle temporel, il ne manque qu'un 

estimé du nombre de  cycles nécessaires à l'exécution des différentes instructions. Les 

règles suivantes ont été appliquées: 

0 une instruction registreregistre a une latence d'un cycle d'horloge, 



a une instruction mémoire-registre a une latence de  deux cycles d'horloge. 

une instruction de saut a une latence d'un cycle. 

Ces valeurs ont été choisies parce que Iëtape d'exécution du pipeline d'un pro- 

cesseur requiert généralement un cycle d'horloge pour être complétée pour une in- 

st ruct ion regist re-regist re (sauf pour la multiplication. la division et les opérations en 

r-irgule flottante qui n'apparaissent pas dans le code) et qu'une opération mémoire- 

registre est plus lente. en général, mais est quand même rapide à cause de la présence 

d'anté-mémoires sur la plupart des processeurs. Il est à noter que la seconde hy- 

pot hèse nécessi te que les adresses successives soient souvent cont igues en mémoire 

pour obtenir un taux de succès d'accès aux anté-mémoires suffisamment élevé. Etant 

donne que la destination des instmctions de saut est prédite avec un taux de succès 

élevé par la plupart des processeurs de haute-performance. on a supposé que leur la- 

tence est d'un seul cycle d'horloge (c'est-à-dire que la pénalité de mauvaise prédiction 

est. en moyenne. négligeable). De toute évidence. on suppose que le processeur a . 
une structure en pipeline. Egalement, on suppose, dans un premier temps. que le 

processeur nés t  pas super-scalaire: cette hypothèse sera modifiée plus tard. 

;\ partir de  ces hypothèses et d u  code de l'annexe B. les valeurs des paramètres 

suivantes ont été calculées: 
IV  4 cycles 

LI t ,  r cycles 

tif 1 cycles 

t 1  5cycles 

.i l'analyse de ces valeurs. il est évident que I'essentiel du temps d'exécution sera 

utilisé par la boucle "for*. puisqu'elle nécessite 5 cycles pour traiter chaque élément 

de tableau, alors que le temps de  traitement d'une rangée est du même ordre d e  

grandeur. 

Cette constatation est corroborée par le calcul des temps d'accès (grâce au modèle 

décrit à la section 4.1.1) pour un tableau de forme n par 8 par m où n x m = 1024 

et n prend les valeurs: 1, 2, 4, 8, 16, 32, 64, 125, '256, 512 et  10.24. La longueur de 

la deuxième dimension a été fixée à Y dans le but de garder le temps de gestion des 

dimensions supérieures à une valeur relativement constante. La figure 4.4 montre 

que, pour des longueurs de rangée raisonables, la perte de temps pour la gestion 

des dimensions supérieures est faible (en comparaison du cas où les rangées ont une 
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Figure 4.4: Temps moyen de traitement par élément pour un tableau de n x 8 x m 
où n x m = 1024 

longueur de 1024, la perte est de - 10.5% pour des rangées de longueur 16 et de - 5% lorsque cette longueur est de 32). 

Dans le but de confirmer cette conclusion, des temps ont été calculés pour un 

cas où le nombre de dimensions est varié. Un tableau de 4096 par 4096 par n a été 

changé en un tableau de 5 dimensions de longueur 64 dans chaque dimension. puis 

en un tableau de 9 dimensions de longueur 13 sauf la dimension de poids faible qui 

est restée constante. De plus, n a été fixé à 8, 16 et 32. Pour toutes ces situations, 

la perte de vitesse totale est restée faible (au maximum, - 32% pour des rangées 

de 8, - 21% pour des rangées de 16 et .- 16% pour des rangées de 32 éléments) 

tel que démontré par la figure 4.5. Cette perte est définie comme étant le temps 

passé à effectuer d'autres opérations que celles de la boucle "for" (en l'occurence. le 

rifor" demande 5 cycles d'horloge par élément). Ces valeurs de perte sont considérées 

faibles parce que la longueur des rangées est anormalement faible et que le nombre 

de dimensions est anormalement élevé (donc, il s'agit d'une situation pessimiste) et 

que, malgré tout, la perte reste acceptable. 

Finalement, une troisième expérience a été effectuk avec une matrice carrée de 

grandeur réaliste. La figure 4.6 montre que le temps supplémentaire par rapport au 

traitement d'un vecteur contenant le même nombre d'éléments est négligeable. 
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Figure 4.6: Temps de traitement moyen par élément pour une mat rice carrée 



Tableau 4.1: RCsumé des pcrtcs de vitcsse pour le processeur simplc (S) et pour le 
processeur super-scalaire (SS) pour les deux premières expf riences 

L'étape suivante consis te à caractériser le comportement d'un processeur super- 

scalaire. En supposant un processeur pouvant exécuter une opération en virgule flot- 

tante, deux instructions en nombre entier et une opération registremémoire en même 
temps (ce qui constitue un processeur rninimdement super-scalaire), les paramètres 
deviennent: 

t ,  2 cycles 
t, 5 cycles 

tif 1 cycles 

t l  2 cycles 

Dans ce nouveau contexte, les deux premières expériences (c'est-à-dire une forme 
de n x 8 x m et de 4096 x 4096 à 64 x 64 x 64 x 64 x 64 et à un tableau 9-D de longueur 8 

pour toutes les dimensions) entraînent des pertes plus grandes, tel que démontré par 

le tableau 4.1, quoique suffisamment faible dans le présent contexte. Donc, le temps 
de transfert d'un élément est toujours le paramètre dominant (il prend maintenant 

deux cycles d'horloge). La  perte pour la troisii.mc expériencc reste négligeable (elle 
est du même ordre de grandeur). 

Trois conclusions se dégagent de ces résultats: 

Expérience 
El 

1. pour un processeur super-scalaire, le goulot d'étranglement est Le temps d'accès 

à la mémoire, 

S 
103% 

longueur des rangées 
16 

2. cet algorithme demande un effort de calcul important (- 2 instructions par cy- 

cle pour un processeur super-scalaire qui peut effectuer une opération mémoire- 

registre en parallèle avec une addition entière suivi d'un saut) et 

SS 
18.5% 
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Figure 4.7: Diagramme-bloc du générateur d'adresse 

dimension courante (c'est-à-dire une partie du ïvhile" intérieur). II est à noter que. 

à cause du parallélisme inhérent du générateur d'adresses. la valeur de l'élément de 

Stride pour la deuxième dimension de poids faible ne doit pas tenir rori~ptr du  pas 

de la dimension de poids faible, puisque les incrémentations de cette drrnièrc sont 

mémorisées dans SrcAddr plutôt que TempAddr. Donc, les valeurs contenues 

dans Stride sont la différence entre les adresses du premier tableau de n - 1 dimen- 

sions du nouveau sous-tableau de n dimensions et de l'adresses du sous-tableau qui 

suivrait le dernier sous-tableau de n - 1 dimensions du sous-tableau de n dimensions 

précédent sauf pour la deuxième dimension de poids faible pour qui le pas est la 

différence entre deux éléments qui sont voisins selon cette dimension. 

Le parallélisme de cette implantation permet à ce module de générer une adresse 

par cycle d'horloge à la condition que la longueur des rangées du tableau soit 
supérieure au nombre de dimensions du même tableau. En pratique, cette condi- 

tion devrait généralement être respectée puisqu'il est rare d'&voir des rangées plus 



courtes que 8 éléments (qui est le nombre maximum de dimensions de cette implan- 

t at ion). 

Par opposition à ce niveau de performance, une unité DMA classique devrait être 

reprogrammée pour chaque rangée de tableau plutôt qu'une fois pour tout le tableau. 

Ceci réduirait significativement le niveau de performance à cause des communications 

nécessaires entre le processeur et l'unité DMA et parce que cela imposerait un effort 

de calcd substantiel au processeur. Par contre, si les rangées sont longues et si le 

tableau a un faible nombre de dimensions, dors l'effort de calcul requis peut être 

assez faible mais ceci demande que le processeur ait beaucoup de mémoire locale 

(e.g. 16Koctets pour chaque tableau si les tableaux ont des rangées de 1024 éléments 

double-précision) ou que le tableau soif traité séquentiellement (Le. chaque élément 

de tableau-résultat est calculé à partir de quelques éléments d'une même rangée). 

Cependant, les situations usuelles n'ont pas ces caractéristiques. 

4.6 Transformations 

Dans cette section. différentes transfomat ions sur des tableaux couramment utili- 

sées sont décrites. Étant donné que ces transformations créent une transformation 

linéaire entre un ensemble de vecteurs d'indices et une séquence d'adresses, elles 

peuvent être composées, c'est -a-dire qu'après avoir appliqué une transformation à 

un tableau, une autre transformation peut lui être appliquée et on peut calculer les 

paramètres décrivant la transformation composée (voir (8)). 

Il est à noter que, dû au parallélisme des opérations du générateur d'adresses (tel 

qu'expliqué précédemment), les distances pour un tableau non- transformé sont: 1 

pour la dimension de poids faible, la longueur des rangées pour la deuxième dimension 

de poids faible et de O pour les autres dimensions. En effet, comme les éléments 

et sous-tableaux sont placés séquentiellement en mémoire, la distance entre deux 

rangées est identique à leur longueur et l'adresse du sous-tableau qui suivrait le 

dernier sous-tableau (selon une dimension donnée) est la même que celle du premier 

sous-tableau lorsqu'on passe au sous-tableau de dimensionalité supérieure suivant. 

La section 4.6.1 décrit des transformations supportées par le Fortran 90 alors que 

la section 4.62 décrit des transformations autres. 



Figure 4.8: Section (2:9,2:9) d'un tableau de forme (10,lO) 

4.6.1 Transformations du Fortran 90 

De toutes les transformations sur des tableaux supportées par le Fortran 90, la seule 

qui ne soit pas supportée par le générateur d'adresses est la fonction intrinsèque 

cshift parce qu'il s'agit d'une transformation qui est linéaire par morceaux seule- 

ment. L'implantation des autres transformations est dom& ci-après. Il est à noter 

que la fonction intrinsèque eoshift n'est pas décrite mais qu'elle est sémant iquement 

identique à une section et un appel à la fonction intrinsèque spread et que ces 

dernières sont décri tes. 

Section 

Une section en Fortran 90 est une portion de tableau en forme de parallélépipède 

parallèle aux axes du tableau. Elle est décrite par une borne inférieure, une borne 

supérieure et un pas, et ce, pour chaque dimension du tableau. 

La figure 4.8 contient un exemple de section. Les nombres présents dans les 

emplacements des éléments du tableau sont leur position dans la séquence d'adresses. 

Les distances pour ce tableau transformé sont 10 pour la dimension de poids fort et 1 

pour la dimension de poids faible parce que, comme il a été expliqué précédemment, 

le pas de la dimension de poids faible est la distance en mémoire entre deux éléments 

consécutifs d'une rangée alors que le pas de la deuxième dimension de poids faible est 

la distance entre deux éléments situés au même endroit daos deux rangées successives. 



Figure 4.9: Tableau de forme (10,lO) tramposé 

Transposition 

La transformation qui sera décri te est la transposition généralisée c'est-à-dire une 

permutation des axes d'un tableau (la fonction intrinsèque Fortran 90 transpose 

est une transposition particulière). Cette t ransfomat ion est décrite par un vecteur 

de permutation c'est-à-dire un vecteur contenant les valeurs de 1 au nombre de 

dimensions du tableau dans l'ordre désiré. 

La figure 4.9 contient un exemple de tableau transposé. Les distances pour cet 

exemple sont 1 et 10. 

Spread 

Il s'agit de la fonction intrinsèque Fortran 90 spread. Cette transformation peut 

aussi être utilisée implicitement dans Ia fonction matmul. Elle crée une nouvelle 

dimension en répétant une dimension du tableau. L'information qu i  décrit cette 

transformation est la dimension qui est dupliquée et le nombre de fois où elle l'est. 

La figure 4.10 montre un exemple de cette transformation. La forme du tableau 

transformé est (10,3,10) et les distances sont 10, 0, et 1. 

Reshape 

Étant donné que la mémoire d'un ordinateur est adressée comme un vecteur et que la 

fonction intrinsèque Fortran 90 reshape transforme un vecteur en un tableau ayant 

un nombre de dimensions arbitraire, cette fonction est l'équivalent de la création d'un 



Figure 4.10: Un tabieau de forme (10,10) dupliqué trois fois selon la dimension 2 

tableau à partir d'une zone de mémoire. Donc, il s'agit d'une fonction très générale 

et qui est équivalente à ce qui est décrit à la section 4.7.5 donc on ne discutera pas 

de cet te fonction séparément. 

4.6.2 Autres transformations 

Partition 

Cette transformation est utilisée lorsqu'on veut diviser une dimension en plusieurs 

parties d'égale longueur et qu'on veut créer une nouvelle dimension pour pouvoir 

accéder les différents parties en séquence. Ceci peut être utile lonquTon veut ef- 

fectuer un traitement par blocs (pour des exemples de calculs par blocs, voir [l8, 
Section 5.41). L'information nécessaire pour décrire la transformation est la dimen- 

sion a partitionner et en combien de parties elle sera découpée. 

II est également possible de diviser le tableau en créant des régions de recouvre- 

ment. Ceci est utile lorsque le traitement effectué fait en sorte que des éIéments 

du tableau interagissent avec des éléments qui sont situés dans différentes parties. 

L'information additionnelle nécessaire est la longueur du recouvrement. 

La figure 4.11 donne un exemple de partition. Dans cet exemple, la forme du 



Figure 4.11: Un tableau de (10,lO) partitionné selon la dimension 2 en 3 parties 

tableau transformé est (5,10,2) et les distances sont -95, 10 et 1. 

"Warping" 

Le type de "warping" supporté consiste en un partitionnement selon une dimension 

du tableau et un décalage proportionnel à la position des parties selon une autre 

dimension. L'information nécessaire est la dimension partionnée, la direction du 

décalage (le numéro de la dimension) et la magnitude du décalage exprimée selon le 

nombre de positions de décalage à la fin du tableau. 

La figure 4.12 donne un exemple de cet te t ransfomat ion. Il est à noter qu'il est 

nécessaire d'extraire une section du tableau avant d'effectuer le "warping" parce que 

le générateur d'adresses ne peut pas effectuer de bouclage ('wrap-amund" ) donc la 

séquence d'adresses contiendrait des valeurs illégales. Ce tableau transformé a une 

forme de (2,3,6) et les distances sont -26, 12 et 1. 

Renversement 

Renverser un tableau signifie l'accéder en traversant u r  de ses axes en partant de 

la fin. En Fortran 90, on décrit cette transformation à l'aide d'une section dont 

le pas est négatif mais, comme cette transformation est implantée sous forme d'un 

opérateur dans certains langages (par exemple, 17AP L) eile est décrite séparément. 

La seule information nécessaire pour décrire cette transformation est la dimension 

renversée. 



Figure 4.12: 
la dimension 

'Warpingn de la section (3:8,3:8) d'un tableau de forme (10,lO) selon 
2 et en décaiant de 2 selon la dimension 1 

Figure 4.13: Reversement d'un tableau de forme (10, IO) selon la dimension 2 

La figure 4.13 donne un exemple de cette transformation. Les distances pour ce 

cas sont 10 et -1. 

Damier 

Dans le but de montrer la flexibilité du générateur d'adresses, on montre qu'il peut 

générer la séquence d'adresses nécessaire au parcours des cases d'une même couleur 

sur un damier. Une des nombreuses manières par laquelle on peut décrire cette 

transformation consiste à indiquer en combien de zones doit être diviser le tableau 

selon chaque dimension (c'est-à-dire qu'on ne se Limite pas à des damiers "classiques" 



de 8 cases sur 8 mais qu'on peut spécifier un nombre de cases arbitraire - à condition 

qu'il soit un diviseur de la longueur du tableau selon la dimension pertinente). 

La figure 4.14 donne un exemple de damier. La forme du tableau transformé est 

(2,4,4,2,2) et les distances sont -4, 50, -60, 16 et 1. 

Le pas pour la dimension 5 est de 1 parce que c'est la distance entre. par exemple, 

les éléments étiquetés O et 1. Le pas de la dimension 4 est la distance entre deux 

éléments successifs d'une colonne (par exemple, O et 2) ce qui est la même chose que 

la longueur d'une rangée (c'est-à-dire 16)- 

Les pas de la dimension 3 est la distance entre la rangée qui, par exemple, suit 

la rangée qui débute par l'élément nommé 6 et celle qui débute avec 17élément 8, 

c'est-à-dire -4 x 16 + 4. 

Le pas de la dimension 2 est la distance entre le premier élément du sous- 

tableau 2D qui suivrait celui qui commence par L'élément 24 et celui qui débute 

par l'éléme~t 32. Mais,  comme les rangées se suivent en mémoire, le "17'" élément 

de la première rangée est l'élémat 2, donc la distance est 3 x 16 + 2 c'est-à-dire 50. 

Finalement, le pas de la dimension 1 est la distance entre le troisième sous-t ableau 

3D, s'il y en avait un (qui débute, par hasard, par l'élément 72), et l'élément 64 

(soit -4). 

4.7 Paramètres 

Avant de calculer les pas nécessaires au travail du générateur d'adrrsws. i l  faut 

calculer la distance (en mémoire) entre des éléments adjacents du  tableau t ransfornié 

selon chacune de ses dimensions, ainsi que sa forme et son adresse de départ. Ensui te. 

on peut calculer les pas à partir de ces données. Les pas sont différents des distances 

parce que ces premiers tiennent compte du fait qu'une partie de la distance a été 

parcourue lors de 17ac& aux sous-tableaux de plus faible dimensiondité (voir page 

34). Les pas et distances sont assemblés en deux vecteurs où I'élément i est l'élément 

qui concerne la dimension i. 

Il est à noter que, lorsqu'une nouvelle dimension est créée, les anciennes dirnen- 

sions sont décalées d'une position si elles ont un poids plus faible que la nouvelle di- 

mension. Également à noter, la dimension 1 est celle de poids fort dans les équations 

et l'élément 1 des vecteurs de distance (d), de forme ( S h )  et de pas (S,) correspondent 



Figure 4.14: Damier de 4 cases sur 8 fait à partir d'un tableau de forme (16.16) 

à la dimension de poids fort. Le caractère #", dans les équations, indique le nouveau 

contenu d'un vecteur (par opposition à celui d'avant la transformation). 

4.7.1 Distance 

Les nouvelles distances sont identiques aux anciemes saufi 

transposition: d'[il = d[T,[i]] Vl < i 5 Nd où TV est le vecteur de permutation et 

Nd est le nombre de dimensions du tableau, 

partition: d'[Il = d[Dp]  * Sh [D, ] /p  où p est le nombre de partitions et D, est la 

dimension part itionnée, 

partition avec recouvrement: d f [ l ]  = d[D,] * (Sh [D,] - O J l p  où 0. est la valeur du 

recouvrement, 

'warpingn: dr[D,] = (d[D,] * Sh[Dw])/(INpI + 1) + Np/INpI * d[&] où D, est 

la dimension partitionnée, Dd est la dimension selon laquelle est effectué le 

décalage et Np est l'amplitude du décalage à l'extrémité du tableau, 



spread: dr[Ds + 11 = O où Ds est la din~msiori dupliqute, 

damier: dt[5] = dpj, d1[4] = d[l], dJ[3] = d[Z] * 5 $$>]/!\-#], dr[2] = d[l] * 
sh[ l ] /K[ l ]  + d[2] * Sh['L]/Nz[2], dr[l] = d[l] *:! * S,,[l]/Nz[l] ou 1V, est le nombre 

de zones selon chaque dimension, 

renversement: d'[Dr] = -d[D,] où Dr est la dimension renversée. 

4.7.2 Forme 

La forme du tableau reste inchangée sauf pour: 

section: Si[i] = u[i] - [[il + 1 V l  < i 5 Nd oii 1 et u sont les bornes inférieures et 

supérieures respect ivement de la section, 

spread: Si [D,] = N,, o ù  Nr est le nombre de répétitions de la dimension, 

4.7.3 Adresse de départ 

L'adresse de départ n'est pas modifiée sauf pour: 

section: S: = ~ 2 ,  L[i] * d[ i ] ,  

renversement: SL = S. + d[D,] * (Sh [Dr] - 1). 



4.7.4 Pas 

Les pas sont calculés à l'aide de l'équation 1 sauf pour St[l] = d [ l ]  et S@] = d p ] .  
Il est à noter que. pour calculer St[i]. on a besoin de la valeur des Stb] tels que 

i < j < .Vd donc les pas doivent être calculés en commençant par celui de la dimension 

de poids faible et en allant vers la dimension de poids fort. Égaiementt il est évident 

que le calcul du produit (n)de chacun des pas peut utiliser celui du pas de poids 

faible précédent en guise de résultat partiel. 

4.7.5 Généralisation 

La manière la plus générale d'exprimer l'adressage d'un tableau est de spécifier: 

0 l'adresse de départ. 

O le nombre de dimensions du tableau, 

O la forme du tableau (i-e. un vecteur) et 

O un vecteur de distances- 

Utiliser de tels paramètres permet des transformation arbitraires (au sens oh elles 

n'ont pas de signification particulière). L a  figure 4.15 montre une de ces transfor- 

mations. 11 est à noter que. pour simplifier la représentation, le tableau est montré 

comme une matrice de forme (10,s) qui aurait été modifiée mais cette forme n'est 

pas pertinente du point de vue de I'algorit hme. 

Cet exemple crée un tableau de trois dimensions de forme 4 par 4 par 3 en 

utilisant un vecteur de distances égal à -9 pour la dimension de poids fort, 10 pour la 

dimension intermédiaire et 1 pour la dimension de poids faible. 11 est à remarquer que 

les quatres sous-tableaux a deux dimensions qui composent ce tableau sont identifiés 

par les nombres O, 1, ..., 15 pour le premier plan, 16, 17, ..., 31 pour le deuxième 

plan, 32, 33, ..., 47 pour le troisième plan et 48, 49, ..., 63 pour le dernier plan. 

Les trois flèches de la figure 4.15 représentent les directions des tmis dimensions du 

tableau transformé (i.e. là où mènent les éléments du vecteur de distances). 



Figure 4.15: Transformation arbitraire 

4.8 Conclusions 

Dans ce chapitre, on a décrit un algorithme qui permet de transférer efficacement 

un tableau transformé entre la mémoire d'un ordinateur et son processeur. On a 

montré qu'il permet de transférer un élément de  tableau par cycle de mémoire s'il 

est implanté en logiciel sur un processeur super-scalaire et qu'il permet un trans- 

fert par cycle d'horloge s'il est implanté en matériel. Cet algorithme supporte 

toutes les transformations linéaires entre un ensemble de vecteurs d'indices et une 

séquence d-adresses en mémoire ce qui le rend très flexible. Également, il peut 

être Facilement augmenté pour supporter les transformations polynomiales de degré 

plus élevé puisque les paramètres quadratiques impliquent une modification des pas 

(paramètres linéaires) et de même pour les paramètres d'ordre supérieur. Donc, en 

ajoutant des fichiers de registres pour contenir les nouveaux paramètres et en util- 

isant un algorithme similaire à celui utilisé par le générateur d'adresses qui a été 

décrit, on pourrait supporter les t ransfomations polynomiales avec une vitesse de 

calcul essentiellement aussi grande mais qui nécessiterait substantiellement plus de 

ressources matérielles. 



Le générateur d'adresses proposé est très rapide (normalement, une adresse par 

cycle d'horloge) et flexible et calculer les paramètres qui lui sont nécessaires est 

simple à cause du cadre conceptuel (Le. transfomat ions linéaires). 



Chapitre 5 

Un langage de haut niveau pour 

les ordinateurs SIMD 

. 
A la section 2.4, on a constaté qu'aucun des langages de programmation existants 

ne rencontre tous les objectifs suivants: 

1. utiliser les tableaux (et les opérations sur ceux-ci) en guise d'abstraction de 

haut niveau ainsi que de paradigme de parallélisme (Le. parallélisme sur les 

données), 

2. permettre la compilation et la parallélisat ion autornat ique d'applications en un 

code exécutable de haute performance. 

3. cibler les architectures SIMD et 

4. évaluer quelles limitations peuvent être imposées sur la grammaire d'un langage 

pour faciliter la parallélisation sans contraindre indûment la programmation. 

Pour combier ce vide, le langage HPCP ("High Performance C for Pulse") est 

proposé. Ce langage contient les éléments du lang~ge C [30] qui sont appropriés pour 

la description (parallèle) d'applications traitant de façon structurée des tableaux, et 

ce, sur un processeur SIMD et il est étendu Ià où le C est déficient. 

Dans le but de produire des programmes exécutables performants et compacts, le 

compilateur HPCP qui a été créé dans le cadre du présent travail utilise des tampons 

circulaires (pour stocker localement des éléments de tableaux) et des instructions 

vectorielles (pour obtenir du code rapide et compact). 



L a  section 5.1 contient une description du  langage, alors que la section 5.2 décrit 

la sémantique de  certaines de  ses composantes. La section 5.3 explique pourquoi une 

mémoire est, dans le contexte présent, plus appropriée que les registres vectoriels 

pour contenir des vecteurs; la méthode de  gestion des tampons circulaires qui est 

utilisée par le compilateur est également décrite. La section 5.4 donne un exemple 

de programme source et de programme généré. alors que la section 5.5 contient une 

étude du niveau de performance (en temps et en espacemémoire) du code généré. 

Finalement, la section 5.6 énonce les conclusions de  ce chapitre. 

5.1 Description du langage 

Cette section est divisée en deux parties: la première décrit la portion du langage C 
qui a été retenue pour HPCP, alors que la deuxième décrit les extensions qui lui ont 

été ajoutées. La grammaire complète du langage est donnée à l'annexe C. 

5.1.1 Sous-ensemble du C supporté 

Les seuls types de données supportés sont "intn et 'long", parce que les applications 

DSP traitent habituellement des nombres entiers e t  parce que l'architecture ciblée 

(Pulse) ne supporte que ces types de données. Les types de données définis par 

l'usager ne sont pas supportés; ce sont %tnictn, "union", 'enum", Tields" ainsi que 

la direct ive typedef. Le  qualificatif "register" n'est pas supporté non plus, parce qu'il 

n'est pertinent qu'à un niveau d'abstraction plus bas (Le. pour des langages comme 

AL [-91). Les constantes symboliques sont supportées via le qualificatif "const" . 
Les structures de contrôle séquentielles (i.e. les boucles "while". *do' et 9orn) 

ne sont pas permises à cause de l'objectif visant a décrire les algorithmes de faqon 

parallèle (d'un autre côté. un énoncé uloopn a été ajouté - voir la section 5.1.2). 

Également, l'énoncé *switchq n'est pas supporté parce qu'il est trop général pour les 

besoins spécialisés d'un ordinateur SIMD. De plus, les énoncés "goton, &break' et 

scontinue" n e  sont pas supportés. Donc, le seul énoncé de contrôle qui soit supporté 

est le "if". 

Tous les opérateurs (arithmétiques, logiques et  relationnels) sont supportés sauf 

&++", "--" (parce qu'ils ont un effet secondaire), l'opérateur conditionnel (parce 

qu'il est sémantiquement identique au "if" bien qu'ils aient un contexte syntaxique 



différent), l'opérateur "." (parce qu'il est surtout utilisé dans des énoncés qui ne 

sont pas supportés) et la division et ['opérateur "modulo" (parce qu'ils ne sont pas 

supportés par Pulse). Les assignations ne sont pas permises dans les expressions 

conditionnelles. 

Les pointeurs ne sont pas supportés parce qu'ils ne sont pas utiles dans le contexte 

de Pulse et parce qu'ils rendent la parallélisation plus difficile à cause de l'équivalence 

qu'ils peuvent entraîner. Les chaînes de caractères ne sont pas supportées parce 

qu'elles ne seraient pas utiles (encore une fois, dans le contexte de Pulse). Par 

contre, les tableaux rnulti-dimensionnels sont supportés évidemment et ils ont une 

structure où la dimension de gauche est celle de poids fort (comme en C). 

5.1.2 Extensions ajoutées au C 

Les ajouts au  langage C sont regroupés en quatres catégories: 

1. support pour les instructions des processeurs élémentaires (PE) de Pulse qui 

ne sont pas supportées par le C, 

2. des structures permettant une description plus compacte de traitement de 

tableaux (pour permettre une description à haut niveau des algorithmes), 

:3. un nouvel énoncé de contrôle et 

4. deux directives ( 'pragmas" ). 

Les instructions des PE qui ne sont pas supportées par le C sont implantées sous 

forme de fonctions intrinsèques (ces instructions incluent, par exemple, 'compare- 

and-swap", "clipn et 'median"). Les structures de support pour les tableaux sont 

tirées du Fortran 90, parce que c'est le langage qui, parmi ceux qui ont les caracté- 

ristiques désirées, est le plus proche du langage C. tes structures en question sont de 

trois types: les sections de tableaux, les opérateurs sur les tableaux et une structure 

de contrôle parallèle. Une section de tableau est un morceau de tableau décrit par 

une borne inférieure et une borne supérieure pour chaque dimension du tableau. Par 
exemple, si le tableau A a une forme de [10][10][10] alors A[1:5][2:6][3:9] est un sous- 

tableau de forme [5][5][7] qui débute à l'élément A[l][2][3], i.e. le deuxième élément 

de la première dimension, le troisième de la seconde et le quatrième de la dernière 



dimension. Il est à noter que, contrairement au Fortran 90, le pas n'est pas supporté 

parce qu'il fallait limiter le langage le plus possibie à cause du manque de ressources 

et que, sachant que les algorithmes DSP ne l'utiliserait pas souvent, on ne prévoit 

que peu d'intérêt à avoir cet te caractéristiques. Les opérateurs sur les tableaux sont 

les mêmes que sur les scalaires et Ieur sémantique est expliquée à la section 5.2. 

La structure de  contrôle parallèle supportée est le *wheren; il s'agit d'un énoncé 

de contrôle (plus spécifiquement, de sélection) parallèle de haut niveau d'abst'rac- 

tion (voir la section 5.2 pour une description de sa sémantique). Un énoncé "foralln 

(comme en HPF) serait probablement utile, mais il n'est pas supporté par les al- 

gorit hmes de parallélisation du chapitre 6 (parce que ce chapitre traite de la par- 

allélisat ion de traitement structuré de tableaux d o n  que le Yorall" permet le traite- 

ment non-structuré) donc, il n'a pas été ajouté. 

Les deux directives supportées sont: 'distribute" et 'configuration". La directive 

"distributen permet au programmeur d'indiquer comment les tableaux doivent être 

distribués entre les P E, alors que 'configurationn décrit la configuration matérielle 

nécessaire à 1 'exécution du programme. 

La forme de la directive Gdistribute" est: le mot-clé "#pragman suivi du mot- 

clé "distribute" et, pour chaque tableau utilisé dans l'énoncé, son nom suivi, pour 

chacune de ses dimensions, de la description de la distribution (qui peut être 'block", 

*cyclic(n), ou **" ) entre crochets (le '(n)" associé à la distribution cyclique est 

optionnel). Les descriptions de distribution des différents tableaux à l'intérieur d'une 

même directive sont séparés par une virgule. 

Finalement, le nouvel énoncé de contrôle est le "loop". Il est sémantiquement 

identique à l'énoncé C "while( 1)"; c'est-à-dire qu'il s'agit d'une boucle sans fin qui 

ne peut être interrompue que par une interruption du SIiMD. Ceci est utile lorsqu'on 

traite des flots de données. 

5.2 Sémantique 

Cette section décrit la sémantique de certains éléments de HPCP qui peuvent être 

plus obscurs à quelqu'un qui est familier avec le C. 



5.2.1 Structures de support pour les tableaux 

Opérateurs 

Tous les opérateurs ont la même sémantique qu'en langage C, sauf lorsqu'ils sont 

utilisés avec des tableaux ou des sections auquel cas, elle est étendue de la façon 

suivante: l'opérateur scalaire est appliqué à chaque paire d'éléments de tableaux (un 

de chaque tableau/section) et chacun de ces éléments provient de la même position 

dans chaque tableau/section. Donc, les tableaux/sections doivent avoir la même 

forme. Si une condition utilise un ou des opérateurs logiques sur des tableaux, alors 

la sémantique de la condition devient: la condition est vraie si le tableau de valeurs 

booléennes généré ne contient que des valeurs vraies, sinon, elle est fausse. Il pourrait 

être utile d'obtenir une valeur vraie lorsqu'au moins un élément du tableau généré; 

ce cas peut être traité en utilisant, dans l'expression de la condition, les opérateurs 

de comparaison complémentaires à ceux désirés et en inversant le résultat de ces 

comparaisons. 

Les opérateurs d'assignation voient leur sémantique étendue de la même façon. 

sauf que les assignations (scalaires) sont effectuées, conceptuellement, en même 

temps. Par exempIe, 

a la même sémantique que le programme C suivant: 

Ce qui signifie que les expressions sur des tableaux n'introduisent aucune dépen- 

dance entre les éléments des tableaux de la partie droite de l'assignation et ceux du 

tableau de la partie gauche. 



L'énoncé "where" 

Les énoncés contrôlés par un "where" doivent avoir la même forme que la condition. 

Un élément d'une expression à la droite d'une assignation (ou un élément d'une con- 

dition) de la partie "where" de l'énoncé 'where* est calculé seulement si l'élément 

correspondant de la condition du "where" est vrai; ceci est également le cas pour 

l'assignation à un élément de l'expression du côté gauche d'une assignation. Les cal- 

culs et assignations situés dans la partie "else wheren sont effectués lorsque l'élément 

correspondant de la condition est faux- 

Fonction intrinsèques d'entrée/sortie 

Les fonctions intrinsèques read, write, input et output sont utilisées pour lire 

ou écrire une variable (scalaire ou tableau) en mémoire externe et pour recevoir ou 

envoyer un tableau au monde ext érïeur respect ivement. 

5.2.2 Distribution 

Le modèle de distribution est adapté de celui du HPF [24] de la façon suivante: tous 

les tableaux d'une expression doivent avoir la même distribution. Dans Ie cas d'une 

distribution par blocs, les éléments de tableaux qui sont utilisés par plus d'un PE 
sont répliqués. L a  distribution cyclique est utilisée pour réduire la pression sur les 

mémoires internes. Cela signifie qu'il ne s'agit pas d'une distribution entre les PE 
mais plutôt d'une distribution dasis le temps, c'est-à-dire qu'une portion seulement 

de la dimension d u  tableau sera traitée à la fois. Le résultat est une forme de 

traitement par blocs (pour des exemples de traitement par blocs, voir [18]). 11 a été 

dkidé d'adapter le modèle de distribution du HPF parce que ce modèle est orienté 

vers le traitement structuré de tableaux et que la plupart des algorithmes DSP sont 

de type structuré. 

Étant donné que la mémoire disponible sur le même circuit intégré que le SIMD 
est normalement très limitée et que les tableaux sont gérés sous forme de tampons 

circulaires (tel qu'expliqué à la section 5.3), une distribution par blocs implique que 

les tableaux ne sont pas accédés en ordre lexicographique mais, plutôt, que chaque 

PE reçoit un élément à la fois et que tous les PE en reçoivent un en même temps 

(donc, un générateur d'adresses comme celui décrit au chapitre 4 est nécessaire). Un 



effet important de  cette stratégie est que les tableaux doivent être stockés localement 

par opposition à être r q u s  directement du monde extérieur. Cette contrainte, qui 

découle simplement d'un manque de temps p o u  l'implantation du prototype de 

compulateur, pourra être levée dans l'avenir. 

Il est à noter que, dans le présent modèle de partitionnement, tous les tableaux 

ont le même alignement ( i.e. l'alignement est de O entre eux) donc, il n'est pas décrit 

dans le programmesource (contrairement a u  modèle HPF). 

5.3 Tampons circulaires 

Étant donné que les instructions vectorielles permettent une plus grande densité de 

code ( i.e. moins d'espace-mémoire nécessaire pour exprimer le même aigorit hme), 
elles sont supportées par l'architecture Pulse. Cependant, les processeurs vectoriels 

utilisent en général des registres vectoriels qui ne seraient pas efficaces dans le con- 

texte du projet Pulse. Dans la présente section, il est démontré que les registres 

vectoriels sont inefficaces et qu'une mémoire locale gérée correctement est plus ap- 

propriée pour les applications basées sur des convolutions. La technique de gestion 

de la mémoire proposée est basée sur le concept de tampon circulaire; on montre 

comment L'adapter pour permettre l'utilisation efficace d'iostructions vectorielles. 

5.3.1 Bande passante requise par les registres vectoriels 

L'utilisation de registres vectoriels nécessite parfois plus de bande passante à Ia 

mémoire principale parce que la structure des processeurs qui les utilisent fait en 

sorte que: 

1. on ne peut les accéder qu'à partir de leur premier élément, 

2. on doit les recharger en entier à chaque fois qu'au moins un 

3. nouvel élément de donnée est requis et 

4. lorsqu'on calcule une convolution, il arrive souvent que deux registres doivent 

contenir les même éléments mis à part quelques-uns aux extrémités des reg- 

istres. 



Ce plus grand besoin de bande passante est illustré par les résultats du programme 

d'évaluation de performance STREAM [39, 491 qui montrent que, par exemple, les 

ordinateurs vectoriels CRAY et NEC SX ont une valeur d'équilibre ("balance" - le 

rapport entre le nombre maximum d'opérations que le processeur peut effectuer en 

une secoude et la bande passante utilisable de la mémoire eauprimée en nombre de 

mots par secondes) d'environ 1 alors que la plupart des microprocesseurs ont une 

valeur d'équilibre d'environ 10 (mis à part la famille d'ordinateurs IBM RS6000 qui 

ont une valeur d'environ 3). Évidemment, le fait que différents marchés sont visés 

par ces ordinateurs est une raison significative pour expliquer cette différence mais 

une valeur aussi faible que 1 ne serait pas utile si les données étaient réutilisées selon 

les besoins (e-g. éviter de recharger un registre vectoriel complet lorsqu'on n'a besoin 

que d'un seul nombre) car la bande passante disponible ne serait pas utilisée à pleine 

capacité. Ce plus grand besoin de bande passante est également illustré par le fait que 

l'architecture Torrent 15, 41 (qui est aussi une architecture vectorielle basée sur des 

registres) vise les calculs matriciels [5 il où deux matrices différentes interagissent 

(i.e. lorsque les vecteurs sont réutilisés, ils le sont en entier) donc, l'utilisation de 

registres vectoriels dans ce contexte est efficace. 

Dans le but de quantifier la bande passante gaspillée (pour le calcul de convolu- 

tions 2D) lorsqu'on utilise des registres vectorielsl p représente la longeur des rangées 

du tableau à traiter, n est le nombre de colonnes dans le noyau de coov~lution~ m est 

le nombre de rangées de ce noyau et 1, est le nombre d'éléments que peut contenir 

un registre vectoriel. Pour obtenir le maximum de performance d'un processeur vec- 

toriel, il est généralement conseillé d'avoir des rangées de tableaux dont la longueur 

est un multiple de 1,. Dans le cas de la convolution, il faut que p - (n - 1) soit un 

multiple de 1,. Puisqu'il s'agit là du meilleur cas, du point de vue de la performance, 

cette hypothèse sera utilisée dans le reste de cette section. 

Dans les paragraphes qui suivent, la bande passante requise pour calculer une 

rangée du tableau résultant d'une convolution est calculée et comparée au nombre 

minimum de transferts nécessaires. On fait l'hypothèse que le contenu des registres 

ne peut être réutilisée pour calculer plus d'une rangée du tableau-résultat (ce qui est 

réaliste puisque les registres doivent être rechargés pour calculer chaque élément du 

résultat). Pour calculer un vecteur du tableau-résultat, r x n x n vecteurs doivent 

être chargés, où r est le rapport entre le nombre de coefficients non-nuls sur le nombre 



de coefficients total du noyau de convolution (nm). Aussi, - vecteurs doivent 

être calculés pour obtenir une rangée du résultat. Donc, 

rmn( P - (n- 1) r, 
1, 

chargements (d'éléments de tableaux) sont effectués alors que seulement pm 

éléments de tableaux sont nécessaires. Cela signifie que la surcharge relative est 

Après simplification, 

n (ce qui normalement 

cette équation devient y ( p  - n + 1) - 1 mais, lorsque p > 
le cas), cette équation tends vers rn - 1. Lorsque r est 

raisonablement élevé (par exemple, r > 0.5), la surcharge est plus élevée que le 

nombre d'éléments de tableau requis dans un rapport de plusieurs fois. De plus. 

ceci s'aggrave très rapidement à mesure que n s'accroît (ce qui est le cas pour les 

applications DSP lorsque la puissance de calcul croît puisque cela permet de  réaliser, 

par exemple, des filtres de taille plus grande) donc, cette surcharge doit être évitée 

à tout prix. 

5.3.2 Stratégie d'allocation dans les tampons circulaires 

Dans la section qui précède, on discute d'une façon de vectoriser les calculs sur 

des tableaux qui consiste à diviser les tableaux en vecteurs et d'effectuer les calculs 

sur ces derniers. Dans ce contexte, allouer séquentiellement des éléments de tampon 

circulaire aux éléments d'un tableau est efficace. Cependant, cet te  méthode nécessite 

l'utilisation de plus de résultats temporaires si on veut éviter de recharger les éléments 

des tableaux. Par contre, si la convolution utilise un noyau suffisamment grand 

et dense, utiliser une instruction vectorielle pour calculer chacun des éléments du 

tableau-résultat permet de minimiser la quantité de mémoire locale requise tout 

en étant aussi efficace du point de vue de la vitesse de calcul. Cette méthode de 

vectorisat ion nécessi te, cependant, une nouvelle stratégie d'aliocat ion des éIérnent s 

de tampon circulaire aux éléments de tableau. 

Le but de la stratégie d'allocation est de stocker les éléments d'un tableau 2D dans 

un tampon circulaire, de façon à ce que les éléments nécessaires au  calcul d'un élément 

du résultat d'une convolut ion soient dans des positions situées à égale distance entre 



eux dans le tampon circulaire et ce, dans le but de  permettre de calculer chaque 

élément du résultat à l'aide d'une seule instruction vectorielle. On se Limite à des 

tabieaux 2D parce que la quantité de mémoire locale à un processeur ne permet pas, 

en général, de conserver suffisamment d'éléments pour éviter de les recharger dans 

le cas d'un tableau à plus de deux dimensions. Cependant, la section 5.3.4 esquisse 

une solution pour le cas où le tableau a trois dimensions. 

Une manière directe d'effectuer l'allocation (et qui ne fonctionne pas) consiste 

à utiliser un tampon de longueur p - 1 - rn, où p est la longueur d'une rangée de 

tableau et m est le nombre de colonnes du noyau de convolution et d'allouer les 

éléments de tampon séquentiellement. On obtient alors l'atlocat ion suivante si un 

noyau de 3 par 3 est utilisé (où les valeurs présentent dans le tableau représentent la 

position de l'élément correspondant du tableau dans le tampon): 

Le problème qui se pose avec cette allocation est que, par exemple. pour calculer 

l'élément [L][l] (selon la notation du Langage C) du résultat nécessite, entre autres, 

les éléments [O] [O]. [O] [1] et  [O] [2]. Ces éléments seraient mis aux positions O, 1 et 2 du  

tampon respectivement mais, lorsque vient le temps de calculer le dit élément, ces 

positions du tampon ont déjà été modifiées par l'écriture des trois derniers éléments 

de la première rangée du tableau. Donc, un tampon pouvant contenir plus d'éléments 

de tableaux est nécessaire. 

La longueur minimale du tampon nécessaire pour éviter d'effacer prématurément 

des éléments du tableau est p(n - 1) + rn où n est le nombre de rangées dans le noyau 

de convolution. Avec un tampon de cette taille et un noyau de 3 par 3, l'allocation 

devient: 



On constate que chacune des portions de rangée de tableau utilisées forme un 

vecteur dans le tampon (si on tient compte du  bouclage - "wraparound"). Ceci 

signifie que n instructions vectorielles et  n - 1 instructions scalaires sont nécessaires 

pour calculer un élément du résultat. Ceci est sous-optimal puisqu'il faut redémarrer 

le pipeline pour chaque instruction vectorielle donc. calculer un élément du résultat 

avec une seule instruction vectorielle augmenterait la performance (et la densité 

de code). En conséquence, une nouvelle stratégie d'allocation est nécessaire. La 

stratégie qui vient d'être décri te sera appelée "allocation séquentielleF dans le reste 

de  cette section. 

Lïdée de base de  la nouvelle stratégie d'allocation consiste à allouer les dé- 

ments consécutifs d'une colonne du tableau (par opposition à ceux d'une rangée 

dans la stratégie séquentielle) à des positions consécutives du tampon et d'allouer 

les éléments d'une rangée à des positions dont la distance est égale au nombre de 

rangées du noyau (Le. n). L a  longueur du tampon doit alors être de np - 1 pour 

obtenir le bon bouclage à la fin du tampon. Le résultat de cette allocation pour un 

noyau de 3 par 3 est: 

Cette stratégie satisfait donc les deux objectifs: le tampon est géré correctement 

(Le. il suflisarnrnent long pour éviter l'effacement prématuré des données contraire- 

ment à la première méthode décrite) et  les éléments nécessaires au calcul d'un élément 

du rkul ta t  sont dans des positions successives du tampon. 



s t = i  - 
S c = ?  - -  
St = :j - 
St = 4 M . - -  

0.25 - 

Gain de vitesse 0.2 - 

Figure 5.1: Gain de vitesse entre les vectorisations partielle et  totale 

5.3.3 Évaluation de la stratégie d'allocation 

Gain de vitesse 

Pour évaluer le gain de vitesse de la nouvelle stratégie d'allocation, le nombre de 

cycles nécessaire pour calculer un élément de résultat à l'aide d'un processeur vec- 

toriel pour un noyau carré de k x k est calculé pour l'allocation séquentielle et pour 

la nouvelle stratégie. On suppose que le débit établi est égal à un. L'équation du 

temps pour I'allocation séquentielle est t ,  = k x ( s t  + (k - 1)) + k - 1 et, pour la 

nouvelle stratégie, elle est t ,  = st + k x k - 1 où st est le temps de démarrage. 

La différence relative entre ces deux vitesses de calcul est montrée à la figure 5.1. 
Le temps de démarrage pour les instructions vectorielles, sl, prend les valeurs 1 à 4. 

Ces valeurs sont très petites (Le. elles supposent un processeur très performant) mais 

elles sont réalistes pour un processeur visant à supporter les applications DSP sur 
des nombres entiers. Augmenter ces valeurs ne ferait qu'améliorer le gain de vitesse 

de la nouvelle stratégie aonc, ceci est le pire scénario pour la nouvelle stratégie et, 

malgré tout, le gain de vitesse varie entre 7% et 40%. 



Quantité de mémoire O -3 
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Figure -5.2: Quantité supplémentaire de  mémoire requise 

Quantité de mémoire utilisée 

Cette nouvelle stratégie permet une grande efficacité d'utilisation de  la puissance de  

calcul d'un processeur vectoriel (si le noyau de  convolution est grand par rapport au 

temps de démarrage). Elle permet aussi une grande densité de code par l'utilisation 

efficace d'instructions vectorielles. Cependant, son désavantage est l'utilisation d'une 

plus grande quantité de mémoire que le minimum absolument nécessaire. Ce min- 

imum est celui requis par l'allocation séquentielle e t  il est de p(n - 1) + rn (voir 

la section 5.3.2). Donc, la quantité supplémentaire de mémoire requise est de 
n -1- n-1 +ml  np - 1 - ( p ( n  - 1) + m),  en valeur absolue, et de 

p('~(l,+' 
en valeur rela- 

-m-1 tive. Simplifier ces expressions donne p - rn - 1 et pfn-l,+m respect ivement. 

La figure 5.2 montre la quantité de mémoire supplémentaire relative nécessaire 

p o u .  des valeurs raisonables de p et  k (où k = n = rn, Le. on ne montre le résultat 

que pour des noyaux carrés car les conclusions tiennent pour les noyaux non-carrés). 

Cette figure montre que la quantité de mémoire supplémentaire requise peut être 

a s s a  grande. La quantité de mémoire excédentaire est d'autant plus grande (en 

valeur relative) que le noyau est petit. Aussi, il est évident à l'étude des équations 

qu'effectuer les calculs par blocs est nécessaire lorsque le tableau a de longues rangées 



(par exemple, 10a24 éléments) puisque la quantité de  mémoire requise devient très 

grande par rapport à la quantité de mémoire locale habituellement disponible à un 

processeur. 

5.3.4 Étude du cas 3D 

Utiliser cette stratégie pour les tableaux tridimensionnels peut être utile mais elle 

doit être modifiée pour être correcte. La raison en est que le premier élément d'un 

plan doit être situé à la position dans le tampon qui suit le premier élément du 

plan précédent donc, le premier élément d'une rangée du tableau doit être à une 

distance de 1 (le nombre de pians du noyau de convolution) du premier élément de 

la rangée précédente pour que les éléments nécessaires au calcul d'un élément du 

résultat soient à des positions successives du tampon. Selon le même raisonnement, 

des éléments successifs d'une rangée du tableau doivent être à une distaoce de ln (où 

n est le nombre de rangées du noyau). Ceci implique que le tampon devrait avoir une 

longueur de pln - 1 (ou l(p - 1)). Dans ce contexte, le bouclage à la fin du tampon 

ne peut revenir à la position 1 (tel que nécessaire) parce que le pas d'allocation (ln) 

et la longueur du tampon (l(pn - 1)) sont tous deux des multiples de 1. Ceci implique 

que la stratégie doit être modifiée pour qu'elle puisse fonctionner tel que désiré. La 

situation désirée, lorsque le noyau a une forme de 3 par :3 pax 3, est la suivante: 

Une façon simple d'adapter la stratégie est de remarquer que la position du 

premier élément de chaque plan du tableau est indépendante de la position courante 

si on décide de les mettre dans des positions du tampon qui soient successives. Par 

conséquent, une solution consiste à utiliser un deuxième compteur qui est incrémenté 



de I à la fin de chaque plan et qui est utilisé en guise d'adresse de départ pour chaque 

nouveau plan. 

5.4 Exemple de programme 

La figure 5.3 montre un exemple de programme HPCP. Ce programme consiste en 

une paire de convoIutions classiques. On peut y voir des appels aux fonctions read et 

write ainsi que l'énoncé uloopn qui a été expliqué ci-haut. Aussi, on peut remarquer 

comment les convolutions sont décrites: elles consistent en des sections de même 

forrne mais situées à différents endroits à l'intérieur du tableau. 

Le compilateur génère du code C-PULSE (11. L a  figure 5.4 montre le code généré 

à partir du code-source de la figure 5.3 (certaines modifications y ont été apportées 

pour que l'exemple ne dépasse pas une page). On peut constater que ce code généré 

contient des tampons circulaires (implantés par les fonctions intrinsèques dont le nom 

contient *bufil" ou "bufB") plutôt que des tableaux lorsque plus d'un élément du 

tableau sont nécessaires en même temps, sinon, une variable scalaire (par exemple, la 

variable h)  est utilisée. En particulier, dans cet exemple, le tableau d s'est vu attribué 

le tampon A et le tableau g utilise le tampon B. Les convolutions sont générées en 

calculant les vaieurs des constantes utilisées (en effectuant leur distribution - au 

sens mathématique - lorsque nécessaire) pour permettre de décrire la convolution 

sous forme de somme de produits. Les valeurs ainsi calculées sont stockées dans un 

vecteur constant (par exemple, fipcproeffû) alon que les calculs sont implantés 

sous forme d'une fonction intrinsèque ( ronvo l I t e rbu fAw et -convolIterbufBw). 

La distribution des constantes n'est pas effectuée pour un opérateur situé à la fin des 

calculs d'une expression (par exemple, >> 4 dans l'exemple) parce qu'il peut servir 

à faire une mise à l'échelle des résultats donc la distribution des constantes pourrait 

diminuer la précision des calculs si elle était effectuée. 

Il est à noter comment les tampons circulaires sont initialisés (init buf) et  utilisés 

( -writ ebuf). Égalernent à remarquer, la fonction ronvolIterbuf qui extrait une 

portion d'un tampon circulaire et effectue un produit scalaire avec un vecteur en une 

seule instruction vectorielle. Finalement, il est à remarquer que le tableau est lu et 

certains de ses éléments sont transférés entre les PE en utilisant le même canal de 

communication (Le. North). 



itpragma distribute d[*l [block] , g[*] [bloclt] , hc*] Cblock] ; 

t 

Figure 5.3: Exemple de code HPCP 



void raain 0 
C 
i n t  h , ,hpcp,idxO . ,hpcp,idxl . ,hpcp,nshif t , ,hpcp,t emp C31; 
const iat ,hpcp,coeff0[9] = €1, 2, 1, 2, 4, 2, 1, 2,  13; 
const int ,hpcp,coeff 1[2] = <-I, 13, ,hpcp,coeffZf3] = {-1, 0 ,  1); 

fo r  (,hpcp,idxO = 0 ; ,hpcp,idxO < 10 ; -hpcP-idxO++) ( 
for(,hpcp,idrl = 0; ,hpcp,idxl < 4; ,hpcp-ihl++)< 

if(,hpcp,idxO >= 0 && ,hpcp,idxO <= 9) 
if(,hpcp,idxl >= 0 Lt ,hpcp,idxi <= 9){ 

f or(,hpcp,nshift = 0; ,hpcp,nshift < 4; ,hpcp,nshif t++) 

JorthShif t ( ) ; 
,aritebuf~w(,Eorth) ; 
i f  (,hpcp,idxl <= 2) 

,hpcp,temp Lhpcp-idxi] = ,Horth; 
i f  (,hpcp,idxl >= 1) ( 

,north = -hpcp-temp Lhpcp-i-1 - 21 ; 
JorthShif t ( ) ; 

1 
if(,bpcp,idx0 >= 1 && Jpcp,i&O <= 8) 

if(,hpcp,idxl >= 1 && ,hpcp,idxl C= 8) 
,ariteb~~u(,convolIterb~Au(,hpcp,coef f 0 , 9) >> 4) ; 

i f  (,hpcp,idxO >= 1 && ,hpcp,idxO <= 9) 
if (,hpcp,idxl >= 1 && ,hpcp,idxl <= 9) 

h = ,mar(,abs (,convolIterbIlfBu(,hpcp,coef f 1 , 2) ) , 
-abs (,convolIterb~fBu(~hpcp,coeff2 , 3)) , -32768) ; 

if(,hpcp,idxO >= 0 U ,hpcp,idxO <= 9) 
if(,hpcp,idxl >= 0 && ,hpcp,idxl <= 9)C 

,South = h; 
for(,hpcp,nshift = 0 ;  ,hpcp,nshift C 4; ,hpcp,nshift++) 

,SouthShift ( ) ; 
1 

1 
1 

1 

Figure 5.1: Code C-Pulse g6nkrk 



5.5 Analyse des performances obtenues 

Etant donné que le compilateur créé ne comprend pas les optimisations habituelles, le 

code généré n'est pas très performant. En particulier, à l'analyse du code de la figu- 

re 5.4, on constate que les boucles imbriquées traversent tout l'espace d'indexation et 

qu'un énoncé "if" est utilisé pour les énoncés qui correspondent à chaque énoncé du 

source HPCP- Il serait beaucoup plus efficace d'extraire les itérations qui ne font que 

le t rai ternent des frontières et de limiter l'espace d'indexai ion parcouru. Également, 

certains de ces énoncés "if" pourraient être éliminés par fusion ou par élimination 

(lorsque leur condition est toujours vraie i.e. lorsque le traitement à faire doit l'être 

sur tout le nouvel espace d'indexation - après optimisation). Finalement, le code 

assembleur généré pourrait aussi être amélioré. La principale amélioration consiste à 

utiliser les instructions 'push*, 'pop" et 'dbr' pour implanter les boucles imbriquées 

plutôt que des "Sub", "[fc", 'BNPA" et "BU*. 

Puisque la performance du code généré est surtout limité par l'absence d'optimi- 

sations classiques et que ces dernières dépassent le cadre des présents travaux, on ne 

comparera pas la performance du code généré avec celle de code écrit directement en 

assembleur. On s'attardera plutôt sur le temps ajouté pour effectuer un traitement 

par rapport à n'effectuer que le transfert d'un tableau de l'entrée vers la sortie (Le. 

d'un canal vers un autre) en assignant un tableau lu à un autre tableau et en effec- 

tuant l'écriture de ce deuxième tableau vers l'extérieur. Le programme utilisé pour 

effectuer ce transfert est donné à la figure 5.5. 

Le code C-PULSE et le code assembleur générés sont donnés à l'annexe D. Le 

üpragma d i s t r ibute  d  C*] [block] , h [*1 [block] ; 

Figure 5.5: Premier programme de test HPCP 



Xpragma distribute d [*] [block] , h[*] [block] ; 

Figure 5.6: Deuxième programme de test HPCP 

deuxième programme de test utilisé est celui de la figure 5.6 (les codes assembleur 

et C-PULSE sont également donnés en annexe). 

En comparant les deux programmes assembleurs générés, on constate que: 

a il y a quelques instructions supplémentaires pour l'initialisat ion des tampons 

circulaires. 

une instruction "Ld" (Load) a été remplacé par un appel à '-writebufAwn 

(qui sera remplacé par une seule instruction dans un avenir prochain) et  

a une instruction "Ld" (pour effectuer l'assignation 'h = d;") est remplacée par 

un appel à '~convolIterbufAwn (qui deviendra une seule instruction vectorielle 

sous peu) et par une instruction 'Sri". 

Donc, la seule perte en vitesse de transfert est due au temps de calcul et  ce dernier 

est minimal puisqu'il ne consiste qu'en une instruction vectorielle et une instruction 

de mise à l'échelle. Ceci implique que le code généré pour une convolution aurait un 

niveau de performance maximale si les compilateurs utilisés contenaient toutes les 

optimisations qu'on retrouve habituellement dans un compilateur. 

Pour corroborer cette conclusion, un programme un peu plus élaboré (celui de la 

figure 5.3) a été compilé (le fichiers assembleur est également donné dans l'annexe D). 



On constate que d'avoir deux assignations contenant des convolutions ne diminue en 

rien l'afficaci té du code généré donc le compilateur HPCP créé supporte efficacement 

les convohtions. 

5.6 Conclusions 

Un nouveau langage de progranmat ion (HPCP) qui rencontre des objectifs qu'aucun 

autre langage ne supporte a été décrit. On a également démontré qu'une mémoire 

locale gérée sous forme de tampon circulaire est plus appropriée que des registres vec- 

toriels dans les cas où on effectue des convolutions. De plus, l'efficacité des tampons 

circulaires (en vitesse de calcul et espace-mémoire) a été quantifiée. 

Finalement. on a démontré que la performance du code C-PULSE généré par le 

compilateur HPCP conçu dans le cadre du présent travail n'est essentiellement limitée 

que par l'absence d'optimisations classiques qui dépassent le cadre des présents 

travaux. 



Chapitre 6 

Génération automatique de 

directives HPF 

L a  pardélisation automatique de programmes est une tâche difficile. Les travaux 

de plusieurs chercheurs cnt permis la mise au point d'algorithmes permettant d'y 

arriver dans certains contextes et selon certains objectifs. 11 a été montré à la sec- 

tion 2.2 qu'aucune des méthodes proposées ne permet de rencontrer simultanément 

les objectifs suivants: 

supporter le modèle d'alignement et de distribution du HPF, 

a être faite d'algorithmes dont la complexité temporelle est faible et 

a calculer tant i'alignement que la distribution des tableaux. 

Dans ce chapitre, une méthode qui rencontre ces objectifs est décrite. La sec- 

tion 6.1 décrit le cadre conceptuel utilisé, ainsi que les algorithmes permettant la 

parallélisation automatique, alors que la section 6.2 décrit le traducteur qui a été im- 

planté pour valider les algorithmes proposés, ainsi que le résultats des tests effectués 

pour évaluer la qualité de La parallélisation. Finalement, la section 6.3 énonce les 

conclusions de ce chapitre. 

6.1 Cadre conceptuel et algorithmes 

Dans cette section, on décrit la fonction de coûts (de communications) utilisée dans 

les algorithmes d'alignement et de distribution des tableaux. On énonce également 



comment l'information nécessaire à la prise de décision est extraite du programme à 

paralléliser. Finalement, les algorithmes utilisés sont décrits et expliqués. 

6.11 Fonction de coût 

Le résumé du modèle HPF de parallélisation de la section 1.1 montre que ce modèle 

supporte surtout les calculs basés sur les sections de tableaux parce que: 

2. les partitions possibles sont des sections, 

2. le réseau de processeurs est décrit comme un tableau et 

3. le modèle ne permet de réduire les communications que de deux façons. soient: 

utiliser des partitions %paissesn ' et permuter les dimensions lors de l'aligne- 

ment - 

Pax contre, l'utilisation d'une distribution cyclique avec des partit ions minces 

peut réduire 17impact d'un mauvais équilibre des charges de calcul lorsque Le traite- 

ment n'est pas totalement structuré. Ceci est possible parce que les portions de 

tableaux qui requierent un plus grand effort de calcul sont réparties entre les pro- 

cesseurs (par exemple, la décomposition LU). De toute évidence, il s'agit d'un com- 

promis entre la répartition de la charge de calcul et la quantité de communications 

requise. 

Ceci implique qu'un out il de génération automatique d'alignements et de distribu- 

tions (qui vise les applications effectuant un traitement structuré) pourrait supporter 

les sections définies au  moment de l'exécution de l'application ou il pourrait être 

limité aux sections définies au moment de la compilation (Le. les sections définies 

à l'aide de constantes). La première situation nécessiterait soit une compilation 

spéculative, soit la redistribution ou soit une recompilation basée sur le profilage de 

l'exécution des applications. Par contre, les sections définies à I'exécution ont un 

comportement plus dynamique (par définition) donc, les utiliser avec un modèle de 

parallélisation aussi restrictif que celui du HPF est, dans une certaine mesure, ten- 

ter l'impossible parce que le modèle n'a pas le niveau d'expressivité nécessaire pour 

supporter ces sections. Donc, il a été décidé de limiter l'analyse des applications aux 

'Les sections de tableau qui représentent les partitions n'ont une faible longueur (e.g. 1, 2 ou 3) 
pour aucune de leurs dimensions. 



sections définies à la compilation seulement. Xéanmoins, ceci devrait être suffisant 

pour supporter les applications visées comme, par exemple, les applications DSP et 

celles basées sur une grille structurée et une méthode de calcul itérative (par exemple, 

une méthode aux différences finies avec ou sans une méthode multi-grille). 

De cette discussion, il se dégage que ce dont on a besoin pour trouver le meilleur 

alignement et la meilleure distribution pour chaque tableau est les sections qui in- 

teragissent. Ces relations forment un graphe dont les sommets sont les tableaux et 

les arcs sont les alignements nécessaires pour éviter les communications. Le graphe 

d'une application contient habituellement des alignements qui sont conflictuels donc, 

un arbre recouvrant doit être extrait du graphe dans le but d'éliminer ces conflits. 

Cela signifie qu'on doit choisir quels alignements seront satisfaits ce qui, en retour, 

implique qu'une fonction de coût doit être mise au point pour effectuer cette sélection. 

Le modèle de coût est le suivant: une relation qui n'est pas satisfaite impose des 

communications pour transférer un nombre d'éléments de tableau égal à la somme, 

pour chaque dimension, du produit de la surface d'une coupe (de partitionnement) 

par la différence entre la vaieur d'alignement de la relation et l'alignement effec- 

tif. Parce que le résultat de ce calcul est linéaire par morceaux en fonction de la 

différence entre les alignements des relations et l'alignement effectif, la fonction de 

coût devient la somme, pour toutes les dimensions, du produit de la surface de coupe 

par l'alignement requis par la relation. II est à noter que cette fonction évalue le coût 

des communications des processeurs qui ont le coût le plus élevé; à l'opposé, les pro- 

cesseurs situés aux extrémités du réseau ont moins de communications car ils ont 

moins de voisins. Ceci n'entraîne pas d'imprécision de la fonction de coût puisque 

les processeurs qui effectuent moins de communications devront attendre les autres. 

6.1.2 Extraction de l'information 

L'unique information utilisée, pour chaque relation, est les tabieaux qui interagissent 

et la borne inférieure, pour chaque dimension, des sections de ces tableaux. Seule la 
borne inférieure est utilisée parce que: 

1. gérer les cas ok le pas n'est pas 1 rendrait l'analyse beaucoup plus complexe 

alors que cette situation ne se produit pas souvent en pratique et 



Taldcau 6.1 : Liste dcs relations dc I'cxemplc dc Iëqiiation 2 

2. le fait que les sections ont la même forme et qu'on ne considère pas le pas 

implique que la borne supérieure n'est pas utile (i.c. la différence entre les 

bornes inférieures est la même que la différence entrc les bornes supérieures). 

tableau 
al 1 al 

Il existe une exception notable où le pas est utile: il s'agit de l'ensemble des 

méthodes multi-grille mais ces dernières utilisent différents pas pour des sections 

d'un même tableau donc, il s'agit de relations inutiles pour l'alignement. 

En guise d'exemple, l'énoncé suivant: 

al igncmcn~ 
- 1  -3 

contient Ics relations présentées au tableau 6.1. 

Les opérations supportées par les algorithmes qui sont décrits dans le reste 

de la présente section sont les sections, les opérateurs ainsi que les fonctions in- 

trinsèques CSHIFT, EOSHIFT, TRASSPOSE, ALL, ASY, COUNT, PRODUCT, 
SUM, MAXVAL, MIXVAL, SIZE et SPREAD. Ces opérations effectuent (explicite- 

ment ou implicitement) soit l'extraction d'une section, soit la déduction d'un tableau 

(sauf SPREAD qui fait l'opération inwrse d'une réduction). 

6 J.3 Algorithmes 

Cettc section contient, dans l'ordre, la description des étapes à franchir pour effectuer 

l'alignement et la distribution ainsi que les algorithmes qui implantent ces étapes. 

La première étape consiste à recueillir l'information sur les relations. Dans le 

but de mieux représenter les coûts de communications, si une reIation entre tes deux 

même tableaux et avec le même alignement apparaît plus d'une fois dans le même 



énoncé, elle est considérée comme étant une seule relation parce qu'un compilateur 

optimisant regroupe les comrminications dues à un énoncé (autant que possible); ce 

qui signifie que les cornmunications ne se produisent qu'une fois par énoncé (dans 

le pire cas). Donc, considérer qu'une telle relation est présente à plus d'une reprise 

serait trop pessimiste. 

La deuxième étape consiste à trier les relations selon l'identificateur du premier 

tableau, puis celui du second et, finalement, de la norme euclidienne de l'alignement 

désiré. Ce tri permet, ensui te, de regrouper les relations eut re les mêmes tableaux qui 

ont le même alignement désiré (le nombre d'apparitions de la relation est conservé). 

Lëtape suivante consiste à créer les gabarits. L'algont hme suivant est utilisé: 

1. trouver la dimensionalité la plus élevée panni les tableaux qui n'ont pas encore 

de gabaxit, 

2. utiliser un tableau parmi ceux-là en guise de référence, 

3. trouver tous les tableaux qui sont liés à cette référence, 

4. créer un gabarit ayant la dimensionalité requise et lui lier tous ces tableaux, 

5. répéter les étapes 1 à 4 jusqu'à ce que tous les tableaux aient un gabarit. 

Ensuite, on doit choisir les dimensions à partitionner. Si la forme du réseau de 

processeurs est inconnue, toutes les dimensions (des gabarits) sont partitionnées, 

sinon, l'algorithme suivant est utilisé pour effectuer la sélection des dimensions: 

pour toutes les dimensions du réseau 

pour tous les gabarits 

pour toutes les relations 

si le gabarit de la relation courante est le gabarit courant 

pour toutes les dimensions du gabarit 

si l'alignement de la relation courante selon la dimension courante est 

grand 
le coût de la dimension courante est fixé à l'infini 

sinon, si le coût de la dimension courante n'est pas infini 

caiculer la surface de coupe des tableaux de la relation 



additionner au coût de la dimension courante le produit de 

l'alignement par la surface de coupe et par le nombre 

d'apparitions de la relation courante 

trouver la dimension au plus faible coût (en cas d'égalité, choisir celle qui a la 

meilleure répartit ion de l'effort de calcul) 
assigner à la permutation de cette dimension (de gabarit) le numéro de  

dimension courante du réseau 

remettre à zéro les coûts des dimensions 

Lorsqu'on dit que l'alignement est grand, cela signifie qu'une opération de traos- 

position ou de réduction est utilisée donc que les éléments des tableaux interagissent 

de façon plus complexes que celle supportée par le modèle (Le. des sections qui 

interagissent). 

L'étape suivante consiste à extraire l'arbre recouvrant; il s'agit, dans un premier 

temps, de trier les relations selon: 

1. le produit de la n o m e  euclidienne pour les dimensions partitionnées par le 

nombre d'apparitions de la relation e t  

3. selon le nombre d'apparitions de la relation uniquement. 

Le deuxième critère a été choisi-parce que, pour une quantité de communica- 

tions donnée, utiliser un moins grand nombre de blocs de données (de plus grande 

dimension) diminue, habituellement, la charge imposée au réseau. Deuxièmement, 

les relations qui ont les coûts les plus élevés sont choisies (dans le but d'éviter ces 

coûts) jusqu'à ce que l'arbre recouvrant soit complet. 

Finalement, les tableaux doivent être alignés; ceci est effectué par I'algorit hme 

suivant: 

pour tous les gabarits 

trouver un tableau qui utilise le gabarit courant et utiliser ce tableau en guise 

de référence 

mettre à zéro tous les éléments de I'alignement de cette référence 

tant qu'on n'a pas terminé 



indiquer que, par défaut, on a terminé 

pour toutes les relations qui lient deux tableaux différents 

si le gabarit de la relation courante est le gabaxit courant et si 

un seul des tableaux de la relation courante a été aligné 

aligner l'autre tableau en utilisant l'dignement de la relation courante 

accumuler les valeurs minimales et maximales des alignements pour 

chaque dimension 

indiquer qu'on n'a pas terminé 

soustraire la valeur minimale des alignements de chacun des alignements (des 

tableaux) dans le but de ramener à zéro celui qui a la valeur la plus petite 

créer la forme du gabarit courant (qui est la forme de la référence plus les 

maximums des décalages moins leurs minimums) 

6.1.4 Complexité temporelle des algorithmes 

La compiexiié d a  diffcke-tes étapes décrites à la section précédente sont: 

trouver les relations: O(nombre d'opérateurs par expression fois nombre d'ex- 

pressions) 

trier les relations: O(nombre de relations fois son loganthme) 

créer les gabarits: O(nombre de tableau)  

choisir les dimensions à partitionner: O(nombre de dimensions du réseau fois 

le nombre de gabarits fois le nombre de relations) 

trier les relations (à nouveau): O(nombre de relations conservées fois son loga- 

rithme) (le nombre de relations conservées est O(nombre de tableaux)) 

créer les alignements: O(nombre de relations conservées) 

, 
Etant donné que le nombre de relations est beaucoup plus grand que le nombre 

de gabarits, que le nombre de dimensions du réseau et que le nombre d'occurences 

des opérateurs, le temps de tri des relations domine (Le. la complexité temporelle est 

O(nombre de relations multiplié par son logarithme)). 



6.2 Implantation 

L'implantation a été faite sous forme d'un traducteur source-source qui ajoute des 

directives de parallélisation HPF à un programme Fortran 90. Le but étant de 

prouver le concept, le traducteur n'est pas un compilateur complet. 

La grammaire implantée est celle de [2, pp. 665-6891 mais elle a été modifiée dans 

le but d'éliminer certaines arnbiguités et  pour rendre l'analyse syntaxique plus facile. 

Donc, le traducteur ne supporte pas le Fortran 90 complet. 

6.2.1 Bancs d'essais 

Deux applications ont été utilisées en guise de bancs d'essai: la première est une 

simulation de fluides qui utilise le schème de différences finies de MacCormack [20] 
alors que la seconde est une application de déconvolution de signal qui calcule un 

estimé d'un champ de vent à partir de données de précipitations provenant d'un 

radar Doppler [35] (cette application sera dénomée Semad ci-après). Dans cette 

deuxième application, le schème semi-lagrangien a été remplacé par un schème aux 

différences finies dans le but de rendre le traitement plus régulier et pour diminuer 

i ' e h r t  de t d c d  requis. 

Les deux applications consistent en 29 1 et 376 lignes de code respectivement (en 

une seule fonction car le compilateur xlhpf qui a été utilisé semble produire du code 

erroné lonqu'il y a des appels a des fonctions définies par l'usager). Aussi, le temps 

d'exécution du traducteur (pour ces applications) est négligeable (i.e. quelques se- 

condes) sur un SparcStation 2. Ceci confirme la faible complexité temporelle des 

algo rit hmes . 
Les tableaux 6.2 et 6.3 donne les temps d'exécution des applications sur un or- 

dinateur IBM SPI2 qui contient quatre processeurs. Les applications ont été com- 

pilées avec xlhpf et ont été exécutées sous l'environnement POE (mais ont été 

soumise par l'intermédiaire de LoadLeveler). Chaque donnée représente le temps 

moyen de 9 exécutions au minimum. La colonne "temps sans alignement" est le 

temps d'exécution lorsque l'alignement est fixé à O pour tous les tableaux alors 

que la colonne "chargen indique combien d'autres applications étaient exécutées en 

même temps que celle sous étude (une valeur de 0.75 signifie que 3 applications 

séquentielles étaient exécutées sur 3 des 4 processeurs). 



Tableau 6.2: Tcnips d'cxkution pour I'applicatioii irIac<'orniack 

Tableau 6.3: Temps d'exécution pour l'application Semad 

charge 

t Réseau dc forme soécifiée l 

amélioratioii 
(%) 

nombre de 
processeurs 

temps sans 
alignerncnt 

R <&au dc forille iiou-s péci fiée 

temps avec 
alignement 

/ riomhrc de 
processeurs 

O 
O 
1 

temps avec 
alignement 

Réseau de forme non-spécifiée 

O 
0.49 
3.S 

amélioration 

(% ) 
temps sans 
alignement 

1 
2 
4 

310 
204 
312 

I 
2 
4 

Réseau dc forme spkifiée 

310 
'203 
300 

charge 

O 
1 
1 

. 

110 
15 
99 

-45 
-0-9 
-152 

-? - 
4 
2 x 3  

IO3 
GO 
64 

1 

-4 .tS 
-25 
-5s 

'394 
6'13 
818 

O 
O 
0.7.5 

303 
661 
325 



À t'analyse de ces tableaux. on constate que: 

r il y a peu de cohérence dans les résultats, 

a utiliser le réseau du SPI2 comme avec une forme de 3 x 2 entraîne une perte 

de performance, 

a la qualité du code généré par xlhpf semble Msiable et cette variabilité semble 

dominer le changement de performance dû à la qualité de la parallélisation, 

0 Semad a une structure des calculs plus complexe et le gain de performance 

associé à l'utilisation de l'outil de parallélisation semble plus grand donc il 

semble que l'outil soit profitable lorsque les applications sont complexes, 

0 la structure des calculs de l'application MacCormack (qui est très régulière) 

fait en sorte que p!usieurs alignements entraînent les même coûts de communi- 

cations ce qui fait que la différence de performance est souvent très faible entre 

les cas avec alignement et ceux sans dignement. 

6.3 Conclusions 

Des algorithmes d'alignement et de distribution ont été décrits et on a démontré 

qu'ils ont une faible complexité temporelle. 

Des applications ont été compilées à l'aide d'un outil qui implante ces algorithmes 

et leur exécution semble montrer que les compilateurs HPF ne sont pas suffisamment 

matures pour permettre de prédire le niveau de performance selon la configura- 

tion du système et les directives de parallélisation. II semble donc qu'un outil de 

génération de directives de parallélisation doive tenir compte du compilateur pour 

pouvoir générer des direct ives judicieuses. 



Chapitre 7 

Généralisation et forrnalisat ion du 
modèle de partit ionnement 

Le modèle de  partitionnement utilisé jusqu'à présent est celui du HPF. Au chapitre 6. 

des algorithmes qui permettent de cdculer ce partitionnement de façon automatique 

ont été décrits. Une version plus contrainte de ce modèle a également été utilisée 

dans le chapitre 5. Cependant, le modèle HPF est très contraignant, en particulier, 

en ce qui concerne le fait qu'une dimension ne puisse être partitionnée qu'une seule 

fois. Bien que, dans le cas général, ceci ne cause pas de problème. il est bon de 

rendre le modèle plus flexible pour mieux supporter les cas qui seraient pathologiques 

avec le modèle HPF. C'est-à-dire que, même si ces cas sont plut& rares. iiti<- pcrte 

potentielle de  performance qui serait dramatique mérite qu'oii aridiorc~ Ir support 

pour ces applications. 

Dans le présent chapitre, on montre comment généraliser le modcle de distribut ioti 

(Le. le modèle d'alignement n'est pas modifié). La description du nouveau modèle de 

distribution est faite en utilisant MOA (qui est décrit à l'annexe A )  et le A-calcul [i5] 

dans le but de formaliser le modèle. 

Pour pouvoir effectuer une distribution selon la méthode qui sera décrite dans ce 

chapitre, la seule informat ion nécessaire concernant le réseau de communication est 

sa forme, c'est-à-dire qu'on se limite à des réseaux pouvant être décrit sous forme de 

tableau et l'information spécifique dont on a besoin est la forme de ce tableau (Le. 

on utilise le merne modèle de réseau que celui supporté par HPF). Cette restriction 

permet malgré tout l'utilisation des réseaux les plus courants soient les réseaux à 



mailles et les "k-ary n-cubes". Dans le premier cas, la forme du réseau s'obtient 

directement par inspection alors que dans le deuxième cas, la forme du réseau est un 

vecteur de n éléments valant tous k- 

La section 7.1 décrit quel type de distribution on veut supporter alors que la 

section 7.2 décrit les algorithmes nécessaires à I'irnplantat ion de  la distribution. Fi- 
nalement, la section 7.3 tire des conclusions sur ce chapitre. 

11 est à noter que ce chapitre est une généralisation d e  ce qui a été décrit dans [LOI. 

7.1 Classe de distribution 

L'objectif premier étant de définir un environnement de  travail pour décrire et im- 

planter des algorithmes de distribution, on vise à solutionner ces problèmes pour 

un sous-ensemble des types d e  distribution possibles. Puisqu'on vise à supporter 

les applications qui effectuent un traitement structuré (régulier) sur des tableaux, 

on se penche sur une classe de  distribution qui se décrit facilement en termes de 

transformations sur des tableaux. 

La classe de distribution visée est celle qui consiste à diviser un tableau perpendi- 
C 

culairement à un de  ses axes. Etant donné qu'un ordinateur parallèle a souvent plus 

d'une dimension. ce processus de  subdivision sera effectué pour chaque dimension du 

réseau. Plus précisement, pour chaque dimension du réseau, le tableau de  données 

sera partitionné en un nombre de  parties égal à la longueur du réseau dans cette 

dimension. Ceci est une modification au  modèle HPF puisque ça permet de distribuer 

une dimension du tableau de  données plus d'une fois. La distribution sera exprimé 

par un vecteur nommé Üp et utilisera les informations suivantes: 

4 

s,: forme du réseau, 

s',: forme du tableau de données (qui sera noté &). 

Û, définit la distribution à effectuer de  la façon suivante: GP[i] indique quelle 

dimension de ta est partitionnée par la dimension i du réseau. Cette dimension de 

& est donc partitionnée en ;,[il sous-tableaux. 

On voit donc que üp doit respecter les conditions suivantes: 



Cette classe de distribution est intéressante parce qu'elle supporte les applica- 

tions qui effectuent un traitement structuré sur des tableaux puisqu'elle favorise les 

communications locales tout en étant plus générale que celle du HPF. 

7.2 Algorithmes 

Étant donné U,. Partition (qui est exprimée à l'aide du kcdcul)  calcule la forme 

des partitions à partir de la forme du tableau de données et de la forme du réseau. 

Cette expression s'appelle elle-même récursivement et, à chaque fois, elie divise 

l'élément pertinent de la forme temporaire st par le bon élément de la forme du 

réseau donc, si vaut Sa au début, il contient la forme des partitions Z,,, à la fin. 

Dans le but d'exprimer la distribution en fonction de transformations sur un tableau, 

elle sera exprimée comme une opération qui transforme un tableau de forme s', en 

un tableau dont la forme est la concaténation de s', et de Spart. Donc, si G, est la 

forme du tableau après la distribution: 

Maintenant. on doit trouver comment transformer eu en crin, (le tableau de forme 
+ 
S )  On ne peut pas simplement faire un "reshapen ( P )  de Cu parce que cet 

opérateur préserve l'ordre lexicographique. Si, par exemple, G< 4 6 >. ptP E< 

2 3 > e t  



Alors, avec le "reshape" . on obtiendrait (en notant que s',& est < 2 2 > ): 

Mais on doit avoir: 

si on veut implanter l'algorithme décrit ci-haut. 

Étant donné qu'une dimension du tableau de données est divisée pour "créer" 

chaque dimension du réseau, on doit entrelacer les dimensions des partitions avec 

celles du tableau de processeurs pour obtenir la forme de tableau dans laquelle les 

partitions sont intactes. Pour le démontrer, on a besoin du théorème 1 où est iin 
4 

tableau de données non-vide, j est la dimension de qui est partitionnée, d indique 

comment la dimension j de ce est partitionnée (par exemple, si elle est partitionnée 

en 3 et que les partitions résultantes sont partitionnées en 5 et que les partitions 
-b 

résultantes sont partitionnées en 4 alors d =< 3 5 4 >) et  O. est la forme 

après que la dimension j ait été partitionnée. 

Le théorème montre que. si on effectue un "reshapen d'un tableau en remplqant 

une de ses dimensions par un certain nombre de dimensions pour lequel le nombre 

total de sous-tableaux reste le même, alors ces sous-tableaux (indexés par l dans  le 

théorème) restent les mêmes parce que le 'reshapen préserve l'ordre lexicographique. 

Ce qui change est l'ordre dans lequel ces sous-tableaux sont combinés pour former 

le tableau complet. Il est à noter que ce théorème montre que chaque dimension est 

indépendante des autres sous cette transformation et, donc, qu'on peut appliquer la 
distribution à plusieurs dimensions à la fois. 

Théorème i Si 3 j ,  O 5 j < bCe tel que rd= ( p & ) b ]  et que O 5' i'<' ( j  + 1)  A p&, 



Si on pose 

Alors 

Preuve: 

( (  v + u s  ) f ((ri)  - I + (TL))  v p(Üs F e e )  Définition de + et 

( ( j + l ) - L + r d t ) v ü S  Définitiondep 

et Psi Correspondence Theorern[4%1 

p(îi&) Définit ion de t,!~ 

Donc, on doit montrer que 



Ce théorème montre que, pour distribuer un tableau en le divisant selon une de 

ses dimensions, on doit faire un "reshape" en utilisant, en guise de nouvelle forme, le 

vecteur obtenu par la concaténation de la longueur du  tableau de processeurs selon 

chaque dimension qui partitionne la première dimension du tableau de données et 

de la dimension de cette première dimension (après la distribution) et en répétant 

pour chaque dimension du tableau de données. 

La lambda-expression suivante donne la forme désirée: 

Init : AZp.$.5,,,t.&.~nit if [r& i 1, Y;:,& ++s',[g,[O]]+s'Patt [O] 

if [ ~ p [ g v [ o l l  = q ! T v [ ~ ] ] ,  1nit(Zp, Ü p ,  s,,, 0 &, 
Gnit  +$ [li, [O]]) 

rnit(zp, üp, 1 v spart, 1 v su, ~ , , i t ~ ~ ~ ~ [ o ]  

Donc. le tableau après cette opération est donnée par: 

11 ne reste plus alors qu'à transposer <,nit pour obtenir if,,, parce que, dans ejnit, 
les dimensions du tableau de  processeurs sont entrelacées avec celles des partitions 

alors qu'on les veut séparées. Le résultat de Gentv, donnée ci-dessous, est le vecteur 

qui donne la permutation nécessaire. 



Donc, le tableau part itionné est donné par: 

Avec ces expressions, tout ce qui manque pour e f f ~ t u e r  une distribution parti- 

culière est la valeur de ü, pour cet te  distribution. Ce dernier peut être calculé grâce 

à l'algorithme de sélection de dimensions de la section 6.1.3 (page 70) dans lequel 

la sélection de la dimension serait modifiée pour permettre la répétition d'une ou 

plusieurs dimensions. 

7.2.1 Exemple 

Dans cette section, on montre comment utiliser Partition, Init et Gentv pour - -D -e 

calculer s',a,t, ski( et 1 ,  à partir de &,o J, et v,. 

Supposons que: 

s', < * 5 3 4 : 3 3 4 5 3 >  

s', < 900 576 > 
üp G < 0 0 1 0 1 1 0 i >  

Alors, chaque appel récursif de Païtition donne: 

Donc, r< 4 4 >. 



Étant donné que gu VP E< O 1 3 6 2 4 5 7 >, chaque appel récursif de Init donne: 

Donc, =< 5 3 3 5 4 4 3 3 3 4 >. 
Chaque appel récursif de Gentv donne: 

- 
sV t, 1 enci 1 

~ o n c , & r < 0 1 3 6 8 2 4 5 7 9 > .  

Pour montrer que ces résultats sont corrects, on dérive s',,,. 



7.3 Conclusions 

On a mont ré comment MUA et le A-calcul permettent de décrire la dist nbution d'un 
tableau de manière rigoureuse et conceptuellement simple. 

La seule donnée à calculer pour utiliser cet te méthode de distribution est Üp. 



Chapitre 8 

Conclusions 

Tel que discuté dans cette thèse, le traitement structuré (régulier) de tableaux en- 

globe un grand nombre d'applications et ces applications forment une classe impor- 

tante (au sers de l'utilité) en pratique. 

Dans le but d'accélérer le traitement de ces applications, on a décrit un algo- 

rithme permettant d'effectuer rapidement et à peu de frais le calcul d'adresses des 

éléments de tableaux transformés. On a égaiement décrit un générateur d'adresses 

qui implante une version parallele de cet algorithme. Ce générateur d'adresses sup- 

porte toutes les transformations linéaires entre un vecteur d'indice et une adresse. 

De plus, on a montré que 1.implantation matérielle a une très faible complexité et 

qu'elle permet de calculer une adresse par cycle d'horloge normalement (ce qui est 

très rapide). 

On a démontré que les registres vectoriels sont une forme de mémoire locale 

qui n'est pas appropriée pour les convolutions, puisqu'ils forcent un gaspillage de 

la bande passante entre la mémoire et le processeur. Une méthode de gestion de 

mémoire locale sous forme de tampons circulaires a été décrite. Elle consiste à 

charger les éléments successifs de tableaux a des positions dans le tampon circulaire 

qui sont à une distance égale au nombre de rangées dans le noyau de convolution 

et à utiliser un tampon d m t  la taille force un "wraparound", de façon à ce que les 

éléments d'une colonne du tableau soient à des positions successives dans le tampon. 

On a démontré que cette méthode permet d'extraire un maximum de performance 

d'instructions vectorielles. Le seul compromis de cet te rnét hode est qu'elle nécessite 

légèrement plus de mémoire que le minimum nécessaire pour éviter de charger des 



éléments de tableaux plus d'une fois. 

On a également proposé un langage de programmation qui permet de  décrire 

les applications qui traitent des tableaux de  façon structurée à un haut niveau 

d'abstraction, tout en  permettant tant la génération de  code performant (pour des 

algorithmes basés sur des convolutions), ainsi que la parallélisation des applications 

pour des architectures SIMD. Pour permettre la génération de code performant, on 

s'appuie sur l'utilisation efficace d e  tampons circulaires e t  d'instructions vectoriella 

qui permettent d'effectuer une mult i plicat ion-accumulat ion par cycle d'horloge sur 

une architecture qui supporte ce type d'instruction. 

Il a également été montré qu'il est possible de paralléliser les applications grâce à 

des algorithmes dont la complexité temporelle est faible. Pour ce faire, on utilise la 

forme et la position des sections de  tableaux qui sont utilisées dans le programme à 

paralléliser et  on trouve les sections qui doivent être alignées ainsi que les dimensions 

qui doivent être partitionnées de  façon à minimiser les communications. Cependant, 

comme le langage HP F a été utilisé pour en faire la démonstration e t  que le compila- 

teur utilisé manque de  maturité, il n'a pas été possible de quantifier la qualité d e  la 
parallélisation obtenue. Une avenue intéressante pour y parvenir consiste à utiliser 

les dits algorithmes dans le compilateur HPCP créé dans le cadre de la présente 

thèse. Évidemment, comme l'environnement HPCP est plus contraint que celui du 

HPF, les conclusions de  tels travaux ne pourraient pas être aussi générales. 

Finalement, on a décrit comment formaliser et généraliser le modèle de partition- 

nement du HPF de façon à permettre de partitionner une dimension de tableau de 

données plus d'une fois. 

Les pistes de recherche les plus intéressantes qui découlent des travaux de  cette 

thèse sont: 

intégrer les algorithmes de parallélisation au compilateur HPCP et  évaluer leur 

qualité tel que décrit ci-haut et 

étendre l'ensemble des fonctions intrinsèques du HPCP pour supporter des 

réductions et  le "spread" d u  Fortran 90 (ceci permettrait d e  supporter un 

plus large ensemble d'applications incluant la solution de systèmes d'équations 

linéaires denses et les applications de déconvolution), 

supporter l'énoncé Voralln dans les algorithmes de parallélisation HPF, 



rendre le générateur d'adresses plus général en faisant en sorte qu'il supporte 

les transformations quadratiques dont les paramètres peuvent être rationnels 

(ceci permet trait de supporter plusieurs t raosformations utilisées en traitement 

d'images). 
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Annexe A 

Introduction à MOA 

MOA [41] est un formalisme mathématique permettant de manipuler les tableaux 

monolithiques c'est -%-dire des st  mct ures de données orthogonales dont les éléments 

sont des scalaires. De l'utilisation de tableaux monolithiques et des concepts vébicu- 

lés par la définit ion d'un tableau, il découle un certain nombre d'opérateurs: 6 donne 

le nombre de dimension d'un tableau; par exemple, si le tableau 5. est un tableau 

de 4 par 5 par 6, alors 6& 3. L'opérateur p donne le vecteur qui décrit la forme 

d'un tableau; par exemple, p& =< 4 5 6 >. L'opérateur r calcule le nombre total 

d'éléments contenu dans un tableau; soit rte G 4 x 5 x 6 120. L'opérateur a 

donne le produit des éléments du tableau donc n p c  T E  est toujours vrai et indique 

que le nombre total d'éléments de ( est égal au produit des éléments de sa fornie. 

L'opérateur ii, est l'opérateur d'indexation de MOA. Le résultat de  cct iiidrsat ion 

est le sous-tableau obtenu en accédant le tableau à l'aide du deuxiènic argurrtcnt. 

Par exemple, toujours en utilisant le même tableau, Vn tel que O 5 rt < 4.  p(< 

n > +et) = < 5 6  >. AussiVn,m telsque O s n  < 4 et O 5 m < 5. p(<  

n m > ii>te) =< 6 >. L'opérateur rav transforme un tableau en un vecteur ayant 

les mêmes éléments placés dans le même ordre lexicographique (avec la dimension O 

qui a le poids le plus grand). Par exemple, si 

alors 



Les opérateurs y e t  y' permettent respectivement d'adresser un tableau trans- 

formé par rav et d'adresser un élément dans un tableau sachant sa position dans le 

tableau un fois transformé avec rav . Plus précisément, 

y f (n :  pA)*A ( rav .4)[n] 

où les crochets([ 1) dénotent les indices de l'élément qu'on accède dans un tableau. 

Finalement, notons qu'un tableau vide est appelé 8. 
L'opérateur P est utilisé pour changer la forme d'un tableau; par exemple: 

L'opérateur L produit un tableau dont les sous-tableaux contiennent leurs propres 

coordonées dans le tableau. On notera que l'argument de r ne peut être qu'un scdaire 

ou un vecteur. Par exemple, i l0  z< O 1 2 3 4 -5 6 7 8 9 > ou encore 

L'opérateur ++ effectue la concaténation de deux tableaux qui consiste à abouter 

les tableaux selon la dimension O donc les tableaux doivent avoir la même longueur 

pour les dimensions autres que O pour que le résultat soit toujours un tableau. Par - 
exernple.si Z = < 2 4 6 8 > e t  b=< 1 3 5  > a l o r s Z + b ~ < 2 4 6 8  1 3 5 > .  

L'opérateur A divise un tableau en deux selon la dimension O et ne conserve 

qu'un des deux tableaux résultants. La longueur du tableau résultant est donné en 

argument: si ce scalaire est positif alors le résultat est pris à partir de la coordonée O 

s'il est négatif alors le résultat est pris à la fin du tableau et s'il est zéro, le résultat 

est vide (8). Par exemple, p ( 2  A ce) rc 2 5 6 >. L'opérateur v a sensiblement 

le même effet sauf que l'argument scalaire indique quelle partie du tableau doit être 

enlevée; par exemple, p(1 v ce) =< 3 5 6 >. 
L'opérateur 4 inverse l'ordre des éléments d'un tableau selon la dimension O. Par 

exemple: 



L'opérateur Q effectue une permutation des dimensions d'un tableau. Cette 

permutation est effectuer selon le contenu d'un vecteur i? de la façon suivante: la iiMe 

dimension du 

< 0 1 > U ) C j  

tableau devient ia dimension < i > JlZ. Par exmple, avec Zr< O 1 >? 

C j  et avec =< 1 O >: 

2 12 

L'opérateur 0 effectue une rotation des éléments d'un tableau. Si l'opérande qui 

spécifie la rotation est un scalaire a alors: 

Si l'opérande est un tableau, on effectue une rotation sur chaque vecteur selon la 

dimension O du tableau et l'amplitude de la rotation sur chacun des vecteurs est 

donnée par un des éléments de la deuxième opérande. 

L'opérateur gu crée le vecteur qui contient les index dont on a besoin pour accéder 

le vecteur (donné en opérande) en ordre croissant. Autrement dit, q p  i7J est en ordre 

croissant, 

MOA défini également des opérateurs à haut niveau. Le premier est 0; cet 

opérateur permet d'appliquer un autre opérateur à des sous-tableaux. Lorsqu'on 

l'utilise avec un opérateur binaire, il nécessite les opérandes suivantes: 

- 
où g est l'opérateur binaire, d G< al a, > et q 2 O, o; 2 O. Dans cette situa- 

t ion, R divise t1 en sous- tableaux de ai dimensions (en laissant intactes les dimensions 

de plus faible poids), il divise également Er en sous-tableaux de gr dimensions. Fi- 

naiement, après avoir appliqué l'opérateur g sur les paires de sous-tableaux (un de 

ci et un de Cr), il effectue la concaténation des tableaux résultants. 

Lorsqu'on l'utilise avec un opérateur unaire, il nécessite les opérandes suivantes: 

Ar E 

OU f est l'opérateur unaire, d=< o > et o 2 O. Dans cette situation, R divise 5 en 

sous-tableaux de a dimensions, il applique ensuite f sur ces tableaux et, finalement, 

il effectue la concaténation des tableaux résultants. 



L'opérateur 18 est le produit externe généralisé. Les opérandes dont il a besoin 

sont deux tableaux et un opérateur scalaire. Le résultat de cet opérateur est un 

tableau qui contient le résultat de l'opérateur scalaire appliqué à toutes les paires 

d'éléments possibles (un de chaque tableau). Donc, la forme du tableau résultant 

est la concatenation des formes des opérandes. Par exemple, si u' GC L 3 4 > et 

Ü ~ < 2 5 6 7 > a l o t s p ( Ü @ + ~ ~ < t i . i > e t  



Annexe B 

Code pseudo-assembleur pour la 
génération d'adresse 

forinit: ADD R, Rshape-j_l #O : while overhead 

for: LOAD R e g ,  Res ; loop time 

ADD Res7Res,Rincrjl ; 100p time 

SUB & . & , # l  ; loop time 

JNZ R;, for : loop time 

: while overhead 

: while overhead 

JGE Rj,o-while ; while time 

ADD Rcur-j &Ur-j 7 # 1 ; while tirne 

SUB Rte,P? Rcur-j Rshape-j ; while time 

JNE Rtemp, O-while ; while time 

; while tirne 

; while time 

; while time 

; if time 

; while time 

; while time 



; whiIe overhead 



Annexe C 

Grarnmaîre de HPCP 

prirnaxy-expr: identifier 

1 constant 

1 '(' conditional-expr ')' 

post fix-expr: primaryxx y r 

1 identifier duos 

1 identifier '(' argument axprlist ')' 

duos : 

duo: 

duo 

1 duos duo 

'[' duoalem ':' duo-elem '1' 
1 '[' duoalem '1' 

duoxlem: constant xxpr 

argument axprlist : condit ionalaxpr 

1 argument -exprlist ',' conditional-expr 

unary-expr: postfixsxpr 

1 unary ~perator  cast -expr 



cast xxpr: unary-expr 

mult iplicativeaxpr: cast ,expr 

( multiplicativerxpr '"' cast xxpr  

addit ive-expr: 

shift axpr:  

relat ionalxxpr: 

equali ty-expr: 

and-expr: 

m d t  iplicat ive-expr 

1 additive-expr '+' multiplicative~xpr 
. . 1 additivemxpr - mult iplicat iveaxpr 

addit ivemxpr 

1 shift-expr 'CC' additive-expr 

1 shift-expr '> >' additive-expr 

shift mxpr 

1 relationalaxpr '<' shift -expr 

1 relationalaxpr '>' shift-expr 

1 relatiooalaxpr '< =' shift xxpr 

1 relationalaxpr '> =' shiftaxpr 

relat ionalaxpr 

1 equality-expr '==? relationalaxpr 

1 equality-expr ' !=' relat ional-expr 

equali ty-expr 

1 andmxpr '&' equalitymxpr 

exclusive_ormxpr: andxxpr 

1 exclusivearaxpr '- ' and-expr 



inclusive-or-expr: exclusive,or-expr 

1 inclusive-or-expr '1' exclusive-oraxpr 

logkaland-eapr: inclusive-oraxpr 

1 IogicaLand-e-xpr '%&' inclusive~raxpr 

condit ionalaxpr: logicalar -expr 

assignment -expr: identifier assignment -operator condit ionalaxpr 

1 identifier duos assignment -operator condit ionai-expr 

1 identifier '( ' argument-exprlist ')' 

- 7  assignment -operator: = 

I '*=< 

constant-expr: 

dedarat ion : declarationspecifiers init-declaratorlist ';' 

declarationspecifiers: typespecifier 

1 declarat ionspecifiers typespecifier 

init-declaratorlist: init -declarator 

1 init-declaratorlist ',' init declarator 



init ,dedarator: 

init ializer: 

ty pespecifier: 

dec larat or: 

st at ernent : 

declarat or 

1 identifier '=' ioitializer 

constant -expr 

'long' 

1 k t '  

1 'const' 

identifier 

1 declarator '[' constant a x p r  '1' 

cornpoundstatement 

1 expressionst aternent 

1 select ions t at ernent 

1 pragmastatement 

1 wherestatement 

1 loopstatement 

compoundrtatement : '{' ' }' 
1 ' { ?  statement-list '}' 
1 '{' declarations st aternentlist ')' 
1 '{' declarations dist 1 s t  statement l i s t  ' }' 

declarat ions: 

dist list: 

declarat ionlis t 

dist ribute-pragma 

1 distlist distributepragma 



distribute-pragma: '#pragmaY 'distribute pragrna-list ' : O  

pragmalist : 

pragmaitem: 

dist ,descs: 

dist ,desc: 

qualif: 

decfarat ionlist: 

statement Jist : 

pragmaitem 

1 pragmalist ',' pragmaitern 

identifier dist -descs 

dist ,desc 

1 dist -descs dist desc 

.[' qualif '1' 

1 'block' 
1 'cyclic' 

1 'cyciic? '(' constantaxpr ')' 

declarat ion 

J declaration Jist declarat ion 

statement 

1 s t a t emen th t  statement 

expressionst atement: assignment a x p r  ';' 

select ionst  at ement : 'if' ' ( ' condit ionalnxpr O )  ' s t atement 

1 'if' '( ' conditional-expr ' ) ' statement 'else' st atement 

w herestatement : 'where' '(' conditional-expr ')' statement 

ioopstatement: 'loop' statement 

pragmastatement : '#pragmaT 'configuration' constant -expr 



file: funct ion-definit ion 

funct ion-definit ion: identifier '( ' ' )' function-body 

funct ion-body: compoundstatement 

identifier: (alpha 1 '-')(alpha 1 digit '-')' 

alpha: [a-z A- Z] 

digit: [O-91 

constant: O [xX] xdigit+ 

1 O digit+ 

1 digit+ 

1 xdigit + 

xdigi t : 



Annexe D 

Code C-PULSE et assembleur des 
programmes de test  



Figure D. 1: Code C-PULSE généré pour le programme de la figure 3.5 



Ld #O rbl 
Label LO 

Sub rbl 118 rb3 
Ifc rb3 rO 

BBPA L2 
Ld #O ral 

Label L3 
Snb ral #2 ra4 
Ifc ra4 rO 

B W A  L5 
Ld #O rb4 
Sub rbl #7 ras 
Sub rbl #O rb5 
Ifc rb5 WS536 rO 
Ld #O ra6 
Snb rai #7 rb6 
Sub ral #O ra7 
Ifc ra7 #65536 rO 
Ld #O ra2 

Label L6 
Snb ra2 #4 rb7 
If c rb7 rO 

BHPA L8 
%SR 

Bestore 
Label L7 
Znc ra2 rO 

BU L6 
Label L8 

Ld nport ra3 
Ifc ral #O rO 

Aes e f  SP -hpcp,t mp 
Ld ra8 -hpcp,temp 
Ld nport ra8 

Restore 
Ifc rai #1 rO 
Sub rai #2 rb8 

ResetSP -hpcp-t emp 
Ld ra9 ,hpcp,temp 
S t  ra9 nport 
BSR 

Restore 
Ld #O rb9 
Snb rbl #7 rai0 

Figure D.2: Code assembleur généré pour le programme de la figure 5.5 



Sub r b l  #O rblO 
Ifc rb1O #65636 rO 
Ld #O r a l l  

Sub r a l  #7 r b l l  
Sub r a i  #O r a l 2  
Ifc r a i 2  #65536 rO 
Ld ra3 rb2 

Restore 
Restore 

Ld #O rb12 
Sab rb1  #7 ra13 
Sub r b l  #O rb13 
Ifc rb13 #65536 rO 
Ld IO ra14 

Snb ral #7 rb14 
Sub rai #O r a i 5  
Ifc r a l 6  a65536 rO 
St rb2 spo r t  
Ld #O ra2 

Label L9 
Sub ra2 #4 rb15 
Ifc rb15 rO 

BIWA LI1 
SSR 

Restore 
Label LI0 
Inc ra2 r O  

BU L9 
Label L 1 1  

Restore 
Restore 
Restore 
Restore 
Restore 

Label L4 
Inc r a l  r O  

BU L 3  
Label L 5  

Restore 
Label L1 
ïnc r b l  rO 

BU LO 
Label L2 

Ret 

Figure D.3: Code assembleur généré pour le programme de la figure 5.5 (suite) 



Figure DA: Code C-PULSE généré pour le programme de la figure 5.6 



C a l l  ,initbufAr 
C a l l  ,initbufAa 

M #O r b l  
Label LO 

Sub rb1 #IO ra3 
Ifc ra3 r O  

BEPA t2 
M #O rai 

Label L3 
Sub ral #4 rb3 
If c rb3 r O  

BIWA L5 
L d  #O ra4 

Sub r b l  #9 rb4 
Sub rb1 #O ra5 
If c ra5 #es536 rO 
Ld #O rbS 

Sub rai #9 ra6 
Sub ral #O rb6 
Ifc rb6 a65536 rO 
Ld #O sa2 

Label L6 
Sub ra2 ü4 ra? 
Ifc ra7 rO 

BEPA L8 
ESB 

Restore 

Figure D.5: Code assembleur généré pour le programme de la figure 5.6 



Label L7 
ïnc ra2 rO 
BU L6 

Label L8 
C a l 1  ,uritebufAw 
Ifc ral #2 rO 
Sra r8 nport r8 

ResetSP ,hpcp,temp 
Ld rbT ,hpcp,tenip 
Ld r8 rb7 

Restore 
If c ral #1 rO 
Sab rai #2 ra9 

ResetSP ,hpcp,temp 
Ld rb9 ,hpcp,temp 
St rb9 nport 

ESB 
Bestore 

Ld #O ralO 
Sub rbl #8 rbl0 
Sub rbl #1 rall 
Ifc rall #es536 rO 
Ld #O rbli 

Sub rai #8 ra12 
Sub ral tl rb12 
Ifc rbl2 a65636 rO 
Cal1 ~convolIterbafAu 
Sr1 rO ü4 ra13 
Là ra13 rb2 

Restore 
Restoxe 

Figure D.6: Code assembleur généré pour le programme de la figure 5.6 (suite) 



Ld #O rb13 
Sub rb1 #9 rai4 
Sub rbi #O rb14 
Ifc rb14 a65536 rO 
Ld #O ra15 
Sub rai #Q rb15 
Snb rai #O ra16 
Ifc rai6 #65536 rO 
St rb2 sport 
Ld #O ra2 

Label L9 
Sub ra2 ü4 rb16 
Ifc rb16 rO 

BHPA Li1 
SSB 

Restore 
Label L i 0  
ïnc ra2 rO 

BU L9 
Label Lli 

Restore 
Restore 
Restore 
Restore 
Bestore 

Label L 4  
Inc ral rO 

BU L3 
Label L5 

Best ore 
Label Li 

Iac rbi rO 
BU LO 

Label L 2  
Bet 

Figure D.5: Code assembleur généré pour le programme de la figure 5.6 (fin) 



C a l 1  , i n i t b a i b  
Call ,initbPfAu 
Caïl -initbaiBr 
Call - i n i t b r i i B a  
Ld #O rbl 

Label LO 
Sub rbi #1O ra3 
Ifc ra3 rû 
BBPb L2 
Li #û rai 

Label L3 
Snb rai S4 rb3 
Ifc rb3 rO 

BBPA L5 
Ld #O ra4 
Sub rbi #9 rb4 
Sub rb1 #O raS 
Ifc ra5 #es536 r O  
Cd #O rb5 

Sub rai #9 ra6 
Sub rai #O rb6 
Ifc rb6 #65536 rO 
M #O ra2 

Label L 6  
Sub ra2 #4 ra7 
If c ra7 rO 
BBPA L8 

BSB 
Restore 

Label L7 
Inc ra2 rO 
BU L6 

Label L8 
Call ,vritebnfAu 
Ifc rai #2 rO 
Sra r8 nport r8 

ResetSP ,hpcp,temp 
Ld rb7 ,hpcp,temp 
Ld r8 rb7 

Restore 
Ifc ral #1 rû 
Sob ral #2 ras 

Figure D.8: Code assembleur généré pour le programme de la figure 5.3 



BesetSP -hpcp,temp 
Ld rb9 -hpcp,temp 
St rb9 nport 

BSR 
Restore 

Ld #O rat0 
Sub rb1 #8 rblO 
Sub rbl #1 rall 
Ifc rall #es536 rO 
Ld #O rbll 

Snb rai #8 ra12 
Sub rai #1 rb12 
Ifc rb12 #6S536 rO 

Cal1 -convolIt erbnfAu 
Sr1 rO #4 ra13 

C a l 1  -mit ebuf Bo 
Restore 
Restore 

Ld #O rb13 
Sub rbl #9 rai4 
Sub rb1 #1 rb14 
If c rbl4 #65536 rO 
Ld #O ra15 
Sub ral #9 rblS 
Sub rai #1 ral6 
Ifc ral6 #65536 rO 
Cal1 ,convolIterbafBu 
Abs rO rO 

C a l 1  ,convolIterbnfBu 
Abs rO rO 
H a x  rO rO #-32768 
LA #-32768 rb2 

Restore 
Restore 

Figure D.9: Code assembleur généré pour le programme de la figure 5.3 (suite) 
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