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RÉSUMÉ

Le cancer du poumon demeure la principale cause de mortalité liée au cancer dans le monde,
et sa détection précoce est essentielle pour améliorer les taux de survie des patients. Les
systèmes d’aide au diagnostic assisté par ordinateur (CAD), alimentés par l’apprentissage
profond (DL), offrent des outils prometteurs pour aider les radiologues à identifier les nodules
pulmonaires à un stade précoce. Cependant, des défis tels qu’une sensibilité limitée aux petits
nodules, un taux élevé de faux positifs, un manque d’interprétabilité et des inefficacités
computationnelles continuent de freiner leur adoption clinique à grande échelle.

Cette thèse présente une série de contributions basées sur l’apprentissage profond visant à
relever ces défis et à améliorer l’efficacité de la détection précoce du cancer du poumon. La
recherche est structurée selon quatre axes principaux : l’amélioration de la sensibilité, la
réduction des faux positifs, l’efficacité computationnelle et l’interprétabilité clinique. Dans
ce cadre, quatre nouvelles architectures de détection sont proposées et évaluées.

Premièrement, un mécanisme amélioré de propositions de régions est introduit en modifi-
ant les couches d’extraction de caractéristiques de VGG16, ce qui améliore le rappel pour
les petits nodules. Deuxièmement, un réseau de neurones convolutif multi-échelle optimisé
(OMS-CNN) est développé à l’aide de stratégies métaheuristiques — Harmony Search et
Beetle Antennae Search — pour une configuration et une initialisation efficaces des couches.
Troisièmement, ce cadre est étendu avec des modules à double attention, un mécanisme DA-
RoIPooling et des ensembles de Transformers Swin 3D afin de réduire les faux positifs tout
en maintenant la sensibilité. Enfin, un modèle hybride interprétable est proposé, intégrant
des connaissances anatomiques issues d’un U-Net préentraîné dans le flux CNN, améliorant
à la fois la précision diagnostique et la transparence.

Tous les modèles sont rigoureusement évalués à l’aide de jeux de données de référence tels
que LUNA16 et PN9. Les résultats montrent des améliorations constantes du score CPM,
de la sensibilité à des taux de faux positifs cliniquement pertinents et de la généralisation
entre ensembles de données. Des études d’ablation confirment la contribution de chaque
amélioration architecturale. Notamment, le modèle final atteint un score CPM de 0,9112 sur
LUNA16 et démontre une forte capacité de généralisation sur PN9, soulignant son potentiel
clinique.

Cette thèse se conclut par l’identification de limitations clés, telles que la diversité des données
et les changements de domaine, et propose des pistes futures, notamment l’intégration de
techniques avancées d’intelligence artificielle explicable. Collectivement, les contributions de
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ce travail posent les bases de systèmes CAD précis, interprétables et déployables, favorisant
leur intégration dans les flux cliniques courants et contribuant à l’amélioration des résultats
pour les patients.
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ABSTRACT

Lung cancer remains the leading cause of cancer-related mortality worldwide, with early de-
tection being critical to improving patient survival rates. Computer-Aided Diagnosis (CAD)
systems, powered by deep learning (DL), offer promising tools to assist radiologists in iden-
tifying pulmonary nodules at early stages. However, challenges such as limited sensitivity to
small nodules, high false-positive rates, lack of interpretability, and computational inefficien-
cies continue to hinder widespread clinical adoption.

This thesis presents a series of deep learning-based contributions designed to address these
challenges and improve the effectiveness of early-stage lung cancer detection. The research is
organized along four primary axes: sensitivity improvement, false-positive reduction, compu-
tational efficiency, and clinical interpretability. To this end, four novel detection frameworks
are proposed and evaluated.

First, an enhanced region proposal mechanism is introduced by modifying VGG16’s fea-
ture extraction layers, improving recall for small nodules. Second, an Optimized Multi-
Scale Convolutional Neural Network (OMS-CNN) is developed using metaheuristic strate-
gies—Harmony Search and Beetle Antennae Search—for efficient layer configuration and ini-
tialization. Third, the framework is extended with dual-attention modules, DA-RoIPooling,
and 3D Swin Transformer ensembles to reduce false positives while preserving sensitivity.
Finally, an interpretable hybrid model is proposed by integrating anatomical priors from
a pretrained U-Net into the CNN stream, enhancing both diagnostic accuracy and trans-
parency.

All models are rigorously evaluated using benchmark datasets such as LUNA16 and PN9.
Results show consistent improvements in CPM score, sensitivity at clinically relevant false
positive rates, and cross-dataset generalization. Ablation studies confirm the contribution
of each architectural enhancement. Notably, the final model achieves a CPM of 0.9112 on
LUNA16 and demonstrates strong generalization on PN9, highlighting its clinical potential.

This thesis concludes by identifying key limitations, such as data diversity and domain shift,
and proposes future directions including the integration of advanced explainable AI tech-
niques. Collectively, the contributions of this work lay a foundation for accurate, inter-
pretable, and deployable CAD systems that support integration into routine clinical work-
flows and ultimately improve patient outcomes.
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CHAPTER 1 INTRODUCTION

This dissertation is submitted in partial fulfillment of the requirements for the degree of Doc-
tor of Philosophy in Computer Engineering at Polytechnique Montréal. The research was
conducted between May 2021 and June 2025 at Polytechnique Montréal (Montréal, Québec,
Canada). The work focuses on the early-stage detection of lung cancer using deep learn-
ing methodologies, with a particular emphasis on feature extraction, multi-scale analysis,
false-positive reduction, and model interpretability in CT scan interpretation. This the-
sis comprises four peer-reviewed research papers that explore various strategies to enhance
the accuracy, sensitivity, and clinical transparency of lung nodule detection systems. The
following chapters provide background, methodological details, experimental results, and a
discussion of the clinical and research contributions of each study.

1.1 Context and Motivation

Lung cancer remains one of the most lethal types of cancer, accounting for approximately
27% of all cancer-related deaths worldwide [1]. In a comprehensive 2015 study, the number of
cancer-related fatalities reached 589,430, with lung cancer identified as the leading cause [1].
Despite advancements in medical imaging and oncology, the prognosis for lung cancer remains
poor, particularly when diagnosed at advanced stages. However, early-stage detection can
significantly improve survival rates, increasing the five-year survival rate from approximately
14% to 49% [2].

The early identification of pulmonary nodules—small, often cancerous growths in lung tis-
sue—is essential to improving outcomes in patients with lung cancer. Computed tomography
(CT) imaging has become the standard screening tool due to its high resolution and ability
to capture subtle structural changes in the lung. Among various diagnostic techniques such
as chest radiograph (CXR), magnetic resonance imaging (MRI), positron emission tomogra-
phy (PET), sputum cytology, and breath analysis, CT is preferred for its balance of speed,
accuracy, and radiation safety [3]. Nevertheless, interpreting CT scans remains a challenging
task, particularly in detecting nodules as small as 3 mm in diameter, which are often present
in early-stage cancer. Manual analysis is not only time-consuming but also susceptible to
inter-observer variability and human error [3].

To address these limitations, computer-aided detection (CAD) systems have been developed
to support radiologists in identifying and classifying pulmonary nodules. These systems
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typically consist of two main stages: (1) nodule candidate detection, aimed at maximizing
sensitivity, and (2) false positive reduction, focused on enhancing specificity and overall ac-
curacy. Although recent advances in deep learning, especially convolutional neural networks
(CNNs), have significantly improved the performance of CAD systems in medical imaging,
the detection of small nodules remains a major challenge due to their subtle appearance and
similarity to surrounding tissues.

With the recent rise of deep learning and improvements in computational power, object de-
tection techniques have emerged as powerful tools for medical image analysis. These methods
have opened new avenues for automatically identifying anatomical structures and abnormal-
ities within complex imaging data. In particular, the Faster Region-based Convolutional
Neural Network (Faster R-CNN) framework [4] has gained considerable attention for its ef-
fectiveness in object detection tasks. Faster R-CNN is a two-stage detector that first uses
a Region Proposal Network (RPN) to generate candidate object regions, followed by a con-
volutional network to classify and refine these regions. This architecture enables precise
localization of small and low-contrast objects, such as pulmonary nodules, making it highly
suitable for early-stage cancer detection in CT scans. Motivated by these advancements,
this research investigates how deep object detection models, such as Faster R-CNN, can be
adapted and optimized to enhance the performance of CAD systems, with a particular focus
on detecting small pulmonary nodules in CT images.

Beyond detection accuracy, a growing challenge in medical AI systems is the need for trans-
parency and explainability. Clinicians require not only reliable predictions but also a clear
understanding of how those predictions are made [5]. To meet this need, this thesis introduces
a hybrid interpretable architecture called SwinT-CNN, which combines the global modeling
power of Swin Transformers with the local precision of CNNs, guided by anatomical priors
from segmentation. This interpretable design allows the model to focus on clinically mean-
ingful regions. It offers visual explanations of its decisions, making it a more trustworthy
tool for early-stage lung cancer detection.

1.2 Problem Statement

Early detection of lung cancer remains a major clinical challenge despite significant advances
in imaging technologies and artificial intelligence. Small pulmonary nodules, which often
indicate the early stages of lung cancer, are particularly difficult to detect and characterize
accurately. Radiologists frequently struggle to distinguish these nodules from surrounding
anatomical structures in CT scans due to their small size, low contrast, and variability
in shape and appearance. This diagnostic complexity leads to missed detections or false
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positives, both of which can have profound implications for patient outcomes. Therefore,
developing robust and automated systems that can detect small nodules with high sensitivity
and precision is a critical and ongoing research priority.

Deep learning-based object detection models have shown considerable promise in addressing
this problem. In particular, the Faster R-CNN framework has emerged as one of the most
effective solutions for detecting small objects within complex backgrounds [4]. However, its
performance in the medical domain—especially in lung CT scans—faces several persistent
limitations. The standard feature extraction process may not adequately capture the subtle
and fine-grained details of small nodules, resulting in reduced sensitivity. Moreover, the clas-
sification stage of the network often yields a high number of false positives, which adversely
affects the model’s precision and limits its clinical applicability.

Furthermore, most existing CAD models operate as black-box classifiers, which limits their
acceptance in real-world clinical workflows. The inability to visually explain AI decisions re-
duces radiologists’ trust and complicates integration into diagnostic routines. The newly pro-
posed SwinT-CNN addresses this challenge by incorporating segmentation-derived anatomi-
cal priors and visual saliency mechanisms to enhance model transparency and interpretability.

This thesis aims to address these challenges by proposing a series of architectural and algo-
rithmic enhancements to the Faster R-CNN framework, tailored explicitly for early-stage lung
nodule detection. First, a multi-scale feature extraction strategy is optimized using meta-
heuristic algorithms, such as advanced PSF-HS [6] and BAS [7], to enhance the network’s
ability to localize nodules of varying sizes. Second, a combination of 3D deep convolutional
networks is integrated into the false positive reduction stage, utilizing volumetric spatial
context to improve discrimination between true nodules and non-nodular structures. Third,
a dual-attention mechanism is introduced at both the feature extraction and classification
stages to refine spatial and channel-level focus, enhancing sensitivity and reducing misclassi-
fications. Finally, the adoption of 3D Swin Transformers in the false positive reduction phase
enables richer volumetric representation and further minimizes false detections.

Despite the success of conventional Faster R-CNN in general object detection tasks, its adap-
tation to the medical imaging domain—where detecting minute, ambiguous targets is cru-
cial—remains limited. This research addresses this gap by systematically improving each
stage of the Faster R-CNN pipeline to enhance both the sensitivity for small nodule detec-
tion and the precision through effective false positive suppression. The outcome is a more
reliable and clinically relevant framework for aiding radiologists in early lung cancer screen-
ing.
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1.3 Research Objectives

In response to the challenges associated with early-stage lung cancer detection (particularly
the identification of small pulmonary nodules) and the limitations of conventional Faster
R-CNN frameworks, this thesis establishes three primary research objectives, each divided
into specific sub-objectives:

1. Enhancing Sensitivity in Early Detection of Small Lung Nodules

• A1: Design and develop an optimized multi-scale convolutional neural network (OMS-
CNN) to improve the feature extraction capability of the Faster R-CNN framework,
especially for small nodules.

• A2: Integrate dual-attention mechanisms into the CNN feature extractor to capture
both spatial and channel-level dependencies for more accurate identification of critical
regions.

• A3: Employ DA-RoIPooling in the classification stage to refine region-wise feature
representation and highlight diagnostically relevant characteristics.

2. Reducing False Positives and Improving Precision

• B1: Develop a hybrid false positive reduction module by incorporating multiple 3D
convolutional neural networks (3D DCNNs) to leverage volumetric spatial context.

• B2: Utilize a set of 3D Swin Transformers to analyze CT volumes from multiple
perspectives, reducing the likelihood of misclassification.

• B3: Introduce attention-guided classification layers to suppress irrelevant background
features within candidate regions.

3. Improving Computational Efficiency and Clinical Applicability

• C1: Apply metaheuristic optimization techniques—specifically parameter setting-free
harmony search (PSF-HS) and beetle antenna search (BAS)—to determine the optimal
configuration of composite layers.

• C2: Optimize the initialization of network parameters to accelerate model training and
enhance stability.
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• C3: Evaluate the proposed framework across multiple public datasets (LUNA16 and
PN9) to ensure generalizability and readiness for real-world clinical deployment.

4. Improving Interpretability and Clinical Transparency

• D1: Integrate Swin Transformer modules with CNNs through a dual-path architecture
to jointly capture global semantic context and fine-grained local details.

• D2: Incorporate anatomical attention gates (AAG) that inject segmentation-derived
voxel-level priors from a pretrained 3D U-Net into the CNN branch to enhance trans-
parency and decision explainability.

1.4 Novelty and Impact

This thesis is based on four peer-reviewed research articles that collectively propose novel
approaches to enhance the early-stage detection of lung cancer using deep learning, with a
particular focus on identifying small pulmonary nodules and improving the interpretability
of model predictions in CT scans. The contributions of this work encompass architectural
enhancements to Faster R-CNN, optimization techniques for enhanced learning efficiency,
and advanced attention mechanisms for improved feature localization. Each article directly
addresses key research objectives outlined in Section 1.3.

1.4.1 Efficient Region Proposal Extraction

Presented in Chapter 4 and published in an IEEE conference, this study explores the limita-
tions of conventional feature extraction in detecting small nodules and proposes a modified
VGG16-based feature map generation technique. By combining the final three convolutional
layers and integrating a region proposal network (RPN), the approach enhances sensitiv-
ity in identifying small nodules. The method demonstrates higher recall rates at various
Intersection-over-Union (IoU) thresholds while maintaining robustness against reduced pro-
posal counts. This work addresses Objective A1 and contributes to improving the sensitivity
of early detection.

1.4.2 Optimized Multi-Scale CNN (OMS-CNN)

Presented in Chapter 5 and published in an IEEE journal, this article introduces an optimized
multi-scale convolutional neural network (OMS-CNN) as part of the Faster R-CNN frame-
work. Metaheuristic algorithms, such as parameter-setting-free harmony search (PSF-HS)



6

and beetle antenna search (BAS), are employed to configure and initialize composite convo-
lutional layers. These techniques enhance detection accuracy and computational efficiency
by enabling the model to localize candidate nodules with greater accuracy. This contribution
addresses objectives A1, B1, and C1.

1.4.3 Dual Attention OMS-CNN

Presented in Chapter 6 and published in an MDPI journal, this article extends the previous
work by incorporating dual-attention mechanisms into the OMS-CNN backbone and intro-
ducing a novel DA-RoIPooling method in the classification stage. Additionally, it integrates
multiple 3D Swin Transformers in the false-positive reduction stage to enhance volumetric
feature representation. The combined approach improves both sensitivity and precision while
significantly reducing false positives. This article addresses objectives A2, A3, B2, and B3.

1.4.4 Interpretable Hybrid SwinT-CNN Model

Presented in Chapter 7 and published in the IEEE Transactions on Biomedical Engineering,
this study introduces an interpretable dual-path deep learning architecture that combines 3D
CNNs with 3D Swin Transformers. The model integrates anatomical attention gates (AAG),
which inject voxel-level priors from a pretrained U-Net segmentation model into the CNN
stream. The design enhances diagnostic precision and transparency by enabling the model to
focus on clinically significant areas. The interpretability is validated through 3D Grad-CAM
visualizations, sensitivity, and entropy metrics. This article addresses objectives D1 and D2,
contributing to the improvement of model trustworthiness in clinical decision support.

1.4.5 Overall Impact

The collective contributions of this thesis advance the state of research in automated lung
cancer detection by addressing critical bottlenecks in four key areas: sensitivity, false-positive
reduction, computational efficiency, and clinical interpretability. Across the four proposed
models, this work presents end-to-end deep learning frameworks that not only enhance de-
tection accuracy but also improve trustworthiness through transparent decision-making pro-
cesses. The models were thoroughly evaluated on benchmark datasets such as LUNA16 and
PN9, demonstrating consistent improvements over existing approaches in both diagnostic
performance and generalizability. The outcomes of this thesis provide a robust foundation
for the future development of AI-based clinical decision support systems, particularly those
intended for early-stage lung cancer screening and diagnosis.
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1.5 Ethical Statement on the Use of AI Tools

Throughout the preparation of this thesis, ChatGPT, a generative AI tool, was used occa-
sionally as an auxiliary tool to enhance the clarity and readability of the English text. The
tool helped improve grammar, rephrase complex sentences, and check language consistency.
However, all scientific content, ideas, experimental designs, analyses, and interpretations were
fully developed by the author.

The use of ChatGPT was strictly limited to linguistic refinement and formatting assistance,
and every generated or modified text was carefully reviewed and validated by the author.
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CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Cancer remains one of the leading causes of death worldwide and, according to the World
Health Organization (WHO) [8], is the second most common cause of death globally. Among
all types of cancer, lung cancer imposes the greatest burden on healthcare systems due to its
high incidence and mortality rates [8].

2.1.1 Epidemiology of Lung Cancer

As reported in the 2021 registry [9], lung cancer accounted for over 34,000 cases in males
and more than 10,000 cases in females, marking it as the most frequently diagnosed cancer
across both genders (Figure 2.1). The figure illustrates both the absolute number of lung
cancer cases (in thousands) and their relative proportion among all cancer types for males,
females, and the combined population. Notably, the disease constitutes a significantly higher
proportion of all cancers in males (10.8%) compared to females (3.7%), reflecting both greater
incidence and possibly higher exposure to risk factors such as smoking. These disparities
highlight the importance of gender-specific strategies for early detection and prevention.

Figure 2.1 Relative proportion and number of lung cancer cases in males and females [9].
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As illustrated in Figure 2.2, lung cancer not only ranks among the most frequently diagnosed
cancers but also shows a disproportionately high mortality rate (18.4%) compared to its in-
cidence rate (11.6%). This contrast is more pronounced than in other cancers like breast
(11.6% incidence vs. 6.6% mortality) or prostate cancer (7.1% vs. 3.8%). The figure clearly
highlights that, despite similar or lower incidence rates, lung cancer leads to a higher propor-
tion of deaths, emphasizing its severity and the critical need for early detection and effective
treatment strategies.

Figure 2.2 Incidence and mortality rates of various cancer types (%) [9].

The significant gap between incidence and mortality is largely attributed to the asymptomatic
and insidious nature of lung cancer, which is often diagnosed only in advanced stages. Con-
sequently, primary prevention, screening, and early diagnosis (particularly through the de-
tection and classification of pulmonary nodules) play a vital role in mitigating the physical,
emotional, and financial burden on patients while improving treatment outcomes [10].

2.1.2 Characteristics and Clinical Relevance of Pulmonary Nodules

Pulmonary nodules are defined as localized abnormalities within the lungs that typically
measure from 3 to 30 millimeters in diameter. They may occur as a single lesion or appear
in clusters dispersed throughout the pulmonary parenchyma. These nodules demonstrate
considerable heterogeneity. Their dimensions can be smaller or larger than 8 millimeters,
their geometric form may be rounded, polygonal, or irregular, and their margins can present
as smooth, lobulated, or spiculated. In addition, their position varies, with some located
centrally, others near the pleural surface, and some adjacent to vascular structures. Variations
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Figure 2.3 Different type of lung nodules [11].

are also observed in their density, which may appear solid, partially solid, or as a ground-glass
opacity. Illustrative examples of these different categories are provided in Figure 2.3.

Although many nodules are non-malignant and remain undetected clinically, radiological
patterns such as large diameter, subsolid composition, and irregular or lobulated contours
are frequently linked to malignant transformation. These characteristics complicate early
recognition, especially in asymptomatic cases [12].

Clinical studies consistently demonstrate the importance of timely intervention. When malig-
nant nodules are discovered and surgically treated at an early stage, patients show a five-year
survival rate as high as 65 to 80 percent. In contrast, survival drops dramatically to approxi-
mately 10 to 15 percent when diagnosis occurs at more advanced stages [13]. For this reason,
the prompt detection of malignant pulmonary nodules remains one of the most critical and,
at the same time, one of the most challenging aspects of lung cancer management.

2.1.3 Medical Imaging for Lung Cancer Screening

Medical imaging plays a pivotal role in the early detection and diagnosis of lung cancer,
particularly for individuals at high risk, such as long-term smokers or those with a history
of smoking. Among various imaging modalities, low-dose computed tomography (LDCT)
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has emerged as the most effective screening technique due to its ability to capture high-
resolution cross-sectional images with minimal radiation exposure [14]. LDCT enables the
identification of small pulmonary nodules that may not be visible on standard chest X-rays,
thus improving the chances of early intervention and reducing mortality rates. In addition
to LDCT, positron emission tomography (PET) scans provide functional imaging that helps
assess metabolic activity of suspicious lesions. PET is often used in combination with CT
to enhance diagnostic accuracy and assist in staging the disease. This multimodal approach
allows clinicians to make more informed decisions regarding treatment strategies, especially
when evaluating the malignancy of nodules detected in early screenings [15].

The primary goal of lung cancer screening is to accurately detect malignant cases while mini-
mizing the risks associated with overdiagnosis, unnecessary treatments, and the psychological
burden caused by false-positive findings [16]. One of the most influential factors in achieving
this balance is the size of the detected lung nodule, which significantly affects the rate of
false positives [17].

2.1.4 Computer-Aided Diagnosis Systems

With the widespread adoption of low-dose computed tomography (LDCT) for lung cancer
screening, radiologists are increasingly overwhelmed by the substantial volume of CT scans
generated during routine screenings. Manual interpretation of such large-scale imaging data
is not only labor-intensive but also prone to fatigue-related errors. To address this growing
challenge, Computer-Aided Diagnosis (CAD) systems have emerged as a critical tool in au-
tomating the detection and interpretation of pulmonary abnormalities [18]. CAD systems are
typically categorized into two main components: CADe (Computer-Aided Detection), which
focuses on identifying regions of interest such as potential nodules, and CADx (Computer-
Aided Diagnosis), which aids in determining the nature and malignancy of the detected
lesions. A standard CAD workflow for lung cancer includes three core stages: preprocessing,
nodule detection, and classification [19]. During preprocessing, the system performs lung
segmentation, noise reduction, and normalization to enhance the quality of the input data.
The detection phase then identifies potential nodule candidates—prioritizing high sensitivity,
even at the expense of increased false positives. To mitigate this, a dedicated false-positive
reduction module is typically applied before proceeding to the final classification stage, where
the likelihood of malignancy is estimated. By streamlining this workflow, CAD systems play
a pivotal role in supporting early and accurate diagnosis while alleviating the workload of
medical professionals.
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2.1.5 The Role of Artificial Intelligence in Lung Cancer Screening

Recent advancements in artificial intelligence (AI) have introduced powerful tools capable of
identifying subtle patterns and anomalies in medical images, patterns that may not be easily
perceived by radiologists. These AI-based systems have shown great potential in enhancing
early detection of serious health conditions, including lung cancer, by assisting clinicians in
evaluating suspicious nodules more effectively. As a result, healthcare professionals are in-
creasingly incorporating AI-driven algorithms into diagnostic workflows to improve accuracy
and efficiency in identifying lung abnormalities at early stages [20].

In recent years, deep learning has emerged as a transformative force in the development of
advanced CAD systems for pulmonary nodule analysis. Among various techniques, Con-
volutional Neural Networks (CNNs) have demonstrated remarkable success in numerous
computer vision benchmarks, such as ImageNet and MS COCO challenges. Owing to
their strong adaptability and feature learning capabilities, a range of CNN-based architec-
tures—including U-Net, Faster R-CNN, Mask R-CNN [4,21,22], and RetinaNet—have been
extensively adopted for nodule detection and classification tasks. These models significantly
enhance the sensitivity and precision of CAD systems, contributing to more reliable medical
image analysis.

Object detection within the realm of medical imaging focuses on identifying clinically rele-
vant structures, such as tumors, lesions, or pulmonary nodules, from complex visual data.
By leveraging the powerful feature extraction capabilities of deep learning models, partic-
ularly CNNs, researchers have enabled automated systems to detect subtle patterns and
anomalies that may not be readily visible to the human eye [23]. Furthermore, techniques
from computer vision—such as region segmentation, image registration, and 3D reconstruc-
tion—enhance the interpretability of imaging data [24]. Three-dimensional modeling, in
particular, provides detailed visualizations of anatomical structures, which are essential for
surgical planning and clinical decision-making. The integration of object detection and deep
learning methodologies into CAD systems not only improves diagnostic accuracy but also
reduces radiologist workload and minimizes the potential for human error [25].

To provide a comprehensive understanding of the landscape of lung nodule detection and di-
agnosis using deep learning techniques, the subsequent sections of this chapter are organized
as follows. First, the datasets used in this study are described in detail, including their char-
acteristics and relevance to early-stage lung cancer analysis. This is followed by a discussion
of the evaluation metrics commonly used to assess detection performance. The structure
of the proposed Computer-Aided Diagnosis (CAD) system is then presented, consisting of
three main stages: data preprocessing, lung nodule detection, and false positive reduction.
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Each stage is explained in terms of its technical process and clinical importance. Finally, we
present a discussion of key limitations and challenges, followed by a summary conclusion of
the chapter.

2.2 Dataset Description

The development and training of reliable pulmonary nodule detection and classification mod-
els require access to large-scale and high-quality annotated CT datasets. Publicly available
datasets are therefore critical to advancing research in this domain. These datasets typically
contain a combination of medical imaging data, clinical annotations, and patient information
related to lung cancer cases. In this section, we present an overview of the most widely used
and impactful public datasets that have been instrumental in the progress of computer-aided
lung cancer diagnosis systems.

• The Cancer Imaging Archive (TCIA): TCIA is a widely used public repository
that offers a broad range of medical imaging datasets, including data relevant to lung
cancer research. Among its most valuable contributions is the Lung Image Database
Consortium and Image Database Resource Initiative (LIDC-IDRI), which provides an-
notated CT scans of the lungs with detailed markings of nodules. This dataset serves
as a foundational benchmark for developing and evaluating computer-aided diagno-
sis systems in lung cancer. The archive is freely accessible through the official TCIA
platform1 [26].

• Lung Image Database Consortium (LIDC): The LIDC dataset is a specialized
subset of TCIA dedicated to lung cancer detection and research. It includes 399 tho-
racic CT scans with detailed annotations of pulmonary nodules provided by multiple
radiologists. These annotations enable the training and evaluation of automated lung
nodule detection algorithms. LIDC remains one of the most frequently used datasets
for benchmarking CAD systems in the early diagnosis of lung cancer2 [27].

• Lung Nodule Analysis (LUNA) Challenge: The LUNA dataset was developed
as part of a public challenge aimed at advancing the performance of automated lung
nodule detection systems. It consists of 1,018 CT scans with annotated pulmonary
nodules from 1,010 patients. LUNA has been widely used in benchmark studies and

1https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images
2https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966254

https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966254
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machine learning competitions focused on lung cancer diagnosis, offering a standardized
platform for performance comparison3 [28].

• National Lung Screening Trial (NLST) Dataset: The NLST dataset originates
from a large-scale clinical trial conducted to assess the effectiveness of low-dose CT in
reducing lung cancer mortality. It provides a valuable resource for developing and eval-
uating computer-aided diagnostic tools, containing CT scan data from 1,058 patients
diagnosed with lung cancer and 9,310 individuals with non-cancerous nodules4 [29].

• PN9 Dataset: PN9 is a recently released and large-scale pulmonary nodule dataset
specifically curated for nodule detection tasks. It includes 8,798 thoracic CT scans and
40,439 annotated nodules across nine common nodule types, making it one of the most
comprehensive and diverse public resources available conferences. This wide coverage
supports the development of robust algorithms capable of detecting a variety of nodule
morphologies, especially in challenging clinical situations [30].

2.3 Evaluation Metrics

The commonly used evaluation metrics of pulmonary nodule detection is listed below:

• Sensitivity and Precision: In pulmonary nodule detection, sensitivity and precision
are two fundamental metrics used to evaluate the effectiveness of a diagnostic system.
Sensitivity, also known as recall, measures the model’s ability to correctly identify
actual positive cases (i.e., true nodules). It is defined as:

Recall(Sensitivity) = TP
TP + FN (2.1)

A higher sensitivity indicates that the system can detect a greater proportion of real
nodules, including small and subtle ones, which is critical for early-stage lung cancer
detection.

On the other hand, precision assesses the proportion of true positives among all the
predicted positives. It is defined as:

Precision = TP
TP + FP (2.2)

3https://academictorrents.com/details/58b053204337ca75f7c2e699082baeb57aa08578
4https://cdas.cancer.gov/nlst/

https://academictorrents.com/details/58b053204337ca75f7c2e699082baeb57aa08578
https://cdas.cancer.gov/nlst/
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High precision means the system makes fewer false positive predictions, which helps
reduce unnecessary follow-up procedures, false alarms, and clinical workload. Balancing
sensitivity and precision is essential because increasing one may often reduce the other.
Therefore, improving both simultaneously remains a key objective in the development
of robust CAD systems.

• ROC and FROC Curves: The Receiver Operating Characteristic (ROC) curve and
the Free-Response Operating Characteristic (FROC) curve are widely used tools to
visualize and evaluate the performance of computer-aided detection (CADe) systems.

The ROC curve plots sensitivity (true positive rate) against the false positive rate
(FPR) at various threshold settings. It helps to understand the trade-off between
detecting true nodules and generating false alarms. A model with better performance
will have a ROC curve that bends closer to the top-left corner of the graph.

In contrast, the FROC curve replaces the FPR with the average number of false pos-
itives per scan on the X-axis, while keeping sensitivity on the Y-axis. This approach
is particularly useful in medical image analysis tasks, where false positives are counted
per image or scan rather than as a global rate.

FROC analysis is more informative in scenarios like pulmonary nodule detection, where
the number of nodules per scan can vary. Consequently, it has become the standard
evaluation method in many challenges and benchmarks involving lesion or abnormality
detection.

• Competition Performance Metric (CPM): The Competition Performance Metric
(CPM) is a widely adopted evaluation criterion in pulmonary nodule detection chal-
lenges. It reflects the average sensitivity of a computer-aided detection (CADe) system
at seven predefined false positive rates: 1/8, 1/4, 1/2, 1, 2, 4, and 8 false positives per
scan.

The CPM score is derived from the FROC curve, summarizing the model’s ability
to maintain high sensitivity while limiting false positives across different operating
thresholds. Formally, the CPM is calculated as:

CPM = 1
N

∑
i∈I

Recallfpr=i (2.3)

With I = {0.125, 0.25, 0.5, 1, 2, 4, 8} and where the value of N is set at seven, the variable
fpr represents the average number of false positives per scan, while Recallfpr=i signifies
the recall rate associated with fpr = i.
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A higher CPM score indicates better overall system performance in balancing sensitivity
and false positives.

2.4 Structure of CAD System

CAD systems have become a vital component in supporting the early diagnosis of lung
cancer [18]. By utilizing high-resolution thin-slice CT images, CAD systems function as a
supplementary tool to assist radiologists in identifying pulmonary nodules more efficiently and
consistently. Over the years, various CAD frameworks have been developed, each differing
in structure and algorithmic complexity [4]. However, a typical CAD pipeline generally
comprises three essential stages:

Figure 2.4 The complet workflow of a CAD system

1. Data Preprocessing: This stage involves enhancing image quality, segmenting rel-
evant anatomical regions such as lungs, and standardizing the input data to reduce
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variability and noise.

2. Nodule Detection: It typically includes two sub-phases: (a) candidate nodule detec-
tion, where potential regions of interest are identified, often with high sensitivity but
at the cost of false positives, and (b) false positive reduction, which aims to refine the
detections and reduce redundancy.

3. Nodule Classification: In this phase, detected nodules are analyzed to determine
their likelihood of malignancy using a variety of machine learning or deep learning
techniques.

An overview of the CAD system workflow is illustrated in Figure. 2.4. The performance
of these systems can vary significantly depending on several factors, including CT image
acquisition parameters, the diversity in nodule characteristics, and the underlying algorithms
used in each component [18]. Recent advancements primarily focus on improving sensitivity
and specificity by enhancing the false positive reduction and classification modules. In the
subsequent subsections, we provide a comprehensive discussion of each component along
with widely adopted algorithms that have demonstrated reliable results on public benchmark
datasets.

2.4.1 Data Preprocessing

The preprocessing stage plays a pivotal role in the analysis of lung CT scans, as the raw
images often contain substantial irrelevant structures that can hinder the performance and
reliability of CAD systems. Since pulmonary nodules typically appear within the main lung
volume—considered the region of interest (ROI)—it is crucial to eliminate unnecessary com-
ponents such as surrounding tissues and imaging artifacts. Moreover, preprocessing aims to
enhance or preserve clinically meaningful information to improve detection outcomes. One
of the fundamental tasks at this stage is lung segmentation, which isolates the lung fields
to narrow the search space for subsequent analysis. Studies have shown that incorporating
proper lung segmentation methods in the preprocessing pipeline can significantly reduce the
number of missed nodules, with improvements ranging from 5% to 17% [31]. Most segmenta-
tion approaches rely on the contrast differences in Hounsfield Unit (HU) values between the
lung parenchyma and adjacent tissues. Based on the technique used, segmentation methods
are commonly categorized into two groups: rule-based approaches and data-driven (machine
learning-based) approaches [32].

Among traditional segmentation techniques, rule-based approaches are widely adopted due
to their simplicity and effectiveness in specific scenarios. These methods typically rely on
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Figure 2.5 Outline of the preprocessing methodology [33].

handcrafted heuristics that exploit predefined thresholds in Hounsfield Unit (HU) values
to distinguish lung regions from surrounding tissues. Common steps include thresholding,
morphological operations (e.g., erosion and dilation), and connected component analysis to
remove irrelevant structures such as bones, airways, or chest wall artifacts [21,33,34]. For ex-
ample, a rule-based pipeline proposed by Liao et al [33]. utilizes a sequence of traditional im-
age processing techniques to effectively segment the lung region. The process begins with the
application of a Gaussian filter to reduce noise, followed by thresholding operations based on
both intensity and spatial distance to isolate the lung area and exclude non-relevant anatom-
ical structures. Subsequent morphological operations, such as convex hull computation and
dilation, are used to refine the binary lung masks and ensure coverage of the entire lung
volume. This multi-step approach illustrates how rule-based techniques can be systemati-
cally organized to yield accurate region-of-interest extraction, especially in standard CT scan
settings. Figure 2.5 shows a complete preprocessing procedure using rule-based approaches.
Rule-based techniques are particularly efficient when processing standard thoracic CT scans
with relatively consistent acquisition parameters. However, their performance can degrade in
the presence of low image contrast, irregular nodule morphology, or inter-patient variability.
Despite these limitations, they are still utilized as a baseline or preprocessing step in more
advanced systems due to their low computational cost and ease of implementation.

In contrast to rule-based methods, data-driven approaches rely on statistical models or deep
learning frameworks trained on large annotated datasets to perform lung segmentation more
robustly and adaptively. These techniques have gained significant popularity due to their
ability to generalize across diverse CT scan qualities, scanner types, and pathological varia-
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tions. A widely adopted method is the U-Net architecture, which employs an encoder-decoder
structure to learn spatial and semantic features for accurate pixel-level segmentation of lung
regions. For instance, Çiçek et al. [35] extended the U-Net to 3D data (3D U-Net), making it
well-suited for volumetric CT scan segmentation tasks. Furthermore, Zhou et al. [36] intro-
duced UNet++, an enhanced version with nested skip pathways, improving performance on
noisy and low-contrast scans. Additionally, ResUNet [37] and Attention U-Net [38] variants
have been proposed to incorporate residual learning and attention mechanisms, further refin-
ing the segmentation accuracy by focusing on relevant lung areas and suppressing irrelevant
structures.

While data-driven segmentation methods offer strong performance by learning patterns from
labeled datasets, rule-based techniques can often achieve comparable accuracy through care-
ful manual tuning of their parameters. Despite their accuracy, data-based models typically
require considerable computational resources and time for training, making them less effi-
cient for real-time or large-scale applications. In contrast, rule-based methods are generally
faster, more lightweight, and easier to implement, making them a practical choice for many
researchers working with lung CT images in CAD systems.

2.4.2 Nodule Detection

Pulmonary nodule detection is typically divided into two essential phases: candidate nodule
identification and false positive reduction. Figure 2.6 shows the overall framework of the
nodule detection system, including candidate nodule detection (CNDET) and false positive
reduction (FPRED) stages. Due to the heterogeneous nature of nodules—varying in size,
texture, shape, and anatomical position—numerous detection strategies have been devel-
oped over the years. These approaches can be broadly grouped into two main categories:
conventional techniques and deep learning-based methods. Traditional approaches usually
rely on handcrafted features and classic machine learning classifiers to locate nodules and
discard false positives by optimizing the match between predefined feature sets and suspi-
cious image regions. In contrast, deep neural network (DNN)-based methods, particularly
convolutional neural networks (CNNs), learn feature representations automatically from the
data through end-to-end training pipelines. These models act as powerful black-box sys-
tems capable of capturing complex patterns beyond human-defined rules. In the following
sections, we provide an overview of representative algorithms that have been developed for
both candidate detection and subsequent false positive elimination. The effective algorithms
proposed in 2020-2025 are selected and summarized in Table 2.1.
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Figure 2.6 Deep learning-based nodule detection framework: (a) CNDET stage and (b)
FPRED stage.

Candidate Nodule Detection

At the initial stage of pulmonary nodule detection, the primary objective is to maximize
sensitivity, ensuring that as many potential nodules as possible are captured, even at the ex-
pense of including false positives. This step, known as candidate nodule detection (CNDET),
is designed to identify all regions that may represent nodular lesions. Instead of focusing on
classification accuracy at this point, the system aims to generate a comprehensive set of
possible candidates by scanning the entire lung area for abnormal patterns. Increasing the
likelihood of detecting malignant nodules early can significantly improve patient outcomes,
making this stage crucial in any CAD pipeline.

Traditional image processing techniques have long played a central role in the initial detection
of pulmonary nodules. These methods typically rely on manually engineered features and
pixel-level characteristics, such as intensity, shape, and texture. Approaches like region grow-
ing, morphological filtering, distance mapping, and thresholding have been commonly applied
to isolate areas of interest within lung CT scans [34,39–42]. For instance, early systems often
used segmentation heuristics to extract the lung region and identify attached or embedded
nodules. While these classical techniques are computationally efficient and interpretable,
their performance is often limited when dealing with highly variable nodule appearances,
such as subtle margins or irregular densities. As a result, additional refinements—like ge-
ometric feature analysis or rule-based enhancements—are frequently necessary to improve
candidate selection and reduce missed detections [43].
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With the widespread adoption of deep learning, an increasing number of detection algorithms
have been developed based on DNN frameworks. In particular, CNN-based models are widely
utilized in candidate nodule detection tasks due to their capability to extract both low-level
spatial details and high-level semantic features, thereby significantly enhancing detection sen-
sitivity. Common network structures applied in pulmonary nodule detection include standard
CNNs, U-Net and its variants, Feature Pyramid Networks (FPN), Region Proposal Networks
(RPN), Residual Networks (ResNet), and hybrid architectures such as Retina-Net and Faster
R-CNN extensions [4,44–47]. Many of these approaches build upon these foundational mod-
els, introducing tailored modifications to improve performance for nodules of varying sizes
and shapes. Some studies have proposed hybrid networks that combine multiple architectures
in a cascade or parallel arrangement to leverage their complementary strengths. For example,
MS-3DCNN [48] integrated a multi-scale 3D UNet++ architecture with RPNs and residual
blocks to boost sensitivity, while MSM-CNN [49] combined Faster R-CNN with multiscale
feature extraction for robust small nodule detection. Similarly, OMS-CNN [50] enhanced
Faster R-CNN by integrating an optimized multi-scale CNN feature extraction model us-
ing metaheuristic algorithms, TiCNet [51] introduced a transformer module within a 3D
CNN framework alongside multi-scale skip pathways to capture both local and global depen-
dencies, and DA OMS-CNN [52] incorporated dual-attention mechanisms into a multi-scale
CNN within an improved Faster R-CNN architecture combined with 3D Swin Transformers,
achieving high sensitivity while effectively reducing false positives. These advanced architec-
tures demonstrate that incorporating multi-scale learning, residual connections, attention,
and transformer modules into candidate detection pipelines can significantly improve overall
detection performance in lung cancer screening applications.

In the candidate nodule detection stage, the objective is to achieve high sensitivity by iden-
tifying all potential nodules, even at the cost of including many false positives. As shown in
the top row of Figure 2.7, multiple candidates are detected in each CT slice. The red boxes
represent the detected candidates, while the green boxes show the ground truth nodules.
This stage ensures that no true nodules are missed before proceeding to further analysis.

False Positive Reduction

Even after the candidate nodule detection stage, a considerable number of false positives
(FPs) often remain, which can hinder the efficiency of lung nodule diagnosis. High rates of
FPs may lead to unnecessary follow-up procedures, overdiagnosis, and increased healthcare
costs. Thus, minimizing false positives is crucial to enhance the accuracy and clinical appli-
cability of detection systems. False Positive Reduction (FPRED) involves distinguishing true
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Table 2.1 Summary of recent CAD models for candidate nodule detection (CNDET) and
false positive reduction (FPRED).

CAD Models Year Method Dataset Best Performance
Zue et al. [53] 2020 FPRED: Multi-branch

3D CNN
LUNA16 Sensitivity: 87.71%,

CPM: 0.830
AECS-CNN [54] 2021 FPRED: Attention-

Embedded
Complementary-Stream
CNN

LUNA16 Sensitivity: 0.92%,
CPM: 0.762

I3DR-Net [55] 2022 CNDET: One-stage de-
tection using I3D + FPN

Public and
Private CT
datasets

CPM: 0.812

MSM-CNN [49] 2022 CNDET: Faster R-CNN
with multiscale features;
FPRED: 3D CNN with
multiscale fusion

LUNA16 Sensitivity: 98.6%,
CPM: 0.829

MS-3DCNN [48] 2023 CNDET: Multi-scale
3D UNet++ with RPN
and residual connections;
FPRED: Multi-input
fusion classification

LUNA16 Sensitivity: 87.3%,
CPM: 0.871

MK-3DCNN
[56]

2024 CNDET: Multi-kernel
3D CNN with residual
encoder-decoder

LUNA16 CPM: 0.859

TiCNet [51] 2024 CNDET: Transformer
+ 3D CNN hybrid with
attention and multi-scale
skip pathways;

LUNA16,
PN9

CPM: 0.884

FPRED: Two-head de-
tector

OMS-CNN [50] 2024 CNDET: Optimized
Multi-Scale CNN;
FPRED: Multiple 3D
DCNNs

LUNA16,
PN9

Sensitivity: 94.89%,
CPM: 0.892

AttentNet [57] 2025 CNDET: 3D RPN with
attention;

LUNA16 CPM: 0.871

FPRED: Fully convolu-
tional attention + joint
spatial analysis

DA OMS-CNN
[52]

2025 CNDET: Improved
Faster R-CNN with
Dual-Attention OMS-
CNN;

LUNA16,
PN9

Sensitivity: 96.93%,
CPM: 0.911

FPRED: Multiple 3D
Swin Transformers (3D
SwinT)
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Figure 2.7 Nodule detection results: (a) CNDET outputs; (b) FPRED outputs.

nodules from non-nodules within the detected candidates, essentially functioning as a binary
classification task. Numerous studies have been dedicated to developing effective methods
for this critical stage.

In the FPRED stage, various handcrafted features, including intensity-based, morphological,
and texture descriptors, are extracted from candidate nodule regions. These features are
then used to train traditional machine learning classifiers to distinguish true nodules from
non-nodule structures. Commonly employed classifiers in traditional approaches include Sup-
port Vector Machines (SVM), k-Nearest Neighbors (k-NN), linear discriminant analysis, and
different boosting algorithms [39,58–60]. For instance, Naqi et al. [34] proposed combining ge-
ometric texture features with Histogram of Oriented Gradient features reduced by Principal
Component Analysis (HOG-PCA) to construct a hybrid feature vector, which was subse-
quently classified using k-NN, Naive Bayes, SVM, and AdaBoost for effective false positive
reduction.

In recent years, numerous deep neural network (DNN)-based approaches, particularly those
leveraging convolutional neural networks (CNNs), have been introduced to improve clas-
sification accuracy in false positive reduction. Depending on their architectural designs,
these methods can generally be grouped into two categories: advanced pre-trained CNN
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models [61–63]and multi-stream heterogeneous CNN architectures [53, 64]. For instance, an
attention-embedded complementary-stream CNN (AECS-CNN) [54] employed multi-scale 3D
CT inputs with attention-guided feature extraction to capture rich contextual information
and enhance discriminative feature learning. This method achieved a sensitivity of 0.92 with
4 false positives per scan on the LUNA16 dataset. Similarly, an optimized multi-scale CNN
(OMS-CNN) [50], multiple 3D deep CNNs were combined to effectively reduce false positives.
This method, evaluated on the LUNA16 and PN9 datasets, achieved a CPM score of 0.892,
highlighting its capacity to extract representative nodule features of varying sizes and im-
prove both sensitivity and specificity for clinical use. Furthermore, dual-attention optimized
multi-scale CNNs (DA OMS-CNN) [52] combined with 3D shift window transformers (3D
SwinT) have been proposed to improve both feature extraction and spatial modeling capabil-
ities, resulting in a CPM score of 0.911 on benchmark datasets. These advanced architectures
demonstrate the effectiveness of integrating attention mechanisms, multi-scale learning, and
transformer modules in enhancing FPRED performance for lung nodule detection systems.

In the FPRED stage, a dedicated classifier is applied to eliminate non-nodules from the
detected candidates. As illustrated in the bottom row of Figure 2.7, most of the false positives
are successfully removed while retaining the true nodules. This significant reduction in false
alarms is critical to improve the overall specificity of the nodule detection system and to
avoid unnecessary follow-up examinations by radiologists.

2.4.3 Classification

Nodule classification constitutes the final stage in CAD systems. While many CAD systems
focus on predicting the malignancy of detected nodules to determine whether they are can-
cerous, some are designed to categorize nodules based on their types [65]. Malignant nodules
generally exhibit larger sizes (typically with diameters greater than 8 mm) and irregular
surface morphologies such as spiculation or lobulation. Therefore, precise measurements of
nodule size and detailed analysis of their appearance remain crucial for estimating malignancy
probability.

A wide range of classification techniques have been employed in this stage. These in-
clude: (1) traditional machine learning classifiers such as support vector machines (SVM),
k-nearest neighbors (k-NN), Bayesian classifiers, boosting algorithms, and optimal linear
classifiers [66, 67]; (2) advanced off-the-shelf convolutional neural networks (CNNs) [68, 69];
(3) hybrid models integrating CNNs with machine learning classifiers [70]; (4) multi-stream
heterogeneous CNN architectures [71]; and (5) CNNs trained using transfer learning strate-
gies to leverage features from large-scale datasets [72]. Among these, multi-stream hybrid
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CNNs combined with transfer learning have shown promising results due to their ability to
extract discriminative features across multiple scales and views.

Figure 2.8 Examples of pulmonary nodules: (a) benign nodules with smooth margins; (b)
malignant nodules with irregular or spiculated edges.

Figure 2.8 illustrates examples of benign and malignant pulmonary nodules. Subfigure (a)
shows benign nodules, which generally appear with smooth and regular boundaries, whereas
subfigure (b) presents malignant nodules characterized by larger sizes, spiculated or lobulated
margins, and heterogeneous textures. Accurate differentiation between benign and malignant
nodules is vital for early diagnosis and treatment planning, significantly impacting patient
outcomes.

2.4.4 Explainability and Transparency in CAD Systems

While deep learning (DL) models have demonstrated impressive performance in detecting
pulmonary nodules, their adoption in clinical workflows is limited due to their lack of inter-
pretability. Traditional convolutional neural networks (CNNs) often function as "black-box"
systems, offering little insight into how or why a particular decision is made. This opac-
ity hinders clinical trust and raises concerns about accountability, especially in high-stakes
applications such as lung cancer screening [73].

To address this, the field has increasingly focused on developing explainable AI (XAI) tech-
niques tailored for medical imaging. These methods aim to provide visual or semantic expla-
nations of model predictions, helping clinicians assess the reliability of automated decisions.
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A common approach involves saliency-based techniques such as Gradient-weighted Class Ac-
tivation Mapping (Grad-CAM) [74], which highlights regions in the input CT scan that most
influenced the classification outcome. Other methods like Local Interpretable Model-Agnostic
Explanations (LIME) [75] and SHapley Additive exPlanations (SHAP) [76] offer post-hoc in-
terpretations, though their application in 3D medical imaging remains challenging.

Several DL frameworks have attempted to embed interpretability into their architecture.
For instance, HSCNN [77] employed a hierarchical semantic structure to make intermediate
predictions about nodule attributes (e.g., texture, shape) before producing a final malignancy
score. Similarly, MTMR-Net [45] employed multi-task learning to jointly estimate attribute
labels and malignancy probabilities, providing insights into the decision-making process.
However, these methods often require additional supervision and auxiliary classifiers, which
complicate the training pipeline and limit scalability.

More recent work has explored the use of attention mechanisms to focus the model’s learn-
ing on informative regions. Fu et al. [78] proposed an attention-based multi-task CNN that
weights cross-attribute features to emphasize diagnostically relevant information. Although
attention maps offer a more integrated form of interpretability, they still lack direct anatom-
ical grounding and are often difficult to validate clinically.

To address these limitations, the fourth study in this thesis (Chapter 7) proposes a hybrid
SwinT-CNN model that integrates anatomical priors derived from a pretrained 3D U-Net seg-
mentation model via an Anatomical Attention Gate (AAG). This design not only improves
classification performance but also enhances interpretability by ensuring that the model’s
attention aligns with known anatomical structures. The proposed approach combines Grad-
CAM saliency maps with quantitative interpretability metrics such as sensitivity and entropy
to evaluate the quality of explanations. Experimental results demonstrate that this anatom-
ically guided design improves both transparency and diagnostic trust, positioning the model
for real-world deployment.

2.5 Challenges

Despite significant advancements in CAD and deep learning-based systems for pulmonary
nodule detection and classification, several challenges remain that limit their widespread
adoption and optimal performance. These challenges span multiple aspects, including the
quality and availability of annotated data, the generalizability and robustness of model per-
formance, the high computational demands of training and deployment, integration into
clinical workflows, and various ethical and legal concerns [79–81]. Addressing these limita-
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tions is crucial to ensure that such systems can reliably assist radiologists in early lung cancer
detection and ultimately improve patient outcomes [82].

2.5.1 Data Quality and Availability

One of the primary challenges in developing effective machine learning (ML) and deep learn-
ing (DL) models for lung nodule detection is the limited availability of annotated medical
imaging datasets. High-quality annotations require extensive input from expert radiologists,
which is both time-consuming and costly. Unlike natural image datasets, which can leverage
large-scale crowdsourcing, medical image annotation requires specialized clinical expertise
to ensure diagnostic accuracy and reliability. As a result, the lack of sufficiently large and
well-annotated datasets often hinders the development and validation of robust models for
clinical use.

Another significant issue is the class imbalance commonly observed in medical imaging
datasets for lung cancer detection. Typically, there is a disproportionately lower number
of positive cases (cancerous nodules) compared to negative cases (benign or non-nodules).
This imbalance can lead to biased models that are highly sensitive to the majority class
while failing to accurately detect malignant nodules, which are clinically the most critical.
Addressing this challenge requires the use of data augmentation, synthetic data generation,
or advanced loss functions designed to mitigate the effects of class imbalance during training.

Moreover, variations in imaging protocols, scanner types, and patient characteristics intro-
duce considerable heterogeneity in medical image datasets. Differences in slice thickness,
reconstruction algorithms, and scanning parameters across institutions can significantly im-
pact the appearance and quality of images. Additionally, the diverse manifestation of lung
cancer in different patients further complicates model generalization. Such variability makes
it challenging to develop models that are robust across various clinical settings and imag-
ing devices, highlighting the need for standardized imaging protocols and extensive cross-
institutional datasets to improve generalizability.

2.5.2 Model Performance

While data imbalance during training affects the learning quality of models, another critical
challenge during their deployment is achieving an optimal balance between false-positive and
false-negative rates. High false-positive rates can lead to unnecessary diagnostic procedures,
additional imaging, invasive biopsies, and increased patient anxiety, placing a burden on
both patients and healthcare systems. Conversely, false negatives, where malignant nodules
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remain undetected, pose an even greater risk by delaying diagnosis and treatment, potentially
resulting in poorer patient outcomes. Striking the right balance to maximize sensitivity
without compromising specificity remains a complex and clinically significant challenge.

Another limitation in model performance arises from the complexity of identifying and ex-
tracting relevant features from medical images. While deep learning models, particularly
convolutional neural networks (CNNs), are capable of learning hierarchical and discrimina-
tive features automatically, their effectiveness heavily depends on access to large and diverse
datasets for training. In contrast, traditional machine learning methods require handcrafted
features designed by experts, which might not capture subtle imaging characteristics critical
for accurate classification. This trade-off highlights the challenge of developing models that
can generalize well with limited annotated data while maintaining high diagnostic accuracy.

Furthermore, the interpretability of deep learning models poses a significant barrier to their
clinical adoption. CNN-based models are often regarded as "black boxes" due to their com-
plex internal representations and lack of transparent decision-making processes. For medical
professionals to trust these models and for them to gain regulatory approval, it is essential to
understand how such systems arrive at their predictions. Developing interpretable AI mod-
els or incorporating explainability frameworks to visualize feature importance and decision
pathways is thus critical for fostering clinical trust and ensuring responsible deployment in
healthcare settings.

2.5.3 Computational Resources

Training deep learning models for pulmonary nodule detection, especially those utilizing 3D
medical images, requires substantial computational resources and memory capacity. Process-
ing volumetric CT data involves handling large input sizes and complex network architec-
tures, often necessitating high-performance GPUs or computing clusters to achieve feasible
training times. This requirement can pose a significant barrier for many research institutions
and healthcare facilities with limited access to such advanced computational infrastructure,
thereby restricting the development and experimentation of state-of-the-art models.

Beyond training, deploying these models in clinical settings introduces additional computa-
tional challenges. CAD systems must analyze medical images and generate diagnostic results
quickly, thereby integrating seamlessly into clinical workflows. However, optimizing deep
learning models to run efficiently on available hospital hardware without compromising diag-
nostic accuracy remains a significant challenge. The need to balance computational efficiency
with predictive performance is especially crucial in time-sensitive environments such as lung
cancer screening and early detection programs.
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2.5.4 Integration into Clinical Practice

Integrating computer-aided detection (CAD) systems into clinical practice faces notable chal-
lenges related to user training and acceptance. Healthcare professionals require adequate
training to effectively use these new AI-based tools alongside their standard diagnostic pro-
cedures. However, introducing unfamiliar technologies can encounter resistance, particularly
if clinicians perceive them as complex or disruptive to established workflows. Ensuring that
CAD systems are user-friendly and accompanied by comprehensive training programs is
therefore essential to facilitate their smooth adoption in real-world clinical environments.

2.5.5 Ethical and Legal Concerns

Ensuring the privacy and security of patient data is a fundamental ethical and legal require-
ment when developing and deploying AI-based medical systems. Medical imaging datasets
often contain sensitive personal health information, and any breaches in data security can
lead to serious consequences, including violations of patient confidentiality, legal penalties for
institutions, and loss of public trust. Implementing strict data protection measures, adhering
to regulatory standards such as HIPAA or GDPR, and employing secure data storage and
transmission protocols are critical for safeguarding patient information in AI model develop-
ment and deployment processes.

Another major ethical challenge is the potential for AI models to exhibit biases due to training
on non-representative datasets. If models are developed using data that do not adequately
cover diverse demographic groups, their performance may be inconsistent, leading to reduced
diagnostic accuracy in underrepresented populations. This raises concerns about fairness and
equity in healthcare delivery, as biased models can exacerbate existing disparities in health
outcomes. Therefore, it is essential to ensure that training datasets are diverse and that
fairness assessments are incorporated into the model development pipeline to mitigate biases
and promote equitable AI applications in clinical practice.

2.6 Discussion

The literature reviewed in this study highlights the significant evolution of computer-aided
diagnosis (CAD) systems for pulmonary nodule detection, particularly in the context of ad-
vancements in deep learning. Early-stage CAD systems primarily relied on traditional image
processing and handcrafted features, often employing classical machine learning classifiers
such as SVMs, k-NN, or decision trees. These methods were effective to a certain degree
but were heavily dependent on expert-designed features and could not generalize well across
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diverse nodule appearances or imaging variations.

With the emergence of deep learning, particularly convolutional neural networks (CNNs),
the field of pulmonary nodule analysis has undergone significant transformation. Deep learn-
ing models, such as U-Net and Faster R-CNN, along with their numerous extensions, now
dominate both candidate detection and false positive reduction stages. These models pro-
vide end-to-end learning pipelines, enabling the automatic extraction of features from raw
CT images without the need for manual engineering. Furthermore, recent innovations, such
as attention mechanisms, multi-stream networks, and transformer-based modules (e.g., Swin
Transformers), have significantly enhanced model sensitivity and specificity, especially when
applied to challenging small or subsolid nodules.

An important observation from the reviewed methods is the apparent trend toward multi-
scale and 3D analysis. Lung nodules vary substantially in size, location, and texture, and
using 3D volumetric CT data provides a richer spatial context than 2D slices. Methods such
as MS-3DCNN, AECS-CNN, and DA OMS-CNN have successfully integrated multi-scale fea-
ture extraction with 3D processing, thereby improving detection performance across various
nodule types. Additionally, models such as OMS-CNN and TiCNet introduced metaheuristic
optimization or hybrid CNN-transformer architectures, reflecting the growing emphasis on
architectural flexibility and task-specific tuning to improve classification accuracy.

Another key theme is the increasing importance of false positive reduction (FPRED) in
the overall performance of CAD systems. While early systems prioritized sensitivity, often
generating large numbers of false positives, recent approaches strike a more effective balance.
Advanced FPRED techniques now incorporate dedicated CNN classifiers or attention-guided
feature fusion layers to retain true nodules while discarding irrelevant candidates selectively.
The improvements observed in CPM scores across recent models demonstrate the effectiveness
of such enhancements in reducing clinical burden.

Moreover, classification of nodules into benign and malignant categories remains a critical
component of CAD workflows. Studies show that malignant nodules often exhibit spiculated,
lobulated, or irregular margins, while benign nodules tend to be smooth and well-defined.
Modern classification models leverage multi-view, multi-stream CNNs or transfer learning
from large image datasets to learn subtle morphological and textural cues. These models are
also increasingly integrated with attention and explainability mechanisms to improve clinical
interpretability and decision support.

Overall, the reviewed literature suggests a strong trend toward developing more precise,
interpretable, and clinically relevant AI models for lung cancer screening. However, while
technical improvements in detection and classification are clear, the path to real-world clinical
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integration still requires addressing aspects such as interpretability, robustness across data
sources, and regulatory validation. Future research may benefit from hybrid models that
combine classical medical knowledge with data-driven learning, as well as from collaborative,
multi-center dataset development to support generalizable and equitable model training.

2.7 Conclusion

This chapter presented a comprehensive review of the current landscape of CAD systems for
pulmonary nodule detection and classification, with a particular focus on the integration of
deep learning techniques. Beginning with an overview of the clinical significance of early lung
cancer detection, we examined the unique challenges posed by pulmonary nodules in terms of
their variability in size, shape, and appearance. The chapter then outlined the typical pipeline
of CAD systems, including data preprocessing, candidate nodule detection (CNDET), false
positive reduction (FPRED), and final classification. Recent advances in deep learning, par-
ticularly convolutional neural networks (CNNs) and their 3D and multi-scale variants, have
significantly enhanced the performance of each stage in the CAD pipeline. Cutting-edge
models, such as AECS-CNN, OMS-CNN, and DA OMS-CNN, demonstrate that integrating
attention mechanisms, optimized feature fusion, and transformer-based modules can yield
high sensitivity and specificity across diverse datasets. The utilization of large-scale public
datasets, including LIDC-IDRI, LUNA16, and PN9, has further enabled the development
and benchmarking of increasingly sophisticated algorithms. Evaluation metrics such as sen-
sitivity, precision, ROC/FROC curves, and the CPM score were discussed as essential tools
for quantifying model performance. The literature reveals a consistent effort to balance de-
tection accuracy with computational efficiency and clinical interpretability, highlighting the
importance of reducing false positives and ensuring explainability in real-world applications.
In addition, this chapter identified several persistent challenges that must be addressed for
successful clinical translation, including data quality and availability, model robustness, com-
putational constraints, integration into clinical practice, and ethical and legal considerations.
These issues underscore the need for continued research on interpretable, efficient, and fair
AI models that can operate reliably across diverse populations and healthcare settings.

In conclusion, while deep learning has significantly advanced the capabilities of CAD systems
for lung cancer detection, translating these innovations into routine clinical use will require
addressing both technical and systemic challenges. The insights from this chapter provide a
foundation for the development of next-generation CAD systems that are not only accurate
and efficient but also trustworthy and clinically actionable.



32

CHAPTER 3 RESEARCH APPROACH

3.1 Methodology

This thesis follows a structured research methodology grounded in iterative development, ex-
perimental evaluation, and clinical relevance. While each contribution targets specific tech-
nical challenges in lung nodule detection, all studies share a unified methodological backbone
designed to ensure practical impact and reproducibility. The methodology consists of the
following stages:

• Problem Identification: Identify key limitations in current detection systems, in-
cluding limited sensitivity to small nodules, high false positive rates, inefficient com-
putational architectures, and a lack of interpretability that hinders clinical trust and
adoption.

• Hypothesis Formulation and Solution Design: Propose deep learning-based solu-
tions such as architectural modifications (e.g., VGG16 or Faster R-CNN), metaheuristic
optimization, and attention mechanisms.

• Incremental Model Development: Build minimal viable solutions and refine them
iteratively through multi-stage experimentation.

• Explainability and Visual Validation: Evaluate model interpretability through
Grad-CAM saliency maps, anatomical attention analysis, and quantitative metrics such
as heatmap sensitivity and entropy.

• Evaluation on Benchmark Datasets: Test all models on public datasets such as
LUNA16 and PN9 using metrics like sensitivity, CPM score, and false positives per
scan.

• Ablation and Comparative Analysis: Perform controlled comparisons with base-
lines and ablated versions to isolate performance gains introduced by each module.

This unified methodology ensures each contribution builds upon the previous work in a
coherent and scientifically rigorous manner, while also promoting clinical trust through
explainability-focused validation.
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3.2 Research Contributions and Work Packages

The core contributions of this thesis are structured into four research articles, each mapped
to specific objectives related to early-stage lung cancer detection and clinical interpretability.
These contributions are presented as individual work packages (WPs) aligned with three
overarching research axes:

• Sensitivity Improvement

• False Positive Reduction

• Efficiency and Applicability

• Interpretability and Clinical Transparency

WP1: Enhanced Region Proposal with VGG16 (Chapter 4)
This work investigates the limitations of conventional feature extractors in detecting small
nodules. By combining the final layers of VGG16 into a unified feature map and integrating
it with a Region Proposal Network (RPN), the model improves the recall of small nodules.
Addresses Objective A1.

WP2: OMS-CNN with Metaheuristic Optimization (Chapter 5)
This study introduces OMS-CNN, an optimized multi-scale CNN embedded within Faster
R-CNN. It employs harmony search (PSF-HS) and beetle antenna search (BAS) for layer
optimization and kernel initialization, improving accuracy and efficiency.
Addresses Objectives A1, B1, and C1.

WP3: Transformer-Based False Positive Reduction (Chapter 6)
This article expands OMS-CNN using dual-attention modules, DA-RoIPooling for region-
wise feature refinement, and 3D Swin Transformers for robust false positive reduction.
Addresses Objectives A2, A3, B2, and B3.

WP4: Interpretable SwinT-CNN with Anatomical Priors (Chapter 7)
This work proposes an interpretable hybrid model combining 3D CNNs and Swin Trans-
formers in a dual-path architecture, guided by anatomical priors from a pretrained U-Net.
The model improves diagnostic transparency by focusing on clinically meaningful regions,
validated through Grad-CAM heatmaps and attention-based metrics such as sensitivity and
entropy.
Addresses Objectives D1 and D2.
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3.3 Document Structure

The remainder of this thesis is organized as follows:

• Chapter 4 – Presents the first research article on VGG16-based region proposal en-
hancement.

• Chapter 5 – Introduces OMS-CNN and its metaheuristic optimization framework.

• Chapter 6 – Describes the extended model with dual attention, RoIPooling, and 3D
Swin Transformers.

• Chapter 7 – Presents an interpretable hybrid model (SwinT-CNN) that integrates
anatomical priors and attention mechanisms to enhance diagnostic transparency.

• Chapter 8 – Provides a general discussion of findings and cross-article insights.

• Chapter 9 – Concludes the thesis and outlines future research directions.
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CHAPTER 4 ARTICLE 1: EFFICIENT REGION PROPOSAL
EXTRACTION OF SMALL LUNG NODULES USING ENHANCED VGG16

NETWORK MODEL

Preface: This chapter presents a novel method for improving region proposal ex-
traction in the context of early-stage lung nodule detection. The proposed approach
leverages the VGG16 convolutional network, enhanced through a multi-layer feature
map aggregation strategy, to better capture features of small-sized nodules. This work
has been peer-reviewed and was published in the proceedings of the 2023 IEEE 36th
International Symposium on Computer-Based Medical Systems (CBMS).
Contributions: This research originated as part of my doctoral work at Polytechnique
Montréal and was developed in close collaboration with my co-authors. I contributed
to the formulation of the research problem, designed the improved region proposal
method, implemented the experimental pipeline using VGG16 and RPN, and con-
ducted extensive evaluations on benchmark datasets. I also led the writing of the
manuscript and coordinated the preparation of the final submission. My co-authors
provided valuable input on experimental design, data interpretation, and manuscript
revisions.
Full Citation: Yadollah Zamanidoost, Nada Alami-Chentoufi, Tarek Ould-Bachir,
and Sylvain Martel, “Efficient Region Proposal Extraction of Small Lung Nodules Using
Enhanced VGG16 Network Model,” in Proceedings of the 2023 IEEE 36th International
Symposium on Computer-Based Medical Systems (CBMS), L’Aquila, Italy, June 22–24,
2023. IEEE.
DOI: 10.1109/CBMS58004.2023.00266
Copyright: © 2023 IEEE. Reprinted, with permission from the authors and publisher.

4.1 Abstract

The efficiency of state-of-the-art convolutional networks trained to detect lung cancer nod-
ules depends on their feature extraction model. Various feature extraction models have been
proposed based on convolutional networks, such as VGG-Net, or ResNet. It has been demon-
strated that such models effectively extract features from objects in an image. However, their
efficacy is limited when the objects of interest are very small, such as lung nodules. One of the
widely used feature extraction models for detecting small objects is the VGG16 network. The
model, which has a small kernel of 3 × 3 and optimal layers, can extract the features of small

https://doi.org/10.1109/CBMS58004.2023.00266
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objects with reasonable accuracy. In this article, feature maps are created by combining the
last three layers of the VGG16 network to extract features of various sizes of nodules. This
study utilizes a Region Proposal Network (RPN) to compare the accuracy of the feature map
created in the proposed method and the original VGG16. An RPN is a fully-convolutional
network that simultaneously predicts object bounds and objectness scores at each position.
RPNs are trained end-to-end to generate high-quality region proposals, which Faster R-CNN
uses for detection. In this article, we select 300, 1, 000 and 2, 000 regions chosen by the RPN
network for each method; then, we calculate the recall for different Intersection over Union
(IoU) ratios with ground-truth boxes. The results show that the feature map of the proposed
method works more optimally than the feature map of different layers of VGG16 for extract-
ing various sizes of nodules. Also, by reducing the number of selected region proposals, the
recall of the proposed method has fewer changes than other methods.

4.2 Introduction

Lung cancer is one of the most severe cancers. It has devastating effects on human life [83]
and was declared one of Europe’s most significant causes of death in 2019 [84]. Radiotherapy
and chemotherapy are suitable and effective methods to treat the disease. However, the 5-
year survival rate for people with lung cancer is only 16% [85]. Early detection of lung cancer
is an effective and essential way to increase the chance of survival [86]. Today, computer-
aided detection (CAD) systems are vital in helping radiologists diagnose cancerous tumours.
Also, this technique helps to improve the accuracy of detecting lung nodules, reducing the
number of missed nodules and misdiagnoses [87]. Recent advances in object detection are
driven by success in region proposal methods [88] and region-based convolutional neural
networks (R-CNNs) [89]. One of the difficulties of CAD systems is detecting small nodules.
We can use different feature extraction methods by convolutional neural networks to address
this problem. Three optimal and practical models of convolutional neural networks are
VGG16 [90], ResNet-50 [91], and MobileNet [92], which are used in different articles to
detect lung nodules.

Our method utilizes VGG16 with 5-group convolution as the main feature extraction network.
As mentioned before, the detection of small nodules in the CT image of the lung scan is a
very challenging task. The minimum size of the nodules is 3mm, and the maximum is about
30mm. After a series of convolutions and pooling in VGG16, the size of the feature map of
the last layer is reduced, which leads to limited performance in the ROIs detection of nodules.
It has been observed that the utilization of small feature maps does not provide sufficient
resolution to represent the features of small nodules accurately. We can create a feature



37

map that demonstrates the feature resolution of various sizes of nodules in the proposed
method by combining the last three layers of VGG16. The proposed feature map enters a
region proposal network (RPN) and obtains a set of rectangular-shaped nodule proposals,
each of which has a score in the output. The proposed network of the region consists of a
fully convolutional network. This paper presents the best set of CT scan image ROIs for
input into the Faster R-CNN network using improved VGG16 to extract deeper features of
lung nodules and region proposal network (RPN). The experimental results show that the
proposed method is more accurate and stable compared to other common VGG16 methods.

The remainder of this paper is structured as follows. Section 4.3 explains the proposed
method. Section 4.4 presents the implementation of the proposed method and its results.
Section 4.5 offers a conclusion.

4.3 Method

Our research proposes a method for extracting efficient region proposals of lung nodules,
utilizing a three-step approach. (1) automatic lung segmentation; (2) feature extraction; (3)
Region proposal network (RPN). The paper presents a framework based on 3D Convolutional
Neural Networks (3D CNN) (Fig. 4.1). The methodology employed is described in detail
below.

4.3.1 Automatic Lung Segmentation

Automatic lung segmentation removes irrelevant regions, such as clothes, machine objects,
tissues, spines, or ribs, from chest CT scan images. The stages of this segmentation can be
seen in Fig. 4.2. First, we adjust the CT scan images from -1000 HU to 400 HU and then
normalize the CT scan in the range between 0 and 1. We use the mean value of CT scan
images as a threshold to divide the chest into outside and inside regions (Fig. 4.2(b)). Then
we remove the isolated pixels attached to the white label’s border. We also use a 4-connected
neighborhood operator to remove unrelated tissues and noises. As shown in Fig. 4.2(c), the
unimportant outside region of the chest is removed using a mask created from the chest.
More boundary informations are preserved by morphological operations, such as opening
and closing, to prevent the loss of lesions attached to the wall that may contain nodules. In
addition, small noise areas such as graininess, vessels and tissues in the processed image are
removed using the "Binary Fill Holes" [93] morphology operation. After performing the steps
mentioned, the mask can be seen in Fig. 4.2(d), and the lung parenchyma is well segmented
(Fig. 4.2(e)).
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Figure 4.1 A proposed overview to detect candidate nodules using an improved VGG16 model
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Figure 4.2 The Lung segmentation procedures. (a) An original CT image; (b) the binary
image after preprocessing; (c) the binary image after the removal of the unimportant outside
region; (d) the mask of lung parenchyma; (e) the image of segmented lung parenchyma.
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4.3.2 Feature Extraction Structure

In the proposed method, the basic structure of the feature extractor is VGG16. This structure
consists of 5 convolution groups. The features extracted in the last layer are suitable for
detecting large lung nodules. On the other hand, these features can not be used to detect
small nodules because small feature maps cannot clearly represent the features of small
nodules. The upper layers have a semantic feature map and get more detailed features from
nodules. The lower layers have more resolution but cannot extract finer details from the
nodules. To use the detailed features with higher resolution, we combine the upper and
lower layers of VGG16, as shown in Fig. 4.3. Using the proposed structure, we can select
features from feature maps of 3 different layers, which include features with high accuracy
and resolution.

Figure 4.3 The proposed composition structure of the upper and lower layers of VGG16

Also, compared to the feature pyramid network (FPN) method [94], the proposed structure
has a lower computational cost because two upsamples are used in FPN (Fig. 4.4). In contrast,
only one upsample is used in the proposed method to combine three layers. In addition, the
feature map of the FPN method is merged with the adjacent higher-resolution feature maps
by element-wise addition. In contrast, the feature map of our method is combined with the
high-resolution and high-semantic information of the three last layers.
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Figure 4.4 The Feature Pyramid Network (FPN) structure

4.3.3 Region Proposal Network (RPN)

An RPN aims to suggest potential nodule regions (called region-of-interest — ROI). As shown

Figure 4.5 The Region Proposal Network (RPN) structure

in Fig. 4.5, RPN receives a feature map as an input and outputs a set of rectangular object
maps, each of which has an object score. In the RPN structure, a sliding window takes the
feature map as input, obtains its convolution values using a 3 × 3 spatial window, and then
maps each sliding window to a 512-dimensional feature. These features finally enter into two
fully connected layers a box-regression layer (reg) and a box-classification layer (cls).
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Simultaneously, K region proposals are predicted at each sliding window location. So the
reg layer has 4K output that predicts the spatial coordinates of each box. The cls layer has
2K outputs that estimate each proposed region’s nodule/non-nodule probability. Each box
is called an anchor in the centre of the sliding window. To train RPNs, a binary class label is
assigned to each anchor. The anchor with the highest intersection over-union (IoU) overlaps
with the ground truth box, or the anchor with an IoU overlap higher than 0.6 is assigned
a positive label. On the other hand, if the overlap of the IoU with the ground truth box is
less than 0.3, the anchor is assigned a negative label. Anchors that are neither positive nor
negative do not contribute to the training goal.

The reg layer has 4K outputs. The x and y are the centres of the box, and the w and h are its
width and height. For a region proposal (P ) and a ground truth (G), these four parameters
compute as follows: 

tx = (Gx−Px)
Pw

ty = (Gy−Py)
Ph

tw = log Gw

Pw

th = log Gh

Ph

(4.1)

where P i = (P i
x, P i

y, P i
w, P i

h) specifies the pixel coordinates of the center of proposal P i and
G = (Gx, Gy, Gw, Gh) specifies the ground-truth bounding box.

4.4 Experiment and results

4.4.1 Dataset

CT is one of the most sensitive imaging techniques in diagnosing lung nodules with fastness,
cost-effectiveness and availability features. Different CAD systems are trained using various
databases. One popular and useful database is Lung Image Database Consortium and Im-
age Database Resource Initiative (LIDC–IDRI) [95]. It is publicly available via the Cancer
Imaging Archive (TCIA) website. The primary purpose of the database is to develop CAD
methods to automatically detect lung nodules or even for classification and quantitative as-
sessment. Since 2011, the dataset has contained 1018 patients’ diagnoses. Nodules whose
diameter is equal to or above 3mm, nodules whose diameter is below 3mm, and non-nodules
whose diameter is equal or above 3mm. The diameters of the nodules determine their sizes.
Because multiple radiologists may have annotated a nodule, the average of the diameters is
retained. However, the number of pixels of the pulmonary nodules is 4 − 56 based on the
diameters of the pulmonary nodules 3mm-30mm [96].
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4.4.2 Implementation Details and Results

In this paper, a 3D image is used to input the VGG16 network. Since using the original 3D
volume of the CT scan as input to the nodule detection network has a very high computational
cost, we use axial slices as input instead. Therefore, for each axial slice in CT images, we
extract its two adjacent slices and then change it to an 800 × 800 × 3 image.

In the automatic lung segmentation section, the threshold value is 0.99. To get the accuracy
of this operation, we divide the results into four groups. The first group is the whole extracted
lungs (Fig. 4.6(a)). The second group is the whole extracted lungs with their surrounding
noises (Fig. 4.6(b)). The extracted lungs are incomplete in the third group, but there is a
nodule in the extracted lung part (Fig. 4.6(c)). The fourth group of incompletely extracted
lungs is that there is no nodule in the extracted lung part (Fig. 4.2(d)). Table. 4.1 shows the
percentage of each group in total. To carry out this project, it is crucial to extract the lung

Figure 4.6 Automatic lung segmentation result groups; (a) The first group, (b) The second
group, (c) The third group, (d) The fourth group



44

if there is a nodule, so the ILDC-IDRI and Luna16 datasets [97]’ accuracy are approximately
94% and 97%, respectively. Compared to the automatic lung extraction methods that use
deep learning, such as U-Net [98], besides having a much lower computational cost, this
method also has acceptable accuracy.

Table 4.1 Automatic lung segmentation accuracy (%)

Dataset Group1 Group2 Group3 Group4
LIDC-IDRI 55.22 33.20 5.31 6.18

LUNA16 72.64 20.30 4.12 2.93

After the automatic lung extraction stage, the images are re-scaled for better resolution of
small nodules. This section converts the 512×512 CT scan images into 800×800 images with
the cubic-interpolation method. The input for feature extraction utilizes 3D lung-extracted
CT scan images. Due to the tiny size of lung nodules compared to normal objects in natural
images, the original RPN network that uses VGG16-Net for feature extraction cannot extract
the features of lung nodules with high accuracy, causing limited performance in detecting
ROIs of nodules.

To solve this problem, in the proposed method, the structure of VGG16-Net layers has been
improved to extract objects smaller than normal scale, such as lung nodules. In this method,
by concatenating the upsampling of the last layer, the fourth layer, and the downsampling
of the third layer of VGG16 and tuning the number of kernels, we can obtain the best
performance to detect the ROI of the lung nodules. Combining layers recovers more fine-
grained features compared to the original feature map. Therefore, the proposed model has
better detection results than the original RPN method [99].

This article uses the RPN network to compute the recall of ROIs of the lung nodule and
compare it with other methods. It also uses six anchors of different sizes, including 4 × 4,
6 × 6, 10 × 10, 16 × 16, 22 × 22 and 32 × 32 for each sliding window, as in [100]. The LIDC-
IDRI dataset was utilized as the training data source. This study uses 800 cases. The CT
images containing 2100 lung nodules are utilized in this study. We consider 10% of images
as validation data and use the remaining images as training data. We employ validation
data to modify the parameters of the training model. In addition, We train the network
end-to-end in the RPN stage by the stochastic gradient descent (SGD) algorithm. We also
randomly initialize all new layers using Gaussian distribution with mean 0 and variance 0.01.
Also, we initialize the weight values of all VGG16 layers by pre-trained a model for ImagNet
classification [101]. The network model trains in the 2 V100 GPUs environment, and the
memory is 192G. Table. 7.2 shows the parameter of the training model.
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Figure 4.7 Recall vs. IoU overlap ration on; (a) Large nodules, (b) Medium nodules, (c) Small
nodules
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Figure 4.8 Recall vs. IoU overlap ration on all size of lung nodules; (a) 2K proposals, (b) 1K
proposals, (c) 300 proposals
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Table 4.2 Parameters for training RPN model

Initialization of network Guassian distribution
Batch size 10

Learning rate 0.0001
Momentum 0.9

Weight decay 0.00001

Fig. 4.7 shows the recall of 1000 proposals on small, medium, and large lung nodules at
different IoUs ratios with ground-truth boxes in the proposed method, Conv4 outputs (C4),
and deconvolution of Conv5 outputs(C5+Deconv) [100] of the VGG16 model. The results
have been obtained for three modes of CT scan images with small nodules (< 10mm),
medium nodules (10 − 20mm)and large nodules(> 20mm). As shown in Fig. 4.7, the recall
of VGG16(C5+Deconv) [100] mode is acceptable only for CT images with large nodules.
However, the recall of small nodules is negligible. In this case, the feature map of C4 has more
representative features compared to the feature map of the last layer of VGG16. Therefore,
this method improves the recall for medium and small nodules. In the proposed method,
the combination of semantic and representation features taken from the last three layers of
VGG16 is used to generate a feature map, which contains fine-grained features of different
sizes. As shown in Fig. 4.7, the accuracy of the proposed method is improved compared to
the mentioned methods for all sizes of the lung nodules.

Table. 7.3 shows the average recall (AR) on all sizes of lung nodules when the overlap of
IoU with ground-truth boxes is more than 0.7. We report results for 100, 300, 1K, 2K, and
5K (AR100, AR300, ..., AR5K). It shows our method has strong semantic and fine-resolution
feature maps.

Table 4.3 Average recall (AR(%)) for various numbers of region proposals in IoU=0.7

AR100 AR300 AR1K AR2K AR5K

Proposed method 61.8 70.3 77.8 84.6 86.1
C4 43.5 58.6 71.1 75.6 85.1

C5+Deconv 30.7 37.3 49.6 52.1 61.7

In Fig. 4.8, we show the results of using 300, 1k, and 2k proposals for all sizes of nodules.
The plots show that, by changing the number of proposal regions, our method has higher
recall than other methods. Second, By reducing the number of proposal regions from 1000
to 300, the average recall difference of our method, VGG16(C4), and VGG16(C5+Deconv) is
5.4%, 9.3% and 8.4% respectively. So, our method has a more stable behaviour by reducing
the number of proposal regions.
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Figure 4.9 Some examples of Intersection-over-Union (IoU) ratios of detected pulmonary
nodules with ground-truth bounding boxes

Fig. 4.9 shows some lung nodule candidates detected by our method. The depicted examples
are some complex samples, which include solitary nodules, vascularized nodules and juxta-
pleural nodules. As shown, the proposed method can detect those nodules with high IoU
ratios.

4.5 Conclusion

In this study, we presented an improved feature extractor based on the VGG16 convolutional
network, trained by a region proposal network (RPN). To improve the performance of the
system, we first automatically extracted the lung from CT scans and then entered the 3D
segmented lung images into the deep convolutional neural network (DCNN). The experimen-
tal results on the LIDC-IDRI dataset show that the feature map extracted by the proposed
method performs better than that extracted from the original VGG16 layers. Also, by chang-
ing the number of region proposals, our method is more accurate and stable in behaviour
than other methods. Our method considers fixed filter sizes of the new layers in VGG16.
In future work, we will focus on the filter sizes as a hyperparameter and then change them
during the training to get the best result to enhance the system’s performance.
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CHAPTER 5 ARTICLE 2: OMS-CNN: OPTIMIZED MULTI-SCALE CNN
FOR LUNG NODULE DETECTION BASED ON FASTER R-CNN

Preface: This chapter presents an improved Faster R-CNN architecture for early-stage
lung cancer detection, incorporating a novel optimized multi-scale convolutional neural
network (OMS-CNN). This approach utilizes metaheuristic algorithms to optimize the
feature map generation process based on the VGG16 backbone, enhancing the detection
of small pulmonary nodules in CT scans. This work has been peer-reviewed and was
published in the IEEE Journal of Biomedical and Health Informatics, Volume 29, Issue
3, on November 27, 2024.
Contributions: This work was conducted during my PhD research at Polytechnique
Montréal. I developed the OMS-CNN framework and integrated it within the Faster R-
CNN detection pipeline. My responsibilities included designing the multi-scale feature
aggregation strategy, applying the PSF-Harmony Search and Beetle Antenna Search
algorithms for parameter optimization, implementing the experimental setup, and con-
ducting evaluations on the LUNA16 and PN9 datasets. I also led the manuscript
preparation and revision process. My co-authors provided valuable input on algorithm
design and clinical validation.
Full Citation: Yadollah Zamanidoost, Tarek Ould-Bachir, and Sylvain Martel,
“OMS-CNN: Optimized Multi-Scale CNN for Lung Nodule Detection Based on Faster
R-CNN,” IEEE Journal of Biomedical and Health Informatics, Vol. 29, No. 3, pp.
2148–2160, November 27, 2024.
DOI: 10.1109/JBHI.2024.3507360
Copyright: © 2024 IEEE. Reprinted, with permission from the authors and publisher.

5.1 Abstract

The global increase in lung cancer cases, often marked by pulmonary nodules, underscores the
critical importance of timely detection to mitigate cancer progression and reduce morbidity
and mortality. The Faster R-CNN approach is a two-stage, high-precision nodule detection
method designed for detecting small nodules, particularly in computed tomography (CT)
images. This paper presents an improved Faster R-CNN by introducing an optimized multi-
scale convolutional neural network (OMS-CNN) technique for feature map generation. This
approach aims to achieve an optimal feature map through metaheuristic optimization by
combining the last three layers of the VGG16 architecture. The advanced parameter-setting-
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free harmony search (PSF-HS) algorithm is utilized to implement this method, automatically
adjusting the number of channels in the composite layers as a hyperparameter. The beetle
antenna search (BAS) optimization algorithm is utilized to effectively initialize the kernel
filter weights and biases in the composite layers, thereby enhancing training speed and de-
tection accuracy. In the false-positive reduction stage, a combination of multiple 3D deep
convolutional neural networks (3D DCNN) is designed to reduce false-positive nodules. The
proposed model was evaluated using the LUNA16 and PN9 datasets. The results demon-
strate that the OMS-CNN technique effectively extracted representative features of nodules
at various sizes, achieving a sensitivity of 94.89% and a CPM score of 0.892. The compre-
hensive experiments illustrate that the proposed method can enhance detection sensitivity
and manage the number of false positive nodules, thereby offering clinical utility and serving
as a valuable point of reference.

5.2 Introduction

Lung cancer stands as one of the deadliest known diseases worldwide, comprising nearly
two-thirds of all existing cancers [102]. The mortality rate of this type of cancer among
all recognized tumours is 18% [103]. Studies indicate that early detection of lung cancer
can improve treatment outcomes and increase patients’ survival rates [104–106]. Among
the available imaging modalities, computed tomography (CT) imaging is important in lung
cancer detection and diagnosis [107,108]. With increased access to CT equipment, physicians
review a substantial volume of CT images daily. However, due to the prolonged time required
for physicians to examine each CT scan, errors in cancer detection may occur due to fatigue
or external factors, posing significant risks to patients [109]. Therefore, to reduce individual
errors, computer-aided detection (CAD) systems have been developed to assist physicians in
rapidly and accurately identifying tumours.

Given the diversity of lung nodules in CT images, accurate diagnosis presents a significant
challenge. Consequently, various methods have been proposed in recent years for detecting
lung nodules [33,55,110–115]. One type of lung nodule that is particularly difficult to detect
by proposed systems is the identification of very small lung nodules with a diameter of fewer
than 6 millimetres [116]. Detecting these types of nodules will aid in early lung cancer
diagnosis. Lung nodule detection systems typically identify nodules in two stages. The first
stage involves extracting candidate nodules to increase the system’s sensitivity. Traditional
methods for extracting remaining nodules used threshold-based or region-based algorithms,
which perform poorly in extracting nodules with lower contrast than the surrounding tissue.
The second stage involves removing false-positive candidate nodules to increase the system’s
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precision. However, lung nodule detection approaches need more efficiency, such as lengthy
processes, lack of end-to-end detectability, and challenges with larger datasets [117].

In previous years, object detection in medical images has not seen significant advancements
due to hardware limitations in machine performance. However, with improved processor
speeds and the introduction of deep learning techniques, various object detection methods
in images have been widely presented in recent years. For example, Faster R-CNN [4, 117],
and Cascade R-CNN [118] are two-stage object detection techniques that accurately detect
objects. Additionally, YOLO [119, 120] and SSD [121] are one-stage methods that rapidly
detect objects. Attention mechanisms, such as the deep CNN with dual attention mechanism
[122], enhance lung nodule detection by incorporating channel and spatial attention to refine
feature representation. This allows the model to focus on the most significant details within
lung nodule images, improving its ability to distinguish subtle nodules from surrounding
tissues. In detecting lung nodules, the integration of region proposal networks in Faster
R-CNN is utilized, leading to increased accuracy in detecting lung nodules, especially small
ones.

The original Faster R-CNN model encounters challenges when applied to lung nodule de-
tection. One of the critical challenges of Faster R-CNN in detecting small objects is the
limited spatial resolution of feature maps at higher convolutional layers. This can lead to
difficulty in accurately capturing small objects’ details and distinctive features, making their
detection less reliable. One solution to this challenge is incorporating multi-scale features
into the Faster R-CNN model. Combining feature maps from different convolutional layers,
including those with finer spatial resolutions, the model can capture detailed information
from lower layers and semantic context from higher layers. This allows for more effective
detection of small objects by providing richer and more informative features. Additionally,
feature pyramid networks [94] can handle objects at different scales more effectively.

In [123], our focus was on enhancing the efficiency of lung nodule detection using multi-scale
CNNs based on Faster R-CNN. Specifically, we optimized feature extraction with the VGG16
model and improved region proposal accuracy through a region proposal network (RPN).
This article proposes an improved Faster R-CNN model based on OMS-CNNs to enhance
lung nodule detection sensitivity in CT scans. This current work extends that research by
completing the remaining stages and significantly improving the performance of the Faster
R-CNN algorithm for detecting nodules of various sizes. The primary contributions of this
paper are as follows:

1. An improved Faster R-CNN framework has been developed by enhancing and optimiz-
ing the multi-scale CNNs feature extraction model. The system exhibits robust and
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accurate identification of nodules across various sizes, particularly small ones. This
capability holds promise for easing the burden on medical practitioners and lowering
the likelihood of diagnostic errors.

2. The use of metaheuristic algorithmic techniques, specifically advanced PSF-HS and
BAS optimization, has been suggested for determining the optimal number of composite
layers and optimizing the initial weights and biases of these layers. These techniques
improve the accuracy and efficiency of pinpointing prospective areas, thereby decreasing
the number of redundant nodules and accelerating the detection process within the
specified context.

3. A novel approach is proposed for the false positive reduction stage, which combines 3D
deep CNNs and exhibits commendable performance. Unlike 2D convolutional neural
networks, 3D CNNs utilize three-dimensional contextual data, capturing richer spatial
intricacies and producing inherently more distinct features to characterize pulmonary
nodules.

The remainder of this paper is structured as follows: Section 5.3 offers an overview of the
original faster R-CNN model. Section 5.4 outlines the design framework for an automated
pulmonary nodule detection system using OMS-CNN. Section 5.5 elaborates on the exper-
imental outcomes and ensuing discussions. The concluding section encapsulates the key
findings of this study.

5.3 Faster R-CNN Model

The Faster R-CNN model is an advanced approach to object detection in images, leveraging
deep convolutional neural networks. In this model, input images undergo feature extraction
via a CNN to generate a feature map. Subsequently, regions of interest (RoIs) likely to
contain objects are automatically identified using an RPN.

A notable feature of this model is its utilization of an anchor-based strategy for generating
proposed regions. A set of anchor boxes is obtained for each pixel in the feature map,
effectively considering various points in the image and thereby adeptly identifying different
objects. In the subsequent stage, these proposed regions are utilized for classification and
regression tasks. Each RoI is transformed into a feature vector through another convolutional
network, which is then used for classification and object localization through classification
and regression.
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Figure 5.1 Overall framework of an automatic pulmonary nodule detection system based on
OMS-CNN.

With this approach, Faster R-CNN demonstrates high proficiency in object detection in
images. Combining deep convolutional networks with anchor-based methods achieves higher
object detection accuracy and speed than previous approaches.

The Faster R-CNN approach is widely used for object detection in medical images. Therefore,
this method is employed to detect lung nodules in CT images. However, one of the significant
challenges in using this approach for lung nodule detection is achieving sufficient accuracy.
Detecting small nodules is particularly important for early-stage lung cancer detection. While
the convolutional neural networks used in Faster R-CNN are robust in feature extraction, they
tend to abstract features of such small nodules excessively during the convolution process,
leading to undesirable detection outcomes.

To address the challenge above, this paper enhances the initial model by focusing on the
following aspects: First, the resolution of the input image is improved, and the lower di-
mensional features are concatenated with the higher-dimensional features by path augmen-
tation [123]. Second, essential hyperparameters like the number of combined channels are
fine-tuned using the sophisticated advanced PSF-HS optimization technique [6]. Third, in
the conventional Faster R-CNN architecture, the weights and biases of combined kernel fil-
ters are initialized randomly before the training process, resulting in a decline in diagnostic
precision. To counteract these challenges, the BAS optimization algorithm [124] is employed
to initialize combined kernel filter weights and biases. Fourth, to enhance the accuracy of
bounding box prediction, the generalized intersection over union (GIoU) [125] loss function
is implemented instead of the intersection over union (IoU) loss function.

Fig. 5.1 illustrates an automated pulmonary nodule detection system based on OMS-CNN.
This system takes three-dimensional CT scan images as input and outputs the position
of nodules. The implementation of this system aims to achieve high sensitivity in nodule
detection while reducing the average number of false positives per scan.



54

Figure 5.2 Segmentation process of lung parenchyma.

5.4 Design Framework

5.4.1 Lung Parenchyma Segmentation Strategy

Automated lung segmentation from CT chest scans plays a vital role in removing extraneous
elements, thereby enhancing the accuracy of lung nodule detection. As depicted in Fig. 5.2,
the raw images are initially binarized. In this process, pixel values are adjusted within the -
1000 HU to 400 HU range and then normalized to the standard range of 0 to 1. Subsequently,
a threshold segmentation is performed based on the mean pixel value of the CT scan image,
dividing the chest region into external and internal compartments. To improve this stage,
a 4-connected neighbourhood operator is utilized to eliminate noise and additional internal
and external tissues. One of the challenges of automated lung segmentation is the exclusion
of nodules attached to the walls. Morphological operations such as opening and closing
are employed to address this issue. Finally, to enhance accuracy, small noisy regions are
eliminated using the morphological operation of ’Binary Fill Holes’ [93]. After completing
the steps above, the mask is extracted, and the lung parenchyma is well-segmented.

5.4.2 Optimized Multi-Scale CNN (OMS-CNN)

The selection of an appropriate feature extraction architecture is a significant factor influ-
encing the performance of modern convolutional neural networks for lung nodule detection.
Various models with different feature extraction architectures exist, with the most promi-
nent ones being DensNet, VGGNet, and ResNet. These models can extract object features
from images with high accuracy. However, their performance diminishes when faced with
small lung nodules. One of the most common feature extraction architectures is VGG16,
characterized by compact 3x3 kernels and optimal layers that enable the detection of small
nodules with higher accuracy. In [123], feature maps are generated by combining the final
three layers of the VGG16 network to extract features from diverse nodule sizes, especially
small ones.
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Figure 5.3 Overall framework of optimized multi-scale CNN model (OMS-CNN).

This paper proposes an efficient feature extractor structure called OMS-CNNs for extracting
optimal RoIs, as depicted in Fig. 5.3. The backbone of this structure utilizes the VGG16
model and comprises two independent RPNs. To enhance the accuracy of RoI extraction,
the advanced PSF-HS optimization method is employed to adjust the number of combined
kernels [N, K, M] in the final layers of the VGG16. Additionally, the BAS optimization
method is utilized instead of the random initialization approach to adjust the weights and
biases of the composite layer filters.

Input and Output

We opted for a 3D input data approach instead of 2D input data. Due to the substantial
computational demands associated with using the original 3D volume of the CT scan as input
for the nodule detection network, we resorted to employing axial slices as the input data.
This was achieved by consolidating the primary CT scan slice housing the nodule with the
adjacent upper and lower slices. 3D input data imparts a richer contextual backdrop and
a more comprehensive portrayal of the nodule, aiding the model’s differentiation between
nodules and other structures or artifacts. Consequently, we extract the three contiguous
slices for every axial slice in the CT images and convert this data into an 800 × 800 × 3
image.
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Network Structure

The fundamental architecture of the feature extractor is based on VGG16, comprising five
convolutional groups. The upper layers encompass a semantic feature map and get more
intricate details from nodules. Conversely, the lower layers offer heightened resolution but
cannot extract finer intricacies from nodules. To harness the advantages of detailed features
with enhanced resolution, we concatenate the upper and lower layers of VGG16 (Fig. 5.3).

By adopting this configuration, we can selectively access features from feature maps of three
distinct layers, encompassing heightened precision and resolution traits. In this structure, two
identical configurations are employed. Each of these configurations possesses an independent
RPN for extracting proposed regions. The number of kernels in the composite layers of each
structure differs from one another. These kernel counts are adjusted within one structure to
extract features of large nodules and within another to extract features of small nodules.

Hyperparameter Tuning Stage

In neural networks, hyperparameters are parameters predetermined by individuals or set
automatically through an external model mechanism. Hyperparameter optimization per-
tains to selecting the most suitable set of hyperparameters for a machine-learning algorithm.
Techniques for hyperparameter optimization encompass grid search, Bayesian optimization,
random search, and gradient-based optimization [126]. For CNNs, these hyperparameters
involve configuring parameters like kernel size, stride, the number of channels, zero-padding,
and more.

In this paper, we present an approach for fine-tuning the hyperparameters of the feature
extraction phase in the multi-scale CNN model. This optimization is accomplished using
an advanced PSF-HS algorithm [6]. In the context of the PSF-HS algorithm, we designate
harmony as the variable of interest to be optimized. Our working hypothesis posits that
we can achieve the optimal hyperparameter settings by configuring the hyperparameters as
harmonies and employing the PSF-HS algorithm to adjust these harmonies iteratively.

Two crucial factors, harmony memory consideration rate (HMCR) and pitch adjustment rate
(PAR), utilized in the harmony search (HS) algorithm significantly impact its effectiveness.
These parameters are essential in determining whether to utilize the variable within the
harmony memory (HM) with the best previously calculated values or to adjust and use
it anew. The PSF-HS algorithm [127] operates with fixed HMCR and PAR values over a
set number of iterations. However, this approach encounters a limitation in the PSF-HS
method, where only one value is employed after a certain stage of the HS process. To address
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this, the advanced PSF-HS approach [6] has been introduced, which incorporates a maximal
improvisation setup that adjusts both HMCR and PAR values.

The equations used to determine HMCR and PAR are as follows:

HMCR = 0.5 + 0.5 × sigmoid(10 i

n
− 5

log(v)) (5.1)

PAR = HMCR × sigmoid(4
v

− 2) (5.2)

sigmoid(x) = 1
1 + e−x

(5.3)

Here, i signifies the current iteration, n indicates the maximum number of iterations, and v

denotes the number of variables subject to modification within the HS algorithm.

Furthermore, the pitch adjustment bandwidth (bw) is used to set the upper limit for the ad-
justment magnitude, influenced by both the HMCR and PAR probabilities. This is calculated
as:

bw = (U − L) × λ (5.4)

In Eq. (5.4), U and L represent the upper and lower bounds of the variable inputs and λ is
a constant parameter adjusted within the range of 0.01 to 0.1 [6].

Finally, to update the value of HM at each iteration, we use the following equations:

HM =

HM + PAR × bw, rand() ≥ 0.5

HM − PAR × bw, rand() < 0.5
(5.5)

HMnew = max(L, min(U, HM)) (5.6)

In this paper, as illustrated in Fig. 5.3, the number of channels in the composite layers is
treated as a hyperparameter for feature map creation. Therefore, the parameters N , K, and
M represent the number of channels in the third, fourth, and fifth layers of CNNs, respec-
tively. By varying their values, one can determine the optimal combinations [NS, KS, MS]
and [NL, KL, ML] for achieving high-precision detection of small and large lung nodules,
respectively.
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Figure 5.4 The advanced PSF-HS optimization algorithm.

As depicted in Fig. 5.4, the initial parameters — such as the harmony memory size (HMS),
maximum number of iterations, and variable ranges — are initialized. Subsequently, the HM
matrix is generated randomly within these variable ranges. To compute the fitness memory
(FM) using the values [N, K, M ] obtained from HM, the RPN network is trained, and the
accuracy of the trained model is recorded in FM. Subsequently, a new HM matrix is formed
using the HMCR and PAR, and a corresponding new FM matrix is generated. If the new FM
outperforms the previous one, the old HM matrix is replaced with the new one; otherwise,
no changes are made. This process of generating new HMs is repeated at each iteration until
the optimal HM matrix is obtained.

This paper aims to enhance the accuracy of lung nodule detection by utilizing two separate
Region Proposal Networks (RPNs): one specialized for identifying small nodules and the
other for large nodules. The advanced PSF-HS algorithm is applied to optimize this process
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Figure 5.5 The model for initial weight and bias optimization using the BAS algorithm.

to select the most effective combination of VGG16 layers for each RPN, ensuring precise
detection of both small and large lung nodules.

Initial Weights and Biases Optimization Stage

The initial assignment of weights and biases in a CNN significantly influences the training
pace and the accuracy of the region of interest extraction. CNNs learn by adjusting these
parameters through the backpropagation of errors during training. This continual adjust-
ment process, applied to the convolutional and fully connected layers, progressively leads to
achieving the desired learning outcomes. Typically, in CNNs, these weights and biases are ini-
tially set randomly using various methods [128–130], resulting in unnecessary computational
overhead during training. To overcome this challenge and improve training efficiency, we
adopt a two-step approach: First, we initialize the weights and biases of all VGG16 layers by
leveraging a pre-trained model for ImageNet classification [101]. Subsequently, we utilize the
BAS optimization algorithm to fine-tune the weights and biases of additional composite lay-
ers before training. Inspired by beetle search principles, the BAS algorithm is a sophisticated
metaheuristic optimization technique [7]. It offers a straightforward implementation and re-
quires minimal computational resources. This strategy effectively addresses the drawbacks
associated with CNNs stemming from the random initialization of weights and biases [131].

Concerning the optimized model illustrated in Fig. 5.5, the best configuration involves ini-
tializing the parameters of compound layers within a designated number of iterations before
commencing model training. Implementing the BAS algorithm necessitates defining several
parameters, such as the step size δt, the maximum iteration count N , the frequency of step
size adjustments η, the initial direction of the beetle represented as b, the initial spacing d0
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between the beetle’s antennae, and the beetle’s starting position w0.

b = rands(k, 1)
||rands(k, 1)|| (5.7)

wrt = wt + d0b/2

wlt = wt − d0b/2
(5.8)

The initial direction of the beetle is calculated by Eq. (5.7). In this equation, rands is a
random function that generates a k-dimensional column vector comprising random numbers
ranging from -1 to 1. Here, k is chosen as the dimensions of the CNN weight matrix.
Furthermore, the position of the beetle antennae must be determined based on the initial
position of the beetle that is calculated in Eq. (5.8).

wt+1 = wt − δtbsign(f(wrt) − f(wlt)) (5.9)

f = 1
N

∑
xi

−[yi log(ai) + (1 − yi) log(1 − ai)] (5.10)

sign(w) =


1, w > 0

0, w = 0

−1, w < 0

(5.11)

δt+1 = δt × η (5.12)

The beetle’s location is updated regarding Eq. (5.9). In this equation, f represents the
algorithm’s fitness function, calculated in Eq. (5.10). In this scenario, xi stands for the
ith image instance in the dataset, with yi indicating the corresponding diagnostic label.
The variable ai represents the output generated by processing image xi through the feature
extractor. Over a set number of iterations (N), adjustments are made to the weights matrix
until the algorithm reaches its optimal fitness level. In addition, the BAS algorithm enhances
its search accuracy by Eq. (5.12), which updates the step size by its step update frequency.

In this paper, we employ the BAS optimization algorithm to discover improved weight and
bias values for the filters in the new convolutional layers before training. This allows us to
substitute the initial random initialization process with optimized parameters, thus creating
an optimal model for RoI extraction.
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Loss Function

In deep learning networks, model parameters iteratively undergo training to minimize the
loss function. The Faster R-CNN model uses two independent loss functions for classification
and regression layers. Typically, the IoU metric is used during regression loss evaluation as a
standard, measuring the overlap between the predicted bounding box and the ground-truth
box. Eq. (5.13) quantifies the regression loss in this scenario.


IoU = |BGT∩Bpred|

|BGT∪Bpred|

LossIoU = 1 − IoU

(5.13)

where BGT is the real bounding box, Bpred is the predicted bounding box.

The proposed method uses the Generalized IoU (GIoU) loss function instead of IoU to
determine the regression loss. As depicted in Eq. (5.14), when the predicted bounding box
and the ground-truth box do not overlap, GIoU ranges between -1 and 0, while IoU is 0.
This advantage of GIoU addresses the issue of gradient optimization instability [125].


GIoU = IoU − |B−(BGT∪Bpred)|

|B|

LossGIoU = 1 − GIoU

(5.14)

where B represents the minimal bounding box that contains both BGT (ground-truth box)
and Bpred (prediction box).

5.4.3 Classification Stage

After combining the RoIs extracted from two RPNs and eliminating duplicate RoIs, a deep
convolutional neural network (DCNN) is designed to make binary classifications for each RoI,
determining whether it represents a nodule or not.

The positions of candidate nodules, referred to as regions of interest (ROIs), are predicted
by the RPN regression layer. These values represent the candidate nodule’s centre position
and the width and height (W, H) of ROI patches. Subsequently, three-dimensional patches
are extracted from the feature map using the obtained values. The output values of the RPN
classification layer are utilized to select appropriate patches for input into the classification
network. These output values range between 0 and 1. Therefore, patches with a probability
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value greater than 0.5 are selected as nodule patches and inputted into the classification
network [49].

An RoI pooling layer is initially employed to project each RoI onto a smaller feature map with
a predetermined spatial dimension of W ×H (specifically, 7×7 as outlined in this paper). The
RoI pooling process involves dividing the RoI into a grid of sub-windows measuring W × H

and performing max-pooling within each sub-window, resulting in values being mapped to
their corresponding output grid cells. This pooling operation is carried out independently
across each feature map channel, akin to standard max pooling procedures. After the RoI
pooling layer, a fully connected network comprising two 4096-dimensional fully connected
layers is utilized to transform the fixed-size feature map into a feature vector. Ultimately,
a classifier is employed to predict confidence scores for potential candidates. The training
of the binary classification model generally uses CrossEntropyLoss as the loss function to
optimize the model.

5.4.4 False Positive Reduction

A combination of multiple 3D CNNs is utilized in the phase to reduce false positives. The
final outcome is determined through a voting mechanism. Fig. 5.6 illustrates the passage of a
3D image patch through a sequence of three trained 3D CNN models, with the final outcome
determined by a voting process.

Network Structure

We obtain 3D patches of size (32 × 32 × 32) by extracting various slices to identify potential
nodules. We chose this dimension not only because it encapsulates the majority of nodules
but also because it provides ample contextual information, which is particularly valuable
for analyzing smaller nodules. Subsequently, we employ flip and duplication methods to
augment the data. The dataset is then partitioned into five subsets: three for training, one
for validation, and one for testing.

The primary influencing factor in object detection is the substantial number of negative
samples, comprising the majority of the total loss. Notably, many of these negative samples
are easily classifiable [61]. This suggests the significance of hard mining in enhancing 3D
CNN performance, emphasizing the necessity for the network to focus on more challenging
samples. In line with this concept, the training dataset is refined to include the more intricate
samples, which persist in the subsequent model training iterations, thereby augmenting the
classification accuracy of each individual model. Each of these models is built upon the VGG-
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Figure 5.6 The framework of false positive reduction model.

Net, renowned for its strong performance in image classification tasks and widely adopted
as a deep learning network for feature extraction [90]. The architecture comprises 12 layers,
with (32 × 32 × 32) patches serving as inputs. It entails a repetitive sequence of layers, each
consisting of two convolutional layers with 16 kernels of size (3 × 3 × 3), a max-pooling layer,
and a batch normalization layer. This configuration iterates three times, with the number
of kernels doubling in each iteration. Subsequently, a global max-pooling layer is employed
to preserve the most salient features across the entire dataset. The concluding segment
encompasses two fully connected layers and three dense layers.

The training dataset is divided into three segments, each dedicated to training the 3D CNN
model separately. Initially, the first segment is utilized for training Model1. Subsequently,
misclassified samples from both Model1 and the second segment are employed to train Model2
from scratch independently. Similarly, Model3 is independently trained using misclassified
data from Model1, Model2, and the third segment. This iterative process involves utilizing
misclassified samples from the previous round as training data for the next model, thus am-
plifying the importance of these erroneous samples. We can fine-tune the weight parameters
during the training of the subsequent model, allowing it to learn more representative features
and enhance its ability to differentiate challenging mimics. An overview of the proposed false
positive reduction system is illustrated in Fig. 5.7.
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Figure 5.7 The proposed false positive reduction network model.

5.5 Experiment Results and Discussion

5.5.1 Datasets

Our study uses the LUNA16 dataset [97]. This dataset comprises 888 CT scans and 1186
lung nodules, each with a diameter greater than 3 millimetres. At least three radiologists
have evaluated each nodule. The primary data format for CT scans is DICOM, consisting
of 100 to 500 axial slices and the size of each slice is 512×512. The CT scans within this
dataset are partitioned into three subsets: a training set (622 scans, 70%), a validation set
(88 scans, 10%), and a test set (178 scans, 20%).

The primary focus of this research is the detection of lung nodules of various sizes. Therefore,
the nodules of test data are categorized into three groups based on their size: non-small
nodules (nodule > 10mm), small nodules (6mm < nodule ≤ 10mm), and very small nodules
(3mm < nodule ≤ 6mm). Table 5.1 illustrates the number of test data in each category.
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Table 5.1 The number of nodules of various sizes in the LUNA16

Category Number
Non-Small Nodules (NSN) 70

Small Nodules (SN) 70
Very Small Nodules (VSN) 97

In this study, we utilize a distinct dataset named PN9 [114] to evaluate the generalizability
of the proposed model. PN9 comprises 8,798 CT scans, featuring 40,439 annotated nodules.
The CT scan images were collected from hospitals, where lung nodules were annotated by
specialist physicians through a two-step process.

5.5.2 Evaluation Metrics

The performance of networks is frequently described using a confusion matrix. The pro-
posed approach’s performance is assessed through cross-validation, utilizing metrics such as
the free-receiving operating curve (FROC) and the competition performance metric (CPM).
Sensitivities are calculated at specific false positive rates (FPRs) per patient, including 1/8,
1/4, 1/2, 1, 2, 4, and 8 FPRs. The CPM for the system is derived by averaging sensitivities
at these specific points. Recall(Sensitivity), Precision, and CPM are defined as follows:

Recall(Sensitivity) = TP
TP + FN (5.15)

Precision = TP
TP + FP (5.16)

CPM = 1
N

∑
i∈I

Recallfpr=i (5.17)

with I = {0.125, 0.25, 0.5, 1, 2, 4, 8} and where the value of N is set at seven, the variable
fpr represents the average number of false positives per scan, while Recallfpr=i signifies the
recall rate associated with fpr = i.

Following the completion of model training and validation, the test images undergo the
computation of both average precision and average recall. The average precision (AP ) is de-
termined using an IoU threshold of 0.5, while the average recall (AR) involves IoU thresholds
ranging from 0.5 to 0.95 in 100 region proposals.
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5.5.3 Detection of Pulmonary Nodules

In this paper, lung nodule detection is carried out in three stages: region proposal extraction,
classification, and false positive reduction. In the first stage, the OMS-CNN structure is
employed as a feature extraction, and the RPN is utilized for training. It also uses six
anchors of different sizes, including 4 × 4, 6 × 6, 10 × 10, 16 × 16, 22 × 22 and 32 × 32 for
each sliding window, as in [100]. In this phase, We perform 10-fold cross-validation to assess
the system’s performance and employ stochastic gradient descent (SGD) optimization with
a momentum factor of 0.9. We incorporate a weight decay rate of 0.00001 and set the base
learning rate to 0.0001. The network model trains in the 2 V100 GPU environment, and the
memory is 192 GB.

In the context of the classification network, it is imperative to address the challenge of
class imbalance. This issue is solved by equilibrating the quantities of negative and positive
patches, leveraging the output from the trained RPN. Within this approach, in conjunction
with the ground truth, we identify suggested region proposals with an intersection over union
(IoU) exceeding 0.7 as positive patches and select an equivalent number of suggested regions
with an IoU less than 0.1 as negative patches in a randomized manner. The execution of
this technique serves to achieve not only class balance but also an augmentation in the
quantity of positive patches. Furthermore, the model’s parameter updates are facilitated by
the utilization of the Adam optimizer. An initial learning rate of 0.001 is employed, and the
learning rate is adjusted by applying the cosine decay function.

In the false positive reduction (FPR) stage, the primary data augmentation strategy involves
flipping each positive candidate patch along three orthogonal dimensions (coronal, sagittal,
and axial positions). In the subsequent stage, the determination of a candidate’s positivity or
negativity hinges upon whether the geometric centre of the candidate resides within a nodule.
Positive patches are replicated eight fold to balance the count of positive and negative patches
within the training set. Furthermore, all three network models employ the Adam optimizer,
with the learning rate, momentum, and batch size set to 0.0001, 0.4, and 16, respectively.

Fig. 5.8 illustrates the process of lung nodule detection by the proposed method at each stage.
The detection trend encompasses nodules of various sizes. The number of region proposals is
100 in this experiment, considering an IoU of 0.5. The results depict the count of classified
regions in the classification stage and the number of false positives in the FPR stage.
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Figure 5.8 The lung nodule detection process with different nodule sizes on LUNA16, (a)
The CT image after lung parenchyma segmentation stage, (b) The location of 100 region
proposal after RPN stage, (c) The location of classified region proposal after classification
stage, (d) The location of lung nodule after false positive reduction stage.

5.5.4 Ablation Study

We have designed an ablation experiment based on the Faster R-CNN method to verify the
effectiveness of different components in the proposed architecture, employing its foundational
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VGG16 backbone model. The results obtained pertain to three categories of data: non-small
nodules (NSN), small nodules (SN), and very small nodules (VSN). In addition, the normal
CNN (N-CNN) model signifies the Faster R-CNN method, using the last deconvolution layer
of VGG16 as the feature map [100]. The multi-scale CNN (MS-CNN) model combines the
last three layers of VGG16 as the feature map [123]. In the tuned multi-scale CNN (TMS-
CNN) model, the number of combined channels in the last three layers of VGG16 is adjusted
as hyperparameters to optimize the accuracy of detecting both small and large lung nodules
using the advanced PSF-HS optimization algorithm. Lastly, in the optimised multi-scale
CNN (OMS-CNN) model, the weights and biases of the filters from the fine-tuned last three
layers are optimized using the BAS optimization algorithm before training.

The Effectiveness of Multi-Scale CNN

In the MS-CNN approach, a feature map is constructed by combining the last layer, which
contains semantic features, with the third and fourth layers of VGG16, which contain repre-
sentative features. This feature map extracts high-resolution and detailed features of small
and very small nodules. By comparing the N-CNN and MS-CNN methods in Fig. 5.9, it
is evident that the MS-CNN method shows an increase in recall values for small and very
small nodules when the number of proposed regions is set to 1000. On average, this in-
crease amounts to 10.91% for the SN and VSN datasets. Conversely, the average increase for
non-small nodules is around 2.12%. Fig. 5.10 displays the FROC curves of various proposed
feature extractor structures. The average CPM scores for N-CNN and MS-CNN are 0.785
and 0.808, respectively. The first and second experiments in Table 5.2 demonstrate that
the average recall values for SN and VSN have increased by 18.15% and 19.76%, respec-
tively, with only a very slight increase observed for NSN. Furthermore, the MS-CNN method
demonstrates a greater increase in average precision and sensitivity for small nodules (SN)
and very small nodules (VSN) compared to non-small nodules (NSN), indicating its superior
performance in detecting small nodules compared to the N-CNN method.

Table 5.2 Experimental results of various lung nodule detection models on LUNA16.

NSN SN VSN
Model AP AR Sensitivity AP AR Sensitivity AP AR Sensitivity

N-CNN 87.79% 70.43% 95.01% 73.38% 41.08% 85.45% 52.50% 20.54% 53.71%
MS-CNN 89.14% 70.58% 96.84% 78.00% 48.54% 91.25% 56.81% 24.60% 62.32%

TMS-CNN 95.48% 75.27% 99.17% 87.58% 65.91% 94.26% 70.84% 30.08% 74.13%
OMS-CNN 96.14% 77.83% 100% 90.75% 73.19% 97.41% 75.35% 34.49% 85.12%
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Figure 5.9 The recall of non-small (NSN), small (SN) and very small (VSN) nodules with
various feature extractor based on VGG16 after RPN stage on LUNA16.

Figure 5.10 FROC curves of different proposed models on LUNA16.
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Figure 5.11 Accuracy of lung nodule detection with various pitch adjustment bandwidth on
LUNA16.

The Effectiveness of Tuned Multi-Scale CNN

The number of channels in the composite layers in the MS-CNN method significantly in-
fluences the accuracy of the created feature map. In this paper, N represents the number
of channels in the third layer of VGG16, while K and M denote the number of channels
in the fourth and fifth layers, respectively. Therefore, the combinations [NS, KS, MS] and
[NL, KL, ML] are considered hyperparameters that are adjusted before training to detect
small and large lung nodules separately by two independent RPNs. The feature map ex-
tracted from the upper CNN layers is suitable for detecting larger lung nodules, while the
feature map extracted from the lower CNN layers is appropriate for detecting smaller lung
nodules. Initial experiments reveal that the optimal range for varying the number of channels
in each layer for the detection of different nodule sizes includes N = [1, 20], K = [500, 510],
and M = [1, 20]. This paper employs the advanced PSF-HS algorithm, a metaheuristic op-
timization, to precisely adjust the number of channels in each layer. HMS is set to 5 in this
experiment for sufficient harmony memory considerations. Each hyperparameter is randomly
generated under conditions where the number of channels in the composite layers [N, K, M ]
is an integer within the specified range. HMCR and PAR are calculated for each hyperpa-
rameter using Eq. (5.1) and Eq. (5.2). Fig. 5.11 illustrates that varying the constant λ in
Eq. (5.4), along with setting the pitch adjustment bandwidth, impacts the accuracy of lung



71

nodule detection. This approach produced good results at 7% pitch adjusting bandwidth over
the entire input range in 1000 iterations. After the initial settings, the advanced PSF-HS
algorithm is applied. The fitness function value for tuning [NS, KS, MS] is determined by the
average accuracy of detecting small and very small nodules, while for tuning [NL, KL, ML], it
is equivalent to the accuracy of detecting large nodules. Approximately after 700 iterations,
all harmony vectors converge to a vector. The simulation results reveal that the optimal
hyperparameter values for detecting small nodules converge to NS = 6, KS = 501, and
MS = 15, while for large nodules, they converge to NL = 4, KL = 510, and ML = 16.

As depicted in Fig. 5.9, in the TMS-CNN method, the recall value for various nodule sizes has
increased compared to the MS-CNN method, with the highest increase observed for VSN at
22.01%. Additionally, the sensitivity values for TMS-CNN and MS-CNN methods at four FPs
per scan are 0.875 and 0.831, respectively (Fig. 5.10). As indicated in Table 5.2, in the third
experiment, compared to the second experiment, the average precision (AP) has increased
by 24.69%, 11.53%, and 7.12% for the VSN, SN, and NSN datasets, respectively. Thus, in
the TMS-CNN approach, through the adjustment of kernel numbers within the composite
layers of each RPN, more efficient features are extracted to detect nodules of various sizes.

The Effectiveness of Optimized Multi-Scale CNN

After determining the values of [NS, KS, MS] and [NL, KL, ML] in the preceding step, the
dimensions of the weight and bias matrices for the composite layers are specified. In conven-
tional approaches, the initial weight and bias values of these layers are randomly acquired.
This paper employs the BAS optimization method to derive the initial weight and bias values
in order to enhance lung nodule detection accuracy. In this study, we set the initial step size
δ0 to 0.8, the step update frequency η to 0.95, and the initial distance between the beetle’s
left and right antennae d0 to 0.5 [124]. In addition, a maximum of 120 iterations is consid-
ered, during which the weight and bias values are updated in each iteration based on the
equations of the BAS algorithm. Fig. 5.12 illustrates the changes in the optimal loss value
during the optimization process. It is observed that after approximately 100 iterations, the
optimal values for the initial weights and biases of the composite layers are reached, leading
to the attainment of the global optimum of the function.

As indicated in Table 5.2, the AP, AR, and sensitivity values for the OMS-CNN method
have increased compared to the TMS-CNN method across various nodule sizes. The highest
increases are observed for SN and VSN. In Fig. 5.10, the proposed method achieves the
highest CPM score of 0.892 compared to previous methods. Furthermore, the sensitivity
reaches 90.48% and 94.73% at one and four FPs per scan, respectively.
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Figure 5.12 Convergence of the minimum loss value by BAS algorithm.

5.5.5 Experimental Comparison

To further assess the efficacy of the proposed nodule candidate detection network, the de-
tection outcomes presented in this study on LUNA16 are compared with those of other
established methodologies, employing the CPM score for comparison. The quantitative out-
comes are detailed in Table 5.3. The tabulated results reveal that our proposed detection
network attains the highest CPM score of 0.839.

Table 5.3 Comparison of the proposed candidate nodule detection network with other meth-
ods on LUNA16.

CAD Method Year 0.125 0.25 0.5 1.0 2.0 4.0 8.0 CPM
Dou et al. [132] (2017) 0.6590 0.7540 0.8190 0.8650 0.9060 0.9330 0.9460 0.8390
Gu et al. [133] (2018) 0.4801 0.6495 0.7920 0.8794 0.9163 0.9293 0.9301 0.7967

Pezeshk et al. [112] (2018) 0.6370 0.7230 0.8040 0.8650 0.9070 0.9380 0.9520 0.8320
Xie et al. [111] (2019) 0.4390 0.6880 0.7960 0.8520 0.8640 0.8640 0.8640 0.7750

OMS-CNN 0.7215 0.7357 0.7993 0.8521 0.9162 0.9243 0.9283 0.8396
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Table 5.4 Performance comparison of different methods for false positive reduce on LUNA16.

CAD Method Year 0.125 0.25 0.5 1.0 2.0 4.0 8.0 CPM
OverFeat [110] (2015) 0.6000 0.6020 0.7100 0.7300 0.7600 0.7700 0.7700 0.7143

Nodule ResNet [134] (2017) 0.5170 0.6020 0.7200 0.7880 0.8220 0.8390 0.8560 0.7350
3D Faster R-CNN [4] (2018) 0.6620 0.7460 0.8150 0.8640 0.9020 0.9180 0.9320 0.8340
Leaky Noisy-OR [33] (2019) 0.5938 0.7266 0.7813 0.8438 0.8750 0.8906 0.8984 0.8013

Xie et al. [111] (2019) 0.7340 0.7440 0.7630 0.7960 0.8240 0.8320 0.8340 0.7900
DeepSEED [113] (2020) 0.7390 0.8030 0.8580 0.8880 0.9070 0.9160 0.9200 0.8620

Zeo et al [53] (2020) 0.6300 0.7530 0.8190 0.8690 0.9030 0.9150 0.9200 0.8300
CBAM [54] (2021) 0.4670 0.6020 0.7300 0.812 0.8770 0.9150 0.9310 0.7620

I3DR-Net [55] (2022) 0.6356 0.7131 0.7984 0.8527 0.8760 0.8992 0.9147 0.8128
MSM-CNN [49] (2022) 0.6770 0.7410 0.8160 0.8500 0.8900 0.9050 0.9250 0.8290
MS-3DCNN [48] (2023) 0.7280 0.7990 0.860 0.8080 0.9260 0.9410 0.9560 0.8730
AttentNet [135] (2024) 0.7520 0.8170 0.8570 0.8850 0.9200 0.9330 0.9330 0.8710
MK-3DCNN [56] (2024) 0.7099 0.7723 0.8356 0.8836 0.9174 0.9384 0.9562 0.8591

TED [51] (2024) 0.7619 0.8222 0.8736 0.9069 0.9302 0.9443 0.9530 0.8846
TMS-CNN 0.7479 0.7918 0.8538 0.8981 0.9143 0.9352 0.9352 0.8778
OMS-CNN 0.7932 0.8421 0.8712 0.9048 0.9387 0.9473 0.9481 0.8922

The false positive reduction network categorizes candidate nodules acquired in the preceding
stage, thereby eliminating false positive instances to enhance the accuracy of the detection
outcome. To evaluate the efficiency of the suggested automated system for detecting pul-
monary nodules, we benchmark our results against other leading methodologies using the
LUNA16 dataset. In comparison to the MSM-3DCNN [48], which enhances the performance
of Faster R-CNN by utilizing a combination of multiscale feature maps and the K-means++
clustering method to improve the scale and proportion of anchor boxes in the RPN, our
proposed method integrates multiscale feature maps and optimizes the number of combined
channels and their initial weights and biases using advanced PSF-HS and BAS algorithms,
respectively. In comparison to AttentNet [135], which enhances 3D lung nodule detection
by introducing a 3D cross-channel and cross-sectional spatial attention unit and utilizing
a fully convolutional network to efficiently apply attention with richer spatial descriptors,
our approach improves the feature extraction structure in the RPN and combines multi-
ple 3D CNNs for false positive reduction, resulting in superior performance in lung nodule
detection. In comparison to the TED [51], which employs a transformer encoder-decoder
to capture long-range dependencies and provide a global description, our method demon-
strates superior performance, notably achieving a 3.13% improvement in sensitivity at 0.125
false positives per scan. These findings validate that our OMS-CNN method outperforms
TED [51] and also exhibits a high detection rate under conditions of lower false positives per
scan. Table 5.4 presents the detection sensitivities at seven different false positives per scan
(FPs/Scan) and the CPM score. Our proposed detection system achieves the highest CPM
score of 0.892. The sensitivities at 0.125, 0.25, 2, and 4 FPs/scan are 0.793, 0.842, 0.938,
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Table 5.5 The sensitivity and CPM score compared with other methods on PN9.

CAD Method Year 0.125 0.25 0.5 1.0 2.0 4.0 8.0 CPM
SSD512 [121] (2016) 0.0462 0.0848 0.1476 0.2506 0.4032 0.5727 0.7080 0.3161

RetinaNet [61] (2017) 0.0260 0.0556 0.1095 0.1925 0.2929 0.4049 0.5105 0.2274
NoduleNet [136] (2019) 0.2117 0.3023 0.4038 0.5102 0.6129 0.7070 0.7693 0.5025

SA-Net [114] (2021) 0.2672 0.3603 0.4746 0.5699 0.6635 0.7352 0.7832 0.5506
I3DR-Net [55] (2022) 0.1564 0.2313 0.3700 0.5154 0.6454 0.7291 0.7753 0.4890

OMS-CNN 0.2865 0.3841 0.4775 0.5907 0.6974 0.7853 0.8432 0.5807

and 0.947, respectively, surpassing those of the best-performing method presented.

Additionally, to demonstrate the efficacy, generality, and robustness of our approach, we
evaluate the proposed trained model on the PN9 database. Subsequently, we compare the
obtained results with several advanced methods, including NoduleNet [136], I3DR-Net [55],
and SA-Net [114]. Table 5.5 illustrates that our OMS-CNN method attains a CPM score
of 0.580, indicating noteworthy performance in comparison to other methods. Thus, the
method proposed in this study demonstrates superiority and significant clinical value.

Table 5.6 Comparison of Training and Inference Times for Various Methods of the Proposed
Faster R-CNN on LUNA16.

Proposed Faster R-CNN
Without Optimization Advanced PSF-HS BAS Algorithm Training Time/fold (h) Test Time/CT (s)

✓ – – 18.46 2.95
– ✓ – 16.73 2.76
– ✓ ✓ 14.25 2.72

Table 5.6 illustrates the comparison of training and inference times for various methods of
the proposed Faster R-CNN across 10-fold cross-validation. This model without optimization
attained a training time per fold of 18.46 hours and a test time per CT of 2.95 seconds. By
applying the advanced PSF-HS algorithm for hyperparameter tuning and the BAS algorithm
for weight and bias optimizations, the training time and inference time decreased by 4.21
hours and 0.23 seconds, respectively. Therefore, the proposed Faster R-CNN with these
optimizations helps improve both training and inference times by finding the most efficient
parameter values, potentially resulting in a more accurate model that requires fewer complex
operations.

Table 5.7 presents the results of experiments conducted on various proposed feature extraction
network based on Faster R-CNN for the entire test dataset. As indicated, the OMS-CNN
achieves a recall rate of 61.83%, demonstrating a significant improvement of 40.49% compared
to the N-CNN model. Additionally, the proposed method achieves a precision rate of 87.41%.
The proposed method for detecting potential nodules demonstrates a sensitivity of 94.89%.
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Table 5.7 Experimental results of different proposed feature extraction networks based on
Faster R-CNN with LUNA16.

Model AP AR
N-CNN 71.22% 44.01%

MS-CNN 72.98% 47.91%
TMS-CNN 84.63% 57.08%
OMS-CNN 87.41% 61.83%

On average, there are 9.25 candidates per scan.

5.6 Conclusion

In this paper, we applied a deep learning-based lung nodule detection algorithm to CT images
and proposed an optimized multi-scale CNN feature extraction method within the Faster R-
CNN algorithm to address certain challenges that arise in lung nodule detection. First, we
extracted the lung parenchyma using simple image processing methods. Second, we combined
features from the last three layers of the VGG16 structure to create a feature map with higher
precision. Third, we adjusted the number of combined channels using the advanced PFS-HS
optimization algorithm to obtain the best feature map for accurately detecting small and large
lung nodules. Fourth, rather than determining the initial weight and bias of the combined
channel filters randomly, we utilized the BAS optimization algorithm to enhance these filters’
weight and bias. Furthermore, we propose a combined 3D CNN model for the false positive
reduction stage, aimed at removing false positive samples to enhance the accuracy of the
detection results.

After several experiments, it has been demonstrated that the proposed model outperforms
the recent computer-aided detection (CAD) model in lung nodule detection on LUNA16 and
PN9 datasets. Incorporating a deep CNN with a dual attention mechanism in the classifi-
cation stage of the Faster R-CNN algorithm could further enhance sensitivity, particularly
in identifying small and hard-to-detect nodules. Further improvements in other components
of the Faster R-CNN algorithm and refinements to the false positive reduction process are
anticipated to boost the overall precision of lung nodule detection in future research.
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CHAPTER 6 ARTICLE 3: DA OMS-CNN: DUAL ATTENTION OMS-CNN
WITH 3D SWIN TRANSFORMER FOR EARLY-STAGE LUNG CANCER

DETECTION

Preface: This chapter introduces an advanced lung nodule detection method based
on the Faster R-CNN framework, enhanced by the integration of a dual-attention op-
timized multi-scale CNN (DA OMS-CNN), dual-attention RoIPooling, and 3D Swin
Transformers. These components collectively improve the model’s sensitivity and re-
duce false-positive detections in early-stage lung cancer screening. This work has been
peer-reviewed and was published as an open-access article in Informatics, Volume 12,
Issue 3, on July 7, 2025.
Contributions: This research was conducted during my doctoral studies at Polytech-
nique Montréal. I initiated and led the conceptual development of the dual-attention
OMS-CNN framework, designed the DA-RoIPooling module for region-wise refinement,
and integrated an ensemble of 3D Swin Transformers for false-positive reduction. I also
performed the experimental evaluations on LUNA16 and PN9 datasets and authored
the manuscript. My co-authors contributed to architectural insights, evaluation design,
and extensive feedback on manuscript revisions.
Full Citation: Yadollah Zamanidoost, Matis Rivron, Tarek Ould-Bachir, and Sylvain
Martel, “DA OMS-CNN: Dual-Attention OMS-CNN with 3D Swin Transformer for
Early-Stage Lung Cancer Detection,” Informatics, vol. 12, no. 3, article 65, July 7,
2025.
DOI: 10.3390/informatics12030065
Copyright: © 2025 by the authors. This article is distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license.

6.1 Abstract

Lung cancer is one of the most prevalent and deadly forms of cancer, accounting for a
significant portion of cancer-related deaths worldwide. It typically originates in the lung
tissues, particularly in the cells lining the airways, and early detection is crucial for improving
patient survival rates. Computed tomography (CT) imaging has become a standard tool for
lung cancer screening, providing detailed insights into lung structures and facilitating the
early identification of cancerous nodules. In this study, an improved Faster R-CNN model is
employed to detect early-stage lung cancer. To enhance the performance of Faster R-CNN,
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a novel dual-attention optimized multi-scale CNN (DA OMS-CNN) architecture is used to
extract representative features of nodules at different sizes. Additionally, dual-attention
RoIPooling (DA-RoIpooling) is applied in the classification stage to increase the model’s
sensitivity. In the false-positive reduction stage, a combination of multiple 3D shift window
transformers (3D SwinT) is designed to reduce false-positive nodules. The proposed model
was evaluated on the LUNA16 and PN9 datasets. The results demonstrate that integrating
DA OMS-CNN, DA-RoIPooling, and 3D SwinT into the improved Faster R-CNN framework
achieves a sensitivity of 96.93% and a CPM score of 0.911. Comprehensive experiments
demonstrate that the proposed approach not only increases the sensitivity of lung cancer
detection but also significantly reduces the number of false-positive nodules. Therefore, the
proposed method can serve as a valuable reference for clinical applications.

6.2 Introduction

The pursuit of technological advancements in healthcare remains a continuous and pressing
endeavor, especially in light of the critical need to mitigate the devastating effects of serious
illnesses such as cancer [137–139]. Among the myriad forms of this disease, lung cancer
represents a particularly formidable global threat, claiming countless lives with little warning.
Data from the world health organization (WHO) [8] starkly illustrate the scale of this issue,
with 2.21 million new lung cancer cases reported in 2020, constituting 11.4% of all cancer
diagnoses worldwide. Furthermore, the estimated 1.8 million deaths attributed to lung cancer
that year reaffirm its status as the primary cause of cancer-related mortality on a global
level. Despite the differences in lung cancer prevalence across regions, demographics, and age
groups, there is an unwavering need for early-stage detection to improve patient outcomes.
Early diagnosis is widely recognized as a critical factor in enhancing the success of treatment
interventions and increasing survival rates.

In response to this urgent health challenge, medical researchers and technology experts have
joined forces to explore innovative strategies that can potentially transform the approach to
lung cancer diagnosis and therapy. One of the most promising areas of advancement involves
the application of deep learning (DL) algorithms to the identification of lung nodules within
diagnostic imaging modalities such as X-rays [139], computed tomography (CT) scans [138],
and magnetic resonance imaging (MRI) [140]. In particular, the Faster R-CNN algorithm
has emerged as a prominent tool for the early detection of lung cancer.

The integration of advanced technologies like Faster R-CNN into the diagnostic process marks
a significant step forward in equipping healthcare professionals with powerful tools for more
accurate detection and treatment of lung cancer [141]. This synergy between medical imaging
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and DL algorithms offers a beacon of hope in the fight against lung cancer, as the remarkable
capabilities of Faster R-CNN for accurate identification of cancerous nodules open up new
possibilities for early intervention. As efforts continue globally to address this pressing health
issue, there is renewed optimism for a future where early lung cancer diagnosis can become
a standard, potentially saving numerous lives and providing hope to those affected by this
devastating disease. Faster R-CNN operates as a two-stage, region-based detection system
that excels in extracting significant information from medical images, including MRIs and
CT scans. Its detection methodology initiates with the generation of a comprehensive set
of candidate regions, followed by classification and refinement using convolutional neural
networks (CNNs).

The Faster R-CNN method is extensively utilized for detecting objects in medical imaging,
particularly for identifying lung nodules in CT scans. A significant obstacle encountered
when employing this technique for lung nodule detection is achieving adequate accuracy.
The precise identification of small nodules is essential for the early detection of lung cancer.
Although the CNNs that are part of the Faster R-CNN framework excel at feature extraction,
they often overly generalize the attributes of these small nodules during the convolutional
process, which can lead to less-than-optimal detection results.

In ref. [50], we introduced a novel architecture, OMS-CNN, which employs VGG16 as its
backbone to enhance feature extraction. This architecture improves feature map representa-
tion by integrating the final layers of VGG16 and optimizing the number of merged channels
to facilitate the detection of both large and small lung nodules. To further refine this pro-
cess, the advanced PSF-HS optimization algorithm [6] is applied for channel selection, while
the BAS optimization algorithm [7] is utilized for initializing the weights and biases of the
merged layers. Additionally, an ensemble of multiple 3D CNNs is incorporated to mitigate
false-positive detections. The overall framework of this approach is depicted in Figure 6.1.
In this study, we propose an enhanced Faster R-CNN model based on DA OMS-CNN, which
improves the sensitivity of early-stage lung nodule detection.

Although Faster R-CNN has demonstrated considerable success in object detection tasks
within medical imaging, its effectiveness in identifying small and morphologically diverse
lung nodules remains limited [142]. This shortcoming is primarily due to the constraints
of traditional CNN-based feature extractors and standard RoIPooling methods, which of-
ten struggle to capture subtle spatial details and contextual variations critical for early-stage
nodule detection. To overcome these challenges, we enhance the OMS-CNN architecture with
a dual-attention mechanism designed to strengthen the model’s capacity to emphasize both
spatially significant regions and channel-specific features within the input data. Additionally,
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Figure 6.1 Overall framework of an automatic pulmonary nodule detection system based on
OMS-CNN [50].

we propose a novel dual-attention RoIPooling (DA-RoIPooling) module that integrates atten-
tion into the region of interest feature extraction process. This approach enables the model
to better isolate and utilize the most salient features within each region, thereby improv-
ing its ability to discriminate true nodules from benign structures or artifacts. Collectively,
these methodological advancements aim to address key limitations of existing Faster R-CNN-
based approaches by improving detection sensitivity and substantially reducing false-positive
rates. The main contributions of this paper diverge from the existing literature in several
key aspects:

• The first contribution of this study is the integration of a dual-attention mechanism
into the final layers of the OMS-CNN. The dual-attention mechanism enhances the
network’s ability to capture both spatial and channel-wise dependencies within the
feature maps. By incorporating both spatial attention, which emphasizes important
regions in the image, and channel attention, which focuses on relevant feature channels,
the DA OMS-CNN achieves improved sensitivity in detecting small lung nodules. This
approach ensures that critical regions and fine-grained details in the input data are
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highlighted, leading to more accurate and robust feature extraction.

• The second contribution is the introduction of the dual-attention RoIPooling (DA-
RoIPooling) mechanism at the classification stage of the framework. DA-RoIPooling
applies spatial and channel-wise attention to the pooled features, enabling the model
to focus on the most relevant features within each region of interest (RoI). This dual-
attention mechanism ensures that the classification network emphasizes the key char-
acteristics of the nodules while suppressing irrelevant background information. By re-
fining the feature representation within the RoIs, DA-RoIPooling improves the overall
classification accuracy, particularly in distinguishing true nodules from false positives.
This innovation significantly enhances the performance of the Faster R-CNN framework
by reducing misclassifications and improving sensitivity and precision, particularly for
challenging cases.

• The third contribution involves the utilization of three distinct 3D Swin Transformers
for the false-positive reduction stage. This approach leverages the powerful feature
representation capabilities of the 3D Swin Transformer, which uses hierarchical feature
extraction and self-attention mechanisms across spatial and temporal dimensions. By
combining three separate 3D Swin Transformers, the proposed framework effectively
processes volumetric data from different perspectives, ensuring a more comprehensive
analysis of nodule candidates. This ensemble strategy reduces false positives by cap-
turing subtle variations and dependencies in the 3D CT data, improving the model’s
ability to differentiate between true nodules and irrelevant structures. The use of 3D
Swin Transformers in this stage not only enhances the overall detection accuracy but
also strengthens the robustness of the proposed framework in clinical scenarios.

6.3 Related Works

Zamanidoost et al. [123] present a study focused on improving the detection of lung cancer
nodules by enhancing feature extraction in convolutional networks. The research addresses
the limitations of standard models like VGGNet and ResNet in detecting small objects,
such as lung nodules, due to their feature extraction limitations. The authors propose a
modified approach using the VGG16 network, known for its 3 × 3 kernels and optimal layer
configuration, which can effectively capture features of small objects. Their method involves
combining the feature maps from the last three layers of VGG16 to create a comprehensive
representation of nodules of varying sizes. A region proposal network (RPN) is used to
evaluate the proposed feature map’s accuracy compared to the original VGG16. Results
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indicate that the proposed feature map outperforms traditional VGG16 layers in capturing
nodule features and maintains higher recall stability when the number of region proposals
is reduced. This approach highlights the potential benefits of optimizing feature extraction
strategies in convolutional networks for lung nodule detection.

Zamanidoost et al. [50] propose an enhanced lung nodule detection method by introducing
an optimized multi-scale CNN (OMS-CNN) within the Faster R-CNN framework to address
the challenges of detecting nodules of varying sizes, particularly small ones. Their approach
combines feature maps from the last three layers of the VGG16 architecture to create a
detailed representation of nodules, which is further optimized using advanced metaheuristic
algorithms, specifically the PSF-HS and BAS. These algorithms fine-tune the number of
combined channels and initialize filter weights and biases, significantly enhancing feature
extraction precision and efficiency. The optimized OMS-CNN effectively captures multi-scale
features, improving the detection sensitivity and robustness of the model. Furthermore,
a novel 3D CNN model is employed in the false-positive reduction stage, utilizing three-
dimensional contextual data to refine the detection process. Experimental results on the
LUNA16 and PN9 datasets demonstrate the effectiveness of the OMS-CNN in achieving
higher sensitivity, reducing false positives, and achieving superior CPM scores compared to
existing models, highlighting its potential for clinical application in lung nodule detection.

Tan et al. [48] proposed a multi-scale 3D CNN to improve lung nodule detection accuracy
while reducing false positives. Their model integrates a 3D UNet++ architecture with a
region proposal network and employs cross-layer feature fusion for enhanced feature learning.
Using multiple input sizes and residual connections, the model achieves an average sensitivity
of 87.3% on the LUNA16 dataset, outperforming UNet++ by 7.8% and VGG16 by 8.1%,
demonstrating its effectiveness for clinical applications.

Recent studies highlight the role of attention mechanisms in improving lung nodule detection.
Traditional 2D modules like SE and CBAM enhance feature extraction but are computation-
ally expensive for 3D imaging. To address this, Almahasneh et al. [135] introduce AttentNet,
a 3D fully convolutional attention mechanism that reduces computational load while pre-
serving feature quality. Evaluations on the LUNA16 dataset demonstrate its efficiency in
candidate proposal and false-positive reduction, making it a suitable approach for 3D medi-
cal imaging.

Wu et al. [56] propose the multi-kernel driven 3D CNN (MK-3DCNN) to enhance lung nodule
detection in CT scans. Their model integrates a residual encoder-decoder structure with a
multi-kernel joint learning block to capture multi-scale spatial features. Additionally, a mixed
pooling strategy improves feature representation. Experiments on the LUNA16 dataset show
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superior performance over existing methods, with further validation on the CQUCH-LND
clinical dataset demonstrating its practical applicability.

Lung cancer is the leading cause of cancer-related deaths worldwide, emphasizing the need
for early detection to improve survival rates. Deep learning has shown great potential in
medical imaging, particularly for lung cancer identification in CT scans. Srivastava et al.
[143] introduced the hybridized Faster R-CNN (HFRCNN), a two-stage model that generates
and refines region proposals using a CNN. Trained on diverse datasets, HFRCNN achieves
over 97% detection accuracy, outperforming many existing methods and highlighting the
transformative role of deep learning in lung cancer diagnosis.

Ma et al. [51] propose TiCNet, a transformer-enhanced 3D CNN designed for early lung
cancer detection. By integrating transformers with CNNs, TiCNet captures both short-
and long-range dependencies, improving nodule characterization. The model incorporates
attention blocks, multi-scale skip pathways, and a two-head detector to enhance sensitivity
and specificity. Evaluations on LUNA16 and PN9 datasets show that TiCNet outperforms
existing methods, demonstrating its potential for improving lung cancer screening.

Sun et al. [144] explored the use of the Swin Transformer model for lung cancer detection,
demonstrating its potential to improve diagnostic accuracy for radiologists. Their study
showed that the pre-trained Swin-B model achieved a top-1 accuracy of 82.26%, surpassing
the Vision Transformer (ViT) by 2.529%. In segmentation tasks, the Swin-S model out-
performed traditional methods, showing significant improvements in mean intersection over
union (mIoU). This research highlights the effectiveness of pre-trained transformers in en-
hancing medical imaging performance, advancing reliable diagnostic tools for lung cancer
detection.

These contributions illustrate the wide array of deep learning approaches that have been
explored to enhance lung cancer detection, ranging from modifications of classical CNN
architectures such as VGG16 and ResNet to the integration of attention mechanisms and
transformer-based models. While these methods have undoubtedly advanced the field, they
also exhibit several limitations. Many CNN-based models struggle to selectively focus on the
most informative regions or features, thereby limiting their sensitivity, particularly for small
or ambiguous nodules. Attention mechanisms and transformer models, though promising,
often suffer from high computational costs or are insufficiently integrated into multi-stage
detection pipelines. Moreover, few approaches effectively combine attention mechanisms
at both the feature extraction and region pooling stages, or leverage 3D context in the
false-positive reduction phase. These gaps highlight the need for a unified framework that
integrates spatial and channel-wise attention, multi-scale feature learning, and volumetric
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Figure 6.2 Overall framework of an early-stage lung cancer detection system based on DA
OMS-CNN: (a) the proposed lung nodule detection framework; (b) the proposed false-
positive reduction framework.

analysis to improve both sensitivity and specificity. In response to these challenges, our work
proposes a novel architecture that incorporates dual-attention-enhanced feature extraction,
dual-attention RoIPooling, and a 3D Swin Transformer ensemble to provide a comprehensive
solution for early-stage lung cancer detection.

6.4 Materials and Methods

Figure 6.2 illustrates an automated pulmonary nodule detection system based on the DA
OMS-CNN. This system processes three-dimensional CT scan images as input and outputs
the positions of detected nodules. The implementation is designed to achieve high sensitivity
in nodule detection while minimizing the average number of false positives per scan.

The process begins with image preprocessing, where CT scans are segmented and normalized
to enhance data quality. Feature extraction is performed using the DA OMS-CNN, which
incorporates spatial and channel attention mechanisms to focus on discriminative regions
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within the scans. Subsequently, the RPN identifies candidate regions of interest (RoIs) that
may contain lung nodules. To refine these candidate regions, the DA-RoI Pooling mechanism
is employed, ensuring that the most relevant features are extracted for further analysis. The
refined RoIs are then processed through the stack of 3D SwinT blocks, which are used for
false-positive reduction. These blocks effectively capture both global and local dependencies
in the 3D space of CT scans. The outputs of the 3D SwinT networks are aggregated to
deliver accurate predictions, enabling the robust identification of pulmonary nodules.

6.4.1 Dataset and Preprocessing

To develop and evaluate the proposed framework for lung nodule detection, two datasets
were utilized: the LUNA16 [28] and PN9 [114] datasets. These datasets were chosen due to
their high-quality annotations and complementary characteristics. The LUNA16 dataset was
used for training, validation, and testing purposes, while the PN9 dataset was employed to
evaluate the model’s generalization capability. This two-pronged approach ensures that the
model not only performs well on the training data but also generalizes effectively to unseen
data from different clinical sources.

LUNA16

The LUNA16 dataset, derived from the LIDC-IDRI, is a widely used benchmark dataset in
lung disease research. It consists of 888 low-dose thoracic CT scans with detailed annotations
by multiple expert radiologists. The dataset includes nodules with varying sizes, shapes, and
malignancy probabilities, offering a diverse set of examples for model training and evaluation.
Each nodule is annotated with descriptors such as size (ranging from 3 mm to 30 mm) and
shape (e.g., round, irregular, lobulated), providing a comprehensive representation of nodular
characteristics. The dataset’s thin-slice CT scans, with slice thickness ranging from 0.4 mm
to 2.5 mm and pixel spacing between 0.310 mm and 1.091 mm, ensure high resolution for
precise nodule detection.

For this study, the dataset was divided into three subsets: 70% for training (622 scans), 10%
for validation (88 scans), and 20% for testing (178 scans), ensuring a balanced distribution
for robust performance evaluation. Each CT scan, stored in DICOM format, comprises 100
to 500 axial slices with a resolution of 512 × 512 pixels. To prepare the data for input into
the model, we extracted three contiguous slices for each axial slice and stacked them to form
a three-channel image. These were then resized to a uniform shape of 800×800×3 to ensure
consistency across inputs and facilitate multi-scale feature learning during training.
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PN9

The PN9 dataset serves as a benchmark for assessing the generalization capabilities of the
proposed lung nodule detection framework. This dataset comprises CT scans collected from
two major hospitals, representing diverse clinical scenarios such as outpatient visits, hospi-
talizations, and physical examinations. The scans were acquired over the period from 2015
to 2019, ensuring a wide temporal distribution. To guarantee data quality, the initial CT
images underwent a meticulous validation process, focusing on compliance with DICOM
standards. Scans containing significant respiratory motion artifacts or other disruptive in-
terferences were excluded. Additionally, all sensitive patient information embedded within
the DICOM headers—such as patient identifiers, institutional details, and referring physician
names—was securely anonymized through data masking techniques.

Pulmonary nodules in the PN9 dataset were annotated using a two-step process. In the first
stage, each CT scan was independently reviewed by a physician, who generated an initial
medical report detailing the type, size, and approximate location of detected nodules. These
reports were then cross-validated by a second physician to ensure accuracy. In the second
stage, nodules were annotated in a detailed, slice-by-slice manner, with physicians referencing
the corresponding medical reports to ensure consistency. For each nodule, bounding boxes
and classification labels were stored in structured XML files. The nodules were categorized
into nine distinct groups based on their size and type, following established medical standards.
To enhance the reliability of these annotations, a second physician reviewed the outputs, and
any discrepancies were resolved collaboratively.

Data Augmentation

In scenarios where data imbalance poses a challenge, augmentation becomes an essential
strategy to enhance dataset diversity and improve model performance. Given the inher-
ent imbalance in our dataset, we employed manual augmentation techniques to address this
issue effectively. By rotating images in multiple directions and generating additional vari-
ations from different angles [145], we created a more diverse representation of the original
data. These transformations mitigate the class imbalance problem and ensure a more robust
learning process. Additionally, advanced augmentation methods, such as zooming in and out,
applying various shear ranges, and flipping images, were utilized to further enrich the dataset.
These techniques not only introduce variability but also enable the model to interpret data
from multiple perspectives, ultimately improving its generalization capabilities.
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6.4.2 Lung Parenchyma Segmentation

Accurate segmentation of the lung parenchyma from chest CT scans is a critical preprocess-
ing step for isolating relevant anatomical structures and enhancing the precision of nodule
detection. In our approach, this task is accomplished through a series of image processing
techniques, starting with intensity normalization and binarization.

Raw CT images are first clipped to a predefined Hounsfield unit (HU) range of [−1000, 400],
which effectively captures the range of lung tissue densities. The pixel intensities are then
normalized to the interval [0, 1] using the following linear transformation:

Inorm(x, y) = min(max(I(x, y), −1000), 400) + 1000
1400 (6.1)

where I(x, y) represents the original intensity at pixel (x, y), and Inorm is the normalized value.
This scaling ensures that lung tissue contrasts are preserved while suppressing irrelevant high-
density regions such as bone.

To isolate the internal thoracic region, a global threshold T is computed as the mean of all
normalized pixel intensities:

T = 1
N

H∑
x=1

W∑
y=1

Inorm(x, y) (6.2)

Pixels with values below T are set to 1 (foreground), and others to 0 (background), generating
an initial binary lung mask B(x, y):

B(x, y) =

1, if Inorm(x, y) < T

0, otherwise
(6.3)

To remove irrelevant components such as bones and air outside the lungs, a four-connected
component labeling algorithm is applied. Only the two largest connected regions (corre-
sponding to left and right lungs) are retained. All other regions are discarded as noise.

Morphological operations are used to enhance the binary mask. A morphological opening
operation removes small artifacts using a circular structuring element, and a morphological
closing operation is then used to fill small gaps near lung boundaries. Internal voids and
gaps within the segmented lung areas are removed using a hole-filling operation [93].

The final binary mask provides a clean, contiguous representation of the lung parenchyma.
This mask is subsequently used to crop the original CT images and suppress non-lung re-
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gions, ensuring that subsequent processing stages, such as nodule detection and classification,
operate exclusively within the anatomically relevant domain.

6.4.3 Lung Nodule Detection

Detecting lung nodules, particularly small ones, is a complex challenge due to their subtle
appearance and varying sizes. To address this, we developed an improved Faster R-CNN
framework, enhanced with several innovative techniques designed to optimize sensitivity and
accuracy for small nodule detection. Our method integrates a DA OMS-CNN to better
capture multiscale features, an advanced RPN for generating accurate region proposals, and
a DA-RoIPooling mechanism to enhance the classification process.

Dual-Attention Optimized Multi-Scale CNN (DA OMS-CNN)

Choosing the right feature extraction architecture plays a crucial role in determining the
effectiveness of modern convolutional neural networks for detecting lung nodules. Several ar-
chitectures, such as DenseNet, VGGNet, and ResNet, are widely used due to their ability to
extract object features from images with remarkable precision. Despite their strengths, these
models often struggle with accurately identifying small lung nodules. Among these archi-
tectures, VGG16 stands out for its compact 3 × 3 convolutional kernels and well-optimized
layers, which enhance its capability to detect small nodules with improved precision. In
ref. [123], the final three layers of the VGG16 network are merged to create feature maps,
enabling the extraction of features from nodules of varying sizes, with a particular emphasis
on smaller nodules.

This study proposes a dual-attention OMS-CNN designed for optimal RoI extraction, as il-
lustrated in Figure 6.3. At this stage, fully convolutional dual-attention blocks are integrated
to enhance the network’s ability to focus on critical features across both channel and spa-
tial dimensions. To achieve this, the dual-attention mechanism is incorporated at three key
stages of the architecture: (1) the fourth layer of the VGG16 backbone, (2) the fifth layer
of the VGG16 backbone, and (3) the concatenated feature map layer, where outputs from
the last three convolutional layers are fused. The spatial attention component dynamically
highlights spatial regions of interest by weighting feature maps based on their positional
importance. Simultaneously, the channel attention component amplifies feature maps that
contain the most discriminative information for nodule detection. This mechanism strength-
ens the model’s focus on small nodules that may otherwise be overlooked, particularly in
high-dimensional feature spaces.



88

Sliding
Windoing

R
eg

re
ss

io
n

La
ye

r

512-d

C
la

ss
ifi

ca
tio

n
La

ye
r (RoIs)

Pr
op

os
al

s

DA OMS-CNN (Small Nodule)

N_S @ 50  50  3 K_S @ 50  50  3 M_S @ 50  50  3

Sliding
Windoing

R
eg

re
ss

io
n

La
ye

r

C
la

ss
ifi

ca
tio

n
La

ye
r

512-d

R
eg

io
n 

Pr
op

os
al

 N
et

w
or

k 
(R

PN
)

R
eg

io
n 

Pr
op

os
al

 N
et

w
or

k 
(R

PN
)

800  800  3

Dual-Attention Block

MaxPooling 2   2

Transpose Conv, BN, ReLU

Concatenate

Dual-Attention VGG16

256@ 100  100  3 512@ 50  50  3 512@ 25  25  3

DA OMS-CNN (Large Nodule)

N_L @ 50  50  3 K_L @ 50  50  3 M_L @ 50  50  3

Conv Block, BN, ReLU

64 @ 400  400  3 128@ 200  200  3

Figure 6.3 Overall framework of dual-attention OMS-CNN model (DA OMS-CNN).

To tailor the convolutional capacity of the network to different nodule scales, we define two
sets of kernel configurations—[NS, KS, MS] for small nodules and [NL, KL, ML] for large nod-
ules—corresponding to the number of output channels in the final three convolutional layers.
The optimal values for these configurations are not selected heuristically but are instead
determined through a principled optimization process. Specifically, we utilize the advanced
parameter-setting-free harmony search (PSF-HS) algorithm [6], which formulates the search
for kernel parameters as a global optimization problem. In this context, each candidate
configuration is treated as a “harmony” whose fitness is evaluated based on the model’s sen-
sitivity in detecting annotated nodules within the training set. Through adaptive control of
exploration and exploitation, PSF-HS iteratively refines candidate solutions and converges to
high-performing configurations. This optimization strategy eliminates the need for manual
tuning and improves the generalizability of the learned representations to nodules of varying
shapes and sizes. For additional technical details and mathematical formulations, readers are
referred to our earlier work [50]. Furthermore, to improve convergence stability and initial-
ization quality, we adopt the BAS optimization algorithm [7], which replaces conventional
random initialization for the convolutional layer filters by providing a more robust search
mechanism for optimal weights and biases.

The dual-attention blocks are added only in the deeper layers of the VGG16 backbone and
the concatenated feature map layer for specific reasons. In the lower layers of the network,
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Figure 6.4 Proposed dual-attention block.

the extracted features are low-level representations, primarily capturing general patterns
such as edges, textures, and basic shapes. Applying attention mechanisms at these stages
could lead to a loss of critical general-purpose information needed for constructing high-level
features. Instead, the dual attention is integrated into the deeper layers (fourth and fifth)
of the backbone where the feature maps are more abstract, containing high-level semantic
information critical for identifying lung nodules. These layers are better suited for attention
mechanisms as they focus on more meaningful regions in the image.

Additionally, the concatenated feature map layer combines outputs from the last three convo-
lutional layers, offering a multi-scale feature representation that captures nodules of varying
sizes. By applying dual attention at this stage, the network selectively emphasizes the most
relevant features across scales, improving its sensitivity to small nodules. Incorporating dual
attention into this layer enhances the hierarchical understanding of multi-scale features while
suppressing redundant or irrelevant information. This approach ensures that the network
retains the ability to detect small and subtle nodules with high precision.

By avoiding the application of dual attention in the lower layers, the architecture balances the
need for preserving low-level feature diversity with the refinement of high-level features. This
strategic design significantly enhances the network’s ability to detect nodules of varying sizes
while maintaining robustness against background noise and irrelevant details, thus improving
the overall sensitivity and performance of the system.

The dual-attention mechanism is designed with a sequential structure where channel atten-
tion is applied first, followed by spatial attention, as illustrated in Figure 6.4. This order en-
sures an optimal refinement of feature representations by addressing the “what” and “where”
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aspects of attention hierarchically [122]. By applying channel attention first, the model iden-
tifies and amplifies the most informative feature channels, effectively enhancing the global
semantic understanding of the input. This step prioritizes features that are most relevant for
identifying lung nodules, reducing noise at the channel level. The channel attention mecha-
nism begins by extracting global information from the input feature map using both average
pooling and max pooling operations. These operations yield two distinct descriptors, denoted
as χC

AUG and χC
Max. These descriptors are then processed through a scale network, which gen-

erates a channel attention map, represented as MC ∈ RC/2G×1×1. The channel attention map
is subsequently used to modulate the input feature map χ, enabling element-wise summation
with the corresponding sub-feature. Following this, average pooling and max pooling opera-
tions are applied to both branches of each sub-feature χK . The resulting feature vectors are
combined using element-wise summation, producing the final output χC ∈ RC/2G×1×1. The
process can be mathematically expressed as:

MC(χ) = MLP(AVG(χ)) + MLP(MAXPool(χ)) (6.4)

χ = MLP(χK1 + χK2) + MAXPool(χK1 + χK2) + MC(χ) (6.5)

To complement the channel attention mechanism, a compact feature representation is created
to enable precise and adaptive selection. This is achieved using a straightforward gating
mechanism with a sigmoid activation function. The final output of the channel attention is
computed as:

χC = δ(FC(χ)) · χK1 = δ(WCχ + bC) · χK1 (6.6)

Subsequently, the output of the channel attention block is passed to the spatial attention
block, which focuses on localizing the critical regions of interest within the feature maps.
This sequential process ensures that spatial attention operates on already refined feature
maps, making it more effective at highlighting the precise locations of nodules. To com-
pute spatial attention, we apply group normalization (GN) to the χK1 and χK2 branches.
This approach reduces computational complexity while ensuring that spatial information is
effectively utilized, providing more accurate data to the feature extraction network. The
calculation for spatial attention is expressed as:

χS = δ(WS · (GN(χK2) + GN(χK1)) + bS) · χK2 (6.7)

Here, WS and bS are parameters with a shape of RC/2G×1×1. The χK1 and χK2 branches
are subsequently combined to align the number of channels with the input dimensions. This



91

integration allows spatial attention to improve the representation of the feature map effec-
tively.

By separating these two stages and processing channel importance before spatial localization,
the network achieves a better balance between global feature importance and local feature
refinement, improving detection accuracy and robustness.

Region Proposal Network (RPN)

The RPN processes an input image and generates a set of rectangular proposals, each asso-
ciated with an objectness score. The RPN is implemented as a fully convolutional network,
designed to operate efficiently on feature maps produced by the last convolutional layer of
the feature extraction network. A small network, which slides over the input feature map
using a 3 × 3 spatial window, serves as the core of the RPN. Each sliding window extracts a
feature vector (512 dimensions in the case of DA OMS-CNN), which is then passed through a
box-classification layer to predict objectness scores and a box-regression layer to estimate the
bounding box coordinates. To address the detection of both small and large lung nodules,
two distinct RPNs are utilized within the framework. These RPNs are specifically designed
to leverage different perspectives and extract complementary information, which enhances
the overall proposal generation process. The two networks are integrated with the DA OMS-
CNN backbone, with one RPN tailored for small nodules and the other for large nodules
(Figure 6.3). These networks operate on feature maps of the same dimensions, ensuring
seamless integration with the backbone architecture. To accommodate the varying sizes of
lung nodules, seven anchor boxes with different scales are employed: 4 × 4, 6 × 6, 10 × 10,
16×16, 22×22, and 32×32, as in [50]. This multi-scale anchor design is particularly effective
in capturing nodules of diverse sizes, enabling the framework to improve detection accuracy
for both small and large nodules. With these definitions, the multi-task loss function for an
image is expressed as:

L(pi, ti, pkj, tkj) =
∑

i

L1(pi, ti) +
2∑

k=1

∑
j

L2(pkj, tkj) (6.8)

Here, L1 and L2 are defined as:

L1(pi, ti) = Lcls(pi, p∗
i ) + λ × p∗

i × Lreg(ti, t∗
i ) (6.9)
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L2(pkj, tkj) = 1
Ncls

× Lcls(pj, p∗
j) + λ

Nreg
× p∗

j × Lreg(tkj, t∗
j) (6.10)

The regression loss is defined as:

Lreg(ti, t∗
i ) = R(ti − t∗

i ) (6.11)

R(x) =

0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(6.12)

In these equations:

• i represents the index of the proposals generated by the region proposal networks.

• j identifies an anchor selected.

• k refers to one of the two region proposal networks.

• pi is the predicted probability of proposal i being a nodule.

• p∗
i is the ground truth label, where p∗

i = 1 if the proposal is positive, otherwise p∗
i = 0.

• ti and t∗
i are the predicted and ground truth bounding box regression parameters,

respectively.

• Lcls is a binary cross-entropy loss.

• Lreg represents the regression loss.

• λ is a balancing factor between the classification and regression losses.

• Ncls and Nreg are normalization terms for classification and regression, respectively.

• R is the smooth L1 function.

Classification Stage

After obtaining the RoIs predicted by the RPN and removing duplicates, a deep convolutional
neural network (DCNN) is employed to classify each RoI, determining whether it corresponds
to a nodule or not. The RPN regression layer generates candidate nodule positions, specifying
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Figure 6.5 Overall framework of classification stage (DA RoIPooling).

the center coordinates as well as the width and height (W, H) of each RoI. These values are
used to extract patches from the feature map, which serve as input to the classification
network. The RPN classification layer provides a probability score for each patch, ranging
between 0 and 1. Patches with scores exceeding a threshold of 0.5 are considered nodule
candidates and forwarded to the classification stage for further analysis [49].

In the proposed method, we introduce a dual-attention mechanism after the RPN stage
and before the fully connected layers in the RoIPooling structure, as shown in Figure 6.5.
An RoIPooling layer is employed to project each RoI onto a smaller feature map with a
predetermined spatial dimension of W ×H (specifically, 7×7 as outlined in this paper). The
RoIPooling process involves dividing the RoI into a grid of sub-windows measuring W × H

and performing max-pooling within each sub-window, resulting in values being mapped to
their corresponding output grid cells. This pooling operation is carried out independently
across each feature map channel, akin to standard max pooling procedures.

Following the RoI pooling operation, the dual-attention mechanism is integrated to enhance
the extracted feature representations. The channel attention block selectively emphasizes
informative channels while suppressing less relevant ones, ensuring that critical features for
nodule classification are highlighted. The output of the channel attention block is then passed
through the spatial attention block, which focuses on relevant spatial regions within each fea-
ture map. This combination allows the network to refine RoI feature maps by simultaneously
considering channel-level and spatial-level dependencies. By applying dual attention at this
stage, we aim to better capture subtle and discriminative features critical for accurate clas-
sification, especially in challenging cases.
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Figure 6.6 The structure of the proposed false-positive reduction model.

After dual-attention processing, a fully connected network comprising two 4096-dimensional
fully connected layers is employed to transform the fixed-size feature map into a feature
vector. Finally, a binary classifier predicts confidence scores for potential candidates. The
training of the classification model utilizes CrossEntropyLoss as the loss function to optimize
the network. This enhanced architecture aims to reduce false positives and improve the
overall sensitivity and specificity of the nodule detection pipeline.

6.4.4 False Positive Reduction

In the false-positive reduction phase, we employ a sequence of 3D Swin Transformer models
to enhance classification accuracy and reduce false positives. The pipeline processes 3D
image patches, where each patch is passed through multiple trained 3D SwinT models, as
shown in Figure 6.6. The outputs from these models are combined using a voting mechanism
to determine the final classification as either “Nodule” or “Non-Nodule.” This approach
leverages the hierarchical structure and self-attention mechanism of the 3D SwinT, enabling
the extraction of both local and global features from volumetric data for robust decision
making.

One of the main challenges in object detection is the overwhelming number of negative sam-
ples, which dominate the total loss. Many of these samples are relatively easy to classify,
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highlighting the importance of hard sample mining to improve performance. Following this
concept, the training data is curated to emphasize more difficult samples, which persist
through subsequent training iterations, enhancing the classification accuracy of each individ-
ual model.

The 3D SwinT, chosen for this phase, is designed to process volumetric data effectively
by leveraging shifted window-based multi-head self-attention mechanisms. The hierarchi-
cal structure of the transformer enables the model to capture both global and local spatial
relationships within the patches, offering improved performance compared to traditional con-
volutional models. Each model is initialized and trained independently using a specific subset
of the data, focusing on misclassified samples from previous iterations [50]. Initially, the first
subset is used to train Model1. Misclassified samples from both Model1 and the second
subset are subsequently used to train Model2. Similarly, Model3 is trained using misclassi-
fied samples from the first two models and the third subset. This iterative training process
ensures that challenging examples are emphasized, enabling the models to learn robust and
discriminative features. The models are fine-tuned during successive iterations, refining their
weight parameters to enhance their ability to classify difficult samples.

This iterative approach, combined with the 3D SwinT’s ability to effectively capture spa-
tial dependencies and represent complex patterns, significantly improves the classification
accuracy of the false-positive reduction system. To further enhance the performance of the
false-positive reduction phase, we employ various patch augmentation techniques and lever-
age the advanced hierarchical design of the 3D SwinT. These approaches are discussed in
detail in the subsequent subsections.

3D Swin Transformer

The Swin Transformer (SwinT) is a hierarchical transformer that efficiently generates mul-
tiscale feature maps by integrating neighboring patches and employing a window partition
mechanism. This approach ensures linear computational complexity relative to image size,
which is particularly advantageous for dense prediction tasks and processing high-resolution
images. To adapt this architecture for the 3D characteristics of CT images, we extend SwinT
into a 3D structure (3D SwinT), enabling it to capture detailed spatial and volumetric infor-
mation. The architecture of 3D SwinT, illustrated in Figure 6.7, differs from the standard
SwinT in several key aspects:

• CT images are represented as H × W × D, where D refers to the depth, and H and W

denote the image’s height and width, respectively.
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Figure 6.7 Overall architecture of 3DSwinT: (a) network architecture; (b) two consecutive
3DSwinT blocks.

• The patch partitioning process in SwinT divides the input into (H/4)× (W/4) patches,
each sized 4 × 4. In contrast, 3D SwinT utilizes 3D cubes of size 4 × 4 × 4, producing
(H/4) × (W/4) × (D/4) patches. These patches, with a feature dimension of 64, are
projected into an arbitrary dimension C via a linear embedding layer. Following this,
the neighboring patches are combined during the patch merging stage, where the spatial
and depth resolution decrease progressively (4, 8, 16, 32).

• The main distinction between the SwinT and 3D SwinT blocks lies in the multi-head
self-attention mechanism. For 3D SwinT, the window-based multi-head self-attention
(W-MSA) is extended into a 3D version (3D W-MSA), incorporating the volumetric
information. This is achieved using 3D windows sized P × M × M , where P represents
the depth dimension, instead of the 2D M×M windows used in SwinT. Additionally, the
window shifting mechanism in 3D SwinT introduces shifts of (P/2, M/2, M/2) patches
along the depth, height, and width dimensions, enhancing inter-window information
interaction.
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The 3D SwinT architecture comprises four stages. Each stage includes a patch merging mod-
ule and multiple 3D SwinT blocks (except Stage 1). The patch merging module aggregates
neighboring 2 × 2 × 2 patches into larger patches, effectively reducing the spatial resolution
to a quarter of its original size. A linear layer then projects the concatenated feature dimen-
sions to half their size. The 3D SwinT blocks in each stage extract self-attention features
while preserving the input resolution. Consequently, the feature map sizes at different stages
are (H/4) × (W/4) × (D/4) × C (Stage 1), (H/8) × (W/8) × (D/8) × 2C (Stage 2), and so
forth. Compared to standard SwinT blocks, 3D SwinT employs 3D window-based multi-head
self-attention (3D W-MSA) to capture both spatial and volumetric information. Other ar-
chitectural components, such as the multilayer perceptron (MLP), layer normalization (LN),
and residual connections, remain unchanged from SwinT. Figure 6.7b depicts two adjacent
3D SwinT blocks within each stage, which can be represented by following the equation:



ŷk = 3D W-MSA(LN(y(k−1))) + y(k−1)

yk = MLP(LN(ŷk)) + ŷk

ŷk+1 = 3D SW-MSA(LN(yk)) + yk

yk+1 = MLP(LN(ŷk+1)) + ŷk+1

(6.13)

where 3D W-MSA and 3D SW-MSA represent the 3D window-based and shifted W-MSA
mechanisms, respectively, and ŷk and yk are the outputs of 3D (S)W-MSA and MLP in block
K, respectively.

6.4.5 Evaluation Metrics

To comprehensively assess the performance of the proposed model, two key evaluation met-
rics—recall (sensitivity) and competition performance metric (CPM)—were employed. These
metrics are widely utilized in the field of computer-aided detection (CAD) to evaluate the
accuracy and robustness of nodule detection systems.

Recall, or sensitivity, quantifies the model’s ability to correctly identify all existing nodules
within the annotated dataset. Specifically, it measures the proportion of true nodules (ground
truth) that are successfully detected by the model. This metric is especially critical in medical
imaging applications, where missing even a single malignant nodule can delay diagnosis and
significantly affect patient outcomes. In the context of lung cancer screening, a high recall
is imperative to minimize false negatives and ensure that potential cancerous regions are not
overlooked.
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The recall metric is mathematically defined as:

Recall = True Positives (TP)
True Positives (TP) + False Negatives (FN) (6.14)

where TP denotes the number of correctly detected nodules, and FN represents the number
of nodules present in the dataset but missed by the model. A higher recall value indicates
stronger detection sensitivity and reduced clinical risk, which is particularly important in
early-stage cancer detection when nodules are small and harder to detect.

The competition performance metric (CPM) measures the average sensitivity of the model
across a range of false-positive rates (typically 1/8, 1/4, 1/2, 1, 2, 4, and 8 false positives
per scan). The CPM provides a holistic assessment of the model’s performance, balancing
its sensitivity and specificity at varying levels of false positives.

CPM =
∑n

i=1 Sensitivity at FPi

n
(6.15)

where n is the number of predefined false-positive thresholds (FPi).

6.5 Experimental Results and Discussion

In this section, we present a comprehensive evaluation of the proposed DA OMS-CNN frame-
work. The results are structured into three key subsections: (1) implementation details and
training setup, (2) an ablation study to assess the individual contributions of each proposed
module, and (3) experimental comparisons with state-of-the-art lung nodule detection meth-
ods on both the LUNA16 and PN9 datasets. These analyses collectively demonstrate the
effectiveness and generalization capabilities of our proposed approach.

6.5.1 Implementation

This study approaches lung nodule detection through three key stages: region proposal ex-
traction, classification, and false-positive reduction. Initially, the DA OMS-CNN architecture
is utilized for feature extraction, while the RPN is employed for training. The hyperparam-
eters [NS, KS, MS] for small nodules and [NL, KL, ML] for large nodules are tuned prior to
training, using two distinct RPNs for each category. After optimization, the values for small
nodules are found to be NS = 8, KS = 505, and MS = 14, while for large nodules, the
values converge to NL = 3, KL = 512, and ML = 16. A 10-fold cross-validation strategy is
implemented to evaluate the system’s performance, with stochastic gradient descent (SGD)
optimization applied using a momentum factor of 0.9. Additionally, a weight decay of 0.00001
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is incorporated, and the base learning rate is set at 0.0001. The training process is conducted
in a computing environment equipped with two V100 GPUs and 192 GB of memory.

In the classification stage, addressing class imbalance is a crucial aspect of the classification
network. This challenge is tackled by ensuring an equal distribution of positive and negative
patches, utilizing the output from the trained RPN. In this method, region proposals with an
intersection over union (IoU) greater than 0.7, along with the ground truth, are designated
as positive patches, while an equal number of randomly selected proposals with an IoU below
0.1 are considered negative patches. This approach not only balances the classes but also
increases the number of positive samples. During training, key hyperparameters were set,
including an initial learning rate of 0.01 and a maximum of 150 epochs. To prevent overfitting,
a weight decay of 1×10−4 was applied. The learning rate was adjusted at specific checkpoints:
it was reduced to 0.001 after 50% of the epochs, further decreased to 0.0001 after 75%, and
finally set to 0.00001 after 90% of the epochs. These modifications contributed to a more
effective training process. Additionally, stochastic gradient descent (SGD) with a momentum
of 0.9 was employed to enhance model performance.

In the false-positive reduction (FPR) phase, as mentioned in the classification section, nodule
and non-nodule patches are first generated, with a size of 32 × 32 × 32, and then augmented
using patch augmentation techniques. The architectural hyperparameters for all three 3D
SwinT models are set as follows: C = 96, and the layer configurations are 2, 2, 6, and
2. Furthermore, the number of multi-head self-attention heads per stage is set to 3, 6, 12,
and 24, respectively. The models are trained for 100 epochs using a fivefold cross-validation
approach to assess performance. All three models utilize the AdamW optimizer, with the
learning rate, momentum, batch size, and weight decay values set to 0.001, 0.6, 16, and
1 × 10−5, respectively. A warm-up cosine annealing learning rate schedule is applied, with
the warm-up phase lasting for 30 steps. Figure 6.8 compares pulmonary nodules as detected
by the proposed network against their correspondent ground-truth locations.

The entire model was implemented using the PyTorch deep learning framework (version
1.13). All experiments were conducted on a server equipped with two NVIDIA V100 GPUs
and 192 GB of RAM.

6.5.2 Ablation Study

To evaluate the effectiveness of the proposed model, we conducted ablation studies under
identical conditions using the LUNA16 dataset with tenfold cross-validation, as depicted in
Figures 6.9 and 6.10. The ablation experiments were performed on four different configu-
rations: (1) OMS-CNN, (2) DA OMS-CNN, (3) DA OMS-CNN with DA-RoIPooling, and
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Figure 6.8 Pulmonary nodules detected by DA OMS-CNN (red) and their corresponding
ground-truth boxes (green).

(4) DA OMS-CNN with DA-RoIPooling and the proposed FPR module. This analysis helps
to assess the contribution of each component to the overall model performance.

In the DA OMS-CNN approach, a dual-attention mechanism is incorporated into the final
layers of OMS-CNN to enhance feature representation, as illustrated in Figure 6.3. This
enhancement enables the extraction of high-resolution, fine-grained features, which are par-
ticularly beneficial for the early detection of lung nodules. A comparative analysis between
OMS-CNN and DA OMS-CNN, presented in Figure 6.9, demonstrates that integrating the
dual-attention mechanism into the final layers of OMS-CNN increases the average recall for
1000 region proposals by 1.3%. Additionally, as shown in Figure 6.10, this modification im-
proves the CPM score from 0.839 in OMS-CNN to 0.849, further highlighting its effectiveness.

In our second contribution, we refine the classification stage by replacing RoIPooling with
DA-RoIPooling. This modification enhances the model’s ability to capture both spatial
and channel-wise dependencies, leading to more discriminative feature representations and,
ultimately, improved accuracy in lung nodule detection. To assess the effectiveness of this
enhancement, Figure 6.9 shows that the average recall of DA OMS-CNN with DA-RoIPooling
is 4.2% higher than that of OMS-CNN and 3.1% higher than DA OMS-CNN. Additionally,
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Figure 6.9 Recall vs. IoU overlap ration.

Figure 6.10 FROC curves of different proposed models on LUNA16.

as depicted in Figure 6.10, this method achieves a CPM score of 0.86, reflecting a 2.5%
improvement over the OMS-CNN approach. In the final stage, we utilize an ensemble of
three 3D SwinT models to reduce false-positive nodules. As illustrated in Figure 6.10, the
proposed method improves the CPM score by 8.5%, 7.3%, and 5.9% compared to OMS-CNN,
DA OMS-CNN, and DA OMS-CNN with DA-RoIPooling, respectively.
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To further clarify the impact of each proposed module, Table 6.1 summarizes the key results
of the ablation study in a tabular format. It presents the CPM scores and sensitivity values
at 1.0 false positive per scan for different configurations of our model. This complementary
table enables a more intuitive comparison of performance gains achieved through the inte-
gration of dual attention mechanisms, DA-RoIPooling, and the final false-positive reduction
(FPR) module. The results demonstrate the incremental improvements in both sensitivity
and overall CPM, highlighting the contribution of each component to the final detection
performance.

Table 6.1 Ablation study: performance comparison of different model configurations on
LUNA16.

Model Configuration CPM Score Sensitivity at 1.0 FP/scan
OMS-CNN 0.839 0.8521
DA OMS-CNN 0.849 0.8967
DA OMS-CNN + DA-RoIPooling 0.860 0.9331
DA OMS-CNN + DA-RoIPooling + FPR 0.911 0.9601

6.5.3 Experimental Comparison

This section presents the performance evaluation of the proposed lung nodule detection
framework using different experimental settings. The results are reported in three tables:
Table 6.2 shows the performance of the proposed candidate nodule detection network be-
fore false-positive reduction on the LUNA16 dataset, Table 6.3 presents the results after
applying false-positive reduction using the LUNA16 dataset, and Table 6.4 demonstrates the
generalization capability of the proposed method by evaluating it on the PN9 dataset.

Table 6.2 provides a comparative analysis of the proposed method against existing candi-
date nodule detection methods on the LUNA16 dataset. The comparison is based on the
competition performance metric (CPM) score at different sensitivity thresholds. The results
indicate that the proposed DA OMS-CNN method achieves the highest CPM score of 0.8601,
outperforming the baseline OMS-CNN, which achieves a CPM of 0.8396. Compared to other
state-of-the-art methods, such as Dou et al. [132] and Gu et al. [133], the proposed method
consistently achieves higher detection performance across all sensitivity thresholds. This im-
provement can be attributed to the integration of domain adaptation and optimized feature
extraction techniques, as well as the addition of a dual-attention mechanism in the last layers
of OMS-CNN [50], which enhances the network’s ability to identify candidate nodules more
effectively. Moreover, our model shows notable improvements particularly at mid-to-low
false-positive rates (0.5–2.0 FP/scan), which are critical operating points in clinical screen-
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Table 6.2 Comparison of the proposed candidate nodule detection network with other meth-
ods on LUNA16.
CAD Method Year 0.125 0.25 0.5 1.0 2.0 4.0 8.0 CPM
Dou et al. [132] (2017) 0.6590 0.7540 0.8190 0.8650 0.9060 0.9330 0.9460 0.8390
Gu et al. [133] (2018) 0.4801 0.6495 0.7920 0.8794 0.9163 0.9293 0.9301 0.7967
Pezeshk et al. [112] (2018) 0.6370 0.7230 0.8040 0.8650 0.9070 0.9380 0.9520 0.8320
Xie et al. [111] (2019) 0.4390 0.6880 0.7960 0.8520 0.8640 0.8640 0.8640 0.7750
OMS-CNN [50] (2024) 0.7215 0.7357 0.7993 0.8521 0.9162 0.9243 0.9283 0.8396
DA OMS-CNN 0.7285 0.7461 0.8223 0.8967 0.9377 0.9438 0.9458 0.8601

Table 6.3 Performance comparison of different methods for false-positive reduction on
LUNA16.
CAD Method Year 0.125 0.25 0.5 1.0 2.0 4.0 8.0 CPM
Zeo et al. [53] (2020) 0.6300 0.7530 0.8190 0.8690 0.9030 0.9150 0.9200 0.8300
CBAM [54] (2021) 0.4670 0.6020 0.7300 0.812 0.8770 0.9150 0.9310 0.7620
I3DR-Net [55] (2022) 0.6356 0.7131 0.7984 0.8527 0.8760 0.8992 0.9147 0.8128
MSM-CNN [49] (2022) 0.6770 0.7410 0.8160 0.8500 0.8900 0.9050 0.9250 0.8290
MS-3DCNN [48] (2023) 0.7280 0.7990 0.860 0.8080 0.9260 0.9410 0.9560 0.8730
AttentNet [135] (2024) 0.7520 0.8170 0.8570 0.8850 0.9200 0.9330 0.9330 0.8710
MK-3DCNN [56] (2024) 0.7099 0.7723 0.8356 0.8836 0.9174 0.9384 0.9562 0.8591
TED [51] (2024) 0.7619 0.8222 0.8736 0.9069 0.9302 0.9443 0.9530 0.8846
OMS-CNN [50] (2024) 0.7932 0.8421 0.8712 0.9048 0.9387 0.9473 0.9481 0.8922
DA OMS-CNN 0.7973 0.8584 0.8995 0.9331 0.9534 0.9682 0.9689 0.9112

ing scenarios. For example, at 1.0 FP/scan, the DA OMS-CNN achieves a sensitivity of
0.8967, significantly higher than the 0.8650 reported by Dou et al. [132] and the 0.8521 of
the baseline OMS-CNN. This enhanced detection capability is mainly due to the effective
integration of the dual-attention mechanism and domain adaptation strategies, which allow
the model to better focus on relevant features and reduce noise from surrounding anatom-
ical structures. These improvements contribute to the overall 2.1% increase in CPM score
compared to OMS-CNN, demonstrating the practical benefits of the proposed enhancements.

Table 6.3 evaluates the impact of false-positive reduction using different methods on the
LUNA16 dataset. The results show that the proposed DA OMS-CNN achieves the high-
est CPM score of 0.9112, surpassing other state-of-the-art approaches, including TED [51]
(CPM = 0.8846) and MK-3DCNN [56] (CPM = 0.8591). The improvement in performance
highlights the effectiveness of the false-positive reduction strategy employed in the proposed
method, which incorporates an ensemble of three 3D SwinT models. This ensemble learn-
ing approach refines the detection process, effectively reducing the number of false positives
while maintaining high sensitivity for true-positive nodules. The sensitivities at 0.125, 0.25,
2, and 4 FPs/scan are 0.797, 0.858, 0.953, and 0.968, respectively, surpassing those of the
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Table 6.4 The sensitivity and CPM score compared with other methods on PN9.

CAD Method Year 0.125 0.25 0.5 1.0 2.0 4.0 8.0 CPM
SSD512 [121] (2016) 0.0462 0.0848 0.1476 0.2506 0.4032 0.5727 0.7080 0.3161
RetinaNet [61] (2017) 0.0260 0.0556 0.1095 0.1925 0.2929 0.4049 0.5105 0.2274
NoduleNet [136] (2019) 0.2117 0.3023 0.4038 0.5102 0.6129 0.7070 0.7693 0.5025
SA-Net [114] (2021) 0.2672 0.3603 0.4746 0.5699 0.6635 0.7352 0.7832 0.5506
I3DR-Net [55] (2022) 0.1564 0.2313 0.3700 0.5154 0.6454 0.7291 0.7753 0.4890
OMS-CNN [50] (2024) 0.2865 0.3841 0.4775 0.5907 0.6974 0.7853 0.8432 0.5807
DA OMS-CNN 0.3015 0.3952 0.4978 0.6221 0.7205 0.8241 0.8629 0.6034

best-performing method presented. Furthermore, compared to the baseline OMS-CNN [50],
which achieves a CPM of 0.8922, DA OMS-CNN provides a 2.1% increase in detection accu-
racy, further demonstrating its robustness in distinguishing true nodules from non-nodular
structures. The proposed method for detecting potential nodules demonstrates a sensitivity
of 96.93%. On average, there are 9.38 candidates per scan. These results underline the
significant advantage of the ensemble-based false-positive reduction strategy in balancing
sensitivity and specificity. Notably, the DA OMS-CNN maintains superior sensitivity even
at very low false-positive rates, which is critical for clinical usability to minimize unnecessary
follow-ups. The integration of the three 3D SwinT models contributes to capturing diverse
contextual features, thereby effectively filtering out false positives without compromising the
true-positive detection rate. This comprehensive improvement emphasizes the robustness
and practicality of the proposed approach in real-world screening settings.

To evaluate the generalization capability of the proposed method, we conducted an experi-
ment using the PN9 dataset, and the results are presented in Table 6.4. The performance of
the proposed approach is compared with several existing methods, including SSD512 [121],
RetinaNet [61], and NoduleNet [136]. The results indicate that the DA OMS-CNN model
achieves a CPM score of 0.6034, outperforming the baseline OMS-CNN (0.5807) and other
existing methods such as SA-Net [114] (CPM = 0.5506) and I3DR-Net [55] (CPM = 0.4890).
The consistent improvement across different sensitivity thresholds suggests that the proposed
method generalizes well to unseen datasets, making it a promising approach for real-world
clinical applications. These findings demonstrate the strong generalization ability of the DA
OMS-CNN framework beyond the primary training domain, which is essential for clinical
translation, where data variability is common. The steady increase in CPM and sensitivity
across various false-positive rates indicates robustness to domain shifts and dataset hetero-
geneity. This suggests that the combined use of dual attention mechanisms and the 3D Swin
Transformer architecture effectively captures invariant and discriminative features, enabling
reliable detection performance even on previously unseen datasets such as PN9.



105

Figure 6.11 Examples of qualitative detection results by the proposed DA OMS-CNN. Nod-
ules outlined in green represent correctly detected cases, while those in red indicate missed
nodules.

To further understand the behavior of the proposed DA OMS-CNN model, we conducted
a qualitative analysis of both successful and failed detection cases. In successful cases, the
model accurately identified nodules with clear boundaries, moderate size, and strong contrast
from surrounding tissues. These nodules typically appeared in central lung regions with less
anatomical noise. However, the model showed reduced sensitivity in detecting extremely
small nodules (less than 3mm), nodules located near complex anatomical structures such as
blood vessels or the pleural wall, and in scans with low image quality or artifacts. In such
cases, misclassification often resulted from insufficient contrast or structural ambiguity.

Figure 6.11 illustrates representative examples of both detected (green box) and missed (red
box) nodules. As shown, successfully detected nodules tend to be well isolated and exhibit
clearer margins, while missed cases often involve small or low-contrast nodules embedded
within complex anatomical surroundings. This qualitative evidence supports our earlier
quantitative findings and further highlights the strengths and current limitations of the pro-
posed framework.

The experimental results highlight the superior performance of the proposed DA OMS-CNN
framework in lung nodule detection. The candidate nodule detection stage achieves a higher
CPM score compared to existing methods, demonstrating the effectiveness of the proposed
feature extraction and detection strategies. The integration of an ensemble-based false-
positive reduction approach significantly enhances detection accuracy, reducing false positives
while maintaining high sensitivity. Finally, the generalization experiment on the PN9 dataset
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further validates the robustness of the proposed method, confirming its capability to perform
well on different datasets.

6.6 Conclusions

In this study, we presented an improved Faster R-CNN model for early-stage lung cancer
detection, which integrates a novel dual-attention optimized multi-scale CNN (DA OMS-
CNN) architecture and a dual-attention RoIPooling (DA-RoIPooling) technique to enhance
the model’s sensitivity. The DA OMS-CNN effectively captures representative features of
nodules at varying sizes, while the DA-RoIPooling method further refines classification ac-
curacy, ensuring a higher detection rate. Additionally, the incorporation of an ensemble of
three 3D Swin Transformer (3D SwinT) models for false-positive reduction significantly im-
proves the precision of the detection system. Our model demonstrated superior performance
on the LUNA16 and PN9 datasets. The experimental results validate the effectiveness of
the integrated DA OMS-CNN and DA-RoIPooling techniques in improving the sensitivity of
lung cancer detection, while also reducing the occurrence of false-positive nodules. This ad-
vancement marks a significant step forward in the development of more accurate and reliable
lung nodule detection systems, with potential applications in clinical practice.

As a future direction, we aim to enhance the clinical applicability of our system by improving
its transparency and reliability. To this end, we are investigating explainable AI strategies
that allow the model’s decisions to be more interpretable for clinicians, helping bridge the
gap between automated predictions and clinical trust. This will support the development of
more user-centric and deployable CAD systems for lung cancer diagnosis.
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CHAPTER 7 ARTICLE 4: IMPROVED 3D SWINT-CNN: A HYBRID
AND INTERPRETABLE DEEP LEARNING MODEL FOR LUNG NODULE

DIAGNOSIS

Preface: This chapter presents a hybrid and interpretable deep learning model
(SwinT-CNN) for lung nodule diagnosis. The proposed architecture combines a 3D
CNN and a 3D Swin Transformer within a dual-path framework, enhanced by anatom-
ical attention gates (AAG) informed by a pretrained U-Net segmentation model. The
method is designed to improve both diagnostic accuracy and model transparency, mak-
ing it suitable for clinical applications in early-stage lung cancer screening. The full
manuscript was submitted for peer review to the IEEE Journal of Biomedical and
Health Informatics on August 13, 2025.
Contributions: This research was conducted during my doctoral studies at Polytech-
nique Montréal. I conceptualized and implemented the SwinT-CNN model, integrated
anatomical priors via AAG, and designed the interpretability evaluation framework
using Grad-CAM and entropy metrics. I performed all experiments on the LIDC-IDRI
and PN9 datasets, analyzed the results, and led the manuscript writing. My co-authors
contributed to theoretical modeling, experimental design, and critical feedback during
the revision process.
Manuscript Title: Yadollah Zamanidoost, Tarek Ould-Bachir, and Sylvain Martel,
“Improved 3D SwinT-CNN: A Hybrid and Interpretable Deep Learning Model for Lung
Nodule Diagnosis”, submitted to IEEE Journal of Biomedical and Health Informatics,
August 13, 2025.
Submission Status: Under peer review (submission date: August 13, 2025).

7.1 Abstract

Lung cancer is a leading cause of cancer deaths worldwide, and early detection improves
outcomes. Detecting pulmonary nodules in CT scans is a time-consuming process that relies
on expert interpretation. The clinical use of deep learning-based computer-aided diagnosis
(CAD) systems is limited due to their poor interpretability. This research introduces SwinT-
CNN, a hybrid end-to-end deep learning system that combines a 3D CNN and a 3D Swin
Transformer. It uses a dual-path architecture to capture both fine local features and broad
global relationships. The CNN branch receives anatomical priors from a pretrained 3D U-Net
segmentation model through an anatomical attention gate (AAG) to enhance interpretability.
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The network design enables it to concentrate on clinically meaningful areas, which prior voxel-
level segmentation identifies. The model receives end-to-end training from LIDC-IDRI data
and its performance evaluation occurs on the external PN9 dataset to test its ability to handle
different imaging scenarios. The proposed method achieves 97.3% accuracy in distinguishing
between benign and malignant nodules, surpassing existing baseline models. Interpretability
assessment using Grad-CAM heatmaps, sensitivity, and entropy metrics shows the model
reliably focuses on nodule areas. The enhanced 3D SwinT-CNN combines high accuracy and
explainability, making it a promising tool for the early detection of lung cancer.

7.2 Introduction

cancer stands as one of the deadliest cancers globally because pulmonary nodules frequently
appear as the first signs of the disease. Early detection of these nodules through accurate
methods leads to better treatment results and longer patient survival times [103, 146]. CT
imaging stands out as essential for both lung nodule screening and diagnosis among all
available imaging techniques [147,148]. The increasing number of CT scans in clinical practice
presents a growing challenge for radiologists, as their diagnostic abilities become vulnerable
to workload and fatigue, as well as inter-observer differences [149]. The introduction of
computer-aided diagnosis (CAD) systems utilizing deep learning technology enables clinicians
to achieve more accurate and reliable lung nodule identification and classification [81].

The promising results of deep learning (DL) models in medical image analysis face an essen-
tial challenge because they lack transparency [150]. The healthcare sector requires artificial
intelligence systems to deliver precise predictions while providing medical professionals with
explanations they can trust and understand [151]. The "black box" nature of conventional DL
models prevents clinicians from understanding the diagnostic process and from confirming
which medical features the model uses [73]. The lack of transparency in AI systems reduces
trust in their decision-making assistance and prevents their adoption in evidence-based clini-
cal practices [152]. Research now focuses on developing explainable AI (XAI) methods which
improve interpretability through visual explanations, feature attribution, and model trans-
parency [74,153]. The goal of these efforts is to provide both the rationale behind a prediction
and the location of the model’s attention, so that AI-based diagnostic tools become more
reliable and clinically useful [154].

The classification of pulmonary nodules in CAD systems relies on CNNs because these net-
works learn hierarchical features directly from raw CT images in recent years [33, 123]. The
development of CNN-based architectures for nodule malignancy detection includes multi-
view analysis [155] and optimized multi-scale CNN (OMS-CNN) [50] and attention mecha-
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nisms [52, 57] to boost diagnostic accuracy. The ability of traditional CNNs to detect fine-
grained local structures does not translate into effective modeling of long-range dependencies
and contextual information needed for precise malignancy assessment.

Medical imaging applications now use transformer-based models to solve the limitations of
traditional CNNs. The Swin Transformer (SwinT) stands out among vision transformers
because it uses a hierarchical structure to extract both local and global features through
shifted window attention [156]. SwinT and other vision transformers demonstrate better
performance than standard CNNs in medical imaging applications such as tumor classifi-
cation and segmentation [144, 157] according to preliminary research. The combination of
convolutional and transformer-based models in AI-driven lung cancer diagnosis is showing
increasing interest in improving both reliability and interpretability.

The research introduces an enhanced 3D SwinT-CNN architecture, which combines CNNs
and Swin Transformers through a parallel dual-path architecture for the diagnosis of lung
nodules. The architecture combines simultaneous local structural feature extraction with
global contextual dependency analysis to overcome the limitations of single-stream models
when dealing with the heterogeneous characteristics of pulmonary nodules. The model incor-
porates anatomical priors from a 3D U-Net segmentation model, which was trained separately
to enhance interpretability and guide attention to critical clinical areas. The AAG method
enables the classification model to focus on nodule-specific regions with greater precision by
injecting encoder features from U-Net into the CNN pathway. The proposed method achieves
better accuracy and transparency in distinguishing between benign and malignant nodules
by evaluating publicly available benchmark datasets.

The main contributions of this work are summarized as follows:

• A dual-path hybrid architecture combines CNNs and Swin Transformers to extract local
and global features from CT scans. CNNs capture fine structural details, while Swin
Transformers analyze distant spatial patterns. This approach enhances understanding
of pulmonary nodules for more accurate classification.

• The interpretability of the CNN pathway improves with anatomical information from a
U-Net segmentation model. The AAG integrates U-Net encoder features, rich in spatial
and semantic context, into the CNN branch to enhance nodule features and suppress
background noise, enabling more focused and meaningful decisions.

• The model’s interpretability is evaluated both qualitatively and quantitatively using
attention-based visualizations. Heatmaps show consistent focus on pulmonary nodules
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during predictions. This transparency allows radiologists to verify AI reasoning and
fosters trust in the system’s diagnostic decisions.

The structure of this paper is organized as follows. Section 7.3 reviews prior studies relevant
to lung nodule classification and model interpretability. Section 7.4 details the architectural
design of the proposed interpretable SwinT-CNN framework. Section 7.5 presents the ex-
perimental results along with a comprehensive analysis. Finally, the conclusions and key
contributions are summarized in the last section.

7.3 Related Works

The integration of XAI techniques into deep learning frameworks has garnered growing at-
tention in recent years, particularly in high-stakes fields such as medical imaging. Deep
neural networks achieve remarkable prediction results, but their black-box operation creates
transparency and trust issues in clinical settings. The lack of transparency in model decision-
making poses a significant concern in lung cancer screening, as it directly impacts patient
outcomes. The medical field now requires diagnostic models that achieve high accuracy while
providing interpretable results, which clinicians can use to make decisions.

Wang et al. [5] developed ExPN-Net as a multi-task, explainable deep learning model that
predicts malignancy while simultaneously detecting and localizing specific nodule charac-
teristics. The model achieves accurate classification through its soft activation module and
segmentation-derived attention maps, which enhance interpretability. The authors demon-
strate the effectiveness of attribute-level guidance through their results on both public and
private datasets, which improve clinical understanding and diagnostic accuracy.

The authors Fu et al. [78] developed an attention-based multi-task CNN to evaluate multiple
visual attributes of lung nodules, thereby solving the problem of inter-observer variabil-
ity. The model uses slice-level, cross-attribute and attribute-specific attention to eliminate
irrelevant features and highlight clinically meaningful patterns. The framework validated
on LIDC-IDRI improves attribute scoring and enables malignancy classification with inter-
pretable outputs.

Gu et al. [158] created VINet as an interpretable CAD system which combines classification
with visual attention to show important diagnostic areas. The method utilizes feature de-
struction to reduce noise while enhancing attention maps, resulting in both high accuracy
and visual transparency. The LUNA16 dataset tests show that VINet has strong potential
for trustworthy clinical diagnosis.
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Recent advances in lung nodule diagnosis with deep learning show promise, but most rely
solely on convolutional architectures. The limited receptive field of CNNs hinders their
ability to capture long-range dependencies and holistic anatomical context, reducing accuracy
and interpretability for subtle malignancy indicators. Our method combines convolutional
and transformer-based models in a dual-path architecture, improving diagnostic precision
by integrating local and global features along with segmentation-based anatomical priors,
enhancing both transparency and clinical relevance.

7.4 Design Framework

The proposed method framework appears in Fig. 7.1. The pipeline consists of four main
stages: image preprocessing, feature extraction and classification, explanation map genera-
tion, and explanation evaluation. The initial step of the process involves performing multiple
preprocessing operations on raw input images to improve their quality before analysis. The
extracted discriminative features enable the classification of pulmonary nodules after pre-
processing. The model provides transparency through explainability maps, which show the
specific areas that drive the prediction results. The final stage involves a systematic evalua-
tion of the generated explanations to assess their quality and reliability.

7.4.1 Datasets

The proposed SwinT-CNN framework for lung nodule classification and segmentation was
evaluated using two publicly available chest CT datasets: LIDC-IDRI [95] and PN9 [114].
The selected datasets contained high-quality annotations and clinical relevance, as well as
complementary characteristics, which enabled a comprehensive evaluation of both diagnostic
accuracy and model generalizability.

LIDC-IDRI

The LIDC-IDRI dataset contains thoracic CT scans from 1,018 patients, which up to four
expert radiologists annotated. The average score of multiple expert radiologists was used
to evaluate nodule malignancy on a scale from 1 (benign) to 5 (malignant). The nodule
classification system used benign for scores below 3 and malignant for scores above 3, while
excluding nodules with a score of exactly 3 to prevent classification uncertainty [159]. The
study included only nodules that exceeded 3 mm in size. The pylidc toolkit [160] processed
all volumes before they were resampled to 64 × 64 × 32 voxels. The dataset served both
classification and segmentation purposes through a 60% training set, a 20% validation set,
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Figure 7.1 Workflow of proposed approach for interpretable lung nodule diagnosis

and 20% testing set distribution.

PN9

The PN9 dataset contains CT scan images of pulmonary nodules which were obtained from
nine medical centers to create a diverse population for external validation purposes. The
clinical diagnosis determines whether each nodule receives a benign or malignant binary
label. The PN9 dataset lacks voxel-level segmentation masks and multi-rater malignancy
scores which distinguishes it from LIDC-IDRI. The dataset provides excellent generalizability
assessment because it contains diverse acquisition settings and well-defined diagnostic labels.

Data Preprocessing

The LIDC-IDRI and PN9 datasets underwent unified preprocessing operations. The CT scans
received an isotropic voxel spacing transformation to 0.7 × 0.7 × 1.25 mm. The extraction
of each nodule involved obtaining a fixed-size volume of 64 × 64 × 32 voxels, which centred
on the annotated location and added zero-padding when needed. The voxel intensity values
received clipping to the range [−1000, 400] followed by z-score standardization based on
training set statistical data. The training process involved real-time data augmentation
through 3D rotations (90°, 180°, 270°), horizontal and vertical flipping, and z-axis slice
reversal to enhance model robustness. The segmentation task used the same LIDC-IDRI
dataset, extracting nodule-centered volumes and binary masks from radiologist annotations.
Identical transformations were applied to both inputs and masks for data augmentation,
preserving spatial alignment.
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Figure 7.2 The backbone structure of the 3D SwinT-CNN model.

7.4.2 Dual-Path Feature Extraction and Classification

Backbone Structure

The proposed backbone network consists of two parallel pathways: a convolutional stream
based on a 3D VGG-style architecture [90], and a transformer stream constructed using
a hierarchical 3D Swin Transformer [156]. The input CT scan has a spatial resolution of
64 × 64 × 32. The dual-path architecture layout is shown in Fig. 7.2 which demonstrates the
sequential operations in both branches before their integration for classification.

The lower branch consists of multiple 3D convolutional layers, which increase channel depth
while decreasing spatial resolution. The convolutional blocks in this network consist of 3×3×3
kernels followed by batch normalization, ReLU activation, and 3D max pooling. The net-
work design enables the detection of detailed local patterns, including nodule boundaries,
textures, and edge variations, while maintaining volumetric context [90]. The simple hierar-
chical structure of this branch, combined with its lack of skip connections, makes it suitable
for interpretability because it enables better localization of image regions that influence clas-
sification results.

The upper branch utilizes a 3D Swin Transformer backbone, which transforms the input
volume into non-overlapping 3D patches that are embedded as tokens in a sequence. The Swin
Transformer blocks (as illustrated in Fig. 7.3) operate in stages to process the tokens through
two consecutive self-attention stages, which start with W-MSA followed by SW-MSA [156].
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Figure 7.3 Swin transformer block.

Each attention block includes residual connections and layer normalization (LN), followed
by a multi-layer perceptron (MLP) for transforming the representation. SW-MSA improves
global context modeling by shifting window partitions to enable cross-window information
exchange. A Swin Transformer block operates using the following sequence:



ŷk = 3D W-MSA(LN(y(k−1))) + y(k−1)

yk = MLP(LN(ŷk)) + ŷk

ŷk+1 = 3D SW-MSA(LN(yk)) + yk

yk+1 = MLP(LN(ŷk+1)) + ŷk+1

(7.1)

Where ŷk and yk are the outputs of 3D (S)W-MSA and MLP in block K, respectively.

The two representations perform best when their feature maps are spatially aligned and fused
after the final encoder stages. This fusion combines local detail with global context into a
unified representation. A global average pooling layer condenses spatial data into a compact
feature vector, which is then fed to fully connected layers for classification. Pooling reduces
feature dimensions while preserving key global activations, thereby improving generalization.
The backbone preserves each branch’s strengths while supporting accurate, interpretable lung
nodule diagnosis.
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Figure 7.4 3D U-Net segmentation pipeline.

3D U-Net-Based Segmentation Branch

The proposed framework employs a 3D U-Net architecture [35,161,162] to segment pulmonary
nodules from chest CT scans. This segmentation branch enhances the classification model’s
interpretability by explicitly detecting nodule regions to guide CNN feature extraction. As
shown in Fig. 7.4, the workflow transforms the raw 3D CT volume into a voxel-wise proba-
bility map, which is then converted into a binary segmentation mask highlighting the target
nodules. The 3D U-Net model uses a modified encoder–decoder architecture for volumetric
medical imaging. The encoder extracts abstract features from broader spatial contexts using
convolutional layers and downsampling [35]. Each encoder block includes 3D convolutions
with 3 × 3 × 3 kernels, ReLU activation, and 3D max pooling.

The network uses symmetric upsampling via transposed convolutions in the decoder to grad-
ually restore spatial resolution. Decoder layers receive encoder feature maps through skip
connections, preserving spatial details lost in downsampling [35]. This fusion enables accurate
nodule localization while maintaining semantic abstraction.

Overall Structure of the SwinT-CNN Model

The model gains spatial focus through anatomical prior embedding in the convolutional
branch as shown in Fig. 7.5. The 3D U-Net model receives pretraining to extract voxel-wise
segmentation features, which are then integrated into the CNN pathway through an AAG
[163]. The network design enables the model to focus on clinically meaningful areas, such as
pulmonary nodules, during classification without needing extra supervision or retraining of
the segmentation network.

The 3D U-Net encoder trained independently for nodule segmentation remains fixed during
end-to-end classification training to maintain its anatomical priors. The AAG modules feed
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Figure 7.5 Overall Structure of the proposed improved 3D SwinT-CNN model.
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Figure 7.6 Overview of the Anatomical Attention Gate (AAG).

intermediate feature maps containing nodule structural, semantic, and spatial information
to corresponding CNN layers. The AAG modules combine the CNN’s s-th convolutional
layer feature map f s

i with anatomical feature map f s
a extracted from the 3D U-Net encoder

as shown in Fig. 7.6. The two feature maps are first combined by stacking them along the
channel axis.

f s
concat = [f s

i , f s
a ] (7.2)

The combined feature map passes through two parallel 1 × 1 × 1 convolutional layers with
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sigmoid activations to learn attention weights Os
i and Os

a for each stream:
Os

i = δ(W s
i × f s

concat + bs
i )

Os
a = δ(W s

a × f s
concat + bs

a)
(7.3)

The 3D convolution operation is denoted by ×, and δ represents the sigmoid function, while
W s

i , W s
a , bs

i , and bs
a are learnable parameters of the gating layers. The attention maps perform

element-wise multiplication to weight the respective input features:
f s1

i = Os
i × f s

i

f s1
a = Os

a × f s
a

(7.4)

Finally, the two weighted maps are combined via element-wise addition to yield the output
of the gate:

f s
o = f s1

i + f s1
a (7.5)

which is then passed as input to the next convolutional block in the CNN stream.

The Swin Transformer branch runs in parallel, enabling joint optimization during end-to-end
training. A gating mechanism allows the CNN to adjust its attention based on spatial re-
gions identified by the segmentation model, thereby integrating anatomical priors into the
classification process. AAG modules require no additional supervision, as the U-Net encoder
remains fixed, thereby preserving anatomical consistency. The network merges outputs from
both branches before applying global average pooling and fully connected layers for predic-
tion.

The proposed architecture achieves both explicit anatomical localization interpretability and
end-to-end deep classification model adaptability through frozen segmentation features that
utilize anatomically guided attention gates. The proposed design enables precise and de-
pendable predictions which match the requirements for trustworthy AI applications in lung
nodule diagnosis.

7.4.3 Explainability Map Generation

The SwinT-CNN architecture requires visual explanation methods to improve transparency
by showing which CT regions influence classification. Its dual-path structure calls for saliency
maps reflecting the combined decision process, not separate branches. Fused Grad-CAM
maps better align with the final output by highlighting the joint impact of local and global
features.
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The 3D extension of gradient-weighted class activation mapping (Grad-CAM) [74] serves as
our chosen explainability approach, which operates on the fused feature representation before
the global pooling layer. The selection of Grad-CAM for this approach stems from three
essential factors: (1) Grad-CAM functions well with convolutional structures and works with
3D volume data; (2) The method works directly with activation maps to provide spatially-
resolved explanations that match the original image structure; and (3) The approach enables
model variant comparison through consistent analysis between models with and without
segmentation guidance [164].

The Grad-CAM computation begins by locating the final convolutional block in the fused
representation which unites features from both CNN and Swin Transformer branches. The
backward pass computes the gradient of the predicted class score relative to each feature
channel in this layer. The importance weights for each channel are obtained by averaging the
gradients across all channels before applying a weighted sum with the corresponding feature
maps. The final output of the saliency map emerges after applying ReLU activation:

LGrad-CAM = ReLU
(∑

k

Wk · Ak

)
(7.6)

where Ak represents the k-th channel of the fused feature map, and Wk is the corresponding
importance weight derived from the gradient signal. The resulting map is upsampled to
match the original input dimensions and visualized as a volumetric heatmap overlaid on the
CT scan.

The strategy offers a unified interpretability framework compatible with any model, enabling
version comparisons. We apply it to two configurations: (1) The baseline SwinT-CNN with-
out segmentation; and (2) The enhanced version with anatomical priors from a pretrained
U-Net integrated via anatomical attention gates. Heatmap analysis reveals how anatomical
priors and hierarchical attention influence model focus and diagnostic reasoning.

7.5 Experiment Results and Discussion

7.5.1 Experimental Setting

Segmentation Experimental Setting

The nnU-Net framework [162] served as our method for pulmonary nodule segmentation
because it automatically adjusts network architecture and training strategy based on input
data characteristics. The training process utilizes a composite loss function which combines
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Dice loss (LDice) with cross-entropy loss (LCE):

Ltotal = LDice + w · LCE (7.7)

The weighting factor w was set to 1 in our experiments. The training configuration is
summarized in Table 7.1.

Table 7.1 Training parameters using nnU-Net.

Parameter Configuration
Optimizer Stochastic Gradient Descent
Learning rate 0.01
Momentum 0.99
Weight decay 3 × 10−5

Batch size 14
Number of epochs 200

The training process employed a five-fold cross-validation approach to achieve robustness
and generalizability. The five models were combined into an ensemble to generate the final
segmentation output.

Classification Experimental Setting

The SwinT-CNN model received end-to-end training on 64 × 64 × 32 volumetric CT patches
through PyTorch as its deep learning framework. The training process took place on two
NVIDIA V100 GPUs, each with 192 GB of system memory. The training process used
AdamW optimizer with 10−3 learning rate and 5 × 10−5 weight decay and 16 batch size for
250 epochs. The training process used a cosine annealing learning rate scheduler to decrease
the learning rate to 1% of its initial value during the training period.

The architecture follows a dual-path design, combining a 3D convolutional stream and a
3D Swin Transformer branch. The transformer branch adopts a hierarchical structure with
three stages, where each stage includes 3D W-MSA and SW-MSA blocks. The network uses
a hidden embedding size (C) of 96, a window size of 4 × 4 × 4, and a stage-wise configuration
of [2, 4, 2] transformer layers with corresponding attention heads set to [3, 6, 12]. The
classification objective was treated as a binary classification problem to distinguish between
benign and malignant nodules. The model was trained using the binary cross-entropy loss:

LCls = − [y · log(ŷ) + (1 − y) · log(1 − ŷ)] (7.8)
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The CNN and SwinT, along with fusion layers and classification head, received joint updates
through backpropagation while the U-Net encoder remained frozen to maintain anatomical
prior integrity.

Table 7.2 Ablation study of classification performance on the LIDC and PN9 datasets.
Dataset Model Accuracy (%) Sensitivity (%) Specificity (%) Precision(%) AUC

3D SwinT 94.1 90.0 88.8 90.2 0.976
(93.3-94.9) (88.9-91.1) (87.3-90.3) (89.3-91.1) (0.973-0.979)

LIDC 3D SwinT-CNN 95.4 92.8 91.7 92.3 0.986
(94.1-96.7) (91.7-93.9) (90.2-93.2) (91.5-93.1) (0.981-0.991)

Improved 3D SwinT-CNN 97.3 96.7 95.1 95.8 0.993
(96.4-98.2) (95.5-97.9) (93.5-96.7) (94.5-97.1) (0.991-0.995)

3D SwinT 86.3 81.7 84.6 83.9 0.931
(83.6-89.0) (79.6-83.8) (82.7-86.5) (81.7-86.1) (0.923-0.939)

PN9 3D SwinT-CNN 89.7 86.6 88.4 87.2 0.954
(87.3-92.1) (84.0-89.2) (86.3-90.5) (85.3-89.1) (0.947-0.961)

Improved 3D SwinT-CNN 93.8 91.5 89.9 91.0 0.963
(92.7-94.9) (90.2-92.8) (88.4-91.4) (89.6-92.4) (0.956-0.970)

7.5.2 Ablation Study

The evaluation of each component in the proposed improved SwinT-CNN framework required
running ablation experiments on LIDC-IDRI and PN9 datasets. The experiments evaluated
how each architectural enhancement specifically contributed to the model’s classification
performance by adding a CNN branch and implementing anatomical attention. Table 7.2
shows the quantitative results from different configurations. The evaluation of interpretability
included Grad-CAM saliency maps in addition to classification metrics. The attention maps
from SwinT-CNN and improved SwinT-CNN models are visually compared in Fig. 7.7 for
three representative nodule samples.

7.5.3 Classification Evaluation

The proposed model’s ability to distinguish between malignant (positive class) and benign
(negative class) pulmonary nodules through binary classification is evaluated using sensitivity,
specificity, precision, and accuracy metrics. The confusion matrix components, true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN), are used to derive
these metrics.

Sensitivity = TP

TP + FN
, Specificity = TN

TN + FP
(7.9)

Precision = TP

TP + FP
, (7.10)

Accuracy = TP + TN

TP + TN + FP + FN
(7.11)
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Figure 7.7 Comparison of Grad-CAM heatmaps from SwinT-CNN and improved SwinT-CNN
for three nodules.

These indicators show how well the model detects cancer (sensitivity), avoids false alarms
(specificity), makes reliable positive predictions (precision), and maintains overall correctness
(accuracy).

7.5.4 Explanation Evaluation

The interpretability of Grad-CAM heatmaps generated by SwinT-CNN model variants is
measured through sensitivity and entropy metrics. The metrics assess nodules to determine
how well the model focuses its attention and how clearly it distinguishes between clinical
categories.

Sensitivity (Heatmap-ROI Overlap) The metric evaluates the spatial relationship be-
tween the saliency map and the annotated nodule region. The proportion of attention energy
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contained within the ground truth mask defines this metric.

Sensitivity =
∑

i∈R Hi∑
i Hi

(7.12)

where Hi denotes the Grad-CAM intensity at voxel i, and R is the set of voxels within the
annotated nodule region. Higher values indicate that the model focuses more precisely on
the relevant anatomical area.

Entropy (Spatial Concentration) The normalized Shannon entropy calculation of the
saliency distribution determines the spatial concentration or diffusion of the attention map.

Entropy = −
∑

i

pi log(pi), pi = Hi∑
j Hj

(7.13)

The level of entropy determines how compact and easy to understand heatmaps are, as lower
entropy values create more compact heatmaps. In comparison, higher entropy values result
in heatmaps with dispersed attention.

7.5.5 Evaluation Results

3D SwinT (Baseline)

The 3D SwinT model served as the base configuration to extract global contextual dependen-
cies from volumetric CT data. The hierarchical window-based self-attention mechanism in
this architecture successfully models both long-range interactions and high-level semantics,
which are essential for malignancy assessment. The 3D SwinT model demonstrated excel-
lent performance on the LIDC dataset, achieving 94.1% accuracy, 90.0% sensitivity, 88.8%
specificity, and 90.2% precision. The model showed strong generalization capabilities on the
external PN9 dataset, achieving 86.3% accuracy and an AUC of 0.931.

3D SwinT-CNN (Enhancing Local Representations)

SwinT gains enhanced global representation by integrating a parallel 3D CNN branch that
captures nodule shape, boundary texture, and internal intensity features. SwinT-CNN
merges both streams at the feature level, allowing simultaneous use of local and global infor-
mation. As shown in Table 7.2, this fusion improved LIDC performance, increasing sensitivity
by 2.8% and specificity by 2.9%. On the PN9 test set, adding local context increased classifi-
cation accuracy to 89.7% and sensitivity to 86.6%, thereby enhancing the model’s robustness
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and generalization.

The hybrid structure of the model enhanced its interpretability, as demonstrated by the
Grad-CAM visualizations (Fig. 7.7). The saliency maps generated by SwinT-CNN showed
moderate alignment with the annotated nodules and achieved sensitivity values of 0.385,
0.207, and 0.356 across the three samples. The entropy values (0.948, 0.897, 0.821) indicate
that the model paid attention to the region, but the attention was spread out spatially, which
suggests that there is room for improvement in localization precision.

Improved 3D SwinT-CNN (Integrating Anatomical Priors)

The CNN stream is guided toward clinically relevant areas by integrating anatomical priors
via AAG, which injects features from a pretrained 3D U-Net encoder. This enhancement
enables the model to focus on nodule-related structures using spatial cues from segmentation.
As shown in Table 7.2, the improved architecture achieved the highest classification results
on both datasets: 97.3% accuracy, 96.7% sensitivity, 95.1% specificity, and 95.8% precision
on LIDC. The AUC improved from 0.976 (baseline SwinT) to 0.993 (SwinT-CNN). On the
external PN9 dataset, the model reached 93.8% accuracy and 0.963 AUC, confirming gains
in diagnostic precision and generalization.

The improved SwinT-CNN achieved better accuracy results while providing enhanced in-
terpretability features. The Grad-CAM heatmaps of this model achieved higher sensitivity
values (0.548, 0.396, 0.654) than those of SwinT-CNN, indicating better alignment between
the attention map and the actual lesion. The entropy values remained consistently low at
(0.678, 0.595, 0.483), which suggests that the model focuses on clinically significant areas.
The results demonstrate that adding anatomical priors enhances both diagnostic accuracy
and model transparency, which is crucial for clinical use.

7.5.6 Comparison Results and Discussion

Research has introduced multiple deep learning frameworks for pulmonary nodule classifi-
cation, which strive to achieve both high diagnostic precision and model interpretability.
The earlier approaches, including MC-CNN [165], HSCNN [77], and MTMR-Net [45], inves-
tigated multi-task or attribute-driven strategies. The MTMR-Net model provided valuable
insights into inter-attribute relationships but required additional classifiers and complex post-
processing analysis methods, which made the model more complicated and limited its ability
to function as a comprehensive system.

The research of Fu et al. [78] introduced two new attention-based methods that improved
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diagnostic region detection through slice-level weighting and cross-attribute attention mech-
anisms. The technique achieved better performance in specific cases, yet its interpretability
remained focused on particular areas without providing a comprehensive understanding of
the complete spatial relationships. ExPN-Net [5] achieved competitive results by integrat-
ing segmentation priors with classification through anatomical attention and soft activation
maps. The methods required multiple training stages and separate attention modules that
operated independently.

Table 7.3 Performance comparison of benign-malignant classification on LIDC dataset.

Model Year Accuracy (%) Sensitivity (%) Specificity (%) Precision(%) AUC
MC-CNN [165] 2017 87.1 77.0 93.0 - 0.930
Song et al. [166] 2017 84.2 84.0 84.3 - -
HSCNN [77] 2019 84.2 70.5 88.9 - 0.856
Xie et al. [167] 2019 91.6 86.5 94.0 87.8 0.957
MTMR-Net [45] 2019 93.5 83.0 89.4 - 0.979
MSCS-DeepLN [168] 2020 92.7 85.6 94.9 90.4 0.940
Fu et al. [78] 2022 94.7 96.2 82.9 97.8 0.959
Swin-T [169] 2024 93.0 86.0 85.3 87.7 0.960
ExPN-Net [5] 2024 95.5 1.00 94.7 78.0 0.992
Improved SwinT-CNN (Ours) 97.3 96.7 95.1 95.8 0.993

This study presents an end-to-end, unified framework that simultaneously captures global
semantics, local features, and anatomical relevance for the classification of lung nodules.
By leveraging anatomical attention gates (AAG), the model integrates segmentation-derived
priors into parallel CNN and transformer-based pathways. This fusion enables adaptive,
context-aware attention to clinically meaningful regions, eliminating the need for handcrafted
attribute hierarchies or auxiliary modules.

Compared to all state-of-the-art approaches (Table 7.3), the proposed SwinT-CNN model
demonstrates superior performance, achieving the highest accuracy (97.3%), specificity (95.1%),
and AUC (0.993) on the LIDC dataset. These results confirm that the joint modeling of spa-
tial priors and hierarchical features leads to enhanced diagnostic precision and interpretabil-
ity. Notably, the framework aligns with clinical diagnostic practices by producing anatom-
ically interpretable decisions that closely reflect radiological reasoning. Grad-CAM-based
heatmaps confirm improved attention localization and reduced entropy, indicating more fo-
cused and reliable diagnostic inference. These properties address key limitations of previous
CAD systems, paving the way for more trustworthy AI-assisted clinical workflows.
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7.6 Conclusion

The research presented improved 3D SwinT-CNN as an end-to-end hybrid architecture which
unites 3D Swin Transformers with CNNs and segmentation-derived anatomical priors for
lung nodule classification. The model achieved strong classification performance and reli-
able interpretability through its ability to jointly model global context and local features
and spatial attention through anatomical attention gates. The model demonstrated robust-
ness and generalization capabilities through experiments conducted on LIDC-IDRI and PN9
datasets across different imaging conditions. Our future research will focus on enhancing
both accuracy and interpretability through the integration of SwinT-UNet modules into the
transformer stream to achieve better anatomical structure and global semantic fusion. This
research aims to motivate additional studies that unite model performance improvement with
interpretability enhancement to advance AI adoption in medical imaging.
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CHAPTER 8 GENERAL DISCUSSION

This chapter provides a comprehensive discussion of the main contributions of this thesis in
light of the three primary research objectives: (1) Enhancing sensitivity in detecting small
pulmonary nodules; (2) Reducing false positives to improve diagnostic precision; (3) Improv-
ing computational efficiency and real-world applicability; and (4) Promoting interpretability
and clinical transparency. Drawing from four peer-reviewed research articles, the discussion
integrates quantitative evaluations, ablation studies, explainability analyses, and experimen-
tal comparisons across two benchmark datasets (LUNA16 and PN9), highlighting how each
work package contributes to the overarching goals of early-stage lung cancer detection and
its adoption in clinical settings.

8.1 Sensitivity Improvement

Improving sensitivity—particularly for small and early-stage nodules—was a central goal
throughout this thesis. Accurate detection of such nodules is crucial in clinical settings,
where missed detections may lead to delayed diagnoses and reduced patient survival rates.

The first research contribution, presented in Chapter 4, addressed the challenge of low sen-
sitivity in conventional CNN architectures by enhancing feature extraction using a modified
VGG16 model. By combining the last three convolutional layers into a composite feature
map, the Region Proposal Network (RPN) generated more fine-grained proposals. This sig-
nificantly improved recall for small nodules, especially at low IoU thresholds. The proposed
approach maintained high performance even when the number of region proposals was re-
duced from 2000 to 300.

In Chapter 5, sensitivity was further improved via the Optimized Multi-Scale CNN (OMS-
CNN), which used metaheuristic algorithms—Parameter Setting-Free Harmony Search (PSF-
HS) and Beetle Antenna Search (BAS)—to optimize the feature extraction layers. This led
to a CPM score of 0.8922 on LUNA16, surpassing baseline Faster R-CNN configurations and
other models.

Chapter 6 introduced the DA OMS-CNN model, which integrates dual-attention mechanisms
and DA-RoIPooling. With a sensitivity of 96.93% and a CPM score of 0.9112 on LUNA16,
the model achieved state-of-the-art performance. Notably, it reached 0.9331 sensitivity at 1
FP/scan, an essential metric for clinical application.

Ablation studies confirmed that each component (dual attention, DA-RoIPooling, and FPR)
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contributed incrementally to the performance improvements. These enhancements were cru-
cial for detecting subtle and small nodules, thereby fulfilling Objectives A1 and A2. In
addition, the improved SwinT-CNN model in Chapter 7 preserved high sensitivity (96.7%)
while enhancing interpretability, demonstrating that accurate detection and transparency
can be achieved simultaneously.

8.2 False Positive Reduction

Reducing false positives is essential to avoid unnecessary clinical interventions and improve
trust in CAD systems. Each of the four work packages tackled this challenge through archi-
tectural, algorithmic, and interpretability-driven strategies.

Chapter 5 introduced hybrid FPR using 3D CNNs, which effectively filtered non-nodular can-
didates. Chapter 6 further enhanced this stage through ensemble-based learning with three
3D Swin Transformer (3D SwinT) models. These models leveraged attention mechanisms to
suppress noise and irrelevant anatomical patterns.

On LUNA16, the proposed approach achieved a CPM of 0.9112, outperforming leading mod-
els such as TED (0.8846) and MK-3DCNN (0.8591). On PN9, it maintained strong perfor-
mance with a CPM of 0.6034, demonstrating its ability to generalize across datasets. The
system showed robustness even at very low FP rates, a key requirement for clinical deploy-
ment.

Qualitative analysis further confirmed the model’s effectiveness in distinguishing ambiguous
structures near pleural walls or blood vessels. This highlights the value of ensemble attention
and domain-invariant feature learning.

Chapter 7 also contributed to false positive reduction by using anatomical attention gates
to suppress irrelevant activations, thereby improving both classification precision and the
spatial focus of the network.

8.3 Efficiency and Clinical Applicability

Efficiency and deployability were central to the design of all models in this thesis. Deep
learning in medical imaging requires not just accuracy but also speed, memory efficiency,
and interpretability.

Chapter 5 optimized training complexity using PSF-HS and BAS, allowing for automated
hyperparameter tuning. Experiments used scalable infrastructure (V100 GPUs, 192 GB
RAM), warm-up cosine learning rate schedules, and optimizers such as SGD and AdamW.
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Chapter 7 maintained a lightweight dual-path design and leveraged pretrained segmentation
priors, reducing the need for retraining auxiliary modules and improving training stability.

Clinical relevance was evaluated using the PN9 dataset, which includes different acquisi-
tion settings and patient variability. DA OMS-CNN outperformed methods such as SSD512
and RetinaNet, maintaining a CPM above 0.6 and demonstrating its robustness in unseen
domains.

Moreover, the pipeline’s modular design allows for seamless integration into existing CAD
workflows. The candidate detection stage can act as a triage tool, while the FPR mod-
ule supports decision-making. These features point to real-world deployability and fulfill
Objective C1.

8.4 Interpretability and Clinical Transparency

Interpretability plays a crucial role in gaining clinical trust and facilitating the real-world
deployment of AI-based CAD systems. While prior work focused on improving accuracy
and reducing false positives, Chapter 7 addressed the challenge of model transparency by
introducing an interpretable hybrid architecture.

The proposed improved SwinT-CNN model integrates a dual-path structure that combines
3D CNNs and 3D Swin Transformers, along with anatomical attention gates (AAGs) that
inject voxel-level priors from a pre-trained U-Net segmentation model into the CNN branch.
This design helps the model focus on clinically meaningful regions during classification.

Quantitative evaluation using Grad-CAM showed enhanced alignment between the model’s
attention and actual nodule locations. The improved model achieved higher sensitivity val-
ues (0.548, 0.396, 0.654) and lower entropy scores (0.678, 0.595, 0.483), indicating more
precise and focused visual explanations. These interpretability gains were achieved without
compromising performance, as the model reached 97.3% accuracy and 0.993 AUC on LIDC.

Together, these results fulfill Objectives D1 and D2, demonstrating that incorporating anatom-
ical priors and attention mechanisms can simultaneously improve diagnostic performance and
model explainability—key requirements for clinical integration.

8.5 Summary

This chapter has synthesized the key findings of the thesis in alignment with the four core
research objectives: enhancing sensitivity, reducing false positives, improving efficiency and
clinical applicability, and promoting interpretability and clinical transparency. Each of the
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four research articles contributed distinct architectural and algorithmic innovations that to-
gether addressed the major limitations in early-stage lung nodule detection using deep learn-
ing.

The first objective, sensitivity improvement, was achieved through progressive enhancements
in feature representation, starting from a modified VGG16 backbone to dual-attention mech-
anisms and adaptive pooling techniques. These improvements significantly increased recall
rates, especially for small nodules, without compromising efficiency. The second objective fo-
cused on reducing false positives through the use of 3D CNNs and attention-based Swin Trans-
formers. These models improved specificity by distinguishing true nodules from anatomical
lookalikes across diverse patient scans.

The third objective emphasized computational practicality and real-world integration. Tech-
niques such as metaheuristic optimization and modular pipeline design ensured that the
proposed methods remain scalable, generalizable, and compatible with existing CAD sys-
tems.

Finally, the fourth objective addressed the growing demand for model interpretability in clin-
ical workflows. By incorporating anatomical priors and attention-guided saliency mapping,
the proposed SwinT-CNN framework offered high diagnostic accuracy alongside transpar-
ent decision-making. This integration supports clinical trust and positions the model for
deployment in explainable AI-based medical imaging systems.

Overall, this body of work presents a robust and clinically meaningful framework for early-
stage lung cancer detection, setting the stage for future advancements in explainable and
deployable AI tools in medical imaging.
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CHAPTER 9 CONCLUSION

The research conducted in this thesis contributes to the advancement of early-stage lung
cancer detection using deep learning, with a particular emphasis on improving sensitivity
to small nodules, reducing false positives, enhancing clinical applicability, and promoting
interpretability and trust in clinical practice. This work was structured around four primary
research objectives, which were addressed through a series of interrelated studies. Each
study proposed novel methods and architectures grounded in convolutional neural networks,
metaheuristic optimization, vision transformers, and anatomical attention mechanisms to
tackle key limitations of existing computer-aided detection (CAD) systems.

9.1 Insights and Reflections

Throughout this doctoral research, the overarching theme has been the design and refinement
of a robust, interpretable, and clinically relevant framework for lung nodule detection. This
journey began with the generation of enhanced region proposals using a modified VGG16
backbone, continued with metaheuristically optimized multi-scale CNNs, and advanced to a
dual-attention architecture incorporating 3D Swin Transformers for reducing false positives.
Finally, the thesis culminated in a hybrid model that integrates anatomical priors to enhance
both diagnostic accuracy and interpretability.

A key takeaway from this trajectory is the importance of domain-specific architectural adap-
tations for medical imaging tasks. While standard object detection frameworks like Faster
R-CNN provide a solid foundation, their performance on subtle and variable clinical tar-
gets—such as small pulmonary nodules—can be significantly improved through tailored en-
hancements. This thesis demonstrates how components such as DA-RoIPooling, ensemble
attention mechanisms, and anatomical attention gates can bridge the gap between generic
deep learning methods and domain-specific demands.

Another core insight is the value of interpretability in clinical AI. Beyond raw accuracy, the
ability of a model to explain its decisions visually and anatomically is essential for build-
ing clinical trust. The final study in this thesis integrated segmentation-derived priors and
saliency-based evaluations (e.g., Grad-CAM, sensitivity, entropy) to ensure that predictions
were not only accurate but also explainable and focused on relevant structures.

Equally important was the emphasis on reproducibility and generalizability. The use of
benchmark datasets (LUNA16 and PN9), along with systematic experimental design and
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ablation studies, helped ensure that the proposed methods are scientifically rigorous and
clinically transferable. Each contribution built upon the previous one, forming a coherent
methodological pipeline that elevates both the performance and practical utility of CAD
systems.

From a research perspective, this work has provided extensive experience in designing deep
learning systems, experimental tuning, and integrating optimization techniques. From a
broader standpoint, it reinforced the importance of aligning technical innovation with clinical
needs, emphasizing that trust, transparency, and interpretability are no longer optional—they
are foundational for the adoption of AI in healthcare.

9.2 Future Research Directions

Building upon the foundations established in this thesis, several promising directions can be
pursued to enhance further the impact, interpretability, and clinical viability of AI-driven
lung nodule detection systems:

• Advancing Explainable AI for Clinical Trust: While this thesis introduced anatom-
ical attention and Grad-CAM-based visual explanations, future work could focus on
integrating multi-level interpretability frameworks. These may include concept-based
explanations, clinician-aligned attribution methods, and post-hoc analysis tools such
as SHAP and LIME. The goal is to align model reasoning with radiological decision-
making and support transparent clinical deployment.

• Multimodal and Longitudinal Data Integration: Current methods rely solely
on single-phase CT imaging. Incorporating multimodal sources—such as PET scans,
EHRs, or longitudinal CT studies—could provide more context for malignancy assess-
ment and temporal tracking, enabling models to predict nodule behavior over time.

• Model Compression and Deployment Efficiency: Although the proposed models
demonstrate high diagnostic performance, their computational demands may limit real-
world use. Future research could explore techniques such as neural architecture search
(NAS), pruning, quantization, and knowledge distillation to reduce inference time and
memory footprint.

• Progressive Nodule Modeling: Developing predictive models that track morpho-
logical changes in pulmonary nodules across timepoints can enhance malignancy risk
stratification and assist in personalized treatment planning. Temporal modeling using
recurrent or transformer-based architectures could be explored.
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• Clinical Trials and User-Centered Validation: Ultimately, AI tools must be val-
idated in clinical settings. Future efforts should involve prospective clinical trials, real-
time radiologist feedback, and clinician-in-the-loop systems to assess usability, inter-
pretability, and diagnostic value under real-world constraints.

In conclusion, this thesis offers a comprehensive contribution to the field of AI-based medical
image analysis by proposing novel, interpretable, and clinically relevant solutions for early
lung cancer detection. The developed models not only surpass existing benchmarks in terms
of accuracy and robustness, but also promote transparency and clinical trust—key enablers
for real-world adoption. Grounded in rigorous experimentation and aligned with evolving
healthcare needs, these contributions lay a strong foundation for future innovations at the
intersection of artificial intelligence and clinical decision-making.
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