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DÉDICACE 

Ce que nous devons faire sur Arrakis n’a jamais été fait pour une planète tout entière. Nous 

devons utiliser l’homme (la femme1) en tant que force écologique constructrice [...]. Ceci afin de 

transformer le cycle de l’eau et de construire un paysage. 

Frank Herbert, Premier livre de Dune 

  

 
1 Note de l’autrice de cette thèse 
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RÉSUMÉ 

Les impacts des changements climatiques sont de plus en plus marqués, obligeant les villes à 

développer des stratégies de mitigation et d’adaptation efficaces. Parmi les menaces climatiques 

pesant sur la santé publique figurent l’intensification des pluies causant des débordements d’égouts 

unitaires (DEU) et des inondations urbaines, ainsi que la hausse des températures favorisant la 

formation d’îlots de chaleur urbains (ICU). 

Dans ce contexte, les infrastructure vertes et bleues (IVB) émergent comme une solution innovante. 

Ce type d’infrastructure permet non seulement d’améliorer la gestion des eaux pluviales en milieu 

urbain grâce à un contrôle à la source, mais elles offrent également un ensemble de cobénéfices. 

Parmi ceux-ci, on note la réduction des DEU, la mitigation des ICU, l’amélioration de la 

biodiversité et de la qualité de l’aire ainsi que des effets positifs sur la santé mentale grâce à 

l’exposition au verdissement. Toutefois, leur implantation reste souvent opportuniste, limitant 

l’atteinte de leur plein potentiel. 

L’objectif principal de ce projet de recherche est d’intégrer les impacts sur la santé publique des 

IVB pour la planification urbaine et la gestion des eaux pluviales. Les sous-objectifs qui en 

découlent sont : (1) Développer une méthode de priorisation des bassins de drainage urbains pour 

réduire les DEU dans le contexte des changements climatiques, (2) Développer et appliquer un 

cadre d’analyse de la résilience qui tient compte de la gestion des eaux pluviales et de la santé et 

(3) Évaluer les changements futurs des concentrations en microorganismes pathogènes dans un 

cours d’eau urbain en aval des rejets d’eaux usées et évaluer les risques d’infection via l’exposition 

par la baignade récréative avec et sans IVB comme stratégie de contrôle de la qualité de l’eau. 

La première partie de ce projet de recherche visait à approfondir la compréhension du phénomène 

des débordements d’égouts unitaires (DEU) et à évaluer l’influence potentielle des changements 

climatiques sur leur fréquence. Pour ce faire, deux méthodes de priorisation des bassins de drainage 

urbain (BDU) ont été adaptées puis combinées dans le but de créer un indice permettant d’identifier 

les BDU les plus vulnérable en climat futur. La première méthode repose sur une fiche technique 

évaluant la vulnérabilité des prises d’eau potable en milieu urbain, tandis que la seconde s’appuie 

sur un modèle de prédiction des DEU tenant compte de l’accumulation des précipitations sur 

différentes durées. Les résultats de cette analyse ont montré que les changements climatiques 

provoqueront une augmentation exponentielle de la fréquence des DEU en période sans glace (mai 
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à octobre). L’indice de priorisation a également permis de distinguer les BDU nécessitant une 

intervention immédiate à court terme, et ceux présentant une vulnérabilité accrue à plus long terme, 

favorisant ainsi une allocation plus stratégique des ressources par les décideurs. La force de cette 

méthode réside dans le peu de données nécessaire offrant aux municipalités une approche 

abordable pour prioriser les actions sans dépendre de modèles hydrologiques coûteux. 

La seconde partie de ce projet de recherche consistait à adopter une vision plus holistique du milieu 

urbain en y intégrant la dimension de la santé publique. Afin de développer cette vision holistique, 

la résilience a été abordée. Une revue de la littérature rapide a d’abord été réalisée afin de mieux 

définir la notion de résilience dans le contexte du projet, en identifiant ses principaux types ainsi 

que ses composantes clés. Des indicateurs quantitatifs ont ensuite été associés à chacune de ces 

composantes. Cette démarche a permis de développer un cadre d’analyse de la résilience capable 

d’évaluer l’impact de différentes stratégies d’implantation d’IVB en intégrant à la fois la gestion 

des eaux pluviales et les dimensions socioécologiques, incluant les enjeux de santé. Quatre 

stratégies d’implantation d’IVB ont été développées à l’aide d’un outil spatial d’aide à la 

planification multicritère. Les résultats mettent en évidence la variabilité spatiale de la résilience 

sur le territoire, en fonction de l’utilisation des sols, de l’imperméabilité et de la densité de 

population. Les stratégies basées sur les besoins ont renforcé la résilience dans les zones 

vulnérables, tandis que les approches basées sur les opportunités ont été plus efficaces dans les 

zones à faible densité. Cette étude souligne la valeur de la mise en œuvre stratégique des IBV pour 

atténuer le ruissellement et les ICU, réduire les charges de contaminants et la fréquence des 

débordements, et améliorer la santé publique dans un climat urbain changeant. 

Finalement, la troisième partie du projet de recherche visait à quantifier l’efficacité des IVB pour 

réduire le risque d’infection lors de la baignade. En effet, de plus en plus, les villes souhaitent 

augmenter l’accessibilité à la baignade afin que la population puisse bénéficier des effets positifs 

de cette activité. Cependant, les DEU, qui augmenteront sous l’effet des changements climatiques, 

pourraient mettre en danger la population si celle-ci est exposée à des microorganismes pathogènes 

lors de la baignade. Ainsi, cette partie du projet de recherche examine dans quelle mesure les IVB 

peuvent atténuer les impacts des changements climatiques sur la qualité microbiologique de l’eau, 

et, par conséquent, assurer la sécurité des baigneurs dans les zones de baignade situées en aval des 

ouvrages de débordement en milieu urbain. L’approche combine la modélisation hydrodynamique 

et hydrologique avec l’évaluation quantitative du risque microbien (ÉQRM) pour évaluer le 
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potentiel des stratégies d’implantation des IVB allant de 0% à 50% des surfaces imperméables 

converties. Une stratégie impliquant une augmentation de la capacité de stockage a également été 

envisagée afin de comparer ses performances en termes de réduction des risques. Les résultats 

montrent que la mise en place d’IVB réduit la probabilité d’infection pour toutes les saisons, le 

bénéfice le plus important étant observé en été, lorsque l’utilisation de l’eau à des fins récréatives 

est la plus importante.  

Les résultats de ce projet de recherche ont conduit à ces principales conclusions : 

• Une augmentation exponentielle des surverses est attendue en raison des changements 

climatiques. 

• La résilience varie spatialement sur le territoire, ce qui souligne l’importance d’adapter les 

projets d’implantation d’IVB aux spécificités locales. 

• Les IVB sont efficaces pour réduire le risque d’infection et de maladie en climat actuel et 

futur.  

Globalement, ce projet de recherche a contribué au développement des connaissances sur les 

impacts des IVB sur la santé publique dans la prise de décision pour la planification urbaine et 

la gestion des eaux pluviales dans le contexte québécois. Les différentes méthodes développées 

et les résultats obtenus dans le cadre de cette recherche pourraient soutenir les décideurs dans 

la planification des IVB, en leur permettant d’intégrer les impacts sur la santé publique. De 

plus, le travail effectué dans cette thèse pourrait servir au développement d’un plan de gestion 

de la sécurité des eaux récréatives adapté au contexte québécois. 
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ABSTRACT 

The impacts of climate change are becoming increasingly pronounced, compelling cities to develop 

effective mitigation and adaptation strategies. Among the climate-related threats to public health 

are the intensification of rainfall leading to combined sewer overflows (CSOs) and urban flooding, 

as well as rising temperatures contributing to the formation of urban heat islands (UHIs). 

In this context, blue-green infrastructure (BGI) is emerging as an innovative solution. These types 

of infrastructures not only improve urban stormwater management through source control but also 

offer a range of co-benefits. These include reducing CSOs, mitigating UHIs, enhancing 

biodiversity and air quality, and improving mental health through exposure to green spaces. 

However, their implementation is often opportunistic, limiting the full realization of their potential. 

The main objective of this research project is to integrate the public health impacts of BGI into 

urban planning and stormwater management. The resulting sub-objectives are: (1) to develop a 

method for prioritizing urban drainage catchments to reduce CSOs in the context of climate change; 

(2) to develop and apply a resilience analysis framework that considers both stormwater 

management and public health; and (3) to assess future changes in pathogenic microorganism 

concentrations in an urban river downstream from CSO discharges and evaluate infection risks 

through recreational water exposure, with and without BGI as a water quality control strategy. 

The first part of this research aimed to deepen the understanding of the CSO phenomenon and 

assess the potential influence of climate change on their frequencyTwo prioritization methods for 

urban drainage catchments were adapted and combined to create an index that identifies the most 

vulnerable urban drainage catchments s under future climate conditions. The first method is based 

on a technical sheet assessing the vulnerability of urban drinking water intakes, while the second 

relies on a CSO prediction model that considers accumulated rainfall over different durations as 

explanatory variable. The results showed that climate change will lead to an exponential increase 

in CSO frequency during the ice-free period (May to October). The prioritization index also 

distinguished urban drainage catchments requiring immediate action from those with increased 

long-term vulnerability, thus supporting more strategic resource allocation by decision-makers. A 

key strength of this method lies in its minimal data requirements, offering municipalities an 

affordable approach to prioritizing actions without relying on expensive hydrological models. 
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The second part of this research adopted a more holistic view of the urban environment by 

incorporating the public health dimension. To support this holistic perspective, the concept of 

resilience was explored. A rapid literature review was conducted to define resilience in the context 

of this project, identifying its main types and key components. Quantitative indicators were then 

associated with each component. This process led to the development of a resilience analysis 

framework capable of evaluating the impact of different BGI implementation strategies by 

integrating both stormwater management and socio-ecological dimensions, including public health 

concerns. Four BGI implementation strategies were developed using a spatial multi-criteria 

planning tool. The results highlight the spatial variability of resilience across the territory, 

depending on land use, imperviousness, and population density. Need-based strategies enhanced 

resilience in vulnerable areas, while opportunity-based approaches perform better in low-density 

zones. This study emphasizes the value of strategic BGI implementation for mitigating runoff and 

UHIs, reducing contaminant loads and overflow frequency, and improving public health in a 

changing urban climate. 

Finally, the third part of this research project aimed to quantify the effectiveness of BGI in reducing 

infection risk during recreational water activities such as swiming. More and more, cities are 

seeking to increase access to swimming to promote the health benefits of this activity. However, 

CSOs, which are expected to increase due to climate change, could could threaten public health by 

exposing swimmers to pathogenic microorganisms. This part of the project therefore examines the 

extent to which BGI can mitigate the impacts of climate change on microbial water quality, thereby 

ensuring the safety of swimmers in swimming areas located downstream from overflow structures 

in urban settings. The approach combines hydrodynamic and hydrological modeling with 

quantitative microbial risk assessment (QMRA) to evaluate the effectiveness of BGI 

implementation strategies converting between 0% and 50% of impervious surfaces. A strategy 

involving increased storage capacity was also considered to compare performance in terms of risk 

reduction. The results show that BGI implementation reduces the probability of infection across all 

seasons, with the greatest benefit observed in summer when recreational water use is at its peak. 

The findings of this research project led to the following key conclusions: 

• An exponential increase in CSO frequency is expected due to climate change. 
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• Resilience varies spatially across the territory, highlighting the importance of tailoring BGI 

projects to local conditions. 

• BGI is effective in reducing infection and disease risks under both current and future 

climate conditions. 

Overall, this research project contributed to the advancement of knowledge on the public health 

impacts of BGI in urban planning and stormwater management decision-making within the Quebec 

context. The various methods developed, and results obtained in this research could support 

decision-makers in planning BGI while integrating public health considerations. Furthermore, the 

work carried out in this thesis could serve as a foundation for developing a recreational water safety 

management plan adapted to the Quebec context. 
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CHAPITRE 1 INTRODUCTION 

Les communautés urbaines sont de plus en plus confrontées aux impacts des aléas climatiques 

exacerbés par les changements climatiques et l’aménagement des villes. Ces phénomènes affectent 

le climat local et perturbent le cycle hydrologique, créant de nouveaux défis pour les populations 

urbaines (Leveque et al., 2021; Norton et al., 2015). En particulier, les événements climatiques 

extrêmes, tels que les étés plus chauds et les pluies intenses, favorisent des phénomènes comme la 

formation d’îlots de chaleur urbains (ICU), les débordements d’égout unitaire (DEU) et les 

inondations urbaines augmentant ainsi la vulnérabilité des populations et des écosystèmes urbains. 

De plus, les changements climatiques accentuent les inégalités sociales en touchant de manière 

disproportionnée certains groupes et en exacerbant les tensions sociales (ONU-Habitat, 2012). Ces 

enjeux, bien que particulièrement visibles au Québec, se manifestent également à l’échelle 

mondiale, affectant de nombreuses villes confrontées à une urbanisation rapide et à des 

vulnérabilités climatiques similaires (IPCC, 2023; Zou et al., 2023). 

Outre leurs effets sur l’environnement, ces événements affectent la santé des individus. Par 

exemple, les îlots de chaleur urbains peuvent entraîner des inconforts, exacerber des problèmes de 

santé chroniques et contribuer à la dégradation de la qualité de vie (Giguère, 2009). Les DEU 

constituent un défi majeur pour les grandes agglomérations urbaines et leur gestion est devenue 

une priorité. En 2020, plus de 52 0002 événements de DEU ont été recensés au Québec, mettant en 

lumière la vulnérabilité du réseau de drainage urbain. Les DEU surviennent lorsque la capacité du 

réseau de drainage est dépassée et l’eau provenant des conduites d’égout est rejetée directement 

dans les cours d’eau récepteurs sans être traitée (Donovan et al., 2008b; Joshi et al., 2020; Passerat 

et al., 2011). L’eau déversée lors des événements de surverses est chargée en nutriments et en 

contaminants provenant des eaux usées domestiques et des eaux de ruissellement et les surverses 

peuvent même parfois être plus concentrées en contaminants que les eaux sanitaires (Autixier et 

al., 2014; USEPA, 2004).  

  

 
2 https://www.ledevoir.com/environnement/643095/plus-de-52-000-deversements-d-eaux-usees-au-quebec-en-2020 
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Les microorganismes provenant des DEU peuvent présenter des risques importants pour la santé 

publique, entraînant des maladies gastro-intestinales chez les populations exposées (Haley et al., 

2024; Miller et al., 2022), des fermetures de plages (Olds et al., 2018; Patz et al., 2008), une toxicité 

pour la vie aquatique et une dégradation esthétique du milieu (USEPA, 2004). Ce phénomène met 

en évidence la nécessité de prendre en compte le risque microbien dans les stratégies de gestion 

des ressources en eau, particulièrement en ce qui concerne les eaux de baignade (World Health 

Organisation, 2017).  

L’augmentation anticipée de la fréquence des événements extrêmes futurs ainsi qu’une réduction 

des périodes de retour pour les événements extrêmes actuels (S. Innocenti et al., 2019; Jalbert et 

al., 2017; Martel et al., 2020) affecteront la conception et le niveau de service des infrastructures 

hydrauliques actuelles, telles que les réseaux d’égouts, en raison de leur longue durée de vie. 

Actuellement, les infrastructures de gestion des eaux pluviales, généralement conçues pour durer 

entre 50 et 75 ans, pourraient s’avérer inadaptées aux besoins futurs dans un contexte de 

changement climatique (Forsee & Ahmad, 2011; Martel et al., 2020; Means III et al., 2010).  

Les événements de précipitations extrêmes, par exemple ceux ayant une période de retour de 100 

ans, devraient devenir 2 à 5 fois plus fréquents (Martel et al., 2020), ce qui signifie que les systèmes 

existants risquent de ne pas répondre aux conditions climatiques futures, posant ainsi des risques 

pour la sécurité publique. Cette variabilité accrue due aux changements climatiques introduit de 

nouvelles incertitudes dans les hypothèses de base de l’ingénierie des infrastructures, ce qui exige 

que les planificateurs intègrent un éventail plus large de scénarios potentiels (Means III et al., 

2010). En conséquence, la sécurité publique doit être une priorité lors de l’établissement des 

critères de conception, notamment pour la détermination des quantiles de précipitations extrêmes 

(Martel et al., 2020). 

Face à ces défis, l’adaptation des infrastructures urbaines est cruciale pour réduire les impacts 

négatifs sur les populations et les écosystèmes. Les infrastructures vertes et bleues (IVB) sont une 

solution innovante qui permet d’améliorer la gestion de l’eau à différentes échelles (MELCC, 2014; 

USEPA, 2021b) tout en offrant de nombreux cobénéfices pour les communautés (Dagenais et al., 

2017; MELCC, 2014; Rayfiel et al., 2015).  
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Par exemple, les biorétentions, les toits verts et les marais filtrants sont des types d’IVB qui 

favorisent l’infiltration, l’évapotranspiration et la réutilisation de l’eau, contribuant ainsi à la 

réduction des débits de ruissellement et à l’amélioration de la qualité de l’eau (C. Li et al., 2019; 

MELCC, 2014). En réduisant le volume des ruissellements et en filtrant les contaminants, les IVB 

peuvent atténuer les risques associés aux DEU, tout en réduisant les effets des îlots de chaleur, en 

favorisant le transport actif et en améliorant la qualité de l’air ainsi que la santé de la population 

(Autixier et al., 2014; Dagenais et al., 2017; INSPQ, 2017; Rayfiel et al., 2015). 

Les IVB pourraient également être considérées comme une solution intéressante afin de protéger 

la qualité des eaux récréatives. Elles pourraient permettre d’atténuer les effets des DEU et réduire 

la contamination microbiologique des eaux de baignade en capturant une fraction des eaux de 

ruissellement et en filtrant les contaminants (Autixier et al., 2014; Joshi et al., 2020; USEPA, 2014), 

contribuant ainsi à limiter les débordements et à protéger la qualité de l’eau (Autixier et al., 2014; 

Joshi et al., 2020; USEPA, 2014). En protégeant les zones de baignade, notamment pendant les 

mois d’été chaud, les IVB contribuent à garantir des espaces sûrs et agréables pour les activités 

aquatiques, favorisant des modes de vie plus sains et attirant le tourisme (Sterk et al., 2016; Wuijts, 

de Vries, et al., 2022). De plus, l’accès aux espaces verts et bleus soutient l’activité physique, le 

bien-être mental et offre un refuge rafraîchissant par temps chaud (Wuijts, de Vries, et al., 2022). 

Cependant, la planification et l’implantation des IVB dans les villes ne doivent pas être ad hoc, 

mais se faire de manière stratégique afin d’optimiser leur efficacité et garantir une distribution 

équitable des bénéfices (Hoover et al., 2021). Le recours à des outils d’analyse spatiale multicritère 

comme l’outil Spatial Suitability ANalysis TOol (SSANTO, (Kuller et al., 2019; Lacroix et al., 

2024)) peut aider à identifier les sites les plus adaptés à l’implantation de ces infrastructures, tout 

en prenant en compte les critères techniques, environnementaux et sociaux (Kuller et al., 2019; 

Lacroix et al., 2024). 

Dans ce contexte, il est essentiel de considérer la résilience comme un principe clé de 

l’aménagement urbain. La résilience urbaine, définie comme la capacité des systèmes urbains et 

de leurs habitants à s’adapter positivement aux crises, est un facteur déterminant pour garantir un 

environnement urbain durable et sécurisé face aux risques liés au climat (CabinetOffice, 2011; 

ONU-Habitat, 2012). 
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Les IVB jouent un rôle crucial dans cette résilience, en permettant aux villes de mieux faire face 

aux défis posés par les changements climatiques, tout en améliorant la qualité de vie des habitants 

et en protégeant la santé publique. 

Dans le but d’améliorer la résilience des villes, notamment face aux effets des changements 

climatiques, ce projet a pour objectif d’intégrer les impacts des IVB sur la santé publique dans la 

planification urbaine et la gestion des eaux pluviales. 

Cette recherche aborde plusieurs thématiques, notamment les changements climatiques, la santé, 

la résilience et les infrastructures vertes et bleues. De manière plus spécifique, les objectifs de cette 

recherche sont les suivants :  

• Développer une méthode de priorisation des bassins de drainage urbains pour réduire les 

DEU dans le contexte des changements climatiques. 

• Développer et appliquer un cadre d’analyse de la résilience qui tienne compte à la fois de 

la gestion des eaux pluviales et de l’aspect socioécologique, en tenant compte de la santé. 

• Évaluer les changements futurs des concentrations en microorganismes pathogènes tels que 

Giardia et de Cryptosporidium dans un cours d’eau urbain en aval des rejets d’eaux usées 

et évaluer les risques d’infection via l’exposition récréative avec et sans IVB comme 

stratégie de contrôle de la qualité de l’eau.  

Chacun des objectifs mentionnés correspond aux travaux communiqués sous forme d’un article 

scientifique. La combinaison de ces trois objectifs constitue le but de ma thèse et résout la 

problématique soulevée : 

Comment adapter les villes aux impacts croissants des changements climatiques et à l’insuffisance 

des systèmes actuels de gestion des eaux pluviales tout en protégeant la santé publique, en 

particulier face aux risques liés aux îlots de chaleur urbains et aux débordements d’égouts unitaires, 

dans une perspective de résilience urbaine ? 

1.1 Organisation de la thèse 

Cette thèse se divise en 9 chapitres. Le CHAPITRE 2 présente une revue de la littérature portant 

sur : les débordements d’égouts unitaires (DEU), les infrastructures vertes et bleues, la résilience, 

les outils d’aide à la décision spatiale multicritère (SIG-AMCD) et le cadre réglementaire pour les 

prises d’eau potable, les surverses ainsi que pour la qualité des eaux de baignade.  
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Le CHAPITRE 3 expose en détail la démarche de l’ensemble de ce projet de recherche. Ce chapitre 

présente d’abord les principales lacunes issues de la revue de la littérature. Puis, les différents 

objectifs, leur originalité et leur contribution, les questions de recherche ainsi que la méthodologie 

pour faire ce projet sont exposés dans les sections 3.2 et 0 de ce chapitre. Les résultats liés à chaque 

article sont présentés dans les chapitres 4, 5 et 6 : 

• CHAPITRE 4 (Article 1 accepté à Environmental Challenges, janvier 2025):  Strategic 

Prioritization of Sewersheds to Mitigate Combined Sewer Overflows under Climate 

Change 

• CHAPITRE 5 (Article 2 soumis à Blue Green systems, juillet 2025): Assessing the impact 

of strategic implementation of blue-green infrastructure on urban resilience  

• CHAPITRE 6 (Article 3 soumis à Environmental Science: Water Research & Technology, 

juillet 2025): Can blue-green infrastructure mitigate waterborne infection risks through 

recreational activities in densely urbanized waterways?  

Les aspects méthodologiques et les résultats complémentaires sont présentés au CHAPITRE 7. 

Finalement, une discussion et une conclusion générale ainsi qu’une section recommandations sont 

présentées aux CHAPITRE 8 et CHAPITRE 9.  
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CHAPITRE 2 REVUE DE LITTÉRATURE 

Cette section de la thèse présente l’état actuel des connaissances afin de situer précisément le projet 

de recherche dans son contexte, tout en mettant en évidence les lacunes existantes dans la littérature 

scientifique et la pratique. Bien que chaque article publié ou soumis pour publication dans le cadre 

de cette thèse (Chapitres 4, 5 et 6) propose une revue de la littérature ciblée, le CHAPITRE 2couvre 

un ensemble plus large de références, visant à enrichir la compréhension globale du sujet et à 

appuyer la formulation des hypothèses et des objectifs de recherche. La Figure 2-1 illustre les 

principaux facteurs influençant la contamination des zones de baignade en milieu urbain. Cette 

contamination peut notamment résulter des débordements d’égouts unitaires (DEU), qui 

transportent un mélange d’eaux usées domestiques et de ruissellement urbain. Ce mélange est 

souvent chargé en contaminants, tels que des matières fécales, divers microorganisme et 

contaminants accumulés sur la chaussée. Les DEU sont eux-mêmes influencés par des facteurs 

comme les épisodes de pluie et l’imperméabilisation croissante des surfaces urbaines, qui limite 

l’infiltration de l’eau dans le sol et favorise son écoulement rapide vers les réseaux souterrains. 

Enfin, les événements pluvieux, de plus en plus intenses et fréquents sous l’effet du changement 

climatique, accentuent ces phénomènes.  
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Figure 2-1 Facteurs influençant la contamination des zones de baignade : débordements d’égout unitaire, présence de 

microorganismes pathogènes, urbanisation accrue, changements climatiques. 

Chaque élément montré dans la Figure 2-1 est présenté de manière plus détaillée dans la revue de 

la littérature. La thématique des DEU (section 2.1) est d’abord abordée, car les DEU sont au cœur 

du projet de recherche. Les DEU posent un risque sanitaire pour les populations susceptibles d’être 

exposées à des contaminants, notamment lors d’activités récréatives, telles que la baignade, où 

l’ingestion d’eau contaminée est possible. Il est donc essentiel de bien cerner l’état des 

connaissances actuelles sur les DEU pour comprendre ce phénomène. Les différentes méthodes 

pour la prédiction et l’évaluation des DEU seront également abordées dans cette revue de la 

littérature afin d’identifier les avantages et les inconvénients des différentes méthodes proposées 

(section 2.1.5). La santé des communautés urbaines denses constitue le fil conducteur, ainsi, le 

thème de la santé publique est abordé, puisque cela fait le lien entre les atteintes à la santé et les 

modifications à l’environnement naturel et bâti (section 2.1.3).  
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Cela permet de souligner l’importance de la mise en place stratégique des infrastructures vertes et 

bleues (IVB) afin d’améliorer la distribution de celles-ci sur un territoire. La seconde section met 

l’accent sur les IVB, qui constituent un axe central en raison de leurs avantages pour la gestion des 

eaux pluviales ainsi que de leurs co-bénéfices pour la santé et le bien-être des communautés afin 

de montrer comment la recherche s’insère dans la pratique. 

2.1 Débordements d’égouts unitaires (surverses) 

Ce volet a pour objectif de mieux comprendre les causes et les conséquences en lien avec la santé 

publique des événements de surverse. Il vise également à savoir comment les IVB peuvent limiter 

leur occurrence et leurs conséquences.  

2.1.1 Causes des DEU 

Les débordements d’égout unitaires se produisent lorsque la capacité d’un réseau unitaire 

(combinant les eaux usées sanitaires et pluviales) est excédée, entraînant le rejet direct des eaux 

non traitées dans les cours d’eau récepteurs sans traitement préalable (Donovan et al., 2008b; Joshi 

et al., 2020). Ces événements surviennent principalement lors de fortes précipitations ou durant la 

fonte des neiges, lorsque le volume d’eau de ruissellement augmente et dépasse la capacité des 

conduites (Madoux-Humery et al., 2013; Olds et al., 2018; Patz et al., 2008). L’eau déversée est 

un mélange d’eaux usées domestiques et de ruissellement, riche en nutriments et en contaminants, 

parfois à des concentrations plus élevées que dans les eaux usées domestiques ordinaires (USEPA, 

2004). 

Les DEU introduisent ainsi des contaminants fécaux dans les milieux aquatiques, augmentant les 

niveaux d’indicateurs microbiens associés à l’humain (Olds et al., 2018) et transportant divers 

micropolluants organiques (Launay et al., 2016). Les pathogènes présents dans ces rejets 

constituent une menace significative pour la santé publique, pouvant causer des maladies gastro-

intestinales dans les populations exposées (Haley et al., 2024; Miller et al., 2022), entraînant des 

fermetures de plages, une toxicité pour la vie aquatique et une dégradation esthétique des milieux 

naturels (USEPA, 2004).  
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L’intensification des précipitations pourrait entraîner une augmentation des événements de 

surverses (Arnbjerg-Nielsen et al., 2013; Derx et al., 2023; Leveque et al., 2021; Sachindra et al., 

2016). Selon les prévisions, la fréquence et l’intensité des pluies extrêmes devraient croître, rendant 

probable une hausse des DEU (Leveque et al., 2021; Patz et al., 2008; USEPA, 2008). En effet, 

l’intensification des précipitations extrêmes accroît la quantité d’eaux pluviales s’écoulant vers le 

système d’égout, augmentant ainsi le risque de DEU (Miller & Hutchins, 2017). Gogien et al. 

(2023) ont utilisé des séries de précipitations désagrégées pour évaluer l’impact du changement 

climatique sur les DEU : les résultats montrent une augmentation des volumes annuels déversés, 

variant de 13 % à 52 % selon le modèle climatique considéré. Des résultats similaires sont rapportés 

dans un bassin urbanisé en Autriche (Derx et al., 2023). 

Par ailleurs, les changements climatiques, en augmentant à la fois les besoins en eau douce et en 

menaçant sa qualité, accentuent la vulnérabilité des populations urbaines et des écosystèmes 

naturels face aux risques climatiques (Leveque et al., 2021). 

2.1.2 Polluants et contaminants présents dans les eaux de DEU 

Les DEU entraînent une augmentation significative des concentrations et des charges de polluants 

associés à l’activité humaine, atteignant des niveaux supérieurs d’un ordre de grandeur par rapport 

aux fortes pluies sans DEU (Olds et al., 2018). Ces charges en polluants sont directement liées au 

degré d’urbanisation du bassin versant, faisant des DEU un enjeu majeur en milieu urbain 

fortement densifié (Farina et al., 2024).  

Parmi les contaminants, on retrouve sept pathogènes de référence identifiés par l’EPA: 

Cryptosporidium, Giardia, Salmonella, Norovirus, Rotavirus, Enterovirus et Adénovirus (McBride 

et al., 2013). Ces agents sont utilisés comme indicateurs de référence pour évaluer la qualité 

microbiologique de l’eau, car ils représentent des risques sanitaires majeurs et peuvent refléter la 

présence d’une grande diversité d’autres microorganismes pathogènes moins surveillés. En plus 

des microorganismes pathogènes, les DEU transportent des polluants variés, comme la matière 

organique, les nutriments (azote et phosphore), les matières en suspension, les métaux lourds et 

d’autres substances nocives (Gooré Bi et al., 2015). Ces eaux de ruissellement et de débordements 

sont des sources majeures de contamination microbienne des eaux de surface urbaines (Sterk et al., 

2016). 
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Plusieurs contaminants peuvent se retrouver dans les eaux de surverses, les plus fréquents sont 

indiqués ci-dessous (Gouvernement du Canada, 2013a, 2013b; Launay et al., 2016; MELCC, 2014; 

USEPA, 2004) : 

Nutriments : L’azote, le phosphore, les nitrites et les nitrates sont des types de polluants pouvant 

se retrouver dans les eaux de surverses via les eaux de ruissellement ou les eaux sanitaires. Un 

excès de nutriments peut notamment entraîner l’eutrophisation du milieu aquatique et limiter les 

activités récréatives liées à l’utilisation du cours d’eau récepteur en raison de la prolifération de 

cyanobactéries. 

MES : Les matières en suspension (MES) augmentent la turbidité de l’eau et peuvent transporter 

d’autres éléments, comme des métaux lourds, des pesticides et des bactéries, qui sont toxiques pour 

les êtres vivants.  

Microorganismes : Ce type de contaminants inclut par exemple les virus, les bactéries et les 

coliformes fécaux ou totaux. Les microorganismes peuvent être à l’origine de maladies dans les 

populations. Les sources principales de contamination par les microorganismes sont les DEU, les 

installations septiques déficientes, les déchets animaux et certaines espèces animales vivant dans 

le milieu urbain 

Autres : Dans cette catégorie, il est possible d’inclure tous les contaminants générés par les déchets 

qui se retrouvent dans les rues provenant des activités anthropiques (sac de plastique, tasse à café, 

mégots de cigarette). Ces déchets sont entraînés dans les conduites par les eaux de ruissellement.  

Cette pollution représente une menace importante pour la santé publique, notamment dans les eaux 

de baignade où les utilisateurs risquent une ingestion accidentelle de pathogènes et d’autres 

polluants. Les sections suivantes abordent les conséquences sur des DEU sur la santé et la gestion 

des DEU par les IVB respectivement. Ces sections établissent le cadre nécessaire pour répondre à 

la question suivante: les IVB constituent-ils une solution envisageable pour protéger la santé 

humaine en milieu urbain (article 3,CHAPITRE 6)? 
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2.1.3 Conséquences des DEU sur la santé publique 

Les effets des DEU sur la qualité de l’eau et la santé des écosystèmes urbains sont liés à plusieurs 

mécanismes. La présence de polluants dans les DEU s’explique par la remise en suspension des 

dépôts accumulés dans les égouts et le ruissellement de surface lors des épisodes pluvieux 

(Madoux-Humery et al., 2013; Passerat et al., 2011; Wang, 2014). De plus, les caractéristiques du 

bassin versant, telles que le degré d’urbanisation et la densité de surfaces imperméables, 

influencent fortement la quantité de polluants déversés (Farina et al., 2024; Olds et al., 2018). En 

somme, les DEU représentent une menace sérieuse pour la qualité des eaux réceptrices, mettant en 

danger la vie aquatique, la qualité des sources d’eau potable et la santé humaine. 

L’une des principales menaces pour les prises d’eau potable réside dans la concentration d’un 

contaminant dépassant la capacité de traitement de l’usine de production d’eau potable, ce 

phénomène est également appelé « pointe » (Dorner et al., 2006; Sylvestre, Prévost, et al., 2021; 

Taghipour et al., 2019; Taghipour et al., 2025). Cette surcharge peut être provoquée par un DEU à 

la suite de précipitations importantes. Lors de la surveillance de la qualité de l’eau brute, une 

attention particulière doit être portée aux événements pluvieux, qui peuvent entraîner des charges 

pathogènes accrues (Dorner et al., 2007). En effet, la concentration maximale de pathogènes peut 

survenir avant le pic de turbidité, car ces microorganismes sont souvent localisés plutôt que répartis 

uniformément dans le bassin versant (Dorner et al., 2007). Cette dynamique s’explique par le fait 

que les pathogènes, issus de sources ponctuelles telles que les rejets d’eaux usées, peuvent être 

transportés rapidement dès le début de l’épisode pluvieux, tandis que la turbidité, liée à l’érosion 

des sols et à la remise en suspension des sédiments, atteint son pic plus tard. Ces différences sont 

renforcées par la combinaison de sources ponctuelles locales et de pollutions diffuses à l’échelle 

du bassin versant, notamment lors de la fonte des neiges ou du ruissellement pluvial(Sylvestre, 

Burnet, et al., 2021). Ainsi, un traitement adapté est essentiel pour prévenir les risques d’infection 

liés à la consommation de l’eau. 

Ainsi, la turbidité, fréquemment utilisée comme indicateur principal dans les usines de traitement 

de l’eau pour ajuster les processus en cas de contamination, présente des limites. Les pathogènes 

atteignent souvent leur concentration maximale avant le pic de turbidité (Dorner et al., 2007). Ce 

décalage temporel implique qu’en attendant une hausse de la turbidité pour ajuster le traitement, 

l’usine peut ne pas réagir à temps, exposant ainsi les usagers à des risques de contamination.  
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Bien que pratique, la turbidité ne reflète pas toujours avec précision les dynamiques des 

contaminants microbiologiques, ce qui peut compromettre l’efficacité du traitement dans des 

situations critiques.  

Il convient de souligner que les objectifs d’enlèvement des usines de traitement d’eau potable sont 

établis à partir des concentrations moyennes de contaminants mesurées dans l’eau brute, et non en 

fonction des concentrations de pointe (Ministère du Développement durable de l’Environnement 

et Lutte contre les changements climatiques (MDDELCC), 2017). Par conséquent, rien ne garantit 

que ces installations puissent répondre efficacement à des épisodes ponctuels de forte 

contamination. 

Pour pallier ces insuffisances, une surveillance proactive, combinée à des outils capables de 

détecter directement les pathogènes ou leurs marqueurs spécifiques, est essentielle. Ces approches 

permettraient d’anticiper les pointes précoces et d’améliorer la réactivité des systèmes de 

traitement. Ainsi, il serait possible de mieux protéger la santé publique en garantissant une réponse 

rapide et adaptée lors d’épisodes pluvieux ou de déversements accidentels. Il est également 

essentiel de prévenir ces pics de contaminants, notamment en limitant les DEU par l’implantation 

de mesures de mitigation, telles que les infrastructures vertes et bleues (IVB). 

L’exposition aux contaminants provenant des DEU lors de la pratique des activités récréatives, 

telles que la baignade, peut provoquer des maladies affectant les systèmes respiratoires ou gastro-

intestinaux (Olds et al., 2018; Patz et al., 2008; Tseng & Jiang, 2012), entraînant des symptômes 

tels que la diarrhée et des maladies, comme la giardiase et la cryptosporidiose (Gouvernement du 

Canada, 2012). Les baigneurs sont les plus exposés en raison de l’exposition prolongée et de la 

probabilité plus élevée d’ingérer de l’eau contaminée (Goulding et al., 2012; McBride et al., 2013). 

Par conséquent, ces événements de contamination affectent les populations locales. Par exemple, 

une étude menée sur la rivière Passaic inférieure (États-Unis) montre que la probabilité de 

contracter une maladie gastro-intestinale à la suite de l’ingestion accidentelle d’eau près des DEU 

varie de 14 % à 70 % annuellement pour les scénarios des visiteurs et des usagers récréatifs, 

respectivement (Donovan et al., 2008b). Ces probabilités excèdent largement les seuils de risque 

jugés tolérables par les autorités sanitaires. À titre comparatif, l’Organisation mondiale de la santé 

(OMS) recommande un seuil de risque acceptable pour les eaux récréatives de 1,9 %, soit environ 

19 cas pour 1 000 baigneurs (World Health Organisation (WHO), 2003).  
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Pour l’eau potable, le seuil est encore plus strict, fixé à 10⁻⁴, soit 1 infection par 10 000 personnes 

par an (World Health Organisation, 2017).  

Ainsi, les valeurs observées dans le cas de la rivière Passaic suggèrent un risque épidémiologique 

nettement supérieur aux normes généralement acceptées, ce qui soulève d’importantes 

préoccupations en matière de santé publique. Les événements pluvieux extrêmes sont des 

contributeurs majeurs aux épidémies de maladies d’origine hydrique. Aux États-Unis, plus de la 

moitié de toutes les épidémies sont liées à des pluies excessives (Curriero et al., 2001). Les 

changements climatiques pourraient aggraver ce problème (Derx et al., 2023; Patz et al., 2008; 

Sterk et al., 2016). Cela souligne l’importance du risque microbiologique comme une considération 

cruciale dans les plans de protection des sources d’eau (World Health Organisation, 2017). Des 

études réalisées dans la région des Grands Lacs aux États-Unis montrent que les points d’eau les 

plus à risque pour un usage récréatif sont ceux proches de bassins fortement urbanisés et densément 

peuplés, alors que ces populations pourraient bénéficier de la proximité d’un plan d’eau lors des 

journées chaudes (McLellan et al., 2018; Olds et al., 2018). Les effets combinés du changement 

climatique et des perturbations du cycle hydrologique pourraient augmenter le nombre de jours de 

fermeture de plages près des zones urbanisées en raison de l’augmentation du potentiel 

d’événements de contamination et, par conséquent, de l’exposition aux pathogènes (Olds et al., 

2018; Patz et al., 2008) privant ainsi les populations d’un accès à l’eau récréatif durant la saison 

chaude. Par conséquent, la gestion des DEU est essentielle pour les grands centres urbains. 

2.1.3.1 Évaluation quantitative du risque microbien (ÉQRM) 

L’Évaluation Quantitative du Risque Microbien (EQRM), initialement développée pour l’eau 

potable, est une méthode largement utilisée dans le secteur de l’eau pour estimer les risques 

sanitaires associés aux dangers microbiens (Santé Canada, 2018; World Health Organization, 

2016a). Il s’agit d’une méthode qui est notamment utilisée dans certains cadres réglementaires en 

Australie et aux Pays-Bas (Bichai & Smeets, 2013). Cette méthode peut également s’appliquer à 

l’eau récréative pour estimer les risques sanitaires associés à la baignade, en particulier quand celle 

à l’eau en aval d’un ouvrage de DEU (Santé Canada, 2018; World Health Organization, 2016a). 

L’EQRM a été utilisée dans plusieurs études afin d’identifier les risques liés à la présence de divers 

agents pathogènes sur les plages.  
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Les agents pathogènes les plus souvent inclus sont les virus entériques (p. ex. norovirus, adénovirus 

humains), les protozoaires entériques (p. ex. Cryptosporidium, Giardia) et les bactéries entériques 

(p. ex. Campylobacter, Salmonella) (Santé Canada, 2021). Cet outil d’évaluation exploite des 

données spécifiques aux pathogènes, ce qui le rend particulièrement efficace pour prédire les 

risques liés au contact avec l’eau débordement (Haas et al., 2014; Santé Canada, 2018; World 

Health Organization, 2016a). Hamilton et al. (2024) ont identifié de nombreuses nouvelles 

applications de l’ÉQRM, notamment pour les eaux récréatives. Cette partie du projet de recherche 

s’inscrit dans cette nouvelle application.  

L’ÉQRM repose sur une approche rigoureuse en quatre étapes: (1) identification des pathogènes et 

de leurs sources; (2) suivi de leur transport et de leur devenir dans l’eau, entraînant une exposition 

humaine potentielle ; (3) évaluation de leur infectiosité à l’aide des relations dose-réponse ; (4) 

caractérisation des risques sanitaires associés à l’exposition humaine. Cette démarche vise à 

estimer le risque sanitaire à partir de paramètres clés, en tenant compte à la fois de leur variabilité 

(par exemple, la durée de baignade) et de l’incertitude inhérente, notamment dans les courbes dose-

réponse. 

La plupart des paramètres ne sont pas fixes, mais décrits par des distributions statistiques qui 

reflètent leur étendue et leur variabilité. Ces distributions sont échantillonnées de manière aléatoire 

à de nombreuses reprises afin de construire un profil de risque par méthode Monte-Carlo (McBride 

et al., 2013).  

Des études ont montré l’efficacité de l’ÉQRM pour la gestion de la qualité des eaux récréatives, en 

offrant des résultats quantitatifs permettant de comparer différentes stratégies de gestion (Kozak et 

al., 2020; McBride et al., 2013). Ainsi, il serait possible d’utiliser cette méthode pour évaluer 

différentes stratégies d’implantation d’IVB. Elle est particulièrement utile pour gérer les plages 

situées dans des zones urbaines denses à proximité des points de rejet (Eregno et al., 2016). Ces 

recherches soulignent l’importance d’anticiper les évolutions futures dans le cadre d’une 

planification à long terme de la sécurité des eaux et de l’évaluation de mesures robustes de 

protection des bassins versants. 
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1) Identification des pathogènes et de leurs sources 

La première étape d’une ÉQRM est d’évaluer les agents microbiens pouvant potentiellement causer 

un événement dangereux pour la santé publique lié à la consommation d’eau (Medema & Ashbolt, 

2006). Pour cette revue, deux contaminants sont analysés : Giardia et Cryptospridium. 

Pour le cas à l’étude, la situation dangereuse est un événement de pluie important résultant 

à une charge plus importante que normale de microorganismes pathogènes dans une zone de 

baignade. 

Les oocystes de Cryptospridium et les kystes de Giardia sont des protozoaires qui sont une cause 

importante des éclosions de maladie d’origine hydrique. Au Canada et dans le monde entier, le 

protozoaire le plus souvent déclaré est Giardia  (Efstratiou et al., 2017; Gouvernement du Canada, 

2012; Health Canada, 2019; Júlio et al., 2012) d’où l’importance d’effectuer un suivi attentif des 

prises d’eau. Ces deux types de protozoaires sont très résistants, notamment à la désinfection 

chimique, et peuvent survivre longtemps dans les cours d’eau même en étant exposés à des stress 

provenant du milieu, comme l’eau salée (eau de mer) ou le gel (Gouvernement du Canada, 2012). 

L’effet de la température est aussi un facteur important dans la survie des kystes de Giardia, en 

effet sa durée de survie peut passer de 77 à 4 jours dans une eau à 8 ºC (eau du robinet) 

comparativement à 37 ºC (Gouvernement du Canada, 2012). Les oocystes de Cryptosporidium 

peuvent survivent jusqu’à 18 mois dans un laboratoire dans une eau à 4 ºC et 7 mois dans de l’eau 

tiède à 15 ºC (Gouvernement du Canada, 2012). L’utilisation des UV est une méthode efficace 

pour enlever les oocystes de Cryptospridium et les kystes de Giardia. La contamination de l’eau 

se fait par la présence de matière fécale animale ou humaine. Le parasite Giardia peut causer la 

giardiase qui est une infection du système gastro-intestinal. Elle peut se manifester par certains 

symptômes, comme la diarrhée, une anorexie et des frissons (Gouvernement du Canada, 2012). De 

plus, une infection causée par un kyste de Giardia peut entraîner des effets chroniques sur la santé, 

notamment chez les enfants et les personnes plus vulnérables, comme des troubles gastro-

intestinaux persistants (Gouvernement du Canada, 2012). Une personne contaminée par un oocyste 

de Cryptospridium peut développer les symptômes suivants : diarrhée aqueuse et des crampes. Les 

personnes en bonne santé sont généralement porteuses pour une durée d’environ 30 jours 

(Gouvernement du Canada, 2012). 
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Le Tableau 2-1présente un résumé des informations énoncées plus haut : 

Tableau 2-1 Caractéristiques des protozoaires considérés 

Pathogènes Survie 

dans 

l’eau 

Résistance 

au traitement 

Désactivation Transmission Symptômes Période 

d’incubation 

Giardia -

Jusqu’à 

77 jours 

-

Désinfection 

chimique 

-UV -Voie fécale 

orale 

-Transmission 

entre les 

personnes 

possible 

-Diarrhée 

-Anorexie 

-Sensation de gêne 

dans la partie 

supérieure de 

l’intestin 

-Malaises 

-Température 

subfébrile 

-Frissons 

- 

Cryptospridium -

Jusqu’à 

18 mois 

-

Désinfection 

chimique 

-UV -Voie fécale 

orale 

-Transmission 

entre les 

personnes 

possible 

-Diarrhée aqueuse 

-Crampes 

-Nausées 

-Vomissements 

(particulièrement 

chez les enfants) 

-Température 

subfébrile  

-Anorexie  

-Déshydratation 

-30 jours 

2) Suivi de leur transport et de leur devenir dans l’eau, entraînant une exposition humaine 

potentielle 

L’évaluation de l’exposition est liée à la probabilité qu’une personne ingère un pathogène en buvant 

de l’eau lors d’une activité récréative (baignade). Dans une ÉQRM complète, afin de faire 

l’évaluation de l’exposition, il faut déterminer la quantité de pathogènes se trouvant dans la source. 

Il faut également estimer les changements de quantité lors des différentes étapes de traitement, de 

stockage et de distribution et finalement la quantité d’eau bue par la personne exposée (Medema 

& Ashbolt, 2006) quand il est question d’eau potable distribuée. Pour de l’eau contaminée près 

d’une zone de baignade, il n’y a pas de traitement, mais le débit, la profondeur et d’autres 

caractéristiques du cours d’eau peuvent influencer la concentration de contaminants.  
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Pour la présente étude, l’exposition survient lors de la baignade, i.e., l’événement causant 

l’exposition est l’ingestion accidentelle durant une activité de baignade. La présence de pathogènes 

est due à un événement de surverse par temps de pluie (la pluie est assez importante pour atteindre 

le seuil qui cause une surverse). Les eaux de surverse sont composées des eaux sanitaires et des 

eaux de ruissellement. Différents contaminants peuvent se trouver dans ces eaux comme discuté 

dans la section 2.1.2.  

En général, la concentration de base de Giardia dans les eaux de surface varie entre 2 et 200 

kystes/100 L, la concentration de Cryptosporidium se trouve entre 1 et 100 oocyste/100 L 

(Gouvernement du Canada, 2012).  

En ce qui concerne les activités aquatiques, la quantité d’eau ingérée accidentellement dépend du 

type et de la durée de l’activité pratiquée ainsi que de l’âge de la personne. Le Tableau 2-2présente 

les valeurs d’eau ingérée par les adultes et les enfants lors de la baignade (l’activité récréative la 

plus à risque) 

Tableau 2-2 Quantité d’eau ingérée lors de la baignade par les adultes et les enfants 

Adulte Enfants Précisions Sources 

32 mL/ h 64 mL/h L’enfant reste souvent 

plus longtemps dans l’eau  

(Dufour et al., 2017) 

16 mL/période de 

baignade 

37 mL/période de 

baignade 

Par événement d’au moins 

45 minutes.  

(McBride et al., 2013) 

24 mL/période de 

baignade 

47 mL/période de 

baignade 

Les hommes ont ingéré 

plus d’eau que les 

femmes, respectivement 

30 mL et 19 mL 

(USEPA, 2006) 

9 mL/période de baignade 

(médiane) 

64 mL/période de 

baignade (90e percentile) 

36 mL/période de 

baignade (médiane) 

150 mL/période de 

baignade (90e percentile) 

Pour des enfants de 6 à 12 

et des adultes de plus de 

35 ans 

(DeFlorio-Barker et al., 

2018) 

Sur la base du Tableau 2-2, il est possible de conclure que, selon la littérature, la valeur minimale 

d’ingestion pour un adulte est 9 mL/période de baignade et que la valeur maximale est 24  

mL/période de baignade (si on rejette la valeur de 32 mL/h, car ce n’est pas la même base).  
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Pour les enfants, la plage s’entend entre 36 mL/période de baignade et 37 mL/période de baignade 

(en excluant la valeur de 64 mL/h). Il est également possible de déterminer le volume d’eau ingéré 

selon une distribution statistique, les paramètres des fonctions dépendent du type de baigneur et de 

son âge (Schets et al., 2011; Schijven et al., 2015). 

Dans l’ÉQRM, les concepts d’exposition homogène et hétérogène font référence à la manière dont 

l’exposition à un agent pathogène est répartie au sein d’une population ou dans le temps (Teunis et 

al., 2008). Dans le cas de figure étudié dans ce projet (CHAPITRE 6, article 3), une exposition 

homogène pour un groupe (enfant, femme, homme) est assumée puisque la concentration dans la 

rivière est la même et que les mêmes modèles de dose-réponse sont employés, mais hétérogène 

entre les groupes, puisque le volume ingéré dépend du groupe.  

3) Évaluation de l’infectiosité à l’aide des relations dose-réponse 

Il existe différents modèles dose-réponse pour déterminer la probabilité d’infection en fonction de 

la dose ingérée. Ces modèles permettent de définir la relation mathématique de la probabilité 

d’infection pour une dose et un pathogène donnés (McBride et al., 2013). Le Tableau 2-3 ci-dessous 

présente trois types de modèle pouvant être utilisés : 
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Tableau 2-3 Modèles dose-réponse proposés selon le type de microorganisme 

Modèle Définition 

mathématique  

Microorganismes Paramètres Avantages Inconvénients  Références 

Exponentiel 𝑷𝒊𝒏𝒇(𝑫)

= 𝟏 − 𝒆−𝒓𝑫 

Giardia 

Cryptosporidium 

rgiardia = 

0.0199- 0.02 

rCryptosporidium= 

0.05-0.2 

Le modèle exponentiel est plus 

simple à appliquer dans les études 

de risque sanitaire 

Ne permet pas de 

représenter les 

microorganismes 

plus résistants 

Hypothèse 

d’indépendance  

Limité dans le cas 

des fortes variabilités 

(Derx et al., 2023; 

Eregno et al., 

2016; Kozak et al., 

2020; McBride et 

al., 2013; Teunis 

et al., 2008) 

Bêta-Poisson 𝑷𝒊𝒏𝒇(𝑫)

= 𝟏

− (𝟏 +
𝒅

𝜷
)

𝜶

 

Enterovirus 

Novovirus 

Rotavirus 

Salmonella 

Dépend du 

pathogène  

Permet de calculer la probabilité 

d’infection en tenant compte à la 

fois de la variabilité dans 

l’exposition et de la variabilité 

dans la susceptibilité individuelle à 

l’infection. 

 

Les paramètres α et β 

doivent être estimés 

à partir de données 

Complexe 

(McBride et al., 

2013; Teunis & 

Havelaar, 2000) 

Hypergéométrique 𝑷𝒊𝒏𝒇(𝑫)

= 𝟏−𝟏𝑭𝟏(𝜶, 𝜶
+ 𝜷, 𝑫) 

Cryptosporidium α = 0.3,  

β = 1.1 

Reflète la nature probabiliste de la 

transmission des agents 

pathogènes. 

Adapté lorsque la dose d’infection 

dépend de la concentration des 

microorganismes dans un 

environnement où la distribution 
n’est pas indépendante (par 

exemple, des événements de 

surverse ou des expositions 

multiples). 

Complexe 

Nécessite plus de 

données 

(Derx et al., 2023; 

Schets et al., 2011; 

Teunis & 

Havelaar, 2000) 
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Le choix d’un modèle dose-réponse est décisif pour le résultat de l’évaluation quantitative des 

risques (Teunis & Havelaar, 2000). Dans le cas de ce travail de recherche, le modèle exponentiel 

est utilisé pour Giardia et le modèle hypergéométrique est utilisé pour Cryptosporidium. Ces 

modèles sont bien adaptés pour évaluer les risques sanitaires liés aux eaux de débordement d’égouts 

unitaires puisqu’ils prennent en compte les caractéristiques spécifiques de ces pathogènes et des 

eaux provenant des DEU (Derx et al., 2023; Kozak et al., 2020; Shannon M. McGinnis et al., 2022). 

4) Caractérisation des risques sanitaires associés à l’exposition humaine 

Les informations recueillies lors des étapes précédentes permettent de caractériser le risque, lequel 

peut ensuite être comparé aux seuils de l’OMS exprimés en années de vie ajustées sur l’incapacité 

(DALY), afin d’évaluer et de mettre en perspective différents types de risques, tels que le risque 

de noyade ou celui de contracter une maladie gastro-intestinale (Medema & Ashbolt, 2006). La 

cible du risque tolérable établie par l’OMS est de 10-6
 DALY/pers/an pour le risque lié à l’eau potable. 

Le DALY permet également de prendre en compte les critères de morbidité aiguë (par exemple la 

diarrhée ou les nausées), mais aussi les critères de morbidité plus grave, notamment le syndrome 

de Guillain-Barré associé à Campylobacter (World Health Organization, 2017a). Dans son étude 

Kozak et al. (2020) se base sur le principal objectif de sécurité récréative de 32 maladies pour 1 

000 expositions récréatives adoptées aux États-Unis pour effectuer l’interprétation des résultats de 

l’EQRM. Méthodes d’évaluation des risques  

Les principaux facteurs influençant la gravité des maladies d’origine hydrique associées aux DEU 

incluent le type d’exposition. L’ingestion, l’inhalation, les voies dermiques et oculaires via des 

milieux contaminés, tels que l’eau, les aliments, l’air, le sol ou les surfaces, dans des contextes 

directs, indirects, professionnels ou communautaires, constituent différents types d’exposition 

(Goulding et al., 2012; McBride et al., 2013).  Dans une étude de Goulding et al. (2012), les auteurs 

ont élaboré un réseau bayésien afin d’analyser les risques des surverses sur la santé publique en 

temps de pluie pour cinq voies d’exposition : 

Récréation primaire : Une activité récréative où tout le corps est immergé et que le visage est 

mouille (nage, plongée, surf). 

Récréation secondaire : Une activité récréative où seuls les membres sont mouillés et que le 

contact entre l’eau et le visage est peu fréquent (pêche, navigation de plaisance). 
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Irrigation des cultures destinées à l’alimentation humaine (sans restriction): Cela comprend 

l’irrigation de tous les types de cultures alimentaires, sans aucune restriction sur place concernant 

l’application ou l’accès humain. 

Irrigation des espaces municipaux (sans restriction): Cela comprend l’irrigation des terrains de 

sport, des espaces ouverts, des parcs et jardins, des terrains de golf et des systèmes de suppression 

de la poussière. L’accès et l’application du public sont illimités (par exemple l’utilisation de jet à 

bruine). 

Irrigation des cultures non alimentaires (accès restreint) : Cela comprend des activités 

d’irrigation comme celles du gazon ou des fleurs avec une application restreinte telle que 

l’irrigation goutte à goutte et aucun accès ou accès public restreint. 

Cette étude permet de conclure que les réseaux bayésiens ont des avantages pour évaluer le risque 

lié aux surverses, puisqu’ils permettent de prendre en compte les incertitudes directement liées à 

chaque événement de surverses. Ils permettent aussi de comparer plusieurs stratégies de gestion 

des DEU afin d’en déterminer l’efficacité. Ainsi, cette approche pourra être utile aux autorités qui 

s’occupent de la gestion des surverses afin d’implanter la stratégie qui minimise les risques pour la 

santé publique dans une optique de santé dans toutes les politiques (Frumkin, 2016). L’approche 

du réseau bayésien ne sera pas utilisée dans le contexte de ce projet, notamment en raison des 

obstacles liés au processus de développement (limiter les biais et assurer une expertise fiable) et de 

validation (Kaikkonen et al., 2021; Werner et al., 2017). En effet, l’estimation des tables de 

probabilité conditionnelle associées à chaque nœud d’un réseau bayésien est complexe 

(Beaudequin et al., 2015). Cette approche pourrait toutefois être complémentaire à l’ÉQRM 

puisque les réseaux bayésiens permettent de considérer les coûts afin de choisir la stratégie la plus 

optimale en termes de coûts et bénéfices (Fenton & Neil, 2018). De plus, cette approche est moins 

généralisable, car les variables à ajouter dans le réseau changent d’un site à l’autre (Goulding et 

al., 2012). L’approche EQRM, utilisée seule, permet de quantifier directement les effets de la mise 

en place de stratégies de verdissement, tout en offrant une méthode transférable à l’ensemble des 

communautés urbaines. 

Dans l’article de McBride et al. (2013), trois niveaux d’exposition spécifiques au activités 

récréatives sont proposés : 



 

 

22 

Faible : Ce type d’exposition comprend des activités où le corps n’est pas peu immergé, comme le 

la navigation de plaisance, la pêche et le canot.  

Moyen : Ce type d’exposition comprend des activités où le corps pourrait être immergé puisque le 

risque de chavirement est plus grand, comme le canot et le kayak. 

Élevé : Ce type d’exposition comprend des activités où le corps est totalement immergé, comme 

la nage. 

Cette étude, réalisée aux États-Unis, avait pour objectif d’analyser les pathogènes directement dans 

les eaux des ouvrages de surverses plutôt que dans le cours d’eau récepteur. Une analyse ÉQRM 

est effectuée pour 12 sites de rejet par temps de pluie afin d’évaluer les effets potentiels sur la santé 

pour un contact primaire et secondaire avec l’eau pour les adultes et les enfants. Le risque est 

calculé sur le court terme, c’est-à-dire pendant et juste après un événement de pluie. Les résultats 

de cette étude permettent de conclure que l’approche ÉQRM basée sur les rejets est pertinente dans 

les cas où les agents pathogènes ne peuvent pas être détectés de manière fiable dans les eaux 

réceptrices avec des limites de détection pertinentes pour déterminer les effets sur la santé humaine. 

Ces différentes catégories d’évaluation de l’exposition permettent de conclure que le risque le plus 

élevé survient lors d’une exposition via la baignade (activités à risque élevé selon McBride et al. 

(2013) et récréation primaire selon Goulding et al. (2012)) puisque le corps est totalement immergé 

et donc le risque d’ingérer de l’eau est plus grand. Dans l’ÉQRM, les types d’exposition sont 

associés au volume ingéré (dose) et sont également influencés par l’âge de la personne en contact.  

Cette section a permis de montrer qu’une analyse ÉQRM pourrait par exemple servir à évaluer 

différentes recommandations pour atténuer les effets sur un groupe en tant qu’outil de gestion pour 

les plages. Cette approche pourrait être utilisée pour évaluer différentes stratégies d'implantation 

d'IVB, guidées par un outil comme SSANTO permettant de prendre en compte plusieurs facteurs 

spatiaux dans le but de distribuer plus équitablement les bénéfices des IVB sur un territoire. La 

section suivante aborde la gestion des DEU par les IVB et la modélisation de ces événements.  
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2.1.4 Gestion des surverses par les IVB 

La mise en place d’IVB dans les bassins de drainage urbains peut réduire de manière efficace le 

volume et la fréquence des DEU (Joshi et al., 2020; Lucas & Sample, 2015; Lucke & Nichols, 

2015; McGarity et al., 2017). En effet, certaines IVB, telles que les biorétentions, sont performantes 

pour réduire les volumes des événements de surverses en captant une partie des eaux de 

ruissellement à la source (Autixier et al., 2014; Joshi et al., 2020; USEPA, 2014). Cela favorise la 

réduction d’eau pluviale se retrouvant dans les égouts, ce qui peut réduire les surverses dans le cas 

d’égouts unitaires. Par exemple, les biorétentions peuvent réduire les volumes de DEU entre 50% 

et 99%, les systèmes d’infiltration, les toits verts et les barils récupérateurs d’eau de pluie peuvent 

réduire les volumes de 86%, 60% et 50% respectivement (Autixier et al., 2014; Li et al., 2021). 

Les IVB pourraient également permettre d’atténuer l’augmentation des DEU même sous l’effet des 

changements climatiques (Benoit et al., 2025; Cavadini, Rodriguez, Nguyen, et al., 2024). 

Un autre élément à considérer dans le cas des surverses est la capacité d’un système à filtrer les 

contaminants. En effet, comme mentionné, les eaux de ruissellement qui s’écoulent sur les pavés 

peuvent contenir des polluants (section 2.1.2). Selon la littérature, les biorétentions sont efficaces 

pour l’enlèvement des contaminants, tels que les métaux, les nutriments, la matière organique, les 

pathogènes et les solides en suspension (Autixier et al., 2014; Hunt et al., 2006; Passeport et al., 

2009).  

Des études de terrain ont montré que les biorétentions permettent un enlèvement annuel moyen de 

40 % de l’azote total (Hunt et al., 2006; Hunt et al., 2008). De plus, les biorétentions sont efficaces 

pour éliminer certains nutriments comme le phosphore (Passeport et al., 2009) et peuvent réduire 

les microplastiques de plus de 80 % (Smyth et al., 2021).Leur efficacité pour l’enlèvement de 

contaminants microbiens et de matières en suspension (MES) varie selon l’étude : pour E. coli, des 

réductions de 18,6 % à 99,5 % sont rapportées selon les conditions et la durée de suivi tandis que 

pour les MES, les taux de réduction se situent entre 0,18 % et 99 % (voir Tableau 3-7). Ces résultats 

confirment que les biorétentions constituent un outil efficace pour réduire la charge de 

contaminants dans les eaux de ruissellement, ce qui est particulièrement pertinent dans le contexte 

des surverses d’égouts unitaires. 
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Par contre, selon Autixier et al. (2014), la mise en place de biorétentions peut aussi augmenter les 

charges de contaminants provenant du réseau de drainage lors des événements de pluie qui sont 

plus importants. En effet, comme la quantité d’eau est moins importante dans le réseau quand la 

pluie est moins intense en raison du captage à la source en surface, il se peut qu’il y ait une plus 

grande accumulation de sédiments dans les conduites et ceux-ci sont remis en suspension lors 

d’événements de pluie importants (Autixier et al., 2014). Or, comme les IVB réduisent également 

la fréquence des surverses (Joshi et al., 2020), la charge en contaminants se retrouvant dans les 

milieux récepteurs pourrait être réduite. 

Certaines études récentes rapportent que les IVB seraient efficaces pour les événements de pluie 

longs, mais que leur efficacité est limitée lors des événements à plus forte intensité (Autixier et al., 

2014; Joshi et al., 2020). Ainsi, il faut considérer le type de précipitations dans le choix d’une 

technologie afin d’optimiser dans l’implantation. De plus, l’emplacement et le type d’IVB à 

implanter a un impact sur l’efficacité, notamment pour la réduction du ruissellement (Fry & 

Maxwell, 2017) tout comme une combinaison de plusieurs IVB performe mieux qu’une seule IVB 

seule (Cavadini, Rodriguez, & Cook, 2024; J. Chen et al., 2019). La mise en place d’IVB  est 

limitée par le niveau de développement (J. Chen et al., 2019). En effet, les communautés où des 

phénomènes de surverses se produisent sont souvent situées dans des zones densément peuplées et 

développées où des IVB à plus grande échelle comme les marais artificiels ne sont pas adéquates. 

De plus petites IVB qui contribuent à augmenter l’infiltration et le stockage sont plus adéquates (J. 

Chen et al., 2019). Compte tenu des préoccupations croissantes concernant les changements 

climatiques, des modifications du territoire urbain par les populations et du vieillissement des 

infrastructures de services publics, il est essentiel de revoir les systèmes de gestion des eaux 

pluviales; pourtant, les urbanistes et les gestionnaires de l'eau manquent d'outils fiables pour 

concevoir des infrastructures de gestion des eaux pluviales urbaines qui tiennent compte à la fois 

du contrôle des aspects techniques de la gestion d’eau (inondations, qualité de l'eau, ruissellement), 

mais aussi des aspects socio-économiques (Kuller et al., 2019; Lapointe et al., 2022). 

Cette brève revue a permis de montrer que certains types d’IVB, particulièrement les biorétentions, 

peuvent agir comme mesure de mitigation pour réduire les DEU et ainsi protéger la qualité de l’eau 

des milieux récepteurs en agissant à la source.  
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Les IVB peuvent notamment agir sur les DEU, le ruissellement urbain et l’enlèvement de 

contaminants, qui sont des problématiques pouvant affecter la qualité de l’eau potable et de l’eau 

récréative. Elles sont donc des solutions à considérer pour réduire les DEU en milieu urbain. 

2.1.5 Méthodes de prédiction et de modélisations des surverses 

Il existe différentes méthodes pour évaluer les surverses. Le Tableau 2-4 ci-dessous résume les 

avantages et les inconvénients de la prédiction et de la modélisation pour cette évaluation. Chaque 

méthode peut être adaptée en fonction du contexte de l’étude et des ressources disponibles. 

Tableau 2-4 Comparaison entre différentes méthodes pour l’évaluation des surverses 

Type Exemples  Avantages et 

inconvénients 

Références 

Modèle de prédiction Modèle statistique 

(régression linéaire, arbre 

de décision) 

(+) Nécessite peu de 

données 

(+) Utilisation simple des 

pluies en climat futur (pas 

de désagrégation)  

(Abdellatif et al., 2014; 

Jalbert et al., 2024; Y. Yu 

et al., 2018) 

Modélisation  Utilisation d’outil tel que 

PCSWMM (ou SWMM) 

(-) Nécessite une bonne 

connaissance du territoire 

(données sur les 

conduites, % 

d’imperméabilisation du 

sol, pente, 

évapotranspiration)  

(+) Peut permettre de 

tester des solutions de 

mitigation (module LID, 

section 0) 

(A. Rossman & C. Huber, 

2016; Rossman, 2017; 

Lewis A. Rossman & 

Wayne C.  Huber, 2016) 

Les sections ci-dessous présentent plus en détail les méthodes présentées dans le Tableau 2-4. 

2.1.6.1 Description détaillée des méthodes de prédiction des surverses 

Les modèles statistiques qui relient les précipitations aux DEU ont déjà été étudiés (Abdellatif et 

al., 2014; Jalbert et al., 2024; Mailhot et al., 2015; Y. Yu et al., 2018).  Par exemple, certaines 

études pour prédire les DEU se basent sur les caractéristiques des événements de pluies pour 

déterminer un seuil auquel une surverse se produit (Day & Seay, 2020; Y. Yu et al., 2018). Y. Yu 

et al. (2018) ont développé une méthode simplifiée pour estimer les caractéristiques des DEU en 

se basant sur les données de précipitations.  
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Leur approche consiste à analyser les séries temporelles d’événements de pluie pour extraire 

l’intensité de précipitation qui entraîne des débordements et calculer des paramètres tels que le 

temps de réponse, la durée, et la profondeur de ruissellement. Par ailleurs, Abdellatif et al. (2014) 

ont évalué l'impact des changements climatiques sur les DEU en appliquant des séries de 

précipitations restructurées issues de trois modèles climatiques globaux (GCM) à un modèle de 

drainage urbain. Ce processus de redimensionnement des précipitations vise à mieux évaluer les 

possibilités de DEU en contexte climatique futur. Jalbert et al. (2024) ont proposé une méthode de 

classification basée sur un arbre de décision pour prédire l’occurrence des DEU en fonction de 

données de précipitations accessibles au public, tandis que Mailhot et al. (2015) ont établi une 

relation entre les précipitations et le nombre de jours de surverse prédit.  

Ces études montrent que les précipitations sont un indicateur adapté pour prédire les DEU. 

Cependant, bien que certaines études, comme celle d'Abdellatif et al. (2014), tiennent compte des 

changements climatiques, cela reste l'exception. Les modèles qui n’intègrent pas les projections 

climatiques risquent de mal anticiper les débordements à long terme, car ils ne reflètent pas les 

conditions de pluie attendues dans un climat futur. Ainsi, un modèle de prédiction utilisant à la fois 

les précipitations en climat futur et un modèle statistique pourrait être un bon outil pour prédire les 

surverses et ainsi mettre en place des solutions qui sont adaptées à ce qui est attendu dans le futur.  

L’utilisation du logiciel de modélisation Storm Water Management Model (SWMM) est une 

méthode très communément utilisée dans le domaine de la gestion des eaux pluviales (USEPA, 

2022). Cet outil permet de faire la planification, l'analyse et la conception liées au ruissellement 

des eaux pluviales pour les différents types de réseaux d’égout en utilisant divers types 

d’événement de pluies (USEPA, 2022).  

Il peut aussi être utilisé pour comparer différentes stratégies de gestions des eaux pluviales soit par 

les infrastructures grises ou par l’ajout d’IVB avec le module LID (USEPA, 2022). SWMM a déjà 

été utilisé pour modéliser et analyser les épisodes de surverses en climat actuel (Autixier et al., 

2014; Jean et al., 2021) et futur en utilisant des pluies désagrégées (Cavadini, Rodriguez, Nguyen, 

et al., 2024; Derx et al., 2023). Cet outil est intéressant, car il permet de représenter la réalité d’un 

territoire en ajustant différents paramètres.  
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Dans le cadre du présent projet de recherche, les deux méthodes semblent appropriées. Ainsi, elles 

seront toutes deux utilisées. Le modèle de prédiction constitue une approche plus simple à mettre 

en œuvre, reposant sur des données facilement accessibles. En revanche, la modélisation avec 

SWMM exige une meilleure connaissance du territoire ainsi qu’une bonne maîtrise des 

fonctionnalités du logiciel. Cette méthode permet toutefois de simuler différents scénarios et 

d’observer les effets potentiels sur le territoire à l’étude, avec des résultats plus représentatifs de la 

réalité. 

2.1.6.2 Module LID de SWMM 

SWMM permet aux ingénieurs et aux planificateurs de représenter des combinaisons de pratiques 

d’IVB comme des contrôles de développement à faible impact (LID) afin de déterminer leur 

efficacité dans la gestion des eaux de ruissellement (Lewis A. Rossman & Wayne C.  Huber, 2016). 

SWMM peut modéliser huit différents types de LID: cellule de biorétention, jardin de pluie, toit 

vert, tranché d’infiltration, chaussée perméable, noues et fossés, baril récupérateur d’eau de pluie, 

déconnexion des gouttières (Lewis A. Rossman & Wayne C.  Huber, 2016). Dans ce projet de 

recherche, nous avons choisi de nous concentrer sur les biorétentions pour leur capacité à gérer à 

la fois la quantité et la qualité des DEU (Autixier et al., 2014; Hunt et al., 2006; Hunt et al., 2008). 

En effet, ce type d’IVB est efficace pour réduire les débordements, diminuer les charges de 

contaminants et minimiser le ruissellement. Les biorétentions sont constituées de plusieurs 

couches: une surface plantée, un substrat, un stockage et un sous-drain (facultatif). Les 

précipitations et les eaux de ruissellement provenant des surfaces imperméables avoisinantes 

ruissellent d'abord sur la surface, puis s'infiltrent dans le sol et percolent jusqu'à la couche de 

stockage en gravier.  

L'eau quitte le système par évaporation de la surface, par infiltration dans le sol naturel, par le sous-

drain relié à l'égout ou par l'écoulement de surface redirigé vers l'égout.  
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La Figure 2-2 montre une représentation simplifiée d’une biorétention:  

 

Figure 2-2 Représentation simplifiée d’une biorétention, ses couches et les mécanismes de gestion de l’eau 

La Figure 2-2 permet de montrer les couches de sols et les différents processus dans une 

biorétention. Le drain est facultatif. 

2.2 Les infrastructures vertes et bleues 

Ces dernières années, de nombreuses solutions innovantes ont émergé dans le domaine de la 

gestion des eaux pluviales en milieu urbain. Les infrastructures vertes et bleues (IVB) se 

distinguent parmi ces solutions, car elles favorisent une gestion intégrée des eaux pluviales en 

reproduisant des éléments clés du cycle naturel de l'eau, notamment l'infiltration et 

l'évapotranspiration (MELCC, 2014; USEPA, 2021b). Définies comme un réseau interconnecté 

d'éléments naturels et semi-naturels, les IVB offrent des bénéfices multidimensionnels, touchant 

aux aspects écologiques, sociaux et économiques (C. Li et al., 2019). Contrairement aux 

infrastructures grises, qui visent à recueillir et à acheminer rapidement les eaux de pluie vers des 

conduites souterraines, les IVB visent à reproduire le cycle naturel de l’eau pour améliorer sa 

qualité, réduire le ruissellement et favoriser l’infiltration (C. Li et al., 2019; MELCC, 2014). En 

outre, elles répondent au besoin croissant d'espaces verts en milieu urbain, contribuant ainsi à 

améliorer la qualité de vie des communautés (MAMH, 2010; Wood et al., 2017).  

Les sections suivantes examineront en détail les impacts potentiels des IVB sur la gestion des eaux 

pluviales en zone urbaine, ainsi que les bénéfices liés à leur implantation. 



 

 

29 

2.2.1 Impacts potentiels des IVB pour la gestion des eaux pluviales  

Les objectifs de contrôle des IVB varient en fonction des contextes et peuvent inclure le traitement 

de contaminants spécifiques, la recharge des nappes phréatiques, le contrôle des inondations, ainsi 

que la réduction des surverses lors de fortes précipitations (MELCC, 2014). Ces objectifs 

influencent le type de technologie à implanter, chaque système répondant à des besoins particuliers 

en matière de rétention, de filtration ou de stockage de l’eau. Le Tableau 2-5 présente une brève 

description de plusieurs types d’IVB qui peuvent être modélisés dans le logiciel SWMM et 

considérés dans l’outil SSANTO.  

Tableau 2-5 Noms et description des principaux type d’IVB, disponibilité dans le logiciel SWMM, et statut de 

développement dans l’outil SSANTO  

Infrastructures 

vertes et bleues 

Hiérarchie 

développée 

dans le cadre 

du projet 

PIIVO3 

Disponible 

dans le 

module LID 

de 

PCSWMM 

Description  Références 

Étang et lac X  

Les étangs et lacs, naturels ou artificiels, 

peuvent être aménagés là où les marais 

sont impossibles (pente trop abrupte). Ils 

servent au stockage ou à la réutilisation de 

l’eau, parfois à des fins récréatives, et 

contribuent à réduire le ruissellement tout 

en traitant partiellement l’eau par des 

processus similaires aux milieux humides. 

(GEO, 2021; 

Lapierre & 

Pellerin, 2018; 

Melbourne 

Water, 2005) 

Système 

d’infiltration 
X X 

Les systèmes d’infiltration sont des 

tranchées peu profondes végétalisées ou 

non. L’objectif de ce type d’IVB est de 

favoriser l’infiltration, ce qui permet de 

diminuer le ruissellement. De plus, 

certains processus de filtration ont lieu 

lorsque de la végétation est mise en place.  

(Melbourne 

Water, 2005) 

Toits verts et 

murs 

végétalisés 

X (en cours) X 

Les toits verts sont constitués de plusieurs 

couches de terreaux qui permettent la 

croissance des plantes. Les toits et les 

murs végétalisés sont adaptés en milieu 

urbain dense, puisqu’ils peuvent se mettre 

en place sur l’environnement bâti. Ces 

IVB permettent de capter l’eau de pluie, 

de décaler et d’atténuer le débit de pointe. 

(C. Li et al., 

2019; MELCC, 

2014; USEPA, 

2021b) 

 
3 Note : PIIVO (Planification intégrée des Infrastructures Vertes en Innovation Ouverte) est un projet financé par le 

ministère de l’innovation et de l’énergie qui consiste au développement d’un outil d’aide à la planification pour les 

IVB 
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Tableau 2-5 Noms et description des principaux type d’IVB, s’il est possible de les modéliser dans le logiciel 

SWMM, et leur statut de développement dans l’outil SSANTO (suite) 

Infrastructures 

vertes et bleues 

Hiérarchie 

développée 

dans le cadre 

du projet 

PIIVO 

Disponible 

dans le 

module LID 

de 

PCSWMM 

Description  Références 

Marais 

artificiels 
X  

Le marais artificiel est un type d’IVB qui 

s’inspire des milieux humides naturels. Des 

processus physiques, biologiques et 

chimiques, réalisés par différents végétaux, 

permettent d’améliorer la qualité de l’eau en 

captant, en stockant et en filtrant les 

polluants. Une de leur fonction principale 

est de favoriser la sédimentation afin d’en 

réduire la charge en contaminants pour 

améliorer la qualité de l’eau. 

(Lapierre & 

Pellerin, 2018; 

Melbourne 

Water, 2005; 

MELCC, 2014) 

Noues et fossés X X 

Les noues (ou fossés) sont de petites 

dépressions gazonnées ou végétalisées qui 

captent les eaux de ruissellement. Comme 

les pentes sont faibles, le potentiel 

d’enlèvement de certains polluants et les 

processus d’infiltration et 

d’évapotranspiration sont favorisés 

(MELCC, 2014). Elles peuvent aussi 
contribuer à réduire et retarder le débit de 

ruissellement des pluies fréquentes. Ce type 

d’IVB est aussi efficace pour éliminer 

certains contaminants solubles, comme le 

nitrogène. 

(Lapierre & 

Pellerin, 2018; 

Melbourne 

Water, 2005; 

MELCC, 2014; 

USEPA, 

2021b) 

Biorétentions X X 

Les cellules de biorétention (ou jardins de 

pluie) sont des aménagements dimensionnés 

selon le bassin de drainage. Elles recueillent 

une partie des eaux de ruissellement 

provenant des toits, rues et trottoirs. Le 

substrat et les végétaux sont choisis pour 

reproduire les processus naturels. 

L’infiltration limite le ruissellement, tandis 

que la filtration, l’adsorption, les échanges 

d’ions et la décomposition réduisent la 

charge en polluants. 

(Lapierre & 

Pellerin, 2018; 

MELCC, 2014; 

USEPA, 

2021b). 
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Tableau 2-5 Noms et description des principaux type d’IVB, s’il est possible de les modéliser dans le logiciel 

SWMM, et leur statut de développement dans l’outil SSANTO (suite) 

Récupération 

d’eau de pluie et 

déconnexion des 

gouttières 

X (en 

cours) 
X 

La déconnexion des gouttières de toit pour rediriger 

l’eau permet de diminuer l’eau allant dans les 

conduites et de récupérer l’eau pour des utilisations 

futures. 

(USEPA, 2021b) 

Forêts urbaines 

et arbres sur rue 

X 

(arbre 

sur 

rue) 

 

Les forêts urbaines sont différentes des forêts qu’il 

est possible de retrouver dans un milieu plus rural, 

mais elles sont très importantes. Au niveau de la 

gestion de l’eau pluviale, les forêts urbaines 

permettent de capter l’eau de pluie grâce à leurs 

feuilles et à leurs branches, ce qui permet de réduire 

le ruissellement. La présence d’arbre en milieu 

urbain favorise aussi des processus écologiques, 

comme l’évapotranspiration. 

(Association forestière 

du sud du Québec, 2022; 

Gouvernement du 

Canada, 2018; Lapierre 

& Pellerin, 2018; 

MELCC, 2014; USEPA, 

2021b) 

Parcs et espaces 

verts 

X (en 

cours) 
 

Les parcs et les espaces verts sont des lieux publics, 

avec de la végétation, situés en milieu urbain où il 

est possible de se rassembler, ils peuvent être 

naturels ou avoir été aménagés. Les parcs et les 

espaces verts en milieu urbain contribuent à la 

réduction du ruissellement, puisque le type de sol 

est plus propice à l’infiltration. De plus, la présence 

d’arbre peut contribuer à capter une partie de l’eau 

de pluie, ce qui réduit le ruissellement. 

(Bureau de design de la 

ville de Montréal, 2022; 

MAMH) 

Chaussées 
perméables 

 X 
Les pavés perméables permettent de réduire le 

volume et le débit de pointe. 
(C. Li et al., 2019) 

Jardins partagés 

d’agriculture 

urbaine 

X (en 

cours) 
 

Les jardins partagés sont des espaces urbains dédiés 

à la culture de légumes et de plantes, gérés par une 

communauté. Ils peuvent être organisés en parcelles 

individuelles ou en terrains communs accessibles à 

tous. Leur fonctionnement varie selon les contextes 

géographiques : en Amérique du Nord, ils 

combinent gestion collective et parcelles 

individuelles, tandis qu’en Europe, ils sont des 

initiatives participatives favorisant le lien social, 

l’engagement citoyen et l’agriculture urbaine. 

(Camps-Calvet et al., 

2016; Menconi et al., 

2020; Mestiri & 

Berthold, 2024) 

Ainsi, les IVB offrent une gamme de solutions intégrées qui, en reproduisant les processus naturels, 

apportent des réponses durables aux défis posés par la gestion des eaux pluviales urbaines. Pour 

certains types de systèmes, il est déjà possible d’effectuer des analyses d’adéquation pour un 

territoire en utilisant l’outil SSANTO et de les modéliser dans le logiciel PCSWMM.  
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2.2.2  Co-bénéfices de l’implantation des infrastructures vertes et bleues 

Les IVB sont efficaces pour la gestion de l’eau en milieu urbain, mais plusieurs co-bénéfices y sont 

associés, comme le maintien et la restauration d’habitats aquatiques et terrestres, la protection de 

zones naturelles existantes et la réduction des îlots de chaleur dans les milieux urbains denses. De 

plus, cela peut permettre de réduire les coûts globaux des infrastructures puisque les IVB réduisent 

la quantité de pavage, de bordures, de conduites d’égout pluvial et d’autres ouvrages qui sont 

utilisés dans une conception plus traditionnelle des réseaux de drainage (MELCC, 2014). Les IVB 

ont aussi un impact positif sur la qualité du cadre de vie d’une communauté.  

En effet, ce type d’aménagement est esthétique et contribue à la santé et au bien-être (Coutts & 

Hahn, 2015; Wood et al., 2017). Les espaces verts dans une collectivité améliorent aussi la qualité 

de l’air et diminuent l’effet d’îlot thermique (Bhandari & Zhang, 2022; MAMH, 2010). Différents 

enjeux urbains sont présentés ci-dessous, ainsi que la façon dont les IVB peuvent contribuer à 

atténuer leurs impacts.  

Îlots de chaleur urbains : Les îlots de chaleur urbains (ICU) se produisent lorsque qu’une zone 

urbanisée est soumise à des températures supérieures que les zones rurales et les espaces verts à 

proximité, la différence peut être aussi importante que 12℃ (Collectivitesviables.org, 2013). La 

minéralisation des surfaces, la diminution de la végétation et de l’eau de surface ainsi que 

l’émission de chaleur anthropique (e.g. l’utilisation de l’automobile et de l’air conditionné) et la 

morphologie urbaine sont des causes de la formation des ICU (Collectivitesviables.org, 2013). Les 

ICU ont des impacts sur l’environnement (qualité de l’aire intérieure et extérieure, demande en 

énergie, demande en eau potable) et sur la santé (inconfort, malaise, accentuer un état chronique) 

(Giguère, 2009). Les groupes les plus vulnérables sont les personnes atteintes de maladies 

chroniques, les populations socialement isolées, les très jeunes enfants, les travailleurs extérieurs, 

les personnes de faible niveau socio-économique, les sportifs extérieurs, les personnes souffrant de 

troubles mentaux et les personnes âgées (Anquez & Herlem, 2011; Norton et al., 2015).  
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De plus, l’effet de la chaleur diminue la qualité de l’air, ce qui peut affecter la santé (Anquez & 

Herlem, 2011). 

Les stratégies de verdissement comme les IVB peuvent contribuer à la réduction des ICU grâce à 

des processus tels que l’évapotranspiration et leur capacité à absorber l’énergie solaire (Giguère, 

2009). Elles peuvent contribuer à réduire les effets de la température, ce qui atténue les risques 

pour la santé liés à l’exposition à la chaleur (Marando et al., 2019; Zander S. Venter et al., 2020; 

H. Zhou et al., 2023). Par exemple, les toits verts, en plus de rafraîchir l’air extérieur, permettent 

également de réduire la chaleur à l’intérieur des bâtiments (Giguère, 2009; Norton et al., 2015). 

Les parcs et les espaces verts peuvent aussi contribuer à refroidir les villes en fonction de leur taille, 

de la direction du vent et du type de végétation (arbre, plantes) qui y est aménagé (Norton et al., 

2015; H. Zhou et al., 2023). Les services écosystémiques rendus par les IVB incluent l’ombrage et 

le refroidissement grâce à l’évapotranspiration, ce qui améliore le confort à l’intérieur et à 

l’extérieur des bâtiments et permet de réduire la demande énergétique de la climatisation (Hunter 

Block et al., 2012). Les arbres en milieu urbain, les toits verts et les murs végétalisés sont des 

aménagements qui favorisent la réduction des îlots de chaleur en milieu urbain (Giguère, 2009; 

Hunter Block et al., 2012; Norton et al., 2015; Wesley & Brunsell, 2019). 

Inondations urbaines : La croissance urbaine rapide et le changement d’utilisation des sols 

combinée aux changements climatiques contribuent à une augmentation marquée des risques 

d’inondations en milieu urbain (Alshammari et al., 2023; Ding et al., 2022). L’augmentation des 

surfaces imperméables due à une forte urbanisation entraîne une transformation accélérée des 

précipitations en ruissellement, ce qui provoque des inondations urbaines et des refoulements 

d’égout (Ahiablame & Shakya, 2016). Ce phénomène est amplifié par l’inefficacité des 

infrastructures de drainage existantes, en particulier dans les zones urbaines en contrebas, qui 

deviennent alors plus vulnérables aux inondations (Ding et al., 2022). Les pratiques de gestion 

durable des eaux pluviales, comme les IVB sont efficaces pour capter une partie de l’eau de 

ruissellement et ainsi réduire ces risques. Par exemple, implantées de manière individuelle des IVB 

comme le pavé perméable, les barils de pluie et les jardins de pluie, ont permis de réduire le nombre 

d’inondations majeures de 11 à 5 événements, et les inondations modérées de 125 à 74 au cours de 

la période d’étude (Ahiablame & Shakya, 2016).  
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D’autres études confirment que les IVB peuvent jouer un rôle clé dans la réduction du ruissellement 

et, par conséquent, des inondations urbaines (Hua et al., 2020; Qin et al., 2013). Il est donc essentiel 

d’intégrer ces approches dans l’aménagement des villes pour renforcer leur résilience face aux 

aléas hydrométéorologiques. 

Qualité de l’air : Les activités anthropiques, telles que l’utilisation de l’automobile et les activités 

industrielles, contribuent à diminuer la qualité de l’air en milieu urbain. Selon l’Organisation 

mondiale de la santé (OMS), presque la majorité de la population mondiale respire un air qui 

dépasse les limites prescrites. Les effets d’une mauvaise qualité de l’air sur la santé sont importants 

et incluent notamment les accidents vasculaires cérébraux, les maladies cardiaques, les maladies 

chroniques et le cancer des poumons (World Health Organization, s.d.). Les arbres et les végétaux 

en milieu urbain peuvent contribuer au maintien de la qualité de l’air grâce à l’absorption de 

nombreux polluants par les feuilles (Akbari et al., 2001; Giguère, 2009; Jayasooriya et al., 2017; 

Kończak et al., 2021; Silli et al., 2015). Cependant, il est important de noter que l’impact des IVB 

sur la qualité de l’air dépend fortement du contexte et de la zone d’implantation. Des études 

suggèrent que les IVB peuvent améliorer la qualité de l’air dans une certaine situation, mais 

peuvent être inefficaces ou même porter préjudice dans d’autres (Hewitt et al., 2020; 

Nieuwenhuijsen, 2021). Une attention particulière doit être portée au type d’arbre et de végétaux 

afin de choisir des essences et des espèces qui produisent peu de pollen afin d’éviter d’altérer 

collatéralement la qualité de l’air (Giguère, 2009).  

Mobilité active : Selon une étude sur le transport actif, comme la marche et le vélo, réalisée à 

Milwaukee et Green Bay, aux États-Unis, la probabilité de choisir le transport actif passait de 19% 

à 41% lorsque le couvert végétal au-dessus de la rue augmentait de 10% (Tsai et al., 2019). Une 

étude réalisée en Europe montre également le lien entre l’augmentation de la probabilité de se 

déplacer en marchant et le couvert végétal (Sarkar et al., 2015). Il est probable que ces résultats 

soient dus l’ombre ainsi qu’à l’esthétique qu’offrent les arbres. 
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D’ailleurs, une étude de Norton et al. (2015) mentionne que les murs végétalisés devraient être 

implantés près des trottoirs afin que les piétons puissent bénéficier de l’effet de fraîcheur. La mise 

en place de pistes cyclables est aussi une opportunité d’améliorer la gestion des eaux pluviales tout 

en offrant un espace dédié et sécuritaire aux cyclistes (Clemente, 2018). Dans une revue de 

littérature, Lemieux et al. (2023) ont montré qu’il y a une synergie entre le transport actif et la mise 

en place d’IVB. 

Bienfaits sociaux : Certaines études montrent les liens entre l’implantation d’IVB et les bienfaits 

sociaux, notamment au niveau de la santé mentale (Beyer et al., 2014; Dushkova et al., 2021; 

Gascon et al., 2017; Richardson et al., 2013; Schneider, 2009). Dans un rapport publié par l’INSPQ 

(2017), il est mentionné que les espaces verts sont bénéfiques pour la santé mentale, puisqu’ils 

peuvent avoir un effet sur la réduction des symptômes liés à la dépression et sur la réduction du 

stress. De plus, ils ont des impacts positifs sur le bien-être mental, le sentiment de rétablissement, 

la bonne humeur et la vitalité.  

Ces résultats sont aussi présents dans une étude effectuée au Wisconsin qui mentionne que la 

présence de plus d’espaces verts dans les quartiers sont associés à des niveaux considérablement 

plus faibles de symptômes de dépression, d’anxiété et de stress (Beyer et al., 2014). Les espaces 

verts sont particulièrement bénéfiques pour la santé mentale des groupes vulnérables, comme les 

enfants et les personnes âgées. En effet, il existe un lien entre l’amélioration de la santé mentale 

des enfants et l’accès à un espace vert. Les espaces verts améliorent l’attention des enfants, 

développe leur discipline tout en favorisant la création de liens sociaux et en ayant des effets 

positifs sur le stress (INSPQ, 2017; McCormick, 2017). Pour les personnes âgées, le verdissement 

permet une meilleure disposition pour la marche et réduit les risques de problèmes de santé 

chroniques (INSPQ, 2017). Les espaces verts et bleus contribuent également à briser l’isolement 

(INSPQ, 2017) et leurs cobénéfices ont été particulièrement ressentis lors de la pandémie de covid-

19 (Dushkova et al., 2021; Pouso et al., 2021).  
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Santé physique : La mise en place d’IVB peut également avoir un impact positif sur la santé 

physique des populations (Gascon et al., 2017; INSPQ, 2017; White et al., 2020; White et al., 

2017). Par exemple, selon une enquête néo-zélandaise sur la santé, les espaces verts du quartier 

étaient liés à une meilleure santé cardiovasculaire, indépendamment des facteurs de risque 

individuels (Richardson et al., 2013). De plus, chez les enfants, il y a un lien entre le couvert végétal 

et la réduction de l’indice de masse corporelle ainsi que l’augmentation de la pratique d’activité 

physique extérieure (INSPQ, 2017). Cependant, le lien entre un plus grand nombre d’espaces verts 

et la pratique de l’activité physique varie selon les études (de Vries et al., 2013), il serait alors 

important d’identifier des facteurs qui encouragent la population à fréquenter les espaces pour la 

pratique d’activité physique et pour le plaisir. Par exemple, un espace vert plus attractif et 

esthétique est favorable à la fréquentation pour la marche tant pour faire de l’exercice que pour le 

loisir (de Vries et al., 2013). Une méta-analyse a montré des diminutions statistiquement 

significatives de l’incidence du diabète, de la mortalité toutes causes confondues et 

cardiovasculaire (Twohig-Bennett & Jones, 2018). 

Biodiversité: Les IVB peuvent aussi contribuer à augmenter le nombre et la variété des espèces 

dans une zone qui serait fragmentée (Davis et al., 2015). Elles permettent d’améliorer 

considérablement la biodiversité en milieu urbain, puisqu’elles procurent des espaces plus adaptés 

à la faune et la flore (Filazzola et al., 2019).  

Les IVB en milieu urbain peuvent notamment fournir des habitats pour différentes espèces en 

fournissant du substrat pour les plantes et les champignons, des zones humides pour les animaux 

aquatiques et des fleurs pour les insectes pollinisateurs (Filazzola et al., 2019). 

Les IVB en milieu urbain apportent des bénéfices multidimensionnels touchant à la qualité de l’air, 

à la santé physique et mentale, à la mobilité active et à l’environnement. Elles contribuent à 

améliorer la qualité de l’air en absorbant les polluants atmosphériques, réduisant ainsi les risques 

de maladies graves, comme les AVC ou les cancers du poumon. Ces bienfaits sont renforcés par 

leur impact sur la santé mentale, notamment pour les groupes vulnérables, tels que les enfants et 

les personnes âgées, grâce à une réduction du stress et à une amélioration du bien-être.  
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En parallèle, les IVB favorisent la mobilité active, comme la marche et le vélo, en rendant les 

déplacements plus attrayants et agréables. Elles jouent également un rôle clé dans la préservation 

de la biodiversité, en offrant des habitats variés pour la faune et la flore, tout en favorisant les 

interactions entre les espèces. Ces synergies soulignent leur importance pour un développement 

urbain durable et inclusif. 

Cependant, une planification stratégique est essentielle pour optimiser ces bénéfices et garantir leur 

distribution équitable. Une implantation non planifiée peut engendrer des effets négatifs, tels que 

la gentrification ou des inégalités dans l’accès aux espaces verts, souvent au détriment des 

communautés les plus vulnérables (Walker, 2021; Wolch et al., 2014). En effet, des études 

montrent que les espaces verts bénéficient davantage aux populations blanches et plus aisées, ce 

qui en fait un enjeu de justice environnementale (Wolch et al., 2014). Il est donc crucial d’utiliser 

des outils de planification intégrée, comme l’analyse spatiale multicritère, pour identifier des sites 

prioritaires et maximiser les bénéfices sociaux et écologiques des IVB (Meerow & Newell, 2017; 

Meerow et al., 2019). Ces outils, notamment basés sur les services écosystémiques (SE), permettent 

de mieux évaluer les compromis entre les avantages sociaux et environnementaux, en tenant 

compte des complexités liées aux relations entre les différents SE (Kremer et al., 2016). Une 

planification réfléchie contribuerait à une meilleure répartition des bénéfices, limiterait les risques 

de gentrification et renforcerait la résilience sociale et écologique des villes (Kremer et al., 2016; 

Meerow & Newell, 2017).  

Les espaces verts et le verdissement pourraient s’inscrire dans une stratégie plus globale visant à 

améliorer la santé, le cadre de vie et la mobilité active en milieux urbains tout en améliorant la 

gestion des eaux pluviales en milieu urbain en réduisant notamment le volume de ruissellement 

entrant dans le réseau d’égout (Autixier et al., 2014). Le développement de cadre et d’outils (indice 

de priorisation, outil SSANTO et cadre d’analyse de la résilience) tels que ceux développés dans 

le cadre de ce projet de doctorat, sont essentiels pour permettre une meilleure planification des IVB 

en milieu urbain. La section suivante présente le concept de résilience et l’impact des IVB sur celle-

ci. 

  



 

 

38 

2.3 Résilience 

Les villes sont confrontées à des défis environnementaux, sociaux et économiques croissants qui, 

ensemble, menacent la résilience des zones urbaines et des habitants qui y vivent et travaillent. Ces 

défis inclus, notamment les DEU, les vagues de chaleur et les inondations urbaines (Cardoso et al., 

2020; Suárez et al., 2018).  Les effets du changement climatique amplifient ces défis (Bush & 

Doyon, 2019). Le terme résilience peut avoir plusieurs définitions en fonction de la discipline par 

laquelle il est décrit. Dans un contexte de résilience urbaine, quatre termes reviennent pour décrire 

les aspects physiques d’une infrastructure résiliente : résistance, fiabilité, redondance et le dernier 

terme est lié à la capacité d’un système à répondre et à retrouver son état initial (ou amélioré) à la 

suite d’un événement perturbateur (CabinetOffice, 2011).  

Afin de définir le concept de résilience et de représenter quantitativement les concepts choisis, une 

revue de la littérature portant sur le concept de résilience en milieu urbain ainsi que des indicateurs 

et des outils existants pour évaluer la résilience a été effectuée. Afin de réaliser cette revue (non 

exhaustive) de la littérature, une sélection de mots clés a d’abord été effectuée afin de couvrir les 

thèmes pertinents. Cette revue avait pour objectifs de comprendre la résilience et ses implications 

pour la santé, la gestion de l'eau, le changement climatique et la mise en œuvre de différents types 

de verdissement telles que les biorétentions dans un bassin de drainage urbain. Le Tableau 2-6 

présente les mots clés utilisés pour effectuer la recherche. Pour effectuer la recherche des articles 

pertinents, plusieurs combinaisons de mots clés ont été utilisées dans le moteur de recherche 

Google Scholar. 
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Tableau 2-6 Mots clés utilisés lors de la revue de littérature non exhaustive du concept de résilience 

Green infrastructure Resilience Method Performance Stressor Urban  

Green infrastructure (GI) social-ecological Quantitative Indicator(s) Climate change  

Green infrastructures" Engineering 

resilience 

 Index Rain  

Low impact development Ecological 

resilience 

 Tool Urban drainage 

system 

 

Blue green system" Infrastructure 

resilience 

 Framework Flood  

Blue green systems Vulnerability   Public health  

Nature based solution 

(NBS) 

Flood resilience   Disaster  

Nature based solutions Urban climate 

resilience 

  Urban heat island  

Blue-green infrastructure” 

(BGI) 

   Combined sewer 

overflow 

 

Blue-green infrastructures      

Ecosystem(s) service(s)      

Les mots clés répertoriés dans le Tableau 2-6 ont permis d’identifier 79 articles pertinents, soit en 

contribuant à la définition de la résilience, soit en aidant à repérer les concepts clés ou des 

indicateurs quantitatifs pour les représenter. 
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2.3.1 Définition de la résilience 

À partir de la revue non exhaustive, six grandes définitions de résilience (n=14/79) ont émergé 

selon l’échelle étudiée (urbaine, système) et la discipline. Le Tableau 2-7 présente les six 

définitions. 

Tableau 2-7 Définition de la résilience selon l’échelle étudiée et le contexte. Identifiées en gras, définitions retenues 

pour l’article 2 (CHAPITRE 5) 

 Type de résilience Définition Références 

 

Résilience urbaine 

(système de drainage 

urbain, résilience 

climatique urbaine) 

La résilience urbaine est la capacité d'une ville et de 

ses habitants à résister, à s'adapter et à se transformer 

en réponse aux crises, en intégrant les dimensions 

sociales, économiques, environnementales et de 

gouvernance pour assurer la durabilité, le bien-être et 

la croissance inclusive. 

(Beceiro et al., 2022; 

ONU-Habitat, 2012; 

Ribeiro & Pena 

Jardim Gonçalves, 

2019; The Rockefeller 

Foundation & ARUP, 

2014) 

 

Résilience des 

infrastructures 

(résilience du 

système) 

La résilience des infrastructures est la capacité de 

celles-ci à maintenir leur fonctionnalité en cas de 

chocs externes en tirant parti de leur flexibilité et de 

leurs dépendances diversifiées plutôt qu'en s'appuyant 

sur des composants individuels. 

(Bozza et al., 2015; 

Tyler & Moench, 

2012) 

 

Résilience 

socioécologique 

La résilience socioécologique est la capacité des 

systèmes humains et naturels interconnectés à 

s'adapter, à se transformer et à persister dans le 
changement tout en restant dans les seuils critiques 

pour soutenir le développement. 

(Folke et al., 2010; 

Juan-García et al., 

2017; Meerow & 
Newell, 2017; Sterk et 

al., 2017; Walker et 

al., 2004) 

 

Résilience de 

l'ingénierie 

(technologique, 

opérationnelle et 

structurelle) 

La résilience technique est la capacité d'un système à 

résister aux perturbations, à maintenir sa 

fonctionnalité et à revenir rapidement à l'équilibre, 

assurant ainsi la continuité et l'efficacité malgré les 

défaillances. 

(Mugume et al., 2015; 

Sterk et al., 2017; X. 

Y. Wang et al., 2023) 

 

Résilience spatiale La résilience spatiale fait référence à la contribution 

des attributs spatiaux et aux rétroactions qui génèrent 

la résilience dans les écosystèmes et autres systèmes 

complexes, et vice versa. 

(Allen et al., 2016) 

 

Résilience aux 

inondations 

La résilience aux inondations désigne la capacité d'un 

système, tel qu'une zone urbaine ou un réseau de 

drainage, à résister aux inondations, à s'y adapter et à 

s'en remettre tout en conservant sa fonctionnalité. 

Elle implique de gérer la diversité, la redondance et la 

connectivité au sein du système, et d'encourager une 

large participation. Un système d'inondation résilient 

assure un service continu dans le temps, minimise les 

pertes liées aux inondations et revient rapidement à 

un état fonctionnel après un événement. 

(Bertilsson et al., 

2019; Karamouz et 

al., 2014; Kotzee & 

Reyers, 2016) 
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Quatre définitions issues du Tableau 2-7 sont retenues pour obtenir un portrait complet de la 

résilience en milieu urbain. Elles couvrent la résilience socioécologique à l’échelle de la 

population, permettant d’intégrer des aspects liés à la santé, ainsi que la résilience des 

infrastructures, essentielle pour inclure des éléments structurants du milieu urbain, comme les 

conduites d’égout. Une définition plus globale de la résilience urbaine est également considérée. 

Enfin, l’ajout de la résilience face aux inondations permet d’intégrer des facteurs spécifiques à cet 

aléa ainsi qu’aux changements climatiques. Pour cette étude, la définition suivante de la résilience 

est adoptée : la capacité d'un système – qu'il s'agisse d'une ville, d'un écosystème, d'un réseau ou 

d'une communauté – à résister aux perturbations, à s'adapter aux changements et à se transformer 

pour maintenir ou améliorer sa fonctionnalité. Elle repose sur la diversité, la redondance et la 

connectivité des éléments qui composent le système, en intégrant des dimensions sociales, 

économiques, environnementales et institutionnelles. La résilience implique une gestion 

adaptative, un apprentissage continu et une gouvernance inclusive pour assurer la durabilité et la 

pérennité face aux crises et aux changements à long terme. 

La section suivante identifie les concepts clés en lien avec les définitions de résilience choisies. 
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2.3.2 Composantes clés de la résilience 

Le tableau suivant montre des composantes clés de la résilience selon la définition et le domaine 

considérés (articles consultés = 24/79, les autres articles ne contenaient pas de définitions et ont été 

utilisés pour l’indentification des indicateurs et des types de résilience). Les axes de résilience 

choisis permettent de couvrir l’ensemble des aléas climatique identifiés dans l’article 2 

(CHAPITRE 5) 

Tableau 2-8 Concepts, définitions et axes de la résilience  

 Urbain  
Infrastructure  

 Inondation  Socioécologique 

 

Concepts Définition Références Axe de 

résilience 

Inclusion/exclusion 

(critère) 

Résistance Protection contre les 

dommages ou les 

perturbations, en 

fournissant la force ou la 

protection nécessaire pour 

résister au danger ou à 

l'impact principal. 

(Batica et al., 2013; Bautista-

Puig et al., 2022; 

CabinetOffice, 2011; Ribeiro 

& Pena Jardim Gonçalves, 

2019) 

 

 

 

Inclusion 

Fiabilité Fonctionnement constant 

des composants de 

l'infrastructure dans 

diverses conditions. 

(Butler et al., 2014; 

CabinetOffice, 2011; Chen et 

al., 2024; Ramísio et al., 2022) 
 

 

Inclusion 

Redondance Présence de plusieurs 

options ou éléments 

capables de remplir une 

même fonction, permettant 

de faire face à l’incertitude 

et de compenser les 

défaillances éventuelles. 

(Bautista-Puig et al., 2022; 

CabinetOffice, 2011; 

Karamouz et al., 2014; Kotzee 

& Reyers, 2016; Meerow et 

al., 2016; Ribeiro & Pena 

Jardim Gonçalves, 2019; 

Simonsen, 2015; Sterk et al., 

2017; The Rockefeller 

Foundation & ARUP, 2014; 

Tyler & Moench, 2012; UN-

Habitat, 2018) 

 

 

 

 

Inclusion 
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Tableau 2-8 Concepts, définitions et axes de la résilience (suite) 

Concepts Définition Références Axe de 

résilience 

Inclusion/exclusion 

(critère) 

Récupération Capacité du système à 

revenir à son état initial 

(ou amélioré) après une 

perturbation, en tenant 

compte de la planification 

préalable pour réduire les 

risques futurs et de la 

rapidité de rétablissement. 

(Batica et al., 2013; Bautista-

Puig et al., 2022; 

CabinetOffice, 2011; Chen et 

al., 2024; Francis & Bekera, 

2014; Kontokosta & Malik, 

2018; Meerow et al., 2016; 

Ribeiro & Pena Jardim 

Gonçalves, 2019) 

 

 

 

 

Inclusion 

Capacité 

d'apprentissage 

Intégration des leçons 

tirées de l’expérience, 

favorisée par les 

partenariats entre 

scientifiques et parties 

prenantes visant à 

renforcer la durabilité des 

systèmes. 

(Batica et al., 2013; Bautista-

Puig et al., 2022; Kotzee & 

Reyers, 2016; ONU-Habitat, 

2012; Rodriguez, Lawson, et 

al., 2020; Simonsen, 2015; 

Sterk et al., 2017; The 

Rockefeller Foundation & 

ARUP, 2014) 

 

 

 

 

Exclusion (ne peux 

pas être amélioré 

par les IVB) 

Adaptabilité 

(processus 

d'adaptation) 

Capacité du système à 

s’ajuster à des conditions 

indésirables grâce à des 

mesures de planification 

et de préparation aux 

perturbations. 

(Folke, 2006; Folke et al., 

2010; Francis & Bekera, 2014; 

Kotzee & Reyers, 2016; 

Meerow et al., 2016; Ribeiro 

& Pena Jardim Gonçalves, 

2019; Rodriguez, Lawson, et 

al., 2020; Simonsen, 2015; 

Sterk et al., 2017) 

 

 

 

 

Exclusion (ne peut 

pas être représenté 

quantitativement) 

Diversité Présence d’éléments aux 

réponses variées, capables 

d’assurer des fonctions 

essentielles dans une large 

gamme de conditions, 

incluant la transformation 

d’actifs ou de structures. 

(Kotzee & Reyers, 2016; 

Ribeiro & Pena Jardim 

Gonçalves, 2019; Simonsen, 

2015; Sterk et al., 2017; 

Suárez et al., 2016; Tyler & 

Moench, 2012; UN-Habitat, 

2018) 

 

 

 

Exclusion 

(similaire à 

redondance) 

Modularité Nature des liens (forts ou 

faibles) entre les 

composantes du système, 

permettant de limiter la 

propagation des 

perturbations. 

(Suárez et al., 2016; Tyler & 

Moench, 2012)  

Exclusion (ne peux 

pas être amélioré 

par les IVB) 
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Tableau 2-8 Concepts, définitions et axes de la résilience (suite) 

Concepts Définition Références Axe de 

résilience 

Inclusion/exclusion 

(critère) 

Rétroaction Interaction entre les 

variables d’un système, 

offrant différents services 

écosystémiques selon la 

configuration. 

(Batica et al., 2013; ONU-

Habitat, 2012; Rodriguez, 

Lawson, et al., 2020; 

Simonsen, 2015; Sterk et al., 

2017; Suárez et al., 2016) 

 

 

 

Exclusion 

(similaire à 

redondance) 

Cohésion 

sociale 

Degré de participation 

communautaire, facilitant 

la réaction collective aux 

perturbations, avec une 

attention portée aux 

populations vulnérables. 

(Simonsen, 2015; Sterk et al., 

2017; Suárez et al., 2016; The 

Rockefeller Foundation & 

ARUP, 2014; UN-Habitat, 

2018) 

 

 

Exclusion (ne peut 

pas être représenté 

quantitativement) 

Innovation Capacité à créer de 

nouvelles façons de réagir 

à une perturbation 

(Ribeiro & Pena Jardim 

Gonçalves, 2019; Suárez et al., 

2016; UN-Habitat, 2018) 
 

 

Exclusion (ne peut 

pas être représenté 

quantitativement) 

Ductilité Capacité des matériaux ou 

des structures à se 

déformer de manière 

significative sans se 

rompre, à l’échelle d’une 

structure. 

(Bozza et al., 2015) 

 

Exclusion (à 

l’échelle d’une 

structure) 

 

Durabilité Résistance d’une structure 

à la dégradation dans le 

temps, en raison des 

conditions 

environnementales et 

opérationnelles. 

(Bozza et al., 2015) 

 

Exclusion (à 

l’échelle d’une 

structure) 

 

Robustesse Qualité des biens 

physiques bien conçus, 

construits et gérés pour 

résister à des aléas sans 

perte significative de 

fonctionnalité. 

(Beceiro, Brito, et al., 2020; 

Beceiro, Galvão, et al., 2020; 

Bozza et al., 2015; Karamouz 

et al., 2014; Ramísio et al., 

2022; Ribeiro & Pena Jardim 

Gonçalves, 2019; The 

Rockefeller Foundation & 

ARUP, 2014; UN-Habitat, 

2018) 

 

 

 

Exclusion (ne peux 

pas être amélioré 

par les IVB) 

Niveau de 

préparation 

Anticipation des impacts 

futurs sur les villes et leurs 

infrastructures, à court et 

long terme, en lien avec les 

chocs aigus et les stress 

chroniques. 

(Beceiro, Brito, et al., 2020; 

Beceiro, Galvão, et al., 2020; 

Bozza et al., 2015; ONU-

Habitat, 2012; Ramísio et al., 

2022; Rodriguez, Lawson, et 

al., 2020) 

 

 

Exclusion (ne peux 

pas être amélioré 

par les IVB; ne 

peut pas être 

représenté 

quantitativement) 
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Tableau 2-8 Concepts, définitions et axes de la résilience (suite) 

Concepts Définition Références Axe de 

résilience 

Inclusion/exclusion 

(critère) 

Rapidité Capacité du système à 

répondre rapidement aux 

priorités, en limitant les 

dommages. 

(Karamouz et al., 2014) 

 

Exclusion 

(similaire à 

récupération) 

Connectivité Niveau d’interconnexion 

des composantes, facilitant 

le rétablissement après une 

perturbation. 

(Butler et al., 2014; Simonsen, 

2015)  

 

Exclusion 

(similaire à 

redondance) 

 

Flexibilité Capacité du système à 

changer, évoluer et 

s'adapter en réponse à des 

circonstances changeantes.  

(Beceiro, Brito, et al., 2020; 

Beceiro, Galvão, et al., 2020; 

Butler et al., 2014; Ramísio et 

al., 2022; Sterk et al., 2017; 

The Rockefeller Foundation & 

ARUP, 2014; Tyler & Moench, 

2012) 

 

 

 

Exclusion 

(similaire à 

fiabilité) 

 

Intégré Reconnaissance des 

interconnexions et 

interdépendances entre 

systèmes qui composent 

l’ensemble. 

(The Rockefeller Foundation & 

ARUP, 2014)  

Exclusion (ne peut 

pas être représenté 

quantitativement) 

 

Capacité 

d'absorption 

Aptitude à gérer les 

perturbations avec un 

minimum d’effort grâce à 

des mécanismes 

préexistants, tels que des 

tampons ou des 

redondances. 

(Francis & Bekera, 2014) 

 

Exclusion 

(similaire à 

redondance) 

 

Le Tableau 2-8 permet de mettre de l’avant un ensemble de composantes (n=20) associées aux 

différents types de résilience préalablement identifiés de la littérature. Il est possible de constater 

que certains concepts de résilience (n=2) s’appliquent plutôt à l’échelle d’une seule structure et non 

à l’échelle urbaine. Ces concepts ne seront pas considérés dans la recherche, puisqu’ils ne 

permettent pas d’avoir une vue holistique. Également, certaines composantes de la résilience ne 

s’appliquent pas au thème des IVB qui sont au cœur du sujet de recherche (n=4), ne peuvent pas 

être représentés de manière quantitative (n=5), sont similaires à des composantes déjà sélectionnées 

(n=6) et ne seront donc pas considérés. Finalement, les concepts résistance, fiabilité, redondance 

et récupération sont choisis. Pour l’article 2 présenté dans le CHAPITRE 5, quatre concepts de 

résilience sont sélectionnés pour représenter la résilience dans le contexte de l’étude : résistance, 
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fiabilité, redondance, récupération. Un ou deux indicateurs quantitatifs sont associés à chaque 

concept. La section suivante développe sur l’effet des IVB sur la résilience.  

La sélection de ces concepts finaux est basée sur les critères suivants :  

• Peut être représenté quantitativement (indicateur) ; 

• Peut être amélioré par la présence d'IVB ; 

• N’est pas déjà couvert par une autre composante 

• Couvre un ou plusieurs axes de résilience. 

2.3.3 Résilience et infrastructure vertes et bleues 

Certaines études mettent de l’avant l’utilisation de solutions fondées sur la nature, telle que les 

IVB, afin d’augmenter la résilience des communautés urbaines (Bush & Doyon, 2019; Jennings & 

Bamkole, 2019; Kabisch et al., 2016). Ainsi, il existe un potentiel d'intégration de ce type de 

solutions dans les approches de planification urbaine et sur leur contribution à la résilience, mais 

ces éléments ne sont pas encore bien développés, ni dans la recherche ni dans la pratique (Beceiro 

et al., 2022; Bush & Doyon, 2019).  

Les solutions fondées sur la nature agissent effectivement comme des systèmes décentralisés et 

distribués de fourniture de services d'infrastructure, qui sont généralement intrinsèquement plus 

résilients que les grandes infrastructures grises centralisées (Depietri & McPhearson, 2017; 

Hesarkazzazi et al., 2022). Selon plusieurs études, les infrastructures vertes et bleues pourraient 

aider à rendre une ville plus résiliente à certains aléas climatiques par l’apport en services 

écosystémiques en répondant simultanément à de multiples défis (Beceiro et al., 2022; Bush & 

Doyon, 2019; Depietri & McPhearson, 2017; Kabisch et al., 2016; McPhearson et al., 2022; Suárez 

et al., 2016).  

En effet, selon Bush and Doyon (2019), les services écosystémiques (SE) contribuent à la 

prospérité des villes en période de stabilité, notamment par la fourniture de services écosystémiques 

culturels qui apportent des avantages sociaux, culturels et communautaires et du bien-être.  

  



 

 

47 

Les solutions fondées sur la nature, les espaces verts urbains ainsi que les IVB offrent un lieu pour 

les loisirs, les interactions sociales, le renforcement de la cohésion communautaire et la 

contribution à la santé physique et mentale et au bien-être (Jennings & Bamkole, 2019). Ces 

services contribuent à renforcer la résilience face aux stress chroniques et aux changements 

progressifs auxquels sont exposées les villes (Bush & Doyon, 2019). Pour poursuivre, certains 

écosystèmes peuvent servir de tampon aux villes et renforcer leur résilience en atténuant les effets 

du changement climatique, notamment les vagues de chaleur et les tempêtes (Kabisch et al., 2016). 

La résilience urbaine peut être renforcée par la mise en place d’IVB puisque ces améliorations 

peuvent réduire l'ampleur, la durée et la fréquence des impacts et des conséquences associés aux 

menaces, aux contraintes ou aux défaillances des systèmes, ce qui permet aux systèmes de réagir 

et de se rétablir de manière plus positive (Staddon et al., 2018). Également, les solutions basées sur 

la nature, incluant les IVB, changent au fil du temps (comme des systèmes vivants dynamiques) 

ainsi, la planification des solutions basées sur la nature peut se renforcer au fil du temps (Bush & 

Doyon, 2019). Pour poursuivre, l'approche des services écosystémiques fournit un cadre utile pour 

évaluer le statu quo, fixer des objectifs, identifier des repères et hiérarchiser les approches visant à 

améliorer le fonctionnement écologique pour la durabilité et la résilience urbaines. (McPhearson 

et al., 2013). Cependant, il est important de noter que l’emplacement de l’IVB peut avoir un effet 

sur la résilience (Rodriguez, Fu, et al., 2020), d’où l’importance de développer et d’adapter des 

outils de planification spatiale tels que SSANTO pour mettre en place les IVB de manière 

stratégique (Kuller et al., 2019) afin de renforcer la résilience.  

Ainsi, la résilience urbaine repose sur plusieurs composantes incluant résistance, fiabilité, 

redondance et récupération, ce qui implique une planification stratégique des IVB pour répondre 

aux défis croissants de l’urbanisation et des changements climatiques. Les IVB offrent un potentiel 

important pour renforcer la résilience urbaine en intégrant des approches décentralisées et 

écologiques dans la planification des villes. Cependant, leur intégration dans la recherche et la 

pratique reste limitée, nécessitant des outils stratégiques d’aide à la décision spatiale multicritère 

comme SSANTO pour optimiser leur implantation. La section suivante propose une brève 

description des outils d’aide à la décision basés sur l’analyse spatiale multicritère.  
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2.4 Cadre réglementaire pour l’eau potable et l’eau récréative 

Cette section de la thèse a pour objectif de présenter brièvement le cadre réglementaire pour les 

prises d’eau potable, les surverses ainsi que pour la qualité des eaux de baignade.  

2.4.1 Analyse de vulnérabilité et plan de protection des sources d’eau potable 

En 2015, le gouvernement du Québec a mandaté toutes les municipalités de son territoire à 

effectuer une analyse de vulnérabilités des prises d’eau potable de type 1 soient qui alimentent au 

moins et 500 personnes et une résidence (Gouvernement du Québec, 2014). L’analyse de la 

vulnérabilité des prises d’eau potable se fait en trois étapes (en fonction du type de source : 

souterraine ou de surface) qui sont présentées dans le guide de rédaction (Gouvernement du 

Québec, 2016) : 

1. Caractériser le site de prélèvement.  

2. Inventorier les éléments susceptibles d’affecter la qualité ou la quantité des eaux exploitées. 

3. Évaluer les menaces associées aux activités anthropiques et aux événements potentiels 

inventoriés.  

Or, les méthodes proposées dans le guide sont plus adaptées aux prises d’eau potable se trouvant 

dans un bassin versant en milieu rural que pour les bassins versants en milieu plus urbanisés 

(Prévost et al., 2011). Ainsi, afin de répondre aux exigences du règlement, des fiches techniques 

ont été développées sur différentes menaces clés, comme les DEU (N. McQuaid, A.-S. Madoux-

Humery, S. Dorner, et al., 2019; N. McQuaid, A.-S. Madoux-Humery, J.-M. Touttée, et al., 2019). 

En effet, la Ville de Montréal a confié au CREDEAU de Polytechnique Montréal le mandat de 

développer une méthodologie qui a pour objectif d’évaluer la vulnérabilité des prises d’eau situées 

en milieu urbain dense. En effet, une prise d’eau située en milieu urbain peut subir un impact 

important dû aux activités anthropiques se déroulant dans les aires de protection immédiates et 

intermédiaire (N. McQuaid, A.-S. Madoux-Humery, S. Dorner, et al., 2019). 

La fiche de vulnérabilité à propos des DEU concerne les ouvrages de surverses dont les points de 

rejet sont situés dans les aires de protection immédiates ou intermédiaires des prises d’eau et dont 

le réseau en amont est de type unitaire ou pseudoséparatif.  

La fiche considère le potentiel de contamination par le risque microbien en lien avec des 

événements de DEU en amont de la prise d’eau (N. McQuaid, A.-S. Madoux-Humery, J.-M. 
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Touttée, et al., 2019). La méthode employée dans la fiche technique qui permet d’évaluer la 

vulnérabilité des prises d’eau potable aux DEU pourrait être adaptée à d’autres types d’exposition 

comme la baignade afin d’identifier les ouvrages de surverses qui sont les plus à risque pour la 

santé publique. 

Le développement d’un indice de priorisation des DEU pourrait également être inclus dans les 

plans d’action pour réduire la vulnérabilité des prises d’eau potable (MELCC, 2022). Les étapes 

établies dans le plan de protection de ses sources d’eau potable (PPS) sont les suivantes :  

1. Identifier les intervenants dans l’élaboration du PPS (étape 1 OMS). 

2. Élaboration de PPS ; 

2.1. Identifier les menaces à partir du rapport de l’analyse de la vulnérabilité ; 

2.2. Représenter le territoire couvert par le PPS ;  

2.3. Formuler les orientations (objectif) du PPS ; 

2.4. Compiler les mesures de protection et mettre en place de nouvelles mesures au besoin ; 

3. Effectuer le suivi et la diffusion du PPS. 

L’élaboration des analyses de vulnérabilité ainsi que l’élaboration des plans de protection 

s’inscrivent dans les objectifs de cette recherche. En effet, mieux comprendre l’effet des 

changements climatiques sur les DEU va permettre une meilleure allocation des ressources pour 

réduire ces évènements. L’identification des BDU les plus vulnérables pourrait être intégrée dans 

le PPS comme une information supplémentaire pour la représentation du territoire. Cela pourrait 

permettre de développer un plan de gestion des eaux récréatives adapté au contexte québécois 

2.4.2 Plans de gestion de la sécurité des eaux récréatives  

Les plans de gestion de la sécurité des eaux récréatives offrent une approche globale, structurée et 

opérationnelle pour évaluer, maîtriser et communiquer les risques associés aux usages récréatifs de 

l’eau (Interior Health, 2025; Santé Canada, 2021; World Health Organization, 2021). Fondés sur 

des objectifs sanitaires et des critères d’efficacité, ces plans reposent sur une surveillance continue 

et une gestion adaptative des sites aquatiques (Interior Health, 2025; Santé Canada, 2021; World 

Health Organization, 2021).  

Ils visent à structurer l’information, identifier les sources potentielles de contamination (comme 

les débordements d’égouts ou les apports diffus), anticiper les événements à risque, et établir des 
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réponses appropriées, y compris des plans d’urgence face à des événements extrêmes, tels que les 

fortes pluies ou les inondations (World Health Organization, 2021). En plus de soutenir la 

coordination entre les acteurs impliqués, ces plans permettent de réduire les défaillances liées à des 

oublis ou à un manque de gouvernance partagée, tout en améliorant la réactivité et la 

documentation. La sensibilisation du public et la communication sur la qualité de l’eau sont 

également des composantes essentielles : les usagers doivent avoir accès à des informations claires, 

fiables et à jour sur la sécurité des zones de baignade (Santé Canada, 2021). Le Tableau 2-9 présente 

des plans de gestions de sécurité des eaux récréatives. 

Tableau 2-9 Comparaison entre différents plans de gestion de la sécurité des eaux récréative 

Organisation 

Mondiale de la 

Santé – 5 étapes 

Santé Canada – 9 étapes Interior Health – 3 

étapes 

Éléments communs Comparaison avec le PPS – 

3 étapes 

Création d’une 

équipe de gestion 

Étape implicite Étape implicite Implication d’acteurs 

multiples, coordination 

intersectorielle 

Identifier les intervenants 

dans l’élaboration du PPS 

Description du 

milieu, évaluation 

des dangers et des 

risques 

Évaluation de la 

situation 

Identification des 

dangers, enquêtes 

sanitaires 

Collecte de données, 

enquêtes sanitaires, 

historique du site 

2.1 Identifier les menaces  

2.2 Représenter le territoire 

couvert  

Définition du suivi 

opérationnel, seuils, 

actions correctives 

Contrôle de l’efficacité 

+ Évaluation des 

barrières + Mise en 

œuvre 

Mise en œuvre du 

programme de 

surveillances pour les 

dangers identifiés et 

des actions pour 

réduire les risques  

Mise en place de 

systèmes de 

surveillance, seuils 

d’alerte, actions en cas 

de dépassement 

2.3 Formuler les orientations 

(objectif) du PPS 

2.4 Compiler les mesures de 

protection et mettre en place 

de nouvelles mesures au 

besoin  

Gestion 

documentaire, 

soutien et 

communication 

Communication des 

risques 

 Communication 

proactive et claire 

envers le public et les 

autorités 

3 Effectuer le suivi et la 

diffusion du PPS  

 

Révision et mise à 

jour 

Révision du plan  Amélioration continue, 

retour d’expérience, 

intégration de 

nouvelles données 

 

 

Évaluation des mesures 

prioritaires, sélection et 

formulation des options 

 Accent canadien sur 

l’analyse de faisabilité 

et les considérations 

économiques et 

sociales 
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Les trois guides – ceux de l’OMS, d’Interior Health et de Santé Canada – partagent une approche 

commune fondée sur la gestion des risques pour protéger la santé des usagers des eaux récréatives. 

Tous insistent sur l’importance de la surveillance de la qualité de l’eau, de la planification 

structurée et de la communication claire avec le public. Toutefois, ils diffèrent dans leur portée et 

leur niveau de mise en pratique. Le guide de l’OMS adopte une perspective plus théorique et 

globale, offrant un cadre de référence international principalement destiné aux autorités de santé 

publique. En revanche, les guides d’Interior Health et de Santé Canada sont beaucoup plus 

opérationnels : ils proposent des outils concrets, tels que des formulaires à remplir, des grilles 

d’analyse, des modèles de plans de sécurité et des affiches de sensibilisation à utiliser directement 

sur les sites. Ainsi, bien que l’OMS fournisse une base conceptuelle solide, les ressources 

canadiennes se distinguent par leur applicabilité directe sur le terrain, particulièrement utile pour 

les municipalités, gestionnaires de plages et exploitants locaux. Ces guides offrent des approches 

complémentaires pour assurer la sécurité lors d’activité dans les eaux récréatives, allant des 

recommandations internationales aux plans spécifiques pour les plages locales. Ils mettent tous 

l’accent sur l’importance de la surveillance, de la gestion proactive des risques et de la 

communication efficace avec le public. 

Au Québec, il n’existe pas de guide officiel spécifiquement dédié à la gestion des risques liés à la 

qualité de l’eau des sites récréatifs, à l’exception de celui publié par la Société de sauvetage (2020), 

qui se concentre principalement sur l’aménagement sécuritaire des berges et la prévention des 

noyades dans des milieux peu ou non surveillés. D’autres initiatives existent toutefois, comme les 

ressources offertes par la Fondation Rivières pour accompagner l’ouverture de plages, ou encore 

le site de la Ville de Montréal qui permet de suivre en temps réel la qualité de l’eau dans les zones 

de baignade (Ville de Montréal, s.d) ainsi que le programme Environnement-Plage (Gouvernement 

du Québec, 2021). Il pourrait être pertinent de développer un guide québécois inspiré des approches 

existantes à l’international, notamment les plans de gestion de la sécurité des eaux récréatives, en 

s’appuyant sur les outils déjà en place pour la protection des prises d’eau potable, tels que les 

analyses de vulnérabilité et les plans de protection (voir section précédente). Une telle initiative 

permettrait d’harmoniser les pratiques tout en tenant compte des spécificités locales.   
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D’ailleurs, selon les comparaisons effectuées entre les différentes approches (OMS, Santé Canada, 

Interior Health) et le PPS québécois, la structure et les contenus du PPS présentent déjà plusieurs 

éléments communs avec les plans de gestion des eaux récréatives, notamment en ce qui concerne 

l’identification des risques, la surveillance, les mesures de protection et la communication, ce qui 

faciliterait l’adaptation de ce cadre existant à un nouveau contexte. L’élaboration et la mise en 

œuvre d’un plan de gestion des eaux récréatives adapté au contexte québécois est liée à cette thèse, 

puisque les DEU posent une menace pour la santé publique, particulièrement dans les zones 

récréatives. Mieux identifier cette menace grâce à une méthode établie pourrait aider à réduire le 

risque de contamination lors de la baignade et à mettre en place des seuils de risque acceptables 

adaptés au contexte québécois. 

2.4.3 Site de baignade 

Le critère de risque d’infection associé à la baignade dans les eaux récréatives est estimé à moins 

d’une infection par 10 000 personnes, en supposant une seule exposition par an, c’est-à-dire une 

seule baignade dans un lac récréatif (Ehsan et al., 2015). En comparaison, l’objectif de sécurité 

adopté aux États-Unis tolère jusqu’à 32 cas de maladies pour 1 000 expositions récréatives (Kozak 

et al., 2020), ce qui reflète une différence d’approche dans l’évaluation et la gestion des risques 

selon la fréquence d’exposition considérée. Le Tableau 2-10 présente le risque acceptable pour la 

baignade selon différents emplacements.  

Tableau 2-10 Risque acceptable pour la baignade (maladie ou infection) 

Risque acceptable (type)  Région Références 

3–5% (maladie) Union européenne (Georgiou & Bateman, 2005) 

3.6% (maladie) États-Unis (Wiedenmann et al., 2006) 

3,2% (maladie) États-Unis (Kozak et al., 2020) 

1.9% (infection) Mondiale (World Health Organisation 

(WHO), 2003) 

Le Tableau 2-10 montre qu’il existe des directives pour les seuils de risque considérés acceptables, 

mais que ceux-ci varient selon les régions à travers le monde, d’où l’importance de développer un 

guide adapté au contexte québécois pour établir une référence considérée applicable au Québec. 
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Les Tableau 2-11 Tableau 2-12 Tableau 2-13 et Tableau 2-14 suivants présentent une brève revue 

du cadre réglementaire applicable ou recommandations pour les eaux de baignade (activités 

récréatives de contact primaire).  

Le Tableau 2-11 présente les règles en place pour procéder à la fermeture de la plage selon le 

programme Environnement-Plage.  

Tableau 2-11 Indicateurs de la qualité bactériologique pour le programme Environnement-Plage au Québec 

(Gouvernement du Québec, 2021) 

Qualité de l’échantillon Moyenne arithmétique E. coli/100 

ml (eau douce) 

Moyenne arithmétique 

Entérocoques/100 ml (milieu marin) 

Excellente (A) ≤ 20 ≤ 5 

Bonne (B) 21-100 6-20 

Passable (C) 101-200 21-35 

Polluée  > 200 > 35 

Le Programme plage environnement est un partenariat entre le MELCC et les exploitants de plage 

qui permet d’informer la population de la qualité bactériologique des eaux récréatives 

(Gouvernement du Québec, 2021). Ce programme est positif, car il permet aux exploitants de 

plages plus petites d’être en mesure d’assurer une surveillance et un suivi de la qualité des eaux de 

baignade, ce qui protège les utilisateurs. 

E. coli et Enterococci sont deux indicateurs fécaux couramment utilisés pour évaluer la qualité des 

eaux récréatives (Gouvernement du Canada, 2023; World Health Organization, 2021). Une 

concentration plus élevée de ces indicateurs suggère un risque accru de maladies d’origine 

hydrique, notamment pour les eaux de baignade. En effet, ces bactéries ne sont pas toujours 

pathogènes, mais elles signalent la présence de contamination fécale, ce qui signifie qu’il peut y 

avoir d’autres microorganismes posant un risque pour la santé humaine (World Health 

Organization, 2021). À partir du Tableau 2-12, il est possible de constater que les seuils acceptables 

pour les juridictions présentées sont similaires.  
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Tableau 2-12 Seuil pour E coli dans les eaux de baignade 

Canada (Santé Canada, 

2012) 

États-Unis (Georgia basin) 

(USEPA, 2021a) 

États-Unis (Michigan) 

(Michigan Government, 

2022) 

Europe (UE, 2006) 

Moyenne géométrique 

(d’au moins 5 échantillons) 

: 

≤ 200 𝐸. 𝑐𝑜𝑙𝑖/100𝑚𝐿 

Concentration maximale 

dans un seul échantillon : 

≤ 400 𝐸. 𝑐𝑜𝑙𝑖/100𝑚𝐿 

Moyenne géométrique 

(d’au moins 5 échantillons) 

: 

≤ 200 𝐸. 𝑐𝑜𝑙𝑖/100𝑚𝐿 

Concentration maximale 

dans un seul échantillon : 

≤ 400 𝐸. 𝑐𝑜𝑙𝑖/100𝑚𝐿 

Moyenne géométrique 

journalière :  

≤ 300 𝐸. 𝑐𝑜𝑙𝑖/100𝑚𝐿 

Excellente qualité ≤ 250 ∗
 𝐸. 𝑐𝑜𝑙𝑖/100𝑚𝐿 

Bonne qualité ≤ 500 ∗
 𝐸. 𝑐𝑜𝑙𝑖/100𝑚𝐿 

Qualité suffisante≤ 500 ∗∗
 𝐸. 𝑐𝑜𝑙𝑖/100𝑚𝐿 

*Valeurs seuils à comparer aux percentiles 95 des mesures microbiologiques. 

**Valeurs seuils à comparer aux percentiles 90 des mesures microbiologiques. 

Le Tableau 2-13 présente les seuils internationaux pour Enterococci suggérés par l’Organisation 

mondiale de la santé (OMS). 

Tableau 2-13 Seuil pour Enterococci dans les eaux de baignade. Adapté de (World Health Organization, 2021) 

Enterococci (valeur du 95e 

percentile par 100 ml [valeurs 

arrondies]) 

Catégories d’évaluation de la 

qualité microbienne de l’eau 

Risque de maladie gastro-intestinal 

estimé par exposition 

≤ 40 A < 1% 

41-200 B 1-5% 

201-500 C 5-10% 

> 500 D > 10% 

Pour un contact primaire au Canada, les recommandations en matière d’Enterococci indiquent que 

la moyenne géométrique, calculée sur au moins cinq échantillons, doit être ≤35 

Enterococci/100 mL, tandis que la concentration maximale dans un échantillon ne doit pas 

dépasser 70 Enterococci/100 mL (Santé Canada, 2012). Cela correspond à une catégorie 

d’évaluation de la qualité microbienne de l’eau de l’OMS entre A et B.  
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L’évaluation des différents seuils de qualité de l’eau révèle que, bien que les valeurs soient parfois 

similaires, leur comparaison demeure difficile en raison de plusieurs facteurs, notamment la 

variation de l’indicateur fécal utilisé (E. coli versus Enterococci), les méthodes statistiques retenues 

(valeur au 95e percentile, moyenne arithmétique, concentration maximale ou moyenne 

géométrique), ainsi que les protocoles d’échantillonnage qui diffèrent, allant d’un prélèvement 

quotidien à un minimum de cinq échantillons. Les résultats des analyses de l’article 3 (CHAPITRE 

6) pourront être comparés à ces seuils.  

Pour la plage urbaine de Verdun, il existe des règles de fermeture en fonction de la pluie des 

ouvrages de surverse qui peuvent déborder. Le Tableau 2-14 présente les durées précises de 

fermeture de la plage selon la nature et la gravité de l’événement 

Tableau 2-14 Règles de fermeture de la plage urbaine de Verdun, Montréal 

Définition Règle de fermeture 

Forte pluie ( 5 mm en 3 heures) Fermeture pendant 12 à 24 heures à partir de 

la fin de la pluie 

Débordement de plus de 10 minutes aux ouvrages Lyette, 

Highlands, Sénécal ou Moffat 

Fermeture pendant 24 à 48 heures à partir de 

la fin du débordement 

Débordement aux ouvrages Orchard, Richards ou Beatty Fermeture pendant 24 à 48 heures à partir de 
la fin du débordement 

Débordement aux ouvrages Canal de l’aqueduc, Alepin, reg. 

Stephens, dér. Stephens ou 1 ere Avenue 

Fermeture pendant 48 à 72 heures à partir de 

la fin du débordement 

Le Tableau 2-14 montre qu’une une forte pluie (≥ 5 mm en 3 heures) entraîne une fermeture de 12 

à 24 heures, tandis qu’un débordement dans certains ouvrages prioritaires peut exiger une fermeture 

plus longue, de 48 à 72 heures. La durée varie donc selon l’ouvrage concerné et l’intensité du 

débordement, reflétant une gestion différenciée du risque de contamination. 

En somme, bien que plusieurs outils et cadres réglementaires existent pour protéger les prises d’eau 

potable et encadrer la qualité des eaux récréatives, leur adaptation au contexte québécois, 

particulièrement en milieu urbain, apparaît essentielle afin d’assurer une gestion cohérente et 

efficace des risques pour la santé publique. 
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2.4.4 Infection d’origine hydrique 

Entre 1989 et 2016, 106 éclosions d’origine hydrique liées à la qualité de l’eau des plages ont été 

recensées au Québec, dont 20 survenues entre 2005 et 2016 ayant touché 203 personnes (Huppé et 

al., 2019). Ce chiffre est très probablement sous-estimé, ce qui laisse croire que les risques associés 

aux eaux récréatives sont plus élevés en réalité. Certaines années, le nombre d’éclosions liées aux 

plages dépasse même celui attribué à l’eau potable (Huppé et al., 2019). La contamination fécale 

demeure une préoccupation importante dans les milieux naturels de la province, notamment en 

raison de la présence d’ouvrages de surverse et d’animaux sauvages. 

Au Canada et au Québec, ce risque pourrait être accentué par les épisodes de fortes précipitations, 

identifiés comme un facteur déterminant des éclosions de maladies hydriques : aux États-Unis, plus 

de la moitié des éclosions rapportées ont été associées à des précipitations extrêmes (Charron et 

al., 2004; Curriero et al., 2001). Selon Charron et al. (2004), le réchauffement climatique pourrait 

accentuer ce phénomène, notamment avec des étés plus longs, des hivers plus doux et des pluies 

plus intenses. L’augmentation des précipitations pourrait ainsi favoriser la contamination fécale et 

nutritive des eaux de baignade, augmentant les risques de maladies gastro-intestinales et de 

proliférations d’algues nuisibles (Young et al., 2022). Dans ce contexte, il devient essentiel de 

renforcer la recherche et la surveillance des eaux récréatives au Canada, afin de mieux anticiper et 

s’adapter aux risques émergents liés aux changements climatiques (Young et al., 2022). 

2.5 Résumé de la revue de littérature 

À partir de cette recension des études, il est possible de soulever le fait que les événements de 

débordement sont un enjeu grandissant pour la santé publique, notamment en raison de 

l’augmentation des précipitations due au changement climatique. En effet, des épisodes récurrents 

de DEU pourraient diminuer la qualité des eaux de baignade en milieu urbain dense posant un 

danger pour la santé des communautés. Les IVB pourraient notamment agir comme barrière 

supplémentaire pour protéger les zones récréatives aquatiques (surf, baignade) en réduisant les 

DEU. Il est donc essentiel que les décideurs fournissent et mettent en place des approches de 

gestion pour de limiter les risques liés aux surverses. Les IVB sont une solution à envisager pour 

réduire les DEU tout en bonifiant le cadre de vie des communautés urbaines.  
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Ces solutions sont particulièrement intéressantes dans le contexte des changements climatiques, 

car elles permettent de relever plusieurs défis à la fois. Par exemple, elles contribuent à réduire les 

îlots de chaleur urbains, à renforcer la biodiversité et à améliorer l’attrait visuel des espaces urbains, 

tout en favorisant un environnement plus sain et plus résistant. L’outil SSANTO pourrait améliorer 

les processus d’implantation des IVB en proposant des cartes d’adéquation qui permettent 

d’adopter une planification stratégique afin de maximiser les bénéfices au niveau de la gestion des 

eaux pluviales, de l’environnement et des enjeux sociaux améliorant ainsi la résilience des 

communautés urbaines face aux défis climatiques et sanitaires. 
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CHAPITRE 3 DÉMARCHE DE L’ENSEMBLE DU TRAVAIL 

L’objectif principal de ce projet de doctorat est d’évaluer comment les IVB influencent la santé 

publique afin de soutenir la planification urbaine et la gestion des eaux pluviales, grâce au 

développement d’outils d’aide à la planification (indice de priorisation, cadre d’analyse de la 

résilience) adaptés au contexte québécois. À partir de la revue de la littérature réalisée, des écarts 

au niveau des connaissances existantes ont été identifiés. Les objectifs de cette recherche ont été 

définis afin de combler ou réduire ces lacunes dans les connaissances existantes et d’offrir des 

outils et des solutions aux municipalités québécoises pour répondre aux enjeux de DEU, des 

changements climatiques et de l’urbanisation qui pourraient affecter la santé des communautés 

urbaines.   

3.1 Écarts de connaissances dans la littérature et dans la pratique 

Dans la littérature  

(A) Plusieurs études montrent que les précipitations sont un indicateur adapté pour prédire les DEU 

(Abdellatif et al., 2014; Jalbert et al., 2024; Y. Yu et al., 2018). En revanche peu d’études utilisant 

des modèles prédictifs tiennent compte des changements climatiques de manière directe. En effet, 

les pluies sont souvent désagrégées pour être intégrer à des outils de modélisation, ou encore les 

auteurs utilisent des courbe IDF modifiées, ce qui peut mener à des résultats qui ne reflètent pas 

les conditions de pluie attendues en climat futur (Benoit et al., 2025; Fortier & Mailhot, 2015). Il 

est donc essentiel de considérer les effets des changements climatiques lors de la prédiction des 

DEU. Ainsi, les décisions en matière de gestion des DEU seront mieux adaptées à ce qui est 

attendu. 

(B) Plusieurs études ont introduit des méthodes pertinentes pour catégoriser les précipitations selon 

leur potentiel de provoquer des débordements (Day & Seay, 2020; Mailhot et al., 2015; Y. Yu et 

al., 2018). Or, les mesures et calculs sont rarement détaillés, ce qui peut nuire à la précision des 

résultats. De plus, les variables de pluie testées sont souvent limitées à l’intensité, la durée et la 

quantité totale des précipitations, utilisées seules ou combinées, sans toujours prendre en compte 

leur interdépendance. Cependant, cette interdépendance est cruciale, car la quantité totale de pluie 

dépend à la fois de l’intensité et de la durée. Ainsi, des seuils de débordements fixés séparément 

pourraient manquer de précision pour évaluer le risque réel de débordement. De plus, prendre en 
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compte uniquement l’intensité limite parfois les études à une seule durée de précipitation, comme 

effectué par A. Bizer and Kirchhoff (2022). L’utilisation des accumulations de pluie sur différentes 

durées semble plus pertinente, car elle permet de capturer divers types d’événements pluvieux, 

qu’ils soient courts et intenses ou modérés et persistants, susceptibles de contribuer aux 

débordements, offrant ainsi une vision plus complète des risques associés. Une méthode basée sur 

une régression logistique avec des accumulations de pluie sur différentes durées est plus précise et 

adaptée aux particularités locales de chaque ouvrage de surverse. Elle permet d’utiliser des 

variables explicatives spécifiques à chaque site. De plus, comme cette méthode se base sur des 

données observées, elle reflète plus fidèlement les conditions réelles et permet d'optimiser les seuils 

de surverse pour chaque infrastructure.  

(C) Actuellement, l’algorithme de prédiction de Jalbert et al. (2024), un modèle de prédiction 

simple basé sur un arbre de classification optimisé en fonction des précipitations, est utilisé afin de 

catégoriser les précipitations pour prédire les DEU. Il serait intéressant de tester une autre 

application qui permettrait de cibler les bassins de drainage urbain (BDU) où les DEU se produisent 

le plus fréquemment en climat futur afin de les prioriser pour la mise en place de mesure de 

mitigation. Cependant, cette méthode ne permet pas d’intégrer l’aspect santé. La fiche technique 

développée par le CREDEAU de Polytechnique pour le risque de DEU est également une méthode 

à considérer afin de déterminer quels BDU sont prioritaires en ce qui concerne le risque de surverse. 

Elle permet d’intégrer une estimation de risque microbien effectuée en fonction de la densité de la 

population, ce qu’il n’est pas possible d’effectuer avec l’algorithme de prédiction de Jalbert et al. 

2024. Ainsi, il serait intéressant de combiner ces deux méthodes pour déterminer les BDU 

prioritaires en climat futur selon une estimation du risque microbien.  

(D) La relation entre les IVB et la résilience est souvent axée sur la gestion des eaux pluviales 

(Meerow & Newell, 2017). Malgré les opportunités et les avantages reconnus du verdissement des 

villes, l'opérationnalisation et la mise en œuvre systématiques des IVB restent un défi non résolu. 

Cela est dû au manque d'outils pour déterminer leur valeur à long terme et pour quantifier la 

contribution des IVB à la résilience urbaine (Beceiro et al., 2022). Il y a donc un besoin d’outils 

permettant d’analyser la résilience qui tiennent compte de d’autres bénéfices associés au IVB (e.g. : 

UHI, protection des zones de baignade).  
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(E) Selon la littérature, il y a un besoin pour des outils de planification pour assurer une distribution 

équitable des IVB afin que les effets des bénéfices et cobénéfice soient répartis sur l’ensemble d’un 

territoire (Dagenais et al., 2013; Kremer et al., 2016; Meerow et al., 2019). En outre, une mauvaise 

planification de l’implantation des IVB peut avoir des effets négatifs, comme de la gentrification 

ou de l’injustice environnementale (Walker, 2021; Wolch et al., 2014) d’où l’importance des outils 

de planification qui permettent d’intégrer des critères sociaux dans le choix des emplacements des 

IVB. SSANTO prend en compte un ensemble d’objectifs dont certains liés à l’équité sociale, ainsi 

une stratégie basée sur les résultats de SSANTO pourrait améliorer la distribution équitable des 

IVB. Les espaces verts et le verdissement pourraient s’inscrire dans une stratégie plus globale 

visant à améliorer la santé, le cadre de vie et la mobilité active en milieux urbains; l’hypothèse du 

projet de recherche est qu’une implantation stratégique permettrait de tirer le maximum des 

bénéfices et donc d’augmenter la résilience des communautés. 

(F) L’évaluation des IVB sur les DEU a déjà été effectuée pour des événements de pluie spécifiques 

(Autixier et al., 2014). Toutefois les simulations continues (sur une plus longue durée) fournissent 

les estimations les plus précises (Jean et al., 2018), d’où l’intérêt d’évaluer l’impact des IVB sur 

les DEU avec des simulations continues. Dans ce projet de recherche, les simulations se feront une 

période de 6 mois (article 2) et de 30 ans (article 3) pour avoir une meilleure estimation des 

conditions d'humidité du sol précédant les précipitations. 

(G) En considérant que les événements de surverses se produiront plus fréquemment (Autixier et 

al., 2014; Browne et al., 2021; Daneau, 2020; Derx et al., 2023; Jalliffier-Verne et al., 2016; Patz 

et al., 2008; USEPA, 2008), il est essentiel de mieux comprendre ces événements et d’effectuer 

des analyses des risques liées à l’exposition aux eaux de surverses dans les zones de baignade et 

vérifier si les IVB peuvent agir comme barrières dans un optique de réduction des risques de 

contamination pour une exposition via la baignade. Des études basées sur l’EQRM documentent 

le risque via la baignade et montrent que la méthode EQRM est un outil de gestion efficace pour 

la qualité des eaux récréatives, puisqu’elle permet d’obtenir un résultat quantitatif pour comparer 

des stratégies de gestion (Eregno et al., 2016; Kozak et al., 2020; McBride et al., 2013).  

Sojobi and Zayed (2022) ont relevé une lacune dans la littérature, notant que peu d’études se 

concentrent sur l’utilisation des jardins de pluie pour réduire les eaux de ruissellement dans un 

contexte de santé publique. Ils recommandent de futurs travaux visant à évaluer l’efficacité des 
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jardins de pluie pour limiter les débordements d’égouts et contrôler la pollution. Toutefois, aucune 

étude à ce jour n’utilise les résultats d’ÉQRM pour vérifier si les IVB réduisent effectivement les 

risques d’exposition liés au DEU dans les zones de baignade urbaines grâce à ces stratégies de 

gestion en climat futur.  

(H) La problématique des surverses est particulièrement liée aux eaux de ruissellement (Autixier 

et al., 2014; Joshi et al., 2020; USEPA, 2014); il est donc important de viser une implantation 

stratégique dans une optique de réduction des surverses. L’efficacité des IVB, notamment pour la 

réduction du ruissellement, varie en fonction de la localisation spatiale et du type d’IVB, ainsi 

l’emplacement dans le bassin versant urbain peut être plus important que le pourcentage total de la 

superficie d’implantation (Fry & Maxwell, 2017), d’où l’importance d’une implantation à des 

emplacements stratégiques en adaptant l’outil SSANTO au contexte québécois. 

Dans la pratique 

(I) Selon Leveque et al. (2021), le nombre de jours avec une température supérieure à 30ºC ainsi 

que les vagues de chaleur vont augmenter d’ici 2050. Il est donc essentiel de maintenir la qualité 

des eaux de baignade afin de fournir des emplacements de baignade sécuritaire à la population, 

notamment en mettant en place des stratégies de mitigations des DEU.  

(J) Bien qu’il existe un guide pour mettre en œuvre un plan de protection des sources d’eau potable 

au Québec (MELCC, 2022), il n’y a pas de guide officiel spécifiquement dédié à la gestion des 

risques liés à la qualité de l’eau des sites récréatifs. 
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3.2 Objectifs de recherche  

Ce projet de recherche a pour objectif principal l’évaluation des impacts des IVB sur la santé 

publique dans la prise de décision pour la planification urbaine et la gestion des eaux pluviales. Les 

objectifs principaux pour chacune des communications scientifiques (articles) et les sous-objectifs 

associés sont énumérés dans le Tableau 3-1, qui décrit également leur originalité et leur 

contribution (écarts de connaissances). Ce tableau indique aussi les chapitres qui développent les 

différents éléments de ce projet.
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Tableau 3-1 Objectif principal et objectifs spécifiques par article, écarts de connaissances identifiées, originalité de la recherche et chapitres correspondants 

Objectif principal par article Objectifs spécifiques associés Écart de 

connaissances 

Originalité de la recherche Chapitres 

correspondants 

O1 

Développer une méthode de 

priorisation des bassins de drainages 

urbains pour réduire les DEU dans le 

contexte des changements climatiques 

O1.1 

Définir l'indice de priorisation des 

DEU sur la base de deux méthodes 

(indice de risque microbien et 

méthode statistique). 

O1.2 

Modéliser l'occurrence des DEU 

en fonction des précipitations. 

O1.3 

Évaluer l'occurrence des DEU en 

fonction du climat projeté 

(A) 

(B) 

(C) 

(I) 

(J) 

•Plutôt que d’utiliser le modèle de prédiction et la fiche 

technique séparément, ces deux méthodes seront 

combinées pour obtenir une estimation du risque 

microbien en conditions actuelles et futures 

•L’indice de priorisation développé est ou outil simple qui 

nécessite peu de données (ou qui sont facilement 

accessibles) pour prioriser les interventions pour la 

réduction des DEU 

•L'approche développée pour prioriser les BDU les plus à 

risque pourra servir de référence aux planificateurs, aux 

décideurs et aux parties prenantes pour élaborer un plan 

d’action pour protéger les prises d’eau potable et les zones 

de baignade. 

•En sélectionnant les variables les plus pertinentes pour 

chaque point de débordement, l’approche développée dans 

le cadre ce de projet gagne en efficacité et en précision, 

facilitant une gestion proactive et mieux ciblée des risques 

de surverse. 

Chapitre 4 
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Tableau 3-1 Objectif principal et objectifs spécifiques par article, écarts de connaissances identifiées, originalité de la recherche et chapitres correspondants (suite) 

Objectif principal par article Objectifs spécifiques 

associés 

Écart de 

connaissances 

Originalité de la recherche Chapitres 

correspondants 

O2 

Développer et appliquer un cadre d'analyse de 

la résilience qui tienne compte à la fois de la 

gestion des eaux pluviales et de l'aspect 

socioécologique, en tenant compte de la santé. 

O2.1 

Définir la résilience dans le 

contexte du projet. 

O2.2 

Identifier et développer des 

indicateurs de résilience 

pour la zone urbaine. 

O2.3 

Évaluer et comparer la 

résilience de différents 

scénarios en utilisant les 

indicateurs développés 

pour un cas d’étude. 

(D) 

(E) 

(F) 

(H) 

(J) 

•Plutôt que de considérer uniquement la gestion des eaux 

pluviales, le cadre de la résilience développé dans cette 

recherche intègre également l’aspect santé en considérant la 

charge en contaminant, les îlots de chaleur urbains et les 

inondations.  

•Les scénarios d’implantation développés dans cette 

recherche s’appuient sur l’outil d’aide à planification 

SSANTO afin que les effets des bénéfices et cobénéfice 

soient répartis sur l’ensemble du territoire. 

•Le cadre d’analyse de la résilience développé permet aux 

planificateurs et aux décideurs de comparer différentes 

stratégies d’implantation d’IVB. 

•Les simulations en continu effectuées dans le cadre de 

cette recherche fourniront un meilleur aperçu de l’effet des 

IVB sur la résilience. 

 

O3 

Évaluer les changements futurs des niveaux de 

Giardia et de Cryptosporidium dans un cours 

d'eau urbain en aval des rejets d'eaux usées et 

à évaluer les risques d'infection récréative 

avec et sans IVB comme barrière 

supplémentaire 

O3.1 

Quantifier les impacts 

potentiels des IVB sur les 

DEU et la charge en 

contaminants dans le cours 

d’eau récepteurs. 

O3.2 

Appliquer la méthode 

d’analyse EQRM pour une 

exposition via la baignade 

pour des scénarios avec et 

sans IVB. 

O3.3 

Analyser l’effet des 

changements climatiques 

sur les DEU et le risque 

d’infection. 

(F) 

(G) 

(I) 

(J) 

•L’application de la méthode la méthode EQRM permet 

d’obtenir une mesure quantitative pour l’évaluation du 

risque pour la santé publique et son efficacité pour la 

gestion des plages a déjà été étudiée. Cependant, il sera 

intéressant d’évaluer si les IVB peuvent contribuer à 

diminuer le risque d’exposition en se basant sur cette 

approche. 

•Les IVB ont déjà été étudiées dans une optique de gestion 

des eaux pluviales et pour leur cobénéfices, mais pas 

comme stratégie de mitigation pour réduire la 

contamination d’un site de baignade (ou d’une prise d’eau 

potable). 

•L’utilisation de l’analyse EQRM pour vérifier la réduction 

du potentiel de risque avec les IVB permettra le 

développement d’une nouvelle méthode pour évaluer le 

potentiel des IVB dans une optique de gestion du risque  

Chapitre 6 
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Le Tableau 3-2 répertorie les sections de cette thèse qui correspondent aux questions de recherche 

issues des objectifs spécifiques associés mentionnés plus haut. 

Tableau 3-2 Question de recherche et chapitres/sections correspondants à l’élaboration sur cette question 

Question de recherche Chapitres/sections 

correpondants 

Comment les scénarios climatiques projetés affecteront-ils l'occurrence future des 

débordements des eaux usées (DEU) dans les bassins de drainage urbains? 

CHAPITRE 4 

Quels facteurs additionnels, en plus des précipitations, devraient être pris en compte 

pour modéliser précisément l'occurrence des DEU? 

CHAPITRE 8 Section 

8.2 

Quel est l’impact de la sélection du scénario climatique sur l’indice de priorisation? CHAPITRE 8 Section 

8.2 

Quels indicateurs devraient être considérés pour mesurer la résilience des 

infrastructures de gestion des eaux pluviales en milieu urbain? 

CHAPITRE 5 

Quels sont les indicateurs clés pour évaluer les effets des îlots de chaleur urbains et de 

la charge en contaminants sur la résilience urbaine? 

CHAPITRE 5 

Comment différents scénarios d'implantation d’IVB affectent-ils la résilience urbaine 

selon les indicateurs définis? 

CHAPITRE 5 

Comment les IVB influencent-elles la fréquence et l'intensité des débordements des 

DEU dans les bassins de drainage urbains? 

CHAPITRE 6 

Dans quelle mesure les IVB peuvent-elles réduire la charge en contaminants à la suite 

des DEU dans les environnements urbains? 

CHAPITRE 6 

Quelles sont les différences dans les risques d'infection récréative entre les scénarios 

avec et sans IV, basées sur l'analyse EQRM? 

CHAPITRE 6 

Quels sont les principaux facteurs qui influencent les résultats de l'analyse EQRM 

dans l'évaluation des risques d'infection par baignade? 

CHAPITRE 8 section 8.4 

Comment les résultats de l'analyse EQRM peuvent-ils informer les stratégies de 

gestion des risques pour les zones de baignade en milieu urbain? 

CHAPITRE 6 

Comment les changements climatiques projettent-ils d'affecter les concentrations de 

Giardia et de Cryptosporidium dans les cours d'eau urbains? 

CHAPITRE 6 
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3.3 Méthodologie générale 

Les sections ci-dessous présentent certains points de la méthodologie du projet dans le but de 

donner davantage d’informations sur les outils et la démarche utilisés. La section 3.3.1 aborde 

brièvement le type de modèle de prédiction sélectioné pour l’étude présentée au CHAPITRE 4 

(article 1). La section 3.3.2 décrit le processus de modélisation avec l’outil SWMM. La 

modélisation SWMM est utilisée dans les études présentées au CHAPITRE 5 (article 2) et au 

CHAPITRE 6 (article 3) pour deux cas d’étude différents. La section 3.3.3 décrit plus en détail 

l’outil SSANTO qui a été développé dans le cadre du projet PIIVO et qui fait l’objet du doctorat 

de Sandrine Lacroix.  

Dans le cadre du présent de recherche, SSANTO est utilisé pour déterminer les sites les plus 

adéquat pour l’implantation de biorétentions dans l’étude réalisée dans le CHAPITRE 5 (article) 

pour une grande ville située dans le sud du Québec. Finalement, la section 7.3 présente la 

méthodologie utilisée pour la modélisation du risque microbien pour l’étude présentée dans le 

CHAPITRE 6 (article 3) dont le secteur étudié se situe à Vienne, Autriche. La Figure 3-1 présente 

une vue d’ensemble du projet de recherche, les thèmes principaux abordés dans chaque article et 

les liens entre les articles.
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Figure 3-1 Méthodologie simplifiée de l’ensemble du projet de recherche et liens entre les trois objectifs (article 1) 
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Figure 3-1 Méthodologie simplifiée de l’ensemble du projet de recherche et liens entre les trois objectifs (article 2) (suite) 
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Figure 3-1 Méthodologie simplifiée de l’ensemble du projet de recherche et liens entre les trois objectifs (article 3) (suite) 
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3.3.1 Modèle de prédiction 

Pour cette recherche, le modèle de régression logistique a été utilisé notamment en raison :  

• De la nature binaire de l’occurrence ou non des surverses ; 

• De l’utilisation de variables explicatives basées sur les précipitations pour prédire 

l’occurrence ou non d’une surverse. 

Pour le modèle de prédiction, le seuil de classification entre surverse et non surverse est un 

hyperparamètre à ajuster et qui est dépendant du niveau observé de débalancement entre les classes. 

Les paramètres du modèle de régression logistique sont estimés avec un ensemble d’entrainement, 

le seuil de classification entre surverse et non surverse est optimisé avec un ensemble de validation, 

puis les performances prédictives du modèle sont estimées avec un ensemble de tests.  

3.3.2 Modélisation SWMM 

L’utilisation du logiciel de modélisation Storm Water Management Model (SWMM) est une 

méthode très communément utilisée en gestion de l’eau (USEPA, 2022). Cette méthode permet de 

faire la planification, l'analyse et la conception liées au ruissellement des eaux pluviales pour les 

différents types de réseaux d’égout en utilisant divers types d’événement de pluies (USEPA, 2022). 

Il peut aussi être utilisé pour comparer différentes stratégies de gestions des eaux pluviales soit par 

les infrastructures grises ou par l’ajout de LID (cellule de biorétention, jardin de pluie, toit vert, 

tranché d’infiltration, chaussée perméable, noues et fossés, baril récupérateur d’eau de pluie, 

déconnexion des gouttières) avec le module conçu à cet effet (USEPA, 2022). Il est aussi possible 

d’y modéliser des contaminants en fonction des types d’utilisation du sol (Lewis A. Rossman & 

Wayne C.  Huber, 2016). 

3.3.2.1 Ajout des utilisations du sol 

Afin d’ajouter les contaminants en fonction du type d’utilisation du sol, il faut d’abord assigner les 

différents types d’utilisation du sol (proportion) pour chaque bassin de drainage urbain.  
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Voici les étapes à effectuer 4 : 

• Créer un fichier shapefile qui regroupe les types d’utilisation du sol à considérer :  

• Dans le cas de cette étude, trois types d’utilisation du sol sont considérés : Espace ouvert, 

Transport et Résidentiel. Ces trois types ont été choisis puisqu’ils permettent de dresser un 

portrait réaliste de la zone à l’étude. Dans sa zone à l’étude, le type d’utilisation du sol 

résidentiel est dominant, les rues, ruelles et stationnements sont à considérer en termes de 

contaminants car plusieurs types peuvent s’accumuler sur la chaussée en raison du passage 

des véhicules. Finalement Espace ouvert permet de réunir les catégories de type 

d’utilisation du sol restante. Le Shapefile a été créé en combinant les couches de données 

spatiales des rues et d’utilisation du sol disponible sur le site web de données ouvertes de 

la ville partenaire (Portail de données ouvertes Ville de Montréal, 2020). 

• Intégrer le fichier au modèle PCSWMM :  

a. Le fichier shapefile a été intégré au modèle SWMM en tant que couche de fond. Par 

la suite, trois types d’utilisation du sol ont été identifiés. Les proportions pour 

chaque bassin de drainage urbain ont été déterminées en appliquant le pourcentage 

de chaque utilisation du sol aux attributs des sous-bassins versants créés, en utilisant 

la pondération par zone. Il s’agit d’un outil de calcul disponible dans PCSWMM 

qui calcule le pourcentage de chaque type d’utilisation du sol dans les bassins de 

drainage en fonction du fichier shapefile. 

3.3.2.2 Ajout des contaminants  

Dans PCSWMM (et SWMM), les contaminants peuvent être considérés à deux niveaux dans le 

modèle : dans l’eau sanitaire (DWF concentration) et dans l’eau de ruissellement avec les fonctions 

Buildup et Washoff. 

  

 
4 Ces étapes sont basées sur l’exercice K023 disponible dans PCSWMM 
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Deux paramètres de qualité seront modélisés dans SWMM pour l’étude présentée au CHAPITRE 

5 (grande ville dans le sud du Québec) : les matières en suspension (MES) et E. coli. Bien que 

certaines études suggèrent que la concentration en MES ne doit pas être utilisée pour déduire la 

qualité microbiologique des eaux de surface (McCarthy et al., 2012), E. coli a été considéré, pour 

le calcul du coefficient d’accumulation en surface, comme un co-polluant des MES, en cohérence 

avec plusieurs travaux de recherche identifiés dans la littérature. Ainsi, une partie des E. coli est 

associée aux MES. Les co-polluants sont utiles pour représenter des constituants pouvant se trouver 

sous forme dissoute ou solide, et susceptibles d’être adsorbés sur d’autres constituants. (Lewis A. 

Rossman & Wayne C.  Huber, 2016). Une étude de Wu et al. (2009) a montré qu’environ 50 % des 

d’E. coli sont attachées aux MES. Cette fraction d’attachement a été retenue par Pongmala et al. 

(2015) dans un cas d’étude réalisé milieu urbain au Québec (même région que pour le cas d’étude 

de l’article 2). Le ratio de microorganismes associés aux MES varie selon le type et les conditions 

hydrologiques (Characklis et al., 2005). Pour les indicateurs bactériens tels que les coliformes 

fécaux, E. coli et les entérocoques, le comportement observé reste relativement constant, avec une 

moyenne de 20–35 % en conditions de temps sec et de 30–55 % lors d’événements pluvieux 

(Characklis et al., 2005). Ce qui montre qu’un taux de 50% est adéquat.  

Afin de modéliser les contaminants dans SWMM, il faut les ajouter à partir du module Pollutant 

Editor. 

Puis, dans le LandUse editor, il est possible de paramétrer les fonctions Buildup et Washoff selon 

le type de contaminant et le type d’utilisation du sol. Le tableau ci-dessous montre différents 

paramètres tirés de la littérature pour modéliser les MES et E.coli :  
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Tableau 3-3 Paramètres testés dans le modèle SWMM pour les deux polluants à l’études et les trois types d’usage du sol représentés 

    Buildup (Exp (Hong et al., 2021)) Washup (Exp (Pongmala, 2012)) 

 DWF 

concentration 

Inactivation constant 

(day-1) 

Copollutant C1 (max buildup) 

(Tu & Smith, 2018) 

C2 (day-1) 

(Tu & Smith, 2018) 

C3 (mm1) 

(Tu & Smith, 2018) 

C4 

(Tu & Smith, 2018) 

MES 109 mg/L 

(Autixier, 2012) 

173 mg/L 

(Pongmala et 

al., 2015) 

 NO Residential: 0.16 (kg/m 

curb) (Autixier, 2012) 

Commerciale et  

institutionnelle: 0,22 

(kg/m curb) (Autixier, 

2012) 

0.11 (kg/m curb)  

(Gironás et al., 2009) 

Range: 10-25  

Used value:13.143 

[kg/(ha·d)] 

(Di Modugno et al., 

2015) 

Concrete: 27.6 (kg/ha) 

Asphalt: 13.4 (kg/ha) 

Road: 53,27.7, 26 

(kg/ha) 

Roof: 8.5, 12 (kg/ha) 

Urban: 25 (kg/ha) 

Residential: 17.5, 18 

(kg/ha) 

Open space: 40 (kg/ha) 

 (Gong et al., 2016) 

0.5 (Autixier, 2012; 

Gironás et al., 2009) 

0.06 (Pongmala et al., 

2015) 

Concrete: 0.2 

Asphalt: 0.23 

Road: 0.222, 0.21, 

0.382 

Roof: 0.188, 0.122 

Urban: 1 

Residential: 0.3 

Open space: 0. 5  

 (Gong et al., 2016) 

 

3.5 (Pongmala et al., 

2015) 

0.026 (Autixier, 

2012) 

Residential 

impervious : 0.03  

Pervious: 0.05–0.055  

Concrete : 0.24 

Asphalt : 0.27 

Road: 0.0029–

0.0135, 0.0015–

0.0059, 0.0062–0.011 

Roof: 0.051–0.202, 

0.112–0.213 

Urban:4.9 

Residential: 1.811, 

0.13 

Open space: 0.004  

 (Gong et al., 2016) 

 

1.5 (Pongmala et al., 

2015) 

1.8 (Autixier, 2012) 

Residential 

impervious: 0.21  

Pervious: 0.21  

Concrete: 1 

Asphalt: 1 

Road: 0.608–0.986, 

0.945–1.27, 0.753–

0.914 

Roof: 0.363–0.603, 

0.333–0.414 

Urban:1.57 

Residential: 1, 1.2 

Open space: 1,2  

 (Gong et al., 2016) 
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Tableau 3-3 Paramètres testés dans le modèle SWMM pour les deux polluants à l’études et les trois types d’usage du sol représentés (suite) 

    Buildup  (Exp (Hong et al., 2021)) Washup (Exp (Pongmala, 2012)) 

 DWF 

concentration 

Inactivation 

constant (day-1) 

Copollutant C1 (max buildup) 

(Tu & Smith, 2018) 

C2 (day-1) 

(Tu & Smith, 2018) 

C3 (mm1) 

(Tu & Smith, 2018) 

C4 

(Tu & Smith, 2018) 

E. 

coli 

(Desta et al., 2024) 

16000000#/100mL 

(Madoux-Humery 

et al., 2013) 

 

7,09x106 

MPN/100 mL 

(Autixier, 2012) 

 

1.33 x 106 

MPN/100mL  

(Pongmala, 2012) 

 

0.48 (Pongmala et 

al., 2015) 

 

5.10-3 h-1 (0.1224) 

(Autixier, 2012) 

YES Residential: 60 650 # 

E. coli/g MES 

(Autixier, 2012) 

Institutionnelle : 36 

900 # E. coli/g MES 

(Autixier, 2012) 

1010-1016 MPN m-2 

(1014) (Hong et al., 

2021) 

High-density 

residential: 1.41 x 

1011 (saturation) 

(USEPA, s.d.) 

Transportation: 0.001 

x 109 (USEPA, s.d.) 

Open space: 126 x 109 

(USEPA, s.d.) 

0.5 (Autixier, 2012; 

Pongmala et al., 2015) 

0.6-2.0 (1.2) (Hong et 

al., 2021) 

High-density 

residential: 10 

(saturation)(USEPA, 

s.d.) 

 

Transportation: 2 

(USEPA, s.d.) 

 

Open space: 2 

(USEPA, s.d.) 

3.5 (Pongmala et al., 

2015) 

1.0-3.0 (2.0) (Hong et 

al., 2021)  

 

High-density 

residential: 10 

(saturation)(USEPA, 

s.d.) 

 

Transportation/Open 

space: 18  (USEPA, 

s.d.) 

1.5 (Pongmala et al., 

2015) 

1.0-2.0 (1.1) (Hong 

et al., 2021) 

 

High-density 

residential: 0.5 

(saturation) 

(USEPA, s.d.) 

 

Transportation/Open 

space : 2.2 (USEPA, 

s.d.) 
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Afin de tester la meilleure combinaison de paramètres, 13 simulations ont été effectuées dans 

PCSWMM (différentes combinaisons et différentes dates).  

Tableau 3-4 résume les paramètres choisis pour la modélisation. L’ensemble des résultats des 

simulations se trouvent à l’annexe B. 

Tableau 3-4 Paramètres utilisés dans le modèle SWMM pour les fonctions d’accumulation et de lessivage en 

fonction du polluant et du type d’utilisation des sols.  

 MES E. coli 

Concentration dans le débit par 

temps sec 

109 mg/L 7,09x106  #/L 

Constante inactivation (jour-1) N/A 0,1224 

Copolluant NO YES (0.5) 

Espace ouvert C1 (accumulation maximale): 40 

C2 (jour-1): 0.5 

C3 (mm1): 0.004 

C4: 1.2 

C1 (accumulation 

maximale):126X109 

C2 (jour-1): 2  

C3 (mm1): 18 

C4: 2,2 

Résidentiel C1 (accumulation maximale): 0.16 

(curb) 

C2 (day-1): 0,5 

C3 (mm1): 0.026 

C4: 1.8 

C1 (accumulation maximale - sat)): 

141000000000 

C2 (day-1): 10 

C3 (mm1): 10 

C4: 0,5 

Transport  C1 (accumulation maximale): 53 

C2 (jour-1): 0.22 

C3 (mm1):  0,0029 

C4: 0,608 

C1 (accumulation maximale): 

1000000 

C2 (jour-1): 2 

C3 (mm1): 18 

C4: 2 

Il est possible de voir que, pour la fonction d’accumulation d’E.coli pour l’usage su sol résidentiel, 

nous avons utilisé une fonction de saturation alors que pour les autres usages, nous avons utilisé 

la fonction exponentielle. La fonction exponentielle reflète une accumulation plus progressive et 

continue, ce qui est plus réaliste pour les types d’usages transport et espaces ouverts où l'apport de 

nouveaux polluants n'est pas aussi fréquent que dans les zones résidentielles, mais se produit de 

manière constante.  
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Les zones résidentielles ont des activités humaines régulières, comme le lavage des voitures, 

l'arrosage des jardins, et les animaux domestiques, qui contribuent de manière constante à 

l'accumulation d'E. coli jusqu'à atteindre un certain niveau de saturation.  

Pour le normalisateur d'accumulation, il est fonction de l’aire du bassin de drainage urbain, sauf 

pour le paramètre d’accumulation maximale pour les MES en usage résidentiel, où c’est le 

périmètre du bassin de drainage urbain. Le choix du normalisateur (aire ou périmètre) peut varier 

en fonction du polluant et de l’usage du sol (Lewis A. Rossman & Wayne C.  Huber, 2016).  

Pour modéliser l’accumulation des matières en suspension (MES) dans les zones résidentielles, le 

choix du périmètre, comme facteur de normalisation dans la fonction d’accumulation, est une 

approche pertinente. En milieu urbain, les MES ont tendance à s'accumuler le long des bordures 

de rue, où les particules issues des activités humaines, du trafic automobile, de l'érosion des 

surfaces et du dépôt atmosphérique s'accumulent avant d’être lessivées par le ruissellement. Même 

si les routes sont modélisées séparément, les terrains résidentiels bordant ces rues contribuent 

indirectement à la charge en polluants, puisque les eaux de ruissellement provenant des toits, allées 

et pelouses atteignent souvent les systèmes de drainage via ces interfaces. Ainsi, la longueur de 

bordure entre les lots résidentiels et la voirie constitue une zone de transfert, à la fois pour 

l’accumulation et pour le transport des MES vers le réseau pluvial. Utiliser la longueur de bordure 

comme normaliseur permet donc de mieux représenter la réalité physique du transport des 

polluants dans un contexte urbain, et de prendre en compte la connexion entre les terrains 

résidentiels et les rues lors de la contamination. Cette approche contribue à une modélisation plus 

fine des apports polluants dans les bassins versants urbanisés. 
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Pour les polluants qui sont uniformément répartis sur de grandes surfaces, la superficie est un 

normalisateur approprié. Elle permet de représenter l'accumulation de polluants en fonction de la 

taille de la zone contributive. La superficie permet de prendre en compte la variabilité des sources 

de pollution au sein d'une zone donnée. Par exemple, les zones avec des jardins, des pelouses, et 

des espaces imperméables peuvent toutes contribuer différemment à l'accumulation de polluants. 

Comme le type d’usage du sol transport représente également les zones de stationnement, nous 

avons décidé d’utiliser l’aire comme normalisateur. Pour le choix des fonctions, du normalisateurs 

et des autres paramètres, les choix ont été fait sur la base des données disponibles dans la littérature.  

3.3.2.3 Ajouts des débits sanitaires 

Les débits sanitaires (débits par temps sec) sont ajoutés manuellement dans le modèle SWMM 

(CHAPITRE 5, grande ville du sud du Québec) en injectant des débits dans les bassins de drainage 

urbain qui ont une sortie (outlet). Deux hypothèses sont considérées pour l’ajout des débits 

sanitaires :  

1. La population est uniformément répartie sur l’ensemble du territoire. 

2. Les activités sont uniformément réparties sur chaque bassin de drainage urbain. 

Pour chaque type d’utilisation du sol, il est possible d’estimer le débit sanitaire généré par jour 

selon la superficie du bassin de drainage urbain et, dans le cas de l’occupation résidentielle, la 

population. 

Tableau 3-5 Débit sanitaire par type d’occupation du sol (G. Briere, 2012) 

Occupation du sol Débit sanitaire Superficie Population  

Résidentielle  212,5 L/(personne.jour) 236 69 229 habitants 

Commerciale 75 000L/(ha.jour) 15  

Institutionnelle  25 000L/(ha.jour) 92  

Industrielle  10 000L/(ha.jour) 3  

Total 18157959/jour   

Le Tableau 3-5 montre que la plus grande contribution en débit sanitaire est la proportion générée 

par l’occupation du sol résidentielle.  
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Afin de représenter la variation de débit sanitaire aux heures de pointe, un Time Pattern tel que 

montré dans le Figure 3-2 a été ajouté dans le modèle PCSWMM. Il s’agit d’un facteur 

multiplicateur appliqué au débit sanitaire dans le modèle qui permet de représenter les variations.  

 

Figure 3-2 Facteur multiplicatif pour les débits sanitaires tiré de G. Briere (2012) 

Cette méthode ainsi les hypothèses considérées sont utilisées dans Bel Yaagoubi (2025) et sont 

similaires à la méthode et aux hypothèses suggérées dans Benoit et al. (2025) qui estime également 

le débit domestique à partir de la population et d’un facteur multiplicatif. 

3.3.2.4 Modélisation des infrastructures vertes et bleues 

Pour ce projet, les IVB sont intégrées dans un modèle PCSWMM pour les articles 2 et 3. Le module 

Low Impact Development (LID) dans SWMM permet d’ajouter ce type d’infrastructure. Voici les 

hypothèses à considérer lors de l’intégration de cellule de biorétention dans SWMM. 

Il existe deux approches pour placer les LID dans un modèle SWMM (Rossman, 2010) : 

1. Placer un ou plusieurs LID dans un sous-bassin versant existant, ce qui réduira (de manière 

équivalente) la zone non- LID du bassin de drainage urbain. 

2. Créer un nouveau bassin de drainage urbain réservé à un seul LID et acheminer les eaux 

de ruissellement des sous-bassins adjacents vers celui-ci. 
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Dans le cas de ce projet, nous avons sélectionné l’approche 1, cette approche permet également de 

mieux représenter la réalité puisque les infrastructures vertes sont souvent ajoutées dans des 

bassins de drainage urbain existants tel que suggéré dans d’autres études (Autixier et al., 2014; Bel 

Yaagoubi, 2025; Benoit et al., 2025; Gougeon et al., 2023) 

L’approche 1 est représentée par le schéma suivant :  

 

Figure 3-3 Schéma du placement de LID selon l’approche 1 adaptée de Rossman (2010) 

Selon le type de LID ajouté, l’aire imperméable et le paramètre de largeur (width) du bassin de 

drainage urbain doivent être recalculés. Le paramètre de largeur est très sensible (Autixier, 2012), 

il est donc essentiel de le considérer quand on propose des scénarios d’implantation d’IVB. Le 

paramètre de largeur se calcule en fonction de l’aire totale du sous-bassin versant et de la longueur 

d’écoulement (flow length). L’ajout de LID permet de créer de nouveaux chemins d’écoulement 

augmentant ainsi la longueur totale d’écoulement dans un bassin de drainage. 

𝑊 =
𝐴

𝐿
 

Équation 3-1 (Lexington-Fayette, 2005) 

où W est le paramètre de largeur en mètre, A est l’aire du bassin de drainage urbain en mètre carré 

et L est la longueur d’écoulement en mètre.  

Lorsqu’on ajoute une IVB, la longueur de ruissellement peut être modifiée (elle augmente). Il est 

important de noter que le paramètre de largeur s’applique qu'à la partie du sous-bassin versant qui 

n'est pas concerné par le LID. Pour la modélisation dans l’étude cas, nous avons considéré que les 

LID implantées sont de forme carrée afin de pouvoir recalculer le paramètre de largeur.  
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Figure 3-4 Changement dans la longueur d’écoulement et le paramètre de largeur avec l’ajout d’une LID 

En supposant que la LID est de forme carrée et que nous connaissons l’aire (selon le pourcentage 

d’implantation), il est possible de recalculer le paramètre de largeur : 

𝐴𝐿𝐼𝐷 = 𝑙2 

𝑙 = √𝐴𝐿𝐼𝐷 

𝑁𝑜𝑢𝑣𝑒𝑎𝑢 𝑝𝑎𝑟𝑎𝑚è𝑡𝑟𝑒 𝑑𝑒 𝑙𝑎𝑟𝑔𝑒𝑢𝑟 = 𝑝𝑎𝑟𝑎𝑚è𝑡𝑟𝑒 𝑑𝑒 𝑙𝑎𝑟𝑔𝑒𝑢𝑟 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑙 

 

Équation 3-2 

Si le l (nouveau width) calculé avec l’ajout de la LID est plus grand que le paramètre de largeur 

initial, par exemple en raison de la forme du bassin de drainage urbain, le paramètre de largeur 

initial est conservé.  
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Puisque les IVB sont ajoutées uniquement sur la partie imperméable du bassin de drainage urbain, 

celle-ci doit être recalculée suivant à l’ajout d’IVB :  

 

𝑃𝑜𝑢𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑖𝑚𝑝𝑒𝑟𝑚é𝑎𝑏𝑙𝑒 𝑚𝑜𝑑𝑖𝑓𝑖é

=
𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑖𝑚𝑝𝑒𝑟𝑚é𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑡𝑎𝑛𝑡𝑒

𝐴𝑖𝑟𝑒 𝑛𝑜𝑛 𝐼𝑉𝐵
∗ 100 

% imperméable= 90% 

Aire totale = 44 m2 

Aire imperméable = 39,6 m2 

 Si nous voulons une implantation d’IVB de 10%: 

10% de 39,6 m2 (aire imperméable) = 3,96 m2  

Aire IVB = 3,96 m2 

39,6 (aire imperméable) - 3,96 (Aire IVB = 35,64 m2 

Aire non IVB = 44- 3,96=40,04 m2 

Pourcentage imperméable modifié = 35,64/40,04 *100 =89% 

Figure 3-5 Exemple de calcul du pourcentage imperméable modifiée 

Il est possible de modéliser huit différents types de LID dans SWMM directement à partir du LID 

Editor soient les biorétentions, les tranchées d’infiltration, le pavé perméable, les fossés 

engazonnés, les toits verts, les barils récupérateurs d’eau de pluie les jardins de pluie la 

déconnection des gouttières. Dans le cas de ce projet de recherche, nous avons choisi les 

biorétention puisqu’ellespermettent de réduire les surverses en captant une partie de l’eau 

ruissellement (Armson et al., 2013; Autixier et al., 2014; Berland et al., 2017; Stovin et al., 2008). 

Elles peuvent également réduire la charge en contaminants grâce à la filtration (Armson et al., 

2013; Berland et al., 2017; Stovin et al., 2008).  
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Les biorétentions sont des systèmes plus petits qui s’adaptent bien en milieu urbain. Afin de 

modéliser les biorétentions, les paramètres doivent être entrés dans les sections du LID Editor. Il 

existe de nombreuses informations dans la littérature sur le choix des paramètres. Le Tableau 3-6 

présente des exemples de paramètres pour la modélisation des biorétentions : 

Tableau 3-6 Exemples de paramètre pour les biorétentions dans SWMM. Les choix sont indiqués en gras 

 Paramètres Values References 

Surface Berm height (mm) 150-300  

75  

250  

(Lewis A. Rossman & Wayne C.  Huber, 

2016) 
(Joshi et al., 2020) 

(Autixier, 2012) 

Vegetation volume fraction (%) 0,05  

0  

(Joshi et al., 2020) 

(Autixier, 2012) 

Surface roughness (n) 0,2 
0,1 

0 

(Joshi et al., 2020) 
(Bouattour, 2021) 

(Autixier, 2012) 

Surface slope (%) 1 

0,77 

0 

(Joshi et al., 2020) 

(Bouattour, 2021) 

(Autixier, 2012) 

Sol Thickness (mm) 610-1220  

600  

609,6  

1000  

450 

(Lewis A. Rossman & Wayne C.  Huber, 

2016) 

(Joshi et al., 2020) 

 

 
(Bouattour, 2021) 

Porosity (vol.frac) 0,45-0,60  

0,52  

0,45  

0,45  

(Lewis A. Rossman & Wayne C.  Huber, 

2016) 

(Joshi et al., 2020) 
(Rosa et al., 2015) 

(Autixier, 2012) 

Field capacity (vol.frac) 0,15-0,25  

0,15  

0,1  
0,19  

(Lewis A. Rossman & Wayne C.  Huber, 

2016) 

(Joshi et al., 2020) 
(Rosa et al., 2015) 

(Autixier, 2012) 

Wilting point (vol.frac) 0,05-0,15  

0,08  

0,05  
0,085  

(Lewis A. Rossman & Wayne C.  Huber, 

2016) 

(Joshi et al., 2020) 
(Rosa et al., 2015) 

(Autixier, 2012) 

Conductivity (mm/h) 51  

119,4  

11  

(Joshi et al., 2020) 

(Rosa et al., 2015) 

(Autixier, 2012) 

Conductivity slope 45,05  

10  

10  

(Joshi et al., 2020) 

(Rosa et al., 2015) 

(Autixier, 2012) 

Suction head (mm) 51-102  

48,26  
110,1  

110  

89 

(Lewis A. Rossman & Wayne C.  Huber, 

2016) 
(Joshi et al., 2020) 

(Rosa et al., 2015) 

(Autixier, 2012) 

(Bouattour, 2021) 
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Tableau 3-6 Exemples de paramètre pour les biorétentions dans SWMM. Les choix sont indiqués en gras (suite) 

 Paramters Values References 

Stockage Thickness (mm) 150-915  
300  

150  

(Lewis A. Rossman & Wayne C.  Huber, 
2016) 

(Joshi et al., 2020) 

(Autixier, 2012) 

Void ratio 0,2-0,4  

0,3  
0,5  

(Lewis A. Rossman & Wayne C.  Huber, 

2016) 
(Joshi et al., 2020) 

(Autixier, 2012) 

Seepage rate (mm/h) 4  

1,3  

(Joshi et al., 2020) 

(Autixier, 2012) 

Clogging factor 0 (Autixier, 2012) 

Drain (oui ou non) Drain flow coefficient 2.3 (Bouattour, 2021) 

Flow exponent 0.5 (Bouattour, 2021) 

Offset 13 (Bouattour, 2021) 

De plus, lors de l'implantation de la biorétention dans les sous-bassins correspondants, des valeurs 

de 25 % de saturation initiale, 30 % de zones imperméables traitées et 10 % de zones perméables 

traitées ont été choisies. Ces valeurs ont été définies à partir d'une étude réalisée dans une ville du 

Québec (Bouattour, 2021; Le Cauchois et al., 2025). 

Les biorétentions peuvent également réduire la charge en polluant. Le tableau ci-dessous montre 

le pourcentage d’enlèvement pour E.coli et les MES : 

Tableau 3-7 Pourcentage d’enlèvement par les biorétentions.  

 Pourcentage d’enlèvement   Ref 

E. coli 70%  

92.4%- 99.5%  

69%-71% 

72%-97% (après 6 mois) 

18.6%-77.6% 

Environ 80%  

(Autixier et al., 2014) 

(Jianjun et al., 2014) 

(Hunt et al., 2008) 

(Zhang et al., 2011) 

(J. Liu et al., 2020) 

(Clary & Leisenring, 2020) 

MES 60%  

60%  

70%-99%  

0,18%-30,8%  

55 % -99 % 

47%-99% (revue de la littérature) 

75%-83% 

(Autixier et al., 2014) 

(Brown & Hunt III, 2011) 

(C. Chen et al., 2019) 

(J. Chen et al., 2019) 

(Li & Davis, 2008) 

(LeFevre et al., 2015) 

(Clary & Leisenring, 2020) 

Le pourcentage d’enlèvement s’ajoute dans la section Pollutant Removal du LID Editor. 

À partir du Tableau 3-7, une valeur de 70% d’enlèvement pour E.coli et une valeur de 60% 

d’enlèvement pour les MES sont choisies sur la base d’,  une étude de cas effectuée au Québec 

(Autixier et al., 2014).  
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Finalement, pour le projet, nous avons fait l’hypothèse d’une seule biorétention par bassin de 

drainage urbain, l’aire totale correspond à la somme des aires nécessaires (pourcentage de l’aire 

imperméable.) tel que suggéré par Autixier et al. (2014). 

Choix des stratégies d’implantation des IVB (CHAPITRE 5, article 2) 

Plusieurs stratégies peuvent être envisagées pour implanter les infrastructures vertes et bleues 

(IVB) en fonction des résultats générés par l’outil SSANTO. Une recherche menée dans le cadre 

d’un mémoire de maîtrise a montré que la stratégie la plus performante repose sur une implantation 

stratégique non discriminante (Bel Yaagoubi, 2025).Cette approche consiste à répartir les IVB sur 

l’ensemble du territoire afin d’atteindre une cible de conversion de surfaces imperméables, tout en 

implantant davantage d’IVB dans les zones présentant un score d’adéquation élevé, et moins dans 

celles avec un score plus faible. 

La mise en œuvre de cette stratégie selon les scores d’adéquation suit plusieurs étapes : 

1. Ajouter les cartes d’adéquation et les bassins de drainages urbains tels que découpés dans 

le modèle SWMM à un logiciel SIG (e.g. ArcGIS) 

2. Redécouper la carte d’adéquation en fonction des bassins de drainages urbains, dans 

chaque bassin de drainage urbain appliquer la moyenne du score d’adéquation obtenue (si 

plusieurs pixels de la carte d’adéquation chevauchent le bassin de drainage urbain) 

3. Classer les scores d’adéquation de chaque de chaque bassin de drainage urbain selon les 

quartiles, chaque quartile correspond à une priorité d’implantation.  

a. Priorité faible, 1er quartile (Q1) : 25 % des données sont inférieures ou égales à 

cette valeur. 

b. Priorité moyenne -, 2e quartile (Q2) (aussi appelé la médiane) : 50 % des données 

sont inférieures ou égales à cette valeur. 

c. Priorité moyenne +, 3e quartile (Q3) : 75 % des données sont inférieures ou égales 

à cette valeur. 

d. Priorité forte, 4e quartile : comprend les données au-dessus de Q3, soit les 25 % les 

plus élevés 
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4. Calculer le pourcentage d’aire imperméable convertie dans chaque bassin de drainage 

urbain selon la priorité d’implantation en s’assurant que le pourcentage total d’implantation 

corresponde au taux visé (10% et 25%, CHAPITRE 5) 

Le Tableau 3-8 permet de montrer que les bassins de drainage urbain ayant reçu les notes 

d’adéquation les plus élevées auront un plus grand pourcentage d’aire imperméable convertie en 

IVB comparativement aux zones avec un score d’adéquation plus faible. 

Tableau 3-8 Exemple de répartition des IVB selon les scores d’adéquation 

 Forte 

Moyenne 

+ 

Moyenne 

- Faible 

Aire tot 

IV  
Scénario 1 - 5% IV 9 5 5 2 11 5 

Scénario 2 - 10% IV 17 10 10 5 22 10 

Scénario 3 - 15% IV 22 15 15 10 33 15 

Scénario 4 - 25% IV 35 30 25 15 55 25 

3.3.2.5 Courbe de stockage (CHAPITRE 6, article 3) 

La courbe de stockage représente la profondeur de l'unité de stockage (m au-dessus du fond) en 

fonction de la surface de l'eau (m2). Le choix des paramètres influence le volume total de stockage 

ainsi que le volume disponible à chaque pas de temps. Dans le cas d’étude considéré au 

CHAPITRE 6 , le réservoir permet de contrôler le nœud de surverse.  
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La Figure 3-6 montre quatre cas de figure possibles pour la modélisation du stockage et l’effet sur 

le volume de surverse :  

 
 

 
 

Figure 3-6 Effet de la modification de la profondeur (depth) et de l’aire (area) sur le volume à nœud de surverse pour 

le cas d’étude du CHAPITRE 6 (Vienne, Autriche) 

Le cas 2 et 4 montre qu’une augmentation de l’aire (surface) du réservoir permet de diminuer le 

volume alors que le cas 3 montre que pour diminuer le volume au nœud de surverse il faut diminuer 

la profondeur (depth) du réservoir. Pour l’article 3 (CHAPITRE 6), l’aire (surface) a été augmentée 

pour correspondre au cas 2 afin de diminuer le volume de surverse lors de l’ajout d’espace de 

stockage. 

3.3.3 Spatial Suitability ANalysis Tool (SSANTO) 

Les outils d’analyses SIG (système d’information géographique) sont très utiles afin de visualiser 

la dimension spatiale d’un risque et permettent également de déterminer le potentiel d’adaptation 

possible pour un emplacement donné (Lindley et al., 2006). En effet, en identifiant les lieux et les 

communautés les plus vulnérables, il est ensuite possible de mettre en place des politiques et des 

mesures de prévention (D’Ercole et al., 2009).  

Cas 1 Cas 2 

Cas 3 Cas 4 
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Les outils se basant à la fois sur les SIG et sur l’ADMC offrent des avantages pour faciliter les 

processus de planification ainsi que les échanges d’informations et de connaissances 

interdisciplinaires pour améliorer la gouvernance urbaine de l’eau (Kuller et al., 2018).. De plus, 

puisque la planification de la mise en place d’IVB peut être complexe en raison de leur caractère 

multifonctionnel, les outils SIG-ADMC évitent de faire une implantation ad hoc qui ne maximise 

pas nécessairement les bénéfices et les cobénéfices liés à leur implantation (Kuller et al., 2019).  

SSANTO (Spatial Suitability ANalysis Tool) illustre bien ce type d’approche. Développé 

initialement pour Melbourne (Kuller et al., 2019), puis adapté au contexte québécois (Lacroix et 

al., 2024), cet outil identifie les sites les plus adéquats pour implanter différents types d’IVB 

(biorétention, toitures végétalisées, noues, marais artificiels, etc.) selon deux perspectives : les 

opportunités (où l’implantation est la plus favorable) et les besoins (où les bénéfices attendus sont 

les plus importants). L’évaluation se fait à partir de données géospatiales, d’échelles de valeurs 

normalisées et de pondérations définies par les utilisateurs, produisant des cartes d’adéquation 

facilement interprétables. L’un des principaux atouts de SSANTO est sa fonction de 

communication : les cartes générées permettent de comparer les sites et de favoriser la prise de 

décision collective. Les expérimentations menées dans le cadre du projet PIIVO ont confirmé son 

potentiel comme outil d’aide à la planification et au dialogue entre parties prenantes. La Figure 

3-7 présente une vue conceptuelle de la hiérarchie générale de SSANTO :  

 

Figure 3-7 Structure de la hiérarchie de SSANTO 
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La hiérarchie d’objectifs développée pour le cadre d’adéquation spatiale de SSANTO pour le 

contexte québécois par Lacroix et al. (2024) se trouve dans l’annexe C (matériel supplémentaire 

de l’article 2). L’article de Lacroix et al. (2024) détail le processus de développement des 

hiérarchies d’objectif ainsi que l’élaboration des échelles de valeurs pour chaque attribut avec les 

experts. 

Le développement des échelles de valeurs est le processus par lequel tous les jeux de données 

spatiales, ayant des unités différentes, sont rapportés sur une échelle comparable entre 0 et 1. Ce 

processus s’est effectué avec des experts au moyen de 12 consultations. Pour les jeux de données 

de types catégoriques (classe), un rang est attribué à chacune des classes, puis une note 

d’adéquation (0-1). Pour les jeux de données de type continu, la méthode de la bissection est 

utilisée (Lacroix et al., 2024). 

SAANTO calcule le score d’adéquation en effectuant une moyenne pondérée en considérant les 

échelles de valeurs (telles que définies par les experts) et les poids (priorités identifiées par les 

utilisateurs) avec l’équation suivante :  

𝑉(𝐴) =  ∑ 𝑤𝑖 ∗  𝑣𝑖(𝑎)

𝑛

𝑖=1

 
Équation 3-3 

Où V(A) est le score d’adéquation final entre 0 et 1, vi (a) est échelle de valeur normalisée entre 0 

et 1 qui représente le degré de performance de l’alternative pour l’objectif i et wi  est le poids 

associé l’objectif i. 
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Le Tableau 3-9 résume le fonctionnement de l’outil SSANTO : 

Tableau 3-9 Étapes du fonctionnement de l’outil SSANTO adaptées de Lacroix et al. (2024) 

 

Type d’IVB 

Groupe A Groupe B Groupe C Systèmes en 

développement  

Biorétention & 

jardins de pluie 

Étangs & 

lacs  

Arbre 

(A.Rioux) 

Toitures végétalisées 

(P. Roy) 

Système 

d’infiltration 

Marais 

artificiels 

 Jardins partagés (P. 

Roy) 

Noue   Réservoirs d’eau de 

pluie (N. Naserisafavi) 
 

 

Développement 

d’une hiérarchie 

d’objectifs 

Les hiérarchies d’objectifs ont été développées pour chaque type (ou groupe) 

de système lors d’ateliers de cocréation dans le cadre du projet PIIVO. 

 

Compilation d’une 

base de données 

géospatiales 

Les données géospatiales (shapefile ou raster) sont récupérées sur les sites de 

données ouvertes ou transmises par les partenaires du projet PIIVO. 

 

Définition des 

échelles de valeurs 

Les échelles de valeurs permettent de rapporter tous les attributs sur une 

échelle comparable de 0 à 1. Les échelles de valeurs ont été définies avec des 

experts lors de consultations dans le cadre du projet PIIVO. 

 

Pondération des 

objectifs sur une 

échelle de 0 à 1 

Les utilisateurs de SSANTO peuvent pondérer les objectifs sur une échelle de 

0 à 1 selon leur préférences (priorités). 

 

Obtention de la carte 

d’adéquation pour le 

système sélectionné 

La carte d’adéquation obtenue via SSANTO permet de comparer les sites 

entre eux pour la meilleure implantation du système choisi en tenant compte 

de la pondération des utilisateurs.  

Les étapes présentées dans le Tableau 3-9 s’effectuent directement dans l’interface de l’outil 

SSANTO. La représentation des résultats de l’adéquation sous forme de carte facilement 

interprétable permet aux différentes parties prenantes de prendre part aux décisions par rapport à 

la gestion de l’eau (Kuller et al., 2018). Dans le cadre du projet PIIVO, deux ateliers de mise à 

l’essai de l’outil SSANTO ont été menés avec deux villes partenaires. L’un des principaux 

enseignements de ces ateliers a été le rôle potentiel de SSANTO en tant qu’outil de 

communication. L’utilisation de l’outil SSANTO est également pertinente d’un point de vue de la 

planification particulièrement en milieu urbain dense où l’espace disponible est limitée car il 

permet de cibler non seulement les sites où la mise en place est facilitée (opportunité) mais 

également les endroits où la mise en place d’IVB est la plus essentielle (besoins) (Kuller et al., 

2019; Lacroix et al., 2024). 
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Dans ce contexte, l’adaptation de SSANTO au contexte du territoire québécois et particulièrement 

au territoire montréalais, pourrait être un outil permettant de mettre en place des solutions 

stratégiques pour améliorer la protection des prises d’eau et par extension des zones de baignade 

Cet outil pourrait également permettre de déterminer les meilleures stratégies d’implantation en 

fonction du contexte territorial pour améliorer la résilience en milieu urbain.  
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4.1 Abstract  

The impact of combined sewer overflows (CSOs) on water bodies is well documented: they pose 

severe threats to water quality, ecosystems, and public health. Exposure to contaminants from 

overflows can lead to waterborne diseases, emphasizing the critical need for effective stormwater 

management. Mitigating the effects of CSOs can be achieved through various solutions, including 

blue-green infrastructure (BGI). However, the implementation of these solutions often occurs 

opportunistically rather than strategically, depending on the opportunities that arise. In addition, 

simulations under climate change predict a surge in extreme events, necessitating adaptation in 

urban planning and infrastructure design.  
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This paper proposes a prioritization index to support the location choice for mitigation measures 

under current conditions and projected climate scenarios.  The model's effectiveness is validated, 

and simulated precipitations generated by the Canadian Regional Climate Model version 5 

(CRCM5) are used, revealing an exponential increase in CSO events over time due to climate 

change. The importance of spatial location in prioritizing urban catchments for mitigation 

measures implementation is emphasized, providing valuable insights for urban planners to 

navigate climate-induced challenges and protect water bodies. 

Keywords 

Combined sewer overflows (CSOs), stormwater management, climate adaptation, waterborne 

disease health risk, machine learning 

Graphical abstract 

 

Figure 4-1 Résumé graphique article 1 

4.2 Introduction 

Combined sewer overflows (CSOs) occur when the drainage system's capacity is exceeded, 

leading to the discharge of wastewater directly into receiving streams without treatment (Donovan 

et al., 2008a; Joshi et al., 2020; Passerat et al., 2011). CSOs are observed during rainfall or 

snowmelt events that generate large amounts of water to be evacuated quickly (Madoux-Humery 

et al., 2013; Olds et al., 2018; Patz et al., 2008).  
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The discharged water is a mix of sanitary sewage and runoff that often contains contaminants, 

sometimes in higher concentrations than untreated domestic wastewater. For example, the 

concentration of total suspended solids (TSS) can be up to 1.5 times greater in the CSO water 

(USEPA, 2004). CSOs introduce fecal contamination into water bodies, increasing levels of 

human-associated microbial indicators (Olds et al., 2018) and carrying organic micropollutants 

(Launay et al., 2016). Pathogens from CSOs can pose significant public health risks, leading to 

gastrointestinal illnesses in exposed populations (Haley et al., 2024; Miller et al., 2022), beach 

closures, aquatic life toxicity, and aesthetic degradation (USEPA, 2004). Several mechanisms 

drive the effects of CSOs on water quality and ecosystem health in urban water bodies. The 

presence of pollutants in CSO discharges can be explained by the resuspension of deposits in sewer 

systems and surface runoff during rainstorms (Madoux-Humery et al., 2013; Passerat et al., 2011; 

Wang, 2014). The characteristics of the watershed, such as urbanization and the density of 

impermeable surfaces, also influence the amount of pollutants released (Farina et al., 2024; Olds 

et al., 2018). CSOs thus represent a serious threat to the quality of receiving water bodies, 

endangering aquatic life, the quality of drinking water sources, and human health. 

Exposure to contaminants released from CSOs through recreational activities such as swimming 

can cause diseases affecting the respiratory or gastrointestinal systems (Olds et al., 2018; Patz et 

al., 2008; Tseng & Jiang, 2012), causing symptoms such as diarrhea, and illnesses such as 

giardiasis and cryptosporidiosis (Gouvernement du Canada, 2012). Primary factors affecting the 

severity of waterborne diseases associated with CSOs include the type of exposure. Ingestion, 

inhalation, dermal, and ocular routes through contaminated media such as water, food, air, soil, or 

surfaces, occurring in direct, indirect, occupational, or community contexts are different type of 

exposure (Goulding et al., 2012; McBride et al., 2013). Swimmers face the highest risk due to 

prolonged exposure and greater likelihood of ingesting contaminated water (Goulding et al., 2012; 

McBride et al., 2013). Hence, these contamination events impact local populations. For example, 

a study carried out at the Lower Passaic River (United-States) shows that the probability of 

contracting a gastrointestinal illness from unintentional water ingestion near CSOs ranges from 

14% to 70% annually for the visitor and recreator scenarios, respectively (Donovan et al., 2008b).  
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Extreme rainfall events are a major contributor to waterborne disease outbreaks. In the U.S., over 

half of all outbreaks are related to excessive rainfall (Curriero et al., 2001). Climate change is 

expected to exacerbate this issue (Derx et al., 2023; Patz et al., 2008; Sterk et al., 2016). This 

underscores the importance of microbial risk as a crucial consideration in source water protection 

plans (World Health Organisation, 2017). Studies from the Great Lakes region of the United States 

show that the most at-risk water points for recreational use are those close to highly urbanized and 

densely populated basins, yet these populations could benefit from the proximity to a water body 

on hot days (McLellan et al., 2018; Olds et al., 2018). The combined effects of climate change and 

perturbations of the hydrological cycle could increase the number of days of beach closures near 

urbanized areas due to the increased potential for contamination events, and therefore, pathogen 

exposure (Olds et al., 2018; Patz et al., 2008). The projected increase of both summer temperatures 

and precipitation intensity has the potential to trigger various adverse outcomes including urban 

flooding, the formation of urban heat islands, and the occurrence of CSOs (Arnbjerg-Nielsen et 

al., 2013; Derx et al., 2023; Leveque et al., 2021; Sachindra et al., 2016). Changing climate 

condition, by both increasing the need for freshwater and threatening its quality, amplify the 

vulnerability of urban populations and natural ecosystems to climate-related hazards (Leveque et 

al., 2021). Therefore, the management of CSOs is important for large urban centers.  

Results from climate change simulations show an increase in the frequency of future extreme 

events as well as a reduction in the return period of current extreme events (S Innocenti et al., 

2019; S. Innocenti et al., 2019; Jalbert et al., 2017; Martel et al., 2020). Considering the long 

lifespan of public infrastructure like sewer systems, these changes could affect water infrastructure 

systems' service level and design. Current stormwater infrastructure, typically designed for a 50- 

to 75-year horizon, may not meet future demands under changing climate conditions (Forsee & 

Ahmad, 2011; Means III et al., 2010). As extreme precipitation events, such as those with a 100-

year return period, are expected to become 2 to 5 times more frequent (Martel et al., 2020), existing 

systems may fail to comply with future climate conditions, posing risks to public safety. The 

variability of climate change adds new uncertainties to the fundamental assumptions of 

infrastructure engineering, requiring planners to account for a broader range of possibilities 

(Means III et al., 2010).  
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Therefore, public safety must be a priority when establishing design criteria, such as extreme 

precipitation quantiles (Martel et al., 2020). It is essential to consider changes in the hydrological 

cycle in urban planning, for example in the implementation of adaptation measures to reduce CSOs 

such as blue-green infrastructure (BGI).  

Blue-green infrastructure (BGI), in complement to traditional ‘gray’ stormwater management 

infrastructure, can reduce the volume and the frequency of CSO events by capturing parts of the 

runoff, which reduces the amount of stormwater entering sewers and the amount of overflows 

(Autixier et al., 2014; Bratieres et al., 2008; Jean et al., 2021; Joshi et al., 2020; USEPA, 2014). 

Systems such as infiltration basins and bioretention are particularly effective for CSO reduction. 

For example, bioretention systems have shown runoff reduction rates between 32.7% to 84.3% 

over 10 years, with simulated storms of a 2-year recurrence (Lucke & Nichols, 2015). A 

combination of gray and BGI, also known as hybrid infrastructure, may offer the best solution by 

maximizing the strengths of both systems (Jean et al., 2021). Gray infrastructure provides the 

necessary capacity during extreme weather events, while BGI can manage day-to-day runoff and 

provide additional community benefits (Almaaitah et al., 2021). In fact, BGI is effective in 

removing contaminants such as metals, nutrients, organic matter, pathogens, and suspended solids 

in runoff that flows over roads even in cold climat, and thereby can preserve and enhance water 

quality within densely urbanized sewersheds (Autixier et al., 2014; J. Chen et al., 2019; Gougeon 

et al., 2023). Such integrated approaches are crucial in adapting to climate change and increasing 

resilience against future stormwater challenges. 

BGI is an innovative solution to improve water management at different scales (e.g. city scale, 

street scale), but also offers many co-benefits such as reducing heat islands, improving urban 

aesthetics, and having a positive impact on mental and physical health (Dagenais et al., 2017; 

MELCC, 2014; Rayfiel et al., 2015). The effectiveness of BGI in providing these multiple benefits, 

including for stormwater management, greatly depends on its spatial location (Fry & Maxwell, 

2017). However, in many cases, BGI implementation is done on an ad-hoc basis, i.e., 

municipalities implement BGI opportunistically (e.g., based on planned work on other urban 

infrastructure) rather than strategically at the city scale.  
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As a result, the technology is not used optimally, often favoring water management to the detriment 

of other benefits (Dagenais et al., 2013; Kuller et al., 2019). 

The effect of climate change on CSO discharges and on the chemical and microbiological quality 

of receiving waters have been studied empirically or through urban modeling (Derx et al., 2023; 

Jalliffier-Verne et al., 2015; Sterk et al., 2016). Derx et al. (2023) developed a probabilistic-

deterministic model to assess infection risks in an Austrian river used for recreation, using 

disaggregation to 5 –minute time steps and validation of daily precipitation data. Our study, while 

using hourly precipitation data to limit uncertainties, also addresses the severe threats that CSOs 

pose to water quality and public health, particularly under climate change. While Derx et al. (2023) 

highlighted the need for control measures to prevent CSOs based on predicted infection risks, our 

study proposes a prioritization index that considers microbial risk,with the aim to support strategic 

spatial planning of control measures such as BGI to reduce the impacts of CSOs. By combining 

future precipitation data under climate change with a predictive model and empirical method, the 

present paper aims to develop a prioritization index that identifies the most critical sewersheds for 

the implementation of CSO mitigation measures (like BGI) under current and projected climate 

conditions. In fact, the priority level of the sewershed may vary in the future due to an increase in 

precipitation. Some sewersheds could be more sensitive to the effects of climate change. More 

specifically, the objectives of this study consist of (i) defining the CSO risk index based on two 

methods (microbial risk index and statistical method), (ii) modeling the occurence of CSOs as a 

function of precipitation, and (iii) evaluating CSOs’ occurrence under the projected climate.  

Applying this method will allow us to create a prioritization index that identifies the most critical 

sewersheds for the implementation of CSO mitigation measures under current and future climate 

condition. The index developped in this study  integrates multiple key criteria for selecting 

locations for CSO mitigation measures. The index integrates CSO frequency, identifying high-risk 

areas (e.g., beaches), assessing microbial risk, and using a predictive model that accounts for future 

climate scenarios to align mitigation strategies with anticipated conditions. Our developed 

methodology is applied to a city located in southern Quebec, Canada, in an area where water 

management is crucial due to the presence of various points of interest related to water safety.  



 

 

 

 

97 

This location is particularly important for our study as it allows us to examine diverse water-related 

sites, such as a beach, a standing wave used for surfing, and a drinking water intake, thereby 

covering a wide range of water safety concerns. This prioritization index can help municipalities 

determine which sewersheds impacted by CSOs are most at risk from a public health standpoint, 

and allow them to prioritize interventions while communicating spatial information about CSO 

mitigation to other municipal services so that a combination of benefits of BGI can be considered 

in their strategic siting across the urban territory.  

4.3 Method 

4.3.1 Data collection and processing 

4.3.1.1 Case study description 

The study area is a large city located in southern Quebec, Canada. The city is divided into multiple 

sewersheds (Figure 1) characterized by the presence of overflow structures (OS) that can discharge 

into two important water courses. This study focuses on 18 OS located near sites of interest, i.e., 

where human exposure to freshwater occurs, including drinking water intakes, swimming areas, 

or recreational sites. The impact zone studied is combined inner and intermediate intake protection 

zones (IPZ), which extend 15 km upstream from the water intake and 100 meters downstream as 

defined by the Quebec Water Withdrawal and Protection Regulation (Gouvernement du Québec, 

2016). The IPZ is defined based on a minimum residence time of 2 hours, with velocity calculated 

under moderate discharge conditions (Prévost et al., 2011). Additionally, the upstream area in the 

event of potential backwater is partially considered (Prévost et al., 2011). The distances are based 

on the “Guide to Conducting Vulnerability Analyses of drinking water sources in Quebec” and on 

the “Final Notice on the Project to develop a Public Beach” (Brodeur & Price, 2018; 

Gouvernement du Québec, 2016). OS up to 12 km upstream from the beach can affect the water 

quality (Brodeur & Price, 2018). We consider 15 km as the impact zone for all site types under 

study to be conservative. The decision to consider a 15 km impact zone for all site types is based 

on a conservative approach to ensure comprehensive protection of water quality.  

Although research suggests that contamination from CSOs can affect water quality up to 12 km 

upstream (Brodeur & Price, 2018), extending the impact zone to 15 km provides an extra buffer.  
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This ensures that potential sources of pollution, such as upstream discharges or backflow, are fully 

accounted for, reducing the risk of underestimating the area that could influence water quality. 

This cautious measure helps account for uncertainties in hydrodynamic conditions and varying 

environmental factors. The distances were calculated using the distance tool in ArcGIS Pro. 

 

Figure 4-2 OS with associated sewersheds and points of interest. Points of interest include two beaches (swimming 

and non-swimming), two drinking water intakes, a marina and a wave used for standing surfing (Source: Author) 
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The city is divided into urban drainage catchments that collect water from areas of different sizes 

and direct it to the sewer system. The urban drainage catchments under study are dark grey. The 

water is collected into the conduits and in case of a CSO discharge in the water course. The 

overflow structures under study are dark red. The city has made daily records of sewer overflows 

from 2013 to 2020 openly accessible, and the data are retrieved from the city’s open data page. For 

each OS, the date (occurrence), the duration (minutes), the volume (m3) and the context 

(emergency, snowmelt, dry weather or other) of the CSO event are available. Overflow discharges 

resulting from planned construction works, emergencies, and snowmelt have been excluded from 

our analysis to focus on overflows triggered by precipitation. Therefore, only CSOs occurring from 

May to October (ice-free season) were taken into consideration.  

In this study, we chose to focus on OS located near drinking water intakes, swimming areas, or 

water recreation sites to highlight the significance of contamination control for public health 

impacts in cities. Figure 4-2 shows the characteristics of the various structures under study and the 

type of affected sites. Initially, 51 OS were evaluated for inclusion in this study; however, 

subsequent deliberation led to the retention of 18. The remaining structures were excluded due to 

either insufficient data availability, discrepancies in recorded values, or following deliberations 

with the collaborating city.  
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Table 4-1 Identifiant and sewer type (Combined or Pseudo-sanitary) of the OS selected at the associated point of 

interest 

OS ID Sewer type Type of affected site 

1 Combined 

 
2 Combined 

 
3 Combined Not directly in receiving watercourse (used for 

model testing) 

4 Combined 

 
5 Combined 

 
6 Combined 

 
7 Combined 

 
8 Combined 

 
9 Combined 

 
10 Combined 

 
11 Pseudo-sanitary* 

 
12 Combined 

 
13 Combined 

 
14 Combined 

 
15 Combined 

 
16 Combined 

 
17 Combined 

 
18 Combined 

 

  

Drinking 

water intake 
 

Marina 

 

Beach 

(Swimming 

area)  

Beach (no-

swimming) 

 Standing wave 

used for surfing 
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In Table 4-1, we see that of the 18 OS studied, 16 affect the beaches (swimming and non-

swimming), 11 affect the recreational sites and 3, the drinking water intake. Some OSs affect more 

than one of the studied sites. 

4.3.1.2 Observed precipitation 

Precipitation data recorded every 15 minutes from 2013 to 2020 were obtained from Environment 

and Climate Change Canada. Precipitation data for the months of the ice-free season were 

extracted, and rain accumulation (mm) over 1-hour, 2-hour, 3-hour, 4-hour, 6-hour, 8-hour, 12-

hour, and 24-hour periods were calculated using an appropriate sliding window of the 

corresponding length. For each of these periods, the maximum daily accumulation was retained. 

For example, for a given day, the retained 1-hour accumulation is the largest among the 24 recorded 

amounts on that day. Sub-hourly duration accumulations were not considered, as simulated 

precipitation data at a sub-hourly scale are not available, as described in the following section.  

4.3.1.3 Simulated precipitation 

The simulated precipitations considered in this paper are derived from the ClimEx CRCM5LE 

climate simulation ensemble (Leduc et al., 2019). Using CRCM5 data enhances the understanding 

of precipitation patterns critical for predicting CSO events (Leduc et al., 2019). However, the 

effectiveness of these predictions depends on the careful application of bias correction and an 

awareness of uncertainties related to natural climate variability and other modeling factors 

(Hawkins & Sutton, 2011; Leduc et al., 2019). These 50 members provide equiprobable climate 

scenarios based on the RCP8.5 greenhouse gas emission scenario, aimed at studying climate 

extremes and natural climate variability. Each run starts with slightly different initial conditions, 

allowing the ensemble to represent natural variability within the model. Covering the period from 

1955 to 2100, they focus on northeastern North America and Europe and are driven by the 

CanESM2 global model. The data is provided on a 12 km grid, assuming precipitation is uniform 

within each grid cell, which is reasonable given the resolution.  

Regional Climate Models (RCMs), with spatial resolutions typically ranging from 12 to 50 km, are 

designed to better capture surface heterogeneity, such as land-sea contrasts and orography, making 

them well-suited for hydrological applications (Leduc et al., 2019). 
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Instead of performing detailed hydraulic modeling, we used precipitation data directly to predict 

CSOs with a machine learning model. Derx et al. (2023) used a method to disaggregate the data 

into 5-minute intervals for hydraulic modeling. The disaggregation method, while enabling the use 

of hydraulic modeling, can potentially introduce uncertainties, such as inaccuracies in storm start 

times in the modeled precipitation (Gutierrez-Magness & McCuen, 2004). Hydrological models 

can be costly and resource-intensive, requiring extensive data and specialized expertise. In our 

study, we chose to use the precipitation directly as an explanatory variable to predict the CSOs 

with the predictive model, without having to perform hydraulic simulations. We retained hourly 

precipitation data from 1960 to 2100 for the grid cell containing our study area. We calculated rain 

accumulations over 1-hour, 2-hour, 3-hour, 4-hour, 6-hour, 8-hour, 12-hour, and 24-hour periods. 

Using sub-hourly projected precipitation from ultra high-resolution climate model simulations 

would be beneficial, as urban dynamics, particularly in areas with a high concentration of 

impermeable surfaces, can change rapidly (McGrane, 2016; Sathish Kumar et al., 2013; C. Xu et 

al., 2020). However, such data were not available for our region of interest. Our approach of using 

hourly and longer durations performed well in predicting overflows, making it a simpler and more 

straightforward alternative. 

Imperfect conceptualization, discretization, and spatial averaging within grid cells contribute to 

biases in climate model outputs (Hawkins & Sutton, 2011; Leduc et al., 2019). Consequently, 

relying solely on climate model outputs can yield misleading results due to these inherent biases 

(Hawkins & Sutton, 2011; Leduc et al., 2019). The “delta method” is a conceptually 

straightforward approach used to address this problem, and it has been widely applied in water 

planning studies (Graham et al., 2007; Hamlet et al., 2010). Lenderink et al. (2007) have shown 

that direct approach and delta approach produce similar results for discharge in a river. It involves 

applying a change factor, known as “delta”, from the simulations to the observations.  

This is the procedure employed in this study. The projected change in CSOs will be applied to the 

observed CSOs to obtain the prioritization index.  

4.3.2 Risk index definition 

Two methods for prioritizing sewersheds were used separately and then combined: (i) the first is 

based on a microbial risk index developed as part of drinking water intake vulnerability analyses, 
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while (ii) the second uses an algorithm for predicting the duration and frequency of CSOs based 

on rainfall accumulations over different durations, as explained in sections 2.2.1 .and 2.2.2. 

Infectious diseases caused by pathogenic bacteria, viruses, and parasites pose the most significant 

and widespread health risk related to drinking water consumption and accidental ingestion during 

recreational activities (McLellan et al., 2018; Olds et al., 2018; World Health Organisation, 2017). 

However, the temporal variability in pollutant loads and concentrations between discharge points, 

due to differences in network characteristics and rainfall   is too significant to rely solely on defined 

concentrations or loads (Madoux-Humery et al., 2013; USEPA, 2004). As a result, developing risk 

indices based on readily available information appears to be the most practical method for assessing 

the microbial risk associated with CSOs (McQuaid et al., 2019). Population data by sewershed 

helps approximate wastewater concentrations at discharge points (McQuaid et al., 2019). 

Calculating microbial risk requires knowledge of the number of overflows. The prioritization of 

sewersheds can be performed when overflow data is available, and the current climate is 

considered. When identifying which sewersheds may be problematic in the future, it is first 

necessary to estimate overflows under future climate conditions. In the literature, rainfall data are 

often used to estimate CSO hydraulic behavior (Jalbert et al., 2024; Y. Yu et al., 2018). The 

predictive model was chosen because precipitation accumulations over various durations provide 

a strong, easily obtainable, and interpretable set of variables for forecasting CSOs (Jalbert et al., 

2024). Additionally, the model allows us to incorporate precipitation data under climate change 

scenarios. Section 2.2.2 describes the statistical model used. The overflows estimated for the future 

climate allow for the calculation of the microbial index under projected climate conditions. Figure 

4-3 presents an overview of the methodology developed in this study.  
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Figure 4-3 Conceptual diagram of the overall methodology used in the paper, units are between brackets (nb is 

number, mm is millimeter, m is meter, hab is habitant) 

To protect the environment and human health, we use a microbial risk index as defined by McQuaid 

et al. (2019) to determine the priority level for each OS under study. To do this, we need 

information about the OS (type, location, and diameter), the population in the sewershed, and the 

number of overflows each year. Since we don't know the number of future overflows, we will use 

the prediction model described in section 2.2.2 to estimate this under future climate conditions. 

Here is how we combined the microbial risk index with the prediction model. 

First, we used data on overflow events and precipitation from 2013 to 2020. We trained our model 

with data from 2013 to 2019 to select the best explanatory variables for overflows in 2020. We 

then compared our model's predictions with the observed data from 2020.  

The comparison criteria were: 

1. The Pearson correlation coefficient calculated from observed and predicted data values lies 

between ±0.50 and ±1 for the microbial risk index. 
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2. The number of overflow events during the ice-free season is greater than the number during 

the ice season. Since we only considered the ice-free season and used the annual maximum 

as per Eq. 1, it was necessary to ensure that this maximum mostly occurred during the ice-

free season. 

After validation, we used simulated precipitation to predict overflow events under climate change 

conditions. We then calculated how the microbial risk index would vary under these conditions. 

4.3.2.1 Microbial risk index 

The microbial risk index was developed as part of the vulnerability analysis conducted by the City 

to consider the potential for microbial risk contamination of drinking water intakes due to CSO 

events upstream from a drinking water intake (McQuaid et al., 2019; N. McQuaid, A.-S. Madoux-

Humery, S. Dorner, et al., 2019). This index applies to OS with discharge points located in the IPZ 

as defined in section 0.. 

We used the available open-source overflow data (date and duration of overflows in minutes). We 

defined a CSO event as an overflow lasting longer than 12 minutes. Overflows with a duration 

below this threshold, possibly attributed to the uncertainty of measuring equipment, were deemed 

false positives, and subsequently excluded from consideration based on communications with the 

partner City. Overflow events under 12 minutes were systematically disregarded in the model. 

The microbial risk index was determined by considering the maximum annual count of CSO events 

over a 5-year duration as required by the guide for vulnerability analysis of drinking water intake 

(Gouvernement du Québec, 2016). Over the case study period, we used the year in which the 

highest number of events occurred to calculate the index. The microbial risk index was calculated 

according to Eq. 1; the variables and data sets used are detailed in Table 4-3: 

𝐶𝑆𝑂 − 1𝐹 = 𝐷2 ∗ 𝑃𝑜𝑝 𝑠𝑒𝑤𝑒𝑟𝑠ℎ𝑒𝑑 ∗ 𝑀𝐴𝑋 ∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑆𝑂

5

𝑖=1

 

Eq. 4-1 

where D2 is the pipe square diameter at discharge point, pop sewershed is the estimated population 

for the diffusion blocks present in the sewershed and 𝑀𝐴𝑋 ∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑆𝑂5
𝑖=1  is the maximum 

annual number of events per OS observed during the last 5 years. CSO-1F corresponds to the 

microbial risk index associated with the number of CSO discharges upstream from drinking water 
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intake. In this study, we also applied it to recreational and swimming sites. The thresholds for 

assessing the level of microbial risk potential are determined using the scale presented in Table 4-

2. Threshold values for the scale were determined using a statistical analysis (quartile values) based 

on data from overflow structures in Quebec equipped with recorders in 2013 (McQuaid et al., 

2019). Table 4-3 presents the information needed to calculate CSO-1F as per Eq. 4-1, along with 

the sources of the required data. 

Table 4-2 Thresholds for assessing the level of microbial risk potential associated with CSO-1F as defined in 

McQuaid et al. (2019) 

CSO-1F <41 41-2000 2001-18000 18001-158000 >158000 

Thresholds level of 

microbial risk potential 

Very Low Low Moderate High Very high 

Table 4-3 Information on CSO-1F index parameters adapted from McQuaid et al. (2019) to calculate the microbial 

risk index. 

Parameters Attributes Acronym Role in the index Data source 

Pipe diameter Pipe square diameter at 

discharge point (m2) 

D2 Represents the 

overflow from a 

discharge to the 

watercourse 

Municipality 

Population per 

urban catchment 

Estimated population for 

the diffusion blocks 

present in the sewershed 

(nb hab) 

Pop sewershed Approximation of 

wastewater 

concentration at the 

discharge point 

Canadian census 

(Government of 

Canada) 

CSO frequency Maximum annual 

number of events per OS 

observed during the last 5 

years * 

𝑀𝐴𝑋 ∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑆𝑂

𝑛

𝑖=1

 
In absence of 

overflow duration 

data, the number of 

overflows indicates 

the relative 

importance of the 

structure 

 

 

Water Knowledge 

Portal (MELCC) 

* The Quebec Water Withdrawal and Protection Regulation requires the use of 5-year data for all 

vulnerability analyses. The data sheets in this study have been compiled to meet the requirements 

of the regulation (McQuaid et al., 2019; N. McQuaid, A.-S. Madoux-Humery, S. Dorner, et al., 

2019) 

To facilitate the comparison and prioritization of sewersheds, we assigned to each sewershed the 

same score as its corresponding OS, which was calculated using the risk index (Eq. 4-1). 
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4.3.2.2 Statistical model for sewer overflows as a function of precipitation 

To use the output generated by the predictive model under climate change, it is necessary to first 

validate the model by testing it under current climate conditions. This validation process allows for 

a comparison of results obtained from both methods.  

To test the predictive power of the logistic regression model, the model was fitted to the data from 

2013 to 2019 and then used to predict overflows using observed precipitation data from 2020. The 

scale used to rate the potential risk of the OS is based on an annual period, while the prediction 

model’s analyzed period is the ice-free season. To evaluate if the two indices can be used together, 

we verified if most of the CSO events happened during the ice-free season. For the 18 overflow 

infrastructures studied, on average 90% of the events happened during the ice-free season for the 

period from 2017 to 2021. This suggests that, even if the predictive model only considers the ice-

free season, most of the events happened during this period, thus we can consider it to be an 

acceptable representation of the total annual number of CSOs and justify the use of the microbial 

risk index. Also, to further validate the model, the microbial index was calculated for 2020 with 

the results from the predictive model and compared to the results of the microbial index (maximum 

value from 2017 to 2021), and the Pearson correlation coefficient was calculated.  

Statistical models linking precipitation to overflows have been utilized in previous studies  

(Abdellatif et al., 2014; Jalbert et al., 2024; Y. Yu et al., 2018). This work employs a logistic 

regression model to estimate CSOs based on observed precipitation, which is then applied to 

projected precipitation data from a climate model. This methodology follows approaches from 

prior research that employed rainfall data to predict CSO behavior and impacts. For instance, Y. 

Yu et al. (2018) developed a simplified method to estimate CSO characteristics using rainfall data, 

while Abdellatif et al. (2014) evaluated the impact of climate change on CSO events, and Jalbert 

et al. (2024) utilized precipitation data to predict the occurrence of overflows. 
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The occurrences of projected overflows cannot be directly used due to the biases as explained in 

section 2.1.3, but the relative change (i.e., the delta) in occurrences can serve as an indicator of 

CSO evolution. The microbial risk index under future climate conditions was calculated as follows:  

𝐶𝑆𝑂 − 1𝐹𝑓𝑢𝑡𝑢𝑟𝑒  = 𝐶𝑆𝑂 − 1𝐹𝑎𝑐𝑡𝑢𝑎𝑙 ∗ 𝑁𝐶𝑆𝑂𝑠,𝑦 Eq. 4-2 

where 𝐶𝑆𝑂 − 1𝐹𝑓𝑢𝑡𝑢𝑟𝑒 is calculated for the year y, 𝐶𝑆𝑂 − 1𝐹𝑎𝑐𝑡𝑢𝑎𝑙 is the microbial risk calculated 

for the reference period using observed data and 𝑁𝐶𝑆𝑂𝑠,𝑦 is obtained from Eq. 4-3. This result 

represents the prioritization index under future climate conditions. 

For a specific outlet, the occurrence (1) or non-occurrence (0) of an overflow for each day of 

observation constitutes the dependent variable, and the precipitation accumulation over various 

accumulation durations constitutes the independent variables in the logistic regression model. Only 

accumulations over significant periods are retained. The selected accumulation durations may vary 

from one structure to another, which is consistent with the fact that the sewersheds linked with 

these structures may possess different characteristics (Farina et al., 2024; Y. Yu et al., 2018). Table 

4-4. presents the data used to predict CSO in current and future climate. 

Table 4-4 Data used for calibrating and modeling the predictive model to calculate the number of CSO events under 

current and future climate 

 Calibration dataset Modeling dataset 

Current climate Data from 2013 to 2019 are used to 

estimate the model  

Data from 2020 are used as a test 

Future climate Data from 2013 to 2020 are used to 

estimate the model 

Climex dataset: Data from 1955 to 

2100 under the RCP8.5 GHG 

emission scenario 

4.3.2.3 Definition of a normalized CSO coefficient 

We established a normalized coefficient to reflect the future trends in the total number of overflow 

events based on the Climex scenario indices (𝑁𝐶𝑆𝑂𝑠,𝑦) calculated as described in Eq. 4-3: 

𝑁𝐶𝑆𝑂𝑠,𝑦 =
𝑁𝐶𝑆𝑂𝑠,𝑐𝑙𝑖𝑚𝑒𝑥 50,𝑦

𝑁𝐶𝑆𝑂𝑠,𝑎𝑐𝑡𝑢𝑎𝑙

 
Eq. 4-3 
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where 𝑁𝐶𝑆𝑂𝑠,𝑦  (delta) is calculated for the year y; 𝑁𝐶𝑆𝑂 is the average number of overflows 

predicted for the year y (ice-free season) for each of the 50 scenarios; 𝑁𝐶𝑆𝑂𝑠,𝑎𝑐𝑡𝑢𝑎𝑙  is the average 

number of overflow events from 2013 to 2020. It corresponds to overflow events available to 

validate the predictive model. This approach highlighted the changing trends in the frequency of 

overflow events over time compared to the existing baseline. Additionally, it pinpointed which OSs 

are particularly vulnerable to the impacts of climate change. 

To visualize the results on a map, we also calculated the normalized coefficient over different time 

periods as proposed in Derx et al. (2023). To perform this calculation, we modified Eq. 4-3 as 

follows: 

𝑁𝐶𝑆𝑂,𝑁𝑇𝐹/𝐿𝑇𝐹 =
𝑁𝐶𝑆𝑂𝑠,𝑁𝑇𝐹/𝐿𝑇𝐹

𝑁𝐶𝑆𝑂𝑠,𝑎𝑐𝑡𝑢𝑎𝑙

 
Eq. 4-4 

Where 𝑁𝐶𝑆𝑂−𝑁𝑇𝐹/𝐿𝑇𝐹 is calculated for the near-term future (NTF) period (2021-2050) and the long-

term future (LTF) period (2071-2100). 𝑁𝐶𝑆𝑂,𝑁𝑇𝐹/𝐿𝑇𝐹 is the average number of overflows predicted 

for the NTF period and the LTF period respectively.  

Since we wanted to highlight how the priority of the sewershed evolves between the NTF and LTF 

periods, we decided to use natural breaks in the map to emphasize these changes by optimizing the 

classification based on the natural groupings in the data. Even though the scales in the legend may 

differ, this method ensures that the most significant differences between the NTF and LTF periods 

are clearly represented on the map, which is crucial for understanding and communicating the 

changes in the sewershed prioritization over time. 

4.4 Results  

The predicted overflows were then compared to the actual overflows as presented in Figure 4-4. 

Figure 4-4 (a) illustrates the actual overflows and the predicted overflows for each structure 

considered for 2020. Overall, there is a good fit, although the predictive model appears to slightly 

overestimate the number of overflows. Figure 4-4 (b) presents the microbial index calculated using 

Eq.1 with the observed and the predicted data: the graph shows a Pearson's linear coefficient of 

0,98, considered a high positive correlation. The observed microbial index is calculated with the 

data from Table 4-3 and the methodology presented in section 2.2.1.  
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The predicted microbial index used the same population and diameter data, but the number of CSO 

events is determined with the predictive model. Although the predictive model slightly tends to 

overestimate the occurrence of overflows, the associated risk measure is in good agreement with 

the observed risks. While the model is not perfect, these results demonstrate its representativeness 

of reality. Thus, it can be effectively used for assessing overflow with future precipitation scenarios 

without using hydraulic modeling.  

Hydraulic modeling, while useful for predicting water behavior, has significant drawbacks 

including complexity, high data requirements, and potential inaccuracies due to assumptions and 

sensitivity to input data. The process is also costly and time-consuming, with a reliance on 

advanced technology and ongoing maintenance. The model developed in this study enables 

predicting overflows successfully without requiring the use of hydraulic modeling and the model 

also makes it possible to use future climate rainfall data directly. 

a) 

 

b)

 

Figure 4-4 (a) Number of observed and predicted overflow events; (b) microbial risk (eq. 1) calculated with observed 

and predicted data 

4.4.1 Projected CSOs 

Detailed results for projected CSO events under climate change are presented for a selected group 

of OS with a focus on an area that includes a beach and a marina (ID#4 to 10). Table 4-5 shows 

the OS studied under the future climate. We have chosen to focus on this area for the future climate 

study, as it offers a variety of points of interest.  
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Table 4-5 Identifiant and sewer type (combined or pseudo-sanitary) of the OS selected to study under climate change 

at the associated point of interest 

OS ID Sewer type Type of affected site 

4 Combined 
 

5 Combined 
 

6 Combined 
 

7 Combined 
 

8 Combined 
 

9 Combined 
 

10 Combined 
 

4.4.1.1 Normalized CSO coefficient 

Normalized CSO coefficients were calculated using Eq. 3 (as described in section 2.2.3; results 

shown in Figure ). Figure 4-5 presents the Normalized CSO coefficients for the seven (7) chosen 

OS identified in Table 4-5.  

a) 

 

b) 

 

Figure 4-5 Normalized overflow coefficient over time for the studied OS under climate change a) ID #4, b) ID #5, c) 

ID #6, d) ID #7, e) ID #8, f) ID #9, g) ID #10. The exponential trend curve is represented in red 
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c) 

 

d) 

 

e) 

 

f)  

 

g) 

 

 

Figure 4-5 Normalized overflow coefficient over time for the studied OS under climate change a) ID #4, b) ID #5, c) 

ID #6, d) ID #7, e) ID #8, f) ID #9, g) ID #10. The exponential trend curve is represented in red (suite) 

Figure  shows that the CSO data evolve following an exponential trend, indicating that the number 

of CSO events will increase exponentially in the future. We tested both linear and exponential 

models for this study and the best fit was with the exponential model (best R2). The variation in the 

total number of CSO events per ice-free season, as expressed by the normalized CSO coefficient 

calculated with Eq.3, ranges between 1.09 to 1.54, meaning that the most sensitive OS could 
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discharge over 50% more overflow events per year (ice-free season only) by 2100. The same trend 

was observed for all OS (n=18): the coefficient increased exponentially with a good fit (average 

R2 of 0,84; all the results can be found in the supplementary material (Table 1.). It suggests that the 

model can effectively describe the patterns in the observed data. The greatest variation is observed 

at OS 5, likely because it serves one of the most densely populated and predominantly residential 

sewersheds among those studied. The high population density in this area contributes to overflow 

events due to the increased volume of water generated (Ham et al., 2009; Mahaut & Andrieu, 2019). 

These sewershed characteristics can influence the sensitivity of responses at the OS (Farina et al., 

2024; Y. Yu et al., 2018), and the statistical model indirectly accounts for these factors since the 

prediction is based on observed CSO event.  

Additionally, this sewershed has the largest surface area, contributing to runoff and increasing 

CSOs due to its extensive impermeable surface (Farina et al., 2024). Located upstream from the 

marina and the beach, control measures targeting this OS would be crucial in protecting water 

quality and public health. 

4.4.1.2 Factor of change in priority level 

The temporal evolution of the microbial index revealed an exponential increase. By calculating the 

mean microbial index for the reference period (2013 to 2020) and comparing it with both the near-

term future (NTF) period (2021–2050) and the long-term future (LTF) period (2071–2100) as 

described in Eq. 4, we discerned distinct prioritization needs for NTF and LTF. Certain sewersheds 

require immediate attention in the NTF due to higher risks, while strategic planning for 

interventions is essential for more vulnerable sewersheds in the LTF. 

Figure 4-6 presents the variation of the microbial risk index for the NTF and LTF period. This 

representation enables the rapid identification of the most sensitive urban drainage basins across 

both time horizons. 
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Figure 4-6 Microbial index variation from the reference period to (a) NTF and to (b) LTF *Note that the color scale 

is specific to each NTF and LTF period, since all variations are higher in LTF than the maximum NTF variation. 

Sewersheds are numbered according to the corresponding OS ID. 

Figure 4-6 illustrates the variation of the frequency of CSO events, comparing perspectives from 

the NTF and LTF. In Figure 4-6, the larger the value, the greater the factor of variation with respect 

to the reference period. Gray, green and yellow are given lower priority than orange, red and dark 

red. Notably, sewershed 5 shows minimal variation in the NTF scenario but experiences the highest 

a) 

b) 
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variation in the LTF scenario, suggesting significant exponential changes in this sewershed 

especially. Sewershed 7 shows a high variation for the NTF perspective emphasizing the 

importance of rapid intervention. This sewershed’s proximity to the beach and marina raises the 

importance of swift action, as CSOs can directly impact the health of users (Donovan et al., 2008b; 

Launay et al., 2016; Olds et al., 2018; Rees & White, 1993).  

The variation in the priority level would have been more marked in NTF scenarios if we had used 

an older reference period to calculate the factor of change (Eq. 4), but this was impossible due to 

the unavailability of data prior to the selected reference period 

Table 4-6 shows the results for the CSO-1F variation over the NTF and LTF periods, calculated 

using the delta method (Eq. 2). 

Table 4-6 CSO-1F variation over the NTF and the LTF compared to the actual period (2013 to 2020). Colors indicate 

the priority level for the microbial risk index from very low (light yellow) to very high (dark red) based on Table. 4-2 

OS ID Observed CSO-1F NTF CSO-1F LTF CSO-1F 

4 72949 73696 91818 

5 15610 15458 21097 

6 33116 33173 40955 

7 191367 192906 240205 

8 1220 1225 1471 

9 43307 43510 45831 

10 278682 279559 334695 

The color scale in Table 4-6 is based on the color scale as defined in Table 4-2 (section 2.2.1) that 

defines the priority level for the microbial risk index from very low to very high. As shown in 

Table 4-6, the priority levels of OS remain unchanged over time, except for structure 5, which 

transitioned from a moderate to a high priority level under the LTF. The absence of changes in 

priority levels could be attributed to the scale (presented in section 2.2.1; Table 4-2) possibly not 

being suitable for climate change conditions. The scale of priority levels was devised using data 

from the entire province of Quebec (McQuaid et al., 2019) and given that the study area is one of 

the most densely populated, the scale may not be adequately tailored to the specifics of this region. 

However, the results remain relevant, as they still reflect significant shifts in priority levels within 

the local context. The consistency in priority levels observed in Table 4-6, except for the shift in 

structure 5, suggests that the applied scale, despite its broader design, is still effective in capturing 

key changes, particularly in areas where the impact of climate change is evident. 
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4.5 Discussion 

4.5.1 Integrating Climate Adaptation into CSO Mitigation Strategies 

Our research results can be integrated into an advanced real-time control system to enhance its 

ability to prioritize and implement effective mitigation measures for CSOs. By incorporating a 

prioritization index that considers current climatic conditions, projected climate scenarios, and 

spatial factors such as the location of vulnerable areas (e.g., drinking water intake and beaches) and 

population density, this system can allocate resources more efficiently to the most critical areas for 

intervention (Jean et al., 2021). Furthermore, understanding the exponential increase in CSO events 

due to climate change enables real-time control to adapt its strategies, improving resilience against 

future environmental challenges.  

Emphasizing a comprehensive approach to stormwater management, considering entire drainage 

catchments rather than individual streets, ensures that real-time control addresses the root causes 

of CSOs, leading to sustainable solutions (Jean et al., 2021). 

Implementing CSO mitigation measures based on a prioritization index offers significant economic 

and social benefits. Currently, BGI is often deployed opportunistically rather than strategically, 

resulting in inefficient resource use and limited potential benefits (Dagenais et al., 2013; Kuller et 

al., 2019). This unplanned approach reduces BGI's effectiveness in managing CSOs prevents the 

full realization of co-benefits such as improved air quality, enhanced urban aesthetics, and 

increased biodiversity (Kremer et al., 2016).It can lead to unequal distribution of these benefits 

across neighborhoods, exacerbating social inequalities (Kremer et al., 2016; Meerow et al., 2019).  

While BGI is typically implemented on highly impervious surfaces like streets (Eaton, 2018; 

Simperler et al., 2020; Voskamp & Van de Ven, 2015), prioritizing sewersheds instead of 

individual streets offers a more comprehensive stormwater management strategy. This approach 

allows for more strategic resource allocation to address root causes within specific sewersheds. 

Various studies have shown that implementing BGI at the watershed scale can effectively reduce 

CSO volume and frequency (Joshi et al., 2020; Lucas & Sample, 2015; Lucke & Nichols, 2015; 

McGarity et al., 2017). 
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The effectiveness of adaptation strategies relies on spatial planning (Dagenais et al., 2013; Fry & 

Maxwell, 2017; Kuller et al., 2019). The index developed in this study can effectively prioritize 

BGI implementation across urban areas, targeting the most vulnerable area where CSO events pose 

the greatest risk to public health. By integrating this prioritization index into planning tools, cities 

can simultaneously consider multiple factors (environmental, economic, and social), leading to 

better decision-making and alignment of CSO mitigation efforts with other urban priorities such as 

housing, transportation, and economic development. 

Using a prioritization index helps optimize resource allocation by focusing on areas with the 

greatest need. This ensures that BGI investments have the most impact and potentially reduce long-

term costs. We integrated future climate data into our prioritization index using both near-term 

future (NTF) and long-term future (LTF) periods. This ensures that current decisions align with 

expected climate conditions, allowing for better resource management and consideration of various 

priorities. The index we developed incorporates future precipitation data, enabling the design of 

flexible, adaptable mitigation solutions that remain resilient under changing conditions. The two-

period prioritization model (NTF and LTF) highlights that some watersheds require immediate 

attention, while others need focus in the future. Considering climate change in this context helps 

in planning for effective and equitable allocation of resources. 

The results of this study highlight the importance of strategically selecting locations for attenuation 

measures to reduce overflow events, as some sewersheds are more sensitive to climate change 

impacts. This information assists planners in prioritizing specific sewersheds to minimize future 

CSO events. Incorporating climate change considerations into infrastructure planning is crucial 

(Forsee & Ahmad, 2011; Martel et al., 2020; Means III et al., 2010). Research indicates that BGI 

enhances urban resilience by providing essential ecosystem services while addressing various 

urban challenges (Beceiro et al., 2022; Bush & Doyon, 2019; Depietri & McPhearson, 2017; 

Kabisch et al., 2016; McPhearson et al., 2022; Suárez et al., 2016).  Investing in BGI not only 

addresses CSO challenges but also offers co-benefits such as heat reduction, biodiversity 

enhancement, and improved air quality (Dagenais et al., 2017; Norton et al., 2015; Rayfiel et al., 

2015). These multi-functional solutions are more resilient and provide higher returns on 

investment, especially amid climate uncertainties.  
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Many Canadian cities are already integrating BGI, such as trees, parks, and green stormwater 

infrastructure (e.g., bioretention and swales), into their climate adaptation plans to enhance 

resilience and protect public health (City of Guelph, 2023; City of Vancouver, 2018; Ville de 

Drummondville, 2023). 

The methodology of this study offers a systematic approach to identifying strategic locations for 

mitigation measures to reduce the frequency of CSOs and can be adapted for use in other 

municipalities, as it is based on data (Kuller et al., 2019; Lacroix et al., 2024) readily available 

from most Quebec municipalities, particularly since the obligation to record overflows was 

implemented in 2021 (Legis Québec, 2021). The method utilizes existing data on CSOs, water 

quality, infrastructure, and climate projections, capitalizing on the increasingly common practice 

of CSO monitoring and census data on population. The model's adaptability allows for adjustments 

to local variations, ensuring its versatility across diverse urban contexts. By incorporating localized 

data on overflow events and precipitation, the model can be customized for predicting CSO events. 

The precipitation data from the climate model can be included in the predictive model based on 

availability for different territories. Adjustments may be needed to adapt these precipitation time 

series, as the model operates on hourly precipitation. Collaborative efforts with local authorities 

and stakeholders for additional data gathering and model validation can further enhance its 

efficacy, such as by incorporating more overflow data for the validation process. Overall, the 

synergy of existing data sources and the model's flexibility establishes a robust foundation for 

successful replication in different urban areas. 

4.5.2 Study limitations 

The current predictive model has a defined focus on overflow events within the ice-free season 

(May to October) in Quebec, Canada, overlooking the influential snowmelt period, known to 

contribute significantly to CSO events (Madoux-Humery et al., 2013). Although cold climates are 

not directly addressed in this study due to the exclusion of data from the ice season, future research 

and planning should incorporate strategies to adapt BGI for winter conditions. Factors such as 

snowfall events, snow accumulation, and snowmelt must be considered. For instance, bioretention 

systems could be designed to manage snowmelt, sediment buildup, and de-icing salts, which are 

common challenges in colder regions (Géhéniau et al., 2015; Gougeon et al., 2023).  
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A study by Gougeon et al. (2023) demonstrated that modeling results effectively identified 

bioretention sites that controlled runoff during snowmelt. This information is crucial for urban 

planning in cold climates. Integrating these findings into the proposed prioritization index could 

enhance its effectiveness, ensuring better adaptation to winter conditions in colder regions. 

However, the emphasis on the ice-free period aligns with the period of maximum beach and 

recreational water usage, underscoring the importance of addressing CSOs during this time. While 

higher flows can lead to more rapid transport between a CSO and a drinking water intake, the focus 

on the ice-free season is also relevant for drinking water intakes, as extreme precipitation is 

expected to increase during the summer and fall periods, while river flows are expected to be lower 

leading to lower dilution (Leveque et al., 2021). Following extreme precipitation events, turbidity 

and contaminant loads in rivers can spike, particularly after CSOs and diffuse runoff, posing 

significant risks to drinking water systems (Dorner et al., 2007; Jalliffier-Verne et al., 2015). To 

enhance the model's accuracy and reliability, overflow data from the snowmelt period could be 

included, providing a more comprehensive and representative training dataset.  

A limitation of the presented approach arises from the current insufficiency of data and potential 

inconsistencies in the method of recording CSOs. The reliability of the prediction model depends 

on the quality and accuracy of the available data. Instrumental issues and inconsistencies in the 

recording process may introduce biases and uncertainties (e.g. non-recorded overflows over a 

period due to a monitoring instrument failure), impacting the model's effectiveness. Addressing 

these limitations requires a concerted effort to improve data collection methodologies and ensure 

the robustness of the predictive model. The present study benefited from the acquisition of 

collected observational data concerning the 18 OS under investigation. Validation procedures were 

executed to uphold the data's reliability. Communication with the city was necessary to validate 

the data.  

To further validate the effectiveness of the prioritization index, another possible approach would 

be to integrate the prioritization index with hydrological or hydraulic models. While this study 

highlights the strength of the index in predicting CSO events without relying on these models, 

combining both could offer deeper insights into how different BGI strategies perform. However, 

this method would require disaggregating rainfall time series Derx et al. (2023), which can 

introduce uncertainties, (Gutierrez-Magness & McCuen, 2004). 
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Hydrological models can be costly and resource-intensive, often requiring extensive data and 

specialized expertise, limiting their accessibility in many municipalities with fewer resources. 

Simpler and more affordable alternatives such as the index developed in this study may be preferred 

in such cases.  

4.6 Conclusion 

The novelty of this research lies in the development of a prioritization index based on a microbial 

risk index and a statistical model, specifically for implementing CSOs mitigation measures while 

focusing on predicted CSO events under climate change. The primary objective was to create a 

comprehensive approach for prioritizing these mitigation measures. Specifically, the study aimed 

to: (i) define a CSO risk index using two methods—microbial risk and a statistical model, (ii) model 

the occurrence of CSOs as a function of precipitation, and (iii) evaluate CSO occurrences under 

projected climate scenarios. 

Applying this prioritization index to an urban territory in Southern Quebec helped identify the most 

critical sewersheds for implementing mitigation strategies considering future climate conditions. 

This index can serve as a strategic tool to address current challenges associated with the 

opportunistic implementation of BGI in cities, thereby enhancing their potential to effectively 

reduce CSOs. Our analysis of simulated precipitation data indicates that CSO events are expected 

to increase exponentially in the future due to climate change, underscoring the need for proactive 

and strategic planning. 

Moreover, the strength of our predictive model lies in its minimal data requirements, providing 

municipalities with an affordable approach to prioritize actions without relying on costly 

hydrological models. By combining the predictive model with a microbial risk index, we also 

obtain predictions of microbial risk under future climate conditions. Further research could include 

additional input variables, such as overflow duration, to better predict the impact of CSOs on water 

bodies under climate change. 
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Building on this study, future research could focus on refining resilience frameworks to develop 

targeted BGI implementation scenarios that enhance urban resilience and public health protection. 

It could include the adaptation of planning-support tools to explore strategic placement of BGI to 

maximize their effectiveness in reducing overflows and improving stormwater management and to 

help communicate the multiple functions and benefits of BGI. BGI scenarios can be examined as 

additional protective barriers to reduce contaminant threats in urban recreational waters in support 

of community decisions to improve resilience to climate impacts, safeguard vulnerable urban areas, 

and promote equitable access to the multiple benefits of green infrastructure. 

In summary, the proposed method shows significant potential to help decision-makers better 

understand the impact of strategic spatial planning of CSO mitigation interventions (like BGI) on 

stormwater management, ultimately reducing the vulnerability of drinking water sources and 

recreational areas to contamination and protecting community health in the face of climate change. 
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5.1 Abstract   

Climate change and rapid urbanization are increasing the exposure of cities to climate-related risks, 

including urban flooding, sewer overflows, and heat stress. Blue green infrastructure (BGI) has 

emerged as a promising solution to improve urban resilience. However, BGI planning and 

implementation often remain ad hoc, limiting their benefits. This study presents a resilience 

assessment framework to evaluate the performance of different BGI implementation strategies. 

Using the Spatial Suitability Analysis Tool (SSANTO), we developed BGI strategies based on 

objectives, which were evaluated using quantitative indicators in a densely built urban area. The 

findings highlight spatial variability in resilience outcomes, driven by land use, imperviousness, 

and population density. Strategies based on the need objectives enhanced resilience in highly 

vulnerable zones, while opportunity-based approaches were more effective in low-density areas. 
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This study underscores the value of strategic BGI implementation in mitigating runoff and urban 

heat, reducing contaminant loads and overflow frequency, and improving public health in a 

changing urban climate. 

Highlights  

• A resilience framework on BGI impacts on stormwater and socio-ecological systems was 

developed. 

• A spatial multicriteria analysis tool guided blue-green infrastructure strategies. 

• The case study reveals resilience outcomes depend on the spatial context. 

• Needs strategies enhanced resilience in vulnerable zones; opportunities ones fit low-

density. 

Graphical abstract  

 

Figure 5-1 Résumé graphique article 2 

Keywords  

Urban resilience, blue-green infrastructure, climate change; spatial suitability analysis, strategic 

planning 
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5.2 Introduction  

Increasingly, particularly because of climate change and rapid urbanization, cities are facing 

environmental, social, and economic challenges that can threaten their resilience (Bush & Doyon, 

2019; Hesarkazzazi et al., 2022; Meerow et al., 2016; Suárez et al., 2016). Climate change 

intensifies extreme weather events such as heatwaves, heavy rainfall, and floods, impacting urban 

services, infrastructure, and population health (Cardoso et al., 2020; Suárez et al., 2018).  

In Canada and Quebec, rising temperatures and more frequent heatwaves are expected to increase 

cases of heatstroke and mortality, while heavier rainfall could heighten waterborne diseases risks 

and urban flooding (Leveque et al., 2021; Vivre en ville, 2022). Climate change contributes to 

zoonoses, allergic, and psychological distress, with disproportionate impacts on vulnerable groups 

(Beyer et al., 2014; INSPQ, 2021a). The design of urban environments can either exacerbate or 

mitigate these impacts, highlighting the importance of integrating blue-green infrastructure (BGI) 

to enhance urban resilience (Bush & Doyon, 2019; Kabisch et al., 2016; McPhearson et al., 2022). 

According to the IPCC (2022), urban and infrastructure systems—including the use of BGI can 

positively contribute to multiple Sustainable Development Goals (SDGs), such as health (SDG 3), 

reduced inequalities (10), sustainable cities (11), and climate action (13). Implementing BGI 

therefore supports both climate change mitigation and adaptation efforts. 

Resilience takes on various meanings across different fields of study. In the context of urban 

resilience, it primarily revolves around four key aspects: resistance, reliability, redundancy, and the 

ability to bounce back after a disturbance. Engineering resilience, as described by Sterk et al. 

(2017), refers to how well a system can endure shocks and how quickly it can return to stability. In 

socio-ecological systems, resilience is tied to the system's capacity for self-organization, learning, 

and adaptation (Sterk et al., 2017). In essence, urban resilience encompasses an urban system's 

ability to navigate crises, adapt positively, and transform sustainably (UN-Habitat, 2018). 

According to several studies, BGI can enhance urban resilience to certain shocks by providing 

diverse ecosystem services, while simultaneously addressing multiple challenges. (Beceiro et al., 

2022; Bush & Doyon, 2019; Depietri & McPhearson, 2017; Kabisch et al., 2016; McPhearson et 

al., 2022; Suárez et al., 2016). Unlike traditional gray infrastructure, such as centralized sewers 

and concrete drainage systems that channel water to a single treatment facility, BGI relies on 

distinct smaller, distributed systems as bioretentions, green roofs, and permeable pavements. 
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Decentralized infrastructures increase urban flexibility and resilience to climatic extreme by 

managing water at the local level. (Depietri & McPhearson, 2017; Meerow & Newell, 2017; M. 

Wang et al., 2023). The ecosystem services (ES) provided by BGI are generally categorized into 

four types: supporting, provisioning, regulating, and cultural services (Kuller et al., 2017). These 

services enhance urban well-being and resilience by offering benefits.  

For example, certain ES can buffer cities against climate-related hazards like heatwaves and 

storms, mitigating their impacts (Kabisch et al., 2016). By minimizing the magnitude, duration, 

and frequency of impacts caused by environmental threats, BGI can enhance urban systems’ 

capacity to absorb and recover from environmental threats (Staddon et al., 2018). Over time, the 

benefits of BGI can grow through adaptive planning, making them long-term assets for resilient 

cities (Bush & Doyon, 2019). 

However, tailored planning strategies are required to ensure the optimal use of BGI since their 

effectiveness varies by location (Kremer et al., 2016; Kuller et al., 2017). Currently, many BGI 

projects are implemented on an ad hoc basis, which can limit their overall benefits and result in 

uneven spatial distribution (Dagenais et al., 2013; Kuller et al., 2019; Lacroix et al., 2024). To fully 

leverage their potential, it is essential to use planning tools capable of generating scenarios that 

maximize both performance and spatial equity (Dagenais et al., 2013; Kuller et al., 2019; Lacroix 

et al., 2024). 

Many resilience frameworks have been developed to guide urban adaptation; however, they often 

rely on a large number of indicators, making them data-intensive and difficult to apply in practice 

(Beceiro et al., 2022; Bozza et al., 2015; Cardoso et al., 2019; Fu et al., 2021; Langemeyer et al., 

2020; McPhearson et al., 2022; Meerow & Newell, 2017; Paquin, 2020; Sapkota et al., 2018; Sterk 

et al., 2017; Suárez et al., 2020; Wu et al., 2020). Moreover, to our knowledge, existing frameworks 

do not directly assess the specific benefits of BGI in reducing heat island effects (Ferreira et al., 

2024; Voskamp & Van de Ven, 2015), and the contribution of BGI to urban resilience remains 

underexplored (Beceiro et al., 2022). Yet, this type of framework can help link stormwater 

management to other ecosystem services, such as urban heat island mitigation, which is particularly 

relevant for planners (BenDor et al., 2018). Most existing studies and BGI plans to date, including 

those in cities like Detroit, tend to concentrate on just one or a few benefits of BGI, often 

overlooking the trade-offs and synergies among them (Meerow & Newell, 2017). 
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This study aims to develop and apply a resilience analysis framework that accounts for the impacts 

of BGI on both stormwater management (specifically infrastructure resilience, focusing on 

overflows and runoff reduction) and the socio-ecological aspect, taking health impacts into account 

(e.g., through heat island and flood mitigation).  

Unlike existing frameworks, our approach directly links climate change hazard impact to 

quantifiable BGI benefits such as runoff reduction, heat mitigation, and overflow control. By 

integrating a spatial planning tool our framework enables location-specific, operational decision-

making for BGI planning in dense urban environments. Specifically, the study aimed to: (i) define 

resilience in the context of the project, (ii) identify key components and quantitative indicators 

from the literature, (iii) use a spatial planning tool to generate BGI implementation strategies, and 

(iv) apply the framework to a real-world case study to evaluate the effect of BGI on resilience.  

5.3 Method 

5.3.1 Studied hazards 

To identify priority outcomes for BGI implementation, Lacroix et al. (2025 ) applied the swing 

method, combining Multi-Criteria Decision Analysis (MCDA), swing weighting and discrete 

choice experiments as proposed by Aubert et al. (2020). Findings revealed that municipal 

stakeholders in the case study city placed high priority on the reduction of combined sewer 

overflows (CSOs), urban flooding, and urban heat islands (UHIs). Stakeholders from the health 

sector shared these priorities, emphasizing the importance of reducing CSOs, UHIs, and 

impervious surfaces as well as increasing vegetation cover (Lacroix et al., 2025 ). These concerns 

are consistent with local climate trends, as rising temperatures, more frequent heatwaves, and 

intensifying rainfall events have been identified as key climate-related risks in the region (Leveque 

et al., 2021; Martel et al., 2020). Accordingly, CSOs, UHIs, and urban flooding are also hazards 

that are also recognized as global urban priorities making the developed framework a valuable tool 

worldwide (IPCC, 2023; Zou et al., 2023). 

These three hazards are highly relevant in the context of BGI, as they are among the most likely to 

be influenced by its implementation. Climate change is projected to amplify the frequency and 

intensity of rainfall events, exacerbating sewer overflows and urban flooding (Curriero et al., 2001; 

Derx et al., 2023; Patz et al., 2008; J. Petrucci et al., 2025; Sterk et al., 2017) and heightening 

microbiological risks in urban water systems (World Health Organization, 2017a).  
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UHIs exacerbate the impacts of heatwaves, contributing to excess morbidity and mortality, 

particularly among vulnerable populations (Basu, 2009; Heaviside et al., 2017; INSPQ, 2021a).  

Flooding also poses serious public health risks, including injuries, waterborne diseases, and long-

term mental health impacts (Hajat et al., 2005; Tapsell et al., 2002). Additionnal information about 

the selected hazard for the study can be found in the supplementary material in section 1, Table 

S1-1. 

BGI can play a key role in mitigating these hazards. For instance, BGI complements traditional 

grey infrastructure by capturing runoff, thereby reducing the volume and frequency of CSO events 

(Autixier et al., 2014; Bratieres et al., 2008; Jean et al., 2021; Joshi et al., 2020; USEPA, 2014). 

Vegetation-based solutions can also help mitigate urban heat through shading and 

evapotranspiration, thus reducing heat-related health risks (Marando et al., 2019; Z. S. Venter et 

al., 2020; Q. Q. Zhou et al., 2023). Additionally, BGI has been shown to reduce surface runoff and 

improve stormwater management, lowering flood risks in dense urban areas (Maragno et al., 2018; 

MELCC, 2014). 

Importantly, these hazards and the benefits of BGI are not limited to the study area. They are widely 

acknowledged as pressing urban issues in cities worldwide. Urban centers such as Copenhagen, 

Sydney, and Guelph have already integrated BGI elements—including parks, trees, bioswales, and 

green stormwater infrastructure—into their climate adaptation strategies to enhance resilience and 

protect public health (City of Copenhagen, 2023; City of Guelph, 2023; City of Sydney, 2021).This 

global relevance supports the broader applicability of the resilience framework developed in this 

study. 

The resilience framework developed in this study integrates quantitative indicators to analyze the 

impact of BGI implementation scenarios on water management and community health. The 

framework consists of (1) defining the components of resilience and associated indicators relevant 

to a given region’s adaptation goals and context, which are subsequently (2) aggregated into a 

single resilience index. To define resilience, the main components of resilience and their 

quantitative indicators were identified from relevant literature.  
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5.3.2 Case study area 

The study area is a large city located in southern Quebec, Canada. This study focuses on an area 

located in the southwest section of the city. This area, primarily residential, covers a surface area 

of 9,793,985 m². The neighborhood has a population of 69,229. This area is particularly interesting 

for our framework because of the presence of a beach, a marina, water intakes and a recreation 

zone. Therefore, the overflow can have a important impact on the community health. Figure 5-2 

shows the case study area. For the results, we have identified three sectors of interest based on the 

studied overflow structure. 

 

Figure 5-2 Identification of the studied area. Colors identify sectors and associated overflow structures 

Figure 5-2 shows that the case study area is separated in three distinct sectors.  These sectors are 

defined based on the drainage areas of the three main overflow structures identified in this study. 

We can see that structures 2 and 3 are located upstream of a beach. The score for each indicator 

and the resilience scores by sector are calculated according to the zones identified. The PCSWMM 

model was obtained from the partner city. The model is divided into 1608 sub-catchments, with 

impermeability percentages ranging from 0% to 98.82% and an average of 51.6%. 
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Catchment areas range from 11m2 to 3231.2m2 with an average of 108,2m2. The slopes of the 

watersheds are gradual, with an average of 0.6%, a minimum of 0.5%, and a maximum of 2%. To 

run continuous simulation, we selected a period according to the precipitation data of the last 6 

years. Precipitation data recorded every 5 minutes from 2017 to 2022 were obtained from the 

partner city. Precipitation data for the months of the ice-free season (may to October) were 

extracted. We chose the most recent summer of 2022 at the moment of the analysist, which seemed 

representative of the most recent years in terms of rainfall accumulations (maximum intensity, 

mean and median values are similar to data from 2017 to 2021). Therefore, the PCSWMM 

simulations were performed using those rainfall data.  

5.3.3 Step 1: Defining resilience 

In understanding resilience and its implications for health, water management, climate change, and 

the implementation of BGI, several key indicators emerge from four main resilience types. Table 

5-1 summarizes the definitions of these resilience types, as identified in 14 selected studies from 

the domains of health, water management, climate change, and BGI. Table S2-1 can be found in 

the supplementary material with more information about the different types of resilience. 

Table 5-1 Type of resilience, individual definition and global definition from the literature (n=14) 

Type of resilience Individual definition Reference Global definition 

Urban resilience 
(Urban drainage 

system, Urban 

climate resilience) 

The ability of any urban system and its 
inhabitants to cope with critical situations and 

their consequences, while adapting positively and 

transforming itself to become sustainable. 

(UN-Habitat, 
2018) 

Urban resilience is the capacity of a city and its 
inhabitants to withstand, adapt to, and evolve 

after crises, integrating social, economic, 

environmental, and governance dimensions to 

ensure sustainability, well-being, and inclusive 

growth. 
The potential to absorb, recover, and prepare for 

future challenges, enhancing well-being, and 
inclusive growth by integrating social, economic, 

governance, and environmental components that 

were analyzed separately. 

(Beceiro et al., 

2022) 

The capacity is based on resisting, recovering, 

adapting, and transforming, across natural, 
economic, social, physical, and institutional 

aspects, and is evaluated through characteristics 

such as redundancy, robustness, connectivity, and 

adaptability. 

(Ribeiro & Pena 

Jardim 
Gonçalves, 

2019) 

The capacity of cities to remain operational, so 
that the people living and working in cities 

survive and thrive despite various stresses and 

shocks. 

(The 
Rockefeller 

Foundation & 

ARUP, 2014) 
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Table 5-1 Type of resilience, individual definition and global definition from the literature (n=14) (suite) 

Type of 

resilience 

Individual definition Reference Global definition 

Infrastructure 

resilience 

(system 

resilience) 

The ability of a system to have a positive 

response to external shocks 

(Bozza et al., 

2015) 

System resilience is the system capacity to preserve 

functionality amid external shocks by leveraging 
flexibility and diversified dependencies rather than 

relying on individual components. 
The ability of a system to retain functionality 

through flexibility and diversifying functional 

dependence. 

(Tyler & 

Moench, 

2012) 

Socio-ecological 

resilience 

The capacity of human–nature systems to 

adapt to changing conditions while remaining 
within critical functioning conditions. 

(Folke et al., 

2010) 

Socio-ecological resilience refers to the ability of human 
and natural systems to adapt, transform, and persist 

through challenges and maintain essential functions to 

ensure development. 

The ability to cope with challenges. (Meerow & 

Newell, 

2017) 

The ability of an ecosystem to maintain its 
stability depends on size of its stability range. 

(Sterk et al., 
2017) 

The ability to develop resilience depends on 

comprehending the relationships between 

humans and ecosystems. 

(Juan-García 

et al., 2017) 

The capacity of a system to absorb disturbance 
and rearrange while undergoing change. 

(Walker et 
al., 2004) 

The capacity of a social–ecological system to 

manage challenges and maintain development 

at the same time. 

(Sterk et al., 

2017) 

Flood resilience 

The ability of a system to preserve diversity 
and redundancy, effectively manage 

connectivity and feedback loops, all while 

promoting adaptive systems thinking, learning 

and facilitate inclusive participation. 

(Kotzee & 
Reyers, 

2016) 

Flood resilience is the capacity of a system, such as an 
urban area or drainage network, to withstand, adapt to, 

and recover from floods all while maintaining its 

functionality. A resilient flood system ensures 

continuous service over time, minimizes flood-related 

losses, and rapidly recovers functionality following an 
event. 

The ability to deal with changes and continue 
to operate. 

(Karamouz 
et al., 2014) 

The capacity of a system, with the potential of 

exposure to flood, to adapt, resist and recover 

from flood to maintain an acceptable level of 
functioning 

(Karamouz 

et al., 2014) 

The capability of a drainage system to resist 

and to maintain continuous service; the 

capability of an urban area to recover from 

flood damages; and the capability of urban 
systems to evacuate excess surface water and 

return to a functional state 

(Bertilsson et 

al., 2019) 

Table 5-1 illustrates that resilience is a concept with many aspects, with definitions varying across 

fields. Urban resilience describes the capacity of cities and their inhabitants to react to crises by 

integrating social, economic, environmental, and governance dimensions to promote sustainability 

and inclusive growth. Infrastructure or system resilience emphasizes maintaining functionality 

through flexibility and diversified interdependencies, rather than relying on individual components. 

Socio-ecological resilience emphasizes the ability of interlinked human and natural systems, 

ensuring they can operate within critical thresholds necessary for sustainable development.  
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Flood resilience specifically focuses on the potential of urban environments and drainage systems 

to resist, recover, and adapt to flood events while maintaining or rapidly restoring essential 

functions. 

Overall, resilience—whether urban, systemic, socio-ecological, or flood-related—is the capacity 

to endure, adapt, and function despite disruption. Based on this definition, key conceptual 

components have been identified from the literature and are presented in the following section. 

5.3.4 Step 2: Identifying the main components of resilience 

Table 5-2 summarizes the key components of resilience identified from the literature described in 

Table 5-1 and from additional searches to better define each concept. Out of nineteen components 

(see supplementary material S2 Table S2-2), four were retained for the conceptual framework. The 

four components selected (Resistance, Reliability, Redundancy, Recovery) cover the four types of 

resilience (Urban resilience, Infrastructure resilience, Socio -ecological resilience, Flood 

resilience) linked to health, water management, climate change and BGI implementation and are 

directly linked to the hazards identified for this study. 
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Table 5-2 Resilience component, their definition and the reference axis (type of resilience) 

Component Definition  Urban Infrastructure Socio-

ecological 

Flooding References 

Resistance 

Resistance is the 

potential of a system 

to withstand 

disruptions by 

providing protection, 

limiting damage, and 

maintaining function 

through pre-event 

measures. It focuses 

on proactive strategies 

to reduce the impact 

of disturbances before 

they occur. 

X X  X 

(Batica et al., 2013; 

Bautista-Puig et al., 

2022; CabinetOffice, 

2011; Ribeiro & Pena 

Jardim Gonçalves, 

2019) 

Reliability 

Reliability is the 

system ability to 

maintain performance 

during disruptive 

events, supported by 

infrastructure and 

components designed 

to operate under a 

large range of 

conditions, thereby 

mitigating loss from 

an event. 

X X   

(Butler et al., 2014; 

CabinetOffice, 2011; 

Chen et al., 2024; 

Ramísio et al., 2022) 

Redundancy 

Redundancy is the 

creation of spare 

capacity to ensure 

service continuity 

during disruptions. It 

allows system 

elements to 

compensate for one 

another, using 

alternative options to 

maintain essential 

functions under 

uncertainty and 

disturbances.  

X X X X 

(Bautista-Puig et al., 

2022; CabinetOffice, 

2011; Karamouz et al., 

2014; Kotzee & Reyers, 

2016; Meerow et al., 

2016; Ribeiro & Pena 

Jardim Gonçalves, 

2019; Sterk et al., 2017; 

The Rockefeller 

Foundation & ARUP, 

2014; Tyler & Moench, 

2012; UN-Habitat, 

2018) 

Recovery 

Recovery is the 

mechanism of 

restoring life, 

property, and 

economy to a normal 

or enhanced state after 

an event. It involves 

pre-event planning to 

reduce future risks, 

enhance resilience, 

and support a rapid 

return to stable 

operations. 

X X X X 

(Batica et al., 2013; 

Bautista-Puig et al., 

2022; CabinetOffice, 

2011; Chen et al., 2024; 

Francis & Bekera, 2014; 

Kontokosta & Malik, 

2018; Meerow et al., 

2016; Ribeiro & Pena 

Jardim Gonçalves, 

2019) 
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Resistance and reliability are key components for water management, ensuring that infrastructure 

can withstand hazards and operate effectively under various conditions helping to minimize 

environmental degradation and protection public health (Batica et al., 2013; Bautista-Puig et al., 

2022; CabinetOffice, 2011; Ramísio et al., 2022; Ribeiro & Pena Jardim Gonçalves, 2019). 

Redundancy and recovery are important in both water management and climate change adaptation, 

allowing systems to respond and recover from challenges (Bautista-Puig et al., 2022; Karamouz et 

al., 2014; Ribeiro & Pena Jardim Gonçalves, 2019). Each identified components contributes to 

infrastructure and urban resilience, reflecting the complex interplay between infrastructure, health, 

and environmental sustainability. For each concept, we set a quantitative indicator to assess it.  

5.3.5 Step 3: Quantitative indicators of resilience components 

To evaluate the resilience of a territory, we propose a quantitative indicator to represent each 

component of urban resilience as described in Table 5-2. Indicators were identified through 

literature (n=24 consulted papers). For each component, we also indicate the effect of adding BGI. 
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Table 5-3 Selected components of resilience, impacted hazards and associated indicators 

Components 

of resilience 

CSO UHI Urban 

flooding 

Indicators References Evaluation 

method 

Impact of BGI on indicators References 

Resistance X   

1. Contamination 

load for E. coli 

[counts/s] 

(Ferreira et al., 2024; Fu 

et al., 2021; Rodriguez et 

al., 2023, 2024; Sapkota 

et al., 2018; Voskamp & 

Van de Ven, 2015) 

PCSWMM 

modeling 

BGI can help protect water 

recreational areas by reducing the 

load of contaminants in the 

receiving water body after a 

rainfall event. 

(Cavadini, 

Rodriguez, & Cook, 

2024; Joshi et al., 

2020; Justine Petrucci 

et al., 2025) 

Reliability X  X 

2. Mean runoff 

[mm] 

(Chen et al., 2024; 

Langemeyer et al., 2020; 

Wu et al., 2020) 

PCSWMM 

modeling 

BGI can reduce runoff, enhancing 

system reliability by preventing 

overloads, maintaining stable 

flows, and ensuring drainage 

systems remain functional under a 

large range of conditions. 

(Autixier et al., 2014; 

Yao et al., 2015) 

Redundancy X X  

3. CSO events 

[nb events during 

ice-free season] 

(Dong et al., 2017; Zhang 

et al., 2024) 

Predictive 

model 

BGI can improve redundancy at 

different scales by providing a 

complementary solution to 

stormwater management and can 

reduce CSOs. 

(Autixier et al., 2014; 

Cavadini, Rodriguez, 

& Cook, 2024; Joshi 

et al., 2020) 

4. UHI [sum of 

impermeability] 

(Langemeyer et al., 2020; 

Meerow & Newell, 2017; 

Xu et al., 2022) 

Correlation 

between UHI 

and 

impermability 

BGI enhances redundancy by 

providing alternative outdoor 

cooling methods beyond 

traditional (indoor) air 

conditioning.  

(Marando et al., 2019; 

Zander S. Venter et 

al., 2020; H. Zhou et 

al., 2023) 

Recovery X  X 

5. Number of 

hours with 

stormwater flows 

exceeding sewers 

(at nodes) [hour] 

(Benoit et al., 2025; Chen 

& Leandro, 2019; 

Leandro et al., 2020; 

Rodriguez, Fu, et al., 

2020; Rodriguez et al., 

2021) 

PCSWMM 

modeling 

BGI can absorb excess rainwater 

and reduce the volume of 

stormwater entering the pipes, 

thereby decreasing the number of 

hours when stormwater flows 

exceed sewer capacity and 

lowering the risk of urban 

flooding. 

(Qin et al., 2013; Tao 

et al., 2017) 

6. Maximum 

runoff [mm] 

(Chen et al., 2024) PCSWMM 

modeling 

BGI contributes to long-term 

recovery by reducing the runoff, 

which accelerates the return to 

normal and improved conditions. 

(Autixier et al., 2014) 
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The indicator set is based on literature and on our understanding of how they relate to urban 

resilience, and indicator values are evaluated through different modelling tools.  

Resilience is a complex and context-dependent concept, and its definition often varies across 

disciplines. It is a term that has been used inconsistently in the literature, leading to a wide range 

of interpretations (Meerow et al., 2016; Sterk et al., 2017).  

Through the selection of keywords, six types of resilience and twenty associated components have 

emerged from the literature. These components varied depending on the type of resilience 

considered, reinforcing the idea that resilience is multidimensional. As highlighted by Sharifi and 

Yamagata (2018), each discipline defines resilience according to its specific needs and priorities, 

leading to a wide range of interpretations which contributes to the diversity and ambiguity of the 

concept. We also observed that urban resilience overlaps with the other types of resilience 

identified in our review. This aligns with findings from Datola (2023), who suggests that urban 

resilience involves a social and ecological view, and understands that complex systems change and 

evolve over time. 

Following the approach used in Datola et al. (2022), we linked the types of resilience, the 

components that represent them, and the quantitative indicators associated with each. Each concept 

in our framework was paired with a specific indicator to enable structured and measurable 

assessment. The specific indicators are described in the following sections. Our findings underscore 

that different dimensions of resilience are interconnected and can influence one another. For 

example, each indicator contributes to both infrastructure and urban resilience, reflecting the 

complex interplay between physical systems, environmental sustainability, and public health. 

5.3.5.1 UHI indicator (Indicator 4) 

We evaluated the relationship between UHI classes and the percentage of imperviousness in urban 

drainage catchment, using UHI class data from 2013 to 2023 (2013, 2016, 2019, 2020 and 2023), 

which was obtained from the partner city’s open data page. The percentage of impervious surfaces 

was obtained from the PCSWMM model provided by the partner city.  
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Using ArcGIS, we divided the UHI data for each year into 30m x 30m grids (this cell size was 

chosen to match the resolution of the input dataset), applying the most extensive overlay category 

to each grid square. This means that the category with the largest surface area within a grid square 

was assigned to the entire square. For imperviousness, we employed the same 30m x 30m grids, 

but we used the average impermeability of all the urban drainage catchment in the 30m x 30m cell. 

Dividing the data layers into grids allows us to compare each cell and establish the relationship 

between the percentage of impermeability and the UHI class. The results from the relation between 

the UHI classes and the percentage of impermeability can be found in supplementary material 

section 3, Figure S3-1. We can see a clear relationship between the UHI classes and the percentage 

of impermeability (R2= 0.9445): the greater the impermeability, the higher the UHI class. This 

relationship can be used for resilience analysis. In fact, the implementation of BGI can change the 

percentage of imperviousness in an urban drainage catchment, which in turn can change the UHI 

class. To represent this indicator, we selected the total imperviousness.  

We assume that implementing BGI reduces overall imperviousness, as the imperviousness 

percentage is recalculated in PCSWMM when bioretention is added. Since the implementation 

strategy prioritizes impervious surfaces according to various objectives (section 0), the percentage 

of impervious surfaces will consequently vary depending on the chosen BGI implementation 

approach. 

5.3.5.2 CSO indicator for frequency (Indicator 3) 

To obtain the frequency of CSOs, we used a predictive model based on results obtain form the 

PCSWMM model. First, the precipitation is implemented in the model and the flow in the conduits 

is retrieved. This methodology is based on the same process developed by Bel Yaagoubi (2025). 

The flow in the conduit serves as an explanatory variable (independent) for the predictive model. 

The predictive model uses a logistic regression to predict the occurrence or not of CSO. Figure 5-3 

below shows the process: 
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Figure 5-3 Methodology used for the frequency of CSO indicator, units are between brackets (nb is number, L/s in 

liter per second, mm/5min is the intensity of the rainfall in milliliters per 5 minutes) 

To assess resilience over the study area, we identified three critical overflow structures. Two of 

them, located just upstream of the bathing site, account for over 70% of the total overflow volume 

(Partner city, 2018). These structures also have a large tributary surface area, which can adversely 

affect water quality in the receiving river. Furthermore, analysis indicates that water quality is most 

severely impacted when these large structures overflow (Partner city, 2018). Given their significant 

impact on receiving waters, the study focuses exclusively on these large structures. The total 

number of overflows from each three main overflow structures will be considered for the indicators 

considering the CSO events (indicator 3). 

5.3.5.3 Indicators modeled with PCSWMM 

Four indicators (1, 2, 5, 6) are obtained from the PCSWMM model: Contamination load at the CSO 

structure (E. coli), number of hours with stormwater flows exceeding sewers, and runoff (maximum 

and mean flowrate). These four indicators are retrieved directly from PCSWMM after running each 

simulation. Table 5-4 explains the modeling process in PCSWMM and how the indicator will be 

used in the resilience framework.  
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Table 5-4 Description of the indicators retrieved from the PCSWMM tool interface 

Indicators Explanation 

Runoff [mm] (2. Mean 

runoff & 6. Maximum 

runoff) 

Surface runoff is calculated by using a nonlinear reservoir model in PCSWMM. Inflow 

comes from precipitation (rainfall and snowmelt) and losses from evaporation and 

infiltration (Lewis A. Rossman & Wayne C. Huber, 2016a). By representing runoff in 

millimeters, we were able to evaluate the relative effect of BGI on runoff generation 

when comparing scenarios over the same area.  

5. Number of hours with 

stormwater flows 

exceeding sewers (at 

nodes) [hour] 

In PCSWMM, a junction is considered surcharged when its water surface elevation is 

above the crown of the highest connected conduit (James et al., 2010). This typically 

means that incoming flow exceeds the system’s capacity, causing water to rise above 

ground — increasing the risk of urban flooding (James et al., 2010). Comparing the 

total duration of surcharge before and after implementation of BGI strategies can 

indicate improved hydraulic performance and a reduced likelihood of urban flooding. 

1. Contamination load for 

E. coli [counts/s] 

Pollutants originate from dry-weather flow (DWF), such as sanitary discharge and from 

runoff on the different land-use modelled (Lewis A. Rossman & Wayne C. Huber, 

2016b). BGI can reduce contaminant loads at overflow points in two main ways: (1) by 

filtering pollutants accumulated on surfaces, and (2) by reducing the volume of 

combined sewer overflows (CSOs) (Autixier et al., 2014). Stormwater pollutant loads 

is estimated by multiplying runoff volumes by pollutant concentrations, making 

contamination load reduction a key strategy that aimed to improve water quality (Lewis 

A. Rossman & Wayne C. Huber, 2016b). E. coli was selected as it typically serves as a 

fecal indicator, and its concentration is used as a benchmark for recreational water 

quality standards (Santé Canada, 2012; USEPA, 2021a)  

5.3.6 Step 3: Calculating the resilience index 

For each BGI implementation scenario, the indicators are retrieved and normalized to a [0,1] scale 

(Paquin, 2020). Each concept serves as a sub-index, and the four sub-indices—Resistance, 

Reliability, Redundancy, and Recovery—are calculated by subtracting the indicator values from 

one. This ensures that higher values indicate greater resilience, while values closer to zero reflect 

lower resilience as suggested in (Bertilsson et al., 2019). For components with two indicators, we 

used the average to obtain the value. A brief discussion of the effect of using the average can be 

found in the section 5.5.2. Eq. 5-1 below was used to normalize the results of the indicators and 

get the score.:  

𝑆𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 = 1 −  
𝑉𝑎𝑙𝑢𝑒 − 𝑉𝑎𝑙𝑢𝑒𝑚𝑖𝑛

𝑉𝑎𝑙𝑢𝑒𝑚𝑎𝑥 − 𝑉𝑎𝑙𝑢𝑒𝑚𝑖𝑛

 Eq. 5-1 
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After having normalized the indicators using Eq 5-1, we sum the results from each component to 

obtain the overall resilience index using Eq 5-2: 

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 =  ∑ 𝑆𝑐𝑜𝑟𝑒𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠

4

𝑖=1

 
Eq 5-2 

For each scenario, the maximum resilience score for a BGI implementation strategy that can be 

obtain is 4.  

5.3.6.1 Step 4: Applying the resilience analysis framework to a case study 

5.3.6.2 Defining BGI implementation scenarios 

This study focuses on bioretention, given its suitability for densely urbanized areas where space 

constraints limit BGI options to compact systems (Kõiv-Vainik et al., 2022). Bioretention is widely 

recognized for its effectiveness in reducing overflows, contaminant loads, and runoff (Armson et 

al., 2013; Berland et al., 2017; Stovin et al., 2008). Additionally, the inclusion of diverse vegetation 

enhances its capacity to mitigate urban heat stress (Fallmann et al., 2013; Rahman et al., 2022). 

This makes it a particularly suitable intervention for this study, as it directly targets the priority 

hazards identified in our analysis. 

The following section presents BGI implementation strategies based on SSANTO adapted to the 

Quebec context by Lacroix et al. (2024). SSANTO supports site selection for BGIs through two 

perspectives: the opportunity perspective which identifies locations with favorable territorial 

conditions for BGI implementation, and the need perspective, which highlights areas where BGI 

functions are most required. 

Building on the objective hierarchies proposed by Lacroix et al. (2024) we developed four BGI 

implementation scenarios each tested at two implementation levels: 10% and 25% (converted 

impervious area). The hierarchy of objectives as developed by Lacroix et al. (2024) can be found 

in the supplementary material section 4, Figure S4-1. According to CSA W200:18 standards, 

bioretention systems should cover 10 to 20% of the impervious surface area within a basin (Avizo, 

2022).  
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While the 10% scenario aligns with existing guidelines, we also examined a more ambitious 25% 

implementation scenario. Although this exceeds the recommended range, we intentionally 

extended the threshold to explore a wider range of potential outcomes. Converting 10–25% of 

impervious areas into bioretention cells is considered realistic, given the high proportion of 

impervious surfaces in the study area due to roads and other infrastructure. In doing so, our study 

builds on established guidelines while providing insights into the potential benefits and impacts of 

large-scale bioretention deployment. The four scenarios are as follows: 

• Opportunities strategy: Reflects real-world decision-making processes that are often driven 

by practical considerations (e.g., road maintenance priority). 

• Needs strategy: Prioritizes areas with the highest need for BGI benefits, independent of 

implementation feasibility. 

• Indicator-based strategy: Focuses exclusively on objectives linked to six resilience 

indicators defined in our assessment framework. 

• Integrated strategy: Combines both opportunity and need-based objectives, using the full 

hierarchy. 

These implementation strategies are summarized in Table 5-5. 

Table 5-5 Percentage of implantation (impervious surface conversion) and total surface area of bioretention for each 

category of priority zones and each of the 8 strategic BGI implementation strategies 

Perspective 

(implementation rate) 

  Priority 

1 

Priority 

2 

Priority 

3 

Priority 

4 

Opportunities (10%) Opp_10 % 16 10 9 4 

Area [ha] 12 2 6 2 

Needs (10%) Needs_10 % 17 10 10 5 

Area [ha] 9 4 6 3 

Specific (10%) Spec_10 % 17 10 10 5 

Area [ha] 8 4 7 3 

Full hierarchy (10%) All_10 % 16 10 10 5 

Area [ha] 9 3 5 4 

Opportunities (25%) Opp_25 % 35 30 25 10 

Area [ha] 23 5 15 11 

Needs (25%) Needs_25 % 35 30 25 15 

Area [ha] 14 11 14 14 

Specific (25%) Spec_25 % 35 30 25 15 

Area [ha] 13 11 16 14 

Full hierarchy (25%) All_25 % 35 32 25 15 

Area [ha] 27 8 11 18 
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Table 5-5 presents the percentage and corresponding area (in hectares) of impervious surfaces 

converted into bioretention systems under each implementation strategy, broken down by priority 

level. 

Objective weights for all scenarios were defined using the results from the swing weighting 

method, as described by Lacroix et al. (2025, submitted), except in the Specific strategy, where all 

weights are assumed equal. For each implementation strategy, the resilience score is calculated 

using Eq. 2., allowing us to compare all strategies and rank them for each sector of the territory. 

To implement bioretention across the study area, we first use SSANTO to identify the most suitable 

sites based on each of the four different implementation strategies and the two implementations 

rate. We then classify the suitability scores into four quartile categories for each strategy: high, 

medium-high, medium-low, and low suitability. This method, based on previous research, allows 

prioritizing bioretention implementation in highly suitable locations while still being distributed 

across lower-scoring areas to avoid over-concentration in specific zones (Bel Yaagoubi, 2025). 

A prior study in Quebec developed scenarios for bioretention implementation based on the 

assumption that impervious surfaces, such as roads and parking lots, would be converted into 

bioretention cells (Dagenais et al., 2014). The total implementation area remains constant across 

strategies (scenarios 1 to 4 – 10%; scenarios 5 to 8 – 25%), but the spatial distribution varies. 

Higher replacement rates are applied to impervious surfaces in drainage sub-catchments in the high 

priority class with progressively lower rates assigned to classes medium-high, medium-low, and 

low. As biorententions are primarily designed to manage small, frequent rainfall events, continuous 

hydrological data was used to assess their performance. This approach allows for a more accurate 

simulation of infiltration recovery and pollutant buildup between events, by accounting for 

antecedent moisture conditions (MELCC, 2014; Lewis A. Rossman & Wayne C. Huber, 2016a). 
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5.3.6.3 PCSWMM model set up 

Pollutant modelling 

PCSWMM can consider both dry weather flow and surface runoff. Surface runoff is defined 

according to the land-use. Each type of land-use is describe by accumulation and leaching functions 

depending on the pollutant (Lewis A. Rossman & Wayne C. Huber, 2016b). The model for 

simulating water quality in PCSWMM is based on the build-up and wash-off mechanisms, 

employing exponential functions to assess pollutant accumulation and removal (Lewis A. Rossman 

& Wayne C. Huber, 2016b). Additional information about the pollutant modelling in PCSWMM 

can be found in the supplementary material section S5.  

BGI modelling 

Parameters for bioretention design and soil characteristics used in this study were calibrated using 

parameters from the literature and measurements from an existing bioretention cell system in a 

near-by city in Southern Québec (Bouattour, 2021; Gougeon et al., 2023) as detailed in Figure 5-4. 

 

Figure 5-4 Summary of bioretention cell characteristics (Justine Petrucci et al., 2025) 

  



 

 

 

 

144 

The soil layer, described as bioretention media, has a thickness of 450 mm. To adopt a conservative 

strategy, we chose a less draining soil and a reduced substrate depth. The storage layer consists of 

coarse stone or gravel, allowing water to infiltrate the underlying natural soil at a rate of 1.3 mm/h 

(typical for silty clay soil) or exit through the underdrain (Autixier et al., 2014). 

To model bioretention in PCSWMM software, various parameters must be adjusted. Assuming the 

bioretention placement on impervious areas, the total percent imperviousness of each sub-

catchment was adjusted according to the SWMM User’s Manual (Version 5.1, section 3.3.14) by 

subtracting the surface area of bioretention from the pre implementation impervious areas and from 

the total sub-catchment area (Lewis A. Rossman & Wayne C. Huber, 2016b).  

Also, when implementing bioretention in the corresponding sub-basins, values of 25% initial 

saturation, 30% of treated impervious areas, and 10% of treated permeable areas were chosen. 

These values were defined based on a study in a city in Quebec (Bouattour, 2021). The width of 

each sub-catchment was also recalculated. The addition of LIDs enables new flow paths to be 

created, increasing the total length of flow in a drainage basin thus reducing the width (Autixier et 

al., 2014). The removal of the contaminants is presented in the table below: 

Table 5-6 Percentage of removal of E. coli and TSS in a bioretention  

 % of removal (bioretention)  Ref 

E. coli 70%  

92.4%- 99.5%  

69%-71% 

72%-97% (after 6 months) 

18.6%-77.6% 

Environ 80%  

(Autixier et al., 2014) 

(Jianjun et al., 2014) 

(Hunt et al., 2008) 

(Zhang et al., 2011) 

(J. Liu et al., 2020) 

(Autixier et al., 2014; Clary & 

Leisenring, 2020) 

TSS 60%  

60%  

70%-99%  

0,18%-30,8%  

55 % -99 % 

47%-99% (literature review) 

75%-83% 

(Autixier et al., 2014) 

(Brown & Hunt III, 2011) 

(C. Chen et al., 2019) 

(J. Chen et al., 2019) 

(Li & Davis, 2008) 

(LeFevre et al., 2015) 

(Autixier et al., 2014; Clary & 

Leisenring, 2020) 

For the study, we used removals of 70% and 60% for E. coli and TSS respectively as propose in 

Autixier et al. (2014). 
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5.4 Results 

Figure 5- shows the variation in resilience score by sector for the different BGI implementation 

strategies. Dark red is the highest score (closer to four) and beige is the lowest (closer to 0) among 

the tested strategies.  

 Highest score  Moderate score  Lowest score 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 5-5 Resilience score by sector for the four implementation strategies with an implementation rate of 10% (a) 

opportunity, (b) needs, (c) specific and (d) all and with an implementation rate of 25% (e) opportunity, (f) needs, (g) 

specific and (h) all. Each table show the calculated score for each indicator by sector. 
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e)  

 

f) 

 
g) 

 

h) 

 

Figure 5-5 Resilience score by sector for the four implementation strategies with an implementation rate of 10% (a) 

opportunity, (b) needs, (c) specific and (d) all and with an implementation rate of 25% (e) opportunity, (f) needs, (g) 

specific and (h) all. Each table show the calculated score for each indicator by sector (suite) 

Resilience scores by sector for the four BGI implementation strategies at both 10% and 25% 

implementation rates are illustrate in Figure 5-5. Results reveal clear spatial and strategic 

variations. For the strategy based on the opportunities perspective Sector 3 shows the highest 

resilience scores at both implementation levels. In contrast, for the specific, needs, and all 

strategies, Sector 1 generally benefits the most, while Sector 2 shows relatively stable performance 

across strategies. 
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At the 10% implementation level, the needs and specific strategies yield the highest resilience in 

Sector 1, with scores ranging from 0 (opportunities) to 3.42 (needs). In Sector 2, the needs strategy 

also leads, with scores between 0.50 (opportunities) and 2.92 (needs). In Sector 3, the opportunity 

strategy performs best with scores ranging from 0.07 (needs) to 3.50 (opportunities). 

At the 25% implementation rate, in Sector 1, the all and needs implementation strategies achieve 

the highest resilience scores across most components of resilience. Scores range from 0.01 

(opportunities) to 3.06 (needs). In Sector 2, both the all and needs implementation strategies 

perform best, with total resilience ranging from 0.50 (opportunities) to 2.50 (needs). In Sector 3, 

the opportunities implementation strategy produces the highest resilience score, with values 

ranging from 0.23 (needs) to 4.00 (opportunities). Under the 25% implementation rate, the specific 

scenario yields the best results across all three sectors for the redundancy component indicating 

that prioritizing these targeted objectives would most effectively reduce overflow events and UHI.  

As the BGI implementation rate increases from 10% to 25%, the resilience scores become more 

polarized. At 10%, the impacts are relatively moderate and evenly distributed across sectors and 

resilience components. However, at 25%, the differences increase, some indicators achieve 

maximum scores while others remain very low. This suggest that the benefits of BGI 

implementation are not equally shared and that higher implementation may intensify disparities 

rather than reduce them. 

Indicator-level analysis reveals further nuance. At 10%, the needs strategy obtains the highest score 

in Sector 1 for indicators 4 (UHI), 5 (Number of hours with stormwater flows exceeding sewers), 

and 6 (Maximum runoff), indicating strengths in redundancy and recovery. The specific strategy 

outperforms the other alternatives for indicator 1 (Contamination load for E. coli) and 2 (Mean 

runoff), emphasizing resistance and reliability. The all strategy is the most effective in mitigating 

indicator 3 (CSO events), while the opportunities strategy performs poorly in Sector 1 for all 

indicators. In Sector 2, the needs strategy performs best, though results are more evenly distributed 

across strategies. In Sector 3, the opportunities strategy gets the best score across all indicators. 

At the 25% level, the dynamics are similar. The needs strategy is strong in Sectors 1 and 2, 

particularly for indicators concerning contamination load (1), mean runoff (2), and UHI (4), 

suggesting wide-ranging hazard mitigation potential.  
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The specific strategy is still reducing CSO events (3) effectively, and the all strategy performs best 

for indicator 5 (Number of hours with stormwater flows exceeding sewers). In Sector 3, the 

opportunities strategy remains the best across indicators. 

Table 5-7 shows the results for each indicator and component for all strategies at both 

implementation rate (10% and 25%). The total of resilience score is also presented (colored lines). 

Table 5-7 Indicators and concept score for each scenarios and total of resilience score for each sector (colored lines) 

10% 

Concepts Indicators All Opp Need Specific 

Resistance E. coli load [counts/s] 0.43 0 0.71 1 

Reliability Mean runoff [mm] 0.73 0 0.96 1 

Redundancy 
Nb overflow [nb] 1 0 0.5 0.5 

UHI [sum] 0.79 0 1 0.4 

Recovery 

Sum hours surcharged [hours] 1 0 1 0 

Max runoff [mm] 0.24 0 1 0.33 

Sum Resilience (1)   2.68 0 3.42 2.61 

Resistance E. coli load [counts/s] 0.49 0 1 0.67 

Reliability Mean runoff [mm] 0.55 0 1 0.55 

Redundancy 
Nb overflow [nb] 0 0 0 1 

UHI [sum] 0.79 0 1 0.4 

Recovery 

Sum hours surcharged [hours] 1 0 0.84 0.65 

Max runoff [mm] 0 1 0 0 

Sum Resilience (2)    1.93 0.5 2.92 2.24 
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Table 5-7 Indicators and concept score for each scenarios and total of resilience score for each sector (colored lines) 

(suite) 

 

Resistance E. coli load [counts/s] 0.05 1 0 0 

Reliability Mean runoff [mm] 0.12 1 0.02 0 

Redundancy 
Nb overflow [nb] 0 0 0 1 

UHI [sum] 0.1 1 0 0.02 

Recovery 

Sum hours surcharged [hours] 0 1 0.01 0.02 

Max runoff [mm] 0.1 1 0.1 0 

Sum Resilience (3)   0.26 3.5 0.07 0.52 

25% 

Resistance E. coli load [counts/s] 0.08 0 1 0.13 

Reliability Mean runoff [mm] 0.77 0 0.87 1 

Redundancy 
Nb overflow [nb] 1 0 0.5 0.5 

UHI [sum] 0.79 0 0.86 1 

Recovery 

Sum hours surcharged [hours] 1 0.03 0.01 0 

Max runoff [mm] 0.37 0 1 0.41 

Sum Resilience (1)   2.43 0.01 3.06 2.09 
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Table 5-7 Indicators and concept score for each scenarios and total of resilience score for each sector (colored lines) 

(suite) 

25% 

Resistance E. coli load [counts/s] 0.61 0 1 0.57 

Reliability Mean runoff [mm] 0.89 0 1 0.63 

Redundancy 
Nb overflow [nb] 0 0 0 1 

UHI [sum] 0.9 0 1 0.48 

Recovery 

Sum hours surcharged [hours] 1 0 0 0 

Max runoff [mm] 0 1 0 0 

Sum Resilience (2)   2.44 0.5 2.5 1.94 

Resistance E. coli load [counts/s] 0.04 1 0.02 0 

Reliability Mean runoff [mm] 0.12 1 0.06 0 

Redundancy 
Nb overflow [nb] 0 1 0 1 

UHI [sum] 0.08 1 0.02 0 

Recovery 

Sum hours surcharged [hours] 0 1 0.15 0.23 

Max runoff [mm] 0.12 1 0.12 0 

Sum Resilience (3)   0.26 4 0.23 0.61 

An analysis of trade-offs and correlations between performance indicators is possible from results 

shown in Table 5-7 and reveals important nuances in the effectiveness of BGI strategies across 

sectors and implementation levels. In Sector 1 and Sector 2 at the 10% implementation level, the 

all strategy performs well for indicator 5 (Number of hours with stormwater flows exceeding 

sewers) with a score of 1.00 in both sectors. However, we note a lower performance in most other 

indicators, such as indicator 1 (Contamination load for E. coli) and indicator 2 (Mean runoff), 

suggesting a clear trade-off between recovery and resistance/reliability components. Similarly, the 

specific strategy in Sector 1 performs well in resistance and reliability (indicators 1 and 2), but 
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performs poorly in recovery-related indicators (especially indicators 5 and 6), again pointing to 

internal trade-offs.  

Taking into account that resistance is associated with the CSO hazard (indicator 1), reliability with 

both CSO and urban flooding (indicator 2, reduce runoff), redundancy with CSO (indicator 3) and 

urban heat island (indicator 4), and recovery with CSO and urban flooding (indicators 5 and 6), 

these trade-offs can also indicate specific prioritization of certain hazards. For example, the specific 

strategy targets CSO contamination, but less effectively addresses urban flooding (indicator 6) or 

system overloading (indicator 5). On the other hand, the all strategy improve system recovery under 

flooding but is not as good in reducing contaminant load (indicator 1). These patterns show the 

importance of selecting BGI strategies not only with resilience components but also with the 

dominant local hazard profiles. 

The needs strategy tends to show more balanced scores across all indicators, especially in Sectors 

1 and 2 at both implementation levels. At 10%, this strategy shows good results for indicator 4 

(UHI) and indicator 5 (Number of hours with stormwater flows exceeding sewers) at the same 

time, suggesting a positive correlation between UHI and urban flooding mitigation. However, at 

the 25% level, this correlation becomes negative—UHI scores remain high, but performance on 

indicator 5 (Number of hours with stormwater flows exceeding sewers) decreases, indicating 

possible saturation effects or diminishing returns at higher levels of implementation. 

Some indicators appear to be uncorrelated, which is also an important observation. For instance, 

indicators 1 (Contamination load for E. coli) and 3 (CSO events) do not show any clear positive 

relationship across sectors or strategies, despite being both measured at overflow points. Similarly, 

indicators 2 (Mean runoff) and 6 (Maximum runoff) show weak or no correlation in Sectors 1 and 

2, under the 10% implementation level. In contrast, in Sector 3, these two indicators seem to be 

correlated potentially due to different hydrological dynamics or spatial constraints.  

Importantly, the needs strategy shows the least trade-offs, in Sectors 1 and 2, by maintaining 

relatively high and balanced scores across most indicators while the opportunities strategy 

performs best for sector 3. This suggests different implementation strategies should be considered 

depending on the sector. Furthermore, when comparing implementation levels, while overall 

patterns remain consistent, increases in performance tend to plateau in some indicators.  
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For example, certain scores improve only marginally or not at all between the 10% and 25% levels, 

revealing a diminishing returns or saturation thresholds for some resilience components. 

Overall, the results emphasize that the effectiveness of BGI interventions is highly dependent on 

both the implementation strategy and the sectoral context. This underscores the importance of 

developing locally tailored approaches for optimizing urban resilience. 

5.5 Discussion 

5.5.1 Applying the resilience framework 

The use of a spatial multicriteria analysis tool made it possible to identify the most strategic sites 

for implementing BGI based on a variety of criteria (referred to as objectives). During the 

implementation of BGI, various trade-offs must be considered: for example, between stormwater 

management and ecological connectivity (Meerow & Newell, 2017). However, important 

synergies—such as between stormwater and urban heat island mitigation—were also observed in 

priority areas, highlighting the need for a strategic spatial planning approach to maximize ES 

benefits (Meerow & Newell, 2017). Our study further demonstrated that multiple benefits can be 

achieved simultaneously when BGI is implemented using an appropriate and well-targeted 

strategy. This highlights the importance of adaptive planning that aligns strategies with local needs 

and urban morphology. A one-size-fits-all approach risks underperformance or missed 

opportunities. 

Sectors 1 and 2 are predominantly residential and are intersected by roads classified as municipal 

collectors. These sectors also have a higher imperviousness, with larger areas covered by roads, 

sidewalks and roofs. A study by Ahiablame and Shakya (2016) found that BGI interventions 

targeting road runoff were more effective in reducing flooding than those focusing on parking lots 

and rooftops, as roads make up a larger share of impervious surfaces. This highlights the significant 

potential of bioretention, when implemented in urban settings, to mitigate the impacts of climate 

change on urban drainage system performance, all while occupying only a small fraction of the 

total impervious area (Benoit et al., 2025). In contrast, Sector 3 is characterized by more green 

space and less residential development, resulting in lower imperviousness. This sector contains 

fewer roads overall—mainly due to the presence of large institutional area with a park—and the 

roads that do exist are primarily local streets, which cover a smaller surface area.  
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Land use type is a key factor in explaining performance of the needs and specific strategies in 

Sectors 1 and 2 (Paquin, 2020; Rodriguez et al., 2024). Several objectives form the hierarchy 

(supplementary material section 4, Figure S4-1)— notably 5.1 and 6.1 (land use type, population 

density), 7.2 (road type), as well as 8.1, 9.1, and 9.2 (increase green cover, exposure to urban 

flooding, exposure to UHI) are indirectly influenced by the characteristics of the land use.  

These sectors (1 & 2), being more densely built and having a higher proportion of impervious 

surfaces, have a greater need for BGI. By prioritizing areas with the highest needs, the needs and 

specific strategies are better aligned with these objectives, which explains their stronger 

performance in sectors 1 and 2. Sector 3 has a lower BGI requirement, so resilience is more 

effectively improved when we consider only the objectives linked to the opportunities offered by 

the territory, such as ease of implantation. This highlights the spatial variability of resilience, as 

well as how the implementation of BGI can influence resilience differently depending on where 

and how and where it is deployed (Bertilsson et al., 2019; Rodriguez, Fu, et al., 2020). This suggests 

that while opportunity-based implementation is efficient in leveraging existing spatial conditions 

(e.g., green space, available surface), it may not always deliver holistic resilience across all metrics. 

Other key factors influencing resilience include reducing runoff, lowering impervious surface 

percentages, increasing land use diversity, and providing more recreational areas—all of which 

contribute to higher resilience (Fu et al., 2021; Miguez & Veról, 2017; Paquin, 2020). 

The results show that differences between sectors have a significant impact on resilience, 

underlining the importance of conducting resilience analyses at multiple locations within the 

catchment—an observation that aligns with the findings in Rodriguez et al. (2024). Changing the 

land use by adding BGI also reduced the temperature making the city more resilient to UHI, this 

can help reduce health risk (Carvalho et al., 2017). Given the public health challenges associated 

with both UHI and stormwater events, BGI emerges not only as an environmental solution but also 

as a key tool for promoting wellbeing (Kremer et al., 2016; Walker, 2021; Wolch et al., 2014). This 

underlines the need to carefully consider spatial placement when selecting BGI implementation 

strategies. A well-structured and locally adapted planning approach can significantly improve 

urban resilience, since the structure of the urban system itself plays a critical role (D. Zhang et al., 

2021). Rather than relying on a uniform strategy, it is essential to adopt a context-sensitive 

approach to fully realize the potential of BGI. 
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Even if higher BGI implementation rates can bring greater benefits, our findings indicate they may 

also exacerbate spatial inequalities if not carefully planned. When implementing BGI at 25%, some 

indicators are improved significantly, while in others, gains remained marginal. The disparities in 

the benefits distribution underscores the need to ensure equitable planning in BGI implementation, 

particularly in urban areas where socio-environmental vulnerabilities are localized (Meerow et al., 

2019). For example, in Sector 3, although the opportunities strategy yields the highest increase in 

resilience, this sector also includes a Mental Health University Institute, which support a population 

that may be more vulnerable to the effets of UHI (INSPQ, 2022). This raises important equity 

concerns, as resilience gains may not align with the spatial distribution of vulnerability. Moreover, 

data from Université Laval show that Sectors 1 and 2 demonstrate a significantly higher adaptive 

capacity compared to Sector 3, which has a more limited capacity to act. This index includes 

various factors, such as distance to the closest healthcare facility or access to public cooling 

infrastructure like pools or parks (Département de géographie de l'université Laval, 2018). These 

findings emphasize the importance of integrating social vulnerability and capacity-to-act metrics 

in BGI planning to prevent increasing inequalities that already exist while enhancing environmental 

resilience. 

In contrast to studies suggesting that BGI implementation strategies cannot simultaneously achieve 

high performance in reducing both UHI and urban flooding (Cuthbert et al., 2022), our results show 

that such synergy is possible depending on the context. Specifically, the implementation stategy 

based on the needs perspective shows balanced performance across the indicators that are 

associated with water management (2, 5, and 6) and UHI mitigation (indicator 4), particularly in 

Sectors 1 and 2 at the 10% implementation level. This finding aligns with He et al. (2019), who 

highlight the potential of BGI to enhance flood control and urban thermal regulation at the same 

time. Furthermore, there are links between water management strategies (e.g., indicators 2, 3, 5, 

and 6 in our analysis) and UHI reduction, suggesting that multi-hazard mitigation can be achieved 

through carefully planned BGI interventions (Meerow, 2019; Meerow & Newell, 2017). Meerow 

(2019); Meerow and Newell (2017) also points to possible synergies between UHI mitigation and 

improved air quality, reinforcing the idea that well-planned BGI can support multiple urban 

resilience goals simultaneously.  
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Overall, our findings highlight the need for strategic BGI planning that not only aligns with local 

hazard profiles but also leverages cross-benefits across environmental and climatic domains—

ideally through a combination of needs-based prioritization in vulnerable sectors and opportunity-

based interventions where co-benefits can be maximized. 

5.5.2 Study limitations  

Accurately representing and reporting the parameterization of BGI including aspects such as 

routing and width parameters, in models is crucial for effectively evaluating the performance of 

BGI strategies (Rodriguez et al., 2024). While this falls outside the scope of our study, future 

research should carefully consider this aspect to enhance our understanding of how BGI 

parameterization in models influences the outcomes of key performance indicators. 

Additionally, while this study focuses on bioretention systems, SSANTO proposes various types 

of BGI, which could be tested by proposing different implementation strategies for different types 

of BGI based on SSANTO’s suitability maps (Lacroix et al., 2024). Future studies could also 

explore the possibility of combining different BGI types, selecting specific types and sites based 

on the highest quantiles of suitability, to assess their combined impact on resilience and CSO 

discharge. Such combinations may prove to be more effective on enhancing resilience than 

deploying a single type of BGI, as they can harness complementary functions and better adapt to 

spatial and hydrological variability (Cavadini, Rodriguez, Nguyen, et al., 2024; Fry & Maxwell, 

2017; Rodriguez, Fu, et al., 2020).  

The indicators chosen for this study are primarily aligned with the needs perspective of the 

objective hierarchy developed by Lacroix et al. (2024), either directly (objectives 5.2 Reduce CSO, 

9.1 Exposure to urban flooding, and 9.2 Exposure to UHI) or indirectly through the selection of 

attributes used to represent these objectives. As such, the resilience analysis framework largely 

addresses the needs objectives. To evaluate other aspects of resilience—by considering additional 

objectives—it would be possible to use other tools to generate quantitative indicators. For example, 

the I-Tree software can be used to quantify indicators related to air quality (Hilde & Paterson, 

2014).  
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Similarly, the InVEST tool could help assess additional indicators such as water retention capacity, 

urban flood mitigation, carbon storage and sequestration, scenic quality, and urban nature access 

(Natural Capital Project, 2025). This would allow mapping all need-related objectives within the 

hierarchy, helping us identify which ones most significantly impact a territory's resiliency. 

In our methodology, when two indicators represent one concept, we decided to average them to 

compute the overall indicator value. This simplifies the analysis but can influence the resulting 

resilience score. To evaluate the robustness of this approach, we conducted a short sensitivity 

analysis by comparing different methods for combining indicators, such as calculating the average 

or using minimum and maximum values to observe the effect on the total resilience score. This 

analysis indicated that the redundancy component is more sensitive to variations than the recovery 

component when we aggregated the indicators. In particular, the all strategy consistently 

demonstrated the highest sensitivity For redundancy, the sensitivity of the all strategy reflects how 

strongly the final score can vary depending on how the input indicators are combined. This 

variation can be attributed to the wide range of values observed among the contributing indicators. 

In contrast, other strategies like opportunities and specific showed a more moderate sensitivity, 

while needs appeared the most stable, with little variation across aggregation methods. This 

suggests that the needs strategy is more robust when faced with different approaches to indicator 

combination. A similar trend was observed for the recovery component. The all strategy was 

identified as the most sensitive, with important differences in the resulting resilience scores 

depending on the aggregation method. The opportunities and specific strategies were moderately 

affected, while the needs strategy again was the least sensitive. 

Overall, this analysis shows that the method used to aggregate indicators can influence the 

resilience score, particularly for the all strategy. Depending on the objectives of the assessment or 

the targeted hazards, more robust strategies like need may be preferable to ensure consistent and 

reliable results across different aggregation choices. Importantly, although these variations have an 

impact on the absolute resilience scores, they do not affect the relative ranking of the strategies.  
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5.6 Conclusion 

The novelty of this research lies in the development and application of a resilience analysis 

framework that integrates both stormwater infrastructure resilience—focusing on overflows and 

runoff reduction—and public health aspects such as heat island mitigation and flood risk. Even 

though we do not explicitly address all aspects of socio-ecological resilience, we indirectly 

incorporate dimensions related to public health through indicators associated with urban heat 

islands and urban flooding. The main objective was to establish a structured and adaptable 

approach to assess urban resilience in a way that supports decision-making. 

Applying this framework to an urban territory in Southern Quebec enabled the identification of 

BGI strategies best suited for different sectors within the study area. The framework proved 

particularly useful for comparing implementation strategies generated by the SSANTO tool, 

showing how the performance of each strategy varies depending on the spatial context—

underscoring the need for localized and context-specific planning. 

A key strength of this study is its use of PCSWMM outputs as the foundation for several resilience 

indicators. Given PCSWMM’s widespread use in municipalities worldwide to simulate and 

evaluate stormwater management solutions, the proposed framework can be readily adopted in 

other urban contexts where PCSWMM models are already in use. It provides a practical way to 

enhance the use of existing hydrological models, supporting more integrated decision-making that 

considers trade-offs and synergies among various BGI impacts. Moreover, in a context of urban 

densification, where space is limited, choosing BGIs that offer multiple co-benefits, such as 

overflow reduction, heat mitigation, and improved water quality, ensures a more efficient use of 

public space and investment. Beyond PCSWMM, this study also demonstrates how correlations 

between imperviousness and UHI classes can inform planning decisions to enhance synergies in 

hazard mitigation. This method, along with the broader resilience framework, has strong potential 

for replication and adaptation in other cities facing similar urban challenges. 

As a next step, the integration of qualitative indicators, such as insights from expert judgment and 

stakeholders, could improve the analysis of the resilience by including aspects of resilience that are 

not easily quantified.  
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For instance, indicators related to governance and social acceptability, and ability to learn could be 

included using methods like scoring or ranking exercises. Including such perspectives would make 

the framework more holistic and aligned with the real decision-making processes.  

In addition, incorporating climate change projections would improve the long-term relevance of 

the analysis. However, this was not undertaken in the current study due to methodological 

limitations. SWMM requires high-resolution precipitation data at short time intervals (e.g., 5 

minutes), whereas most climate model outputs are available at coarser temporal scales. 

Downscaling or disaggregating climate data to the necessary resolution can introduce significant 

uncertainty and bias, which could compromise the reliability of the model outputs and, 

consequently, the derived indicators. Therefore, while important, the integration of future climate 

scenarios remains a methodological challenge and is identified here as a priority for future research.  
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Highlights 

• CSOs pose critical environmental and public health challenges 

• Increased precipitation under climate change must be considered in CSO management 

• Integration of hydrologic and QMRA models for a river  

• Blue-green infrastructure (BGI) reduces the probability of infection for all seasons 

• Adding 3% BGI is equivalent to adding 28000m3 storage in terms of infection risk 

reduction 

Abstract 

Combined sewer overflows (CSOs) release pathogens into urban recreational water bodies and 

pose a threat to water quality, ecosystems, and public health. This risk is expected to increase with 

climate change, as more frequent and intense rainfall events are likely to exacerbate the number of 

overflows. Exposure to contaminants from CSOs can cause waterborne diseases, underscoring the 

need for effective stormwater management strategies. Blue-green infrastructure (BGI) offers a 

sustainable solution to mitigate the adverse impacts of CSOs while enhancing urban resilience 

through multiple co-benefits. This study combines hydrologic modeling with quantitative 

microbial risk assessment (QMRA) to assess the potential of BGI implementation strategies 

ranging from 0% to 50% of converted impervious surfaces, to mitigate the impacts of climate 

change on the microbiological quality and safety of urban rivers used for recreation downstream 

of CSOs. A strategy involving increased storage capacity by 28000 m3 was also considered to 

compare its performance in terms of risk reduction with BGI implementation. The approach was 

applied to an Austrian urban river catchment frequently used for recreational activities such as 

swimming, wading, and playing. Three planning horizons were analyzed - baseline (C20), near-

term future (NTF) and long-term future (LTF). Results show that BGI reduces the probability of 

infection across all seasons, with the highest benefit observed in summer when recreational water 

use peaks. For Cryptosporidium, the 95th percentile infection risk in a worst-case scenario (i.e., 

children swimming in the river) is reduced, when adding 50% of BGI, by 0.4 log10 for the C20 

period, 0.5 log10 for the near-term future, and 0.6 log10 for the long-term future, demonstrating the 

potential of BGI to improve the safety of recreational waters under changing climate. 
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Graphical abstract  

 

Figure 6-1 Résumé graphique article 3 

Keywords  

Climate change, Combined sewer overflow, QMRA, Infection risk, Blue-Green infrastructure, 

Recreational water risk 

6.1 Introduction  

Adequate urban water quality is critical for recreation, drinking water, and irrigation. Combined 

sewer overflows (CSOs) occur when the drainage system exceeds its capacity during rainfall or 

snowmelt events, leading to the direct discharge of untreated wastewater—a mix of sanitary sewage 

and runoff often containing contaminants—into receiving streams (Joshi et al., 2020; Madoux-

Humery et al., 2013; Olds et al., 2018) posing significant public health risks (Haley et al., 2024; 

Miller et al., 2022; Pongmala et al., 2015; USEPA, 2004). At the European Union scale, the 

estimated annual volume of CSO was approximately 5.7 × 10³ million cubic meters, highlighting 

the important impact of urban stormwater discharges on receiving water bodies (Emanuele 

Quaranta et al., 2022). 

Climate change is expected to intensify precipitation, increasing the frequency of CSOs in North 

America and Europe by 2100, with the potential to release higher concentrations of pathogens into 

urban waterways leading to public health concerns for recreational activities such as swimming 
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(Derx et al., 2023; Patz et al., 2008; J. Petrucci et al., 2025). Increased CSO frequency, combined 

with changes in pathogen loads, water temperature, and flow regimes, may exacerbate 

contamination downstream CSOs (Derx et al., 2023; Leveque et al., 2021; Patz et al., 2008; Sterk 

et al., 2016; USEPA, 2008). When CSOs coincide with swimming periods, the risk of exposure 

intensifies (Sterk et al., 2016). Derx et al. (2023) quantified this increase in a central European 

context, showing that the CSO volumes are projected to increase by 21–31% for near-term futures 

(NTF, 2021–2050), and by 28–53% for long term future (LTF, 2071–2100) compared to the 

reference planning horizon (C20, 1971–2000), depending on the season. These increases directly 

translate into heightened public health risks.  

Summer is a period when people are more inclined to enjoy water bodies for recreational activities: 

more people are swimming and for longer periods However, it is also the time when the number of 

CSOs can be the highest because of intense summer precipitation (Jalliffier-Verne et al., 2015; 

Schroeder et al., 2011). The impact of CSOs is more severe during this period, as in Europe, for 

example, it typically coincides with low flow regimes (Even et al., 2007; Willems & Olsson, 2012). 

Swimming in unmonitored sites after CSOs can expose people to undetected pathogens, 

highlighting the need to ensure safe swimming water quality. 

Having access to waterways for recreation in urban areas is beneficial for the population, since 

water-based activities in urban environments enhance citizens' quality of life by providing 

opportunities for improved health and wellness, environmental protection, and economic 

development (Schneider, 2009). With climate change increasing water exposure via higher 

temperatures and heatwaves by 2050, mitigating CSOs is crucial to maintain swimming water 

quality, reduce health risks, and ensure safe urban recreation (Leveque et al., 2021). In Europe, 

climate change is expected to worsen heat-related morbidity and mortality, posing serious 

challenges to public health systems and reinforcing its role as a major environmental health risk 

(García-León et al., 2024; Merte, 2017).  
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Greening strategies, such as BGI implementation, can help reduce the effects of high temperatures, 

thereby mitigating health risks associated with heat exposure (Marando et al., 2019; Sadeghi et al., 

2022; Zander S. Venter et al., 2020; H. Zhou et al., 2023). While many cities are located near water, 

these blue spaces are often not fully integrated into urban planning, and their public health benefits 

are frequently overlooked by planning authorities (Wuijts, de Vries, et al., 2022).  

Research has shown that water environments, similar to other natural spaces, offer societal benefits 

for health and well-being by reducing heat stress, promoting physical activity, encouraging social 

interaction, and facilitating relaxation (Gascon et al., 2017; White et al., 2020; World Health 

Organization, 2016b). Safe access to blue spaces is therefore essential for communities in terms of 

both mental and physical health. 

Blue-green infrastructure (BGI) provides a potential solution for water quality problems. They 

promote integrated stormwater management by replicating key elements of the natural water cycle, 

including infiltration and evapotranspiration (MELCC, 2014; USEPA, 2021b). BGI mitigates CSO 

impacts and reduces microbial contamination by capturing runoff and filtering pollutants, reducing 

swimming water contamination (Autixier et al., 2014; Joshi et al., 2020; USEPA, 2014), in addition 

to offering many co-benefits to communities such as reducing heat islands, improving the urban 

living environment, promoting active mobility, and improving air quality (Anquez & Herlem, 

2011; Dagenais et al., 2017; C. Li et al., 2019; MELCC, 2014; Rayfiel et al., 2015; Tsai et al., 

2019). By protecting recreational water areas, especially during hot summer months, BGI can help 

ensure safe and enjoyable spaces for aquatic activities (Sterk et al., 2016; Wuijts, Friederichs, et 

al., 2022). Sojobi and Zayed (2022) highlighted a research gap on rain gardens for stormwater 

reduction related to public health and called for studies on their role in mitigating CSOs and 

pollution.  

Quantitative Microbial Risk Assessment (QMRA) is a widely used approach to estimate health 

risks from microbial hazards in water, including from pathogens released during sewage overflows 

(Derx et al., 2023; Eregno et al., 2016; Kozak et al., 2020; McBride et al., 2013; Timm et al., 2016). 

QMRA is an effective tool to support recreational water quality management, providing 

quantitative results for comparing management strategies (Eregno et al., 2016; Kozak et al., 2020; 

McBride et al., 2013).  
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European studies show measurable gastrointestinal illness (GI) risks from recreational exposure 

after rainfall and CSOs, with virus posing the highest risk (Derx et al., 2023; Eregno et al., 2016; 

Timm et al., 2016). Timm et al. (2016) estimated viral GI illness risks between 0.9% and 2.6%, 

and lower but non-negligible risks for Cryptosporidium (0.014%) and Giardia (0.0084%). Derx et 

al. (2023) projected up to 8% infection risk per exposure under future scenarios, highlighting the 

need for mitigation.  

Building on this, our study assesses the effectiveness of blue-green infrastructure (BGI) in reducing 

CSO-related infection risks by modeling hourly infection probabilities over a 30-year period. While 

previous work has examined BGI's role in reducing pathogen loads or diffuse pollution (Oluk, 

2023; Rosa et al., 2024), its potential to protect urban swimming sites from CSO impacts under 

climate change has not been studied, to our knowledge. 

The approach integrates hydrological modeling with quantitative microbial risk assessment 

(QMRA), building on the methodology of Derx et al. (2023) by additionally implementing BGI. 

Specifically, rainfall time series data from regional climate models are downscaled to sub-daily 

scales and integrated into precipitation scenarios used as input for urban hydrological modeling in 

Personal Computer Storm Water Management Model (PCSWMM). CSO discharges and pathogen 

concentrations in overflow water are predicted using PCSWMM. Rainfall-runoff modeling 

simulates river discharges across historical and projected climate scenarios based on the bias-

corrected ÖKS15-projections (Chimani et al., 2018).  
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6.2 Method 

Figure 6-2 presents an overview of the methodology developed in this study. 

 

Figure 6-2 Conceptual diagram of the approach adopted in the study 

The PCSWMM urban hydrological model simulated CSO discharges and pathogen concentrations, 

while a separate 1D river model accounted for upstream runoff and river flow. Combined 

microorganism data were used to calculate downstream infection risks across seasons (winter, 

spring, summer, autumn) and three planning horizons: reference (C20, 1971–2000), near-term 

future (NTF, 2021–2050), and long-term future (LTF, 2071–2100) following Derx et al. (2023). 

Bioretention was modeled from 0% to 50% in 5% increments, alongside a recently implemented 

storage measure at the study site. Bioretention cells are small depressions with a surface area 

determined by the drainage catchment, which capture some of the runoff from roofs, streets, and 

walkways (Lapierre & Pellerin, 2018; MELCC, 2014; USEPA, 2021b). 
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6.2.1 Study site description and data 

The study area is a river catchment in Vienna, Austria, with a population of about 148,000 people. 

The river originates west of Vienna and receives inflows from several tributaries. It is primarily 

fed by runoff from urban and forested flysch areas. The sewer system is modeled using a 

PCSWMM sewer system sharing the same catchment area, proportions of landuse and topographic 

gradients as the real study site, and real rainfall data from the study site. Figure 6-3 shows a 

schematic representation of the studied area.  

 

Figure 6-3 Schematic study area with hydrological and urban hydrological model domain 

Although not officially a swimming site, the river is used year-round for recreation and serves 

during summer to refresh through activities like playing and wading. 

6.2.2 Climate scenarios 

For the climate impact analysis, we used the bias-corrected ÖKS15 projections (CCCA, 2020; 

Chimani et al., 2018), based on regional climate models (RCMs) from the EURO-CORDEX 

initiative, which in turn are based on global climate models (GCMs) from the CMIP5 framework 

(Taylor et al., 2012). ÖKS15 includes 13 GCM–RCM combinations for each of the RCP4.5 and 

RCP8.5 scenarios.  

Of the 26 total combinations, five were removed due to significant underestimation of rainfall in 

Eastern Austria (study region), and due to missing data (Chimani et al., 2018).  
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This results in 21 GCM-RCM combinations that were applied in the study by Derx et al. (2023). 

For this study, from the 21 model runs, we selected three climate scenarios (C63, C73, C77, see 

supplementary material S1 for the complete list) which reflected the full range of possible increases 

in future infection risks (marked as coloured dots in Derx et al. (2023), Fig. 7). The study by Derx 

et al. (2023) indicated that infection risk variability was greater across different seasons than across 

climate scenarios or rainfall disaggregation implementations. In total, thirty implementations of the 

disaggregated rainfall time series were applied for each planning horizon (C20, NTF, and LTF). 

For CMIP6 no regional climate model results were available for Austria when we conducted the 

study. However, although differences between climate periods C20, NTF and LTF are studied, the 

focus of the manuscript is on the impact on BGI and its effectiveness on reduction of infection 

risks. Using CMIP6 instead of CMIP5 would probably change the numbers of the results, the 

shown impact of BGI will remain the same – so the main message is still valid. 

Disaggregated rainfall time series are used to increase the temporal resolution of climate-projected 

rainfall data, making them suitable for use in hydrological models. In this study, daily rainfall time 

series from the three selected climate scenarios were disaggregated to 5-minute intervals using the 

micro-canonical cascade model, selected for its proven performance in previous studies (Müller & 

Haberlandt, 2015; Müller-Thomy, 2019, 2020) as suggested in Derx et al. (2023). These 

disaggregated rainfall time series were then applied to the artificial sewer system model and the 

rainfall-runoff model.  

6.2.3 Artificial sewer system 

To represent the urban drainage system, an artificial sewage system was used. This is a common 

approach for evaluating the impacts of rainfall datasets on CSO volumes when complete field data 

for modeling are lacking (Müller & Haberlandt, 2018). Moreover, artificial systems are often used 

to validate synthetic rainfall inputs as the one generated by the disaggregation (Kim & Olivera, 

2012).  

The artificial sewage system used in this study, is adapted from Müller and Haberlandt (2018), and 

was modified to represent the hydrological characteristics of the study area to ensure the modeled 

and observed overflow events matched.  
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The model is not an exact sewer network replica, but an artificial sewer network evaluated on 

monitored concentrations of enterococci, Giardia and Cryptosporidium in the river during 2018 – 

2021 when CSOs and floods occurred (Derx et al., 2023; Müller & Haberlandt, 2018). Households 

in the model area connect to a combined sewer system meaning both runoff and sanitary water are 

in the same conduits. Sub-catchment widths were set based on actual dimensions, ranging from 

400 to 3000 m, and surface slopes varied between 1.4% and 7.3%, with a mean of 4.1%, derived 

from a digital terrain model. The imperviousness was adjusted during calibration. It ranged from 

50% to 100% (mean 81%), while conduit lengths ranged from 100 to 6000 m, totaling 31.3 km 

after calibration. A retention tank with a volume of 40,280 m³ was included to store combined 

wastewater and stormwater when the treatment plant reaches capacity. Once exceeded, the 

overflow is discharged into the receiving water via CSOs. Microorganisms enter the sewer only 

via dry-weather flow Cdry [# L−1]. All the initial parameters are adjusted as proposed in Derx et al. 

(2023). The parameters can be found in the supplementary material S2. The urban hydrological 

simulations were run continuously to avoid any a priori assumptions about which rainfall extremes 

could trigger CSOs or the soil moisture conditions preceding rainfall events. This setup allows the 

model to realistically represent hydrological responses during intense rainfall events. 

6.2.4 Rainfall-runoff model (HBV) 

The runoff from the river catchment was simulated hourly using a distributed rainfall-runoff model 

(Blöschl et al., 2008). The model domain area is 199 km², with a spatial resolution of 1 km × 1 km.  

The model was calibrated using hourly rainfall and temperature data, with parameters first assigned 

by Hydrologic Response Units (HRUs) and then adjusted by comparing simulated and observed 

runoff (1990–2018; NSE = 0.51–0.93, overall NSE = 0.77; (Derx et al., 2023)). The training period 

is the first year (1990). The calibrated model was then used to simulate the C20, NTF, and LTF 

planning horizons.  

Disaggregated rainfall time series were applied as spatially uniform input, with observed air 

temperature data from the Hohe Warte meteorological station during the C20 period (Derx et al., 

2023). 
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6.2.5 BGI implementation scenarios 

The Low Impact Development (LID) control editor was used to model BGI in the study area, with 

a focus on bioretention (Rossman, 2017; Lewis A. Rossman & Wayne C.  Huber, 2016). 

Bioretention was selected for its effectiveness in managing both the quantity and quality of CSOs, 

as well as its suitability for densely urbanized areas like our study site due to its compact size 

(Autixier et al., 2014; Hunt et al., 2006; Hunt et al., 2008; Joshi et al., 2020). They are among the 

most widely implemented LID practices (Kõiv-Vainik et al., 2022) and can be effectively modeled 

using the LID module in PCSWMM, making them an ideal choice for this study (Computational 

Hydraulics International (CHI), 2024). Bioretention are reported to be effective in reducing 

overflow, lowering contaminant loads, and minimizing runoff (Autixier et al., 2014; Cavadini, 

Rodriguez, & Cook, 2024; Cavadini, Rodriguez, Nguyen, et al., 2024).  

Bioretention systems consist of several layers (Figure 6-3). Precipitation and runoff infiltrate the 

soil and gravel layer, then exit via evaporation, further soil infiltration, underdrain flow to the 

sewer, or surface outflow redirected to the sewer. 

The design parameters and soil characteristics for bioretention cells used in this study were set 

based on data from literature and existing case studies (Autixier et al., 2014; Gougeon et al., 2023; 

Joshi et al., 2020; Lewis A. Rossman & Wayne C.  Huber, 2016) as summarized in Figure 6-4. The 

modeling of bioretention relies on data from the literature due to the unavailability of site-specific 

information.  

This approach, combined with a case study methodology, allows for the evaluation of the feasibility 

and performance of the system within a local context while referencing comparable data and is 

commonly used in the literature (Autixier et al., 2014; Joshi et al., 2020).  
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Figure 6-4 Summary of the parameters’ values for each layer of the modeled bioretention cells in PCSWMM 

To model bioretention in PCSWMM, some parameters (width & imperviousness) need to be 

recalculated according to the size of the implemented bioretention (Lewis A. Rossman & Wayne 

C.  Huber, 2016). One of those parameters is the width (W) of the subcatchment, which was 

calculated as a function of the total area of the sub-catchment and the flow length. Width is a very 

sensitive parameter (Autixier, 2012), so it is essential to consider it when proposing BGI 

implementation scenarios. Adding BGI in an existing PCSWMM model (using the built-in LID 

Editor) creates new flow paths, thus increasing the total flow length (L) in a drainage basin 

(W=A/L).  

It is important to note that the width parameter only applies to the part of the sub-catchment not 

affected by the LID. The width is recalculated for each sub-catchment to more accurately represent 

the impact of bioretention cell implementation.  

Assuming a square shape for the added bioretention areas and using the known implementation 

area (based on the percentage applied), the width parameter can be recalculated accordingly.  
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If the new width calculated with the addition of the LID is greater than the initial width parameter, 

for example due to the shape of the urban drainage basin, the initial width parameter is retained. 

The percentage of imperviousness was also recalculated according to the percentage of 

implemented bioretention (Lewis A. Rossman & Wayne C.  Huber, 2016). The modified 

percentage of imperviousness is the ratio between the remaining impervious area (after adding the 

bioretention) and the non-bioretention area. Finally, we set initial saturation at 25%, treated 

impervious areas at 30%, and treated permeable areas at 10%, based on a previous study with 

similar bioretention setup (Bouattour, 2021). 

Bioretention implementation strategies were based on the assumption that different percentages of 

impervious surfaces could be converted to bioretention, in a way that preserves the original surface 

functionality—for example, roads remain drivable and sidewalks remain accessible—while 

effectively reducing runoff (MELCC, 2014). Therefore, only a subset of the impervious surfaces 

was hydrologically connected to the bioretention systems. Specifically, only 30% of the impervious 

area was routed to the bioretention via runoff. To assess the impact of bioretention implementation 

on infection probability, we incrementally added bioretention areas ranging from 5% to 50%, 

exceeding the threshold of 18 % suggested by Furchtlehner et al. (2022) in order to explore 

optimistic future scenarios for resilient cities. Although the MELCC (2014) stormwater 

management guide recommends bioretention areas covering 5 to 10% of the impervious catchment 

area, the CSA W200:18 standard for designing bioretention systems suggests surfaces ranging from 

10 to 20% of the impervious area of the watershed (Avizo, 2022). Other studies have also explored 

implementing higher percentages of BGI, with implementation rates varying between 25% and 

100% (Benoit et al., 2025; Cavadini, Rodriguez, & Cook, 2024; Cavadini, Rodriguez, Nguyen, et 

al., 2024). Thus, our study builds on these guidelines, extending the range of bioretention 

implementation even further to assess a broader spectrum of potential outcomes.  

  



 

 

 

 

173 

6.2.6 QMRA 

The following sections details the QMRA modelling process of: (1) identifying pathogens and their 

sources (hazard identification); (2) tracking their transport and fate to and within waterbodies, 

which can result in human exposure when swimming (exposure assessment); (3) assessing 

pathogen infection risks through dose–response modeling and (4) characterising the risk by 

comparing the results to the health target.  

The background concentration in the river and the ingested volume are represented by Gamma 

distributions to capture variability and quantify risk (Derx et al., 2023; Schets et al., 2011; Schijven 

et al., 2015). For both parameters, we consider a random value from the gamma distribution for 

each time step of 1 hour. In this study, we adapted a derived program coded in Python from 

Schijven et al. (2015) to perform the QMRA.  

6.2.6.1 Hazard identification  

In this case study, a hazardous situation arises from heavy rainfall causing a CSO, leading to a high 

concentration of pathogenic microorganisms in a swimming area Enterococci serve as an indicator 

of fecal contamination (Gouvernement du Canada, 2023; World Health Organization, 2021). Their 

elevated levels in freshwater or marine environments suggest the presence of fecal matter and, 

consequently, the potential occurrence of pathogenic microorganisms originating from fecal 

sources (Gouvernement du Canada, 2023). In addition, two reference pathogens were used, 

Cryptosporidium and Giardia, since they are protozoa that significantly contribute to waterborne 

disease outbreaks (Health Canada, 2019). In Canada, in the United States and in Europe, Giardia 

is the most frequently reported protozoan in water for recreation (Efstratiou et al., 2017; 

Gouvernement du Canada, 2012; Júlio et al., 2012). Giardia and Cryptosporidium are also 

reference pathogens identified by the USEPA (McBride et al., 2013). The concentration in the river 

(𝐶𝑟𝑖𝑣𝑒𝑟) after a CSO is calculated as described in Eq. 6-1: 

𝐶𝑟𝑖𝑣𝑒𝑟 =
𝐶𝐶𝑆𝑂 ∙ 𝑄𝐶𝑆𝑂

𝑄𝑟𝑖𝑣𝑒𝑟
+ 𝐶𝑟𝑖𝑣𝑒𝑟,𝑏𝑔∙𝑜𝑏𝑠  Eq. 6-1 
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Where 𝐶𝑟𝑖𝑣𝑒𝑟 [𝑐𝑜𝑢𝑛𝑡/𝑙] is the microbial concentration in river water, 𝐶𝐶𝑆𝑂  [𝑐𝑜𝑢𝑛𝑡/𝑙] is the 

simulated microbial concentration in the CSO discharge, 𝑄𝐶𝑆𝑂  [𝑚3/𝑠] in the simulated CSO 

discharge, 𝑄𝑟𝑖𝑣𝑒𝑟  [𝑚3/𝑠] is the river discharge and 𝐶𝑟𝑖𝑣𝑒𝑟,𝑏𝑔∙𝑜𝑏𝑠  [𝑐𝑜𝑢𝑛𝑡/𝑙] is the microbial 

background concentration in river water. 𝐶𝐶𝑆𝑂  and 𝑄𝐶𝑆𝑂  are obtained through PCSWMM 

simulation (section 6.2.3). 𝑄𝑟𝑖𝑣𝑒𝑟  is obtained from the rainfall runoff model (section 6.2.4) and 

𝐶𝑟𝑖𝑣𝑒𝑟,𝑏𝑔∙𝑜𝑏𝑠 is an estimation of the background concentration of Cryptosporidium, Giardia or 

enterococci. Following the approach used by Derx et al. (2023), the background concentration of 

Giardia is modeled using a Gamma distribution with parameters (0.3, 1.2), resulting in a mean of 

0.36 cysts/l. Similarly, Cryptosporidium follows a Gamma distribution with parameters (0.6, 0.9) 

and a mean of 0.54 oocysts/l, while enterococci is modeled with parameters (0.27, 1500, 6) and a 

mean of 405 particles/l. The distribution for the background concentration was estimated using 

sampling data taken at the municipal wastewater treatment plant. The Enterococci concentration 

was estimated from the E. coli concentrations obtained through the PCSWMM model by 

multiplying the E. coli values by a factor of 0.278 (Borel et al., 2015; Gannon & Busse, 1989; 

Gouvernement du Canada, 2023) which was the ratio of the mean concentrations of enterococci 

and E.coli observed in raw wastewater by Derx et al. (2023). The Gamma distribution is appropriate 

for this context, as it effectively models non-zero background concentrations and ensures positive 

values. 

6.2.6.2 Exposure assessment 

Exposure assessment evaluates the likelihood of ingesting pathogens during recreational activities, 

with swallowed water volume depending on activity type, duration, and age. For this risk 

assessment, the dose (D) is calculated based on the pathogen concentration in the river and the 

Gamma-distributed volume (V, in liters) of water swallowed per person per swimming event: men 

(r = 0.45, λ = 60), women (r = 0.51, λ = 35), and children (r = 0.64, λ = 58) and the respective 

averages of 27 ml, 17.85 ml and 37.12 ml (Schets et al., 2011; Schijven et al., 2015). Here, r is the 

shape parameter and λ the scale parameter of the Gamma distribution, The expected swallowed 

volume is calculated as r × λ.  

  

https://www.sciencedirect.com/science/article/pii/S0043135413004922?via%3Dihub#sec2.3.2
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A lower r means a more skewed distribution, capturing the variability in ingestion volumes across 

the population. The scale parameter λ stretches or compresses the distribution, affecting the average 

volume and variability of water ingested while swimming. In this study, we considered children as 

the worst-case scenario. 

The risks of infection per person and exposure event are calculated assuming that recreation takes 

place directly downstream of the sewage emission. The ingested dose (D) during recreational use 

is calculated with 6-2 

𝐷 =  𝐶𝑟𝑖𝑣𝑒𝑟 ∗ 𝑉 
Eq. 6-2  

Where 𝐷 is the ingested dose, 𝐶𝑟𝑖𝑣𝑒𝑟 is the concentration in the river calculated with Eq. 6-2 and V 

[m3] is the swallowed volume during a swimming event depending on the type of swimmer (men, 

women, children).  

Note that the time elapsed between the end of the overflow event and swimming was not explicitly 

considered. The probability of infection at an hourly resolution was calculated and then the risk 

was averaged over the entire season or year (more information can be found in the supplementary 

material section S5). To reflect seasonal variations in exposure probability, infection risks were 

weighted by seasonal factors: 0.01 for winter, 0.1 for spring and autumn, and 1 for summer (Derx 

et al., 2023). The seasonal factor is at its lowest in winter and moderate in spring and autumn since 

people are least inclined to go swimming during those seasons but can practice other activities and 

can be exposed to contaminated water by playing, or when walking dogs taking baths in the river. 

While a more detailed approach using survey-based exposure data—such as that employed by Sterk 

et al. (2016)—could have been used, we opted for this simplified method to avoid introducing 

additional complexity that could mask the effects of climate change and of the addition of 

bioretention. Alternatively, exposure could be modeled more realistically based on periods when 

recreational water contact is more likely to happen. For example, during warmer months or when 

water temperatures exceed a certain threshold. 
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6.2.6.3 Dose–response 

To calculate the risk of infection per person and exposure event, we used dose-response models. 

For Cryptosporidium the risk of infection (Pinf) was calculated using the hypergeometric dose–

response model: 

𝑃inf, 𝐶𝑟𝑦𝑝𝑡𝑜𝑠𝑝𝑜𝑟𝑖𝑑𝑖𝑢𝑚(𝐷) = 1−1𝐹1(𝛼, 𝛼 + 𝛽, 𝐷) 
 Eq.6-3  

Where 𝑃𝑖𝑛𝑓 is the probability of infection per swimming event, α is 0.3, β is 1.1 and 1F1 is the 

confluent hypergeometric function (Teunis & Havelaar, 2000) and D is calculated with Eq.6-2 

For Giardia the exponential dose-response model was used with r = 0.02 (Regli et al., 1991): 

𝑃𝑖𝑛𝑓,𝑔𝑖𝑎𝑟𝑑𝑖𝑎(𝐷) = 1 − 𝑒−𝑟𝐷 
Eq. 6-4 

Where 𝑃𝑖𝑛𝑓 is the probability of infection per swimming event and D is calculated with Eq. 6-2. 

Eregno et al. (2016) found that the probability of infection is highest on the first day following a 

rainfall event, decreases on the second day, and then declines more gradually up to the third day. 

This suggests that pathogens remain present in surface waters for an extended period after a CSO 

event. While few people are likely to swim during rainfall itself, recreational activities often resume 

within hours or days following the event—at a time when exposure risk may still be high. Our 

study accounts for this by evaluating infection probabilities on an hourly basis over a 30-year 

period, capturing both short-term and long-term exposure patterns. This approach also allows 

assessing cumulative risks over a full swimming season (McBride et al., 2013), which is relevant 

for informing public health recommendations. Furthermore, while regulated beaches may have 

closure protocols, many people swim in informal or unmonitored locations, where no such 

guidelines exist. 

6.2.6.4 Risk characterization 

The final step of the QMRA process involved calculating the concentrations of enterococci, 

Cryptosporidium, and Giardia in the swimming site, as well as the risks of infection per person 

and exposure event (Cryptosporidium, and Giardia). These calculations were done at hourly 

intervals under climate change conditions, both with and without the implementation of BGI. 

https://www.sciencedirect.com/science/article/pii/S0043135413004922?via%3Dihub#sec2.3.3
https://www.sciencedirect.com/science/article/pii/S0043135413004922?via%3Dihub#sec2.3.4
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6.3 Results 

6.3.1 Hydrological model results 

For the results of the urban hydrological model, we categorized CSO events into three ranges based 

on the discharge flow rate: <1.0 m³/s (low range), 1.0–1.5 m³/s (medium range), and >1.5 m³/s 

(high range). Figure 6-5 shows, on the one hand, the variation in overflow volume with the effects 

of climate change and, on the other hand, the effects of adding BGI for the three planning horizons 

(C20, NTF, LTF) and for four implementation strategies. Figure 6-5 also shows the variability 

between the three selected climate scenario (C63, C73, C77). 

 

Figure 6-5 Fraction of simulation 5-min time steps with CSOs [% for the C20, NTF and LTF (y-axis) for different 

percentages of BGI (0%, 5%, 30%, 50%) implementation. CSOs are differentiated for discharges of (a) <1.0 m3/s, 

(b) 1 - 1.5 m3/s and (c) >1.5 m3/s. Red diamonds show the mean, boxes the 25th and 75th percentiles, whiskers the 

5th and 95th percentile, and black horizontal lines the median values (results are for all the climate scenarios). C20 

(blue) in the reference period, NTF (turquoise) is the near-term future period and LTF (brown) is the long-term 

future period 

Figure 6-5 shows the fraction of 5-min time steps with CSOs for the three defined categories. The 

fraction of time steps with CSO increases in the future (NTF, LTF) compared to the reference 

period C20, with a more pronounced increase observed under the LTF than the NTF, and for larger 

CSOs (greater than 1.5 m³/s). For the strategy without BGI, compared to the C20 planning horizon, 

we found that for CSO <1.0 m³/s, the number of time steps increased by 10% for the NTF planning 

horizon and by 15% for the LTF planning horizon.For medium CSOs (1.0<discharge rate>1.5 

m³/s), the fraction of time steps with CSO in the NTF and the LTF respectively increase by 14% 
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and 30%. For CSO>1.5 m³/s, the fraction of time steps with CSO increases by 25% (NTF) and 

53% (LTF). These changes are consistent across all BGI scenario implementations (supplementary 

material S3, Fig. S3-1.). In the climate scenario C77 (supplementary material S3, Fig. S3-1.) we 

observed a significant increase (95% to 227%) in the fraction of simulation 5-min time steps during 

which CSO occur especially for medium and large CSO flowrates (1 - 1.5 m³/s and >1.5 m³/s). The 

increase in the fraction of time steps likely indicates a rise in total overflow volume. A higher 

fraction of time steps means that CSOs are active for longer durations, implying greater water 

discharge. This effect is more pronounced for large CSO events (>1.5 m³/s), where the relative 

increase is nearly three times larger compared to small events (<1.0 m³/s). Although the fraction of 

time steps does not directly quantify overflow volume, the combination of longer CSO duration 

and higher discharge rates strongly suggests an overall increase in overflow volumes. 

Results show that the implementation of BGI is effective to reduce CSOs duration under current 

and future climate conditions (Figure 6-5). These results are also consistent across the three tested 

climate scenarios. The data demonstrate that the implementation of BGI has a more significant 

effect on larger overflows (>1.5 m³/s), with reductions in volumes reaching up to 76% with the 

highest BGI implementation strategy (supplementary material S3, Table. S3-1.). For example, in 

the case of CSOs >1.5 m³/s, without BGI, the fraction of time steps with CSO is 2.28, but with 

50% BGI, it can be reduced to 0.54 (supplementary material S3, Table. S3-1.). In contrast, the 

impact of BGI is less pronounced for smaller overflows (<1.0 m³/s), where the maximum reduction 

is 63% in the same planning horizon (C20). However, the impact of BGI is attenuated by climate 

change, with reductions being less significant in the LTF scenario compared to the C20 scenario. 

For instance, in the LTF scenario, for CSOs >1.5 m³/s, the maximum reduction with 50% BGI is 

71%, compared to 76% in the C20 planning horizon (supplementary material S3, Table. S3-1.). 

Indeed, the effectiveness of BGI decreases with rising temperatures and extreme climatic events, 

suggesting that additional adaptive management strategies will be required to maintain these 

benefits over the long term and mitigate the effects of overflows under future climate change 

scenarios. These results highlight that increasing levels of BGI implementation (from 0% to 50%) 

leads to greater CSO volume reduction, particularly for larger events. The implementation of BGI 

at 30% is projected to significantly reduce the frequency of future CSOs compared to scenarios 

with C20 and no BGI implementation. 
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Table 6-1 shows statistics of CSOs, river flows and mixing ratios during all seasons with and 

without BGI implementation for the three periods (reference period C20, NTF and LTF). 

Table 6-1 Mean values of CSO discharge rates, river flows and mixing ratios over the complete simulation time 

without BGI and with 50%-BGI implementation (climate scenario no C73) 

 0% 50% 

Scenario Season River runoff [m3/s] Qcso [m3/s] Mixing ratio Qcso [m3/s] Mixing ratio 

C20 

Yearly average 2.08 0.12 0.03 0.03 0.01 

Winter 2.00 0.11 0.05 0.03 0.01 

Spring 2.93 0.12 0.02 0.04 <0.01 

Summer 2.11 0.13 0.03 0.04 0.01 

Autumn 1.27 0.11 0.04 0.03 0.01 

NTF 

Yearly average 2.25 0.15 0.04 0.05 0.01 

Winter 2.15 0.14 0.07 0.05 0.02 

Spring 3.04 0.16 0.03 0.07 0.01 

Summer 2.54 0.20 0.04 0.07 0.01 

Autumn 1.27 0.09 0.03 0.02 <0.01 

LTF 

Yearly average 2.49 0.17 0.04 0.06 0.01 

Winter 2.69 0.17 0.07 0.06 0.02 

Spring 3.34 0.19 0.03 0.08 0.01 

Summer 2.51 0.19 0.04 0.06 0.01 

Autumn 1.42 0.13 0.05 0.04 0.01 

According to the results, the river runoff [m3/s] is highest in spring, and lowest in autumn in all 

periods (Table 6-1). The mean annual river runoff increases relative to C20 by 8 to 20 % under the 

NTF and the LTF. In comparison to C20, the river runoff increases from 4 to 20 % for the NTF, 

and from 12 to 35 % for the LTF over different seasons. The mean mixing ratio between CSO and 

river discharges (Qcso/Qriver) shows an increase under both the NTF and the LTF scenarios relative 

to C20, indicating a stronger increase of CSO discharges than in river runoff. Across all seasons, 

CSO flows increase during both the NTF and the LTF periods compared to the C20 baseline. 

When comparing the strategy without BGI and with a 50% level of BGI implementation, CSO 

discharges decrease by 59% to 76%, and the mixing ratio decreases from 70% to 86% for both 

future planning horizon (NTF, LTF) over different seasons. Changes in river flow due to BGI are 

presumably small and were thus not considered in the rainfall-runoff model.  
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6.3.2 Microbial river water quality and infection risks during recreational use 

Without BGI, the dilution of microorganisms in river water results in mean concentrations of 

Cryptosporidium at 3.91 oocysts/L, Giardia at 31.65 cysts/L, and enterococci at 1.54 × 10⁵ CFU/L 

downstream of CSO discharges under the C20 scenario, across all seasons. With maximal BGI 

implementation (50%), these mean concentrations are reduced to 1.17 oocysts/L (70%) for 

Cryptosporidium, 6.25 cysts/L (80%) for Giardia (Figure 6-6), and 2.94 × 10⁴ (80%) CFU/L for 

enterococci (supplementary material S4, Fig. S4-1.), highlighting the effectiveness of BGI in 

improving water quality.  
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C20 

 

NTF 

 

LTF 

 

Figure 6-6 Mean concentration of Giardia [cysts/l] for the climate scenario no C73 per season. The mean 

concentration in river water is calculated over 30 years of simulation time for the C20, NTF and LTF periods. 
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The highest concentrations occur during winter, which may be explained by the fact that river flow 

is generally at its lowest during this period, while background concentrations is stable across 

seasons. Results also indicate that overflow volumes tend to be higher in winter, likely due to 

reduced infiltration rates during colder months, which further affects flow and pollutant loading 

dynamics (Gougeon et al., 2023; Moghadas et al., 2018). Without accounting for snow 

accumulation, runoff is estimated to be higher and infiltration lower (Gougeon et al., 2023). Since 

snowpack processes are not explicitly simulated, PCSWMM likely overestimates winter runoff by 

treating precipitation as direct rainfall rather than snow accumulating on the ground. Consequently, 

runoff (and overflow volumes) may be overestimated in winter and underestimated during the 

spring snowmelt period, potentially influencing the modeled overflow volumes and seasonal 

patterns. 

During the C20 period, concentrations with 50% BGI implementation are reduced by 0.74 log 

(81%) for enterococci, 0.53 log (71%) for Cryptosporidium, and 0.72 log (81%) for Giardia 

compared to 0% BGI. Across all three planning horizons—C20, NTF, and LTF—the greatest 

reductions are observed in autumn. However, as the percentage of BGI increases, the additional 

reduction in concentration becomes less significant. This diminishing effect highlights the 

saturation point of treatment potential: BGI are primarily implemented on impervious surfaces like 

roads and parking lots. Once a substantial portion of these target areas is equipped with bioretention 

systems, the remaining surfaces either already support natural infiltration or contribute minimally 

to runoff. As a result, further expansion of BGI yields diminishing returns, since the main sources 

of contaminated runoff have already been addressed. Additionally, bioretention systems only treat 

runoff from ground-level impervious surfaces (e.g., streets and parking lots), and not from rooftops. 

Consequently, they capture only a portion of the total runoff from both impervious and permeable 

surfaces. In PCSWMM, this phenomenon is modeled by specifying which surfaces are subject to 

treatment (see section6.2.5). The point at which diminishing returns (the reduction in concentration 

is less significant than the previous reduction) become evident varies based on the microorganism, 

climate period, and season, typically occurring between 20% and 40% BGI implementation. The 

results under all the climate scenarios and for enterococci and Cryptosporidium can be found in the 

supplementary material S4, Fig. S4-1.). 
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We calculated the probability of infection per person and exposure event during recreational use 

of river water as a function of BGI implementation percentage (ranging from 0% to 50%) for two 

reference pathogens, Giardia and Cryptosporidium, across all seasons (Figure 6-7). Since the 

parameter enterococci is a fecal indicator, we did not calculate the probability of infection.  

Winter 

 

Spring 

 
Summer 

 

Autumn 

 

Figure 6-7 Mean Giardia infection risks [%] per person and exposure event during recreational use of river water 

calculated over 30 years of simulation time for the C20, NTF and LTF periods as function of BGI implementation 

(continuous lines). Diamonds represent the probability of infection when additional storage is added, as well as the 

percentage of green infrastructure required to achieve the same reduction in infection risk. Red line and dots 

represent the maximum suggested implementation. Note that the scale of the y axis is different for each season to 

better show the variation when implementing BGI for each season. 

Figure 6-7 shows the relationship between BGI implementation percentage and mean infection risk 

per person per exposure event. We found a non-linear decreasing trend. The most substantial 

reductions in infection risk occur with the initial increments of BGI, while additional 

implementation leads to gradually smaller improvements.  
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This reflects a pattern of diminishing returns, as shown in Figure 6-7, and highlights the strategic 

value of prioritizing BGI implementation in high-risk areas to maximize public health benefits. 

Figure 6-7 also shows that only around 3% of BGI implementation is needed to reach the same 

reduction in the probability of infection as is obtained with an additional storage of 28 000 m3. 

Results for all three tested climate scenarios (see section 2.2) can be found in the Supplementary 

Material (supplementary material S4, Fig. S4-2.). All results follow the same trend: the infection 

risk decreases with the implementation of BGI over the three simulated periods. 
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Table 6-2 Percentage of change in the mean infection risk [%] by season by time period without BGI (0%) and with 

50% BGI implementation  and the effectiveness of the measure in reducing infection risks in % and log10 units. 

Higher reduction is green and Lower reduction is red 

     
Effectiveness of measure in 

reducing infection risks 

  Season Scenario 0 % BGI 50% BGI  Variation (%)  
Log10 

reduction 

Giardia 

Winter 

C20 0.017 0.004 77 0.630 

NTF 0.018 0.005 75 0.611 

LTF 0.018 0.005 73 0.581 

Spring 

C20 0.091 0.022 75 0.610 

NTF 0.104 0.034 68 0.497 

LTF 0.111 0.035 69 0.513 

Summer 

C20 1.409 0.286 80 0.693 

NTF 1.732 0.448 75 0.606 

LTF 2.015 0.544 75 0.614 

Autumn 

C20 0.156 0.027 83 0.770 

NTF 0.169 0.033 81 0.736 

LTF 0.206 0.058 73 0.587 

Cryptosporidium 

Winter 

C20 0.017 0.007 59 0.389 

NTF 0.019 0.008 59 0.386 

LTF 0.019 0.008 57 0.370 

Spring 

C20 0.117 0.059 49 0.295 

NTF 0.127 0.067 48 0.281 

LTF 0.134 0.069 48 0.287 

Summer 

C20 1.553 0.639 59 0.386 

NTF 1.786 0.783 56 0.360 

LTF 2.038 0.853 58 0.383 

Autumn 

C20 0.166 0.063 62 0.423 

NTF 0.179 0.068 62 0.421 

LTF 0.206 0.087 58 0.383 
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For both reference pathogens, the highest variation is observed during autumn for the NTF period. 

There is less variation observed during winter and spring, indicating that the impact of BGI is less 

significant during these two seasons. This is because the soil remains frozen in winter and becomes 

saturated with water in spring from snowmelt, leading to reduced infiltration during these periods 

(Gougeon et al., 2023; Moghadas et al., 2016) and on the contrary in warm seasons, low flows can 

limit dilution effects leading to higher infection risks (Montserrat et al., 2013). Across all periods, 

the effect of BGI is significant, with reductions ranging from 69% to 91% (0.67 to 1.02 log). To 

confirm that the reduction is statistically significant, we used the Two-Proportion Z-Test. This 

statistical method assesses whether the difference between the proportions of two groups is 

significant. A Z-value greater than 1.96 indicates statistical significance at the 5% level. In our 

analysis, all reductions were statistically significant, with Z-values ranging from 3 to 47. 

To investigate the upper percentile of the infection risk, we evaluated the cumulative probabilities 

for Cryptosporidium and Giardia during the C20, NTF and LTF periods without BGI and with the 

highest BGI implementation (50%). 
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Figure 6-8 Cumulative probability distributions of the 95th r percentile infection risks [% per person and exposure event] for Cryptosporidium and Giardia during 

recreational use in the river downstream of sewage emissions from CSOs over 30 years of simulation time for the C20, NTF and LTF for the climate scenario no 

C73 (full lines : no BGI, dotted lines : 50% BGI implementation) 
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Figure 6-8 demonstrates the effectiveness of bioretention implementation. The 95th percentile 

infection risks range from 0.09 % in winter to 6.51 % per person and exposure event in summer 

for C20 and increase by 0.1–0.2 log10 in the future for Cryptosporidium. The 95th percentile 

infection risks range from 0.07 % in winter to 4.62 % per person and exposure event in summer 

for C20 and increase by 0.2–0.3 log10 in the future for Giardia. During all seasons, we observe a 

decrease in probability of infection with the addition of BGI. For example, in the summer, i.e., 

when people are most likely to swim and practice recreational water activities, the reduction in 

probability of infection for Cryptosporidium for the C20, NTF and LTF periods are 0.4 log10, 0.5 

log10 and 0.6 log10 respectively (all the results can be found in the supplementary material S4 

Fig.S4-3.). The impact of BGI seems more pronounced for Giardia than for Cryptosporidium. This 

difference may be explained by several factors, including differences in pathogen behavior and 

environmental persistence, and removal efficiency in bioretention systems (Betancourt & Rose, 

2004; Gouvernement du Canada, 2012). The greater effectiveness of BGI for Giardia compared to 

Cryptosporidium may be explained by differences in their physical and hydrological behavior. 

Giardia cysts are larger than Cryptosporidium oocysts, making them more likely to be removed 

through physical filtration in porous media like bioretention systems (Betancourt & Rose, 2004). 

Cryptosporidium, on the other hand, is more resistant to drying and can remain suspended in water 

for longer periods, reducing the effectiveness of physical removal processes such as sedimentation 

and infiltration. In the case of our study, this difference can be explained by the fact that the Giardia 

concentration is initially higher in the sanitary water, due to the modeling in PCSWMM 

(supplementary material S2 Table. S2-2).  
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6.4 Discussion 

6.4.1 Integrating BGI in climate change adaptation  

This study presents a novel probabilistic-deterministic model to assess climate change impacts and 

the effectiveness of BGI in improving microbiological river water quality and recreational safety 

downstream of CSOs. For the first time, it addresses whether BGI can reduce infection risk for 

swimmers, highlighting its potential for urban water management and co-benefits.  

BGI systems are effective for urban water management, but also to provide various co-benefits, 

such as maintaining aquatic and terrestrial habitats, and reducing heat islands (Dagenais et al., 

2017; MELCC, 2014; Norton et al., 2015). BGI also has a positive impact on the quality of a 

community's living environment. This type of landscaping contributes to health and well-being 

(Coutts & Hahn, 2015). The introduction of BGI can help reduce the health risks associated with 

swimming due to CSOs discharge, but also further improve the overall health of communities 

through promoting an active lifestyle and reducing heat islands, although such benefits can be more 

difficult to assess quantitatively. Disability-Adjusted Life Years (DALY) could also be estimated 

for these additional health co-benefits in urban communities, which could enable a fairer 

comparison between the costs and benefits of BGIs versus grey infrastructure. 

CSOs have been identified as a significant contributor to degraded water quality in urban rivers 

(Passerat et al., 2011). They lead to the deterioration of aquatic habitats, increased drinking water 

treatment costs, and reduced attractiveness of aquatic recreational activities (Madoux-Humery et 

al., 2015). Reducing CSOs would bring many benefits for the community including health, 

environmental, economic and social benefits (Botturi et al., 2021; Donovan et al., 2008b; Launay 

et al., 2016; Phillips et al., 2012; E. Quaranta et al., 2022). First, as demonstrated in this paper, a 

reduction in CSOs can reduce the probability of infection for swimmers downstream from CSO 

structures, providing safe recreational water for the population. Eregno et al. (2016) found that the 

risk of gastrointestinal illness due to Giardia exposure ranges from 0.06% to 1.6% for non-adults, 

and from 0.4% to 1.8% for Cryptosporidium, depending on the study site. In our case, the initial 

risk under current climate conditions (C20) is 1.4% for Giardia and 1.6% for Cryptosporidium, 

which falls within the range considered acceptable for recreational water use, as defined by the 

World Health Organization (WHO, 2003).  
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These values are comparable—though on the higher end—to those reported by Eregno et al. (2016). 

However, under future climate conditions (LTF), the risk increases significantly, reaching 2% for 

Giardia and 2% for Cryptosporidium. These values exceed the WHO target threshold of 1.9% (or 

19 cases per 1,000 swimmers), indicating a potential public health concern in the context of climate 

change. Given the projected increase in gastrointestinal illness risk under future climate scenarios, 

it makes sense to consider BGI as a key mitigation strategy. While issuing public health warnings 

remains important during high-risk events, BGI offers a proactive, long-term solution that can 

reduce contamination levels at the source—especially under changing climate conditions. 

Therefore, BGI should be seen as a complementary measure to traditional public health 

interventions, helping to maintain acceptable risk levels for recreational water use.  

Furthermore, although CSOs may represent a small fraction of the total annual wastewater 

discharge, they contribute disproportionately—between 30% and 95%—to the annual load of 

various pollutants (Launay et al., 2016; Phillips et al., 2012). Thus, reducing CSOs can enhance 

water quality and protect aquatic ecosystems (Chen et al., 2004). The results show a significant 

reduction in CSO volumes when adding BGI infrastructure (Figure 6-5). The reduction ranges from 

16% to 76% for C20, 15% to 68% for NTF, and 11% to 71% for LTF. The greater the 

implementation of BGI, the larger the reduction in CSO volumes. These findings are consistent 

with previous studies that have highlighted the effectiveness of BGIs in controlling overflows 

(Autixier et al., 2014; Joshi et al., 2020; Lucas & Sample, 2015; Lucke & Nichols, 2015). For 

instance, Autixier et al. (2014) found that CSO volume reductions with bioretention cells ranged 

from 13% to 62%. Other studies that used a variety of BGI types showed that CSO volume 

attenuation could range from 50% to 99%, depending on the deployment strategy and the specific 

mechanisms of each technology (Cavadini, Rodriguez, Nguyen, et al., 2024; Joshi et al., 2020).  

The results presented in this study highlight that implementing BGI will help mitigate the effects 

of climate change, a finding that aligns with the literature demonstrating the effectiveness of BGI 

in reducing CSOs (Cavadini, Rodriguez, Nguyen, et al., 2024).  

However, while significant volume reductions are observed under climate change, the impact of 

BGI is diminished under these changing conditions. 
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We found that the impact of BGI is attenuated by climate change, with reductions being less 

significant in the LTF scenario compared to the C20 scenario. For instance, in the LTF scenario, 

for CSOs >1.5 m³/s, the maximum reduction with 50% BGI is 71%, compared to 76% in the C20 

planning horizon. Similarly, Weathers et al. (2023) found that the performance of bioretention 

systems in the United States could decline under future climate conditions. Zahmatkesh et al. 

(2015) found that combining rainwater harvesting, bioretention, and permeable pavements reduced 

annual runoff by 41% across climate scenarios, though effectiveness dropped for more extreme 

events as suggested by Mugume and Nakyanzi (2024), who highlighted that BGI tends to be most 

effective during low to moderate rainfall, with limited capacity during extreme events. Similarly, 

Benoit et al. (2025) showed that bioretention was the most effective individual BGI option, but still 

only offset about half of the climate-induced runoff increase. Haslinger et al. (2025); Spraakman 

et al. (2022) noted that increased rainfall due to climate change alters the water balance in 

bioretention systems, emphasizing the need to update design standards. Our result also shows an 

increased precipitation across all seasons and the three planning horizons (C20, NTF, LTF). This 

trend aligns with projections by Kyselý and Beranová (2009), who anticipated greater rainfall in 

Central Europe because of climate change. Derx et al. (2023) also reported an 8–22% increase in 

rainfall for the near-term future and a 15–33% increase for the long-term future relative to C20, 

particularly for high-intensity, long-duration events. In line with these projections, we also 

observed increased CSO discharge. Together, these findings highlight the strong potential of BGI 

to reduce CSO volumes, while also pointing to the limitations of their performance under future 

climate scenarios.  

Implementing BGI strategies can be more cost-effective than traditional (‘grey’) infrastructure 

solutions, such as concrete reservoirs, particularly when considering its multiple benefits (Frey et 

al., 2013; Jean et al., 2021; Montalto et al., 2007; E. Quaranta et al., 2022). Jean et al. (2021) 

demonstrated that integrating spatial optimization of BGI with Real-Time Control (RTC) yields 

the greatest reduction in CSO volume while being the most cost-effective option. Similarly, Frey 

et al. (2013) showed that a hybrid grey-green infrastructure approach can be more economical than 

an exclusively grey infrastructure solution. These findings highlight the potential for BGI strategies 

to provide cost-effective alternatives to traditional grey infrastructure.  
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If we also consider all the co-benefits offered by BGI, whose monetary values are sometimes not 

considered, BGI could be considered economically profitable for a municipality. 

The method developed in this study can also be applied to evaluate microbiological water quality 

by analyzing simulated concentrations of fecal indicators in the river. In our study area, the 

simulated mean concentrations of enterococci (supplementary material S4, Fig. S43-1) correspond 

to microbiological water quality category D, indicating a greater than 10% risk of gastrointestinal 

illness (GI) according to WHO guidelines for recreational water quality (World Health 

Organization, 2021). However, the implementation of 50% BGI improves water quality to category 

C, reducing the GI risk to 5–10%, thereby demonstrating the positive impact of BGI on water 

quality. This reduction in GI risk is expected to translate into a proportional decrease in the burden 

of disease expressed as disability-adjusted life years (DALYs), as demonstrated in Timm et al. 

(2016) who identified a relationship between microbial water quality categories, GI incidence, and 

associated DALYs in recreational water environments. The DALY concept provides a 

complementary tool to the QMRA for evaluating and comparing health risks arising from a specific 

environment for a specific population and behaviour and for comparing with other health risks of 

daily life (Timm et al., 2016). 

The results highlight significant benefits of BGI for water quality but show that effectiveness per 

converted impervious surface declines beyond 20–40% coverage (Figure 6-6). Beyond this 

threshold, additional improvements are marginal, suggesting that further expansion may be less 

efficient. Interestingly, Ghodsi et al. (2020) found that implementing BGI —including bioretention 

cells, vegetative swales, infiltration trenches, and permeable pavement— on less than 1% of the 

catchment surface still reduced runoff volumes by approximately 14% under various climate 

change scenarios. This highlights the potential for small-scale but strategically placed BGI 

interventions to achieve measurable impact. Together, these findings are valuable for decision-

makers aiming to maximize water quality benefits while optimizing resources and minimizing 

spatial and financial limits. 
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6.4.2 Study limitations 

Despite these promising outcomes, certain limitations of the study must be acknowledged. The 

approach presented in this paper can be applied to other urban river settings by using site-specific 

historical rainfall time series with high temporal resolution and regional climate models. However, 

in the developed method, BGI was not implemented following a strategic plan; rather, the same 

percentage of implementation was applied uniformly across all urban catchments.  

In practice, BGI is often deployed opportunistically rather than strategically, leading to inefficient 

resource allocation and limiting benefits (Dagenais et al., 2013; Kuller et al., 2019). To maximize 

effectiveness, a more strategic approach is recommended. Planning tools that consider multiple 

objectives and stakeholder preferences can help identify the most strategic locations for BGI 

(Lacroix et al., 2024). For example, J. Petrucci et al. (2025) developed an index that integrates 

climate change to prioritize urban drainage catchments for CSO reduction. Future applications 

should integrate such prioritization methods alongside a calibrated urban hydrological model to 

optimize BGI placement and maximize its effectiveness. 

The current method does not incorporate snowmelt into the urban hydrological model, unlike the 

study by Gougeon et al. (2023) conducted in Quebec, where snow is a significant factor impacting 

runoff and the occurrence of CSOs. Although cold climates are not directly addressed in this study, 

future research and planning should consider winter conditions. Snowfall events, snow 

accumulation, and snowmelt must be taken into account to more accurately estimate the full 

potential of bioretention systems during snowy periods, when snow can significantly affect runoff 

(Gougeon et al., 2023). Yet, for infection risk assessments through recreational uses, colder periods 

are generally less relevant due to a lower likelihood of exposure, as fewer people swim in cold 

weather. 

This study focused on bioretention as a representative type of BGI due to their widespread use 

(Kõiv-Vainik et al., 2022) and well-documented hydraulic and pollutant removal performance 

(Autixier et al., 2014; Cavadini, Rodriguez, & Cook, 2024; Cavadini, Rodriguez, Nguyen, et al., 

2024).  
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While this choice limits direct comparison with other BGI types as suggested in Joshi et al. (2020), 

the methodology developed here is adaptable and could be applied to assess other BGI solutions 

such as green roofs by adjusting key model parameters (e.g., retention capacity, infiltration rate, 

contributing area). While this study uses a simplified bioretention cell representation to estimate 

the performance of BGI, we acknowledge that individual system performance can vary widely 

depending on site-specific conditions such as soil type, maintenance, and design. As such, results 

at the catchment scale should be interpreted as indicative rather than predictive.  

Further studies incorporating spatial heterogeneity and real-world implementation constraints 

would help refine these projections. 

Uncertainty in QMRA model inputs—such as microbial concentrations, treatment efficiency, and 

environmental conditions—can significantly impact risk estimates and overall model outputs (de 

Brito Cruz et al., 2024; Hamilton et al., 2024). Uncertainty increases during extreme events like 

heavy precipitation, affecting pathogen levels and treatment effectiveness. While we did not 

perform a direct sensitivity analysis, we addressed variability using three climate scenarios and 

multiple BGI implementation scenarios, capturing a wide range of outcomes. Background 

concentrations and ingested volumes were modeled with gamma distributions, varying over time 

to reflect inherent variability and provide a fuller risk assessment. However, QMRA risk estimates 

depend heavily on dose-response relationships, and common indicators like E. coli and enterococci 

may not always accurately represent specific pathogen risks. Their presence may not correlate with 

harmful pathogens due to variations in environmental persistence, dilution effects, and differences 

in microbial characteristics (Harwood et al., 2014; Payment & Locas, 2011; Skiendzielewski et al., 

2024). Extrapolating E. coli or enterococci concentrations to estimate pathogen levels can, 

therefore, introduce further uncertainty. To enhance the accuracy of health risk assessments in this 

study, we directly integrate Cryptosporidium and Giardia into the PCSWMM model, as detailed 

in Section 6.2.3.Future research 

The high-resolution precipitation time series for the hydraulic and hydrologic model were 

disaggregated from climate model data using a cascade model with stationary parameters.  
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Ebers et al. (2024) introduced a cascade model with temperature-dependent parameters that 

produces more intense future precipitation events. Future research should incorporate this non-

stationary approach and combine it with spatial disaggregation to better capture climate variable 

correlations. 

The method is developed for a specific pathogen group (protozoa), which restricts the scope of the 

risk assessment. As part of the QMRA for recreational waters, the US Environmental Protection 

Agency (EPA) selected eight reference pathogens (USEPA, 2010).  

These pathogens were chosen due to their involvement in many non-foodborne waterborne 

illnesses in the United States, their representativeness regarding the behavior and transport of other 

waterborne pathogens of concern, and their confirmed presence in recreational waters as well as 

human and animal excreta (USEPA, 2010). Expanding the method to include multiple pathogen 

groups would provide a more comprehensive assessment of microbiological water quality risks and 

improve the robustness of the model. Norovirus is one of the most common viral causes of both 

outbreaks and sporadic cases of gastroenteritis and represents a predominant health risk in 

recreational waters (La Rosa et al., 2008; McBride et al., 2013; Polkowska et al., 2018). Its 

presence—and the impact of BGI implementation on its mitigation—could be assessed using the 

same methodology developed in this study, leveraging E. coli outputs from PCSWMM modelling. 

E. coli is typically found at higher concentrations than Norovirus in both sewage and environmental 

waters (Inoue et al., 2020; Kim et al., 2009; Tiwari et al., 2023). In untreated sewage effluent, E. 

coli levels can be nearly nine times greater than those of Norovirus. In environmental waters, this 

ratio decreases, ranging from approximately 1.2 to 1.9 depending on salinity, as E. coli degrades 

more rapidly under saline conditions. These ratios can serve as conservative conversion factors for 

estimating Norovirus concentrations—and the associated health risks—when only E. coli data are 

available.  

In this study we decided to concentrate on Cryptosporidium and Giardia, since they are protozoa 

that significantly contribute to waterborne disease outbreaks (Health Canada, 2019) , and also 

because we had data on their background concentrations in the river, allowing us to estimate these 

with a Gamma distribution and include them in our QMRA. 
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6.5 Conclusions 

The novelty of this research lies in validating that BGI can serve as an effective mitigation measure 

to address the public health challenges posed by the increased occurrence of CSOs due to climate 

change. The study demonstrates the potential of combining discharge-based hydrodynamic 

modelling with QMRA in the context of swimming water as a tool to evaluate public health risk 

and support beach management decisions. 

Building on the work from Derx et al. (2023), the study also demonstrates that BGI can be effective 

to reduce the probability of infection and that a small level of implementation (around 3% of 

converted impervious surface in a given urban drainage catchment) can be as effective as adding a 

water storage of 28000 m3 for a catchment area of 2474 ha 

Investing in measures to prevent CSOs is essential for enhancing sustainable recreational water 

safety. Future research can build on this approach by applying it to emerging pathogens and 

contaminants, as well as incorporating comprehensive cost-benefit analyses to compare various 

CSO reduction strategies and include different BGI types, e.g. as proposed for the sponge-city 

concept. Furthermore, studies could refine resilience frameworks to develop targeted BGI 

implementation scenarios that strengthen urban resilience and public health protection. This 

includes adapting planning-support tools to strategically place BGI, maximizing their effectiveness 

in reducing overflows, improving stormwater management, and communicating their multiple 

functions and benefits. 
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CHAPITRE 7 ASPECTS MÉTHODOLOGIQUES ET RÉSULTATS 

COMPLÉMETAIRES 

Le CHAPITRE 7 est consacré aux aspects méthodologiques de la recherche doctorale qui ne sont 

pas inclus dans les articles soumis ou publiés. Ces éléments sont intéressants et ils mettent en 

lumière des pistes de recherche pouvant être explorées à l'avenir. Ils permettent également de 

montrer que la recherche scientifique est un processus en constante évolution. 

7.1 Intégrer les changements climatiques à l’outil SSANTO 

Initialement, une section du projet de recherche devait intégrer l’aspect des changements 

climatiques dans l’outil SSANTO afin de planifier les IVB tant dans le climat actuel que futur. 

Cependant, les échelles spatiales et temporelles des modèles climatiques disponibles sont 

actuellement trop grossières pour observer des variations pertinentes à l’échelle d’implantation des 

IVB. Ainsi, cette partie du projet n’a pas donné lieu à une publication scientifique. Néanmoins, 

certaines étapes de la méthodologie ont tout de même été réalisées. 

Une brève revue de la littérature a permis de montrer que les IVB seraient des solutions 

intéressantes pour l’adaptation aux changements climatiques, l’amélioration des services 

écosystémiques, la biodiversité et pour la cohésion sociale pour une ville résiliente et durable. En 

effet, les changements climatiques exacerbent les défis urbains, notamment par l’augmentation des 

précipitations extrêmes, amplifiant le ruissellement, la contamination de l’eau et les risques pour 

la santé publique (Leveque et al., 2021; McLellan et al., 2018; Olds et al., 2018). L’érosion, la 

submersion des écosystèmes côtiers et l’impact sur la biodiversité sont aussi préoccupants (Bellard 

et al., 2012; Ouranos, 2015). De plus, la hausse des températures aggrave les îlots de chaleur et les 

problèmes respiratoires (Norton et al., 2015; Ouranos, 2015). Face à ces enjeux, les infrastructures 

vertes et bleues (IVB) apparaissent comme une solution clé pour l’adaptation urbaine. 
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Ainsi, il serait intéressant d’adapter l’outil SSANTO afin d’y inclure les changements climatiques. 

Est-ce que certaines zones seront affectées plus ou moins rapidement selon les horizons de temps 

(comme dans l’article 1,CHAPITRE 4), où on a montré que certains bassins de drainage urbains 

sont plus vulnérables dans le futur à court terme, alors que d’autres seront plus à risque dans le 

futur à long terme? Pour une étude éventuelle, l’idée serait d’adapter un outil d’aide à la 

planification afin de considérer les changements climatiques et la santé dans les stratégies 

d’aménagements. Les objectifs spécifiques seraient (i) développer une hiérarchie d’objectifs 

spécifiques en lien avec les changements climatiques et la santé des communautés (ii) intégrer la 

hiérarchie d’objectif à un outil existant (iii) et effectuer une étude de cas pour une municipalité 

québécoise. 

Voici la méthodologie proposée pour cette idée :  

La figure ci-dessous montre une vue d’ensemble de la méthodologie : 

 

Figure 7-1 Diagramme conceptuel de la méthodologie développée pour adapter SSANTO aux changements 

climatiques 

7.1.1 Liste maîtresse d’objectifs 

Pour développer une hiérarchie d’objectifs liés aux changements climatiques et à la santé, nous 

avons d’abord consulté la littérature afin de déterminer les impacts des aléas climatiques. Les aléas 

climatiques à l'étude ont été identifiés dans Ville de Montréal (2017).  

On s'attend à ce que ces six aléas climatiques soient intensifiés par le changement climatique, 

exerçant des impacts importants sur l'étendue géographique et la population de la région de 

Montréal. Les risques identifiés sont les suivants:   
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• Augmentation de la température. * 

• Intensification des épisodes de fortes pluies.  

• Amplification des vagues de chaleur. * 

• Augmentation de la fréquence des tempêtes destructrices (vent, grêle, neige et pluie 

verglaçante).  

• Prolifération des épisodes de sécheresse.  

• Augmentation des inondations côtières et fluviales. 

*Combinés pour l’étude éventuelle décrite dans ce chapitre. 

Pour atteindre le premier objectif de recherche (créer une hiérarchie d’objectif en lien avec la 

santé), la littérature disponible a été examinée. Dans les sections suivantes, nous expliquons 

comment nous avons mené la recherche documentaire. Tout d’abord, nous avons parcouru la 

littérature en utilisant des termes associés à deux catégories. La première catégorie contenait des 

mots-clés liés aux risques climatiques, notamment «Fortes pluies», «Augmentation de la 

température», «Sécheresse», «Phénomènes météorologiques violents», «Tempête de verglas», 

«Inondation» et la seconde catégorie contenait des mots-clés liés aux impacts possibles de ces 

aléas :  «Inondations urbaines», «Sécheresse», «Maladies transmises par l'eau», «Dégradation de 

la qualité de l'eau», «Débordement d’égout unitaire», «Impact», «Pollen», «Qualité de l’air». Les 

termes des recherches pour les deux catégories de concepts étaient liés avec le séparateur booléen 

«AND» dans Google scholar. Le Tableau 7-1 présente les résultats obtenus écrits sous forme 

d’objectifs à intégrer dans un cadre d’analyse spatiale multicritère : 
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Tableau 7-1 Aléas climatiques pris en compte et impact associés (sous forme d’objectif) 

Aléas climatiques Objectifs 

Minimiser l’impact de l’augmentation 

de la température (Ville de Montréal, 

2017) 

Minimiser l’impact des vagues de chaleur (Arnell et al., 2019; 

Norton et al., 2015; Ouranos, 2015; Sturiale & Scuderi, 2019) 

Minimiser l’impact des îlots de chaleur urbains (Norton et al., 

2015; Ouranos, 2015; Sturiale & Scuderi, 2019) 

Minimiser la production de pollen (Norton et al., 2015; 

Paavola, 2017) 

Minimiser l’impact de la dégradation de la qualité de l’air 

(Churkina et al., 2017; Jacob & Winner, 2009; Papanastasiou 

et al., 2015) 

Minimiser l’impact sur la végétation (Capari et al., 2022; 

Churkina et al., 2017) 

Minimiser l’impact sur la demande en énergie (van Ruijven et 

al., 2019) 

Minimiser les effets des sécheresses (Arnell et al., 2019; 

Mukherjee et al., 2018; Vicente-Serrano et al., 2014) 

Minimiser l'impact des fortes 

précipitations (modification du régime 

des pluies) (Leveque et al., 2021; 

Ouranos, 2015; Pitman et al., 2015; Ville de 

Montréal, 2017) 

Minimiser l’exposition aux inondations urbaines (Zhou et al., 

2017) 

Minimiser le risque d’exposition à des maladies d’origine 

hydrique (Auld et al., 2004; Curriero et al., 2001) 

Minimiser la fréquence des DE (Leveque et al., 2021; Patz et 

al., 2008; USEPA, 2008; Ville de Montréal, 2017) 

Minimiser l'impact de la dégradation de la qualité de l'eau 

(Butler et al., 2015; Coulliette & Noble, 2008; Neves & 
Santos, 2022) 

Minimiser l’impact de la dégradation de la qualité de l’air 

(Jacob & Winner, 2009; Leung & Gustafson Jr., 2005) 

Minimiser les impacts de sécheresses 

(Ville de Montréal, 2017) 

Maximiser la disponibilité de l'eau 

Minimiser l’impact sur la végétation (Páscoa et al., 2020; 

Zhang et al., 2016) 

Réduire le risque de feu de forêt (Mukherjee et al., 2018; R. 

Xu et al., 2020) 

Minimiser l'impact sur la biodiversité (Bond et al., 2008) 
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Tableau 7-1 Aléas climatiques pris en compte et impact associés (sous forme d’objectif) (suite) 

Aléas climatiques Objectifs 

Minimiser l’impact des tempêtes 

destructrices (Ville de Montréal, 

2017) 

Minimiser l'impact sur les transports (Mitsakis et al., 2014; 

Stearns & Padgett, 2012) 

Minimiser l'impact de la dégradation de la qualité de l'eau (Zou 

et al., 2023) 

Minimiser le risque d’exposition à des maladies d’origine 

hydrique (Cann et al., 2013) 

Minimiser l'érosion costale (Bobykina & Stont, 2015; Flor-

Blanco et al., 2021) 

Minimiser les dommages aux arbres (Armenakis & Nirupama, 

2014) 

Minimiser les dommages sur les infrastructures (Armenakis & 

Nirupama, 2014; Comfort & Haase, 2006) 

Minimiser l'impact des inondations 

côtières et fluviales (Pitman et al., 

2015; Ville de Montréal, 2017) 

Minimiser l'impact de la dégradation de la qualité de l'eau 

(Butler et al., 2015) 

Minimiser l'érosion costale  

(Penning-Rowsell, 2015) 

Minimiser les pertes économiques (Penning-Rowsell, 2015) 

7.1.2 Réseau de moyens et de fins  

Les objectifs ont d'abord été classés afin de visualiser leurs liens, puis organisés en une hiérarchie. 

Cette étape consistait à relier les objectifs pour identifier ceux de nature intermédiaire et ceux 

fondamentaux (Françozo & Belderrain, 2022). Pour chaque objectif, la question « Pourquoi est-ce 

important ? » a été posée (Françozo & Belderrain, 2022, p.6). Un objectif est qualifié 

d’intermédiaire s'il contribue à un autre objectif (réponse « pour… » à un autre objectif), tandis que 

les objectifs fondamentaux ne sont subordonnés à aucun autre objectif de la liste initiale. 
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La Figure 7-2 présente une première hiérarchie, elle permet de faciliter la visualisation des relations 

entre les différents objectifs :  

 

Figure 7-2 Hiérarchie initiale avant l’exercice du réseau de moyens et de fins 

Les critères sont traduits en objectifs avec une direction un objet et un contexte de décision 

(Tableau 7-1). Puis le réseau de moyen et de fin a été réalisé (Figure 7-3) afin de retirer les objectifs 

redondants et de classer les objectifs en objectifs fondamentaux ou intermédiaires (sous-objectifs).
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Figure 7-3 Réseau de moyens et de fins  
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La Figure 7-3 montre que certains objectifs ont émergé comme fondamentaux, tandis que d'autres 

regroupements n'avaient pas d'objectif fondamental existant. Pour ces regroupements, les objectifs 

intermédiaires ont été consolidés pour créer un objectif fondamental, résultant de l'addition de tous 

ces objectifs intermédiaires. Une série de critères pour retenir ou non les objectifs résultants du 

réseau de moyen et de fin a été considérée.  

Pour certains objectifs, nous avons choisi un autre car il était plus facile de le représenter avec un 

attribut spatial.  

Critère d’inclusion/d’exclusion (Lacroix et al., 2024) 

• Mesurable par un attribut spatial  

• Concerne un besoin satisfait par l’IVB ou une opportunité offerte par le territoire pour 

l’IVB, en lien avec l’IVB considéré dans le cadre d’étude  

• Pas trop vague (c’est-à-dire qu’il ne s’agit pas d’un objectif général englobant plusieurs 

autres objectifs)  

• Mesurable par un attribut spatial dans un contexte de changement climatique*ajout 

• Relève de la conception de l’IVB (c’est-à-dire que l’objectif porte sur différents 

emplacements de l’IVB et non sur différentes conceptions) – exclusion 
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La Figure 7-4 montre la hiérarchie finale avant d’appliquer les critères d’inclusion et d’exclusion  

 

Figure 7-4 Hiérarchie finale avec et sans les critères d’exclusion. Les objectifs en rouge sont exclus selon les critères 

tels que définis par Lacroix et al. (2024) *sauf le critère 6. Les autres couleurs distinguent les objectifs principaux 

À partir de la Figure 7-4, il est possible d’identifier les sous-objectifs qui ont été retirés de la 

hiérarchie (en rouge). Plusieurs sous-objectifs ont été retirés de la hiérarchie puisque ce ne sont pas 

des objectifs qui peuvent être atteints par l’ajout d’IVB ou que ces sous-objectifs ne sont pas 

mesurables spatialement. La Figure 7-5 montre la hiérarchie finale.  



 

 

 

 

207 

 

Figure 7-5 Hiérarchie d’objectifs finale pour intégrer les changements climatiques dans l’outil de planification spatial 

SSANTO 

L’ensemble de la hiérarchie développée s’inscrit dans la perspective des besoins, car dans ce 

contexte, les IVB sont implantées dans le but d’atténuer les effets des changements climatiques sur 

les sites (un site a besoin d’une IVB). Chaque objectif fondamental constitue une branche de la 

hiérarchie, laquelle est ensuite décomposée en sous-objectifs, eux-mêmes définis par des attributs 

spatiaux. 

7.1.3 Aléas & santé et aléas et IVB 

Pour la suite du projet, l’attention est portée sur la branche de la hiérarchie traitant spécifiquement 

des impacts des aléas climatiques sur la santé des communautés (Figure 7-5, branche 1). Cette 

partie du projet vise à répondre aux questions suivantes en s’appuyant sur une revue de la 

littérature: 

• Quels sont les impacts des changements climatiques sont la santé physique et mentale des 

communautés urbaines? 

• Quels types d’IVB a un impact sur ces aléas en milieu urbain? 

Le Tableau 7-2 ci-dessous présente les stratégies de recherche pour les trois aléas climatiques à 

l’étude. 
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Tableau 7-2 Stratégie de recherche adoptée dans Web of Science 

Aléa climatique à l’étude  Stratégie de recherche (8 et 9 janvier 

2024) 

Stratégie de recherche (12, 16 et 22 

janvier 2024) 

Minimiser l'impact de la 

dégradation de la qualité 

de l'eau 

Nombre d'CSO au cours 

d'une période 

" Combined sewer overflow " OR " 

sewer overflow " (Topic) and " Human 

health " OR "Community health " OR " 

Communities health "OR " Population 

health " OR " Environmental health " 

OR Disease OR Disorder OR Illness OR 

Trouble OR 

waterborne (Abstract) not " child 

sexual offense 

" (Author) and Article (Document 

Types) and Article (Document Types) 

"combined sewer overflow" OR "sewer 

overflow" (Topic) and "Green 

infrastructure" OR "Green infrastructures" 

OR "Low impact development" OR "Blue 

green system" OR "Blue green systems" 

OR "Water sensitive urban design" OR 

"Sponge city" OR "Sponge cities" OR 

WSUD OR Phytotechnolog* OR "Nature 

based solution" OR "Nature based 

solutions" OR "Blue-green infrastructure" 

OR Blue-green infrastructures" OR 

"Sustainable Drainage Systems" OR 

"Green space" OR biordention OR 

wetland OR "green roof" OR "Infiltration 

system" OR Swale OR Pond OR Lake OR 

Trees OR Parks OR "Community 

gardens" (Topic) and Control OR 

Manage*OR Reduc* OR Regulat* OR 

Mitigation OR Attenuation OR 

Minimize (Topic) and Article (Document 

Types) and Article (Document Types) 

Minimiser l'exposition 
aux inondations urbaines 

Rue en cuvette (BTER) 

" Urban flooding " OR " cit* flooding" 
OR "Waterlogging site*" (Topic) and" 

Psychological health " OR " Physical 

health "OR " Mental health "OR " 

Human health " OR "Community health 

" OR " Communities health "OR " 

Population health " OR " Environmental 

health " OR " Social health "OR " 

Emotional health " OR Disease OR 

Disorder OR Illness OR Trouble OR 

"Outcome problem" OR Symptom OR 

Stress OR Stressful OR Depression OR 

deprssive OR Anxiety OR Anxious OR 

Insecurity OR Insecure OR " water 

borne" (Topic) and Article (Document 

Types) 

" Urban flooding " OR " cit* flooding " 
OR "Waterlogging site*" (Topic) and 

"Green infrastructure"OR "Green 

infrastructures" OR "Low impact 

development" OR "Blue green system" 

OR "Blue green systems" OR "Water 

sensitive urban design" OR "Sponge city" 

OR "Sponge cities" OR WSUD OR 

Phytotechnolog* OR "Nature based 

solution" OR "Nature based solutions" OR 

"Blue-green infrastructure" OR "Blue-

green infrastructures" OR "Sustainable 

Drainage Systems" OR "Green space" OR 

biorention OR wetland OR "green roof" 

OR "Infiltration system" OR Swale OR 

Pond OR Lake OR Trees OR Parks OR 

"Community gardens" (Topic) and 

Control OR Manage*OR Reduc*OR 

Regulat*OR MitigationOR Attenuation 

OR Minimize (All Fields) and Article 

(Document Types) 
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Tableau7-2 Stratégie de recherche adoptée dans Web of Science (suite) 

Aléa climatique à l’étude  Stratégie de recherche (8 et 9 janvier 

2024) 

Stratégie de recherche (12, 16 et 22 

janvier 2024) 

Minimiser les îlots de 

chaleur urbains 

+ 5 à 10  ̊C > 

environnement immédiat 

"Urban heat island " OR " heat island " 

(Topic) and" Psychological health " OR 

" Physical health "OR " Mental health 

"OR " Human health " OR "Community 

health " OR " Communities health "OR " 

Population health " OR " Environmental 

health " OR " Social health "OR " 

Emotional health " OR Disease OR 

Disorder OR Illness OR Trouble OR 

Outcome problem OR Symptom OR 

Stress OR Stressful OR Depression OR 

Drepssive OR Anxiety OR Anxious OR 

Insecurity OR Insecure (Title) and 

Article (Document Types) 

"Urban heat island " OR "heat island" 

(Title) and"Green infrastructure"  OR 

"Green infrastructures" OR "Low 

impact development" OR "Blue green 

system" OR "Blue green systems"OR 

"Water sensitive urban design"OR 

"Sponge city OR "Sponge cities" OR 

WSUD OR Phytotechnolog* OR 

"Nature based solution" OR "Nature 

based solutions" OR "Blue-green 

infrastructure" OR "Blue-green 

infrastructures" OR "Sustainable 

Drainage Systems" OR "Green space" 

OR biorention OR wetland OR "green 

roof" OR "Infiltration system" OR 

Swale OR Pond OR Lake OR Trees OR 

Parks OR "Community gardens" 

(Topic) and Control OR Manage*OR 

Reduc*OR Regulat*OR mitigational 

Attenuation OR Minimize (Topic) and 

Article (Document Types) 

Afin de limiter le nombre d’articles à consulter pour les îlots de chaleur, les éléments en lien avec 

la santé devaient se trouver dans le titre de l’article. Nous avons consulté les résumés des articles 

et exclu ceux qui ne correspondaient pas à la revue de la littérature cible (les effets des aléas sur la 

santé des communautés). Les effets des différents aléas ont ensuite été regroupés par thème afin de 

synthétiser l’information.  

Pour la recherche du type d’infrastructure verte, pour les îlots de chaleur, les termes «Urban heat 

island» ou «heat island» devaient apparaître dans le titre afin de limiter le nombre d’articles à 

consulter. Des articles venant de recherches documentaires précédentes ont également été consultés 

afin de compléter la recherche.
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Tableau 7-3 Impact sur la santé et IVB ayant un effet sur les aléas identifiés 

Aléas climatiques Objectifs Attributs Impacts sur la santé  Infrastructures vertes 

 

Minimiser l’impact 

de l’augmentation 

de la température 

(Ville de Montréal, 

2017) 

 

Minimiser les îlots 

de chaleur urbains 

(Norton et al., 2015; 

Ouranos, 2015; 

Sturiale & Scuderi, 

2019) 

•Îlots de chaleur 

urbains en climat 

futur [categories] 

•Dégradation de la qualité de l’air (Cârlan 

et al., 2020; Hidalgo-García & Arco-Díaz, 

2023; Pitman et al., 2015; Schaefer et al., 

2021; Tan et al., 2010) 

•Décès en excès (Fischer et al., 2012; 

Grossmann et al., 2012; Hannemann et al., 

2023; Harlan et al., 2006; Jänicke et al., 

2019; Oleson et al., 2015; Pitman et al., 

2015; Tan et al., 2010; Vanos et al., 2015; 

Zhao et al., 2019) 

•Maladie cardiovasculaire (Dai & Liu, 

2022; He et al., 2022; Huang et al., 2020; 

Jain, 2023; Urban et al., 2014; Weitz et al., 

2022) 

•Maladies du système circulatoire (Chitu et 

al., 2023) 

•Maladie diarrhéique (Vargas & Magaña, 

2020) 

•Perturbe l'utilisation des espaces ouverts 

extérieurs (J. Huang et al., 2022) 

•Stress thermique (Cetin et al., 2023; 

Rahman et al., 2022; Zander et al., 2018; 

Zeeshan & Ali, 2022) 

•Coup de chaleur (Orimoloye et al., 2018) 

• Lésions cutanées dues à la chaleur (He et 

al., 2022; Orimoloye et al., 2018; Zander S. 

Venter et al., 2020) 

 

•Espaces verts et parcs (Drapeau et al., 

2021; Huang et al., 2018; Marquès et al., 

2022; McCarty et al., 2021; Norton et al., 

2015; Probst et al., 2022; Teo et al., 2022; 

Wesley & Brunsell, 2019; Yao et al., 2020; 

X. M. Zhang et al., 2021; H. Zhou et al., 

2023) 

•Arbres (Drapeau et al., 2021; 

Esfehankalateh et al., 2021; Francis et al., 

2023; Hunter Block et al., 2012; Kim et al., 

2018; Norton et al., 2015; Ow & Chan, 

2021; Park et al., 2021; Probst et al., 2022; 

Shanahan et al., 2015; Sumaryana et al.; 

Sung, 2013; Zander S. Venter et al., 2020) 

•Verdissement (stationnement, 

bâtiments)(Drapeau et al., 2021) 

•Murs végétalisés (Drapeau et al., 2021; 

Hunter Block et al., 2012; Norton et al., 

2015; Pigliautile et al., 2020; Probst et al., 

2022) 

•Toits verts (Drapeau et al., 2021; Hunter 

Block et al., 2012; Kim et al., 2018; Norton 

et al., 2015; Pigliautile et al., 2020; Probst 
et al., 2022; Smalls-Mantey & Montalto, 

2021; Susca et al., 2011; X. M. Zhang et 

al., 2021) 

•Biorétention (Probst et al., 2022) 
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Tableau 7-3 Impact sur la santé et IVB ayant un effet sur les aléas identifiés (suite) 

Aléas climatiques Objectifs Attributs Impacts sur la santé  Infrastructures vertes 

 

Minimiser l’impact 

de l’augmentation 

de la température 

(Ville de Montréal, 

2017) 

 

Minimiser les îlots 

de chaleur urbains 

(Norton et al., 2015; 

Ouranos, 2015; 

Sturiale & Scuderi, 

2019) 

•Îlots de chaleur 

urbains en climat 

futur [categories] 

•Maladies cardiaques (Orimoloye et al., 

2018) 

•Problèmes de santé liés à la chaleur 

(Buguet et al., 2023; Harlan et al., 2006; 

Harmay & Choi, 2023; He et al., 2022; 

Katavoutas & Founda, 2019; Weitz et al., 

2022) 

•Maladie psychologique liées à la chaleur 

(Aghamohammadi, Fong, Idrus, 

Ramakreshnan, & Haque, 2021; 

Aghamohammadi, Fong, Idrus, 

Ramakreshnan, & Sulaiman, 2021; He et 

al., 2022; H. C. Huang et al., 2022) 

•Maladie du système digestif (He et al., 

2022) 

•Maladies respiratoires (Dai & Liu, 2022; 

He et al., 2022; Huang et al., 2019; 

Scherber et al., 2013) 

• Maladies transmises par les vecteurs et les 

moustiques (LaDeau et al., 2015; Ligsay et 

al., 2021) 

•Stress thermique chez les piétons (Kántor 

et al., 2018) 

•Manque de someil (Cetin et al., 2023) 

•Inconfort thermique (Founda et al., 2019; 

Hamdi et al., 2024; Hatvani-Kovacs et al., 

2016; Nanayakkara et al., 2023; Sarangi et 

al., 2021; X. Y. Wang et al., 2023; Wang et 

al., 2020; Zeeshan & Ali, 2022) 

•Fossé (Probst et al., 2022) 

•Étangs et lacs (Chen et al., 2023; Lin et al., 

2020; Probst et al., 2022) 

•Marais (Lin et al., 2020; Probst et al., 

2022) 

•Pavée perméable (Y. Liu et al., 2020; 

Mun-soo et al., 2021; Probst et al., 2022) 

•Forêts urbaines (Wang et al., 2019) 
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Tableau 7-3 Impact sur la santé et IVB ayant un effet sur les aléas identifiés (suite) 

Aléas climatiques Objectifs Attributs Impacts sur la santé  Infrastructures vertes 

 

Minimiser l'impact 

des fortes 

précipitations 

(modification du 

régime des pluies) 

(Leveque et al., 

2021; Ouranos, 

2015; Pitman et al., 

2015; Ville de 

Montréal, 2017) 

Minimiser 

l'exposition aux 

inondations urbaines 

(Zhou et al., 2017) 

•Distance d’une 

rue en cuvette [m] 

•Niveau de 

vulnérabilité aux 

inondations dues 

au ruissellement 

[categories] 

• Asthme (Larson et al., 2021) 

• Maladies chroniques et infectieuses 

(Sampson et al., 2019) 

• Maladie diarrhéique (Jørgensen et al., 

2023) 

• Dégradation de la qualité de l’eau (Chen 

et al., 2015; Owuor & Mwiturubani, 2021; 

Pérez-Valdespino et al., 2021; Rui et al., 

2018) 

• Décès en excès (Yan et al., 2020) 

•Blessures et noyades (Hammond et al., 

2015; Houghton & Castillo-Salgado, 2017) 

•Maladies respiratoires (Houghton & 

Castillo-Salgado, 2017; Mulder et al., 2019; 

Ohl & Tapsell, 2000) 

•Maladies transmises par les moustiques 

(Houghton & Castillo-Salgado, 2017; Ohl 

& Tapsell, 2000) 

•Maladies transmises par l’eau (Hammond 

et al., 2015; Houghton & Castillo-Salgado, 

2017; Owuor & Mwiturubani, 2021; Rehan 

et al., 2023; P. Yu et al., 2018)  

•Santé mentale (Hammond et al., 2015; 
Houghton & Castillo-Salgado, 2017; Sehra 

& Mishra, 2022; Zhang & Jia, 2023) 

• Exposition aux pathogènes (Le et al., 

2023; Nguyen et al., 2017; P. Yu et al., 

2018) 

•Biorétention (Duan et al., 2016; Koc et al., 

2021; Quichimbo-Miguitama et al., 2022; 

Xu et al., 2023; Zhu & Chen, 2017) 

•Pavés perméables (Ding et al., 2022; Duan 

et al., 2016; Gomez-Ullate et al., 2011; J. 

D. Li et al., 2019; Pappalardo et al., 2017; 

Qin et al., 2013; Tan et al., 2024; Xie et al., 

2017; Xu et al., 2023) 

•Toits verts (Barbaro et al., 2021; Basu et 

al., 2021; Cuthbert et al., 2022; Ding et al., 

2022; Duan et al., 2016; Fu et al., 2022; 

Koc et al., 2021; Maiolo et al., 2020; 

Pappalardo et al., 2017; Qin et al., 2013; 

Romali et al., 2023; Tan et al., 2024; 

Watrin et al., 2020; Xie et al., 2017) 

•Barils récupérateurs d’eau de pluie 

(Barbaro et al., 2021; Burns et al., 2015; 

Ding et al., 2022; Neupane et al., 2021; 

Quichimbo-Miguitama et al., 2022; Xie et 

al., 2017) 

•Fossés (Qin et al., 2013) 

•Marais (Li et al., 2020) 

•Espaces verts et parcs (Cuthbert et al., 
2022; J. D. Li et al., 2019; Nivya et al., 

2023) 

•Étangs (Small Water Bodies) (Bhusal et 

al., 2023; Devi et al., 2020) 

•Systèmes d’infiltration (Burns et al., 2015) 
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Tableau 7-3 Impact sur la santé et IVB ayant un effet sur les aléas identifiés (suite) 

Aléas climatiques Objectifs Attributs Impacts sur la santé  Infrastructures vertes 

 

Minimiser l'impact 

des fortes 

précipitations 

(modification du 

régime des pluies) 

(Leveque et al., 

2021; Ouranos, 

2015; Pitman et al., 

2015; Ville de 

Montréal, 2017) 

Minimiser 

l'exposition aux 

inondations urbaines 

(Zhou et al., 2017) 

•Distance d’une 

rue en cuvette [m] 

•Niveau de 

vulnérabilité aux 

inondations dues 

au ruissellement 

[categories] 

• Gastro-entérite aiguë (Mulder et al., 2019) 

•Impacts sociaux (Dada et al., 2021; Panahi 

et al., 2010; Pappalardo et al., 2017; Qi et 

al., 2022) 

• Effets physiques et psychologiques des 

inondations (ten Veldhuis, 2011) 
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Tableau 7-3 Impact sur la santé et IVB ayant un effet sur les aléas identifiés (suite) 

Aléas climatiques Objectifs Attributs Impacts sur la santé  Infrastructures vertes 

 

Minimiser l'impact 

des fortes 

précipitations 

(modification du 

régime des pluies) 

(Leveque et al., 

2021; Ouranos, 

2015; Pitman et al., 

2015; Ville de 

Montréal, 2017) 

Minimiser l'impact 

de la dégradation de 

la qualité de l'eau 

(Butler et al., 2015; 

Coulliette & Noble, 

2008; Neves & 

Santos, 2022) 

•Nombre de DEU 

 

•Exposition aux contaminants (Donovan et 

al., 2008a; Farnham et al., 2017; Graydon 

et al., 2022; Hartig et al., 2021; Huang et 

al., 2017; Kozak et al., 2020; Lenaker et al., 

2023; S. M. McGinnis et al., 2022; 

McLellan et al., 2018; Modise et al., 2006; 

Noyer et al., 2020; Olds et al., 2018; 

Roseboro et al., 2021; Sales-Ortells & 

Medema, 2014) 

•Maladies d’origine hydrique (Aghdam et 

al., 2023; Kim et al., 2021; Patz et al., 

2008; Zan et al., 2023) 

•Dégradation de la qualité de l’eau 

(McLellan et al., 2018; Ruggaber et al., 

2007) 

•Menace pour l'eau potable et les eaux de 

loisirs (McLellan et al., 2018; Olds et al., 

2018) 

•Nuisances olfactives (Aghdam et al., 

2023) 

•Propagation de bactéries résistantes aux 

antibiotiques (Mahaney & Franklin, 2022; 

Tanaka et al., 2019) 

•Marais (Antunes et al., 2023; Jin et al., 

2020; Masi et al., 2017; Masi et al., 2023; 

E. Quaranta et al., 2022; Rizzo et al., 2018; 

Rizzo et al., 2021; Van de Moortel et al., 

2010) 

•Étangs (Antunes et al., 2023) 

•Pavés perméables (Antunes et al., 2023; 

Eulogi et al., 2022; Joshi et al., 2020; 

Roseboro et al., 2021; Suresh et al., 2023; 

Yang et al., 2020) 

•Toits verts (Bliss et al., 2009; Carson et 

al., 2013; Radinja et al., 2019; Suresh et al., 

2023; Wong & Jim, 2014) 

•Système d’infiltration (Radinja et al., 

2019; Suresh et al., 2023; Tao et al., 2017; 

Yang et al., 2020) 

•Biorétention (Alyaseri et al., 2023; 

Autixier et al., 2014; J. Chen et al., 2019; 

Eaton, 2018; Fan et al., 2022; Joshi et al., 

2020) 

•Fossé (Fan et al., 2022) 

•Barils récupérateurs d’eau de pluie 

(Oberascher et al., 2021; Suresh et al., 
2023; Yang et al., 2020) 

•Tranchée d'arbre pour les eaux pluviales 

(Tao et al., 2017) 
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Le Tableau 7-3  montre que les aléas climatiques ont un impact significatif sur la santé physique et 

mentale des communautés. Ces effets peuvent toutefois être atténués par l’implantation de 

différents types d’IVB. Cependant, comme mentionné, l’adaptation des attributs spatiaux aux 

changements climatiques n’a pas été possible en raison du manque de données, à l’exception de 

l’attribut du nombre de surverses. En effet, une carte spatiale de la variation de la fréquence des 

surverses avait déjà été produite dans le cadre de l’article 1 (CHAPITRE 4). Plusieurs étapes 

resteraient à réaliser pour compléter cette étude dont des ateliers et des consultations avec des 

experts.  

En revanche, la revue de littérature complète le projet de doctorat en montrant que les changements 

climatiques auront un impact majeur sur les communautés. Ainsi, l'article 3 (CHAPITRE 6) qui 

intègre l'impact des pluies dans un climat futur et évalue le risque d'exposition aux 

microorganismes dans ce même contexte, est pertinent. Il explore également comment les IVB 

peuvent réduire ce risque face aux changements climatiques. 

7.2 Objectif lié au DEU dans SSANTO 

Dans le projet de doctorat de Sandrine Lacroix, l'outil SSANTO a été adapté au contexte québécois 

(Lacroix et al., 2024). L'un des sous-objectifs objectifs ajoutés dans le cadre de son travail de 

développement et d’adaptation de l’outil de l’outil SSANTO concerne les DEU (Lacroix et al., 

2024). En effet, pour donner suite à l'analyse de vulnérabilité des prises d'eau potable effectuée en 

2015, il est désormais nécessaire de proposer des solutions pour atténuer les vulnérabilités 

identifiées dans ces rapports, y compris celles liées aux DEU. Le développement d'un indice de 

priorisation des DEU ainsi que l’utilisation des IVB pourraient être intégrés dans les plans d'action 

visant à réduire la vulnérabilité des prises d'eau potable (MELCC, 2022). L’ajout d’un objectif lié 

aux DEU permettrait aux utilisateurs de SSANTO d’identifier les sites propices à l’implantation 

des IVB basée sur les résultats en priorisant les sites d’implantation situés dans les bassins de 

drainage urbain (BDU) prioritaires pour les surverses. 
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Afin de créer l’objectif final, plusieurs objectifs ont été considérés (en termes de formulation) : 

1. Réduire la vulnérabilité des prises d’eau potable 

2. Réduire la vulnérabilité des zones de baignade 

3. Réduire la contamination des DEU (charge en contaminants) 

4. Réduire les DEU (fréquence) 

Après discussion, l’objectif 2 est retenu (Réduire la vulnérabilité des zones de baignade). Afin 

d’intégrer cet objectif dans SSANTO, il faut déterminer un attribut spatial pour le représenter. 

L'utilisation de l'indice de vulnérabilité, tel que décrit dans l’article 1 (CHAPITRE 4), a été prise 

en compte. Cependant, le calcul de cet indice nécessite plusieurs données, dont certaines ne sont 

pas librement accessibles sur les portails de données ouvertes, notamment le diamètre des 

conduites. De plus, cet indice permet uniquement de caractériser les bassins versants dont l’ouvrage 

de rejet se situe en amont d’une prise d’eau potable ou d’un site récréatif (si adapté, comme décrit 

dans l’article 1). 

Afin de pouvoir appliquer SSANTO, il faut d’abord traduire les attributs (associés à chaque 

objectif) en échelle de valeurs (Kuller et al., 2019; Lacroix et al., 2024). Pour établir ces échelles 

dans la version adaptée de SSANTO développé par Lacroix et al. (2024), nous avons effectué 12 

consultations (17 expert.es au total). Ces échelles de valeurs attribuent des scores d’adéquation, 

compris entre 0 (pas du tout adapté) et 1 (très adapté), aux données spatiales pour chaque attribut 

de la hiérarchie (Kuller et al., 2019; Lacroix et al., 2024). Par exemple, une zone avec une forte 

vulnérabilité aux ICU recevait une note d’adéquation de 1 tandis qu’une zone peu vulnérable 

recevait une note de 0 selon le jugement des expert.es. Rapporter la valeur des attributs sur une 

échelle de 0 à 1 permet de comparer des attributs ayant des unités différentes entre eux.  

Or, au début du projet, les échelles de valeurs étaient créées en comparant les différents types d’IVB 

entre elles comme suggéré dans la méthodologie de Gougeon (2023). Pour établir cette échelle, les 

sept types d’IVB ont été comparés entre eux en s’appuyant sur les données de la littérature afin de 

déterminer laquelle est la plus adaptée. Une revue de la littérature scientifique a ainsi été réalisée 

pour chaque type d’IVB, en mettant un accent particulier sur les études de cas.  

Les IVB étudiées sont celles déjà implémentées dans la version initiale de SSANTO (Kuller et al., 

2019).  
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La Figure 7-6 illustre cette analyse, dont l’objectif est d’identifier les IVB les plus adaptées à la 

réduction du risque de surverses, en lien avec l’objectif 2 mentionné précédemment (réduction de 

la vulnérabilité des zones de baignade). Il est cependant important de souligner que cette première 

analyse était préliminaire et la méthode a été ajustée dans Lacroix et al. (2024). 

 

 
Volume des DEU 

 

Ruissellement 

pluvial 

 (Autixier et al., 2014; Li et 

al., 2021) 

(Autixier et al., 2014; Li 

et al., 2021) 

(Autixier et al., 2014; Li 

et al., 2021) 

(Li et al., 2021; USEPA, 

2021b) 

(Li et al., 2021) (Li et al., 2021; MELCC, 

2014; USEPA, 2021b) 

(Autixier et al., 2014; Li et 

al., 2021) 

Figure 7-6 Performance des IV intégrées dans SSANTO pour la réduction du volume de surverse et du ruissellement 

d’eau pluviale 

Selon la littérature, les cellules de biorétention semblent être les systèmes les plus performants pour 

la gestion des DEU puisqu’elles permettent de réduire le volume des DEU ainsi que le 

ruissellement pluvial et donc l’eau qui entre dans le réseau d’égout (Autixier et al., 2014; Joshi et 

al., 2020; Lucke & Nichols, 2015; USEPA, 2014). Les étangs et lacs ainsi que les marais filtrants 

sont les systèmes les moins performants dans le cas de la réduction du volume de surverse et du 

ruissellement d’eau pluviale.  

  

• 50% à 99% (scénario 
optimal)

• 12,7% à 19,4% (Scénario 
optimal)

• 2,1% (scénario à 25%)

Cellule de 
biorétention/jardin 

de pluie

• 86% (scénario optimal)

• 8,19% (scénario à 25%)

Système 
d'infiltration 

• 60% (scénario optimal)

• 1,64% (scénario à 25%)

Toit vert

• Stocker temporairement 
et ralentir les eaux de 

ruissellement

• 0,20%  à 0,93% (scénario 
à 5,7%)

Étang et lac

• -

• 0,14% (scénario à 5,7%)

Marais filtrant 

• Ralentir les eaux de 
ruissellement 

• 0,33% (scénario à 25%)

Noue

• 50% (scénario optimal)

• 1,64% (scénario à 25%)

Baril récupérateur 
d'eau de pluie
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L’objectif final lié aux DEU est défini de cette manière : 

Très élevé : Bassin versant urbain associé à une infrastructure de trop-plein qui affecte 

directement les zones de baignade non contrôlées ET les sites récréatifs. 

Élevé : Bassin versant urbain associé à une infrastructure de trop-plein qui affecte directement les 

zones de baignade ET les sites récréatifs. 

Modéré : Bassin versant urbain associé à une infrastructure de trop-plein qui affecte directement 

l'approvisionnement en eau potable (priorité plus faible en raison du traitement). 

Faible : Tous les autres bassins versants urbains liés à une infrastructure de trop-plein, mais qui 

n'affectent pas directement une zone de baignade, une zone récréative ou une prise d'eau potable 

(pas dans la zone immédiate ou intermédiaire). 

Très faible : Le reste des bassins versants urbains qui ne sont pas liés à une infrastructure de trop-

plein (l'infiltration de l'eau dans ces bassins versants urbains (à la source) peut réduire le 

ruissellement et donc la surcharge du réseau). 

Non applicable : (réseau séparatif sans trop-plein). 

L’échelle de valeurs associée à cet objectif est décrite dans Lacroix et al. (2024).  

Il est important de noter que, finalement, la normalisation des échelles de valeur n'est pas réalisée 

en comparant les IVB entre elles.  

Ainsi, même si les résultats de cette section ne sont pas utilisés pour définir le nouvel objectif dans 

l'outil SSANTO, cette étude a néanmoins permis de démontrer que les systèmes de biorétention 

sont adaptés pour le contrôle des DEU. Cette étude a également été pris en compte dans les travaux 

pour le développement de SSANTO effectué par Lacroix et al. (2024). 
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7.3 Caractérisation du risque microbien 

Pour ce projet, afin de calculer le risque microbien, il a été décidé de programmer un notebook 

Python à partir d’un code préalablement développé par Schijven et al. (2015). Le choix de Python 

offre une grande flexibilité, permettant de sélectionner individuellement chaque paramètre et de 

visualiser les calculs nécessaires pour estimer le risque d’infection. Parmi ses avantages, ce code 

facilite l’intégration de différents paramètres, notamment les résultats issus du modèle SWMM et 

de la modélisation du ruissellement sur le bassin versant, y compris les scénarios liés aux 

changements climatiques. De plus, ce code a déjà été utilisé avec succès pour évaluer le risque lié 

aux débordements d’égouts unitaires (DEU) sur les eaux récréatives (Derx et al., 2023). Le Tableau 

7-4 présente les facteurs de conversions pour calculer le risque de maladie avec le risque 

d’infection. 

Tableau 7-4 Facteurs de conversion pour passer de la probabilité d’infection (risque d’infection) à la probabilité de 

maladie, tiré de Timm et al. (2016) 

Microorganismes Facteurs de conversion  Références 

Giardia 0.98 (Kent et al., 1988) 

Cryptosporidium 0.70 (World Health Organization, 2016a) 

La probabilité d’infection correspond à la chance d’ingérer le microorganisme étudié, tandis que 

la probabilité de maladie représente la probabilité de développer des symptômes une fois infecté. 

Les modèles dose-réponse issus de la littérature et d’essais expérimentaux permettent ainsi de 

déterminer directement la probabilité d’infection c’est pourquoi des facteurs de conversion sont 

utilisés par la suite. 
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Ces facteurs de conversions seront utilisés dans la section 7.3, mais pas dans la communication 

scientifique (article 3, CHAPITRE 6), puisque le risque d’infection peut être utilisé comme critère 

de décision efficace pour la gestion de la baignade (Eregno et al., 2016) en étant comparé aux 

valeurs proposées par l’Organisation mondiale de la santé de 19 cas par 1000 nageurs (World 

Health Organization, 2021). 

L’ÉQRM développée dans le cadre de ce projet de recherche est à la fois déterministe et 

probabiliste puisque la concentration et le débit des DEU sont des valeurs uniques issues des 

simulations PCSWMM. En revanche, la concentration de base dans la rivière et le volume ingéré 

sont déterminés de manière statistique par des distributions Gamma telle qu’effectué dans Derx et 

al. (2023), qui analyse la même étude de cas (CHAPITRE 6). Finalement, les modèles dose-

réponses sont statistiques.  

Dans le cas de cette recherche, le modèle exponentiel a été utilisé pour modéliser Giardia et le 

modèle hypergéométrique a été utilisé pour Cryptosporidium tel que proposé dans Derx et al. 

(2023). 

7.3.1 Calculer la probabilité d’infection annuelle 

Pour estimer la probabilité annuelle d’infection, il est possible de supposer l’indépendance des 

événements, telle que suggérée dans la méthode EQRM, puisque les risques de maladie ou de décès 

sont souvent considérés indépendants de la dose une fois l’infection survenue (Michigan State 

University & Ohio State University, 2022). De plus, étant donné que les activités récréatives en 

milieu aquatique sont fortement saisonnières – atteignant un pic durant lors de la saison estivale 

dans la plupart des zones de baignade et qu’elles concernent principalement les jeunes, il est 

essentiel de comprendre les variations saisonnières et démographiques associées aux différents 

pathogènes (Ryan et al., 2022). Par exemple, comme montré dans le Tableau 2-2, les adultes se 

baignent moins fréquemment et généralement moins longtemps que les enfants. L’accès gratuit et 

la proximité des lieux de baignade peuvent également influencer les comportements des baigneurs. 

Par exemple, la plage de Verdun à Montréal est facilement accessible en transport en commun et 

en transport actif, tout comme certains bras du Danube à Vienne. Pour le calcul de la probabilité 

annuelle, il est supposé 7 baignades (Michigan State University & Ohio State University, 2022) 
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par année avec des événement de 45 minutes (McBride et al., 2013) soit 5.25 heures. Les 

événements sont considérés indépendants.  

𝑃𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑛𝑢𝑒𝑙𝑙𝑒 = 1 − (1 − 𝑃𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 ℎ𝑜𝑟𝑎𝑖𝑟𝑒)
𝑁

 Équation 7-1 

Cette équation est dérivée de celle proposée dans le guide pour la sécurité des eaux récréatives de 

l’OMS qui est basée sur une probabilité d’infection horaire (World Health Organization, 2021). 

𝑃𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑛𝑢𝑒𝑙𝑙𝑒  est la probabilité d’infection annuelle, 𝑃𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 ℎ𝑜𝑟𝑎𝑖𝑟𝑒 est la probabilité 

d’infection horaire calculée à partir de la méthode EQRM et N est le nombre d’heures d’exposition 

(5.25 heures). 

Contrairement à l'eau potable, pour laquelle un seuil de probabilité d'infection annuel de 10⁻⁴ est 

établi (World Health Organization, 2011) par l'OMS, les lignes directrices pour les eaux récréatives 

ne définissent pas explicitement de seuil chiffré pour Giardia ou Cryptosporidium. L’OMS 

recommande plutôt une approche qualitative basée sur la surveillance microbiologique, les sources 

de contamination et les contextes d’exposition locale (World Health Organization, 2021). 

Toutefois, dans le contexte des activités récréatives (ex. baignade, sports nautiques), des seuils de 

probabilité d’infection compris entre 10⁻² (1 sur 100) et 10⁻³ (1 sur 1 000) pourraient être considérés 

comme acceptables, en fonction du type d’activité, de la fréquence d’exposition et de la 

vulnérabilité des populations exposées. Les plages surveillées ou les zones de baignade 

intensivement utilisées pourraient exiger des seuils plus stricts, tandis que des expositions 

occasionnelles dans des milieux naturels pourraient tolérer un risque légèrement plus élevé. Ces 

seuils sont à adapter selon les contextes locaux et les objectifs de gestion du risque. Dans la section 

suivante (7.3.2), le calcul de la probabilité de maladie est effectué, puisqu’il existe des seuils pour 

cette valeur. 
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Période de référence (C20) Futur court terme (NTF) Futur long terme (LTF) 

 

Figure 7-7 Variabilité interannuelle de la probabilité d’infection annuelle moyenne par stratégie d’implantation 

d’IVB et par horizon de planification pour Giardia. La ligne tiretée grise représente le seuil acceptable pour l’eau 

potable, les lignes bleues sont des suggestions de seuils pour l’eau récréative. Une boîte plus verte représente un taux 

d’implantation d’IVB plus élevé, la boîte noire représente le stockage additionnel. 

La Figure 7-7 montre que la probabilité annuelle d’infection dépasse non seulement le seuil établi 

pour l’eau potable, mais aussi le seuil inférieur proposé pour les activités récréatives, soit 10⁻³. En 

ce qui concerne le seuil supérieur suggéré de 10⁻², certaines valeurs observées se situent en dessous, 

ce qui indique qu’il est parfois respecté. On observe également que plus le taux d’implantation 

d’IVB est élevé, plus le risque d’infection diminue, se rapprochant ainsi du seuil inférieur suggéré. 
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Par ailleurs, la probabilité annuelle d’infection tend à augmenter avec l’intensification des 

changements climatiques. Il est important de souligner que le même nombre d’heures d’exposition 

a été utilisé pour le climat de référence et pour les deux horizons futurs. Or, il est probable que, 

sous l’effet des changements climatiques, la population fréquente davantage les plans d’eau ou que 

la saison de baignade s’allonge, ce qui augmenterait le nombre d’expositions (N) et, par 

conséquent, le risque d’infection. En effet, selon Leveque et al. (2021), le nombre de jours avec 

des températures supérieures à 30 °C ainsi que la fréquence des vagues de chaleur devraient 

augmenter d’ici 2050. Il devient donc essentiel de maintenir une bonne qualité des eaux de 

baignade afin d’assurer un accès sécuritaire à ces milieux. 

7.3.2 Calcul de la probabilité de maladie 

Dans certaines études, la probabilité d'infection est considérée comme le résultat final des calculs 

de l’EQRM ce qui conduit souvent à une surestimation du risque (Timm et al., 2016). Or, une 

infection ne doit pas être confondue avec une maladie. Il est possible de passer de la probabilité 

d’infection à la probabilité de maladie en utilisant des facteurs de conversion (Timm et al., 2016). 

Les facteurs de conversions sont présentés dans le Tableau 7-4. La probabilité d’infection se calcule 

à partir des modèles dose-réponse selon le pathogène étudié (Tableau 2-3), puis le facteur de 

conversion est appliqué :  

𝑃𝑚𝑎𝑙𝑎𝑑𝑖𝑒 =  𝑃𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 ∗  𝑃𝑚𝑎𝑙𝑎𝑑𝑖𝑒|𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛  
Équation 7-2 

où 𝑃𝑚𝑎𝑙𝑎𝑑𝑖𝑒 est la probabilité de tomber malade à la suite d’une exposition selon la probabilité 

d’infection. Afin d’interpréter les résultats de l’EQRM, il est possible de se baser sur le principal 

objectif de sécurité récréative de 32 maladies pour 1 000 expositions récréatives adoptées aux États-

Unis (Kozak et al., 2020).  
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Figure 7-8 Probabilité de tomber malade à la suite d’une exposition (baignade) pour l’été (juin, juillet, août) pour 

Giardia. La ligne rouge représente la cible de sécurité récréative. 

Sur le graphique, on observe que pour C20, la probabilité de maladie reste sous le principal objectif 

de sécurité récréative, même sans l'ajout d'IVB. En revanche, pour NTF, certains points situés dans 

le 4e quartile (les 25 % les plus élevés) dépassent le seuil, que ce soit sans IVB ou avec 5 % d’IVB. 

Le cas de LTF est encore plus critique: certaines valeurs du 4e quartile dépassent la limite même 

après l’ajout d’IVB à 30 %, et des points du 3e quartile sont déjà au-dessus dans la stratégie sans 

IVB. Cela souligne que, bien que la mise en place d’IVB permet de réduire les concentrations, elle 

ne suffit pas toujours à respecter les seuils, notamment dans le contexte des changements 

climatiques.  

Cette section permet de compléter la dernière étape de la méthode EQRM telle que présentée à la 

section 2.1.3.1. 
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CHAPITRE 8 DISCUSSION GÉNÉRALE 

8.1 Vue d'ensemble des résultats de la thèse 

Pour atteindre les objectifs spécifiques présentés au chapitre 3, l’approche de ce projet de recherche 

est divisée en trois grandes parties. La Figure 8-1 montre les conclusions principales de chaque 

section du projet. 

 

Figure 8-1 Facteurs influençant la contamination des zones de baignade et principales conclusions de la thèse 

Ce projet de recherche visait principalement à évaluer les impacts des IVB sur la santé publique 

afin d’éclairer la prise de décision en matière de planification urbaine et de gestion des eaux 

pluviales. Ce projet part du constat que les DEU altèrent la qualité de l’eau de surface dans les 

milieux récepteurs et entraînent ainsi des conséquences sur la santé publique. À partir des lacunes 

identifiées, ainsi que de la problématique des DEU, trois thèmes clés ont émergé : (1) les 

changements climatiques, (2) la gestion des eaux pluviales par les IVB et (3) la santé de la 

population. 

Chacun des articles présentés dans ce projet de recherche traite d’un ou plusieurs de ces thèmes et 

contribue à combler les lacunes identifiées dans la littérature (section 3.1). 
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Les chapitres 4, 5 et 6 présentent des discussions approfondies sur les résultats obtenus aux 

différentes étapes du projet. En revanche, ce chapitre offre une discussion globale du projet de 

recherche afin de répondre aux questions issues des objectifs spécifiques définis au Tableau 3-2 de 

la section 3.2. Une discussion générale est d’abord proposée pour présenter les principales 

contribution et conclusion de la thèse puis un retour sur les objectifs du projet est effectué pour 

compléter les questions de recherche identifiées au Tableau 3-2 et discuter des limites de la 

recherche. Finalement une section sur l’intégration des résultats dans un plan de gestion de la 

sécurité des eaux récréatives est élaborée afin de mieux ancrer les résultats dans la pratique. 

Les résultats issus de ce projet de recherche permettent d’éclairer les décideurs sur les leviers 

d’action prioritaires à différents niveaux, et ce, à travers trois grands axes de recherche 

correspondants aux objectifs suivants : 



227 

 

 

 

Tableau 8-1 Retour sur les objectifs de recherche, les conclusions et les contributions associées 

Objectifs Conclusions Contributions scientifiques Contributions pratiques 

O1 

Développer une méthode de 

priorisation des bassins de drainages 

urbains pour réduire les DEU dans le 

contexte des changements climatiques 

Il y aura une augmentation des DEU de 

façon exponentielle causée par les 

changements climatiques. 

Le modèle de priorisation à deux 

périodes (NTF et LTF) met en 

évidence le fait que certains bassins de 

drainage urbains nécessitent une 

attention immédiate, tandis que 

d'autres devront faire l'objet d'une 

attention particulière à l'avenir.  

Une méthode de priorisation des 

bassins de drainage urbain qui prend en 

compte l’impact des changements 

climatiques sur les DEU, en termes de 

vulnérabilité aux risques microbiens. 

L’utilisation de l’accumulation de pluie 

sur différentes durées comme variable 

explicative afin de capturer les divers 

types d’événements pluvieux qui 

contribuent aux DEU 

Une méthode simplifiée, basée 

sur les pluies, pour identifier les 

bassins urbains les plus 

vulnérables à deux horizons de 

planification et mieux orienter 

la protection des zones sensibles 

(baignade, prises d’eau potable). 

Une méthode peu exigeante en 

ressources qui repose sur des 

données facilement accessibles.  

O2 

Développer et appliquer un cadre 

d'analyse de la résilience qui tienne 

compte à la fois de la gestion des eaux 

pluviales et de l'aspect 

socioécologique, en tenant compte de 

la santé. 

La résilience varie spatialement sur le 

territoire et la façon dont la mise en 

œuvre d'un projet d’implantation 

d’IVB est effectuée peut influencer la 

résilience différemment en fonction du 

lieu, de la manière et de l'endroit où il 

est déployé. 

Les facteurs clés influençant la 

résilience comprennent la réduction du 

ruissellement, la diminution des 

pourcentages de surface imperméable, 

l'augmentation de la diversité de 

l'utilisation des sols et l'offre d'un plus 
grand nombre d'aires de loisirs. 

Les résultats montrent que les 

différences entre les secteurs ont un 

impact significatif sur la résilience, ce 

qui souligne l'importance de mener des 

analyses de résilience à plusieurs 

endroits du bassin versant. 

Le développement d’un cadre de la 

résilience urbaine qui considère à la 

fois les aspects de gestion des eaux 

pluviales et la santé et qui permet de 

quantifier la contribution des IVB à la 

résilience urbaine. 

L’intégration des critères sociaux dans 

le choix des emplacements des IVB via 

l’utilisation d’un outil d’aide à la 

planification pour le développement 

des strategies d’implantation. 

L’utilisation des simulations continue 

dans l’outil SWMM pour mieux 
refléter la réalité en termes de 

saturation du sol et d’effets du cycle de 

période sèche et avec pluie. 

Le développement d’un cadre 

d’analyse de la résilience qui 

permet aux utilisateurs de 

SSANTO de tester les stratégies 

d’implantation générées. 
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Tableau 8-1 Retour sur les objectifs de recherche, les conclusions et les contributions associées (suite) 

O3 

Évaluer les changements futurs des 

niveaux de Giardia et de 

Cryptosporidium dans un cours d'eau 

urbain en aval des rejets d'eaux usées 

et à évaluer les risques d'infection 

récréative avec et sans IVB comme 

barrière supplémentaire 

L’implantation d’IVB permet de 

diminuer le volume de DEU en climat 

actuel et en climat futur.  

Les IVB contribuent à la réduction de 

la concentration des contaminants dans 

le cours d’eau récepteur et diminuent 

également le risque d’infection.  

Les IVB sont aussi (et plus) efficaces 

que des solutions «grises» comme 

l’ajout de réservoir. 

Les IVB améliorent la qualité de l'eau, 

mais leur efficacité plafonne au-delà de 

20–40 % de surface imperméable 

convertie, limitant l’intérêt d’une 

expansion supplémentaire. Cette 

information aide les décideurs à 

maximiser les bénéfices tout en 

optimisant les ressources et en limitant 

les contraintes spatiales et financières. 

L’utilisation des simulations continues 

sur une période de 30 ans dans l’outil 

SWMM pour mieux refléter la réalité 

en termes de saturation du sol et 

d’effets du cycle de période sec et avec 

pluie. 

La démonstration que le l’utilisation 

des biorétentions pour réduire les DEU 

dans un contexte de santé publique est 

efficace. 

L’utilisation de la méthode EQRM 

pour valider l’efficacité des 

biorétentions comme barrière 

supplémentaire pour réduire les risques 

d’infection pour une exposition via la 

baignade.  

Les IVB peuvent agir comme 

barrière supplémentaire pour 

protéger les zones de baignade 

en milieu urbain tout en offrant 

d’autres cobénéfices. 

Une implantation d’IVB, même 

limitée, peut réduire le risque 

d’infection. 
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Ainsi, cette recherche apporte des contributions scientifiques en matière de modélisation, de 

planification territoriale et d’évaluation des risques sanitaires, tout en proposant des outils concrets 

et applicables à l’usage des décideurs et des urbanistes. En intégrant les dimensions climatiques, 

sanitaires, sociales et environnementales, elle offre un cadre robuste pour soutenir des interventions 

urbaines durables et plus équitables. 

8.2 Retour sur l’objectif 1 

Dans l’article 1, il est suggéré que l’utilisation de l’indice de priorisation développé permettrait une 

meilleure allocation des ressources (temps, humaines, matérielles, financières), en orientant les 

interventions vers les zones les plus critiques (Jean et al., 2021).  

Cette approche est également soutenue par Jean et al. (2021), qui soulignent que pour maximiser 

les résultats, il est essentiel de bien localiser les IVB et de les intégrer de manière stratégique aux 

systèmes de contrôle en temps réel.  

Plusieurs études montrent que l’efficacité des solutions de gestion des eaux pluviales dépend 

fortement du contexte d’implantation. Par exemple, Luan et al. (2019) indiquent qu’il existe une 

combinaison optimale de mesures selon l’usage du sol. De plus, des travaux soulignent que des 

facteurs tels que la proportion de surfaces imperméables, la diversité des usages du sol ou la 

présence d’espaces ouverts influencent également la performance des interventions (Fu et al., 2021; 

Luan et al., 2019; Miguez & Veról, 2017; Paquin, 2020; Rodriguez et al., 2024). Ces éléments 

renforcent l’importance d’une planification stratégique qui tienne compte du contexte urbain et de 

l’usage du sol pour améliorer l’efficacité des IVB et assurer une meilleure distribution des 

ressources. 

L’indice développé dans le cadre de l’article 1 considère seulement la période entre mai et octobre. 

Or, bien qu’il s’agisse de la période la plus critique pour les baigneurs, le printemps est la période 

posant le plus grand risque pour les prises d’eau potable en raison des pointes de contaminant 

pouvant être observées (Dorner et al., 2007; T. Thorolfsson, 2012). En effet, le phénomène de fonte 

de la neige, qui a lieu au printemps, est particulièrement critique pour l’eau potable due à la 

présence accrue d’indicateurs fécaux et également la basse température des eaux de surface, qui a 

une influence sur l’efficacité de la désinfection. (Madoux-Humery et al., 2016).  
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C’est pourquoi qu’en plus des précipitations, plusieurs facteurs liés aux conditions hivernales 

doivent être pris en compte pour modéliser précisément l’occurrence des DEU en climat froid 

comme au Québec. 

8.2.1 Limites de l’étude (O1) 

L’indice de priorisation développé dans le cadre de l’objectif 1 (article 1, CHAPITRE 4) constitue 

un outil pertinent pour optimiser la mise en place de stratégies de mitigation des DEU. 

Contrairement aux modèles hydrologiques, il requiert peu de données tout en permettant d’intégrer 

les effets des changements climatiques sans nécessiter la désagrégation des données de 

précipitations, ce qui pourrait introduire des erreurs. De plus, cet indice est facilement adaptable à 

d’autres territoires. L’association des précipitations en climat futur avec l’indice de risque 

microbien est particulièrement intéressante, car elle permet d’établir un lien direct avec la santé de 

la population, renforçant ainsi la pertinence de l’outil pour la gestion des risques sanitaires liés aux 

DEU. Combiné à des outils de planification tels que SSANTO (Kuller et al., 2019; Lacroix et al., 

2024), l’indice de priorisation développée permettrait ainsi de répondre à plusieurs objectifs 

simultanément pour assurer une prise de décision cohérente avec ce qui est attendu en climat futur. 
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Or, l’indice pose tout de même quelques lacunes: 

• L’indice est basé sur la fréquence des surverses, ce qui constitue une mesure pertinente pour 

évaluer leur occurrence. Toutefois, cette seule métrique ne reflète pas entièrement les 

dynamiques d’un ouvrage de surverses (Lau et al., 2002). Intégrer la durée ou le volume 

des débordements permettrait de mieux quantifier leur ampleur (N. McQuaid, A.-S. 

Madoux-Humery, J.-M. Touttée, et al., 2019). En effet, un ouvrage peut déborder 

fréquemment, mais sur de courtes périodes, ou au contraire, connaître des débordements 

plus rares, mais de longue durée, entraînant ainsi des volumes de déversement plus 

importants. Ainsi, bien que la fréquence soit un indicateur pertinent, elle pourrait être 

complétée par d’autres paramètres pour une représentation plus complète du phénomène. 

La durée de l’événement de DEU est plus représentative de l’amplitude du déversement 

d’eaux usées (N. McQuaid, A.-S. Madoux-Humery, J.-M. Touttée, et al., 2019). Une 

combinaison de la fréquence et du volume pourrait aussi être un bon indicateur pour 

représenter l’effet sur la qualité de l’eau du milieu récepteur (Lau et al., 2002). 

• L’indice ne permet pas de tester directement des stratégies de mitigation. Bien que les 

caractéristiques des bassins de drainage urbains (telles que la pente et le pourcentage de 

surfaces imperméables) soient prises en compte de manière indirecte, puisque le modèle 

repose sur des données réelles, il n’est pas possible de les modifier pour simuler l’ajout 

d’infrastructures vertes ou d’autres transformations du territoire. Pour évaluer l’impact de 

telles stratégies, il est nécessaire d’utiliser un modèle hydrologique, capable de représenter 

ces changements et d’en analyser les effets sur les déversements. 

• L’indice prend en considération un seul scénario climatique, le RCP8.5. Ce scénario 

correspond à une trajectoire où les concentrations de gaz à effet de serre (GES) atteignent 

un forçage radiatif de 8,5 W/m² en 2100 (Ouranos, s.d.). Or, le choix d’un scénario avec 

des concentrations différentes pourrait influencer de manière significative les précipitations 

projetées puisque plus l'année de projection est éloignée de la période de référence, plus les 

incertitudes liées au scénario deviennent importantes (Hawkins & Sutton, 2009). L’impact 

du choix du scénario sur les projections climatiques a déjà été montré dans plusieurs études. 

Par exemple, une étude menée dans le nord-ouest de l’Angleterre conclut que la plupart des 

modèles prévoient une augmentation des précipitations annuelles, mais une diminution des 
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précipitations pendant la saison de baignade (mai à septembre) (Abdellatif et al., 2014). En 

comparaison, l’étude présentée au CHAPITRE 4 met en évidence une augmentation 

marquée de la fréquence des surverses, suggérant une hausse des précipitations en période 

sans glace (mai à octobre). Ces résultats soulignent non seulement les divergences possibles 

entre les modèles climatiques, mais aussi l’influence des spécificités régionales. 

Par ailleurs, le 6ᵉ rapport du GIEC, complété en 2023, privilégie désormais les scénarios de 

type Shared Socio-economic Pathways (SSP) (IPCC, 2023; Ouranos, s.d.). Ces scénarios 

permettent de prendre en compte à la fois l’évolution des paramètres socio-économiques et 

les émissions de GES qui en découlent. Ils établissent ainsi un lien direct entre les choix 

sociétaux et les niveaux de réchauffement climatique futurs. Ce type de scénarios pourraient 

être plus pertinent pour des recherches futures.  

8.2.2 Perspectives (O1) 

Afin d’améliorer l’indice développé dans le cadre de l’article 1 et d’en accroître la portée en matière 

d’aide à la décision, il serait pertinent d’ajouter au modèle de régression logistique des variables 

explicatives telles que le pourcentage de surfaces imperméables ou le couvert végétal. Ces 

variables, susceptibles d’être modifiées dans des scénarios, permettraient d’évaluer de façon 

exploratoire l’effet potentiel de stratégies d’implantation d’IVB sur la fréquence des surverses, bien 

que cette approche reste de nature statistique et ne remplace pas l’analyse mécaniste offerte par les 

modèles hydrologiques. 

Par ailleurs, l’ajout de variables climatiques telles que la température de l’air et la forme des 

précipitations (neige ou pluie) permettrait d’élargir l’application du modèle à l’ensemble de 

l’année, incluant les mois d’hiver, même si la proportion de DEU est plus petite (Madoux-Humery 

et al., 2016; Ministry of Municipal Affairs Regions and Land Occupancy, 2012). En effet, les 

surverses ne surviennent pas uniquement durant les épisodes de pluie intense, mais peuvent 

également être influencées par des épisodes de redoux, la fonte de la neige ou des précipitations 

mixtes (Madoux-Humery et al., 2016). L’intégration de ces variables permettrait ainsi d’améliorer 

la précision temporelle du modèle et de mieux représenter les dynamiques saisonnières des DEU.  
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Cela est d’autant plus important que le printemps représente une période critique pour l’eau potable 

et que certaines personnes pratiquent la baignade même par temps froid (Dorner et al., 2007; 

Ministère du Développement durable de l’Environnement et Lutte contre les changements 

climatiques (MDDELCC), 2017). 

8.3 Retour sur l’objectif 2 

La première section de ce projet de recherche a permis de conclure que les DEU risquent 

d’augmenter de manière exponentielle dans le futur. Toutefois, l’analyse spatiale a révélé que 

certains bassins de drainage nécessitent des interventions immédiates à court terme, tandis que 

d’autres pourront être traités à plus long terme. L’utilisation de l’indice de priorisation développé 

dans le cadre de ce projet pourrait ainsi optimiser l’allocation des ressources (humaines, 

financières, matérielles) en ciblant les zones où les besoins sont les plus pressants. Cette approche 

permettrait de maximiser l’impact des investissements en IVB, tout en réduisant potentiellement 

les coûts à long terme. La seconde section (article 2, CHAPITRE 5) a permis de tester cette 

hypothèse en développant différentes stratégies d’implantation d’IVB selon des objectifs de 

performance distincts (ex. : réduction des surverses et du ruissellement, protection de la qualité de 

l’eau) issues d’un processus d’aide à la planification (Lacroix et al., 2024). Les résultats ont montré 

qu’une implantation adaptée aux spécificités locales permet d’atteindre de meilleurs résultats.  

8.3.1 Limites de l’étude (O2) 

Dans l’étude présentée dans l’article 2 (CHAPITRE 5), nous n’avons considéré qu’un seul type 

d’infrastructure verte. Or, une combinaison de plusieurs IVB performe mieux qu’un seul type 

d’IVB car elles peuvent agir différemment sur les eaux pluviales (Cavadini, Rodriguez, & Cook, 

2024; J. Chen et al., 2019). Par exemple, la combinaison de biorétentions, qui interceptent et filtrent 

les eaux de ruissellement en surface, avec des toits verts, qui retiennent une partie des précipitations 

avant qu’elles n’atteignent le sol, pourrait offrir une performance accrue en matière de gestion des 

eaux pluviales. Dans le contexte du cadre de résilience présenté à l’article 2, il serait pertinent 

d’examiner si l’intégration de différentes IVB, permettrait de renforcer davantage la résilience 

urbaine.  
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Il conviendrait également de se demander si les effets combinés de ces interventions se 

manifesteraient de manière plus marquée sur certains des indicateurs quantitatifs analysés dans 

l’étude. De plus, la combinaison de deux ou plusieurs types d’IVB pourrait permettre d’augmenter 

la surface imperméable convertie et ainsi accroître la superficie disponible.  

Cette approche favoriserait l’intégration d’un plus grand nombre d’IVB dans les espaces urbains à 

forte densité bâtie. 

Mieux comprendre les paramètres de modélisation des biorétentions dans PCSWMM permettrait 

d’optimiser la conception et la gestion des systèmes pluviaux urbains (Fassman-Beck & Saleh, 

2021; Tansar et al., 2023; Wang et al., 2025). Parmi les paramètres sensibles, il y a la porosité, la 

capacité du champ (field capacity), la surface de la biorétention (Fassman-Beck & Saleh, 2021). 

Le taux d’infiltration du sol de plantation, ainsi que du sol naturel, se révèlent également être des 

paramètres sensibles dans le cas des biorétentions équipées de drains (Fassman-Beck & Saleh, 

2021), comme c’est le cas dans l’étude présentée à l’article 2. La sélection optimale du type et de 

la densité de la végétation, ainsi que des différents paramètres de conception de la couche de sol 

(c'est-à-dire le type, l'épaisseur de la couche, le taux de vide, etc.) est essentielle pour améliorer et 

maximiser l'efficacité la conception des biorétentions afin de mieux contrôler les eaux de 

ruissellement à l'échelle du bassin versant (Tansar et al., 2023). Le pourcentage de surface 

imperméable occupé par les IVB constitue un facteur clé influençant leur efficacité à atténuer les 

effets simulés du changement climatique sur le comportement des systèmes de drainage urbain 

(Benoit et al., 2025). De plus, une étude de Joshi et al. (2020) a montré que les performances des 

biorétentions peut varier grandement en raison du grand intervalle de valeurs possibles et de 

configurations pour les couches de sol. Ainsi, le choix des paramètres utilisés pour modéliser les 

IVB (biorétentions) dans le cadre du projet revêt une importance particulière, car il conditionne la 

capacité du modèle à représenter de manière réaliste et fidèle leur performance hydraulique et 

environnementale. Une sélection rigoureuse de ces paramètres, notamment ceux liés à l’infiltration, 

à la composition du sol ou à la présence de drains, est essentielle pour simuler adéquatement le 

comportement des IVB dans divers scénarios climatiques et urbains. 
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8.3.2 Perspective (O2) 

Afin d'améliorer l'efficacité des stratégies de gestion des eaux pluviales, il serait intéressant de 

tester une combinaison d’IVB en utilisant les cartes d'adéquation obtenues grâce à SSANTO, pour 

différents types d’IVB par exemple une combinaison entre les biorétentions et les toitures 

végétalisées. Pour ce faire, il serait possible d’exploiter les cartes d'adéquation des biorétentions 

développées dans le cadre du projet de recherche PIIVO.  

Pour les toitures végétalisées, l’utilisation de la hiérarchie d'objectifs et des échelles de valeurs 

élaborées dans le cadre de la recherche de Pascale Roy Roy (2025 [en préparation]) seraient 

utilisées pour générer une carte d'adéquation pour les toitures végétalisées. Ensuite, une 

superposition des deux cartes permettrait d’identifier les zones où la combinaison des biorétentions 

et des toitures végétalisées pourrait maximiser l'efficacité des solutions proposées. Cette approche 

fournirait un cadre pour évaluer les scénarios d'implantation combinée et déterminer quelles 

configurations pourraient offrir les meilleures performances dans la gestion des eaux pluviales. 

Pour combiner les cartes d’adéquation des différentes IVB, plusieurs méthodes pourraient être 

utilisées. Par exemple, l’addition pondérée qui consiste à attribuer un poids à chaque type 

d’infrastructure verte en fonction de son efficacité perçue pourrait être utilisée afin d'obtenir une 

carte d’adéquation globale, prenant en compte les deux types d’infrastructures. Une autre approche 

pourrait être de classer chaque bassin versant urbain en quartile pour définir des catégories de 

priorité (voir section 0) puis d’implanter l’IVB ayant reçu la priorité la plus élevée dans le bassin 

versant urbain à l’étude. 

8.4 Retour sur l’objectif 3 

L’étude présentée dans l’article 3 a montré que les IVB constituent des solutions efficaces pour 

réduire le risque d’infection associé aux activités récréatives en milieu urbain. Les résultats ont 

également mis en évidence un phénomène de rendement décroissant: au-delà d’un certain seuil, 

l’ajout de biorétentions n’entraîne plus de gains proportionnels. Cet élément est particulièrement 

pertinent pour les décideurs, puisqu’il souligne qu’il n’est pas nécessaire de déployer un très grand 

nombre d’IVB pour obtenir des bénéfices significatifs. 
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Par ailleurs, l’analyse a révélé que la mise en place d’environ 3 % de superficie (surface 

imperméable convertie) en IVB permet d’atteindre un niveau de performance comparable à celui 

obtenu avec un réservoir de 28 000 m³. Ces résultats suggèrent que les IVB représentent une 

alternative intéressante, à la fois efficace et potentiellement plus flexible, aux solutions grises 

traditionnelles. Plusieurs études montrent que les IVB peuvent offrir des performances 

comparables, voire supérieures, à celles des infrastructures grises traditionnelles pour la gestion 

des eaux pluviales (Jean et al., 2021; Tavakol-Davani et al., 2016).  

Par exemple, l’implantation d’IVB telle que les biorétentions a permis de contrôler efficacement 

le ruissellement, tout en réduisant les coûts d’environ 40 % par rapport aux solutions classiques 

comme les réservoirs de stockage (SQP, 2018). Ces résultats soulignent l’intérêt pour les 

municipalités d’opter pour des approches plus durables et économiques. Les biorétentions, en 

particulier, représentent une option intéressante pour les collectivités cherchant à améliorer la 

gestion des eaux pluviales tout en maîtrisant leurs investissements. 

Dans l’étude présentée au CHAPITRE 6, la méthode EQRM est utilisée afin d’évaluer le risque 

d’infection. Comme présentée à la section 2.1.3.1, cette méthode est pertinente pour évaluer 

différente stratégie de gestion des plages et des sites de baignade en milieu urbain. Cette méthode 

comporte cependant plusieurs hypothèses. Ces dernières peuvent influencer les résultats de 

l’analyse EQRM dans l’évaluation des risques d’infection par la baignade.  

1. Qualité microbiologique de l’eau : 

La concentration de pathogènes dans l’eau influence directement les résultats de l’EQRM: plus elle 

est élevée, plus la dose ingérée risque d’être importante, car elle dépend de la quantité de 

pathogènes présents. La source de contamination joue également un rôle majeur, chaque type de 

pollution (eaux usées domestiques, ruissellement urbain, rejets de stations d’épuration, pollution 

agricole) apportant des contaminants distincts à des concentrations variables. L’incertitude est 

particulièrement élevée dans les systèmes complexes où de nombreuses sources diffuses de 

contamination sont impliquées (Ryan et al., 2022). Cela peut notamment être le cas en milieu urbain 

en raison des différents types d’utilisation du sol (parcs et espaces verts, rues, résidentiel).  
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La persistance des pathogènes constitue un autre facteur clé, car elle varie selon les conditions 

environnementales telles que la température, la lumière, les rayons UV et la salinité (Tableau 2-1) 

ce qui peut avoir un impact important sur les résultats de l’analyse. Par exemple, les données sur 

le transport et la survie de Cryptosporidium dans les milieux aquatiques restent limitées, ce qui 

conduit souvent à une extrapolation des valeurs à partir de la littérature scientifique (Stewart et al., 

2002). De plus, ces valeurs risquent d’être de plus en plus affectées par les changements 

climatiques (Ryan et al., 2022).  

2. Comportement des baigneurs 

La fréquence et la durée de l'exposition influencent également les résultats de l’EQRM. Comme le 

montre le Tableau 2-2, l'âge et le sexe du baigneur jouent un rôle dans le choix des paramètres 

utilisés pour l’évaluation du risque. Les voies d'exposition impactent aussi les résultats. L'ingestion, 

l'inhalation, ainsi que le contact cutané et oculaire avec des milieux contaminés (eau, aliments, air, 

sol, surfaces) peuvent survenir dans différents contextes d'exposition: directe, indirecte (Goulding 

et al., 2012; McBride et al., 2013). Enfin, la sensibilité individuelle influence également les risques. 

Les jeunes enfants, les personnes âgées et les individus immunodéprimés sont plus vulnérables aux 

infections (Medema & Ashbolt, 2006). 

3. Facteurs environnementaux 

Les conditions météorologiques, comme la pluie, augmentent le ruissellement et la charge 

microbienne, notamment en raison des DEU qui altèrent la qualité de l’eau. Les conditions 

hydrodynamiques, telles que les courants, les marées et le brassage, influencent également la 

dispersion des contaminants. Dans l’étude présentée au CHAPITRE 6 le débit joue un rôle majeur. 

L’incertitude liée au débit est plus importante que celle associée à la variabilité des autres 

paramètres du modèle.  

C’est pourquoi la méthode de Monte Carlo n’a pas été utilisée – d’autant plus que l’objectif 

principal était de montrer l’effet des IVB sur le risque d’infection. Enfin, la température de l’eau 

peut favoriser ou limiter la survie des pathogènes, influençant ainsi les résultats (Tableau 2-1). 
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4. Modélisation et incertitudes 

Le choix des paramètres du modèle influence les résultats. Par exemple, la sélection du modèle 

dose-réponse (Tableau 2-3) est déterminante: plusieurs types de modèles peuvent être utilisés, et 

le choix de la fonction ainsi que de ses paramètres impacte directement les résultats. Une attention 

particulière doit être portée aux modèles dose-réponse, notamment lorsque les doses sont faibles 

(Van Abel et al., 2017). Les incertitudes dans les données constituent un autre facteur clé, 

notamment en raison de la variabilité des mesures microbiologiques et de l’estimation des doses 

infectieuses. Enfin, les valeurs seuils de risque acceptables varient en fonction des réglementations 

et des contextes sanitaires (section 2.4). 

L’analyse EQRM intègre ces éléments afin d’estimer la probabilité d’infection et d’améliorer la 

gestion des risques pour les baigneurs. Prendre en compte les incertitudes permet d’obtenir une 

évaluation plus réaliste et précise des risques, facilitant ainsi des décisions mieux informées en 

matière de santé publique et de sécurité des activités de baignade (Donald et al., 2011).  

8.4.1 Limite de l’étude (O3) 

La méthodologie développée dans le cadre de l’article 3 est un outil intéressant pour montrer que 

la mise en place d’IVB peut aider à réduire le risque d’infection pour les baigneurs en milieu urbain 

dont la zone de baignade se trouve à proximité d’un point de surverse.  

Cependant, la méthode présente quelques lacunes:  

• La méthode est développée pour un seul groupe de pathogènes (protozoaires): Dans le cadre 

de l’EQRM pour les eaux récréatives, l’Environmental Protection Agency (EPA) a 

sélectionné huit pathogènes de référence (USEPA, 2010). Ces pathogènes ont été choisis 

en raison de leur implication dans un grand nombre de maladies d’origine non alimentaire 

aux États-Unis, de leur représentativité quant au comportement et au transport d’autres 

agents pathogènes hydriques préoccupants, ainsi que de leur présence avérée dans les eaux 

récréatives et les déjections humaines et animales (USEPA, 2010). Par exemple, dans une 

étude réalisée en Australie, Kozak et al. (2020) ont identifiés trois pathogènes afin de 

représenter le comportement de chacun des groupes microbiens.  
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D’ailleurs, la probabilité de contracter une maladie causée par des virus est 100 fois plus 

élevée que par des protozoaires entériques (Timm et al., 2016). En effet,les virus entériques, 

et plus particulièrement le norovirus, sont considérés comme les principaux responsables 

des risques sanitaires pour les baigneurs (Eregno et al., 2016; McBride et al., 2013). Leur 

forte infectiosité et leur résistance aux traitements conventionnels de désinfection en font 

une menace majeure dans les environnements aquatiques récréatifs. 

8.4.2 Perspective (O3) 

Afin de donner une nouvelle dimension à l’analyse effectuée dans l’article 3 (CHAPITRE 6) il 

serait intéressant de comparer les résultats obtenus aux cibles de santé. Par exemple, dans son étude 

(Kozak et al., 2020) se base sur le principal objectif de sécurité récréative de 32 maladies pour 1000 

expositions récréatives adoptées aux États-Unis pour effectuer l’interprétation des résultats de 

l’EQRM. Une autre option serait de calculer le DALY. Le concept de DALY constitue un outil 

complémentaire à l’EQRM pour évaluer et comparer les risques sanitaires liés à un environnement 

donné, pour une population et un comportement spécifique, ainsi que pour les mettre en perspective 

avec d’autres risques sanitaires de la vie quotidienne (Havelaar et al., 2000; Timm et al., 2016). 

Par exemple, Timm et al. (2016) compare les DALY liés à la baignade dans la Ruhr à d'autres 

risques de la vie quotidienne en Allemagne. Pour obtenir les paramètres nécessaires au calcul du 

DALY, une vaste collecte de données doit être effectuée (Timm et al., 2016).  

Une étude menée dans une rivière fréquentée pour la baignade a montré que les DALYs calculés 

pour la cryptosporidiose (0,0048) et la giardiase (0,0028) sont nettement inférieurs aux DALYs 

associés à l’ensemble des maladies gastro-intestinales en Allemagne (Timm et al., 2016). 

Toutefois, ils se situent à un niveau comparable à celui des DALYs liés à la noyade (0,26 DALY 

pour 1 000 personnes) (Timm et al., 2016). La cible du risque tolérable exprimé en DALY établie 

par l’OMS est de 10-6
 DALY/pers/an pour le risque lié à l’eau potable et celui pour l’eau récréative est 

2.5790 DALY *10-3/pers/an (World Health Organization, 2017a). 
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8.5 Contribution pour la protection des sites de baignade urbains 

L’évaluation des risques liés à l’eau dans un site de baignade urbain constitue une étape essentielle 

pour l’élaboration d’un plan de gestion, car elle fournit une base objective pour définir les cibles 

de prévention et de contrôle, permet de prioriser les ressources pour la mise en œuvre de mesures 

efficaces, et assure le respect des normes et des exigences réglementaires. Chaque objectif de cette 

thèse de doctorat est lié à une ou plusieurs étapes identifiées dans le plan de gestion des sites de 

baignade développé par l’OMS (World Health Organization, 2021) et pourrait contribuer à 

l’élaboration d’un plan de protection adapté au contexte québécois. Le Tableau 8-2 présente la 

correspondance. 

Tableau 8-2 Correspondance entre les étapes du plan de gestion de World Health Organization (2021) 

Étape du plan de 

gestion (World 

Health 

Organization, 

2021) 

Contenu Objectifs de la thèse 

associés 

Apports spécifiques 

1. Créer l’équipe Former un groupe 

interdisciplinaire pour la 

gestion du site 

Aucun directement — 

2. Décrire le 

milieu et évaluer 

les risques 

Enquêtes sanitaires, 

historiques de qualité de 

l’eau, identification des 

sources de pollution, 

évaluation des risques 

microbiens 

O1 (priorisation des 

bassins) O3 

(modélisation des 

contaminants et 

risques sanitaires) 

Méthode de priorisation basée sur 

la pluie (O1), analyse de 

Giardia/Cryptosporidium (O3) 

3. Suivi 

opérationnel et 

vérification 

Détection des dépassements 

de seuils, actions correctives, 

validation de l’efficacité du 

plan 

O1, O3 Modèle de prédiction simple basé 

sur la pluie (O1) Efficacité des IVB 

et comparaison avec solutions 

grises (O3) 
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Tableau 8-2 Correspondance entre les étapes du plan de gestion de World Health Organization (2021) (suite) 

Étape du plan de gestion 

(World Health 

Organization, 2021) 

Contenu Objectifs de 

la thèse 

associés 

Apports spécifiques 

4. Documentation, 

soutien, communication 

Définir les procédures, 

coordonner les acteurs, 

informer les usagers 

O2 Intégration des critères sociaux et de la 

gouvernance, outil d’aide à la décision 

pour le choix des emplacements pour 

l’implantation d’IVB 

5. Révision et mise à 

jour 

Suivi des performances, 

mise à jour des évaluations 

de risques et des plans 

O2, O3 Approche adaptative des scénarios IVB 

(O2) Simulations à long terme avec 

SWMM (O3) 

Les contributions de ce projet de recherche s’inscrivent dans une perspective appliquée qui pourrait 

faciliter la création d’un plan de gestion des sites de baignade spécifiquement adapté au contexte 

québécois. En s’appuyant sur la structure proposée par l’OMS (World Health Organization, 2021), 

les résultats obtenus offrent des bases concrètes pour l’élaboration d’une version locale du plan 

intégrant non seulement les réalités urbaines, mais également les enjeux croissants liés aux 

changements climatiques. Les changements climatiques sont déjà de plus en plus pris en compte 

lors du développement d’un plan de protection puisque ceux-ci auront un impact important sur 

l’eau potable en modifiant le cycle hydrologique (World Health Organization, 2017b). Pour chaque 

étape du plan, une amélioration pour mieux intégrer les changements climatiques est proposée telle 

qu’ajouter un expert climatique lors de la formation de l’équipe, intégrer des données historiques 

sur les sécheresses ou identifier des sources alternatives lors de l’étape 2 (Tableau 8-2). Cette 

adaptation du plan permet de mieux intégrer les risques posés par les changements climatiques et 

pourrait être prise en compte pour le développement d’un plan de protection des eaux récréatives. 

La recherche contribue notamment à l’étape d’évaluation des risques en climat actuel et sous les 

changements climatiques (étape 2) en facilitant l’identification des zones à risque à partir d’une 

méthode de priorisation basée sur les épisodes de pluie (O1) et l’analyse de contaminants 

microbiens (O3). De plus, l’étude soutient les étapes de suivi opérationnel (étape 3) en proposant 

un outil de prédiction des dépassements de seuils et d’évaluation du risque microbien (O1 et O3), 

et participe à l’évaluation des solutions d’atténuation en comparant l’efficacité des IVB à celle de 

solutions grises (O3). L’intégration d’objectifs liés à la santé (O2) renforce la pertinence des actions 

proposées dans une perspective multidisciplinaire.  
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Enfin, la prise en compte de scénarios d’adaptation et de simulations à long terme (O2, O3) 

témoigne de l’importance accordée à la révision continue des plans de gestion face aux incertitudes 

climatiques et urbaines. Ces contributions permettent non seulement de renforcer la capacité 

d’adaptation des municipalités face aux événements extrêmes, mais aussi d’encourager l’adoption 

de solutions alternatives plus durables pour la protection des sites de baignade en milieu urbain. 

  



243 

 

 

 

CHAPITRE 9 CONCLUSION 

Ce projet de recherche a contribué au développement des connaissances sur les impacts des IVB 

sur la santé publique dans la prise de décision pour la planification urbaine et la gestion des eaux 

pluviales dans le contexte québécois. Cet objectif a été atteint (1) en développant une méthode de 

priorisation permettant d’identifier les bassins de drainage urbain les plus vulnérable au DEU dans 

le contexte des changements climatiques (2) en développant et appliquant un cadre d'analyse de la 

résilience qui tienne compte à la fois de la gestion des eaux pluviales et de l'aspect socioécologique, 

en tenant compte de la santé et (3) en évaluant les changements futurs des niveaux de Giardia et 

de Cryptosporidium dans un cours d'eau urbain en aval des rejets d'eaux usées et à évaluer les 

risques d'infection récréative avec et sans IVB comme barrière supplémentaire.  

Les trois volets de ce projet de recherche doctoral, bien que traitant d’angles différents, sont 

complémentaires. Ensemble, ils montrent comment les IVB, particulièrement les biorétentions, 

peuvent être intégrées de manière stratégique dans l’aménagement urbain. Le premier volet vise à 

identifier les bassins de drainages urbains les plus vulnérables afin de placer les biorétention de 

manière stratégique dans l’espace urbain; le deuxième évalue leur contribution à la résilience 

urbaine et socioécologique; et le troisième quantifie leurs bénéfices concrets sur la qualité de l’eau 

et la santé publique. Cette approche intégrée permet ainsi d’orienter plus efficacement les décisions 

en matière de planification urbaine durable et de gestion des eaux pluviales, dans un contexte 

marqué par les défis climatiques. Ces trois articles s’articulent autour d’un axe commun : la gestion 

des DEU, les effets du changement climatique sur les infrastructures urbaines et la santé.  

En répondant à l’objectif 1 de ce projet de recherche, il a été montré que les changements 

climatiques entraînent une augmentation de la fréquence des DEU au Québec en période sans glace, 

qui correspond à une période de forte fréquentation des activités récréatives aquatiques durant l’été. 

Ce constat est directement lié à l’objectif 3, qui montre que les IVB, telles que les biorétentions, 

constituent des solutions efficaces pour réduire le risque microbien associé à la baignade, tant dans 

le climat actuel que dans un contexte futur. En effet, les résultats issus des objectifs 1 et 3 mettent 

en évidence une hausse de la vulnérabilité microbiologique liée aux précipitations extrêmes, ainsi 

qu’une diminution significative de la probabilité d’infection grâce à l’implantation d’IVB sur le 

territoire. Les conclusions des articles 2 et 3 confirment également l’efficacité potentielle des IVB 
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pour limiter les impacts des DEU sur la qualité de l’eau. Par ailleurs, l’article 1 met en lumière une 

variabilité spatiale de la vulnérabilité au sein d’un même territoire, soulignant l’importance 

d’adapter les stratégies d’implantation des IVB aux caractéristiques locales, telles que 

l’imperméabilité des sols, l’occupation du territoire ou encore le type de routes. Cela rejoint les 

résultats de l’objectif 2, qui montrent que la résilience varie spatialement selon les spécificités des 

secteurs urbains. De plus, les résultats liés à l’objectif 3 suggèrent que les IVB permettent non 

seulement de réduire la charge en contaminants et donc le risque d’infection, mais offrent aussi des 

cobénéfices socio-environnementaux. L’objectif 2 met en évidence ces bénéfices supplémentaires, 

tels que la réduction des ICU et la mitigation des inondations urbaines. Ainsi, les IVB apparaissent 

comme des outils intégrés de gestion durable, contribuant à la santé des communautés urbaines en 

améliorant la qualité de l’eau, en limitant les impacts des changements climatiques, et en renforçant 

la résilience des villes face aux aléas climatiques. 

Quand on met tout ensemble, ce projet met en évidence le rôle essentiel des IVB comme réponses 

adaptées aux défis conjoints des changements climatiques, de l’urbanisation croissante et de la 

détérioration de la qualité de l’eau en milieu urbain. Ce projet permet de mettre l’accent sur la 

nécessité de prendre en compte, dans la planification de ces infrastructures, les scénarios 

climatiques futurs, les spécificités de chaque territoire ainsi que les enjeux de santé publique. Les 

résultats obtenus montrent clairement que l’implantation stratégique des IVB peut renforcer la 

résilience des milieux urbains, réduire les DEU et limiter les risques microbiens dans les zones de 

baignade. Parmi ces solutions, les biorétentions se démarquent par leur efficacité et leur facilité 

d’intégration dans des territoires densément construits, confirmant ainsi les observations de la 

littérature scientifique et justifiant pleinement leur intégration dans les stratégies d’aménagement 

urbain. 

9.1 Recommandations 

À la lumière des résultats issus des trois objectifs de recherche, plusieurs recommandations peuvent 

être formulées afin de guider les décideurs publics, les urbanistes, les gestionnaires des eaux 

pluviales et les professionnels de la santé publique dans le développement de stratégies de gestion 

intégrée des IVB dans le contexte québécois. Ces recommandations visent à renforcer la résilience 
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urbaine, à réduire les risques sanitaires liés aux DEU, et à favoriser une planification territoriale 

plus équitable et durable dans un contexte de changements climatiques. 

Intégrer les IVB dans la planification urbaine : Les résultats montrent l’efficacité des IVB pour 

mitiger les impacts des eaux pluviales sur les milieux récepteurs et pour diminuer les risques 

sanitaires liés à une exposition à l’eau contaminée et aux effets des ICU. Il est donc recommandé 

d’intégrer les IVB de manière plus structurée (plutôt que de manière plus opportuniste) dans la 

planification urbaine. 

Mettre en place une méthode de priorisation des bassins de drainage : La méthode développée 

dans l’article 1 (CHAPITRE 4) permet d’identifier les bassins de drainage les plus vulnérables aux 

changements climatiques à court et à long terme, en fonction de l’impact potentiel sur les zones les 

plus critiques (prises d’eau potable, zones de baignade). Il est recommandé d’adopter une approche 

de priorisation à deux horizons de planification afin d’améliorer l’allocation des ressources, tout 

en assurant la protection de la santé publique. 

Intégrer l’aspect sanitaire dans le choix des emplacements: L’analyse de la résilience urbaine 

a mis en évidence l’importance d’intégrer l’aspect de la santé dans les décisions d’implantation des 

IVB. Il est recommandé d’utiliser des outils d’aide à la décision multicritère, tel que SSANTO, 

afin d’inclure des objectifs liés à cette dimension dans le processus de planification. 

Exploiter les outils de modélisation de manière continue pour une meilleure représentativité : 

L’utilisation du modèle PCSWMM en simulation continue permet de mieux représenter les 

dynamiques de saturation des sols et les effets des cycles hydrologiques. Il est recommandé 

d’adopter ce type de simulation pour évaluer les performances des IVB, notamment dans un 

contexte de planification à long terme et de changement climatique.  

On suppose que d’utiliser des simulations en continu permettrait de représenter de manière plus 

réelle les processus des IVB. Toutefois, bien que cette approche soit pertinente, l’avantage 

comparatif par rapport à la simulation d’événements uniques n’a pas été clairement démontré dans 

le cadre de cette thèse. 

Adopter une approche verte ou mixte plutôt que strictement grise : Les résultats ont montré 

que les IVB peuvent être aussi, voire plus efficaces que certaines solutions dites conventionnelles 
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(e.g.: stockage) pour réduire les volumes de DEU et les risques microbiens. Il est recommandé de 

privilégier les approches vertes ou un mixte (vert-gris) qui combinent performance, résilience, et 

co-bénéfices écologiques et sociaux, surtout lorsque la planification est basée sur un outil 

multicritère. 

Éviter la sur-implantation des IVB et viser un seuil d’efficacité optimal : Nos résultats 

montrent que l’efficacité des IVB plafonne au-delà d’un certain seuil d’implantation. Il est donc 

recommandé d’éviter une implantation excessive des IVB, et de viser une implantation qui 

maximise les bénéfices tout en limitant les coûts d’investissement et qui tient compte des 

contraintes spatiales (particulièrement en milieu urbain densément construit). 

Développer un guide pour la gestion des zones de baignade en milieu urbain : Il existe des 

guides pour la gestion des zones de baignade en milieu urbain, mais il serait intéressant de 

développer une version québécoise afin de tenir compte des spécificités locales (e.g. lac VS fleuve 

Saint-Laurent). Le guide pourrait être basé sur les guides existants ainsi que sur l’approche déjà 

mise en place pour la protection des sources d’eau potable. Il serait également intéressant d’établir 

une cible de santé liée à l’eau récréative adaptée au contexte québécois. 

9.2 Recherches futures – réflexion sur la santé publique 

Pour des recherches futures, il serait intéressant d’ajouter un ou plusieurs objectifs liés à la 

gentrification (écogentrification/éco-embourgeoisement) dans l’outil SSANTO afin d’éviter que 

l’implantation stratégique des IVB basée sur des critères environnementaux ou hydrologiques 

contribue à ce processus.  
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Les attributs pour développer ces objectifs pourraient notamment inclure :  

• Hausse récente de la valeur foncière ou locative, 

• Proportion de logements sociaux ou abordables, 

• Taux de roulement résidentiel, 

• Population à risque d’exclusion (faible revenu, statut locatif, précarité d’emploi), 

• Nombre de projets immobiliers récents (indicateur de spéculation). 

Pour montrer l’utilité de ce nouveau critère, deux (ou plus) scénarios distincts pourraient être 

développés puis comparés. Un exemple de scénarios est illustré dans le Tableau 9-1. 

Tableau 9-1 Exemple de scénario possible pour inclure la gentrification dans l’outil SSANTO 

Scénario Critères utilisés dans SSANTO Résultat attendu 

Standard Objectifs de base développés dans 

Lacroix et al. (2024) 

Sites stratégiques, mais parfois à risque 

de gentrification 

Juste assez vert (Curran & 

Hamilton, 2012) 

Ajout des objectifs liés à la 

gentrification 

Sites stratégiques et prise en compte du 

risque de gentrification 

Ces scénarios pourraient être simulés dans l’outil SSANTO et comparés pour montrer comment la 

prise en compte du risque de gentrification influence les scores d’adéquation. 

Une autre perspective de recherche intéressante serait d’adapter SSANTO pour évaluer et prioriser 

l’implantation des IVB en lien avec les besoins en santé et bien-être des enfants. Cette orientation 

permettrait de combiner les enjeux de gestion environnementale, de santé publique et de justice 

sociale, en plaçant les enfants au cœur des décisions d’aménagement. 

Les cours d’école primaire, en particulier dans les quartiers défavorisés, représentent des espaces 

stratégiques à verdir, en raison de leur faible végétalisation, de leur exposition à des îlots de chaleur 

et de la vulnérabilité accrue des enfants à la pollution atmosphérique, à la chaleur et au stress 

environnemental (Bikomeye et al., 2021; INSPQ, 2017). De plus, plusieurs études ont montré les 

bénéfices du contact avec la nature sur la santé mentale, le développement cognitif et la régulation 

émotionnelle chez les enfants (Amoly et al., 2014; Redondo-Bermúdez et al., 2022).  

  



248 

 

 

 

Intégrer cette dimension à SSANTO pourrait se faire par l’ajout d’objectifs tels : 

• Proximité des écoles primaires et garderies (attribut de type distance à) 

• Niveaux de défavorisation scolaire, 

• Déficits de végétalisation ou d’espaces verts à proximité immédiate (croisement entre NVI 

et proximité des écoles et garderies) 

Cette approche permettrait d’identifier des écoles avec le plus grand potentiel de cobénéfices, c’est-

à-dire à la fois stratégique sur le plan environnemental (ex. infiltration, connectivité écologique) et 

social (réduction des inégalités de santé, amélioration du bien-être des enfants). 

Il serait également pertinent d’intégrer une composante qualitative et participative (et peut-être 

pédagogique) à ce processus, par exemple : 

• Ateliers de consultation avec les enfants, 

• Entrevues semi-dirigées avec les éducateurs et familles, 

• Mesures de bien-être perçu avant/après verdissement, 

• Activités pédagogiques sur les changements climatiques ou le cycle de l’eau dans les écoles. 

Ce volet permettrait à SSANTO de devenir un outil de planification intégrée qui prend en compte 

les besoins des populations vulnérables. Ces ajouts pourraient être testés dans le cadre d’un projet 

pilote municipal, en collaboration avec les commissions scolaires, les directions de santé publique 

et les services d’urbanisme. 
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ANNEXE A  MODÉLISATION DES CONTAMINANTS 

Ce travail a permis de modéliser les contaminants dans le modèle PCSWMM.  

Critères : 

1. Les courbes ont des allures similaires 

2. Un ordre de grandeur 100 à 1000 fois supérieur dans le modèle, car la dilution n'est pas prise en compte. 

Tableau A.1 Tests effectués pour le choix des paramètres pour la modélisation des contaminants dans le modèle PCSWMM 

Run Date TSS E.Coli  

1 

 

 

2018/08/02-03 

(24h) 

 

 

DWF concentration: 109 

mg/L (Autixier, 2012) 

Open space 

C1 (max buildup): N/A 

C2 (day-1): N/A 

C3 (mm1): N/A 

C4: N/A 

Residential (Barco et al., 

2004; Temprano et al., 2006) 

C1 (max buildup): 17,7  

C2 (day-1): 0,3  

C3 (mm1): 1,811  

C4: 1.2  

Transportation (Hossain et 

al., 2012) 

C1 (max buildup): 53  

C2 (day-1): 0.22  

C3 (mm1): 0,0029  

C4: 0,608  

DWF concentration: 160000000 

#/L (Madoux-Humery et al., 

2013) 

Inactivation constant (day-1): 

0,48 (Pongmala et al., 2015) 

Co-pollutant: YES (0,5) 

Open space (USEPA, s.d.) 

C1 (max buildup):0 

C2 (day-1): 2  

C3 (mm1): 18  

C4: 2,2  

Residential (USEPA, s.d.) 

C1 (max buildup- sat)): 

141000000000  

C2 (day-1): 10  

C3 (mm1): 10 

C4: 0,5  

Transportation (USEPA, s.d.) 

C1 (max buildup): 1000000 

C2 (day-1): 2  

C3 (mm1): 18  

C4: 2  

Moyenne observée: 5900 #/100ml 

 

Moyenne modélisée: 40340 #/100ml 
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Tableau A.1 Tests effectués pour le choix des paramètres pour la modélisation des contaminants dans le modèle PCSWMM (suite) 

Run Date TSS E.Coli  

2 

 

2018/08/02-03 

(24h) 

 

DWF concentration: 109 

mg/L (Autixier, 2012) 

Open space (Autixier, 2012; 

Gironás et al., 2009; Gong et 

al., 2016) 

C1 (max buildup): 40  

C2 (day-1): 0.5  

C3 (mm1): 0.004  

C4: 1.2 

Residential (Barco et al., 

2004; Temprano et al., 2006) 

C1 (max buildup): 17,  

C2 (day-1): 0,3  

C3 (mm1): 1,811  

C4: 1.2  

Transportation (Hossain et 

al., 2012) 

C1 (max buildup): 53 

C2 (day-1): 0.22  

C3 (mm1):  0,0029 

C4: 0,608 

DWF concentration: 160000000 

#/L (Madoux-Humery et al., 

2013) 

Inactivation constant (day-1): 

0,48 (Pongmala, 2012) 

Co-pollutant: YES (0,5) 

Open space (USEPA, s.d.) 

C1 (max buildup):0 

C2 (day-1): 2 

C3 (mm1): 18 

C4: 2,2  

Residential (USEPA, s.d.) 

C1 (max buildup- sat)): 

141000000000  

C2 (day-1): 10  

C3 (mm1): 10  

C4: 0,5  

Transportation (USEPA, s.d.) 

C1 (max buildup): 1000000  

C2 (day-1): 2  

C3 (mm1): 18 

C4: 2 

Moyenne observée: 5900 #/100ml 

 

Moyenne modélisée: 207137 #/100ml 
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Tableau A.1 Tests effectués pour le choix des paramètres pour la modélisation des contaminants dans le modèle PCSWMM (suite) 

Run Date TSS E.Coli  

3 

 

 

2018/08/02-04 

(48h) 

 

DWF concentration: 109 

mg/L (Autixier, 2012) 

Open space(Gong et al., 

2016) 

C1 (max buildup): 40  

C2 (day-1): 0.5 

C3 (mm1): 0.004  

C4: 1.2 

Residential (Barco et al., 

2004; Temprano et al., 2006) 

C1 (max buildup): 17,7 

C2 (day-1): 0,3  

C3 (mm1): 1,811 

C4: 1.2  

Transportation (Hossain et 

al., 2012) 

C1 (max buildup): 53 

C2 (day-1): 0.22  

C3 (mm1):  0,0029  

C4: 0,608  

DWF concentration: 160000000 

#/L (Madoux-Humery et al., 

2013) 

Inactivation constant (day-1): 

0,48 (Pongmala, 2012) 

Co-pollutant: YES (0,5) 

Open space (USEPA, s.d.) 

C1 (max buildup):0 

C2 (day-1): 2  

C3 (mm1): 18  

C4: 2,2 

Residential (USEPA, s.d.) 

C1 (max buildup- sat)): 

141000000000 

C2 (day-1): 10  

C3 (mm1): 10  

C4: 0,5  

Transportation (USEPA, s.d.) 

C1 (max buildup): 1000000  

C2 (day-1): 2  

C3 (mm1): 18 

C4: 2 

Moyenne observée: 5900 #/100ml 

 

Moyenne simulée: 105674 #/100ml 
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Tableau A.1 Tests effectués pour le choix des paramètres pour la modélisation des contaminants dans le modèle PCSWMM (suite) 

Run Date TSS E.Coli  

4 2018/08/02-04 

(48h) 

 

DWF concentration: 173 

mg/L (Pongmala, 2012) 

Open space (Gong et al., 

2016) 

C1 (max buildup): 40  

C2 (day-1): 0.5  

C3 (mm1): 0.004  

C4: 1.2 

Residential (Barco et al., 

2004; Temprano et al., 2006) 

C1 (max buildup): 17,7 

(Temprano et al., 2006) 

C2 (day-1): 0,3  

C3 (mm1): 1,811 

C4: 1.2 

Transportation (Hossain et 

al., 2012) 

C1 (max buildup): 53  

C2 (day-1): 0.22  

C3 (mm1):  0,0029  

C4: 0,608  

DWF concentration: 160000000 

#/L (Madoux-Humery et al., 

2013) 

Inactivation constant (day-1): 0,48 

(Pongmala, 2012) 

Co-pollutant: YES (0,5) 

Open space (USEPA, s.d.) 

C1 (max buildup):0 

C2 (day-1): 2  

C3 (mm1): 18  

C4: 2,2  

Residential (USEPA, s.d.) 

C1 (max buildup- sat)): 

141000000000  

C2 (day-1): 10  

C3 (mm1): 10 

C4: 0,5 

Transportation (USEPA, s.d.) 

C1 (max buildup): 1000000  

C2 (day-1): 2 

C3 (mm1): 18  

C4: 2 

Moyenne observée : 5900 #/100ml 

 

Moyenne modélisée : 105674 #/100ml 

 

Commentaire : Donc la DWF des TSS n’exerce pas une grande 

influence 
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Tableau A.1 Tests effectués pour le choix des paramètres pour la modélisation des contaminants dans le modèle PCSWMM (suite) 

Run Date TSS E.Coli  

4 

 

 

 

 

2018/07/24-26 

(48h) 

 

DWF concentration: 173 

mg/L (Pongmala, 2012) 

Open space (Gong et al., 

2016) 

C1 (max buildup): 40 

C2 (day-1): 0.5  

C3 (mm1): 0.004  

C4: 1.2 

Residential (Barco et al., 

2004; Temprano et al., 2006) 

C1 (max buildup): 17,7  

C2 (day-1): 0,3  

C3 (mm1): 1,811 

C4: 1.2 

Transportation (Hossain et 

al., 2012) 

C1 (max buildup): 53  

C2 (day-1): 0.22 

C3 (mm1):  0,0029 

C4: 0,608  

DWF concentration: 160000000 

#/L (Madoux-Humery et al., 

2013) 

Inactivation constant (day-1): 0,48 

(Pongmala, 2012) 

Co-pollutant: YES (0,5) 

Open space (USEPA, s.d.) 

C1 (max buildup):0 

C2 (day-1): 2 

C3 (mm1): 18 

C4: 2,2 

Residential (USEPA, s.d.) 

C1 (max buildup- sat)): 

141000000000  

C2 (day-1): 10 

C3 (mm1): 10  

C4: 0,5 

Transportation (USEPA, s.d.) 

C1 (max buildup): 1000000  

C2 (day-1): 2  

C3 (mm1): 18 

C4: 2 

Moyenne observée: 8000 #/100ml 

 

Moyenne simulée: 272223 #/100ml 
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Tableau A.1 Tests effectués pour le choix des paramètres pour la modélisation des contaminants dans le modèle PCSWMM (suite) 

Run Date TSS E.Coli  

6 

 

  

2018/07/24-26 

(48h) 

 

DWF concentration: 109 

mg/L (Autixier, 2012) 

Open space 

C1 (max buildup):  

C2 (day-1):  

C3 (mm1):  

C4:  

Residential (Autixier, 2012; 

Gironás et al., 2009) 

C1 (max buildup): 0.16 (curb 

length)  

C2 (day-1): 0,5  

C3 (mm1): 0.026 

C4: 1.8  

Transportation 

C1 (max buildup):  

C2 (day-1):  

C3 (mm1):   

C4:  

DWF concentration: 7,09x106 

#/L (Autixier, 2012) 

Inactivation constant (day-1): 

0,1224 (Autixier, 2012) 

Co-pollutant: YES (0,5) 

Open space 

C1 (max buildup): 

C2 (day-1):  

C3 (mm1):  

C4: 2 

Residential 

C1 (max buildup): 

C2 (day-1):  

C3 (mm1):  

C4:  

Transportation 

C1 (max buildup): 

C2 (day-1):  

C3 (mm1):  

C4: 

Moyenne observée: 8000 #/100ml 

 

Moyenne simulée : 0.307 #/100ml  

 

Commentaire : E.coli est simulé comme co-polluant uniquement. 

Trop petit donc on doit modéliser TSS et E coli séparément 
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Tableau A.1 Tests effectués pour le choix des paramètres pour la modélisation des contaminants dans le modèle PCSWMM (suite) 

Run Date TSS E.Coli  

7 2018/07/24-26 

(48h) 

 

DWF concentration: 109 

mg/L (Autixier, 2012) 

Open space (Gong et al., 

2016) 

C1 (max buildup): 40  

C2 (day-1): 0.5 

C3 (mm1): 0.004  

C4: 1.2 

Residential  

C1 (max buildup): 17,7 

(Temprano et al., 2006) 

C2 (day-1): 0,3 (Barco et al., 

2004; Temprano et al., 2006) 

C3 (mm1): 1,811  (Temprano 

et al., 2006) 

C4: 1.2 (Barco et al., 2004) 

Transportation (Hossain et 

al., 2012) 

C1 (max buildup): 53  

C2 (day-1): 0.22 

C3 (mm1): 0,0029  

C4: 0,608  

DWF concentration: 7,09x106 

#/L (Autixier, 2012) 

Inactivation constant (day-1): 

0,1224 (Autixier, 2012) 

Co-pollutant: YES (0,5) 

Open space (USEPA, s.d.) 

C1 (max buildup):126X109  

C2 (day-1): 2 

C3 (mm1): 18 

C4: 2,2  

Residential (USEPA, s.d.) 

C1 (max buildup- sat)): 

141000000000  

C2 (day-1): 10  

C3 (mm1): 10 

C4: 0,5  

Transportation (USEPA, s.d.) 

C1 (max buildup): 1000000  

C2 (day-1): 2 

C3 (mm1): 18  

C4: 2  

Moyenne observée: 8000 #/100ml 

 

Moyenne simulée : 2024600 #/100ml 
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Tableau A.1 Tests effectués pour le choix des paramètres pour la modélisation des contaminants dans le modèle PCSWMM (suite) 

Run Date TSS E.Coli  

8 

(plusieurs 

jours) 

2019/07/12-

14 

DWF concentration: 109 

mg/L (Autixier, 2012) 

Open space (Gong et al., 

2016) 

C1 (max buildup): 40  

C2 (day-1): 0.5  

C3 (mm1): 0.004  

C4: 1.2  

Residential (Barco et al., 

2004; Temprano et al., 2006) 

C1 (max buildup): 17,7  

C2 (day-1): 0,3  

C3 (mm1): 1,811   

C4: 1.2  

Transportation (Hossain et 

al., 2012) 

C1 (max buildup): 53  

C2 (day-1): 0.22  

C3 (mm1):  0,0029  

C4: 0,608  

DWF concentration: 7,09x106 

#/L (Autixier, 2012) 

Inactivation constant (day-1): 

0,1224 (Autixier, 2012) 

Co-pollutant: YES (0,5) 

Open space (USEPA, s.d.) 

C1 (max buildup):126X109  

C2 (day-1): 2 

C3 (mm1): 18  

C4: 2,2 

Residential (USEPA, s.d.) 

C1 (max buildup- sat)): 

141000000000  

C2 (day-1): 10  

C3 (mm1): 10 

C4: 0,5 

Transportation (USEPA, s.d.) 

C1 (max buildup): 1000000  

C2 (day-1): 2 

C3 (mm1): 18 

C4: 2 
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Tableau A.1 Tests effectués pour le choix des paramètres pour la modélisation des contaminants dans le modèle PCSWMM (suite) 

Run Date TSS E.Coli  

9 

(plusieurs 

jours) 

 

9.1 

 

 

 

9.2 

2019/07/12-

14 

 

 

2018/07/25-

27 

 

 

 

2018-09-03 

DWF concentration: 109 

mg/L (Autixier, 2012) 

Open space (Gong et al., 

2016) 

C1 (max buildup): 40  

C2 (day-1): 0.5  

C3 (mm1): 0.004  

C4: 1.2 

Residential (Autixier, 2012) 

C1 (max buildup): 0.16 

(curb)  

C2 (day-1): 0,5  

C3 (mm1): 0.026 (Autixier, 

2012) 

C4: 1.8  

Transportation (Hossain et 

al., 2012) 

C1 (max buildup): 53 

C2 (day-1): 0.22  

C3 (mm1): 0,0029  

C4: 0,608  

DWF concentration: 7,09x106 

#/L (Autixier, 2012) 

Inactivation constant (day-1): 

0,1224 (Autixier, 2012) 

Co-pollutant: YES (0,5) 

Open space (USEPA, s.d.) 

C1 (max buildup):126X109  

C2 (day-1): 2  

C3 (mm1): 18  

C4: 2,2  

Residential (USEPA, s.d.) 

C1 (max buildup- sat)): 

141000000000 

C2 (day-1): 10  

C3 (mm1): 10 

C4: 0,5  

Transportation (USEPA, s.d.) 

C1 (max buildup): 1000000  

C2 (day-1): 2 

C3 (mm1): 18 

C4: 2 
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Tableau A.1 Tests effectués pour le choix des paramètres pour la modélisation des contaminants dans le modèle PCSWMM (suite) 

Run Date TSS E.Coli  

10 

(plusieurs 

jours) 

2019/07/12-

14 

DWF concentration: 109 

mg/L (Autixier, 2012) 

Open space (Gong et al., 

2016) 

C1 (max buildup): 40 

C2 (day-1): 0.5 

C3 (mm1): 0.004  

C4: 1.2  

Residential (Autixier, 2012) 

C1 (max buildup): 0.16 

(curb)  

C2 (day-1): 0,5  

C3 (mm1): 0.026  

C4: 1.8 

Transportation (Hossain et 

al., 2012) 

C1 (max buildup): 53  

C2 (day-1): 0.22  

C3 (mm1):  0,0029  

C4: 0,608 

DWF concentration: 7,09x106 

#/L (Autixier, 2012) 

Inactivation constant (day-1): 

0,1224 (Autixier, 2012) 

Co-pollutant: YES (0,5) 

Open space (USEPA, s.d.) 

C1 (max buildup):126X109  

C2 (day-1): 2  

C3 (mm1): 18  

C4: 2,2  

Residential (USEPA, s.d.) 

C1 (max buildup- sat)): 

141000000000 

C2 (day-1): 10  

C3 (mm1): 10  

C4: 0,5  

Transportation (USEPA, s.d.) 

C1 (max buildup): 1000000  

C2 (day-1): 2  

C3 (mm1): 18 

C4: 2 
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Tableau A.1 Tests effectués pour le choix des paramètres pour la modélisation des contaminants dans le modèle PCSWMM (suite) 

Run Date TSS E.Coli  

11 

(plusieurs 

jours) 

2018/07/25-

26 

DWF concentration: 109 

mg/L (Autixier, 2012) 

Open space (Gong et al., 

2016) 

C1 (max buildup): 40  

C2 (day-1): 0.5  

C3 (mm1): 0.004  

C4: 1.2  

Residential (Autixier, 2012) 

C1 (max buildup): 0.16 

(curb)  

C2 (day-1): 0,5  

C3 (mm1): 0.026  

C4: 1.8  

Transportation (Hossain et 

al., 2012) 

C1 (max buildup): 53  

C2 (day-1): 0.22  

C3 (mm1):  0,0029  

C4: 0,608  

DWF concentration: 7,09x106 

#/L (Autixier, 2012) 

Inactivation constant (day-1): 

0,1224 (Autixier, 2012) 

Co-pollutant: YES (0,5) 

Open space (USEPA, s.d.) 

C1 (max buildup):126X109  

C2 (day-1): 2  

C3 (mm1): 18  

C4: 2,2  

Residential (Autixier, 2012; 

USEPA, s.d.) 

C1 (max buildup- sat)): 

141000000000  

C2 (day-1): 10  

C3 (mm1): 10 

C4: 0,5  

Transportation (USEPA, s.d.) 

C1 (max buildup): 1000000  

C2 (day-1): 2  

C3 (mm1): 18 

C4: 2 
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ANNEXE B  STATEGIC PRIORIZATION OF SEWERSHEDS TO 

MITIGATE COMBINED SEWER OVERFLOWS UNDER CLIMATE 

CHANGE 

Supplementary material  

The supplementary material shows graphs of the overflow structures under study (n=18). The 

graphs in the first column show the evolution of the number of overflows per ice-free season 

between 1955 and 2099. The second column shows the normalized CSO coefficient. 

ID Number of CSO events per ice-free season from 

1955 to 2100 

Normalized CSO coefficient  

1 4370-03D 

 

4370-03D  

 

Figure B-1: Additional results. First column show the evolution of the number of overflows per ice-free season between 

1955 and 2099. The second column shows the normalized CSO coefficient.  
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2 4370-04D  

 

4370-04D  

 
3 4370-05D  

 

4370-05D 

 
4-a) 

  

Figure B-1: Additional results. First column shows the evolution of the number of overflows per ice-free season 

between 1955 and 2099. The second column shows the normalized CSO coefficient (suite)  
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5-b) 4430-01D  

 

4430-01D  

 
6-c) 4430-02D  

 

4430-02D  

 
7-d) 4420-01D  

 

4420-01D 

 
8-e) 4795-01D  

 

4795-01D 

 

Figure B-1: Additional results. First column show the evolution of the number of overflows per ice-free season between 

1955 and 2099. The second column shows the normalized CSO coefficient (suite)  
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9-f) 4400-02D 

 

4400-02D 

 

10-g) 4400-01D 

 

4400-01D  

 

11 4520-01D 

 

4520-01D 

 

Figure B-1: Additional results. First column shows the evolution of the number of overflows per ice-free season 

between 1955 and 2099. The second column shows the normalized CSO coefficient (suite)   
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12 4265-01D  

 

4265-01D  

 

13 4250-01D  

 

4250-01D  

 

14 4770-01D 

 

4770-01D 

 

Figure B-1: Additional results. First column shows the evolution of the number of overflows per ice-free season 

between 1955 and 2099. The second column shows the normalized CSO coefficient (suite)  
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15 4230-02D  

 

4230-02D  

 

16 4230-03D  

 

4230-03D  

 

Figure B-1: Additional results. First column shows the evolution of the number of overflows per ice-free season 

between 1955 and 2099. The second column shows the normalized CSO coefficient (suite)  
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ANNEXE C  ASSESSING THE IMPACT OS STRATEGIC 

IMPLEMENTATION OF BLUE-GREEN INFRASTRUCTURE ON URBAN 

RESILIENCE 

This supplementary material provides background information to Petrucci et al.: “Assessing the 

impact of strategic implementation of blue-green infrastructure on urban resilience“. The 

supplementary material is structured as follows: 

C1: Selected hazards 

C2: Defining resilience 

C3: Quantitative indicators of resilience components 

C4: Defining BGI implementation scenarios 

C5: PCSWMM modelling 

C6: Additional results 
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C.1  Selected hazards 

Table C1-1 Summary of Key Urban Hazards: Descriptions, Impacts, and Affected Groups 

Phenomenon Description  Environmental 

effects 

Health effects Vulnerable 

groups 

References 

CSO CSOs occur 

when the 

drainage system 

capacity is 

exceeded, 

leading to the 

direct discharge 

of untreated 

wastewater 

(both sanitary 

and stormwater) 

into receiving 

water bodies. 

Water pollution 

(nutrients, 

contaminants, 

domestic 

wastewater, and 

runoff). Beach 

closures and 

aesthetic 

degradation of 

natural 

environments. 

Health risks 

from pathogens 

(gastrointestinal 

diseases, aquatic 

toxicity), 

increased risk of 

waterborne 

diseases during 

heavy rainfall 

events. 

Exposed 

populations 

(residents near 

beaches and 

aquatic areas). 

(Derx et al., 

2023; Donovan 

et al., 2008b; 

Haley et al., 

2024; Joshi et 

al., 2020; Miller 

et al., 2022; Olds 

et al., 2018; Patz 

et al., 2008; J. 

Petrucci et al., 

2025; Sterk et 

al., 2016; 

USEPA, 2004; 

World Health 

Organisation, 

2017) 

UHI The UHI effect 

is caused by 

urban materials 

like concrete and 

asphalt that 

absorb heat 

during the day 

and release it at 

night, resulting 

in higher 

nighttime 

temperatures 

Increased 

nighttime 

temperatures, 

altered air 

quality, higher 

energy demand. 

Health risks: 

dehydration, 

heatstroke, 

exacerbation of 

chronic 

conditions, 

respiratory 

issues, increased 

mortality during 

heatwaves. 

Elderly, 

children, 

outdoor 

workers, people 

with chronic 

diseases, people 

with low socio-

economic status, 

outdoor athletes, 

socially isolated 

people. 

(Anquez & 

Herlem, 2011; 

Basu, 2009; 

Giguère, 2009; 

Heaviside et al., 

2017; INSPQ, 

2021b; Norton et 

al., 2015; 

Rebetez et al., 

2009) 

Urban flooding 

Pluvial flooding 

occurs when 

heavy rainfall 

exceeds 

drainage 

capacity. These 

events are 

becoming more 

frequent due to 

climate change 

and urbanization 

Physical damage 

(property 

damage, 

infrastructure 

degradation), 

water pollution 

Health effects: 

injuries, 

waterborne 

diseases (e.g., 

diarrhea), 

mental health 

issues (anxiety, 

PTSD). 

Children, 

elderly, people 

with pre-existing 

health 

conditions, low-

income 

communities, 

populations 

vulnerable to 

climate events. 

(Hajat et al., 

2005; 

Rosenzweig et 

al., 2005; 

Tapsell et al., 

2002; Ville de 

Montréal, 2017) 
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C2  Defining resilience 

Table C2-1 Type of resilience, individual definition and global definition from the literature (n=14). The type of resilience marked in bold are the one selected for 

the study. 

Type of 

resilience 

Global definition Individual definition Reference 

Urban 

resilience 

(Urban 

drainage 

system, Urban 

climate 

resilience) 

Urban resilience is the capacity of 

a city and its inhabitants to 

withstand, adapt to, and evolve 

after crises, integrating social, 

economic, environmental, and 

governance dimensions to ensure 

sustainability, well-being, and 

inclusive growth. 

The ability of any urban system and its inhabitants to cope with critical situations 

and their consequences, while adapting positively and transforming itself to 

become sustainable. 

(ONU-Habitat, 

2012) 

The potential to absorb, recover, and prepare for future challenges, enhancing 

well-being, and inclusive growth by integrating social, economic, governance, 

and environmental components that were analyzed separately. 

(Beceiro et al., 2022) 

The capacity is based on resisting, recovering, adapting, and transforming, 

across natural, economic, social, physical, and institutional aspects, and is 

evaluated through characteristics such as redundancy, robustness, connectivity, 

and adaptability. 

(Ribeiro & Pena 

Jardim Gonçalves, 

2019) 

The capacity of cities to remain operational, so that the people living and 

working in cities survive and thrive despite various stresses and shocks. 

(The Rockefeller 

Foundation & 

ARUP, 2014) 

Infrastructure 

resilience 

(system 

resilience) 

System resilience is the system 

capacity to preserve functionality 

amid external shocks by leveraging 

flexibility and diversified 

dependencies rather than relying on 

individual components. 

The ability of a system to have a positive response to external shocks (Bozza et al., 2015) 

The ability of a system to retain functionality through flexibility and diversifying 

functional dependence. 

(Tyler & Moench, 

2012) 
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Table C2-1 Type of resilience, individual definition and global definition from the literature (n=14). The type of resilience marked in bold are the one selected for 

the study (suite) 

Type of 

resilience 

Global definition Individual definition Reference 

Socio 

ecological 

resilience 

Socio-ecological resilience refers 

to the ability of human and natural 

systems to adapt, transform, and 

persist through challenges and 

maintain essential functions to 

ensure development. 

The capacity of human–nature systems to adapt to changing conditions 

while remaining within critical functioning conditions. 

(Folke et al., 2010) 

The ability to cope with challenges. (Meerow & Newell, 2017) 

The ability of an ecosystem to maintain its stability depends on size of its 

stability range. 

(Sterk et al., 2017) 

The ability to develop resilience depends on comprehending the 

relationships between humans and ecosystems. 

(Juan-García et al., 2017) 

The capacity of a system to absorb disturbance and rearrange while 

undergoing change. 

(Walker et al., 2004) 

The capacity of a social–ecological system to manage challenges and 

maintain development at the same time. 

(Sterk et al., 2017) 

Engineering 

resilience 

(technological 

and 

operational, 

and 

structural)  

Engineering resilience is the ability 

of a system to withstand 

disturbances, maintain 

functionality, and rapidly return to 

equilibrium, ensuring continuity 

and efficiency despite failures. 

Technical resilience refers to the physical resistance of systems to 

exogenous threats, such as extreme weather  

(Wang et al., 2023) 

Operational resilience is related to the capacity of the system for 

withstanding exceptional loads that may cause equipment failure or 

functional degeneration  

(Wang et al., 2023) 

Engineering resilience is disturbance and speed of return to the equilibrium 

to measure resilience 

(Sterk et al., 2017) 

Engineering system resilience is therefore interpreted differently from 

ecological resilience and focuses on ensuring continuity and efficiency of 

system function during and after failure  

(Mugume et al., 2015) 
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Table C2-1 Type of resilience, individual definition and global definition from the literature (n=14). The type of resilience marked in bold are the one selected for 

the study (suite) 

Type of 

resilience 

Global definition Individual definition Reference 

Spatial 

resilience 

  The contribution of spatial attributes to the feed-backs that generate resilience in 

ecosystems and othercomplex systems, and vice versa.  

(Allen et al., 

2016) 

Flood 

resilience 

Flood resilience is the capacity of a 

system, such as an urban area or 

drainage network, to withstand, 

adapt to, and recover from floods 

all while maintaining its 

functionality. A resilient flood 

system ensures continuous service 

over time, minimizes flood-related 

losses, and rapidly recovers 

functionality following an event. 

The ability of a system to preserve diversity and redundancy, effectively manage 

connectivity and feedback loops, all while promoting adaptive systems thinking, 

learning and facilitate inclusive participation. 

(Kotzee & 

Reyers, 

2016) 

The ability to deal with changes and continue to operate. (Karamouz 

et al., 2014) 

The capacity of a system, with the potential of exposure to flood, to adapt, resist and 

recover from flood to maintain an acceptable level of functioning. 

(Karamouz 

et al., 2014) 

The capability of a drainage system to resist and to maintain continuous service; the 

capability of an urban area to recover from flood damages; and the capability of urban 

systems to evacuate excess surface water and return to a functional state. 

(Bertilsson et 

al., 2019) 
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Table C2-2: List of resilience components. Components identified in bold are included in the study 

References 
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(Sterk et al., 2017)   X*  X X X*  X X        X   

(Rodriguez, Lawson, et al., 2020)     X X   X      X      

(Suárez et al., 2016)       X X X X X          

(Bozza et al., 2015)            X X X X      

(Kotzee & Reyers, 2016)   X  X X X              

(Batica et al., 2013) X   X X    X            

(UN-Habitat, 2018)   X  X  X   X X   X       

(Chen et al., 2024)  X  X                 

(Tyler & Moench, 2012)   X*    X* X*          X*   

(Karamouz et al., 2014)   X           X  X     

(Simonsen, 2015)   X*  X X X*  X X       X    

(Kontokosta & Malik, 2018)    X                 

(The Rockefeller Foundation & ARUP, 2014)   X  X     X    X    X X  

(Bautista-Puig et al., 2022) X  X X X                

(Meerow et al., 2016)   X X  X               

(CabinetOffice, 2011) X X X X                 

(Ribeiro & Pena Jardim Gonçalves, 2019) X  X X  X X    X   X       
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Table C2-2 : List of resilience components. Components identified in bold are included in the study (suite) 

References 
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(ONU-Habitat, 2012)         X      X      

(Folke, 2006)     X X               

(Folke et al., 2010)      X               

(Beceiro, Galvão, et al., 2020) 

(Beceiro, Brito, et al., 2020) 
             X X   X   

(Ramísio et al., 2022)  X            X X   X   

(Butler et al., 2014)  X               X X   

(Francis & Bekera, 2014)    X  X              X 
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C3  Quantitative indicators of resilience components 

Indicator 4: UHI 

 

Figure C3-1. Relation between UHI classes and the percentage of impermeability for 30m x30m cells 

There is a strong correlation between the UHI class and the percentage of impermeability with the 

correlation coefficient, R2= 0.9445. 
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C4  Defining BGI implementation scenarios 

 

Figure C4-1: Hierarchy of objectives for smaller systems mostly based on short-term detention and infiltration: bioretention & rain gardens, infiltration systems 

and swales based on Lacroix et al. (2024).
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C5  PCSWMM modelling 

PCSWMM can consider both dry weather flow and surface runoff. Surface runoff is defined by 

land-use-dependent accumulation and leaching functions for each pollutant (Lewis A. Rossman & 

Wayne C. Huber, 2016b). The model for simulating water quality in PCSWMM is based on the 

build-up and wash-off mechanisms, employing exponential functions to assess pollutant 

accumulation (Eq. C5-1) and removal (Eq. C5-2) (Lewis A. Rossman & Wayne C. Huber, 2016b). 

𝑏 = 𝐶1(1 − 𝑒𝐶2𝑡) 
Eq. C5-1 

where b is the build-up per unit area (kg/ha), C1 the maximum build-up per unit area (kg/ha), C2 

the cumulative rate constant (d-1). 

𝑊 = 𝐶3𝑞𝐶4𝐵 
Eq. C5-2 

W represents the wash-off (kg/h), C3 the wash-off coefficient, C4 the wash-off exponent, q the 

runoff volume per unit area (mm/h), and B the residual pollutant accumulation (kg). The table 

presents the choice of the parameter values for this study: 

Table C5-1 PCSWMM model parameters for TSS and E. coli simulations. Parameters were retrieved from the 

literature (Autixier, 2012; Gironás et al., 2009; Gong et al., 2016; Hong et al., 2021; Hossain et al., 2012; USEPA, 

s.d.) 

 MES E. coli 

DWF concentration 109 mg/L 7,09x106 #/L  

Inactivation constant (day-1) N/A 0,1224 

Co-pollutant NO YES (0.5) 

Open space C1 (max buildup): 40 

C2 (day-1): 0.5  

C3 (mm1): 0.004  

C4: 1.2  

C1 (max buildup):126X109 

C2 (day-1): 2 

C3 (mm1): 18 

C4: 2,2 

Residential C1 (max buildup): 0.16 (curb)  

C2 (day-1): 0,5 

C3 (mm1): 0.026  

C4: 1.8  

C1 (max buildup- sat)): 

141000000000  

C2 (day-1): 10 

C3 (mm1): 10  

C4: 0,5  

Transportation C1 (max buildup): 53 

C2 (day-1): 0.22 

C3 (mm1): 0,0029 

C4: 0,608  

C1 (max buildup): 1000000 

C2 (day-1): 2 

C3 (mm1): 18  

C4: 2 
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Several parameter configurations from the literature and previous studies were tested for pollutant 

modeling (see supplementary material). A total of 13 simulations were conducted to validate the 

choice of parameters. 

The validation was performed using E. coli data collected at the study site during combined sewer 

overflow (CSO) events (Khanafer, 2021). Build-up functions were modeled as exponential for open 

spaces and transportation areas, and as saturation-type for residential land use. Wash-off functions 

were exponential for all land uses. The normalizers used were area-based, except for residential 

buildup, where the curb length approach was applied. 

For residential land use, we assumed a high-density classification, as the area is primarily 

composed of multi-family housing rather than single-family dwellings. 

Due to limited data availability, the model validation was based on two criteria: 

• A similar temporal pattern between the simulated and observed event curves; 

• An order of magnitude between 100 and 1,000 times greater in the simulated 

concentrations, which is expected given that dilution processes were not considered in the 

model. 
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C6  Additional results 

 

 

Figure C6-1 Resilience indicator scores for each scenario and sector for 10% (top figure) and 25% (bottom figure) of 

imperviousness surfaces converted in bioretention.  
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Table C6-1 Indicators and concept score for each scenarios. The total of resilience score is also presented (colored 

lines) 

10% 

Concepts Indicators All Opp Need Specific 

Resistance E. coli load [counts/s] 0.43 0.00 0.71 1.00 

Reliability Mean runoff [mm] 0.73 0.00 0.96 1.00 

Redundancy 
Nb overflow [nb] 1.00 0.00 0.50 0.50 

UHI [sum] 0.79 0.00 1.00 0.40 

Recovery 
Sum hours surcharged [hours] 1.00 0.00 1.00 0.00 

Max runoff [mm] 0.24 0.00 1.00 0.33 

Sum Resilience  2.68 0.00 3.42 2.61 

Resistance E. coli load [counts/s] 0.49 0.00 1.00 0.67 

Reliability Mean runoff [mm] 0.55 0.00 1.00 0.55 

Redundancy 
Nb overflow [nb] 0.00 0.00 0.00 1.00 

UHI [sum] 0.79 0.00 1.00 0.40 

Recovery 
Sum hours surcharged [hours] 1.00 0.00 0.84 0.65 

Max runoff [mm] 0.00 1.00 0.00 0.00 

Sum Resilience  1.93 0.50 2.92 2.24 

Resistance E. coli load [counts/s] 0.05 1.00 0.00 0.00 

Reliability Mean runoff [mm] 0.12 1.00 0.02 0.00 

Redundancy 
Nb overflow [nb] 0.00 0.00 0.00 1.00 

UHI [sum] 0.10 1.00 0.00 0.02 

Recovery 
Sum hours surcharged [hours] 0.00 1.00 0.01 0.02 

Max runoff [mm] 0.10 1.00 0.10 0.00 

Sum Resilience  0.26 3.50 0.07 0.52 

25% 

Resistance E. coli load [counts/s] 0.08 0.00 1.00 0.13 

Reliability Mean runoff [mm] 0.77 0.00 0.87 1.00 

Redundancy 
Nb overflow [nb] 1.00 0.00 0.50 0.50 

UHI [sum] 0.79 0.00 0.86 1.00 

Recovery 
Sum hours surcharged [hours] 1.00 0.03 0.01 0.00 

Max runoff [mm] 0.37 0.00 1.00 0.41 

Sum Resilience  2.43 0.01  3.06 2.09 

Resistance E. coli load [counts/s] 0.61 0.00 1.00 0.57 

Reliability Mean runoff [mm] 0.89 0.00 1.00 0.63 

Redundancy 
Nb overflow [nb] 0.00 0.00 0.00 1.00 

UHI [sum] 0.90 0.00 1.00 0.48 

Recovery 
Sum hours surcharged [hours] 1.00 0.00 0.00 0.00 

Max runoff [mm] 0.00 1.00 0.00 0.00 

Sum Resilience  2.44 0.50 2.50 1.94 

Resistance E. coli load [counts/s] 0.04 1.00 0.02 0.00 

Reliability Mean runoff [mm] 0.12 1.00 0.06 0.00 

Redundancy 
Nb overflow [nb] 0.00 1.00 0.00 1.00 

UHI [sum] 0.08 1.00 0.02 0.00 

Recovery 
Sum hours surcharged [hours] 0.00 1.00 0.15 0.23 

Max runoff [mm] 0.12 1.00 0.12 0.00 

Sum Resilience  0.26 4.00 0.23 0.61 
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ANNEXE D  CAN BLUE-BREEN INFRASTRUCTURE MITIGATE 

WATERBORNE INFECTION RISKS THROUGH RECREATIONAL 

ACTIVITIES IN DESELY URBANIZED WATERWAYS? 

This supplementary material provides background information to Petrucci “Can blue-green 

infrastructure mitigate waterborne infection risks through recreational activities in densely 

urbanized waterways? “. The supplementary material is structured as follows: 

D1: Climate scenarios 

D2: PCSWMM model set up 

D3: Additional results - Hydrological model result 

D4: Additional results - Microorganisms’ concentration in the river 

D5: Additional results – Time series 
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D1  Climate scenarios 

C63: pr_SDM_CNRM-CERFACS-CNRM-CM5_rcp45_r1i1p1_SMHI-RCA4 

C73: ICHEC-EC-EARTH_rcp85_r1i1p1_KNMI-RACMO22E 

C77: IPSL-IPSL-CM5A-MR_rcp85_r1i1p1_IPSL-INERIS-WRF331F 

Table. D1-1. Climate scenario 

 Climate scenario  

1 

(C63) 

pr_SDM_CNRM-CERFACS-CNRM-CM5_rcp45_r1i1p1_SMHI-RCA4 

Scenario with 

moderate 

mitigation efforts 

2 

(C73) 

ICHEC-EC-EARTH_rcp85_r1i1p1_KNMI-RACMO22E 

Business-as-

usual scenario 

(high emission) 

3 

(C77) 

IPSL-IPSL-CM5A-MR_rcp85_r1i1p1_IPSL-INERIS-WRF331F 

Business-as-

usual scenario 

(high emission) 

4 pr_SDM_CNRM-CERFACS-CNRM-CM5_rcp45_r1i1p1_CLMcom-CCLM4-8-17 

Used in Derx et 

al. (2023) 

5 pr_SDM_CNRM-CERFACS-CNRM-CM5_rcp45_r1i1p1_CNRM-ALADIN53 

6 pr_SDM_CNRM-CERFACS-CNRM-CM5_rcp85_r1i1p1_CLMcom-CCLM4-8-17 

7 pr_SDM_CNRM-CERFACS-CNRM-CM5_rcp85_r1i1p1_CNRM-ALADIN53 

8 pr_SDM_CNRM-CERFACS-CNRM-CM5_rcp85_r1i1p1_SMHI-RCA4 

9 pr_SDM_ICHEC-EC-EARTH_rcp45_r1i1p1_KNMI-RACMO22E 

10 pr_SDM_ICHEC-EC-EARTH_rcp45_r3i1p1_DMI-HIRHAM5 

11 pr_SDM_ICHEC-EC-EARTH_rcp45_r12i1p1_SMHI-RCA4 

12 ICHEC-EC-EARTH_rcp85_r12i1p1_CLMcom-CCLM4-8-17 

13 ICHEC-EC-EARTH_rcp85_r12i1p1_SMHI-RCA4 

14 ICHEC-EC-EARTH_rcp85_r3i1p1_DMI-HIRHAM5 

15 IPSL-IPSL-CM5A-MR_rcp45_r1i1p1_IPSL-INERIS-WRF331F 

16 IPSL-IPSL-CM5A-MR_rcp45_r1i1p1_SMHI-RCA4 

17 IPSL-IPSL-CM5A-MR_rcp85_r1i1p1_SMHI-RCA4 

18 SDM_MPI-M-MPI-ESM-LR_rcp45_r1i1p1_CLMcom-CCLM4-8-17 

19 SDM_MPI-M-MPI-ESM-LR_rcp45_r1i1p1_SMHI-RCA4 

20 SDM_MPI-M-MPI-ESM-LR_rcp85_r1i1p1_CLMcom-CCLM4-8-17 

21 SDM_MPI-M-MPI-ESM-LR_rcp85_r1i1p1_SMHI-RCA4 

22 

pr_SDM_ICHEC-EC-EARTH_rcp45_r12i1p1_CLMcom-CCLM4-8-17 

inconsistencies in 

the time series 

23 

MOHC-HadGEM2-ES_rcp45_r1i1p1_SMHI-RCA4 

inconsistencies in 

the time series 

24 

MOHC-HadGEM2-ES_rcp45_r1i1p1_CLMcom-CCLM4-8-17 

underestimations 

of rainfall 

25 

MOHC-HadGEM2-ES_rcp85_r1i1p1_CLMcom-CCLM4-8-17 

underestimations 

of rainfall 

26 

MOHC-HadGEM2-ES_rcp85_r1i1p1_SMHI-RCA4 

inconsistencies in 

the time series 
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Table D1-1 shows the studied climate scenarios. The fist 21 climate scenarios ( bold black and 

grey) were used in Derx et al. (2023), the red scenario were rejected either due to 

inconsistencies in the time series or underestimations of rainfall. The first three (bold black) 

were used in the present paper because they are representative of the climate variability. 

D2  PCSWMM model set up 

Table. D2-1. Parameters values for the urban drainage catchment in the PCSWMM model before adding BGI 

Name Area (ha) Width (m) Flow Length (m) Imperv. (%) Slope (%) 

SC10 30 500 600 92 4.1 

SC20 30 500 600 92 4.1 

SC30 120 1800 666.7 92 4.1 

SC40 120 1800 666.7 65 4.1 

SC50 16.5 400 412.5 92 4.1 

SC60 105 1600 656.3 92 4.1 

SC70 45 1000 450 92 4.1 

SC80 45 1000 450 65 4 

SC90 180 1650 1090.9 100 4 

SC100 180 2500 720 92 5.1 

SC110 60 1200 500 90 5.1 

SC120 50 1100 454.5 90 5 

SC130 90 1650 545.4 65 1.4 

SC140 150 2500 600 95 7.3 

SC150 240 2500 960 65 7.3 

SC160 225 3000 750 65 1.4 

SC170 165 2250 733.3 90 3.1 

SC180 240 3000 800 90 4 

SC190 37.5 750 500 100 4 

SC200 165 1650 1000 100 2.4 

SC210 90 1650 545.5 65 3.9 

SC220 90 1650 545.5 65 4 

Table. D2-2. Concentration of the microorganism in the dry weather 

Microorganisms DWF concentration 

Cryptosporidium 1.4 x 103 

Giardia 1.3 x 104 

E.coli 2.3x 108 
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Table. D2-3. PCSWMM model parameters 

Parameters Values 

Routing method Dynamic Wave 

Infiltration model Curve Number 

Number of urban drainage catchment 2 

Number of conduits 19 

Number of junctions  19 

Time step resolution of precipitation 5 minutes 

Time step computation  60 seconds 
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D3  Additional results - Hydrological model result 

63 

   

73 

   

77 

   

Figure D3-1. Fraction of 5 min-time steps during CSO occurrence [%] for the C20, NTF and LTF. CSOs are differentiated for <1.0 m3/s, 1 - 1.5 m3/s and >1.5 m3/s. For all 

the different BGI implementation %. For the three considered climate scenario
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Table. D3-1. Fraction of simulation 5-min time steps with CSOs [%] for the C20, NTF and LTF for different percentages of BGI implementation, the relative change to C20 

and the reduction when adding BGI. For climate scenario C73 

%BGI Period 
CSO < 1.0 
m3/s (%) 

Relative 
change to 
C20 

Reduction VS 
no BGI 

CSO 1 - 1.5 
m3/s (%) 

Relative 
change to 
C20 

Reduction VS 
no BGI 

CSO > 1.5 
m3/s (%) 

Relative 
change to 
C20 

Reduction VS 
no BGI 

No BGI 

C20 3.66 -   2.9 -   2.28 -   

NTF 3.63 -1%   3.23 11%   3.09 36%   

LTF 4.09 12%   3.78 30%   3.56 56%   

5% 

C20 3.09 - -16% 2.38 - -18% 1.85 - -19% 

NTF 3.08 0% -15% 2.75 16% -15% 2.6 41% -16% 

LTF 3.62 17% -11% 3.23 36% -15% 3 62% -16% 

30% 

C20 2.03 - -45% 1.38 - -52% 0.93 - -59% 

NTF 2.15 6% -41% 1.8 30% -44% 1.48 59% -52% 

LTF 2.62 29% -36% 2.09 51% -45% 1.7 83% -52% 

50% 

C20 1.34 - -63% 0.85 - -71% 0.54 - -76% 

NTF 1.53 14% -58% 1.2 41% -63% 0.98 81% -68% 

LTF 1.89 41% -54% 1.4 65% -63% 1.05 94%   -71% 
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Table. D3-2. Fraction of simulation 5-min time steps with CSOs [%] for the C20, NTF and LTF for all percentages of BGI implementation and the additional storage  

    63  73  77  

  %BGI  CSO < 1.0 m3/s 
(%)  

CSO 1 - 1.5 m3/s 
(%)  

CSO > 1.5 m3/s 
(%)  

CSO < 1.0 
m3/s (%)  

CSO 1 - 1.5 
m3/s (%)  

CSO > 1.5 
m3/s (%)  

CSO < 1.0 
m3/s (%)  

CSO 1 - 1.5 
m3/s (%)  

CSO > 1.5 
m3/s (%)  

C20  

0%  3.6  2.92  2.65  3.66  2.9  2.28  3.55  2.98  2.55  

5%  3.03  2.42  2.15  3.09  2.38  1.85  3.01  2.45  2.08  

10%  2.69  2.18  1.8  2.79  2.1  1.55  2.72  2.19  1.73  

15%  2.48  1.96  1.56  2.56  1.88  1.35  2.52  1.99  1.48  

20%  2.31  1.8  1.38  2.37  1.69  1.2  2.36  1.8  1.3  

25%  2.15  1.62  1.22  2.19  1.53  1.05  2.22  1.61  1.15  

30%  1.99  1.47  1.09  2.03  1.38  0.93  2.06  1.45  1.02  

35%  1.81  1.32  0.95  1.86  1.23  0.81  1.9  1.28  0.9  

40%  1.66  1.18  0.84  1.69  1.09  0.71  1.72  1.14  0.78  

45%  1.49  1.05  0.73  1.53  0.97  0.62  1.53  1.02  0.68  

50%  1.34  0.93  0.64  1.34  0.85  0.54  1.35  0.9  0.59  

storage  3.0  2.58  2.34  2.98  2.55  1.96  2.91  2.65  2.26  
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Table. D3-2. Fraction of simulation 5-min time steps with CSOs [%] for the C20, NTF and LTF for all percentages of BGI implementation and the additional storage (suite) 

  63 73 77 

 
%BGI  CSO < 1.0 m3/s 

(%)  

CSO 1 - 1.5 m3/s 

(%)  

CSO > 1.5 m3/s 

(%)  

CSO < 1.0 m3/s 

(%)  

CSO 1 - 1.5 

m3/s (%)  

CSO > 1.5 m3/s 

(%)  

CSO < 1.0 m3/s 

(%)  

CSO 1 - 1.5 

m3/s (%)  

CSO > 1.5 m3/s 

(%)  

NTF  

0%  3.73  2.97  2.59  3.63  3.23  3.09  4.47  3.82  3.58  

5%  3.1  2.45  2.15  3.08  2.75  2.6  3.86  3.19  3.01  

10%  2.77  2.19  1.84  2.79  2.5  2.26  3.48  2.9  2.6  

15%  2.56  1.96  1.63  2.59  2.29  2.01  3.23  2.65  2.31  

20%  2.37  1.78  1.47  2.43  2.12  1.82  3.03  2.43  2.09  

25%  2.18  1.61  1.32  2.29  1.95  1.63  2.84  2.22  1.87  

30%  2.0  1.47  1.18  2.15  1.8  1.48  2.67  2.03  1.7  

35%  1.83  1.32  1.05  2.0  1.64  1.34  2.46  1.85  1.53  

40%  1.65  1.18  0.95  1.87  1.48  1.21  2.26  1.68  1.37  

45%  1.48  1.07  0.84  1.7  1.34  1.09  2.09  1.51  1.22  

50%  1.32  0.96  0.75  1.53  1.2  0.98  1.87  1.35  1.08  

storage  3.09  2.63  2.27  3.04  2.94  2.77  3.81  3.45  3.19  
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Table. D3-2. Fraction of simulation 5-min time steps with CSOs [%] for the C20, NTF and LTF for all percentages of BGI implementation and the additional storage (suite) 

  63 73 77 

 
%BGI  CSO < 1.0 m3/s 

(%)  

CSO 1 - 1.5 

m3/s (%)  

CSO > 1.5 m3/s 

(%)  

CSO < 1.0 

m3/s (%)  

CSO 1 - 1.5 

m3/s (%)  

CSO > 1.5 

m3/s (%)  

CSO < 1.0 

m3/s (%)  

CSO 1 - 1.5 

m3/s (%)  

CSO > 1.5 

m3/s (%)  

LTF  

0%  3.89  3.22  2.82  4.09  3.78  3.56  4.49  4.46  4.98  

5%  3.27  2.62  2.36  3.62  3.23  3.0  3.93  3.87  4.35  

10%  2.95  2.32  2.04  3.31  2.92  2.6  3.64  3.55  3.89  

15%  2.71  2.1  1.81  3.13  2.64  2.32  3.42  3.3  3.53  

20%  2.52  1.93  1.63  2.96  2.44  2.1  3.24  3.08  3.27  

25%  2.31  1.75  1.46  2.8  2.25  1.87  3.07  2.88  3.0  

30%  2.13  1.59  1.32  2.62  2.09  1.7  2.9  2.7  2.77  

35%  1.94  1.44  1.19  2.44  1.91  1.52  2.69  2.52  2.54  

40%  1.76  1.31  1.07  2.25  1.72  1.35  2.47  2.35  2.33  

45%  1.58  1.18  0.95  2.09  1.56  1.2  2.31  2.19  2.13  

50%  1.42  1.06  0.85  1.89  1.4  1.05  2.14  2.01  1.93  

storage  3.26  2.84  2.5  3.54  3.45  3.21  3.86  4.12  4.59  
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D4  Additional results - Microorganisms’ concentration in the river 

  Enterococci Cryptosporidium Giardia 

63 

C20 

  
 

NTF 

  
 

LTF 

  
 

Figure D4-1.: Mean concentration of Enterococci [CFU/l], Cryptosporidium [oocysts/l] and Giardia [cysts/l] for the three considered climate scenario per season. The mean 

concentration in river water is calculated over 30 years of simulation time for C20, NTF and LTF periods 
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  Enterococci Cryptosporidium Giardia 
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NTF 

   
LTF 

   

Figure D4-1.: Mean concentration of Enterococci [CFU/l], Cryptosporidium [oocysts/l] and Giardia [cysts/l] for the three considered climate scenario per season. The mean 

concentration in river water is calculated over 30 years of simulation time for C20, NTF and LTF periods (suite)  
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  Enterococci Cryptosporidium Giardia 
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Figure D4-1.: Mean concentration of Enterococci [CFU/l], Cryptosporidium [oocysts/l] and Giardia [cysts/l] for the three considered climate scenario per season. The mean 

concentration in river water is calculated over 30 years of simulation time for C20, NTF and LTF periods (suite) 
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  63 73 77 
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Winter 

 
C20 Storage %BGI: 3.88% 
NTF Storage %BGI: 3.83% 

LTF Storage %BGI: 3.57% 

 
C20 Storage %BGI: 3.56% 
NTF Storage %BGI: 3.27% 

LTF Storage %BGI: 3.96% 

 
C20 Storage %BGI: 3.73% 
NTF Storage %BGI: 3.64% 

LTF Storage %BGI: 4.55% 

Spring 

 
C20 Storage %BGI: 3.82% 

NTF Storage %BGI: 3.35% 
LTF Storage %BGI: 2.49% 

 
C20 Storage %BGI: 3.66% 

NTF Storage %BGI: 2.31% 
LTF Storage %BGI: 3.68% 

 
C20 Storage %BGI: 4.18% 

NTF Storage %BGI: 3.15% 
LTF Storage %BGI: 4.34% 

Figure D4-2 : Mean Cryptosporidium and Giardia infection risks [%] per person and exposure event during recreational use of river water calculated over 30 years of 

simulation time for the C20, NTF and LTF periods as function of BGI implementation (continuous lines). Diamonds represent the probability of infection when additional 

storage is added, as well as the percentage of green infrastructure required to achieve the same reduction in infection risk. Red line and dots represent the maximum suggested 

implementation  
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 Summer 

 
C20 Storage %BGI: 2.75 
NTF Storage %BGI: 3.51 

LTF Storage %BGI: 3.49 

 
C20 Storage %BGI 3.88% 
NTF Storage %BGI: 3.08% 

LTF Storage %BGI: 3.27% 

 
C20 Storage %BGI: 2.99% 
NTF Storage %BGI: 3.41% 

LTF Storage %BG:I 2.95% 

Autumn  

 
C20 Storage %BGI: 4.26% 

NTF Storage %BGI: 3.15% 
LTF Storage %BGI: 3.51% 

 
C20 Storage %BGI: 3.77% 

NTF Storage %BGI: 3.75% 
LTF Storage %BGI: 4.18% 

 
C20 Storage %BGI: 3.96% 

NTF Storage %BGI: 3.64% 
LTF Storage %BGI: 3.19% 

Figure D4-2 : Mean Cryptosporidium and Giardia infection risks [%] per person and exposure event during recreational use of river water calculated over 30 years of 

simulation time for the C20, NTF and LTF periods as function of BGI implementation (continuous lines). Diamonds represent the probability of infection when additional 

storage is added, as well as the percentage of green infrastructure required to achieve the same reduction in infection risk. Red line and dots represent the maximum suggested 

implementation (suite)   
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Winter 

 
C20 Storage %BGI: 3.51% 
NTF Storage %BGI: 3.36% 

LTF Storage %BGI: 3.51% 

 
C20 Storage %BGI: 4.34% 
NTF Storage %BGI: 3.15% 

LTF Storage %BGI: 3.83% 

 
Winter - Giardia - C20 Storage %BG: 3.58 
Winter - Giardia - NTF Storage %BG: 3.61 

Winter - Giardia - LTF Storage %BG: 3.69 

Spring 

 
C20 Storage %BGI: 3.01% 

NTF Storage %BGI: 3.47% 
LTF Storage %BGI: 3.46% 

 
C20 Storage %BGI: 2.43% 

NTF Storage %BGI: 3.30% 
LTF Storage %BGI: 3.37% 

 
C20 Storage %BGI: 3.14% 

NTF Storage %BGI: 3.89% 
LTF Storage %BGI: 4.02% 

Figure D4-2 : Mean Cryptosporidium and Giardia infection risks [%] per person and exposure event during recreational use of river water calculated over 30 years of 

simulation time for the C20, NTF and LTF periods as function of BGI implementation (continuous lines). Diamonds represent the probability of infection when additional 

storage is added, as well as the percentage of green infrastructure required to achieve the same reduction in infection risk. Red line and dots represent the maximum suggested 

implementation (suite)  
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 Summer 

 
C20 Storage %BGI: 2.54% 
NTF Storage %BGI: 3.21% 

LTF Storage %BGI: 3.39% 

 
C20 Storage %BGI: 3.88% 
NTF Storage %BGI: 3.08% 

LTF Storage %BGI: 3.27% 

 
C20 Storage %BGI: 3.61% 
NTF Storage %BGI: 3.33% 

LTF Storage %BGI: 2.96% 

Automn 

 
C20 Storage %BGI: 3.93% 

NTF Storage %BGI: 2.54% 
LTF Storage %BGI: 3.28% 

 
C20 Storage %BGI: 3.77% 

NTF Storage %BGI: 3.75% 
LTF Storage %BGI: 4.18% 

 
C20 Storage %BGI: 3.43% 

NTF Storage %BGI: 3.77% 
LTF Storage %BGI: 3.28% 

Figure D4-2 : Mean Cryptosporidium and Giardia infection risks [%] per person and exposure event during recreational use of river water calculated over 30 years of 

simulation time for the C20, NTF and LTF periods as function of BGI implementation (continuous lines). Diamonds represent the probability of infection when additional 

storage is added, as well as the percentage of green infrastructure required to achieve the same reduction in infection risk. Red line and dots represent the maximum suggested 

implementation (suite)  
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63 

 

Figure D4-3. Cumulative probability distributions of the upper percentile infection risks [% per person and exposure event] for Cryptosporidium and Giardia during recreational 

use in the river downstream of sewage emissions from CSOs over 30 years of simulation time for C20, NTF and LTF for the three considered climate scenario (full lines: no 

BGI, dotted lines: 50% BGI implementation)   
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73  

 

Figure D4-3. Cumulative probability distributions of the upper percentile infection risks [% per person and exposure event] for Cryptosporidium 

and Giardia during recreational use in the river downstream of sewage emissions from CSOs over 30 years of simulation time for C20, NTF and 

LTF for the three considered climate scenario (full lines: no BGI, dotted lines: 50% BGI implementation) (suite)   
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Figure D4-3. Cumulative probability distributions of the upper percentile infection risks [% per person and exposure event] for Cryptosporidium and Giardia during recreational 

use in the river downstream of sewage emissions from CSOs over 30 years of simulation time for C20, NTF and LTF for the three considered climate scenario (full lines: no 

BGI, dotted lines: 50% BGI implementation) (suite) 
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D5  Additional results – Time series 

For these results, we decided to show the risk of infection and the CSO flow for one summer for 

each planning horizon. For each planning horizon, we selected a representative month of July based 

on the data without BGI. The median is based on the adjusted risk during CSO events, and then we 

extracted the month of July for this year since it is one of the hottest months and people are more 

likely to swim during this period. We selected the C73 climate scenarios and Giardia to generate 

those results. 

C20 

(1995) 

 

NTF 

(2049) 

 

LTF 

(2075) 

 

Figure D5-1: Risk of infection for Giardia for a representative month of July for each planning horizon for the 

climate scenario C73. 
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Figure D5-1 shows that the risk of infection and the CSO flow reducing with the implementation 

of BGI. We can also observe that the increase in infection risk does not happen immediately after 

a CSO event. There is a brief delay between the CSO event and the increase of risk suggesting the 

risk can remain high even when after the CSO event has ended. 
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