
Titre:
Title:

Approches pour la détection automatique de présence sexuelle en 
temps réel via analyse d'EEG

Auteur:
Author:

Clément Jacques Pierre Galaup 

Date: 2025

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Galaup, C. J. P. (2025). Approches pour la détection automatique de présence 
sexuelle en temps réel via analyse d'EEG [Mémoire de maîtrise, Polytechnique 
Montréal]. PolyPublie. https://publications.polymtl.ca/69275/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/69275/

Directeurs de
recherche:

Advisors:
Lama Séoud, & Patrice Renaud 

Programme:
Program:

Génie Informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/69275/
https://publications.polymtl.ca/69275/


POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Approches pour la détection automatique de présence sexuelle en temps réel
via analyse d’EEG

CLÉMENT JACQUES PIERRE GALAUP
Département de génie informatique et génie logiciel

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées 
Génie informatique

Octobre 2025

© Clément Jacques Pierre Galaup, 2025.



POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

Approches pour la détection automatique de présence sexuelle en temps réel
via analyse d’EEG

présenté par Clément Jacques Pierre GALAUP
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Thomas HURTUT, président
Lama SÉOUD, membre et directrice de recherche
Patrice RENAUD, membre et codirecteur de recherche
Tarik BOUKHALFI, membre externe



iii

DÉDICACE

À ma famille pour m’avoir accordé une confiance, un soutien et un amour inconditionnel
depuis l’autre coté de l’océan.

À mes amis, mes proches, mes potes, ceux et celles dont j’ai eu la chance de croiser le
chemin. Ceux qui sont restés et ceux qui sont partis.



iv

REMERCIEMENTS

Je tiens tout d’abord à remercier ma directrice et mon directeur de recherche, Lama Séoud et
Patrice Renaud, pour ces années de maîtrise qui n’ont été possibles que grâce à leur soutien,
leurs encouragements et leurs conseils, autant techniques que moraux. Iels ont toujours été là
pour moi malgré mes nombreuses erreurs, avec une patience et une bienveillance inestimables.
Leur confiance en moi, même dans les moments où j’avais cessé de croire en mes propres
capacités, m’a permis de persévérer et de me relever. Un grand merci aussi à Matthieu
Brideau-Duquette et Sarah Saint-Pierre Côté, qui m’ont accepté dans leur laboratoire, m’ont
permis d’utiliser les données issues de leurs dures années de labeur et d’avoir pu apporter
avec ce mémoire ma petite pierre à l’édifice qu’iels sont en train de construire à l’INPLPP.
Sans leurs conseils et leur soutien, ce projet n’aurait certainement jamais abouti. Je tiens
aussi à saluer tous les membres du VisionIC, mon laboratoire de Polytechnique Montréal,
qui ont toujours su m’inclure dans leur joie et bonne humeur malgré mon statut mérité de
fantôme du laboratoire. Des collègues qui ont toujours su m’épauler quand le besoin s’est
fait sentir et que je suis heureux et fier de pouvoir aujourd’hui appeler des amis. Je remercie
également toutes les personnes que j’ai pu rencontrer durant ma maîtrise au travers de la
vie étudiante de Polytechnique Montréal. Merci à mes amis du PUB pour avoir fourni le
réconfort après l’effort, merci à Polyshow de m’avoir tant appris et merci à toute l’équipe de
Polydanse qui m’a fait vivre une passion au travers de moments de danse. Tant d’aventures
parallèles incroyables sans lesquelles je n’aurais sans doute jamais trouvé la force de finir
l’aventure qu’a été cette maîtrise. Merci à ma famille étendue et à mes amis de m’avoir
soutenu et de n’avoir qu’un petit peu rigolé quand j’ai annoncé que j’allais partir de l’autre
côté de l’Atlantique regarder les ondes cérébrales pour prédire des érections (mais c’est pour
une bonne cause : c’est pour diagnostiquer des pédophiles, et en plus c’est en VR). Enfin, un
immense merci à mes proches, mes parents, mon frère et ma sœur pour leur soutien constant
malgré la distance, pour les encouragements dans les moments où la motivation se faisait
légère, les célébrations pour partager chacune des petites victoires de ce projet. Sans eux je
n’aurais jamais pu ni finir cette maîtrise, ni devenir la personne que je suis aujourd’hui.



v

RÉSUMÉ

La détection de la présence sexuelle constitue un enjeu important en contexte médico-
légal et clinique, notamment pour l’évaluation du risque de récidive chez les auteurs d’in-
fractions sexuelles. Ce mémoire propose une exploration de diverses méthodes non inva-
sives de détection en temps réel de l’impulsion sexuelle à partir des seuls signaux issus de
l’électroencéphalogramme (EEG), en supprimant la pléthysmographie pénienne (PPG). L’im-
pulsion sexuelle est définie comme une réponse physiologique rapide à un stimulus sexuel,
distincte de la présence sexuelle, qui relève d’une expérience subjective plus complexe.

L’étude repose sur des immersions virtuelles de participants masculins dans des scénarios
neutres et érotiques. Trois approches de classification issues de divers domaines de la littéra-
ture sont comparées : réseau de neurones convolutifs (Convolutional Neural Networks) (CNN)
appliqué à des spectrogrammes , extraction de caractéristiques profondes via un réseau asymé-
trique et régional de neurones convolutifs (Regional-Asymmetric Convolutional Neural Net-
work) (RA-CNN), et modèle de perceptron multi-couches (Multi-Layer Perceptron) (MLP)
basé sur des caractéristiques entropiques.

Malgré des résultats prometteurs intra-participants, la généralisation à des individus inconnus
reste limitée et le raffinage est nécessaire pour obtenir des performances satisfaisantes. Ces
travaux montrent la prévalence des modèles MLP basés sur des caractéristiques d’entropie
Fuzzy et met en avant leurs limites notamment la nécessité de prétraitements et d’extrac-
tion de caractéristiques computationnellement lourdes pour le moment incompatibles avec le
temps réel. Des pistes d’amélioration sont proposées, telles que l’optimisation GPU et l’in-
tégration de données oculométriques. Ce travail ouvre la voie à des outils non invasifs pour
l’évaluation clinique de la réponse sexuelle.
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ABSTRACT

Detecting sexual presence is a major concern in clinical and forensic contexts, particularly for
assessing the risk of recidivism among sexual offenders. This thesis introduces an exploration
of non-invasive methods for real-time detection of sexual impulse using only EEG signals,
eliminating the need for PPG. Sexual impulse is defined as a rapid physiological response to
sexual stimuli, distinct from sexual presence, which involves a more complex and subjective
experience. The study is based on immersive virtual scenarios involving male participants
exposed to both neutral and erotic content. Three classification approaches drawn from vari-
ous fields are compared: CNN applied to spectrograms, deep feature extraction via RA-CNN,
and MLP models based on entropy features. While intra-participant results are promising,
generalisation to unseen individuals remains limited, requiring fine-tuning to achieve satis-
factory performance. This work highlights the effectiveness of MLP models based on fuzzy
entropy features, while also underscoring their limitations due to computationally intensive
preprocessing and feature extraction, which are incompatible with real-time use. Poten-
tial improvements include GPU optimization and the integration of eye-tracking data. This
research paves the way for non-invasive tools to assess sexual response in clinical settings.
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CHAPITRE 1 INTRODUCTION

Dans un contexte médico-légal, les agents virtuels peuvent être utilisés pour susciter des ré-
ponses motrices sexuelles et perceptives permettant d’identifier des troubles et des déviances
sexuelles. En particulier, cela permet de distinguer les téléiophiles (individus sexuellement
attirés par les adultes) des pédophiles [1]. De plus, la recherche a démontré que les environ-
nements virtuels hautement immersifs ont tendance à améliorer les évaluations du réalisme
ainsi que les évaluations de l’attrait sexuel [2].

À l’Institut national de psychiatrie légale Philippe Pinel (INPLPP), nos partenaires et leurs
collaborateurs ont mis au point un examen pour évaluer le risque de récidive de sujets ayant
commis un crime sexuel [1]. Cet examen consiste à immerger le sujet dans un environnement
virtuel impliquant des stimuli sexuels humains tridimensionnels et à enregistrer plusieurs
types de signaux physiologiques. L’électroencéphalographie EEG permet de recueillir l’acti-
vité électrique cérébrale. La pléthysmographie sexuelle PPG mesure la réponse génitale d’ex-
citation chez les sujets. L’analyse de ces signaux, combinée à une discussion sur le ressenti du
participant, permet d’évaluer la présence sexuelle et d’étudier sa manifestation physiologique.
Le projet présenté dans ce mémoire s’inscrit dans la continuité directe des travaux menés à
l’INPLPP par Brideau-Duquette et Saint-Pierre Côté, et repose sur l’analyse des données
EEG recueillies dans le cadre de leurs expérimentations immersives.

Pour mesurer la réponse sexuelle, notre partenaire utilise la pléthysmographie qui mesure
l’afflux sanguin au niveau de l’appareil génital. Les techniques utilisées pour effectuer cette
mesure sont délicates à mettre en place et invasives pour les sujets.

L’intégration d’un scénario modulable dans les environnements virtuels est un projet en cours
à l’INPLPP et présenterait un intérêt majeur pour les recherches en contexte médico-légal et
clinique. En adaptant dynamiquement les stimuli en fonction des réponses physiologiques du
sujet, il devient possible de personnaliser l’expérience immersive et d’optimiser la sensibilité
des mesures. Cette flexibilité permet non seulement de maintenir l’engagement du partici-
pant, mais aussi de cibler plus précisément les zones d’intérêt diagnostique, en ajustant le
contenu en temps réel selon les réactions cérébrales ou comportementales observées. Un scé-
nario modulable permet de maximiser la pertinence des données recueillies pour l’analyse de
l’intensité de la présence sexuelle.

Dans ce sens, le projet de recherche ici présenté se concentre sur deux objectifs :
— la prédiction de la réponse sexuelle, à partir de l’analyse des seuls signaux EEG, afin

de supprimer la mesure de PPG invasive.
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— la mise en place d’une chaîne de prédiction adaptable à un traitement en flux continu
des données pour permettre une prédiction en temps réel de la réponse sexuelle dans
le but de la future mise en place d’un outil permettant de personnaliser l’évolution du
scénario immersif.

La suite du mémoire sera structurée de la manière suivante. Tout d’abord, au travers de la
revue de littérature du chapitre 2, nous présenterons les travaux existants qui permettront de
mieux définir nos objectifs et hypothèses de recherche dans le chapitre 3. Ensuite, le chapitre
4 décrit la mise en place de ces diverses méthodes, ainsi que l’établissement d’un protocole
d’évaluation qui permettra de mettre en lumière leur efficacité. Les expérimentations et les
résultats obtenus seront alors exposés et discutés dans le chapitre 5. Puis, le chapitre 6 mettra
en avant les contraintes et limites de nos méthodes ainsi que des résolutions potentielles qui
restent à explorer dans le futur. Nous reviendrons sur les résultats obtenus, leurs limitations
et les pistes d’améliorations futures dans la conclusion au chapitre 7
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CHAPITRE 2 REVUE DE CONNAISSANCES ET DE LA LITTÉRATURE

Préambule

Cette revue de littérature a pour objectif d’explorer différentes méthodes qui permettraient
de mettre en place un outil de détection en temps réel de la présence sexuelle. Nous com-
mencerons par étudier les fondements théoriques et les approches méthodologiques liées à la
détection de la présence sexuelle à partir de signaux physiologiques notamment électroencé-
phalographiques (EEG).

Puis, afin d’élargir les perspectives méthodologiques de notre étude, nous examinerons les
travaux issus de domaines connexes, en particulier celui de la reconnaissance d’émotions.
Cette étude de méthodes issues de domaines connexes a pour but d’identifier des modèles
transférables à notre projet et permettant d’anticiper les défis liés à la détection en temps
réel, la variabilité inter-sujets et à la complexité des signaux EEG.

2.1 Définition de la présence sexuelle

La présence sexuelle désigne une forme spécifique de présence, définie comme le sentiment
subjectif d’être en interaction avec un agent sexuel dans un environnement et en particulier
dans un environnement numérique immersif.

C’est un état psychologique subjectif qui implique une interaction dynamique entre les pro-
priétés du stimulus, les attentes de l’individu et les mécanismes cérébraux sous-jacents à
l’engagement affectif et sexuel.

Selon Renaud et al. [1], elle mobilise des processus cognitifs tels que l’attention dirigée,
la reconnaissance d’intentionnalité et l’engagement émotionnel. Cette expérience ne dépend
pas exclusivement de la réalité virtuelle, mais peut émerger à partir de contenus visuels
synthétiques, comme le démontrent les travaux de Renaud et al. [3].

Les recherches de Renaud et al. [1, 3] suggèrent que la présence sexuelle constitue un phé-
nomène neurocognitif mesurable physiologiquement. Ces résultats ont été confirmés plus
récemment par les travaux de Brideau-Duquette et al. [4] et Côté et al. [5].



4

2.2 Détection physiologique de la présence sexuelle

Les études sur la présence sexuelle s’appuient sur des données multimodales combinant des
signaux physiologiques tels que l’EEG, l’oculométrie, la PPG (vaginale ou pénienne). Ces
données sont généralement collectées dans des environnements immersifs en réalité virtuelle
(VR), où les participants sont exposés à des stimuli à contenu sexuel contrôlé. Les données
sont annotées après un entretien avec le participant ou ce dernier répond à un questionnaire
indiquant l’intensité de la présence sexuelle ressentie pendant l’immersion. Les prédictions
sont effectuées sur des immersions relativement longues (entre 30 s et 2 min). [3, 4]

2.2.1 Pléthysmographie génitale

La pléthysmographie génitale (PPG car nous parlons de pléthysmographie pénienne dans le
cas des participants masculins) est une mesure physiologique qui permet de mesurer l’afflux
sanguin au niveau des parties génitales.

Dans le cadre de notre projet, elle est utilisée pour mesurer la réponse sexuelle [1, 3–5].

Chez l’homme, cela consiste à placer une jauge au mercure autour de la tige pénienne, et
l’étirement de la jauge entraîne un changement de voltage proportionnel à l’afflux sanguin [6].
Chez la femme, la technique consiste à insérer une sonde dans la vulve, sonde dans laquelle
se trouvent deux diodes à infrarouge, une émettrice et une réceptrice. La réflexion infrarouge
captée par la diode réceptrice quantifie l’engorgement sanguin des parois de la vulve et permet
une mesure de l’excitation sexuelle [5, 7]. Ces techniques sont délicates à mettre en place et
invasives pour les sujets.

La PPG permet d’identifier des patrons d’activation physiologique en réponse à des contenus
érotiques, pouvant être corrélés à une expérience subjective de présence sexuelle. [1,3] Cette
mesure physiologique directe offre ainsi un complément aux données EEG dans l’évaluation
multimodale de la présence sexuelle [5].

2.2.2 Électroencéphalographie

L’EEG est la mesure de l’activité électrique interne du cerveau. Elle est réalisée via la pose
d’électrodes sur la boîte crânîenne. La répartition des différentes électrodes est visible sur la
figure 4.2.

L’EEG constitue un outil privilégié pour l’étude de la présence sexuelle, en permettant de
mesurer les dynamiques cérébrales associées à des états de présence sexuelle subjectivement
rapportés. [1, 3–5].
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L’analyse électroencéphalographique dans le cadre de l’étude de la présence sexuelle repose
sur l’extraction de plusieurs types de caractéristiques du signal.

Bandes de fréquences et régions pertinentes. Les bandes de fréquences EEG jouent
un rôle central dans la détection des états affectifs et cognitifs. Selon Guevara et al. [8] chez
des participantes en contexte de stimulation sexuelle, une suppression des rythmes alpha
frontaux (8–12 Hz) et une augmentation de l’activité dans les bandes bêta (13–30 Hz) et
gamma (>30 Hz) ont été observées, notamment dans les régions temporales et pariétales,
traduisant une activation corticale liée à l’excitation sexuelle. En revanche pour Brideau-
Duquette et al. [4], chez des participants masculins, c’est davantage l’activité des bandes de
fréquences alpha et bêta dans les régions frontales qui contient l’information relative à la
présence sexuelle. De même pour Saint-Pierre Coté et al. [5] ce sont des caractéristiques de
la région frontale dans la bande de fréquence alpha qui sont étudiées sur des participantes
femmes.

Prétraitement. Le prétraitement des données EEG inclut généralement :
— Un filtrage passe-bande (souvent entre 0.5 Hz et 45 Hz) pour éliminer les artefacts de

basse fréquence et les interférences haute fréquence.
— La suppression des artefacts liés aux mouvements oculaires et musculaires via des

techniques comme l’analyse en composantes indépendantes (ICA pour Independent
Component Analysis) [4].

Caractéristiques entropiques. L’entropie est utilisée pour quantifier la complexité et
l’imprévisibilité du signal EEG. Des mesures telles que l’entropie de Sample [4] permettent
d’évaluer la dynamique du signal cérébral en réponse à des stimuli sexuels. Renaud et al. [3]
ont introduit une mesure d’entropie croisée dynamique frontale pour capturer les corrélats
neurophysiologiques de la présence sexuelle. Cette approche permet de détecter les variations
synchrones entre régions cérébrales en lien avec l’exposition à des contenus sexuels synthé-
tiques, révélant des patrons spécifiques d’activation frontale associés à l’expérience subjective
de présence. Cette mesure est également utilisée par Brideau-Duquette et al. [4].

Asymétrie cérébrale. L’asymétrie EEG, notamment dans les régions frontales et parié-
tales, constitue un indicateur pertinent de la latéralisation des réponses émotionnelles. Des
études récentes par Saint-Pierre Coté et al. [5] ont montré que des asymétries dans l’activité
cérébrale peuvent être des marqueurs de l’intensité de la présence sexuelle ressentie.
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2.3 Prédiction de la présence sexuelle

Les architectures de prédiction utilisées dans le domaine de la prédiction de présence sexuelle
sont principalement basées sur l’apprentissage profond mais restent relativement simples. La
plupart des modèles utilisés sont des MLP fusionnant plusieurs modalités (EEG, oculométrie,
PPG) via des couches connectées.

La quantité limitée de participants réduit la taille du jeu de données disponible et doit être
prise en compte dans le choix des architectures utilisées.

La majorité des études adoptent une approche hors-ligne, où les signaux sont enregistrés,
prétraités et analysés a posteriori.

Limites. Il convient de souligner que le champ de l’analyse des signaux physiologiques, et
en particulier de l’EEG, appliquée à l’étude de la présence sexuelle demeure relativement
récent et encore limité dans la littérature scientifique. À ce jour, la majorité des travaux cités
précédemment ont été réalisés par des chercheurs affiliés à l’INPLPP, institution à laquelle
le présent projet est également rattaché. Afin d’élargir la compréhension des approches mé-
thodologiques disponibles pour l’analyse des signaux EEG, il apparaît pertinent d’examiner
les contributions issues de domaines connexes, tels que la reconnaissance d’émotions et la
détection de pathologies et troubles d’ordres neurologiques.

2.4 Analyse de l’EEG pour la reconnaissance d’émotions et autres domaines
connexes

2.4.1 Pourquoi regarder le domaine de reconnaissance d’émotions ?

Le domaine de la reconnaissance d’émotions par EEG constitue une source précieuse d’ins-
piration, notamment en raison de la proximité entre les mécanismes neurophysiologiques im-
pliqués dans les états émotionnels et ceux mobilisés lors de l’expérience de présence sexuelle.

De plus, ce champ bénéficie d’un corpus scientifique particulièrement riche, avec plusieurs
centaines de publications recensées dans les dernières années. Cette dynamique est soutenue
par l’existence de bases de données publiques et largement utilisées telles que DEAP, SEED,
DREAMER ou SEED-IV, qui facilitent la reproductibilité des travaux et la comparaison
des modèles. Plusieurs revues de littérature, ont été publiées pour synthétiser les avancées
dans ce domaine. [9]

Il est important de noter que la reconnaissance d’émotion, notamment sur la base de données
DEAP se fait généralement sur des enregistrements plus courts (environ 6 s) [10]. Ce qui
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rend les méthodes utilisées intéressantes pour d’éventuelles applications en temps réel.

Cette maturité méthodologique et la disponibilité de ressources partagées font de la recon-
naissance d’émotions un terrain fertile pour le transfert de connaissances vers des domaines
émergents comme la détection de la présence sexuelle.

2.4.2 Architectures utilisées pour la reconnaissance d’émotions

CNN Les réseaux de neurones convolutionnels CNN sont largement utilisés dans le trai-
tement des signaux EEG pour la reconnaissance des émotions. Ils sont souvent utilisés sur
des représentations spatiales du signal où des caractéristiques spectrales ou entropiques sont
extraites du signal de chaque électrode puis combinées dans une représentation 2D exploitant
les positions relatives des électrodes. Par exemple, Bashivan et al. [11] ont proposé un modèle
CNN capable d’extraire des représentations spatio-temporelles robustes à partir des données
EEG brutes. De même, Lawhern et al. [12] ont introduit EEGNet, une architecture légère et
efficace pour la classification EEG. Ces approches ont démontré leur efficacité sur des bases
comme DEAP et SEED, bien que leur capacité à capturer et modéliser les dépendances
temporelles des signaux EEG reste limitée [9].

Réseaux de neurones récurrents (Recurrent Neural Network) (RNN) Les réseaux
de neurones récurrents sont également souvent utilisés, notamment les architectures de type
réseau a mémoire long-court terme (Long Short-Term Memory) (LSTM) et unité récurrente
à barrière (Gated Recurrent Unit) (GRU), conçues pour modéliser les séquences temporelles.
Zhang et al. [13] ont proposé un modèle STRNN (Spatial-Temporal RNN) qui exploite les
dépendances spatiales et temporelles du signal EEG pour améliorer la reconnaissance émo-
tionnelle. Ces modèles permettent de capturer les dynamiques cérébrales liées aux émotions,
mais peuvent être sensibles au bruit et à la variabilité inter-sujets [9].

Architectures hybrides (CNN-RNN) Pour combiner les avantages des CNN et des
RNN, plusieurs travaux ont proposé des architectures hybrides. Ramzan et Dawn [14] ont
développé un modèle CNN-LSTM fusionné, appliqué aux bases DEAP et SEED, qui atteint
des taux de précision élevés en intégrant les caractéristiques spatiales et temporelles du signal
EEG. Ce type d’architecture permet une modélisation plus complète du signal, bien qu’il
implique une grande complexité computationnelle et donc un nombre de données important
[9].
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RA-CNN Le modèle RA-CNN, proposé par Li et al. [15], est une architecture conçue pour
la reconnaissance des émotions à partir de signaux EEG. Des caractéristiques profondes de
chacun des signaux EEG sont extraites par réseaux convolutionnels. Les caractéristiques ex-
traites de chaque électrode sont utilisées pour créer une représentation spatiale 2D sur laquelle
ils utilisent deux CNN pour extraire des caractéristiques régionales et asymétriques Cette ap-
proche permet une modélisation plus fine des dynamiques cérébrales liées aux émotions et
semble améliorer la variabilité inter-sujets. Malheureusement ce modèle a une complexité
architecturale accrue ce qui peut soulever des problèmes de surapprentissage si la taille de
notre jeu de données est trop petite.

Transformers Les modèles Transformers ont été adaptés à l’analyse des signaux EEG.
Liu et al. [16] ont proposé le modèle EEG émotion Transformer (EeT), basé sur des blocs
d’attention spatiale et temporelle, permettant une extraction conjointe des caractéristiques
spectrales, spatiales et temporelles. Ces modèles surmontent les limitations des CNN et RNN
en capturant des dépendances globales sans contraintes séquentielles. Bien que les résultats
soient prometteurs, l’entraînement de ces réseaux nécessite de très grandes quantités de don-
nées [9].

2.4.3 Architectures utilisées dans d’autres domaines

Parmi les nombreuses méthodes présentes dans le domaine de la reconnaissance d’émotions,
l’application directe de CNN aux spectrogrammes EEG reste étonnamment rare. Les spec-
trogrammes peuvent entraîner une perte de résolution temporelle, ce qui limite leur capacité
à représenter les dynamiques émotionnelles fines.

Cependant, dans le cadre de notre projet, l’utilisation de CNN sur des spectrogrammes EEG
présente un intérêt particulier. Cette approche a montré son efficacité pour détecter des pa-
trons pathologiques dans des signaux EEG complexes. Par exemple, Esquivel et al. [17] ont
utilisé des spectrogrammes transformés par ondelettes comme entrée dans un CNN pour
détecter des crises d’épilepsie avec une précision élevée. De même, Thomas et al. [18] ont
démontré que des CNN appliqués à des spectrogrammes EEG permettent une classifica-
tion automatique des stades du sommeil et la détection de troubles associés. Ces résultats
suggèrent que les spectrogrammes EEG, combinés à des architectures CNN bien calibrées,
pourraient offrir une voie prometteuse pour la détection de la présence sexuelle, notamment
en capturant des signatures neurophysiologiques complexes.
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CHAPITRE 3 OBJECTIFS DE RECHERCHE

Le but de ce projet est la mise en place d’un outil d’apprentissage automatique utilisable
dans le cadre de la modularisation d’un scénario immersif VR et basé sur des enregistrements
physiologiques acquis de manière non-invasive.

Synthèse de la revue de littérature À la suite de cette revue de littérature, nous
pouvons observer les faits suivants :

— Les travaux de l’INPLPP étudient la présence sexuelle qui est un état subjectif et
se basent sur l’étude à posteriori de segments d’enregistrements longs et nécessitent
l’utilisation de la mesure PPG invasive.

— La présence sexuelle ne peut être réduite à une réponse immédiate. En effet, elle est
définie comme une expérience subjective d’engagement affectif et cognitif envers un
agent sexuel dans un environnement médiatisé. C’est une mesure subjective, mobilisant
des processus attentionnels, émotionnels et représentationnels. Elle suppose une forme
de co-présence perçue avec un partenaire virtuel ou synthétique, et s’inscrit dans une
temporalité plus étendue. On s’intéressera dans le cadre de ce projet à la réponse
physiologique rapide et automatique à un stimulus sexuel, ce que l’on peut appeler
une impulsion sexuelle.

— Le domaine de la reconnaissance d’émotions a développé des méthodes computation-
nelles adaptées à l’analyse de signaux EEG.

— La reconnaissance d’émotion se fait sur de très larges bases de données, souvent pu-
bliques et les architectures les plus efficaces (transformers, CNN-RNN) sont assez
lourdes.

— Les architectures CNN par analyse de spectrogrammes n’ont, à notre connaissance,
pas été utilisées dans ce domaine et présentent un intérêt potentiel.

Objectifs du projet Il n’existe pas, à notre connaissance un outil computationnel per-
mettant la détection de l’impulsion sexuelle sur la seule analyse de l’EEG. C’est ce que nous
souhaitons mettre en place dans ce projet. Notre outil doit satisfaire les contraintes suivantes :

— Être capable de détecter automatiquement une réponse physiologique à un stimulus
sexuel via l’analyse de données EEG. Afin de pouvoir se passer de l’enregistrement
invasif de la PPG.

— Être adapté ou adaptable à un traitement des données en flux continu pour une future
utilisation en temps réel. Donc basé sur des segments de données plus courts.
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— Être généralisable à des participants inconnus (résistant à la très forte variabilité inter-
sujets de l’EEG) ou, le cas échéant, pouvoir se raffiner facilement pour être performant
sur des participants dont on ne connaît qu’une quantité limitée de données (données
de calibration).

Pour cela, nous testerons diverses méthodes et architectures d’apprentissage automatique
afin d’établir lesquelles sont les plus adaptées.

Nous nous baserons sur les hypothèses suivantes :

— Les caractéristiques de l’EEG utilisées dans le domaine de la détection de présence
sexuelle ( étude des bandes de fréquences alpha et bêta dans la région frontale, calcul
de caractéristiques entropiques, ...) sont utilisables dans le cadre de la détection de
l’impulsion sexuelle.

— Les méthodes d’apprentissage automatique issues de la reconnaissance d’émotions ou
d’autres domaines connexes sont transférables à ce projet mais doivent être adaptées
aux conditions et contraintes spécifiques.
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CHAPITRE 4 MÉTHODES ET EXPÉRIENCES

4.1 Données disponibles et Prétraitement

Les données avec lesquelles nous travaillons ont été collectées par Sarah Saint-Pierre Coté et
Matthieu Brideau-Duquette [4] [5], dans le cadre d’un projet plus large de l’institut Philippe
Pinel 1.

4.1.1 Explication des conditions expérimentales

Participants et scénarios

Nous avons accès à des données obtenues à partir de 30 participants volontaires cisgenres
hétérosexuels masculins âgés de 20 à 35 ans. Chaque participant a été immergé dans quatre
scénarios de réalité virtuelle différents.

— Diffusion d’une vidéo neutre VidNeutre dans laquelle il n’y a aucune stimulation
sexuelle.

— Diffusion d’une vidéo "sexuelle" VidSex contenant du contenu pornographique/érotique
afin d’éveiller une stimulation sexuelle.

— Diffusion d’un scénario en réalité virtuelle (VR) neutre en 3D généré VidAndroide
dans lequel les participants interagissent pour la première fois avec un personnage
virtuel personnalisé qu’ils ont créé avant l’expérience. Ce scénario ne contient aucune
stimulation sexuelle. Les interactions avec le personnage sont asexuelles.

— Diffusion d’un scénario sexuel en VR en 3D généré VidPVP-EVP où le personnage vir-
tuel a un comportement sexuellement explicite afin d’éveiller une stimulation sexuelle.

Signaux physiologiques enregistrés

Durant l’immersion dans les quatre scénarios, les données physiologiques suivantes ont été
enregistrées [4] :

La tumescence pénienne a été mesurée à l’aide de la PPG. Les données de la PPG ont
été enregistrées avec le logiciel DataPac et traitées à l’aide de la suite logicielle PrefTest
Professional (version 11.3.0.20 ; tous produits par Limestone Technologies).

Les enregistrements EEG ont été réalisés à l’aide d’un bonnet équipé de 32 électrodes actives,
selon le système 10–20 (Acticap, Brain Vision). Le signal EEG a été amplifié en temps réel
à l’aide de l’amplificateur ActiChamp de Brain Vision, puis enregistré à l’aide des logiciels
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MOVE et Recorder de Brain Vision (version 1.20.0401).

Selon [4], les données des électrodes frontales FP1, FP2, F7, F3, Fz, F4, F8, FC5, FC1,
FC2, FC6 semblent les plus pertinentes pour la reconnaissance de la présence sexuelle et
donc de l’impulsion sexuelle, nous ne conserverons donc que les données de ces 11 électrodes.

Filtrage et échantillonnage

Les mesures PPG sont échantillonnées à 25 Hz et ne subissent aucun filtrage.

Les mesures EEG sont échantillonnées à 500 Hz. Le signal a ensuite été immédiatement soumis
à un filtrage, incluant un filtre passe-bas réglé à 1,59 Hz, un filtre passe-haut réglé à 70 Hz,
ainsi qu’un filtre coupe-bande à 60 Hz destiné à atténuer le bruit électrique ambiant propre
aux installations nord-américaines. Dans le cadre de notre étude nous ne nous intéressons
uniquement aux bandes de fréquences delta, theta, alpha et beta (comprises des fréquences
de 0.5 à 25 Hz) donc nous effectuons un deuxième filtrage passe-bas à 30 Hz et, pour réduire
la taille des données, un ré-échantillonnage à 60 Hz.

4.1.2 Formatage pour une utilisation en temps réel et étiquetage

Formatage pour une prédiction en temps réel

Afin de pouvoir être adapté à une utilisation en temps réel, nous souhaitons effectuer une
prédiction de l’impulsion sexuelle sur une courte période de temps. À partir de chacun de
nos signaux, nous extrayons un point de données par seconde à l’instant t, en conservant les
6 secondes précédentes d’EEG comprises entre t − 6s et t pour t ≥ 6s.

Les points de données correspondent à des fenêtres de 6 secondes contenant 360 échantillons
par électrode avec un recouvrement temporel de 5 secondes, soit un taux de 83%.

Étiquetage des données

Pour créer nos bases de données, nous cherchons à déterminer quelles parties de quels scé-
narios correspondent à des états excités, présentant une impulsion sexuelle ou à des états
neutres. Pour effectuer cet étiquetage, nous regardons les courbes de PPG des patients dans
chacun des scénarios avec l’aide d’un expert dans le domaine : Dr Patrice Renaud.

Seules les courbes PPG de l’immersion dans des scénarios vidéo et non générés en 3D sont
suffisamment claires pour procéder à un étiquetage certain.

Dans le cadre de l’immersion en scénario vidéo à caractère sexuel, nous définissons une plage
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temporelle correspondant à un pic et au plateau du maximum de la PPG qui témoigne
d’une impulsion sexuelle. Nous définissons toutes les données dont l’horodatage est dans cet
intervalle comme correspondant à un état excité.

Au vu de la PPG seule, il est difficile de dire si le reste du scénario présente un état d’impulsion
sexuelle, les données dont l’horodatage est en dehors de ces plages ne sont donc pas étiquetées
et ne seront pas prises en compte dans l’entraînement des modèles.

Nous prenons donc l’ensemble des données recueillies dans le cadre du scénario vidéo neutre
VidNeutre comme correspondant à un état neutre non-excité.

Figure 4.1 En vert, intervalle des instants correspondant à un état excité pour le scénario
VidSex pour un participant.

4.1.3 Prétraitement par analyse par composantes indépendantes

Nous disposons de ces données EEG "brutes" ainsi que des données EEG pré-traitées éga-
lement obtenues dans le cadre des travaux précédents [4, 5]. Ces données ont été traitées à
l’aide du logiciel Analyzer 2.1 (Brain Vision), dans lequel les canaux trop bruités ont été
identifiés et exclus lors d’inspections visuelles. Une analyse en composantes indépendantes
ICA a ensuite été appliquée en utilisant l’algorithme de pente moyenne, des ensembles de
données spécifiques aux conditions, ainsi que les méthodes Infomax et de somme des corré-
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lations quadratiques issues du logiciel Analyzer, afin d’éliminer les composantes de bruit les
plus importantes majoritairement associées aux mouvements oculaires.

Le même filtrage passe-bas à 30 Hz et ré-échantillonnage à 60 Hz ainsi que le processus
d’extraction/étiquetage défini plus haut ont été appliqués à ces données pré-traitées.

Il est cependant important de noter que ce prétraitement nécessite une connaissance du signal
dans son ensemble. Le but de notre recherche est d’effectuer une prévision de l’impulsion
sexuelle en temps-réel donc de traiter les données entrantes comme un flot, ce qui rendrait
l’utilisation de ce prétraitement incompatible avec la mise en place de futures expériences en
temps réel.

4.2 Classification par analyse de spectrogrammes

Notre première approche consiste à examiner la représentation de la densité spectrale de
puissance dans les domaines fréquentiel et temporel, en utilisant une représentation par spec-
trogramme, puis à analyser ces spectrogrammes à l’aide de réseaux de neurones convolutifs
(CNN). Bien que peu commune dans le domaine de la reconnaissance d’émotions, l’étude de
l’EEG par analyse spectrographique est utilisée en médecine pour détecter diverses patholo-
gies comme l’épilepsie [17] et certains troubles du sommeil [18].

4.2.1 Extraction de spectrogrammes

Chaque point de données de 6 secondes échantillonné à 60 Hz contient 360 échantillons
pour chacune des 11 électrodes frontales. Pour chaque signal, un spectrogramme de densité
spectrale linéaire est extrait à l’aide de la fonction matplotlib.pyplot.specgram de la
bibliothèque Matplotlib. Cette extraction est réalisée sans suppression de la tendance linéaire
du signal avec 64 échantillons par segment spectral, un recouvrement de 32 échantillons, et
l’application d’une fenêtre de Hamming sur chacun des segments. Nous obtenons ainsi un
spectrogramme de dimension 33x10 évaluant la densité spectrale de fréquences de 0 à 30 Hz.

Les spectrogrammes ainsi obtenus sont combinés dans une image multicanal de dimension
33x10x11.

4.2.2 Architectures CNN pour analyse de spectrogrammes

Nous utilisons ici des architectures CNNs très minimalistes. Au vu de la taille très limitée
du jeu de données, un réseau avec trop de paramètres risque de surapprendre. Nous utilisons
trois architectures SpectroCNN_3 décris en 4.1, avec des noyaux 3 × 3, SpectroCNN_5 décris
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en 4.2 avec des noyaux 5×5 et SpectroCNN_Res décris en 4.3 avec plusieurs tailles de noyaux
et une connexion résiduelle.

Tableau 4.1 Architecture du modèle SpectroCNN_3 avec nombre de paramètres

Type de couche Taille de sortie Nb paramètres
Entrée 11 × 33 × 10 -
Convolution 3×3, padding=0 (11→32) 32 × 31 × 8 3 200
BatchNorm 32 × 31 × 8 64
ReLU 32 × 31 × 8 -
Convolution 3×3, padding=0 (32→64) 64 × 29 × 6 18 496
BatchNorm 64 × 29 × 6 128
ReLU 64 × 29 × 6 -
Convolution 3×3, padding=1 (64→64) 64 × 29 × 6 36 928
ReLU 64 × 29 × 6 -
Convolution 3×3, padding=1 (64→64) 64 × 29 × 6 36 928
ReLU 64 × 29 × 6 -
Flatten 5568 -
Dense (64 unités) 64 356 416
Dropout (p = 0,3) 64 -
Dense (1 unité) 1 65
Activation Sigmoid 1 -
Total — 452 225

Tous ces modèles utilisent des activations ReLU entre chaque convolution et une couche
Sigmoid avant la sortie. Pour éviter le surapprentissage, nous ajoutons dans tous les modèles
deux couches de normalisation par lot (BatchNorm) après les premières convolutions et une
couche de désactivation aléatoire (Dropout) avec une probabilité de désactivation de p=0.3
avant la dernière couche dense.

Une recherche d’optimisation des hyperparamètres par grille a montré que les meilleurs ré-
sultats étaient obtenus avec une taille de batch de 100, un taux d’apprentissage initial de
0.0001 pour 150 epochs.

Nous utilisons ici une fonction de perte d’entropie croisée binaire et un optimiseur de type
Adam.
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Tableau 4.2 Architecture du modèle SpectroCNN_5 avec nombre de paramètres

Type de couche Taille de sortie Nb paramètres
Entrée 11 × 33 × 10 -
Convolution 5×5, padding=0 (11→32) 32 × 29 × 6 8 832
BatchNorm 32 × 29 × 6 64
ReLU 32 × 29 × 6 -
Convolution 5×5, padding=2 (32→64) 64 × 29 × 6 51 264
BatchNorm 64 × 29 × 6 128
ReLU 64 × 29 × 6 -
Convolution 5×5, padding=2 (64→64) 64 × 29 × 6 102 464
ReLU 64 × 29 × 6 -
Convolution 5×5, padding=2 (64→64) 64 × 29 × 6 102 464
ReLU 64 × 29 × 6 -
Flatten 5568 -
Dense (64 unités) 64 356 416
Dropout (p = 0,3) 64 -
Dense (1 unité) 1 65
Activation Sigmoid 1 -
Total — 622 697

4.3 Classification par extraction de caractéristiques temporelles profondes

La seconde approche est inspirée directement du domaine de la reconnaissance d’émotions
[15]. Nous analysons l’EEG en extrayant des caractéristiques profondes par convolutions sur
l’axe temporel pour chacune des électrodes et nous allons ensuite comparer les caractéris-
tiques de chacune des électrodes avec les électrodes voisines (caractéristiques régionales) et
les électrodes opposées (caractéristiques asymétriques).

4.3.1 Représentation spatiale de l’EEG

Pour pouvoir extraire ces caractéristiques spatiales des signaux EEG, nous assignons à cha-
cune de nos électrodes un pixel d’une image en s’aidant de la vue en plan du système in-
ternational 10-20 comme dans la figure 4.2. Nous n’utilisons que les électrodes frontales,
FP1, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6 que l’on assigne à l’image 4 × 9
schématisée dans le Tableau 4.4.

Nous transformons donc notre vecteur de données 11×360 en matrice de données 4×9×360.
Les données des pixels non-associés à des électrodes peuvent être interpolées (de manière
gaussienne ou linéaire) mais de telles méthodes introduisent du bruit et augmentent la charge
computationnelle. Nous mettons donc des valeurs nulles pour ces positions.
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Tableau 4.3 Architecture du modèle SpectroCNN_Res avec nombre de paramètres

Type de couche Taille de sortie Nb paramètres
Entrée 11 × 33 × 10 -
Convolution 5×5, padding=0 (11→32) 32 × 29 × 6 8 832
BatchNorm 32 × 29 × 6 64
ReLU 32 × 29 × 6 -
Convolution 3×3, padding=1 (32→64) 64 × 29 × 6 18 496
BatchNorm 64 × 29 × 6 128
ReLU 64 × 29 × 6 -
Sauvegarde pour addition résiduelle - -
Convolution 3×3, padding=1 (64→64) 64 × 29 × 6 36 928
ReLU 64 × 29 × 6 -
Convolution 3×3, padding=1 (64→64) 64 × 29 × 6 36 928
Addition résiduelle + ReLU 64 × 29 × 6 -
Flatten 5568 -
Dense (64 unités) 64 356 416
ReLU 64 -
Dropout (p = 0,3) 64 -
Dense (1 unité) 1 65
Activation Sigmoid 1 -
Total — 457 857

4.3.2 Extraction de caractéristiques par convolutions sur l’axe temporel

Pour ce modèle, nous proposons d’utiliser des couches de convolution unidimensionnelles
continues afin d’extraire séparément les caractéristiques temporelles de chaque canal EEG.
L’architecture est illustrée à la Figure 4.3. Les opérations de convolution sont effectuées uni-
quement dans la dimension temporelle. Quatre couches de convolution successives, contenant
respectivement 4, 8, 16 et 32 noyaux temporels, sont appliquées dans cette étape.

La taille des noyaux est définie comme suit pour les quatre couches respectivement : 16, 5, 5,
12. Les convolutions sont réalisées avec un stride de 3 et sans padding, ce qui réduit la taille
de l’axe temporel de 360 à 1.

Cette implémentation diffère du modèle original conçu pour la reconnaissance des émotions,
[19] qui commençait avec des noyaux de petite taille afin de capturer des caractéristiques de
plus haute fréquence. À l’inverse, notre approche commence par un noyau plus large, suivi
de noyaux plus petits, et se termine par une dernière convolution dont le noyau couvre toute
la longueur de l’entrée temporelle — ce qui équivaut fonctionnellement, à une couche dense
sur l’axe temporel, mais permet une implémentation plus simple.

Le tenseur résultant fT appartient à R4×9×32, représente une carte de caractéristiques tempo-
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0 0 0 FP1 0 FP2 0 0 0
0 0 0 0 0 0 0 0 0

F7 0 F3 0 Fz 0 F4 0 F8

0 FC5 0 FC1 0 FC2 0 FC6 0

Tableau 4.4 Positionnement spatial des électrodes frontales dans une matrice 4x9

Figure 4.2 Répartition spatiale des électrodes EEG.

relles par électrode, projetée sur une grille de taille 4 × 9 avec 32 canaux de sortie. Chacune
de ces convolutions est suivie d’une couche d’activation ReLU.

4.3.3 Extraction de caractéristiques régionales avec un CNN

Les caractéristiques temporelles préalablement obtenues peuvent être considérées comme des
images en couleur : les deux premières dimensions représentant la hauteur et la largeur, et
la dernière dimension étant analogue à un canal de couleur.

Dans les tâches de classification d’images, les réseaux de neurones convolutifs (CNN) s’avèrent
particulièrement efficaces pour extraire des représentations locales, grâce à leurs champs
récepteurs restreints. Notre objectif ici est de capturer l’information spatiale entre électrodes
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Figure 4.3 Extraction de caractéristiques profondes sur l’axe temporel.

adjacentes. Pour cela, trois couches de convolution bidimensionnelles de taille 3 × 3 sont
appliquées successivement, chacune comportant 32 filtres. Un remplissage par zéros (zero-
padding) est utilisé à chaque étape afin de préserver les informations en bordure des cartes
de caractéristiques temporelles. À l’issue de ces trois couches convolutives, les caractéristiques
régionales sont extraites. fR ∈ R4×9×32 Chacune de ces convolutions est suivie d’une couche
d’activation ReLU.

Figure 4.4 Extraction de caractéristiques régionales de haut niveau.



20

4.3.4 Extraction de caractéristiques asymétriques

Des études en neurosciences ont montré que les réponses de présence sexuelle présentent une
asymétrie frontale entre les hémisphères gauche et droit du cerveau [5]. Bien que l’opération
de convolution utilisée dans l’extracteur régional de caractéristiques permette de capturer des
relations spatiales locales, elle ne permet pas d’extraire des informations à longue distance,
notamment entre des positions symétriques sur le crâne.

Afin de mieux modéliser ces différences asymétriques entre les deux hémisphères, nous uti-
lisons un mécanisme appelé couche de différence asymétrique (ADL), qui effectue une sous-
traction entre les canaux appariés correspondant à des positions symétriques. Notons fT ∈
Rh×w×32 les caractéristiques temporelles extraites, l’ADL est alors formulé comme suit :

f̃A(i, j, k) = fT (i, j, k) − fT (i, w + 1 − j, k), i ∈ [|1, 4|], j ∈ [|1,
⌊9

2

⌋
|], k ∈ [|1, 32|] (4.1)

Le tenseur f̃A ∈ R4×⌊ 9
2⌋×32 représente les caractéristiques asymétriques préliminaires.

Pour extraire des caractéristiques asymétriques de niveau supérieur, nous appliquons une
couche de convolution de taille 1 × 1 sur f̃A. Cette opération permet d’intégrer les différences
asymétriques au sein de chaque paire de canaux. Afin de conserver un nombre d’éléments de
sortie cohérent avec celui de fR, le nombre de filtres est fixé à 64, ce qui donne fA ∈ Rh×⌊w

2 ⌋×64.
Cette convolution est suivie d’une couche d’activation ReLU.

Cette extraction de caractéristiques asymétriques est illustrée à la Figure 4.5.

4.3.5 Architecture du réseau convolutif régional asymétrique (RA-CNN)

À la suite de l’extraction des caractéristiques régionales fR et asymétriques fA, celles-ci sont
d’abord aplaties en vecteurs, puis concaténées pour former un vecteur unique de représen-
tation globale. Ce vecteur est ensuite transmis à une séquence de deux couches entièrement
connectées, suivie d’une couche de régularisation par désactivation aléatoire (Dropout), puis
d’une dernière couche dense de classification. Ce processus peut être formulé comme suit :
o = FC(fR ∥ fA). Toutes les couches de notre réseau sont suivies d’une activation ReLU et
la dernière couche d’une activation sigmoïde.

L’architecture complète est illustrée à la Figure 4.6.

Une recherche d’optimisation des hyperparamètres par grille a montré que les meilleurs résul-
tats sont obtenus avec une taille de batch de 200, un taux d’apprentissage initial de 0.0001
pour 150 itérations.
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Figure 4.5 Extraction de caractéristiques asymétriques de haut niveau.

Nous utilisons ici une perte entropie croisée binaire et un optimiseur Adam.

Nous testons l’importance des caractéristiques temporelles et régionales en entraînant deux
modèles similaires R_CNN et A_CNN qui n’utilisent respectivement que les caractéristiques
régionales et que les caractéristiques asymétriques.
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Figure 4.6 Architecture complète du réseau RA_CNN.

4.4 Classifications par analyses de caractéristiques entropiques

Des articles récents en détection de présence sexuelle utilisent la mesure d’entropie croisée
dynamique (DCE) de différentes bandes de fréquences [4] [5]. Nous cherchons à mettre en
place des modèles de classification basés sur cette caractéristique mais aussi sur les valeurs
des entropies des différentes bandes de fréquence de chaque électrode.

4.4.1 Extraction de caractéristiques entropiques

Séparation des données en bandes de fréquences

Avant d’extraire l’entropie de nos signaux, nous voulons diviser le signal en quatre bandes de
fréquences alpha basse de 8 à 10,5 Hz, la bande alpha haute de 10.5 à 13 Hz, la bande beta
basse de 13 à 20 Hz, et la bande beta haute de 20 à 30 Hz.

Pour cela, le signal est d’abord normalisé en fonction de la fréquence de Nyquist, puis un
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filtre de Butterworth d’ordre 4 est conçu pour cibler la bande de fréquences souhaitée. Ce
filtre est ensuite appliqué au signal original à l’aide d’un filtrage avant-arrière sans déphasage
(filtfilt), garantissant une réponse en phase linéaire. Ce traitement permet d’atténuer les
artefacts hors bande tout en conservant fidèlement la structure temporelle du signal.

Nous explorons également un découpage alternatif sur les bandes de fréquences delta de 0,5
à 4 Hz, thêta de 4 à 8 Hz, alpha de 8 à 13 Hz et bêta de 13 à 25 Hz.

Qu’est-ce que l’entropie ?

L’entropie évalue la complexité temporelle d’un signal en mesurant la dispersion et la redon-
dance de motifs.

Pour mieux comprendre ce que représente ces caractéristiques entropiques, nous considérons
un signal x = x0, x1, . . . xN de longueur N et une dimension d’intégration m.

Pour cela, nous construisons les vecteurs d’intégration A(m)(x) et A(m+1)(x) comme suit :

A(m)(x) = A
(m)
1 , . . . , A

(m)
N−m+1 où A

(m)
i = [xi, . . . xi+m−1] (4.2)

Nous utilisons ces vecteurs d’intégration pour construire des vecteurs de distances D(m)(x) et
D(m+1)(x) obtenus en aplatissant les matrices de distances D̃(m)(x) et D̃(m+1) définies comme
suit :

D̃(m)(x)i<j = ||A(m)
j , A

(m)
i ||2 =

√(
A

(m)
i − A

(m)
j

)2
(4.3)

.

Pour extraire les caractéristiques entropiques de chacun de nos signaux filtrés, nous utilisons
la librairie EntropyHub sur Python. [20]

Entropies "Sample" et "Fuzzy"

L’entropie par échantillon, dite Sample, consiste à seuiller les vecteurs de distance par rapport
à un seuil r et à l’écart type du signal σ pour obtenir les vecteurs binaires B(m)(x, r) et
B(m+1)(x, r) selon :

B
(m)
k (x, r) =

1, si D
(m)
k (x) > r · σ

0, sinon
pour k = 1, 2, . . . , N (4.4)



24

La valeur de l’entropie Sample est ensuite calculée de la façon suivante :

SampleEn(x, m, r, N) = − ln
∑B

(m+1)
k (x, r)∑

B
(m)
k (x, r)

 (4.5)

L’entropie floue, dite Fuzzy, est basée sur une modélisation probabiliste de la distance de
chaque motif à tous les autres, elle passe par le calcul de P (m)(x, r) et P (m+1)(x, r) avec :

P
(m)
i (x, r) = 1

N − m

N−m∑
j=1,j ̸=i

e
− ln(2)

(
D̃

(m)
i,j

(x)

r

)2

(4.6)

Puis nous obtenons l’équation de l’entropie Fuzzy de façon similaire.

FuzzyEn(x, m, r, N) = − ln
∑P

(m+1)
k (x, r)∑
P

(m)
k (x, r)

 (4.7)

. Nous calculons ces deux entropies pour chacun des signaux filtrés avec EntropyHub.SampEn
pour l’entropie Sample et avec EntropyHub.FuzzEn pour l’entropie Fuzzy. Nous fixons la
dimension d’intégration à m = 4 et le seuil à r = 0.2. Les vecteurs de caractéristiques
ainsi obtenus sont de dimensions 11 × 4 correspondant aux 11 électrodes et aux 4 bandes de
fréquence.

Entropie croisée dynamique

Nous utilisons ces caractéristiques entropiques pour extraire l’entropie croisée dynamique
DCE des électrodes frontales. La DCE est définie comme suit [4] :

DCE(f1,f2)(y1, . . . , yc) = 1∑c
i=1 y

(f1,f2)
i

(4.8)

Ici les y
(f1,f2)
i sont les signaux filtrés dans la bande de fréquence f1, f2 de nos 11 électrodes

frontales (donc avec c = 11).

Nous obtenons donc une valeur de DCE par bande de fréquences.

4.4.2 Architectures MLP basées sur l’entropie

Afin de déterminer l’importance de l’ajout de cette caractéristique d’entropie croisée dyna-
mique, nous proposons et comparons trois architectures de perceptrons multicouches MLP.
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Le modèle MLP_Baseline (Tableau 4.5) utilise uniquement les caractéristiques entropiques
brutes, le modèle MLP_DCE (Tableau 4.6) uniquement les caractéristiques de DCE et le mo-
dèle hybride MLP_Baseline+DCE (Tableau 4.7) concatène les caractéristiques de la DCE à la
représentation issue des données brutes avant la dernière couche dense.

Tableau 4.5 Architecture du modèle MLP_Baseline avec nombre de paramètres

Type de couche Taille de sortie Nb paramètres
Entrée (x ∈ R4×11) x -
Flatten 44 -
Dense_1 (44→60) 60 2 700
BatchNorm1 60 120
ReLU 60 -
Dense_2 (60→10) 10 610
BatchNorm2 10 20
ReLU 10 -
Dropout (p = 0,3) 10 -
Dense_3 (10→1) 1 11
Sigmoïde 1 -
Total — 3 461

Tableau 4.6 Architecture du modèle MLP_DCE avec nombre de paramètres

Type de couche Taille de sortie Nb paramètres
Entrée (x ∈ R4) 4 -
Dense_1 (4 → 15) 15 75
BatchNorm1 15 30
ReLU 15 -
Dense_2 (15 → 10) 10 160
BatchNorm2 10 20
ReLU 10 -
Dropout (p = 0,3) 10 -
Dense_3 (10 → 1) 1 11
Sigmoïde 1 -
Total — 296

Nous utilisons ces trois architectures avec les caractéristiques entropiques Fuzzy et Sample
(caractérisées par les préfixes Sample_ et Fuzzy_) ainsi que pour les deux découpages de
bandes de fréquences (caractérisés par les suffixes _αβ et _δθαβ).
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Tableau 4.7 Architecture du modèle MLP_Baseline+DCE avec nombre de paramètres

Type de couche Taille de sortie Nb paramètres
Entrée (x ∈ R12×4) x+ DCE -
Remove DCE (x ∈ R11×4) x -
Flatten 44 -
Dense_1 (44 → 60) 60 2 700
BatchNorm1 60 120
ReLU 60 -
Dense_2 (60 → 4) 4 244
BatchNorm2 4 8
ReLU 4 -
Concaténation avec DCE 4 + 4 = 8 -
Dropout (p = 0,3) 8 -
Dense_3 (8 → 1) 1 9
Sigmoid 1 -
Total — 3 081

4.5 Protocole expérimental

4.5.1 Séparation des données temporellement ou par participant

Afin de tester l’efficacité de tous ces modèles, nous allons effectuer une séparation des don-
nées par participant pour écarter des participants tests. Des 28 participants initiaux, 9 sont
sélectionnés aléatoirement pour être des participants tests. Ils serviront à évaluer la capacité
de généralisation de nos modèles.

L’hypothèse de généralisation à des participants inconnus est forte et risque de ne pas être
suffisamment déterminante pour le choix de nos modèles. C’est pour cela que nous souhaitons
avoir un objectif plus réalisable, la prédiction de données inconnues pour un participant dont
nous extrayons des données de calibrage pour raffiner le modèle. Cette approche implique
une forme de "patient leak".

Nous avons beaucoup de recouvrement (80%) entre deux données consécutives temporelle-
ment, effectuer une sélection aléatoire de données de test ne serait donc pas représentatif de
la performance de nos modèles et ne permettrait pas de juger d’un potentiel surapprentissage.
Pour cela nous allons séparer les données temporellement.

Pour rappel, nous avons, pour l’entraînement de nos modèles, pour chaque participant, deux
enregistrements. Un neutre VidNeutre et un présentant des stimuli à caractère sexuel VidSex
qui est supposé engendrer des impulsions sexuelles chez les participants. Nos fenêtres de don-
nées sont de taille w = 6s : chaque donnée, repérée par la signature temporelle T , comprend



27

l’enregistrement EEG entre T − w et T . Il y a un pas σ = 1s entre chacune des données.

Pour un participant i, qui a été gardé pour l’entraînement des modèles i /∈ Participants tests,
nous considérons l’ensemble des données de chacun des enregistrements Dneutre(i) et Dsex(i)
comme un vecteur temporel où Denregistremet(i)[t] correspond à la donnée de signature tem-
porelle t.

Chaque enregistrement est un intervalle continu de données, notons tneutre
0 (i), tneutre

1 (i) les
signatures temporelles de début et de fin de l’enregistrement Dneutre(i) . Dans le cas des
enregistrements pour les scénarios VidSex, tsex

0 (i) et tsex
1 (i) correspondent aux bornes de

l’intervalle sélectionné comme représentant un état excité.

Nous définissons
tneutre
train (i) = tneutre

0 (i) + 0.6
(
tneutre
1 (i) − tneutre

0 (i)
)

tneutre
val (i) = tneutre

train (i) + 0.2
(
tneutre
1 (i) − tneutre

0 (i)
)

Dans le but de séparer temporellement les données de chaque scénario avec 60% pour l’en-
traînement, 20% pour la validation et 20% pour le test. Pour éviter tout chevauchement
entre des données, nous définissons les ensembles de données d’entraînement, validation et
test Dneutre

train (i), Dneutre
val (i) et Dneutre

test (i) de la façon suivante :

Dneutre
train (i) =

{
Dneutre(i)[t], t ∈

[
tneutre
0 (i), tneutre

train (i) −
⌈

w

2

⌉]}

Dneutre
val (i) =

{
Dneutre(i)[t], t ∈

[
tneutre
train (i) +

⌈
w

2

⌉
, tneutre

val (i) −
⌈

w

2

⌉]}

Dneutre
test (i) =

{
Dneutre(i)[t], t ∈

[
tneutre
val (i) +

⌈
w

2

⌉
, tneutre

1 (i)
]}

Nous définissons de façon similaire Dsex
train(i), Dsex

val (i) et Dsex
test(i).

Nous obtenons donc pour tous les participants non écartés, les bases de données suivantes
pour l’entraînement de nos modèles :

Dtrain =
{⋃

i

Dsex
train(i) ∪ Dneutre

train (i), i /∈ Participants Tests
}

Dval =
{⋃

i

Dsex
val (i) ∪ Dneutre

val (i), i /∈ Participants Tests
}

Dtest =
{⋃

i

Dsex
test(i) ∪ Dneutre

test (i), i /∈ Participants Tests
}
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Figure 4.7 Illustration de la séparation temporelle des deux enregistrements d’un patient
en données d’entraînement, de validation et de test .

4.5.2 Ajout ou non d’un prétraitement par ICA

Si aucune architecture ne de de résultats satisfaisants sur les données brutes, nous répétons
le même protocole sur les données qui ont subi un prétraitement par ICA.

4.5.3 Généralisation à des patients inconnus et raffinage

Les modèles qui performent bien sur la base de données des participants retenus pour l’entraî-
nement vont ensuite être testés sur les données des participants tests que nous avons écartés
préalablement.

Pour vérifier si un raffinage des modèles est nécessaire nous effectuons sur chacun des enre-
gistrements des patients test un découpage temporel. Ce découpage est similaire à celui des
patients généraux car il isole les derniers 20% de chaque enregistrement comme données test
et garde les premier x% comme données de raffinage.

Le but de ces découpages est de mesurer la quantité de données de raffinage nécessaire à
l’obtention d’une prédiction satisfaisante sur les données d’un patient.

Nous effectuons des raffinages en utilisant x ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%}, nous
obtenons ainsi pour chacune des architectures choisies, 7 modèles raffinés pour chaque patient.

En plus des modèles entraînés sur une base de patients généraux puis raffinés, nous entraînons
également des modèles personnels seulement sur les données d’entraînement du patient ce
qui amène le nombre total de modèles à 14 par architecture et par patient.

Ces modèles personnels et raffinés sont entraînés avec les mêmes hyperparamètres que les
modèles originaux mais en divisant le nombre d’epochs par 10.
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4.5.4 Visualisation de l’inférence des modèles

La dernière vérification de nos modèles se fait de manière qualitative en visualisant l’inférence
de nos modèles temporellement superposés à la courbe de PPG de chaque enregistrement.

De cette manière nous pouvons visualiser le fonctionnement des modèles sur les données
Vidéos qui comprennent les données de test et d’entraînement mais aussi, pour les scénarios
VidSex, des données non étiquetées.

Nous observons également la capacité de généralisation des modèles aux scénarios générés en
3D où nous nous attendons à obtenir des prédictions positives sur les pics de PPG pour les
scénarios PVP_EVI (scénarios 3D présentant une interaction érotique avec un avatar 3D donc
des stimuli sexuels ) et des prédictions neutres pour les scénarios Androide qui ne présentent
pas d’interaction érotique avec le personnage 3D.
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CHAPITRE 5 RÉSULTATS

5.1 Comparaison des modèles sur des patients connus

Pour évaluer la capacité de nos modèles à prédire l’impulsion sexuelle et sélectionner les
architectures les plus efficaces, nous regardons les résultats de nos modèles sur le jeu de
données des participants d’entraînement avec la séparation temporelle comme décrit dans la
section 4.5.1.

5.1.1 Résultats sur les données brutes

Modèle Test Loss Accuracy Recall Precision F1 Score
SpectroCNN_res 28.185 0.674 0.968 0.675 0.796
SpectroCNN_3 31.415 0.661 0.991 0.661 0.793
SpectroCNN_5 30.010 0.659 0.983 0.661 0.791
RA-CNN 10.012 0.585 0.715 0.672 0.693
R-CNN 4.469 0.512 0.570 0.645 0.605
A-CNN 2.924 0.575 0.669 0.678 0.673
Fuzzy_MLP_Baseline_δθαβ 0.680 0.659 0.759 0.731 0.745
Fuzzy_MLP_DCE_δθαβ 0.631 0.650 0.965 0.659 0.783
Fuzzy_MLP_Baseline+DCE_δθαβ 0.700 0.621 0.663 0.733 0.696
Sample_MLP_Baseline_δθαβ 0.746 0.558 0.718 0.647 0.680
Sample_MLP_DCE_δθαβ 0.686 0.608 0.924 0.639 0.755
Sample_MLP_Baseline+DCE_δθαβ 0.669 0.600 0.817 0.657 0.728
Fuzzy_MLP_Baseline_αβ 0.724 0.600 0.640 0.719 0.677
Fuzzy_MLP_DCE_αβ 0.639 0.640 0.962 0.653 0.778
Fuzzy_MLP_Baseline+DCE_αβ 0.656 0.651 0.773 0.717 0.744
Sample_MLP_Baseline_αβ 0.719 0.598 0.785 0.663 0.719
Sample_MLP_DCE_αβ 0.680 0.619 0.945 0.642 0.765
Sample_MLP_Baseline+DCE_αβ 0.726 0.587 0.791 0.652 0.715

Tableau 5.1 Performance des modèles sur les données brutes des patients connus.

En premier lieu, nous nous intéressons aux résultats sur les données brutes, celles qui n’ont
pas suivi le prétraitement par ICA décrit en 4.1.3.

La première observation que l’on peut tirer du tableau 5.1 est qu’aucune des architectures pré-
sentées n’atteint une exactitude (Accuracy) suffisamment satisfaisante pour pouvoir conti-
nuer à être utilisée sans améliorations.

Parmi tous les modèles, les réseaux convolutionnels basés sur des spectrogrammes SpectroCNN_res,
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SpectroCNN_3 et SpectroCNN_5 obtiennent la meilleure exactitude et des scores de rappel
élevés supérieures à 0.9. Cependant la précision reste relativement faible et la perte (Loss) est
très élevée, ce qui indique une tendance à prédire excessivement des cas positifs au détriment
de la fiabilité et que, lorsque les modèles se trompent, ils font des erreurs significatives. Les
modèles basés sur les caractéristiques entropiques (avec ajout ou non de l’entropie croisée
dynamique) présentent des métriques plus équilibrées.

Pour essayer de mieux comprendre les éventuelles causes du mauvais fonctionnement de nos
modèles nous nous intéressons à l’exactitude obtenue sur les données de test, d’entraînement
et de validation : Dtest, Dtrain, Dval définies en 4.5.1.

En regardant les résultats du Tableau 5.2, nous nous apercevons que les modèles basés sur
l’extraction de caractéristiques temporelles profondes R_CNN, A_CNN et RA_CNN pré-
sentent un surapprentissage évident avec des exactitudes supérieures à 0.9 sur les données
d’entraînement et inférieures à 0.6 sur les données de test. Cela est très probablement lié à
la taille de ces modèles qui sont trop lourds et trop complexes pour le petit jeu de données
dont nous disposons.

De même, nous pourrions nous attendre à observer du surapprentissage dans les réseaux
convolutifs basés sur les spectrogrammes mais ce n’est pas le cas. Les couches de normalisation
par lot (BatchNorm) et de désactivation aléatoire (Dropout) ont suffi à l’empêcher.

5.1.2 Résultats sur les données avec ICA

Au vu des faibles exactitudes obtenues sur les données brutes, nous nous intéressons aux
données qui ont été préalablement soumises à un prétraitement ICA comme décrit en 4.1.3.

Nous observons dans le tableau 5.3 que les modèles basés sur l’analyse des caractéristiques
entropiques sont plus performants que les approches par analyse de spectrogrammes ou ex-
traction profonde de caractéristiques temporelles.

Nous remarquons que l’ajout de l’entropie croisée dynamique n’améliore pas significativement
les performances du modèle et que les prédictions des architectures basées sur cette seule
caractéristique ne sont pas fiables.

Les architectures basées sur les caractéristiques d’entropie de type "Fuzzy" sont plus perfor-
mantes que celles basées sur l’entropie "Sample". En particulier, l’architecture Fuzzy_MLP_Baseline
obtient une exactitude de 0.922 et domine largement toutes les autres.

La variante Fuzzy_MLP_Baseline_δθαβ dont le découpage en bandes de fréquences est
élargi (voir 4.4.1) pour inclure les ondes δ et θ semble mieux performer que la variante
Fuzzy_MLP_Baseline_αβ qui se base seulement sur les ondes α et β (voir 4.4.1).
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Modèle Test Accuracy Train Accuracy Val Accuracy
SpectroCNN_res 0.674 0.695 0.675
SpectroCNN_3 0.661 0.626 0.661
SpectroCNN_5 0.659 0.635 0.669
RA-CNN 0.585 0.982 0.618
R-CNN 0.512 0.972 0.654
A-CNN 0.575 0.963 0.642
Fuzzy_MLP_Baseline_δθαβ 0.659 0.844 0.600
Fuzzy_MLP_DCE_δθαβ 0.650 0.620 0.663
Fuzzy_MLP_Baseline+DCE_δθαβ 0.621 0.818 0.624
Sample_MLP_Baseline_δθαβ 0.558 0.786 0.646
Sample_MLP_DCE_δθαβ 0.608 0.619 0.659
Sample_MLP_Baseline+DCE_δθαβ 0.600 0.760 0.656
Fuzzy_MLP_Baseline_αβ 0.600 0.847 0.638
Fuzzy_MLP_DCE_αβ 0.640 0.622 0.663
Fuzzy_MLP_Baseline+DCE_αβ 0.651 0.808 0.650
Sample_MLP_Baseline_αβ 0.598 0.755 0.644
Sample_MLP_DCE_αβ 0.619 0.622 0.654
Sample_MLP_Baseline+DCE_αβ 0.587 0.735 0.663

Tableau 5.2 Performance des modèles sur les ensembles de test, entraînement et validation
des données brutes.

5.2 Généralisation aux patients inconnus

5.2.1 Résultats sans fine-tuning

Nous pouvons observer dans le tableau 5.4 les exactitudes obtenues par les trois architectures
les plus performantes vues en 5.3 lorsqu’elles sont évaluées sur les données de participants
inconnus ( les Participants tests vus en 4.5.1).

Les architectures évaluées sont celles des modèles Fuzzy_MLP, notamment les variantes Baseline_δθαβ,
Baseline_αβ et Baseline+DCE_αβ.

Les résultats montrent que les performances restent globalement faibles, avec des moyennes
allant d’une exactitude de 0.400 pour Baseline_δθαβ à 0.494 pour Baseline+DCE_αβ.

Ces résultats indiquent que les modèles se généralisent mal à des participants inconnus, ce
qui met en évidence une limite importante dans leur capacité à capturer des représentations
transférables entre individus.

Bien que les variantes _αβ semblent légèrement plus performantes et pourraient favoriser une
meilleure robustesse face à des données hors distribution, les performances de ces modèles
suggèrent qu’un raffinage par patient est nécessaire.



33

Modèle Test Loss Accuracy Recall Precision F1 Score
SpectroCNN_res 5.59 0.586 0.475 0.816 0.601
SpectroCNN_3 21.9 0.373 0.0609 0.778 0.113
SpectroCNN_5 13.8 0.456 0.209 0.847 0.335
A-CNN 2.59 0.606 0.678 0.709 0.693
R-CNN 3.27 0.692 0.843 0.729 0.782
RA-CNN 18.2 0.568 0.667 0.673 0.670
Fuzzy_MLP_Baseline_δθαβ 0.273 0.922 0.907 0.972 0.939
Fuzzy_MLP_DCE_δθαβ 0.606 0.635 0.849 0.677 0.753
Fuzzy_MLP_Baseline+DCE_δθαβ 0.469 0.871 0.843 0.954 0.895
Sample_MLP_Baseline_δθαβ 0.884 0.551 0.658 0.658 0.658
Sample_MLP_DCE_δθαβ 0.650 0.650 0.986 0.655 0.787
Sample_MLP_Baseline+DCE_δθαβ 0.727 0.549 0.739 0.634 0.683
Fuzzy_MLP_Baseline_αβ 0.363 0.905 0.887 0.965 0.924
Fuzzy_MLP_DCE_αβ 0.614 0.624 0.797 0.682 0.735
Fuzzy_MLP_Baseline+DCE_αβ 0.353 0.903 0.878 0.971 0.922
Sample_MLP_Baseline_αβ 0.939 0.536 0.675 0.638 0.656
Sample_MLP_DCE_αβ 0.650 0.654 0.994 0.656 0.790
Sample_MLP_Baseline+DCE_αβ 0.651 0.616 0.852 0.660 0.744

Tableau 5.3 Performance des modèles sur les données avec prétraitement ICA

Participant Baseline_δθαβ Baseline_αβ Baseline+DCE_αβ
Participant test1 0.220 0.400 0.600
Participant test2 0.645 0.364 0.576
Participant test3 0.350 0.833 0.167
Participant test4 0.652 0.345 0.655
Participant test5 0.174 0.370 0.222
Participant test6 0.600 0.500 0.500
Participant test7 0.171 0.357 0.357
Participant test8 0.203 0.310 0.690
Participant test9 0.584 0.516 0.677
Moyenne 0.400 0.444 0.494

Tableau 5.4 Exactitudes des modèles les plus performants sur les données test des partici-
pants inconnus

5.2.2 Résultats avec raffinage du modèle général

Les tableaux 5.5, 5.6 et 5.7 présentent les exactitudes obtenues par nos modèles en fonction
de la proportion de données utilisées pour le raffinage (proportion x comme vu en 4.5.3).

On observe en 5.5 que le modèle Baseline_δθαβ est celui qui nécessite le moins de raffinage,
avec une exactitude de 0.783 pour seulement 30% des données utilisées pour le raffinage et
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Proportion entraînement Aucune 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Participant test1 0.220 0.940 0.820 0.980 0.920 0.920 0.920 0.920
Participant test2 0.645 0.615 0.676 0.676 0.645 0.676 0.676 0.706
Participant test3 0.350 0.767 0.850 0.850 0.933 0.850 0.850 0.850
Participant test4 0.652 0.686 0.790 0.824 0.790 0.652 0.617 0.755
Participant test5 0.174 0.470 0.507 0.656 0.730 0.841 0.989 0.989
Participant test6 0.600 0.767 0.767 0.711 0.711 0.767 0.767 0.767
Participant test7 0.171 0.636 0.671 0.743 0.957 0.921 0.993 0.929
Participant test8 0.203 0.721 0.755 0.859 0.931 0.900 0.900 0.966
Participant test9 0.584 0.648 0.810 0.745 0.745 0.713 0.681 0.648
Moyenne 0.400 0.694 0.738 0.783 0.840 0.838 0.855 0.870

Tableau 5.5 Exactitudes en fonction du pourcentage de données utilisées pour le raffinage
des modèles Fuzzy_MLP_Baseline_δθαβ

Proportion entraînement Aucune 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Participant test1 0.400 0.240 0.480 0.560 0.560 0.520 0.600 0.560
Participant test2 0.364 0.818 0.848 0.788 0.818 0.788 0.758 0.758
Participant test3 0.833 0.333 0.167 0.083 0.250 0.250 0.333 0.417
Participant test4 0.345 0.759 0.724 0.759 0.862 0.897 0.966 0.966
Participant test5 0.370 0.704 0.963 0.926 1.000 0.963 0.963 0.963
Participant test6 0.500 0.444 0.444 0.556 0.611 0.778 0.833 0.778
Participant test7 0.357 0.536 0.643 0.893 0.929 0.929 1.000 1.000
Participant test8 0.310 0.828 0.828 0.897 0.931 0.897 0.897 0.931
Participant test9 0.516 0.258 0.258 0.258 0.419 0.419 0.419 0.484
Moyenne 0.444 0.547 0.595 0.635 0.709 0.716 0.752 0.762

Tableau 5.6 Exactitudes en fonction du pourcentage de données utilisées pour le raffinage
des modèles d’architecture Fuzzy_MLP_Baseline_αβ

0.840 quand lorsque la proportion atteint 40%.

Les modèles Baseline_αβ et Baseline+DCE_αβ n’affichent pas de progrès aussi satisfaisants
et les résultats deviennent acceptables (≥ 0.7) seulement quand la proportion de données est
plus importante et atteignent des exactitudes maximales à 0.762 et 0.736.

Ainsi, c’est bien le modèle textttBaseline_δθαβ qui, malgré une mauvaise généralisation aux
participants inconnus, se raffine le plus efficacement avec un moindre ajout de données.

5.2.3 Résultats avec modèles personnalisés

Comme annoncé en 4.5.3, en plus des modèles généraux raffinés, nous entraînons également,
pour ces trois architectures choisies, des modèles personnalisés entraînés uniquement sur les
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Proportion entraînement Aucune 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Participant test1 0.600 0.320 0.480 0.520 0.520 0.600 0.720 0.720
Participant test2 0.576 0.667 0.545 0.606 0.545 0.455 0.485 0.485
Participant test3 0.167 0.333 0.250 0.167 0.417 0.500 0.583 0.583
Participant test4 0.655 0.759 0.931 0.931 0.931 0.931 0.966 1.000
Participant test5 0.222 0.481 0.630 0.741 0.889 0.926 0.926 0.963
Participant test6 0.500 0.278 0.611 0.444 0.333 0.278 0.444 0.389
Participant test7 0.357 0.679 0.643 0.786 0.857 1.000 1.000 1.000
Participant test8 0.690 0.759 0.828 0.897 0.966 1.000 1.000 1.000
Participant test9 0.677 0.161 0.194 0.226 0.355 0.484 0.484 0.484
Moyenne 0.494 0.493 0.568 0.591 0.646 0.686 0.734 0.736

Tableau 5.7 Exactitudes en fonction du pourcentage de données utilisées pour le raffinage
des modèles d’architecture Fuzzy_MLP_Baseline+DCE_αβ

données du participant sélectionné.

Proportion entraînement 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Participant_test1 0.600 0.600 0.440 0.800 0.840 0.840 0.960
Participant_test2 0.364 0.515 0.636 0.636 0.636 0.727 0.758
Participant_test3 0.833 0.167 0.667 0.167 0.917 0.833 0.750
Participant_test4 0.345 0.448 0.828 1.000 0.655 0.552 0.724
Participant_test5 0.370 0.741 0.370 0.926 0.481 0.778 0.778
Participant_test6 0.611 0.500 0.333 0.500 0.500 0.500 0.444
Participant_test7 0.357 0.643 0.357 0.714 0.964 0.357 1.000
Participant_test8 0.793 0.690 0.931 0.724 0.862 0.828 1.000
Participant_test9 0.323 0.323 0.452 0.387 0.323 0.323 0.548
Moyenne 0.511 0.514 0.557 0.650 0.687 0.637 0.774

Tableau 5.8 Exactitudes en fonction du pourcentage de données utilisées pour l’entraîne-
ment d’un modèle Fuzzy_MLP_Baseline_δθαβ

Les tableaux 5.8, 5.9 et 5.10 présentent les exactitudes obtenues par les modèles Baseline_δθαβ,
Baseline_αβ et Baseline+DCE_αβ lorsqu’ils sont raffinés uniquement sur les données du
participant évalué.

Il apparaît clairement que les modèles Baseline_δθαβ et Baseline_αβ sont bien plus per-
formants et atteignent des exactitudes élevées (respectivement 0.774 et 0.720 avec 70% des
données) là où le modèle Baseline+DCE_αβ ne présente pas de métrique satisfaisante quelle
que soit la proportion de données d’entraînement.

On remarque cependant que même si les performances peuvent être jugées satisfaisantes,
elles nécessitent une plus grande portion de données du participant pour l’entraînement. Le



36

Proportion entraînement 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Participant_test1 0.560 0.440 0.440 0.680 0.560 0.520 0.480
Participant_test2 0.545 0.333 0.667 0.606 0.455 0.606 0.545
Participant_test3 0.167 0.833 0.833 0.167 0.500 0.833 0.417
Participant_test4 0.655 0.655 0.655 0.724 0.966 0.966 0.966
Participant_test5 0.481 0.704 0.926 0.444 1.000 0.667 1.000
Participant_test6 0.500 0.500 0.611 0.500 0.722 0.611 0.667
Participant_test7 0.429 0.857 0.393 0.464 0.464 0.393 0.821
Participant_test8 0.310 0.379 0.379 1.000 0.931 0.897 1.000
Participant_test9 0.677 0.645 0.355 0.323 0.387 0.355 0.581
Moyenne 0.481 0.594 0.584 0.545 0.665 0.650 0.720

Tableau 5.9 Exactitudes en fonction du pourcentage de données utilisées pour l’entraîne-
ment d’un modèle Fuzzy_MLP_Baseline_αβ

Proportion entraînement 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Participant_test1 0.600 0.400 0.400 0.960 0.520 0.560 0.400
Participant_test2 0.636 0.364 0.636 0.394 0.364 0.636 0.697
Participant_test3 0.833 0.833 0.250 0.833 0.167 0.167 0.167
Participant_test4 0.655 0.345 0.828 0.690 0.448 0.793 0.966
Participant_test5 0.037 0.630 0.630 0.370 0.370 1.000 0.407
Participant_test6 0.500 0.500 0.500 0.500 0.722 0.500 0.500
Participant_test7 0.643 0.357 0.571 0.857 0.536 0.571 0.357
Participant_test8 0.690 0.690 0.828 0.310 0.379 0.724 0.310
Participant_test9 0.355 0.677 0.677 0.323 0.323 0.323 0.419
Moyenne 0.550 0.533 0.591 0.582 0.425 0.586 0.469

Tableau 5.10 Exactitudes moyennes selon la proportion de données d’entraînement d’un
modèle Fuzzy_MLP_Baseline+DCE_αβ

modèle Baseline_δθαβ atteint une exactitude moyenne de 0.840 pour seulement 40% de
données de raffinage contre seulement 0.650 lorsqu’il est entraîné uniquement sur les données
du participant.

Ces résultats montrent qu’utiliser un modèle de base pré-entraîné puis raffiné par rapport
à un modèle basé uniquement sur les données du participant à analyser permet d’atteindre
une meilleure exactitude, plus rapidement et avec un moindre coût en ressources.

5.3 Analyse qualitative des modèles par visualisation de l’inférence

Nous avons vu que sur les données avec un prétraitement par ICA, avec une architecture
Fuzzy_MLP_Baseline_δθαβ nous atteignons une exactitude de 0.922 sur des patients connus
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et de 0.840 en raffinant le modèle sur 40% des données d’un participant inconnu.

Pour voir si nos modèles se généralisent en dehors des données étiquétées, nous cherchons
à visualiser si l’inférence d’une impulsion sexuelle par notre modèle correspond au scénario
dans lequel le patient est immergé et avec la courbe PPG.

La courbe de pléthysmographie pénienne PPG mesure l’engorgement de l’appareil génital et
reflète généralement, chez nos participants mâles cisgenres, une réponse physiologique à un
stimulus sexuel, une impulsion sexuelle.

Les graphiques des figures 5.1 et 5.2 présentent cette courbe de PPG en bleu et surligne en
gris les instants t (voir 4.1.2) où le modèle infère une impulsion sexuelle.

Les données ayant servi à l’entraînement du modèle sont surlignées en vert et celles sur
lesquelles les métriques de test ont été calculées en rouge (voir 4.5.1 et 4.5.3)

Malheureusement, nous ne possédons pas les données du Participant_test9 dans les scéna-
rios générés en 3D donc l’inférence sera réalisée uniquement sur les 8 premiers Participant_tests.

Les figures de résultats similaires obtenus sur tous ces participants sont placées à l’annexe A
(A.1, A.2, A.3, A.4, A.5, A.6, A.7 et A.8).Nous observons sur toutes ces figures d’inférence
les mêmes phénomènes.

Comme indiqué par les métriques utilisées pour les données étiquetées, la prédiction dans le
cadre des scénarios vidéo : VidNeutre et VidSex est médiocre pour le modèle général mais
nettement améliorée dans le cadre de l’utilisation des modèles raffinés.

Cependant, la généralisation de nos modèles généraux ou raffinés aux scénarios immersifs
générés en 3D, tels que Androide et PVP-EVI, ne semble pas satisfaisante. Nous pourrions
nous attendre à observer davantage d’inférences d’impulsions sexuelles dans les immersions
PVP-EVI par rapport à Androide, en raison de leur contenu scénaristique, mais cela n’est pas
confirmé par les résultats obtenus.

En particulier, la courbe de PPG des Participants_tests 3, 7 et 8 présente un pic d’ex-
citation physiologique notable lors de l’exposition au scénario PVP-EVI, qui reste largement
ignoré ou mal interprété par les modèles.

Ce constat souligne les limites actuelles de notre système qui peine à ce généraliser aux
scénarios d’immersion en environnements 3D.



38

Figure 5.1 Inférence du modèle général et raffiné sur le Participant Test 1

Figure 5.2 Inférence du modèle général et raffiné sur le Participant Test 8
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CHAPITRE 6 DISCUSSION

6.1 Rappel des contraintes souhaitées pour des futures utilisations des modèles

6.1.1 Utilisation en temps réel

L’un des objectifs principaux de nos travaux est de mettre en place un outil de prédiction en
temps réel qui est adapté à un traitement des données en flux.

Pour une application en temps réel, la prédiction doit être effectuée à chaque seconde (voir
4.1.2). À l’instant t la chaîne de traitement doit, en moins d’une seconde, pouvoir effectuer
le prétraitement des données, d’extraire les caractéristiques et d’effectuer une prédiction via
le modèle choisi.

Le prétraitement doit donc être rapide et causal, idéalement applicable avec la seule connais-
sance des données du segment en cours de traitement. Le but de notre outil est d’effectuer une
prédiction chaque seconde pour simuler une prédiction temps réel, par conséquent, le temps
nécessaire à l’extraction des caractéristiques et l’inférence ne doit pas dépasser 1 seconde.

6.1.2 Généralisation facile à des patients inconnus

L’un des enjeux majeurs pour une utilisation en conditions réelles est la capacité du modèle
à généraliser à de nouveaux participants facilement.

Les résultats obtenus en validation inter-patient ont mis en évidence une baisse significative
des performances de généralisation pour tous nos modèles, et ont mis en avant la nécessité
d’utiliser, pour chaque nouveau participant, une étape de raffinage du modèle pour restaurer
un niveau de performance acceptable. Ce raffinage peut être assimilé à une calibration de
l’outil au participant.

Toutefois, ce raffinage doit respecter plusieurs contraintes :
— Le modèle doit pouvoir être adapté rapidement, idéalement en quelques secondes, pour

une intégration fluide dans un futur protocole clinique.
— Le raffinage doit être possible avec un nombre limité de données, sans nécessiter une

nouvelle phase d’apprentissage complète.
L’architecture la plus performante est Fuzzy_MLP_Baseline_δθαβ. Même si elle ne se gé-
néralise que très mal à des patients inconnus, une faible quantité de données (40 % ce qui
correspond à environ 30 secondes de données neutres et 30 secondes de données stimulantes)
permet d’obtenir des résultats satisfaisants.
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De plus cette architecture est simple 4.5 et le temps nécessaire au raffinage (moins de 15
secondes sur un CPU) est suffisamment faible pour ne pas causer de délais trop contraignant
pour un futur protocole clinique.

6.2 Nécessité du prétraitement par ICA

Comme vu précédemment dans les tableaux 5.1.1 et 5.1.2 seules les données ayant subi un
prétraitement ICA permettent l’obtention de performances utilisables.

6.2.1 Incompatibilité du prétraitement original avec une utilisation en temps
réel

Le prétraitement décrit en 4.1.3 utilisé par [4] repose sur de longues fenêtres temporelles et
une connaissance globale du signal EEG, ce qui le rend incompatible avec une application en
temps réel sur des fenêtres courtes.

L’inspection visuelle des canaux bruités nécessite une intervention humaine et un accès à
l’ensemble des données, ce qui rend son utilisation incompatible avec un traitement des
données en temps réel.

De plus, l’analyse en composantes indépendantes (ICA), notamment avec l’algorithme Info-
max, requiert une quantité substantielle de données pour estimer les matrices de séparation,
ce qui la rend non causale et donc inadaptée à une utilisation sur des segments courts sans
accès aux données futures.

Enfin, la sélection de segments exempts d’artefacts repose sur une analyse a posteriori, in-
compatible avec le traitement en continu souhaité pour une future utilisation en temps réel.

6.2.2 Prétraitement alternatif compatible avec des fenêtres courtes

Pour permettre un futur traitement en temps réel sur des fenêtres courtes, il serait nécessaire
d’adopter une approche causale et légère.

La détection des canaux bruités peut être approchée automatiquement via des métriques en
ligne telles que la variance, les lignes plates ou le bruit haute fréquence.

Le retrait des artefacts oculaires peut être réalisé en combinant des données oculométriques
aux signaux EEG, les données de mouvement oculaire sont récoltées dans les travaux de
Brideau-Duquette [4] et pourraient éventuellement être utilisées pour détecter et corriger
automatiquement ces artefacts ou ignorer les segments de données les contenant.
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La nécessité d’utiliser des données de calibration permettrai de calculer les mastoides et la
moyenne commune sur les données d’entraînement et d’utiliser ces derniers pour appliquer
un traitement par ICA au reste du signal. Mais la validité et la faisabilité de cette méthode
reste à prouver.

6.3 Utilisation de modèles basés sur l’entropie

Même si l’utilisation de modèles légers basés sur les caractéristiques entropiques permet une
inférence très rapide et un temps nécessaire au raffinage suffisamment court, la méthode
utilisée dans nos travaux pour extraire ces caractéristiques est incompatible avec le temps
réel.

6.3.1 Complexité et temps de calcul des caractéristiques entropiques

L’extraction des caractéristiques entropiques Sample, Fuzzy, repose sur des calculs de dis-
tances entre motifs temporels, des seuillages, et des opérations logarithmiques sur des vecteurs
de grande taille. Ces opérations sont coûteuses en temps de calcul, surtout lorsqu’elles sont
appliquées à chaque fenêtre glissante du signal EEG.

Notre implémentation du calcul de ces caractéristiques via EntropyHub est due à la facilité
d’utilisation de cette librairie mais n’est pas optimisée.

Dans nos expérimentations, le temps nécessaire pour extraire les entropies sur une seule
fenêtre de 6 secondes dépasse largement le temps disponible pour une prédiction en temps
réel (1 seconde). Cela rend l’utilisation directe de ces méthodes impossible dans un pipeline
de traitement continu sans optimisation.

6.3.2 Calcul parallélisable possible

L’implémentation actuelle via la bibliothèque EntropyHub en Python ne permet pas de pa-
rallélisation native. Les fonctions de calcul d’entropie sont exécutées de manière séquentielle,
ce qui leur empêche d’exploiter pleinement les systèmes multicœurs ou GPU.

Cependant, les calculs de caractéristiques entropiques sont, par nature, hautement parallé-
lisables. Une implémentation optimisée permettrait de les rendre compatibles avec les ar-
chitectures GPU. Une telle optimisation permettrait de réduire drastiquement le temps de
calcul et de rendre l’extraction entropique compatible avec une utilisation en temps réel.
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CHAPITRE 7 CONCLUSION

7.1 Synthèse des travaux

7.1.1 Performance sur participants connus

Les modèles MLP basés sur l’entropie, notamment ceux utilisant l’entropie Fuzzy combinée à
un prétraitement ICA, ont montré les meilleures performances pour la détection d’impulsions
sexuelles sur des participants connus. Ces modèles surpassent les architectures CNN basées
sur des représentations spectrographiques et régionales asymétriques. Bien que la petite taille
du jeu de données favorise grandement les modèles simples avec un nombre de paramètres
plus faible.

L’ajout de caractéristiques d’entropie croisée dynamique et la limitation des caractéristiques
aux bandes de fréquences α et β ne semblent pas améliorer les performances.

7.1.2 Généralisation aux participants inconnus

Sans raffinage personnalisé, les modèles présentent une faible capacité de généralisation à des
individus non vus pendant l’entraînement.

Toutefois, l’intégration d’un processus de raffinage, même avec une quantité limitée de don-
nées spécifiques au participant, permet une amélioration significative des performances. Les
modèles raffinés atteignent une exactitude élevée plus rapidement que les modèles personna-
lisés entraînés uniquement sur les données du participant.

Analyse qualitative

L’analyse qualitative des inférences montre une bonne cohérence avec les réponses physio-
logiques mesurées, notamment dans les scénarios vidéo. Les modèles raffinés produisent des
résultats plus fiables que les modèles généraux, confirmant l’intérêt d’une personnalisation
légère pour améliorer la précision des prédictions.

Cependant, les modèles ne se généralisent que très mal pour l’immersion dans les scénarios
générés en 3D ce qui pose problème pour de futures utilisations.
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7.2 Limites de la solution proposée

Malgré les performances prometteuses obtenues sur les participants connus, plusieurs limita-
tions freinent l’application directe des modèles proposés dans un contexte clinique en temps
réel.

7.2.1 Mauvaise généralisation

Nécessité d’un raffinage

Même si le raffinage est rapide et ne nécessite que peu de données, il est nécessaire à l’obten-
tion de bonnes performances et très contraignant pour la mise en place d’un protocole clinique
qui impliquerait d’immerger chaque nouveau participant dans deux scénarios (un neutre et un
avec stimuli érotiques) et de trouver un moyen non-intrusif d’étiqueter les données obtenues.

Mauvaise généralisation aux scénarios générés en 3D

Même avec l’utilisation de données de raffinage, la baisse de fiabilité lors de la généralisation
à l’immersion dans des scénarios 3D est un frein à une future utilisation de cet outil dans un
protocole clinique.

7.2.2 Incompatibilité avec le temps réel

Prétraitement non causal

Le prétraitement par ICA, indispensable pour obtenir des performances acceptables, repose
sur une analyse globale du signal et une inspection manuelle, ce qui le rend incompatible
avec une utilisation en temps réel.

Extraction de caractéristiques entropiques trop coûteuses

L’extraction des caractéristiques entropiques, bien qu’efficace pour la classification, est trop
coûteuse en temps de calcul pour une application en flux continu. L’implémentation actuelle
ne permet pas d’effectuer une prédiction chaque seconde comme requis.

7.3 Améliorations futures

Plusieurs pistes d’amélioration peuvent être envisagées pour surmonter les limitations iden-
tifiées et rendre les modèles plus adaptés à une utilisation clinique :
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7.3.1 Optimisation du calcul entropique

Pour permettre un traitement en flux de données adapté à un protocole clinique en temps réel,
une réimplémentation des mesures entropiques en environnement GPU est necesaire. Cela
permettrait de réduire drastiquement le temps de calcul et de rendre l’extraction compatible
avec le temps réel.

7.3.2 Prétraitement causal et automatisé

Le remplacement du traitement par ICA par des méthodes légères et causales. On peut par
exemple envisager des méthodes de détection automatique de canaux bruités. Pour le retrait
des artefacts liées au mouvements des yeux, l’intégration des données oculométriques est une
alternative prometteuse.

7.3.3 Améliorer la robustesse à de nouveaux environnements immersifs

La trop grande variabilité des signaux EEG limite la capacité de nos modèles à se généraliser.
L’intégration d’autres données physiologiques notamment, oculométriques dans des chaînes
de prédiction multimodales est une piste de recherche à explorer. Une attention particulière
doit être portée à l’amélioration des performances dans les scénarios 3D.

7.3.4 Validation sur un plus grand échantillon

L’élargissement du jeu de données à plus de participants permettrait de mieux évaluer la
robustesse des modèles, de pouvoir entraîner des architectures plus lourdes et plus complexes
et de réduire le risque de sur-apprentissage sur des profils spécifiques.

Il est également pertinent d’augmenter le nombre de participants afin d’obtenir une popula-
tion plus diversifiée tant en terme d’âge que de genre et d’orientation.
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ANNEXE A INFÉRENCE DES MODÈLES GÉNÉRAUX ET RAFFINÉS
SUR LES PARTICIPANTS TEST

Figure A.1 Inférence du modèle Fuzzy_MLP_Baseline_δθαβ général et raffiné sur
Participant test1

Figure A.2 Inférence du modèle Fuzzy_MLP_Baseline_δθαβ général et raffiné sur
Participant test2
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Figure A.3 Inférence du modèle Fuzzy_MLP_Baseline_δθαβ général et raffiné sur
Participant test3

Figure A.4 Inférence du modèle Fuzzy_MLP_Baseline_δθαβ général et raffiné sur
Participant test4
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Figure A.5 Inférence du modèle Fuzzy_MLP_Baseline_δθαβ général et raffiné sur
Participant test5

Figure A.6 Inférence du modèle Fuzzy_MLP_Baseline_δθαβ général et raffiné sur
Participant test6
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Figure A.7 Inférence du modèle Fuzzy_MLP_Baseline_δθαβ général et raffiné sur
Participant test7

Figure A.8 Inférence du modèle Fuzzy_MLP_Baseline_δθαβ général et raffiné sur
Participant test8
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