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RESUME

La détection de la présence sexuelle constitue un enjeu important en contexte médico-
légal et clinique, notamment pour I’évaluation du risque de récidive chez les auteurs d’in-
fractions sexuelles. Ce mémoire propose une exploration de diverses méthodes non inva-
sives de détection en temps réel de 'impulsion sexuelle a partir des seuls signaux issus de
I’électroencéphalogramme (EEG), en supprimant la pléthysmographie pénienne (PPG). L’im-
pulsion sexuelle est définie comme une réponse physiologique rapide a un stimulus sexuel,

distincte de la présence sexuelle, qui releve d’une expérience subjective plus complexe.

L’étude repose sur des immersions virtuelles de participants masculins dans des scénarios
neutres et érotiques. Trois approches de classification issues de divers domaines de la littéra-
ture sont comparées : réseau de neurones convolutifs (Convolutional Neural Networks) (CNN)
appliqué a des spectrogrammes , extraction de caractéristiques profondes via un réseau asymé-
trique et régional de neurones convolutifs (Regional-Asymmetric Convolutional Neural Net-
work) (RA-CNN), et modele de perceptron multi-couches (Multi-Layer Perceptron) (MLP)

basé sur des caractéristiques entropiques.

Malgré des résultats prometteurs intra-participants, la généralisation a des individus inconnus
reste limitée et le raffinage est nécessaire pour obtenir des performances satisfaisantes. Ces
travaux montrent la prévalence des modeles MLP basés sur des caractéristiques d’entropie
Fuzzy et met en avant leurs limites notamment la nécessité de prétraitements et d’extrac-
tion de caractéristiques computationnellement lourdes pour le moment incompatibles avec le
temps réel. Des pistes d’amélioration sont proposées, telles que 'optimisation GPU et I'in-
tégration de données oculométriques. Ce travail ouvre la voie & des outils non invasifs pour

I’évaluation clinique de la réponse sexuelle.
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ABSTRACT

Detecting sexual presence is a major concern in clinical and forensic contexts, particularly for
assessing the risk of recidivism among sexual offenders. This thesis introduces an exploration
of non-invasive methods for real-time detection of sexual impulse using only EEG signals,
eliminating the need for PPG. Sexual impulse is defined as a rapid physiological response to
sexual stimuli, distinct from sexual presence, which involves a more complex and subjective
experience. The study is based on immersive virtual scenarios involving male participants
exposed to both neutral and erotic content. Three classification approaches drawn from vari-
ous fields are compared: CNN applied to spectrograms, deep feature extraction via RA-CNN,
and MLP models based on entropy features. While intra-participant results are promising,
generalisation to unseen individuals remains limited, requiring fine-tuning to achieve satis-
factory performance. This work highlights the effectiveness of MLP models based on fuzzy
entropy features, while also underscoring their limitations due to computationally intensive
preprocessing and feature extraction, which are incompatible with real-time use. Poten-
tial improvements include GPU optimization and the integration of eye-tracking data. This

research paves the way for non-invasive tools to assess sexual response in clinical settings.
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CHAPITRE 1 INTRODUCTION

Dans un contexte médico-légal, les agents virtuels peuvent étre utilisés pour susciter des ré-
ponses motrices sexuelles et perceptives permettant d’identifier des troubles et des déviances
sexuelles. En particulier, cela permet de distinguer les téléiophiles (individus sexuellement
attirés par les adultes) des pédophiles [1]. De plus, la recherche a démontré que les environ-
nements virtuels hautement immersifs ont tendance a améliorer les évaluations du réalisme

ainsi que les évaluations de l'attrait sexuel [2].

A VlInstitut national de psychiatrie légale Philippe Pinel (INPLPP), nos partenaires et leurs
collaborateurs ont mis au point un examen pour évaluer le risque de récidive de sujets ayant
commis un crime sexuel [1]. Cet examen consiste a immerger le sujet dans un environnement
virtuel impliquant des stimuli sexuels humains tridimensionnels et a enregistrer plusieurs
types de signaux physiologiques. L’électroencéphalographie EEG permet de recueillir I'acti-
vité électrique cérébrale. La pléthysmographie sexuelle PPG mesure la réponse génitale d’ex-
citation chez les sujets. L’analyse de ces signaux, combinée a une discussion sur le ressenti du
participant, permet d’évaluer la présence sexuelle et d’étudier sa manifestation physiologique.
Le projet présenté dans ce mémoire s’inscrit dans la continuité directe des travaux menés a
I'INPLPP par Brideau-Duquette et Saint-Pierre Coté, et repose sur 'analyse des données

EEG recueillies dans le cadre de leurs expérimentations immersives.

Pour mesurer la réponse sexuelle, notre partenaire utilise la pléthysmographie qui mesure
I’aflux sanguin au niveau de 'appareil génital. Les techniques utilisées pour effectuer cette

mesure sont délicates a mettre en place et invasives pour les sujets.

L’intégration d’un scénario modulable dans les environnements virtuels est un projet en cours
a 'INPLPP et présenterait un intérét majeur pour les recherches en contexte médico-légal et
clinique. En adaptant dynamiquement les stimuli en fonction des réponses physiologiques du
sujet, il devient possible de personnaliser I’expérience immersive et d’optimiser la sensibilité
des mesures. Cette flexibilité permet non seulement de maintenir ’engagement du partici-
pant, mais aussi de cibler plus précisément les zones d’intérét diagnostique, en ajustant le
contenu en temps réel selon les réactions cérébrales ou comportementales observées. Un scé-
nario modulable permet de maximiser la pertinence des données recueillies pour ’analyse de

I'intensité de la présence sexuelle.

Dans ce sens, le projet de recherche ici présenté se concentre sur deux objectifs :
— la prédiction de la réponse sexuelle, a partir de ’analyse des seuls signaux EEG, afin

de supprimer la mesure de PPG invasive.



— la mise en place d'une chaine de prédiction adaptable a un traitement en flux continu
des données pour permettre une prédiction en temps réel de la réponse sexuelle dans
le but de la future mise en place d’un outil permettant de personnaliser 1’évolution du
scénario immersif.

La suite du mémoire sera structurée de la maniere suivante. Tout d’abord, au travers de la
revue de littérature du chapitre 2, nous présenterons les travaux existants qui permettront de
mieux définir nos objectifs et hypotheses de recherche dans le chapitre 3. Ensuite, le chapitre
4 décrit la mise en place de ces diverses méthodes, ainsi que I'établissement d’un protocole
d’évaluation qui permettra de mettre en lumiere leur efficacité. Les expérimentations et les
résultats obtenus seront alors exposés et discutés dans le chapitre 5. Puis, le chapitre 6 mettra
en avant les contraintes et limites de nos méthodes ainsi que des résolutions potentielles qui
restent a explorer dans le futur. Nous reviendrons sur les résultats obtenus, leurs limitations

et les pistes d’améliorations futures dans la conclusion au chapitre 7



CHAPITRE 2 REVUE DE CONNAISSANCES ET DE LA LITTERATURE

Préambule

Cette revue de littérature a pour objectif d’explorer différentes méthodes qui permettraient
de mettre en place un outil de détection en temps réel de la présence sexuelle. Nous com-
mencerons par étudier les fondements théoriques et les approches méthodologiques liées a la
détection de la présence sexuelle a partir de signaux physiologiques notamment électroencé-
phalographiques (EEG).

Puis, afin d’élargir les perspectives méthodologiques de notre étude, nous examinerons les
travaux issus de domaines connexes, en particulier celui de la reconnaissance d’émotions.
Cette étude de méthodes issues de domaines connexes a pour but d’identifier des modeles
transférables a notre projet et permettant d’anticiper les défis liés a la détection en temps

réel, la variabilité inter-sujets et a la complexité des signaux EEG.

2.1 Définition de la présence sexuelle

La présence sexuelle désigne une forme spécifique de présence, définie comme le sentiment
subjectif d’étre en interaction avec un agent sexuel dans un environnement et en particulier

dans un environnement numérique immersif.

C’est un état psychologique subjectif qui implique une interaction dynamique entre les pro-
priétés du stimulus, les attentes de l'individu et les mécanismes cérébraux sous-jacents a

I'engagement affectif et sexuel.

Selon Renaud et al. [1], elle mobilise des processus cognitifs tels que lattention dirigée,
la reconnaissance d’intentionnalité et 'engagement émotionnel. Cette expérience ne dépend
pas exclusivement de la réalité virtuelle, mais peut émerger a partir de contenus visuels

synthétiques, comme le démontrent les travaux de Renaud et al. [3].

Les recherches de Renaud et al. [1,3] suggerent que la présence sexuelle constitue un phé-
nomene neurocognitif mesurable physiologiquement. Ces résultats ont été confirmés plus

récemment par les travaux de Brideau-Duquette et al. [4] et Coté et al. [5].



2.2 Détection physiologique de la présence sexuelle

Les études sur la présence sexuelle s’appuient sur des données multimodales combinant des
signaux physiologiques tels que 'EEG, l'oculométrie, la PPG (vaginale ou pénienne). Ces
données sont généralement collectées dans des environnements immersifs en réalité virtuelle
(VR), ot les participants sont exposés a des stimuli a contenu sexuel contr6lé. Les données
sont annotées apres un entretien avec le participant ou ce dernier répond a un questionnaire
indiquant l'intensité de la présence sexuelle ressentie pendant 1'immersion. Les prédictions

sont effectuées sur des immersions relativement longues (entre 30 s et 2 min). [3,4]

2.2.1 Pléthysmographie génitale

La pléthysmographie génitale (PPG car nous parlons de pléthysmographie pénienne dans le
cas des participants masculins) est une mesure physiologique qui permet de mesurer 'afflux

sanguin au niveau des parties génitales.
Dans le cadre de notre projet, elle est utilisée pour mesurer la réponse sexuelle [1,3-5].

Chez I'homme, cela consiste a placer une jauge au mercure autour de la tige pénienne, et
I’étirement de la jauge entraine un changement de voltage proportionnel a I’afflux sanguin [6].
Chez la femme, la technique consiste a insérer une sonde dans la vulve, sonde dans laquelle
se trouvent deux diodes a infrarouge, une émettrice et une réceptrice. La réflexion infrarouge
captée par la diode réceptrice quantifie ’engorgement sanguin des parois de la vulve et permet
une mesure de U'excitation sexuelle [5,7]. Ces techniques sont délicates a mettre en place et

invasives pour les sujets.

La PPG permet d’identifier des patrons d’activation physiologique en réponse a des contenus
érotiques, pouvant étre corrélés a une expérience subjective de présence sexuelle. [1,3] Cette
mesure physiologique directe offre ainsi un complément aux données EEG dans ’évaluation

multimodale de la présence sexuelle [5].

2.2.2 Electroencéphalographie

L’EEG est la mesure de 'activité électrique interne du cerveau. Elle est réalisée via la pose
d’électrodes sur la boite cranienne. La répartition des différentes électrodes est visible sur la
figure 4.2.

L’EEG constitue un outil privilégié pour I’étude de la présence sexuelle, en permettant de
mesurer les dynamiques cérébrales associées a des états de présence sexuelle subjectivement

rapportés. [1,3-5].



L’analyse électroencéphalographique dans le cadre de I’étude de la présence sexuelle repose

sur 'extraction de plusieurs types de caractéristiques du signal.

Bandes de fréquences et régions pertinentes. Les bandes de fréquences EEG jouent
un role central dans la détection des états affectifs et cognitifs. Selon Guevara et al. [8] chez
des participantes en contexte de stimulation sexuelle, une suppression des rythmes alpha
frontaux (8-12 Hz) et une augmentation de I’activité dans les bandes béta (13-30 Hz) et
gamma (>30 Hz) ont été observées, notamment dans les régions temporales et pariétales,
traduisant une activation corticale liée a l'excitation sexuelle. En revanche pour Brideau-
Duquette et al. [4], chez des participants masculins, c¢’est davantage l'activité des bandes de
fréquences alpha et béta dans les régions frontales qui contient I'information relative a la
présence sexuelle. De méme pour Saint-Pierre Coté et al. [5] ce sont des caractéristiques de
la région frontale dans la bande de fréquence alpha qui sont étudiées sur des participantes

femmes.

Prétraitement. Le prétraitement des données EEG inclut généralement :
— Un filtrage passe-bande (souvent entre 0.5 Hz et 45 Hz) pour éliminer les artefacts de
basse fréquence et les interférences haute fréquence.
— La suppression des artefacts liés aux mouvements oculaires et musculaires via des
techniques comme l’analyse en composantes indépendantes (ICA pour Independent

Component Analysis) [4].

Caractéristiques entropiques. L’entropie est utilisée pour quantifier la complexité et
I'imprévisibilité du signal EEG. Des mesures telles que l'entropie de Sample [4] permettent
d’évaluer la dynamique du signal cérébral en réponse a des stimuli sexuels. Renaud et al. [3]
ont introduit une mesure d’entropie croisée dynamique frontale pour capturer les corrélats
neurophysiologiques de la présence sexuelle. Cette approche permet de détecter les variations
synchrones entre régions cérébrales en lien avec ’exposition a des contenus sexuels synthé-
tiques, révélant des patrons spécifiques d’activation frontale associés a I’expérience subjective

de présence. Cette mesure est également utilisée par Brideau-Duquette et al. [4].

Asymétrie cérébrale. [’asymétrie EEG, notamment dans les régions frontales et parié-
tales, constitue un indicateur pertinent de la latéralisation des réponses émotionnelles. Des
études récentes par Saint-Pierre Coté et al. [5] ont montré que des asymétries dans I’activité

cérébrale peuvent étre des marqueurs de l'intensité de la présence sexuelle ressentie.



2.3 Prédiction de la présence sexuelle

Les architectures de prédiction utilisées dans le domaine de la prédiction de présence sexuelle
sont principalement basées sur I’apprentissage profond mais restent relativement simples. La
plupart des modeles utilisés sont des MLP fusionnant plusieurs modalités (EEG, oculométrie,

PPG) via des couches connectées.

La quantité limitée de participants réduit la taille du jeu de données disponible et doit étre

prise en compte dans le choix des architectures utilisées.

La majorité des études adoptent une approche hors-ligne, ou les signaux sont enregistrés,

prétraités et analysés a posteriori.

Limites. Il convient de souligner que le champ de I’analyse des signaux physiologiques, et
en particulier de 'EEG, appliquée a I'étude de la présence sexuelle demeure relativement
récent et encore limité dans la littérature scientifique. A ce jour, la majorité des travaux cités
précédemment ont été réalisés par des chercheurs affiliés a 'INPLPP, institution a laquelle
le présent projet est également rattaché. Afin d’élargir la compréhension des approches mé-
thodologiques disponibles pour I'analyse des signaux EEG, il apparait pertinent d’examiner
les contributions issues de domaines connexes, tels que la reconnaissance d’émotions et la

détection de pathologies et troubles d’ordres neurologiques.

2.4 Analyse de '’EEG pour la reconnaissance d’émotions et autres domaines

connexes

2.4.1 Pourquoi regarder le domaine de reconnaissance d’émotions ?

Le domaine de la reconnaissance d’émotions par EEG constitue une source précieuse d’ins-
piration, notamment en raison de la proximité entre les mécanismes neurophysiologiques im-

pliqués dans les états émotionnels et ceux mobilisés lors de 'expérience de présence sexuelle.

De plus, ce champ bénéficie d’un corpus scientifique particulierement riche, avec plusieurs
centaines de publications recensées dans les dernieres années. Cette dynamique est soutenue
par l'existence de bases de données publiques et largement utilisées telles que DEAP, SEED),
DREAMER ou SEED-IV, qui facilitent la reproductibilité des travaux et la comparaison
des modeles. Plusieurs revues de littérature, ont été publiées pour synthétiser les avancées

dans ce domaine. [9]

Il est important de noter que la reconnaissance d’émotion, notamment sur la base de données

DEAP se fait généralement sur des enregistrements plus courts (environ 6 s) [10]. Ce qui



rend les méthodes utilisées intéressantes pour d’éventuelles applications en temps réel.

Cette maturité méthodologique et la disponibilité de ressources partagées font de la recon-
naissance d’émotions un terrain fertile pour le transfert de connaissances vers des domaines

émergents comme la détection de la présence sexuelle.

2.4.2 Architectures utilisées pour la reconnaissance d’émotions

CNN Les réseaux de neurones convolutionnels CNN sont largement utilisés dans le trai-
tement des signaux EEG pour la reconnaissance des émotions. Ils sont souvent utilisés sur
des représentations spatiales du signal ou des caractéristiques spectrales ou entropiques sont
extraites du signal de chaque électrode puis combinées dans une représentation 2D exploitant
les positions relatives des électrodes. Par exemple, Bashivan et al. [11] ont proposé un modele
CNN capable d’extraire des représentations spatio-temporelles robustes a partir des données
EEG brutes. De méme, Lawhern et al. [12] ont introduit EEGNet, une architecture légere et
efficace pour la classification EEG. Ces approches ont démontré leur efficacité sur des bases
comme DEAP et SEED, bien que leur capacité a capturer et modéliser les dépendances

temporelles des signaux EEG reste limitée [9].

Réseaux de neurones récurrents (Recurrent Neural Network) (RNIN) Les réseaux
de neurones récurrents sont également souvent utilisés, notamment les architectures de type
réseau a mémoire long-court terme (Long Short-Term Memory) (LSTM) et unité récurrente
a barriere (Gated Recurrent Unit) (GRU), congues pour modéliser les séquences temporelles.
Zhang et al. [13] ont proposé un modele STRNN (Spatial-Temporal RNN) qui exploite les
dépendances spatiales et temporelles du signal EEG pour améliorer la reconnaissance émo-
tionnelle. Ces modeles permettent de capturer les dynamiques cérébrales liées aux émotions,

mais peuvent étre sensibles au bruit et a la variabilité inter-sujets [9].

Architectures hybrides (CNN-RNN) Pour combiner les avantages des CNN et des
RNN, plusieurs travaux ont proposé des architectures hybrides. Ramzan et Dawn [14] ont
développé un modele CNN-LSTM fusionné, appliqué aux bases DEAP et SEED, qui atteint
des taux de précision élevés en intégrant les caractéristiques spatiales et temporelles du signal
EEG. Ce type d’architecture permet une modélisation plus compléte du signal, bien qu’il

implique une grande complexité computationnelle et donc un nombre de données important

[9].



RA-CNN Le modeéle RA-CNN, proposé par Li et al. [15], est une architecture congue pour
la reconnaissance des émotions a partir de signaux EEG. Des caractéristiques profondes de
chacun des signaux EEG sont extraites par réseaux convolutionnels. Les caractéristiques ex-
traites de chaque électrode sont utilisées pour créer une représentation spatiale 2D sur laquelle
ils utilisent deux CNN pour extraire des caractéristiques régionales et asymétriques Cette ap-
proche permet une modélisation plus fine des dynamiques cérébrales liées aux émotions et
semble améliorer la variabilité inter-sujets. Malheureusement ce modele a une complexité
architecturale accrue ce qui peut soulever des problemes de surapprentissage si la taille de

notre jeu de données est trop petite.

Transformers Les modeéles Transformers ont été adaptés a 'analyse des signaux EEG.
Liu et al. [16] ont proposé le modele EEG émotion Transformer (EeT), basé sur des blocs
d’attention spatiale et temporelle, permettant une extraction conjointe des caractéristiques
spectrales, spatiales et temporelles. Ces modeles surmontent les limitations des CNN et RNN
en capturant des dépendances globales sans contraintes séquentielles. Bien que les résultats
soient prometteurs, I’entrainement de ces réseaux nécessite de treés grandes quantités de don-

nées [9].

2.4.3 Architectures utilisées dans d’autres domaines

Parmi les nombreuses méthodes présentes dans le domaine de la reconnaissance d’émotions,
I’application directe de CNN aux spectrogrammes EEG reste étonnamment rare. Les spec-
trogrammes peuvent entrainer une perte de résolution temporelle, ce qui limite leur capacité

a représenter les dynamiques émotionnelles fines.

Cependant, dans le cadre de notre projet, I'utilisation de CNN sur des spectrogrammes EEG
présente un intérét particulier. Cette approche a montré son efficacité pour détecter des pa-
trons pathologiques dans des signaux EEG complexes. Par exemple, Esquivel et al. [17] ont
utilisé des spectrogrammes transformés par ondelettes comme entrée dans un CNN pour
détecter des crises d’épilepsie avec une précision élevée. De méme, Thomas et al. [18] ont
démontré que des CNN appliqués a des spectrogrammes EEG permettent une classifica-
tion automatique des stades du sommeil et la détection de troubles associés. Ces résultats
suggerent que les spectrogrammes EEG, combinés a des architectures CNN bien calibrées,
pourraient offrir une voie prometteuse pour la détection de la présence sexuelle, notamment

en capturant des signatures neurophysiologiques complexes.



CHAPITRE 3 OBJECTIFS DE RECHERCHE

Le but de ce projet est la mise en place d'un outil d’apprentissage automatique utilisable
dans le cadre de la modularisation d’un scénario immersif VR et basé sur des enregistrements

physiologiques acquis de maniére non-invasive.

Synthése de la revue de littérature A la suite de cette revue de littérature, nous
pouvons observer les faits suivants :

— Les travaux de 'INPLPP étudient la présence sexuelle qui est un état subjectif et
se basent sur 1’étude a posteriori de segments d’enregistrements longs et nécessitent
I'utilisation de la mesure PPG invasive.

— La présence sexuelle ne peut étre réduite a une réponse immédiate. En effet, elle est
définie comme une expérience subjective d’engagement affectif et cognitif envers un
agent sexuel dans un environnement médiatisé. C’est une mesure subjective, mobilisant
des processus attentionnels, émotionnels et représentationnels. Elle suppose une forme
de co-présence percue avec un partenaire virtuel ou synthétique, et s’inscrit dans une
temporalité plus étendue. On s’intéressera dans le cadre de ce projet a la réponse
physiologique rapide et automatique a un stimulus sexuel, ce que 'on peut appeler
une impulsion sexuelle.

— Le domaine de la reconnaissance d’émotions a développé des méthodes computation-
nelles adaptées a I'analyse de signaux EEG.

— La reconnaissance d’émotion se fait sur de tres larges bases de données, souvent pu-
bliques et les architectures les plus efficaces (transformers, CNN-RNN) sont assez
lourdes.

— Les architectures CNN par analyse de spectrogrammes n’ont, & notre connaissance,

pas été utilisées dans ce domaine et présentent un intérét potentiel.

Objectifs du projet Il n’existe pas, a notre connaissance un outil computationnel per-

mettant la détection de I'impulsion sexuelle sur la seule analyse de 'EEG. C’est ce que nous

souhaitons mettre en place dans ce projet. Notre outil doit satisfaire les contraintes suivantes :

— Etre capable de détecter automatiquement une réponse physiologique & un stimulus

sexuel via 'analyse de données EEG. Afin de pouvoir se passer de I'enregistrement
invasif de la PPG.

— Etre adapté ou adaptable & un traitement des données en flux continu pour une future

utilisation en temps réel. Donc basé sur des segments de données plus courts.
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— Etre généralisable & des participants inconnus (résistant a la tres forte variabilité inter-
sujets de 'EEG) ou, le cas échéant, pouvoir se raffiner facilement pour étre performant
sur des participants dont on ne connait qu'une quantité limitée de données (données
de calibration).

Pour cela, nous testerons diverses méthodes et architectures d’apprentissage automatique

afin d’établir lesquelles sont les plus adaptées.
Nous nous baserons sur les hypotheses suivantes :

— Les caractéristiques de 'EEG utilisées dans le domaine de la détection de présence
sexuelle ( étude des bandes de fréquences alpha et béta dans la région frontale, calcul
de caractéristiques entropiques, ...) sont utilisables dans le cadre de la détection de
I'impulsion sexuelle.

— Les méthodes d’apprentissage automatique issues de la reconnaissance d’émotions ou
d’autres domaines connexes sont transférables a ce projet mais doivent étre adaptées

aux conditions et contraintes spécifiques.
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CHAPITRE 4 METHODES ET EXPERIENCES

4.1 Données disponibles et Prétraitement

Les données avec lesquelles nous travaillons ont été collectées par Sarah Saint-Pierre Coté et
Matthieu Brideau-Duquette [4] [5], dans le cadre d’un projet plus large de 'institut Philippe
Pinel 1.

4.1.1 Explication des conditions expérimentales
Participants et scénarios

Nous avons acces a des données obtenues a partir de 30 participants volontaires cisgenres
hétérosexuels masculins agés de 20 a 35 ans. Chaque participant a été immergé dans quatre
scénarios de réalité virtuelle différents.

— Diffusion d'une vidéo neutre VidNeutre dans laquelle il n’y a aucune stimulation
sexuelle.

— Diffusion d’une vidéo "sexuelle" VidSex contenant du contenu pornographique/érotique
afin d’éveiller une stimulation sexuelle.

— Diffusion d’un scénario en réalité virtuelle (VR) neutre en 3D généré VidAndroide
dans lequel les participants interagissent pour la premiere fois avec un personnage
virtuel personnalisé qu’ils ont créé avant 'expérience. Ce scénario ne contient aucune
stimulation sexuelle. Les interactions avec le personnage sont asexuelles.

— Diffusion d’un scénario sexuel en VR en 3D généré VidPVP-EVP ou le personnage vir-

tuel a un comportement sexuellement explicite afin d’éveiller une stimulation sexuelle.

Signaux physiologiques enregistrés

Durant I'immersion dans les quatre scénarios, les données physiologiques suivantes ont été

enregistrées [4] :

La tumescence pénienne a été mesurée a l'aide de la PPG. Les données de la PPG ont
été enregistrées avec le logiciel DataPac et traitées a l'aide de la suite logicielle PrefTest

Professional (version 11.3.0.20; tous produits par Limestone Technologies).

Les enregistrements EEG ont été réalisés a ’aide d’un bonnet équipé de 32 électrodes actives,
selon le systeme 10-20 (Acticap, Brain Vision). Le signal EEG a été amplifié en temps réel

a I'aide de I'amplificateur ActiChamp de Brain Vision, puis enregistré a 1’aide des logiciels
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MOVE et Recorder de Brain Vision (version 1.20.0401).
Selon [4], les données des électrodes frontales FP1, FP2, F7, F3, Fz, F4, F8, FC5, FC1,

FC2, FC6 semblent les plus pertinentes pour la reconnaissance de la présence sexuelle et

donc de I'impulsion sexuelle, nous ne conserverons donc que les données de ces 11 électrodes.

Filtrage et échantillonnage

Les mesures PPG sont échantillonnées a 25 Hz et ne subissent aucun filtrage.

Les mesures EEG sont échantillonnées a 500 Hz. Le signal a ensuite été immédiatement soumis
a un filtrage, incluant un filtre passe-bas réglé a 1,59 Hz, un filtre passe-haut réglé a 70 Hz,
ainsi qu’un filtre coupe-bande a 60 Hz destiné a atténuer le bruit électrique ambiant propre
aux installations nord-américaines. Dans le cadre de notre étude nous ne nous intéressons
uniquement aux bandes de fréquences delta, theta, alpha et beta (comprises des fréquences
de 0.5 & 25 Hz) donc nous effectuons un deuxiéme filtrage passe-bas a 30 Hz et, pour réduire

la taille des données, un ré-échantillonnage a 60 Hz.

4.1.2 Formatage pour une utilisation en temps réel et étiquetage
Formatage pour une prédiction en temps réel

Afin de pouvoir étre adapté a une utilisation en temps réel, nous souhaitons effectuer une
Y

prédiction de I'impulsion sexuelle sur une courte période de temps. A partir de chacun de

nos signaux, nous extrayons un point de données par seconde a 'instant ¢, en conservant les

6 secondes précédentes d’EEG comprises entre t — 6s et t pour t > 6s.

Les points de données correspondent a des fenétres de 6 secondes contenant 360 échantillons

par électrode avec un recouvrement temporel de 5 secondes, soit un taux de 83%.

Etiquetage des données

Pour créer nos bases de données, nous cherchons a déterminer quelles parties de quels scé-
narios correspondent a des états excités, présentant une impulsion sexuelle ou a des états
neutres. Pour effectuer cet étiquetage, nous regardons les courbes de PPG des patients dans

chacun des scénarios avec 1’aide d’un expert dans le domaine : Dr Patrice Renaud.

Seules les courbes PPG de I'immersion dans des scénarios vidéo et non générés en 3D sont

suffisamment claires pour procéder a un étiquetage certain.

Dans le cadre de I'immersion en scénario vidéo a caractere sexuel, nous définissons une plage
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temporelle correspondant a un pic et au plateau du maximum de la PPG qui témoigne
d’une impulsion sexuelle. Nous définissons toutes les données dont I’horodatage est dans cet

intervalle comme correspondant a un état excité.

Au vu de la PPG seule, il est difficile de dire si le reste du scénario présente un état d’impulsion
sexuelle, les données dont I’horodatage est en dehors de ces plages ne sont donc pas étiquetées

et ne seront pas prises en compte dans I’entrainement des modeles.

Nous prenons donc I'ensemble des données recueillies dans le cadre du scénario vidéo neutre

VidNeutre comme correspondant a un état neutre non-excité.

PPG Curve
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FIGURE 4.1 En vert, intervalle des instants correspondant a un état excité pour le scénario
VidSex pour un participant.

4.1.3 Prétraitement par analyse par composantes indépendantes

Nous disposons de ces données EEG "brutes" ainsi que des données EEG pré-traitées éga-
lement obtenues dans le cadre des travaux précédents [4,5]. Ces données ont été traitées a
I'aide du logiciel Analyzer 2.1 (Brain Vision), dans lequel les canaux trop bruités ont été
identifiés et exclus lors d’inspections visuelles. Une analyse en composantes indépendantes
ICA a ensuite été appliquée en utilisant I’algorithme de pente moyenne, des ensembles de

données spécifiques aux conditions, ainsi que les méthodes Infomax et de somme des corré-
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lations quadratiques issues du logiciel Analyzer, afin d’éliminer les composantes de bruit les

plus importantes majoritairement associées aux mouvements oculaires.

Le méme filtrage passe-bas a 30 Hz et ré-échantillonnage a 60 Hz ainsi que le processus

d’extraction/étiquetage défini plus haut ont été appliqués a ces données pré-traitées.

Il est cependant important de noter que ce prétraitement nécessite une connaissance du signal
dans son ensemble. Le but de notre recherche est d’effectuer une prévision de I'impulsion
sexuelle en temps-réel donc de traiter les données entrantes comme un flot, ce qui rendrait
I'utilisation de ce prétraitement incompatible avec la mise en place de futures expériences en

temps réel.

4.2 Classification par analyse de spectrogrammes

Notre premiere approche consiste a examiner la représentation de la densité spectrale de
puissance dans les domaines fréquentiel et temporel, en utilisant une représentation par spec-
trogramme, puis a analyser ces spectrogrammes a l’aide de réseaux de neurones convolutifs
(CNN). Bien que peu commune dans le domaine de la reconnaissance d’émotions, 1’étude de
I’EEG par analyse spectrographique est utilisée en médecine pour détecter diverses patholo-

gies comme ’épilepsie [17] et certains troubles du sommeil [18].

4.2.1 Extraction de spectrogrammes

Chaque point de données de 6 secondes échantillonné a 60 Hz contient 360 échantillons
pour chacune des 11 électrodes frontales. Pour chaque signal, un spectrogramme de densité
spectrale linéaire est extrait a l'aide de la fonction matplotlib.pyplot.specgram de la
bibliotheque Matplotlib. Cette extraction est réalisée sans suppression de la tendance linéaire
du signal avec 64 échantillons par segment spectral, un recouvrement de 32 échantillons, et
I’application d'une fenétre de Hamming sur chacun des segments. Nous obtenons ainsi un

spectrogramme de dimension 33x10 évaluant la densité spectrale de fréquences de 0 a 30 Hz.

Les spectrogrammes ainsi obtenus sont combinés dans une image multicanal de dimension

33x10x11.

4.2.2 Architectures CNN pour analyse de spectrogrammes

Nous utilisons ici des architectures CNNs tres minimalistes. Au vu de la taille tres limitée
du jeu de données, un réseau avec trop de parametres risque de surapprendre. Nous utilisons

trois architectures SpectroCNN_3 décris en 4.1, avec des noyaux 3 x 3, SpectroCNN_5 décris



15

en 4.2 avec des noyaux 5 X 5 et SpectroCNN_Res décris en 4.3 avec plusieurs tailles de noyaux

et une connexion résiduelle.

TABLEAU 4.1 Architecture du modele SpectroCNN_3 avec nombre de parametres

Type de couche Taille de sortie | Nb parameétres
Entrée 11 x 33 x 10 -
Convolution 3x3, padding=0 (11—32) 32 x 31 x8 3200
BatchNorm 32 x 31 x8 64
ReLU 32 x31x8 -
Convolution 3x3, padding=0 (32—64) 64 x 29 x 6 18496
BatchNorm 64 x 29 x 6 128
ReLU 64 X 29 X 6 -
Convolution 3x3, padding=1 (64—64) 64 x 29 X 6 36928
ReLU 64 x 29 x 6 -
Convolution 3x3, padding=1 (64—64) 64 x 29 x 6 36 928
ReLU 64 x 29 X 6 -
Flatten 5568 -
Dense (64 unités) 64 356416
Dropout (p = 0,3) 64 -
Dense (1 unité) 1 65
Activation Sigmoid 1 -
Total — 452 225

Tous ces modeles utilisent des activations RELU entre chaque convolution et une couche
SIGMOID avant la sortie. Pour éviter le surapprentissage, nous ajoutons dans tous les modeles
deux couches de normalisation par lot (BatchNorm) apres les premiéres convolutions et une
couche de désactivation aléatoire (Dropout) avec une probabilité de désactivation de p=0.3

avant la derniere couche dense.

Une recherche d’optimisation des hyperparametres par grille a montré que les meilleurs ré-
sultats étaient obtenus avec une taille de batch de 100, un taux d’apprentissage initial de
0.0001 pour 150 epochs.

Nous utilisons ici une fonction de perte d’entropie croisée binaire et un optimiseur de type

ADAM.
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TABLEAU 4.2 Architecture du modele SpectroCNN_5 avec nombre de parametres

Type de couche Taille de sortie | Nb parameétres
Entrée 11 x 33 x 10 -
Convolution 5x5, padding=0 (11—32) 32x29x6 8832
BatchNorm 32 x29 %6 64
ReLU 32 x29 %6 -
Convolution 5x5, padding=2 (32—64) 64 x 29 x 6 51264
BatchNorm 64 x 29 X 6 128
ReLU 64 x 29 x 6 -
Convolution 5x5, padding=2 (64—64) 64 x 29 x 6 102464
ReLU 64 x 29 x 6 -
Convolution 5x5, padding=2 (64—64) 64 x 29 x 6 102464
ReLU 64 x 29 X 6 -
Flatten 5568 -
Dense (64 unités) 64 356416
Dropout (p = 0,3) 64 -
Dense (1 unité) 1 65
Activation Sigmoid 1 -
Total — 622 697

4.3 Classification par extraction de caractéristiques temporelles profondes

La seconde approche est inspirée directement du domaine de la reconnaissance d’émotions
[15]. Nous analysons 'EEG en extrayant des caractéristiques profondes par convolutions sur
I’axe temporel pour chacune des électrodes et nous allons ensuite comparer les caractéris-
tiques de chacune des électrodes avec les électrodes voisines (caractéristiques régionales) et

les électrodes opposées (caractéristiques asymétriques).

4.3.1 Représentation spatiale de 'EEG

Pour pouvoir extraire ces caractéristiques spatiales des signaux EEG, nous assignons a cha-
cune de nos électrodes un pixel d’une image en s’aidant de la vue en plan du systéme in-
ternational 10-20 comme dans la figure 4.2. Nous n’utilisons que les électrodes frontales,
FP1, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6 que l'on assigne a I'image 4 x 9

schématisée dans le Tableau 4.4.

Nous transformons donc notre vecteur de données 11 x 360 en matrice de données 4 x 9 x 360.
Les données des pixels non-associés & des électrodes peuvent étre interpolées (de maniere
gaussienne ou linéaire) mais de telles méthodes introduisent du bruit et augmentent la charge

computationnelle. Nous mettons donc des valeurs nulles pour ces positions.



TABLEAU 4.3 Architecture du modele SpectroCNN_Res avec nombre de parametres

Type de couche Taille de sortie | Nb parameétres
Entrée 11 x 33 x 10 -
Convolution 5x5, padding=0 (11—32) 32x29x6 8832
BatchNorm 32 x29 %6 64
ReLU 32 x29 %6 -
Convolution 3x3, padding=1 (32—64) 64 x 29 x 6 18496
BatchNorm 64 x 29 X 6 128
ReLU 64 x 29 x 6 -
Sauvegarde pour addition résiduelle - -
Convolution 3x3, padding=1 (64—64) 64 x 29 x 6 36 928
ReLU 64 x 29 x 6 -
Convolution 3x3, padding=1 (64—64) 64 x 29 X 6 36 928
Addition résiduelle + ReLLU 64 x 29 x 6 -
Flatten 5568 -
Dense (64 unités) 64 356416
ReLU 64 -
Dropout (p = 0,3) 64 -
Dense (1 unité) 1 65
Activation Sigmoid 1 -
Total — 457 857
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4.3.2 Extraction de caractéristiques par convolutions sur ’axe temporel

Pour ce modele, nous proposons d’utiliser des couches de convolution unidimensionnelles
continues afin d’extraire séparément les caractéristiques temporelles de chaque canal EEG.
L’architecture est illustrée a la Figure 4.3. Les opérations de convolution sont effectuées uni-
quement dans la dimension temporelle. Quatre couches de convolution successives, contenant

respectivement 4, 8, 16 et 32 noyaux temporels, sont appliquées dans cette étape.

La taille des noyaux est définie comme suit pour les quatre couches respectivement : 16, 5, 5,
12. Les convolutions sont réalisées avec un stride de 3 et sans padding, ce qui réduit la taille

de I'axe temporel de 360 a 1.

Cette implémentation differe du modele original congu pour la reconnaissance des émotions,
[19] qui commengait avec des noyaux de petite taille afin de capturer des caractéristiques de
plus haute fréquence. A linverse, notre approche commence par un noyau plus large, suivi
de noyaux plus petits, et se termine par une derniere convolution dont le noyau couvre toute
la longueur de ’entrée temporelle — ce qui équivaut fonctionnellement, a une couche dense
sur I'axe temporel, mais permet une implémentation plus simple.

R4><9><32

Le tenseur résultant fr appartient a , représente une carte de caractéristiques tempo-
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0 0 0O |FP1| 0 | FP2| O 0 0
0 0 0 0 0 0 0 0 0
Fr| 0 |F3| 0 |Fz 0 |[F4| 0 |F8
0O |FC5| 0 |[FC1| 0 |[FC2| 0 |FC6| 0

TABLEAU 4.4 Positionnement spatial des électrodes frontales dans une matrice 4x9

FIGURE 4.2 Répartition spatiale des électrodes EEG.

relles par électrode, projetée sur une grille de taille 4 x 9 avec 32 canaux de sortie. Chacune

de ces convolutions est suivie d’une couche d’activation RELU.

4.3.3 Extraction de caractéristiques régionales avec un CNN

Les caractéristiques temporelles préalablement obtenues peuvent étre considérées comme des
images en couleur : les deux premieres dimensions représentant la hauteur et la largeur, et

la derniére dimension étant analogue a un canal de couleur.

Dans les taches de classification d’images, les réseaux de neurones convolutifs (CNN) s’averent
particulierement efficaces pour extraire des représentations locales, grace a leurs champs

récepteurs restreints. Notre objectif ici est de capturer 'information spatiale entre électrodes
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FIGURE 4.3 Extraction de caractéristiques profondes sur I’axe temporel.

adjacentes. Pour cela, trois couches de convolution bidimensionnelles de taille 3 x 3 sont

appliquées successivement, chacune comportant 32 filtres. Un remplissage par zéros (zero-

padding) est utilisé a chaque étape afin de préserver les informations en bordure des cartes

de caractéristiques temporelles. A I'issue de ces trois couches convolutives, les caractéristiques

régionales sont extraites. fr € R**9%32 Chacune de ces convolutions est suivie d’'une couche

d’activation RELU.

Regional feature extractor
Conv2D ConvzD ConvzD
(3x3x32) (5xBx32) (3x3n32)
 — > —_—
[ [ 1« IR 1]
32@4x9 32@4x9 32@4x9 J2@4x9

FIGURE 4.4 Extraction de caractéristiques régionales de haut niveau.
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4.3.4 Extraction de caractéristiques asymétriques

Des études en neurosciences ont montré que les réponses de présence sexuelle présentent une
asymétrie frontale entre les hémispheres gauche et droit du cerveau [5]. Bien que 'opération
de convolution utilisée dans 'extracteur régional de caractéristiques permette de capturer des
relations spatiales locales, elle ne permet pas d’extraire des informations a longue distance,

notamment entre des positions symétriques sur le crane.

Afin de mieux modéliser ces différences asymétriques entre les deux hémispheres, nous uti-
lisons un mécanisme appelé couche de différence asymétrique (ADL), qui effectue une sous-
traction entre les canaux appariés correspondant a des positions symétriques. Notons fr €

RM*wx32 Jeg caractéristiques temporelles extraites, I’ADL est alors formulé comme suit :

fA(ivjv k) = fT(iaja k) - fT(i>w+ 1 _j7 k)?Z € [’174|]’] € Hlv \‘ZJ H?k € HLSQH (41)

I3 4x |2 2 , e . s . 1o e .
Le tenseur f4 € R** [3]>3 représente les caractéristiques asymétriques préliminaires.

Pour extraire des caractéristiques asymétriques de niveau supérieur, nous appliquons une
couche de convolution de taille 1 x 1 sur f4. Cette opération permet d’intégrer les différences
asymétriques au sein de chaque paire de canaux. Afin de conserver un nombre d’éléments de
sortie cohérent avec celui de fg, le nombre de filtres est fixé & 64, ce qui donne f4 € R"* [ 5 ]x64,

Cette convolution est suivie d’une couche d’activation RELU.

Cette extraction de caractéristiques asymétriques est illustrée a la Figure 4.5.

4.3.5 Architecture du réseau convolutif régional asymétrique (RA-CNN)

A la suite de Uextraction des caractéristiques régionales fr et asymétriques f4, celles-ci sont
d’abord aplaties en vecteurs, puis concaténées pour former un vecteur unique de représen-
tation globale. Ce vecteur est ensuite transmis a une séquence de deux couches entierement
connectées, suivie d'une couche de régularisation par désactivation aléatoire (Dropout), puis
d’une derniere couche dense de classification. Ce processus peut étre formulé comme suit :
o= FC(fr| fa). Toutes les couches de notre réseau sont suivies d'une activation RELU et

la derniére couche d’une activation SIGMOIDE.
L’architecture complete est illustrée a la Figure 4.6.

Une recherche d’optimisation des hyperparametres par grille a montré que les meilleurs résul-
tats sont obtenus avec une taille de batch de 200, un taux d’apprentissage initial de 0.0001

pour 150 itérations.
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Assymetric feature extractor
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FIGURE 4.5 Extraction de caractéristiques asymétriques de haut niveau.

Nous utilisons ici une perte entropie croisée binaire et un optimiseur ADAM.

Nous testons I'importance des caractéristiques temporelles et régionales en entrainant deux
modeles similaires R_CNN et A CNN qui n’utilisent respectivement que les caractéristiques

régionales et que les caractéristiques asymétriques.
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FIGURE 4.6 Architecture complete du réseau RA_CNN.

4.4 Classifications par analyses de caractéristiques entropiques

Des articles récents en détection de présence sexuelle utilisent la mesure d’entropie croisée
dynamique (DCE) de différentes bandes de fréquences [4] [5]. Nous cherchons a mettre en
place des modeles de classification basés sur cette caractéristique mais aussi sur les valeurs

des entropies des différentes bandes de fréquence de chaque électrode.

4.4.1 Extraction de caractéristiques entropiques
Séparation des données en bandes de fréquences

Avant d’extraire I’entropie de nos signaux, nous voulons diviser le signal en quatre bandes de
fréquences alpha basse de 8 a 10,5 Hz, la bande alpha haute de 10.5 a 13 Hz, la bande beta
basse de 13 a 20 Hz, et la bande beta haute de 20 a 30 Hz.

Pour cela, le signal est d’abord normalisé en fonction de la fréquence de Nyquist, puis un
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filtre de Butterworth d’ordre 4 est conc¢u pour cibler la bande de fréquences souhaitée. Ce
filtre est ensuite appliqué au signal original a I'aide d’un filtrage avant-arriere sans déphasage
(filtfilt), garantissant une réponse en phase linéaire. Ce traitement permet d’atténuer les

artefacts hors bande tout en conservant fideélement la structure temporelle du signal.

Nous explorons également un découpage alternatif sur les bandes de fréquences delta de 0,5
a 4 Hz, théta de 4 a 8 Hz, alpha de 8 & 13 Hz et béta de 13 a 25 Hz.

Qu’est-ce que ’entropie ?
L’entropie évalue la complexité temporelle d’'un signal en mesurant la dispersion et la redon-
dance de motifs.

Pour mieux comprendre ce que représente ces caractéristiques entropiques, nous considérons

un signal z = xg, z1,...zy de longueur N et une dimension d’intégration m.

Pour cela, nous construisons les vecteurs d’intégration A (z) et A™*+Y(z) comme suit :

A(m) (I‘) = Agm), Ce 7A§<7n2m+1 ou Agm) = [Z‘i, . xi—&—m—l] (42)

Nous utilisons ces vecteurs d’intégration pour construire des vecteurs de distances D™ (z) et
D) (z) obtenus en aplatissant les matrices de distances D™ (z) et D™+ définies comme

suit :

- m m m m 2
DI @)y = | AL, Ay = /(A — A (43)

Pour extraire les caractéristiques entropiques de chacun de nos signaux filtrés, nous utilisons
la librairie EntropyHub sur Python. [20]

Entropies "Sample" et "Fuzzy"

L’entropie par échantillon, dite Sample, consiste a seuiller les vecteurs de distance par rapport
a un seuil r et & D'écart type du signal o pour obtenir les vecteurs binaires B (z,r) et

B+ (. r) selon :

(m) 1, si D,(qm) () >r-o
B (z,r) = pour k=1,2,...,N (4.4)

0, sinon
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La valeur de I’entropie Sample est ensuite calculée de la facon suivante :

(4.5)

B(m+1)
SampleEn(x, m,r, N) = —In (Z k (z,7)

> B (x,r)

L’entropie floue, dite Fuzzy, est basée sur une modélisation probabiliste de la distance de

chaque motif & tous les autres, elle passe par le calcul de P (z,7) et P+ (x,7) avec :

1 N—m —1In(2) 71“77«
P (z,r) = Y oe (4.6)

7
N=m ;G

Puis nous obtenons I’équation de I’entropie Fuzzy de facon similaire.

(4.7)

FuzzyEn(x,m,r, N) = —In
( ) ( > P (z,7)

> P, r))
. Nous calculons ces deux entropies pour chacun des signaux filtrés avec EntropyHub. SampEn
pour I'entropie Sample et avec EntropyHub.FuzzEn pour 'entropie Fuzzy. Nous fixons la
dimension d’intégration a m = 4 et le seuil a » = 0.2. Les vecteurs de caractéristiques
ainsi obtenus sont de dimensions 11 x 4 correspondant aux 11 électrodes et aux 4 bandes de

fréquence.

Entropie croisée dynamique

Nous utilisons ces caractéristiques entropiques pour extraire l’entropie croisée dynamique
DCE des électrodes frontales. La DCE est définie comme suit [4] :

1
(f 7f ) J—
DCEM Py, ye) = 579 (4.8)
i=1Yi
Ici les yi(f 212) sont les signaux filtrés dans la bande de fréquence f;, fo de nos 11 électrodes

frontales (donc avec ¢ = 11).

Nous obtenons donc une valeur de DCE par bande de fréquences.

4.4.2 Architectures MLP basées sur ’entropie

Afin de déterminer I'importance de I'ajout de cette caractéristique d’entropie croisée dyna-

mique, nous proposons et comparons trois architectures de perceptrons multicouches MLP.
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Le modele MLP_Baseline (Tableau 4.5) utilise uniquement les caractéristiques entropiques
brutes, le modele MLP_DCE (Tableau 4.6) uniquement les caractéristiques de DCE et le mo-
dele hybride MLP_Baseline+DCE (Tableau 4.7) concaténe les caractéristiques de la DCE a la

représentation issue des données brutes avant la derniere couche dense.

TABLEAU 4.5 Architecture du modele MLP_Baseline avec nombre de parametres

Type de couche | Taille de sortie | Nb parametres
Entrée (z € R**11) x -
Flatten 44 -
Dense_ 1 (44—60) 60 2700
BatchNorm1 60 120
ReLU 60 -
Dense_ 2 (60—10) 10 610
BatchNorm?2 10 20
ReLU 10 -
Dropout (p = 0,3) 10 -
Dense 3 (10—1) 1 11
Sigmoide 1 -
Total — 3461

TABLEAU 4.6 Architecture du modele MLP_DCE avec nombre de parametres

Type de couche Taille de sortie | Nb parameétres
Entrée (x € R*) 4 -
Dense 1 (4 — 15) 15 75
BatchNorm1 15 30
ReLU 15 -
Dense_ 2 (15 — 10) 10 160
BatchNorm2 10 20
ReLLU 10 -
Dropout (p = 0,3) 10 -
Dense_3 (10 — 1) 1 11
Sigmoide 1 -
Total — 296

Nous utilisons ces trois architectures avec les caractéristiques entropiques Fuzzy et Sample
(caractérisées par les préfixes Sample_ et Fuzzy_) ainsi que pour les deux découpages de

bandes de fréquences (caractérisés par les suffixes _af5 et _d0af3).
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TABLEAU 4.7 Architecture du modele MLP_Baseline+DCE avec nombre de parametres

Type de couche Taille de sortie | Nb parametres
Entrée (z € R'**%) z+ DCE -
Remove DCE (z € R*4) T -
Flatten 44 -
Dense_1 (44 — 60) 60 2700
BatchNorm1 60 120
ReLU 60 -
Dense 2 (60 — 4) 4 244
BatchNorm?2 4 8
ReLLU 4 -
Concaténation avec DCE 44+4=38 -
Dropout (p = 0,3) 8 -
Dense 3 (8 — 1) 1 9
Sigmoid 1 -
Total — 3081

4.5 Protocole expérimental

4.5.1 Séparation des données temporellement ou par participant

Afin de tester efficacité de tous ces modeles, nous allons effectuer une séparation des don-
nées par participant pour écarter des participants tests. Des 28 participants initiaux, 9 sont
sélectionnés aléatoirement pour étre des participants tests. Ils serviront a évaluer la capacité

de généralisation de nos modeles.

L’hypothese de généralisation a des participants inconnus est forte et risque de ne pas étre
suffisamment déterminante pour le choix de nos modeles. C’est pour cela que nous souhaitons
avoir un objectif plus réalisable, la prédiction de données inconnues pour un participant dont
nous extrayons des données de calibrage pour raffiner le modele. Cette approche implique

une forme de "patient leak".

Nous avons beaucoup de recouvrement (80%) entre deux données consécutives temporelle-
ment, effectuer une sélection aléatoire de données de test ne serait donc pas représentatif de
la performance de nos modeles et ne permettrait pas de juger d’un potentiel surapprentissage.

Pour cela nous allons séparer les données temporellement.

Pour rappel, nous avons, pour I’entrainement de nos modeles, pour chaque participant, deux
enregistrements. Un neutre VidNeutre et un présentant des stimuli a caractere sexuel VidSex
qui est supposé engendrer des impulsions sexuelles chez les participants. Nos fenétres de don-

nées sont de taille w = 65 : chaque donnée, repérée par la signature temporelle T, comprend
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I’enregistrement EEG entre 7' — w et T'. Il y a un pas ¢ = 1s entre chacune des données.

Pour un participant 7, qui a été gardé pour I’entrainement des modeles ¢ ¢ Participants tests,
nous considérons 'ensemble des données de chacun des enregistrements D"*"¢(;) et D" (i)
comme un vecteur temporel ou Deresistremet ()[¢] correspond a la donnée de signature tem-

porelle t.

Chaque enregistrement est un intervalle continu de données, notons t3€“7¢(7), 174 (;) les
signatures temporelles de début et de fin de U'enregistrement D™“"¢(7) . Dans le cas des
enregistrements pour les scénarios VidSex, (i) et ¢5°°(i) correspondent aux bornes de

Iintervalle sélectionné comme représentant un état excité.

Nous définissons
tneutre (Z) tneutr@( ) + O 6 (tneutre( ) tgeutre (Z))

train

tneutre( ) tneutre( ) + O 2 (tneutre< ) tgeutre(,i))

val train

Dans le but de séparer temporellement les données de chaque scénario avec 60% pour 'en-
trainement, 20% pour la validation et 20% pour le test. Pour éviter tout chevauchement
entre des données, nous définissons les ensembles de données d’entrainement, validation et

test Dpevire(j) Drevtre(j) et Dicutre(4) de la fagon suivante :

Dyire(i) = { D (@)l e € | ) - |5 ||}
Dige(i) = { D) € ) + |5 | e - | 5] |}
prevtre () — {Dneutre( )t t € {t;ﬁ?tre( ) + Fgw ’t?eutre(i)]}

Nous définissons de fagon similaire D%, (i), D7 (i) et D (i).

Nous obtenons donc pour tous les participants non écartés, les bases de données suivantes

pour 'entrainement de nos modeles :

train train

Dirain = {U Deer (i) UDpe(4),i ¢ Participants Tests}

2

Dyar = {U ST (5) U DIEM(4), i ¢ Participants Tests}

i

Diest = {U Dper (i) U DY (i), i ¢ Participants Tests}
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Training 60% Validation 20% Test 20%

F1GURE 4.7 Illustration de la séparation temporelle des deux enregistrements d’un patient
en données d’entrainement, de validation et de test .

4.5.2 Ajout ou non d’un prétraitement par ICA

Si aucune architecture ne de de résultats satisfaisants sur les données brutes, nous répétons

le méme protocole sur les données qui ont subi un prétraitement par ICA.

4.5.3 Généralisation a des patients inconnus et raffinage

Les modeles qui performent bien sur la base de données des participants retenus pour ’entrai-
nement vont ensuite étre testés sur les données des participants tests que nous avons écartés

préalablement.

Pour vérifier si un raffinage des modeles est nécessaire nous effectuons sur chacun des enre-
gistrements des patients test un découpage temporel. Ce découpage est similaire a celui des
patients généraux car il isole les derniers 20% de chaque enregistrement comme données test

et garde les premier % comme données de raffinage.

Le but de ces découpages est de mesurer la quantité de données de raffinage nécessaire a

I'obtention d'une prédiction satisfaisante sur les données d’un patient.

Nous effectuons des raffinages en utilisant « € {10%, 20%, 30%, 40%, 50%, 60%, 70%}, nous

obtenons ainsi pour chacune des architectures choisies, 7 modeles raffinés pour chaque patient.

En plus des modeles entrainés sur une base de patients généraux puis raffinés, nous entrainons
également des modeles personnels seulement sur les données d’entrainement du patient ce

qui amene le nombre total de modeles a 14 par architecture et par patient.

Ces modeles personnels et raffinés sont entrainés avec les mémes hyperparametres que les

modeles originaux mais en divisant le nombre d’epochs par 10.
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4.5.4 Visualisation de l’inférence des modéles

La derniere vérification de nos modeles se fait de maniére qualitative en visualisant 'inférence

de nos modeles temporellement superposés a la courbe de PPG de chaque enregistrement.

De cette maniere nous pouvons visualiser le fonctionnement des modeles sur les données
Vidéos qui comprennent les données de test et d’entrainement mais aussi, pour les scénarios

VidSex, des données non étiquetées.

Nous observons également la capacité de généralisation des modeles aux scénarios générés en
3D ou nous nous attendons a obtenir des prédictions positives sur les pics de PPG pour les
scénarios PVP_EVI (scénarios 3D présentant une interaction érotique avec un avatar 3D donc
des stimuli sexuels ) et des prédictions neutres pour les scénarios Androide qui ne présentent

pas d’interaction érotique avec le personnage 3D.
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CHAPITRE 5 RESULTATS

5.1 Comparaison des modeles sur des patients connus

Pour évaluer la capacité de nos modeles a prédire I'impulsion sexuelle et sélectionner les
architectures les plus efficaces, nous regardons les résultats de nos modeles sur le jeu de
données des participants d’entrainement avec la séparation temporelle comme décrit dans la

section 4.5.1.

5.1.1 Résultats sur les données brutes

Modele Test Loss Accuracy Recall Precision F1 Score
SpectroCNN_res 28.185 0.674 0.968 0.675 0.796
SpectroCNN_3 31.415 0.661 0.991 0.661 0.793
SpectroCNN_5 30.010 0.659 0.983 0.661 0.791
RA-CNN 10.012 0.585 0.715 0.672 0.693
R-CNN 4.469 0.512 0.570 0.645 0.605
A-CNN 2.924 0.575 0.669 0.678 0.673
Fuzzy MLP Baseline_d0af3 0.680 0.659 0.759 0.731 0.745
Fuzzy MLP_DCE_dfaf3 0.631 0.650 0.965 0.659 0.783
Fuzzy MLP_Baseline+DCE_d/faf3 0.700 0.621 0.663 0.733 0.696
Sample MLP_Baseline_ dfaf 0.746 0.558 0.718 0.647 0.680
Sample MLP_DCE_dfaf 0.686 0.608 0.924 0.639 0.755
Sample MLP_Baseline+DCE_dfaf3 0.669 0.600 0.817 0.657 0.728
Fuzzy MLP Baseline_af3 0.724 0.600 0.640 0.719 0.677
Fuzzy MLP_DCE_af 0.639 0.640 0.962 0.653 0.778
Fuzzy MLP_Baseline+DCE_o/3 0.656 0.651 0.773 0.717 0.744
Sample MLP Baseline_af3 0.719 0.598 0.785 0.663 0.719
Sample MLP_DCE_af3 0.680 0.619 0.945 0.642 0.765
Sample MLP Baseline+DCE_af3 0.726 0.587 0.791 0.652 0.715

TABLEAU 5.1 Performance des modeles sur les données brutes des patients connus.

En premier lieu, nous nous intéressons aux résultats sur les données brutes, celles qui n’ont

pas suivi le prétraitement par ICA décrit en 4.1.3.

La premiere observation que I'on peut tirer du tableau 5.1 est qu’aucune des architectures pré-
sentées n’atteint une exactitude (Accuracy) suffisamment satisfaisante pour pouvoir conti-

nuer & étre utilisée sans améliorations.

Parmi tous les modeles, les réseaux convolutionnels basés sur des spectrogrammes SpectroCNN_res,
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SpectroCNN_3 et SpectroCNN_5 obtiennent la meilleure exactitude et des scores de rappel
élevés supérieures a 0.9. Cependant la précision reste relativement faible et la perte (Loss) est
tres élevée, ce qui indique une tendance a prédire excessivement des cas positifs au détriment
de la fiabilité et que, lorsque les modeles se trompent, ils font des erreurs significatives. Les
modeles basés sur les caractéristiques entropiques (avec ajout ou non de l'entropie croisée

dynamique) présentent des métriques plus équilibrées.

Pour essayer de mieux comprendre les éventuelles causes du mauvais fonctionnement de nos
modeles nous nous intéressons a ’exactitude obtenue sur les données de test, d’entrainement
et de validation : Diest, Dirain, Dyar définies en 4.5.1.

En regardant les résultats du Tableau 5.2, nous nous apercevons que les modeles basés sur
Iextraction de caractéristiques temporelles profondes R__ CNN, A_ CNN et RA_CNN pré-
sentent un surapprentissage évident avec des exactitudes supérieures a 0.9 sur les données
d’entrainement et inférieures a 0.6 sur les données de test. Cela est tres probablement lié a
la taille de ces modeles qui sont trop lourds et trop complexes pour le petit jeu de données

dont nous disposons.

De méme, nous pourrions nous attendre a observer du surapprentissage dans les réseaux
convolutifs basés sur les spectrogrammes mais ce n’est pas le cas. Les couches de normalisation

par lot (BatchNorm) et de désactivation aléatoire (Dropout) ont suffi & 'empécher.

5.1.2 Résultats sur les données avec ICA

Au vu des faibles exactitudes obtenues sur les données brutes, nous nous intéressons aux

données qui ont été préalablement soumises a un prétraitement ICA comme décrit en 4.1.3.

Nous observons dans le tableau 5.3 que les modeles basés sur ’analyse des caractéristiques
entropiques sont plus performants que les approches par analyse de spectrogrammes ou ex-

traction profonde de caractéristiques temporelles.

Nous remarquons que 1’ajout de I'entropie croisée dynamique n’améliore pas significativement
les performances du modele et que les prédictions des architectures basées sur cette seule

caractéristique ne sont pas fiables.

Les architectures basées sur les caractéristiques d’entropie de type "Fuzzy" sont plus perfor-
mantes que celles basées sur I’entropie "Sample'. En particulier, I’architecture Fuzzy_MLP_Baseline

obtient une exactitude de 0.922 et domine largement toutes les autres.

La variante Fuzzy MLP Baseline_ dfaf dont le découpage en bandes de fréquences est
élargi (voir 4.4.1) pour inclure les ondes 6 et € semble mieux performer que la variante

Fuzzy_MLP_Baseline_af} qui se base seulement sur les ondes « et § (voir 4.4.1).
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Modele Test Accuracy Train Accuracy Val Accuracy
SpectroCNN_res 0.674 0.695 0.675
SpectroCNN_3 0.661 0.626 0.661
SpectroCNN_5 0.659 0.635 0.669
RA-CNN 0.585 0.982 0.618
R-CNN 0.512 0.972 0.654
A-CNN 0.575 0.963 0.642
Fuzzy MLP_Baseline_d0apf 0.659 0.844 0.600
Fuzzy MLP_DCE_dfaf3 0.650 0.620 0.663
Fuzzy MLP_Baseline+DCE_dfaf 0.621 0.818 0.624
Sample MLP_Baseline_ dfaf 0.558 0.786 0.646
Sample MLP_DCE_d6af 0.608 0.619 0.659
Sample MLP Baseline+DCE_d6af3 0.600 0.760 0.656
Fuzzy MLP_Baseline_af} 0.600 0.847 0.638
Fuzzy MLP_DCE_af 0.640 0.622 0.663
Fuzzy MLP_Baseline+DCE_a/3 0.651 0.808 0.650
Sample MLP Baseline_af} 0.598 0.755 0.644
Sample MLP_DCE_af3 0.619 0.622 0.654
Sample MLP Baseline+DCE_af3 0.587 0.735 0.663

TABLEAU 5.2 Performance des modeles sur les ensembles de test, entralnement et validation
des données brutes.

5.2 Généralisation aux patients inconnus

5.2.1 Résultats sans fine-tuning

Nous pouvons observer dans le tableau 5.4 les exactitudes obtenues par les trois architectures
les plus performantes vues en 5.3 lorsqu’elles sont évaluées sur les données de participants

inconnus ( les Participants tests vusen 4.5.1).

Les architectures évaluées sont celles des modeles Fuzzy_MLP, notamment les variantes Baseline_dfa[3,

Baseline_«fJ et Baseline+DCE_«af.

Les résultats montrent que les performances restent globalement faibles, avec des moyennes
allant d’une exactitude de 0.400 pour Baseline dfaf3 a 0.494 pour Baseline+DCE_af.

Ces résultats indiquent que les modeles se généralisent mal a des participants inconnus, ce
qui met en évidence une limite importante dans leur capacité a capturer des représentations

transférables entre individus.

Bien que les variantes _a3 semblent légerement plus performantes et pourraient favoriser une
meilleure robustesse face a des données hors distribution, les performances de ces modeles

suggerent qu’un raffinage par patient est nécessaire.
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Modele Test Loss Accuracy Recall Precision F1 Score
SpectroCNN_res 5.59 0.586 0.475 0.816 0.601
SpectroCNN_3 21.9 0.373 0.0609 0.778 0.113
SpectroCNN_5 13.8 0.456 0.209 0.847 0.335
A-CNN 2.59 0.606 0.678 0.709 0.693
R-CNN 3.27 0.692 0.843 0.729 0.782
RA-CNN 18.2 0.568 0.667 0.673 0.670
Fuzzy_MLP_Baseline_dfaf 0.273 0.922 0.907 0.972 0.939
Fuzzy MLP_DCE_dfaf3 0.606 0.635 0.849 0.677 0.753
Fuzzy MLP_Baseline+DCE_dfaf 0.469 0.871 0.843 0.954 0.895
Sample MLP_Baseline_ dfaf 0.884 0.551 0.658 0.658 0.658
Sample MLP_DCE_dfaf 0.650 0.650 0.986 0.655 0.787
Sample MLP Baseline+DCE_d6af3 0.727 0.549 0.739 0.634 0.683
Fuzzy_MLP_Baseline_af} 0.363 0.905 0.887 0.965 0.924
Fuzzy MLP_DCE_af 0.614 0.624 0.797 0.682 0.735
Fuzzy_MLP_Baseline+DCE_a[3 0.353 0.903 0.878 0.971 0.922
Sample MLP Baseline_af} 0.939 0.536 0.675 0.638 0.656
Sample MLP_DCE_af3 0.650 0.654 0.994 0.656 0.790
Sample MLP Baseline+DCE_af3 0.651 0.616 0.852 0.660 0.744

TABLEAU 5.3 Performance des modeles sur les données avec prétraitement ICA

Participant Baseline d6afl | Baseline «f | Baseline+DCE_af3
Participant test; 0.220 0.400 0.600
Participant test, 0.645 0.364 0.576
Participant test, 0.350 0.833 0.167
Participant test, 0.652 0.345 0.655
Participant test, 0.174 0.370 0.222
Participant testy 0.600 0.500 0.500
Participant test, 0.171 0.357 0.357
Participant testg 0.203 0.310 0.690
Participant test, 0.584 0.516 0.677
Moyenne 0.400 0.444 0.494

TABLEAU 5.4 Exactitudes des modeles les plus performants sur les données test des partici-
pants inconnus

5.2.2 Résultats avec raffinage du modele général
Les tableaux 5.5, 5.6 et 5.7 présentent les exactitudes obtenues par nos modeéles en fonction
de la proportion de données utilisées pour le raffinage (proportion x comme vu en 4.5.3).

On observe en 5.5 que le modele Baseline d0a/3 est celui qui nécessite le moins de raffinage,

avec une exactitude de 0.783 pour seulement 30% des données utilisées pour le raffinage et
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Proportion entrainement | Aucune | 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Participant test, 0.220 0.940 0.820 0.980 0.920 0.920 0.920 0.920
Participant test, 0.645 0.615 0.676 0.676 0.645 0.676 0.676 0.706
Participant test, 0.350 0.767 0.850 0.850 0.933 0.850 0.850 0.850
Participant test, 0.652 0.686 0.790 0.824 0.790 0.652 0.617 0.755
Participant test; 0.174 0.470 0.507 0.656 0.730 0.841 0.989 0.989
Participant testg 0.600 0.767 0.767 0.711 0.711 0.767 0.767 0.767
Participant test, 0.171 0.636 0.671 0.743 0.957 0921 0.993 0.929
Participant testg 0.203 0.721 0.755  0.859 0.931 0.900 0.900 0.966
Participant test, 0.584 0.648 0.810 0.745 0.745 0.713 0.681 0.648
Moyenne 0.400 | 0.694 0.738 0.783 0.840 0.838 0.855 0.870
TABLEAU 5.5 Exactitudes en fonction du pourcentage de données utilisées pour le raffinage

des modeles Fuzzy MLP_Baseline_dfaf3

Proportion entrainement | Aucune | 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Participant test, 0.400 0.240 0.480 0.560 0.560 0.520 0.600 0.560
Participant test, 0.364 0.818 0.848 0.788 0.818 0.788 0.758 0.758
Participant test, 0.833 0.333 0.167 0.083 0.250 0.250 0.333 0.417
Participant test, 0.345 0.759 0.724 0.759 0.862 0.897 0.966 0.966
Participant test; 0.370 0.704 0.963 0.926 1.000 0.963 0.963 0.963
Participant testg 0.500 0.444 0444 0.556 0.611 0.778 0.833 0.778
Participant test, 0.357 0.536 0.643 0.893 0.929 0.929 1.000 1.000
Participant testg 0.310 0.828 0.828 0.897 0.931 0.897 0.897 0.931
Participant test, 0.516 0.258 0.258 0.258 0.419 0.419 0.419 0.484
Moyenne 0.444 | 0.547 0.595 0.635 0.709 0.716 0.752 0.762

TABLEAU 5.6 Exactitudes en fonction du pourcentage de données utilisées pour le raffinage
des modeles d’architecture Fuzzy_MLP_Baseline_af

0.840 quand lorsque la proportion atteint 40%.

Les modeles Baseline «ff et Baseline+DCE_«3 n’affichent pas de progres aussi satisfaisants
et les résultats deviennent acceptables (> 0.7) seulement quand la proportion de données est

plus importante et atteignent des exactitudes maximales a 0.762 et 0.736.

Alinsi, c’est bien le modele textttBaseline d0af qui, malgré une mauvaise généralisation aux

participants inconnus, se raffine le plus efficacement avec un moindre ajout de données.

5.2.3 Résultats avec modeles personnalisés

Comme annoncé en 4.5.3, en plus des modeles généraux raffinés, nous entrainons également,

pour ces trois architectures choisies, des modeles personnalisés entrainés uniquement sur les
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Proportion entrainement | Aucune | 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Participant test, 0.600 0.320 0.480 0.520 0.520 0.600 0.720 0.720
Participant test, 0.576 0.667 0.545 0.606 0.545 0.455 0.485 0.485
Participant test, 0.167 0.333 0.250 0.167 0.417 0.500 0.583 0.583
Participant test, 0.655 0.759 0.931 0.931 0.931 0.931 0.966 1.000
Participant test; 0.222 0.481 0.630 0.741 0.889 0.926 0.926 0.963
Participant testg 0.500 0.278 0.611 0.444 0.333 0.278 0.444 0.389
Participant test, 0.357 0.679 0.643 0.786 0.857 1.000 1.000 1.000
Participant testg 0.690 0.759 0.828 0.897 0.966 1.000 1.000 1.000
Participant test, 0.677 0.161 0.194 0.226 0.355 0.484 0.484 0.484
Moyenne 0.494 | 0.493 0.568 0.591 0.646 0.686 0.734 0.736

TABLEAU 5.7 Exactitudes en fonction du pourcentage de données utilisées pour le raffinage

des modeles d’architecture Fuzzy MLP_Baseline+DCE_«f3

données du participant sélectionné.

Proportion entrainement | 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Participant_test, 0.600 0.600 0.440 0.800 0.840 0.840 0.960
Participant_test, 0.364 0.515 0.636 0.636 0.636 0.727 0.758
Participant_test, 0.833 0.167 0.667 0.167 0917 0.833 0.750
Participant_test, 0.345 0.448 0.828 1.000 0.655 0.552 0.724
Participant_test, 0.370 0.741 0.370 0.926 0.481 0.778 0.778
Participant_test 0.611 0.500 0.333 0.500 0.500 0.500 0.444
Participant_test; 0.357 0.643 0.357 0.714 0.964 0.357 1.000
Participant_testg 0.793 0.690 0.931 0.724 0.862 0.828 1.000
Participant_test, 0.323 0.323 0452 0.387 0.323 0.323 0.548
Moyenne 0.511 0.514 0.557 0.650 0.687 0.637 0.774

TABLEAU 5.8 Exactitudes en fonction du pourcentage de données utilisées pour ’entraine-
ment d'un modele Fuzzy_MLP_Baseline_dfaf

Les tableaux 5.8, 5.9 et 5.10 présentent les exactitudes obtenues par les modeles Baseline d6af3,

Baseline_af3 et Baseline+DCE_a/3 lorsqu’ils sont raffinés uniquement sur les données du

participant éval

ué.

Il apparait clairement que les modeéles Baseline d6af et Baseline af sont bien plus per-

formants et atteignent des exactitudes élevées (respectivement 0.774 et 0.720 avec 70% des

données) 1a ou le modeéle Baseline+DCE_a/3 ne présente pas de métrique satisfaisante quelle

que soit la proportion de données d’entrainement.

On remarque cependant que méme si les performances peuvent étre jugées satisfaisantes,

elles nécessitent une plus grande portion de données du participant pour I’entrainement. Le
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Proportion entrainement | 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Participant_test, 0.560 0.440 0.440 0.680 0.560 0.520  0.480
Participant_test, 0.545 0.333 0.667 0.606 0.455 0.606 0.545
Participant_test, 0.167 0.833 0.833 0.167 0.500 0.833 0.417
Participant_test, 0.655 0.655 0.655 0.724 0.966 0.966 0.966
Participant_test, 0.481 0.704 0926 0.444 1.000 0.667 1.000
Participant_test 0.500 0.500 0.611 0.500 0.722 0.611 0.667
Participant_test, 0.429 0.857 0.393 0.464 0464 0.393 0.821
Participant_testg 0.310 0.379 0.379 1.000 0.931 0.897 1.000
Participant_test, 0.677 0.645 0.355 0.323 0.387 0.355 0.581
Moyenne 0.481 0.594 0.584 0.545 0.665 0.650 0.720

TABLEAU 5.9 Exactitudes en fonction du pourcentage de données utilisées pour I'entraine-
ment d’'un modele Fuzzy _MLP_Baseline o3

Proportion entrainement | 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Participant_test, 0.600 0.400 0.400 0.960 0.520 0.560 0.400
Participant_test, 0.636 0.364 0.636 0.394 0.364 0.636 0.697
Participant_test, 0.833 0.833 0.250 0.833 0.167 0.167 0.167
Participant_test, 0.655 0.345 0.828 0.690 0.448 0.793 0.966
Participant_test; 0.037 0.630 0.630 0.370 0.370 1.000 0.407
Participant_testg 0.500  0.500  0.500 0.500 0.722  0.500  0.500
Participant_test, 0.643 0.357 0.571 0.857 0.536 0.571 0.357
Participant_testg 0.690 0.690 0.828 0.310 0.379 0.724 0.310
Participant_test, 0.355 0.677 0.677 0.323 0.323 0.323 0.419
Moyenne 0.550 0.533 0.591 0.582 0.425 0.586 0.469

TABLEAU 5.10 Exactitudes moyennes selon la proportion de données d’entrainement d'un
modele Fuzzy_MLP_Baseline+DCE_af

modele Baseline_d0faf atteint une exactitude moyenne de 0.840 pour seulement 40% de
données de raffinage contre seulement 0.650 lorsqu’il est entrainé uniquement sur les données

du participant.

Ces résultats montrent qu’utiliser un modele de base pré-entrainé puis raffiné par rapport
a un modele basé uniquement sur les données du participant a analyser permet d’atteindre

une meilleure exactitude, plus rapidement et avec un moindre cofit en ressources.

5.3 Analyse qualitative des modeles par visualisation de ’inférence

Nous avons vu que sur les données avec un prétraitement par ICA, avec une architecture

Fuzzy MLP_Baseline_dfa/3 nous atteignons une exactitude de 0.922 sur des patients connus
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et de 0.840 en raffinant le modele sur 40% des données d’un participant inconnu.

Pour voir si nos modeles se généralisent en dehors des données étiquétées, nous cherchons
a visualiser si I'inférence d’une impulsion sexuelle par notre modele correspond au scénario

dans lequel le patient est immergé et avec la courbe PPG.

La courbe de pléthysmographie pénienne PPG mesure I’engorgement de 'appareil génital et
reflete généralement, chez nos participants males cisgenres, une réponse physiologique a un

stimulus sexuel, une impulsion sexuelle.

Les graphiques des figures 5.1 et 5.2 présentent cette courbe de PPG en bleu et surligne en

gris les instants ¢ (voir 4.1.2) ou le modele infére une impulsion sexuelle.

Les données ayant servi a l’entrainement du modele sont surlignées en vert et celles sur

lesquelles les métriques de test ont été calculées en rouge (voir 4.5.1 et 4.5.3)

Malheureusement, nous ne possédons pas les données du Participant_test, dans les scéna-

rios générés en 3D donc 'inférence sera réalisée uniquement sur les 8 premiers Participant_tests.

Les figures de résultats similaires obtenus sur tous ces participants sont placées a 'annexe A
(A1, A2, A3, A4, A5, A6, A.7 et A.8).Nous observons sur toutes ces figures d’inférence

les mémes phénomenes.

Comme indiqué par les métriques utilisées pour les données étiquetées, la prédiction dans le
cadre des scénarios vidéo : VidNeutre et VidSex est médiocre pour le modele général mais

nettement améliorée dans le cadre de l'utilisation des modeles raffinés.

Cependant, la généralisation de nos modeles généraux ou raffinés aux scénarios immersifs
générés en 3D, tels que Androide et PVP-EVI, ne semble pas satisfaisante. Nous pourrions
nous attendre a observer davantage d’inférences d’impulsions sexuelles dans les immersions
PVP-EVI par rapport a Androide, en raison de leur contenu scénaristique, mais cela n’est pas

confirmé par les résultats obtenus.

En particulier, la courbe de PPG des Participants_tests 3, 7 et 8 présente un pic d’ex-
citation physiologique notable lors de ’exposition au scénario PVP-EVI, qui reste largement

ignoré ou mal interprété par les modeles.

Ce constat souligne les limites actuelles de notre systeme qui peine a ce généraliser aux

scénarios d’immersion en environnements 3D.
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CHAPITRE 6 DISCUSSION

6.1 Rappel des contraintes souhaitées pour des futures utilisations des modéeles

6.1.1 Utilisation en temps réel

L’un des objectifs principaux de nos travaux est de mettre en place un outil de prédiction en

temps réel qui est adapté a un traitement des données en flux.

Pour une application en temps réel, la prédiction doit étre effectuée a chaque seconde (voir
4.1.2). A Dinstant ¢ la chaine de traitement doit, en moins d’une seconde, pouvoir effectuer
le prétraitement des données, d’extraire les caractéristiques et d’effectuer une prédiction via

le modéle choisi.

Le prétraitement doit donc étre rapide et causal, idéalement applicable avec la seule connais-
sance des données du segment en cours de traitement. Le but de notre outil est d’effectuer une
prédiction chaque seconde pour simuler une prédiction temps réel, par conséquent, le temps

nécessaire a l'extraction des caractéristiques et l'inférence ne doit pas dépasser 1 seconde.

6.1.2 Généralisation facile a des patients inconnus

L’un des enjeux majeurs pour une utilisation en conditions réelles est la capacité du modele

a généraliser a de nouveaux participants facilement.

Les résultats obtenus en validation inter-patient ont mis en évidence une baisse significative
des performances de généralisation pour tous nos modeles, et ont mis en avant la nécessité
d’utiliser, pour chaque nouveau participant, une étape de raffinage du modele pour restaurer
un niveau de performance acceptable. Ce raffinage peut étre assimilé a une calibration de

I’outil au participant.

Toutefois, ce raffinage doit respecter plusieurs contraintes :
— Le modele doit pouvoir étre adapté rapidement, idéalement en quelques secondes, pour
une intégration fluide dans un futur protocole clinique.
— Le raffinage doit étre possible avec un nombre limité de données, sans nécessiter une
nouvelle phase d’apprentissage complete.
L’architecture la plus performante est Fuzzy MLP_Baseline_df«a/3. Méme si elle ne se gé-
néralise que tres mal a des patients inconnus, une faible quantité de données (40 % ce qui
correspond a environ 30 secondes de données neutres et 30 secondes de données stimulantes)

permet d’obtenir des résultats satisfaisants.
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De plus cette architecture est simple 4.5 et le temps nécessaire au raffinage (moins de 15
secondes sur un CPU) est suffisamment faible pour ne pas causer de délais trop contraignant

pour un futur protocole clinique.

6.2 Nécessité du prétraitement par ICA

Comme vu précédemment dans les tableaux 5.1.1 et 5.1.2 seules les données ayant subi un

prétraitement ICA permettent 'obtention de performances utilisables.

6.2.1 Incompatibilité du prétraitement original avec une utilisation en temps

réel

Le prétraitement décrit en 4.1.3 utilisé par [4] repose sur de longues fenétres temporelles et
une connaissance globale du signal EEG, ce qui le rend incompatible avec une application en

temps réel sur des fenétres courtes.

L’inspection visuelle des canaux bruités nécessite une intervention humaine et un acces a
I’ensemble des données, ce qui rend son utilisation incompatible avec un traitement des

données en temps réel.

De plus, I'analyse en composantes indépendantes (ICA), notamment avec I'algorithme Info-
max, requiert une quantité substantielle de données pour estimer les matrices de séparation,
ce qui la rend non causale et donc inadaptée a une utilisation sur des segments courts sans

acces aux données futures.

Enfin, la sélection de segments exempts d’artefacts repose sur une analyse a posteriori, in-

compatible avec le traitement en continu souhaité pour une future utilisation en temps réel.

6.2.2 Prétraitement alternatif compatible avec des fenétres courtes

Pour permettre un futur traitement en temps réel sur des fenétres courtes, il serait nécessaire

d’adopter une approche causale et légere.

La détection des canaux bruités peut étre approchée automatiquement via des métriques en

ligne telles que la variance, les lignes plates ou le bruit haute fréquence.

Le retrait des artefacts oculaires peut étre réalisé en combinant des données oculométriques
aux signaux EEG, les données de mouvement oculaire sont récoltées dans les travaux de
Brideau-Duquette [4] et pourraient éventuellement étre utilisées pour détecter et corriger

automatiquement ces artefacts ou ignorer les segments de données les contenant.
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La nécessité d’utiliser des données de calibration permettrai de calculer les mastoides et la
moyenne commune sur les données d’entrainement et d’utiliser ces derniers pour appliquer
un traitement par ICA au reste du signal. Mais la validité et la faisabilité de cette méthode

reste a prouver.

6.3 Utilisation de modeles basés sur ’entropie

Méme si I'utilisation de modeles légers basés sur les caractéristiques entropiques permet une
inférence tres rapide et un temps nécessaire au raffinage suffisamment court, la méthode
utilisée dans nos travaux pour extraire ces caractéristiques est incompatible avec le temps

réel.

6.3.1 Complexité et temps de calcul des caractéristiques entropiques

L’extraction des caractéristiques entropiques Sample, Fuzzy, repose sur des calculs de dis-
tances entre motifs temporels, des seuillages, et des opérations logarithmiques sur des vecteurs
de grande taille. Ces opérations sont cotliteuses en temps de calcul, surtout lorsqu’elles sont

appliquées a chaque fenétre glissante du signal EEG.

Notre implémentation du calcul de ces caractéristiques via EntropyHub est due a la facilité

d’utilisation de cette librairie mais n’est pas optimisée.

Dans nos expérimentations, le temps nécessaire pour extraire les entropies sur une seule
fenétre de 6 secondes dépasse largement le temps disponible pour une prédiction en temps
réel (1 seconde). Cela rend I'utilisation directe de ces méthodes impossible dans un pipeline

de traitement continu sans optimisation.

6.3.2 Calcul parallélisable possible

L’implémentation actuelle via la bibliotheque EntropyHub en Python ne permet pas de pa-
rallélisation native. Les fonctions de calcul d’entropie sont exécutées de maniere séquentielle,

ce qui leur empéche d’exploiter pleinement les systémes multicceurs ou GPU.

Cependant, les calculs de caractéristiques entropiques sont, par nature, hautement parallé-
lisables. Une implémentation optimisée permettrait de les rendre compatibles avec les ar-
chitectures GPU. Une telle optimisation permettrait de réduire drastiquement le temps de

calcul et de rendre ’extraction entropique compatible avec une utilisation en temps réel.
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CHAPITRE 7 CONCLUSION

7.1 Syntheése des travaux

7.1.1 Performance sur participants connus

Les modeles MLP basés sur I’entropie, notamment ceux utilisant ’entropie Fuzzy combinée a
un prétraitement ICA, ont montré les meilleures performances pour la détection d’impulsions
sexuelles sur des participants connus. Ces modeles surpassent les architectures CNN basées
sur des représentations spectrographiques et régionales asymétriques. Bien que la petite taille
du jeu de données favorise grandement les modeles simples avec un nombre de parametres

plus faible.

L’ajout de caractéristiques d’entropie croisée dynamique et la limitation des caractéristiques

aux bandes de fréquences a et 8 ne semblent pas améliorer les performances.

7.1.2 Généralisation aux participants inconnus

Sans raffinage personnalisé, les modeles présentent une faible capacité de généralisation a des

individus non vus pendant ’entrainement.

Toutefois, I'intégration d’un processus de raffinage, méme avec une quantité limitée de don-
nées spécifiques au participant, permet une amélioration significative des performances. Les
modeles raffinés atteignent une exactitude élevée plus rapidement que les modeles personna-

lisés entrainés uniquement sur les données du participant.

Analyse qualitative

L’analyse qualitative des inférences montre une bonne cohérence avec les réponses physio-
logiques mesurées, notamment dans les scénarios vidéo. Les modeles raffinés produisent des
résultats plus fiables que les modeles généraux, confirmant l'intérét d’une personnalisation

légere pour améliorer la précision des prédictions.

Cependant, les modeles ne se généralisent que tres mal pour 'immersion dans les scénarios

générés en 3D ce qui pose probleme pour de futures utilisations.
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7.2 Limites de la solution proposée

Malgré les performances prometteuses obtenues sur les participants connus, plusieurs limita-
tions freinent 'application directe des modeles proposés dans un contexte clinique en temps
réel.

7.2.1 Mauvaise généralisation

Nécessité d’un raffinage

Méme si le raffinage est rapide et ne nécessite que peu de données, il est nécessaire a 1’obten-
tion de bonnes performances et tres contraignant pour la mise en place d’'un protocole clinique
qui impliquerait d’immerger chaque nouveau participant dans deux scénarios (un neutre et un

avec stimuli érotiques) et de trouver un moyen non-intrusif d’étiqueter les données obtenues.

Mauvaise généralisation aux scénarios générés en 3D

Méme avec 'utilisation de données de raffinage, la baisse de fiabilité lors de la généralisation
a I'immersion dans des scénarios 3D est un frein a une future utilisation de cet outil dans un
protocole clinique.

7.2.2 Incompatibilité avec le temps réel

Prétraitement non causal

Le prétraitement par ICA, indispensable pour obtenir des performances acceptables, repose
sur une analyse globale du signal et une inspection manuelle, ce qui le rend incompatible

avec une utilisation en temps réel.

Extraction de caractéristiques entropiques trop cotiteuses

L’extraction des caractéristiques entropiques, bien qu’efficace pour la classification, est trop
coliteuse en temps de calcul pour une application en flux continu. L’implémentation actuelle

ne permet pas d’effectuer une prédiction chaque seconde comme requis.

7.3 Améliorations futures

Plusieurs pistes d’amélioration peuvent étre envisagées pour surmonter les limitations iden-

tifiées et rendre les modeles plus adaptés a une utilisation clinique :
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7.3.1 Optimisation du calcul entropique

Pour permettre un traitement en flux de données adapté a un protocole clinique en temps réel,
une réimplémentation des mesures entropiques en environnement GPU est necesaire. Cela
permettrait de réduire drastiquement le temps de calcul et de rendre ’extraction compatible

avec le temps réel.

7.3.2 Prétraitement causal et automatisé

Le remplacement du traitement par ICA par des méthodes légeres et causales. On peut par
exemple envisager des méthodes de détection automatique de canaux bruités. Pour le retrait
des artefacts liées au mouvements des yeux, I'intégration des données oculométriques est une

alternative prometteuse.

7.3.3 Améliorer la robustesse A de nouveaux environnements immersifs

La trop grande variabilité des signaux EEG limite la capacité de nos modeles a se généraliser.
L’intégration d’autres données physiologiques notamment, oculométriques dans des chaines
de prédiction multimodales est une piste de recherche a explorer. Une attention particuliere

doit étre portée a I'amélioration des performances dans les scénarios 3D.

7.3.4 Validation sur un plus grand échantillon

L’élargissement du jeu de données a plus de participants permettrait de mieux évaluer la
robustesse des modeles, de pouvoir entrainer des architectures plus lourdes et plus complexes

et de réduire le risque de sur-apprentissage sur des profils spécifiques.

Il est également pertinent d’augmenter le nombre de participants afin d’obtenir une popula-

tion plus diversifiée tant en terme d’age que de genre et d’orientation.
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ANNEXE A INFERENCE DES MODELES GENERAUX ET RAFFINES
SUR LES PARTICIPANTS TEST
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