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RÉSUMÉ 

L’objectif principal de cette thèse est l’élaboration d’une méthode de modélisation 

de la machine synchrone plus performante et plus précise, et des algorithmes pour le 

calcul et la solution des transitoires électromagnétiques. Le pas d’intégration numérique 

est un facteur clef pour ces aspects. La possibilité d’utiliser des pas plus grands permet 

d'augmenter la vitesse des calculs et donc d'étendre le champ d'application des méthodes 

de type électromagnétique.  

Cette thèse propose quatre modèles de façon à améliorer la précision du modèle 

dq0 classique tout en maintenant son efficacité. Trois de ces modèles utilisent le dq0 

avec une précision accrue de la modélisation. Parmi les modèles précis se retrouve le 

dq0 avec des pas d'intégration intermédiaires. L’efficacité est maintenue par la 

restriction du modèle à l’usage durant des intervalles transitoires, là où la précision du 

modèle classique dq0 diminue. Ces modèles fournissent une modélisation précise tout en 

maintenant la vitesse du dq0 classique. Cependant, ils sont conçus spécialement pour les 

cas typiques d'étude de stabilité transitoire de réseau, et leur précision se détériore quand 

l’exactitude du modèle est nécessaire pour une grande partie de l’intervalle de 

simulation complète. Le meilleur modèle nommé PD-dq0 est obtenu en appliquant la 

transformation de ‘’Park’’ aux équations discrétisées dans le domaine des phase.  

Les études d’évaluation de la précision et de l’efficacité démontrent que  le modèle 

PD-dq0 est supérieur aux autres modèles proposés dans la littérature. 

L’analyse de précision est effectuée avec les contraintes de précision du réseau 

environnant. Donc, ce travail contribue également à une meilleure évaluation de la 

précision numérique et de l’efficacité des engins de simulation étudiés. 

La thèse se termine par des analyses au niveau des méthodes d'implémentation des 

équations de machine synchrone dans les équations de réseau et des solveurs de matrices 
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creuses. Les analyses permettent de déduire des améliorations de performance 

numérique selon les choix de modèle et de solution par matrices creuses.  
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ABSTRACT 

The main objective of this dissertation is the establishment of more efficient and 

more precise synchronous machine modeling approaches and solution algorithms for the 

computation of electromagnetic transients (EMT). Numerical integration time step size 

is a key factor in both aspects. The capability to use larger time steps in EMT-type 

simulation methods also contributes to the extension of such methods into the efficient 

simulation of electromechanical transients. 

In this thesis, four new models are proposed in order to improve the precision of 

the classical dq0 model while maintaining its efficiency. Three of them use the classical 

dq0 model with increased accuracy. The most accurate models are: dq0 with internal 

intermediate time step usage, phase-domain and voltage behind reactance. Efficiency is 

maintained by restricting the accurate model usage to the transient intervals where the 

precision of the classical dq0 formulation decreases. This approach provides accuracy 

while maintaining classical dq0 computational speed. However, these three models are 

designed for typical transient stability cases and their performance deteriorates when the 

accurate model usage is needed for a large portion of the complete simulation interval. 

The last forth model proposed in this thesis is obtained by applying Park’s 

transformation to the discretized equations of the phase-domain model. This model 

maintains the precision of the phase-domain model and eliminates its computational 

inefficiencies through a constant admittance matrix. Unlike the first three models, its 

efficiency does not change with simulated system and phenomenon. Precision and 

efficiency assessment studies demonstrate that this model is superior in both aspects and 

should be chosen for the computation of both electromagnetic and electromechanical 

transients in the same computational framework.  

The models proposed in this thesis are compared for practical cases and conditions. 

Precision analysis is performed within the accuracy constraints of the surrounding 

network and numerical efficiency assessment analysis accounts for the utilized sparse 
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matrix solver and refactorization scheme. Hence, this work also contributes to better 

assessment of both numerical precision and efficiency for researched machine models in 

this thesis and in the recent literature. 

This thesis also proposes two new synchronous machine representations for 

Modified-Augmented-Nodal-Analysis (MANA) formulation. In the first formulation, a 

machine Thevenin equivalent equation is inserted directly into the main network 

equations (MNE) using MANA. The second representation is proposed for phase-

domain and voltage behind reactance models. In this representation all machine 

equations are inserted into the MNEs, thus eliminating the requirement of interfacing 

circuits. Although these formulations do not improve simulation speed, they demonstrate 

the modeling flexibility achievable through MANA and allow to verify performance 

hypothesis based on partial factorization. 
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CHAPTER 1.  

INTRODUCTION 

Simulation of electromagnetic transients in modern power systems is widely used 

for the determination of component ratings such as insulation levels and energy 

absorption capabilities, in the design and optimization process, for testing control and 

protection systems and for analyzing power system performance in general [1], [2]. In 

order to simulate electromagnetic transients, various simulation tools have been 

developed. These simulation tools are called EMTP-type programs and can be 

categorized as nodal (or modified-nodal or modified-augmented-nodal) equation based 

and state variable (state-space) based simulators. Contrary to nodal equations, the 

automatic formulation of state-space equations is significantly more time consuming and 

requires the computation of the network topological proper-tree. Large scale system 

simulation software packages are based on nodal equations. The list of packages (EMT 

or EMTP type programs) includes: EMTP-RV [3], EMTP96 [4], ATP/EMTP [5] and 

PSCAD/EMTDC [6]. EMTP96 was abandoned after the development of EMTP-RV. 

ATP is based on the original code of EMTP [4] which evolved to become EMTP96. 

EMTP-RV is a more recent software and the only one using MANA formulation. The 

SimPowerSystems software included in the Simulink environment uses state-space 

formulation [7]. 

Due to the increased in speed of modern computers and recent improvements in 

numerical methods, EMT type programs can now be used for studying transient stability 

(electromechanical transients) or even small signal stability problems, although such 

studies are traditionally performed using transient stability (stability-type) programs [1], 

[2].  In transient stability programs, the energy exchange between generators and other 

dynamic equipments is assumed to take place while the electric network is remaining at 

system frequency (quasi-steady state approach using fundamental frequency 
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representation), i.e. the electromagnetic transients are totally ignored during computation 

of electromechanical transients. This assumption enables the utilization of large 

simulation time steps (typically 1 to 8 ms for 60 Hz systems), hence provides much 

better computational speeds when compared to EMT type programs. On the other hand, 

the stability type method assumptions may lead to significantly inaccurate simulation 

results. In addition, the fundamental frequency phasor modeling techniques can not 

directly represent the faster transients characterizing the power electronic based 

equipments such as HVDC and FACTS components. Therefore, the EMT type programs 

are becoming indispensable also for simulating electromechanical transients in power 

systems. 

Synchronous machines are essential components in all power systems. They form 

the principle source of electric energy and provide reactive power required by the 

transmission network. Moreover, many large industrial loads are driven by synchronous 

machines. Therefore, accurate modeling and simulation of synchronous machines is 

indispensable in EMTP type programs. Numerous machine models and solution 

procedures have been proposed in the literature. Although these models are based on the 

lumped-parameter coupled electric circuit approach and remain equivalent in continuous 

time domain, the numerical properties of these models differ when their equations are 

discretized by utilizing a particular integration method. Hence, the machine models and 

solution procedures have significant influence on simulation precision and speed. 

Moreover, depending on the simulated phenomenon and the system model, the machine 

model or its solution procedure might become a limiting factor that imposes very small 

integration time steps and causes reduced simulation speeds. 

This dissertation presents new modeling approaches and solution procedures for 

synchronous machines in the computation of electromagnetic transients. The proposed 

modeling approaches and solution procedures improve computational efficiency 

significantly while maintaining precision. In addition to simple infinite bus analysis, the 

proposed modeling approaches and solution procedures are also compared for more 
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sophisticated and practical cases. This dissertation also studies sparse matrix solver and 

refactorization schemes in relation with machine models. Computational speed remains 

the main target in all studies. 

1.1. Background 

1.1.1. Power System Network Equations in EMTP-type Programs 

The nodal equation based power system network model has been widely used in 

EMTP-type programs. The main system of symmetric equations for an n node system is 

given by 

 n n nY v = i  (1.1) 

Equation (1.1) is referred to as the standard nodal analysis (NA) formulation in the 

literature and it is based on the assumption that the admittance matrix model exists for 

all network components. In (1.1), nY  is the admittance matrix, nv  is the vector of node 

voltages and ni  is the vector of current sources combined with history current sources 

for the trapezoidal integration method. Since there are usually voltage sources (known 

node voltages) in the simulated power system model, (1.1) must be partitioned to keep 

only the unknown voltages on the left hand side 

    n n n s sY v = i Y v  (1.2) 

In (1.2), nY  is related only to unknown node voltages nv , ni  holds the sum of currents 

entering nodes with unknown voltage, and s nY Y  relates to known voltages sv . It 

should be noted that  Tn n sv = v v . Despite its formulation efficiency, (1.2) has 

several important limitations. One of the important disadvantage of this formulation is 

the inability to incorporate ungrounded voltage sources and has been corrected in [8] by 

using modified-nodal analysis (MNA) formulation.  
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The assumption of admittance model existence for every component is a 

significant limitation. (1.2) becomes a variable rank system to model the ideal switch 

operations which reduce the computational efficiency, especially when the number of 

switches and switching frequency become high. In addition, direct representation of the 

branch relations and the devices with voltage and current relations is not possible. These 

limitations can be eliminated by using Modified-Augmented-Nodal-Analysis (MANA) 

formulation as introduced in [9] and improved in [10] and [11]. In MANA formulation, 

(1.1) is augmented to include extra generic equations and the system of network 

equations becomes 

 n n nA x = b  (1.3) 

In (1.3), nx  contains the unknown voltage and current quantities, nb  contains the 

known current and voltage quantities and nA  is the linear augmented network matrix 

( n nY A ).  

For generic power systems, both nY  in (1.2) and nA  in (1.3) are sparse. Therefore, 

depending on used formulation in EMTP type program, the solution of (1.2) or (1.3) is 

obtained using sparse matrix methods and LU factorization [12]. It is common to use 

special ordering techniques to obtain sparser LU factors for better solution speed. nA  in 

(1.3) has a larger size compared to nY  in (1.2); however, using (1.3) instead of (1.2) 

does not cause a significant increase in simulation speed due to utilization of efficient 

sparse matrix solvers. As MANA formulation in (1.3) is superior over NA and MNA, 

this thesis considers MANA formulation.  

Throughout this thesis the system of network equations given in (1.2) and (1.3) 

will be referred as main network equations (MNE); nY  in (1.2) and nA  in (1.3) will be 

referred as MNE coefficient matrices. 
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1.1.2. Synchronous Machine Modeling in EMT-Type Programs 

In EMT-type programs, synchronous machines are modeled outside of the power 

system network and require a special interface in both NA and MANA formulations. 

Depending on the utilized machine model, the methods of interfacing machine models 

with the power system network can be classified into indirect and direct approaches 

[13]. 

1.1.2.1. Indirect Approaches 

In indirect approaches, the classical dq0 model [14] for synchronous machine is 

interfaced with the power system network expressed in physical variables and phase 

coordinates. There are currently three different approaches used to interface the dq0-

model of the machine with the power system network.  

In the first approach [15], the machine is interfaced using a Norton equivalent in 

phase coordinates. The Norton resistance matrix is approximated to become time-

independent and the Norton current sources result from predicted machine electrical and 

mechanical variables. Synchronous machine models SM module in EMTP-RV, Type-59 

in EMTP96 (also ATP), fall into this category. In EMTP-RV it is optionally possible to 

iterate with MNE to achieve voltage convergence. 

The second approach [16] is based on the compensation method in which the main 

network is represented as a Thevenin equivalent circuit and interfaced with the 

synchronous machine dq0 circuits. The universal machine model in ATP/EMTP is 

implemented using this method. The compensation method suffers, however, from 

topological limitations [17] and is not considered in this thesis. 

In the third approach, used in PSCAD/EMTDC, the machine model is interfaced 

with the main network as a compensation current source and a special terminating 

resistance [18]. The Norton current source, that represents the machine, is calculated 
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using the previous time point terminal voltages of the machine. Hence one time-step 

delay exists in this approach and this approach is not considered in this thesis. 

The key advantage of the first approach over the direct methods is utilization of 

constant admittance matrix at the expense of predicting certain electrical variables. This 

eliminates the time consuming refactoring of the MNE coefficient matrix at each 

solution time point and increases simulation speed. However, accumulation of prediction 

errors may cause numerical noise problems (in some cases) and even instability 

especially with large time steps. In order to improve the model stability, it is common to 

use damping resistances in parallel with model circuit inductances at the expense of 

reduced model accuracy [15], [19], [20], [21]. However, as illustrated in [21] and in this 

thesis, the error due to damping resistances is less noticeable at large time steps due to 

reduced overall accuracy. 

1.1.2.2. Direct Approaches 

The phase-domain (PD) model is in the original form of the coupled electric circuit 

in which the model is expressed in physical variables and phase coordinates [22], [23]. 

In this model, the machine circuits are directly inserted into the MNE, thus providing a 

simultaneous solution. It has been demonstrated that this approach improves numerical 

accuracy and stability [24]-[27]. However, due to the time variant self and mutual 

inductances of the PD model, it is required to update and refactor the MNE coefficient 

matrix at each solution time point at an increased computational cost. Type-58 in 

ATP/EMTP is implemented using this model [28]. 

The voltage-behind-reactance (VBR) machine model was introduced in [29] for 

the state variable approach and extended to nodal analysis in [26]. As in the PD model, 

the stator circuit is expressed in phase coordinates and directly inserted into the MNE in 

order to achieve a simultaneous solution. On the other hand, the rotor equations are 

expressed in dq-rotor reference. In [26] the analysis of PD and VBR models concludes 

that the VBR model has a better numerical accuracy and a lower computational cost 
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when compared to the PD model. However, as in the PD model, due to the time variant 

self and mutual inductances of the VBR model, it is needed to update and refactor the 

MNE coefficient matrix at each solution time point. 

1.2.  Motivation 

 Although numerous machine models and solution procedures have been proposed 

for EMTP type programs, their effect on simulation accuracy and speed has not been 

investigated in details. Analysis for the accuracy assessment of the machine models and 

solution methods have been presented in [26] for balanced and in [27] for unbalanced 

faults. In both studies, the accuracy of numerous machine models and solution methods 

are compared for various numerical integration time step size usage in order to make 

overall simulation efficiency evaluation. The numerical integration time step size is a 

key factor in both aspects. On the other hand, in both studies, the accuracy assessment is 

performed based on the results of machine terminal fault simulations in a simple single-

machine infinite bus system which includes only the fault period. In normal practice, it 

is necessary to simulate faults on transmission facilities. Moreover, the system 

simulation should also include the fault removal and continue until stability assessment 

becomes possible. As the presented results in [26] and [27] totally ignore the effect of 

reduced precision in the surrounding network due to large time step usage, these results 

are not sufficient to conclude on modeling performance. Therefore, a better assessment 

of numerical precision for researched machine models is required.  

While studying electromechanical transients, such as transient stability or 

subsynchronous resonance, it is needed to model a large portion of the targeted power 

system since electromechanical transients include frequency perturbations. Depending 

on the power system model, the poor accuracy of classical dq0 model might force the 

utilization of a small numerical integration time step. This creates significant computing 

time problems for large scale cases and repetitive simulations. However, it can be shown 

that as the time step increases, the classical dq0 model introduces significant errors 



8 

 

especially in the DC component of armature currents following a discontinuity (fault 

condition) in the power network. For these types of studies, the simulation accuracy can 

be improved by switching to a more accurate model (PD or VBR) or a more accurate 

dq0 model solution procedure following a large disturbance in the network and 

switching back to classical dq0 model as the DC component of armature currents decays 

to small values. The more accurate solution for dq0 model can be obtained by 

implementing an internal intermediate (fractional) time step usage between two existing 

MNE solution time points at the expense of reduced simulation speed resulting from 

solving the machine equations more than once. For typical transients, the accurate model 

or solution procedure is expected to become active only for a small portion of the 

complete simulation interval. Hence this solution approach is expected to provide 

similar simulation accuracy with the accurate model or solution procedure while 

maintaining classical dq0 model like simulation speed. 

Although all dq0, PD and VBR models are based on lumped-parameter coupled 

electric circuit approach and equivalent in continuous time domain, the numerical 

properties of these models differ when their equations are discretized. The inaccurate 

behavior of dq0 model at large time steps is resulting from its discretized equations. 

Therefore, the dq0 model can be reformulated by applying Park’s transformation to the 

discretized equations of the PD model to maintain PD model like accuracy. By 

implementing a prediction-correction scheme, constant machine admittance matrix 

usage in MNE can be achieved to provide classical dq0 model like computation 

efficiency. 

Unlike the classical dq0 model, the PD and VBR models need to update and 

refactor the MNE coefficient matrix at each solution time point. The increase in 

simulation time due to the usage of the PD model instead of the classical dq0 model is 

investigated in [24]. In this study, the simulation times are compared for the classical 

dq0 and PD models usage in ATP (Type-59 and Type-58 synchronous machine models, 

respectively) for the same time step usage. It should be noted that, ATP performs 
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complete refactorization at each solution time point. However, the increase in simulation 

time due to usage of PD or VBR models is expected to be affected by implemented 

refactorization schemes. In addition, the effect of the sparse matrix solver efficiency on 

simulation speed is expected to be different for PD and VBR models due to their 

refactorization requirements at each solution time point. Therefore, the comparisons 

between the models that use constant and time-varying MNE coefficient matrices should 

be done by considering these facts. On the other hand, partial refactorization schemes 

may create other matrix ordering problems and such schemes have not been tested and 

proven for large scale practical systems. 

In both NA and MANA formulations, the machines are represented in MNE by 

modifying nY  and ni  with their Norton equivalent circuits. On the other hand, MANA 

formulation does not require or force the admittance model usage. Power system 

network models in the MANA formulation can be augmented to include extra generic 

equations based on the machine equations and the nodal relations where the machine is 

connected. For example inserting Thevenin equivalent circuits of the machines into the 

MNE will eliminate the calculation of Norton equivalent circuits of the machines at each 

time step. With this formulation, the solution of the MNE will provide the machine 

stator currents in addition to the machine stator voltages; hence the calculation of 

machine stator currents following MNE solution will be also eliminated. When all 

machine electrical circuit equations are inserted into the MNE, the calculations to form 

the machine interfacing circuit for the MNE solution and the calculations to find 

machine electrical variables following the MNE solution will be completely eliminated. 

It should be noted that, such MANA formulations will increase the size of the MNE 

coefficient matrix, hence the MNE solution time. However, the increase in the MNE 

solution time might be less when compared to the time gained from the computations 

regarding machine equations, especially for efficient sparse matrix solvers.  
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1.3. Methodology 

The methodology used in this thesis is to start by implementing the classical dq0, 

PD and VBR models. This work is followed by research on new solutions algorithms 

and modeling approaches. All models are implemented and tested through user-defined 

modeling facilities available in EMTP-RV [10]. In addition to simple single machine - 

infinite bus test cases, the machine model performances are also compared for actual 

practical and large scale cases. In all cases, precision analysis includes surrounding 

network constraints. 

In all simulations, the reference solutions for precision comparisons are obtained 

from the contributed EMTP-RV software implementation of the PD model and 1 s  

simulation time step ( t ) [21]. It should be noted that in all simulated cases, all models 

converge to the reference solution with smaller simulation time step usage and the 

differences between the reference solutions become negligible for 1t s  . The 

simulations are repeated for all models for different simulation time steps from 50 s  to 

1 ms . In order to evaluate the accuracy of different numerical solutions, the relative 

error between the reference solution trajectory ( f ) and the given numerical solution 

( f ) is calculated using the 2-norm [30]: 

 
22

e% f f f   (1.4) 

Simulation accuracy is directly related to the utilized machine model; hence 

EMTP-RV simulations are sufficient to conclude on model accuracy. On the other hand, 

as the MNE coefficient matrix is constant for indirect approaches and time-varying for 

direct approaches, the effect of the sparse matrix solver and implemented refactorization 

schemes on computational efficiency is different for these approaches. Therefore, 

EMTP-RV simulations are not sufficient to conclude on the computational efficiency of 

these models.  
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For a reasonable computational efficiency comparisons, PD, VBR and the most 

accurate and efficient models proposed in this thesis are implemented in MatEMTP (a 

transient analysis program in MATLAB M-files) [9] in addition to proposed MANA 

formulations and partial refactorization scheme. Three different sparse matrix solvers are 

used in MatEMTP in order to demonstrate its effect on simulation efficiency. These 

sparse matrix solvers are: 

 LU factorization with approximate column minimum degree ordering (COLAMD) 

[31],[32]; 

 LU factorization with approximate minimum degree ordering (AMD) [33],[34]; 

 KLU Matrix-solve package [35]. 

All simulations are performed on a computer having a four-core CPU of 2.67 GHz 

and 4G RAM. Model computational efficiency evaluation is done based on the CPU 

timings of a practical case simulation. In order to correlate MatEMTP with EMTP-RV 

CPU timings, the total simulation time ( simt ) is decomposed as follows 

 &sim ss update A b refactor MNE solve MNE compt t t t t t        (1.5) 

where 

 sst : the CPU time for steady state solution, system component initialization and 

preparation for time-domain simulation,  

 &update A bt  : the CPU time for updating nA  and nb  in (1.3), 

 refactor MNEt  : the CPU time for refactoring nA  in (1.3), 

 solve MNEt  : the CPU time for solving factorized version of (1.3), 

 compt : the CPU time for updating network equivalents of each system component for 

MNE solution and solving their equations following MNE solution. 

The reasoning behind the decomposition of simt  into five parts is for correctly 

accounting for their different shares in total simulation time of EMTP-RV and 
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MatEMTP. Any conclusion made based on only the changes in total simulation time of 

MatEMTP will not be valid for EMTP-RV. Therefore, the changes in &update A bt  , 

refactor MNEt  , solve MNEt   and compt  in MatEMTP simulations are considered separately to 

estimate the possible EMTP-RV simulation times with the proposed MANA 

formulations, partial refactorization scheme for PD and VBR models, and different 

sparse matrix solver packages. 

1.4. Summary of Results and Contributions 

The overall contributions and results of this thesis are summarized below: 

1. Assessment of Numerical Precision for Existing Machine Models: Unlike 

existing studies ([26] and [27]), the existing and proposed machine models are compared 

for more practical cases and conditions. Simulation results show that for a given 

simulation time step, PD or VBR model usage provides much better precision compared 

to the classical dq0 model. However, their usage instead of the classical dq0 model does 

not provide the improvement stated in [26] in practical cases due to the following 

reasons: 

 For a given simulation time step, the classical dq0 model produces less error during 

fault conditions for the faults on transmission facilities compared to the faults at 

machine terminals due to large impedance between the fault and the machine 

terminals, 

 Large time step usage causes reduced accuracy in the surrounding network solution 

and consequently the precisions for all models, 

 Large time steps usage create initialization errors and discrepancies with the steady-

state phasor solution. This obvious observation is reconfirmed to avoid erroneous 

statements made in some papers. 
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According to simulation results, PD and VBR models have similar precision for a 

given simulation time step. In some cases, they enable utilizing twice the time step of the 

classical dq0 model while maintaining simulation precision. 

2. Discrete-Time dq0 Model with Internal Intermediate Time Step Usage (dq0-

IITS): The classical dq0 model solution algorithm is modified by implementing an 

option for internal intermediate (fractional) time step usage between two existing main 

network solution time points. This approach improves precision at the expense of 

reduced simulation speed resulting from solving the machine equations more than once. 

However, internal intermediate time step usage is restricted to the transient intervals 

where the precision of the dq0 formulation decreases. As demonstrated in this thesis, 

when simulation time step is increased, the classical dq0 model introduces significant 

errors especially in the DC component of armature currents following a fault condition. 

The restriction of internal intermediate time step usage is achieved by implementing a 

network switching detection and machine terminal voltage monitoring algorithm for the 

startup of the transient (perturbation) interval and a field current monitoring algorithm 

for the decision process of moving back to normal time step after the perturbation 

interval. For a typical transient stability case, internal intermediate time step usage 

becomes active only for a small portion of the complete simulation interval. In addition, 

electromagnetic transients are local by nature, which limits the number of machines with 

intermediate time point solutions while simulating large scale systems. Therefore, the 

increase in simulation time is not significant. This solution approach provides similar 

accuracy with the PD and VBR models. 

Similar to the classical dq0 model, this model may require damping resistances for 

some cases and for larger time-steps, but even with damping resistances it is still able to 

provide accuracy comparable to PD and VBR models and especially for balanced faults. 

It should be also noted that, the error due to damping resistances is less noticeable at 

large time steps due to reduced overall accuracy. 
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3. Combinations of Classical dq0 Model with PD and VBR Models (dq+PD and 

dq+VBR): The combinations of the classical dq0 approach with PD and VBR models 

are designed to improve the performances of the PD and VBR models respectively. 

Similar to dq0-IITS, the objective is to restrict the usage of PD or VBR modeling to the 

transient intervals where the precision of the classical dq0 formulation decreases while 

maintaining dq0 throughout the rest of the simulation. This is achieved by implementing 

network switching detection and a machine terminal voltage monitoring algorithm for 

the startup of the transient (perturbation) interval and a field current monitoring 

algorithm for the decision process of moving back to dq0 after the perturbation interval. 

For typical transient stability cases, this approach is as precise as the accurate PD and 

VBR models while maintaining classical dq0 model like simulation speed. 

In the dq+PD and dq+VBR models, damping resistances are present only when the 

machines are using the classical dq0 model. It should be noted that, damping resistances 

produce high errors during fault conditions due to high armature currents. The effect of 

damping resistances on the accuracy of the dq+PD and dq+VBR models is not 

significant because these models move into the PD and VBR models respectively during 

fault duration. 

4. Discrete Time PD-dq0 Model: Although the mathematical backgrounds of 

classical dq0 and PD models are equivalent in continuous time domain, the numerical 

properties of these models differ when their equations are discretized. As demonstrated 

in [21] and in this thesis, the inaccurate behavior of the classical dq0 model at larger 

time steps is related to its discretized equations. To combine the accuracy of the PD 

model with the efficiency of the dq0 model, this model is obtained by applying Park’s 

transformation to the discretized equations of the PD model. As it emanates from the 

discretized PD model, it delivers an accuracy similar to the PD model. As for the 

classical dq0 model, a prediction-correction scheme is implemented for interfacing with 

MNE through a constant admittance matrix for computational efficiency. In short, this 
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model inherits precision and performance from the PD and dq0 models respectively. It is 

the best model delivered in this thesis. 

Alike the classical dq0 model the PD-dq0 version may require damping resistances 

for correcting numerical stability problems in some cases with large time step usage. 

However, the error due to damping resistances is less noticeable at large time steps due 

to reduced overall accuracy. 

The driving idea in the dq0-IITS, dq+PD and dq+VBR models is the usage of 

accurate models for the time intervals where the precision of the classical dq0 

formulation decreases. These models are designed for typical transient stability cases 

where accurate model usage is needed for a small portion of the complete simulation 

interval. Depending on the simulated phenomenon and the surrounding system model, 

computational speeds of these models may deteriorate. Therefore, the PD-dq0 model is 

superior over the proposed dq0-IITS, dq+PD and dq+VBR models.  

Although implementing partial refactorization scheme improves the computational 

efficiency of PD and VBR models significantly, their computational performance is still 

poor compared to the PD-dq0 model. Therefore, the PD-dq0 model is also superior over 

the existing machine models in the literature due to its high precision and computational 

performance. In addition, it offers the advantage of programming simplicity in existing 

classical dq0 model codes in EMT type programs.  

5. Assessment of Numerical Efficiency for Machine Models: PD and VBR models 

are much less efficient due to time consuming updating and refactoring of the MNE 

coefficient matrix. In EMTP-RV, PD and VBR models require more than twice the 

computational time compared to the classical dq0 model for a given simulation time 

step. Hence, PD or VBR model usage does not provide any advantage in EMTP-RV 

while simulating practical cases. However, EMTP-RV uses a complete refactorization 

scheme and a sparse matrix solver that employs multiple minimum degree ordering 

(MMD) to obtain sparser LU factors [3]. In this thesis the implementation of partial 
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refactorization is demonstrated for various sparse matrix solvers and tested in MatEMTP 

for a practical case including several synchronous machines. Partial refactorization 

reduces MNE solution time by 38.7% in MatEMTP simulations for both PD and VBR 

model usage when LU factorization is used with AMD. By considering this 

improvement in MatEMTP, total simulation time in EMTP-RV is expected to reduce by 

27.7% and 28.5% for PD and VBR model usage, respectively. With this improvement, 

both PD and VBR models become superior to the classical dq0 model due to their better 

precision. On the other hand, their computational performance is still very poor 

compared to the proposed PD-dq0 model.  

It should be noted that large simulation time step usage is correlated with the 

simulated network model. For example, using more precise propagation delay based 

models for transmission lines instead of multi-phase pi-section models, impose a hard 

upper limit on simulation time step. Moreover, the usage of large simulation time steps 

may cause convergence problems in the iterative process with nonlinear devices or other 

drifts in precision. In such cases, not only the proposed PD-dq0 model, but also the 

classical dq0 model may be preferred due to its high computational efficiency if it 

provides acceptable precision. 

This thesis also investigates the impact of the utilized sparse matrix solver on 

simulation efficiency for a typical EMT-type solution method. The machine models 

using constant and time-varying MNE coefficient matrices, partial and complete 

refactorization schemes are taken into account. The KLU sparse matrix solver provides 

the most efficient simulations in all cases, as expected. The improvement in simulation 

speed with the KLU sparse matrix solver usage instead of LU factorization with AMD, 

reduce the MNE solution time by 86.4% in MatEMTP simulations with the PD-dq0 

model. By considering this improvement in MatEMTP, total simulation time of EMTP-

RV is projected to reduce by 25.9%. On the other hand, the improvement in the MNE 

solution time with KLU usage is smaller in MatEMTP for PD and VBR models with 

partial refactorization schemes (around 43.5%). This improvement in MatEMTP implies 
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around 17.2% and 16.5% expected decrease in total simulation time of EMTP-RV for 

PD and VBR models, respectively. Although, KLU usage improves the simulation speed 

for all models, the computational difference between PD-dq0 and VBR (or PD) models 

is expected to become more significant in a typical EMT-type program. 

6. Alternative Machine Representation in MNA: As MANA formulation does not 

require the admittance model for power system components; it enables different machine 

representations in the MNE. This thesis proposes two new machine representations in 

MANA formulation. In the first formulation, the Thevenin equivalents of the machines 

are inserted into the MNE to eliminate machine Norton equivalent calculations and 

machine stator current calculations following the MNE solution. In the second 

formulation, all machine equations are inserted into the MNE to eliminate interfacing 

circuit calculations and machine electrical variable calculations following the MNE 

solution. It should be noted that, this formulation introduces time dependent terms in the 

MNE coefficient matrix for the PD-dq0 model. As the advantage of constant MNE 

coefficient matrix usage disappears, this formulation is not suitable for the PD-dq0 

model; hence it is proposed only for PD and VBR representations. 

The above formulations are tested in MatEMTP with the KLU sparse matrix solver 

usage and partial refactorization scheme for PD and VBR models. The first formulation 

decreases the total simulation time of MatEMTP by 2.6%, 6.0% and 5.3% for PD-dq0, 

VBR and PD models respectively. However, detailed analysis shows that the possible 

decrease in EMTP-RV simulation time will be 1.5% for PD-dq0 and below 1% for both 

PD and VBR models with this formulation. The second formulation decreases the total 

simulation time of MatEMTP by 20.9% and 18.3% for VBR and PD models 

respectively. On the other hand, detailed analysis shows that this formulation may even 

reduce simulation efficiency when transposed into EMTP-RV. 

Although proposed formulations are not expected to improve the efficiency of an 

EMT-type program, they demonstrate the flexibility of MANA. 
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1.5. About this Thesis 

The work presented in this thesis is divided into following chapters: 

 Chapter I, Introduction: Motivation, study methodology and important contributions 

are presented following a brief presentation of EMT-type programs and synchronous 

machine modelling approaches in the computation of electromagnetic transients. 

 Chapter II: Synchronous Machine Equations: Mathematical modeling of the 

synchronous machine is presented in details. 

 Chapter III: Discrete Time Synchronous Machine Models and Solution Procedures 

in EMTP-Type Programs: The proposed new synchronous machine models and 

solution procedures for the computation of electromagnetic transients are presented 

in addition to the existing models and solution procedures in the literature. 

 Chapter IV: Studies for Numerical Precision – EMTP-RV Simulations: EMTP-RV 

simulation results are presented to compare both the precision and efficiency of the 

proposed models and the existing models in the literature. 

 Chapter V: Complementary Studies for Numerical Efficiency Assessment: Partial 

refactorization implementation and proposed MANA formulations are presented for 

the direct machine modeling approaches. MatEMTP simulation results are presented 

for a reasonable efficiency comparison between direct and indirect modeling 

approaches that considers refactorization scheme, MANA formulation and applied 

sparse matrix solver. 

 Chapter VI: Conclusion. 
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CHAPTER 2.  

SYNCHRONOUS MACHINE EQUATIONS 

2.1. Basic Equations for Electrical Part 

 

Figure 2.1 Stator and rotor circuits of a synchronous machine 

Figure 2.1 illustrates the circuits involved in the analysis of a synchronous 

machine. The stator circuits are composed of three-phase armature windings and the 

rotor circuits are composed of the field and the damper windings. Although a large 

number of circuits are used to represent damper effects in machine design analysis, a 

limited number of circuits may be used in power system analysis depending on the type 

of rotor construction and the frequency range of interest. Usually the damper effects are 

represented with three damper windings: one located on d -axis, and other two located 
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on q -axis [36]. The rotor circuits have therefore three damper windings and the 

mathematical model of the machine is based on this assumption in this thesis. 

In Figure 2.1, a , b  and c  are the stator phase windings; F is the field winding, 

D  is the d -axis damper winding; 1Q  and 2Q  are the first and second q -axis damper 

windings;   is the angle between magnetic d -axis and magnetic phase a -axis in 

electrical rad;   is the rotor angular speed in electrical rad/s. 

It should be noted that the electrical equations for one pole-pair machine are the 

same with the machines having more than one pole-pair except the rotor angular speed 

and the torque calculated for the mechanical part. The necessary conversion can be done 

as follows: 

  2mach P   (2.1) 

  2machT P T  (2.2) 

where P  is the number of poles; mach  and machT  are the actual angular speed and 

electromagnetic torque values;   and T  are the angular speed and electromagnetic 

torque values for the 2-pole machine. 

The following assumptions are made while developing the mathematical model of 

the synchronous machine [36]: 

 The mmf in the air-gap has sinusoidal distribution and the space harmonics are 

neglected. 

 The effect of stator slots on the rotor inductances is neglected; i.e., saliency is 

restricted to the rotor. 

 The magnetic hysteresis is neglected. 

 The magnetic saturation effects are neglected. 
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The omission of magnetic saturation effects is made to deal with linear coupled 

circuits and make superposition applicable in the derivation of the basic equations of the 

synchronous machine. However, saturation effects can be significant and the necessary 

corrections for accounting their effects will be discussed in Section 2.4. 

The stator and rotor flux linkages can be written as 

      
 
 




    
     

    

ss srs s
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L Lλ i
= L

L Lλ i
 (2.3) 

The vectors si  and sλ  denote the stator currents and flux linkages; the vectors ri  

and rλ  denote the rotor currents and flux linkages.  ssL ,  srL ,  rsL  and rrL  

are the stator-stator, stator-rotor, rotor-stator and rotor-rotor inductances, respectively. 

Stator-Stator Inductances: The variation of the permeance of magnetic flux path 

with the rotor position produces the second harmonic terms for both self and mutual 

inductances. The stator self and mutual inductances can be expressed as [36]: 
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s

ss
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 (2.4) 

where 0aaL  and 0abL  correspond to the constant part of the self inductance of each stator 

winding and mutual inductance between any two stator windings, respectively. 2aaL  is 

the maximum value of the second harmonic term for both the self inductance of each 

stator winding and the mutual inductance between any two stator windings. 
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 Stator-Rotor Inductances: The variation of the mutual inductance is due to the 

relative motions of the windings. The stator-rotor mutual inductances can be expressed 

as 

 

1 2

1 2

1 2

cos cos sin sin

2 2 2 2
cos cos sin sin

3 3 3 3

2 2 2 2
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       

      

 
 

                            
                           

srL   

  (2.5) 

where aFL , aDL , 1aQL , 2aQL  are the maximum values of the mutual inductances 

between stator phase windings ( a ,b , c ) and the F , D , 1Q , 2Q  windings, respectively. 

Rotor-Stator Inductances: As ij jiL L  for , ,i a b c  and 1 2, , ,j F D Q Q , the 

rotor-stator mutual inductances can be expressed as 

    T rs srL L  (2.6) 

Rotor-Rotor Inductances: The self inductances of the rotor circuit and the mutual 

inductances between each other do not change with the rotor position. The constant 

rotor-rotor inductance matrix can be written as 

 
1 1 1 2

1 2 2 2

0 0

0 0

0 0

0 0

FF FD

FD DD

Q Q Q Q

Q Q Q Q

L L

L L

L L

L L

 
 
 
 
 
  

rrL  (2.7) 

where FFL , DDL , 1 1Q QL  and 2 2Q QL  are the self inductances of the windings F , D , 1Q  

and 2Q , respectively. FDL  is the mutual inductance between F and D  windings;
 1 2Q QL  

is the mutual inductance between 1Q , 2Q  windings. 
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The voltage equations for the stator and rotor windings are 

 p
       
       
       

s s s s

r r r r

v R 0 i λ
= - -

v 0 R i λ
 (2.8) 

The vector sv  denotes the stator voltages and the vector rv  denotes the rotor 

voltages. It should be noted that, only the field voltage Fv  in rv  is non-zero. sR  and 

rR  are constant diagonal matrices containing the stator and rotor resistances, i.e. 

  , ,a a adiag r r rsR  (2.9) 

  1 2, , ,F D Q Qdiag r r r rrR  (2.10) 

where ar , Fr , Dr , 1Qr  and 2Qr  are the resistances of the stator, F , D , 1Q  and 2Q  

windings, respectively. 

Generator convention is used while expressing the voltage equations; that is, the 

currents are assumed to be leaving the winding at the terminals and the terminal voltages 

are assumed to be the voltage drops in the direction of currents. The electromagnetic 

torque expression can be found from the co-energy function as below [36]: 

 
   

2
4

T T
mach

P
T

 
 

  
     

ss sr
s s s r

L L
i i i i  (2.11) 

2.2. Park Transformation 

Equations (2.3), (2.8) and (2.11) completely describe the electrical behavior of the 

synchronous machine. However, these equations can be solved numerically and they are 

not suitable for analytical solution due to time varying inductances. The time-invariant 

set of machine equations can be obtained through Park Transformation [14]. The new 

fictitious quantities are obtained from the projection of the actual stator variables along 



24 

 

three axes, which are the direct axis of the rotor winding ( d -axis), quadrature axis ( q -

axis) and the stationary axis. In other words, all the stator quantities are transformed into 

new fictitious (dq0) variables in which the reference frame rotates with the rotor. Thus, 

by definition 

  s dq0f P f  (2.12) 

where sf  are the stator phase quantities that can be either voltages, currents or flux 

linkages of the stator windings and dq0f  are new fictitious quantities. The park 

transformation matrix  P  is given by [36]: 

      
   
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0

0

cos sin

cos 2 3 sin 2 3

cos 2 3 sin 2 3

d q
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 
    
   

P  (2.13) 

The constants dk , qk  and 0k  are arbitrary and their values may be chosen to 

simplify the numerical coefficients in performance equations. Power invariant 

transformation (i.e.,    1 T  P P ) can be obtained by choosing 2 3dk  , 

2 3qk   and 0 1 3k   [36]. The major advantage of this transformation is that, all 

the transformed mutual inductances are reciprocal. The flux linkages in terms of dq0 

variables are given by 

 
      

       
       

dq0ss dq0srdq0 dq0 dq0
dq0

dq0rs rrr r r

L Lλ i i
= L

L Lλ i i
 (2.14) 

Here the vectors dqoi
 
and dqoλ  denote the stator currents and flux linkages in dq0 

variables respectively. The inductance matrix dq0L  is constant due to Park’s 

transformation and given by 
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 (2.16) 

         1 T
T     dq0rs rs sr dq0srL L P P L L  (2.17) 

It should be noted that, the fictitious d  winding is aligned with the d -axis and the 

fictitious q  winding is aligned with the q -axis as illustrated in Figure 2.2. Hence, there 

is no coupling between the fictitious d  ( q ) winding and the rotor windings on q  ( d )-

axis.  

 

Figure 2.2 Synchronous machine with rotating armature windings 
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The rotor structure quantities can modified (rescaled) by changing the number of 

turns in the rotor structure windings to provide : :d F DN N N  = 1:1:1 and 1 2: :q Q QN N N  

= 1:1:1.  This provides equal mutual inductances, i.e. dF dDL L  and 1 2qQ qQL L . After 

rescaling the rotor structure, d and q -axis equivalent circuits representing the flux-

current relationship will be as illustrated in Figure 2.3 and Figure 2.4, respectively [36]. 

In these figures d , F , D , q , 1Q  and 2Q  are flux linkages; di , Fi , Di , qi , 1Qi  and 

2Qi  are the currents of the d , F , D , q , 1Q , 2Q  windings, respectively. alL  is the stator 

leakage inductance and FlL , DlL , 1Q lL , 2Q lL  are the leakage inductances of the F , D , 

1Q , 2Q  windings, respectively. FDlL  is the leakage inductance that represents the flux 

linking both F and D  windings, but not d  winding. adL ( dF dDL L  ) and aqL  

( 1 2qQ qQL L  ) are the mutual inductances on  d  and q -axis respectively. 

The inductance FDlL  is usually omitted. This may be reasonable due to the fact 

that the damper windings are near the air-gap and the flux linking the damper circuit is 

nearly equal to that linking the armature. However, this approach is not valid especially 

for the short-pitched damper circuits and solid rotor iron paths [37]. 

 

Figure 2.3 d -axis equivalent circuit illustrating flux-current relationship  

 d 

 D  F 
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 LDl  LFl 
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Figure 2.4 q -axis equivalent circuit illustrating flux-current relationship 

The voltage equations in terms of dq0 variables are now given by 

 p
        

           
       

dqo dqo dqos

rr r r

v i λR 0 u

0 R 0v i λ
 (2.18) 

where the vector dqov  denotes the stator voltages in dq0 variables and the vector u  

contains speed voltages resulting from the transformation of the reference frame from 

stationary to rotating, 

 0 0
T T

d q q du u           u  (2.19) 

The electromagnetic torque is found from 

  
2mach ad q aq d
P

T i i    (2.20) 

where ad  and aq  are the d  and q -axis magnetizing flux linkages [36]. 

  ad ad d F DL i i i     (2.21) 

  1 2aq aq q Q QL i i i     (2.22) 
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2.3. Voltage-Behind-Reactance (VBR) Formulation 

The VBR formulation decouples the synchronous machine model into a stator 

subsystem with variables in phase coordinates and into a rotor subsystem with variables 

in dq coordinates [29]. This formulation assumes all d -axis rotor circuits are linked 

through a single inductance represented by adL , i.e. the inductance FDlL  in Figure 2.3 is 

omitted. From (2.18), stator voltage equations can be written as  

 d a d d qv r i p       (2.23) 

 q a q q dv r i p       (2.24) 

 0 0 0av r i p    (2.25) 

and rotor voltage equations can be written as 

 1 2;   , , ,j j j jv r i p j F D Q Q     (2.26) 

where jr  denotes the rotor winding resistances; and jv , ji  and j  
denote the rotor 

winding voltages, currents and flux linkages respectively.  

By assuming d -axis rotor circuits are linked through a single inductance 

represented by adL ,  the stator and rotor flux linkages can be written as below: 

 d ad al dL i    (2.27) 

 q aq al qL i    (2.28) 

 ;   ,j ad jl jL i j F D     (2.29) 

 1 2;   ,j aq jl jL i j Q Q     (2.30) 

where jlL  denotes the leakage inductance of the rotor windings.  
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Solving (2.27) - (2.30) for currents and substituting into (2.21) and (2.22) yields, 

after some algebraic manipulations 

  ad ad d F Fl D DlL i L L      (2.31) 

  1 1 2 2aq aq q Q Q l Q Q lL i L L      (2.32) 

where 

   1
1 1 1ad ad Fl DlL L L L

     (2.33) 

   1

1 21 1 1aq aq Q l Q lL L L L


     (2.34) 

By substituting (2.31) into (2.27) and (2.32) into (2.28), the stator flux linkages can 

be expressed as 

 d d d dL i     (2.35) 

 q q q qL i     (2.36) 

where double primes are used to denote subtransient quantities. The subtransient 

inductances  dL  and qL   are given by 

 d al adL L L    (2.37) 

 q al aqL L L    (2.38) 

and the subtransient flux linkages, d  and q  are given by 

  d ad F Fl D DlL L L      (2.39) 
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  1 1 2 2q aq Q Q l Q Q lL L L      (2.40) 

By substituting (2.35) and (2.36) into (2.23) and (2.24), the stator voltage 

equations can be written as 

 d a d d d d q q qv r i L pi p L i             (2.41) 

 q a q q q q d d dv r i L pi p L i             (2.42) 

The terms dp  and qp  in (2.41) and (2.42) can be obtained by taking the derivatives 

of (2.39) and (2.40). Expressions of the derivatives of the rotor flux linkages can be 

obtained by manipulating the rotor flux linkage equations (2.29) and (2.30) using  

   ;   ,j j ad jli L j F D     (2.43) 

   1 2;   ,j j aq jli L j Q Q     (2.44) 

for the rotor currents. By substituting the resulting expressions into (2.41) and (2.42), 

and after algebraic manipulations, the VBR stator equations are obtained as 

 d a d d d q q dv r i L pi L i v        (2.45) 

 q a q q q d d qv r i L pi L i v        (2.46) 

where 
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 (2.47) 
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

 (2.48) 

The final form of the stator voltage equations is obtained by applying Park’s 

transformation to (2.45), (2.46) and (2.25), 

  p    s s s abc s abcv = -R i - L i + v  (2.49) 

where  abcL  and abcv  are the subtransient inductance matrix and voltages 

respectively [28]. The subtransient voltages are given by 

   0
T

d qv v      abcv P  (2.50) 

The subtransient inductance matrix abcL ( )  is given by 
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L
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(2.51) 

where 

   0 0 3aa al ad aq alL L L L L L        (2.52) 

   0 02 6ab al ad aqL L L L L       (2.53) 
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  2 3aa ad aqL L L     (2.54) 

The stator equations are given by (2.49). From (2.26), (2.43) and (2.44), the rotor 

state equations can be written as 

   / ;   ,j j jl j ad jp r L v j F D        (2.55) 

   / ;   1, 2j j jl j aqp r L j Q Q       (2.56) 

In [29], the q -axis is assumed to be leading the d -axis by 90  and motor 

convention is used for the voltage equations while deriving the VBR formulation. In 

addition, zero sequence inductance 0L  is assumed to be equal to stator leakage 

inductance alL  while expressing the subtransient inductance matrix abcL ( ) . 

Finally, (2.20) can be used for finding the electromagnetic torque. 

As illustrated in this chapter, dq0, PD and VBR models can be derived from each 

other, i.e. all they are all equivalent in continuous time domain. However, the model 

parameters for dq0, PD or VBR cannot be directly determined from test/field measurements. 

The parameters usually provided by the manufacturer are obtained by means of standardized 

procedures and they need to be converted to model parameters. Appendix I summarizes the 

techniques used to obtain dq0 model parameters from the different type of data sets. 

2.4.  Magnetic Saturation 

In the derivation of the basic equations of the synchronous machine, magnetic 

saturation effects are neglected in order to deal with linear coupled circuits and make 

superposition applicable. However, saturation effects are significant and their effects 

should be taken into account in power system analysis. In the representation of the 

magnetic saturation, the following assumptions are usually made [36], [38]: 
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 The leakage fluxes are considered to be independent of saturation; i.e., only d  and 

q -axis mutual inductances adL  and aqL  are saturable.  

 The contribution of the leakage fluxes on the iron saturation is neglected; i.e., 

saturation is determined by the air- gap flux linkage. 

 The sinusoidal distribution of the magnetic field over the face of the pole is 

considered to be unaffected by saturation, hence, d  and q -axes remain uncoupled. 

For solid-rotor machines, the saturation relationship between the resultant (total) 

air-gap flux ( T ) and the magnetomotive force under loaded conditions is considered to 

be the same as at no-load conditions. With this assumption, a single saturation curve 

(i.e., open-circuit saturation curve) is sufficient to characterize this phenomenon [36]. 

The saturation function can be written as 

    2 2
T Tu adu aquf f       (2.57) 

  adu adu d F DL i i i     (2.58) 

  1 2aqu aqu q Q QL i i i     (2.59) 

where Tu  is the unsaturated air-gap flux, adu  and aqu  are the unsaturated values of 

d  and q -axis magnetizing flux linkages, aduL  and aquL  are the unsaturated values of 

mutual inductances adL  and aqL . 

The total air-gap flux T  is subjected to saturation and the saturated values of d  

and q -axis magnetizing flux linkages ( ad  and aq ) can be found from their 

unsaturated values ( adu  and aqu ) by reducing them with the ratio value as illustrated 

in Figure 2.5. 
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Figure 2.5 Saturated and unsaturated mutual fluxes 

In EMT type programs, the magnetic saturation characteristic is usually 

represented by using a piecewise-linear approximation [3]-[6] as illustrated in Figure 

2.6. With piecewise-linear approximation, the simplicity and structure of the 

magnetically linear machine model is partly preserved, and the iterative solution of 

saturation function with the machine equations and MNE is avoided. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.6 Magnetic saturation characteristic (piecewise-linear approximation) 

The saturation may be represented by nonlinear functions such as high order 

polynomials [23], [39] or arctangent functions [40] that may be fitted into the measured 

saturation data at the expense of forcing an iterative solution of the saturation function 

with the machine equations and MNE. However, piecewise-linear approximation can 

include arbitrary number of piecewise-linear segments in order to approach the smooth 

saturation characteristic with any desirable accuracy. 
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For the jth operating segment on the saturation curve (see Figure 2.6), T can be 

written as below 

 T kj j Tu kj j adu Tb b L i        (2.60) 

where kj  is the zero current (residual) flux (see Figure 2.6) ,
 jb  is the saturation factor 

 j adsj adub L L  (2.61) 

and Ti  is defined as 

    
2

2 2
1 2

aqu
T d F D q Q Q

adu

L
i i i i i i i

L

 
      

 
 (2.62) 

The boundaries for the jth operating segment are bj and  1b j   on T -axis and 

bji
 
and  1b ji   on Ti -axis (see Figure 2.6). 

After defining the saturation based on total air-gap flux, it can be separated into d  

and q -axis as follows 

  cosad kdj j adu kj j adub b          (2.63) 

  sinaq kqj j aqu kj j aqub b          (2.64) 

where 

    1 1tan tanaqu adu aq ad        (2.65) 

The saturated values of adL  and aqL  become 

 ,ad j adu aq j aquL b L L b L   (2.66) 
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In case of salient-pole machines, the path for q -axis flux is largely in air and does 

not vary significantly due to the saturation of the iron path. Therefore, it is usually 

necessary to adjust only ad  [36]. 

  ad adu kj j aduf b       (2.67) 

 ,ad j adu aq aquL b L L L   (2.68) 

 , 0kdj kj kqj     (2.69) 

2.4.1. dq0 Model Equations with Magnetic Saturation 

The time-invariant set of equations (2.14), (2.18) and (2.20) completely describes 

the electrical behavior of the synchronous machine and is called dq0 model in literature. 

When magnetic saturation is taken into account based on the piecewise-linear 

approximation described above, for the jth operating segment on saturation curve the 

flux linkages in (2.14) becomes 

 
     

      
     

dqo dqo dqok
dqo

r r rk

λ i λ
L

λ i λ
 (2.70) 

where 

 0
T

kdj kqj    dqokλ  (2.71) 

 
T

kdj kdj kqj kqj      rkλ  (2.72) 

The inductance matrix dqoL  should be calculated with saturated values of the 

mutual inductances adL  and aqL , i.e. 
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  0, ,al j adu al j aqudiag L d L L q L L  dq0ssL  (2.73) 

 

0 0

0 0

0 0 0 0

j adu j adu

j aqu j aqu

d L d L

q L q L

 
 

  
 
 

dq0srL  (2.74) 

1

2

0 00 0

0 00 0

0 00 0 0

0 00 0 0

j adu j aduFl FDl FDl

j adu j aduFDl Dl FDl

j aqu j aquQ l

j aqu j aquQ l

d L d LL L L

d L d LL L L

q L q LL

q L q LL

   
      
  
  

      

rrL   

  (2.75) 

In (2.73) - (2.75), j j jd q b   for solid-rotor machines; j jd b  and 0jq  for 

salient pole machines. 

2.4.2. PD Model Equations with Magnetic Saturation 

The set of equations (2.3), (2.8) and (2.11) completely describe the electrical 

behavior of the synchronous machine and are used for the Phase-Domain (PD) model in 

literature. Although PD model enables inclusion of magnetic saturation while retaining 

the physical picture of the actual machine [23], the magnetic saturation representation is 

implemented in this thesis based on the dq0 variables [38]. For jth operating segment on 

the saturation curve, the flux linkages in (2.3) becomes 

       
      

     
s s sk

r r rk

λ i λ
L

λ i λ
 (2.76) 

where 

  sk dqokλ P λ  (2.77) 
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 L  should be calculated based on the saturated values of the mutual inductances adL  

and aqL . The 0aaL , 0abL  and 2aaL  terms in the  ssL  matrix (see (2.15)) become 

   0 0 3aa al j adu j aqu alL L d L q L L L      (2.78) 

   0 02 3ab al j adu j aquL L L d L q L     (2.79) 

  2 3aa j adu j aquL d L q L   (2.80) 

As the rotor structure quantities are rescaled, : :d F DN N N  = 1:1:1 and 1 2: :q Q QN N N  = 

1:1:1 (i.e. : :a F DN N N  = 2 3 :1:1 and 1 2: :a Q QN N N  = 2 3 :1:1), aFL , aDL , 1aQL  

and 2aQL  terms in  srL  and  rsL (see (2.16) and (2.17));  become 

 2 3aF aD j aduL L d L   (2.81) 

 1 2 2 3aQ aQ j aquL L q L   (2.82) 

2.4.3. VBR Model Equations with Magnetic Saturation 

The set of equations (2.49), (2.55), (2.56) and (2.11) completely describe the 

electrical behavior of the synchronous machine for the Voltage-Behind-Reactance 

(VBR) model [29]. By considering the magnetic saturation, for the jth operating segment 

on the saturation curve, the dv  and qv  terms in the subtransient voltages (see (2.50), 

(2.47) and (2.48)) become 
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2
2

2 2 2 2

2 2

2 2 2 2

1

1

ad F ad ad DF D
d ad d F

FlFl Dl Fl Dl Fl

ad F ad D ad ad adF D
D kdj kdj

Dl ad adDl Fl Dl Fl Dl

aq

L r L L rr r
v L i

LL L L L L

L r L r L L Lr r
p

L L LL L L L L

L

L



  



     



      
            
        

              


 1 2
1 2

aq aq ad
Q Q kqj F

Q l Q l aq Fl

L L L
v

L L L
    

  
  

 (2.83) 

 

1

2
2 1 1 22

2 2 2 2
12 1 1 2 1

2 2
1 2 2 1

22 2 2 2
22 1 2 2 1

1

1

Q
Q Q aq Q aq aq Q

q aq q
Q lQ l Q l Q l Q l Q l

aq Q aq Q aq Q Q aq
Q

Q l aqQ l Q l Q l Q l Q l

r r L r L L r
v L i

LL L L L L

L r L r L r r L

L LL L L L L





    

 

      
             
       

             
kqj

aq ad ad ad
kqj F D kdj

aq Fl Dl ad

L L L L
p

L L L L



         
   

 (2.84) 

The expressions for d  and q -axis magnetizing flux linkages ( ad  and aq ) given 

in (2.31) and (2.32) become 

  ad ad d F Fl D Dl kdj adL i L L L        (2.85) 

  1 2 21aq aq q Q l Q Q l kqj aqQ
L i L L L        (2.86) 

The adL  and aqL  terms in d  and q -axis magnetizing flux linkage ( ad  and aq ) 

expressions (see (2.85) and (2.86)), d  and q -axis subtransient voltage ( dv  and qv ) 

expressions (see (2.83) and (2.84)) and the subtransient inductance matrix  abcL  

expression (see (2.51) - (2.54)) should be calculated with saturated values of the d  and 

q -axis mutual inductances adL ( j adud L ) and aqL  ( j aquq L ). 
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2.5. Basic Equations for Mechanical Part 

The turbine - generator rotor has a complex mechanical structure consisting of 

several rotors with different sizes connected by shafts of finite stiffness. Although a 

continuum model of the rotor is required to account for the complete range of torsional 

oscillations, a simple lumped multimass model is adequate for studying problems related 

to torsional oscillations [41]. In this approach, each major rotor element is considered to 

be a rigid mass connected to adjacent elements by mass less shafts with a single 

equivalent torsional stiffness constant. Figure 2.7 illustrates the structure of a typical 

multimass model for a generator driven by a tandem compound steam turbine. The six 

torsional masses represent the rotors of the exciter, the generator, two low pressure (LP) 

turbine sections, the intermediate pressure (IP) turbine section and the high pressure 

(HP) turbine section. 

 

Figure 2.7 Structure of a typical lumped multimass system 

This lumped multimass model has the torsional modes in the frequency range of 

interest. The mechanical subsystem equations can be written as [36] 

 p m mθ ω  (2.87) 

 p   m m m m m m aJ ω D ω K θ T  (2.88) 

where the subscript m designates mechanical quantities, mJ is the diagonal matrix of 

moments of inertia, mω is the vector of speeds, mθ  is the vector of angular positions, 
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mD and mK  are the tridiagonal matrices of damping and stiffness coefficients 

respectively and the vector of torques is given by  

  1 ...
T

m mi mach excT T T T  aT  (2.89) 

where miT  is the mechanical torque of ith turbine section, machT  and excT  are the 

electromagnetic machine and exciter torques, respectively. The exciter torque is found 

from 

 exc F F machT v i   (2.90) 

In the analysis of power system dynamics, it is a common practice to assume the 

turbine-generator rotor to be made up of a single mass. In that case both electromagnetic 

machine torque and mechanical input torque is assumed to be acting on a single mass 

representing the turbine-generator rotor. For the single mass representation, (2.87) and 

(2.88) becomes 

 mach machp    (2.91) 

 m mach m mach a m machJ p D T T T      (2.92) 

where mJ is the total moment of inertia and mD  is damping coefficient. 
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CHAPTER 3.  

DISCRETE-TIME SYNCHRONOUS MACHINE MODELS AND 

SOLUTION PROCEDURES IN EMT-TYPE PROGRAMS 

In EMT-type programs, the solution approach is based on discretizing the 

differential equations for each circuit component using a particular integration rule. The 

implicit trapezoidal rule (TRAP) is widely used for discretization followed by the 

formulation of the MNE. The numerical oscillations of this rule, due to detectable 

discontinuities, are eliminated using the Backward Euler method (EBA) [3]. The 

Backward Euler method is used with halved integration time step ( / 2t ) for two steps 

( t  period) as illustrated in Figure 3.1. 

 

 

 

 
Figure 3.1 Solution following a discontinuity 

Numerical solutions for synchronous machine models are obtained from their 

discretized equations. As NA formulation requires the admittance model for each circuit 

component, the Norton equivalent circuit is formed for each machine from its discretized 

equations to interface with the power system network. The Norton equivalent circuits of 

the machines are inserted into the MNE by modifying nY  and ni  in order to obtain the 

solution at each time step. Although MANA formulation may provide alternative 

synchronous machine representations for MNE, the same representation with NA is used 

here in the MANA solution approach. 

TRAP EBA EBA TRAP

t t t/2 t/2 

Discontinuity Instant 
t 

TRAP
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3.1. Discrete-Time Mechanical Part Model 

By applying the trapezoidal integration rule, the discretized versions of  (2.87) and 

(2.88) can be written as 

  ˆ ˆk  m m m mθ θ ω ω  (3.1) 

  2k k k   m m m m a mJ D K ω T h  (3.2) 

where 

  2 ˆ ˆˆ 2k k k k    m m m m m m m ah J D K ω K θ T  (3.3) 

and / 2k t  . In the above equations and hereinafter, the hatted variables are available 

from the previous solution time point. 

machT  and excT  in aT  provide the direct link with the electrical part. Hence, 

solution of electrical part should be available for solving (3.2). In case the mechanical 

power input miP  for each turbine i  is provided, the torque on each mass i  is calculated 

by using predicted speed mi  

 mi mi miT P   (3.4) 

where mi  is predicted with linear extrapolation, i.e. 

      2mi mi mit t t t t         (3.5) 

In all machine models, there is also an indirect link through   (and   for dq0 and 

VBR models). The calculation of the Norton equivalent circuit for the MNE and the 

solution for electrical variables are achieved using the predicted   and   values.   is 
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predicted with linear extrapolation and   is calculated by solving the equation of motion 

using   

      2t t t t t         (3.6) 

         t t t k t t t         (3.7) 

Following a discontinuity, the Backward Euler method is used with halved 

integration time step ( 2t ) for two steps ( t  period). For this simulation period, (3.1) 

and (3.3) becomes 

 ˆ k m m mθ θ ω  (3.8) 

 ˆˆk k m m m m mh J ω K θ  (3.9) 

Due to the Backward Euler method with 2t , the uniform spacing along time 

axis is disturbed as illustrated in Figure 3.1. Therefore, the linear predictor formulas 

given in (3.5) and (3.6) should be modified depending on the solution method for the 

next time point and the solution method for the previous time point (see Appendix II). 

In single mass representation of the turbine-generator rotor, discretized version of 

(2.91) and (2.92) are used instead of discretized version of (2.87) and (2.88). 

3.2. Discrete-Time dq0 Model 

The dq0 model is interfaced with the power system network as a Norton 

Equivalent (NE) in phase coordinates and contains both predicted electrical and 

mechanical variables. Accumulation of prediction errors may cause numerical noise 

problems (in some cases) and even instability especially with large time steps. In order 

to improve the model stability, it is common to use damping resistances in parallel with 
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model circuit inductances [15], [19], [20], [21]. The reciprocal of the damping factor is 

defined for a given inductance L  and integration time step t  as 

    2 2p pR L t R L t       (3.10) 

where pR  is the damping resistance. For 1   there is no damping and critical damping 

is achieved with 0  . Default values can be used to guarantee model stability, but the 

highest precision is achieved when pR  is infinity. 

By applying the trapezoidal integration rule with (2.70), the discretized version of 

(2.8) is written as 

 k   
                    

            

dq0ss dq0sr dq0sdqo dqo dqok

dq0rs rr dq0rr r rk

R R hv i λ u

R R 0 hv i λ
 (3.11) 

where 

 
k k

k k

    
          

dq0ss dq0sr s dq0ss dq0sr

dq0rs rr dq0rs r rr

R R R L L

R R L R L
 (3.12) 

 ˆ ˆ ˆ ˆk      dq0s s dq0 dq0 dq0h R i λ u v  (3.13) 

 ˆ ˆ ˆk    dq0r r r r rh R i λ v  (3.14) 

and  1 /k t    .  

It is possible to reduce (3.11) into 

   dq0 dq0 dq0 dq0v R i e  (3.15) 

where 



46 

 

 1
0( , , )d qdiag R R R  dq0 dq0ss dq0sr rr dq0rsR = R R R R  (3.16) 

1
0

T
d qe e e k k            dq0 dq0k dq0sr rr dq0r r rk dq0se = u λ R R h v λ h   

(3.17) 

The Thevenin equivalent (TE) formed by (3.15) is transformed back to phase 

coordinates for interfacing with the MNE, using the Park’s transformation matrix ( )P . 

This implies the prediction of the machine position angle   (see (3.6) and (3.7)). 

The back transformation of the resistance matrix (given in (3.16)) into phase 

coordinates produces a time dependent and unsymmetric resistance matrix. The time 

dependent condition must be avoided since it requires time consuming refactoring of the 

MNE coefficient matrix. This is achieved by averaging the resistances [15] in (3.16) and 

by adjusting the Thevenin voltages given in (3.17) to give 

     02, 2,d q d qdiag R R R R R  dq0R  (3.18) 

 02 2

T
d q q d

d d q q

R R R R
e i e i e

  
   dq0e =  (3.19) 

In order to form the TE in (3.15), the following electrical variables must be 

predicted (see (3.17) and (3.19)): 

 Fictitious d  and q  winding currents ( di  and qi ), 

 Speed voltages du  and qu  (see  (2.19)), 

 Field voltage Fv  in rv , 

 Residual flux values kdj  and kqj  (see (2.71) and (2.72)) for solid-rotor machines. 
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The field voltage Fv  is set to ˆFv . The electrical variables ad , aq , di , qi , du  and qu  

are obtained with linear three-point prediction with smoothing [15], [19], [20] as 

illustrated in Figure 3.2, i.e. 

        1.25 0.5 0.75 2f t t f t f t t f t t          (3.20) 

 

  

 

 

 

 
Figure 3.2 Linear three-point prediction with smoothing 

The residual flux values kdj  and kqj  are calculated from the predicted 

magnetizing flux values ad  and aq . From (2.63) - (2.65), it can be written as 

 ,ad aq
kdj kj kqj kj

T T

 
   

 
   (3.21) 

In the solid-rotor case, the T  is subjected to saturation. As the projection of kj  

on d - and q -axis varies with the angle  , it is required to predict kdj  and kqj . In the 

salient pole case only ad  is subject to saturation and the predictions of kdj  and kqj  

are not required ( kdj kj  , 0kqj  ). 

The Norton equivalents (NE) of the machines are obtained from the TE in (3.15) 

are inserted into the MNE after transforming back to phase coordinates.  

f (t-2t) 

f (t+t) 

f (t-t) 

f (t) 
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The solution of the MNE gives the stator voltages in phase variables sv  and the 

stator voltages in dq0 variables  dqov  can be found using (2.12). The stator currents in 

dq0 variables dqoi  can be found using (3.15) and dqov  obtained from the MNE solution 

    1   dq0 dq0 dq0 dq0 dq0 dq0 dq0i G e v R e v  (3.22) 

From (3.11), the rotor currents ri can be found as 

  1 k     r rr dq0rs dqo rk r dq0ri R R i λ v h  (3.23) 

In the solid rotor case, rkλ  in (3.23) contains predicted saturation dependent 

variables kdj  and kqj . Therefore, (3.23) is solved using an iterative approach with the 

equations in (3.21). This iterative solution process provides corrected values for kdj  

and kqj  and the rotor currents ri . The magnetizing flux linkages ad  and aq  can be 

found using (2.63) and (2.64) respectively. The flux linkages ( dqoλ  and rλ )  and speed 

voltages can be found by using (2.70) and (2.19) respectively. In salient pole case, rkλ  

does not contain predicted values for kdj  and kqj , hence the solution of (3.23) does 

not require iteration. 

It is also possible to obtain a direct solution by solving the first and second rows of 

(3.11) for magnetizing fluxes ad  and aq  [42], i.e. 

 
 
 

a al d al q d dad

aq a al q al d q q

r k L i L i v hk

k r k L i L i v h


 

       
               

 (3.24) 

where  

    ˆˆ
d a al d ad d dh r k L i u v         (3.25) 
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    ˆˆ
q a al q aq q qh r k L i u v         (3.26) 

As the magnetizing flux linkages ad  and aq  are found by using (3.24), (3.23) 

can be used for the rotor currents without iterations after finding the corrected values for 

kdj  and kqj  from (3.21). This solution approach improves the simulation speed for the 

solid rotor machine. 

The sequence of calculation steps is briefly described below. The solution at t t   

is known and the solution at t  is to be found: 

1. predict   and   (see (3.6) and (3.7)) to calculate  P ; 

2. predict electrical variables to calculate dq0e  (see (3.17) and (3.19)) and build 

the TE in (3.15); 

3. solve the MNE to find sv ; 

4. find dqov  from sv  using (2.12) and use (3.22) for stator currents dqoi ; 

5. find magnetizing flux linkages ad  and aq  from (3.24) and use (3.21) for 

correcting kdj  and kqj ; 

6. use (3.23) for rotor currents, (2.70) for flux linkages and (2.19) for speed 

voltages; 

7. check for the machine operating segment on saturation curve, if the operating 

segment needs to change 

 update dq0L  with updated adL  and aqL  values (see (2.73) - (2.75)), 

 update kdj  and kqj  with updated kj  value (see (3.21)), 
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 recalculate magnetizing flux linkages ad  and aq  using (2.63) and 

(2.64), flux linkages using (2.70) with the calculated rotor currents for the 

new operating segment, 

 switch solution method to Backward Euler for the next time step; 

8. find electromagnetic torque using (2.20) and solve the mechanical equations 

(3.1) and (3.2) to find mθ and mω ; 

9. compare predicted and corrected   ( machpp  ), repeat the steps 4 to 9 if no 

convergence; 

10. return to step 1 for the next time point solution. 

The above solution procedure is for the solid rotor machine. In the salient pole 

case, the solution procedure does not contain prediction and correction of kdj  and kqj  

values (see steps 2 and 5). 

In step 7, the operating segment on the saturation curve is found by comparing 

total air-gap flux T  (if solid rotor machine) with the boundary values of each operating 

segment on T -axis ( bj  and  1b j   for jth operating segment, see Figure 2.6). Let a 

solid rotor machine operate on the jth operating segment. If calculated T  value in step 5 

is in between the boundary values of the jth operating segment (  1bj T b j     ), there 

is no segment change. If T  is greater than  1b j  , T  is recalculated using (2.60) for 

the (j+1)th operating segment and compared with  2b j  , i.e. the upper boundary value 

of the (j+1)th operating segment. This will continue until (j+k)th operating segment if it 

satisfies    1Tb j k b j k      . If T  is smaller than bj , T  is recalculated for the (j-

1)th operating segment and compared with  1b j  , i.e. the lower boundary value of the 

(j-1)th operating segment. This will continue until the (j-k)th operating segment if it 
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satisfies    1Tb j k b j k      . In the salient pole case only d -axis magnetizing flux 

ad  is subject to saturation; hence the same procedure is utilized for ad  instead of T .   

It should be noted that the stator currents in phase variables ( si ) are also calculated 

in step 4 to provide these values to the user as output signals for possible usage in 

controls. 

The Backward Euler method is equivalent to the damped trapezoidal rule with 

critical damping, hence by setting 0   the discretized version of machine equations 

with the Backward Euler method is obtained. However, as the simulation time step is 

reduced to 2t  during the Backward Euler solution, k   in equations (3.11) - (3.19) 

becomes 2 / t . 

Due to the Backward Euler method with 2t , the uniform spacing along time 

axis is disturbed as illustrated in Figure 3.1. Therefore, the predictor formula given in 

(3.20) should be modified depending on the solution method for the next time point and 

the methods used for the last two solutions (see Appendix II). 

The accuracy of the dq0 model can be improved through an optional iterative 

scheme with the MNE before advancing to the next time point. The TE is updated for 

voltage convergence through an iterative process [10], [43] that includes all other 

nonlinear devices and machines connected through the main network. This approach 

also eliminates the accumulation of prediction errors and provides desired model 

stability. Although a Newton method is used, the computational time is increased.  

3.3. Discrete-Time PD Model 

By applying the trapezoidal integration rule with (2.76), the discretized version of 

(2.8) is written as 
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   
 

k
 


        
           

        

s s sk sss sr

r r rk rrs rr

v i λ hR R

v i λ hR R
 (3.27) 

where 

 
   
 

   
 

k k

k k

   
 

   
      

ss sr s ss sr

rs rr rs r rr

R R R L L

R R L R L
 (3.28) 

 ˆ ˆ ˆk   s s s s sh R i λ v  (3.29) 

 ˆ ˆ ˆk   r r r r rh R i λ v  (3.30) 

For the Backward Euler solution with 2t  time step, (3.29) and (3.30) become 

 ˆks sh λ  (3.31) 

 ˆkr rh λ  (3.32) 

Matrix reduction is applied to (3.27) to obtain the TE equation 

   PD PD
s abc s abcv R i e  (3.33) 

where  

      1   PD
abc ss sr rr rsR R R R R  (3.34) 

    1k k      PD
abc sk s sr rr r rk re λ h R R h λ v  (3.35) 

It is assumed that ˆF Fv v , thus ˆr rv v . The matrix  L  is calculated by 

predicting   (see (3.6) and (3.7)). The residual flux vectors skλ  and rkλ  in (3.35) can 

be calculated from d  and q -axis residual flux values kdj  and kqj  (see (2.71), (2.72) 
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and (2.77)).  Similar to the dq0 model kdj  and kqj  values are obtained from predicted 

magnetizing flux values ad  and aq  (see (3.21)) for solid rotor machines. In the salient 

pole case the predictions of kdj  and kqj  are not required ( kdj kj  , 0kqj  ). The 

NE obtained from the TE given in (3.33) is included directly into the MNE. Since PD
abcR  

is continuously changing, it is required to refactor the MNE at each solution time point. 

The solution of the MNE gives the stator voltages in phase variables sv  and stator 

currents si  can be found using (3.33), i.e. 

      1
   PD PD PD PD

s abc abc s abc abc si G e v R e v  (3.36) 

From (3.27), the rotor currents ri can be found as 

   1 k     r rr rs s rk r ri R R i λ v h  (3.37) 

In the solid rotor case, rkλ  in (3.37) contains predicted saturation dependent 

variables kdj  and kqj . Therefore, (3.37) is solved using an iterative approach with 

(3.21). For the calculation of ad  and aq , dqoi  is calculated from si  using (2.12). This 

iterative solution process provides corrected values for kdj  and kqj  and the rotor 

currents ri . The magnetizing flux linkages ad  and aq  can be found using (2.63) and 

(2.64) respectively. The flux linkages can be found using (2.76). In the salient pole case, 

rkλ  does not contain predicted values for kdj  and kqj , hence rotor currents are 

obtained without iterations. 

The sequence of calculation steps is briefly described below: 

1. predict   and   (see (3.6) and (3.7)) to calculate  P and  L ; 
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2. predict kdj  and kqj  to find  skλ  and rkλ  (see (2.71), (2.72) and (2.77)) and 

build the TE in (3.33); 

3. refactorize and solve the MNE to find sv ; 

4. find stator currents si  using (3.36) and use (2.12) for dq0i ; 

5. find rotor currents using (3.37); 

6. find ad  using (2.63) and aq  using (2.64) for correcting kdj  and kqj , hence 

skλ  and rkλ  (see (2.71), (2.72) and (2.77)); 

7. compare predicted and corrected values for kdj  and kqj , repeat step 5 to 7 

with corrected skλ  and if no convergence; 

8. check for the machine operating segment on saturation curve, if the operating 

segment needs to change 

 update adL , aqL  and all related terms in  L  ( 0aaL , 0abL  and 2aaL  

terms in  ssL ; aFL , aDL , 1aQL  and 2aQL  terms in  srL  and 

 rsL ,  FFL , FDL , DDL , 1 1Q QL , 1 2Q QL , 2 2Q QL  terms in rrL ), 

 update kdj  and kqj , hence skλ  and rkλ  with updated kj  value, 

 recalculate magnetizing flux linkages ( ad  and aq ) with the calculated 

rotor currents for the new operating segment, 

 switch solution method to Backward Euler for the next time step; 

9. find flux linkages using (2.76); 

10. find electromagnetic torque using (2.20) and solve the mechanical equations 

(3.1) and (3.2) to find mθ and mω ; 
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11. return to step 1 for the next time point solution. 

The above solution procedure is for the solid rotor machine. In the salient pole 

case, the solution procedure does not contain prediction and correction of kdj  and kqj . 

The magnetic saturation representation is the same as with the dq0 model, hence in 

step 8 the operating segment on the saturation curve is found with the same procedure 

utilized in the dq0 model. ad , aq  and dq0i  are available at each solution time point for 

magnetic saturation representation. Therefore, the electromagnetic torque equation 

(2.20) is used instead of complex torque expression given in (2.11). In addition, the 

stator voltages in dq0 variables ( dq0v ) are also calculated in step-4 to provide these 

values to the user as output signals for possible usage in controls. 

Unlike the dq0 model, the PD model NE circuit does not contain predicted stator 

currents. Hence, the PD model is expected to provide desired model stability without 

damping resistance usage.  

3.4. Discrete-Time VBR Model 

By applying the trapezoidal integration rule, the discretized version of (2.49) is 

written as 

   k      s s abc s abc VBRsv R L i v h  (3.38) 

where  

   ˆ ˆ ˆ ˆk      VBRs s abc s abc sh R L i v v  (3.39) 

For the Backward Euler solution with 2t  time step, (3.39) becomes 

  ˆ ˆk VBRs abc sh L i  (3.40) 
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In order to interface the VBR model with the external network, abcv  must be 

expressed in terms of si . This is achieved by discretizing the rotor state equations (2.55) 

and (2.56)) and solving for the rotor subsystem output variables. After some algebraic 

manipulations, 

 Fv   r I dq λk dqk VF VBRλλ B i B λ b h  (3.41) 

where 

 ˆ ˆ ˆ ˆFv   VBRλ λ r I dq λk dqk VFh A λ B i B λ b  (3.42) 

 
T

d qi i   dqi  (3.43) 

 
T

kdj kqj    dqkλ  (3.44) 

Here, the matrices λA , IB , λkB  and VFb , are constant due to dq transformation 

(see Appendix III). For the Backward Euler solution with 2t  time step, the history 

term given in (3.42) should be modified in addition to the constant matrices λA , IB , 

λkB  and VFb  in (3.41) as illustrated in Appendix III. 

After manipulating (2.83) and (2.84), and using 

  ˆp t  dqk dqk dqkλ λ λ  (3.45) 

the subtransient voltages in dq variables can be written as 

     ˆT
d q Fv v v           dq I dq λ r λk dqk pλk dqk dqk VFv K i K λ K λ K λ λ k   

(3.46) 
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By substituting (3.41) into (3.46) dqv
 
is be expressed in terms of dqi , Fv , kdj  

and kqj  and the history terms ˆ
rλ , ˆ

dqi , ˆFv , ˆ
kdj  , and ˆ

kqj . By using predicted values 

of kdj  and kqj  and assuming ˆF Fv v , dqv  can be expressed as 

       dq I λ I dq VBRrv K K B i h  (3.47) 

where 

 
    

    

ˆ

Fv

 

 

   

  

VBRr λk pλk λ λk dqk pλk dqk

VF λ VF λ VBRλ

h K K K B λ K λ

k K b K h
 (3.48) 

The matrices  λK  and  λkK
 
depend on the rotor speed   (see Appendix III) and 

the source VBRrh  contains Fv , kdj  and kqj  and the history terms ˆ
rλ , ˆ

dqi , ˆFv , ˆ
kdj  

and ˆ
kqj . By transforming dqv  into phase coordinates and substituting into (3.38), the 

TE can be found as 

   VBR VBR
s abc s abcv R i e  (3.49) 

where  

         T k      VBR
abc s I λ I abcR R P K K B P L   (3.50) 

   VBR
abc VBRr VBRse P h h  (3.51) 

In the above equations,  P   is a submatrix of  P   and given by 

      
   

cos sin

2 3 cos 2 3 sin 2 3

cos 2 3 sin 2 3

 
    

   

 
    
   

P  (3.52) 
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The matrices  P ,  abcL  and the matrix  λK  in (3.50) are calculated using  

predicted   and   values (see (3.6) and (3.7)). The residual flux values kdj  and kqj  

are obtained from predicted magnetizing flux values ad  and aq  (see (3.21)) for solid 

rotor machines. In the salient pole case predictions of kdj  and kqj  are not required 

( kdj kj  , 0kqj  ). 

The NE obtained from the TE given in (3.49) can be inserted into the MNE. The 

Thevenin resistance matrix VBR
abcR  is time dependent and unsymmetric, hence it requires 

refactoring the MNE at each solution time point.  

The solution of the MNE gives the stator voltages in phase variables sv  and the 

stator currents in phase variables si  can be found using (3.49), i.e. 

      1
   VBR VBR VBR VBR

s abc abc s abc abc si G e v R e v  (3.53) 

The stator currents in dq0 variables dq0i  can be obtained from si  using (2.12). In 

the solid rotor case, (3.41) contains predicted saturation dependent variables kdj  and 

kqj . Therefore, (3.41) is solved using an iterative approach with (2.85), (2.86) and 

(3.21). This iterative solution process provides corrected values for kdj  and kqj , the 

magnetizing flux linkages ad  and aq , and rotor flux linkages rλ . The rotor currents 

can be found by using (2.43) and (2.44). In the salient pole case, (3.41) does not contain 

predicted values for kdj  and kqj , hence a direct solution is possible. 

The sequence of calculation steps is briefly described below: 

1. predict   and   to calculate  P ,  abcL ,  λK  and  λkK ; 
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2. predict kdj  and kqj  to build the TE in (3.49); 

3. refactorize and solve the MNE to find sv ; 

4. find stator currents si  using (3.53) and dq0i  using (2.12);  

5. find rotor flux linkages rλ  using (3.41); 

6. find magnetizing flux linkages ( ad  and aq ) using (2.85) and (2.86), use 

(3.21) for correcting kdj  and kqj  values; 

7. compare predicted and corrected kdj  and kqj  values, repeat steps 5-7 if no 

convergence; 

8. find rotor currents using (2.43) and (2.44);  

9. calculate abcv  by transforming dqv  (see (3.46)) into phase coordinates; 

10. check for the machine operating segment on saturation curve, if the operating 

segment needs to change 

 update adL , aqL  to recalculate adL  and aqL  ((2.85) and (2.86)); 

recalculate 0aaL , 0abL  and 2aaL  terms in  abcL ; the matrices  λK , 

IK ,  λkK , pλkK , VFk , λA , IB and λkB  (see Appendix III); 

 update kdj  and kqj  with updated kj  value, 

 recalculate ad  and aq  using (2.63) and (2.64) with the calculated rotor 

currents for the new operating segment, 

 recalculate rλ using (2.29) and (2.30), 

 switch solution method to Backward Euler for the next time point; 
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11. find electromagnetic torque using (2.20) and solve the mechanical equations 

(3.1) and (3.2) to find mθ and mω ; 

12. return to step 1 for the next time point solution. 

The above solution procedure is for solid rotor machines. In the salient pole case, 

the solution procedure does not contain prediction and correction of kdj  and kqj . The 

operating segment on the saturation curve is found (in step 10) with the same procedure 

utilized in the dq0 model. Similar to the PD model, the stator voltages in dq0 variables 

( dq0v ) are also calculated in step-4 to provide these values to the user as output signal 

for possible usage in controls. 

Similar to the PD model, the VBR model NE circuit does not contain predicted 

stator currents. Hence, the VBR model is expected to provide desired model stability 

without damping resistance usage.   

3.5. Discrete-Time dq0 Model with Internal Intermediate 

Time Step Usage (dq0-IITS Model) 

Although dq0, PD and VBR models are based on the lumped-parameter coupled 

electric circuit approach and equivalent in continuous time domain, the numerical 

properties of these models differ when their equations are discretized. As illustrated in 

[21], when the simulation time step increases, the dq0 model introduces significant 

errors especially in the DC component of armature currents following a fault condition. 

Unlike the general belief, the inaccurate behavior of the dq0 model at large time steps is 

resulting from its discretized equations, not the accumulation of prediction errors. 

In order to reduce this error, the solution steps 4 to 9 in the dq0 solution algorithm 

are modified by implementing an option for internal intermediate (fractional) time step 

it  usage between two existing main network solution time points xt t   and xt . The 
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stator voltages dq0v  (found from sv  available from MNE solution) are linearly 

interpolated for the intermediate time points. The machine electrical and mechanical 

equations are solved at each intermediate time point. The solution for currents at the ith 

intermediate time point is found by rearranging equation (3.11) after expressing the 

speed voltages u  in terms dq0i  and ri . 

  
k

k


   
  
     

dq0s dqo dqokdqo
dqo

r dq0r r rk

h v λi
G

i h v λ





 (3.54) 

where  

  
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   
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ss dq0ss sr dq0srK L K L  (3.56) 

 ˆ ˆ ˆ ˆk      dq0s s dq0 dq0 dq0h R i λ u v  (3.57) 

 ˆ ˆ ˆk    dq0r r r r rh R i λ v  (3.58) 

and  1 / ik t   . 

In (3.54), the stator voltages dq0v  are linearly interpolated for the intermediate 

time points and the history terms ( dq0sh  and dq0rh ) are updated after each intermediate 

time step solution. In the solid rotor case, dqokλ  and rkλ  in (3.54) contains predicted 

saturation dependent variables kdj  and kqj . Therefore, (3.54) is solved using an 

iterative approach with (2.63), (2.64) and (3.21). This iterative solution process provides 
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corrected values for kdj  and kqj  and the machine currents ( dqoi , ri ). The flux 

linkages ( dqoλ  and rλ )  and speed voltages can be found using (2.70) and (2.19) 

respectively.  dqoG  (see (3.55)) is calculated from the predicted value of  . After 

the solution of (3.54), the electromagnetic torque is calculated using (2.20) to solve the 

mechanical equations (3.1) and (3.2). The final solution of (3.54) at the time point xt  for 

stator currents will differ from the one found from the network solution, but this 

difference is negligible. The new TE is calculated with higher precision at xt  for the next 

solution at xt t  .  

The sequence of calculation steps for intermediate time step solution is briefly 

described below. The solution at it t   is known and the solution at t  is to be found: 

1. predict   to calculate  dqoG ; 

2. predict kdj  and kqj  for dqokλ  and rkλ  (see (2.71) and (2.72)); 

3. find dq0i  and ri  using (3.54);  

4. find ad  and aq  using (2.63) and (2.64), use (3.21) for correcting kdj  and 

kqj  values; 

5. compare predicted and corrected kdj  and kqj  values, repeat steps 3-5 if no 

convergence; 

6. check for the machine operating segment on saturation curve, if the operating 

segment needs to change 

 update dq0L  with updated adL  and aqL  values (see (2.73) - (2.75)), 

 update kdj  and kqj  with updated kj  value using (3.21), 
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 switch solution method to Backward Euler for the next time step; 

7. find electromagnetic torque using (2.20) and solve the mechanical equations 

((3.1) and (3.2) with 2ik t  ) to find mθ and mω ; 

8. return to step 1 for the next time point solution. 

It should be noted that when the Backward Euler method is used with 2it  for 

intermediate integration time steps ( it  period),   and k  are set to zero and 2 / it , 

respectively. 

In all machine models, operating segment changes on the saturation curve cause 

jumps in machine operating conditions. When large time steps are used, a jump may 

take place far from the knee point and produce significant errors. This approach enables 

operating segment change within xt t   and xt  due to intermediate time step usage. 

However, the MNE solution, hence stator voltage values for xt  are obtained for the 

previous operating segment on the saturation curve. Therefore, this model also suffers 

from the simulation errors resulting from the jumps in machine operating conditions. 

With internal intermediate time step it  usage implementation, the sequence of 

calculation steps for the discrete time dq0 model given in Section 3.2 becomes: 

1. predict   and   (see (3.6) and (3.7)) to calculate  P ; 

2. predict electrical variables to calculate dq0e  (see (3.17) and (3.19)) and build 

the TE in (3.15); 

3. solve the MNE to find sv ; 

4. find dqov  from sv  using (2.12); 
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5. solve machine electrical and mechanical equations with intermediate time step 

it  (see solution procedure above) using linearly interpolated dq0v  values for 

each intermediate time point; 

6. find stator and rotor flux linkages ( dqoλ  and rλ ) using (2.70); 

7. if the operating segment changes in step 5, switch solution method to 

Backward Euler for the next time step; 

8. return to step 1 for the next time point solution. 

It should be noted that intermediate time step is not used with the Backward Euler 

solution. 

Internal intermediate time step usage improves the accuracy of the dq0 model at 

the expense of solving machine equations more than once at each simulation time step. 

However, internal intermediate time step usage can be restricted to the transient intervals 

where the precision of dq0 formulation decreases. This is achieved by implementing 

network switching detection and machine terminal voltage monitoring algorithm for the 

startup of the transient (perturbation) interval and field current monitoring algorithm for 

the decision process of moving back to dq0 model after the perturbation interval. 

The intermediate time step usage decision mechanism is triggered automatically 

and maintained for a user specified time interval ( V mont  ) after the detection of a 

network switching (fault, or other discontinuity) in the main network at swt t . The 

machine terminal voltages are then continuously monitored for the specified time 

interval  ,sw sw V mont t t     and intermediate time step usage is triggered only for 

machines with voltage excursions above a predefined tolerance, i.e. 

 
 max

1
( )

t
t tol

t sw

V
V

V t t 


  


 (3.59) 
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where 

 2 2
t d qV v v   (3.60) 

and t tolV   is the maximum change in machine terminal voltage tV  during terminal 

voltage monitoring time interval. 

The selection of t tolV   and V mont   are very important for the efficiency of this 

model. Very low values of t tolV   may cause triggering intermediate time step usage 

unnecessarily following a small transient. On the other hand very high values of t tolV   

may cause normal time step t  usage although the precision of the dq0 formulation 

decreases. Such cases can be expected during unbalanced fault conditions while using 

very high values of t tolV  . It is experimentally found that 5% tolerance value provides 

acceptable performance.  

The selection of V mont   becomes important when simulating large scale systems. A 

fault condition affects the machine terminal voltage with a time delay depending on the 

electrical distance between the fault and the machine. As illustrated in this thesis, the 

dq0 model produces higher errors as the electrical distance between the fault and the 

machine reduces. Therefore, V mont   should be sufficiently long for accumulation of 

sufficient numerical data and also sufficiently short to avoid unnecessarily triggering 

intermediate time step usage for machines where the precision of the dq0 formulation is 

sufficient. It is experimentally found that acceptable performance can obtained when 

V mont   is selected between 2 to 5 ms. 

The decision for moving back to normal time step t  is based on the maximum 

change in the field current Fi  within last fundamental cycle period fct  with intermediate 

time step usage.  
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where  max Fi  is maximum change in field current within fundamental cycle period 

moving window, i.e. ,fct t t   .  

The idea behind monitoring field current is the fact that, DC armature current 

components induce fundamental AC frequency field current component. It should be 

noted that, the large changes in field current magnitude within one fundamental cycle 

period is mainly due to either presence of DC armature current components or presence 

of very high value negative and zero sequence components in armature currents during 

unbalanced faults. Hence, monitoring only the maximum change in field currents is 

sufficient to determine the transient intervals where the precision of dq0 formulation is 

expected to decrease. 

In [21], the decision for moving back to the main t  is based on estimating field 

current AC and DC components and comparing the AC over DC ratio to a predefined 

tolerance. The possible decision errors are avoided by checking the frequency and field 

current harmonics. However, the proposed decision mechanism in this thesis is easier to 

implement and it is also experimentally found that the proposed decision mechanism 

provides similar performance. The solution algorithm for dq0-ITS model is summarized 

in Figure 3.3.  

In [21], the intermediate time step usage option is triggered automatically and 

maintained for half fundamental frequency cycle ( hct ), after the detection of a network 

switching (fault, for example) in the main network. The machine field current is then 

continuously monitored and intermediate time steps are maintained only for machines 

with current excursions above a predefined tolerance. This approach causes 

unnecessarily intermediate time step usage for half fundamental frequency cycle period 

for the machines that are not affected from the transient resulting from network 
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switching. Moreover, computational speed of this approach will deteriorate when the 

network encounters repetitive switching events such as for power electronics models. 

However, the proposed approach determines intermediate time step usage based on the 

maximum machine terminal voltage change due to network switching. Hence 

intermediate time step usage is triggered only for the machines affected from the 

transient resulting from network switching. The proposed approach is also expected to 

eliminate the efficiency problem resulting from repetitive switching events for power 

electronics models. 

 

Figure 3.3 Solution algorithm for dq0-IITS model  

IITS usage 

triggering set-up 
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 This solution approach is expected to increase the accuracy of the dq0 model at 

the expense of solving some of the machine equations more than once. However, 

electromagnetic transients are local in character, and only a limited number of machines 

are expected to be solved with smaller time step following a disturbance when a very 

large scale network is simulated. Moreover, in a typical transient stability case, 

intermediate time step usage is expected to become active only for a small portion of the 

complete simulation interval. Therefore, this approach is expected to increase the 

computational speed significantly especially when simulating very large scale systems. 

3.6. Combinations of dq0 Model with PD and VBR Models 

(dq+PD and dq+VBR Models) 

The combinations of dq0 models with PD and VBR models (dq+PD and dq+VBR) 

are designed to improve the performances of PD and VBR models respectively. Similar 

to dq0-ITS model, the objective is to restrict the usage of PD or VBR modeling to the 

transient intervals where the precision of dq0 formulation decreases while maintaining 

dq0 throughout the rest of the simulation. It requires the implementation of network 

switching detection and machine terminal voltage monitoring algorithm for the startup 

of the transient (perturbation) interval and field current monitoring algorithm for the 

decision process of moving back to dq0 after the perturbation interval. 

This approach proposes to switch all machine models to PD (or VBR) modeling 

from dq0 if any machine is subjected to a voltage excursion above a predefined 

tolerance after the detection of a network switching (see (3.59)). The field currents of the 

perturbed machines are monitored to make the decision for switching back to dq0. The 

decision mechanism is similar to dq0-ITS. All machine models are switched back to dq0 

when the maximum change in field current is smaller than a predefined tolerance for all 

monitored machines within fundamental cycle period moving window, i.e. ,fct t t    

(see (3.61)). 
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In case of a network switching detection during PD (or VBR) model usage, only 

the previously unmonitored machines are controlled for a large terminal voltage 

deviation and added to the list of monitored machines if necessary. The solution 

algorithm for the PD+dq0 model is summarized in Figure 3.4.  

 

Figure 3.4 Solution algorithm for dq0-PD model 

PD usage triggering set-up 
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For typical transients, the PD (or VBR) model is expected to become active only 

for a small portion of the complete simulation interval. Hence, this approach is expected 

to provide PD (or VBR) model accuracy while maintaining dq0 computational speed. 

3.7. Discrete Time PD-dq0 Model  

This model combines the accuracy of the PD model with the efficiency of the dq0 

model. It is obtained by applying Park’s transformation to the discretized equations of 

the PD model, hence provides PD model like precision. Similar to the dq0 model, a 

prediction-correction scheme is implemented for interfacing with MNE through a 

constant admittance matrix found from the TE circuit of the machine. Constant 

admittance matrix usage eliminates the time consuming refactoring of the MNE 

coefficient matrix, hence provides dq0 model like computational efficiency. 

Similar to the dq0 model, this model also contains predicted stator currents for 

interfacing with MNE through a constant admittance matrix. Therefore, damping 

resistance usage might be required in some cases to provide the desired model stability. 

With damped trapezoidal integration rule, discretized equations for the PD model given 

in (3.27) - (3.30) become 
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where 
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 ˆ ˆ ˆk    s s s s sh R i λ v  (3.64) 

 ˆ ˆ ˆk    r r r r rh R i λ v  (3.65) 
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For the Backward Euler solution with 2t  simulation time step,   and k  in 

equations (3.62)-(3.65) are set to zero and 2 / t  respectively. By applying Park’s 

transformation to (3.62) (see (2.12)), 
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The resulting resistance matrix in (3.66) is time independent as the resistance matrix of 

the discrete dq0 model given in (3.11). Unlike the discretized equation (3.11) of the dq0 

model, the stator history terms in (3.66) given by (3.64) are functions of past phase 

variables ( ˆ sv , ˆ
si and ˆ

sλ ). Contrary to the discrete dq0 model, (3.66) allows to avoid past 

and present speed voltages u  and maintain increased accuracy over the dq0 model. 

Matrix reduction is applied to (3.66) for finding the TE formulation of (3.15). The 

dq0R  matrix remains the same as in (3.16). The Thevenin voltages become 

    1 1k k       dq0 dqosr rr rk r r dqok se R R λ v h λ P h  (3.67) 

In order to insert a time independent and symmetric admittance matrix into the 

MNE, the Thevenin resistance matrix given in equation (3.18) is also applied to this 

model. The dq0e  voltages in (3.67) are adjusted through equation (3.19) with the 

predicted fictitious d  and q -axis winding currents. 

According to (3.64), the history term sh  in (3.66) and (3.67) is a function of ˆ sv , ˆ
si  

and ˆ
sλ . ˆ sv  is available from the solution of MNE. The vectors ˆ

si  and ˆ
sλ  can be 

calculated from ˆ
dq0i  and ˆ

dq0λ  respectively, using the park’s transformation matrix 

 P . 
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The NE of the machines obtained from TE in (3.15) are inserted into the MNE 

after transforming back to phase coordinates. The solution of the MNE gives the stator 

voltages in phase variables sv . The stator voltages in dq0 variables  dqov  can be found 

using (2.12). The stator currents in dq0 variables dqoi  can be found using (3.22). From 

(3.62), the rotor currents ri can be found as 

  1 k     r rr dq0rs dqo rk r ri R R i λ v h  (3.68) 

In solid rotor case, rkλ  in (3.68) contains predicted saturation dependent variables 

kdj  and kqj . Therefore, (3.68) is solved using an iterative approach with (3.21). This 

iterative solution process provides corrected values for kdj  and kqj  and the rotor 

currents ri . In the salient pole case, rkλ  does not contain predicted values for kdj  and 

kqj , hence calculation of rotor currents does not require iterations. After calculation of 

ri , kdj  and kqj , the flux linkages ( dqoλ  and rλ ) can be found by using (2.70). The 

stator currents and flux linkages in phase variables ( si  and sλ ) can be calculated from 

dqoi  and dqoλ  using (2.12). 

The sequence of calculation steps is briefly described below: 

1. predict   and   (see (3.6) and (3.7)) to calculate  P ; 

2. predict electrical variables to calculate dq0e  (see (3.67) and (3.19)) and build 

the TE in (3.15); 

3. solve the MNE to find sv ; 

4. find dqov  from sv  using (2.12) and use (3.22) for stator currents dqoi ;  
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5. find rotor currents using (3.68); 

6. find ad  and aq  using (2.63) and (2.64), use (3.21) for correcting kdj  and 

kqj ; 

7. compare predicted and corrected values for kdj  and kqj , repeat step 5 to 7 

with corrected rkλ  and if no convergence; 

8. check for the machine operating segment on saturation curve, if the operating 

segment needs to change 

 update dq0L  with updated adL  and aqL  values (see (2.73) - (2.75)) 

 update kdj  and kqj  with updated kj  value (see (3.21)), 

 recalculate ad  and aq  using (2.63) and (2.64), 

 switch solution method to Backward Euler for the next time step; 

9. find dqoλ  and rλ  using (2.70);   

10. find stator currents and flux linkages in phase variables ( si  and sλ ) from dqoi  

and dqoλ  using (2.12); find electromagnetic torque using (2.20) and solve the 

mechanical equations (3.1) and (3.2) to find mθ and mω ; 

11. compare predicted and corrected  , repeat the steps 4-9 if no convergence; 

12. return to step 1 for the next time point solution. 

The above solution procedure is for solid rotor machine. In the salient pole case, 

the solution procedure does not contain prediction and correction of kdj  and kqj . 

Hence, prediction of kdj  and kqj  is not performed in step 2, and steps  6 and 7 does 
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not exist. The operating segment on the saturation curve is found (in step 8) with the 

same procedure as in the dq0 model.  
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CHAPTER 4.  

STUDIES FOR NUMERICAL PRECISION – EMTP-RV 

SIMULATIONS 

The models presented in CHAPTER 3 are implemented and tested through user-

defined modeling facilities in EMTP-RV with automatic initialization from load-flow 

and steady-state solutions. In order to study the effect of machine models on simulation 

accuracy, balanced and unbalanced faults are simulated first in a simple single-machine 

infinite bus system and then for practical case studies with several synchronous 

machines. The first practical case is a typical transient stability case and the second 

practical case is used to determine the potential for subsynchronous resonance (SSR) 

transient torque amplification.  

It should be emphasized that numerical errors depend on simulation time step, the 

simulated network, fault location, fault type, and fault occurrence and clearing timings. 

That is why several tests must be performed before concluding on the precision of a 

given model. 

The reference solutions for precision comparisons are obtained with PD model and 

1 s  simulation time step ( t ) [21]. The simulations are repeated for all models for the 

simulation time steps 50 s -1 ms . In order to evaluate the accuracy of different 

numerical solutions, the relative error between the reference solution trajectory ( f ) and 

the given numerical solution ( f ) is calculated using the 2-norm as explained in Section 

1.3. 

Although electromechanical transients are studied in all cases, the relative error is 

calculated not only for the electrical torque but also for the machine armature currents. It 

should be noted that, the errors in armature currents are different for each phase and the 
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highest is presented in this thesis. In order to demonstrate the effects of power system 

model on machine modeling precision, the errors in armature currents are also presented 

for simple single-machine infinite bus cases in addition to the errors in electrical torque. 

In the classical dq0, PD-dq0, dq0-IITS, dq+PD and dq+VBR models, 1   (zero 

damping) unless the opposite is stated. The effect of damping resistances on the 

simulation accuracy is investigated only for the practical transient stability case study. 

4.1. Single Machine - Infinite Bus System  

The single line diagram of the studied system is shown in Figure 4.1 with the 

related load-flow constraints. F1 and F2 are the fault switches. CB1 and CB2 are the line 

circuit breakers that operate to clear the applied fault. The simulated fault cases are 

summarized in Table 4.1. In all cases the fault is applied at 0.02 s, the line circuit 

breakers CB1 and CB2 operate with 200 ms (testing purposes) delay following the fault. 

The simulation interval is 1s. The system data can be found in Appendix IV. It should be 

noted that, this case has been created from a practical network. Although it is a single 

machine case, it is more practical than the one used in [26]. Machine controls and 

network effects are included for the assessment of numerical accuracy. 
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Figure 4.1 Single line diagram of the simple single-machine system 
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Table 4.1 Single Machine - Infinite Bus Cases 
Test 
Case 

Fault 
Location 

Fault 
Type 

Machine 
Saturation 

Transmission Line 
Model 

Transformer 
Saturation 

C1 F1 3-ph Not modeled Multi-phase PI Section Not modeled 
C2 F2 3-ph Not modeled Multi-phase PI Section Not modeled 
C3 F1 1-ph Not modeled Multi-phase PI Section Not modeled 
C4 F1 3-ph Modeled Multi-phase PI Section Not modeled 
C5 F1 3-ph Modeled Distributed Parameter Not modeled 
C6 F1 3-ph Modeled Distributed Parameter Modeled 

4.1.1. Test Case C1 

The maximum errors in machine armature currents for dq0, dq0 with network 

iterative scheme (dq0-IT) and dq0-IITS are presented in Table 4.2. The relative 

tolerance value for dq0-IT is 10-6. The parameters for intermediate time step usage in the 

dq0-IITS model are 5%t tolV   , 3V mont s   and 10%F toli   . Although the 

accumulated prediction errors of dq0 are eliminated in dq0-IT, the improvement in 

accuracy is not significant. Therefore, dq0 is more efficient compared to dq0-IT, due to 

its lower computational cost. However, dq0-IT eliminates the requirement of damping 

resistances and can consequently provide stability and precision. dq0-IT has been used 

here to demonstrate the prediction qualities of dq0 and abandoned for the following 

tests. 

 
Table 4.2 Error e%, Armature Currents, Test Case C1 

Δt dq0 dq0-IT dq0-IITS 
(Δti = Δt/2) 

dq0-IITS 
(Δti = Δt/4) 

dq0-IITS 
(Δti = Δt/8) 

50μs 0.0315 0.0315 0.0171 0.0144 0.0138 
100μs 0.1264 0.1264 0.0663 0.0493 0.0460 
200μs 0.5120 0.509 0.1742 0.1411 0.1313 
500μs 3.6715 3.6694 1.1201 0.8613 0.8048 
1000μs 13.6521 13.6232 4.8911 2.6812 2.2485 

The reference solution waveform for the phase-a current is shown in Figure 4.2. 

The differences between the reference solution and the solutions with 500t s   for 

dq0, PD, VBR, dq0-IITS ( 8it t   ), dq+PD, dq+VBR, PD-dq0 are presented in 
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Figure 4.3. The solution for dq0 is also shown with 200t s  . The waveforms of 

dq+PD and PD-dq0 models are superimposed with the PD model. The waveform with 

the dq+VBR model is also practically undistinguishable from VBR model. This is also 

confirmed in Table 4.3. It should be noted that, the tolerance values for dq+PD and 

dq+VBR models are the same as with the dq0-IITS model. 
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Figure 4.2 Reference waveform for phase-a current, Test Case C1 
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Figure 4.3 Differences between the numerical solutions and the reference waveform for 
phase-a currents, Test Case C1 
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Table 4.3 Error e%, Armature Currents, Test Case C1 
Δt dq0 dq0-IITS 

(Δti = Δt/8)
PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0315 0.0138 0.0125 0.0125 0.0125 0.0117 0.0117 
100μs 0.1264 0.0460 0.0418 0.0418 0.0421 0.0409 0.0414 
200μs 0.5120 0.1313 0.1576 0.1576 0.1596 0.1497 0.1527 
500μs 3.6715 0.8048 0.8081 0.8091 0.8271 0.8505 0.8680 
1000μs 13.6521 2.2485 3.3525 3.3545 3.4345 3.2004 3.308 

It is apparent from Figure 4.3 that both PD and VBR models are very accurate 

especially during the fault interval, even with large time steps. As the fault period is 

simulated more accurate with these models, the precision is also much better compared 

to dq0 model for the rest of the simulation period. As seen in Figure 4.3, when t  is 

increased, classical dq0 model introduces significant errors especially in the DC 

component of armature currents following the fault. This error is reduced in dq0-IITS 

dq+PD and dq+VBR models by switching to a more accurate model or solution 

procedure. dq+PD and dq+VBR models utilize PD and VBR models during this period 

and provide similar accuracy with PD and VBR models. The accuracy of dq0-IITS 

depends on utilized internal intermediate time steps ( it ). The reduction of it  

improves accuracy further. On the other hand, as the stator voltages in dq0 

representation obtained from the MNE solution are linearly interpolated for the 

intermediate time point machine equation solution, this improvement has a limit. The 

existence of such limit can be seen from Table 4.2. The results in Table 4.3 demonstrate 

that the performance of the dq0-IITS model is comparable to that of the most precise 

models. As this case contains a single machine and, dq0-IITS, dq+PD and dq+VBR 

models have same tolerance values, the more accurate model usage period is the same 

for those models and less than 0.3s as illustrated in Figure 4.4. 

As the PD-dq0 is identical to discretized PD model, it provides similar accuracy 

with PD model as illustrated in Table 4.3. Like the classical dq0 model, predicting 

certain electrical variables in the PD-dq0 model does not deteriorate accuracy. 
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Figure 4.4 Accurate model usage period in dq0-IITS, dq+PD and dq+VBR models, Test 
Case C1 
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Figure 4.5 Phase-a currents during fault removal, Test Case C1 

According to Figure 4.3, during the fault interval, all models with 500t s   are 

more accurate than dq0 with 200t s  . However, the errors in the computations of 
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high frequency transients resulting from fault removal increase with increasing t  and 

this makes dq0 with 200t s   more accurate for the rest of the simulation. The effect 

of inaccurate simulation of high frequency transients due to large t  usage is also 

demonstrated in Figure 4.5. In addition, as illustrated in Figure 4.6, ideal switch based 

fault clearing times may introduce errors when t  increases and may reduce the 

simulation accuracy further. 
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Figure 4.6 Time delay in switch opening due to large time step usage, Test Case C1 

The errors for the 0 to 0.22 s interval (initialization and fault interval) are explicitly 

presented in Table 4.4 for dq0 and PD-dq0 models. Table 4.4 also illustrates the errors 

for the three-phase-to-ground fault applied directly to machine terminals (BUS1 in 

Figure 4.1). 

Table 4.4 Error e%, Armature Currents, Test Case C1 (0 to 0.22 s only) 
Δt dq0 dq0* PD-dq0 PD-dq0* 

50μs 0.0398 0.0783 0.0046 0.0032 
100μs 0.161 0.3217 0.0155 0.0107 
200μs 0.646 1.3019 0.0649 0.045 
500μs 4.6774 8.8309 0.3755 0.2602 
1000μs 16.3618 37.243 1.9659 1.163 

* Three-phase-to-ground fault at BUS1 in Figure 4.1 
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It is apparent from Table 4.4 that the dq0 model is significantly less accurate for 

faults applied directly to the machine terminals. As the impedance between the machine 

terminals and the fault reduces, the dq0 model requires a significantly reduced t  to 

compensate for its precision deterioration. On the other hand, in practical cases the 

majority of faults involve the transmission system, and therefore the transmission system 

should be accounted for in precision assessment. However, as with PD and VBR 

models, the PD-dq0 model simulates the fault conditions very accurately in all cases. 

Although some machine models can maintain precision with large t  values, in 

EMT-type simulations the usage of such values encounters several limitations. As 

indicated above, when t  increases the precision in network equations decreases and 

particularly when high frequencies are involved. Another important aspect is the 

treatment of nonlinear models. This test case does not involve nonlinear models, such as 

transformer saturation. In addition using more precise propagation delay based models 

for transmission lines instead of multi-phase pi section models impose a hard upper limit 

on simulation time step. 

It should be noted that, large time steps also create initialization errors and 

discrepancies with the steady-state phasor solution. In order to eliminate the 

initialization error effect, the actually studied disturbance should be applied when the 

system is in complete steady-state. However, usual practice is to put 1 - 2 cycle time 

margin and this margin may not be sufficient while utilizing large time steps as 

illustrated in Figure 4.7.  

The reference solution waveform for the electrical torque is shown in Figure 4.8. 

The differences between the reference solution and the solutions with 500t s   for 

dq0, PD, VBR, dq0-IITS ( 8it t   ), dq+PD, dq+VBR, PD-dq0 are presented in 

Figure 4.9. The waveforms of dq+PD and PD-dq0 models are superimposed with the PD 

model. The waveform with dq+VBR model is also practically undistinguishable from 

VBR model. This is also confirmed in Table 4.5. As seen from Figure 4.9 and Table 4.5, 
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errors in electrical torque have a similar characteristic with the errors in armature 

currents. It should be noted that, errors in armature currents are different for each phase 

and the highest errors are presented in Table 4.4. Hence, the errors in electrical torque 

presented in Table 4.5 are lower compared to armature current errors in Table 4.4. 

However, it is observed that, the errors in electrical torque are close to the average of 

phase armature current errors.  
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Figure 4.7 The effect of utilized time step on simulation starting transient, Test Case C1, 
PD-dq0 model  
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Figure 4.8 Reference waveform for electrical torque, Test Case C1 
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Figure 4.9 Differences between the numerical solutions and the reference waveform for 
electrical torque, Test Case C1 
 

Table 4.5 Error e%, Electrical Torque, Test Case C1 
Δt dq0 dq0-IITS 

(Δti = Δt/8)
PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0211 0.0118 0.0101 0.0101 0.0101 0.0090 0.0090 
100μs 0.0846 0.0351 0.0322 0.0322 0.0323 0.0300 0.0300 
200μs 0.3447 0.0903 0.1103 0.1104 0.1108 0.1083 0.1090 
500μs 2.5408 0.6312 0.6319 0.6331 0.6431 0.6595 0.6711 
1000μs 9.1937 2.1985 2.5886 2.5991 2.6744 2.3086 2.4108 

4.1.2. Test Case C2 

The errors in armature currents for the test case C2 are presented in Table 4.6. In 

test case C2, due to the fault location and the system model, the high frequency 

transients occur not only following fault removal, but also after fault occurrence, as 

illustrated in Figure 4.10. This causes reduced accuracy in the surrounding network 

solution and consequently the precisions for all models, except classical dq0, are 

reduced in Table 4.6. However, for the 500t s   and 1 ms time steps, the simulation 

errors in the high frequency transients following fault removal are much higher in C1 

compared to C2 and this causes higher simulation errors for all models.  
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In the test case C2, the fault location is different and consequently the impedance 

between the machine terminals and the fault is different. That is why the dq0 model 

becomes more precise and simulates the DC component of armature currents more 

accurately. 

Table 4.6 Error e%, Armature Currents, Test Case C2 
Δt dq0 dq0-IITS 

(Δti = Δt/8)
PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0264 0.0191 0.0184 0.0184 0.0184 0.0181 0.0181 
100μs 0.0974 0.0705 0.0671 0.0671 0.0671 0.0619 0.0619 
200μs 0.3943 0.2411 0.2364 0.2364 0.239 0.2271 0.2303 
500μs 2.2774 0.8771 0.9038 0.9041 0.9181 0.8225 0.8356 
1000μs 7.8456 2.3810 2.9883 2.9904 3.0875 2.7429 2.8479 
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Figure 4.10 Differences between the numerical solutions and the reference waveform for 
phase-a currents, Test Case C2 

The errors in electrical torque for the test case C2 are presented in Table 4.7. 

Similar to C1, the errors in electrical torque have a similar characteristic with the errors 

in armature currents. 

 



86 

 

  
Table 4.7 Error e%, Electrical Torque, Test Case C2 

Δt dq0 dq0-IITS 
(Δti = Δt/8)

PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.018 0.0147 0.0142 0.0142 0.0142 0.0137 0.0137 
100μs 0.0687 0.0513 0.0508 0.0508 0.0508 0.0489 0.0489 
200μs 0.2833 0.2015 0.1937 0.1937 0.1941 0.1830 0.1850 
500μs 1.7246 0.6940 0.7041 0.7044 0.7065 0.6418 0.6471 
1000μs 5.6758 1.7821 2.1763 2.1778 2.1831 1.9736 2.0377 

 

4.1.3. Test Case C3 

The errors in machine armature currents and electrical torque for the test case C3 

are presented in Table 4.8 - Table 4.9, respectively. 

 
Table 4.8 Error e%, Armature Currents, Test Case C3 

Δt dq0 dq0-IITS 
(Δti = Δt/8)

PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0113 0.0113 0.0114 0.0114 0.0114 0.0113 0.0113 
100μs 0.0867 0.0862 0.0865 0.0865 0.0865 0.0862 0.0862 
200μs 0.3615 0.356 0.3612 0.3612 0.3612 0.3527 0.3527 
500μs 1.5856 1.3132 1.136 1.1362 1.1406 1.081 1.091 
1000μs 3.77 3.0173 2.6455 2.6497 2.6855 2.4167 2.4203 

 
Table 4.9 Error e%, Electrical Torque, Test Case C3 

Δt dq0 dq0-IITS 
(Δti = Δt/8)

PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0075 0.0075 0.0076 0.0076 0.0076 0.0074 0.0074 
100μs 0.0581 0.0577 0.0579 0.0579 0.0579 0.0577 0.0577 
200μs 0.2265 0.2271 0.2256 0.2256 0.2256 0.2239 0.224 
500μs 1.2217 1.0068 0.8599 0.8603 0.8661 0.8324 0.8329 
1000μs 2.8114 2.2488 1.8207 1.8241 1.8409 1.7621 1.7672 

The errors for dq0 are now significantly smaller. The main reason is the smaller 

DC component in machine armature currents due to the fault occurrence time point. 

When this time point is shifted by 5 ms, the DC component increases as illustrated in 

Figure 4.11 and the accuracy of the dq0 model reduces as shown in Figure 4.12 and 

Figure 4.13. It should be noted that, the presence of transient DC stator currents does not 
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have a significant influence on the precision of the other machine models. Hence, the 5 

ms shift in switching times does not affect the simulation accuracy for the other models.  
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Figure 4.11 Effect of 5 ms shift in switching times on phase-a current (reference 
waveform) in Test Case C3 
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Figure 4.12 Effect of 5 ms shift in switching times on the difference between the 
numerical solution and the reference waveform of phase-a current for dq0 model with 

500t s   in Test Case C3 
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Figure 4.13 Effect of 5 ms shift in switching times on dq0 model armature current errors 
in Test Case C3 

4.1.4. Test Case C4 

The errors in armature currents and electrical torques for the test case C4 are 

presented in Table 4.10 and Table 4.11. The difference between the reference and the 

PD-dq0 model solution with 500t s   for the test cases C1 and C4 are presented in 

Figure 4.14. Operating segment changes in the saturation curve cause jumps in machine 

operating conditions in all machine models as illustrated in Figure 4.15. 

When large time steps are used, a jump may take place far from the knee point and 

produce significant errors. This explains the increasing differences between error 

percentages given in Table 4.3 (Table 4.5) and Table 4.10 (Table 4.11) as t  increases. 

In Figure 4.14, segment jump effects on simulation accuracy are more pronounced at 

0.235 s, 0.605 s and 0.928 s. 

It should be noted that, for a given t , when the saturation characteristic is 

represented with a larger number of linear segments, the differences between slopes of 

consecutive segments and between consecutive residual flux values become smaller. As 

a consequence, the segment jumps are expected to produce less error. 
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Figure 4.14 Differences between phase-a currents and the reference waveform for Test 
Cases C1 and C4, PD-dq0 model, 500t s   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4.15 Jump in machine operating conditions due to operating segment change in 
the saturation curve  
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Table 4.10 Error e%, Armature Currents, Test Case C4 
Δt dq0 dq0-IITS 

(Δti = Δt/8)
PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0357 0.0156 0.0141 0.0141 0.0142 0.0136 0.0136 
100μs 0.1538 0.0558 0.0512 0.0512 0.0515 0.0504 0.0507 
200μs 0.7008 0.1578 0.1928 0.1930 0.1959 0.1860 0.1890 
500μs 4.6728 1.1303 1.1371 1.1380 1.1882 1.2216 1.2338 
1000μs 17.806 3.0783 4.4426 4.4441 4.5581 4.3507 4.4793 

 
Table 4.11 Error e%, Electrical Torque, Test Case C4 

Δt dq0 dq0-IITS 
(Δti = Δt/8)

PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0245 0.0145 0.0134 0.0134 0.0135 0.0129 0.0129 
100μs 0.1039 0.0432 0.0399 0.0399 0.0402 0.0367 0.0367 
200μs 0.479 0.1125 0.1349 0.135 0.1361 0.1346 0.135 
500μs 3.3558 0.8935 0.8897 0.8911 0.9239 0.9473 0.954 
1000μs 12.017 2.6042 3.4371 3.4434 3.5494 3.2384 3.2844 

4.1.5. Test Case C5 

The errors in armature currents and electrical torques for the test case C5 are 

presented in Table 4.12 and Table 4.13. Distributed constant parameter model usage for 

transmission lines imposes a hard upper limit on t , therefore the simulations with 

500t s   and 1t ms   cannot be performed. The difference between the reference 

and the PD-dq0 model solutions with  200t s   for the test cases C1 and C5 are 

presented in Figure 4.16. As seen from Figure 4.16, the difference in error percentages 

given in Table 4.10 (Table 4.11) and Table 4.12 (Table 4.13) is resulting from both 

different segment jump effect in machine operating point on saturation curve and the 

selected transmission line model. In this case, the distributed constant parameter 

transmission line model usage slightly improves the precision as it improves the 

accuracy in the computation of high frequency transients resulting from fault removal.  

Table 4.12 Error e%, Armature Currents, Test Case C5 
Δt dq0 dq0-IITS 

(Δti = Δt/8)
PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0335 0.0149 0.0136 0.0136 0.0136 0.0132 0.0132 
100μs 0.1421 0.0518 0.0486 0.0486 0.0488 0.0481 0.0479 
200μs 0.6671 0.1475 0.1793 0.1795 0.1831 0.1751 0.1819 
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Table 4.13 Error e%, Electrical Torque, Test Case C5 
Δt dq0 dq0-IITS 

(Δti = Δt/8)
PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0231 0.0139 0.013 0.013 0.013 0.0127 0.0127 
100μs 0.0958 0.0411 0.0385 0.0385 0.0387 0.0355 0.0356 
200μs 0.4589 0.1084 0.1286 0.1288 0.1309 0.1284 0.1296 
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Figure 4.16 Differences between phase-a currents and the reference waveform for Test 
Cases C1 and C5, PD-dq0 model, 200t s   

4.1.6. Test Case C6 

The errors in armature currents and electrical torques for the test case C6 are 

presented in Table 4.14 and Table 4.15. As seen from Table 4.12 - Table 4.15, modeling 

transformer saturation causes a significant decrease in simulation precision for all 

models. It should be noted that, accurate simulation of transformer saturation 

characteristics requires small time step usage. Following fault removal, the transformer 

magnetizing branch enters its saturated region and the utilized time steps are not 

sufficiently small for accurate simulation of the saturation characteristics as illustrated in 

Figure 4.17 and Figure 4.18. As a result, the simulation precision decreases dramatically 

and independently from the machine model. This can be also seen in clearly in Figure 

4.19 which presents the difference between the reference and the PD-dq0 model 

solutions with  200t s   for the test cases C5 and C6.  
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Figure 4.17 Numerical solutions with PD-dq0 model and the reference waveform for 
phase-c current on transformer magnetizing branch, Test Case C6,  
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Figure 4.18 Zoomed version of Figure 4.17 
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Figure 4.19 Differences between phase-a currents and the reference waveform for Test 
Cases C5 and C6, PD-dq0 model, 200t s   
 

Table 4.14 Error e%, Armature Currents, Test Case C6 
Δt dq0 dq0-IITS 

(Δti = Δt/8)
PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.3444 0.3429 0.321 0.321 0.32 0.32 0.32 
100μs 1.2539 1.2511 1.2485 1.2485 1.2451 1.2308 1.2325 
200μs 3.0655 2.8716 2.9516 2.9519 2.9322 2.8822 2.8944 

 
Table 4.15 Error e%, Electrical Torque, Test Case C6 

Δt dq0 dq0-IITS 
(Δti = Δt/8)

PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.1990 0.2010 0.1910 0.1910 0.1909 0.1852 0.1852 
100μs 0.7417 0.7385 0.7422 0.7422 0.7372 0.7211 0.7229 
200μs 2.0791 1.9210 1.9714 1.9711 1.9663 1.8529 1.8422 

4.2. Transient Stability Case  

4.2.1. System Description 

The single line diagram of the simulated system (a small area located in 

northeastern part of Turkish Power System) [21], [44] is shown in Figure 4.20; and the 

power injections, total load and network losses based on the EMTP-RV load flow 
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simulation result are illustrated in Table 4.16. The system contains 6 synchronous 

machines, but 5 of them are in service in the simulated cases.  
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Figure 4.20 Single line EMTP-RV diagram of the transient stability case 
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Table 4.16 Power Injections, Total Load and Network Losses 
 

P (MW) Q (MVAR) 
Installed Capacity 

(MW) 
System 82.8 12.5 - 

Borcka HPP 140 2.6 157.5 
Muratli HPP 50 9.7 2 x 58.5 

Dogankent HPP 35 4.7 40.5 
Kurtun HPP 30 3.5 40.5 
Torul HPP 20 1.9 25 

Total Generation 357.8 34.9 - 
Total Load 354.5 85.5 - 

Network Losses 3.3 -50.6 - 
 

In these simulations transmission lines are represented by multiphase pi equivalent 

circuits and loads are presented by equivalent R-L branches connected from bus to 

ground at each phase. Transformers are modeled by considering their connection group. 

The Turkish Power System, except the modeled portion is represented with Thevenin 

equivalent. Synchronous machines are modeled with turbine governor and exciter 

controls. It should be noted that, the simulated system does not involve nonlinear 

models, such as machine saturation. The circuit breaker opening times are determined 

based on Table 4.17 provided by the Planning Department of Turkish Transmission 

Company (APK-TEIAS). 

Table 4.17 Circuit Breaker Fault Clearing Times 
 

Local 
Breaker 

Local 
Back-up 
Breakers 

Remote 
Breaker 

Remote 
Back-up 
Breakers 

Primary Relay Time < 25 ms < 25 ms < 25 ms < 25 ms 
Auxiliary Relay(s) Time < 10 ms < 10 ms < 10 ms < 10 ms 

Communication Chanel Time - - < 20 ms < 20 ms 
Breaker-tripping Module < 5 ms < 5 ms < 5 ms < 5 ms 
Breaker Time (2 cycle)        < 40 ms < 40 ms < 40 ms < 40 ms 

Breaker Failure Timer Setting - < 110 ms - < 110 ms 
TOTAL TIME < 80 ms < 190 ms < 100 ms < 210 ms 
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4.2.2. Simulated Cases 

Cases TS-C1: A three-phase-to-ground fault is applied on the BORCKA end of the 

400 kV BORCKA-TIREBOLU line at 0.02 s. The line circuit breaker at the BORCKA 

substation is assumed to be stuck and the fault is cleared by the local backup circuit 

breakers at BORCKA side illustrated in Figure 4.21, with open position following the 

operation of the busbar protection. The system is simulated for 3 s. 

 

Figure 4.21 Simplified single line diagram of the BORCKA Substation 

Cases TS-C2: The case TS-C1 is repeated now with a single-phase-to-ground fault 

by considering single phase reclosure facility. At the TIREBOLU substation the faulted 

phase is opened following the fault and the remaining two phases are opened after the 

operation of busbar protection at the BORCKA substation. 

4.2.3. Simulation Results 

In both cases, the network returns to stability. The worst errors in electrical torques 

are observed at the BORCKA HPP and presented in Table 4.18 and Table 4.19. As in 

the simple single machine - infinite bus test cases in Section 4.1, all models provide 

better accuracy when compared to the classical dq0 model. The precisions of the 

proposed new models dq0-IITS, PD-dq0, dq+PD and dq+VBR are comparable to PD 

and VBR models. 
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Table 4.18 Error e%, Electrical Torque, TS-C1 

Δt dq0 dq0-IITS 
(Δti = Δt/8)

PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0171 0.0131 0.0119 0.0119 0.0119 0.0113 0.0113 
100μs 0.0668 0.0356 0.0323 0.0323 0.0328 0.0329 0.0331 
200μs 0.2548 0.1289 0.1039 0.1044 0.1091 0.0991 0.1051 
500μs 1.738 0.9001 0.7409 0.7462 0.7621 0.7219 0.7521 
1000μs 6.188 2.4533 2.319 2.366 2.4103 2.1216 2.3575 

 
Table 4.19 Error e%, Electrical Torque, TS-C2 

Δt dq0 dq0-IITS 
(Δti = Δt/8)

PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0133 0.0118 0.0091 0.0091 0.0096 0.0089 0.0093 
100μs 0.0472 0.0411 0.0319 0.0319 0.0327 0.0321 0.0329 
200μs 0.1793 0.1325 0.1106 0.1111 0.1144 0.1076 0.1139 
500μs 1.1396 0.6375 0.5576 0.5605 0.5939 0.5416 0.5942 
1000μs 3.3386 2.2572 1.9882 2.0499 2.168 1.8079 1.8815 

It should be noted that, this network portion is closely coupled and all machines 

are affected from fault. Therefore, intermediate time step usage in dq0-IITS model starts 

for all machine models following fault within a few time steps. For illustration purposes 

the field currents of all active machines in Figure 4.20 are presented in Figure 4.22 for 

TS-C1. These currents are monitored for switching back to normal time step in dq0-

IITS, and switching back to dq0 model in dq+PD or dq+VBR models. In the dq0-IITS 

model case, the intermediate time step usage starts at the fault instant (0.02 s) for all 

machines and ends at 0.258 s, 0.254 s, 0.241 s, 0.241 s and 0.240 s for the BORCKA, 

MURATLI, KURTUN, TORUL, and DOGANKENT machines, respectively. As both 

dq+PD or dq+VBR models have the same tolerance values with the dq0-IITS model, PD 

or VBR model usage starts at 0.02 s and ends at 0.258 s.  

The usage of damping resistances (see (3.10)) for correcting numerical stability 

problems reduces accuracy (see Table 4.20). The error due to damping resistances is less 

noticeable at higher t  due to reduced overall accuracy. It should be noted that in both 

dq+PD and dq+VBR models, damping resistances are present only when the machines 

are using the dq0 model.  
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Figure 4.22 Field currents (pu) for the synchronous machines of Figure 4.20, TS-C1 
 

Table 4.20 Error e%, Electrical Torque, TS-C1 (with Damping Resistor Usage) 
Δt dq0 dq0-IITS 

(Δti = Δt/8)
PD-dq0 dq+PD dq+VBR 

50μs 0.0418 0.0251 0.0222 0.0153 0.0152 
100μs 0.0989 0.0481 0.0434 0.0371 0.0377 
200μs 0.3136 0.1431 0.1163 0.1147 0.1106 
500μs 1.935 0.9671 0.7905 0.7799 0.7679 
1000μs 6.5117 2.5533 2.4597 2.4411 2.3881 

It is apparent from Table 4.18 and Table 4.20 that instead of using the dq0 model 

with 100t s   and damping resistances, it is possible to achieve similar accuracy with 

200t s   when using PD-dq0 PD, dq+PD, VBR or dq+VBR models without damping 

resistances. When smaller (typically equal or less than 50t s  ) time steps are used 

for the dq0 model, the damping resistances are not required and such comparisons 

become invalid. Although damping resistance usage reduces precision of PD-dq0, 

dq+PD and dq+VBR models, they are still comparable to PD and VBR models.  

It should be noted that, damping resistances produce high errors during fault 

conditions due to high armature currents. The effect of damping resistances on the 

accuracy of the dq+PD and dq+VBR models is not significant because these models 

move into the PD and VBR models respectively only during the fault duration. 
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It is emphasized again that the presented study is not valid for all types of 

transients. The simulated network is linear and the pi-section representation is used for 

transmission lines. The representation of saturation is neglected in transformer and 

machine models. In a more generic case, the usage of large time steps may cause 

convergence problems in the iterative process with nonlinear devices or other drifts in 

precision. Large steps are acceptable and needed for computational performance issues 

when studying electromechanical transients using EMT-type methods. 

The CPU timings for TS-C1 with 100t s   and 200t s   time step usage are 

presented in Table 4.21. 

Table 4.21 CPU Timings in pu based on dq0 model, TS-C1 
Δt PD- dq0 dq+VBR dq+PD dq0-IITS 

(Δti = Δt/8) 
VBR PD 

100μs 1.02 1.10 1.12 1.15 1.97 2.14 
200μs 1.02 1.11 1.13 1.16 2.11 2.29 

Contrary to indications in [26] and [27], the PD model implementation presented 

in this thesis has been found to provide precision comparable to VBR. Table 4.21 shows 

that, their computational speeds are also comparable. These models need to refactor the 

MNE at each solution time point; thus creating significant computational speed drops.  

In the dq+PD and dq+VBR models, PD and VBR model usage is restricted to the 

transient intervals where the precision of dq0 formulation decreases. As these models are 

utilized for the time period less than 10% of total simulation time (see Figure 4.22), the 

increase in simulation time is not significant in this case. On the other hand both models 

provide similar to PD and VBR models (see Table 4.18 and Table 4.19). 

As in the case of dq+PD and dq+VBR models, the dq0-IITS model improves 

simulation accuracy with intermediate time step usage where the precision of dq0 

formulation decreases. As seen from Table 4.18 and Table 4.19, dq0-IITS achieves a 

precision comparable to PD and VBR models. However, damping resistance usage with 

this model reduces precision when compared to dq+PD and dq+VBR models. On the 
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other hand, damping resistances may be required in some cases with large time step 

usage and the error due to damping resistances is less noticeable at large time steps (see 

Table 4.20). As the simulated network is closely coupled, all the machines are affected 

from the fault. Hence, dq0-IITS performance is behind dq+PD and dq+VBR models. On 

the other hand, electromagnetic transients are local in nature and most of the machines 

are not expected to be affected while simulating a large scale system. In that case the 

performance of dq0-IITS is expected to be better when compared to dq+PD and 

dq+VBR models. 

The PD-dq0 model was obtained by applying Park’s transformation to the 

discretized equations of the PD model; hence it maintains the precision of the PD model 

(see Table 4.18 and Table 4.19). On the other hand, the computational inefficiency of 

the original PD model is eliminated through a constant admittance matrix. As seen from 

Table 4.21, constant admittance matrix usage provides similar computational speed with 

the classical dq0 model. The only disadvantage is the fact that the Norton currents of 

PD-dq0 model contain predicted stator currents. This is alike the dq0 model and may 

require damping resistances for correcting numerical stability in some cases with large 

time step usage. However, the error due to damping resistances is less noticeable at large 

time steps due to reduced overall accuracy as illustrated in Table 4.20. 

It should be noted that, the iterative calculation for the rotor electrical speed in dq0 

and PD-dq0 models has negligible influence on simulation accuracy in all simulated 

cases. In addition, its effect on simulation speed is also not noticeable especially for 

200t s   and smaller simulation time steps with the default relative tolerance value 

(10-6). As the simulation time step is increased further, this iterative calculation becomes 

active for longer periods for all machines and its effect on simulation speed becomes 

more noticeable. Disabling this iterative calculation reduces CPU timings about 1% for 

both cases for 1 ms simulation time step usage.  On the other hand, its effect on 

simulation speed is expected to be more noticeable for a smaller size system. 
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4.3.  Subsynchronous Resonance (SSR) Case  

4.3.1. System Description and Simulated Cases 

This case is based on a 380 kV system illustrated in Figure 4.23. Each synchronous 

machine subnetwork (SM) contains the machine models with controls and step-up 

transformers. The simulated system components are summarized in Table 4.22. Further 

details regarding the simulated system can be found in [45]. The test cases are given in 

Table 4.23. All loads are assumed to be passive at all frequencies and are represented by 

equivalent impedances connected from bus to ground on each phase. The series 

capacitors and shunt reactors are simulated by lumped circuit models. The transmission 

lines are represented by either distributed parameter line models or coupled pi-sections 

(see Table 4.23). This system contains 30 synchronous machines with governor and 

exciter control models. 

 
Table 4.22 SSR System Model Summary 

# of nodes 420 
# of synchronous machines 30 

# of single phase transformers 90 
# of distributed parameter lines 102 

# of multi-phase PI sections 78 
# of RLC branches 342 

 
Table 4.23 SSR Cases 

Test Case Machine Saturation Transmission Line Model 
(for length > 100 km) 

SSR-C1 Not modeled Distributed Parameter 
SSR-C2 Modeled Distributed Parameter 
SSR-C3 Not modeled Multi-phase PI Section 
SSR-C4 Modeled Multi-phase PI Section 

In this case, the potential for SSR transient torque amplification is investigated for 

the thermal unit located at KANGA Thermal Power Plant (TPP) illustrated in Figure 

4.23. A three-phase-to-ground fault is applied at 0.02 s on the 380 kV KANGA bus and 

cleared with 140 ms delay. The system is simulated for 400 ms.  
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Figure 4.23 Single line EMTP-RV diagram of the SSR case 
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4.3.2. Simulation Results 

The errors in electrical torque observed at KANGA TPP for SSR-C1 – SSR-C4 are 

presented in Table 4.24 - Table 4.27, respectively. It should be also noted that the worst 

errors in electrical torques are observed at KANGA TPP. 

 
Table 4.24 Error e%, Electrical Torque, SSR-C1 

Δt dq0 dq0-IITS 
(Δti = Δt/8)

PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0669 0.0652 0.0644 0.0644 0.0645 0.0632 0.0632 
100μs 0.1561 0.1524 0.1469 0.1469 0.1498 0.1419 0.1441 
200μs 0.6310 0.5421 0.5003 0.5003 0.5114 0.4871 0.4978 

 
Table 4.25 Error e%, Electrical Torque, SSR-C2 

Δt dq0 dq0-IITS 
(Δti = Δt/8)

PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.0729 0.0681 0.0657 0.0661 0.0659 0.0659 0.0664 
100μs 0.2144 0.1735 0.1644 0.1682 0.1702 0.1667 0.1723 
200μs 0.8347 0.6175 0.5639 0.5714 0.5807 0.5791 0.5881 

 
Table 4.26 Error e%, Electrical Torque, SSR-C3 

Δt dq0 dq0-IITS 
(Δti = Δt/8)

PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.1581 0.1580 0.1565 0.1565 0.1566 0.1564 0.1564 
100μs 0.3022 0.2971 0.2881 0.2881 0.2893 0.2880 0.2887 
200μs 0.7415 0.6732 0.6416 0.6417 0.6499 0.6435 0.6487 
500μs 2.4497 1.059 0.8776 0.8777 0.8857 0.9519 0.9576 
1000μs 8.9631 2.2145 1.6646 1.6649 1.6865 1.8306 1.8471 

 
Table 4.27 Error e%, Electrical Torque, SSR-C4 

Δt dq0 dq0-IITS 
(Δti = Δt/8)

PD PD-dq0 dq+PD VBR dq+VBR

50μs 0.1709 0.1694 0.1659 0.1663 0.1665 0.1682 0.1683 
100μs 0.3460 0.3349 0.2971 0.2972 0.3011 0.3041 0.3058 
200μs 0.8756 0.7212 0.6662 0.6671 0.6785 0.6898 0.6971 
500μs 3.7077 1.3184 0.9902 0.9912 1.1093 1.1906 1.2896 
1000μs 11.240 3.1844 2.9377 2.9437 3.1833 3.1241 3.2773 

In the test cases SSR-C1 and SSR-C2 propagation delay based model usage for 

transmission lines longer than 100 km imposes a hard upper limit on t , therefore the 



104 

 

simulations with 500t s   and 1t ms   cannot be performed. Using distributed 

constant parameter transmission line models instead of pi-sections improves the 

accuracy in the computation of high frequency transients resulting from fault removal. 

Hence, the errors in electrical torque values are smaller for SSR-C1 and SSR-C2 

compared to SSR-C3 and SSR-C4, respectively. As SSR-C2 and SSR-C4 include 

machine saturation model, the simulation precision for those cases are worse compared 

to SSR-C1 and SSR-C3, due to segment jump effect in machine operating point on 

saturation curve. 

Unlike the transient stability case in Section 4.2, this network is not closely 

coupled; hence intermediate time step usage in dq0-IITS does not become active for all 

machines. As illustrated in Figure 4.24, the intermediate time step usage option is 

triggered for the units in KEBAN, but not in HAMIT after fault. In addition it is not 

triggered for the units in HAMIT after switching for fault removal. In the simulated 

cases, the intermediate time step usage option is not triggered for 17 of 30 synchronous 

machines during simulation. It should be noted that, by setting V mont   to a smaller value, 

it is possible to reduce the number of machines triggered to intermediate time step usage. 

However, V mont   should be selected sufficiently long to trigger intermediate time step 

usage for the machines electrically close to the fault location. Unlike the dq0-IITS model 

in the cases of dq+PD and dq+VBR models, all machine models switch to the accurate 

version when any machine is subjected to a voltage excursion above the predefined 

tolerance after the detection of a network switching event. 

For illustration purposes, the field currents of the machines at KEBAN, HAMIT 

and KANGA are presented in Figure 4.25. Field currents of the machines at KEBAN 

and KANGA are monitored for switching back to normal time step in dq0-IITS, and 

switching back to the dq0 model in dq+PD and dq+VBR models. In the dq0-IITS case, 

intermediate time step usage starts at 0.0205 s and 0.02s, and ends at 0.187 s and 0.298 s 

for the machines at KEBAN and KANGA, respectively. On the other hand, PD and 

VBR model usage starts at 0.02 s and ends at 0.298 s. As seen from Figure 4.25 the field 
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currents of the machines at HAMIT do not contain significant fundamental ac 

component. This implies that the armature currents of these machines do not contain 

significant dc components; hence the precision of the dq0 model is not expected to 

deteriorate. 
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Figure 4.24 Machine terminal voltages (pu) for the synchronous machines in HAMIT, 
KEBAN and KANGA; SSR-C2 
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Figure 4.25 Machine field currents (pu) for the synchronous machines in HAMIT, 
KEBAN and KANGA; SSR-C2 
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CPU timings for the SSR-C2 test case with 100t s   and 200t s   time step 

usage are presented in Table 4.28. 

Table 4.28 CPU Timings in pu based on dq0 model, SSR-C2 
Δt PD- dq0 dq0-IITS 

(Δti = Δt/8) 
dq+VBR dq+PD VBR PD 

100μs 1.02 1.32 1.66 1.71 1.92 1.98 
200μs 1.03 1.43 1.76 1.83 2.05 2.15 

According to the error values summarized in the tables (Table 4.24 to Table 4.27), 

PD-dq0, dq+PD and dq+VBR models offer the same accuracy as the competing PD and 

VBR models. Unlike the case in Section 4.2, the precision of dq0-IITS is slightly below 

PD-dq0, dq+PD and dq+VBR models. The precision of the dq0 model is better in this 

case compared to the case in Section 4.2 due to a shorter fault period. 

As seen from Table 4.21 and Table 4.28, dq+PD and dq+VBR do not provide 

similar improvement in computational speed as in the case of Section 4.2. Although PD 

and VBR usage is restricted to the transient intervals where the precision of dq0 

decreases, these models are utilized for the time period of more than 70% of total 

simulation time (see Figure 4.25) in this case. On the other hand dq0-IITS provides 

better computational speed when compared to dq+PD and dq+VBR models due to the 

size of the simulated system. As illustrated in Figure 4.25, the intermediate time step is 

applied only for the machines affected from the fault or discontinuity condition. Its 

computational speed is expected to be better for a larger scale system.  

The new PD-dq0 model offers PD model like accuracy while maintaining dq0 

model like speed. Hence it is superior over the proposed dq0-IITS, dq+PD and dq+VBR 

models in addition to the existing machine models in the literature. 
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CHAPTER 5.  

COMPLEMENTARY STUDIES FOR NUMERICAL EFFICIENCY 

ASSESSMENT 

In CHAPTER 4, it was demonstrated that the new PD-dq0 offers the same 

accuracy as the competing PD and VBR models. In addition to accuracy this new model 

remains very efficient when compared to the PD and VBR models. In EMTP-RV 

simulations, PD-dq0 usage instead of PD or VBR models, increases the simulation speed 

more than twice due to the constant MNE coefficient matrix usage. On the other hand 

EMTP-RV uses a complete refactorization scheme and the simulation speed is expected 

to increase if a partial refactorization scheme is programmed for PD and VBR models. 

Moreover, the selected sparse matrix solver and machine representation in MANA 

formulation is expected to have different influence on simulation speed for PD and VBR 

models when compared to PD-dq0 due to their refactorization requirement. Due the fact 

that during the realization of this project it was not possible to access and modify the 

sparse matrix solver of EMTP-RV, it was decided to experiment with an available 

Matlab based code named MatEMTP [9]. This code is also based on MANA formulation 

as in EMTP-RV and it replicates many of the solution methods found in EMTP-RV.  

This chapter starts by presenting two new MANA formulations for PD and VBR 

models. Then the KLU [35] sparse matrix approach is briefly introduced and partial 

refactorization implementation is demonstrated. Simulation results are presented in the 

last part.  
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5.1.  Background on Modified Augmented Nodal Analysis 

(MANA) Formulation 

The limitations in NA formulation resulting from the existence of admittance 

model assumption are eliminated in the MANA formulation by augmenting (1.1) to form 

the system equation given in (1.3) as illustrated below [9]-[11]: 

 

T T                              

n adj bdepc adj n n

adj Vs S

Vdbdepr

Sadj 0

Y V D S v i

V 0 0 0 i v

i 0D 0 0 0
i 0S 0 0 S

 (5.1) 

In (5.1) adjV  is the voltage source adjacency matrix; row and column contribution 

matrices bdeprD  and bdepcD  are used for holding the branch dependent relations; adjS  is 

the adjacency matrix of closed switch type devices; 0S  is a diagonal and unitary matrix 

for open switch type devices; Vsi  is the vector of unknown voltage source currents; Vdi  

is the vector of unknown currents in dependent voltage source branches; Si  is the vector 

of unknown switch currents. The above presentation is only for analysis purposes since 

in reality the equations can be entered in any order. It is also noticed that the matrix 0S  

is not necessarily unitary if switch resistances are used. Extra elements can be added in 

the switch rows for modeling various devices, such as diodes. 

In the standard approach presented in the previous chapters and in EMTP-RV, the 

synchronous machines are incorporated by modifying the admittance matrix nY  and the 

Norton current sources contribute to the vector ni .  
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5.1.1. MANA Formulation with Machine Thevenin Equivalents 

(MANA-Thevenin) 

In the following formulation equation (5.1) is augmented to include extra generic 

equations based on the generalized nodal relations and the machine TE circuits:  

 

T T T                                         

n adj bdepc adj adj n n

adj Vs S

Vdbdepr

Sadj 0

SM SM
adj SM

Y V D S SM v i
V 0 0 0 0 i v

i 0D 0 0 0 0

i 0S 0 0 S 0
x bSM 0 0 0 A

 (5.2) 

where adjSM  is the machine adjacency matrix, SMA  holds the machine equivalent 

Thevenin resistance matrices ((3.34) and (3.50) for PD and VBR models, respectively), 

SMx  is the vector of machine stator currents, and SMb  is the vector of machine Thevenin 

voltages ((3.35) and (3.51) for PD and VBR models, respectively). 

This formulation eliminates the computation of Norton equivalents for each 

machine at each solution time point. Moreover, the solution of (5.2) now provides the 

machine stator currents in addition to machine terminal voltages. Hence the calculation 

of stator currents following the MNE solution is also eliminated. As the PD-dq0 model 

uses a constant Norton admittance matrix, its calculation is not required at each solution 

time point. Therefore, this formulation is expected to provide improvement in simulation 

speed mainly for PD and VBR models. On the other hand, this formulation increases the 

size of the MNE coefficient matrix and may impact on the MNE solution time. 

Generally speaking, when the size of a sparse matrix increases, it is not necessarily true 

that its computational speed decreases, as this is related to the resulting sparse matrix 

patterns. 
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5.1.2. MANA Formulation with Machine Complete Electrical 

Equations (MANA-Complete) 

In this formulation, (5.2) now includes all machine electrical equations in addition 

to the generalized nodal relations for the machine-network connection points. SMx  

becomes the vector of unknown machine electrical variables and SMb  becomes the 

vector of history terms resulting from the trapezoidal integration method. The matrix 

SMA  now holds the contribution of each machine electrical variable to the machine 

voltage equations. This formulation completely eliminates the computation of machine 

interfacing circuitry. Moreover, the solution of (5.2) now provides all machine electrical 

variables in addition to machine terminal voltages. It should be noted that, this machine 

representation introduces time dependent terms in (5.2) when the PD-dq0 model is 

utilized. As the advantage of the constant MNE coefficient matrix usage disappears, this 

formulation is not suitable for the PD-dq0 model. 

This formulation increases both the size and the number of time varying terms in 

the MNE coefficient matrix. Hence, a significant increase is expected in the required 

time for updating and refactoring the MNE coefficient matrix. On the other hand, this 

increase in MNE solution time might be less when compared to the time gained from the 

computations regarding machine equations especially with efficient sparse matrix 

solvers. 

5.1.2.1. Formulation for the PD Model 

The MNE (5.2) is formed by inserting discretized voltage equations for the PD 

model given in (3.27). Hence, SMx  now holds the machine stator and rotor currents. For 

the jth machine, the related sub-matrix of SMA , the related sub-vectors of SMx  and SMb  

are given by 
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In the solid-rotor machine case, skλ  and rkλ  in (5.5) contain predicted kdj  and 

kqj  values (see see (2.71), (2.72) and (2.77)). Hence the iterative solution for kdj , 

kqj  and ri  should be performed using (2.63), (2.64), (3.21) and (3.37) for correction. 

The sequence of calculation steps is briefly described below: 

1. predict   and   (see (3.6) and (3.7)) to calculate  P and  L ; 

2. predict kdj  and kqj  to find  skλ  and rkλ  (see (2.71), (2.72) and (2.77)); 

3. refactorize and solve the MNE to find sv , si  and ri ;  

4. find dq0i  using (2.12); 

5. find ad  using (2.63) and aq  using (2.64) for correcting kdj  and kqj , hence 

skλ  and rkλ ; 

6. compare predicted and corrected values for kdj  and kqj , if no convergence 

correct ri  using (3.37) and go to step 5; 
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7. check for the machine operating segment on saturation curve, if the operating 

segment needs to change 

 update adL , aqL  and all related terms in  L  ( 0aaL , 0abL  and 2aaL  

terms in  ssL ; aFL , aDL , 1aQL  and 2aQL  terms in  srL  and 

 rsL ,  FFL , FDL , DDL , 1 1Q QL , 1 2Q QL , 2 2Q QL  terms in rrL ), 

 update kdj  and kqj , hence skλ  and rkλ  with updated kj  value, 

 recalculate magnetizing flux linkages ad  and aq  for the new operating 

segment, 

 switch solution method to Backward Euler for the next time step; 

8. find flux linkages using (2.76) 

9. find electromagnetic torque using (2.20) and solve the mechanical equations 

(3.1) and (3.2) to find mθ and mω ; 

10. return to step 1 for the next time point solution. 

In the salient pole case, the solution procedure does not contain steps 2, 5 and 6. 

5.1.2.2. Formulation for the VBR Model 

The MNE (5.2) is formed by inserting VBR equations given by (3.38), (3.41) and 

(3.46). In this formulation, the unknown electrical variable vector SMx  includes the 

stator currents in dq coordinates ( dqi ), the subtransient voltages in phase and dq 

coordinates ( abcv  and dqv ) in addition to rotor flux linkages ( rλ ) and stator currents in 

phase coordinates ( si ). For the jth machine, the related submatrix of SMA , the related 

sub-vectors of SMx  and SMb  are given by 
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 (5.8) 

where mxmI  is mxm size identity matrix, kxm0  is kxm size zero matrix. 

In the solid rotor case, (3.41) is solved using an iterative approach with (2.85), 

(2.86) and (3.21) after the MNE solution for corrected values for kdj , kqj  and rotor 

flux linkages rλ . The rotor currents can be found by using (2.43) and (2.44). In the 

salient pole case, (3.41) does not contain predicted values for kdj  and kqj , hence rλ  

found from the MNE solution does not need correction. The sequence of calculation 

steps is briefly described below: 

1. predict   and   to calculate  P ,  abcL ,  λK  and  λkK ; 

2. predict kdj  and kqj ; 

3. refactorize and solve the MNE to find sv , si , rλ , abcv , dqi  and dqv ;  
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4. find magnetizing flux linkages ( ad  and aq ) using (2.85) and (2.86), use 

(3.21) for correcting kdj  and kqj  values; 

5. compare predicted and corrected kdj  and kqj  values, if no convergence find 

correct rλ  using (3.41) and go to step 4; 

6. find rotor currents using (2.43) and (2.44),  

7. check for the machine operating segment on saturation curve, if the operating 

segment needs to change 

 update adL , aqL  to recalculate adL  and aqL  ((2.85) and (2.86)); 

recalculate 0aaL , 0abL  and 2aaL  terms in  abcL ; the matrices  λK , 

IK ,  λkK , pλkK , VFk , λA , IB and λkB  (see Appendix III); 

 update kdj  and kqj  with updated kj  value, 

 recalculate ad  and aq  using (2.63) and (2.64) with the calculated rotor 

currents for the new operating segment, 

 recalculate rλ using (2.29) and (2.30), 

 switch solution method to Backward Euler for the next time step; 

8. find electromagnetic torque using (2.20) and solve the mechanical equations 

(3.1) and (3.2) to find mθ and mω ; 

9. return to step 1 for the next time point solution. 

In the salient pole case, the solution procedure does not contain steps 2, 4 and 5. 
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5.2.  Solution of Main Network Equations 

The solution of the linear equation system in (1.3) can be found by solving two 

triangular systems derived from LU factorization, i.e. 

  n n n n n nA x L U x = L (U x ) = L y = b  (5.9) 

 n n

n n

L y = b

U x = y
 (5.10) 

where U  and L  are the upper and lower triangular matrices, respectively. 

By utilizing special ordering techniques to generate the row and column 

permutations, it is possible to reduce the fill-in (new non-zeros in U  and L  that are not 

present in nA ) during factorization. 

 R n CP A P L U  (5.11) 

Here CP  is the column and RP  is the row permutation matrices chosen to reduce 

fill-in. It should be noted that the permutation RP  has a dual role of reducing fill-in and 

maintaining numerical accuracy via partial pivoting and row interchanges. Minimum 

degree orderings such as AMD [33], [34] or COLAMD [31], [32] orderings can be 

applied to obtain sparser U  and L  matrices. 

The KLU [35] solver uses Block Triangular Factorization (BTF) before ordering 

for calculating the block triangular form of the matrix nA  as illustrated in equation 

(5.12). Ordering and factorization of the block triangular form provides the following 

advantages: 

 The part of the matrix below the block diagonal does not require factorization ; 
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 The diagonal blocks are independent, hence only these blocks require to be 

factorized, for instance, the system 33 3 3 34 4A x = b - A x  is solved for 3x  after 

solving 44 4 4A x = b  for 4x ; 

 The off-diagonal non-zeros do not contribute to any fill-in.  

 

     
     
     
     
     
     

11 12 13 14 1 1

22 23 24 2 2

33 34 3 3

44 4 4

A A A A x b

0 A A A x b
=

0 0 A A x b

0 0 0 A x b

 (5.12) 

KLU employs AMD or COLAMD (user option) for ordering before factorizing of 

each diagonal block. In [35], AMD is found to provide better results on circuit matrices. 

KLU performs factorization based on Gilbert-Peierls' left-looking algorithm [46]. 

Ordering and factoring each block is performed sequentially although parallelism is 

possible. The reader should refer to [35] for details. The KLU Matrix solver package for 

MATLAB is available in [47] and factorizes the matrix nA  as 

   -1
R n CR P A P L U + F  (5.13) 

where F  contains the entries above the diagonal blocks and R  is the scaling matrix. 

5.3. Partial Refactorization 

For PD or VBR equations, nA  in (1.3) becomes time varying due to the time 

varying self and mutual inductances of these models. Therefore, it is necessary to update 

and refactor nA  at each time-step. The simulation speed can be improved with 

refactoring only the time varying part of nA . In the proposed formulations only the sub-

matrix SMA  contains the time varying terms and it is located at the right bottom corner 

of nA (see (5.2)); hence (1.3) can be written as 
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     

     
     

n11 n12 n1 n1

n21 n22 n2 n2

A A x b

A A x b
 (5.14) 

where n22 SMA A , n2 SMx x  and n2 SMb b . 

In the classical MANA formulation (see (5.1)), the row and columns of the MNE 

coefficient matrix should be first permuted to relocate the time varying terms at the right 

bottom corner for partial refactorization. After permutation, i.e. putting (5.1) into the 

form given in (5.14), the vectors n2x  and n2b  will contain the machine terminal voltages 

and the known current quantities modified with the machine equivalent Norton currents, 

respectively. The sub-matrix n22A  will contain the terms modified with the machine 

equivalent Norton admittances at each solution time point. 

In case n2x  in (5.14) is known, other unknowns can be found by solving, 

  n11 n1 n1 n12 n2A x b A x  (5.15) 

In (5.15), n11A  is needed to be re-factorized only following a discontinuity if the 

network model does not contain a time dependent component and/or a nonlinear 

network component that requires network iterative solution. By factoring n11A  (see 

(5.11)) and after some algebraic manipulations, (5.14) can be rewritten as 

 
    
    
      

-1 -1
n1R n12 R n1

n2n21 C n22 n2

yU L P A L P b
=

xA P A b
 (5.16) 

where 

 Tn1 n1Cy P x  (5.17) 

-1L  in (5.16) can be obtained by Gaussian elimination. Let K  be a matrix 

satisfying the equation 
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   n21 CK U A P  (5.18) 

The matrix K  can be found by eliminating the terms in n21 CA P  using the upper 

triangular matrix U . It should be noted that, in the proposed MANA formulations, U  

will not contain necessary pivots for the elimination of the terms in n21 CA P  unless the 

admittance matrix nY  contains shunt branches at the nodes where the machines are 

connected. This problem can be avoided by modeling machine stray capacitances or 

adding high value grounding resistances to these nodes. Using (5.16) and (5.18), the 

equation system for n2x  can be found as 

  n22 n2 n2A x b  (5.19) 

where 

    -1
n22 n22 R n12A A K L P A  (5.20) 

    -1
n2 n2 R n1b b K L P b  (5.21) 

The matrix n22A  is needed to be updated and re-factorized at each time-step to 

solve (5.19) for n2x . n1x  can be found using (5.15) after solving (5.19) for n2x . As 

n22A  is re-factorized instead of nA  at each time step, a significant improvement is 

expected in simulation speed. When the KLU matrix-solve package is utilized, (5.18), 

(5.20) and (5.21) become 

  1   n21 CK U L F A P  (5.22) 

    -1 -1
n22 n22 R n12A A K L R P A  (5.23) 

    -1 -1
n2 n2 R n1b b K R L P b  (5.24) 
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5.4.  MatEMTP Simulations 

The subsynchronous resonance case SSR-C2 presented in Section 4.3 is simulated 

for numerical efficiency evaluation. The only difference is that MatEMTP simulations 

do not include the machine controls (excitation control and governor). The simulation 

codes, utilized machine models, sparse matrix solvers, MANA refactorization schemes 

are presented in Table 5.1. It should be noted that, MatEMTP and EMTP-RV give 

identical results. In addition, as expected, MANA formulation has no influence on 

simulation accuracy. As the accuracy assessment has been already performed in 

CHAPTER 4, only the CPU timings are presented for each simulation for 100t s  . 

As explained in Section 1.3, total simulation time ( simt ) of MatEMTP is 

decomposed into five parts: the CPU time for steady state solution, system component 

initialization and preparation for time-domain simulation ( sst ), the CPU time for 

updating nA  and nb  in (1.3) ( &update A bt  ), the CPU time for refactoring MNE 

coefficient matrix (1.3) ( refactor MNEt  ), the CPU time for solving the factorized version of 

(1.3) ( solve MNEt  ) and the CPU time for updating network equivalents of each system 

component for MNE solution and solving their equations following MNE solution 

( compt ). The expected total CPU time ( simt ) of EMTP-RV in relation to various sparse 

matrix solvers, partial refactorization scheme for PD and VBR models, and the proposed 

MANA formulations are determined using the percentage changes in &update A bt  , 

refactor MNEt  , solve MNEt   and compt  of MatEMTP simulations. sst , &update A bt  , 

refactor MNEt  , solve MNEt   and compt  of EMTP-RV simulations for PD-dq0, PD and VBR 

models are presented in Table 5.2. The EMTP-RV model also includes the machine 

controls and the related CPU time is shown in Table 5.2 as contt . It should be noted that 

EMTP-RV uses classical MANA formulation, LU factorization with Multiple Minimum 

Degree (MMD) ordering, and a complete refactorization scheme for PD and VBR 

models. As the MNE coefficient matrix is constant for PD-dq0 and refactorization is 
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required only following a discontinuity, refactor MNEt   is negligible for the simulated case 

and is not presented in Table 5.2 and also the following tables. 

 
Table 5.1 Simulation Codes, Utilized Machine Models, Sparse Matrix Solvers, 

MANA Refactorization Schemes 
Simulation 

Code 
MANA 

Formulation 
Machine 
Model 

Refactorization 
Scheme  

Sparse Matrix 
Solver 

S1 Classical PD-dq0 - LU with COLAMD 
S2 Classical PD-dq0 - LU with AMD 
S3 Classical PD-dq0 - KLU 
S4 Classical VBR Complete LU with COLAMD 
S5 Classical VBR Complete LU with AMD 
S6 Classical VBR Complete KLU 
S7 Classical PD Complete KLU 
S8 Classical VBR Partial LU with COLAMD 
S9 Classical VBR Partial LU with AMD 
S10 Classical VBR Partial KLU 
S11 Classical PD Partial KLU 
S12 MNA-Thevenin PD-dq0 - KLU 
S13 MNA-Thevenin VBR Partial KLU 
S14 MNA-Thevenin PD Partial KLU 
S15 MNA-Complete VBR Partial KLU 
S16 MNA-Complete PD Partial KLU 

 
Table 5.2 Detailed CPU Timings in EMTP-RV Simulation 

 PD-dq0 PD VBR 

sst  0.121 s 0.121 s 0.121 s 

&update A bt   0.289 s 0.313 s 0.313 s 

refactor MNEt   - 4.002 s  4.002 s  

solve MNEt   1.281 s 1.281 s 1.281 s 

compt  1.628 s 1.811 s 1.558 s 

contt  0.959 s 0.959 s 0.959 s 

simt  4.278 s 8.487 s 8.234 s 

The timings sst , &update A bt  , refactor MNEt  , solve MNEt   and compt  of MatEMTP 

simulations are shown in Table 5.3. The solve MNEt   of MatEMTP simulations for S1 - S3 

demonstrates the impact of the sparse matrix solver on solution speed of the MNE for 
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the PD-dq0 model usage. The performance difference between AMD and COLAMD is 

due to fill-in during factorization. Using AMD instead of COLAMD reduces fill-in as 

illustrated in Table 5.4, i.e. provides sparser U  and L  matrices. As a result, AMD 

provides better solution speed for (5.10) as compared to COLAMD.  

 
Table 5.3 Detailed CPU Timings in MatEMTP Simulations 

Simulation 
Code 

sst      

(s) 
&update A bt    

(s) 
refactor MNEt    

(s) 
solve MNEt    

(s) 
compt   

(s) 
simt    

(s) 
S1 0.178 11.621 - 2.390 45.198 59.387 
S2 0.178 11.621 - 2.072 45.198 59.069 
S3 0.178 11.621 - 0.281 45.198 57.278 
S4 0.178 12.279 4.652 2.390 43.842 63.347 
S5 0.178 12.279 4.110 2.072 43.842 62.481 
S6 0.178 12.279 3.211 0.281 43.842 59.791 
S7 0.178 12.279 3.211 0.281 51.978 67.927 
S8 0.178 12.279 1.889 2.145 43.842 60.333 
S9 0.178 12.279 1.664 2.126 43.842 60.089 
S10 0.178 12.279 1.521 0.715 43.842 58.535 
S11 0.178 12.279 1.521 0.715 51.978 66.671 
S12 0.178 12.279 0 0.290 43.681 55.770 
S13 0.178 12.279 1.623 0.746 40.173 54.999 
S14 0.178 12.279 1.623 0.746 48.309 63.135 
S15 0.178 13.014 2.021 0.812 30.251 46.276 
S16 0.178 12.718 1.891 0.788 38.877 54.452 

 

As explained above, in KLU, first the block triangular form of the MNE 

coefficient matrix is obtained with BTF before ordering and factorization. The block 

triangular form coefficient matrix of the simulated system has 28 blocks and the size of 

the largest block is 69. The MNE coefficient matrix and its block triangular form are 

illustrated in Figure 5.1 and Figure 5.2, respectively. Each independent diagonal block is 

factorized after ordering with AMD and the solution is obtained using block-back 

substitution. This block-back substitution process takes significantly less time compared 

to the back substitution process in LU factorization with AMD or COLAMD. As a 

result, KLU usage provides 86.4% and 88.2% decrease in  solve MNEt   compared to LU 

factorization with AMD and COLAMD, respectively. 
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Figure 5.1 MNE coefficient matrix (number of non-zeros = 2187) 
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Figure 5.2 Block triangular form of MNE coefficient matrix (number of non-zeros = 
2187) 
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Table 5.4 Ordering Quality Comparison 
Fill in 

COLAMD 
Fill in 
AMD  

Fill in 
BTF+AMD 

4094 3868 3855 

It should be noted that AMD and MMD find similar ordering quality [33]. By 

considering 86.4% decrease in solve MNEt   of MatEMTP, simt  of EMTP-RV is expected to 

reduce to 3.171 s from 4.278 s (i.e. 25.9% decrease in simt ) with KLU sparse matrix 

usage instead of LU factorization with MMD.  

Unlike the PD-dq0 model, both VBR and PD models use time varying machine 

admittance matrices; hence the MNE coefficient matrix needs to be refactorized at each 

solution time point. This causes a significant increase in MNE solution time (see 

refactor MNEt   in Table 5.2 and Table 5.3). As shown in Table 5.3, LU factorization with 

AMD is slightly faster compared to LU factorization with COLAMD due to better 

quality ordering. On the other hand KLU is the most efficient as the small size 

independent diagonal blocks are refactorized. In the simulated case, KLU provides 

21.8% and 31.0% decrease in  refactor MNEt   compared to LU factorization with AMD and 

COLAMD, respectively. As KLU is also fastest during the back substitution process, it 

provides 43.5% and 50.4% in total MNE solution time ( refactor MNE solve MNEt t  ) 

compared to LU factorization with AMD and COLAMD, respectively.  

By considering the refactor MNEt   and solve MNEt   of MatEMTP simulations in Table 

5.3, the decrease in simt  of EMTP-RV simulations with KLU usage instead of LU 

factorization with MMD can be expected to be about 24.1% and 23.4% for VBR and PD 

respectively. KLU usage instead of LU factorization with MMD provides better 

improvement in total MNE solution time ( refactor MNE solve MNEt t  ) for PD-dq0 model 

compared to both PD and VBR. However, the expected improvement in simulation 

speed of EMTP-RV due to KLU usage is similar for all models as illustrated in Table 
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5.5. It should be noted that, further improvement can be achieved for all models with 

parallelism in KLU.  

 
Table 5.5 Expected CPU Timings in EMTP-RV Simulation with KLU usage (based 

on MatEMTP simulations)  
 PD-dq0 VBR PD 

refactor MNEt   - 3.127 3.127 

solve MNEt   0.174 0.174 0.174 

simt  3.171 6.251 6.504 

In the partial refactorization case (see S7 - S11 in Table 5.3) refactor MNEt   is now 

the CPU time for refactoring the matrix n22A  in (5.19), and solve MNEt   is the CPU time 

for solving the factorized versions of both (5.15) and (5.19). Refactoring n22A  (Figure 

5.3) instead of nA   (Figure 5.1) at each time step, provides significant improvement in 

refactor MNEt  , consequently in the total MNE solution time ( refactor MNE solve MNEt t  ) for 

all sparse matrix solvers, as expected. By considering the refactor MNEt   and solve MNEt   of 

MatEMTP simulations in Table 5.3, simt  of EMTP-RV is expected to decrease by 27.7% 

for VBR and 28.5% for PD with partial refactorization implementation. KLU usage with 

partial refactorization is expected to improve the simulation speed further. The expected 

CPU timing with partial refactorization implementation is summarized in Table 5.6 for 

both LU factorization with MMD and KLU usage as sparse matrix solver. As shown in 

Table 5.6 the computational performances of both VBR and PD models are not expected 

to become comparable with PD-dq0 in EMTP-RV even with partial factorization 

implementation. 

Table 5.6 Expected CPU Timings in EMTP-RV Simulation with Partial 
Refactorization Scheme (based on MatEMTP simulations) 

 LU with MMD KLU 
 PD-dq0 VBR PD PD-dq0 VBR PD

refactor MNEt   - 1.620 1.620 - 1.481 1.481 

solve MNEt   1.281 1.314 1.314 0.174 0.461 0.461 

simt  4.278 s 5.885 6.138 3.171 4.874 5.127 
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Figure 5.3 Continuously refactorized matrix in partial refactorization scheme ( n22A , 

number of non-zeros = 783) 
 

The proposed MANA formulations improve compt  at the expense of an increase in 

solve MNEt   and refactor MNEt   as shown in Table 5.3. The proposed MANA-Thevenin 

formulation eliminates Norton equivalent calculation from the Thevenin equivalent of 

the machine for the MNE solution and also the machine stator current calculations 

following the MNE solution at each solution time point. As VBR and PD have time-

varying Thevenin resistance matrices, the improvement in compt  is more noticeable when 

compared to PD-dq0. By considering the percentage changes in compt , refactor MNEt   and 

solve MNEt   of MatEMTP simulations in Table 5.3, the expected CPU timings for EMTP-

RV with partial refactorization scheme, KLU and MANA-Thevenin formulation usage 

are found as presented in Table 5.7. Unlike MatEMTP results, it can be seen from Table 

5.6 and Table 5.7, that the expected improvement in simulation speed of EMTP-RV by 

using MANA-Thevenin formulation is negligible. On the other hand, in MANA-

Thevenin formulation, only the sub-matrix SMA  contains the time varying terms and it 

is located at the right bottom corner of nA (see (5.2)). Therefore, partial refactorization 
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implementation is easier for the proposed MANA-Thevenin formulation compared to 

the classical MANA formulation. 

 
Table 5.7 Expected CPU Timings in EMTP-RV Simulation with partial 

refactorization scheme, KLU and MNA-Thevenin usage (based on MatEMTP 
simulations)  

 PD-dq0 VBR PD 

compt  1.573 s 1.428 s 1.683 s 

refactor MNEt   - 1.580 s 1.580 s 

solve MNEt   0.179 s 0.461 s 0.461 s 

simt  3.122 s 4.862 s 5.118 s 

The proposed MANA-Complete formulation eliminates the calculations to form 

the machine interfacing circuit for MNE and the calculations to find machine electrical 

variables following MNE solution. However, both the size and the number of time 

varying terms in the MNE coefficient matrix increase. Hence, compt  is improved at the 

expense of an increase in &update A bt  , solve MNEt   and refactor MNEt  . Although this 

formulation provides a significant improvement in total simulation time of MatEMTP 

(see Table 5.3), it may even reduce simulation efficiency when transposed into EMTP-

RV as illustrated in Table 5.8. 

 
Table 5.8 Expected CPU Timings in EMTP-RV Simulation with partial 

refactorization scheme, KLU and MNA-Complete usage (based on MatEMTP 
simulations) 

 VBR PD

&update A bt   0.324 s 0.324 s 

refactor MNEt   1.968 s 1.841 s 

solve MNEt  0.502 s 0.487 s 

compt  1.075 s 1.355 s 

simt 4.957 s 5.087 s 
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CHAPTER 6.  

CONCLUSIONS  

In this thesis, new discrete time models, solution procedures and MANA 

formulations are developed for the simulation of synchronous machines in an EMT-type 

program. The proposed modeling approaches and solution procedures are compared for 

practical cases and conditions. The numerical efficiency assessment studies account for 

sparse matrix solvers and refactorization.  

In CHAPTER 3, four new models, dq0 model with internal intermediate time step 

usage (dq0-ITTS), combination of dq0 model with VBR model (dq+VBR), combination 

of dq0 model with PD model (dq+PD) and dq0 model derived from discrete-time PD 

model (PD-dq0) are proposed to improve the precision of the classical dq0 model while 

maintaining its efficiency. In dq0-ITTS, dq+VBR, dq+PD models, the classical dq0 

model is used with a more accurate solution algorithm or model, i.e. internal 

intermediate time step usage in dq0 model, VBR model and PD model, respectively. In 

order to maintain efficiency, the accurate solution algorithm or model usage is restricted 

to the transient intervals where the precision of dq0 decreases. The combination is 

achieved by implementing a network switching detection and machine terminal voltage 

monitoring algorithm for the startup of the transient interval and a field current 

monitoring algorithm for the decision process of moving back to classical dq0. These 

models are convenient for typical transient stability cases where accurate model usage is 

needed for a small portion of the complete simulation interval.  

The proposed PD-dq0 model is obtained by applying Park’s transformation to the 

discretized equations of the PD model. This idea emanates from the discretized PD 

model and consequently provides similar accuracy. As for the classical dq0 model, PD-

dq0 uses a prediction-correction scheme for interfacing with the MNE through a 

constant admittance matrix for computational efficiency. In short, this model inherits 
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precision and performance from the PD and dq0 models, respectively. It is the best 

model in the generic sense. 

In CHAPTER 4, performances of the proposed models are compared with the 

existing machine models in literature. The proposed models provide comparable 

accuracy with PD and VBR models for all cases. In addition, they also provide 

comparable simulation speed with the classical dq0. However, the numerical efficiencies 

of dq+VBR and dq+PD models deteriorate in the SSR case as the accurate model part 

usage is needed for a large portion of the complete simulation interval. Unlike dq+VBR 

and dq+PD models, the decrease in dq0-ITTS model efficiency is less noticeable due to 

the simulated system size. As the electromagnetic transients are local by nature, they 

limit the number of machines with intermediate time point solutions in the SSR case. 

However, as for dq+VBR and dq+PD models, the numerical efficiency of the dq0-ITTS 

model is expected to deteriorate when all machines in the system are closely coupled. 

On the other hand, the proposed PD-dq0 model provides PD model like accuracy while 

maintaining classical dq0 model like speed in all cases. Therefore, it is superior over the 

proposed dq0-ITTS, dq+VBR and dq+PD models in addition to the existing models in 

literature including PD and VBR. 

It should be noted that, the PD-dq0 model inherits damping resistances for 

correcting numerical stability in some cases with large time step usage. However, the 

error due to damping resistances is less noticeable at large time steps due to reduced 

overall accuracy and the PD-dq0 model with damping resistances still offers the same 

accuracy as the competing PD and VBR models.  

Despite its accuracy, the PD-dq0 model remains very efficient when compared to 

the PD and VBR models. In EMTP-RV simulations, PD-dq0 model usage instead of PD 

or VBR models increases the simulation speed more than twice due to constant MNE 

coefficient matrix usage.  
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In CHAPTER 5, partial refactorization implementation is demonstrated for various 

sparse matrix solvers and tested for the SSR case including 30 synchronous machines 

using MatEMTP. The CPU timings of MatEMTP simulations are correlated with CPU 

timings of EMTP-RV in order to investigate the effects of selected sparse matrix solvers 

and refactorization schemes on simulation efficiency in addition to machine models. 

Simulation results show that, the total simulation time of EMTP-RV is expected to 

reduce by 28.5% for VBR and 27.7% for PD model with partial refactorization scheme. 

However, even with partial refactorization, the simulation efficiency is still very poor 

with PD or VBR when compared to the proposed PD-dq0 model. 

The effect of the sparse matrix solver on simulation efficiency strongly depends on 

the machine model, as expected. The simulation results shows that the KLU sparse 

matrix solver usage in EMTP-RV instead of LU factorization with MMD is expected to 

reduce the total simulation time by 25.9% for PD-dq0 and 16.5% for PD and 17.2% 

VBR models with partial refactorization scheme. As a result the computational 

difference between PD-dq0 and PD (or VBR) models is expected to become more 

significant.   

CHAPTER 5 also presents two new machine representations in MANA 

formulation. In the first formulation, the Thevenin equivalents of the machines are 

inserted into the MNE to eliminate Norton equivalent calculation from machine 

Thevenin equivalent and stator current calculation following the MNE solution. In the 

second formulation, all machine equations are inserted into the MNE to eliminate 

interfacing circuitry and machine electrical variable calculation following MNE 

solution. As the second formulation introduces time dependent terms in the MNE 

coefficient matrix for both classical dq0 and PD-dq0 models, it is developed only for the 

PD and VBR machine models. These formulations are tested in MatEMTP with the 

KLU sparse matrix solver and a partial refactorization scheme for PD and VBR models. 

The expected improvement in the simulation speed of EMTP-RV is negligible for the 

first formulation. In addition the simulation speed of EMTP-RV is expected to reduce 
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with the second formulation. However, both formulations demonstrate the modeling 

flexibility of MANA. 

As a conclusion, this thesis contributes to the establishment of more efficient and 

more precise synchronous machine modeling approaches and solution algorithms. 

Numerical integration time step size is a key factor in both aspects. The capability to use 

larger time steps in EMT-type simulation methods also contributes to the extension of 

such methods into the efficient simulation of electromechanical transients. This thesis 

also contributes to better assessment of both numerical precision and efficiency for 

researched machine models in this thesis and in recent literature. 

This study can be extended for asynchronous and permanent magnet synchronous 

machines. Future research can also target parallelizing synchronous machine equation 

solutions and parallelism for the KLU sparse matrix solver in EMT-type programs. 

. 
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Appendix I 

Input Data Conversion 

All models presented in CHAPTER 2 require the inductances and resistances of the 

stator and rotor circuits as parameters. The classical dq0 model parameters are called 

fundamental or basic parameters, and are identified as the elements of the equivalent circuits 

shown in Figure I.1and Figure I.2. Fundamental parameters cannot be directly determined 

from test/field measurements. The parameters usually provided by the manufacturer are 

obtained by means of standardized procedures and they need to be converted to fundamental 

parameters. A wide range of test methods have been proposed and used in order to obtain 

derived parameters that characterize the synchronous machine. Therefore, depending on the 

performed tests, each machine might have different type of data sets in terms of the derived 

parameters. This part summarizes the techniques which are used to obtain fundamental 

parameters from the different type of data sets. The reader should refer [36] for details. 

 

 

Figure I.1. d -axis equivalent circuit representing the complete characteristic 
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Figure I.2. q -axis equivalent circuit representing the complete characteristic 

Determination of Fundamental Parameters from Operational Parameters 

If a synchronous machine has been subjected to a parameter determination study based 

on frequency response tests, the operational parameters of synchronous machine are 

expected to be available in addition to leakage inductance alL  [36]. 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
d F d d

q q q

s G s v s L s i s

s L s i s




 


 (I.1) 

where ( )G s  is armature to field transfer function, ( )dL s  and ( )qL s  are the d  and q -axis 

operational inductances, respectively.  
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In above equations, dT   and dT   are the d-axis transient and subtransient short 

circuit time constants, 0dT   and 0dT   are the d -axis transient and subtransient open 

circuit time constants, qT   and qT   are the q -axis transient and subtransient short circuit 

time constants, 0qT   and 0qT   are the q-axis transient and subtransient open circuit time 

constants, and kdT  is given by 

 Dl
kd

D

L
T

r
  (I.5) 

Fundamental parameters of d -axis equivalent circuit can be found from ( )G s
 
and 

( )dL s  using the algorithm below [19], [36]: 

1. Find adL  using 

 ad d alL L L   (I.6) 

2. Calculate intermediate parameters: 
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3. Calculate fundamental parameters:  
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 Fdl
Fl F kd

p

L
L r a T

R

 
   

 
 (I.14) 

 Dl D kdL r T  (I.15) 

When ( )G s
 

is not available, it is not possible to extract the parameters of the 

equivalent circuit shown in Figure I.1, unless the so-called Canay’s characteristic 

inductance is provided. In that case, only the parameters of the simplified equivalent circuit, 

in which FDlL  is omitted, can be obtained. The omission of FDlL  brings the assumption that 

all d -axis rotor circuits link a single ideal mutual flux represented by adL . Fundamental 

parameters of the simplified d -axis equivalent circuit can be found from ( )dL s  using the 

algorithm below [19], [36]: 

1. Find adL  using (I.6); 

2. Calculate intermediate parameters pR , a , b  and c  using (I.7), (I.8), (I.9) and 

(I.10), respectively; 

3. Calculate fundamental parameters of the rotor windings:  
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4. Identify the field and damper windings: 

If 1 2
1 2

1 2

ad w ad w
w w

w w

L L L L
T T

R R

  
   

 
 

then 1 1 2 2, , ,F w Fl w D w Dl wr R L L r R L L     

else 2 2 1 1, , ,F w Fl w D w Dl wr R L L r R L L     

As seen from Figure I.1 and Figure I.2, d and q -axis equivalent circuits become 

similar with the omission of FDlL . Hence, the above algorithm can be utilized for 

fundamental parameters of the q -axis equivalent circuit by replacing dL , adL , dT  , dT  , 

0dT  , 0dT  , Fr , Dr , FlL  and DlL  with qL , aqL , qT  , qT  , 0qT  , 0qT  , 1Qr , 2Qr , 1Q lL  and 

2Q lL , respectively. It should be noted that for a laminated salient pole machine having 

one damper winding on q -axis, transient time constants ( qT   and  0qT  ) are not defined 

and subtransient time constants become 
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Determination of Fundamental Parameters with Canay’s Characteristic Impedance 

Leakage inductance alL  is usually chosen in such a way that it represents the 

leakage flux not crossing the air-gap. However, its choice is arbitrarily and can be 

chosen equal to Canay’s characteristic inductance denoted by CL  which transforms the 

equivalent circuit given in Figure I.1 to the form illustrated in Figure I.3 [48], [49]. 

 

 

Figure I.3. d -axis equivalent circuit after transformation 

Due to the new leakage inductance CL , the real flux common to the fictitious d , field 

and d -axis amortisseur windings modifies. Therefore, the ratio of the number of turns 

changes resulting the change of real electrical quantities of the rotor referred to the stator.  
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The relationship between Canay’s characteristic inductance and the inductance FDlL , 

which represents the flux linking both the field and the amortisseur but not the d -axis 

winding, is as follows: 

 
1 1 1

C al ad FDlL L L L
 


 (I.22) 

In case Canay’s characteristic inductance is available in addition to ( )dL s  and alL , 

it is possible to find the equivalent circuit parameters illustrated in Figure I.1. The 

following algorithm can be utilized to find the fundamental parameters of d -axis 

equivalent circuit [19], [36]: 

1. Find adL  using (I.6); 

2. Find FDlL  using 

 
 ad C al

FDl
ad C al

L L L
L

L L L




 
 (I.23) 

3. Calculate intermediate parameters pR , a , b  and c  using (I.7), (I.8), (I.9) and 

(I.10), respectively; 

4. Calculate intermediate parameters A  and B  using 

 FDl

p

L
A a

R
   (I.24) 

 FDl
p

c
B b L

R
   (I.25) 

5. Calculate fundamental parameters of the rotor windings:  
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6. Identify the field and damper windings: 

If 1 2
1 2

1 2

ad FDl w ad FDl w
w w

w w

L L L L L L
T T

R R

    
   

 
 

then 1 1 2 2, , ,F w Fl w D w Dl wr R L L r R L L     

else 2 2 1 1, , ,F w Fl w D w Dl wr R L L r R L L     

Determination of Fundamental Parameters from Transient and Subtransient 

Impedances and Time Constants 

If a synchronous machine has been subjected to parameter determination studies 

other than the tests based on frequency response, data set of the machine regarding the 

stability studies may contain the parameters listed in Table I.1 in addition to 

synchronous and leakage inductances based on the standard tests [36]. 

As illustrated above, simplified second order d-axis model can be found from d-

axis operational inductance ( )dL s  i.e. the d-axis open and short circuit time constants, 

0dT  , 0dT  , dT  , dT   with dL  (see (I.3)). Moreover, if Canay’s characteristic inductance is 
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also provided, all the parameters in the equivalent circuit representing the complete 

characteristic (see Figure I.1) can be found. It should be noted that, if d-axis subtransient 

and transient inductance of the machine, dL  and dL  are provided in addition to either d-

axis open circuit time constants 0dT  , 0dT   or short circuit time constants dT  , dT  , it is 

possible to calculate d-axis operational inductance ( )dL s . Hence the data sets illustrated 

in Table I.2 are equivalent. 

 
Table I.1 Transient and Subtransient Inductances and Time Constants 

Transient and Subtransient Inductances 
d-axis parameters q-axis parameters 

dL  qL  

dL  qL  

Transient and Subtransient Short Circuit Time Constants 
d-axis parameters q-axis parameters 

dT   qT   

dT   qT   

Transient and Subtransient Open Circuit Time Constants 
d-axis parameters q-axis parameters 

0dT   0qT   

0dT   0qT   

 

Table I.2 Equivalent Data Sets 

First Data Set 0dT  , 0dT  , dT  , dT   

Second Data Set dL , dL , 0dT  , 0dT   

Third Data Set dL , dL , dT  , dT   

 When second data set is available, dT  , dT   in the first data set can be obtained by 

finding the roots of the equation [19], [36]: 

  
2

2
0 0 0 01 0d d d d

d d d d
d d d d d

L L L L
T T T T T T

L L L L L

 
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 (I.30) 
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dT   and dT   are the roots of (I.30) and the greater root is dT  . 

When third data set is available, 0dT  , 0dT   in the first data set can be obtained by 

finding the roots of the equation [19], [36]: 

 2 1 0d d d d
d d d d

d d d d

L L L L
T T T T T T

L L L L

  
                

 (I.31) 

0dT   and 0dT   are the roots of (I.31) and the greater root is 0dT  . 

Per-Unit System and Calculation of Real Values 

Both the derived machine parameters provided by the manufacturer and obtained 

fundamental parameters using the above algorithms are based on per unit values. Hence real 

values should be calculated for machine simulation model using the base quantities given 

below [19]:  

 
 2

Base Stator
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 2/

Base Stator
Base Rotor

F d

Z
Z

N N


   (I.34) 

In above equations, Base StatorZ   is the base impedance for stator circuits, 

Base MutualZ   is the base impedance for stator to rotor mutual inductances and Base RotorZ   

is the base impedance for rotor circuits. /F dN N  is the turns ratio of field winding to d -

axis fictitious winding and can be found using open circuit characteristics (OCC) of the 

machine. 
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F d
d al

rated line to line rms voltage I
N N
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
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
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where ( )f NL agI   is the field current at base voltage on the air gap line; dX  and alX  are 

in Ω.  

In the synchronous machine models presented in this thesis, the rotor structure 

quantities are rescaled by changing the number of turns to provide / 1F dN N  , Hence, 

the field voltage input Fv
 
and rotor current output ri  

are rescaled accordingly. 

 

 

 

 

Equation Section (Next)Equation Chapter (Next) Section 1 
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Appendix II 

Linear Predictors 

Due to the usage of the Backward Euler (EBA) method with 2t , the uniform 

spacing along the time axis is disturbed as illustrated in Figure 3.1. Therefore, both the 

two-point linear predictor given in (3.6) and the linear three-point predictor given in 

(3.20) should be modified depending on the solution method for the next time point and 

the method used for the previous solution. 

Two-Point Linear Predictor 

For any variable x , the utilized two-point linear predictors are as follows. 

 Next time step solution is TRAP and previous solution is obtained by TRAP, 

      2x t t x t x t t       (II.1)  

 Next time step solution is TRAP and previous solution is obtained by EBA, 

      3 2 2x t t x t x t t       (II.2)  

 Next time step solution is EBA and previous solution is obtained by TRAP, 

      3 1
2

2 2
x t t x t x t t       (II.3)  

 Next time step solution is EBA and previous solution is obtained by EBA; 

      2 2 2x t t x t x t t       (II.4)  

Three-Point Linear Predictor with smoothing 

For any variable x , the utilized three-point linear predictors are as follows. 

 Next time step solution is TRAP and previous two solutions are obtained by 

TRAP, 
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        5 1 3
2

4 2 4
x t t x t x t t x t t          (II.5)  

 Next time step solution is TRAP and previous two solutions are obtained by 

TRAP and EBA, 

        3 1
3 2

2 2
x t t x t x t t x t t          (II.6)  

 Next time step solution is TRAP and previous two solutions are obtained by 

EBA, 

        7 1 5
2

4 2 4
x t t x t x t t x t t          (II.7)  

 Next time step solution is EBA and previous two solutions are obtained by 

TRAP, 

        1 1
2 2

2 2
x t t x t x t t x t t          (II.8)  

 Next time step solution is EBA and previous two solutions are obtained by 

EBA and TRAP, 

        1 1
2 2 3 2

2 2
x t t x t x t t x t t          (II.9)  
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Appendix III 

Aλ, BI, Bλk, bVF, Kλ(ω), KI, Kλk(ω), Kpλk and kVF in Discrete-Time 

VBR Machine Model 

For trapezoidal integration, λA , IB , λkB  and VFb  are as follows: 
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    

VFb I A d  (III.7) 

  1 0 0 0
Td  (III.8) 

For the Backward Euler solution with 2t  simulation time step, the matrix λA  

and history term  VBRλh  in (3.42) become: 
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 λK , IK ,  λkK , pλkK  and VFk  are as follows: 
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Appendix IV 

Single Machine - Infinite Bus System Data  

Synchronous Machine Parameters: 

382.22 MVA, 20 kV, 50 Hz, 2 poles, H = 4.15 s, 

sR = 0.002 pu, alL = 0.184 pu, 0L = 0.184 pu, 

dL = 2.03 pu, dL = 0.309 pu, dL = 0.225 pu, 0dT  = 7.32 s, 0dT  = 0.022 s,  

qL = 1.97 pu, qL = 0.471 pu, qL= 0.225 pu, 0qT  = 0.67 s, 0qT  = 0.032 s,  

 

Table I.3 Open Circuit Saturation Data in Per Unit 

Field Current 0.75 1 1.25 1.5 2 3 
Armature Voltage 0.75 0.95 1.075 1.15 1.225 1.3 

 

Excitation system parameters (in PSS/E data file format [50]): 

’EXST1’, TR, VIMAX, VIMIN, TC, TB, KA, TA, VRMAX, VRMIN, KC, KF, TF/ 

’EXST1’, 0.02, 999, -999, 1, 10, 200, 0.01, 4.55, -3.867, 0, 0, 1/ 

 

Turbine governor parameters (in PSS/E data file format [50]): 

’IEESGO’, T1, T2, T3, T4, T5, T6, K1, K2, K3, PMAX, PMIN/ 

’IEESGO’, 0, 0, 0.25, 0.1, 9, 0.5, 25, 0.75, 0.4, 0.9, 0/ 
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Line parameters (PI-1 & PI-2): 

R1 = 0.0208946800 Ω/km, L1 = 0.2659992400 Ω/km, C1 = 2.64523E-06 S/km, 

R0 = 0.3029945200 Ω/km, L0 = 0.9910027600 Ω/km, C0 = 4.32910E-06 S/km, 

Length = 144 km 

 

Step-up Transformer: 

400 MVA, 20/400 kV, 50 Hz, DYn-11 

R = 0.002 pu, X = 0.15 pu. 

 

Equivalent System Impedance (Zs): 

R1 = 1.165 Ω, L1 = 2.225 Ω, R0 = 2.955 Ω, L0 = 5.385 Ω 

 


