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Cesogen: cellular solid generator
Paul A. Patience a, Charles Audet a and Bruno Blais b

aGERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal, Montréal, QC, Canada; bCHAOS Laboratory 
and Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, Canada

ABSTRACT
Cellular solids are structures which have applications in mechanical engineering to make light
weight structures and heat exchangers, in biomedical engineering to make tissue scaffolds, and 
in chemical engineering to make catalysts. A subset of these, triply periodic minimal surface–like 
cellular solids, are seeing growing adoption with recent advances in additive manufacturing. 
Here we present a program, Cesogen, which interprets a novel domain-specific language (DSL) 
for specifying signed distance functions (SDFs) to generate cellular solid meshes, and which is 
designed to be paired with blackbox optimizers in order to spur more efficient research into 
cellular solids. It converts input meshes to SDFs before transforming and combining them with 
operations such as translation, scaling and intersection, which allows Cesogen to robustly 
generate hierarchical cellular solids. Finally, Cesogen contours the combined SDF via marching 
cubes to produce a resulting mesh which can be fed to a physics simulator.

IMPACT STATEMENT
This paper presents a cellular solid generator whose peerless, CLI-based DSL, specifically 
compatible with blackbox optimizers, can greatly promote the study, and blackbox-optimiza
tion–based design, of cellular solids.
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1. Introduction

Cellular solids are porous structures, sometimes peri
odic, sometimes stochastic, composed of cells made up 
of solid struts, plates and surfaces [1]. They can be 
classified into honeycombs, foams, and lattice struc
tures, the last of which consists of strut-based and triply 
periodic minimal surface (TPMS)–like cellular solids.

Strut-based cellular solids have applications in 
many fields, including for thermal insulation, packa
ging, and lightweight structures [1]. Advances in addi
tive manufacturing [2] have prompted more research 
into TPMS-like cellular solids because they could be 

manufactured more easily. TPMS-like cellular solids 
are now used in many applications, including mechan
ical (for energy and impact absorption, lightweight 
structures), thermal (as heat exchangers), biological 
(for tissue engineering scaffolds), and chemical (as 
batteries, catalysts, water-absorbing films) [3]. 
Sandwich panels are an example of lightweighting, 
where the inside is composed of a cellular solid to 
reduce the weight of the part while maintaining its 
structural integrity. The advantage of using cellular 
solids for heat transfer is that they have a high surface 
area, much higher than a solid block of equivalent 
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dimensions. In biological applications, e.g. bone 
implants, TPMS-like cellular solids are preferred to 
strut-based cellular solids because the former are 
more similar to structures found in the body, and 
cells attach to them more easily.

Many aspects of cellular solids warrant and need 
more investigation, including their use in heat and 
mass transfer, and graded, heterogeneous and multi
scale cellular solids [3]. Mathematical optimization of 
cellular solids is one aspect for which there is a dearth 
in the literature.

This article presents the cellular solid generator 
Cesogen; it is a program and library that takes a textual 
or code-based description of a cellular solid, e.g. its name 
and various transformations applied to it, converts it into 
a signed distance function (SDF), and finally generates 
a mesh suitable for simulation and manufacturing.

Cellular solid generators are a critical element in 
any study of cellular solids. Their features include 
a combination of:

● a user interface, be it command-line or graphical;
● an extensive library of cellular solids;
● the ability to fill arbitrary geometries with 

a cellular solid, and also to generate graded, het
erogeneous and multiscale cellular solids;

● configurable contouring algorithms; and
● performance (ideally the generation time should 

be negligible compared to the simulation time).

Cesogen is not the first of its kind; there exist many 
cellular solid generators, whether freely available and 

open source, freely available and closed source, or 
commercial and proprietary. We have evaluated var
ious standalone, freely available generators in order to 
place Cesogen among its peers, noting their language 
of implementation, interaction via command-line 
interface (CLI), graphical user interface (GUI) or 
library, and additional features (Table 1). 
Commercial cellular solid generators are usually 
a smaller part of a more general design tool, and 
include [9,19]: Optistruct (Altair), Netfabb and 
Within (Autodesk), Sulis (Gen3D), 3-Matic 
(Materialise), nTop (nTopology) [25], Creo 
Parametric (PTC), Grasshopper (Rhino 3D), and 
Simpleware (Synopsys). Freely available cellular solid 
generators forming a smaller part of a more general 
design tool include the Add Mesh Extra Objects plugin 
for Blender, and K3DSurf [19]. 

The primary features an optimization-focused gen
erator needs in order to be usable are the ability to 
generate cellular solids and a way for the optimizer to 
be able to operate it without any user intervention, e.g. 
via batch-like CLI or library, which eliminates all 
evaluated freely available generators except for 
Scaffolder, ASLI and Microgen. Furthermore, since 
Microgen is available only as a library, using it at all 
involves writing scripts, which may be inconvenient 
depending on the application.

The contribution of this article is to introduce and 
present Cesogen, a tool for generating cellular solids 
that researchers can use in their studies of these mate
rials. Cesogen was designed from the start to be 
adapted to computer-guided optimization, and 

Table 1. Various standalone, freely available cellular solid generators and their implementation languages, whether they offer 
batch-like CLI, GUI or library form, their features, year of publication of supporting article, or if none, initial release, and finally 
reference. Languages are one or more of C++ (C), Common Lisp (L), MATLAB (M), Python (P), Mathematica (W) and unknown (U). 
Having a CLI presupposes it is compatible with batch processing, i.e. requiring no user input. Generators with neither CLI, GUI or 
library form require editing the source code before running. Features may be one or more of extensive library of cellular solids (E), 
filling arbitrary solids (F), generating graded (G), heterogeneous (H), hierarchical (I) and multisymmetrical (S) cellular solids, 
applying mathematical transformations (T) and having advanced modeling features (M). We determined the features from 
a cursory inspection of the papers presented, the documentation and, when those were insufficient or incomplete and the source 
code was available, the source code. TPMS Studio in particular may have more features than those listed.

Name Lang CLI GUI Lib Feats Year Ref

ScaffoldStructures P ● 2014 [4]
MSLattice M ● G 2020 [5]
MiniSurf M ● 2020 [6,7]
TPMS-Modeler M 2021 [8]
Scaffolder CP ● ● ● F 2021 [9]
TPMS Designer M ● T 2021 [10,11]
RegionTPMS W G 2021 [12]
FLatt Pack M ● EFG 2022 [13]
TPMS Scaffold M 2022 [14]
ASLI C ● ● ● FGH 2022 [15]
Microgen P ● EFIT 2022 [16]
MaSMaker M ● FGH 2022 [17,18]
Lattice_Karak M ● GHI 2022 [19]
TPMSgen P ● 2023 [20]
MD-TPMS M ● G 2023 [21]
TPMS Studio U ● EM 2023 [22]
TPMS_Scaffold_Generator M ● FGS 2024 [23]
LattGen M ● EFG 2024 [24]
Cesogen L ● ● EFIT 2025
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features a CLI-based, domain-specific language 
(DSL) which allows the user to generate complex 
geometries on the fly without the use of a separate 
modeling tool. In particular, like Microgen, 
Cesogen is able to robustly generate hierarchical 
cellular solids of arbitrary depth via direct intersec
tion, whereby the underlying SDFs are combined at 
runtime and the resulting SDF written directly to 
disk. Any generator that can fill arbitrary solids is 
also able to generate hierarchical cellular solids via 
sequential intersection, whereby each successive 
intersection is written to disk and reread for the 
next, but this method incurs a cost on the perfor
mance and quality of the results.

This article begins by presenting the theory 
required to understand the operation of Cesogen – 
starting with a description of SDFs, which are how 
cellular solids are represented internally by Cesogen, 
and then of cellular solids themselves – and continues 
by presenting the user interface of Cesogen and some 
details of how it works. Finally, it presents some 
examples of Cesogen in use and ends with 
a conclusion.

2. Signed distance functions

In a metric space ðR n; dÞ, the SDF fΩ corresponding to 
a solid object Ω � R n is 

where @Ω is the boundary of Ω and IΩ is the indicator 
function of Ω, i.e. IΩðxÞ is 1 if x 2 Ω and 0 otherwise. 
In other words, fΩ is a function taking negative values 
within Ω, positive values without, and the value zero 
on its boundary.

The convention of negative for inside and positive 
for outside is not universal; it is adopted by some 
authors [26,27], but others use the opposite conven
tion [28,29].

The SDFs of primitive solid objects are generally 
derived mathematically [30]. The SDFs of solid objects 
represented as meshes are brute-forced by calculating 
the shortest distance from x to the polygons on the 
surface of the mesh, possibly sped up with spatial 
query structures such as a bounding volume hierarchy. 
The sign of the distance can be resolved in many ways, 
one of which is described by Bærentzen and 
Aanæs [31].

Once we have the SDFs fΩ and fΛ corresponding 
to solid objects Ω � R n and Λ � R n, we can trans
form and combine Ω and Λ by manipulating their 
SDFs or the points provided to them. Most opera
tions on SDFs return approximate rather than exact 
SDFs, where an exact SDF is one which returns an 

exact distance, the gradient of which is always of 
length 1 [26,30,32,33]. These approximate SDFs, for 
which the boundary is correct but the inner and 
outer distances may not be, are marked with 
a tilde, e.g. ~fΩ.

We can apply the usual mathematical transforma
tions translation, scaling and rotation to Ω by trans
forming the point passed to fΩ:

• Translation by distance δ 2 R n: 

• Isotropic scaling by factor κ0 2 R 6¼0: 

• Anisotropic scaling by factor κ 2 R n
6¼0: 

where x0i ¼ xi=κi for i 2 f 1; . . . ; n g
• Three-dimensional rotation about axis 

v 2 R 3n 0f g by angle θ 2 R : 

where Aij ¼ v̂iv̂j 1 � cos θð Þ, v̂ ¼ v= vj jj j and 

The three-dimensional orientation along axis 
v 2 R 3nf x 2 R 3: x1 ¼ 0; x2 ¼ 0; x3 � 0 g is a variant 
of rotation which is useful for modeling with SDFs. 
It consists of rotating Ω about axis e3 � v by angle 
arccosðv3= vj jj jÞ, where e3 ¼ ð0; 0; 1Þ, such that Ω0

points in the direction of v rather than e3.
Some more niche transformations, usually seen 

when modeling with SDFs, can be applied by trans
forming fΩ directly:

• Offset by radius � 2 R (equivalent to morpholo
gical dilation if � � 0, morphological erosion 
otherwise): 

• Shell of thickness Ξ 2 R�0: 

The basic implementation of set-theoretic opera
tions on objects represented by SDFs is the following, 
though variants exist with different properties [29]:

• Complement: 

• Union: 
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• Intersection: 

• Difference: 

Note that the implementations of union and intersec
tion are swapped if the SDF sign convention is 
inverted.

SDFs are ultimately useful when converted, or 
contoured, to polygon or polyhedral meshes used in 
simulations or manufactured. Various methods exist 
for contouring SDFs to triangle meshes, including 
marching cubes [34–38] (the predecessor of them 
all), dual marching cubes [39], and more advanced 
methods [40,41]. SDFs can also be contoured to tet
rahedral meshes via isosurface stuffing [42]. 
Contouring methods differ in number and kind 
(e.g. triangle or tetrahedral) of cells generated and 
performance, though no research has been done to 
determine which methods would be ideal for cellular 
solids in particular.

3. Cellular solids

Gibson and Ashby [1] describe cellular solids as ‘inter
connected network [s] of solid struts or plates which 
form the edges and faces of cells’ , classifying them into 
honeycombs, which are 2D structures extruded into 
the third dimension, and foams, which are 3D stochas
tic structures. Recent literature has introduced a third 
class, made more usable thanks to additive manufac
turing, called lattice structures, which could also be 
stochastic according to the design mechanism [43–45].

The fundamental parameters of a cellular solid are 
the cell size and relative density. The cell size, when 
discussing cubic cellular solids, is the length of the unit 
cell’s edges; there exist also orthorhombic cellular 
solids, where the edges of the unit cell have different 
lengths. The relative density, or volume fraction or 
solid fraction, of a cellular solid is ρ�=ρs, where 
ρ� 2 R�0 is the cellular solid’s density and ρs 2 R�0 

the density of the solid constituting the cellular 
solid [1].

Lattice structures are further divided into two 
kinds: strut-based and TPMS-like. Strut-based cellular 
solids are composed of combinations of struts and 
have been studied for longer because they have tradi
tionally been easier to manufacture; TPMS-like cellu
lar solids are based on smooth surfaces and have 
grown in use thanks to additive manufacturing. This 
article studies only the latter.

The name lattice can lead to an unfortunate confu
sion when considering that many strut-based lattice 
structures are named after Bravais lattices from the 
field of crystallography [46], e.g. body-centered cubic. 

However, lattices are not limited to crystallography, 
and in fact one of the primary definitions of the word 
‘lattice’ is ‘an open framework made of strips of metal, 
wood, or similar material overlapped or overlaid in 
a regular, usually crisscrossed pattern’ [47]. The terms 
from crystallography and mathematics are likely 
inspired from this definition.

TPMS-like cellular solids are derived from the 
equations of triply periodic, implicit surfaces, 
which include TPMSs and other triply periodic 
(non-minimal) surfaces. Indeed, TPMSs can be 
generalized to non-minimal surfaces of the same 
family [48]. The equations of TPMSs can be 
approximated by taking the first few terms of the 
Fourier series constituting the periodic nodal sur
face approximations of those surfaces [49–51]. 
Sample equations are presented in Table 2.

TPMS-like surfaces give rise to four different 
kinds of TPMS-like cellular solids, depending on 
which side of the surfaces we treat as solid and 
whether we take their shell of thickness Ξ 2 R�0. 
Each of these kinds can additionally be offset by 
radius � 2 R before making solid. The four kinds 
of TPMS-like cellular solids are [52] (with names 
and notation simplified and adapted to conform to 
our SDF terminology and notation, and original 
names in parentheses):

• Endoskeleton (triply periodic endoskeleton, TPnS): 

• Exoskeleton (triply periodic exoskeleton, TPxS): 

• Shell (triply periodic surface, TPSf): 

• Eccentric shell (triply periodic eccentric surface, 
TPcS): 

The offset radius is also known as the isovalue or level 
set value [5,52] in the skeletal inequalities and as the 
eccentricity [52] in the eccentric shell inequality. The 
offset radius and shell thickness control the relative 
density of the cellular solid, and the offset also changes 
the shape of the shell walls.

Complex cellular solids can be composed from pri
mitive cellular solids by manipulating their SDFs. 
Arbitrary meshes can be filled with cellular solids by 
computing the meshes’ SDFs and intersecting them 
with the cellular solids’ SDFs. Graded cellular solids are 
obtained by replacing constant transformations, e.g. 
translation, scaling, rotation, by functions [3,5]. 
Heterogeneous cellular solids consist of fusions of cellu
lar solids, and can be obtained via a sigmoid function [5]. 
Multiscale, or hierarchical, cellular solids are cellular 
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solids within cellular solids [3], and can be obtained by 
intersecting cellular solids having different unit cell sizes.

4. Cellular solid generator

The cellular solid generator introduced in this article is 
called Cesogen, which is a contraction of ‘cellular solid 
generator’. First we provide a summary of Cesogen 
and its features, then how it may be used.

4.1. Overview

Cesogen is written in Common Lisp, a programming 
language featuring a good balance of interactivity and 
performance. It is developed first and foremost as 
a software library, in order that it may be used inter
actively from a read-eval-print loop, thus allowing more 
systematic exploration of cellular solids than a CLI or 
GUI can provide. Another advantage of being a library 
is that the program logic is decoupled from the CLI, 
which allows third-party applications, including, but 
not limited to GUIs, to benefit from a more expressive 
interface than is possible via a CLI. However, in order 
accommodate users of all kinds, including optimizers, 
Cesogen is also available as a CLI.

In spite of its name, Cesogen functions as a full- 
fledged SDF processor. Its ability to generate cellular 
solids is a byproduct of cellular solids being represen
table as SDFs – in fact, TPMS approximations are by 
definition SDFs, which makes representing meshes as 
SDFs in Cesogen the natural choice. The name 
remains, though, because Cesogen is primarily geared 
towards generating cellular solids. And it is catchy.

Cesogen’s mode of operation can be seen as con
sisting of the following phases: (1) Convert meshes; (2) 
combine SDFs; and (3) contour. In the first phase, it 
converts any meshes provided to their corresponding 
SDFs. The second phase consists of combining the 
SDFs according to the operation requested. This 
results in a single SDF, which is then contoured to 
produce the resulting mesh. In reality, Cesogen pro
ceeds along the first two phases eagerly, i.e. it converts 
meshes and combines them as soon as it can, so the 
phases are actually interleaved.

Cesogen accepts as input arbitrary solids repre
sented as meshes. Supported input formats include 
OBJ, OFF, PLY and STL. Cesogen converts the input 
meshes to SDFs by computing an intermediate sphere- 
based bounding volume hierarchy for speeding 
up proximity queries based on a port of 
TriangleMeshDistance [53] to Common Lisp. The 
signs of the computed distances are resolved via the 
algorithm described by Bærentzen and Aanæs [31].

Cesogen also boasts an extensive library of cel
lular solids, currently consisting of those derived 
from most of the TPMS-like surfaces described by 
Fisher et al. [52] (Table 2). Users may define their 

own cellular solids by providing expressions for 
their corresponding SDFs directly to Cesogen 
instead of meshes, or saving the expressions in 
files which are then provided, and more TPMS- 
like cellular solids will be added as they are 
discovered.

In the SDF combination phase, Cesogen supports 
various operations on the SDFs, including the transla
tion, scaling, rotation, orientation, offset, shell and the 
set-theoretic operations complement, union, intersec
tion and difference on their corresponding objects 
(Section 2). It cannot yet create graded or heteroge
neous cellular solids, but it can create multiscale, or 
hierarchical, cellular solids by intersecting cellular 
solids of differing unit cell sizes.

The contouring phase consists of applying march
ing cubes to the combined SDF to produce the result
ing triangle mesh. Supported output formats include 
OBJ, OFF, PLY, STL and legacy VTK. The choice of 
contouring algorithm has an impact on the number of 
mesh cells composing it, which in turn has an impact 
on the running time of the physics solver. Cesogen 
currently uses a robust, marching cubes–like algo
rithm [36], but further algorithms will be added 
which offer different tradeoffs.

Performance is important only until the cellular 
solid generation step takes a negligible amount of 
time compared to the rest of the current optimization 
step. Cesogen has been developed with a focus on 
performance in order to reach this threshold.

Cesogen is multiplatform; it runs on various flavors 
of Linux and also macOS and Windows. Specific 
installation instructions are described in the manual.

Finally, Cesogen is freely available, open source 
software licensed under the MIT (more specifically, 
the Expat) [54], a permissive license which allows 
commercial use with few restrictions. Its homepage 
is https://git.sr.ht/˜paulapatience/cesogen (mirrored 
at https://github.com/chaos-polymtl/cesogen).

4.2. Usage

This section briefly describes the usage of Cesogen. 
The Cesogen manual goes into more detail.

Cesogen’s CLI is aimed at being comprehensive 
enough to expose all the functionality that clients, 
usually users and optimizers, may require. Optimizers 
are expected to be provided with a script that launches 
Cesogen with the appropriate command-line argu
ments. Therefore, the most important part of 
Cesogen’s interface, for the average client, is its CLI.

Cesogen’s CLI is a mixfix, stack-oriented DSL which 
dispenses with the need to have nested parentheses on 
the command-line. The command-line arguments can 
be one the following kinds: command-line options, 
SDF specifiers, and SDF operations and operation 
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arguments. The SDF operations are mixfix and termed 
SDF-nullary, SDF-unary and SDF-binary based on how 
many SDFs they take on the left; some operations also 
take non-SDF arguments on the right, provided as 
separate command-line arguments. The command- 
line options are discussed at the end of this section.

SDF specifiers are names of solid objects whose 
SDFs are known to Cesogen. The primitive solids 
supported by Cesogen are currently:

● ball, the unit ball centered at the origin;
● cylinder, the unit cylinder centered at the ori

gin, oriented along the z axis; and
● box, the unit box, i.e. with a half-width of 1, 

centered at the origin.

TPMS-like cellular solids are named after their cor
responding surfaces and prefixed with tpms., so 
gyroid becomes tpms.gyroid, P becomes tpms.p 
and C(Y) becomes tpms.c-y. The full list of TPMS- 
like cellular solids supported by Cesogen is documen
ted in the manual.

To generate a ball, run:
cesogen ball

SDFs may also be specified by the following SDF- 
nullary operations:

● expression, taking a string argument on the 
right in the form of an infix expression corre
sponding to the left-hand side of the equation of 
an implicit surface, with right-hand side 0, which 
describes an SDF, e.g. ‘x+y+z-1’. These expres
sions accept the point coordinates x, y, z, the 
standard arithmetic operators, and some basic 
mathematical constants and operations, e.g. pi 
and trigonometric functions. The syntax is 
described in more detail in the manual.

● file, taking a string argument on the right cor
responding to the name of a mesh from which 
Cesogen extracts the SDF. The input mesh format 
is detected from the extension.

When an SDF specifier is provided, the corre
sponding SDF is pushed onto a stack of SDFs, 
which is operated upon by the SDF operations. 
SDF-unary operations pop the stack once, modify 
the SDF, and push it back onto the stack. SDF- 
binary operations pop the stack twice, combine the 
SDFs accordingly, and push the result back onto the 
stack.

The SDF-unary operations and the arguments they 
take on the right are:

• complement, none
• offset by radius � 2 R

• shell of thickness Ξ 2 R�0
• move (translate) by distance δ 2 R 3

• scale isotropically by factor κ0 2 R 6¼0
• scale anisotropically by factor κ 2 R 3

6¼0
• rotate about axis v 2 R 3nf 0 g by angle θ 2 R

• orient along axis v 2 R 3nf x 2 R 3: x1 ¼ 0; x2 
¼ 0; x3 � 0 g
The components of three-dimensional arguments are 
listed in one command-line argument and separated 
by commas. Numeric arguments may also be expres
sions, though without any point coordinates.

To generate a ball of radius 2, run:
cesogen ball scale 2

The SDF-binary operations are union, intersec
tion and difference. They take no arguments on 
the right.

A more complex SDF combination is (Figure 1):
cesogen \

tpms.gyroid file mesh1.ply intersection \

tpms.p  file mesh2.ply intersection

union

Cesogen detects the bounding box of the resulting 
SDF automatically, with arbitrary expressions being 
treated as unbounded. When Cesogen writes the SDF 
to disk, it maps � 1 to � 1 and 1 to 1. In other words, 
the default bounding box of TPMS-like SDFs is the 
same as that of box.

The usual command-line options all start with the 
hyphen (‘-’) and are described in the manual and also 
by the --help option. Cesogen also supports the @file 
option, which it replaces with the contents of the 
specified file, which should consist of whitespace-sepa
rated command-line arguments. This option acts as an 
ad hoc configuration file mechanism; users can specify 
their SDFs, or even operations on SDFs, in files which 
they later include via the @file option. It is particularly 
apt for specifying custom expressions.

The -b option specifies an explicit bounding box; it 
consists of six comma-separated components corre
sponding to the three lower and three upper bounds. 
The -s option specifies the number of samples to take 
of the SDF during contouring. It may consist of one 
component or three comma-separated components; in 
the former case, the value is a total number of samples 
distributed as uniformly as possible along all dimen
sions, and in the latter, the number of samples along 
each dimension. The -o option specifies the output file, 
overriding the default of out.ply; the output mesh 
format is detected from the extension.

To generate endoskeletal, exoskeletal and eccentric 
shell variants of the TPMS-like  with offset radius �, 
shell thickness Ξ, and corresponding equations 
fΩðxÞ � �, � fΩðxÞ � � � and fΩ xð Þ � �j j � 1

2Ξ, run, 
respectively:

cesogen Ω offset �
cesogen Ω offset � complement
cesogen Ω offset � shell Ξ
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In other words, all TPMS-like cellular solids generated 
by Cesogen are by default endoskeletons.

4.3. Guiding principles

Cesogen and its CLI-based DSL were carefully 
designed according to a set of guiding principles 
which may not be immediately apparent upon reading 
a description of Cesogen’s usage. The guiding princi
ples are the following: (1) suitability for blackbox 
optimization; (2) ergonomics; and (3) composability.

The original impetus for developing Cesogen was the 
desire to solve cellular solid problems via blackbox 
optimization algorithms not based on metaheuristics. 
Metaheuristic algorithms can start from a small sample 
of pregenerated, possibly via GUI, cellular solids and 
estimate the properties of points proposed by the opti
mizer without having to generate new cellular solids. 
Without this estimation, the blackbox must be able to 
generate the meshes automatically. The principle of 
suitability for blackbox optimization mandates provid
ing a text-based interface, i.e. CLI- or library-based.

The reason for the principle of ergonomics is to make 
Cesogen accessible to as large an audience as possible, so as 
to encourage more research in the field of cellular solids. 
Having chosen to provide a CLI, this principle mandates 
the syntax be word-based, to avoid the proliferation of 
quotes that would be necessary to escape parentheses and 
other protected shell characters that might be used in an 
imperative DSL. (This principle also favors providing 
a CLI over a library, though Cesogen provides both.)

The reason for the principle of composability is to 
make Cesogen able to interpret the textual representa
tion of any cellular solid, so as to limit the proliferation 
of cellular solid generators that support only some kinds 
of cellular solids. Having chosen a word-based syntax, 
this principle mandates the DSL be stack-oriented, to 
allow arbitrarily long combinations of SDFs.

Cesogen’s DSL is called mixfix because operators 
can take arguments on the left and on the right. SDFs 
are always provided on the left, which allows 

arbitrarily deep SDF combinations via SDF-binary 
operators while avoiding parentheses in the syntax 
which would otherwise be necessary to handle opera
tor precedence. Additional arguments are provided on 
the right because the resulting syntax follows com
mand-line conventions and reads more naturally. 
For example, the command
cesogen cylinder orient 1,0,0 scale 1/2

can be read aloud as ‘generate a cylinder oriented 
along the x axis with a radius of one-half ’.

The stack-oriented nature of the DSL becomes 
apparent when invoking SDF-binary operators such 
as union and intersection, which pop two SDFs on the 
stack and push the resulting SDF back onto it. In 
particular, any operator that takes an SDF on the left 
effectively takes on the left any sequence of words that 
produces an SDF. Thus, we can build models piece
meal by starting with the SDFs of primitive solids and 
progressively transforming, duplicating, and combin
ing them. For example, the following command pro
duces a pair of cylinders identical to the one above but 
shifted along the y axis:

cesogen \

cylinder orient 1,0,0 scale 1/2 move 0,-2,0 \

cylinder orient 1,0,0 scale 1/2 move 0,2,0 \

union

The stack becomes harder to keep track of as 
more SDFs are combined, but this can be mitigated 
by storing custom SDFs in files and passing them 
to Cesogen via the @file option. Also, an operator 
may be added to Cesogen in the future which 
would name the SDF on the left, popping it from 
the stack and allowing further references to it by 
name.

Though the DSL is CLI-based insofar as that is 
how the Cesogen CLI takes it as input, nothing pre
vents its use as a general textual representation of 
SDFs, e.g. in configuration files of cellular 
solid–based blackboxes which invoke Cesogen on 
the provided textual representation. Indeed, the 
Cesogen library accepts the DSL as a string 

Figure 1. Tree representation of the operations Cesogen performs when invoked as ‘cesogen tpms.Gyroid file mesh1.Ply 
intersection tpms.P file mesh2.Ply intersection union’. It evaluates the SDFs in a depth-first, post-order manner. 
In fact, the command-line arguments are a flattened version of the tree with the nodes visited in depth-first post-order.

Sci. Technol. Adv. Mater. Meth. 5 (2025) 7                                                                                                                                      P.A. PATIENCE et al.



representing an SDF. The generality of the DSL 
makes it more convenient to model complex shapes 
incorporating cellular solids directly via Cesogen and 
results in more accurate results, because an inter
mediate model need not be transformed into an 
SDF – which transformation is inherently lossy – 
before intersecting it with the SDF of a cellular solid.

Finally, of the cellular solid generators listed in 
the introduction, only Cesogen satisfies all three of 
the guiding principles described here. None of the 
GUI-based generators are suitable for blackbox 
optimization, which eliminates all the commercial 
generators listed and all the freely available gen
erators listed except Scaffolder, ASLI and 
Microgen. ASLI supports only a predetermined 
set of cellular solids to fill external solids with, 
without any way to extend its library without 
recompiling the application, and its input is strictly 
via configuration file, thus it violates the second 
and third principles. Scaffolder supports custom 
SDFs in Lua files, and Microgen is a Python 
library, so both are theoretically as composable as 
Cesogen, but they require writing code, thus they 
violate the second principle.

5. Results and discussion

This section contains a series of examples of the kinds of 
cellular solids that Cesogen can generate, and also an 
evaluation of the performance and limitations of 
Cesogen.

All experiments were performed on a machine with 
the following specifications:

● OS: Chimera Linux x86_64
● Host: 20UH000CUS ThinkPad T14s Gen 1
● Kernel: 6.13.4-0-generic
● CPU: AMD Ryzen 7 PRO 4750 U with Radeon 

Graphics (16) @ 1.700 GHz
● Memory: 15210 MiB

5.1. Examples of TPMS-like cellular solids

Cesogen supports many TPMS-like cellular solids; the 
expressions of their corresponding surfaces are listed 
in Table 2, where 

and τ ¼ 2π. Point coordinates are represented by x, 
y and z rather than xi to conform to Cesogen’s 
equation syntax.

A selection of TPMS-like cellular solids generated 
by Cesogen is presented in Figures 2 and 3.

5.2. Filling meshes

Cesogen is able to fill existing meshes with arbitrary 
cellular solids via the intersection operation, invoked as 
‘cesogen Ω. . . file Λ intersection’ where Ω . . . is 

Table 2. Expressions of TPMS-like surfaces described by Fisher et al. [52]. The right-hand sides of the corresponding implicit 
surface equations are 0.

Name Expression

Gyroid Cx Sy þ Cy Sz þ Cz Sx

D Sx Sy Sz þ Cx Sy Cz þ Cy Sz Cx þ Cz Sx Cy

P Cx þ Cy þ Cz

IWP 2ðCx Cy þ Cy Cz þ Cz CxÞ � ðC2x þ C2y þ C2zÞ

Neovius 4Cx Cy Cz þ 3ðCx þ Cy þ CzÞ

C(Y) � Sx Sy Sz þ S2x Sy þ S2y Sz þ S2z Sx � Cx Cy Cz þ Cx S2y þ Cy S2z þ Cz S2x

Lidinoid S2x Cy Sz þ S2y Cz Sx þ S2z Cx Sy � ðC2x C2y þ C2y C2z þ C2z C2xÞ þ 0:3
OCTO 0:6ðCx Cy þ Cy Cz þ Cz CxÞ � 0:4ðCx þ Cy þ CzÞ þ 0:25
FRD 8Cx Cy Cz þ C2x C2y C2z � ðC2x C2y þ C2y C2z þ C2z C2xÞ

S C2x Sy Cz þ C2y Sz Cx þ C2z Sx Cy

P+C(P) 0:3Cx Cy Cz þ 0:1C2x C2y C2z þ 0:2ðCx þ Cy þ CzÞ þ 0:1ðC2x þ C2y þ C2zÞ þ 0:05ðC3x þ C3y þ C3zÞ þ 0:1ðCx Cy þ Cy Cz þ Cz CxÞ

Split P 1:1ðS2x Cy Sz þ S2y Cz Sx þ S2z Cx SyÞ � 0:2ðC2x C2y þ C2y C2z þ C2z C2xÞ � 0:4ðC2x þ C2y þ C2zÞ

F Cx Cy Cz

C(D) C3xþy Cz � S3x� y Sz þ Cxþ3y Cz þ Sx� 3y Sz þ Cx� y C3z � Sxþy S3z

G0 S2x Cy Sz þ S2y Cz Sx þ S2z Cx Sy þ 0:32
G
0

2
5ðS2x Cy Sz þ S2y Cz Sx þ S2z Cx SyÞ þ C2x C2y þ C2y C2z þ C2z C2x

D0 0:5ðCx Cy Cz þ Sx Cy Sz þ Sy Cz Sx þ Sz Cx SyÞ � 0:5ðS2x S2y þ S2y S2z þ S2z S2xÞ � 0:2
K 0:3ðCx þ Cy þ Cz þ Cx Cy þ Cy Cz þ Cz CxÞ � 0:4ðC2x þ C2y þ C2zÞ þ 0:2
C(S) C2x þ C2y þ C2z þ 2ðS2x Cy S3z þ S2y Cz S3x þ S2z Cx S3yÞ þ 2ðS2x C3y Sz þ S2y C3z Sx þ S2z C3x SyÞ

Y Sx Sy Sz þ Cx S2y þ Cy S2z þ Cz S2x þ Cx Cy Cz þ S2x Sy þ S2y Sz þ S2z Sx

±Y 2Cx Cy Cz þ S2x Sy þ S2y Sz þ S2z Sx

C(±Y) � 2Cx Cy Cz þ S2x Sy þ S2y Sz þ S2z Sx

C(I2-Y**) 2ðS2x Cy Sz þ S2y Cz Sx þ S2z Cx SyÞ þ C2x C2y þ C2y C2z þ C2z C2x

W C2x Cy þ C2y Cz þ C2z Cx � ðCx C2y þ Cy C2z þ Cz C2xÞ

Q* Cx � 2Cy
� �

Cz �
ffiffiffi
3
p

Sz Cx� y � Cx
� �

þ Cx� y Cz

C(G) 3ðSx Cy þ Sy Cz þ Sz CxÞ þ 2ðS3x Cy þ S3y Cz þ S3z CxÞ � 2ðSx C3y þ Sy C3z þ Sz C3xÞ

Slotted P � 2ðCx Cy þ Cy Cz þ Cz CxÞ � 2ðC2x þ C2y þ C2zÞ þ C2x Cy þ C2y Cz þ C2z Cx � ðCx C2y þ Cy C2z þ Cz C2xÞ
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a sequence of Cesogen operations representing the cel
lular solid with which to fill the mesh named Λ.

For example, to fill a baluster model with a Neovius 
endoskeleton (Figure 4), run
cesogen -s , tpms.neovius scale κ0 \

file baluster.obj \
intersection

with samples , to preserve finer features and scale κ0 to 
adjust the cellular solid’s cell size to the baluster’s size. 
Values for ð,; κ0Þ could be for example ð803; 0:065Þ or 
ð1203; 0:03Þ. More samples should be taken for smaller 
scales to appropriately capture the features of the cellu
lar solid. To fill an acorn model with an OCTO endos
keleton (Figure 5), run
cesogen -s , tpms.octo scale κ0 \

file acorn.obj \
intersection

where ð,; κ0Þ could be for example ð803; 0:009Þ
or ð1203; 0:003Þ.

5.3. Generating hierarchical cellular solids

Cesogen generates hierarchical cellular solids via 
direct intersection (Figure 6). It combines the con
stituent SDFs at runtime and writes the resulting SDF 
directly to disk. Cellular solid generators which are 
unable to combine multiple SDFs are limited to 
sequential intersection, i.e. computing one intersec
tion, writing it to disk, and repeating the process for 
each additional SDF.

(a) Gyroid

(d) IWP (   = 853, ξ = 0.65)

(g) Lidinoid (   = 853, ξ = 0.65) (h) OCTO (ξ = 0.1) (i) FRD (   = 853,  (ξ = 0.1)

(e) Neovius (   = 853) (f ) C(Y) (   = 853)

(b) D (c) P

Figure 2. Showcase of various TPMS-like endoskeletons generated by the command ‘cesogen -s , Ω offset �’ with by default 
, ¼ 603 and � ¼ 0:35.
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The sequential method incurs a performance cost – 
the writing and reading of each intermediate SDF – but 
also sets an upper bound on the number of combina
tions possible. For instance, Cesogen is currently unable 
to generate the hierarchical cellular solids in Figure 6(f, 
g) via the sequential method. Indeed, the extraction of 
SDFs from triangle meshes containing narrow triangles, 
via a proximity algorithm, is fraught with floating point 
errors, because computing the distance from a point to 
a skewed triangle is numerically unstable. Whereas the 
direct SDF computation needs to extract a single SDF, 
the sequential computation extracts each of the inter
mediate SDFs. Furthermore, when the meshes result 
from a contouring algorithm such as marching cubes 
without a subsequent smoothing algorithm, narrow 
triangles abound.

The rest of this section demonstrates the issue 
with two examples. The first example is an expan
sion of the hierarchical cellular solid example 
above. The second is a series of roundtrip serial
ization–deserialization steps, where the serialization 
consists of writing an SDF to disk and the deser
ialization of extracting it via a proximity algorithm. 
In the ideal case, roundtrip conversions should be 
repeatable ad infinitum, but this is not the case in 
practice.

To aid in the analysis of the results, we measure 
four kinds of errors: the L2 error of the distance from 
the mesh points and cell centers to the reference SDF, 
and the maximum distance from the points and cell 
centers to the reference SDF. These are all relative to 
the length of the diagonal of the grid.

(a) Gyroid (b) D (c) P

(d) IWP (   = 853, ξ = 0.65) (e) Neovius (   = 853) (f ) C(Y) (   = 853)

(g) Lidinoid (   = 853, ξ = 0.65) (h) OCTO (ξ = 0.1) (i) FRD (   = 853,  (ξ = 0.65)

Figure 3. Showcase of various TPMS-like shells generated by the command ‘cesogen -s , Ω shell Ξ’ with Ξ ¼ 2� and by 
default , ¼ 603 and � ¼ 0:35.
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The hierarchical experiment’s errors are displayed 
in Figure 7. Only the data for the direct case is pre
sented, because the zeroth step is the same operation 
in the direct and sequential cases; the error in the first 
step is almost identical; and from the second step the 
sequential generation fails for trying to divide by zero. 
The errors increase monotonously, because each addi
tional combination adds more detail to the resulting 
object, making it harder to approximate with a mesh 
contoured from a given grid size. The details lie along 
the edges of the objects; there is more error along the 
edges of the sequential version of ΩB \ΩP (Figure 8).

We conducted the sequential hierarchical experi
ment with ASLI and obtained similar results, i.e. ASLI 
crashes after a few combinations.

The roundtrip experiment’s errors are displayed in 
Figure 9. The data stops at the 27th roundtrip because 
the 28th results in a division by zero. The L2 errors 

increase monotonously starting from the second and 
first roundtrips for points and cells, respectively; the 
maximum distances decrease and increase and decrease 
again throughout the roundtrips. However, the quality of 
the final mesh is severely degraded compared to the first 
(Figure 10).

The roundtrip results become even worse when 
starting with a more complex initial mesh, like the 
Stanford bunny rather than a ball. In some cases, 
artifacts begin to appear, e.g. triangles appearing out
side of the objects.

The problems inherent to the sequential method 
can be mitigated by using more robust algorithms 
for computing the point-to-triangle distance, but 
those incur a performance cost and are thus warranted 
only when the initial mesh contains problematic fea
tures. For generating hierarchical cellular solids, the 
direct method should be preferred.

(a) Original (b) Filled (   ,κ0) = (803, 0.065) (c) Filled (   ,κ0) = (1203, 0.03)

Figure 4. Neovius baluster, (a) original triangle mesh converted from the quadrilateral mesh from TheBaseMesh [55] and (b, c) filled 
meshes generated by the command cesogen -s , tpms. neovius scale κ0 file baluster.obj intersection, which 
took 1.3 s and 4.2 s to generate, respectively.

(a) Original (b) Filled, (   , κ0)= (803, 0.009) (c) Filled, (   , κ0)= (1203, 0.003)

Figure 5. OCTO acorn, (a) original triangle mesh converted from the quadrilateral mesh from TheBaseMesh [56] (b, c) filled meshes 
generated by the command 'cesogen -s , tpms.octo scale κ0 file acorn.obj intersection', which took 1.3 s and 
4.1 s to generate, respectively.

Sci. Technol. Adv. Mater. Meth. 5 (2025) 11                                                                                                                                    P.A. PATIENCE et al.



5.4. Performance and limitations

This section examines the performance of Cesogen – 
how fast it can generate cellular solids and how fine 
they can be – and also some of its limitations.

We ran Cesogen via hyperfine [57] and generated 
gyroids with progressively more samples by the

command

cesogen -s , tpms.gyroid

with , 2 f 253; 503; 1003; 2003; 3003; . . . ; 8003 g. The 
mesh generated from 8003 samples contained 

16.2 million cells and took 79s to generate 
(Figure 11). Finer meshes than that required more 
than 16 GiB of memory.

Further limitations of Cesogen include the 
following:

● Cesogen requires an explicit contouring grid be 
given, unlike ASLI. This means that users of 
Cesogen must estimate the dimensions of the 
grid required to reach mesh convergence.

● The algorithm for computing mesh SDFs is not 
robust. As demonstrated in the previous section, 
it fails for some meshes.

● Generating hierarchical cellular solids requires 
more samples in order to capture the finer fea
tures, which increases computation time. This 
could be mitigated by contouring algorithms 
which take advantage of the nature of SDFs to 
evaluate less points on the grid [41].

Although Cesogen is not parallelized, this is not 
a limitation in the context of blackbox optimization: 
direct search algorithms are embarrassingly paralleliz
able because they can evaluate several blackbox simu
lations concurrently [58], and exploiting parallel 
resources at the solver level is generally preferable to 
parallelizing individual components of the blackbox.

(a) Truncated ball ΩB (b) P endoskeleton ΩP (c) D endoskeleton ΩD

(e) ΩB ∩ ΩP (f ) ΩB ∩ ΩP ∩ ΩD (g) ΩB ∩ ΩP ∩ ΩD ∩ ΩG

(d) Gyroid endoskeleton ΩG

Figure 6. Hierarchical cellular solid consisting of the intersection of (a) a truncated ball, (b) a P endoskeleton, (c) a finer D endoskeleton, 
and (d) an even finer gyroid endoskeleton. The figures at the top show the original models and those at the bottom the progressively 
intersected cellular solid. The command which generates the final result is ‘cesogen -b - 4,-4,-4,4,4,4 -s 130^3 ball 
scale 5 tpms.p scale 4 tpms.d scale 3.75 tpms.gyroid scale 1.25 intersection intersection 
intersection’.

Figure 7. Direct hierarchical L2 point errors ( ), L2 cell errors ( ), 
max point distances ( ) and max cell distances ( ). Points are 
represented by circles, cells by triangles. L2 errors are repre
sented by filled shapes, max distances by hollow shapes.
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6. Blackbox optimization

Cesogen’s raison d’être is to facilitate the blackbox 
optimization of cellular solids. Gradient 

information for the objective function and con
straints of blackbox optimization problems are 
usually either unavailable or hard to compute, and 
thus dedicated algorithms exist for this class of 
problems [59]. Examples of such problems are com
puter simulations, which arise in many engineering 
applications [60]. In this section, we demonstrate 
Cesogen’s capabilities by optimizing a cellular solid 
much more conveniently than would be possible by 
hand, i.e. without Cesogen.

The optimization process (Figure 12) consists of 
two parts: the blackbox, a program which simulates 
the compression of a cellular solid, and the blackbox 
optimizer, which launches the blackbox over and over 
in order to determine the best cellular solid given some 
constraints.

The blackbox simulates the compression of a cellular 
solid described by the input variables x 2 X and 
a configuration C. It invokes Cesogen to generate 

(a) Direct intersection (b) Sequential intersection

Figure 8. Colored meshes corresponding to ΩB \ ΩP \ ΩD. The log-scale coloring corresponds to the distance from the points to 
the reference SDF.

Figure 9. Roundtrip L2 point errors ( ), L2 cell errors ( ), max 
point distances ( ) and max cell distances ( ). Points are 
represented by circles, cells by triangles. L2 errors are repre
sented by filled shapes, max distances by hollow shapes.

(a) Before first roundtrip (b) After last roundtrip

Figure 10. Meshes before the first and after the last successful roundtrips. The log-scale coloring corresponds to the distance from 
the points to the reference SDF. The command which generates the initial result is ‘cesogen -b -4,-4,-4,4,4,4 -s 100^3 
ball scale 4 tpms.gyroid scale 4 intersection’.
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a triangle mesh corresponding to the cellular solid, 
converts it to a tetrahedral mesh with Gmsh [61], and 
then simulates its compression by calling MFEM [62], 
a finite element method (FEM) library, to solve the 
linear elastic equations in a way similar to MFEM’s 
example 2. The blackbox applies a force evenly distrib
uted over the top surface of the material and returns 
several values describing the resulting mesh, from 
which we can extract the values of the objective func
tion f :X ! �R and constraints c:X ! �R m, where 
�R ¼ R [ þ1f g. We have not done a mesh conver
gence analysis of the blackbox because this is 
a qualitative demonstration of Cesogen.

The specific optimization problem consists of mini
mizing the solid fraction α 2 ½0; 1� of an hourglass- 
shaped block (Figure 13(a)) filled with an exoskeletal 
cellular solid and to which we apply a downwards 
vertical compression on the top surface. The cellular 
solid is described by the input variables cellular solid 

kind – one of gyroid, IWP and FRD –, offset radius 
� 2 ½� 1; 3� and scale κ0 2 ½0:5; 2�. The kind variable is 
categorical and is handled by launching one instance 
of the blackbox optimizer per possible value; the other 
variables are continuous. Various constraints exist to 
ensure that the blackbox produces a physically valid 
mesh; they include a constraint on the average displa
cement of the top surface induced by the compression 
and a constraint on the maximum displacement of any 
point in the domain.

The triangle meshes corresponding to the initial 
and filled hourglasses can be generated with the stan
dalone Cesogen command

cesogen -s 40^3 \

cylinder move 0,-2,0 \

cylinder move 0,2,0 union \

scale 1/2 orient 1,0,0 complement \

box intersection \

[Ω offset � complement scale κ0 \

intersection]

where the section in brackets is omitted for the plain 
hourglass and kept, though without the brackets, for 
a TPMS-like Ω with offset radius � and scale κ0. 
Cesogen generates the hourglasses in one step via 
direct intersection.

The blackbox optimizer is NOMAD [63], an open- 
source implementation of the MADS algorithm [64]. 
We left the algorithm parameters to their default values, 
determined the initial point from a set of 20 LHS 
evaluations, and set the evaluation budget (limit), 
which includes the LHS evaluations, to 50 per cellular 
solid kind.

The optimization of the three cellular solids took 
7.5 h in total (Table 3). The best cellular solids found 
were, in increasing order of solid fraction, IWP 
(Figure 13(c)), FRD (Figure 13(d)) and gyroid 
(Figure 13(b)).

Figure 11. Mean time taken for Cesogen to generate gyroids 
via ‘cesogen -s , tpms.gyroid’ with 
, 2 f 253; 503; 1003; 2003; 3003; . . . ; 8003 g. Samples beyond 
8003 required more memory than that available on the test 
machine.

Figure 12. Block diagram of the optimization process. The generator consists of Cesogen and Gmsh [61], the FEM solver is MFEM 
[62], and the optimizer is NOMAD [63]. The optimizer starts by feeding a point x 2 X to the blackbox, where X is the domain of 
the objective function f :X ! �R and constraints c:X ! �R m, with �R ¼ R [ þ1f g. From this point, and further informed by 
the configuration C, the blackbox produces the values fðxÞ and cðxÞwhich are inspected by the optimizer to propose the following 
point, and the cycle repeats until a stopping criterion is met.

Sci. Technol. Adv. Mater. Meth. 5 (2025) 14                                                                                                                                    P.A. PATIENCE et al.



The convergence plot for each cellular solid kind 
(Figure 13(e)) illustrates the feasible solutions found 
by the optimizer and the evolution of the solid fraction 
throughout the optimization. Infeasible solutions are 

omitted from the graph, and they can account for 
more than 50 % of the total evaluations; they are the 
reason the best-solution lines in the convergence plot 
do not start at blackbox evaluation 1. There are two 

(a) Hourglass

(b) Gyroid

(e) Convergence plot

(c) IWP (d) FRD

Figure 13. Initial hourglass (a) and best solutions (b, c, d) to the optimization problem for each cellular solid kind. In the 
convergence plot (e), the filled shapes represent feasible solutions, the solid lines the best solution found so far, and infeasible 
solutions are omitted.

Table 3. Solutions to the optimization problem for each cellular 
solid kind, along with the time t taken for each.

Kind � κ0 α t=h

Gyroid 0:037 1:3 0:38 1:8
IWP 0:52 0:50 0:31 2:9
FRD 0:56 1:1 0:31 2:9
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main causes for infeasible solutions: non-physical simu
lations, i.e. the mesh would not be manufacturable, and 
mesh generation errors. Both are handled by NOMAD.

This example illustrates how Cesogen can be 
employed to perform a complex optimization task. 
A GUI-only generator would be inappropriate, as the 
user would have to generate each mesh by hand. Here 
the blackbox optimizer tested about 150 different 
meshes, but introducing additional cellular solid 
kinds and allowing more blackbox evaluations would 
increase this number to the thousands.

7. Conclusion

Cesogen is a general SDF processor which specializes 
in generating cellular solids in a manner suitable for 
computer-guided optimization. It has an extensive 
library of TPMS-like cellular solids and can generate 
hierarchical cellular solids via direct intersection. Its 
CLI is flexible enough to cover a wide range of use- 
cases and is targeted at any user wanting to study and 
optimize cellular solids.

Cesogen has some limitations, which include 
requiring an explicit contouring grid be provided, its 
SDF-computation algorithm being sensitive to narrow 
triangles in the input, and generating hierarchical cel
lular solids requiring a fine grid, which non-negligibly 
increases computation time. Furthermore, it cannot 
generate tetrahedral meshes, which means a third- 
party tool is required in order to run FEM simulations 
on Cesogen output.

Cesogen is under active development and its road
map includes the following features:

● more cellular solids, in particular strut-based cel
lular solids;

● more triangle-based contouring algorithms [39–41], 
possibly parallel ones;

● a tetrahedron-based contouring algorithm [42];
● a graphical user interface for real-time interactive 

exploration of cellular solids;
● heuristically saturating maximum distances when 

computing the SDFs of meshes containing nar
row triangles;

● possibly built-in mesh adaptation, to make read
ing generated meshes more robust; and

● possibly more robust SDF computation 
algorithms.

One important future feature is providing 
a universal interface for cellular solid generation. 
The most compelling feature of Cesogen is its DSL 
for describing SDFs. We believe it can represent any 
cellular solid that the other freely available cellular 
solid generators can produce. The goal is to make 
Cesogen a universal cellular solid generator which 
can hook into any generator which has a CLI or is 

exposed as a library, e.g. ASLI, allowing Cesogen to 
benefit from any advancements to other cellular 
solids generators by leveraging them itself. Cesogen 
would then present a universal interface for cellular 
solid generation in order to facilitate the application 
of mathematical optimization techniques to cellular 
solid design.

In addition to continuing the development of 
Cesogen, further research could be done on determin
ing which contouring algorithms are best suited for 
cellular solids.

Nomenclature

Abbreviations 
CLI command-line interface
DSL domain-specific language
FEM finite element method
GUI graphical user interface
SDF signed distance function
TPMS triply periodic minimal surface
TPSf triply periodic surface
TPcS triply periodic eccentric surface
TPnS triply periodic endoskeleton
TPxS triply periodic exoskeleton

Symbols 
C blackbox configuration
c constraints; c:X ! �R m

d distance; d: R n � R n ! R

ek unit vector along dimension k; ek 2 R n

f objective function; f :X ! �R

fΩ SDF of Ω; fΩ: R n ! R
~fΩ approximate SDF of Ω: ~fΩ: R n ! R

IΩ indicator function of 
Ω; IΩ: R n ! f 0; 1 g

, number of samples; , 2 Z > 0
m dimension of constraints; m 2 Z > 0
n dimension of point; n 2 Z > 0
R set of real numbers
R�0 set of nonnegative real numbers
R 6¼0 set of nonzero real numbers
�R R [ fþ1g

t time (s); t 2 R�0
v rotation axis; v 2 R 3nf 0 g
v orientation axis;  

v 2 R 3nf x 2 R 3: x1 ¼ 0; x2 ≤ 0, x3 ≤ 0 }
X domain
x point; x 2 R n

x first coordinate of 3D point; x 2 R

y point; y 2 R n

y second coordinate of 3D point; y 2 R

Z set of integers
Z�0 set of strictly positive integers
z third coordinate of 3D point; z 2 R

α solid fraction; α 2 ½0; 1�
δ translation distance; δ 2 R n

θ rotation angle; θ 2 R

κ0 isotropic scaling factor; κ0 2 R 6¼0
κ anisotropic scaling factor; κ 2 R n

6¼0
Λ solid object; Λ � R n

Ξ shell thickness; Ξ 2 R�0
� offset radius; � 2 R

π half-circle constant
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ρ� density of cellular solid (kg m� 3); 
ρ� 2 R�0

ρs density of cellular solid’s constituent 
solid (kg m� 3); ρs 2 R�0

τ full-circle constant (2π)
Ω solid object; Ω � R n

@Ω boundary of Ω
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