
Titre:
Title:

Cesogen: cellular solid generator

Auteurs:
Authors:

Paul A. Patience, Charles Audet, & Bruno Blais

Date: 2025

Type: Article de revue / Article

Référence:
Citation:

Patience, P. A., Audet, C., & Blais, B. (2025). Cesogen: cellular solid generator.
Science and Technology of Advanced Materials Methods, 5, 2570116 (20 pages).
https://doi.org/10.1080/27660400.2025.2570116

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/69100/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: Creative Commons Attribution 4.0 International (CC BY)

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Science and Technology of Advanced Materials Methods (vol. 5)

Maison d’édition:
Publisher:

Taylor & Francis

URL officiel:
Official URL:

https://doi.org/10.1080/27660400.2025.2570116

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1080/27660400.2025.2570116
https://publications.polymtl.ca/69100/
https://doi.org/10.1080/27660400.2025.2570116

Science and Technology of Advanced Materials: Methods

ISSN: 2766-0400 (Online) Journal homepage: www.tandfonline.com/journals/tstm20

Cesogen: cellular solid generator

Paul A. Patience, Charles Audet & Bruno Blais

To cite this article: Paul A. Patience, Charles Audet & Bruno Blais (2025) Cesogen: cellular
solid generator, Science and Technology of Advanced Materials: Methods, 5:1, 2570116, DOI:
10.1080/27660400.2025.2570116

To link to this article: https://doi.org/10.1080/27660400.2025.2570116

© 2026 The Author(s). Published by National
Institute for Materials Science in partnership
with Taylor & Francis Group

Published online: 12 Jan 2026.

Submit your article to this journal

Article views: 298

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tstm20

https://www.tandfonline.com/journals/tstm20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/27660400.2025.2570116
https://doi.org/10.1080/27660400.2025.2570116
https://www.tandfonline.com/action/authorSubmission?journalCode=tstm20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tstm20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/27660400.2025.2570116?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/27660400.2025.2570116?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/27660400.2025.2570116&domain=pdf&date_stamp=12%20Jan%202026
http://crossmark.crossref.org/dialog/?doi=10.1080/27660400.2025.2570116&domain=pdf&date_stamp=12%20Jan%202026
https://www.tandfonline.com/action/journalInformation?journalCode=tstm20

Cesogen: cellular solid generator
Paul A. Patience a, Charles Audet a and Bruno Blais b

aGERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal, Montréal, QC, Canada; bCHAOS Laboratory
and Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, Canada

ABSTRACT
Cellular solids are structures which have applications in mechanical engineering to make light
weight structures and heat exchangers, in biomedical engineering to make tissue scaffolds, and
in chemical engineering to make catalysts. A subset of these, triply periodic minimal surface–like
cellular solids, are seeing growing adoption with recent advances in additive manufacturing.
Here we present a program, Cesogen, which interprets a novel domain-specific language (DSL)
for specifying signed distance functions (SDFs) to generate cellular solid meshes, and which is
designed to be paired with blackbox optimizers in order to spur more efficient research into
cellular solids. It converts input meshes to SDFs before transforming and combining them with
operations such as translation, scaling and intersection, which allows Cesogen to robustly
generate hierarchical cellular solids. Finally, Cesogen contours the combined SDF via marching
cubes to produce a resulting mesh which can be fed to a physics simulator.

IMPACT STATEMENT
This paper presents a cellular solid generator whose peerless, CLI-based DSL, specifically
compatible with blackbox optimizers, can greatly promote the study, and blackbox-optimiza
tion–based design, of cellular solids.

ARTICLE HISTORY
Received 30 July 2025
Revised 18 September 2025
Accepted 29 September 2025

KEYWORDS
Cellular solids; triply periodic
minimal surfaces; signed
distance functions; additive
manufacturing; blackbox
optimization

1. Introduction

Cellular solids are porous structures, sometimes peri
odic, sometimes stochastic, composed of cells made up
of solid struts, plates and surfaces [1]. They can be
classified into honeycombs, foams, and lattice struc
tures, the last of which consists of strut-based and triply
periodic minimal surface (TPMS)–like cellular solids.

Strut-based cellular solids have applications in
many fields, including for thermal insulation, packa
ging, and lightweight structures [1]. Advances in addi
tive manufacturing [2] have prompted more research
into TPMS-like cellular solids because they could be

manufactured more easily. TPMS-like cellular solids
are now used in many applications, including mechan
ical (for energy and impact absorption, lightweight
structures), thermal (as heat exchangers), biological
(for tissue engineering scaffolds), and chemical (as
batteries, catalysts, water-absorbing films) [3].
Sandwich panels are an example of lightweighting,
where the inside is composed of a cellular solid to
reduce the weight of the part while maintaining its
structural integrity. The advantage of using cellular
solids for heat transfer is that they have a high surface
area, much higher than a solid block of equivalent

CONTACT Bruno Blais bruno.blais@polymtl.ca CHAOS Laboratory and Department of Chemical Engineering, Polytechnique Montréal, Montréal,
QC H3T 1J4, Canada

SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS: METHODS
2025, VOL. 5, NO. 1, 2570116
https://doi.org/10.1080/27660400.2025.2570116

© 2026 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting
of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0009-0007-2809-8168
http://orcid.org/0000-0002-3043-5393
http://orcid.org/0000-0001-6053-6542
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/27660400.2025.2570116&domain=pdf&date_stamp=2026-01-12

dimensions. In biological applications, e.g. bone
implants, TPMS-like cellular solids are preferred to
strut-based cellular solids because the former are
more similar to structures found in the body, and
cells attach to them more easily.

Many aspects of cellular solids warrant and need
more investigation, including their use in heat and
mass transfer, and graded, heterogeneous and multi
scale cellular solids [3]. Mathematical optimization of
cellular solids is one aspect for which there is a dearth
in the literature.

This article presents the cellular solid generator
Cesogen; it is a program and library that takes a textual
or code-based description of a cellular solid, e.g. its name
and various transformations applied to it, converts it into
a signed distance function (SDF), and finally generates
a mesh suitable for simulation and manufacturing.

Cellular solid generators are a critical element in
any study of cellular solids. Their features include
a combination of:

● a user interface, be it command-line or graphical;
● an extensive library of cellular solids;
● the ability to fill arbitrary geometries with

a cellular solid, and also to generate graded, het
erogeneous and multiscale cellular solids;

● configurable contouring algorithms; and
● performance (ideally the generation time should

be negligible compared to the simulation time).

Cesogen is not the first of its kind; there exist many
cellular solid generators, whether freely available and

open source, freely available and closed source, or
commercial and proprietary. We have evaluated var
ious standalone, freely available generators in order to
place Cesogen among its peers, noting their language
of implementation, interaction via command-line
interface (CLI), graphical user interface (GUI) or
library, and additional features (Table 1).
Commercial cellular solid generators are usually
a smaller part of a more general design tool, and
include [9,19]: Optistruct (Altair), Netfabb and
Within (Autodesk), Sulis (Gen3D), 3-Matic
(Materialise), nTop (nTopology) [25], Creo
Parametric (PTC), Grasshopper (Rhino 3D), and
Simpleware (Synopsys). Freely available cellular solid
generators forming a smaller part of a more general
design tool include the Add Mesh Extra Objects plugin
for Blender, and K3DSurf [19].

The primary features an optimization-focused gen
erator needs in order to be usable are the ability to
generate cellular solids and a way for the optimizer to
be able to operate it without any user intervention, e.g.
via batch-like CLI or library, which eliminates all
evaluated freely available generators except for
Scaffolder, ASLI and Microgen. Furthermore, since
Microgen is available only as a library, using it at all
involves writing scripts, which may be inconvenient
depending on the application.

The contribution of this article is to introduce and
present Cesogen, a tool for generating cellular solids
that researchers can use in their studies of these mate
rials. Cesogen was designed from the start to be
adapted to computer-guided optimization, and

Table 1. Various standalone, freely available cellular solid generators and their implementation languages, whether they offer
batch-like CLI, GUI or library form, their features, year of publication of supporting article, or if none, initial release, and finally
reference. Languages are one or more of C++ (C), Common Lisp (L), MATLAB (M), Python (P), Mathematica (W) and unknown (U).
Having a CLI presupposes it is compatible with batch processing, i.e. requiring no user input. Generators with neither CLI, GUI or
library form require editing the source code before running. Features may be one or more of extensive library of cellular solids (E),
filling arbitrary solids (F), generating graded (G), heterogeneous (H), hierarchical (I) and multisymmetrical (S) cellular solids,
applying mathematical transformations (T) and having advanced modeling features (M). We determined the features from
a cursory inspection of the papers presented, the documentation and, when those were insufficient or incomplete and the source
code was available, the source code. TPMS Studio in particular may have more features than those listed.

Name Lang CLI GUI Lib Feats Year Ref

ScaffoldStructures P ● 2014 [4]
MSLattice M ● G 2020 [5]
MiniSurf M ● 2020 [6,7]
TPMS-Modeler M 2021 [8]
Scaffolder CP ● ● ● F 2021 [9]
TPMS Designer M ● T 2021 [10,11]
RegionTPMS W G 2021 [12]
FLatt Pack M ● EFG 2022 [13]
TPMS Scaffold M 2022 [14]
ASLI C ● ● ● FGH 2022 [15]
Microgen P ● EFIT 2022 [16]
MaSMaker M ● FGH 2022 [17,18]
Lattice_Karak M ● GHI 2022 [19]
TPMSgen P ● 2023 [20]
MD-TPMS M ● G 2023 [21]
TPMS Studio U ● EM 2023 [22]
TPMS_Scaffold_Generator M ● FGS 2024 [23]
LattGen M ● EFG 2024 [24]
Cesogen L ● ● EFIT 2025

Sci. Technol. Adv. Mater. Meth. 5 (2025) 2 P.A. PATIENCE et al.

features a CLI-based, domain-specific language
(DSL) which allows the user to generate complex
geometries on the fly without the use of a separate
modeling tool. In particular, like Microgen,
Cesogen is able to robustly generate hierarchical
cellular solids of arbitrary depth via direct intersec
tion, whereby the underlying SDFs are combined at
runtime and the resulting SDF written directly to
disk. Any generator that can fill arbitrary solids is
also able to generate hierarchical cellular solids via
sequential intersection, whereby each successive
intersection is written to disk and reread for the
next, but this method incurs a cost on the perfor
mance and quality of the results.

This article begins by presenting the theory
required to understand the operation of Cesogen –
starting with a description of SDFs, which are how
cellular solids are represented internally by Cesogen,
and then of cellular solids themselves – and continues
by presenting the user interface of Cesogen and some
details of how it works. Finally, it presents some
examples of Cesogen in use and ends with
a conclusion.

2. Signed distance functions

In a metric space ðR n; dÞ, the SDF fΩ corresponding to
a solid object Ω � R n is

where @Ω is the boundary of Ω and IΩ is the indicator
function of Ω, i.e. IΩðxÞ is 1 if x 2 Ω and 0 otherwise.
In other words, fΩ is a function taking negative values
within Ω, positive values without, and the value zero
on its boundary.

The convention of negative for inside and positive
for outside is not universal; it is adopted by some
authors [26,27], but others use the opposite conven
tion [28,29].

The SDFs of primitive solid objects are generally
derived mathematically [30]. The SDFs of solid objects
represented as meshes are brute-forced by calculating
the shortest distance from x to the polygons on the
surface of the mesh, possibly sped up with spatial
query structures such as a bounding volume hierarchy.
The sign of the distance can be resolved in many ways,
one of which is described by Bærentzen and
Aanæs [31].

Once we have the SDFs fΩ and fΛ corresponding
to solid objects Ω � R n and Λ � R n, we can trans
form and combine Ω and Λ by manipulating their
SDFs or the points provided to them. Most opera
tions on SDFs return approximate rather than exact
SDFs, where an exact SDF is one which returns an

exact distance, the gradient of which is always of
length 1 [26,30,32,33]. These approximate SDFs, for
which the boundary is correct but the inner and
outer distances may not be, are marked with
a tilde, e.g. ~fΩ.

We can apply the usual mathematical transforma
tions translation, scaling and rotation to Ω by trans
forming the point passed to fΩ:

• Translation by distance δ 2 R n:

• Isotropic scaling by factor κ0 2 R 6¼0:

• Anisotropic scaling by factor κ 2 R n
6¼0:

where x0i ¼ xi=κi for i 2 f 1; . . . ; n g
• Three-dimensional rotation about axis

v 2 R 3n 0f g by angle θ 2 R :

where Aij ¼ v̂iv̂j 1 � cos θð Þ, v̂ ¼ v= vj jj j and

The three-dimensional orientation along axis
v 2 R 3nf x 2 R 3: x1 ¼ 0; x2 ¼ 0; x3 � 0 g is a variant
of rotation which is useful for modeling with SDFs.
It consists of rotating Ω about axis e3 � v by angle
arccosðv3= vj jj jÞ, where e3 ¼ ð0; 0; 1Þ, such that Ω0

points in the direction of v rather than e3.
Some more niche transformations, usually seen

when modeling with SDFs, can be applied by trans
forming fΩ directly:

• Offset by radius � 2 R (equivalent to morpholo
gical dilation if � � 0, morphological erosion
otherwise):

• Shell of thickness Ξ 2 R�0:

The basic implementation of set-theoretic opera
tions on objects represented by SDFs is the following,
though variants exist with different properties [29]:

• Complement:

• Union:

Sci. Technol. Adv. Mater. Meth. 5 (2025) 3 P.A. PATIENCE et al.

• Intersection:

• Difference:

Note that the implementations of union and intersec
tion are swapped if the SDF sign convention is
inverted.

SDFs are ultimately useful when converted, or
contoured, to polygon or polyhedral meshes used in
simulations or manufactured. Various methods exist
for contouring SDFs to triangle meshes, including
marching cubes [34–38] (the predecessor of them
all), dual marching cubes [39], and more advanced
methods [40,41]. SDFs can also be contoured to tet
rahedral meshes via isosurface stuffing [42].
Contouring methods differ in number and kind
(e.g. triangle or tetrahedral) of cells generated and
performance, though no research has been done to
determine which methods would be ideal for cellular
solids in particular.

3. Cellular solids

Gibson and Ashby [1] describe cellular solids as ‘inter
connected network [s] of solid struts or plates which
form the edges and faces of cells’ , classifying them into
honeycombs, which are 2D structures extruded into
the third dimension, and foams, which are 3D stochas
tic structures. Recent literature has introduced a third
class, made more usable thanks to additive manufac
turing, called lattice structures, which could also be
stochastic according to the design mechanism [43–45].

The fundamental parameters of a cellular solid are
the cell size and relative density. The cell size, when
discussing cubic cellular solids, is the length of the unit
cell’s edges; there exist also orthorhombic cellular
solids, where the edges of the unit cell have different
lengths. The relative density, or volume fraction or
solid fraction, of a cellular solid is ρ�=ρs, where
ρ� 2 R�0 is the cellular solid’s density and ρs 2 R�0

the density of the solid constituting the cellular
solid [1].

Lattice structures are further divided into two
kinds: strut-based and TPMS-like. Strut-based cellular
solids are composed of combinations of struts and
have been studied for longer because they have tradi
tionally been easier to manufacture; TPMS-like cellu
lar solids are based on smooth surfaces and have
grown in use thanks to additive manufacturing. This
article studies only the latter.

The name lattice can lead to an unfortunate confu
sion when considering that many strut-based lattice
structures are named after Bravais lattices from the
field of crystallography [46], e.g. body-centered cubic.

However, lattices are not limited to crystallography,
and in fact one of the primary definitions of the word
‘lattice’ is ‘an open framework made of strips of metal,
wood, or similar material overlapped or overlaid in
a regular, usually crisscrossed pattern’ [47]. The terms
from crystallography and mathematics are likely
inspired from this definition.

TPMS-like cellular solids are derived from the
equations of triply periodic, implicit surfaces,
which include TPMSs and other triply periodic
(non-minimal) surfaces. Indeed, TPMSs can be
generalized to non-minimal surfaces of the same
family [48]. The equations of TPMSs can be
approximated by taking the first few terms of the
Fourier series constituting the periodic nodal sur
face approximations of those surfaces [49–51].
Sample equations are presented in Table 2.

TPMS-like surfaces give rise to four different
kinds of TPMS-like cellular solids, depending on
which side of the surfaces we treat as solid and
whether we take their shell of thickness Ξ 2 R�0.
Each of these kinds can additionally be offset by
radius � 2 R before making solid. The four kinds
of TPMS-like cellular solids are [52] (with names
and notation simplified and adapted to conform to
our SDF terminology and notation, and original
names in parentheses):

• Endoskeleton (triply periodic endoskeleton, TPnS):

• Exoskeleton (triply periodic exoskeleton, TPxS):

• Shell (triply periodic surface, TPSf):

• Eccentric shell (triply periodic eccentric surface,
TPcS):

The offset radius is also known as the isovalue or level
set value [5,52] in the skeletal inequalities and as the
eccentricity [52] in the eccentric shell inequality. The
offset radius and shell thickness control the relative
density of the cellular solid, and the offset also changes
the shape of the shell walls.

Complex cellular solids can be composed from pri
mitive cellular solids by manipulating their SDFs.
Arbitrary meshes can be filled with cellular solids by
computing the meshes’ SDFs and intersecting them
with the cellular solids’ SDFs. Graded cellular solids are
obtained by replacing constant transformations, e.g.
translation, scaling, rotation, by functions [3,5].
Heterogeneous cellular solids consist of fusions of cellu
lar solids, and can be obtained via a sigmoid function [5].
Multiscale, or hierarchical, cellular solids are cellular

Sci. Technol. Adv. Mater. Meth. 5 (2025) 4 P.A. PATIENCE et al.

solids within cellular solids [3], and can be obtained by
intersecting cellular solids having different unit cell sizes.

4. Cellular solid generator

The cellular solid generator introduced in this article is
called Cesogen, which is a contraction of ‘cellular solid
generator’. First we provide a summary of Cesogen
and its features, then how it may be used.

4.1. Overview

Cesogen is written in Common Lisp, a programming
language featuring a good balance of interactivity and
performance. It is developed first and foremost as
a software library, in order that it may be used inter
actively from a read-eval-print loop, thus allowing more
systematic exploration of cellular solids than a CLI or
GUI can provide. Another advantage of being a library
is that the program logic is decoupled from the CLI,
which allows third-party applications, including, but
not limited to GUIs, to benefit from a more expressive
interface than is possible via a CLI. However, in order
accommodate users of all kinds, including optimizers,
Cesogen is also available as a CLI.

In spite of its name, Cesogen functions as a full-
fledged SDF processor. Its ability to generate cellular
solids is a byproduct of cellular solids being represen
table as SDFs – in fact, TPMS approximations are by
definition SDFs, which makes representing meshes as
SDFs in Cesogen the natural choice. The name
remains, though, because Cesogen is primarily geared
towards generating cellular solids. And it is catchy.

Cesogen’s mode of operation can be seen as con
sisting of the following phases: (1) Convert meshes; (2)
combine SDFs; and (3) contour. In the first phase, it
converts any meshes provided to their corresponding
SDFs. The second phase consists of combining the
SDFs according to the operation requested. This
results in a single SDF, which is then contoured to
produce the resulting mesh. In reality, Cesogen pro
ceeds along the first two phases eagerly, i.e. it converts
meshes and combines them as soon as it can, so the
phases are actually interleaved.

Cesogen accepts as input arbitrary solids repre
sented as meshes. Supported input formats include
OBJ, OFF, PLY and STL. Cesogen converts the input
meshes to SDFs by computing an intermediate sphere-
based bounding volume hierarchy for speeding
up proximity queries based on a port of
TriangleMeshDistance [53] to Common Lisp. The
signs of the computed distances are resolved via the
algorithm described by Bærentzen and Aanæs [31].

Cesogen also boasts an extensive library of cel
lular solids, currently consisting of those derived
from most of the TPMS-like surfaces described by
Fisher et al. [52] (Table 2). Users may define their

own cellular solids by providing expressions for
their corresponding SDFs directly to Cesogen
instead of meshes, or saving the expressions in
files which are then provided, and more TPMS-
like cellular solids will be added as they are
discovered.

In the SDF combination phase, Cesogen supports
various operations on the SDFs, including the transla
tion, scaling, rotation, orientation, offset, shell and the
set-theoretic operations complement, union, intersec
tion and difference on their corresponding objects
(Section 2). It cannot yet create graded or heteroge
neous cellular solids, but it can create multiscale, or
hierarchical, cellular solids by intersecting cellular
solids of differing unit cell sizes.

The contouring phase consists of applying march
ing cubes to the combined SDF to produce the result
ing triangle mesh. Supported output formats include
OBJ, OFF, PLY, STL and legacy VTK. The choice of
contouring algorithm has an impact on the number of
mesh cells composing it, which in turn has an impact
on the running time of the physics solver. Cesogen
currently uses a robust, marching cubes–like algo
rithm [36], but further algorithms will be added
which offer different tradeoffs.

Performance is important only until the cellular
solid generation step takes a negligible amount of
time compared to the rest of the current optimization
step. Cesogen has been developed with a focus on
performance in order to reach this threshold.

Cesogen is multiplatform; it runs on various flavors
of Linux and also macOS and Windows. Specific
installation instructions are described in the manual.

Finally, Cesogen is freely available, open source
software licensed under the MIT (more specifically,
the Expat) [54], a permissive license which allows
commercial use with few restrictions. Its homepage
is https://git.sr.ht/˜paulapatience/cesogen (mirrored
at https://github.com/chaos-polymtl/cesogen).

4.2. Usage

This section briefly describes the usage of Cesogen.
The Cesogen manual goes into more detail.

Cesogen’s CLI is aimed at being comprehensive
enough to expose all the functionality that clients,
usually users and optimizers, may require. Optimizers
are expected to be provided with a script that launches
Cesogen with the appropriate command-line argu
ments. Therefore, the most important part of
Cesogen’s interface, for the average client, is its CLI.

Cesogen’s CLI is a mixfix, stack-oriented DSL which
dispenses with the need to have nested parentheses on
the command-line. The command-line arguments can
be one the following kinds: command-line options,
SDF specifiers, and SDF operations and operation

Sci. Technol. Adv. Mater. Meth. 5 (2025) 5 P.A. PATIENCE et al.

https://git.sr.ht/%CB%9Cpaulapatience/cesogen
https://github.com/chaos-polymtl/cesogen

arguments. The SDF operations are mixfix and termed
SDF-nullary, SDF-unary and SDF-binary based on how
many SDFs they take on the left; some operations also
take non-SDF arguments on the right, provided as
separate command-line arguments. The command-
line options are discussed at the end of this section.

SDF specifiers are names of solid objects whose
SDFs are known to Cesogen. The primitive solids
supported by Cesogen are currently:

● ball, the unit ball centered at the origin;
● cylinder, the unit cylinder centered at the ori

gin, oriented along the z axis; and
● box, the unit box, i.e. with a half-width of 1,

centered at the origin.

TPMS-like cellular solids are named after their cor
responding surfaces and prefixed with tpms., so
gyroid becomes tpms.gyroid, P becomes tpms.p
and C(Y) becomes tpms.c-y. The full list of TPMS-
like cellular solids supported by Cesogen is documen
ted in the manual.

To generate a ball, run:
cesogen ball

SDFs may also be specified by the following SDF-
nullary operations:

● expression, taking a string argument on the
right in the form of an infix expression corre
sponding to the left-hand side of the equation of
an implicit surface, with right-hand side 0, which
describes an SDF, e.g. ‘x+y+z-1’. These expres
sions accept the point coordinates x, y, z, the
standard arithmetic operators, and some basic
mathematical constants and operations, e.g. pi
and trigonometric functions. The syntax is
described in more detail in the manual.

● file, taking a string argument on the right cor
responding to the name of a mesh from which
Cesogen extracts the SDF. The input mesh format
is detected from the extension.

When an SDF specifier is provided, the corre
sponding SDF is pushed onto a stack of SDFs,
which is operated upon by the SDF operations.
SDF-unary operations pop the stack once, modify
the SDF, and push it back onto the stack. SDF-
binary operations pop the stack twice, combine the
SDFs accordingly, and push the result back onto the
stack.

The SDF-unary operations and the arguments they
take on the right are:

• complement, none
• offset by radius � 2 R

• shell of thickness Ξ 2 R�0
• move (translate) by distance δ 2 R 3

• scale isotropically by factor κ0 2 R 6¼0
• scale anisotropically by factor κ 2 R 3

6¼0
• rotate about axis v 2 R 3nf 0 g by angle θ 2 R

• orient along axis v 2 R 3nf x 2 R 3: x1 ¼ 0; x2
¼ 0; x3 � 0 g
The components of three-dimensional arguments are
listed in one command-line argument and separated
by commas. Numeric arguments may also be expres
sions, though without any point coordinates.

To generate a ball of radius 2, run:
cesogen ball scale 2

The SDF-binary operations are union, intersec
tion and difference. They take no arguments on
the right.

A more complex SDF combination is (Figure 1):
cesogen \

tpms.gyroid file mesh1.ply intersection \

tpms.p file mesh2.ply intersection

union

Cesogen detects the bounding box of the resulting
SDF automatically, with arbitrary expressions being
treated as unbounded. When Cesogen writes the SDF
to disk, it maps � 1 to � 1 and 1 to 1. In other words,
the default bounding box of TPMS-like SDFs is the
same as that of box.

The usual command-line options all start with the
hyphen (‘-’) and are described in the manual and also
by the --help option. Cesogen also supports the @file
option, which it replaces with the contents of the
specified file, which should consist of whitespace-sepa
rated command-line arguments. This option acts as an
ad hoc configuration file mechanism; users can specify
their SDFs, or even operations on SDFs, in files which
they later include via the @file option. It is particularly
apt for specifying custom expressions.

The -b option specifies an explicit bounding box; it
consists of six comma-separated components corre
sponding to the three lower and three upper bounds.
The -s option specifies the number of samples to take
of the SDF during contouring. It may consist of one
component or three comma-separated components; in
the former case, the value is a total number of samples
distributed as uniformly as possible along all dimen
sions, and in the latter, the number of samples along
each dimension. The -o option specifies the output file,
overriding the default of out.ply; the output mesh
format is detected from the extension.

To generate endoskeletal, exoskeletal and eccentric
shell variants of the TPMS-like with offset radius �,
shell thickness Ξ, and corresponding equations
fΩðxÞ � �, � fΩðxÞ � � � and fΩ xð Þ � �j j � 1

2Ξ, run,
respectively:

cesogen Ω offset �
cesogen Ω offset � complement
cesogen Ω offset � shell Ξ

Sci. Technol. Adv. Mater. Meth. 5 (2025) 6 P.A. PATIENCE et al.

In other words, all TPMS-like cellular solids generated
by Cesogen are by default endoskeletons.

4.3. Guiding principles

Cesogen and its CLI-based DSL were carefully
designed according to a set of guiding principles
which may not be immediately apparent upon reading
a description of Cesogen’s usage. The guiding princi
ples are the following: (1) suitability for blackbox
optimization; (2) ergonomics; and (3) composability.

The original impetus for developing Cesogen was the
desire to solve cellular solid problems via blackbox
optimization algorithms not based on metaheuristics.
Metaheuristic algorithms can start from a small sample
of pregenerated, possibly via GUI, cellular solids and
estimate the properties of points proposed by the opti
mizer without having to generate new cellular solids.
Without this estimation, the blackbox must be able to
generate the meshes automatically. The principle of
suitability for blackbox optimization mandates provid
ing a text-based interface, i.e. CLI- or library-based.

The reason for the principle of ergonomics is to make
Cesogen accessible to as large an audience as possible, so as
to encourage more research in the field of cellular solids.
Having chosen to provide a CLI, this principle mandates
the syntax be word-based, to avoid the proliferation of
quotes that would be necessary to escape parentheses and
other protected shell characters that might be used in an
imperative DSL. (This principle also favors providing
a CLI over a library, though Cesogen provides both.)

The reason for the principle of composability is to
make Cesogen able to interpret the textual representa
tion of any cellular solid, so as to limit the proliferation
of cellular solid generators that support only some kinds
of cellular solids. Having chosen a word-based syntax,
this principle mandates the DSL be stack-oriented, to
allow arbitrarily long combinations of SDFs.

Cesogen’s DSL is called mixfix because operators
can take arguments on the left and on the right. SDFs
are always provided on the left, which allows

arbitrarily deep SDF combinations via SDF-binary
operators while avoiding parentheses in the syntax
which would otherwise be necessary to handle opera
tor precedence. Additional arguments are provided on
the right because the resulting syntax follows com
mand-line conventions and reads more naturally.
For example, the command
cesogen cylinder orient 1,0,0 scale 1/2

can be read aloud as ‘generate a cylinder oriented
along the x axis with a radius of one-half ’.

The stack-oriented nature of the DSL becomes
apparent when invoking SDF-binary operators such
as union and intersection, which pop two SDFs on the
stack and push the resulting SDF back onto it. In
particular, any operator that takes an SDF on the left
effectively takes on the left any sequence of words that
produces an SDF. Thus, we can build models piece
meal by starting with the SDFs of primitive solids and
progressively transforming, duplicating, and combin
ing them. For example, the following command pro
duces a pair of cylinders identical to the one above but
shifted along the y axis:

cesogen \

cylinder orient 1,0,0 scale 1/2 move 0,-2,0 \

cylinder orient 1,0,0 scale 1/2 move 0,2,0 \

union

The stack becomes harder to keep track of as
more SDFs are combined, but this can be mitigated
by storing custom SDFs in files and passing them
to Cesogen via the @file option. Also, an operator
may be added to Cesogen in the future which
would name the SDF on the left, popping it from
the stack and allowing further references to it by
name.

Though the DSL is CLI-based insofar as that is
how the Cesogen CLI takes it as input, nothing pre
vents its use as a general textual representation of
SDFs, e.g. in configuration files of cellular
solid–based blackboxes which invoke Cesogen on
the provided textual representation. Indeed, the
Cesogen library accepts the DSL as a string

Figure 1. Tree representation of the operations Cesogen performs when invoked as ‘cesogen tpms.Gyroid file mesh1.Ply
intersection tpms.P file mesh2.Ply intersection union’. It evaluates the SDFs in a depth-first, post-order manner.
In fact, the command-line arguments are a flattened version of the tree with the nodes visited in depth-first post-order.

Sci. Technol. Adv. Mater. Meth. 5 (2025) 7 P.A. PATIENCE et al.

representing an SDF. The generality of the DSL
makes it more convenient to model complex shapes
incorporating cellular solids directly via Cesogen and
results in more accurate results, because an inter
mediate model need not be transformed into an
SDF – which transformation is inherently lossy –
before intersecting it with the SDF of a cellular solid.

Finally, of the cellular solid generators listed in
the introduction, only Cesogen satisfies all three of
the guiding principles described here. None of the
GUI-based generators are suitable for blackbox
optimization, which eliminates all the commercial
generators listed and all the freely available gen
erators listed except Scaffolder, ASLI and
Microgen. ASLI supports only a predetermined
set of cellular solids to fill external solids with,
without any way to extend its library without
recompiling the application, and its input is strictly
via configuration file, thus it violates the second
and third principles. Scaffolder supports custom
SDFs in Lua files, and Microgen is a Python
library, so both are theoretically as composable as
Cesogen, but they require writing code, thus they
violate the second principle.

5. Results and discussion

This section contains a series of examples of the kinds of
cellular solids that Cesogen can generate, and also an
evaluation of the performance and limitations of
Cesogen.

All experiments were performed on a machine with
the following specifications:

● OS: Chimera Linux x86_64
● Host: 20UH000CUS ThinkPad T14s Gen 1
● Kernel: 6.13.4-0-generic
● CPU: AMD Ryzen 7 PRO 4750 U with Radeon

Graphics (16) @ 1.700 GHz
● Memory: 15210 MiB

5.1. Examples of TPMS-like cellular solids

Cesogen supports many TPMS-like cellular solids; the
expressions of their corresponding surfaces are listed
in Table 2, where

and τ ¼ 2π. Point coordinates are represented by x,
y and z rather than xi to conform to Cesogen’s
equation syntax.

A selection of TPMS-like cellular solids generated
by Cesogen is presented in Figures 2 and 3.

5.2. Filling meshes

Cesogen is able to fill existing meshes with arbitrary
cellular solids via the intersection operation, invoked as
‘cesogen Ω. . . file Λ intersection’ where Ω . . . is

Table 2. Expressions of TPMS-like surfaces described by Fisher et al. [52]. The right-hand sides of the corresponding implicit
surface equations are 0.

Name Expression

Gyroid Cx Sy þ Cy Sz þ Cz Sx

D Sx Sy Sz þ Cx Sy Cz þ Cy Sz Cx þ Cz Sx Cy

P Cx þ Cy þ Cz

IWP 2ðCx Cy þ Cy Cz þ Cz CxÞ � ðC2x þ C2y þ C2zÞ

Neovius 4Cx Cy Cz þ 3ðCx þ Cy þ CzÞ

C(Y) � Sx Sy Sz þ S2x Sy þ S2y Sz þ S2z Sx � Cx Cy Cz þ Cx S2y þ Cy S2z þ Cz S2x

Lidinoid S2x Cy Sz þ S2y Cz Sx þ S2z Cx Sy � ðC2x C2y þ C2y C2z þ C2z C2xÞ þ 0:3
OCTO 0:6ðCx Cy þ Cy Cz þ Cz CxÞ � 0:4ðCx þ Cy þ CzÞ þ 0:25
FRD 8Cx Cy Cz þ C2x C2y C2z � ðC2x C2y þ C2y C2z þ C2z C2xÞ

S C2x Sy Cz þ C2y Sz Cx þ C2z Sx Cy

P+C(P) 0:3Cx Cy Cz þ 0:1C2x C2y C2z þ 0:2ðCx þ Cy þ CzÞ þ 0:1ðC2x þ C2y þ C2zÞ þ 0:05ðC3x þ C3y þ C3zÞ þ 0:1ðCx Cy þ Cy Cz þ Cz CxÞ

Split P 1:1ðS2x Cy Sz þ S2y Cz Sx þ S2z Cx SyÞ � 0:2ðC2x C2y þ C2y C2z þ C2z C2xÞ � 0:4ðC2x þ C2y þ C2zÞ

F Cx Cy Cz

C(D) C3xþy Cz � S3x� y Sz þ Cxþ3y Cz þ Sx� 3y Sz þ Cx� y C3z � Sxþy S3z

G0 S2x Cy Sz þ S2y Cz Sx þ S2z Cx Sy þ 0:32
G
0

2
5ðS2x Cy Sz þ S2y Cz Sx þ S2z Cx SyÞ þ C2x C2y þ C2y C2z þ C2z C2x

D0 0:5ðCx Cy Cz þ Sx Cy Sz þ Sy Cz Sx þ Sz Cx SyÞ � 0:5ðS2x S2y þ S2y S2z þ S2z S2xÞ � 0:2
K 0:3ðCx þ Cy þ Cz þ Cx Cy þ Cy Cz þ Cz CxÞ � 0:4ðC2x þ C2y þ C2zÞ þ 0:2
C(S) C2x þ C2y þ C2z þ 2ðS2x Cy S3z þ S2y Cz S3x þ S2z Cx S3yÞ þ 2ðS2x C3y Sz þ S2y C3z Sx þ S2z C3x SyÞ

Y Sx Sy Sz þ Cx S2y þ Cy S2z þ Cz S2x þ Cx Cy Cz þ S2x Sy þ S2y Sz þ S2z Sx

±Y 2Cx Cy Cz þ S2x Sy þ S2y Sz þ S2z Sx

C(±Y) � 2Cx Cy Cz þ S2x Sy þ S2y Sz þ S2z Sx

C(I2-Y**) 2ðS2x Cy Sz þ S2y Cz Sx þ S2z Cx SyÞ þ C2x C2y þ C2y C2z þ C2z C2x

W C2x Cy þ C2y Cz þ C2z Cx � ðCx C2y þ Cy C2z þ Cz C2xÞ

Q* Cx � 2Cy
� �

Cz �
ffiffiffi
3
p

Sz Cx� y � Cx
� �

þ Cx� y Cz

C(G) 3ðSx Cy þ Sy Cz þ Sz CxÞ þ 2ðS3x Cy þ S3y Cz þ S3z CxÞ � 2ðSx C3y þ Sy C3z þ Sz C3xÞ

Slotted P � 2ðCx Cy þ Cy Cz þ Cz CxÞ � 2ðC2x þ C2y þ C2zÞ þ C2x Cy þ C2y Cz þ C2z Cx � ðCx C2y þ Cy C2z þ Cz C2xÞ

Sci. Technol. Adv. Mater. Meth. 5 (2025) 8 P.A. PATIENCE et al.

a sequence of Cesogen operations representing the cel
lular solid with which to fill the mesh named Λ.

For example, to fill a baluster model with a Neovius
endoskeleton (Figure 4), run
cesogen -s , tpms.neovius scale κ0 \

file baluster.obj \
intersection

with samples , to preserve finer features and scale κ0 to
adjust the cellular solid’s cell size to the baluster’s size.
Values for ð,; κ0Þ could be for example ð803; 0:065Þ or
ð1203; 0:03Þ. More samples should be taken for smaller
scales to appropriately capture the features of the cellu
lar solid. To fill an acorn model with an OCTO endos
keleton (Figure 5), run
cesogen -s , tpms.octo scale κ0 \

file acorn.obj \
intersection

where ð,; κ0Þ could be for example ð803; 0:009Þ
or ð1203; 0:003Þ.

5.3. Generating hierarchical cellular solids

Cesogen generates hierarchical cellular solids via
direct intersection (Figure 6). It combines the con
stituent SDFs at runtime and writes the resulting SDF
directly to disk. Cellular solid generators which are
unable to combine multiple SDFs are limited to
sequential intersection, i.e. computing one intersec
tion, writing it to disk, and repeating the process for
each additional SDF.

(a) Gyroid

(d) IWP (= 853, ξ = 0.65)

(g) Lidinoid (= 853, ξ = 0.65) (h) OCTO (ξ = 0.1) (i) FRD (= 853, (ξ = 0.1)

(e) Neovius (= 853) (f) C(Y) (= 853)

(b) D (c) P

Figure 2. Showcase of various TPMS-like endoskeletons generated by the command ‘cesogen -s , Ω offset �’ with by default
, ¼ 603 and � ¼ 0:35.

Sci. Technol. Adv. Mater. Meth. 5 (2025) 9 P.A. PATIENCE et al.

The sequential method incurs a performance cost –
the writing and reading of each intermediate SDF – but
also sets an upper bound on the number of combina
tions possible. For instance, Cesogen is currently unable
to generate the hierarchical cellular solids in Figure 6(f,
g) via the sequential method. Indeed, the extraction of
SDFs from triangle meshes containing narrow triangles,
via a proximity algorithm, is fraught with floating point
errors, because computing the distance from a point to
a skewed triangle is numerically unstable. Whereas the
direct SDF computation needs to extract a single SDF,
the sequential computation extracts each of the inter
mediate SDFs. Furthermore, when the meshes result
from a contouring algorithm such as marching cubes
without a subsequent smoothing algorithm, narrow
triangles abound.

The rest of this section demonstrates the issue
with two examples. The first example is an expan
sion of the hierarchical cellular solid example
above. The second is a series of roundtrip serial
ization–deserialization steps, where the serialization
consists of writing an SDF to disk and the deser
ialization of extracting it via a proximity algorithm.
In the ideal case, roundtrip conversions should be
repeatable ad infinitum, but this is not the case in
practice.

To aid in the analysis of the results, we measure
four kinds of errors: the L2 error of the distance from
the mesh points and cell centers to the reference SDF,
and the maximum distance from the points and cell
centers to the reference SDF. These are all relative to
the length of the diagonal of the grid.

(a) Gyroid (b) D (c) P

(d) IWP (= 853, ξ = 0.65) (e) Neovius (= 853) (f) C(Y) (= 853)

(g) Lidinoid (= 853, ξ = 0.65) (h) OCTO (ξ = 0.1) (i) FRD (= 853, (ξ = 0.65)

Figure 3. Showcase of various TPMS-like shells generated by the command ‘cesogen -s , Ω shell Ξ’ with Ξ ¼ 2� and by
default , ¼ 603 and � ¼ 0:35.

Sci. Technol. Adv. Mater. Meth. 5 (2025) 10 P.A. PATIENCE et al.

The hierarchical experiment’s errors are displayed
in Figure 7. Only the data for the direct case is pre
sented, because the zeroth step is the same operation
in the direct and sequential cases; the error in the first
step is almost identical; and from the second step the
sequential generation fails for trying to divide by zero.
The errors increase monotonously, because each addi
tional combination adds more detail to the resulting
object, making it harder to approximate with a mesh
contoured from a given grid size. The details lie along
the edges of the objects; there is more error along the
edges of the sequential version of ΩB \ΩP (Figure 8).

We conducted the sequential hierarchical experi
ment with ASLI and obtained similar results, i.e. ASLI
crashes after a few combinations.

The roundtrip experiment’s errors are displayed in
Figure 9. The data stops at the 27th roundtrip because
the 28th results in a division by zero. The L2 errors

increase monotonously starting from the second and
first roundtrips for points and cells, respectively; the
maximum distances decrease and increase and decrease
again throughout the roundtrips. However, the quality of
the final mesh is severely degraded compared to the first
(Figure 10).

The roundtrip results become even worse when
starting with a more complex initial mesh, like the
Stanford bunny rather than a ball. In some cases,
artifacts begin to appear, e.g. triangles appearing out
side of the objects.

The problems inherent to the sequential method
can be mitigated by using more robust algorithms
for computing the point-to-triangle distance, but
those incur a performance cost and are thus warranted
only when the initial mesh contains problematic fea
tures. For generating hierarchical cellular solids, the
direct method should be preferred.

(a) Original (b) Filled (,κ0) = (803, 0.065) (c) Filled (,κ0) = (1203, 0.03)

Figure 4. Neovius baluster, (a) original triangle mesh converted from the quadrilateral mesh from TheBaseMesh [55] and (b, c) filled
meshes generated by the command cesogen -s , tpms. neovius scale κ0 file baluster.obj intersection, which
took 1.3 s and 4.2 s to generate, respectively.

(a) Original (b) Filled, (, κ0)= (803, 0.009) (c) Filled, (, κ0)= (1203, 0.003)

Figure 5. OCTO acorn, (a) original triangle mesh converted from the quadrilateral mesh from TheBaseMesh [56] (b, c) filled meshes
generated by the command 'cesogen -s , tpms.octo scale κ0 file acorn.obj intersection', which took 1.3 s and
4.1 s to generate, respectively.

Sci. Technol. Adv. Mater. Meth. 5 (2025) 11 P.A. PATIENCE et al.

5.4. Performance and limitations

This section examines the performance of Cesogen –
how fast it can generate cellular solids and how fine
they can be – and also some of its limitations.

We ran Cesogen via hyperfine [57] and generated
gyroids with progressively more samples by the

command

cesogen -s , tpms.gyroid

with , 2 f 253; 503; 1003; 2003; 3003; . . . ; 8003 g. The
mesh generated from 8003 samples contained

16.2 million cells and took 79s to generate
(Figure 11). Finer meshes than that required more
than 16 GiB of memory.

Further limitations of Cesogen include the
following:

● Cesogen requires an explicit contouring grid be
given, unlike ASLI. This means that users of
Cesogen must estimate the dimensions of the
grid required to reach mesh convergence.

● The algorithm for computing mesh SDFs is not
robust. As demonstrated in the previous section,
it fails for some meshes.

● Generating hierarchical cellular solids requires
more samples in order to capture the finer fea
tures, which increases computation time. This
could be mitigated by contouring algorithms
which take advantage of the nature of SDFs to
evaluate less points on the grid [41].

Although Cesogen is not parallelized, this is not
a limitation in the context of blackbox optimization:
direct search algorithms are embarrassingly paralleliz
able because they can evaluate several blackbox simu
lations concurrently [58], and exploiting parallel
resources at the solver level is generally preferable to
parallelizing individual components of the blackbox.

(a) Truncated ball ΩB (b) P endoskeleton ΩP (c) D endoskeleton ΩD

(e) ΩB ∩ ΩP (f) ΩB ∩ ΩP ∩ ΩD (g) ΩB ∩ ΩP ∩ ΩD ∩ ΩG

(d) Gyroid endoskeleton ΩG

Figure 6. Hierarchical cellular solid consisting of the intersection of (a) a truncated ball, (b) a P endoskeleton, (c) a finer D endoskeleton,
and (d) an even finer gyroid endoskeleton. The figures at the top show the original models and those at the bottom the progressively
intersected cellular solid. The command which generates the final result is ‘cesogen -b - 4,-4,-4,4,4,4 -s 130^3 ball
scale 5 tpms.p scale 4 tpms.d scale 3.75 tpms.gyroid scale 1.25 intersection intersection
intersection’.

Figure 7. Direct hierarchical L2 point errors (), L2 cell errors (),
max point distances () and max cell distances (). Points are
represented by circles, cells by triangles. L2 errors are repre
sented by filled shapes, max distances by hollow shapes.

Sci. Technol. Adv. Mater. Meth. 5 (2025) 12 P.A. PATIENCE et al.

6. Blackbox optimization

Cesogen’s raison d’être is to facilitate the blackbox
optimization of cellular solids. Gradient

information for the objective function and con
straints of blackbox optimization problems are
usually either unavailable or hard to compute, and
thus dedicated algorithms exist for this class of
problems [59]. Examples of such problems are com
puter simulations, which arise in many engineering
applications [60]. In this section, we demonstrate
Cesogen’s capabilities by optimizing a cellular solid
much more conveniently than would be possible by
hand, i.e. without Cesogen.

The optimization process (Figure 12) consists of
two parts: the blackbox, a program which simulates
the compression of a cellular solid, and the blackbox
optimizer, which launches the blackbox over and over
in order to determine the best cellular solid given some
constraints.

The blackbox simulates the compression of a cellular
solid described by the input variables x 2 X and
a configuration C. It invokes Cesogen to generate

(a) Direct intersection (b) Sequential intersection

Figure 8. Colored meshes corresponding to ΩB \ ΩP \ ΩD. The log-scale coloring corresponds to the distance from the points to
the reference SDF.

Figure 9. Roundtrip L2 point errors (), L2 cell errors (), max
point distances () and max cell distances (). Points are
represented by circles, cells by triangles. L2 errors are repre
sented by filled shapes, max distances by hollow shapes.

(a) Before first roundtrip (b) After last roundtrip

Figure 10. Meshes before the first and after the last successful roundtrips. The log-scale coloring corresponds to the distance from
the points to the reference SDF. The command which generates the initial result is ‘cesogen -b -4,-4,-4,4,4,4 -s 100^3
ball scale 4 tpms.gyroid scale 4 intersection’.

Sci. Technol. Adv. Mater. Meth. 5 (2025) 13 P.A. PATIENCE et al.

a triangle mesh corresponding to the cellular solid,
converts it to a tetrahedral mesh with Gmsh [61], and
then simulates its compression by calling MFEM [62],
a finite element method (FEM) library, to solve the
linear elastic equations in a way similar to MFEM’s
example 2. The blackbox applies a force evenly distrib
uted over the top surface of the material and returns
several values describing the resulting mesh, from
which we can extract the values of the objective func
tion f :X ! �R and constraints c:X ! �R m, where
�R ¼ R [þ1f g. We have not done a mesh conver
gence analysis of the blackbox because this is
a qualitative demonstration of Cesogen.

The specific optimization problem consists of mini
mizing the solid fraction α 2 ½0; 1� of an hourglass-
shaped block (Figure 13(a)) filled with an exoskeletal
cellular solid and to which we apply a downwards
vertical compression on the top surface. The cellular
solid is described by the input variables cellular solid

kind – one of gyroid, IWP and FRD –, offset radius
� 2 ½� 1; 3� and scale κ0 2 ½0:5; 2�. The kind variable is
categorical and is handled by launching one instance
of the blackbox optimizer per possible value; the other
variables are continuous. Various constraints exist to
ensure that the blackbox produces a physically valid
mesh; they include a constraint on the average displa
cement of the top surface induced by the compression
and a constraint on the maximum displacement of any
point in the domain.

The triangle meshes corresponding to the initial
and filled hourglasses can be generated with the stan
dalone Cesogen command

cesogen -s 40^3 \

cylinder move 0,-2,0 \

cylinder move 0,2,0 union \

scale 1/2 orient 1,0,0 complement \

box intersection \

[Ω offset � complement scale κ0 \

intersection]

where the section in brackets is omitted for the plain
hourglass and kept, though without the brackets, for
a TPMS-like Ω with offset radius � and scale κ0.
Cesogen generates the hourglasses in one step via
direct intersection.

The blackbox optimizer is NOMAD [63], an open-
source implementation of the MADS algorithm [64].
We left the algorithm parameters to their default values,
determined the initial point from a set of 20 LHS
evaluations, and set the evaluation budget (limit),
which includes the LHS evaluations, to 50 per cellular
solid kind.

The optimization of the three cellular solids took
7.5 h in total (Table 3). The best cellular solids found
were, in increasing order of solid fraction, IWP
(Figure 13(c)), FRD (Figure 13(d)) and gyroid
(Figure 13(b)).

Figure 11. Mean time taken for Cesogen to generate gyroids
via ‘cesogen -s , tpms.gyroid’ with
, 2 f 253; 503; 1003; 2003; 3003; . . . ; 8003 g. Samples beyond
8003 required more memory than that available on the test
machine.

Figure 12. Block diagram of the optimization process. The generator consists of Cesogen and Gmsh [61], the FEM solver is MFEM
[62], and the optimizer is NOMAD [63]. The optimizer starts by feeding a point x 2 X to the blackbox, where X is the domain of
the objective function f :X ! �R and constraints c:X ! �R m, with �R ¼ R [þ1f g. From this point, and further informed by
the configuration C, the blackbox produces the values fðxÞ and cðxÞwhich are inspected by the optimizer to propose the following
point, and the cycle repeats until a stopping criterion is met.

Sci. Technol. Adv. Mater. Meth. 5 (2025) 14 P.A. PATIENCE et al.

The convergence plot for each cellular solid kind
(Figure 13(e)) illustrates the feasible solutions found
by the optimizer and the evolution of the solid fraction
throughout the optimization. Infeasible solutions are

omitted from the graph, and they can account for
more than 50 % of the total evaluations; they are the
reason the best-solution lines in the convergence plot
do not start at blackbox evaluation 1. There are two

(a) Hourglass

(b) Gyroid

(e) Convergence plot

(c) IWP (d) FRD

Figure 13. Initial hourglass (a) and best solutions (b, c, d) to the optimization problem for each cellular solid kind. In the
convergence plot (e), the filled shapes represent feasible solutions, the solid lines the best solution found so far, and infeasible
solutions are omitted.

Table 3. Solutions to the optimization problem for each cellular
solid kind, along with the time t taken for each.

Kind � κ0 α t=h

Gyroid 0:037 1:3 0:38 1:8
IWP 0:52 0:50 0:31 2:9
FRD 0:56 1:1 0:31 2:9

Sci. Technol. Adv. Mater. Meth. 5 (2025) 15 P.A. PATIENCE et al.

main causes for infeasible solutions: non-physical simu
lations, i.e. the mesh would not be manufacturable, and
mesh generation errors. Both are handled by NOMAD.

This example illustrates how Cesogen can be
employed to perform a complex optimization task.
A GUI-only generator would be inappropriate, as the
user would have to generate each mesh by hand. Here
the blackbox optimizer tested about 150 different
meshes, but introducing additional cellular solid
kinds and allowing more blackbox evaluations would
increase this number to the thousands.

7. Conclusion

Cesogen is a general SDF processor which specializes
in generating cellular solids in a manner suitable for
computer-guided optimization. It has an extensive
library of TPMS-like cellular solids and can generate
hierarchical cellular solids via direct intersection. Its
CLI is flexible enough to cover a wide range of use-
cases and is targeted at any user wanting to study and
optimize cellular solids.

Cesogen has some limitations, which include
requiring an explicit contouring grid be provided, its
SDF-computation algorithm being sensitive to narrow
triangles in the input, and generating hierarchical cel
lular solids requiring a fine grid, which non-negligibly
increases computation time. Furthermore, it cannot
generate tetrahedral meshes, which means a third-
party tool is required in order to run FEM simulations
on Cesogen output.

Cesogen is under active development and its road
map includes the following features:

● more cellular solids, in particular strut-based cel
lular solids;

● more triangle-based contouring algorithms [39–41],
possibly parallel ones;

● a tetrahedron-based contouring algorithm [42];
● a graphical user interface for real-time interactive

exploration of cellular solids;
● heuristically saturating maximum distances when

computing the SDFs of meshes containing nar
row triangles;

● possibly built-in mesh adaptation, to make read
ing generated meshes more robust; and

● possibly more robust SDF computation
algorithms.

One important future feature is providing
a universal interface for cellular solid generation.
The most compelling feature of Cesogen is its DSL
for describing SDFs. We believe it can represent any
cellular solid that the other freely available cellular
solid generators can produce. The goal is to make
Cesogen a universal cellular solid generator which
can hook into any generator which has a CLI or is

exposed as a library, e.g. ASLI, allowing Cesogen to
benefit from any advancements to other cellular
solids generators by leveraging them itself. Cesogen
would then present a universal interface for cellular
solid generation in order to facilitate the application
of mathematical optimization techniques to cellular
solid design.

In addition to continuing the development of
Cesogen, further research could be done on determin
ing which contouring algorithms are best suited for
cellular solids.

Nomenclature

Abbreviations
CLI command-line interface
DSL domain-specific language
FEM finite element method
GUI graphical user interface
SDF signed distance function
TPMS triply periodic minimal surface
TPSf triply periodic surface
TPcS triply periodic eccentric surface
TPnS triply periodic endoskeleton
TPxS triply periodic exoskeleton

Symbols
C blackbox configuration
c constraints; c:X ! �R m

d distance; d: R n � R n ! R

ek unit vector along dimension k; ek 2 R n

f objective function; f :X ! �R

fΩ SDF of Ω; fΩ: R n ! R
~fΩ approximate SDF of Ω: ~fΩ: R n ! R

IΩ indicator function of
Ω; IΩ: R n ! f 0; 1 g

, number of samples; , 2 Z > 0
m dimension of constraints; m 2 Z > 0
n dimension of point; n 2 Z > 0
R set of real numbers
R�0 set of nonnegative real numbers
R 6¼0 set of nonzero real numbers
�R R [fþ1g

t time (s); t 2 R�0
v rotation axis; v 2 R 3nf 0 g
v orientation axis;

v 2 R 3nf x 2 R 3: x1 ¼ 0; x2 ≤ 0, x3 ≤ 0 }
X domain
x point; x 2 R n

x first coordinate of 3D point; x 2 R

y point; y 2 R n

y second coordinate of 3D point; y 2 R

Z set of integers
Z�0 set of strictly positive integers
z third coordinate of 3D point; z 2 R

α solid fraction; α 2 ½0; 1�
δ translation distance; δ 2 R n

θ rotation angle; θ 2 R

κ0 isotropic scaling factor; κ0 2 R 6¼0
κ anisotropic scaling factor; κ 2 R n

6¼0
Λ solid object; Λ � R n

Ξ shell thickness; Ξ 2 R�0
� offset radius; � 2 R

π half-circle constant

Sci. Technol. Adv. Mater. Meth. 5 (2025) 16 P.A. PATIENCE et al.

ρ� density of cellular solid (kg m� 3);
ρ� 2 R�0

ρs density of cellular solid’s constituent
solid (kg m� 3); ρs 2 R�0

τ full-circle constant (2π)
Ω solid object; Ω � R n

@Ω boundary of Ω

Acknowledgements

The authors would like to thank Marc-Étienne Lamarche-
Gagnon from NRC for constructive discussions.

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Funding

The work was supported by the Natural Sciences and
Engineering Research Council of Canada [239436-01].
This project was funded by NSERC CRD grant 538319-
2018 (Audet) with NRC and by the discovery grants
239436-01 (Audet) and RGPIN-2020–04510 (Blais).

CRediT statement

• Conceptualization: PAP, CA, BB
• Data curation: PAP
• Formal analysis: PAP
• Funding acquisition: CA, BB
• Investigation: PAP
• Methodology: PAP
• Project administration: CA, BB
• Software: PAP
• Resources: CA, BB
• Supervision: CA, BB
• Validation: PAP
• Visualization: PAP
• Writing – original draft: PAP
• Writing – review & editing: PAP, CA, BB

ORCID

Paul A. Patience http://orcid.org/0009-0007-2809-8168
Charles Audet http://orcid.org/0000-0002-3043-5393
Bruno Blais http://orcid.org/0000-0001-6053-6542

Data availability statement

The data that supports the findings of this study is openly
available at https://doi.org/10.5281/zenodo.15270544 [65],
or directly from its repository https://git.sr.ht/~paulapa
tience/cellul-solid-gener-results.

References

[1] Gibson LJ, Ashby MF. Cellular solids: structure and
properties. In: Cambridge Solid State Science Series.

2nd ed. Cambridge, (UK): Cambridge University
Press; 1999 Aug.

[2] Thompson MK, Moroni G, Vaneker T, et al. Design
for additive manufacturing: trends, opportunities,
considerations, and constraints. CIRP Ann. 2016;65
(2):737–760. doi: 10.1016/j.cirp.2016.05.004

[3] Feng J, Fu J, Yao X, et al. Triply periodic minimal
surface (TPMS) porous structures: from multi-scale
design, precise additive manufacturing to multidisci
plinary applications. Int J Extrem Manuf. 2022 Mar;4
(2):022001. doi: 10.1088/2631-7990/ac5be6

[4] Dinis JC, Morais TF, Amorim PHJ, et al. Open source
software for the automatic design of scaffold struc
tures for tissue engineering applications. Procedia
Technol. 2014;16:1542–1547. doi: 10.1016/j.protcy.
2014.10.176

[5] Al-Ketan O, Abu Al-Rub RK. MSLattice: a free soft
ware for generating uniform and graded lattices based
on triply periodic minimal surfaces. Mater Des
Process Commun. 2020 Oct;3(6). doi: 10.1002/
mdp2.205

[6] Hsieh M-T, Valdevit L. Minisurf – a minimal surface
generator for finite element modeling and additive
manufacturing. Softw Impacts. 2020 Nov;6:100026.
doi: 10.1016/j.simpa.2020.100026

[7] Hsieh M-T, Valdevit L. Update (2.0) to Minisurf—a
minimal surface generator for finite element model
ing and additive manufacturing. Softw Impacts. 2020
Nov;6:100035. doi: 10.1016/j.simpa.2020.100035

[8] Morton D. TPMS-Modeler. Version 2. Initial version
1 on 2021–01-04. 2023. Available from: https://
github.com/danielpmorton/TPMS-Modeler

[9] Iamsamang J, Naiyanetr P. Computational method
and program for generating a porous scaffold based
on implicit surfaces. Comput Methods Programs
Biomed. 2021 June;205(106088):106088. doi: 10.
1016/j.cmpb.2021.106088

[10] Jones A, Leary M, Bateman S, et al. TPMS Designer:
a tool for generating and analyzing triply periodic
minimal surfaces. Softw Impacts. 2021
Nov;10:100167. doi: 10.1016/j.simpa.2021.100167

[11] Jones AD. Design and additive manufacturing of
TPMS-like cellular structures [PhD thesis]. RMIT
University; 2022. Available from: https://researchrepo
sitory.rmit.edu.au/esploro/outputs/9922159113301341

[12] Karakoç A. RegionTPMS — region based triply per
iodic minimal surfaces (TPMS) for 3-D printed mul
tiphase bone scaffolds with exact porosity values.
SoftwareX. 2021 Dec;16:100835. doi: 10.1016/j.softx.
2021.100835

[13] Maskery I, Parry LA, Padrão D, et al. FLatt Pack: a
research-focussed lattice design program. Addit
Manuf. 2022 Jan;49:102510. doi: 10.1016/j.addma.
2021.102510

[14] Lodi MB, Makridis A, Carboni NM, et al. Design and
characterization of magnetic scaffolds for bone tumor
hyperthermia. In: IEEE Access; 2022 Feb 14. Vol. 10.
p. 19768–19779. doi: 10.1109/access.2022.3151470

[15] Perez-Boerema F, Barzegari M, Geris L. A flexible and
easy-to-use open-source tool for designing function
ally graded 3D porous structures. Virtual Phys
Prototyping. 2022 Mar;17(3):682–699. doi: 10.1080/
17452759.2022.2048956

[16] Marchais K, Chemisky Y, d’Esparbès R, et al. 3MAH/
microgen: v1.3.2. Version 1.3.2. Initial release 1.0.0 on

Sci. Technol. Adv. Mater. Meth. 5 (2025) 17 P.A. PATIENCE et al.

https://doi.org/10.5281/zenodo.15270544
https://git.sr.ht/~paulapatience/cellul-solid-gener-results
https://git.sr.ht/~paulapatience/cellul-solid-gener-results
https://doi.org/10.1016/j.cirp.2016.05.004
https://doi.org/10.1088/2631-7990/ac5be6
https://doi.org/10.1016/j.protcy.2014.10.176
https://doi.org/10.1016/j.protcy.2014.10.176
https://doi.org/10.1002/mdp2.205
https://doi.org/10.1002/mdp2.205
https://doi.org/10.1016/j.simpa.2020.100026
https://doi.org/10.1016/j.simpa.2020.100035
https://github.com/danielpmorton/TPMS-Modeler
https://github.com/danielpmorton/TPMS-Modeler
https://doi.org/10.1016/j.cmpb.2021.106088
https://doi.org/10.1016/j.cmpb.2021.106088
https://doi.org/10.1016/j.simpa.2021.100167
https://researchrepository.rmit.edu.au/esploro/outputs/9922159113301341
https://researchrepository.rmit.edu.au/esploro/outputs/9922159113301341
https://doi.org/10.1016/j.softx.2021.100835
https://doi.org/10.1016/j.softx.2021.100835
https://doi.org/10.1016/j.addma.2021.102510
https://doi.org/10.1016/j.addma.2021.102510
https://doi.org/10.1109/access.2022.3151470
https://doi.org/10.1080/17452759.2022.2048956
https://doi.org/10.1080/17452759.2022.2048956

2022–07-04. 2025 Jan 14. doi: http://doi.org/10.5281/
ZENODO.14643858

[17] Pèrez-Barrera J, Gómez-Ortega A, Tenorio-Suárez MI,
et al. Version [2.0] - [MaSMaker: an open-source,
portable software to create and integrate maze-like
surfaces into arbitrary geometries]. SoftwareX. 2024
May;26:101683. doi: 10.1016/j.softx.2024.101683

[18] Tenorio-Suárez MI, Gómez-Ortega A, Canales H,
et al. MaSMaker: an open-source, portable software
to create and integrate maze-like surfaces into arbi
trary geometries. SoftwareX. 2022 July;19:101203. doi:
10.1016/j.softx.2022.101203

[19] Raju SKK, Onkar PS. Lattice_Karak: lattice structure
generator for tissue engineering, lightweighting and
heat exchanger applications. Softw Impacts. 2022
Dec;14:100425. doi: 10.1016/j.simpa.2022.100425

[20] Forès-Garriga A, García de la Torre H, Lado-Roigé R,
et al. Triply periodic minimal surfaces generator -
TPMSgen. Version 1.0.0. 2023 Jan 17. Available
from: https://github.com/albertforesg/TPMSgen

[21] Lu C, Lesmana LA, Chen F, et al. MD-TPMS:
multi-dimensional gradient minimal surface
generator. Softw Impacts. 2023 Sept;17:100527. doi:
10.1016/j.simpa.2023.100527

[22] Leung J, Verwilligen V, Clarke D, et al. TPMS Studio.
Version 0.8.4. Biomolecular Interaction Centre. 2023.
Available from: https://tpmsstudio.com/

[23] Lin D, Zhang C, Chen X, et al. TPMS_Scaffold_
Generator: a scaffold-structure generator based on triply
periodic minimal surfaces. Addit Manuf Front. 2024
June;3(2):200123. doi: 10.1016/j.amf.2024.200123

[24] Chris-Amadin H, Ibhadode O. LattGen: a TPMS lat
tice generation tool. Softw Impacts. 2024
Sept;21:100665. doi: 10.1016/j.simpa.2024.100665

[25] Nickels L. Software toolkits for architected materials,
lightweighting, and more. Metal Powder Report.
2020 July;75(4):203–206. doi: 10.1016/j.mprp.2020.
04.003

[26] Bálint C, Valasek G, Gergó L. Operations on signed
distance functions. Acta Cybernetica. 2019 May 21;24
(1):17–28. doi: 10.14232/actacyb.24.1.2019.3

[27] Malladi R, Sethian JA, Vemuri BC. Shape modeling
with front propagation: a level set approach. IEEE
Trans Pattern Anal Mach Intell. 1995 Feb;17
(2):158–175. doi: 10.1109/34.368173

[28] Chan T, Zhu W. Level set based shape prior
segmentation. In: CVPR ‘05: Proceedings of the 2005
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05) (San Diego,
CA, United States). Washington, DC, United States:.
IEEE Computer Society; 2005 June; p. 1164–1170.
doi: 10.1109/cvpr.2005.212

[29] Pasko A, Adzhiev V, Sourin A, et al. Function repre
sentation in geometric modeling: concepts, imple
mentation and applications. The Visual Comput.
1995 Aug;11(8):429–446. doi: 10.1007/BF02464333

[30] Quilez I. Distance functions. [cited 2023 Dec 22].
Available from: https://iquilezles.org/articles/
distfunctions/

[31] Baerentzen JA, Aanaes H. Generating signed distance
fields from triangle meshes. IMM technical report
IMM-TR-2002–21. Richard Petersens Plads, building
321, DK-2800 Kgs. Lyngby: Informatics and
Mathematical Modelling, Technical University of
Denmark, DTU; 2002. Available from: http://www2.
imm.dtu.dk/pubdb/pubs/1289-full.html

[32] Bálint C, Valasek G, Gergó L. Operations on signed
distance function estimates. Comput Aided Des Appl.
2023 Mar;20(6):1154–1174. doi: 10.14733/cadaps.
2023.1154-1174

[33] Quilez I. Interior SDFs. 2020 [cited 2023 Dec 22].
Available from: https://iquilezles.org/articles/
interiordistance/

[34] Custodio L, Etiene T, Pesco S, et al. Practical consid
erations on marching cubes 33 topological
correctness. Comput Graphics. 2013 Nov;37
(7):840–850. doi: 10.1016/j.cag.2013.04.004

[35] Custodio L, Pesco S, Silva C. An extended triangulation
to the marching cubes 33 algorithm. J Braz Comput Soc.
2019 June;25(1). doi: 10.1186/s13173-019-0086-6

[36] Grosso R. Construction of topologically correct and
manifold isosurfaces. Comput Graphics Forum. 2016
Aug;35(5):187–196. doi: 10.1111/cgf.12975

[37] Lewiner T, Lopes H, Vieira AW, et al. Efficient imple
mentation of marching cubes’ cases with topological
guarantees. J Graphics Tools. 2003 Jan;8(2):1–15. doi:
10.1080/10867651.2003.10487582

[38] Lorensen WE, Cline HE. Marching cubes: a high
resolution 3D surface construction algorithm. In:
Stone MC, editor. SIGGRAPH ‘87: Proceedings of
the 14th annual conference on Computer graphics
and interactive techniques (Anaheim, CA, United
States); (New York), NY, United States. Association
for Computing Machinery; 1987. p. 163–169. doi: 10.
1145/37401.37422

[39] Nielson GM. Dual marching cubes. In: VIS '04:
Proceedings of the conference on Visualization '04;
(Austin, TX, United States). Washington (DC),
United States. IEEE Computer Society; 2004 Oct; p.
489–496. doi: 10.1109/visual.2004.28

[40] Manson J, Schaefer S. Isosurfaces over simplicial par
titions of multiresolution grids. Comput Graphics
Forum. 2010 May;29(2):377–385. doi: 10.1111/j.
1467-8659.2009.01607.x

[41] Markuš N. A fast algorithm for generating triangle
meshes from signed distance bounds. 2020 [cited
2025 Mar 20]. Available from: https://nenadmarkus.
com/p/fast-algo-sdb-to-mesh/

[42] Labelle F, Shewchuk JR. Isosurface stuffing: fast tetra
hedral meshes with good dihedral angles. ACM Trans
Graph. 2007 July 29;26(3):57. doi: 10.1145/1276377.
1276448

[43] Bhate D. Four questions in cellular material design.
Materials. 2019 Mar;12(7):1060. doi: 10.3390/
ma12071060

[44] Pan C, Han Y, Lu J. Design and optimization of lattice
structures: a review. Appl Sci. 2020 Sept;10(18):6374.
doi: 10.3390/app10186374

[45] Tao W, Leu MC. Design of lattice structure for addi
tive manufacturing. In: 2016 International
Symposium on Flexible Automation (ISFA);
(Cleveland, OH, United States). IEEE; 2016. p.
325–332. doi: 10.1109/isfa.2016.7790182

[46] Zok FW, Latture RM, Begley MR. Periodic truss
structures. J Mech Phys Solids. 2016
Nov;96:184–203. doi: 10.1016/j.jmps.2016.07.007

[47] Lattice. In: Editors of the American Heritage
Dictionaries, editors. The American Heritage
Dictionary of the English Language. 5th ed. New
York (NY), United States: HarperCollins Publishers;
2018 Oct [cited 2023 Jul 10]. https://ahdictionary.
com/word/search.html?q=lattice

Sci. Technol. Adv. Mater. Meth. 5 (2025) 18 P.A. PATIENCE et al.

http://doi.org/10.5281/ZENODO.14643858
http://doi.org/10.5281/ZENODO.14643858
https://doi.org/10.1016/j.softx.2024.101683
https://doi.org/10.1016/j.softx.2022.101203
https://doi.org/10.1016/j.softx.2022.101203
https://doi.org/10.1016/j.simpa.2022.100425
https://github.com/albertforesg/TPMSgen
https://doi.org/10.1016/j.simpa.2023.100527
https://doi.org/10.1016/j.simpa.2023.100527
https://tpmsstudio.com/
https://doi.org/10.1016/j.amf.2024.200123
https://doi.org/10.1016/j.simpa.2024.100665
https://doi.org/10.1016/j.mprp.2020.04.003
https://doi.org/10.1016/j.mprp.2020.04.003
https://doi.org/10.14232/actacyb.24.1.2019.3
https://doi.org/10.1109/34.368173
https://doi.org/10.1109/cvpr.2005.212
https://doi.org/10.1007/BF02464333
https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/distfunctions/
http://www2.imm.dtu.dk/pubdb/pubs/1289-full.html
http://www2.imm.dtu.dk/pubdb/pubs/1289-full.html
https://doi.org/10.14733/cadaps.2023.1154-1174
https://doi.org/10.14733/cadaps.2023.1154-1174
https://iquilezles.org/articles/interiordistance/
https://iquilezles.org/articles/interiordistance/
https://doi.org/10.1016/j.cag.2013.04.004
https://doi.org/10.1186/s13173-019-0086-6
https://doi.org/10.1111/cgf.12975
https://doi.org/10.1080/10867651.2003.10487582
https://doi.org/10.1080/10867651.2003.10487582
https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/37401.37422
https://doi.org/10.1109/visual.2004.28
https://doi.org/10.1111/j.1467-8659.2009.01607.x
https://doi.org/10.1111/j.1467-8659.2009.01607.x
https://nenadmarkus.com/p/fast-algo-sdb-to-mesh/
https://nenadmarkus.com/p/fast-algo-sdb-to-mesh/
https://doi.org/10.1145/1276377.1276448
https://doi.org/10.1145/1276377.1276448
https://doi.org/10.3390/ma12071060
https://doi.org/10.3390/ma12071060
https://doi.org/10.3390/app10186374
https://doi.org/10.1109/isfa.2016.7790182
https://doi.org/10.1016/j.jmps.2016.07.007
https://ahdictionary.com/word/search.html?q=lattice
https://ahdictionary.com/word/search.html?q=lattice

[48] Anderson DM, Davis HT, Scriven LE, et al. Periodic
surfaces of prescribed mean curvature. Adv Chem
Phys. 1990 Jan 1;77:337–396. doi: 10.1002/
9780470141267.ch6

[49] Gandy PJF, Bardhan S, Mackay AL, et al. Nodal surface
approximations to the P, G, D, and I-WP triply peri
odic minimal surfaces. Chem Phys Lett. 2001;336(3–
4):187–195. doi: 10.1016/s0009-2614(00)01418-4

[50] von Schnering HG, Nesper R. Nodal surfaces of
Fourier series: fundamental invariants of structured
matter. Z für Phys B Condens Matter. 1991;83
(3):407–412. doi: 10.1007/BF01313411

[51] Wohlgemuth M, Yufa N, Hoffman J, et al. Triply
periodic bicontinuous cubic microdomain morphol
ogies by symmetries. Macromolecules. 2001;34
(17):6083–6089. doi: 10.1021/ma0019499

[52] Fisher JW, Miller SW, Bartolai J, et al. Catalog of triply
periodic minimal surfaces, equation-based lattice struc
tures, and their homogenized property data. Data Brief.
2023;49:109311. doi: 10.1016/j.dib.2023.109311

[53] Fernández-Fernández JA. TriangleMeshDistance.
2021 [cited 2023 Dec 26]. Available from: https://
github.com/InteractiveComputerGraphics/Triangle
MeshDistance

[54] SPDX Workgroup. MIT license. [cited 2023 Dec 26].
Available from: https://spdx.org/licenses/MIT.html

[55] Steer T. Baluster (Pembroke). CC0-1.0 license. [cited
2025 Apr 16]. Available from: https://www.thebase
mesh.com/asset/baluster-(pembroke)

[56] Steer T. Acorn. CC0-1.0 license. [cited 2025 Apr 16].
Available from: https://www.thebasemesh.com/asset/
acorn

[57] Peter D. hyperfine. 2023. Available from: https://
github.com/sharkdp/hyperfine

[58] Audet C, Dennis JE Jr., Le Digabel S. Parallel space
decomposition of the mesh adaptive direct search
algorithm. SIAM J Optim. 2008;19(3):1150–1170.
doi: 10.1137/070707518

[59] Audet C, Hare W. Derivative-free and blackbox opti
mization. In: Springer series in operations research
and financial engineering. 1st ed. Springer
International Publishing; 2017 Dec 13. doi: 10.1007/
978-3-319-68913-5

[60] Alarie S, Audet C, Gheribi AE, et al. Two decades of
blackbox optimization applications. EURO J Comput
Optim. 2021;9:100011. doi: 10.1016/j.ejco.2021.
100011

[61] Geuzaine C, Remacle J-F. Gmsh: a 3-D finite element
mesh generator with built-in pre- and
post-processing facilities. Int J Numer Methods Eng.
2009;79(11):1309–1331. doi: 10.1002/nme.2579

[62] Anderson R, Andrej J, Barker A, et al. MFEM:
a modular finite element methods library. Comput
Math Appl. 2021;81:42–74. doi: 10.1016/j.camwa.
2020.06.009

[63] Audet C, Le Digabel S, Montplaisir VR, et al.
Algorithm 1027: NOMAD version 4: nonlinear
optimization with the MADS algorithm. ACM
Trans Math Softw. 2022;48(3):1–22. doi: 10.1145/
3544489

[64] Audet C, Le Digabel S, Tribes C. The mesh adaptive
direct search algorithm for granular and discrete
variables. SIAM J Optim. 2019;29(2):1164–1189. doi:
10.1137/18M1175872

[65] Patience PA. Results of paper Cesogen: cellular solid
generator. Version 0.1-rc1. Zenodo. 2025 Apr 23. doi:
10.5281/zenodo.15270544

Sci. Technol. Adv. Mater. Meth. 5 (2025) 19 P.A. PATIENCE et al.

https://doi.org/10.1002/9780470141267.ch6
https://doi.org/10.1002/9780470141267.ch6
https://doi.org/10.1016/s0009-2614(00)01418-4
https://doi.org/10.1007/BF01313411
https://doi.org/10.1021/ma0019499
https://doi.org/10.1016/j.dib.2023.109311
https://github.com/InteractiveComputerGraphics/TriangleMeshDistance
https://github.com/InteractiveComputerGraphics/TriangleMeshDistance
https://github.com/InteractiveComputerGraphics/TriangleMeshDistance
https://spdx.org/licenses/MIT.html
https://www.thebasemesh.com/asset/baluster-(pembroke)
https://www.thebasemesh.com/asset/baluster-(pembroke)
https://www.thebasemesh.com/asset/acorn
https://www.thebasemesh.com/asset/acorn
https://github.com/sharkdp/hyperfine
https://github.com/sharkdp/hyperfine
https://doi.org/10.1137/070707518
https://doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1016/j.ejco.2021.100011
https://doi.org/10.1016/j.ejco.2021.100011
https://doi.org/10.1002/nme.2579
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1145/3544489
https://doi.org/10.1145/3544489
https://doi.org/10.1137/18M1175872
https://doi.org/10.1137/18M1175872
https://doi.org/10.5281/zenodo.15270544
https://doi.org/10.5281/zenodo.15270544

	Abstract
	Abstract
	1. Introduction
	2. Signed distance functions
	3. Cellular solids
	4. Cellular solid generator
	4.1. Overview
	4.2. Usage
	4.3. Guiding principles

	5. Results and discussion
	5.1. Examples of TPMS-like cellular solids
	5.2. Filling meshes
	5.3. Generating hierarchical cellular solids
	5.4. Performance and limitations

	6. Blackbox optimization
	7. Conclusion
	Nomenclature
	Acknowledgements
	Disclosure statement
	Funding
	CRediT statement
	ORCID
	Data availability statement
	References

