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RESUME

Le désassemblage des produits en fin de vie est une étape importante de la refabrication,
qui se traduit par des avantages économiques et environnementaux significatifs. Tradition-
nellement, les opérations de désassemblage sont effectuées manuellement, ce qui est coliteux,
prend du temps et nécessite des opérateurs humains qualifiés. En outre, la qualité des ré-
sultats dépend fortement des compétences des opérateurs. Le passage du désassemblage
manuel au désassemblage automatisé par 'utilisation de robots collaboratifs (cobots) en tant
qu’assistants humains offre un potentiel important d’amélioration de 'efficacité et de la qual-
ité des processus. Les cobots peuvent exécuter efficacement des taches simples et répétitives
ainsi que des taches dangereuses qui présentent des risques élevés pour la santé humaine.
En revanche, les cobots ne peuvent pas exécuter des taches difficiles et complexes qui re-
quierent les compétences et la force des opérateurs humains. C’est pourquoi les méthodes
de désassemblage en collaboration homme-robot (HRC), qui exploitent les capacités complé-
mentaires des humains et des cobots dans un processus en méme temps, deviennent de plus

en plus populaires.

Malgré tous les avantages du désassemblage HRC par rapport au désassemblage traditionnel,
la recherche dans ce domaine en est encore a ses débuts. Cette these présente de multi-
ples contributions pour relever les défis existants et combler les lacunes potentielles dans la
littérature. Comme premiere contribution, nous présentons un modele d’apprentissage par
renforcement (RL) multi-agents pour la planification du désassemblage HRC qui optimise
dynamiquement le processus en tenant compte de plusieurs facteurs, y compris le temps
d’opération et les différentes caractéristiques des composants du produit. En utilisant une
approche basée sur les graphes, le modele représente la structure du produit et prend en

compte les dépendances des taches.

Deuxiemement, cette recherche présente un nouveau modele durable de planification du
désassemblage basé sur la logique logique (RL) qui optimise le processus en tenant compte
non seulement des objectifs économiques mais aussi des objectifs environnementaux et so-
ciaux. Dans le cas présent, les objectifs économiques sont la minimisation de la durée des
opérations et de la fréquence de changement d’outil. Les objectifs environnementaux sont
la minimisation de la consommation d’énergie du cobot et la maximisation de la qualité des
pieces récupérées, tandis que les facteurs sociaux comprennent le risque ergonomique et la
sécurité humaine. En outre, une approche floue est présentée pour modéliser les parametres

incertains de ’environnement.
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Troisiemement, nous introduisons une approche basée sur la vision informatique multi-
caméras et la logique floue pour prendre en compte les risques ergonomiques associés a chaque
opération de démontage. Quatriemement, nous proposons une approche de planification du
désassemblage du HRC basée sur un cadre fuzzy-RL, dans lequel un modele flou sert de copi-
lote pour le modele RL afin d’améliorer ses performances. Ce cadre comprend également un
module collaboratif d’intelligence qui sélectionne 'un des modeles flous ou RL pour prendre
des décisions a chaque étape. Enfin, cette these examine en détail les applications de I'TA
dans le traitement des aéronefs EoL, en se concentrant sur les processus de désassemblage,
de recyclage et d’entretien des produits. Elle identifie les problemes actuels et les lacunes

potentielles, en soulignant les nouvelles opportunités pour les recherches futures.

Afin d’évaluer les contributions proposées, cette these utilise plusieurs ensembles de données,
mesures et analyses. Les critéres d’évaluation comprennent les valeurs de récompense et
le temps nécessaire a la convergence. En outre, nous avons effectué diverses analyses pour
évaluer les performances des modeles dans différents scénarios. Il s’agit notamment d’analyses
de sensibilité des parametres les plus critiques des modeles, d’une analyse de compromis de
I'importance des objectifs dans le processus décisionnel et de 1’évaluation des performances
des modeles dans des conditions incertaines qui contiennent des taches avec une probabilité
d’échec et des temps d’exécution variables. En outre, nous avons développé une interface
utilisateur graphique (GUI) qui permet aux utilisateurs de personnaliser le processus en
ajustant 'importance des objectifs de durabilité. En outre, un cadre expérimental a été mis

en place pour valider ’approche d’évaluation des risques ergonomiques proposée.
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ABSTRACT

End-of-life (EoL) product disassembly is an important step in remanufacturing, resulting in
significant economic and environmental benefits. Traditionally, disassembly operations are
carried out manually, which is costly, time-consuming, and requires skilled human operators.
Furthermore, output quality highly relies on operators’ skills. Transitioning from manual
disassembly to automated disassembly by employing collaborative robots (cobots) as human
assistants has significant potential to improve process efficiency and quality. Cobots can
effectively perform simple and repetitive tasks as well as dangerous tasks that pose high risks
to human health. In contrast, cobots cannot execute challenging and complex tasks that
require the skill and strength of human operators. Therefore, human-robot collaboration
(HRC) disassembly methods, which exploit the complementary capabilities of humans and

cobots in a process at the same time, are becoming more and more popular.

Despite all the advantages of HRC disassembly over traditional disassembly, research in this
domain is still in its early stages. This thesis presents multiple contributions to address
the existing challenges and fill the potential gaps in the literature. As a first contribution,
we present a multi-agent reinforcement learning (RL) model for HRC disassembly planning
that dynamically optimizes the process by considering several factors, including operation
time and different characteristics of product components. Using a graph-based approach, the

model represents the product structure and considers task dependencies.

Secondly, this research presents a novel sustainable RL-based disassembly planning model
that optimizes the process by addressing not only economic objectives but also environmental
and social objectives. In this case, it considers minimizing operation time and tool change
frequency as the economic objectives. The environmental objectives are minimizing cobot
energy consumption and maximizing recovered parts quality, while the social factors include
ergonomic risk and human safety. Furthermore, a fuzzy-based approach is presented to model

uncertain parameters in the environment.

Thirdly, we introduce an approach based on multi-camera computer vision and fuzzy logic
to consider the ergonomic risks associated with each disassembly operation. Fourthly, we
propose an HRC disassembly planning approach based on a fuzzy-RL framework, in which a
fuzzy model serves as a copilot for the RL model to improve its performance. This framework
also includes an intelligence collaborative module that selects one of the fuzzy or RL models
for making decisions at every step. Finally, this thesis comprehensively reviews Al applica-

tions in EoL aircraft treatment, focusing on product disassembly, recycling, and maintenance
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processes. It identifies current issues and potential gaps, highlighting new opportunities for

future investigations.

In order to evaluate the proposed contributions, this thesis uses multiple datasets, metrics,
and analyses. The evaluation criteria include reward values and the time required for conver-
gence. Furthermore, we conducted various analyses to assess the models’ performance under
different scenarios. They include sensitivity analyses of the most critical parameters of the
models, a trade-off analysis of objectives’ importance in the decision-making process, and the
evaluation of the models’ performance under uncertain conditions that contain tasks with
a probability of failure and varying execution times. In addition, we developed a graphical
user interface (GUI) that enables users to customize the process by adjusting the importance
of sustainability objectives. Furthermore, an experimental setting has been conducted to

validate the proposed ergonomic risk assessment approach.
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CHAPTER 1 INTRODUCTION

Nowadays, population growth, rising consumerism, and the shift towards modernity have
significantly increased the production of goods. This has resulted in the generation of vast
amounts of end-of-life (EoL) products each year, posing serious environmental concerns.
Landfilling, incineration, recycling, and remanufacturing are among the most common so-
lutions to address this challenge. However, landfilling or incineration pollutes the air, soil,
and water. While recycling is a more eco-friendly solution, it may consume considerable
amounts of energy. On the other hand, remanufacturing focuses on rebuilding EoL. products
using various methods instead of discarding, burning, or recycling them [2]. A key step in
remanufacturing is product disassembly, which refers to the process of separating a product
into its components. This procedure offers significant environmental and economic benefits,
such as waste reduction, lower costs of waste management, preserving natural resources and

raw materials, and energy footprint mitigation.

Conventionally, disassembly operations are manually executed by labours, a time-intensive
and expensive approach. It also exposes humans to executing dangerous and unsafe tasks.
In addition, manual disassembly processes pose other challenges, such as complex product
designs, component damage, low efficiency, and waste generation, which impact the feasibility
and efficiency of remanufacturing. Over the past decades, the manufacturing industry has
experienced significant progress. In this way, manufacturing processes, such as disassembly,
are switched from manually operated procedures to automatic and autonomous operations.
This transition aims to efficiently and effectively reduce costs and increase profits. Similarly,
the use of collaborative robots (cobots) in disassembly processes is becoming more and more
popular, and these processes are being transformed through collaboration between humans
and cobots. Cobots carry out disassembly tasks in a cell alongside one or more human
operators. Cobots are able to perform tasks that may harm humans or have ergonomic risks
for them. These tasks include different activities dealing with hazardous substances, exposure
to toxic gases, or performing repetitive operations, which may negatively affect the spine
and skeleton over time, increasing the potential for work-related musculoskeletal disorders
(WMSDs) [3]. Moreover, performing simple and repetitive tasks or working for prolonged
hours may reduce human awareness and cause human fatigue, resulting in a human operator’s
poor performance. In contrast, cobots can complete such tasks with high precision. However,
the major limitation of the cobots is their insufficient flexibility and strength to complete
complex and difficult tasks. On the other hand, human operators can effectively execute

such complex and heavy tasks. Therefore, human-robot collaboration (HRC) leverages both



the precision of cobots as well as the flexibility of human operators, promising significant

accomplishments in this context.

Although involving cobots in such processes may enhance efficiency and quality, it is cru-
cial to consider the amount of energy consumed by cobots. The increased use of cobots
causes more energy consumption, which not only increases costs but also generates excessive
energy-related pollutants. Furthermore, performing complex and heavy tasks with cobots
could potentially damage the product or cobots physical structures. It is also critical to
consider human factors such as ergonomic risks and human safety while allocating tasks to
operators. Thus, optimized task assignment is significantly important as inefficient allocating
tasks may greatly reduce process productivity. Disassembly planning refers to sustainably
optimizing the disassembly process to not only maximize profits but also to minimize op-
eration time, the utilization of raw materials, harmful environmental factors, such as CO2
emissions, and other factors influencing costs. A disassembly plan includes three main steps:
preprocessing, modeling, and sequential planning. The preprocessing step involves all the
preliminary activities required to start the process. These activities include collecting infor-
mation about the product, its corresponding components and connections, and other related
data obtained from a Computer-aided design (CAD) model or other tools. Combining dif-
ferent mathematical approaches, the disassembly modeling step aims to represent an EoL
product’s architecture during the disassembly process. Graphs, matrices, Petri networks,
and universal techniques are the four main classes to model an EoL product [2]. In addition,
sequential disassembly planning addresses the utilization of different data-driven techniques

to determine the optimal task sequence for each operator.

HRC disassembly processes encompass many uncertain factors. One example is the variable
performance of human operators in executing tasks due to fatigue and distractions. Further-
more, the unstable conditions of EoL. products are another uncertain factor, resulting from
various elements such as damage, tear, and wear of parts due to different usage patterns.
These uncertainties in addition to other uncertain factors such as machine failures, human
errors, damaged tools, and any external disruptions may result in the prolongation or even
failure of operations. Disassembly planning models should be capable of addressing these

uncertainties during the task allocation process.

1.1 Challenges and gaps

Despite all the advantages of HRC disassembly, the planning models proposed in the literature

are still at the early stage. Synthesis in the literature reveals the following gaps:



. Most existing models are unable to make decisions in real time. They statically generate
a preplanned task sequence for each operator based on theoretical assumptions. These
models cannot cope with uncertain conditions that may diverge a process from its
expected direction, which limits their feasibility in real-world scenarios. Herein, if all
decisions are specified in advance, an operation may fail. Therefore, real-time decision-

making is necessary to respond quickly to changes during execution.

. Human operators have different skill levels, affected by factors, such as experience, pre-
cision at work, and physical characteristics like agility, height, and weight. Performing
disassembly tasks by humans is a skill-based activity, in which an operator’s exper-
tise impacts output quality. However, accounting for human skill levels in disassembly
planning is not adequately addressed in the literature and could be explored more by

researchers.

. EoL products are composed of components with multiple features, such as weight, size,
and volume. These features contribute to varying levels of task difficulty, complexity,
and execution time. Although it is necessary to include these features in disassembly

planning, most models in the literature do not consider them.

. It is crucial to consider social factors such as human safety and ergonomic risk in
disassembly processes. It is also essential to optimize the process with respect to the
amount of energy consumed by cobots and the quality of recovered parts, which are
environmental factors. Unfortunately, most previous studies only focused on economic

objectives and did not address environmental and social factors in the planning process.

. As previously mentioned, disassembly processes involve uncertainties that may lead to
different outcomes when the same operator performs a given task at differing times. A
disassembly planning model should be able to effectively handle this lack of certainty
in data. Unfortunately, most existing approaches in the literature have been developed

and validated under controlled and certain scenarios.

. In a disassembly process, a cobot may fail to complete some tasks because of abnormal
conditions, including machine failure, wear and tear tools, cobot inefficiency, or any
other external interruption, which direct the task sequence planning process. In such
cases, the model should reconfigure the task sequence from its original outline. There-
fore, it is crucial to consider task failure in the modeling process to ensure the model’s
effectiveness in industrial settings. However, probability of the operation failing is not

well-addressed in the literature.



7. A common issue with previous models is that users cannot easily work with and cus-
tomize them. The target group in this context is manufacturers who may not be ex-
perts in computer science or data-driven models. Therefore, developing a user-friendly
interface that enables manufacturers to customize models based on their specific re-

quirements makes studies more practical for industrial implementations.

1.2 Research objectives and contributions

This thesis aims to address the mentioned gaps by presenting four research articles based
on four contributions. As illustrated in Figure 1.1, the first article aims to effectively fill
gaps 1, 2, and 3. Furthermore, the second article is concerned with gaps 4 and 5. The third
article presents a novel approach for ergonomic risk assessment in disassembly operations,
addressing part of the social factors identified in gap 4. Lastly, the fourth article addresses

gaps 6 and 7. In the following, we briefly introduce these articles.

1. We present a graph-based multi-agent RL model for HRC disassembly planning. The
model contains a human agent and a cobot agent, each selecting tasks for its corre-
sponding operator. Instead of using a pre-planned task sequence, the model makes
real-time decisions, enabling it to cope with the uncertain nature of the problem. It
also incorporates several influential factors, such as human operators’ skill level, recov-
ered parts quality, and various parts’ features, into the planning process. By using a

graph-based approach, the model effectively represents a product’s architecture.

2. This contribution presents a sustainable data-driven model based on RL for HRC dis-
assembly planning. In general, the term sustainability refers to a broad concept en-
compassing environmental, social, economic, and governance aspects across various
settings. This study focuses on the triple-bottom line model of sustainability, including
environmental, social, and economic dimensions. In addition, it addresses only opera-
tional sustainability elements, without considering potential second-order or rebound
effects, as they fall outside the scope of this research. The sustainability indicators used

to assess each pillar are defined as follows:

(a) Environmental: Cobot energy consumption and recovered parts quality
(b) Social: Ergonomic risk and human safety

(¢) Economic: Operational time and tool change frequency.

In this regard, the model aims to maximize recovered parts quality and human safety,

while minimizing energy consumption, ergonomic risks, operation times, and tool change



frequencies. Furthermore, to handle the lack of certainties in data, we represent un-
certain parameters, such as difficulty and recovered part quality, through an approach

based on fuzzy logic.

. In line with the shift toward sustainable product disassembly, this contribution intro-
duces a novel approach based on image processing and fuzzy logic to assess ergonomic
risks associated with disassembly operations. The approach leverages a multi-camera
vision configuration that consists of three cameras, installed at the front and on both
sides of the disassembly site. In each frame of these videos, we detect the upper body
joints of a human operator engaged in a disassembly process and then compute the
angles between the joints. This research uses three cameras as it is impossible to cal-
culate all angles from videos captured with a single camera. Next, the developed fuzzy
model determines the ergonomic risk—low, medium, or high—for each upper body part
during an operation based on the corresponding joint angles and the time required for
completing the operation. As a result, this study assesses the ergonomic risk posed to

each upper body part in every operation.

. This study develops a novel multi-agent framework based on fuzzy logic and RL for
HRC disassembly planning. This framework consists of two agents, human and cobot,
each using an RL model and a fuzzy model. At each time-step, one of these models
is chosen to select a component for the respective operator. Since RL models often
perform poorly in the initial steps, a fuzzy model is involved in each agent to enhance
its corresponding RL model’s performance. In the early steps, a fuzzy model in each
agent is chosen more frequently for component selection, and as the process evolves, the
fuzzy model is selected less and less. Through the recursive learning process, the RL
model dynamically learns from the results obtained by the fuzzy model. In this way,
the fuzzy model plays the role of a copilot for the RL model during the initial steps. In
addition, as the fuzzy models are developed logically and based on expert knowledge, we
transfer human experts’ knowledge to the RL models through this framework. Herein,
we use the epsilon-greedy algorithm to select between the RL and fuzzy models. If
epsilon is greater than a value of N, sampled from a Gaussian distribution, the fuzzy
model is chosen; otherwise, the RL model is selected. Furthermore, we diminish the
epsilon value by a factor at the end of each episode. Also, as a novelty, this research
conducted multiple sensitivity analyses to evaluate the framework’s performance in
uncertain scenarios, such as task failure probability. Additionally, we developed a
graphical user interface (GUI) that enables users to easily customize the planning of

disassembly processes according to required sustainability objectives.



[ 1st article ]

Title: A Context-aware Real-Time Human-Robot Collaborating Reinforcement learning-based Disassembly Planning model under uncertainty.

Gap(s): 1,2, and 3

[ 2nd article ]

Title: Real-Time Sustainable Cobotic Disassembly Planning Using Fuzzy Reinforcement Learning.

Gap(s): 4 and 5

Figure 1.1 The objectives and contributions of thesis

1.3 Publications

On the basis of the contributions presented in this thesis, articles have been published or

submitted, which are listed below.

o Amirnia, A., Keivanpour, S. (2024). A context-aware real-time human-robot collab-
orating reinforcement learning-based disassembly planning model under uncertainty.
International Journal of Production Research, 62(11), 3972-3993.

o Amirnia, A., Keivanpour, S. Real-Time Sustainable Cobotic Disassembly Planning
Using Fuzzy Reinforcement Learning. Accepted by International Journal of Production

Research.

o Amirnia, A., Ghorbani, E., Keivanpour, S. (2024, July). Real-Time Video Processing
in Fuzzy Posture-Based Ergonomic Analysis in a Disassembly Cell. In International
Conference on Intelligent and Fuzzy Systems (pp. 247-256). Cham: Springer Nature

Switzerland.

o Amirnia, A., Keivanpour, S. A Fuzzy-Guided Reinforcement Learning Method for Sus-

tainable Cobotic Disassembly Planning Under Uncertainty. Submitted to International



Journal of Production Research.

Moreover, the following papers are part of my PhD research, however, they are not included

in this thesis.

o Amirnia, A., Keivanpour, S. (2024, July). AI-Driven EoL Aircraft Treatment: A Re-
search Perspective. In Intelligent Systems Conference (pp. 371-391). Cham: Springer

Nature Switzerland.

o Bushehri, A. S., Amirnia, A., Belkhiri, A., Keivanpour, S., De Magalhaes, F. G.,
Nicolescu, G. (2023). Deep Learning-Driven Anomaly Detection for Green IoT Edge

Networks. IEEE Transactions on Green Communications and Networking.

o Guillaume Mozian, Ashkan Amirnia , and Samira Keivanpour. Sustainability-aware
Computer Vision for Scrap Material Recognition in Automated Sorting. Submitted to
the 13th International Conference on Control, Mechatronics and Automation (ICCMA
2025).

o Saeid Jamshidi, Ashkan Amirnia, Amin Nikanjam, Kawser Wazed Nafi, Foutse Khomh,
Samira Keivanpour. Self-Adaptive Cyber Defense for Sustainable IoT: A DRL-Based
IDS Optimizing Security and Energy Efficiency. Submitted to Journal of Network and
Computer Applications.

o Elham Haji Sami, Ahmad Shahnejat Bushehri, Ashkan Amirnia, Asad Yarahmadi,
Samira Keivanpour. Integrated Sequential Matching and Routing Approach for Effi-

cient and Eco-Friendly Freight Logistics. Submitted to Transportation Research Part
C.

1.4 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 reviews the literature, addressing
basic concepts, modeling approaches, various data-driven planning methods, optimization
objectives, and other key aspects of the problem. Chapter 3 outlines the proposed methodol-
ogy to accomplish the thesis objectives. Chapters 4, 5, 6, and 7 present the research articles
produced from this research. At the end, Chapter 8 concludes the thesis.



CHAPTER 2 LITERATURE REVIEW

This chapter provides a comprehensive review of the literature, as outlined in Figure 2.1.
It first discusses the classical optimization algorithms in disassembly planning. Then, it
addresses Al-driven approaches, including classical ML, RL, and computer vision methods,
in disassembly processes. Following that, it explains the concept of design for disassembly
(DfD). Next, human-robot interactions are discussed. Lastly, it reviews the joint application
of fuzzy logic and ML. Although the last topic may not be directly related to other studies
on disassembly and human-robot interactions, this research presents new methods based on
fuzzy logic and RL for disassembly planning in HRC. Hence, previous studies on hybrid

fuzzy-RL models are also discussed in this literature review.

2.1 Classical optimization algorithms in disassembly planning

There is a growing body of literature exploring how to optimize a disassembly process by
sequential task allocation approaches. Researchers have widely used various rule-based and
learning-based algorithms to generate optimum task sequence. Classical optimization algo-
rithms such as Genetic algorithm (GA) [4-15], Particle swarm optimization (PSO) [16-23],
and Ant colony optimization (ACO) [24-32] have been widely used in the literature. In [33],
the authors proposed a hybrid optimization method as a disassembly planning model that
combines the GA and the Tabu search. It also utilises a graph-based method called disas-
sembly constraint graph (DCG) to represent a product’s structure. In another study [34],
McGovern and Gupta introduced an approach based on the GA for disassembly line balanc-
ing. Next, a disassembly sequence planning approach based on ACO algorithm is presented
in [31]. The authors formulated the problem using three factors: the number of components,
disassembly tools, and disassembly process directions. [16] introduces a disassembly plan-
ning approach that incorporates Dijkstra’s algorithm and PSO, considering both functional

components and fasteners.

In a recent study [35], Guo et al. developed an approach based on an improved artificial bee
colony (ABC) algorithm for balancing partial multi-robotic disassembly lines. The proposed
approach considers profitability, cycle time, energy consumption, and the extra time and
cost resulting from workstations’ reconfiguration. Fang et al. [36] proposed a multi-objective
approach to balance position-constrained HRC disassembly lines. They presented a mixed
integer programming model and a multi-fidelity optimization algorithm to address both small-

scale and large-scale problems, respectively. Hu et al. [37] have presented a hybrid approach
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Figure 2.1 The outline of the literature review

based on general ontology and rule-based reasoning for HRC disassembly planning. They
validated the proposed approach by using a gearbox as a case study. In a more recent
research study [38], Lou et al. have developed a human-cyber-physical system framework
for HRC disassembly planning, in which the role of humans is considered in two human-in-
the-loop (HitL) and human-on-the-loop (HotL) paradigms. The authors also computed task
complexity and operator ergonomics using a cloud-based approach. Finally, an enhanced
hybrid grey wolf optimization algorithm plans the sequential task allocation process. They
conducted an experimental analysis by applying the proposed framework to a control box
as a real case study. In [39], the authors optimized a robotic disassembly planning problem
with a classic multi-objective robust approach that aims to cope with uncertainties regarding

products and operator conditions during a process.
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2.2 Al-driven approaches in product disassembly

This section reviews Al applications in the field of product disassembly. It briefly discusses
classical machine learning applications in planning. It then addresses RL models in planning

followed by computer vision applications.

2.2.1 Classical machine learning

Some preliminary researchers have developed disassembly planning models using classical
machine learning approaches. In addition, a combination of a Petri network and a hybrid
Bayesian network is introduced as a disassembly planning model in [40]. The Petri network
represents the entire process, while the hybrid Bayesian network selects the next operation
in the process. Similarly, Godichaud et al. [41] presented a disassembly planning approach
based on a Petri network and a Bayesian network. Xiao et al. [42] presented a method for
planning electric vehicle (EV) battery disassembly. It consists of a Bayesian network and a
hidden Markov model (HMM), using the forward-backward and Viterbi decoding algorithms.

2.2.2 Reinforcement learning

As discussed in Section 1, disassembly processes involve inherent uncertainties. Supervised
and unsupervised ML methods generally have limited capabilities to optimize such processes.
In contrast, RL models offer significant potential, as they can make decisions under uncertain
scenarios while adapting to changes in surrounding conditions. There has been growing at-
tention to utilizing RL models for the disassembly task allocation problems over the past few
years. The state for these RL models is typically defined as the product’s situation at each
step. Moreover, the action is determined as the next component for assembly /disassembly.
An early investigation of using RL for the purpose of disassembly planning was performed
in [43], in which the authors presented an RL-based approach that approximates Q-values
through an Eleman network. Reveliotis [44] proposed a disassembly planning method based
on a dynamic programming approach that handles the uncertainty of the process as well as
models the entire process through a Petri network. Mao et al. [45] have introduced an en-
hanced deep Q-network (DQN) model that utilises the GA to improve the long-term reward.
A Petri network is also used to represent the product’s architecture. The authors evaluated
the proposed model for maintenance training in a virtual reality (VR) environment. Next,
Chen et al. [46] have introduced a matrix-based Q-learning model to optimize a disassembly
process regarding operation time. In addition, physical constraints of parts are involved in

the reward function. The authors deterministically defined a time for a part disassembly as



11

a summation of basic disassembly time, tool changing time, the number of connections to

other parts, required time for tool positioning, and cleanup time.

[47] represents disassembly process by using an extended Petri network (EPN), including
features of parts, such as physical constraints, revenue, and cost. As a feature for each
part in EPN, the authors considered four Eol. operation choices: reuse, remanufacturing,
recycling, and disposal. Next, they estimated uncertain disassembly parameters, such as
revenue and cost, based on historical data by a maximum likelihood approach. They then
formulated the problem into an RL framework with a tabular Q-learning algorithm. While
the state is defined based on the EPN’s token, the reward function comprises the difference
between revenue and cost. In [48], the authors developed an RL-based disassembly plan-
ning model using a new graph-based representation approach that obtains the precedences
between product’s components and considers the uncertainty of an EoL product. They have
presented an algorithm to assign a level to each component based on its positioning within the
hierarchical structure. Accordingly, the task allocation process begins with the components
at the outermost level. After disassembling all the components at this level, the algorithm
moves to the next inner level. In this way, the process continues until all the components
have been disassembled and the innermost level is reached. In this case, a reward function
contains processing time, profit, and the difference in the levels of the previous and newly
selected components. The last term awards the agent once it completes the disassembly of

components in a level and moves to the next level.

An RL-based assembly planning model has been introduced in [49]. The state includes two
terms: a vector representing the required assembly tool for each task and a binary vector in-
dicating whether each task is completed. Moreover, the reward signal consists of completion
time and user satisfaction regarding the assembly sequence. Herein, each component’s disas-
sembly completion time can be configured either deterministically or stochastically. In their
proposed framework, the authors compared several RL models using airplane toy data [50,51]
as a case study. Recently, Sadeghi Tabar et al. [52] proposed a disassembly planning approach
that models the process using a Petri network and optimizes it through a Q-learning method.
The authors considered time, quality, and process capability as the main objectives in the
reward function. In addition, they evaluated the model with an engine starter motor as a

case study.

2.2.3 Computer vision

Researchers have become interested in the applications of computer vision and image process-

ing in disassembly processes. In [53], the authors have proposed an image processing-based
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approach for screw detection in EV motors during disassembly operations. This approach
integrates several image processing techniques, including the hue, saturation, value (HSV)
color modeling, image depth detection, grayscale conversion, and the Harris detector [54].
In [55], the authors introduced a method using Tiny-Yolo v2 to detect screws in robotic

disassembly processes.

Zhang et al. [56] presented a hybrid model based on a variational autoencoder (VAE), an
HMM, and a support vector machine (SVM) for human activity recognition in HRC disas-
sembly. In [57], the authors introduced a tool recommendation system based on computer
vision methods for robotic disassembly. First, a YOLOv4 algorithm detects screws in images.
Then, an EfficientNetv2 algorithm classifies the screws’ shapes and recommends a tool to a

robot operator.

2.3 Energy consumption in disassembly processes

Sustained economic growth relies on energy, yet several factors, such as the increasing en-
ergy demand caused by global population growth, threaten modern economic progress. The
amount of consumed energy also plays a critical role in cobotic assembly/disassembly oper-
ations. Consuming more energy produces more energy footprints, which negatively impacts

the environment. Moreover, uncontrolled energy consumption increases economic costs [2,58].

A few recent studies have paved the way to integrate consuming energy into the robotic
disassembly planning process. [59] develops a robotic parallel disassembly sequence planning
framework using the ABC algorithm, aiming to minimize the makespan and total energy
consumption of robots. They assumed the consumed energy arises in three stages: during
disassembling, while waiting for new tasks, and during tool change. Similarly, [60] optimizes
a robotic disassembly process to achieve maximum profit while minimizing energy footprint
by employing the Bees algorithm. In the context of assembly/disassembly line balancing, [61]
proposes a model based on an improved bi-objective evolutionary algorithm to optimize a
robotization assembly line. As two main objectives, the model attempts to minimize total
energy consumption and the number of workstations. In another study, [62] introduces a
modified GA algorithm to solve the assembly line balancing and part feeding problem. The
algorithm considers reducing energy consumption, the number of stations, and the number
of supermarkets as the main objectives. [63] proposes a mixed model to minimize cycle time,
total consumed energy, and peak workstation energy consumption in a robotic disassembly

line balancing problem.

Despite the mentioned considerable efforts made in the planning of robotic disassembly,
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the aspect of energy in cobotic disassembly planning still remains largely unexplored by
researchers. Hence, optimizing energy consumption of cobots in the disassembly process is

an emerging research area.

2.4 Human safety in disassembly processes

Human safety is a crucial concern for manufacturing companies. It is essential to avoid
assigning dangerous operations to humans in assembly/disassembly processes. Many EolL
products, such as waste electrical and electronic equipment (WEEE), include hazardous
substances, which adversely affect human health and safety. It is imperative to keep away
these materials from humans [64]. Human operators’ safety is also a critical issue in HRC,
and a growing body of literature has investigated this context. [65] presents a comprehensive
picture of different categories of safety in the HRC context. Moreover, [66] proposes an
automated safety configuration for HRC regarding resources, processes, products, hazards,

and the introduced safety behaviors model.

The distance between humans and cobots during operations is a significant factor that impact
human safety. Generally, as the distance between a human and a cobot diminishes, the cobot
gradually slows down until it eventually comes to a stop. Several researchers addressed the
safe distance between humans and cobots. [67] develops simulation software that finds a safe
distance for a human operator and a cobot by GA. Two criteria regarding human safety
are integrated into the HRC disassembly planning model proposed in [1]. These criteria are
preventing unsafe task allocation to the human operator and ensuring a safe distance between
human and cobot operators. [68] balances an HRC assembly line by solving constraint integer
programs (SCIP), focusing on maintaining a safe distance between a human and a cobot.
This distance depends on several factors, such as human and cobot reaction times and the
required distance for the cobot to stop. The proposed approach aims to allocate tasks in
a manner, ensuring the distance between the human and the cobot is greater than the safe

distance, leading to faster cobot operating and shorter process time.

2.5 Ergonomic risk in disassembly processes

Ergonomic risks in the workplace are a serious concern within the manufacturing industry.
Failure to address these risks may result in work-related musculoskeletal disorders (WMSD)
and other irreparable damage to the human skeletal system over time. According to the

Occupational Safety and Health Administration (OSHA)!, several activities at the workplace

Thttps://www.osha.gov/ergonomics/identify-problems
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may potentially pose ergonomic risks. Applying overly strong force, frequently or continu-
ously doing repetitive actions, and working in an inappropriate position are examples of these
activities. Various approaches have been proposed to integrate ergonomic considerations into
assembly /disassembly planning. Furthermore, in recent years and with the increasing use of
cobots in manufacturing, a growing body of research has emerged to analyze the ergonomic
risks in HRC industrial processes. [69] develops an HRC assembly line balancing model aiming
to optimize both operation time and ergonomic risks. An integer planning model is developed
in [70] to optimize assembly lines with respect to ergonomic risks. [71] introduces a fuzzy-
based assembly line-balancing model that involves ergonomic risks. The proposed model
considers four types of risk: twisting the wrist, lifting, twisting the hip, and squatting. [72]
conducts an experiment that compares several key performance indicators (KPIs), including
ergonomic risk, in the collaboration of a human operator and a cobot with a scenario that
the human operator solely works. Results show that the HRC strategy effectively reduces er-
gonomic risks and physical stress compared to manual disassembly. A recent study [73] plans
the HRC process by a hybrid ant lion optimizer according to multiple objectives, including
the ergonomic consideration of humans, parts’ recycling revenue, disassembly complexity,
and operation time. The authors used a video processing approach to assess the ergonomic
aspect. This approach extracts human joints from video frames to calculate the angles be-
tween the joints. Then, the rapid entire body assessment (REBA) approach measures the
ergonomic factor based on the angles. In addition, the study models the process with an
AND/OR graph approach.

2.6 Technical feasibility in disassembly processes

The feasibility of an operation is a major issue in a disassembly process. Operators some-
times require advanced tools, demolition machines, or even cannot disassemble some parts
due to lack of strength. These parts remain incompletely disassembled and are transferred
outside the cell. Therefore, it is essential to consider task feasibility in disassembly planning.
One of the major drawbacks in the literature is that most introduced planning methods
do not incorporate disassembly feasibility, and it has only been discussed in a few research
studies. In [74], the authors have computed the feasibility and direction of contact and
non-contact disassembly based on extracted information from CAD models. They also gen-
erated a weighted graph showing the contact type and feasibility in accordance with six axes.
Moreover, some researchers [75,76] consider feasibility based on the physical precedence of a
product’s component. In order to find the optimum sequence, GA then considers feasibility

in addition to cost and environmental impacts as the objectives.
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[77] introduces a partial destructive disassembly planning approach to address the line
balancing problem. This approach considers the feasibility of destructive operations and
the resulting noise pollution during the planning process. It presents a mathematical model
with different objectives, including minimizing the number of stations, noise pollution, and
related costs. Subsequently, an enhanced gray wolf algorithm is developed to optimize the
task sequence. The MGFEM method [78] evaluates the disassembly feasibility of a product in
a partial destructive process. First, it computes the failure characteristics of the parts based
on experts’ knowledge and the type of failure. Then, a total entropy value is calculated
based on three significant factors in disassembly feasibility. If this value is higher than a
threshold, partial destructive disassembly is not feasible. Alternatively, the algorithm moves
forward and defines eight indexes for the most critical features in disassembly efficiency:
component recognition, tool, direction, time, force, accessibility, the accuracy of positioning,
and component size. These indexes are then quantified by a fuzzy-based approach. By
applying an approach based on entropy, the algorithm computes weights for the indexes.
Subsequently, it calculates the fine-grained comprehensive evaluation value. Finally, the

components are sorted according to this value that determines their priorities.

2.7 Design for disassembly

In general, product design significantly affects disassembly processes by means of various
factors. Several efforts have been made to identify these factors and the disassemblability
rate of a design. It helps manufacturers to redesign products in a way that leads to a higher
disassembly rate. Such a disassembly-aware design process that facilitates part recovery is
called DfD. One of the first investigations in this area was presented in [79], in which the
authors proposed an overall efficiency metric to evaluate product disassemblability. This value
is computed using the information sheet of the product’s components. The level of difficulty
for product disassembly is defined based on its accessibility, required force, position, execution
time, and other special metrics. Disassembly tasks are categorized into ten groups: pull/push,
remove, unscrew, flip, cut, grip, deform, peel, pry out, and drill. The authors used a hair dryer
as a case study for validating the proposed approach. After completing the corresponding

sheet, they redesigned the product through four changes to improve disassemblability.

To compute the mentioned factors, other studies like [80] used a similar sheet-based ap-
proach to incorporate different characteristics of components in the estimated disassembly
time calculation. The authors employed the Maynard operation sequence technique (MOST)
proposed in [81] to determine the difficulty level for each component. They applied the pro-

posed method to an electric drill as a case study. In a more recent study [82], Vanegas et al.
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proposed ease of Disassembly Metrics (eDiM) to calculate disassembly time using MOST. In
this approach, the disassembly process of each component consists of six fundamental tasks:
tool change, identifying connectors, manipulation, positioning, disconnection, and removing.
While tool change addresses taking and preparing a tool for an operation, identifying con-
nectors refers to the time that an operator takes to find a connector location, its type, and
a proper tool for its disassembly. Manipulation refers to the time for adjusting the product
to properly position it for disassembly. Moreover, the action of putting a tool on a connec-
tor for its disassembly is referred to as positioning. Disconnection is the time required to
disconnect a part from the product. Finally, removing concerns the time that an operator
needs to remove a disassembled part to store it. The disassembly time for each component is
calculated by summing the values of the six tasks, which are predefined in a database. Next,
the disassembly time for every product component is entered into a table. A human operator
then sums the relevant data to compute the overall optimized disassembly time for the given

product, considering the disassembly precedence relationships.

The main idea of LeanDfD introduced in [83] is to develop a disassembly sequence that con-
siders time-based disassemblability and recyclability metrics in a recursive cascade process.
Here, the time is calculated based on liaison types and properties through a liaison database.
Moreover, another database containing material information is employed to calculate the
recyclability metric. In the final stage, the computed time and recyclability metric are com-
pared with two predefined threshold values. Upon satisfying both the time and recyclability
thresholds, the proposed sequence is exported as a PDF/XML file. Otherwise, the process
should be restarted.

2.8 Human-robot interactions

Over recent years, robots have been playing a growing role in industrial processes. Con-
sequently, industries are undergoing significant evolution. Many manufacturing companies
are becoming more and more interested in employing cobots that can work in parallel with
human operators. The increasing evolution in the use of robots motivates Al researchers to
investigate the field of robotics. According to a report on Nature’s website [84], the number

of research articles in the field of Al and robotics has grown significantly from 2015 to 2021.

In recent years, several efforts have been made to define human and robot interaction levels
and methods. Rodriguez-Guerra et al. [85] have categorized all interactions between humans
and robots into three main classes: coexistence, cooperation, and collaboration. As they
explained, in coexistence scenarios, a human and a robot work individually on different tasks

in separate workspaces. In contrast, a human and a robot work on distinct tasks but in the
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same workspace in a cooperative environment. On the other hand, collaboration is defined
as the condition that a human and a robot work simultaneously on the same task in the same
workspace. All three scenarios are illustrated in Figure 2.2. As the authors pointed out, it is

possible to add isolation and synchronization as two other classes to the main three ones.
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Figure 2.2 Human-robot interactions categories

In another research study [86], the authors categorized tasks performed by humans and robots
in a collaboration cell based on an autonomy factor into four cases: leading, supportive,
inactive, and an intuitive human and an adaptive robot. In the leading case, a human
operator or a robot works autonomously on a task. In the supportive case, one of the actors
provides assistance to the other during the operation. Moreover, a robot or a human operator
waits for an upcoming task in the inactive mode. In the last case, they can switch their roles

based on the situation at hand.

In this research, we address the collaboration scenario. In this case, as Figure 2.3 illustrates,
a human operator and a cobot disassemble a product together in a cell. In this scenario, the
capabilities of both actors are utilised to fulfill the tasks. Cobots can perform repetitive and
unsafe tasks with high performance that may be hazardous for humans. However, experienced

humans can react better to uncertainties in operations [1].

Various methods have been devised to address the HRC disassembly planning problem.
Wurster et al. [87] presented a disassembly line-balancing model based on RL. The au-
thors considered several manual, automatic, and autonomous workstations. Manual work-
stations are controlled by humans, while automatic workstations are controlled by robots.
Autonomous stations have robots that can make their own decisions and learn from their
mistakes. The authors utilised a Petri network and an RL architecture to model the entire
pipeline and the decision-making process, respectively. They concatenated all information
regarding product orders and workstation situations into a vector as the state of the RL

model. In addition, the reward is proposed as a weighted linear combination of failed op-
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Figure 2.3 A human-robot collaboration cell

erations, disassembly time, and cost. A matrix-based HRC disassembly planning method
has been proposed in [88]. The authors considered disassembly time as a predefined deter-
ministic parameter. They designed a CAD model of an actual product in the first step.
Then, they compute a precedence list between the product’s components through a proposed
matrix-based method. Afterward, multiple disassembly sequences are generated based on
the precedence list of the product’s components. Finally, the sequence with the shortest dis-
assembly time is selected as the optimum disassembly sequence. In [1], the authors proposed
an HRC disassembly planning approach that considers 14 criteria to formulate a sequential
disassembly task allocation process into a numerical optimization-based problem. Human
operators’ safety is also considered in the decision-making process. The authors applied the

proposed framework to a real case study (hard disk drive) to validate their approach.

Parsa and Saadat [86] have introduced an HRC disassembly planning model that represents
the structure of an EoL product and the associated precedence relations by using an AND/OR
graph. The proposed approach classifies tasks into eight different groups according to their
corresponding difficulty and complexity. It optimizes the process by applying the GA, with
the aim of allocating more challenging and heavy tasks to the human operator, while assigning
easy and repetitive tasks to the cobot. The fitness function of the GA comprises several
objectives, such as indices of untargeted components, operation time, and the frequency of
human operator change. In [89], the authors proposed an HRC disassembly planning model
based on a cascade structure. With the help of a digital twin framework, the model fuses
data from real and virtual spaces. Then, it sequentially preprocesses the data to obtain parts
features, types of liaison and tools, as well as disassembly precedence constraints. The model

determines the most optimal sequence by using GA.
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[90] introduces an HRC disassembly planning model based on a theoretical recursive learning
algorithm. Initially, data from different sources is fused, extracting high-level information like
human and cobot locations, hand gestures, body skeletons, and required tools. Subsequently,
an RL model optimizes the process based on this information. Following that the operators
execute the planned tasks. Finally, the acquired knowledge is shared using incremental
learning and transfer learning techniques via a cloud-based technology. In the scope of
lithium-ion battery recycling, [91] proposes a heuristic-based approach to assess the resilience
of HRC disassembly based on several factors, such as stability, redundancy, efficiency, and
adaptation. In the context of assembly planning, an RL-based HRC planning approach has
been introduced in [92]. The proposed approach comprises a dual-agent model, an agent for a
human operator and an agent for a cobot. An improved version of a deep deterministic policy
gradient method is presented that computes a global Q-value based on the collaboration
between two agents. The authors also represented the architecture of a product during the
process by a simple vectorized approach. For evaluation, the proposed model was applied to

the assembly of an alternator in a laboratory setting.

2.9 Joint applications of fuzzy logic and ML

Fuzzy logic is a classical data-driven approach that provides mathematical rules for modeling
a diverse range of problems, particularly in scenarios with a high degree of uncertainty. On the
other hand, ML refers to different techniques that efficiently and effectively predict patterns
of data in numerous problems, including complex and large-scale scenarios. Hybrid fuzzy-
ML models are becoming more and more popular in different applications as they combine
the flexibility of fuzzy logic to tackle uncertain situations with the prediction power of ML

models.

A considerable body of literature has investigated the incorporation of fuzzy-based methods
with supervised and unsupervised models. [93] presents a fault diagnosis method for rotating
machinery based on fuzzy clustering. It initially shifts raw vibration signals, captured from
rotating machines, to the time-frequency domain, resulting in an image for each signal. It
then utilises several image processing techniques, such as threshold filtering and neighborhood
connectivity, to remove noise from images. Subsequently, it extracts latent features from
images through Fourier descriptors followed by using fuzzy C-means to cluster the features.
In another study [94], Sierra-Garcia and Santos have introduced a hybrid model based on
deep learning and fuzzy logic for controlling wind turbine pitch. The proposed architecture
contains two deep neural networks. While the first network estimates the current wind, the

second network predicts future wind. The outputs of the two networks are subsequently
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combined to represent effective wind. Finally, a fuzzy model sets the pitch control based
on the effective wind and power error. In [95], the authors have developed a fuzzy-based
system to control neural network parameters during the training phase. In a more recent
paper [96], Walek and Fajmon have incorporated a fuzzy expert system into the architecture
of a recommendation engine. The fuzzy system defines an importance level for each filtered
item for user recommendations. In this regard, the fuzzy system assigns a level, either low,
medium, or high, along with a descriptor, such as very, roughly, extremely, more or less,
very roughly, very very roughly, rather, quite roughly, or significantly. In addition, several
researchers [97-99] have incorporated fuzzy methods into neural networks’ architectures to

improve their interpretability.

Numerous research studies have investigated the combination of fuzzy logic and RL. One of
the earliest works in this field, [100], proposes a hybrid RL and fuzzy neural network controller
architecture that converges faster than conventional networks. In another earlier study [101],
the authors developed a fuzzy Q-learning algorithm that outperforms the GA in the Cart-
Centering problem. In a more recent study [102], Goharimanesh et al. have proposed a fuzzy
RL (FRL) model to track trajectory in continuum robots. They tuned the parameters of
the FRL model by the Taguchi method and the GA, resulting in an improved convergence
time. [103] presents a hybrid learning and fuzzy logic model for autonomous vehicle planning.
A Convolutional neural network (CNN) model and long short-term memory (LSTM) model
combine sequential images of the surrounding environment and vehicle location information.
Subsequently, the resulting vector is fed to a DQN as the state. The DQN outputs the
steering angle and the accelerator. The authors considered the last layer’s DQN values as
membership degrees. They then defuzzified these values to generate continuous outputs for
the steering angle and the accelerator. In recent years, several research studies [104-107]
have explored the use of fuzzy reward functions in various environments. Using fuzzy values
instead of crisp ones in the reward function enables an RL model to handle ambiguous and

uncertain parameters in the environment’s feedback more effectively.
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CHAPTER 3 METHODOLOGY

In Chapters 1 and 2, we introduce the problem and review the corresponding literature.
This chapter outlines the articles included in this thesis, presented in Chapters 4 through
7, to provide readers with a comprehensive perspective. Figure 3.1 illustrates the articles
and their interrelationships. Following a comprehensive literature review, The first article
proposes a real-time disassembly planning model based on multi-agent RL. Next, the second
article presents a novel sustainable disassembly planning approach incorporating RL and
fuzzy logic. This approach involves factors corresponding to all three sustainability pillars
in decision-making. The third article assesses ergonomic risks associated with disassembly
processes using video processing and fuzzy logic. Finally, the fourth article introduces a
novel fuzzy-guided RL model for disassembly planning. The following sections provide a

brief overview of these articles.

Literature review

@ i

The first article:
A Context-aware Real-Time Human-Robot
Collaborating Reinforcement learning-based

Disassembly Planning model under Uncertainty

The second article: The third article:
Real-Time Sustainable Cobotic Disassembly Real-time Video Processing in Fuzzy Posture-
Planning Using Fuzzy Reinforcement Learning based Ergonomic Analysis in a Disassembly Cell

The fourth article:
A Fuzzy-Guided Reinforcement Learning Method
for Sustainable Cobotic Disassembly Planning

Under Uncertainty

Figure 3.1 The presented articles and their interconnections
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3.1 First article

As previously explained, a disassembly process contains uncertainties that may deviate it
from the ideal path. Hence, it is crucial to plan the process dynamically with respect to
online conditions. In this thesis, the first article develops an HRC disassembly planning
model with real-time decision-making capability. Figure 3.2 illustrates an example of the
proposed real-time task allocation approach. At t = 0, the model assigns tasks 1 and 2 to
the human operator and the cobot, respectively. Task 3 is allocated to the human operator
when task 1 is fully performed at t = T;. Similarly, the model recommends task 4 to the
human operator after task 3 is completed at t = T; + T3. Following this, the model assigns
task 5 to the cobot when task 2 is completed at t = T5. This process will continue until
operators complete all tasks. In this manner, the model assigns tasks according to the online
circumstances rather than using a theoretically predetermined task sequence.

t=0 t=T, =TT, t=T,

A human operator Tl T3 T4

A cobot TZ T 5

Figure 3.2 An example of the real-time task allocation mechanism

We model an EoL product architecture by using a graph-based approach illustrated in Figure
3.3. In this regard, each node and edge represent a component of the product and a connection
between two components, respectively. We also define an origin node and assign a level to
each node based on its distance from the origin. Figure 3.3 illustrates dotted line circles
around the origin node, node 1. Nodes within an area between two circles have the same
level. The disassembly process begins by selecting nodes from the outermost level. At each
step, nodes from the current level, along with nodes connected to previously disassembled
ones, are eligible for disassembly. The process progresses to the next level only when all
nodes at the current level are disassembled. Notably, this graph-based approach applies a
filter before node selection and does not directly select a node. In order to address this,
we model the HRC disassembly problem in RL, enabling a learning-driven solution. We
define the state as the product’s online condition. Additionally, the action refers to the next
product’s component for disassembly. We also determine the reward function based on the
problem’s objectives, such as minimizing operation time and maximizing recovered parts

quality.

Figure 3.4 illustrates the proposed multi-agent RL-based model that includes two agents— a
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Figure 3.3 A graph of an EoL product

human and a robot— each selects tasks for its respective operator. Through dynamic interac-
tions with an environment, these agents learn optimal policies for choosing the most efficient
tasks to earn maximum cumulated reward values. It is a dynamic and recursive learning
process, in which the agents adjust themselves based on feedback from the environment.

In the case of the human agent, after performing the action al in the state sP, the agent

receives the reward r. Then, it moves from the current state s' to a new state sl. The

values s!', al, r}, and sl are stored in the replay memory M. Next, we sample a batch of
data from the replay memory M, to train the human agent. In this recursive process, the
human agent is updated at each step. We consider the mentioned steps for the cobot too, in
which all values s{, af, r{,, and s}, are stored in the replay memory M,. This algorithm delivers

the learned human agent and robot agent models that can make decisions in real-time.

Environment

Action a; Action a;

— . -
Reward r;, Reward r}
State s, State 5]

Robot-Agent Human-Agent

Figure 3.4 The proposed multi-agent RL-based model
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3.2 Second article

In line with the move towards sustainable manufacturing, this chapter presents an RL-based
disassembly planning model, derived from the definition of sustainability provided in Section
1.2, as shown in Figure 3.5. In this way, the model incorporates not only economic aspects
but also social and environmental factors as the objectives in the optimization problem. Eco-
nomic objectives include minimizing operation time and tool change frequency. In addition,
minimizing ergonomic risk and maximizing human safety are social objectives. Meanwhile,
the environmental objectives are to maximize the quality of recovered parts and minimize the
cobot’s energy consumption. The model also accounts for the technical feasibility of tasks in

the planning process.

Cobot Technical Human Technical
Feasibility Feasibility

® Operation time
e Tool change

Figure 3.5 The proposed multi-agent RL-based framework

A disassembly process is associated with uncertainties that may appear in both the decision-
making process and data. In terms of data, the mentioned factors result in the existence of
uncertainty in parameters, such as the quality of recovered parts. Modeling these parameters
is essential as they should be considered in the decision-making process. These parameters
express subjective concepts, and consequently, it is difficult to numerically represent them
due to the lack of prior knowledge about them. It is also impractical to determine exact

values for these parameters because of their uncertain nature.

In order to represent data uncertainty and better align the model’s training environment with
real-world conditions, we developed a fuzzy-based environment that computes reward values
in response to an executed action. It is notable that the reward functions consists of fuzzy and
crisp terms. Difficulty, feasibility, operation time, and recovered quality are fuzzy parameters,
while consumed energy, tool change, safety, and ergonomic risks are crisp parameters. We

compute the operation time and recovered quality crisp values with a fuzzy-inference system
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(FIS) according to difficulty and feasibility values. Then, we sum all of the crisp values to
calculate the reward scores. As shown in Figure 3.6, the fuzzy-based environment includes
three steps. It first executes the action selected by an RL agent. Subsequently, the FIS
fuzzifies the uncertain parameters consequencing to the executed action. The FIS infers the
data by using pre-defined fuzzy rules to compute outputs, which are then defuzzified. After
that, the defuzzified parameters are combined with the non-fuzzy parameters based on the

reward functions. Finally, the RL model receives the reward value from the environment.

Fuzzy numbers are commonly configured using expert opinions or historical data. However,
in the second and fourth articles, due to the lack of access to such resources, the fuzzy

numbers were logically set up to prove the functionality of the developed models.

|
1

Computing the reward values

I

Fuzzy-inference system

Fuzzy values

Performing action(s)

T
|

Defuzzifier

Inference

Fuzzifier

Multi-agent RL model

Environment
Crisp values

Figure 3.6 The fuzzy-based environment

3.3 Third article

Achieving a sustainable disassembly process requires considering human factors such as er-
gonomic risk and human safety. As described in Chapter 2, disassembly processes are asso-
ciated with considerable ergonomic risk. According to Figure 3.7, performing repetitive and
simple tasks, standing or sitting for a long time, working in an unstable position, and lifting

heavy objects are examples of such high-risk tasks.

This research presents a novel approach based on image processing and fuzzy logic to assess
the ergonomic risks of disassembly operations. This approach leverages a multi-camera struc-
ture, shown in Figure 3.8, with three cameras installed in front, right, and left of a human
operator. This approach first extracts the upper body joints of the human in each frame.
These joints are the left and right shoulders, elbows, hips, and wrists. The proposed approach
then computes the angles between these joints, including those between the right and left

wrists, elbows, and shoulders, as well as between the right and left elbows, shoulders, and
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hips. We use three cameras as all angles cannot be calculated using videos taken with a single
camera. Then, we evaluate the posture risk of each upper body part based on these angles
through two directions: side-view and top-view. Following that, we define posture risks in
elbows and shoulders by using rapid entire body assessment (REBA) and rapid upper limb
assessment (REULA) approaches. In order to compute the final risk of each task, we involve
the force/load of each task based on maximum voluntary contraction (MVC) to the posture
risk. Subsequently, we compute the cumulative risk on each part based on the task duration
compared to the task cycle time. Finally, we assess the total ergonomic risk of each part by

using five fuzzy rules.

F R

a) Repetitive move- ) Long periods of (¢) Working in un- d) Lifting heavy ob-
ments s1tt1ng or standing stable positions Jects

Figure 3.7 Ergonomic risks corresponding to disassembly activities
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Figure 3.8 The proposed approach for ergonomic risk assessment

3.4 Fourth article

This chapter introduces an HRC disassembly planning model based on a multi-agent fuzzy-

RL framework, illustrated in Figure 3.9. Each agent includes an RL model, a fuzzy model,
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and an intelligence collaborative module. In each time step, an intelligence collaborative
module selects a model to make decision. In this framework, RL models recursively learn with
feedback from the environment. Meanwhile, fuzzy models are configured logically. Since RL
models typically perform poorly and exhibit instability in early time steps, the fuzzy models
are chosen more in initial iterations. In this case, the RL models learn with the feedback
provided by the environment in response to decisions made by the fuzzy models. As the
learning process evolves, the role of fuzzy models gradually diminishes, eventually allowing
the RL models to make decisions independently. In this way, the fuzzy models play the role
of copilot for the RL models. As the fuzzy model is developed with experts’ knowledge, this

study incorporates human expertise within an RL-based structure.

Furthermore, we conduct multiple sensitivity analyses to evaluate the model’s performance
under different uncertain conditions and scenarios with varying objective importance. These
uncertain conditions are variable execution times for each task and task failure probability.
In order to provide users with a convenient application, we have developed a GUI, shown in
Figure 3.10. Using this interface, manufacturers can easily customize the process by adjusting
each sustainable objective’s importance according to their requirements. As shown in Figure
3.10a, by entering a number between 0 and 100 for each sustainability pillar (economic,
social, and environmental), manufacturers can indicate the importance of the corresponding
objectives in the decision-making process. Next, a pie chart illustrates the relative importance
of the sustainability pillars, and task sequences for operators are generated, as shown in Figure
3.10b.

Human-agent Cobot-agent

Human RL model Cobot RL model

e | | | [
— —

Human fuzzy model Environment Cobot fuzzy model

XX XX

Figure 3.9 The multi-agent fuzzy-RL framework
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Figure 3.10 The developed GUI
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4.1 Abstract

Herein, we present a real-time multi-agent deep reinforcement learning model as a disassem-
bly planning framework for human-robot collaboration. This disassembly plan optimizes
sequences to minimize operation time and the disassembling costs of end-of-life (EoL) prod-
ucts. Combining different data-driven decision-making tools, the plan aims to handle the
complexities and uncertainties of disassembly tasks. Based on the physical features and ge-
ometric limitations of EoL. product components, we calculate product disassembly difficulty
scores. Subsequently, the deep reinforcement learning model integrates these scores into plan-
ning process. The model allocates tasks in real time according to the online conditions of the
human operator, cobot, and product, enabling the model to cope with uncertainties that may
change the process routine. We also present different scenarios wherein a cobot collaborates
with human operators with different skill levels. To evaluate model performance, we com-
pare it with baseline models in terms of the convergence time and incorporated disassembly
features. The analysis indicates that our model converges three times faster than a baseline
model applied to the same case study. Moreover, our model includes more features of the

disassembly problem in its decision-making process than any other baseline model.

Keywords: Disassembly planning; human-robot collaboration; real-time task allocation; re-

inforcement learning; context-aware recommender system

4.2 Introduction

Nowadays, many developed and developing countries are promoting recycling and waste
reduction cultures due to economic and environmental benefits. As a result, there are an

increasing number of disassembly methods that provide recovered product components for
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reuse in manufacturing processes.

The use of robots in disassembly operations has grown in recent years. Collaborative robots
(cobots) can enhance the quality of the disassembly processes in terms of completion time,
human safety, and labor costs. Collaboration between a robot and a human operator reduces
the disassembly process time, which leads to an increase in the production rate of manufac-
turing companies. Human operators are also exposed to ergonomic risks while performing
disassembly tasks. In these cases, using cobots prevents jeopardizing human health and safety
tremendously. Additionally, manufacturers may hire fewer human operators by using cobots
during disassembly operations. Particularly, cobots can perform repetitive and simple tasks
accurately, whereas a human operator may not accomplish them efficiently due to fatigue and
distraction. However, task allocation in human-robot collaboration in disassembly processes
has been challenging, and various methods have been developed to address this issue in the

literature.

Zhao et al. [48] developed a reinforcement learning-based algorithm as a disassembly planning
model. The authors introduced a new graph-based representation approach to obtain the
precedences between product’s components and consider the uncertainty of an EoL product.
The authors have presented an algorithm to assign a level to each component of a product
based on their positioning within the hierarchical structure. Accordingly, their task allocation
process begins with the components at the outermost level. After disassembling all the
components at this level, it moves to the next inner level. In this way, the process continues
until all the components have been disassembled and the innermost level is reached. The
authors also proposed a reward function. It takes into account processing time, profit, and
the difference in the levels of the previous and newly selected components in a disassembly
sequence. The last term awards the agent once it completes the disassembly of components

in a level and moves to the next level.

In another paper [88], a matrix-based human-robot collaboration disassembly planning method
has been proposed. The authors considered disassembly time as a predefined deterministic
parameter. They designed a CAD model of an actual product in the first step. Then, they
compute a precedence list between the product’s components through a proposed matrix-
based method. Afterward, multiple disassembly sequences are generated based on the prece-
dence list of the product’s components. Finally, the sequence with the shortest disassembly

time is selected as the optimum disassembly sequence.

Lee et al. [1] proposed a human-robot collaboration disassembly framework. It considers
14 criteria to formulate a sequential disassembly task allocation process into a numerical

optimization-based problem. Human operators’ safety is also considered in the decision-
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making process. The authors applied the proposed framework to a real case study (hard disk

drive) to validate their model.

Parsa and Saadat [86] have introduced cleanability, repairability, and economy metrics as
three disassemblability factors. These metrics are defined by human experts and are imple-
mented to prioritize components in partial human-robot collaboration disassembly planning.
In addition, they have assigned various weights to the metrics to determine their importance
in the prioritizing process. All disassembly operations are categorized into eight groups with
different numerical score based on their difficulty and complexity. The disassembly frame-
work’s objective is to allocate difficult and complex tasks to a human operator that a robot
cannot perform due to its physical limitations. Moreover, an AND/OR graph-based approach
represents the entire disassembly process and precedence hierarchies. Then, a genetic algo-
rithm is employed to optimize the task allocation process, which has a fitness function based
on three variables: disassembly time, non-targeted component index, and human operator
change. The last two variables play the role of penalty terms in the fitness function. They

have applied their proposed method to a fuel pump as a case study for evaluation.

In the context of assembly planning, a reinforcement learning-based human-robot interaction
model has been introduced in [92]. The authors developed a multi-agent framework that
considers an agent for a human operator and an agent for a robot. An improved version of a
deep deterministic policy gradient approach is presented as well. It computes a global Q-value
based on the collaboration between two agents. The authors also utilised a simple vectorized
approach to represent the architecture of an assembly product. For evaluation, the proposed
model was applied to the assembly of an alternator in a laboratory setting. Similarly, a
reinforcement learning-based assembly planning model has been introduced in [49]. The
authors considered two vectors. First, a binary vector represents whether the assembly task
is finished or not. Secondly, a vector containing the required assembly tool as the state.
The reward signal consists of two parts: completion time and user satisfaction. The latter is
defined based on how satisfied the user is with the quality of assembly sequences. Further, the
disassembly completion times for each component can be configured both deterministically
and stochastically. In the proposed framework, the authors compared several reinforcement

learning models that were applied to airplane toy data provided in [50, 51].

Recent research utilised static modeling approaches that cannot operate dynamically to adapt
to the disassembly process’s uncertainties and perform the decision-making process in real
time. As [2] points out, the optimal disassembly sequence should be updated based on the
actual state of the disassembly process through the development of revised techniques. More-

over, as discussed in [48], it is generally impossible to utilise fixed disassembly sequences for
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end-of-life (EOL) products due to their uncertain structure. Furthermore, if minor struc-
tural alterations are made to Eol. products, heuristic approaches may need to reevaluate
their optimization process. Thus, structural variations in EoL. products cannot be addressed
by heuristic methods. Similarly, according to [2], proposed static approaches in most of the

previous research cannot adapt dynamically to uncertainties in real disassembly scenarios.

In addition, most of the previous research did not consider the disassembly difficulty level for
each part or component in the task allocation procedure. Moreover, previous studies have
not addressed the skill levels of human operators, which may influence the entire process
performance. This paper aims to fill these gaps by proposing a context-aware recommender

system for optimizing disassembly sequence planning with a cobot.

The study’s main contributions are outlined as follows:

« Propose a new disassembly planning model for the human-robot collaboration process.
The model performs the decision-making process in real time rather than generating a
predetermined series of tasks. This feature allows the model to cope with the process

uncertainties well.

o Develop a multi-agent model containing two agents: the human agent and the robot

agent. In this case, each agent allocates tasks to its corresponding operator.

» Propose a new state for the process according to the disassembly difficulty scores. We
use several physical and geometric features of a product’s components to compute these

Scores.

o Represents the architecture of an EoL. product by a new graph-based approach. We

assign a level to each component of the product based on its positioning in the graph.

e Propose an algorithm for switching from the multi-agent model to the single-agent
model, in which the human operator performs the tasks solely. This approach is em-
ployed whenever there is no appropriate task for the cobot, and performing a task can

break its physical structure.

« Involve skill levels of human operators in the task allocation process. It enables the

model to recommend relevant tasks to human operators.

The rest of this paper is organized as follows. Section 4.3 explains the context of the problem
and the relevant research fields. Next, Section 4.4 describes the proposed model. Section 4.5
includes all experimental setups, results, and discussion. Finally, Section 4.6 summarizes the

paper and outlines the future steps for this research study.
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4.3 Background

4.3.1 Disassembly processes

As described in [2] and [108], remanufacturing involves utilizing sustainable reuse methods
rather than recycling, landfilling, or incineration of EoL products. The first step toward
remanufacturing is to take apart Eol. products to extract their components. Whenever

possible, these components are repaired and used in the manufacture of new products.

Zhou et al. [2] categorized the objectives of disassembly processes into four groups: cost,
profit, ecological effects, and practical purposes. According to the authors, the cost function
includes process duration, process equipment cost, labor cost, number of parts, number
of operations, maintenance degree provided in [109], mean time to repair (MTTR) index
introduced in [110], and the traveled distance to disassemble a component. The authors
also defined the profit for an EoL product as a function of the components’ profit, retrieved
weight or volume, profit probability, variable product value, and retrieved value indexes. The
ecological effects of a part and the impact of a disassembly procedure on the environment

are also considered as two environmental indexes by authors.

There is a growing body of literature exploring how to optimize a disassembly process by
sequential task allocation. [33] proposes a hybrid optimization method as a disassembly plan-
ning model that combines the Genetic algorithm with the Tabu search. It also utilises a
graph-based method called disassembly constraint graph (DCG) to represent an entire prod-
uct’s structure. In another study, [34] introduces an approach based on the Genetic algorithm
for disassembly line balancing. Next, a disassembly sequence planning approach based on the
ant colony optimization algorithm is presented in [31]. The authors formulated the problem
using three factors: the number of components, the disassembly tool, and the disassem-
bly process direction. [16] tackles the disassembly sequence planning problem by defining
two component classes. The first class applies Dijkstra’s algorithm only to functional com-
ponents, while the second one runs a PSO-based algorithm for all components, including

fasteners to obtain the most optimal disassembly arrangement.

Some preliminary work was carried out in this field utilizing machine learning approaches to
plan a disassembly process. [44] proposes a dynamic programming approach for disassembly
planning that handles the uncertainty of the process. The author has employed a Petri
network to model the entire process. In addition, a combination of a Petri network and
a hybrid Bayesian network is proposed as a disassembly planning model in [40]. The Petri
network is utilised for representing the entire process, and the hybrid Bayesian network selects

the next action in the process.
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In general, product design significantly affects disassembly processes by means of various
factors. Several efforts have been made to identify these factors and the disassemblability
rate of a design. It helps manufacturers to redesign products in a way that leads to a higher
disassembly rate. Such a disassembly-aware design process that facilitates part recovery is
called design for disassembly (DfD). One of the first investigations in this area was published
in [79]. They have presented an overall efficiency metric to evaluate product disassemblability.
This value is computed using the information sheet on the product’s components. The level of
difficulty for product disassembly is defined based on its accessibility, position, required force,
required time, and other special metrics. Disassembly tasks are categorized into ten groups:
pull/push, remove, unscrew, flip, cut, grip, deform, peel, pry out, and drill. They considered
a hair dryer as a case study for the proposed approach. After completing the corresponding
sheet, they redesigned the product through four changes to improve the disassemblability

feature.

To compute the mentioned factors, other studies like [80] used a similar sheet-based approach
to incorporate different characteristics of components in the estimated disassembly time
calculation. The authors employed the Maynard operation sequence technique (MOST)
proposed in [81] to determine the difficulty level for each component. They applied the
proposed method to an electric drill as a case study. In a more recent study, [82] proposes ease
of Disassembly Metrics (eDiM) to calculate disassembly time using MOST. In this approach,
the disassembly process of each component consists of six fundamental tasks: tool change,
identifying connectors, manipulation, positioning, disconnection, and removing. While tool
change addresses taking and preparing a tool for an operation, identifying connectors refers
to the time that an operator takes to find a connector location, its type, and a proper tool
for its disassembly. Manipulation refers to the time for manipulating the product to properly
position it for disassembly. Moreover, the action of putting a tool on a connector for its
disassembly is referred to as positioning. Disconnection is the time required to disconnect a
part from the product. Finally, removing concerns the time that an operator needs to remove
a disassembled part to store it. The disassembly time for each component is obtained by
summing up the associated value for each of the six tasks in a predefined database. Next, the
disassembly time for every single component of a product is imported into a table. Then, a
human operator adds up the relevant imported data to get the overall optimized disassembly

time for a given product, considering the disassembly precedence relationships.

The main idea of LeanDfD introduced in [83] is to develop a disassembly sequence that con-
siders time-based disassemblability and recyclability metrics in a recursive cascade process.
Here the time is calculated based on liaison types and properties through a liaison database.

Also, a database containing material information is employed to calculate the recyclability
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metric. In the final stage, the computed time and recyclability metric are compared with two
threshold values. Upon satisfying both the time and recyclability thresholds, the proposed
sequence is exported as a PDF/XML file. Otherwise, the process should be restarted.

On the other hand, researchers have become interested in computer vision and image process-
ing systems incorporated into disassembly processes. [53] proposes an image processing-based
algorithm for screw detection in electric vehicle motors. This algorithm integrates several
image processing techniques, including HSV color modeling, image depth detection, grayscale
conversion, and the Harris detector proposed in [54]. In another research study, [55] intro-
duces an approach based on Tiny-Yolo v2 to detect screws for robot operators in disassembly

processes.

Furthermore, there has been growing attention to utilizing reinforcement learning models for
assembly and disassembly task scheduling problems over the past few years. These models
operate dynamically and adaptively considering any change in products’ structures. The
state for these reinforcement learning models is defined as the product’s situation at each
step. Moreover, the action is assumed to be the assembly/disassembly of the next component.
An early investigation of reinforcement learning for the purpose of disassembly planning was
performed in 2010 in [43]. The authors presented a reinforcement learning-based model
for disassembly line planning that utilises an Eleman network for Q-value approximation.
Mao et al. [45] also introduced a hybrid DQN model that utilises the genetic algorithm to
improve the long-term reward for disassembly sequence planning. A Petri network is also
used to represent the product’s architecture. The authors evaluated the proposed model for

maintenance training in a virtual reality environment.

4.3.2 Human-robot interactions in disassembly planning

Over recent years, robots have been playing a growing role in industrial processes. Conse-
quently, industries are undergoing significant evolution. Many manufacturing companies are
becoming more and more interested in employing collaborative robots (cobots) that can work
in parallel with human operators. The increasing evolution in the use of robots motivates Al
researchers to investigate the field of robotics. According to a report on Nature’s website [84],
the number of research articles in the field of Al and robotics has grown significantly from
2015 to 2021.

In recent years, several efforts have been made to define human and robot interaction levels
and methods. [85] categorizes all interactions between humans and robots into three main
classes: coexistence, cooperation, and collaboration. As they explained, in coexistence sce-

narios, a human and a robot work individually on different tasks in separate workspaces.
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In contrast, a human and a robot work on distinct tasks but in the same workspace in a
cooperative environment. On the other hand, collaboration is defined as the condition that a
human and a robot work simultaneously on the same task in the same workspace. All three
scenarios are illustrated in Figure 4.1. Furthermore, three main categories can be extended

by including isolation, synchronization, or other classes.

In another research study, Parsa and Saadat [86] categorized tasks performed by humans
and robots in a collaboration cell based on an autonomy factor into four cases: leading,
supportive, inactive, and an intuitive human and an adaptive robot. In the leading case, a
human operator or a robot works autonomously on a task. In the supportive case, one of
the actors provides assistance to the other during the operation. Also, a robot or a human
operator waits for a upcoming task in the inactive state. In the last case, they can switch

their roles based on the situation at hand.

Additionally, manufacturing operations such as disassembly processes are changed through
collaboration between humans and robots. In this scenario, the capabilities of both actors
are utilised to fulfill the tasks. Robots can perform repetitive and unsafe tasks with high
performance that may be hazardous for humans to operate. However, experienced humans

can react better to uncertainties in operations as explained in [1].

Various methods have been devised to address the human-robot collaboration disassembly
planning problem. [87] presents a disassembly line-balancing reinforcement learning-based
model. The authors considered several manual, automatic, and autonomous workstations
with products divided between them. Manual workstations are controlled by humans, while

automatic workstations are controlled by robots.

Autonomous stations have robots that can make their own decisions and learn from their
mistakes. The authors utilised a Petri network and a reinforcement learning architecture to

model the entire pipeline and the decision-making process. They concatenate all information

: ® | ® | ®

A A FA A &L

(a) Co-existence (b) Co-operation (c) Collaboration

Figure 4.1 Human-robot interaction categories
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regarding product orders and workstation situations into a vector as the state. Finally, the
reward is proposed as a weighted linear combination of failed operations, disassembly time,

and cost.

Researchers are becoming increasingly interested in sustainable development in this field.
As an example, [90] introduces a sustainable manufacturing framework. The researchers
proposed a theoretical recursive process containing five modules. It includes multi-modal
perception, multi-target cognition, strategy and decision-making, control and execution, and
knowledge formation and evolution. The multi-modal perception module collects data from
different sources. It includes physical, transport, cyber, and application layers. Multi-target
cognition module imports data to detect disassembly tools, and human and robot positions.
It will then be fed to the decision-making stage for further processing. A dynamic approach
based on reinforcement learning is proposed for the strategy and decision-making module
that will be trained on a digital twin platform. After running the control and execution
module, incremental and transfer learning is used to pass knowledge among robots through

clouds via the knowledge formation and evolution module.

4.3.3 Deep reinforcement learning in manufacturing

Integrating the prediction power of deep neural networks with the self-adaptive feature
of reinforcement learning makes deep reinforcement learning models strong tools to solve
decision-making problems under uncertainty. Optimizing the manufacturing process by deep
reinforcement learning techniques is an emerging research field. Over the past few years, sev-
eral researchers have addressed deep reinforcement learning applications in this domain. [111]
proposes an intelligent scheduling and reconfiguration framework based on a multi-agent deep
reinforcement learning model for a reconfigurable flow line. The multi-agent model includes
the scheduling agent and the reconfiguration agent. While the scheduling agent selects a job
for unoccupied machines, the reconfiguration agent defines which workshop settings should
be reconfigured. In the context of cloud manufacturing, [106] presents a reinforcement learn-
ing model for task assignment in a multi-project scheduling problem. Next, [112] proposes
a dynamic scheduling approach for robot services based on a deep reinforcement learning
framework. In this regard, the authors used both DQN and Dueling DQN (DDQN) in the
framework to provide a comparison analysis. In another research study, Sakr et al. [113] in-
troduced a multi-agent reinforcement learning-based model to dispatch and allocate resources
in a complex semiconductor manufacturing system. In order to maximize the performance
of the aerospace supply chain, [114] proposes an inventory replenishment approach based

on a hybrid model involving simulation and reinforcement learning. Next, [115] plans aero-
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engine fleet maintenance by concatenating the Q-values of all engines’ maintenance actions.
Herein, the authors proposed a multi-agent reinforcement learning model in which each agent

computes the corresponding Q-value vector of each engine.

In recent years, deep reinforcement learning methods have become increasingly popular in
human-robot interaction. [116] introduces a multi-agent reinforcement learning model based
on the DQN architecture to optimize the human-robot collaborative assembly problem. In
this regard, each agent represents the role of a cobot or a human operator in the decision-
making process. [117] addresses safe human-robot interaction by developing a reinforcement
learning model for motion planning to avoid accidents. Liu et al. [118] have developed a multi-
agent reinforcement learning-based framework for the human-robot collaborative assembly
process. The main goal is to train a cobot to adaptively work with a human operator in an
interactive assembly environment. In another research study, [119] proposes a model based on

the Actor-Critic architecture for safe human-robot collaboration in industrial environments.

4.3.4 The required disassembly features comparison and the potential gaps

This part aims to compare several studies in terms of the incorporated disassembly features
in order to discover potential gaps in the literature. Due to the lack of numerous disassembly
planning models, we evaluate our approach against two assembly task allocation models as

they have similar features compared to ours.

Table 4.1 shows the papers and their corresponding features. All the papers lack the real-time
decision-making feature. As previously mentioned, a process’s routine may be changed by
unexpected incidents. Hence, it is significant for a planning model to perform the decision-
making in real time instead of using a predetermined task sequence. Next, the proposed
models in (4,5,7) utilise the difficulty factor for disassembly tasks as an influential element
in the decision-making process. Although, the difficulty level factor is taken into account
without addressing the products’ physical characteristics (5,7). The difficulty is a critical
factor in disassembly task allocation. Extremely difficult tasks cannot be efficiently executed
by low-skilled human operators. Furthermore, cobots cannot perform difficult tasks because
of their physical limitations. Therefore, inefficient task allocation results in longer processing

time and lower recovered parts’ quality.

Although all papers consider the time of the process as a noteworthy feature, they do not
integrate human operators’ skill levels and recovered part quality into their models. Assem-
bly /disassembly operations are skilled-based jobs. A human operator’s skill level can affect
the output quality of an operation. Several papers in the field of manufacturing consider the

skill levels of human operators as an assumption in modeling processes. In [120] and [121], the
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authors integrate human operators’ skill levels in an assembly line balancing process by con-
sidering three types of skilled workers: low-skilled, medium-skilled, and high-skilled. In [122],
the authors involve proficiency levels and skill sets as influencing factors in a disassembly line
balancing optimization model. Since the disassembly target is to use the recovered parts for
new product manufacturing, the quality of these parts is also an important factor. Further,
the models presented in (2,3,4,7) are capable of self-adaption, which is critical for adjusting
to dynamic situations in assembly/disassembly cells. Finally, (2,3,4,5) proposed planning

models for the collaboration of a human operator and a cobot in assembly/disassembly cells.

Even though the previous studies examined different features of disassembly processes, the
proposed models can still be improved. Therefore, this article introduces a comprehensive
disassembly planning model to cover different aspects of the problem. In this paper, we
introduce a human-robot collaboration disassembly planning model that allocates tasks in
real time. It is a self-adaptive model that aims to minimize operation time and maximize
recovered part quality. We also incorporate several features related to difficulty and human

operators’ skill levels into the planning process.

4.4 Methodology

This paper proposes a novel interactive disassembly planning model for human-robot collab-
oration, where a human operator and a cobot work alongside each other in a shared work
cell. This planning model aims to allocate tasks to operators depending on several physical

and geometric features of EoL. products, human operators’ skills, and cobots’ abilities.

The outline of this section is organized as follows: the architecture of an Eol. product, its
components, and the connections between them are discussed in Section 4.4.1. Next, Section
4.4.2 presents the concepts of the task allocation process. A disassembly process is modeled
based on a reinforcement learning framework in Section 4.4.3. We discuss the switching

between collaborative and inactive modes in Section 4.4.4. The real-time task allocation

Table 4.1 Comparison of required disassembly features in the various models

Index Paper Real- Difficulty Operation Human Quality Self- Cobot
time time skill adaptive
levels
1 48 X X v X X v X
2 88 X X v X X X v
3 (1] X X v X X X v
4 86 X v v X X X v
5 92 X v v X X v v
6 49 X X v X X v X
7 45 X v v X X v X
8 Our model v v v v v v v




40

process is explained in Section 4.4.5. Finally, we explain our proposed multi-agent deep

reinforcement learning algorithm for the task allocation process in Section 4.4.6.

4.4.1 A product architecture modeling

EoL products have diverse shapes and geometries. They are composed of several components.
The first step in an EoLL product disassembly is to model the entire product architecture to
analyze the disassembly precedence relationships. This step provides a represented form
of a product for the decision-making process. As discussed in [2], graphs, Petri networks,
matrices, and universal methods are the four classes of disassembly representation models.
As a contribution, we utilise a directed acyclic graph-based approach to represent a product
architecture and the connections among its components. Each node of a graph refers to each
component, and the graph’s edges represent the connections between the components. We
also employ the depth-first search algorithm to assign a numerical score as a level to each

node based on its position in the product’s architecture.

Figure 4.2 depicts a simple product graph. The illustrated dotted line circles define the
nodes’ levels, in which nodes within an area between two circles have the same level. These
levels are arranged in ascending order. Accordingly, the innermost and outermost nodes have

levels one and four, respectively.

Figure 4.2 A graph of an EoL product

Based on these obtained levels, we provide the Level vector that includes all nodes’ corre-
sponding levels. This vector is shown in Equation 4.1, where M and [; represent the number
of the nodes and the level of node i, respectively. Moreover, Equation 4.2 denotes the Ad-

jacency matrix of the graph. It is a square M x M matrix that each of its elements refers
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to a connection between two nodes. In this regard, the element a;; identifies the connection
status between nodes i and j. As shown in Equation 4.3, the value of a; j is one if a connection

exists between nodes i and j. Otherwise, it is zero.

l
>

Level vector = | (4.1)
Inr
11 Qr2 -+ A M
Q21 Q22 -+ A M

Adjacency matrix =

Qpr1 Qa2 0 QMM

1 if there is an edge between node ¢ and node j
;5 = (43)
0 otherwise

The decision-making process to select a node should be performed according to the precedence
relationships. For example, node 3 in Figure 4.2 cannot be disassembled at the beginning
of the process without disassembling nodes 9 or 10, and 5. Therefore, we provide a fresh
method to consider limitations imposed by the precedence relationships in the decision-

making process through the Level vector and the Adjacency matrix.

Algorithm 1 presents the decision-making process concerning the precedence relationships.
First, we select a node among the nodes at the highest level. During the while loop, we select
a node at the highest level or connected to the first selected node. Upon selecting all nodes
at the current level, the algorithm proceeds to the next level by reducing one level. Finally,
the algorithm breaks the loop if the current level is zero or if all nodes of the product are

disassembled.

Notably, this algorithm only applies the limitations of the precedence relationships to the
decision-making process. We utilise a learning-based approach explained in the following

sections to select nodes.
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Algorithm 1 The decision-making process with respect to the limitations of the precedence
relationships

Input: the Level vector, the Adjacency matrix

Select a node with the highest level.
while true do
Select the nodes in the current level or nodes connected to the disassembled nodes.
if all nodes in the current level are disassembled then
level = level - 1.
if level = 0 || all nodes are disassembled then
Break the loop.
end if
end if
end while

4.4.2 Task planning strategy based on the disassembly difficulty

Manual disassembly tasks performed by human operators require a high level of skill. Inexpe-
rienced human operators may not have enough skills to employ the required tools during the
processes effectively. It can lead to longer processing times and lower recovered part quality.
Specifically, they cannot perform more difficult and challenging operations efficiently. More
experienced humans, on the other hand, can usually complete tasks in less time and with
higher quality. We consider human operators’ work experience as an influential feature in
the process’s performance. Towards this end, we categorize human skill levels based on their

work experience into three levels: acceptable, medium, and high.

On the other hand, cobots can do simple and repetitive tasks that a human operator might
find distracting. In contrast, they cannot accomplish difficult tasks that require high strength
and flexibility. Therefore, it is recommended to allocate these challenging tasks to human

operators.

To recommend a related task to each operator, we categorize the tasks based on their disas-
sembly difficulty and complexity into three levels: easy, difficult, and very difficult. In this
regard, easy tasks are assigned to cobots. Human operators with acceptable-skill levels are
preferred for performing easy tasks too. Also, human operators with medium-skill levels can
handle easy and difficult tasks efficiently. Ultimately, highly experienced human operators
can perform any type of task. All operator types and their corresponding tasks’ difficulty

levels are illustrated in Table 4.2.
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Table 4.2 Operators’ types and their proper tasks in terms of disassembly difficulty

Operator type The difficulty levels of appropriate tasks

Cobot Easy
Acceptable-gkill human operators Easy
Medium-skill human operators Easy

Difficult
High-skill human operators Easy

Difficult

Very difficult

4.4.3 Modeling a collaborative disassembly problem based on reinforcement

learning

We formulate the disassembly planning problem as a standard multi-agent reinforcement
learning process. It includes an environment and two agents: the human agent and the
robot agent. In this way, the human agent and the robot agent perform the decision-making

processes to select tasks for a human operator and a cobot, respectively.

Each agent starts from an initial state s; at step t. It then performs an action a;. It moves
to a new state s¢;1 by receiving feedback from the environment as a numerical reward ry,
at step t+1. As it is a recursive process, agents learn a policy 7 during these interactions
with the environment to select an action in each state. Consequently, this process continues
until agents learn the optimal policy, allowing them to select actions with the maximum
accumulated rewards. Equation 4.4 illustrates the optimal policy, where the terms 7* and T
address the optimal policy and the total time steps, respectively. The term r; also refers to

the reward at step t.

T
7 = argmax E { Zrt} (4.4)

i t=0
To formulate the agents-environment interactions, we utilise the Markov decision process
(MDP). It is a tuple containing four elements: s;, ag, ryy1, and sg 1. As [123] explains,
MDPs can model detailed theoretical expressions since they are the mathematically optimal

presentations of reinforcement learning problems.

State

This study aims to integrate the disassembly difficulty of components into the decision-
making process. Therefore, we define the state as a difficulty vector, an array including the

disassembly difficulty scores of all components.

To compute these disassembly difficulty scores, we use the physical and geometric features
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of a product’s components. In this regard, we consider the weight and size of a component,
required strength for disassembling, destructive or non-destructive disassembly tasks, the
number of its connections with other components, and the liaisons’ types and properties as

the influential physical features of a product’s disassembly difficulty.

Furthermore, accessibility and positioning are two major geometric features. As explained in
[80], accessibility refers to the ability for accessing to a part by hand or tool. Also, [82] defines

positioning as placing a required tool on a component’s connection before disassembling it.

Assigning numerical values to each of these physical and geometric features is an essential
step for utilizing them. For this purpose, we utilise numerical values for strength, weight, size,
positioning, and accessibility provided in [86]. We also determine the destructive feature as
a binary variable. In this case, destructive and non-destructive disassembly tasks are labeled
one and zero, respectively. Similar to [83], we assign a discrete value to each liaison type and

a value between one and two to each liaison’s properties.

Then, a linear combination of these seven features is defined to address the difficulty score
of a component’s disassembly. Equation 4.5 demonstrates the linear combination, where w1,
Wy, ... and wy are the corresponding features’ coefficients. These coefficients indicate the
importance of each feature and are defined by experts. Moreover, a product’s disassembly
difficulty vector D is illustrated in Equation 4.6, where d; represents the disassembly difficulty
score of component i. Notably, the defined disassembly difficulty vector is considered as the

states of both agents.

d; = wy - strength + wy - weight + w3 - size + wy - destructive
+wj - positioning + wg - accessibility (4.5)

+w7 - (liaisons scores - liaisons properties - number of connections)

D: [dl,dQ,dg,...,di,...,dN] (46)

Action

The model’s purpose is to allocate the most suitable components for disassembling to a
human operator and a cobot. Therefore, an action is the next component for its disassembly.
The action space also consists of all available components for disassembling at each time step.
Moreover, agents should take a new action (component) in each time step as each previously

selected component (action) was disassembled from the product.
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Reward

Several prominent features in a product disassembling represent the process’s performance.
Consequently, the main goal of a disassembly planning model is to optimize the process
based on these features. In this research, we consider the operation time and the recovered
part quality as the most impactful features of a disassembly process. Therefore, we define
the reward function of the model based on these two features. Equation 4.7 illustrates the
reward function, which is a linear combination of three variables. The first is the quality
reward rq, presenting the quality of a recovered component. The weight o also defines its
corresponding impact on the reward function. The second variable is the time reward r; that
denotes the operation time. It is a penalty term to incentivize the agents for completing their
tasks in a shorter time. We give this reward the weight a; to see how it affects the reward
function. Notably, the minus sign preceding o implies that a longer process time leads to

less reward value and a punishment for the model, and vice versa.

In addition to the time and the quality rewards, we add the penalized reward r, to the reward
function. It aims to motivate the robot agent and the human agent to select easy tasks and
difficult or very difficult tasks, respectively. In the case of the robot agent, if it chooses
an easy task, the penalized reward will be positive. Also, it will be negative whenever the
robot agent picks a difficult or very difficult task. Conversely, choosing easy tasks results in
a negative value and punishment for the acceptable, medium, and high-skilled human agents
incentivizing them to leave these tasks for the cobot. Thus, the value will be positive when
they select difficult or very difficult tasks. These positive and negative values are discussed
in more detail in Section 4.5.1. In addition, in the same way as two other coefficient terms,
o, indicates the impact of the penalized reward. Given that these variables are measured in

different units, the coefficients also standardize their scales before summation.

Tiotal = Olq * Tq — O * Ty + Oy * T (4.7)

4.4.4 Switching between the collaborative and inactive modes

During a disassembly process, sometimes only difficult and very difficult tasks are available.
In these cases, performing a task by the cobot can damage its structure and a product’s
architecture. In order to prevent these issues, the cobot should stop working and wait for

the human operator to complete the available tasks.

As an innovation, we propose an algorithm to switch the model from the multi-agent to

the single-agent, in which a human operator works alone. In other words, we change the
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human-robot interaction from the collaboration mode to the inactive mode. This switching
process is shown in Figure 4.3. Moreover, Algorithm 2 presents the switching process in more
detail. First, we select a node with the lowest difficulty score among all nodes provided by
Algorithm 1. If its difficulty score is in the easy level, there is at least one node with the easy
level. Therefore, the cobot can perform a task, and the model works in collaborative mode.

Otherwise, the cobot stops working, and the model operates in inactive mode.

& K B 7

Figure 4.3 Switching between the collaborative and inactive modes

Algorithm 2 Switching between the collaborative and inactive modes

Check all available nodes with respect to the Algorithm 1
Select the node with the lowest difficulty score.
if the node’s difficulty score is in easy level then
Work in the collaborative mode.
else
Work in the inactive mode.
end if

4.4.5 Real-time task allocation process

Several incidents may occur that deviates a disassembly process from its predetermined
routine. Therefore, generating a task sequence before starting the process cannot address
these unforeseen scenarios. Consequently, real-time task allocation is one of the most vital

features of a disassembly planning model to cope with uncertainties.

This research proposes a model for allocating tasks in real time as an innovative alternative.
The real-time feature requires that the model makes a decision at each time based on the
product’s conditions and operators’ availability. Most previous works in disassembly planning
theoretically determine an optimal task sequence before starting the process. Alternatively,
our proposed model allocates tasks in real time, and does not consider planned times for

tasks’ completion.
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Figure 4.4 illustrates the proposed real-time task allocation mechanism. At t = 0, the model
assigns tasks 1 and 2 to the human operator and the cobot, respectively. Task 3 is allocated
to the human operator when task 1 is performed at t = T;. Similarly, the model recommends
task 4 to the human operator after task 3 is completed at t = T; 4+ T3. Following this, the
model assigns task 5 to the cobot when task 2 is completed at t = Ty. This process will
continue until all tasks are completed. Section 4.4.6 explains this real-time task allocation

mechanism in more detail.

t=0 (=T, t=T+T; t=T,
A human operator T1 T3 T4
A cobot T2 T5

Figure 4.4 The real-time task allocation mechanism

4.4.6 A multi-agent deep reinforcement learning approach for disassembly plan-

ning
Deep Q-Network

We employ a multi-agent deep Q-network (DQN) architecture to model the proposed disas-
sembly planning framework in Section 4.4.3. DQN is a popular reinforcement learning model
introduced in [124]. Tt utilises two deep neural networks, prediction and target networks, to
approximate Q-values. The prediction network is used to estimate Q(s,a), the Q-values at
the current state for all possible actions. Additionally, the next state Q-values, denoted as

Q(s',a’), are computed through the target network.

DQN aims to reach the optimal Q) function, represented by Equation 4.8. It results in the
maximum amount of cumulative rewards in the future steps by selecting an action a; at state
sy regarding the policy m. A discount factor called ~ is also a trade-off between the immediate
and the long-term rewards. Equation 4.9 is also used to recursively update the Q-values at

each step, in which the term « is the learning rate of the process.

Q*(s,a) = max E {Rt + YR + VP Risa + ... | 8= 5,4, = a, W} (4.8)
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Q(s,a) « Q(s,a) + a[R(s,a) + 7 arg max Q(s,a") —Q(s,a)] (4.9)

Ultimately, the loss function of the process is shown in Equation 4.10, where 6; and 6,
represent parameters of QQ-values in the current and future states. Instead of computing
the entire summation, stochastic gradient descent is normally used to update the prediction
network parameters. Also, these parameters are loaded into the target network’s parameters

after each Tiarger time.

Vo, L (0;) = Es a5 [(r + v max Q (s', a'; 9;) —Q (s, a; 92)) Vo, Q (s,a;6;) (4.10)

Real-time interactive human-robot collaboration disassembly planning model

This section proposes a DQN-based model to allocate tasks to agents in real time. The
proposed framework and the associated algorithm with more details are displayed in Figure
4.5 and Algorithm 3, respectively. We initialize ©y, and ©,, the parameters of the human
agent and the robot agent, with random variables. We choose actions a and al at time t
for the human operator and the cobot in the first step of starting an episode. This action
selection process is performed with respect to Algorithms 1 and 2, as well as the e-greedy

strategy. This strategy balances the exploitation-exploration dilemma by the parameter e.

In contrast to the previous models that assign tasks based on predetermined operation times,
we allocate a new task to the human operator or the cobot once they complete the previous
tasks. In this regard, we indicate a human operator and a cobot task completion times by t/
and t”. Whenever the human agent or the robot agent completes their corresponding tasks
(at t==t’ and t==t"), they will receive rewards r} or r,, respectively. In the case of the
human agent, it moves from the current state s! to the new state si. Then, the values sP,
al, i) and sb are stored in the replay memory M. Next, we sample a batch from the
replay memory My, to train the human agent!. In this dynamic process, the human agent
is updated at each step. Meanwhile, the robot agent may change the product’s condition
by disassembling a component. Therefore, we update the state sf based on these possible
changes. This is a crucial step in the real-time task allocation process to ensure synchronous
operation between agents. Consequently, completed tasks may be reassigned if this step is
not performed. Finally, a new action a is allocated to the human agent with respect to
limitations presented in Algorithms 1 and 2, as well as the e-greedy strategy. It is notable

that the DQN output is the selected action. As a result, wherever an action is chosen, the

'For further details, please read [124]
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DQN is employed.

We consider the mentioned steps for the cobot too, in which all values sj, af, r}», and s{, are
stored in the replay memory M,. This algorithm delivers the learned human agent and robot
agent models that can make decisions in real time. Furthermore, Table 4.3 illustrates all the

key symbols of the proposed algorithm with their descriptions.

Environment

Action a; Action a;

— . -
Reward r;, Reward r}
State s, State 5]

Robot-Agent Human-Agent

Figure 4.5 The proposed reinforcement learning-based framework

4.5 Experiments

In this section, the case study, experimental set-up, and results are discussed. First, the
problem context, the evaluation protocol, and a simulation approach for environment model-
ing are presented. Then, we conduct three human-robot collaboration scenarios and perform
sensitivity analyses based on the parameter €, the discount factor v, and the replay memory

size, which represent the influential parameters of the model. Instead of serving as hyper-

Table 4.3 Description list of key symbols

Symbols Description

v discount factor

€ epsilon-greedy parameter

Mp human agent replay memory

M; robot agent replay memory

On human agent model’s parameters

SR robot agent model’s parameters

t/ A human operator’s time required to complete the corresponding task

t A robot’s time required to complete the corresponding task
s]t“, a?, r]t“ state, action, and reward of the human agent at time step t
Sp,ag, Iy state, action, and reward of the robot agent at time step t
Ttarget The number of required iterations to update the target network

T Optimal policy

« Learning rate
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Algorithm 3 Human-robot collaboration disassembly planning framework

Input: the parameter €, Ti,get, the product’s graph, replay memories My, and M,
the number of time steps T, the number of episodes N, mini-batch size, discount
factor ~y

Initialize the human agent and robot agent models’ parameters Oy and ©, randomly.
for Episoden =1,....N do
Select an action al' in s! by the human agent based on the limitations in Algorithm 1,
Algorithm 2, and e.
Select an action aj in s{ by the robot agent based on the limitations in Algorithm 1,
Algorithm 2, and e.
for Timestept =1,....,T do
if t=1t" then
Receive the reward P}
State s evolves to new state sf)
Store the tuple (sP,al; % sk) in the replay memory Mj,.
Update the human agent’s parameters O, by sampling a batch from the replay
memory Mj,.
Update sb based on the possible changes in the product condition caused by the
robot agent.
Select an action af} in sf by the human agent based on the limitations in Algo-
rithm 1, Algorithm 2, and e.
end if
if t=1t" then
Receive the reward rj,
State s{ evolves to new state s,
Store the tuple (si, aj, r{s,s{») in the replay memory M,.
Update the robot agent’s parameters ©, by sampling a batch from the replay
memory M,.
Update si, based on the possible changes in the product condition caused by
the human agent.
Select an action af, in s}, by the robot agent based on the limitations in Algo-
rithm 1, Algorithm 2, and e.
end if
end for
end for

Output: The trained human agent and robot agent models,
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parameter tuning, these experiments aim to assess the model’s robustness and adaptability

under different operational scenarios.

4.5.1 Experimental setup
Data and evaluation protocol

In this study, we exploit a hard disk drive presented in [1] as a case study to evaluate our
proposed model. The hard disk drive is a type of waste electrical and electronic equipment
(WEEE). WEEE is on the rise globally with a growing rate. This amount of waste is gen-
erated by appliances at home, information technology, and telecommunications equipment.
As one of the fastest-growing waste streams, rapid technological advancements, consumer
demand for the latest electronics products, and difficulties in repairing them result in this
amount of waste [125]. The use of remanufacturing techniques, such as disassembly, enables
companies to sustainably reuse or recycle WEEE, resulting in several positive impacts on
business and the environment. The increasing amount of WEEE results in rising demands
for disassembly. Hence, the classical manual disassembly method cannot meet the extreme
demands of industries. Consequently, there is a need to switch from manual disassembly to
robotization disassembly. Notably, robots cannot perform all tasks due to their lack of flex-
ibility. Hence, implementing disassembly collaborative cells, where human operators work
alongside cobots, is necessary. As a result, both the flexibility of humans and the efficiency

of cobots are involved in disassembly.

Figure 4.6 depicts the graph of the product that consists of 15 components. As discussed in
Section 4.4.3, we integrate several physical and geometric features of a product’s components
into our model. Most of these features, such as size, weight, accessibility, and liaison types,
should be outlined by the product manufacturers. Table 4.4 illustrates all the mentioned

features and their related values.

9
@

6 @ 14
Z/

Figure 4.6 The product structure presented in [1]

To assess the performance of our model, we use the cumulative reward of each episode, which
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is a summation of the reward values in T number of time steps. Equation 4.11 illustrates the
mentioned formula, where r; and R are the reward at time step t and the cumulative reward,

respectively.
T
R=)r (4.11)
t=1

Environment

We designed a mathematical rule-based algorithm as the environment of the reinforcement
learning framework and its corresponding feedback. Although we train our proposed model
using feedback from this rule-based environment, the delivered model, due to its dynamic
nature, can make decisions in unexpected states of the environment in real-world scenarios.
While many traditional sequential optimization models fail in changing environments due to

uncertainties.

We categorize the difficulty scores into the easy, difficult, and very difficult levels by Threshold;
and Thresholds, which are defined experimentally. We also assume that human operators of
varying skill levels perform disassembly tasks of varying difficulty, with varying disassembly
times and recovered part quality. In this case, even though human operators with an accept-
able level of experience and skill can perform easy tasks with an appropriate performance at
an appropriate time, they will lose their performance in the face of difficult and very difficult
tasks. Human operators with medium-skill, on the other hand, can only do simple tasks
efficiently. They also finish difficult tasks in a reasonable time and with acceptable quality.
In the event of very difficult tasks, they can only complete them by attaining an acceptable

quality in an inefficient time. High-skilled human operators, on the other hand, can complete

Table 4.4 Disassembly features and their corresponding values

Component Strength ‘Weight Size Destructive Positioning Accessibility Liaisons Liaisons
scores properties

1 4 2.4 3.5 1 5 1 10 2

2 1 2 2 0 1.2 1.6 2 1.2
3 2 2 2 0 1.2 3 1.3
4 1 2.2 4 0 2 2 2 1.4
5 2 2.2 3.5 0 1.2 1.6 4 1

6 1 2 2 0 5 1 2 1.1
7 4 2.4 3.5 1 2 6 1.4
8 2 2 2 0 1.2 2 3 1.2
9 2 2.2 2 0 2 1.6 2 1.1
10 1 2 2 0 2 1 4 1.5
11 1 2.2 2 0 1.2 1.6 2 1.7
12 4 4 4 1 1.2 1 10 1.8
13 1 2 2 0 1.2 2 2 1.1
14 2 2.2 2 0 1.2 2 3 1.9
15 2 4 4 0 5 2 4 1.5
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tasks of varying complexity levels effectively.

Cobots can only perform simple and repetitive operations. Therefore, easy tasks should be
assigned to a cobot. Cobots cannot complete difficult and very difficult tasks due to their
lack of physical capacity, and it is necessary to learn the model to prevent allocating these

tasks to cobots.

The mathematical modeling of the environment based on rules is shown in more detail in al-
gorithm 4. The first condition describes a scenario in which an experienced, acceptable-level
human operator collaborates on disassembly. Accordingly, he/she performs the task appro-
priately only when it is easy. The second and third conditions are demonstrated situations
where medium- and high-skilled human operators are working with a cobot, respectively.
While a medium-skilled human operator can only complete easy tasks with high expertise,
a highly experienced human operator can perform tasks of all difficulty levels efficiently.

Finally, condition four shows a robot that can only perform easy tasks competently.

As mentioned in Section 4.4.3, we import the recovered part quality and disassembly time as
two feedbacks from the environment. To train the model, we consider discrete values for each
level of the recovered part quality and time. In terms of the recovered part quality, the values
2, 7, and 10 are selected for the inefficient, appropriate, and efficient quality, respectively.
Additionally, we consider the values of 1, 2, and 3 for the efficient, appropriate, and inefficient
time levels. It should be noted that we use these values to reduce the time of our simulation

as proof of concept.

Furthermore, to consider the penalized reward introduced in Section 4.4.3, the values 10 and
-10 are utilised for the positive and negative rewards, respectively. Moreover, we consider
the value 15 as a penalized reward for highly skilled human operators performing extremely
difficult tasks. The goal is to motivate the operator to choose very difficult tasks that other
types of operators cannot complete efficiently. All the mentioned values for human operators’
type and a cobot at each task difficulty level are shown in Table 4.5. As a cobot cannot
perform tasks at difficult and very difficult levels, there is no value in their corresponding
cells in Table 4.5.

4.5.2 Results and discussion

We proposed a context-aware reinforcement learning-based architecture to model human-
robot disassembly task allocation processes. As it aims to consider human operators’ skills in
the decision-making process, we evaluate and validate our model in three scenarios containing

a cobot’s collaboration with human operators in different skill levels: acceptable, medium,
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Algorithm 4 The environment’s mathematical rule-based modeling

if The human operator has an acceptable-level of experience then
if The task’s difficulty < Threshold; then
Appropriate recovered quality at an appropriate time.
else
Accepted recovered quality at inefficient time.

end if

else if The human operator has a medium level of experience then

if The task’s difficulty < Threshold; then
Efficient recovered quality at efficient time.

else if Threshold; <= The task’s difficulty < Threshold; then
Appropriate recovered quality at an appropriate time.

else
Acceptable recovered quality at inefficient time.

end if

else if The human operator has a high level of experience then
Efficient recovered quality at efficient time.

else The operator is a cobot
if The task’s difficulty < Threshold; then
Efficient recovered quality at Efficient time
else
Not completed.
end if
end if
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Table 4.5 Time and recovered part quality of disassembly tasks in each difficulty level based
on operators’ skill level

Index Easy Difficult Very difficult
Operators Ty | Tq | Tp | Tt Iq rp | Tt Iq I'p
Acceptable-skilled human | 2 | 7 | -10 | 3 2 10 | 3 2 10
Medium-skilled human 1|10 | -10 | 2 7 10 | 3 2 10
High-skilled human 1 110]-101 10 10 | 1 10 15
Cobot, 1| 10 | 10 | Not completed | -20 | Not completed | -20

and high. For this purpose, we use three human agents, and each of them plays the role of

a human operator with a particular skill level.

Furthermore, the proposed architecture has several important parameters that can have a
considerable impact on the final decision. In this part, we discuss and analyze the results
of the proposed framework with different parameter values to determine the best values for
them in each scenario. In this regard, we examine the model’s sensitivity to the parameter
¢, the discount factor v, and replay memory size. To begin with, we use fixed values for the
parameter v and replay memory size to evaluate the model’s performance while changing the
values of the parameter € in a diverse range to select the optimal value. After finding the
optimum value, we repeat the same procedure for the parameters v and replay memory size,
in that order. The order of parameter configuration is determined based on the importance

of each parameter in the model’s learning process.

In addition, we consider the corresponding weights and coefficients of the difficulty vector

and the reward terms in Equations 4.5 and 4.7 as values 1, presenting a standard situation.

Scenario I: Collaboration of a cobot and an acceptable-skill level human operator

Sub-figures 4.7a, 4.7b, and 4.7c illustrate the model’s reward plots per episode for three
values of the parameter e: 0.0, 0.01, and 0.02. The observations indicate that the higher
values, leading to more exploration by the agents, result in greater fluctuations in the reward
plots. In this scenario, the agents obtain better outcomes by exclusively operating in the
exploitation mode. They therefore achieve the best performance by the value 0.0, where they

do not explore.

As shown in Sub-figures 4.7d to 4.7i, we analyze the model’s performance with six different
values of the parameter 7. The best result among all values is achieved by the value 0.2,

which is shown in Sub-figure 4.7i.

Replay memory is a buffer that stores the last number of N transitions during the interactive

process between an agent and an environment. These transitions are sampled in each iteration
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Figure 4.7 Sensitivity analyses in Scenario I
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to train DQN. Moreover, replay memory size can be a significant factor in the learning process.
To select an optimal replay memory size, we evaluate the model by three sizes: 50, 100, and
200. The reward plots per episode for these three sizes are illustrated in Sub-figures 4.7j,
4.7k, and 4.71. Here, the model obtains a more robust result by replay memory size 100.
Notably, the sizes 50 and 200 result in more fluctuations in the reward plots. In the case of
the size 200, we infer that storing a higher number of transitions in the replay memories leads
to a decline in the sampling performance. On the other hand, we conclude that size 50 is not

enough for the replay memories, and it reduces the performance of the learning process.

Scenario II: Collaboration of a cobot and a medium-skill level human operator

Sub-figures 4.8a, 4.8b, and 4.8c display the model’s performance by different values of the
parameter €. Similar to Scenario I, the model achieves a more robust result by the value 0.0

than other values.

The reward plots per episode for six parameter ~ values are shown in Sub-figures 4.9d to 4.9i,
where the model by the value 0.0001 converges faster than other cases. In this scenario, we
can infer that the agents work more efficiently by focusing on the current Q-values instead

of considering the future Q-values.

In terms of replay memory size, Sub-figures 4.8j, 4.8k, and 4.81 show the evaluation of the
model under three sizes. We can conclude the same inference of Scenario I for replay memory

size as the model outperforms by the size 100 than other sizes.

Scenario III: Collaboration of a cobot and a high-skill level human operator

Similar to Scenarios I and II, the agents achieve better results without performing in the
exploration phase. As shown in Sub-figures 4.9a, 4.9b, and 4.9¢, the parameter ¢ value 0.0

provides the most stable and fast-convergence result.

Sub-figures 4.9d to 4.9i show the model’s evaluation by different values of the discount factor

~. Here, the model converges faster by the value 0.15 compared to the other values.

Experimental analysis in Sub-figures 4.9j, 4.9k, and 4.91 demonstrates that the replay memory
size 100 has the most stable and fastest convergence result. Therefore, we can infer the same

conclusion of Scenario I in the terms of replay memory size in this scenario.
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Comparative evaluation

The comparative evaluation provided in this part is conducted in terms of the time required
for convergence. The comparative evaluation provided in this part is conducted in both
quantitative and qualitative metrics. We utilise the time required for convergence as a quan-
titative metric. In this regard, we compare the convergence time between our model and the
model presented in [1], where we utilised their case study. Although the required disassem-
bly features and the evaluation protocol in these two models are different, we examined the
number of iterations as a metric to assess the convergence time. The proposed model in [1]
requires 120, 127, and 189 iterations for convergence based on their experimental analysis.
In contrast, the convergence times for different scenarios in our model are 37, 26, and 31, and
we achieve significantly faster convergence. We know that the definition of iteration in two
models are different, and we just used convergence time as key metric to highlight the relative
efficiency of the model in finding a suitable disassembly plan. Hence, our proposed model
performs better than the baselines in terms of the convergence time and required disassembly

features, which were analyzed in Section 4.3.4.

In terms of quantitative metrics, we compare the disassembly features incorporated in our
modeling to those used in recent literature, which we consider as the baselines. Figure 4.10
illustrates the baselines and their corresponding features. We consider real-time decision-
making, difficulty, operation time, skill levels, recovered quality, self-adaptiveness, and human-

robot collaboration during disassembly as the most significant features.

Although each baseline includes several features in modeling, none incorporates all the fea-
tures. In contrast, we present a comprehensive disassembly planning model that integrates
all the required features. Our model is designed to operate in a human-robot collaboration
cell, where a cobot assists a human operator. Moreover, our model makes a decision in real
time based on the tasks’ difficulty, human skill levels, and availability of the human operator
and the cobot. Furthermore, the main objectives of the model are to minimize operation time
and maximize the quality of recovered parts. Notably, the model adapts itself in response to

dynamic variations in the environment.

4.6 Conclusion

A disassembly process depends on how tasks are split between a human operator and a cobot
in a cell. Assigning incorrect tasks to operators can result in longer processes and lower-
quality outputs. Real-time decision-making is another essential aspect of a task allocation

model. Many unexpected events can lead to changes in the process routine. Consequently,
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Human-robot collaboration
M Real-time Decision making
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Part recovered quality
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Belhadj, Aicha, and Aifaoui (2022)

Figure 4.10 A qualitative comparison of recent literature

most optimization models that theoretically generate task sequences prior to the process
are ineffective for making decisions in uncertain situations because they cannot change these
predetermined task sequences in real time, which is crucial for adapting to unexpected events

and optimizing performance in uncertain situations.

This paper focuses on human-robot collaboration in disassembly processes by proposing a
multi-agent reinforcement learning-based planning model. The model consists of human and
robot agents, where each agent selects tasks to be assigned to its corresponding operator.
Instead of utilizing a preplanned sequence, the agents select tasks in real time based on the
current situation of the human operator, cobot, and product. In our analysis, we considered

three types of human operators with different work efficiencies according to their skill levels.

In terms of the product characteristics, we used several significant features of the product’s
components to compute the difficulty scores for the disassembly of each component. We in-
troduced a graph-based approach as the EoL product architecture to categorize the product’s
components into different levels according to the bill of materials. The model involves these
levels in the task allocation process. However, the aforementioned process may sometimes
be challenging. In such cases, assigning a difficult task to a cobot may negatively affect
its physical structure. To address this, we added the ability of the model to switch from a
multi-agent mode to a single-agent mode. Tasks were also assigned to the human agent, and

the robot agent waited to find the appropriate task.

We evaluated our model under three scenarios in which human operators of different skill

levels collaborated with a cobot. The experimental results demonstrated that the proposed
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model outperforms the model presented in [1]. Although we validated the model in scenarios
in which a human operator collaborated with a cobot, its application can be extended to
scenarios where multiple human operators collaborate with multiple cobots. Further investi-
gations can focus on examining other features of human-robot collaboration in a disassembly
process, such as cobot energy consumption and human safety. In addition, further research
could investigate the relationship between difficulty and the effective features. In the next
step of this research study, this relation will be evaluated and assessed in an experimental
analysis. Our goal is to design a fuzzy-based model to analyze features’ interactions for

estimating a more precise relationship, similar to the approach presented in [126].
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5.1 Abstract

Collaborative robots (cobots) play a vital role in smart manufacturing, particularly in disas-
sembly processes. Human-robot collaboration (HRC) methods simultaneously leverage the
complementary capabilities of humans and cobots, offering promising improvements in dis-
assembly processes. A review of the literature reveals that most proposed HRC disassembly
planning models do not incorporate sustainable factors, such as consumed energy, human
safety, ergonomic risks, and circularity, in the decision-making process. Furthermore, un-
certainties inherent in disassembly processes, such as the quality of recovered parts, are not
well-addressed in the literature. This paper presents a novel multi-agent fuzzy reinforce-
ment learning (RL) planning model for sustainable HRC disassembly. In addition to cost
elements, the developed model involves social and environmental considerations in the real
time planning process. By developing a fuzzy-based environment in the RL architecture, the
proposed approach aims to effectively model the possibilistic uncertain parameters involved

in the problem.

Experimental analysis shows that the model presented in this research outperforms a baseline
model, applied to the same case study, in terms of convergence time. Furthermore, in terms
of qualitative analysis, the proposed model integrates a more extensive set of features into

the planning process compared to recent literature.

Keywords: Human-robot collaboration; disassembly planning; reinforcement learning; sus-

tainable driven planning; fuzzy logic; cobotic disassembly

5.2 Introduction

Nowadays, many developed and developing countries face the increasing production of end-

of-life (EoL) waste as one of the most common environmental issues. Various methods
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exist for handling this type of waste. The waste management hierarchy pyramid explains
several methods including prevent, reduce, reuse, recycle, landfill, and disposal for dealing
with waste. The primary objective of the prevent and reduce approaches is to mitigate
waste generation by addressing several factors, such as product and process design, and the
operation phase. Moreover, the reuse methods focus on utilizing a product multiple times or
repurposing its parts in remanufacturing processes. This strategy is more sustainable than

recycling, landfill, and disposal methods, which cause substantial environmental costs.

Product disassembly addresses the process of extracting parts of an EoL product, facili-
tating their reuse in remanufacturing processes for new fabrication. Consequently, fewer
raw materials are consumed in production processes, resulting in considerable economic and
environmental gains. Thus, product disassembly contributes a critical function in circular
economy and remanufacturing. Disassembly planning is a key step in these processes, and
it refers to efficiently generating a task sequence aimed at minimizing costs and maximiz-
ing profits. An efficient disassembly approach helps the manufacturing industry to decrease
negative environmental and economic impacts [64]. This research uses the terms "product’
and "task" to refer to an EolL product that is targeted for disassembly and the process of

disassembling a component from a product, respectively.

The involvement of cobots as human collaborators in industrial processes, such as product
disassembly, is increasing. These cobots can efficiently complete repetitive and simple tasks
that human operators may not perform accurately due to fatigue or distraction. Addition-
ally, they can undertake tasks that pose dangers to human health or may cause long-term
muscle disorders. However, many cobots lack the requisite power and flexibility to effectively
complete all types of tasks. Therefore, the synergistic HRC approach efficiently gains from
the flexibility and power of humans as well as the capability of cobots to precisely carry
out repetitive and dangerous tasks. Several researchers have proposed different data-driven
approaches to plan HRC disassembly processes. [127] introduces a hybrid HRC disassembly
planning model based on a particle swarm optimization (PSO) and the Q-learning algorithm.
In each evolutionary step, the Q-learning approach aims to choose the most appropriate op-
timizer to enhance the PSO algorithm performance. The proposed model targets to allocate
tasks including toxic material to cobots, as well as assign tasks dealing with challenging parts
to humans. The authors also applied several perturbation approaches and local search tech-
niques (tabu search, cooperative local search, variable neighborhood search, insert, inverse,
and swap) to the framework for preventing the model from falling at local minimums. [8§]
presents an HRC disassembly planning model, in which the authors initially extracted all
precedence constraints from CAD data of a gearbox reducer. In the next step, they gener-

ated all feasible task sequences according to the precedence relations. Following that, the
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sequence with minimum disassembly operation time is chosen. Herein, the authors address
the disassembly time of each part as a predetermined constant value. Guo et al. [128] have
proposed a planning method for destructive HRC disassembly processes. By considering
failure characteristics of products, the method computes disassembly modes along with the
associated qualities of recovered parts. Additionally, it obtains the physical limitations and
precedence relations of parts to form a product constraint model. The process is optimized
using an extended genetic algorithm (GA), considering factors such as task difficulty, op-
eration time, cost, physical constraints, and product failure criteria. In another research
study, [86] introduces an HRC disassembly planning model that represents the structure of
an EoL product and the associated precedence relations by using an AND/OR graph. The
proposed approach classifies tasks into eight different groups according to their correspond-
ing difficulty and complexity. It optimizes the process by applying GA, with the aim of
allocating more challenging and heavy tasks to the human operator, while assigning easy
and repetitive tasks to the cobot. The corresponding fitness function of GA comprises sev-
eral objectives, such as indices of untargeted components, operation time, and the frequency
of human operator change. [89] introduces an HRC disassembly planning model based on a
cascade structure. With the help of a digital twin framework, the model fuses data from real
and virtual spaces. Then, it sequentially preprocesses the data to obtain parts features, types
of liaison and tools, as well as disassembly precedence constraints. The model determines

the most optimal sequence by using GA.

According to [2] and [48], because of several factors, such as extreme intensity and frequency
of use, the structure of a product may deviate from its standard configuration. Furthermore,
the prolongation or failure of tasks deviates a decision-making process from its ideal routine.
Therefore, it is necessary to update the task sequence according to the current status of the
disassembly process and applying predetermined task sequences is impractical. The majority
of previous research developed fixed planning models that cannot adapt according to possible

uncertainties of the process.

A few researchers have addressed sustainable aspects in HRC disassembly planning. Most
previous research studies plan disassembly sequences without respect to the environmental
and social aspects, such as consumed energy, parts circularity, and human safety. In addition,
most of the existing planning methods cannot effectively represent uncertain parameters,
including recovered parts quality and difficulty. This uncertainty in data has a possibilistic

nature! and is not addressed appropriately in the literature.

This research study aims to fill the mentioned gaps by presenting the following contributions.

'For further details, please read [129]
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e Propose a real-time sustainable HRC disassembly planning model based on an RL
architecture. This model allocates tasks in real time according to cost factors as well

as elements concerning environmental and social indicators, outlined in Section 1.2.

e Develop new states and reward functions for the RL model according to the sustain-

ability elements in addition to the technical feasibility of tasks.

e Design a fuzzy-based environment for the proposed RL architecture to effectively cope

with the mentioned uncertainty in data.

The remainder of this paper is structured as follows. Section 5.3 reviews the related works.
Following that, Section 5.5 explains the methodology. Section 5.6 discusses the experimental
settings and results. Lastly, Section 5.7 concludes the paper, coupled with some ideas for the

future steps.

5.3 Related works

This section reviews the related literature. First, it explores the problem of product dis-
assembly planning. It then discusses the collaboration of humans and cobots in assem-
bly /disassembly processes. Next, it examines the sustainability elements integrated into this
problem. Finally, it synthesizes the literature to analyze the strengths and weaknesses of

previous works and highlight potential gaps.

5.3.1 Disassembly planning

There is a considerable amount of literature on planning disassembly processes. Researchers
have widely used various rule-based and learning-based algorithms to generate optimum task
sequences. Classical optimization algorithms such as GA, PSO, and ant colony optimization

(ACO) have been commonly used in the literature for disassembly planning [2].

Many researchers addressed product disassembly planning using fuzzy logic methods. [130]
develops a multi-objective fuzzy-based model for balancing disassembly lines by considering
safety issues. A hybrid fuzzy-GA approach for parallel disassembly planning is developed
in [131]. They validated the model’s efficiency by applying it to a case study involving
a hydraulic press. [132] proposes a new graph-based fuzzy approach for planning product
disassembly. The author evaluated the proposed approach by applying it to a telephone as

a real case study.

Due to the limitations in many classical optimization methods in coping with the uncertain

nature of disassembly planning, learning-based methods are increasingly becoming popular.
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As the disassembly planning problem cannot be formulated within the domains of supervised
or unsupervised learning, RL methods are frequently employed to determine the optimal task
sequence. Over the past few years, several researchers have developed disassembly planning
approaches based on RL models. [46] introduces a matrix-based model based on a Q-learning
algorithm to optimize a disassembly process according to parts physical constraints and
operation time, which is a summation of basic disassembly time, tool changing time, required
time for tool positioning, and cleanup time. [47] represents the disassembly process by an
extended Petri net (EPN), including several parts features, such as revenue, and cost. A
maximum likelihood approach is then employed to estimate uncertain parameters such as
revenue and cost. The authors used a tabular Q-learning algorithm to plan the process. Here,
the state is defined based on the EPN’s token, while the reward function is the difference
between revenue and cost. Allagui et al. [133] developed a disassembly planning approach
based on RL. It begins by extracting CAD data from a product’s 3D model and then builds
a matrix to generate all possible disassembly sequences in the x, y, and z axes. Furthermore,
the proposed approach forms a reward matrix based on the physical feasibility of moving
toward axes and a fitness function, considering the volumes of parts, operation time, wear
parts, and changes in the process direction and tool. Lastly, a Q-table is defined to obtain
all state-action Q-values. [48] introduces an RL disassembly planning model based on a
graph approach, which represents the product structure by dividing it into layers based on
geometry. Task allocation begins from the outer layers and progresses inward. The reward
function compromises operation time, profit, and penalties for incomplete tasks before moving
to the next inner layer. Next, [45] presents a hybrid GA-RL model to optimize disassembly

sequences. They also used a Petri network to represent the process.

5.3.2 Human-robot collaboration

HRC in assembly/disassembly planning has received much attention in recent years, and
many researchers have examined this subject. [134] introduces an HRC disassembly line
balancing model. The model addresses the distance between humans and cobots as a safety
factor, accounting for variable cobot speeds based on proximity to humans. The model
employs an AND/OR graph representing a product’s structure and constraint relationships,
with a decision tree algorithm classifying tasks by several criteria, such as component weight
and required tool type. An enhanced discrete Bees algorithm optimizes the process, aiming to
reduce the number of workstations, operation time, and demand index. In another research
study, Zhang et al. [92] developed an HRC assembly planning model based on a dual-agent RL
architecture, in which an agent is responsible for task allocation to a human operator, while

another agent selects tasks for a cobot. Furthermore, the authors presented an extended
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version of the deep deterministic policy gradient (DDPG) model. It defines a global Q-
value based on the combination of the two agents’ Q-values, facilitating the synchronizing

performance between agents.

Liu et al. [90] have proposed an HRC disassembly planning model based on a theoretical
recursive learning algorithm. Initially, data from different sources is fused, extracting high-
level information like human and cobot locations, hand gestures, body skeletons, and required
tools. Subsequently, an RL model optimizes the process based on this information. Following
that the operators execute the planned tasks. Finally, the acquired knowledge is shared
using incremental learning and transfer learning techniques via cloud-based technology. In
the scope of lithium-ion battery recycling, [91] proposes a heuristic-based approach to assess
the resilience of HRC disassembly based on several factors, such as stability, redundancy,

efficiency, and adaptation.

A comprehensive examination of recent works reveals that the use of cobots as human part-
ners in assembly/disassembly processes is rapidly growing. It can be predicted that in the

upcoming years, cobots will play a major role in the manufacturing industry.

5.3.3 Integrating sustainability criteria into disassembly planning

Manufacturing industries face great pressure to formulate sustainable development strategies
due to existing environmental concerns, such as climate change, pollution, and depletion
of resources [135]. The rising demand for sustainable development motivates companies to
switch from conventional to sustainable manufacturing. It addresses the production of goods
to deliver economic benefits while reducing environmental impacts and ensuring stakeholders’
social responsibility during a product’s life cycle [136]. Economic, environmental, and social

are three major pillars of sustainable development.

A sustainable disassembly planning model optimizes the process based on economic, environ-
mental, and social objectives. Several researchers have addressed sustainability in the context
of disassembly planning. [137] proposes a disassembly line balancing model that sustainably
allocates tasks based on economic, safety, and environmental criteria. Zhou and Bian [138]
have developed a sustainable robotic disassembly line balancing model. To increase the ro-
bustness of the model in real-world scenarios, the authors considered tool change, uncertain
operation time, and different robots in terms of efficiency and energy consumption. [139]
develops an integrated sensor-based framework for sustainable product maintenance and dis-

assembly.

The most important sustainability elements in this context are discussed below.
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Energy consumption Sustained economic growth relies on energy, yet several factors,
such as the increasing energy demand caused by global population growth, threaten modern
economic progress [58]. The amount of consumed energy also plays a critical role in cobotic
assembly /disassembly operations. Consuming more energy produces more energy footprints,
which negatively impacts the environment. Moreover, uncontrolled energy consumption in-

creases economic costs [2].

A few recent studies have paved the way to integrate consuming energy into the robotic
disassembly planning process. [59] develops a robotic parallel disassembly sequence plan-
ning framework using the artificial bee colony (ABC) algorithm, aiming to minimize the
makespan and total energy consumption of robots. They assumed the consumed energy
arises in three stages: during disassembling, while waiting for new tasks, and during tool
change. Similarly, [60] optimizes a robotic disassembly process to achieve maximum profit
while minimizing energy footprint by employing the Bees algorithm. In the context of as-
sembly /disassembly line balancing, [61] proposes a model based on an improved bi-objective
evolutionary algorithm to optimize a robotization assembly line. As two main objectives, the
model attempts to minimize total energy consumption and the number of workstations. In
another study, [62] introduces a modified GA algorithm to solve the assembly line balanc-
ing and part feeding problem. The algorithm considers reducing energy consumption, the
number of stations, and the number of supermarkets as the main objectives. [63] proposes a
mixed model to minimize cycle time, total consumed energy, and peak workstation energy

consumption in a robotic disassembly line balancing problem.

Despite the mentioned considerable efforts made in the planning of robotic disassembly,
the aspect of energy in cobotic disassembly planning still remains largely unexplored by
researchers. Hence, optimizing energy consumption of cobots in the disassembly process is

an emerging research area.

Safety Human safety is a crucial concern for manufacturing companies. It is essential to
avoid assigning dangerous operations to humans in assembly/disassembly processes. Many
EoL products, such as waste electrical and electronic equipment (WEEE), include hazardous
substances, which adversely affect human health and safety. It is imperative to keep away
these materials from humans [64]. Human operators’ safety is also a critical issue in HRC,
and a growing body of literature has investigated this context. Mukherjee et al. [65] have
presented a comprehensive picture of different categories of safety in the HRC context. [66]
proposes an automated safety configuration for HRC regarding resources, processes, products,

hazards, and the introduced safety behaviors model.
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The distance between humans and cobots during work is a significant factor that impact
human safety. As the distance between a human and a cobot diminishes, the cobot gradually
slows down until it eventually comes to a stop. Several researchers addressed the safe distance
between humans and cobots. [67] develops simulation software that finds a safe distance for a
human operator and a cobot by GA. Two criteria regarding human safety are integrated into
the HRC disassembly planning model proposed in [1]. These criteria are preventing unsafe
task allocation to the human operator and ensuring a safe distance between human and
cobot operators. [68] balances an HRC assembly line by solving constraint integer programs
(SCIP), focusing on maintaining a safe distance between a human and a cobot. This distance
depends on several factors: human and cobot reaction times and the required distance for
the cobot to stop. The approach aims to allocate tasks in a manner that ensures the distance
between the human and the cobot is greater than the safe distance, leading to faster cobot

operation time and shorter process time.

Ergonomic risk Ergonomic risks in the workplace are a serious concern within the manu-
facturing industry. Failure to address these risks may result in work-related musculoskeletal
disorders (WMSD) and other irreparable damage to the human skeletal system over time.
According to the Occupational Safety and Health Administration (OSHA)?, several activities
at the workplace may potentially pose ergonomic risks. Applying overly strong force, fre-
quently or continuously doing repetitive actions, and working in an inappropriate position are
examples of these activities. Various approaches have been proposed to integrate ergonomic
considerations into assembly/disassembly planning. Furthermore, in recent years and with
the increasing use of cobots in manufacturing, a growing body of research has emerged to
analyze the ergonomic risks in HRC industrial processes. [69] develops an HRC assembly line
balancing model aiming to optimize both operation time and ergonomic risks. An integer
planning model is developed in [70] to optimize assembly lines with respect to ergonomic
risks. [71] proposes a fuzzy-based assembly line-balancing model that involves ergonomic
risks. The proposed model considers four types of ergonomic risk: twisting the wrist, lifting,
twisting the hip, and squatting. [72] conducts an experiment comparing several key perfor-
mance indicators (KPIs), such as ergonomic risk, in the collaboration of a human operator
and a cobot with a scenario in which the human operator solely works. Results show that
the HRC strategy effectively reduces ergonomic risks and physical stress compared to manual

disassembly.

https://www.osha.gov/ergonomics/identify-problems
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Technical feasibility The feasibility of an operation is a major issue in a disassembly pro-
cess. Operators sometimes require advanced tools, and demolition machines, or even cannot
disassemble some parts due to lack of strength. These parts remain incompletely disassem-
bled and are transferred outside the cell. Therefore, it is essential to consider task feasibility
in disassembly planning. A few researchers addressed the technical feasibility of disassembly
during the task allocation process. Alrufaifi et al. [74] have computed the feasibility and
direction of contact and non-contact disassembly based on extracted information from CAD
models. They also generated a weighted graph showing the contact type and feasibility under
six axes. The MGFEM method introduced in [78] evaluates the disassembly feasibility of a
product in a partially destructive process. First, it computes the failure characteristics of
the parts based on experts’ knowledge and the type of failure. Then, a value is calculated
based on three significant factors concerning disassembly feasibility. If this value is higher
than a threshold, partial destructive disassembly is not feasible. Otherwise, the algorithm
moves forward and uses a hybrid approach based on fuzzy logic and entropy to optimize the
process. Moreover, [75,76] consider feasibility based on the physical precedence of a product’s
components. To find the optimum sequence, GA considers feasibility in addition to cost and

environmental impacts as the objectives.

The current literature mostly focuses on financial factors but lacks a comprehensive sustain-
able method that integrates all aspects of sustainability into the HRC disassembly planning
process. In this research, we introduce a novel sustainable framework for cobotic disassem-
bly planning, which is based on a fuzzy-RL model. This model considers different elements
regarding all three aspects of sustainability (economic, environmental, and social). These el-
ements include operation time, tool change, energy consumption, circularity, ergonomic risk,
and human safety in addition to technical feasibility. The hybrid fuzzy-RL method leverages
fuzzy logic to cope with the uncertain nature of data while using the RL model to overcome

uncertainties in the decision-making process.

To express the novelty of our proposed model, we compare it to recent studies in Table 5.1,
focusing on the comprehensiveness of disassembly features involved in the planning process.
While these articles incorporate various factors into the planning process, they use a limited
range of features for devising the models. For example, consumed energy is not taken into
account in any of the HRC studies. On the other hand, this research presents an HRC
disassembly planning model, capable of making decisions in real-time with respect to the

associated sustainable objectives.



Table 5.1 A qualitative analysis of the proposed model with the recent literature

HRC Real-time Difficulty  Time Circularity Energy Safety Tool Ergonomic risk Feasibility Human skill
planning change

48] X X X V4 X X X v X X X
[60] X X X X X v X v X X X
[59] X X X v X v X v X X X
[133] X X X v X X X v X X X
[88] v X X v X X X X X X X
[1] v X X v X X v v X X X
[86] v X vi v X X X v X X X
[128] v X Vv Vv Vv X X Vv X X X
[140] v v v v vi X X X X X v
Our model vi vi v v vi v v v v v vi

@)
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5.4 Problem statement

This research aims to present a new data-driven model for planning the disassembly process
in the HRC setting. Considering objectives for the process, this model aims to effectively
allocate tasks to the human and cobot, leading to the improvement of the efficiency and
sustainability of the process. We define these objectives according to the sustainable criteria
explained in Section 1.2. Equation 5.1 expresses the general objective function, where £, and
gq represent the objectives to be minimized and maximized, respectively. In the following,

each objective is explained in more detail.

P Q
Minimize [ Y £, — > gq (5.1)
p=1 q=1

Task operation time is one of the most important objectives in a disassembly planning
method. High profits are a result of reducing the total time of the process, depending on
task execution time. Equation 5.2 denotes this objective, where T, is operation times. The
terms i and t; refer to task i and its operation time, respectively. Moreover, N is the total

number of tasks.

N
fi = Top =D _t; (5.2)
i=1

Additionally, a human operator may need to change tools based on the task requirements.
Tool changing is a time-consuming action, affecting the total time of the process. Reducing
the frequency of tool changes will decrease the overall processing time. Therefore, we consider
minimizing the number of tool changes (Tchange) as an objective in the planning model, as
shown in Equation 5.3. Herein, tool; is the required tool for performing task i. § is also a
binary function that is equal to 1 if and only if the tools used for task i and task i+1 are
different, and 0 otherwise. In this way, the model aims to determine the task sequence in such

a way as to meet not only other objectives but also minimize the frequency of tool changes.

N-1
fg = Tchange = Z 5 (tOOli, tOOlH_l) (53)

i=1
Due to their physically demanding nature, disassembly processes often involve tasks that
pose significant ergonomic risks (Eg). These tasks have the potential to impact human
operators’ skeletal-muscular health in the long run. By reducing these risks, the potential for

such health issues and human fatigue decreases, leading to enhanced performance. Hence,
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an objective of the planning model is to minimize these risks, as indicated in Equation 5.4,

wherein r; is the ergonomic risk related to task i.

N
fs = Episk = > 1; (5.4)
i=1

With the increasing importance of the energy issue in the manufacturing industry, the amount
of energy consumed by cobots has become more challenging. Although involving cobots in
these processes has the potential to reduce costs and increase profitability, it is necessary to
note that the inefficient use of cobots can lead to considerable environmental consequences.
In other words, the more cobots are used, the greater their financial cost and energy footprint
will be. As a result, we include minimizing energy consumption (Ec,,s) as an objective in
the planning model, as shown in Equation 5.5, where e; represents the consumed energy for

completing task i.

f4 - Econs - Z €i (55)

The level of circularity in the output plays an important role in addressing environmental
concerns. Enhancing the quality of recovered parts (Qec) reduces the need for new parts in
the remanufacturing processes. Consequently, it significantly decreases the consumption of
raw materials. Therefore, improving the quality of the parts is a crucial primary objective of
the planning process. As shown in Equation 5.6, one objective of the model is to maximize

this quality. Herein, q; presents the quality of recovered part i.

N
g1 = Qrec = qu (56)
i=1

Ensuring the safety of human operators during disassembly processes is crucial because of
potential exposure to hazardous tasks. Enhancing human safety increases operators’ satisfac-
tion and motivation, thereby boosting their performance. Hence, maximizing human safety
is another objective of the planning model presented in Equation 5.7, wherein s; represents
the safety level associated with task i. Accordingly, given the hazardous nature of the tasks,

the model aims to generate a task sequence that maximizes human safety.

N
g2 = Shuman = Z Si (57)
i=1

HRC disassembly processes encompass many uncertain factors. One example is the vari-
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able performance of human operators in executing tasks due to fatigue and distractions.
Additionally, other uncertain factors such as machine failures, tool wear and tear, and any
external disruptions may lead to variations in a task completion time. Given these scenarios,
real-time decision-making based on current conditions is essential for task allocation, as any
predetermined task sequence may become infeasible due to these uncertainties. Furthermore,
the unstable conditions of Eol. products are another uncertain factor, resulting from various
elements such as damage, tear, and wear of parts due to different usage patterns. Devel-
oping an effective and efficient HRC disassembly planning model requires addressing these

uncertain factors.

It is impractical to plan disassembly processes without considering the associated constraints
of the problem. FKEquations 5.8-5.11 define these constraints. Equation 5.8 explains the
limitation on the number of operations at a time, ensuring that each operator j can only
perform one task i at a time. Here, x;j is a binary variable that equals 1 if task i is assigned to
operator j, and 0 otherwise. This constraint presents a practical limitation that an operator
cannot perform multiple tasks at the same time as it is practically impossible. Equation
5.9 indicates that each operator can only use one type of tool per task, adhering to the
assumption that working on each task requires only one tool. This assumption simplifies the
process and reduces the complexity associated with changing tools in the model. Here, tool; ¢
is a binary variable that equals to 1 if performing task i requires tool t, and 0 otherwise.
Equation 5.10 illustrates the constraint related to task dependencies on each other, in which
task i precedes task k. S; and Sy identify the start times of tasks i and k, respectively.
Moreover, D; represents the duration of task i. This equation ensures that task k should begin
only after the completion of task i. This constraint effectively addresses the task sequence
requirement and respects the precedence relationships between tasks in the planning process.
Equation 5.11 ensures that a completed task i by an operator j cannot be reassigned, in
which y;; is a binary variable indicating whether a task i has been completed by an operator
j or not. This constraint prevents disruptions from re-allocation completed tasks in the
disassembly planning process, efficiently contributing to the resource management and time

savings. Notably, this research assumes that each task is assigned to only one operator.

> x; <1, Vje€ Operators (5.8)
i€Tasks
Z tooli - xi; <1, Vie Tasks, Vje& Operators (5.9)

teTools



76

S; + D; < Sk, Vi, k € Tasks where i precedes k (5.10)
> yiy=1, Vie Tasks (5.11)
j€Operators

As explained in this section, the disassembly planning problem comprises multiple objectives,
uncertainties, and constraints. In the following section, we discuss the developed approach

to effectively address these challenges.

5.5 Methodology

This section presents our proposed sustainable HRC disassembly planning model. First,
it introduces the employed graph-based modeling approach. Subsequently, the sustainable
HRC disassembly method is explained. In the following, we discuss a sustainable multi-agent
RL disassembly planning model and define its corresponding elements. Then, a fuzzy-based

environment is introduced. Lastly, the entire architecture is comprehensively discussed.

Graph representation of products Representing a product architecture is a crucial step
in disassembly planning. We use a graph-based representation approach introduced in [140]
to model a product architecture. Here, each component is identified as a node, while each
connection between two components is represented as an edge. This approach categorizes a
product’s components into different levels according to their distance from the origin node of
the product, the initial point which all nodes and edges originate from. Figure 5.1 illustrates
a product’ graph, wherein nodes in the same level have the same color. In this case, a
process starts by allocating components from the outermost level. After disassembling a
component at each level, the algorithm continues by choosing a component at the same level
or a component in the next level connected to the previously disassembled one. The algorithm
shifts to the next level after completing all tasks in one level. This graph-based approach
filters out certain components from all candidate components during the allocation process,
yet it does not select the next component. Hence, we propose an RL model, discussed in

Section 5.5.1, to achieve the optimum task sequence.

Interchanging the collaborative and inactive modes Occasionally, only highly diffi-
cult and complex tasks are available during disassembly processes. Performing such tasks

with a cobot may negatively impact both its physical structure and the product. In these
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Component 7

Figure 5.1 The graph representation approach

cases, the human operator should work exclusively, while the cobot should be stopped and
wait until simpler tasks become available. As a result, human-robot interaction shifts from
collaboration mode to inactive mode, and the multi-agent model transitions to a single-agent
model. To address this issue in modeling, we adopt the approach presented in [140]. This
approach selects tasks with the lowest difficulty and highest technical feasibility among the
available ones. If the difficulty is categorized as low and the feasibility as high, there is at
least one task that can be assigned to the cobot, allowing the process to use both the hu-
man and cobotic operators. Otherwise, the cobot stops, and the process switches to inactive

mode. Section 5.5.2 provides further details on these categories.

Sustainability driven HRC disassembly planning This research proposes a sustain-
able development triangle in the context of HRC disassembly shown in Figure 5.2. Social,
environmental, and cost impacts are three sides of this triangle. The social side includes hu-
man safety along with ergonomic risks. We consider working with hazardous substances as a
harmful factor to the safety of human operators. Thus, the proposed model seeks to allocate
tasks associated with hazardous materials to cobots. The environmental side comprises the
circularity of parts and cobot energy consumption. The cost side consists of operation time
and tool change. As shown in the center of the triangle in Figure 5.2, sustainable develop-
ment in this area is impossible without considering the feasibility of tasks for both cobots
and humans. A disassembly process should be planned to avoid assigning infeasible tasks to
both human operators and cobots. Involving operators with these tasks results in prolonged

execution times and poor profitability. Therefore, another objective of the planning model
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is to optimize the process by avoiding the allocation of such tasks to the operators.

%, 7
o2

« Hazardous substances
o Ergonomic risk 9, \ * Energy consumption

Cobot Technical ~ Human Technical
Feasibility Feasibility

Figure 5.2 Sustainable development disassembly planning triangle

5.5.1 Proposed RL-based sustainable HRC disassembly planning model

This research proposes a sustainable HRC disassembly planning fuzzy-RL model. It com-
prises two agents, a human agent and cobot agent, responsible for allocating tasks to human
and cobot operators. In this approach, the agents recursively interact with an environment.
During an iteration, each agent is in a state s; (time step t), it then selects an action a; based
on a policy m. Next, the agent receives a reward ry;; (time step t+1) as a feedback signal
from the environment in response to the executed action. After that, the agent proceeds to a
new state sq1 and repeats this cyclic process. This research study formulates each iteration
by using Markov decision process (MDP), a tuple that includes four parts: s, ag, 1441, and
st+1- As this process evolves, the agent learns to choose an action in each state resulting in
a higher reward value. In the following, the agent finally learns the optimum policy 7* that
leads to taking the optimum action in each state, resulting in the maximum immediate and
long-term reward values. The optimum policy formula is shown in Equation 5.12, in which

the term T refers to the total time steps.

T
7 = argmax E [ ZRt} (5.12)

4 t=0
Below, we explain different elements of the RL model tailored specifically to meet the re-

quirements and objectives of this research study.

State In RL, the state vector represents the current condition of the problem. We determine
the state vector based on features of the product components, which should be disassembled.
These features are the difficulty of component disassembly, the feasibility of operations, the

safety of operations concerning working with hazardous substances, and ergonomic risks.
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We obtain the difficulty score of a component disassembly through the linear summation
of various component characteristics. The elements of this linear combination are strength,
weight, size, positioning, accessibility, destructive, liaisons scores, liaisons properties, and
number of connections with other components. Within this context, strength addresses the
needed force for an operation. The weight and size of a component are also two important
factors in its disassembly. According to [82], positioning is defined as correctly situating a
tool on the connection of a component before initiating the operation. Accessibility refers
to the capability to reach a specific area by hand or instrument [80]. The difficulty of a
task is also significantly impacted by whether it requires a destruction operation or not.
Moreover, we assign values ranging from one to two to each connection’s properties, while
distinct scores are allocated to each connection type. Also, the number of connections of a
component with other components is an impactful factor in its disassembly difficulty. The
greater number of connections for a component makes its disassembly more challenging and
complex. Difficulty scores are integrated into the states of both human and cobot agents.
This research takes into account the feasibility of tasks for both human operators and cobots,
noting that the feasibility values of tasks for cobots and humans are different. Accordingly,
state vectors of human and cobot agents include the feasibility values. We also consider
binary values related to hazardous substances in the state of the human agent. Each value
corresponds to a task, and it represents whether the task involves dangerous materials or not.
On the other side, cobots are capable of working on such tasks regardless of the included
dangerous substances. Therefore, we do not incorporate the values concerning hazardous
substances in the state vector of the cobot agent. As well, we consider the same procedure
for ergonomic risks by defining related binary values in the state of the human agent. Similar
to the hazardous substances, the ergonomic risk values are not included in the cobot agent’s
state. It is noteworthy that after completing each task, its corresponding values in states

would be zero.

Action The action space covers all currently available tasks for allocating to human and
cobot operators in each iteration. Accordingly, an action refers to the next task. It is notable
that an agent should select a new action in each iteration. The agent cannot repeat the
same action during a process, as each chosen action addresses a task that has already been

completed.

Reward The reward functions are specifically tailored to match agents’ objectives. As the
goals and responsibilities of humans and cobots in the disassembly process are different, the

associated reward functions are customized accordingly. Equations 5.13 and 5.14 define the
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reward functions of the human and cobot agents, respectively. The term R, addresses the
recovered component quality, representing the circularity of parts. The time of the operation
is also denoted by the penalty term R;. Furthermore, the binary value Ry addresses whether
the operation involves hazardous substances or not. The term Rg refers to the ergonomic
risk associated with the operation as well. Ergonomic risks are categorized into three levels
of 'Low’, ’Medium’, and "High’, corresponding to different tasks. In our model, we assigned
numerical values of 0, 0.5, and 1 to these categories, respectively. The detailed assessment of
these risks is beyond the scope of this research, and we addressed it in a separate study [141].
In the current article, we use the ergonomic risk values in the utilised dataset and integrated
them into the proposed model. The penalized reward Rppergy refers to consumed energy
for the corresponding executed operation. We assume that with each operation performed
by the cobot, the term Rgnergy increases by one unit. Since our model was evaluated in
a simulated environment, we are unable to measure actual energy consumption. However,
this assumption allows us to demonstrate the concept effectively. The penalty phrase Ry
addresses tool change and is a binary value that represents whether the operation requires a
tool change or not. Lastly, the reward R, is a penalty term to incentivize the human agent
to choose more complex tasks, while this term also motivates the cobot agent not to select

challenging tasks.

The impact of each term on the reward function is identified by its coefficient. We can modify
the importance of each objective in the decision-making process by adjusting its respective
coefficient. For instance, by increasing the coefficient of a particular term, the model puts
more attention to selecting actions that align with maximizing the reward associated with
that term. Moreover, the coefficients serve to unify the objectives prior to aggregation, as
they have different units. This study assigns a value of one to all these coefficients. However,

they can be changed according to the conditions and goals of the problem.

Rhuman = Qq - Rq — Oy - Rt —ag- 1%H — Qg - 1%E — Qoo * 1%Tool — Qp - Rp (513>

Rcobot = Oq - Rq — Oy - Rt — (Energy * RlEnergy — Op Rp (514)

This study aims to present an RL model for sustainable HRC disassembly planning. In this
context, sustainable decision-making refers to the ability to manage and trade-off between
objectives in task allocation, arranging the sequence of tasks in such a way that all objec-
tives are optimally considered. Here, the reward functions are the combination of terms

corresponding to the sustainability pillars, and the reward values represent the models’ per-
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formances in task allocation with respect to the sustainability objectives. Given the recursive
nature of RL, this strategy drives each model to make more sustainable decisions to achieve
higher reward values. Since the proposed framework comprises two agents with different
reward functions, sustainability results from maximizing the reward values of both agents.
Hence, the convergence of the reward values of both agents to the maximum values at the
same time indicates the good performance of the framework in the sustainable task allocation

process.

Deep Q-network We develop the multi-agent planning architecture by using two deep
Q-networks (DQN), representing the human and cobot agents. DQN is a model-free RL
neural network, working based on the Q-learning theory. DQN approximates Q-values for
each state-action pair to select an action with the highest Q-value based on a policy 7. It
targets to achieve an optimum Q-function Q*(s,a), given by Equation 5.15, to choose the
most effective action in each state. It results in the maximum cumulative immediate and
long-term reward values. The term ~ serves as the discount factor of the equation, balancing

the importance of short-term and long-term reward values.

Q*(s,a) = max K {Rt + YRt + Y Rego + ... | 8y = 5,8 = a, W} (5.15)

DQN contains two sub-neural networks: prediction and target networks. While the prediction
network approximates the Q-values for the current state s, the target network estimates the
Q-values regarding the next states, shown by Q(s’,a’). The Q-values are then continuously
updated through Equation 5.16, where the term « refers to the learning rate of the process.

The associated parameters of the model are summarized in Table 5.2.

Q(s,a) + Q(s,a) + a[R(s,a) + varg;nax Q(s,a") —Q(s,a)] (5.16)

Equation 5.17 presents the loss function of the process, in which # and 6~ denote the pa-
rameters in the prediction and target networks, respectively. Stochastic gradient descent is
typically adopted to update the parameters of the prediction network instead of calculating
the complete summation. At intervals of Tiueet time, the target network parameters are
updated based on the prediction network parameters. Furthermore, this research adopts
the e-greedy algorithm to balance the exploitation-exploration dilemma in decision-making
(action selection). In exploitation mode, actions are selected based on previously acquired
knowledge, whereas they are chosen randomly in exploration mode. This way, we determine

a value for a parameter € at the beginning of the process. At each time step, if the e value
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is higher than a random value obtained from a Gaussian distribution, an action is randomly
selected (exploration). Otherwise, the RL agent selects an action according to the proposed
approach (exploitation). At the end of each episode, the e value decreases by a discount
factor, reducing the exploring frequency as the learning process progresses. Therefore, the
agent gradually relies on its knowledge rather than exploration to select actions during the

evolution of the learning process.

L) = > <r - ’ymazlxe ( ¢ a; 9_) — Q( s,a; 9))2 (5.17)

s,a,r,s’

5.5.2 Fuzzy-based disassembly environment

A disassembly process is associated with uncertainties that may arise from several factors.
Among these factors are the long-term use of the product, environmental conditions, technical
proficiency of operators, as well as tools and methods employed in the process [142]. The
uncertainties may be exhibited in both the decision-making process and data. This research
tackles the uncertainty in making decisions by developing a real-time RL-based planning
model. In terms of data, the mentioned factors result in the existence of uncertainty in
parameters, such as the quality of recovered parts. Modeling these parameters is essential
as they should be considered in the decision-making process. These parameters express
subjective concepts, and consequently, it is difficult to numerically represent them due to the
lack of prior knowledge about them. It is also impractical to determine exact values for these

parameters because of their uncertain nature.

This research uses a fuzzy logic method to effectively model uncertain parameters of the
problem (difficulty, feasibility, operation time, and recovered quality). Uncertain parame-
ters, along with their associated probability density functions, can be approximated using
historical data. However, this method proves inefficient for this problem due to the lack of
historical data on product disassembly planning issues. On the other hand, fuzzy-based ap-
proaches can model parameters under uncertainty in a sensory and experiential manner based
on expert knowledge or experience-based estimates, even in scenarios with insufficient histor-
ical data. Here, we design a fuzzy-based environment to compute reward values in response
to an executed action. It is notable that the reward functions consists of fuzzy and crisp pa-
rameters. Difficulty, feasibility, operation time, and recovered quality are fuzzy parameters,
while consumed energy, tool change, safety, and ergonomic risks are crisp parameters. We
compute the operation time and recovered quality crisp values with a fuzzy-inference system

(FIS) according to difficulty and feasibility values. Then, we sum all of the crisp values to
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Table 5.2 Parameters in the proposed fuzzy-RL model

Parameter Description

T Policy in Equation 7.8

¥ Discount factor in Equation 7.9

Rq The reward term related to the quality of the recovered component

Ry The reward term representing the operation time

Ru The binary reward value presenting whether a task involves hazardous substances or not.
Rrool The binary reward value corresponds to whether this operation requires a tool change or not.
R The reward term corresponding to ergonomic risk of the operation

Rp The reward term aimed at penalizing the agents

REnerey The reward term presenting the consumed energy for the executed action by the cobot
My The human agent replay memory

M. The cobot agent replay memory

« Learning rate in Equation 7.9

€ e-greedy algorithm parameter

s{‘, a{‘, r{‘ The corresponding state, action, and reward of the human agent at time t

s, ag, ry The corresponding state, action, and reward of the cobot agent at time t

Tiarget Number of iterations required for updating the target network parameters

calculate the reward scores. As shown in Figure 5.3, the fuzzy-based environment includes
three steps. It first executes the action selected by an RL agent. Subsequently, the FIS fuzzi-
fies the uncertain parameters consequencing to the executed action. The FIS infers the data
by using pre-defined fuzzy rules to compute outputs, which are then defuzzified. Finally, the
defuzzified parameters are combined with the non-fuzzy parameters according to Equations
5.13 and 5.14 to form the reward values. After that, the RL model receives the reward value

from the environment.

Defuzzifier

Inference
Fuzzifier

Computing the reward values

[

Fuzzy-inference system

Fuzzy values

Performing action(s)

T
|

Multi-agent RL model

Environment
Crisp values

Figure 5.3 The proposed fuzzy environment

This study models uncertain parameters with fuzzy triangle numbers due to their suitability
for representing the inherent imprecision in factors related to disassembly sequence problem.

Accordingly, it considers three distinct membership functions - low, medium, and high -
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for each parameter. Figure 5.11 in the Appendix illustrates the triangular fuzzy numbers,
including difficulty, feasibility, operation time, and quality of recovered components. The
bounds of these fuzzy numbers are properly determined according to experts knowledge

regarding the problem and the data used to evaluate the model.

This research categorizes human operators’ skill levels into three groups: Acceptable, Medium,

and High. These groups are defined based on the following characteristics:

o Acceptable: Novice operators possess basic skills in disassembly tasks and have recently
begun working on disassembly processes. These operators typically complete tasks in

a longer time and have a higher possibility of making errors.

o Medium: Operators at this skill level demonstrate higher proficiency than novice oper-

ators, with the ability to successfully complete more difficult tasks.

» High: Proven experts with extensive experience in performing challenging and difficult
tasks. These operators generally achieve fewer errors, higher performance, and faster

operation times.

This classification demonstrates the varying performance of humans in executing disassembly
tasks. Accordingly, the environment provides different feedback based on human operator’s
skill level. This assumption allows us to effectively provide a more comprehensive simulation
and validation regarding the proposed planning model. Here, we consider three scenarios in
which human operators with different skill levels collaborate with a cobot in a process. As a
result, the fuzzy environment provides three types of rules for human operators based on their
skill levels in addition to rules for cobots. Algorithm 5 in the Appendix explains the fuzzy
rules related to environment modeling for a cobot and different skilled human operators. We

define these rules according to experts’ knowledge regarding the conditions of this problem.

5.5.3 The proposed model architecture

This section presents a comprehensive overview of the proposed architecture, in which the
human and cobot agents interact with a fuzzy-based environment. The block diagram pro-
vided in Figure 5.4 explains this interaction in more detail. In the initial phase, we set up
the agents with randomly chosen weights and biases. In the following, the agents first choose
actions (tasks) al and a$ in states s and s¢, respectively. Each of the agents receives a re-
ward value from the fuzzy-based environment whenever the corresponding task is completed.

Here, we show the completion time regarding human and cobot tasks by t" and t”. After
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that, the respective state shifts to a new state, shown by sl and s¢, for the human and cobot
agents in order. This process continues by storing an MDP corresponding to each iteration
in the associated replay memory, denoted as M;,, and M.. For each agent, a batch of data is
sampled from the associated replay memory to update weights and biases of the correspond-
ing agent. While an operator is executing a task, the other operator may have finished their
respective task. In this problem, we do not want to reallocate executed tasks to operators.
Therefore, the state of an agent should be updated according to possible changes caused by
another agent (zero values are assigned to the indices corresponding to the task executed by
one agent in the state vector of other agent too). Then, each agent chooses a new action,
and the algorithm moves to the next time step. Subsequently, the process will continue
until all tasks are completed. Notably, this algorithm allocates tasks in real-time based on
online conditions of the process rather than generating a hypothetical pre-determined task
sequence. Therefore, the model is capable of dealing with uncertain situations that may
change a process plan. Since this model works in a dynamic and adaptive form, it can adjust

to potential variations in a non-static environment.

Configuration of the Human and Cobot agents |

with random settings.

[

Human agent selects an action (task) a®, in s%,

[

Cobot agent selects an action (task) a, in ¢,

Human is working on an action (task) a, | | Cobot is working on an action (task) a,
No
Does human Does cobot
complete the complete the
corresponding corresponding
task? task?
If all nodes are
disassembled?
Receive the reward %, from the fuzzy Receive the reward r, from the fuzzy
environment environment.
Save MDP (s",, a", ", s",) in the replay Save MDP (s%,, a%,, -, 5% ) in the replay
memory M, memory M,
Train Human agent by data collected from M, Train Cobot agent by data collected from M, |
Adjust s", with respect to potential changes that Adjust ¢ with respect to potential changes that
the Cobot agent made. the Human agent made.
Human agent selects an action (task) a"in s", Cobot agent selects an action (task) ac, in 5%

Figure 5.4 Architecture of the sustainable HRC disassembly framework using fuzzy-RL
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5.6 Experiments

This section discusses the experimental setup and results. First, we explain a case study, a
metric to evaluate the proposed model, and parameter settings. Then, we discuss the results
of conducting three scenarios and different sensitivity analyses concerning the three most
important parameters of the model. These experiments focus on evaluating the strength
and adaptability of the model to a variety of simulated and application conditions. We
also perform a sensitivity analysis under uncertain conditions to assess the model’s capacity
for dynamic decision-making. Finally, we present a comparative analysis with respect to a

baseline model.

5.6.1 Experimental setup

Data To evaluate the proposed approach, we use the hard disk drive data provided in [1].
Figure 5.5 illustrates the graph of the product and the geometric relationships among its
components. Moreover, Table 7.7 illustrates the features considered for components of this

product. Each row represents a component, while each column corresponds a specific feature.

Figure 5.5 The structure of the product introduced in [1]

Evaluation protocol This research study measures the model’s performance in different
scenarios through the cumulative reward value of each episode. As shown in Equation 5.18,
this value is achieved by summing the reward value of each time step during an episode,
which contains T number of time steps. Gaining more reward values implies that the agents
effectively learned to make decisions according to the objectives included in the reward func-

tions.

R=)r (5.18)



Table 5.3 The utilised case study and its corresponding features values

Component Positioning Accessibility Weight Strength Size  Destructive Liaisons Liaisons  Hazardous Ergonomic Human Cobot Tool
number scores properties  substances risk feasibility  feasibility
1 5 1 2.4 4 3.5 1 10 2 0 Low 19 0 1
2 1.2 1.6 2 1 2 0 2 1.2 0 Low 19 0 1
3 1.2 1 2 2 2 0 3 1.3 0 Low 0 0 2
4 2 2 2.2 1 4 0 2 1.4 0 Low 0 0 1
5 1.2 1.6 2.2 2 3.5 0 4 1 0 Low 19 0 3
6 5 1 2 1 2 0 2 1.1 1 Low 19 19 1
7 2 1 2.4 4 3.5 1 6 14 0 Low 19 0 1
8 1.2 2 2 2 2 0 3 1.2 0 Low 19 19 1
9 2 1.6 2.2 2 2 0 2 1.1 0 Low 19 0 3
10 2 1 2 1 2 0 4 1.5 0 Low 19 19 2
11 1.2 1.6 2.2 1 2 0 2 1.7 0 Low 19 0 1
12 1.2 1 4 4 4 1 10 1.8 0 Low 19 0 1
13 1.2 2 2 1 2 0 2 1.1 0 High 19 19 3
14 1.2 2 2.2 2 2 0 3 1.9 0 High 19 19 1
15 5 2 4 2 4 0 4 1.5 0 Low 19 19 2

L8
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Parameter settings This research uses two feedforward layers with eight neurons for
employed neural networks. It considers the parameter a value of 0.2, while the T4 value
is set to 50. Furthermore, a batch size of 50 is utilised to update the weights and biases of
DQN. This research also conducts sensitivity analysis to efficiently select the most optimum
values for €, v, and replay memory size parameters, as they have the greatest impact on the

proposed framework’s performance.

5.6.2 Results and discussion

As this study categorizes human operators into three groups based on their expertise, it
defines three human agents, which represent the roles of these groups in the RL scheme.
We also design three scenarios involving the collaboration of a cobot with different types of

human operators.

We analyze the model’s performance by examining several sensitive parameters that have
the most impact on the model’s output. The sensitivity analysis is based on the parameters
e, discount factor v, and replay memory size. Generally, RL models work according to the
exploration-exploitation dilemma, a trade-off between choosing the best decision based on
previous knowledge or searching to find better options. In the e-greedy approach, the param-
eter € sets this trade-off by determining the exploit and search iterations. This is a sensitive
parameter as poor exploring may heavily fluctuate the reward values. Furthermore, focusing
solely on exploiting may lead to a long learning process. The compromise between immedi-
ate and long-term reward values in decision-making is crucial. In this case, the parameter
~ determines this sensitive trade-off. Additionally, the performance of the model may be
affected based on the size of the replay memory as it dynamically samples data to train the
sub-networks. Selecting big or small sizes for the replay memory may decrease the sampling

performance as well as the learning process quality.

We prioritize the analysis of these parameters according to their importance. Hence, we
examine the parameters €, v, and memory size in that order. It is worth noting that when
changing any of these parameters, the remaining ones are held at their default configurations

intact.

Scenario I: an acceptable-skill-level human operator Figure 5.6 illustrates the reward
values for various parameter settings in this scenario. Sub-figure 5.6a shows the reward
plots for different values of the parameter €. The increase in the values, leading to further
explorations by the agents, results in the appearance of more fluctuations in the reward

plots. Consequently, it prevents the convergence of reward plots for both agents. In this
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case, searching in the feature space not only degrade the performance of the model but also
prevents its convergence. Therefore, the most optimum value for the parameter € is 0, which
the model does not explore. Sub-figure 5.6b illustrates the reward values based on different
~v parameter configurations. The reward plots indicate slower convergence for v parameter
values of 0.01 and 0.1 compared to 0.001. However, the final convergence value in these cases
is greater than when the v parameter is set to 0.001. To select the optimal replay memory
size, we effectively analyze the model’s performance with three size settings: 50, 100, and
200. As shown in sub-figure 5.6¢, the model converges faster by setting the size to 200.
Moreover, the reward plots exhibit poor convergence when employing the size of 50. With
this setting, the model experiences insufficient sampling quality, leading to a less effective

learning process.

Scenario II: a medium-skill-level human operator Similar to the previous scenario,
we obtain reward values with considerable fluctuation when the agents work in the exploration
mode. Hence, the most optimum result, as shown in Sub-figure 5.7a, is achieved when the
parameter € value is 0. Furthermore, the reward plots in sub-figure 5.7b depict the model’s
performance across the variation in the parameter . The presented results reveal that when
the values are reduced, which decreases the long-term reward impact in the decision-making
process, the model’s performance also declines. In terms of replay memory size, the plot
shown in sub-figure 5.7c shows that the model with the size of 100 exhibits much faster

convergence compared to models with the sizes of 50 and 200.

Scenario III: a high-skill-level human operator Sub-figure 5.8a illustrates the reward
plots across various values of the parameter €. Similar to the findings in Scenarios I and II,
the agents achieve best performance when only engaging in exploitation. The reward plots
depicted in sub-figure 5.8b are obtained by varying the parameter v with three different
values. By setting the value to 0.1 or 0.01, the plots converge more quickly. As demonstrated
in sub-figure 5.8¢c, the agents meet faster convergence when the replay memory size is set to

100, in line with the results observed in Scenario II.

Sensitivity analysis of the parameter ¢ The exploration’s purpose is to enhance the
model’s ability in decision-making by guiding it away from local optima, mitigating overfitting
resulting from decisions made with limited knowledge, and introducing new observations to
improve its knowledge. The results in Figures 5.6a-5.8a show that increasing the e values
leads to more fluctuations in the reward plots, resulting in slower convergence. In each

scenario, the most stable result is achieved with ¢ = 0, where the agents do not explore.
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The results demonstrate that the model does not face the challenges of interacting with
the environment that exploration can address. The small size of the problem space is a
key factor contributing to the model’s stable performance without requiring exploration. As
the problem space expands, the model potentially encounters the mentioned obstacles, and

exploring may improve its learning performance in such cases.

Sensitivity analysis of the parameter v By decreasing the v values, the stability of
the reward plots decreases, as shown in Figures 5.6b-5.8b. In this case, the agents rely more
on the immediate reward values in decision-making, with the consideration for long-term
rewards. This setting results in poor performance of the model across scenarios, highlight-
ing the importance of accounting for long-term rewards in planning. Accordingly, due to
environmental characteristics, emphasizing immediate rewards alone diminishes the model’s
planning performance in this context. Moreover, due to the robustness of the model for ~
= 0.1, this setting may result in broader generalizability across various environments and

scenarios in this problem domain.

Sensitivity analysis of the replay memory size As depicted in Figure 5.6¢, the model
achieves its highest performance with a memory size of 200 in Scenario I. However, the model
attains its best performance using a memory size of 100 in Scenarios II and III, as illustrated
in Figures 5.7c and 5.8c. Additionally, our investigation confirms that a size of 50, resulting
in a reduced number of observations in the memory, inhibits the learning process. Optimal
replay memory provides sufficient observations for the model, enhancing the sampling process
and learning performance. Given the negligible difference (2 episodes) between memory sizes
of 100 and 200 in Scenario I, it can be concluded that a memory size of 100 exhibits greater
generalizability compared to sizes of 50 and 200 in this problem domain. On the other
hand, while the model meets its highest performance in Scenario I with a size of 200, this
configuration does not yield efficient results in Scenarios II and III. An inefficient increased
size results in greater variance in the data, leading to instability in the learning process.

Hence, a size of 200 exhibits low generalizability in this context.

Sensitivity analysis on decision-making under uncertain conditions This analysis
aims to validate the ability of the model to make decisions in uncertain conditions. As
shown in Equation 5.19, we represent the uncertain environment by considering the variable
time required to complete each task. In this context, Ty.se denotes the fixed time needed
to complete a task, and Ty, represents the additional variable time, caused by uncertain

factors. The total time to complete the task, T, is calculated as the sum of the fixed
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and variable times. T, is selected from a ‘Variations’ vector based on a uniform discrete
probability distribution, as shown in Equations 5.20 and 5.21. This vector has a length of
50 and contains the numbers 1, 2, 3, 4, and 46 instances of 0. Moreover, N represents the
length of the vector, and ¢ is a binary function. As shown in Equation 5.22, § becomes 1 if
Tyar; equals x;, and 0 otherwise. Consequently, the probability of sampling the numbers 1,
2, 3, or, 4 is 0.02, while the probability of sampling the number 0 is 0.92.

T = Thace + Toar (5.19)

Variations = [Tyarg, Taarss - - -+ Trarg] = [0,0,..,0,1,2,3, 4] (5.20)
———

46 numbers

N

Tr =P (X =x) = ;I >0 (%1, Tuay,) (5.21)
=1
0 (X17 Tvarj> = boxe T"arj (5'22>
0 X 7& Tvarj

We implemented the model developed in Scenario I within an environment comprising the
mentioned uncertainties. Figure 5.9 illustrates the total rewards for both agents in this
sensitivity analysis. Despite minor fluctuations, the rewards have achieved a relatively stable
level, indicating the model’s strong performance in decision-making, even with variable task

times.

Reward value

0 50 100 150 200 250 300
Episode

Figure 5.9 The reward values for sensitivity analysis on decision-making under uncertain
conditions
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Comparative analysis This part evaluates the proposed model by comparing it with the
model presented in [1] as we utilise a case study from the referenced article. We use con-
vergence time as a quantitative evaluation metric. The purpose of this comparison is not to
benchmark execution time or computational efficiency under identical conditions, but rather
to qualitatively assess whether the proposed RL-based approach can achieve bounded con-
vergence behavior comparable to a classical method in the same problem context. Figure
5.10 compares the convergence times of our model under three scenarios with the best con-
vergence time of the baseline model. The baseline model converges in 120 iterations with
the optimum setting, whereas our model achieves convergence in 57, 55, and 49 iterations,
respectively. Therefore, the developed model in this research converges much faster compared

to the baseline paper.

120 1 B The best result of the baseline paper

The result of the proposed model in Scenario 1

100 4 I The result of the proposed model in Scenario 2

HE The result of the proposed model in Scenario 3
80
60

40 4

20

Required iterations for convergence

The baseline model The model

Figure 5.10 The required iterations for convergence for the proposed model and the baseline
paper on a single dataset

5.7 Conclusion

The use of cobots as human assistants in disassembly projects is expanding. Cobots can un-
dertake hazardous tasks that may jeopardize the safety of human operators. Cobots can also
efficiently execute simple and repetitive tasks that human operators may not complete with
high precision due to fatigue and distractions. In contrast, cobots cannot perform complex
and challenging tasks that require the skill and strength of human operators. HRC disassem-
bly significantly promises progress in the manufacturing industry by taking advantage of the
flexibility of human operators and the high precision of cobots. The use of HRC in disassem-
bly processes is a positive step towards optimizing the operations, greatly impacting recovered

parts quality, resource utilization, operation time, and profit. Despite all the benefits of HRC
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disassembly over traditional manual disassembly, this field still faces serious challenges. This
research study aims to solve the existing challenges and fill the gaps in the literature by
presenting a novel sustainable HRC disassembly planning framework based on a new multi-
agent fuzzy-RL model. This model is capable of allocating tasks to operators in real-time
considering the elements associated with the business aspect as well as environmental and
social objectives. As a result, this leads to a sustainable disassembly process that satisfies not
only business objectives but also environmental and social considerations. Given the infea-
sibility of completing some tasks because of the necessity for specialized tools or technology,
the model incorporates the technical feasibility of tasks in the planning process. The model
also appropriately represents uncertain parameters of the problem by using a fuzzy-based
environment. Hence, the agent receives more accurate feedback as a reward signal from the
environment. As RL agents continuously learn from reward values, this strategy enhances
the learning process of the RL model thereby improving its ability to make robust decisions
in diverse situations. To effectively validate the presented contributions, this research study
employs a quantitative evaluation method, focusing on a case study of a hard drive disk.
Furthermore, we improve the model performance by conducting sensitivity analysis and fine-
tuning the impactful parameters of the problem, such as ¢, v, and the replay memory size.
It also enables us to achieve a more profound understanding of the conditions governing the
problem. The main limitation of this research is the absence of testing the proposed frame-
work in a real industrial environment. Additionally, we assume that the energy consumed
by cobots solely depends on operation. However, in real-world scenarios, additional factors
such as the required movement to reach a specific location before performing a given task
influence energy consumption. We will provide a sensitivity analysis based on these factors
in our future research. This research also assumes that each task requires only one tool. In
future research, we will consider a set of tools for each task to develop a more comprehensive
planning model that more closely aligns with industrial conditions. Moreover, we aim to val-
idate our model with a real case study in a laboratory environment. We will also present a
trade-off analysis between objectives by evaluating the model’s performance through varying
each element coefficient in the reward functions, representing the corresponding importance

in the decision-making process.
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Figure 5.11 The employed fuzzy numbers in the proposed model
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Algorithm 5 The fuzzy-based environment modeling

For a human operator with an accepted level of experience

if (Difficulty = Low) AND (Technical Feasibility = High) then
Medium = Time.
Medium => Recovered quality.

else if (Difficulty = Low) AND (Technical Feasibility = Medium) then
Medium = Time.
Medium = Recovered quality.

else if (Technical Feasibility = Low) then
High penalty.

else if (Difficulty = Medium) AND (Technical Feasibility = High) then
High = Time.
Low = Recovered quality.

else if (Difficulty = Medium) AND (Technical Feasibility = Medium) then
High = Time.
Low = Recovered quality.

else if (Difficulty = High) AND (Technical Feasibility = High) then
High = Time.
Low = Recovered quality.

else if (Difficulty = High) AND (Technical Feasibility = Medium) then
High = Time.
Low = Recovered quality.

end if

For a human operator with a medium level of experience

if (Difficulty = Low) AND (Technical Feasibility = High) then
Low = Time.
High = Recovered quality.

else if (Difficulty = Low) AND (Technical Feasibility = Medium) then
Low = Time.
High = Recovered quality.

else if (Technical Feasibility = Low) then
High penalty.

else if (Difficulty = Medium) AND (Technical Feasibility = High) then
Low = Time.
High = Recovered quality.

else if (Difficulty = Medium) AND (Technical Feasibility = Medium) then
Low = Time.
High = Recovered quality.

else if (Difficulty = High) AND (Technical Feasibility = High) then
Medium = Time.
Medium =- Recovered quality.

end if

For a human operator with a high level of experience

if (Technical Feasibility = Low) then
High penalty.

else
Low = Time.
High = Recovered quality.

end if

For a cobot

if (Difficulty = Low) AND (Technical Feasibility = High) then
Low = Time.
High = Recovered quality.

else if (Difficulty = Low) AND (Technical Feasibility = Medium) then
Low = Time.
High = Recovered quality.

else if (Difficulty = Low) AND (Technical Feasibility = High) then
High penalty.

else if (Difficulty = Medium) then
High penalty.

else if (Difficulty = High) then
High penalty.

end if
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6.1 Abstract

Traditional ergonomic evaluations often overlook the dynamic and uncertain nature of hu-
man movements, leading to potential musculoskeletal disorders (MSDs) and impacting worker
health, efficiency, and company costs. Disassembly cells, crucial for sustainability and circular
economy efforts, pose unique challenges and opportunities for ergonomic optimization. This
study introduces an innovative approach for ergonomic risk assessment in the manufactur-
ing industry, particularly within disassembly cells, by integrating real-time video processing
and fuzzy logic. Our research fills a significant gap in ergonomic assessment by utilizing a
multi-camera computer vision technique to capture and analyze worker motions in real-time,
allowing for dynamic ergonomic risks assessment in a disassembly cell. The fuzzy logic in-
ference enhances the system’s ability to handle the variability and subjectivity of human
posture, offering a more nuanced and accurate risk assessment than binary logic systems.
Experimental validation in a laboratory setting confirms the feasibility of our approach,
demonstrating its potential to improve worker safety and productivity by providing a more
responsive and adaptable tool for ergonomic assessment in industrial environments. This
work marks a significant advancement in the field, suggesting a path forward for the de-
velopment of ergonomic interventions that are both more effective and applicable in diverse

manufacturing settings.

Keywords: Ergonomic risk; disassembly cell; fuzzy logic; computer vision

6.2 Introduction

The emergence of complex manufacturing processes necessitates the development of advanced
ergonomic analysis techniques to ensure worker safety and optimize productivity. Ergonomic
risk is a major concern in the manufacturing industry as it directly impacts the health and

well-being of workers, resulting in potential MSDs which are a leading cause of work-related
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injury and long-term disability. High ergonomic risk can result in decreased worker efficiency,
increased absenteeism, and higher healthcare and compensation costs. Traditional ergonomic
assessments often rely on static postures, failing to account for the dynamic nature of human
movements. Furthermore, existing models typically do not accommodate the inherent uncer-
tainty and variability of human posture and the subjective nature of discomfort and strain

assessments.

A disassembly cell is a system that separates the components of a product that has reached
the end of life, so that they can be reused, repaired, remanufactured, or recycled. It can
involve human operators, robots, or a combination of both, working together to perform
the disassembly tasks. The disassembly operation improves sustainability and circularity,
because it reduces the waste and environmental impact of discarding products and preserves
the value and quality of materials. By using a disassembly cell, a business can also fine-
tune its operations, by optimizing the disassembly sequence, reducing the costs and time of

disassembly, and improving the safety and ergonomics of the workers.

This study addresses critical gaps in current ergonomic assessment methodologies by inte-
grating real-time video processing with a fuzzy logic inference engine to mitigate ergonomic
risks in a disassembly cell. By using different computer vision techniques, we initially ex-
tract foreground as well as the magnitude and angles of motions in each frame. We then
remove the corresponding noise by applying basic image processing methods, including mor-
phological operations and thresholding. After detecting the operators’ locations, we extract
the geometric angles related to the orientation of their bodies. Furthermore, this approach
defines a region of interest for processing based on the magnitude of motion. In this way, the
algorithm avoids processing pixels corresponding to points with less movement, such as walls
and windows, which are not important in this context. In addition, we down sample video
frames by processing only one out of every two frames. These techniques effectively increase
the speed of the proposed approach, meeting the requirements of real-time. The extracted
features are then utilised to compute ergonomic risk using fuzzy methods. By employing a
fuzzy logic inference engine, the system evaluates these risks with a delicate approach that
mirrors human reasoning. The fuzzy logic enables the proposed system to handle imprecise
input data, such as the variability of human posture, and provide a more accurate assessment

of ergonomic risks than binary logic systems.

To validate the proposed framework, experimental analysis has been conducted in a lab-
oratory environment. The integration of real-time video processing allows for continuous
monitoring and analysis of worker postures, leading to a proactive approach in identifying

and mitigating potential MSDs. The fuzzy logic component addresses the research gap of
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quantifying subjective ergonomic factors by providing a flexible and adaptable model that

can be tailored to various industrial settings.

The anticipated outcome of this research is a robust ergonomic analysis tool that enhances
the safety and efficiency of disassembly cell design. By addressing the limitations of current
ergonomic assessment tools and incorporating real-time video analysis with fuzzy logic, this
study aims to pave the way for more responsive and adaptive ergonomic interventions in the
manufacturing industry. The experimental validation demonstrates the practicality of the

proposed system, marking a significant step forward in real-time ergonomic risk assessment.

The structure of this manuscript is as follows: Section 6.3 explains the problem context.
Section 6.4 delineates the proposed framework. In Section 6.5, the practical implications of

the proposed framework are discussed. Finally, Section 6.6 presents concluding remarks.

6.3 Problem context

6.3.1 Product disassembly

Product disassembly involves separating components from an end-of-life (EoL) product with
the purpose of reuse in remanufacturing processes. Product disassembly is an important
phase in remanufacturing and circular economy by reducing the need for new raw materi-
als, yielding considerable financial and ecological achievements. Disassembly planning refers
to generating an optimum sequence of disassembly tasks to minimize costs in addition to
maximizing profits. A considerable body of literature has investigated various rule-based
and learning-based models to plan disassembly processes. Zhou et al. comprehensively re-
view disassembly planning methods, various approaches for modeling disassembly processes,
existing challenges, and future perspectives [2]. In [133], the authors developed a classical
reinforcement learning (RL) model for disassembly planning. The associated reward function
includes terms related to operation time, changes in the process direction and tool usage,
the volumes of parts, and worn components. The model also integrates precedence relations
among parts in the decision-making process. Chen et al. [46] developed a Q-tabular model
for the disassembly planning of Eol. smartphones. Considering the constraint relationship
among components, the model aims to minimize the total time, which is deterministically
defined as the sum of times required for tool changes, basic disassembly operations, posi-
tioning, and cleaning. [143] introduces a hybrid planning model based on fuzzy logic and
augmented reality for aircraft disassembly. A recent review of the literature on this topic
reveals that employing collaborative robots (cobots) as human assistants in disassembly pro-

cesses is becoming more and more popular. Human-robot collaboration (HRC) effectively



104

combines the cobots’ preciseness with the flexibility and strength of humans. This strat-
egy has great potential to improve the profitability and efficiency of disassembly processes.
There is a vast amount of literature on developing optimization models for HRC disassem-
bly planning. In [140], the authors have proposed a real-time HRC disassembly planning
model based on a dual-agent RL algorithm. The proposed model allocates tasks to a human
operator and a cobot in real-time, enabling the model to overcome uncertainties that may
change a process’s expected flow. The model also integrates different features of parts and
human skill levels in the decision-making process. [86] models a product architecture and
constrain relations between parts through an AND/OR graph in an HRC product disassem-
bly. The authors categorized disassembly tasks into eight classes according to corresponding
complexity and difficulty. This research optimizes the process by using a genetic algorithm
(GA) with a fitness function including operation time, human operators change frequency,
and a term about the selection of non-profitable parts. [128] introduces an HRC disassembly
planning approach that involves partial destructive operations. This approach considers the
product’s failure factors and calculates disassembly modes, as well as the values of recovered
parts. The authors optimized the process with an extended GA approach based on operation
time, physical constraints among components, product failure factors, disassembly difficulty,

and cost.

6.3.2 Ergonomic consideration in disassembly cells

A disassembly process may involve tasks that pose high ergonomic risks. Examples of such
tasks include lifting heavy loads, performing destructive operations requiring a high degree
of force, maintaining an inappropriate position for a long period, and frequently doing simple
and repetitive activities such as removing screws. Engaging in these tasks may result in seri-
ous body skeleton issues for humans in the long run. It is necessary to assess the ergonomic
risk associated with each task and use cobots, assistant robots, wearable devices, or any
advanced tools to assist humans in performing high-risk tasks. Furthermore, it is crucial to
integrate ergonomic risk within the disassembly planning process. The sequence of disassem-
bly tasks should be planned to minimize ergonomic risks for an operator. Many attempts have
been made aimed at analyzing ergonomic risks in assembly/disassembly processes. [72] inves-
tigates ergonomic risk in manual and HRC disassembly processes. It experimentally shows
that the synergy between a human and a cobot enhances ergonomics relative to manual dis-
assembly. Siew et al. [139] introduced an approach to improve ergonomics in disassembly
and maintenance processes. The proposed approach optimizes the disassembly process by
considering real time ergonomic feedback based on data, which are collected from a sensor

network. Although significant strides have been made to improve disassembly processes, few
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researchers have addressed the problem of ergonomics in disassembly cells. Consequently,

the investigation of ergonomic factors in this context is a new research area.

6.3.3 Research gaps in ergonomic assessment tools

Observational techniques such as rapid upper limb assessment (RULA) [144] and rapid entire
body assessment (REBA) [145] have notable limitations when it comes to assessing ergonomic
risks. Firstly, the evaluation of risk levels typically requires experienced assessors, making
these methods potentially less cost-effective. Secondly, due to the inherent subjectivity of
evaluators, the final score can suffer from inconsistency [146]. Thirdly, current ergonomic
assessment tools (EATs) typically consider multiple body parts, such as the upper limbs in
RULA or the entire body in REBA, and integrate the risk scores of each to anticipate overall
risk levels for each task. However, in some manufacturing applications such as disassem-
bly cells planning or job rotation approaches in assembly lines, understanding the total risk
associated with each specific body area can be more conducive to implementing preventive er-
gonomic interventions. Given that observational EATs are prone to human error, resulting in
outcomes with low consistency and repeatability, this paper introduces a comprehensive fuzzy
assessment tool designed to address the imprecision inherent in traditional EATs. Moreover,
to the best of our knowledge, conventional EATs evaluate postural risk by roughly considering
load and time factors. For example, in REBA, the force parameter is evaluated based on 5 or
10 kg thresholds, while in RULA, task duration is only accounted for if it exceeds one minute
or repeats more than four times per minutes, with a single score added to the risk in these
cases. However, incorporating task time as a percentage of cycle time (CT) provides a clearer
understanding of the frequency and repetition of each task. Furthermore, the load placed on
various joints, or the force exerted on different muscles can be more accurately assessed using
metrics such as maximum voluntary contraction (MVC) [147] or maximum acceptable effort
(MAE) [148]. Additionally, the influence of time parameters in exacerbating joint stress can
be better evaluated within the context of CT, which more effectively captures task repetition
and resulting fatigue [149]. Therefore, this study aims to address current research gaps by
proposing a fuzzy EAT that evaluates cumulative ergonomic risk for each body part, taking

into account task duration as a percentage of C'T and incorporating load parameters in the
form of % MVC for each body part.

6.4 Proposed fuzzy approach

Figure 6.1 illustrates the outline of this research study. First, a multi-camera vision approach

detects the joints of a human operator working in a disassembly cell, then angles between the
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joints are computed. Finally, we analyze ergonomic risks by using a fuzzy-based approach

based on the angles.

Camera | Camera 3

[ o 2]

Fuzzy-based
ergonomic analyzing

Detecting joints ~ ——>| Computing angles

-
|

Figure 6.1 The proposed vision-based system for analyzing ergonomic risks

6.4.1 Fuzzy ergonomic assessment tool

In this subsection, we present a comprehensive method for evaluating ergonomic risks using
fuzzy logic. Our novel approach integrates posture risk and fatigue levels of specific body
parts, assessing cumulative ergonomic risk based on task duration relative to CT. Initially,
we focus on two body parts—upper arm and lower arm— to prototype a model for future
studies. The following subsections detail our proposed model in three steps to elucidate its

underlying logic.

Posture risk analysis To assess posture risk for each body part, we employ the REBA
and RULA methods, interpreting risk levels akin to a traffic light scheme (green for low risk,
yellow for medium risk, and red for high risk). Tables 6.1 and 6.2 present primary fuzzy rules
for posture risk assessment, considering various joint angles. These tables utilise side videos
to estimate x angles and apply up-hand side videos to capture y angles. Negative angles

denote positions behind and inclined to the center of the body, on x and y sides, respectively.

Fatigue consideration By incorporating MVC and MAE from previous studies [147,148],
we establish nine fuzzy rules (Table 6.3) linking the percentage of MVC (or MAE) to posture

risk aiding in fatigue assessment.

Time-based cumulative evaluation For assessing cumulative ergonomic risk, a fuzzy

Table 6.1 Posture risk of upper arm (shoulder)

Angle from the core y<0° 0°<y<20° 20°<y<45° 45°<y<90° 90° <y
200 <z <0or0°<z<20° | 1&0 1&1 1& 2 1& 3
< —20° or 20° < x < 45° 2&0 2&1 2 & 2 2& 3

45° < ¢ < 90°
90° < x

3&0 3&1 3&2
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Table 6.2 Posture risk of lower arm (elbow)

Angle from the core y=0° 0°<yory<O0°
60° < x < 100° 1&0 1&1

z < 60° or 100° < 2&0 [T

Table 6.3 Integrating fatigue parameter to posture risk.

Load MVC% < 15% 15% < MVC% < 40% 40% <MVC%
Posture Low Medium High
Low Low Low Medium

Medium Low Medium
High Medium

expert system generates rules based on task durations relative to CT. These fuzzy rules,

informed by ergonomic expert insights, guide risk categorization:

1. If no high-risk tasks are present and cumulative medium-risk task time exceeds 50% of

CT, then the operator faces medium risk (orange).

2. If no high-risk tasks are present and cumulative low-risk task time exceeds 50% of CT,

then the operator faces low risk (green).

3. If cumulative high-risk task time exceeds 20% of CT, then the operator faces high risk
(red).

4. If cumulative high-risk task time falls between 0 and 20% of CT, and the cumulative

low-risk task time exceeds 50% of CT, then the operator faces minor risk (yellow).

5. If cumulative high-risk task time falls between 0 and 20% of CT, but cumulative low-risk

task time is less than 50% of CT, then the operator faces medium risk (orange).

6.4.2 Real-time video processing method

This section discusses the computer vision method employed in this research. This method
aims to accurately measure the angles between the joints of a human operator, which is
working in a disassembly cell. Since it is impossible to extract all joints information from one
camera, we have developed a multi-camera system utilizing three cameras. As illustrated
in Figure 6.1, these cameras are installed on the right, front-facing, and left sides of the
human operator, respectively. This approach enables us to effectively extract all the required

information.
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This research study initially extracts the joints in each frame of the videos captured by the
three cameras. It uses the Media pipe library, which is an open-source framework provided
by Google, for joint extraction. Since this research focuses on the ergonomic risk associated
with the upper body, we specifically extract the wrist, elbow, shoulder, and hip joints from
videos. In this context, we need to compute the angle between elbow, shoulder, and hip
(referred to as angle 1) and the angle between wrist, elbow, and shoulder (referred to as
angle 2). We use Formula 6.1 to calculate the angles. Figure 6.2 depicts the vectors v; and
vy, along with the angle . To calculate angle 1, we determine the vectors vi = (shoulder,
elbow) and vy = (shoulder, hip). Similarly, we define vectors v = (shoulder, elbow) and vy
= (elbow, wrist) to calculate angle 2. In the following, these angles are used as the input of

the fuzzy model.

Angle between vectors (vy,vs) = arccos <W> (6.1)
[Vl - vl
a

o
//\(b\
ALY
0 c

b v, = 09

Figure 6.2 Two vectors and the corresponding angle between them

6.5 Application perspective

Utilizing the proposed method in disassembly cells offers notable advantages in real-world
scenarios due to its capacity to detect cumulative ergonomic risk in each body part and help
decision-making process for applying any ergonomic interventions. The proposed framework
can include more body parts, thereby facilitating taking proper action in improving the
ergonomic level of the workplace. This approach can be applicable across diverse industries
and assists them in finding robust solutions. To explain the effectiveness of this methodology,
a small numerical example is presented. This example is for the first five tasks of disassembly
of a standing fan (as shown in Figure 6.3). The corresponding angles of the two body parts
(shoulders and elbows) are displayed in Table 6.4 and based on Table 6.1 and 6.2 the posture

risk levels are shown by color codes. Then, by considering the load of each task and applying
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Taskl. Remove central cap Time: 4s

r

Task2. Unclip the Ist fastener Time: 7s
r

Task3. Unclip the 2nd fastener Time: 6s
r -

Taskd4. Unclip the 3rd fastener Time: 6s

Task5. Remove front grill guard Time: 5s

r

Figure 6.3 Detected joints and computed angles in the utilised case study. The collected
image data was used for initial feasibility testing and was not subject to detailed analysis in
this study

the fuzzy rules depicted in Table 6.3, the risk level of each task in each body part is detected
(see Table 6.5). Finally, based on the duration of each task and comparing it by CT (equal
to 35 s in this example), fuzzy rules are employed to determine the cumulative risk of each

joint as presented in the last row of Table 6.5.

6.6 Conclusion

Product disassembly involves tasks such as performing simple and repetitive activities for
extended periods, moving heavy objects, and carrying out dismantling operations. These

tasks may present different ergonomic risks for human operators. This paper presents a
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Table 6.4 Posture risks based on angles detected for disassembly tasks.

Angles Left Shoulder Left Elbow Right Shoulder Right Elbow

Task b y b y X y X y
1 22 -3 69 -26 18 1 64 -33
2 14 13 49 -10 37 12
3 67 22 21 -15 16 -6
4 25 -10 36 -26 73 19
5 34 3 48 1 el 17

Table 6.5 Final and cumulative risks of each body part.

Task Loads Left Shoulder Left Elbow Right Shoulder Right Elbow Time/CT

1 15% 19% 17% 10% 11%
2 18% 20% 10% 12% 20%
3 10% 25% 25% 15% 17%
4 42% 9% 17%
5 12% 10% 14% 14%
Total Risk Rule 2 Rule 1 Rule 4

novel method for ergonomic risk assessment in a disassembly cell, utilizing fuzzy logic and
computer vision. The method starts by extracting the human upper body joints by processing
the videos captured from three cameras installed in the cell. Subsequently, the angles between
the joints are calculated. A fuzzy-based approach is then utilised to analyze ergonomic risk
according to the acquired angles. This research also presents a real case study conducted
in a disassembly cell to validate the proposed method. The obtained results demonstrate
the method’s effectiveness in analyzing ergonomic risks associated with disassembly tasks.
In our future research, we will embed this fuzzy ergonomic approach into all human joints
and implement the proposed method in real world settings to examine the validity of it by
comparing the results with biomechanical and exact tools. In addition, future research will
provide a more comprehensive validation by involving multiple participants with different

characteristics, such as gender, height, and weight, in experimental settings.
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7.1 Abstract

End-of-life (EoLL) product disassembly is an important step in remanufacturing, resulting in
significant economic and environmental benefits. Traditionally, disassembly operations are
carried out manually, which is costly, time-consuming, and requires skilled human operators.
Furthermore, output quality highly relies on operators’ skills. Transitioning from manual
disassembly to automated disassembly by employing collaborative robots (cobots) as human
assistants has significant potential to improve process efficiency and quality. Cobots can
effectively perform simple and repetitive tasks as well as dangerous tasks that pose high risks
to human health. Moreover, it is crucial to optimize disassembly processes by generating a
task sequence for each operator to maximize profit and minimize cost. This study presents a
novel multi-agent approach based on reinforcement learning (RL) to optimize human-robot
collaboration (HRC) disassembly processes. In addition, it involves experts’ knowledge within
the RL model by developing a fuzzy-based exploration method. An electronic board is used
as a case study to validate the proposed approach. The results indicate that the model
using fuzzy exploration achieves more stable and sustained reward values. This research also
conducted multiple sensitivity analyses, proving the model’s capability to make real-time

decisions in uncertain scenarios based on the different importance of sustainability objectives.

Keywords: Disassembly planning; reinforcement learning; fuzzy logic; human-robot collabo-

ration; sustainable driven planning

7.2 Introduction

Nowadays, population growth, rising consumerism, and the shift towards modernity have
significantly increased the production of goods. This has resulted in the generation of vast
amounts of EoLL products each year, posing serious environmental concerns. Landfilling, in-

cineration, recycling, and remanufacturing are among the most common solutions to address
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this challenge. However, landfilling or incineration pollutes the air, soil, and water. While
recycling is a more eco-friendly solution, it may consume considerable amounts of energy.
On the other hand, remanufacturing focuses on rebuilding EolL products using various meth-
ods instead of discarding, burning, or recycling them [2]. A key step in remanufacturing is
product disassembly, which refers to the process of separating a product into its components.
This procedure offers significant environmental and economic benefits, such as waste reduc-
tion, lower costs of waste management, preserving natural resources and raw materials, and

energy footprint mitigation.

Conventionally, disassembly operations are manually executed by labours, a time-intensive
and expensive approach. In recent years, the use of cobots has become more and more
popular in industrial processes, such as product disassembly. Cobots can accurately execute
repetitive and easy tasks that human operators may not carefully complete due to fatigue or
distraction. Cobots can also perform dangerous tasks, such as tasks requiring exposure to
toxic substances or tasks with high ergonomic risks. Conversely, cobots lack the flexibility
and strength to perform complex and difficult tasks. On the other hand, human operators
can effectively execute such complex and heavy tasks. Hence, the collaboration of humans
and cobots leverages both the flexibility of humans and the accuracy of cobots, offering the

potential to improve the productivity and efficiency of disassembly processes.

Although involving cobots in such processes may enhance efficiency and quality, it is crucial
to consider the amount of energy consumed by cobots. The increased use of cobots causes
more energy consumption, which not only increases costs but also generates excessive energy-
related pollutants. Furthermore, performing complex and heavy tasks with cobots could
potentially damage the product or cobots physical structures. It is also critical to consider
human factors such as ergonomic risks and human safety while allocating tasks to operators.
Thus, optimized task assignment is significantly important as inefficient allocating tasks
may greatly reduce process productivity. Disassembly planning is an essential part of the
management of EolL products, addressing the sequential assignment of disassembly tasks to
operators to minimize costs and maximize profitability. In addition, an important step in
planning a process is modeling a product structure, which refers to representing precedence

relationships between components of the product [2].

A disassembly process involves uncertain factors that potentially change the process from its
expected routine. These factors include human errors, variable product conditions, machine
failure, tool tear and wear, and any other external disruptions. These factors may result
in the prolongation or even failure of operations. Hence, it is not practical to use static

planning models that theoretically generate a pre-planned task sequence. A disassembly
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planning model should dynamically allocate tasks to operators based on online conditions to

cope with uncertainties.

There is a considerable amount of literature on developing optimization methods, such as
the Genetic algorithm (GA), discrete Bees algorithm, and artificial bee colony (ABC), to
plan processes based on different criteria. Moreover, different graph-based and matrix-based
approaches are used to model precedence relations within parts of products. [86] presents
disassembly precedences with an AND/OR graph-based approach. Then, the GA optimizes
task allocation between a human operator and a cobot, considering several parameters such as
operation and tool change times, task difficulty, and operator change. Similarly, Lu et al. [150]
modeled disassembly precedence using an AND/OR approach. They then planned the process
based on profit and energy with a hybrid metaheuristic algorithm. [59] proposes a multi-
objective optimization approach based on ABC algorithm to plan a fully robotic disassembly
process concerning makespan and energy consumption. The proposed approach considers
three phases of energy consumption: disassembly operation, standby, and tool change. [39]
optimizes a robotic disassembly planning problem with a proposed multi-objective robust
approach. It aims to cope with uncertainties regarding products and operator conditions

during a process.

Xu et al. [151] proposed a matrix-based approach to extract the precedence relationships of
components in a product. Subsequently, a modified discrete Bees algorithm based on Pareto
optimizes the HRC disassembly process concerning disassembly time, cost, and difficulty. In
this case, the difficulty scores for humans and robots are evaluated separately. For humans,
these scores depend on workload and the level of hazards involved in tasks, whereas difficulty
scores are determined by movement complexity, operation space, and perception capabil-
ity for robots. [128] introduces an improved GA to optimize an HRC partial destruction
disassembly process. The proposed model considers several characteristics in the planning
process. These characteristics are disassembly difficulty, total disassembly time, cost, and
parts failure information. In a recent study, [73] plans the HRC process by a hybrid ant lion
optimizer according to multiple objectives, including the ergonomic consideration of humans,
parts’ recycling revenue, disassembly complexity, and operation time. The authors used a
video processing approach to assess the ergonomic aspect. This approach extracts human
joints from video frames to calculate the angles between the joints. Then, the rapid entire
body assessment (REBA) approach measures the ergonomic factor based on the angles. In

addition, the study models the process with an AND/OR, graph approach.

In order to provide a sustainable and reliable disassembly process, this research presents a

learning-driven approach with real-time decision-making capability. The major contributions
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of this study are as follows.

o This paper presents a novel disassembly planning approach based on RL and fuzzy
logic that dynamically plans the process based on real-time conditions instead of re-
lying solely on preplanned task sequences. It dynamically makes decisions after each

operation, whether successful or not, allowing it to adapt to uncertainties.

o This article enhances a conventional RL model by integrating a novel fuzzy exploration

method, configured based on experts’ knowledge, into the RL model structure.

o Evaluate the proposed approach on a dataset and provide an in-depth comparative

analysis between different exploration-exploitation scenarios.

o Present new sensitivity analyses to assess the model’s performance in uncertain sce-
narios, such as variable execution times and a failure probability for each operation.
This article also provides a trade-off analysis between sustainable objectives in decision-

making.

o This research develops a graphical user interface (GUI) that enables users to easily
customize the planning of disassembly processes according to required sustainability

objectives.

The rest of this article is organized as follows. Section 7.3 is dedicated to review the lit-
erature. Section 7.4 introduces the problem of optimizing HRC disassembly task sequences
and the associated economic, environmental, and social objectives. Section 7.5 presents our
proposed fuzzy-RL model to optimize HRC disassembly processes. Section 7.6 provides the

experimental results and discussion. Finally, Section 7.7 concludes the article.

7.3 Related works

A growing body of literature has explored various rule-based and learning-based data-driven
disassembly planning methods. Section 7.3.1 reviews the existing methods based on classical
optimization algorithms, while Section 7.3.2 discusses learning-based models. Following this,
Section 7.3.3 presents a qualitative comparison between our proposed approach and current
methods in the literature, highlighting its novelty. The comparison focuses on the disassembly

features included in the planning process.
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7.3.1 Classical planning models

Traditionally, classical optimization methods have been employed to plan disassembly pro-
cesses, and they have been widely investigated by researchers. For instance, [152] proposes
an improved discrete Bees algorithm with variable neighborhood search for balancing robotic
disassembly lines. A matrix-based approach is also used to generate feasible disassembly
sequences and directions. The authors evaluated the proposed approach using a gearbox and
a camera as case studies. Guo et al. [77] introduced a partial destructive disassembly plan-
ning approach to address the line balancing problem. This approach considers the feasibility
of destructive operations and the resulting noise pollution during the planning process. It
presents a mathematical model with different objectives, including minimizing the number of
stations, noise pollution, and related costs. Subsequently, an enhanced gray wolf algorithm
is developed to optimize the task sequence. Zhong et al. [16] introduced a disassembly plan-
ning approach that incorporates Dijkstra’s algorithm and PSO, considering both functional
components and fasteners. [33] proposes a disassembly planning approach that uses a graph-
driven method to represent product architecture. Then, it optimizes the task sequence using
a hybrid model based on GA and Tabu search.

In a recent study, [35] develops an approach based on an improved ABC algorithm for balanc-
ing partial multi-robotic disassembly lines. The proposed approach considers profitability,
cycle time, energy consumption, and the extra time and cost resulting from workstations’
reconfiguration. [31] optimizes task sequences using the ant colony optimization (ACO) algo-
rithm with respect to disassembly directions, component numbers, and tools. [36] proposes
a multi-objective approach to balance position-constrained HRC disassembly lines. They
presented a mixed integer programming model and a multi-fidelity optimization algorithm to
address both small-scale and large-scale problems, respectively. Zhan et al. [153] developed
a planning model based on the Northern Goshawk algorithm for vehicle battery disassembly,
with the main objectives of minimizing energy consumption and hazards during the planning
process. [37] presents a hybrid approach based on general ontology and rule-based reasoning
for HRC disassembly planning. They validated the proposed approach by using a gearbox as
a case study. In a more recent research study, Lou et al. [38] have developed a human-cyber-
physical system framework for HRC disassembly planning, in which the role of humans is
considered in two human-in-the-loop (HitL) and human-on-the-loop (HotL) paradigms. The
authors also computed task complexity and operator ergonomics using a cloud-based ap-
proach. Finally, an enhanced hybrid grey wolf optimization algorithm plans the sequential
task allocation process. They conducted an experimental analysis by applying the proposed

framework to a control box as a real case study.
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7.3.2 Learning-based planning models

In recent years, with the growing rate of machine learning (ML) applications in various
domains, many attempts have been made in order to optimize disassembly processes by
adopting ML models. In particular, RL methods are becoming increasingly popular among
researchers in this field. [48] optimizes task sequences in the disassembly process using a
graph-based RL approach. It categorizes components into different levels according to their
precedence relations and position on a graph, which represents a product structure. The
proposed approach begins by selecting components at the highest level and proceeds to
the next level after disassembling all components at each level. The RL model selects the
next component for disassembly to maximize a reward value that is a linear combination of
several objectives, including operation time, profits, tool and direction change, in addition to
a penalty term. This term incentivizes the model to select the components in line with the
current level. In a more recent study, [140] models a product structure through a graph-based
approach. They also developed a planning approach based on a multi-agent RL model to
optimize the HRC disassembly process with respect to the characteristics of the products

and operators.

Mao et al. [45] implemented their proposed planning approach into a virtual reality (VR)
framework for maintenance training applications. The approach represents a product struc-
ture through a Petri Net. It also comprises a hybrid GA-RL model that optimizes the task
sequence concerning difficulty, time, and cost. By developing a hybrid model based on PSO
and Q-learning, [127] optimizes the HRC disassembly process to achieve minimum operation
time. In each evolutionary state of PSO, the Q-learning approach selects the most effective
optimizer for improving performance. In addition, the authors used multiple perturbation
and local search techniques to enhance the planning process. Allagui et al. [133] extracted
precedence relationship information from a CAD model of a product to compute all feasible
disassembly sequences along the x, y, and z axes. They then represented mutual connections
between components with a square matrix, whose dimensions equal the number of the prod-
uct’s components. This matrix has a value of -1 for each index between two components
that are not connected. It has a value of 4100 for the indexes corresponding to connected
components. Additionally, the indexes on the diagonal axis of the matrix have 0 values.
Subsequently, a Q-tabular model optimizes the process with a reward function including the
feasibility of movement toward the axes and a fitness function presenting the problem’s ob-
jectives and characteristics. They are operation quality and time, components’ volumes, and

changes in tool and process direction.

Recently, Tabar et al. [52] have proposed an approach for disassembly planning that models
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a process with a Petri Net. It optimizes the process by a Q-learning method. The authors
considered three criteria of time, quality, and process capability as the main objectives in the
reward function. In addition, they evaluated the model with an engine starter motor. [90]
introduces a theoretically cyclic framework for HRC disassembly planning, which includes
five steps. It starts by fusing data captured from different sensors, such as Microsoft Kinect,
Ultrasonic, and Leap Motion. Subsequently, it extracts multiple types of high-level informa-
tion from the data, including the human body skeleton, tool recognition, hand gestures, and
operators’ locations. By using this information, an RL model allocates tasks to cobotic and
human operators. After completing a task and assessing the results, the acquired knowledge
by the model is transferred through a cloud-based approach to other models. This process

is recursively repeated until all tasks are completed.

7.3.3 Comparison of the proposed approach with existing methods

Synthesis on the literature review highlights that a key problem with much of the literature
is that most existing models plan the process statically, unable to effectively perform in un-
certain scenarios, where an operation takes longer time or even fails. In addition, sustainable
aspects are not well addressed in this context. Few studies involved sustainable objectives in
planning the disassembly process. There are potential gaps in the literature for a compre-
hensive sustainable planning model and a trade-off analysis between sustainability objectives

during decision-making.

Table 7.1 presents a qualitative comparison between our proposed approach and the sig-
nificant studies from the literature. It compares key features of the disassembly process
addressed in planning models. Although each previous method incorporated some of these
features, the approach proposed in this article considers a broader range of features and

provides a more comprehensive and sustainable planning process.



Table 7.1 A qualitative comparison of the proposed approach with the recent literature

HRC | Real-time planning Difficulty Time Circularity Energy Expert knowledge Tool change | Ergonomic risk | Safety

[86] v vi Vv X X X v X X
[150] X X v V4 Vv X X X X
[59] X X X v X v X v X X
(39] X X X v X v X v X X
[151] v X v v X X X v X X
[128] v X v v v X X v X X
(73] v X v v V4 X X X Vv X
[38] v X v v X X X v vi v
[48] X X X v X X X v X X
[140] vi v v v v X X X X X
[45] X X v v X X X v X X
[127] vi X v v X X X v X X
[133] X X X v X X X v X X
(52] X X X v V4 X X X X X
[90] v X X vi X v X v X v
[60] X X X X X v X v X X
88] v X X 4 X X X X X X
1] i X X v X X X v X v
Our model v v v v v v v vi v v

31T
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7.4 Problem statement

HRC disassembly planning is a multi-objective optimization problem where a model allocates
tasks to human(s) and cobot(s) to minimize costs and maximize profits. These costs and
profits result from the sum of various factors, defined according to the sustainability criteria
(Section 1.2) and explained in detail below. Equation 7.1 shows the problem’s main objective:
minimizing total costs and maximizing overall profits. In this case, f, presents the cost of
element p, and g, denotes the profit of element q. In addition, P and Q indicate the number

of cost and profit elements, respectively.

P Q
Minimize [ Y £, =Y gq (7.1)
p=1 q=1

Operation time is a critical economic factor in disassembly processes. Longer operation times
reduce the productivity and profitability of manufacturing companies. Hence, the planning
model should consider minimizing the operation time as an objective. Equation 7.2 indicates
the objective of minimizing operation time, in which T, represents the overall process time
and t; represents the time required for disassembling component i. Furthermore, N refers to

the total number of components.

fi=To=) t (7.2)

During a disassembly process, a human operator may require to change a tool. As tool
change is a time-consuming activity, the planning model should allocate tasks efficiently to
minimize the number of tool changes. Equation 7.3 shows the objective of minimizing the
change of tools, with tool; and tool;,; are the required tools to complete task i and task i+1,
respectively. In this case, the term ¢ is a binary function that is zero if its inputs are equal

and 1 otherwise. Furthermore, Tt represents the total number of tool changes in the process.

N-1
fo =Tp = Z J (tool;, tooliyq) (7.3)

i=1
Human operators’ health in disassembly processes is an important consideration. Performing
operations that expose humans to high ergonomic risk may result in serious health issues,
such as musculoskeletal disorders (MSDs). Therefore, a disassembly planning model should
allocate tasks ensuring that human operators are exposed to the minimum ergonomic risks.

Equation 7.4 shows the minimizing ergonomic risk objective, where Ry is the total risk,
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calculated as the sum of the ergonomic risk for each task i (denoted as ;).

N
fg = RT = Zri (74)
i=1

The energy consumption of cobots is a critical issue in industrial HRC processes. High energy
utilization is costly and contributes to carbon emissions, which raise serious environmental
concerns. Hence, it is vitally important to manage the energy consumed. An objective of a
planning model is minimizing the amount of energy consumed during the process, as shown
in Equation 7.5. Herein, e; represents the energy required for completing the i-th task, and

Er denotes the total consumed energy.

N
f,=Er=>Y ¢ (7.5)
i=1

Maximizing the quality of recovered parts is another objective of a disassembly process.
Increasing the quality of these parts improves the productivity of remanufacturing processes
and reduces the demand for new resources. In addition, low-quality recovered parts may
be classified as waste and not used in remanufacturing processes. Equation 7.6 illustrates
the objective of maximizing the quality of recovered parts, where Qr represents the total

recovery quality and q; denotes the quality of the i-th component.

N
g1=Qr = Zoh (7.6)
i=1

The safety of human operator is one of the most significant factors in disassembly pro-
cesses. Human exposure to potentially hazardous tasks may result in serious health issues.
A planning model should allocate tasks to operators concerning human safety. Equation 7.7
represents the objective of maximizing safety, given that St and s; identify the total safety

during the process and safety associated with each task i, respectively.

N
g2 = ST = ZSi (77)
i=1

This section addresses the objectives of the HRC disassembly planning problem. The next
section discusses the developed Fuzzy-RL model for HRC disassembly planning. With respect
to these sustainable objectives, this model makes decisions in real time to cope with uncertain
scenarios outlined in Section 7.2. This leads to a shift toward a more sustainable disassembly

process.
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7.5 Methodology

In this section, we introduce our proposed approach for HRC disassembly planning. This
section begins by outlining the proposed architecture and its modules, along with how a
fuzzy model can enhance the performance of an RL model. Subsequently, we explain the
RL models and the corresponding elements. Following that, we present the fuzzy models
and related numbers and rules. The environment modeling and failure probability for each
operation are then discussed. Finally, we delve into a detailed explanation of the entire

proposed algorithm.

7.5.1 Main architecture

Figure 7.1 illustrates the schematic overview of the proposed fuzzy-RL approach that contains
two models: one RL and other fuzzy. It also comprises a collaborative intelligence module
and an environment. Similar to the classical RL concept, the RL model interacts with
the environment and learns autonomously based on the feedback it receives. In addition, the
fuzzy model is logically configured by experts. In each iteration, the collaborative intelligence
module selects one of the two models for decision-making. In this case, the fuzzy model
operates more than the RL model in the first iterations. As the learning process evolves, the
collaborative intelligence module selects the RL model at an increasingly exponential rate,
resulting in a declining influence of the fuzzy model. Ultimately, the RL model independently
plans the process.

Feedback

|

RL-model

Environment

Fuzzy-model

Figure 7.1 The conceptual framework for fuzzy-RL integration

In general, RL models adopt non-optimal solutions in initial interactions as they lack sufficient
knowledge about the environment. They then get closer and closer to choosing the optimal
solutions with the continuation of the learning process. In our proposed approach, to enhance

the RL model performance, the fuzzy model directs it in the initial interactions.
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Figure 7.2 provides a more detailed view of the fuzzy-RL method. The RL model interacts
with the environment by selecting an action a; at each state s;. Subsequently, it receives
a reward ry;; from the environment in response to the selected action. Furthermore, the
current state sy evolves to the next state s;.1. The fuzzy model also chooses an action based
on the input (state). The collaborative intelligence module chooses one model at each time-
step for action selection. Since the RL model is dynamically trained based on feedback from
the environment, the environment’s responses to the actions selected by the fuzzy model

enhance the RL model’s learning.

As illustrated in Figure 7.2, this research employs the e-greedy algorithm as the collaborative
intelligence module. Herein, a parameter N, randomly sampled from a uniform distribution in
the range of [0, 1], is compared with a parameter €. If € > N, the fuzzy model selects the next
action a; in state s;. Otherwise, the RL model makes a decision for action selection. Using
this approach, the fuzzy model is employed during exploration, allowing the environment
to be logically discovered rather than randomly explored, as is typical in the conventional

e-greedy algorithm.

state s,

Exploitation

reward 1, state s,

action a, Environment

EXploratlon M
Intelligence collaborative

Fuzzy-model

Figure 7.2 The proposed hybrid fuzzy-RL model

Algorithm 6 illustrates the interaction in more detail. It starts by setting an initial value for
€, typically between 0 and 1. While the fuzzy model is logically formulated based on rules
determined by experts, the RL model is initialized based on predefined learning parameters,
such as its architecture. At each time-step, a decision is taken on whether to use the RL
model or the fuzzy model. At the end of each episode, the value of € is decayed by a constant
factor, less than 1, such 0.995 or 0.9995. This decay gradually reduces the rate of using the
fuzzy model as the learning progresses. The idea is to leverage the fuzzy model in the early

stages while allowing the RL model to progressively learn from the accumulated experience



gathered from the fuzzy model.
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Algorithm 6 The Fuzzy-RL model

Initialize an € value
Initialize the fuzzy and RL models
while (1) do
while (1) do
N ~ Uniform(0, 1)
if ¢ > N then
ay = Fuzzy model (s)
else if ¢ < N then
a; = RL model (sy)
end if
end while
€ = € *decay factor
end while

> A loop through episodes
> A loop through time-steps

> The fuzzy model selects an action a;

> The RL model selects an action a

This study presents a multi-agent framework for allocating tasks to a human and a cobot in

a disassembly process as shown in Figure 7.3. This framework is consist of a human agent

and a cobot agent, in which each agent is a fuzzy-RL model shown in Figure 7.2. While

the human agent selects tasks for the human operator, the cobot agent assigns tasks to

the cobotic operator. The agents interact with the environment through Markov decision

processes (MDP), which consist of a tuple containing state, action, reward, and next state.

The following sections explain the constituent parts of the agents and these interactions in

detail.

Human agent

Human RL model

e

Human fuzzy model

XX

{——
—

Environment

G—
—>

Cobot agent

Cobot RL model

e

Cobot fuzzy model

XX

Figure 7.3 The multi-agent fuzzy-RL framework

7.5.2 RL models

This research represents each RL model in the proposed framework with a DQN [124]. It

works based on the Q-learning theory and approximates Q-values of actions in each state by

using neural networks. By interacting with the environment, it aims to achieve the optimal
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Q-function. It estimates the Q-values in such a way that selecting the action with the highest
Q-value under policy 7 maximizes the accumulated reward value, as shown in Equation 7.8.
The v is also a discount factor for incorporating long-term reward values into the immediate
reward value. In addition, DQN consists of prediction and target sub-neural networks, which
estimate  values for the current state (Q(s,a)) and Q values for the next states (Q(s',a’)),
respectively. As Equation 7.9 shows, these two values are finally combined with a learning
rate of o to form the final Q values. The following presents a detailed explanation of RL

models: state, action, reward.

Q*(s,a) = mng {Rt +YRep1 + 7V Rego + ... | 8¢ =s,a, = a, 7T} (7.8)

Q(s,a) + Q(s,a) + a[R(s,a) + yarg max Q(s';a") — Q(s,a)] (7.9)

a

State This research defines the state vector of each model based on the characteristics of
product components and the corresponding operator. Figure 7.4 illustrates the state vectors
for human and cobot RL models, where D;, T;, H;, and E; represent the difficulty, technical
feasibility, human safety, and ergonomic risk associated with task i, respectively. The state
vector for the human RL model includes the values of difficulty and technical feasibility
associated with each task. It also includes the level of ergonomic risk for disassembly of each
component. As a safety factor, this vector contains a binary value for each task regarding

whether a task requires exposure to hazardous materials or not.

We calculate a difficulty score for each task using the approach presented in [140], which
obtains the difficulty score based on the weighted average of several variables. These vari-
ables are the size and weight of each component, the force required for its disassembly, a
binary variable representing the destructiveness of the operation, the type and characteris-
tics of each liaison, the number of connections of each component with other components,
accessibility, and positioning. This study assigns a particular value for each liaison type and
a number between 1 and 2 representing the characteristics of connections. While positioning
is a preprocessing phase by placing a tool on a connection before starting the operation,
accessibility refers to the ease of reaching an area related to the task by hand or tool [80,82].
This research also considers the feasibility of an operation based on factors such as requiring
a special tool or machine, as well as greater strength. On the other hand, the state vector
of the cobot agent includes difficulty and technical feasibility scores for each task. Notably,
after completing each task by an operator, its corresponding values in the respective state

vector will be set to zero.
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Cobot agent
state

T
Difficulty Technical feasibility

Human agent i
state '

D, Dy H, H, Hy T, T, T E, E, Ex

L JL JL J L J
Y T Y Y
Ergonomic risk

Difficulty Hazardous substances Technical feasibility

Figure 7.4 The state vectors of the human and cobot agents

Action Since the planning model aims to select tasks for operators, we define the next
disassembly task as the action in both agents. Hence, the action space encompasses all

available tasks.

Reward As environmental objectives, we aim to minimize the amount of energy consumed
by cobot and maximize the quality of recovered components. Moreover, minimizing operation
time and tool-changing frequency are considered economic objectives. On the other hand, we
consider hazardous materials and ergonomic risks as social factors. In this regard, the model
aims to allocate tasks in a way that minimizes human operators’ exposure to high-risk and
unsafe tasks. To meet the mentioned objectives, we developed a particular reward function
for each RL model.

Due to the recursive nature of RL, an agent targets making decisions to maximize cumulative
reward values, ensuring the process moves toward reaching sustainable objectives. Equations
7.10 and 7.11 show the reward functions of the human and cobot RL models, which are linear
combinations of elements related to objectives. The term Ryyman, the reward function of the
human RL model, includes elements related to operation time (Ry), tool change frequency
(Rrool), human safety (Ry), ergonomic risks (Rergo), quality of recovered parts (Ry), and a
penalty term R,. In addition, the term Rcopot, the reward function of the cobot RL model,
comprises elements corresponding to operation time, consumed energy (R.), recovered parts
quality, and a penalty term. The penalty terms in both models target to incentivize the
human RL model to choose more difficult and complex tasks and the cobot RL model to

select more simple tasks.

Since the cobotic operator can effectively perform high-risk and dangerous tasks, its corre-
sponding reward function does not include social elements. We also assume that the cobotic
operator does not need to change tools during the process. Moreover, we cannot observe
actual energy consumption as we test the proposed framework in a simulated environment.

Hence, it is assumed that R, rises by one unit for each task carried out by the cobot. On
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the other hand, the human RL model’s reward function lacks the element corresponding to
cobot energy consumption. In addition, each coefficient represents the impact of its associ-
ated objective on the reward values. Hence, we can change the influence of an objective in
decision-making by adjusting its coefficient. As the objectives are expressed in distinct units,

the coefficients also standardize them to ensure uniformity in summation.

1:{human = 0q - Rq — Oy Rlt - Oéergo : 1:{ergo — Oy - RH — O'Tool * RTool — OQp - Rp (710)

1%cobot :aq'Rq_at'Rt_ae'Re_ap'Rp (711>

Graph representation approach This research represents the disassembly process using
a graph-based approach introduced in [140]. As shown in Figure 7.5, this approach regards
each component as a node and each connection within two components as an edge. In
addition, it groups nodes to different levels based on their distances to the origin node. The
process starts from the outermost level. After disassembling each node, other nodes in this
level or nodes connected to the disassembled nodes can be selected for disassembly. The
rest of the nodes cannot be selected due to precedence relations. In order to integrate this
algorithm into the RL framework, a vector with a length equal to the number of nodes is
added to the output of the DQN network (actions’ Q-values) in each time-step. This vector
contains zero values for eligible nodes to be disassembled and -100 for the rest of them. This

strategy ensures nodes with precedence dependencies will not be selected by the RL models.

Component 15 Level 0

Level |

Figure 7.5 The graph representation approach
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7.5.3 Fuzzy models

A fuzzy inference system (FIS) consists of several modules: a fuzzifier, an inference engine,
and a defuzzifier. First, the input crisp value is fuzzified. Next, the inference module makes
decisions based on predefined rules. Finally, the fuzzy output sets are defuzzified. In this

part, we explain the developed FIS modules in detail.

We define ’Effectiveness’ as a fuzzy number, which serves as the output of FIS. This value
represents the appropriateness of each task for the corresponding operator. The inputs to
this system are the difficulty and technical feasibility of a task. The FIS evaluates how
effective the task is for the given operator according to its degrees of difficulty and feasibility.
Each time a fuzzy model is called, the available nodes for disassembly are provided to the
FIS. After assessing the effectiveness of each node, the node with the highest effectiveness is
selected. To represent "Effectiveness’, we use a triangular fuzzy number, as shown in Figure

7.6, which categories this value into three classes: low, medium, and high.

On the other hand, in the fuzzification step, we represent the difficulty and technical feasibility
values, which serve as inputs to the FIS, by using fuzzy triangular numbers. Furthermore,
the centroid defuzzification method, shown in Equation 7.12, converts the fuzzy output set
to a single crisp value. In this case, x and p(x) determine the output fuzzy set and the

membership function, respectively. In addition, z represents the final output crisp value.

_Jx: p(x)dx
J u(x)dx

In this problem, there are two agents: a human-agent and a cobot-agent. As mentioned in

(7.12)

Section 7.5.1, each agent consists of a fuzzy-RL model, illustrated in Figure 7.2. Section 7.5.2
defines two RL models, one for each agent. Correspondingly, we define two fuzzy models:
a human fuzzy and a cobot fuzzy. Each fuzzy model is a FIS that assigns tasks to its
respective operator. Tables 7.2 and 7.3 illustrate the rules of the fuzzy models, defined by
expert knowledge. As shown in Table 7.2, the cobot achieves High or Medium effectiveness
when its tasks are of Low difficulty and feasibility levels are High or Medium. However,
the effectiveness value decreases to Low when the difficulty level is High. For tasks with
Medium difficulty, the effectiveness value depends on the feasibility level that falls into Low
or Medium. In Table 7.3, an effectiveness value of Low corresponds to a feasibility value of
Low. For other cases, the effectiveness value is set to Medium or High depending on the
difficulty values. Notably, the value of Low is assigned to effectiveness in the case of Low
difficulty and High feasibility tasks, which logically aligns with the simpler nature of tasks
typically performed by cobots.
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Table 7.2 Cobot fuzzy rules

Number of rule Difficulty level Cobot Technical feasibility Effectiveness

Medium Medium

Medium Medium

Medium Medium Medium

Medium
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Table 7.3 Human fuzzy rules

Number of rule Difficulty level Human Technical feasibility Effectiveness

1

Medium Medium

Medium Medium Medium

Medium
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7.5.4 Environment modeling

As explained in Section 7.5.1, the developed fuzzy-RL approach dynamically learns by inter-
acting with the environment. This research mathematically represents the environment and
the interactions in order to provide a relevant output for a selected action (task performed
by an operator). While the proposed approach learns from this environment, its interactive
and dynamic nature enables it to perform in real-world scenarios and make decisions under

uncertain conditions.

Tables 7.4 and 7.5 show the environment representation for the cobot and human operators,
respectively. By considering the difficulty and technical feasibility scores for a task, the
environment provides operation time, recovered quality, and penalty. This study uses four
threshold values —Tp,, Tp,, Tg,, and Tg,— to distinguish the boundaries between Low,
Medium, and High levels of difficulty and technical feasibility scores. These thresholds are
determined by experts based on historical data and their professional expertise in evaluating
task complexity in HRC disassembly projects. Experts assessed the performance of operations
to determine the points at which the success rate of an operation decreases significantly due
to its extreme complexity. If a task achieves a low technical feasibility score, it is considered

as a failure. The values of these thresholds are presented in Section 7.6.

When a task is successfully completed, the reward value is calculated using Equations 7.10
and 7.11, depending on whether the operator is a cobot or a human. If a task cannot be

performed, the environment assigns a reward value of -10 to penalize the respective agent.

Table 7.4 Time, recovered quality, and penalty in various conditions for the cobot operator

Technical feasibility Tow ]i/}?;il;lg High
time = 3 time = 3 time = 3
Low reward = -10 reward = -10 reward = -10
’Task not completed’ | ’Task not completed’ | ’Task not completed’
time = 2 time = 3 time = 3
. quality = 7 quality = 2 reward = -10
Medium penalty = 0 penalty = 0 "Task completed’
"Task completed’ "Task completed’
time = 1 time = 2 time = 3
High quality = 10 quality = 7 reward = -10
penalty = 0 penalty = 0 "Task completed’
"Task completed’ "Task completed’

7.5.5 Failure operations probability

In a disassembly process, a cobot may fail to complete some tasks because of abnormal
conditions, including machine failure, wear and tear tools, cobot inefficiency, or any other

external interruption, which direct the task sequence planning process. In such cases, the
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Table 7.5 Time, recovered quality, and penalty in various conditions for the human operator

Technical feasibility Tow ]?\/}Hei;i?llg Tigh
time = 3 time = 3 time = 3
Low reward = -10 reward = -10 reward = -10
’Task not completed’ | "Task not completed’ | 'Task not completed’
time = 1 time = 1 time = 3
. quality = 10 quality = 10 reward = -10
Medium penalty = -10 penalty = 0 "Task completed’
"Task completed’ "Task completed’
time = 1 time = 1 time = 3
High quality = 10 quality = 10 reward = -10
penalty = -10 penalty = 0 "Task completed’
"Task completed’ "Task completed’

model should reconfigure the task sequence from its original outline. Therefore, it is crucial to
consider task failure in the modeling process to ensure the model’s effectiveness in industrial

settings.

This research study models task failure probabilities by a Beta distribution, determined over
the interval of [0,1]. This distribution delivers great flexibility to model various shapes.
Furthermore, the nature of this distribution, which is over [0,1], fully corresponds with the
task failure probability, falling between 0 and 1. As a result, this distribution is suitable for
representing the inherent variability and uncertainty in failure probability during disassembly

processes.

Equations 7.13 and 7.14 show the distribution, in which B(«, ) and f(x; «, 3) represent the
Beta function and the probabilistic distribution function, in that order. In addition, Equa-
tion 7.15 denotes the failure probability (Pgajure) for a given task i, where D[i] and TF][i] refer
to the difficulty and technical feasibility scores associated with task i. The parameters alpha
and beta directly affect the failure probability by determining the shape of the distribution.
Increasing « drives the probability of values closer to 1 (presenting a higher failure probabil-
ity), whereas higher f shifts the probability of values closer to 0 (indicating a lower failure
probability). Moreover, a = [ = 1 results in a uniform distribution. These two parameters
can be adjusted based on historical data or by experts. In addition, it is assumed that diffi-
culty values directly, and technical feasibility values inversely, impact the failure probability.
Notably, if this failure probability exceeds a certain threshold, the corresponding operation

fails.

Blo.g) = [ em1() gyl (7.13)
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1

E— Y )
B d) (1 ) (7.14)

flz;o,8) =

1
TF[i]

Ptaiture = f(xv a?ﬁ) * D[l] * (715>

7.5.6 The multi-agent fuzzy-RL algorithm for HRC disassembly planning

In this part, we provide a brief overview of the proposed algorithm for HRC disassembly
planning. Figure 7.7 illustrates the algorithm’s flowchart, which starts with configuring the
agents’ settings. Herein, the fuzzy models are configured based on the rules discussed in
Section 7.5.3, while the RL models’ parameters are initialized randomly. Next, human and
cobot agents select actions in order. The algorithm then proceeds along a loop, consisting of
two parallel paths, each for one agent. Subsequently, a condition block checks the completion
of tasks in each path. An agent waits if the corresponding task has not yet been completed.
Otherwise, it receives a reward for the performed action and evolves to the next state. Then,
it stores the corresponding MDP (state, action, reward, next state) in the replay memory. A
batch of data is sampled from the memory to train the respective agent. In the next step,
each agent’s state vector is updated based on the actions completed by another agent. This
prevents each agent from selecting an action already completed by the other. Following that,
a condition block selects one of the corresponding RL or fuzzy models for decision-making
by comparing the € value to a value derived from a normal distribution. This condition block
plays the role of the collaborative intelligence module. The process will be terminated once
all tasks are completed. Otherwise, the algorithm will reduce the e value by a constant factor

and repeat the loop.

7.6 Results and discussion

This section evaluates and validates the developed framework under different scenarios. First,
it explains the dataset applied to evaluate the model, the evaluation protocol, and param-
eter settings. Next, it discusses different sensitivity analyses, including trade-offs in the
exploitation-exploration dilemma, real-time decision-making, operation failure, and trade-
offs in sustainable objective importance. Lastly, it presents a comprehensive discussion con-

cerning all experiments.

Evaluation protocol, data, and parameter settings In order to evaluate the perfor-

mance of the proposed models, we calculate the sum of reward values in all time steps of an
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Figure 7.7 The flowchart of the proposed HRC disassembly planning algorithm

episode, which is shown in Equation 7.16. In this case, ry and T indicate the reward value
in time step t and the number of time steps in an episode, respectively. Accordingly, we
evaluate the model performance by analyzing and comparing the cumulative reward values
in episodes. Since this study presents a multi-agent framework, the evaluation is based on

the summation of reward values of both agents.

While comparison with other optimization methods, such as heuristic algorithms, can deliver
more understanding, this research focuses on evaluating the performance of the novel fuzzy-
RL framework against the classical RL model. We believe this approach sufficiently proves

the robustness and effectiveness of the proposed method.

This research employs an electric meter presented in [154] as a case study to validate the
model. Table 7.7 provides the features associated with each component. Since the referenced
article does not provide all the required features for the product components, we consider
other attributes, along with the attributes mentioned in the referenced article. In this re-
search, we set the v and « values to 0.1 and 0.2 respectively. The replay memory size is
configured to 100, and the target sub-network is updated every 50 iterations. We also set
Tp,, Tp,, Tg,, and Tp, as 14.9, 19, 1, and 5, respectively. Furthermore, during the sensitivity

analysis, we alter one parameter while keeping the values of other parameters constant.
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T
R=>r (7.16)
t=1

Sensitivity analysis exploitation-exploration This part aims to provide a trade-off
analysis between the exploration/exploitation dilemma by applying the developed model to
the dataset under different configurations. These configurations are defined by varying four
parameters, €, decay factor, number of neural network layers, and exploration type, which
are shown in Table 7.6. The parameters € and decay factor directly affect the number of
explorations/exploitations of the model during the learning process. Moreover, a neural
network’s number of layers typically impacts its generalizability and ability to learn complex
patterns. We configure the number of layers to three and four and set the parameter € to
three values: 0.1, 0.01, and 0. In addition, we adjust the decay factor to 0.975, 0.9975,
and 0.99975. We also configure the model in two random and fuzzy exploration settings.
In the fuzzy exploration setting, we employ the fuzzy-RL framework shown in Figure 7.3.
In contrast, only RL models are used in the random exploration setting, and actions are
selected randomly in the exploration mode. We selected six models that outperform others
due to their high and stable reward values. Figure 7.8a-7.8f illustrate the reward values of
these models, which are set based on Configurations 1, 5, 9, 12, 18, and 21. Plots associated
with Configurations 5, 9, and 21 exhibit more fluctuations and lack stability. However, the
plot shown in Figure 7.8d achieves high reward values around episode 150 but continues to
significantly fluctuate. The plots shown in Figure 7.8a and 7.8e reach lower reward values
than the plot shown in Figure 7.8d, but they converge faster and exhibit fewer fluctuations.
Furthermore, Figure 7.8e, corresponding to Configuration 18, demonstrates greater stability

compared to another plot.

Increasing reward values even slightly in regions where the model has converged is remark-
ably challenging. The model under Configuration 12 delivers higher reward values in these
regions than in other configurations. However, this setting provides much fluctuation, re-
sulting in poor stability. Assuring stability in this field is crucial, as an unstable model
ineffectively allocates tasks, significantly decreasing the profitability and productivity of the
process. In other words, Configuration 12 does not provide sustained performance despite
boasting higher reward values. On the other hand, Configurations 1 and 18 provide enhanced
stability compared to Configuration 12. These settings correspond to exploitation without
exploration (a=0) and fuzzy exploration, respectively. Furthermore, Configuration 18 pro-
vides more stable performance compared to Configuration 1, proving the effectiveness of the

fuzzy exploration approach.
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Table 7.6 The model configurations based on the impactful factors in the exploita-
tion/exploration trade-off

Configuration | Number of layers € decay factor | Exploration

1 3 0 - -

2 4 0 - -

3 3 0.01 0.975 Fuzzy
4 3 0.01 0.9975 Fuzzy
5 3 0.01 0.99975 Fuzzy
6 3 0.1 0.975 Fuzzy
7 3 0.1 0.9975 Fuzzy
8 3 0.1 0.99975 Fuzzy
9 3 0.01 0.975 Random
10 3 0.01 0.9975 Random
11 3 0.01 0.99975 Random
12 3 0.1 0.975 Random
13 3 0.1 0.9975 Random
14 3 0.1 0.99975 Random
15 4 0.01 0.975 Fuzzy
16 4 0.01 0.9975 Fuzzy
17 4 0.01 0.99975 Fuzzy
18 4 0.1 0.975 Fuzzy
19 4 0.1 0.9975 Fuzzy
20 4 0.1 0.99975 Fuzzy
21 4 0.01 0.975 Random
22 4 0.01 0.9975 Random
23 4 0.01 0.99975 Random
24 4 0.1 0.975 Random
25 4 0.1 0.9975 Random
26 4 0.1 0.99975 Random

Sensitivity analysis on real-time decision-making As mentioned in Section 7.5, vari-
ous factors may deviate a process from the ideal path. Thus, a disassembly planning model
should be able to cope with these uncertainties by making real-time decisions. This sen-
sitivity analysis aims to evaluate the real-time decision-making capability of the proposed
approach. In this way, the execution time determined for each task is not constant and may
vary. Equation 7.17 represents the execution time considered for the i-th task, in which T
is a predefined fixed number and t is a variable number, which is randomly selected based
on a uniform discrete distribution. Accordingly, the Time vector with length 50 including
the numbers 0, 1, 2, and 3 is defined as shown in Equation 7.18. Equation 7.19 denotes the
probability of selecting a number X from the Time vector, given that x; represents the i-th
unique value (0,1,2, or 3) in the vector, and the function ¢, shown in Equation 7.20, returns 1
if the inputs are the same. In addition, N indicates the vector length. In this way, P(X = 0)
=094, and PX=1) = P(X=2) = P(X = 3) = 0.002.

T =T+t (7.17)
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§ (x; - x5) = 1if x; = x; Otherwise 0 (7.20)

Figures 7.9a-7.9c illustrate the task sequences generated in scenarios with variable time set-
tings. Blue blocks indicate tasks with predetermined disassembly times (t=0 in Equation
7.17), while red blocks represent tasks with unpredicted times (t#0 in Equation 7.17). Thus,
all the tasks have taken their expected time in task sequence 1. In contrast, tasks 5 in
sequence 2, as well as tasks 33 and 18 in sequence 3, exceeded their expected times. As
shown in Figures 7.9a-7.9¢, the model adopts a consistent pattern for task allocation before
encountering the tasks with unexpected times (red blocks). The model dynamically gener-
ates different task sequences as completing a task requires longer times (the process change
from its ideal flow). For example, in task sequences 1 and 3, the model allocated task 14 to
the cobot after completing tasks 5 and 9. However, in task sequence 2, the model assigned
this task to the human operator as the cobot completed task 5 slower than expected. Rather
than using the pre-planned sequence, the model allocates alternative tasks to the operators

in real time to optimize the process based on new conditions.

Sensitivity analysis on sustainable objectives importance This sensitive analysis
compares model performance under different sustainable objective configurations. It inves-
tigates the importance of social factors (ergonomic risk and human safety) in the generated
task sequences. Figure 7.10 illustrates the task sequences associated with ay = ergo = 0.1,
10, and 50 in episode 300, in which alpha oy and alpha e, are coefficients for the reward
terms related to human safety and ergonomic risk in Equation 7.10. Herein, the color of
each block is associated with its risk level, where the red and orange blocks present high
and medium-risk tasks, respectively. In addition, the green blocks indicate risk-free tasks
for the human operator. As shown in Figure 7.10a-7.10c, with increasing o, and ag, the
number of risky operations included in the task sequence of the human agent decreases. In
this case, the sequence generated for the human operator with ag = e = 0.1 involves
more risky tasks compared to other setups. By adjusting the coefficients of the objectives in
the reward functions, the corresponding task sequences change. This allows us to customize

the disassembly process to prioritize sustainable objectives according to their importance.

To support practical applications and enhance user interaction with the proposed framework,
we developed a GUI, shown in Fig. 7.11, using Python’s Streamlite library. As illustrated
in Fig. 7.11a, this interface initially requests users to input three values between 0 and 100,
representing the importance of desired economic, social, and environmental objectives. These

inputs are then used as weights for respective objectives in the reward functions. This feature
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enables users to customize disassembly processes based on their specific requirements. For
instance, in an industrial setting in which environmental concerns are highly prioritized, man-
ufacturers can fix the environmental input at 100 and assign lower values to other objectives.
The GUI provides a clear visualization of inputs and results to facilitate decision-making. For
example, as shown in Fig. 7.11b, a donut chart shows the relative importance of the sustain-
ability objectives, enabling users to immediately validate their input visually. Following this,
the learning process is launched, and the corresponding task sequences are displayed in an
intuitive format, allowing users to assess the generated disassembly plan. By combining input
customization and result visualization, the GUI bridges the gap between theoretical mod-
els and industrial usage. It ensures that users can interact with the framework to optimize

processes according to their requirements.

Sensitivity analysis on failure operations As discussed in Section 7.5.4, this study
involves the failure of an operation by a cobotic operator, leading the process out of its
expected sequence. This sensitivity analysis aims to evaluate the model’s capability to cope
with these failing scenarios. We set the values of parameters a and g in Equations 7.13-7.15
as 0.2 and 4, respectively, and integrated the failure probability into the planning process.
Figure 7.12a-7.12c show the three task sequences, in which green blocks represent tasks
successfully completed. Red blocks indicate tasks that the cobot failed to complete, whereas
yellow blocks display tasks that were reallocated to the human operator after failing by the
cobot. In this way, in sequence 1, all tasks were effectively accomplished. However, tasks
1, 5, and 21 in sequence 2, along with tasks 1 and 23 in sequence 3 have failed. As shown
in Figure 7.12b and 7.12c, these tasks were subsequently assigned to the human operator.
Furthermore, it is evident that the process takes longer compared to normal conditions (task

sequence 1).

7.7 Conclusion

In recent years, the use of cobots has become increasingly popular in industrial disassembly
processes. Cobots efficiently handle repetitive and simple tasks that human operators may
struggle to perform accurately due to fatigue or distraction. Furthermore, cobots can com-
plete tasks that expose humans to high ergonomic risks or involve handling toxic materials.
However, cobots cannot perform complex and difficult tasks due to their lack of strength
and flexibility. Combining human capability in performing complex and challenging tasks
with the precision of cobots significantly enhances the productivity and quality of processes.

Planning HRC disassembly processes by generating task sequences for operators is a critical
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Figure 7.12 Sensitivity analysis on operation failure

step in configuring these processes. A planning approach should optimize task allocation pro-
cess based on multiple objectives, such as minimizing energy consumption, operation time,
and ergonomic risks on the one hand, and maximizing the quality of recovered parts and
human safety on the other hand. Additionally, various factors, including human errors, vari-
able product conditions, machine failures, tool wear and tear, or any external disruptions,
may deviate the process from the preplanned direction, leading to task prolongation or fail-
ure. Therefore, a robust planning model should make real-time decisions based on online

conditions to address these uncertainties effectively.

This research introduces a sustainable multi-agent framework based on RL for HRC disassem-
bly planning. Capable of making real-time decisions, the framework dynamically allocates
tasks based on online conditions. It consists of two agents—human and cobot—where each
agent selects tasks for its respective operator. Each agent is an RL model that leverages a
fuzzy-based exploration approach, logically selecting actions during the exploration phase of
the e-greedy algorithm. As the fuzzy approach is configured according to experts’ knowl-
edge, this study incorporates human expertise within an RL-based structure. In addition,
the proposed framework includes two reward functions (human and cobot) that are linear

combinations of several sustainable elements. These functions are powerful key performance
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indicators in industrial settings. The reward functions emphasize minimizing operation times
and tool changes frequency, directly impacting on productivity. The functions also involve
environmental elements, such as circularity and energy consumption. Social factors, such
as human safety and ergonomic risk, are also integrated into the functions. By presenting
an adjustable GUI, manufacturers can set the coefficients associated with these sustainable

elements to customize the process according to their unique priorities.

Experimental results from applying the proposed approach to a case study reveal that the
framework, when using fuzzy exploration, achieves more stable performance compared to
other configurations. Additionally, this article presents multiple sensitivity analyses to val-
idate the model’s performance in scenarios with varying task operation times, operation

failure probabilities, and varying importance of sustainability objectives.

In future research, we plan to implement the proposed framework in laboratory settings to
develop an industrial prototype. The use of the copilot concept and filtering actions based
on expert knowledge could significantly improve the performance of an RL model in larger-
scale problems, where selecting an action from many possible actions is more challenging
and complex. We plan to test the fuzzy-RL model in higher-dimensions problems, such as
recommender systems and transportation, to evaluate the performance of a conventional RL
model with fuzzy exploration. We also aim to conduct a comparative analysis of the fuzzy-RL
approach with other optimization methods, including various heuristic algorithms. Moreover,
we aim to explore other methods for incorporating experts’ knowledge into an RL model and

provide a comparative analysis with these approaches.
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Appendix



Table 7.7 The case study feature values

Component

Positioning

Accessibility

Weight

Strength

Size

Destructive

Liaisons

scores

Liaisons

properties

Ergonomic

risk

Hazardous

substances

Human

feasibility

Cobot

feasibility

Tool

1 2 1 2.4 4 3.5 1 6 1.4 0 0 13 4 1
2 1.2 1.6 2 1 2 0 2 1.2 0 0 14 4 1
3 1.2 1 2 2 2 0 3 1.3 0 0 3 3 2
4 2 2 2.2 1 4 0 2 1.4 0.5 0 2 2 1
5 1.2 1.6 2.2 2 3.5 0 4 1 0 0 12 11 3
6 5 1 2 1 2 0 2 1.1 0 0 17 15 1
7 1.9 2 4 4 4 1 10 2 0 1 13 4 1
8 1.2 2 2 2 2 0 3 1.2 1 0 14 16 1
9 2 1.6 2.2 2 2 0 2 1.1 0 1 10 5 3
10 2 1 2 1 2 0 4 1.5 0 1 11 17 2
11 1.2 1.6 2.2 1 2 0 2 1.7 0 0 15 3 1
12 1.2 1 4 4 4 1 10 1.8 0 0 14 10 1
13 1.2 2 2 1 2 0 2 1.1 0 0 13 19 3
14 1.2 2 2.2 1 3 0 3 1.9 0 1 15 13 1
15 5 2 2 2 2 0 4 1.5 1 0 16 11 2
16 2 1 2.4 4 3.5 0 6 1.4 0 0 13 4 1
17 1.2 1.6 2 1 2 0 2 1.2 0 0 14 4 1
18 1.2 1 2 2 2 0 3 1.3 0.5 0 3 3 2
19 2 2 2.2 1 4 0 2 1.4 0 0 2 2 1
20 1.2 1.6 2.2 2 3.5 0 4 1 0 1 12 11 3
21 5 1 2 1 2 0 2 1.1 0 0 17 15 1
22 5 1 2.4 4 3.5 0 10 2 0 0 13 4 1
23 1.2 2 2 2 2 0 3 1.2 0 0 14 16 1
24 2 1.6 2.2 2 2 0 2 1.1 0 0 10 5 3
25 1 1 2 1 3 0 4 1.5 0 1 11 17 2
26 1.2 1.6 2.2 1 2 0 2 1.7 0 1 15 3 1
27 1.9 1.9 4 4 4 1 6 1.9 0 1 14 10 1
28 1.2 2 2 1 2 0 2 1.1 0 0 13 19 3
29 1.2 2 2.2 2 2 0 3 1.9 0 0 15 13 1
30 5 2 2 2 2 0 4 1.5 0.5 0 16 11 2
31 1.2 1.6 2 1 2 0 6 1.2 0 0 15 16 1
32 2 1 2.2 4 3.5 0 2 1.1 0 0 14 15 1
33 2 2 4 1 2 0 3 1.5 0 0 13 17 3
34 1.2 1.6 2 2 2 0 2 1.7 0 0 15 13 1
35 1 1 2.2 2 4 0 4 1.8 0 0 16 10 2

vl
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CHAPTER 8 CONCLUSION AND GENERAL DISCUSSION

Recently, the use of HRC in disassembly processes has gained popularity and has been sig-
nificantly explored by many researchers. HRC disassembly promises progress in the industry
by taking advantage of the flexibility of human operators and the high precision of cobots.
Despite all the benefits of HRC disassembly over traditional manual disassembly, this field
still faces serious challenges. This research study aims to address the existing limitations and
fill the gaps in the literature by presenting several novel contributions across four articles.

The following is a summary of these articles.

8.1 The first article

This study proposes a novel multi-agent RL model based on DQN for disassembly planning in
a human-robot collaborative environment, in which the model sequentially assigns tasks to a
cobot and a human operator. A key contribution was the real-time adaptation of the model,
which dynamically adjusts task allocation based on evolving process conditions. In addition,
this work integrates part difficulty scores, calculated based on the physical and geometric
characteristics of the components, into the decision-making process to ensure that tasks are
assigned based on operator capability. The research also presents a graph-based approach
to modeling an Eol. product and the relationships between its components. The approach
models each component with a node and each connection between two components with an
edge. Furthermore, this study considers the skill levels of human operators in decision-making

to improve process efficiency through skill-based assignments.

In order to comprehensively and effectively validate the presented model, this research study
uses qualitative and quantitative comparative analyses. Here, the most essential evaluation
criteria for RL models are the cumulative reward value per episode and the convergence time
in reward plots. Furthermore, conducting sensitivity analysis and fine-tuning the impactful
parameters of the problem, such as €, 7, and the replay memory size, not only improves
the models’ performance but also enables us to achieve a more profound understanding of
the conditions governing the problem. The analyses show that the proposed model signifi-
cantly outperforms the baseline models in terms of features involved in the decision-making
process and convergence speed. Compared to static optimization methods, this approach
offers greater adaptability to uncertainties, such as human skill levels, cobot limitations, and
product variability. However, a limitation of this study was that it did not explicitly consider

sustainability criteria, such as energy consumption and ergonomic risks, in the optimization
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process. This gap was addressed in subsequent research.

8.2 The second article

This study extends the first article by formulating a multi-agent RL model that optimizes
HRC disassembly processes with respect to sustainability indicators, as defined in Section 1.2.
Unlike conventional optimization methods that rely on fixed task sequences, this model dy-
namically allocates tasks by balancing economic, environmental, and social considerations.
This study introduces sustainability-aware reward functions that incorporate energy con-
sumption, quality of recovered parts (environmental objectives), ergonomic risk and human
safety (social objectives), along with operation time and tool change frequency (economic
objectives). The study also uses fuzzy logic to model uncertain factors in the environment,
such as degrees of difficulty and technical feasibility. The use of fuzzy logic in RL allows the
model to cope better with the possibilistic nature of uncertainties in the disassembly process,

making the model’s training simulation more reflective of the real-world conditions.

The study investigates different RL configurations and compares performance metrics, such
as learning efficiency, convergence stability, and adaptability to uncertainties. Experimental
results demonstrate that the proposed model not only maintains a high level of economic

benefits in task allocation but also meets environmental and social considerations.

Note that this study focuses on operational sustainability indicators and does not address
potential second-order or rebound effects (e.g., social impacts of job displacement). Fur-
thermore, although other operational indicators, such as life cycle assessment (LCA), are

available, exploring these indicators falls beyond the scope of this study.

8.3 The third article

This study introduces a new approach to assessing ergonomic risk in disassembly processes
by integrating real-time video processing, RULA, REBA, and fuzzy logic. Unlike traditional
ergonomic assessments, which often fail to capture the dynamic nature of human movements,
the proposed method dynamically assesses ergonomic risks by using a multi-camera vision
system to capture human movements in real time. First, the proposed approach captures
frames from three cameras placed in the disassembly cell. It then detects the wrist, elbow,
shoulder, and hip joints on both sides. Following that, the angles between the different joints

are calculated.

For ergonomic risk assessment, the proposed approach first evaluates the posture risks of
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shoulders and elbows in each task based on the angles from two directions—side and top
views— by considering the scoring methodology of REBA and RULA. Then, it integrates
the force load of each task using MVC with the posture risks to calculate the final risk for
each task. Subsequently, it computes the cumulative risk of each body part based on the
task duration compared to the cycle time. Finally, the total ergonomic risk of each body part
is evaluated using five fuzzy rules. We validated the proposed approach by experimenting
in a laboratory setting, ensuring its effectiveness in extracting joint angles, classifying body

posture risks, and assessing cumulative ergonomic risks.

8.4 The fourth article

This paper introduces a fuzzy-guided exploration approach within an RL model to enhance
disassembly planning processes. In this approach, a fuzzy model adjusts the exploration
phase based on environmental conditions. Given the poor performance of RL models in initial
iterations, the fuzzy model makes decisions in the early time-steps, offering valuable feedback
from the environment to train the RL model. As learning progresses, the fuzzy model is
gradually used less and less until the RL model optimizes the process independently. Since
the fuzzy model is logically configured based on experts’ knowledge, this research combines an
expert-driven approach with a learning-driven method, resulting in a robust hybrid solution.
This new approach allows RL agents to make more informed decisions in uncertain scenarios

and improves the overall robustness of the planning process.

This study conducts several new sensitivity analyses to investigate the performance and
validate the model under different conditions. This study presents a trade-off analysis on
exploitation-exploration. It also provides a trade-off analysis among the sustainability objec-
tives (Section 1.2) in the decision-making process. It compares the generated task sequences
by adjusting the importance of different objectives. Furthermore, a sensitivity analysis is
conducted to evaluate the model’s performance under uncertain conditions with variable ex-
ecution times for each task. In addition, this research presents another sensitivity analysis by
introducing a failure probability for tasks performed by cobots, aiming to assess the model’s
ability to reconfigure task sequences in response to dynamic conditions. This research also
develops a GUI that enables users to customize the disassembly process according to their
individual requirements by adjusting the sustainable objectives. Experimental validation us-
ing an electronic board as a case study shows that the fuzzy-guided RL approach achieves

more stable rewards compared to conventional RL configurations.
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8.5 Implications

As academic implications, this thesis delivers multiple novelties by introducing three new
multi-agent RL models for HRC disassembly planning. These models aim to cover the weak
points of the previous works by offering comprehensive and sustainable planning approaches
that optimize the process based on dynamic conditions by incorporating many factors, in-
cluding components’ characteristics, operator skill level, and execution time. Additionally,
this research proposes a graph-based method for representing a product’s components and
their dependencies. It also introduces a fuzzy approach to modeling uncertain parameters
in the environment. In order to improve the performance of RL-based disassembly plan-
ning models, this research presents a novel fuzzy model that serves as the copilot for an RL
model. Herein, the fuzzy model is logically configured based on human expert knowledge.
As a result, this study combines human expertise with learning-driven approaches. This re-
search also includes new sensitivity analyses to evaluate the performance of models in various

conditions.

This study delivers significant implications for the industrial sector. With the ability to
make decisions under uncertain conditions, the developed models have a great potential
to effectively perform in industrial settings and deal with unpredictable factors that alter
processes from ideal path. Through integrating sustainable factors in the HRC disassembly
planning processes, this research allows manufacturers to customize processes based on their
specific goals. In this manner, companies control the process workflows according to their
individual requirements regarding the varying significance of cost, environmental, and social
factors. In this case, the presented GUI offers a user-friendly tool built upon the models
to manufacturers, enabling them to configure processes through the interactive dashboard.
Furthermore, the proposed ergonomic risk assessment method is an effective and low-cost
solution that can be easily implemented in industrial environments using cameras, eliminating
the need for wearable sensors or other advanced equipments. Moreover, this study has
substantial sustainability implications. In the environmental aspect, by reducing the energy
consumed in a process, this model contributes to greenhouse gas reduction. Also, it effectively
mitigates the use of materials and resource depletion by increasing the quality of recovered
parts. From a social perspective, this model reduces the risk of injury to manual workers by

considering ergonomic risk and human safety in the decision making process.
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8.6 Limitations and future research

Difficulty and technical feasibility are inherently subjective concepts. In order to prove the
concept, this research considers the technical feasibility values as an input, determined based
on experts’ knowledge. The difficulty values are also computed based on a weighted sum of
the various characteristics of components, including weight and required force. Furthermore,
we evaluated the models through the simulated scenarios instead of conducting experiments
in industrial environments. Furthermore, human safety is a critical and sensitive concern
in HRC disassembly processes. Although this research considers tasks involving toxic and
hazardous materials as a safety criterion, human safety encompasses broader aspects. For
example, identifying and maintaining a safe distance between humans and robots during
task allocation is another important factor, not addressed in this research due to a lack of

practical implementation in industrial settings.

The next step in this research is to deploy the proposed models in an industrial environment
and evaluate their performance. Furthermore, more research could be conducted using ad-
vanced sensor devices or questionnaires to measure the difficulty of disassembly tasks. In
addition, future studies can explore further safety aspects, such as maintaining safe distances
and addressing other types of risks. These distances can be measured using image process-
ing methods or advanced sensors. In addition, future studies could conduct a sensitivity
analysis on fuzzy parameters by evaluating a model in both normal and fuzzy environments
under different scenarios, thereby highlighting the impacts of fuzzifying uncertain parameters.
Moreover, extended Reality (XR) and digital twin technologies offer significant potential to
improve HRC disassembly processes in various ways. They can improve human skills in in-
teracting with cobots, validating processes, simulating different scenarios, diagnose problems,
and predict failures. Furthermore, future research can monitor body movements and pos-
tures to assess fatigue, ergonomics, and safety using these technologies. In addition, future
research could explore a broader range of sustainability KPIs as optimization objectives or

integrate the planning model with formal LCA methodologies.
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1 Abstract

End-of-life (EoL) aircraft treatment is a crucial step in the circular manufacturing of the aircraft industry,
delivering considerable economic and environmental benefits. Despite these advantages, complex and sensi-
tive operations are a serious challenge in this field due to the high complexity of an aircraft structure and its
constituent materials and composites. Poor operations can significantly reduce output quality and increase
operational costs. Consequently, the value of the recovered materials may not exceed the operational costs.
Artificial intelligence (AI) is a valuable tool for enhancing the effectiveness and sustainability of EoL aircraft
management by automating and optimizing the identification, separation, processing, and transformation of
materials. Al can also help to reduce waste and emissions, increase material recovery and reuse, and create
new markets and jobs. This paper comprehensively reviews the AI applications in EoL aircraft treatment.
It discusses the current state-of-the-art AI models across three domains: recycling, maintenance, and dis-
mantling/disassembly. This article then carefully highlights the existing gaps based on the analyses. It also
describes the possible directions for future research.

Keywords: Artificial intelligence; EoL aircraft; sustainable aircraft management; circular manufacturing

2 Introduction

The aerospace industry faces significant environmental and economic challenges due to the increasing amount
of EoL aircraft that generate waste and pollution. To address this problem, circularity key performance
indicators (KPIs) can help measure and monitor the progress of circular economy principles in the industry,
such as designing out waste, keeping products and materials in use, and regenerating natural systems. The
operationalization of circular economy in the industry with complex product configuration and supply chain is
more challenging. To the best of our knowledge, there is no a common definition of circular economy and the
related KPI at the product level. For example, research on the circular economy in the aerospace and railway
industries is still in the infancy stage. Stavileci and Andersson [1] performed an analysis of the business model
for the circular economy. They analyzed the case study of GKN Aerospace Sweden for evaluating different
business models for material circularity (metal alloys) and the perspective of manufacturing technologies.
Material scarcity, long production lead time, and the product life cycle are the main drivers for the circular
economy in this context. The results of the study, based on the secondary data and interviews, reveal the need
for more control over the product life cycle (in the design, manufacturing, and maintenance phases) and for
using the recycled metal of the manufacturing process in the maintenance and production phases [2]. SNC-
Lavalin Group also published a report on the circular economy overview in civil aerospace. They discussed
that despite the small share of emissions from raw material extraction and aircraft production in comparison

to the operation phase, for achieving the Net Zero goal, the circularity of material and energy should be
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addressed during the whole life cycle of the products [3].

The synthesis of the literature highlights the following gaps: (1) the circularity of complex products
requires deep analysis considering product configuration, life cycle assessment, and industrial context; (2)
the new technologies in vehicles and lightweight constructions need novel approaches and strategies for the
circularity of materials and energy, (3) in addition to circular economy analysis at the macro level, detailed
case studies at the product level are required to provide an integrated approach to circular manufacturing
practices. A systematic research approach for analyzing the circular economy in different industrial sectors
and cross-industrial comparisons are required for identifying the best practices with a focus on material
flows and processes. The decision context, applicable tools, and contribution of the advanced manufacturing
technologies for boosting the circular economy should be studied. Current circular economy practices in
different industrial sectors including Motor vehicles and parts, Telecoms, Industrial, Aerospace, and Railway
should be analyzed at the company and product levels. Different aspects of the circular economy, including
supply, product development, production, maintenance, and the EoL phase, will be taken into account. This
will identify relevant metrics and highlight hotspots for integrating circularity in manufacturing.

AT refers to various methods that enable machines to reason and make decisions. These methods have
great potential to solve complex and difficult problems. Nowadays, AI models, in particular machine learning
(ML) algorithms, have wide applications in various fields, such as engineering, medicine, neuroscience, and
business. ML algorithms can effectively extract non-linear relationships between data without requiring
explicit rules, while they efficiently make decisions by analyzing historical data. Object recognition, abnormal
detection, text analysis, and predicting patterns of moving objects are some of the classical applications of
these algorithms. AT can play a crucial role in enabling circularity data and processing in the aircraft industry
by enhancing the design of circular products and materials, optimizing complex recycling/reusing processes,
and streamlining the infrastructure for product and material recovery.

This paper presents an in-depth review of AI applications in EoL aircraft treatment. It systematically
examines previous studies in the field of AI in aircraft disassembly/dismantling, recycling, and maintenance
to identify their strengths and weaknesses. This paper reveals the potential gaps in the literature and provides
a comprehensive perspective for future research.

The rest of this paper is organized as follows. The following section discusses the background and literature
review. Thereafter, Section 4 presents perspectives of Al applications in aircraft treatment. We discuss the

potential gaps and the future research trends in Section 5. Finally, Section 6 concludes the article.

3 Background and literature review

This section reviews the background and relevant literature. First, it explains the context of EoL aircraft
treatment, highlighting its benefits and challenges, such as the difficulty and complexity of operations involved.
Subsequently, it explores AI applications in optimizing and enhancing the quality of complex and sensitive
processes, such as cobotic disassembly, material composition detection, high precision cutting, and smart
sorting. These processes not only hold potential for use in EoL aircraft treatment but also show the significant

capability of Al for optimal decision-making within complex and challenging scenarios.

3.1 EoL aircraft treatment

The number of EoL aircraft is expected to increase significantly in the next decades due to the aging of the
global fleet and the introduction of more environmentally friendly models. According to one estimate, about
12,000 aircraft will be retired by 2030 [4,5]. The management of retired aircraft is essential considering the
sustainability triple button lines. It can reduce the environmental impact of aviation by recovering valuable
materials and components, minimizing waste generation, and saving energy and emissions. It creates economic

opportunities for the aerospace industry by generating revenue from the sale of recovered parts and materials,
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creating jobs in the recycling sector, and reducing the dependency on raw material imports. Moreover, it
can enhance the social responsibility and reputation of aircraft manufacturers and operators by complying
with environmental regulations and meeting the expectations of customers and stakeholders [6,7]. According
to Keivanpour et al. [8], dealing with EoL aircraft in a systematic way can benefit the aviation industry.
The authors also proposed a holistic approach to Eol aircraft treatment that considers lean management,
sustainable development, and global business [9].

However, there are many challenges associated with EoL aircraft recovery and closing the loop. Technical
challenges are related to the lack of standardized and efficient methods and technologies for aircraft disman-
tling, sorting, testing, and certification. In addition, high costs and uncertainties of transporting, storing, and
processing retired aircraft, and the competition from low-cost new parts and materials should be considered.
The absence of specific and consistent regulations and standards for aircraft decommissioning, disassembly,
and recycling, and the legal liabilities and risks involved are another limitation. The lack of coordination
and collaboration among different stakeholders in the EoL aircraft supply chain, as well as the resistance to
change are also the organizational challenges in this context and finally, the safe and sustainable disposal
of retired aircraft, which contain hazardous materials and valuable resources, and the need to minimize the
environmental impact and maximize the value of recovered parts and materials should be considered [4-10].
Furthermore, EoL aircraft treatment requires innovative solutions and multidisciplinary frameworks for ad-
dressing three pillars of sustainability. The projects related to EoL aircraft treatment are transdisciplinary
because they involve different disciplines and players that need to collaborate and integrate their knowledge
and perspectives. The projects need to address the technical, operational, and strategic aspects of EoL
aircraft treatment, such as the business model, the market and industry, the knowledge management, and
the performance measurement [4]. Therefore, it needs to develop advanced decision tools that can integrate

different methods, and stakeholders in a coherent and flexible framework.

EoL aircraft management can create value for both the industry and the society by recovering and
reusing valuable materials and parts, reducing waste and emissions, and creating new markets and

jobs.

Figure 1: EoL aircraft context

Sustainability analysis is important in this context because it can help evaluate the impacts and bene-
fits of EoL aircraft treatment from different perspectives. It can help identify best practices and strategies
for EoL aircraft treatment that reduce the environmental footprint, increase social value, and optimize eco-
nomic performance. It also provides monitoring and improving the performance of EoL aircraft treatment
over time and across different locations. Sustainability analysis can also provide useful insights and feed-
back for decision-making and planning at both the strategic and managerial levels and help communicate
and demonstrate the value proposition of EoL aircraft treatment to different stakeholders. The facilities for

treatment of the aircraft at EoL in urban areas face some social challenges and opportunities. Keivanpour
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et al. [2,3,8,9,11,12] explored various aspects of EoL aircraft management, such as the impacts on design,
modeling and optimization, applications of internet of things, and value chain analysis. The authors aimed
to address the challenges and opportunities of sustainable development in the context of increasing aircraft
retirements and recycling demands. They used different methods to analyze the technical, economic, envi-
ronmental, and social factors that influence the EoL aircraft treatment and provided recommendations for
improving the performance and efficiency of the EoL aircraft process. The highlighted points are summarized

in Figure 1.

3.2 Al applications in high-value and complex products

In recent years, the use of Al algorithms—particularly ML and computer vision—in highly valuable, sensi-
tive, and complex industrial processes has significantly increased. These algorithms efficiently optimize the
processes, leading to increased quality and profit as well as reducing the related cost. As summarized in
Figure 2, this section discusses Al applications in cobotic disassembly, material composite detection, sorting,

and high-precision cutting, which are the most important sensitive and complex industrial processes.

ML in cobotic ML in material

disassembly composition detection

Al applications in
high-value and

complex
processes

Computer vision ML in high-precision

in sorting cutting

Figure 2: AT applications in highly complex, sensitive, and valuable industrial processes

3.2.1 ML in cobotic disassembly

In recent years, learning approaches have been widely used in cobotic disassembly, where a collaborative
robot (cobot) works beside a human in a disassembly cell, shown in Figure 3. In this case, the purpose of
using learning algorithms is to optimally plan sequential disassembly tasks with respect to various cost and
profit factors. Learning models can handle uncertainties and after testing on several product configurations,
the optimum disassembly sequence plan could be generated [13]. Goli et al. conducted a literature review on
learning-based algorithms in disassembly planning [14]. Considering the different uncertainties of the returned
products and components, the scheduled automated disassembly is challenging. Human-robot collaboration
with flexibility can provide a solution to these difficulties. Various approaches have been put forward to
generate an optimum task sequence in cobotic disassembly processes. Grochowski and Tang used an expert
system based on Petri Net and a hybrid Bayesian network for disassembly planning [15]. Zude et al. studied
recent developments in disassembly planning. According to the authors, maintenance conditions, MTTR,
and tooling should be also considered in sequence planning [16]. In study [17], Parsa and Saadat introduced
a new task classification and allocation in human-robot collaboration disassembly.

In order to obtain the physical precedence of tasks, the authors first model an EoL product architecture
by an AND/OR graph approach. All disassembly operations are classified based on eight features, including

the type of required tools, component size, weight, shape, accessibility, operation complexity, positioning,
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Figure 3: A human-robot collaboration disassembly cell

and operation force. In this case, these features represent the difficulty and complexity of each operation.
The proposed planning model runs based on the Genetic algorithm (GA) that aims to find a near-optimal
task sequence, resulting in the allocation of more complex and challenging tasks to human operators in
addition to simple and repetitive tasks to cobots. The utilized GA includes several objectives in its fitness
function, such as operation time, human operator change, and the non-targeted components term, which
incentivizes the model to select the more important parts. Belhadj et al. also studied task allocation and
disassembly planning with a cobot [18]. They used a CAD model and then generated the feasible sequence
and selected the sequence with minimum time. However, they did not consider the product features and
human and operator skills and constraints in sequence planning. Lee et al. developed task allocation and
planning in a disassembly cell with a cobot. They also integrated the safety of the human operator into
task allocation decisions [19]. In study [20], the authors have introduced a recursive cobotic disassembly
framework including five steps: multi-model perception, multi-target cognition, decision-making, control and
execution, and knowledge formation and evolution.

In the first step, different data types are collected from various resources, including sensors and cameras.
By using different computer vision techniques in the second step, high-level features, including body skeletons,
hand gestures, and tools positions, are extracted from the data. During the decision-making step, the next
disassembly task is selected with respect to the dynamic situation of the process, represented by the extracted
high-level features. Subsequently, a human or cobotic operator executes the selected task. In the last step,
the learned knowledge is shared with other cobots through a cloud-based approach.

Despite supervised and unsupervised approaches, reinforcement learning (RL) algorithms can make deci-
sions based on trial-and-error learning and the dynamic environmental context. Recently, several researchers
have addressed cobotic disassembly planning by developing RL-based models. Chu and Chen [21] have pre-
sented a hybrid PSO with Q-learning for cobotic disassembly line balancing with respect to human safety,
disassembly resources, deformation level of products, and task difficulty. In this case, the Q-learning method
selects the most suitable optimizer to boost the PSO’s efficiency. Allagui et al. [22] have developed a plan-
ning model based on Q-learning for human-robot collaboration disassembly. As the preprocessing step, they
extracted CAD information from a product 3D model to define all feasible sequences along the x, y, and z
angles. They have proposed a Q-tabular approach with a reward function that comprises the feasibility of
movement along directions and a fitness function that includes several indicators, such as operation time,
process direction and tool changes, and volumes of parts. In study [23], the authors have proposed a real
time disassembly planning model based on a multi-agent RL framework. The proposed model allocates tasks
to humans and cobots in real time with respect to the online status of operators and the product, as well

as several criteria, including operation time, circularity, human skill-levels, and parts features. The authors
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also represent the architecture of a product by using a graph-based approach.

3.2.2 ML in material composition detection

ML has been widely used in various fields, such as image recognition, natural language processing, and web
search. In materials science, ML can predict material properties, optimize their design, and understand their
behavior. One of the applications of ML is material composition detection. This aids in quality control,
material characterization, and material recycling. Material composition detection can be done by using
different experimental techniques, such as X-ray diffraction, X-ray fluorescence (XRF), Raman spectroscopy,
or mass spectrometry. However, these techniques can be costly, time-consuming, or require expert knowledge
to interpret the results. Gao et al. [24] developed an ML approach that combines data from high fidelity single-
crystal measurements, low-fidelity polycrystalline measurements, and approximate simulations to predict the
band gap of materials.

Another application of ML is the detection of the composition of complex materials, such as polymers
or composites. Hence, ML can improve the accuracy and efficiency of material composition detection and
facilitate the discovery and characterization of new materials. In the context of construction, Lu et al. have
developed a computer vision model based on deep learning to recognize waste, such as rock, gravel, earth,
and wood, by using a semantic segmentation approach [25]. In order to detect recycling status, Yang and
Thung [26] have classified waste into six categories: paper, glass, plastic, metal, cardboard, and trash. In
this research, the authors compared the performances of a CNN model and a model based on SVM with
scale-invariant feature transform (SIFT). The experimental analysis illustrates that the SIFT+SVM model
outperforms the CNN model. In another research study, [27] adopts CNNs to recognize Cu impurities
in steel scrap. Here, the proposed approach achieves 90.6 % accuracy by applying Xception architecture.
Recently, [28] uses magnetic induction spectroscopy (MIS) with ML for scrap metal classification. It concludes
that SVM, random forest, and extra trees models deliver the best results for classifying non ferrous scrap
metals. In study [29], the authors developed a waste-sorting and recycling classification model. To do that,
they fused different features extracted by classical vision-based techniques. Following that, they applied an
artificial neural network (ANN) for trash classification.

Moreover, in recent years, the use of ML methods to classify aluminum scraps has become more popular.
Diaz-Romero et al. [30] have developed an approach based on deep learning and computer vision to classify
cast and wrought aluminum scrap. In the first step, a region of interest (ROI) is selected by using basic
image processing methods, such as morphological operations and Canny edge detection. Subsequently, a
deep learning model classifies the objects located in ROI. Here, color and depth images are fused by using
two different architectures. While the first architecture fuses color and depth images in the first layer, the
second one simultaneously applies two separate sub-networks on both images and then, high-level extracted
features are concatenated in the last layer. Using transfer learning techniques, the authors tested the proposed
framework with five CNNs: AlexNet, DenseNet, RestNet18, SqueezeNet, and VGG16. Similarly, the study
in [31] uses Laser-Induced Breakdown Spectroscopy (LIBS) in addition to color and depth images for the
classification of aluminum scrap. The authors have developed two architectures based on deep learning. Each
architecture includes three pipelines for processing the outputs of LIBS, RGB, and 3D cameras, and then,

the results of these pipelines are fused in the last layer to form the final output.

3.2.3 ML in high-precision cutting

Cutting precision is important for various industrial applications, such as manufacturing, machining, fabri-
cation, and dismantling. However, it can be affected by many factors, such as tool wear, material properties,
environmental conditions, or human errors. AI can reduce human intervention and errors, increase produc-
tivity and quality, and save the time and cost of cutting. ML, computer vision, and image processing can

help to improve cutting precision by monitoring, controlling, and optimizing the cutting process. Several
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researchers have addressed cutting by using Al-based approaches. In study [32], the authors have developed
a new image processing algorithm for detecting nodal points and faces in a honeycomb block. The proposed
approach does not need high-resolution images and outperforms delivered algorithms by OpenCV in a real
case study. Ma and Shao [33] have developed a real-time timber-cutting system based on deep learning and
computer vision. The system initially detects defects in timber images captured from two vision sensors to
find serviceable regions. After that, it classifies the timber as straight grain (SG), wavy grain (WG), wood
stain (WS), or color difference (CD). By using a homography matrix, the system computes a cutting list
containing cut points. Subsequently, the points are cut with respect to the list.

With the expansion of automated processes in the food industry, researchers have developed Al-based
solutions for high-precision cutting in this field. Azarmdel et al. [34] have developed a model for detecting
cutting points in trout fish. Without relying on learning-based approaches, the authors have used several
classical image processing techniques, including thresholding, central and orientation detection, as well as
morphological operations. Similarly, [35] proposes a sugarcane seed-cutting system based on basic conven-
tional image processing techniques to recognize parts of sugarcane stalks. In another research, Mu et al. [36]
have developed a full robotic system based on computer vision for cutting half-sheep. The authors initially
extracted RGB and depth images of half-sheep by using an Azure Kinect sensor. Following that, they ap-
plied Deeplab v3+ model to detect the spine and ribs. Then, the cut curves are computed based on the
detected spine and ribs coordinates. Finally, the proposed approach locates the 3D coordinates of the curves
by exploiting the captured depth image. Next, Wu et al. have proposed a vision-based robotic system for
cutting rachis in banana trees [37]. This system uses an improved version of YOLOv5 as well as classical
image processing methods for identifying cut-off points. The system also obtains 3D information on these
points using stereo vision. In the context of safety, a vision-based approach is recently introduced by Chiang
et al. [38]. By reading images from a camera installed in the workplace, the model detects the hands of an
operator working with a cutting machine. The machine turns off whenever the operator’s hands are close to

it. Table 1 shows Al technique applications in cutting precision.

Table 1: AI technique applications in cutting precision

Authors | Cutting process applications AT techniques
[32] Optimization in honeycomb blocks cut- | A proposed image processing approach detects
ting nodal points and faces of honeycomb blocks
[33] Automatic timbers cutting Deep learning models can classify timbers in
addition to detecting imperfect areas in them
[34] Identifying cutting points in trout fish | A cascade of classical image processing tech-
niques to locate cutting points and length
[35] Sugarcane seed-cutting system Classical image processing identifies cutting
points in sugarcane stalks
[36] Parameter optimization in half-sheep | A CNN model detects spin and ribs, following
cutting that, a geometric analysis is used to compute

3D cut curves according to spin and ribs points
as well as a depth image

[37] Cutting rachis in banana trees A CNN model recognizes bananas, and then,
geometric analysis along with conventional
image processing methods compute 3D spa-
tial positions of cut-off points

[38] Safety assessment in a cutting process | CNN detects a human operator’s hands to en-
sure their safe distance from the cutting ma-
chine

3.2.4 Al in sorting

Sorting is separating items into different categories or groups based on some criteria. Sorting can be done

manually or automatically, depending on the type and amount of items to be sorted. Sorting is applied for
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quality control, recycling, inventory management, or product delivery. AI can help to improve the sorting
process by using ML and computer vision techniques to identify and classify items based on their features,
such as shape, color, size, texture, or label. In the recycling process, by using optical sensors and cameras
different types of materials, such as paper, plastic, metal, or glass could be detected and sorted. Calaiaro [39]
addressed how computer vision, ML, and robots can identify and sort recyclables based on their shapes,
colors, and labels. Hence, AI can optimize the sorting parameters and reduce waste generation and disposal.
It can increase the efficiency and accuracy of recycling sorting and reduce human intervention. However,
there are still some challenges, such as data quality and availability, system integration and maintenance,
ethical and social issues, and environmental impacts. Gondal et al. [40] compared different ML and deep
learning models for classifying garbage waste images into glass, paper, metal, and plastic. They show that
deep learning models perform better than traditional ML models. Fang et al. conducted a review on the use
of AT for various aspects of municipal solid waste management, such as waste generation forecasting, waste
segregation, waste treatment, and waste disposal. They also identify the gaps and challenges in this field [41].
As well, [42] presents a vision-based model for waste recognition and sorting, in which a deep neural network
architecture is used for waste classification.

In addition, there is a growing body of literature developing Al-driven approaches for automated sorting
in the food industry. For instance, Jeong et al. [43] have developed a ginseng sorting system that uses an ML
model to classify ginseng into a class from three classes according to their shape and estimated weights. The
authors compared the performance of SVM, MLP, and Inceptionv3, demonstrating that SVM outperforms
other models. Further, Chen et al. [44] have introduced a robotic citrus sorting system containing a CNN to
detect and classify defective fruits. Subsequently, the system employs the SORT algorithm and the Kalman
filter for fruit tracking and predicting their trajectories, respectively. This approach enables a robotic arm
to efficiently pick out defective fruits from the conveyor belt. Another study in [45] proposes a vision-based
tomato grading system. Using several classical image processing techniques, the system initially extracts
color, shape, and texture features from raw data. It subsequently detects defected and healthy tomatoes
using different classifiers, including random forest, artificial neural network, and SVM with different kernels,
including linear, quadratic, cubic, and RBF. Recently, the study in [46] introduces a vision-based model
for grading-sorting citrus fruit. It also provides a hardware implementation to validate the model in a real
scenario. The model efficiently meets the requirements of real-time processing with the use of a custom light

deep neural network.

4 Perspectives of applications of AI in EoL aircraft treatment

In the same way as many other fields, the use of Al techniques in aircraft treatment is significantly growing.
These techniques have a great potential to effectively enhance different aircraft treatment processes. As
Figure 4 illustrates, the most applications of Al in aircraft treatment are in disassembly, dismantling, and

recycling processes.

4.1 Maintenance

Many researchers have developed various ML and computer vision models to address different facets of
aircraft maintenance. For example, [47] develops a vision-based system to detect faults in aircraft landing
gear using a convolutional autoencoder. The difference between an input and the reconstructed images is
defined as a measure to detect anomalies. If the difference is higher than a threshold, the system categorizes
the corresponding image as an abnormal sample. Due to the presence of various potential factors, such as the
lack of sufficient fault data, the images containing faults differ slightly from the corresponding reconstructed
images. Hence, the proposed system cannot effectively classify normal and abnormal images. Furthermore,

in study [48], the authors have proposed a learning-based approach to detect and localize impact damage on
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Figure 4: AI applications in aircraft treatment

aircraft composites based on acoustic emissions. To do that, they applied the random forest and a stacked
autoencoder (SAE) for preprocessing acoustic emission data. In addition, the fast Fourier transform (FFT)
was applied to acoustic emission data, and magnitudes of FFT were fed to SAE as an input. Since the
acoustic emission waveform contains irrelevant information, using FFT magnitudes as the input plays the
role of a representation learning mechanism and significantly improves SAE accuracy. The authors also
investigated dimensionality reduction effects on the performance by removing unimportant features. The
proposed approach was experimentally conducted on an aircraft elevator specimen in an offline setting. The
analysis reveals that SAE delivers the best accuracy, while the random forest achieves accepted results with
minimum computational time. In the same way, [49] presents a deep learning model for damage detection in
aircraft fuselage. Herein, the problem of lacking data is effectively addressed by a transfer learning approach.
Recently, Shafi et al. [50] have developed a real-time fault detection system based on deep learning for aircraft
inspection. This system aims to reduce the cost of rework by identifying abnormal components in the early
phase before assembling. Similarly, in [51], the authors have developed an intelligent system using Yolo v4 to
recognize defects in the surface of landing gear components in real-time. They have trained the model based
on their own collected images, delivering an experimental study to validate the proposed framework.

A number of researchers have predicted the remaining life of aircraft parts by ML algorithms. The research
in [52] uses several linear and non-linear prediction models to estimate the remaining useful life of an aircraft
engine. The authors used a dataset containing multivariate time-series observations representing the status
of a simulated turbofan engine. To achieve the same goal, Kefalas et al. [53] have developed a learning-based
method, including several steps, such as preprocessing, feature extraction, feature selection, and automatic
modeling. Similarly, Asif et al. [54] have introduced an LSTM-based model to predict the remaining useful
life of aircraft engines. They also proposed a new mathematical approach to identify the initial point of
the engine failure and assign labels, resulting in the improved performance of the LSTM-based approach.
Next, [55] applies a long-term differential method and the Fibonacci sliding window for preprocessing sensor
data to compute long-term feature formation and short-term feature extension, respectively. Following that,
a CatBoost model is used to predict the remaining life of aircraft engines based on these features. As well, Li
et al. [56] used an ensemble learning approach containing several classifiers, such as autoregressive, relevance
vector machine, and adaptive network-based fuzzy inference system, to predict the remaining life of an aircraft
engine. Herein, the authors computed optimum weights for the classifiers by particle swarm optimization
(PSO) and sequential quadratic programming (SQP) algorithms.



173
4.2 Recycling

Al-based approaches can optimize the processing and transformation methods based on material types,
composition, and desired outputs. Al-based models can also track and verify the recycled materials and
products throughout their life cycle. The tracking and traceability of materials used in aircraft, particularly
with respect to recycling issues, can be investigated through blockchain as well as the joint application of
AT and blockchain. A blockchain framework creates a history of material life cycles by tracking all activities
relevant to them. AT algorithms have the potential to analyze and optimize corresponding processes based on
data collected in the blockchain. This results in improving the recyclability of materials, and consequently
reducing waste. Therefore, hybrid AI and blockchain systems can effectively enhance the productivity of
material processes. A few researchers addressed the hybrid Al and blockchain applications with a particular
focus on the aerospace industry. Abdulrahman et al. [57, 58] reviewed the applications of Al and blockchain
in aerospace engineering. While the applications of AT and blockchain are becoming more and more popular
in other fields, there has not yet been notable dedicated research for the aviation industry, promising a great
opportunity for future studies.

Several attempts have been made to utilize Al in the context of space debris removal missions, which
is related to EoL aircraft treatment. Yang et al. [59] have introduced an RL model for multi-debris active
removal mission planning. They included the total time of a mission and the number of removed debris as
the objectives in the reward function of the proposed model. Likewise, the study in [60] presents a decision-
making model based on RL to plan a recycling rocket, aiming to remove space debris. The authors validated
the presented framework by using an off-line analysis as well as comparing several deep RL models with

different hyperparameters.

4.3 Disassembly/Dismantling

Al-driven models can optimize the disassembly/dismantling sequence and strategy based on the aircraft
configuration, parts value, and customer requirements. These models also enable companies to monitor and
control hazardous materials and fluids and prevent any leakage or contamination. A few studies have been
published on developing Al-driven tools for aircraft disassembly. In addition, aircraft dismantling includes
the process of disassembly, utilizing destructive or non-destructive approaches, or a combination of both,
depending on the chosen EoL plan [61]. In order to facilitate the disassembly process of the EoL aircraft,
Sabaghi et al. [62] have analyzed the impactful factors and their mutual interactions. Herein, a regression
model based on a hybrid DOE-TOPSIS method computes disassemblability indices for the tasks. In this
case, accessibility, quantity, and the diversities of the connections are the most influential factors in the tasks.
Similarly, [61] develops a mathematical approach for aircraft disassembly concerning technical, economic,
and environmental criteria. The proposed approach aims to analyze the ease of disassembly with respect to
operation time, disassembly difficulty, and material compatibility for increasing recyclability. In this case,
the difficulty score is obtained based on a linear summation of the required force for drilling, disengaging,
and grinding. Furthermore, operation time consists of a standard operation time, tool calibration time, and
an extra time for considering human fatigue. Material compatibility addresses a metric aiming to maximize
output quality regarding material scarcity, alloying tolerance, and post-disassembly profitability. Recently,
Blumel and Raatz [63] have introduced a learning-based approach based on analyzing the loosening torques
and angle of rotation to detect and predict possible damage in aircraft disassembly. This strategy results
in facilitating disassembly processes in addition to avoiding rework. The authors have implemented the
introduced approach in a real-world scenario to validate its effectiveness through practical application. In
another study, Keivanpour [64] presented a decision-making framework based on the integration of fuzzy logic
and augmented reality for aircraft disassembly planning. Moreover, Yang et al. [7] reviewed the involvement

of X-reality and lean in disassembly planning, with a particular focus on EoL aircraft components.
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5 Discussions and future research direction

This section provides an overview of the methods used and discusses potential gaps within the existing
literature. Figure 5 illustrates different applications of Al-driven approaches in aircraft EoL treatment. A

review of previous methods shows the following findings.

Tracking and
traceability of

materials

Debris removal
mission Vision-based

planning fault detection
Al applications
in EoL Aircraft
treatment

Disassembly/dis
mantling Remaining life
sequence prediction

planning

Figure 5: Different applications of Al-driven approaches in aircraft EoL treatment

1. Numerous studies have been conducted in the field of computer vision applications for detecting damage

and fault in airframes.
2. Many researchers have used sequential analysis approaches to predict the remaining life of aircraft parts.
3. Efforts have been undertaken to use ML models for planning space debris removal missions.
4. Relatively little research has been conducted to optimize disassembly/dismantling processes.

Limited research has explored material traceability through the combination of ATl and blockchain.

t

Based on our findings, the following gaps exist in the existing literature and they can be addressed by

future studies.

1. A few researchers have developed disassembly/dismantling models, dedicated to EoL aircraft. The
feasibility of using AI to optimize the task allocation process in aircraft disassembly/dismantling using

real or simulated data could be explored more by researchers.

2. Real-time analysis of the aircraft disassembly process by using computer vision-based methods can

effectively provide valuable data for the decision-making process.

3. The development of a real-time decision-making model that can optimally identify opportunities for

downcycling aircraft parts based on sustainability pillars and the quality of recovered parts.

4. The use of Al methods to optimize carbon fiber recycling process, playing an important role in EoL
aircraft, has not been well-addressed in the literature. ML models can optimize the process based on
recycling parameters, such as temperature and pressure. It is also possible to control the properties of

recycled carbon fibers such as length, diameter and strength using ML.
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5. The development of automatic waste management systems based on Al, dedicated for EoL aircraft,
holds potential for the future exploration. Computer vision and ML models can identify and classify
materials based on their features, such as shape, color, size, texture, or label. After recognizing and
sorting, debris are placed in designated containers for recycling and reuse. Training computer vision
models with the ability of recognizing materials and composites in sophisticated structure of aircraft is

a potential gap in the literature.

6. The traceability of material used in aircraft with Al and blockchain is an emerging field and has not

been adequately addressed in the literature.

6 Conclusion

The use of Al-based methods in various industries is increasingly expanding. AI models effectively help
manufacturers optimize industrial processes, which results in increasing profit as well as reducing waste and
consumed energy, leading to a movement towards sustainable manufacturing. The use of Al-based methods
in EoL aircraft treatment is an emerging field in the aviation industry.

This article reviews the state-of-the-art research studies in EoL aircraft treatment. It thoroughly explains
the serious problems and challenges within EoL aircraft in the aviation industry, as well as the importance
of sustainable treatment and management for this case. The article also briefly discusses the economic and
environmental benefits of EoL aircraft treatment. It comprehensively explains that Al-driven approaches
have the great potential to enhance processes corresponding to EoL aircraft treatment. It then provides
a systematic review of Al applications in challenging and high-value processes. Thereafter, it discusses
AT driven methods in aircraft maintenance, recycling, and disassembly/dismantling as the most important
processes related to EoL aircraft treatment.

The article aims to provide a comprehensive overview of Al applications, along with their challenges and
opportunities, for EoL aircraft treatment. Overall, the use of Al-based methods in this field is fast-growing

and leads to significant progress in optimizing relevant processes.
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