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Résumé 

La détection des (oo)cystes de protozoaires est essentielle afin d'éviter de 

nouvelles épidémies de gastro-entérites comme celle qui toucha Milwaukee en 1993 

(près de 400 000 cas recensés et 112 cas de décès attribués à la cryptosopridiase). Or 

leur détection directe relève de techniques complexes. coûteuses et non transposables en 

usine comme routine d'analyse en laboratoire de contrôle. En outre, aucune corrélation 

n'a pu être établie entre la présence de ces organismes et celle des indicateurs 

traditionnels de l'eau potable. 

Dans l'optique d'utiliser les spores de bactéries aérobies comme indicateur de 

I'inactivation des (oo)cystes potentieilement présents dans l'eau, il convient de 

caractériser précisément la résistance des spores aux divers traitements d'une filière de 

potabilisation de ['eau. Même si l'inactivation chimique ne constitue pas le procédé le 

plus efficace pour l'abattement des (oo)cystes de protozoaires, elle demeure néanmoins 

une étape importante, quelle que soit la filière, puisqu'elle constitue généralement la 

dernière barrière de protection des consommateurs contre les organismes pathogènes 

avant le réseau de distribution- 

L'objectif de ce projet était de caractériser l'inactivation des spores de bactéries 

aérobies par l'ozone ; deux paramètres ont été analysés pour la description des 

cinétiques d'inactivation : l'effet du pH et l'influence de la souche bactérienne utilisée. 

Les essais ont été réalisés dans un réacteur en cuvée, parfaitement mélangé, a 

température ambiante et constante. Les tests ont couvert des doses croissantes d'ozone, 

pour des pH de 6.3 et 8,2. L'utilisation de deux tampons différents (tampon phosphate 

et tampon borate) a permis de préciser le mode d'action de l'ozone. Les souches testées 

étaient une souche commerciale de B. subtilis (souche de référence), et une souche 

environnementale provenant de la rivière des Mille-Iles (Ville de Laval). 



L'ozone est une molécule instable en solution aqueuse qui se décompose pour 

former des radicaux, notamment les radicaux hydroxyles (OIT), espèce chimique tres 

réactive, mais peu spécifique. La cinétique de décomposition de I'ozone a été étudiée. 

Pour les deux conditions de pH, l'évolution du résiduel d'ozone est décrite par une 

décroissance exponentielle ; des conditions basiques sont favorables à une plus forte 

décomposition car celle-ci est catdysée par les ions OH. 

L'effet du pH a pu être caractérisé : pour une dose d'ozone donnée, le taux 

d'inactivation augmente dans des conditions acides, car elles privilégient la stabilisation 

de I'ozone moléculaire en limitant son auto décomposition. Cependant, l'hypothèse 

d'un effet du pH sur les micro-organismes n'est pas à écarter. 

Les essais réalisés ont montré que le processus d'inactivation est principalement 

moléculaire : la présence ou l'absence de pièges a radicaux dans le milieu réactionnel 

(tampon phos~hate et tampon borate; respectivement) n'a pas entraké de diffëreiiris 

significatives sur les efficacités d'inactivation atteintes. L'oxydation radicalaire due aux 

radicaux OET existe à pH élevé, mais son impact demeure faible. 

La nature des micro-organismes influence l'efficacité d'inactivation : la souche 

environnementale testée est moins résistante que B. mbtilis à l'ozonation. II est 

probable que des différences structurelles au niveau membranaire soient en cause, 

entraînant des susceptibilités différentes au pH et des réactivités plus ou moins grandes 

par rapport à I'ozone. 

Pour les conditions testées, le modèle de Hom intégrant la décroissance 

exponentielle du résiduel d'ozone s'est révélé le meilleur pour la description des 

données. Cependant' il n'est pas bien adapté à la modélisation de I'inactivation 

d'organismes tres résistants. 

Finalement, la comparaison des résultats obtenus avec ceux rencontrés dans la 

littérature pour les (oo)cystes de protozoaires a permis de conclure que les bactéries 

sporulantes aérobies sont de bons indicateurs de l'efficacité d'ozonation des (oo)cystes 

de G. lamblia et de C. p m r n  : des conditions permettant l'inactivation des 3 log de 

spores devraient permettre d'inactiver plus de 3 log de (oo)cystes de protozoaires. 



Le choix d'un indicateur pour la détection indirecte des (oo)cystes de 

protozoaires est une entreprise nécessitant l'analyse de nombre d'influences. La 

détermination de I'efficacité d'ozonation des spores bactériennes aérobies a permis de  

mettre en valeur I'interdépendance des paramètres étudiés. Ce projet n'est qu'une étape 

de la démarche globale entreprise. Ii importe donc de poursuivre ces études, surtout à 

pleine échelle, afin de  mieux cerner tous les éléments entrant en ligne de compte dans le 

processus d'inactivation par ozonation, notamment l'impact des populations mixtes, 

ainsi que les effets de la température. En outre, le développement d'un modèle de 

prédiction d'inactivation mieux adapté à des organismes très résistants devrait être 

entrepris. 



Abstract 

Detection of pathogenic protozoan (oo)cysts is essential so gastroenteritis 

outbreaks such as the 1993 Milwaukee crisis can be avoided (400 000 people reported 

ill and 1 12 death cases attnbuted to cryptosporidiosis). However, direct detection 

rnethods are non-applicable as control routine for water facilities for they remain 

complex and expensive. Furthemore, no correlation has been established between these 

pathogens and water quality indicators. 

Bacterial aerobic spores are to thought to be used as surrogate indicators of 

protozoan cysts. That is why their resistance to water treatments must be characterized. 

Even if chernical inactivation does not provide the bea removal of such organisms, it 

remains essential, as it is the last protection for tap water consumers against pathogens 

before distribution systems. 

The main objective of the project was to characterize inactivation of bacterial 

aerobic spores by calculating their ozonation CT values. Two parameters were 

investigated: pH effect and influence of the bacterial strain. 

Trials were performed in a perfectly stirred batch reactor, at room temperature. 

Ranges of increasing applied ozone dosages were tested, at pH 6,3 and 8,2. Two 

different buffers were investigated (phosphate and borate). Two bacterial strains were 

assessed: reference strain of B. srrbtiks, and environmental strain of Mile-Iles river 

(Ville de Laval). 

Molecular ozone is unstable in water and its decomposition results in radicals' 

formation, especially highly reactive but non-selective O r  hydroxyle radicals. Kinetics 

of ozone decomposition were first analyzed. For both pH Ievels, ozone residual 



evolution was well described by exponential decay. Decay rate increased with 

increasing pH since OH- ions are catalyzing agents for ozone decomposition. 

The effect of pH was charactenzed: for a given applied ozone dose, lower pH 

provides greater inactivation rates because it promotes molecular ozone stabilization, by 

limiting the oxidant decomposition. However, it is possible pH also influences 

microorganisms resistance. 

Oxidation pathway was clarified: presence or Iack of radical scavengers (in 

phosphate or borate buffer respectively) did not provide any significant differences 

between inactivation eficiencies. Thus. it was clearly demonstrated rnolecular ozone is 

mainly responsible for microorganisms' inactivation. Higher pH allows radical 

oxidation, but its yield remains poor. 

Bacterial strain is a factor of influence when one wants to assess ozonation 

efficiency: the environmental strain exhibited less resistance to ozone than the reference 

strain of B. szlbtiks. This effect could be attributed to differences between structural 

membrane cornponents resulting in more or less reactivity towards ozone. 

In Our expenmental conditions. Hom mode1 with exponential decay of ozone 

residual provided the best results for the description of inactivation data. However, it 

did not proved to be well adapted to modeling of resistant microorganisms' inactivation. 

In the end, by comparing our results with results for protozoan (oo)cysts 

ozonation, we came to the conclusion that bacterial aerobic spores are a reliable 

surrogate indicator for G. l a m h  and C. pumrrn (oo)cysts: conditions leading to 3 log 

inactivation of bactenal aerobic spores should yield more than 3 log for protozoan 

(0o)cysts. 

Surrogate indicator selection for indirect detection of protozoan cysts requires 

analyses of a great amount of data Determination of ozonation efficiency for spores' 

inactivation highlighted interdependence of the parameters under study. As this project 

is part of a global process. it is important studies be followed. especially full-scale 

studies. in order to (1) assess al1 factors influencing ozone inactivation and (2) better 



understand their impact, especially mixed populations and temperature effects. Finaily, 

customhed inactivation mode1 should be developed for accurate description of resistant 

microorganisms' inactivation. 
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Chapitre 1 

Introduction et objectifs 

1.1. Introduction 

Depuis la fin des années 1980, les États-unis ont connu de nombreuses 

épidémies de gastro-entérites dues a la présence de (oo)cystes de protozoaires dans les 

eaux potables. Les maladies entériques responsables de ces épidémies sont la giardiase 

et la cryptospondiase, causées respectivement par les cystes de Giardia et les oocystes 

de Crp~osporidnrm. Pour les seules années 1993 et 1994, le groupe K Surveillance for 

waterbome-disease outbreaks P (de I'USEPA) rapporte 30 épidémies d'origine 

hydriques. dont 10 ont été attribuées aux (oo)cystes de Giardia et de Cryptosporidium. 

Plus récemment, une étude a montré que pour la période 1971- 1994, les (oo)cystes de 

protozoaires étaient les agents pathogènes les plus fréquemment identifiés pour les 

épidémies de gastro-entérites apparues aux Etats-Unis, en Angleterre et au Canada 

(Craun et al., 1998)- 

Ces épidémies se sont déclenchées malgré le fait que les usines de traitement 

respectaient les normes microbiologiques de qualité fondées sur l'absence des 

indicateurs traditionnels de Veau potable : les coliformes totaux et fécaux. En outre, 

dans son étude de 187 cas d'épidémies de gastro-entérites causées par plusieurs agents 

pathogènes (bactéries, virus et (oo)cystes de protozoaires), Craun a montré qu'il 

n'existait aucune corrélation entre la présence de coliformes dans l'eau et l'apparition 

de ces épidémies (Craun et al., 1997). 

Ce manque de corrélation est renforcé par le fait que les (oo)cystes de 

protozoaires sont plus facilement enlevés par voie physique que les bactéries coliformes 

(du fait de leur plus petite taille), mais beaucoup plus résistants à la désinfection (de part 

leur structure). 



L'envergure des épidémies de gastro-entérites telles que celles qui touchèrent 

Milwaukee en 1993 (près de 403 000 cas déclarés et 112 morts) ou Las Vegas en 1994 

(58 morts attribuées à la cryptosporidiase), ainsi que le resserrement des normes 

d'abattement des (oo)cystes de protozoaires' confirment l'urgence de trouver un moyen 

de détection de ces pathogènes plus simple que [es méthodes actuelles telles que 

I'immunofluorescence ou la cytométrie de flux décrites par ~akubowski et al . (1996). 

Les études se sont donc orientées vers la détection indirecte, par la recherche 

d'indicateurs de ces parasites. Ainsi, plusieurs études ont démontré la résistance 

importante des spores des bactéries spomlantes aérobies @SA), notamment les spores 

de Bacihs, aux enlèvements physiques et chimiques. Cette résistance étant supérieure à 

celles des (oo)cystes, l'abattement des spores au cours du traitement confirmerait celui 

des parasites pathogènes potentiellement présents dans l'eau. 

Pour ce qui est de l'enlèvement physique. les 6tudes !es p!us récentes i n d i q ~ n f  

que les spores de BSA sont de bons indicateurs de l'efficacité d'une filière de traitement. 

En effet, quelle que soit la tilière de traitement utilisée, les spores se révèlent être très 

sensibles aux variations des caractéristiques de l'eau et du traitement (pH, température, 

nature et dose du coagulant), et sont en cela, une mesure conservatrice des performances 

d'une usine (Lytle et al., 1996). 

En ce qui concerne I'inactivation chimique, les effets des désinfectants sur les 

spores bactériennes sont peu documentés. Cependant, la plus grande résistance des 

spores vis-à-vis des principaux oxydants par rapport à d'autres organismes a déjà été 

démontrée (Kawamura et al., 1986). Barbeau a déterminé les Ct de spores de Bacilhs 

pour le chlore. Les comparaisons avec les Ct requis pour l'inactivation des cystes de 

Giardin confirment cette résistance des spores (Barbeau, 1996). Il est donc nécessaire 

de poursuivre les recherches pour déterminer l'efficacité des autres oxydants, et 

notamment celle de I'ozone, oxydant le plus puissant utilisé dans les filières de 

I ActueiIement en cours de révision a I'USEPA 



potabilisation de I'eau et donc le plus à même d'inactiver les (oo)cystes de protozoaires 

(Miller, 1994 ; Sous Comité fédéral-provincial sur I'eau potable, 1997). 

1.2. Objectifs 

Etant donné que les spores de BSA sont plus résistantes a l'inactivation 

chimique que les (oo)cyaes de protozoaires (tels Giardia et ~ry~ios-oriidium), elles 

pourraient servir d'indicateurs de l'efficacité des traitements appliqués dans différentes 

filières de potabilisation de l'eau (Barbeau, 1996 ; Coallier et al., 1996; Lytle et al., 

1996). Cependant, il est nécessaire de préciser les corrélations qui existent entre 

l'inactivation des spores de BSA et celle des organismes pathogènes visés afin de mieux 

cibler les traitements à mettre en œuvre (doses de désinfectant et temps de contact, donc 

Ct, requis). 
- .  

1 '&jP~tif & ~ e t f e  C,L &nc & & e ~ ~ ~ e r  C: d'i;;a~;r;;;ûc - 
des spores de BSA par ozonation et d'analyser dans quelle mesure il est possible de les 

corréler avec ceux des (oo)cystes de protozoaires disponibles dans la littérature 

scientifique. 

En marge de cette étude, il est appani intéressant d'étudier plusieurs facteurs 

pouvant avoir une influence sur 17efficacité d'ozonation. Le premier de ces facteurs est 

le pH, dont l'effet est encore controversé (Farooq et al., 1977 ; Wickramanayake et al., 

1984). Dans le cadre d'une possible utilisation des BSA en usine comme indicateur des 

(oo)cystes de protozoaires, nous avons aussi voulu évaluer l'impact de la souche de 

BSA utilisée, en faisant des essais avec une souche environnementale. 



Chapitre 2 

Revue de littérature 

2.1. La problématique des (oo)cystes de protozoaires 

2.1.1. Giardia lamblia et Cryptosporidium pamum 

Giardia lamblia et Cryptosporidnrrn p u m m  sont des protozoaires. Ce sont des 

eucaryotes qui n'ont généralement pas de paroi cellulaire. Ils sont hétérotrophes et se 

nourrissent par ingestion de  macromolécules, de particules ou de cellules. Ils sont aussi 

caractérisés par leur cycle de vie dans lequel les cellules végétatives sont appelées 

trophozoites. Les formes au repos sont des (oo)cystes ; il en existe de deux sortes : 

- les (oo)cystes reproducteurs ; 

- les (oo)cystes protecteurs : résistants, morphologiquement semblables à des 

spores, leur fonction est de survivre. 

L'apparition de ces formes de résistance est déclenchée par la détérioration des 

conditions enviro~ernentales : la mise à sec, le manque de nutriments, la chaleur, le 

froid, la composition chimique du milieu font partie des facteurs conduisant à 

l'enkystement. Le protozoaire se met en bouie, perd ses organites externes et secrète 

une série de parois externes. Les (oo)cystes sont extrêmement résistants aux facteurs 

environnementaux et restent viables de plusieurs mois à plusieurs années. Le retour à 

des conditions favorables induit très rapidement le processus inverse (Champiat, 1988). 

La Figure 2.1 présente des cystes de G. lamblia et des oocystes de C. parvum. 



Figure 2.1 : Cystes de G. lamblia et oocystes de C. parvtm. Échelle : la barre en bas à 
droite est de 10 pm. (Dr K D. A. Lindquist, USEPA) 

Jusqu'a récemment, on pensait que seules les eaux de surface (lacs, rivières et 

foies) pcEvGefit $te ziit-i2Cts prctszcrires, GE sÿpp=sZt 

en outre que les sources souterraines étaient relativement bien protégées (Pontius, 

1998). Or, de récentes études ont montré que les eaux souterraines pouvaient etles aussi 

être contaminées par ces organismes. de manière occasionnelle ou permanente 

(Hancock et al., 1998)- De plus, elles sont à l'origine d'approximativement la moitié des 

épidémies de gastro-entérites aux États-unis depuis 1984 ; mais celles-ci sont de plus 

petite envergure (Solo-Gabriele et Neumeister, 1996). 

2.1.1.1. Giardia lamblia 

Gimdia Iamblia est un protozoaire flagellé. mesurant de 6 à 20 prn (Figure 2.2). 

Son cyste (voir Figure 2.1) est a t'origine de la giardiase, maladie intestinale. 11 est de 

forme ovale, d'une longueur de 8 à 12 Pm et d'un diamètre 7 à 10 Pm. L'épaisseur de la 

paroi cellulaire varie entre 0'3 et 0,s Pm et la microscopie électronique a montré qu'elle 

est composée d'éléments fibreux mêlés à de fines particules (Sheffield, 2979). 



Figure 2.2 : Trophozoites de Giardia Iumblia (échelle non disponible) 

Crpzosporidiirm p a m m  est aussi un parasite, de  forme ovale, mesurant de 4 à 

6 pn (voir Figure 2.3). L'oocyste d e  C. pamrrn a un diamètre d'environ 5 pm, variant 

en fonction des espèces (voir Figure 2.1). Certains sont capables de traverser la 

membrane d'un filtre de 1 prn de porosité (Bitton, 1994). 

Figure 2.3 : Oocystes de Cryp~o.siuoridizm paMrm et excystation de certains oocystes 
(échelle non disponible) 

2.1.1.3. Généralités sur la giardiase et la cryptosporidiase 

Pour ce qui est de la giardiase, la dose minimale infectieuse rapportée est de 1 à 

10 cystes, et la DI50 pour l'homme (nombre de cystes ingérés ayant pour effet d'infecter 

50% des sujets) est de 19 cystes (Rendtoff, 1978). La maladie est caractérisée par des 

nausées, des frissons et la diarrhée (Sous Comité fédéral-provincial sur l'eau potable, 

1997). Elle peut être traitée par antibiotiques et certains patients peuvent devenir des 

porteurs sains. 



En ce qui concerne le cryptosporidiase, la DIsa calculée sur 29 sujets humains est 

de 132 oocystes (DuPont et al., 1995). Le principal symptôme associé a la maladie est 

une diarrhée liquide, accompagnée de nausées, de vomissements, et d'une 

déshydratation (Sous Comité fédéral-provincial sur I'eau potable, 1997). Comme il 

n'existe actuellement aucun traitement contre cette maladie, la guérison des patients 

dépend essentiellement de leur système immunitaire : normalement, les symptômes 

disparaissent au bout de deux semaines. Pour les malades immuno-déficients (atteints 

du SIDA, par exemple), une guérison complète n'a jamais été constatée et durant les 

épidémies de gastro-entérites associées aux (oo)cystes de protozoaires, ils sont des 

cibles particulièrement à risque (Pontius, 1998). 

2.1.1.4. Les différentes réglementations existantes 

Au vu des faibles doses infectieuses rapportées pour les deux types de (oo)cystes 

de protozoaires, il importe d'établir des normes de traitement pour prévenir le passage 

de ces organismes dans l'eau de consommation et tout risque d'épidémie associée. 

Alertées par les dangers encounis, les diverses organisations publiques en charge de la 

protection des populations ont donc émis des recommandations ou les normes, et ce, à 

plusieurs niveaux. 

L'Organisation mondiale de la santé (OMS) reconnaît l'impact sanitaire de 

Gidiia et de Cryptosporiditrm (500 000 cas de giardiase et plus de 3 millions de décès 

dus à des diarrhées chez des enfants de moins de 5 ans en 1993). Elle n'émet cependant 

des recommandations que sur E. coli (û organisme dans 100 ml), et sur le chlore 

résiduet (r 0,s mg/l après 30 min, pour un pH inférieur a 8,O). 

En ce qui concerne le Canada et le Québec, le document le plus récent (émis en 

juillet 1997 pour consultation publique par le Sous-comité fédéral-provincial sur I'eau 

potable) recommande une Concentration maximale admise (CMA) de O (oo)cyste viable 

dans 1 000 1 pour Giardia et pour CryptosporÏdÏum ; cependant, aucune surveilIance 

n'est recommandée de part le manque de fiabilité des techdiques actuelles. Pour le 



Québec, le Règlement sur I7eau potable en vigueur ne mentionne rien sur Giardia, ni sur 

Cgpro~poridiz~m - 

L'organisme gouvernemental le plus avancé en matière de réglementation est 

sans aucun doute I'USEPA, à l'origine du « Surface Water Treatment Rule » (1989) qui 

impose des normes microbiologiques concernant Giardin : pour des eaux de surface 

fiItrées ou non, les usines doivent réaliser un abattement minimal de 99,9% (3 log) des 

cystes de Giardia. On suppose ainsi qu'un traitement physique conventionnel 

(coagulation, décantation, filtration) aboutissant à une turbidité inférieure à 0'5 UTN 

dans 95% des échantillons, assure un enlèvement de 2,s log de cystes de Giardia (dans 

le cas de conditions optimisées). Les exigences d'enlèvement sont ajustées en fonction 

des niveaux de qualité de l'eau brute. Les exigences totales d'enlèvement spécifiées par 

I'USEPA sont montrées Tableau 2- 1 

r p - 1 . 1  
i auleau 2.1 . Xorrnt: du cc Cnhanced SurEace wacer Trea~ment Kuie » (USEFA, iY9Ljj 

pour l'enlèvement des (oo)cystes de Giardia et de Cryprosporidnrm 

Eau brute (#/IO0 1) Enlèvement (log) 

<1 3 

1 à 10 4 

10 à 100 5 

> 100 6 

2.1.2. Les indicateurs traditionnels de la contamination des eaux 

Les deux groupes de micro-organismes les plus utilisés comme indicateurs de la 

contamination bactérienne sont les coliformes totaux et les coliformes fécaux- On 

retrouve les bactéries coliformes fécales (notamment Escherichia coli) en grand nombre 

dans les intestins et les excréments des animaux à sang chaud. Elles sont de ce fait 

utilisées comme indicateurs de qualité des eaux brutes et de la présence potentielle 

d'organismes pathogènes à la source. Les coliformes totaux sont par contre largement 

répartis dans la nature et n'indiquent pas nécessairement une contamination d'origine 



fécale. Comme ils sont plus résistants à la chloration que les bactéries pathogènes 

communes, on les utilise donc de préférence comme indicateurs de l'eficacité du 

traitement de l'eau potable (Jakubowski et al,, 1996). 

Selon Miller (1994), des comptes élevés de coliformes fécaux pourraient 

indiquer un risque accru de contamination aux (oo)cystes de protozoaires. Ces 

conclusions ont été remises en cause suite aux récentes épidémies de cryptosporidiase 

de Las Vegas et de Milwaukee notamment (Craun et al., 1997)' pour lesqueIles aucune 

corrélation claire n'a pu hre établie entre les comptes de coliformes fécaux et la 

présence des oocystes de Cryptosporiditrm. 

2.1.3. Indicateurs de (oo)cystes de protozoaires 

Le manque de corrélation entre les indicateurs traditionnels et les (oo)cystes de 

protozoaires (Craun et al., 1997) ont amené les chercheurs a se tourner vers d'autres 

indicateurs. Des paramètres globaux physiques bien maîtrisés ont d'abord été testés, tels 

que la turbidité ou le compte de particules, mais les corrélations restent difficiles à 

établir pour l'étape de désinfection. Dans le cas des indicateurs rnicrobioIogiques, les 

bactéries hétérotrophes aérobies (BHA) possèdent l'avantage d'être facilement 

utilisables en usine mais la relation entre leur présence dans l'eau et celle des (oo)cystes 

de protozoaires n'a pas été clairement établie (Jakubowski et al. 1996 ; Nieminski, 1995 

#2185). SA l'heure actuelle, aucun indicateur n'a encore été trouve, mais plusieurs 

possibilités existent ; elles sont décrites ci-dessous. 

2.1.3.1. Un indicateur non biologique : Ies micro-sphères de polystyrène 

En 1997, Chiou a exploré une nouvelle avenue en utilisant des micro-sphères 

colorées avec une solution fluorescente. L'ozonation des ces billes en polystyrène 

entraîne une baisse de la fluorescence qu'il a été possible de c o d e r  avec l'inactivation 

de Giardia : il faut pour cela déterminer un seuil de fluorescence équivalent à une perte 

de viabilité pour des cystes de Giardia (Chiou et al., 1997). Si cette nouvelle technique 

semble prometteuse, il faut cependant noter qu'aucune expérimentation avec d'autres 



oxydants (chlore, bioxyde de chlore et chloramines) n'a été rapportée. En outre, les 

équipements nécessaires sont coûteux, ce qui limite encore son application en usine. 

CIoslnditrm perfrigens est une bactérie Gram-positive, anaérobie et spomlante. 

Organisme pathogène toxinogène, c'est un hôte habituel de I'intestin-des animaux et des 

humains (Haslay et Leclerc, ). Ses spores sont extrêmement résistantes à la chaleur. 

C'est un indicateur de pollution fécale récente ou ancienne (Jakubowski et al., 1996). 

Des études effectuées en usine ont permis de corréler la présence de 

C pe@itrgem et celle de (oo)cystes de protozoaires dans les eaux brutes, mais pas dans 

les eaux filtrées ; néanmoins, C. p r r f r z p ~ s  est un indicateur potentiel des (oo)cystes de 

protozoaires d'origine fécale (Payment, 1993). Cependant, le caractère anaérobie de ces 

micro-organismes complique les procédures pour leur détection et limite fortement leur 

utilisation en laboratoire de contrôle comme analyse de routine. 

Le genre Bacillus est constitué de bactéries Gram-positives, en forme de bacille' 

aérobies ou anaérobies facultatives, et sponilantes. On les retrouve principalement dans 

les sols, les boues pour les espèces anaérobies, et les intestins des animaux. Leur 

capacité à former des spores résistantes à la chaleur et à la sécheresse leur permet de 

survivre sans nutriments ou en milieu pauvre en eau. B. anthracis est pathogène pour 

l'homme ainsi que certains animaux et des cas de gastro-entérites véhiculées par la 

noumture ont été associés à B. cerms (Bergey, 1986). 

Les spores de Bacilltrs ont une taille de 1 a 2 Pm. Elles sont très résistantes à 

l'inactivation par les produits chimiques (Kawamura et al., 1986), et ont à ce titre le 

potentiel de devenir de bons indicateurs de (oo)cystes de protozoaires. Leur nature 

aérobie permet une culture facile sur un tampon saturé de bouillon nutritif (Barbeau et 

al., 1997). De plus, elles peuvent ptre présentes en grande quantité dans les eaux de 

surface, ce qui en facilite la détection à toutes les étapes du traitement. L'inconvénient 



est qu'elles ne sont pas spécifiques à la pollution fécale. Leur détection ne peut donc pas 

remplacer celles des coliformes fécaux. 

Néanmoins, plusieurs auteurs (Barbeau, 1996 ; Lytle et al., 1996 ) ont étudié 

leur potentiel en tant qu'indicateur en étudiant I'évolution des populations de spores de 

BSA pour plusieurs filières de traitement : selon (Lytle et al., 1996). l'abattement des 

spores environnementales constitue une mesure conservatrice de l'efficacité d'une 

filière. De plus, les Ct d'inactivation obtenus par Barbeau révèlent la plus grande 

résistance des spores de BSA par rapport aux cystes de Giardia (pour des Ct calculés 

selon le modèle de Hom). Miltner conclut de la même façon, en comparant I'ozonation 

sur pilote d'oocystes de C. p m i m  et de spores environnementales (Miltner et ai., 

1997). 

Les spores de BSA semblent donc être la meilleure alternative à la détection 

directe des (oo)cystes de protozoaires, d'autant pius que la technique d'analyse peut 

facilement être utilisée en usine. Cependant, très peu de données sont disponibles sur 

l'inactivation des spores de BSA par les principaux oxydants utilisés dans le traitement 

de t'eau potable. 11 importe donc d'étudier plus en détails les mécanismes régissant 

I'inactivation chimique des spores de BSA pour mieux comprendre l'impact de la 

désinfection sur les organismes qui ont franchi les étapes précédentes de la filière de 

traitement. En effet, la désinfection constitue la dernière barrière contre les organismes 

pathogènes avant le réseau de distribution de l'eau. 

2.2. La désinfection : une barrière chimique contre les micro- 

organismes pathogènes 

2.2.1. Comparaison des efficacités des principaux désinfectants utilisés 

Selon Desjardins (Desjardins, 1990) la désinfection est définie comme étant un 

traitement qui permet de réduire ou d'éliminer les micro-organismes susceptibles de 



transmettre des maladies »- Elle est donc fondamentalement différente de la stérilisation 

dont l'objectif est de détmire tous les organismes vivants dans un milieu donné. 

Dans le traitement de I'eau potable, les produits chimiques les plus utilisés sont 

le chlore, le bioxyde de chlore et l'ozone. Il existe d'autres procédés utilisant le brome, 

l'iode, le permanganate de potassium, l'ébullition, les ultraviolets et les rayons gamma, 

mais pour des quantités d'eau beaucoup moins importantes. 

Le taux d'inactivation des micro-organismes dépend de plusieurs facteurs, mais 

le premier d'entre eux est certainement la puissance de l'oxydant utilisé. Le Tableau 2.2 

permet de comparer le coefficient de mortalité de plusieurs organismes pour 

différents oxydants. L'ozone constitue l'oxydant le plus puissant puisque les 

coefficients de mortalité qui lui sont imputables sont les plus importants quelle que soit 

la nature de l'organisme considéré. 

- 
1 abieau 2.2 : : Vaieurs de A i 5-C pour àiEérents oxydants et organismes ( h g .  min). 

(Morris, 1 975) 

2.2.2. Les principes généraux de la désinfection 

Bactérie entérique 

(oo)cystes d'amibe 

Virus 

Spores 

2.2.2.1. Le modèle de Chick-Watson 

Le premier concept de cinétique de désinfection date de 1907. Il est attribué à 

Chick qui assimila l'inactivation chimique à une réaction où les réactifs sont d'une part, 

500 20 50,2 0-1 

0,s 0,05 0,0005 0,02 

5 l < 0,OS < 0,0005 

2 0,05 0,005 0,001 

A = 4.6 /(C.tg9) avec C : concentration résiduelle ( m g )  et tm : temps requis pour atteindre 2 

log d'inactivation 



les organismes et, d'autre part. l'oxydant. La réaction en cuvée (« batch ») est dors 

caractérisée par un taux de réaction : 

oii : N : nombre de micro-organismes ; 

c : temps de contact ; 

k : constante. 

En 1908, Watson proposa de modifier ce modèle afin de tenir compte de la 

concentration du désinfectant : 

où : ri : coefficient de dilution ; 

K : constante indépendante de la concentration du désinfectant. 

La concentration C étant considérée constante, il est ~ossible d'intéaer - 

l'équation (2.1) pour obtenir la relation suivante : 

où : N, : nombre d'organismes vivants à l'instant t ; 

: nombre d'organismes vivants à l'instant initial- 

2.2.2.2. Les déviations par rapport à la loi de Chick-Watson 

Cependant, même quand les concentrations en oxydant sont maintenues 

constantes, l'inactivation des micro-organismes en cuvée ne suit pas toujours le modèle 

de décroissance exponentielle décrit par l'équation (2.3). En effet, on observe deux types 

de déviations montrées sur Ia Figure 2.4. 

La première, communément appelée courbe à l'épaule (« shoulder curve »), 

indique la présence d'un temps de latence. La deuxième rend compte du phénomène 

opposé : après une période d'inactivation rapide, le taux d'inactivation ralentit 

(phénomène de « tailing-off »). 
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Figure 2.4 : Déviations observées par rapport a la loi de Chick-Watson pour 
l'inactivation chimique de micro-organismes. 

Selon Carlson, les courbes à l'épaule sont observées lorsque les bactéries sont 

agglutinées (Carlson, 1991), alors que Finch attribue ce phénomène à I'effet de la lyse 

des organismes suite à I'action de l'oxydant (Finch et al., 1988). Cependant, 

I'explication la plus courante est celle de Haas, pour qui ce délai représente le temps 

requis par le désinfectant pour diffuser à travers la membrane cellulaire (Haas, 1980). 

Pour ce qui est du phénomène de « tailing-off », la littérature fait état de 

plusieurs interprétations : selon la théorie vitaliste (Cerf, 1977) cette période de latence 

serait due aux disparités de résistance au sein d'une même popuiation alors que Finch 

évoque plusieurs facteurs dont t'hétérogénéité de la population. la formation d'agrégats 

ainsi que l'état physiologique des organismes (Finch et al., 1993a). 

Plusieurs auteurs ont complété des revues détaillées et exhaustives des différents 

modèles d'inactivation utilisés, en décrivant notamment leur mise en œuvre, leurs 

domaines d'applications et leurs limites (Barbeau et al., 1996 ; Bellamy et al., 1998 ; 

Finch et al., 1994a). U ne s'agira donc pas ici d'appliquer la même démarche, mais 

plutôt d'analyser ce qui empêche ou motive I'utilisation des ces modèles dans le cas de 

l'ozone- 



2.2.2.3. Le modèle de Hom 

En 1972, Hom proposa un modèle qui permet de tenir compte de l'importance 

relative du résiduel par rapport au temps de contact : 

où m. t~ et k sont des constantes empiriques déterminées à partir des données 

expérimenraies. Ainsi, l'ajustement des variables rr et rn permet de pondérer les 

importances relatives du résiduel par rapport au temps de contact ; le modèle devient 

alors plus souple que celui de Chick-Watson. Dans le cadre d'études sur E. coli, en 

cuvée (Finch et al., 1988) ou en continu et en semi-continu (Hunt et Marinas, 1997)' des 

taux d'inactivation très rapides dans les 2 premières minutes des essais puis un 

ralentissement de la cinétique d'inactivation ont été observés : dans tous les cas, les taux 

d'inactivation ohtenus après c e ~ e  pC6cde ci-evIei.~tfi ix!Cpesd~z:s dü +---- C ~ I L I ~ .  G G L ~  

suggère donc que le résiduel d'ozone ou la dose initiale est le facteur prépondérant dans 

les cinétiques d'inactivation. De plus, le modèle devient plus flexible, puisque l'on 

rajoute un paramètre. II s'adapte alors mieux aux domees expérimentales et permet de 

distinguer et de décrire plus précisément des cinétiques d'inactivation différentes pour 

G. Imblin et pour C. parwm (Finch et al., 1994a). 

Cependant, une des hypothèses de l'équation de Hom est que la concentration en 

oxydant reste constante dans le temps. Ainsi. dans le cas d'oxydants consommés durant 

la réaction d'inactivation, considérer une valeur unique de résiduel entraîne une sous- 

estimation de la dose réelle en contact avec les micro-organismes. II est donc essentiel 

d'intégrer cette cinétique de décroissance dans le modèle d'inactivation. 

2.2.2.4. Le modèle de Hom modifié par Haas 

En 1994, une amélioration au modèle de Hom est proposée, par l'intégration 

d'un modèle de décomposition exponentiel de l'oxydant dans l'équation 

d'inactivation (Haas et Joffe, 1994) : 



où : k* : constante de cinétique de décroissance du résiduel ; 

n, m et k : paramètres du modèle. 

Ce modèle, en intégrant toutes les données relatives à l'oxydant et aux micro- 

organismes, est doté d'une très grande souplesse d'utilisation : suivant les conditions 

expérimentales, il est possible de considérer k* comme une variable ou comme un 

constante, pour une meilleure description des données (Haas et al., 1995) ; la présence 

de trois paramètres permet en outre une meilleure adéquation entre les résultats 

expérimentaux et les prédictions du modèle. Dans son étude de 1995, Haas fait la 

preuve des avantages d'un tel modèle puisqu'il est applicable dans le cas de plusieurs 

eaux (eaux reconstituées et eaux naturelles), avec plusieurs oxydants (chlore. 

~~fiù~;i;i>iarriineiuarrin ei ozonej er pour aes organismes aussi ciifferents que E coir. Q muris 

et le bactériophage MS2. 

Le modèle de Hom modifié par Haas possède donc l'avantage, par rapport aux 

autres modèles, d'intégrer la cinétique de décomposition de l'ozone. De plus, la 

présence de trois paramètres que l'on peut ajuster en fonction des données 

expérimentales est un atout supplémentaire pour la description et la compréhension des 

phénomènes d'inactivation. 

2.2.3. Le Ct comme mesure d'efficacité de ta désinfection 

La réglementation américaine est basée sur le a Surface Water Treatment Rule » 

(USEPA). dont le but est de prémunir les consommateurs contre tout risque 

microbiologique provenant de la consommation des eaux de surface. Un des paramètres 

centraux de cette réglementation est l'enlèvement de G. lamblia. Actuellement, le 

SWTR exige une performance d'enlèvement minimal de 3 log (99,9%) pour Giardia et 

de 4 log (99.99%) pour les virus entériques. 

L'USEPA a utilisé la loi de Chick-Watson pour modéliser I'inactivation des 

micro-organismes. L'enlèvement de Giardia est évalué à I'aide du concept de Ct ou C 



est la concentration résiduelle du désinfectant et f le temps de contact. Le manuel de 

référence du STWR fournit les Ct requis pour inactiver Giardia avec divers oxydants, et 

en fonction de plusieurs paramètres, tels que la température et le pH. 

En réalité, les Ct sont calculés en utilisant le tio qui représente le temps écoulé 

pour récupérer 10% du traceur à la sortie d'un contacteur ; cela signifie qu'en pratique, 

seule une fraction de l'eau est en contact avec le désinfectant pour une durée supérieure 

à tio (ceci en fonction du degré de mélange). Lev et Regti ont étudié la caractérisation de 

t dans le cas de l'ozone, du fait de sa décomposition en solution aqueuse. Us 

recommandent l'utilisation de t ~ o  uniquement dans le cas de faibles taux d'inactivation à 

atteindre ; dans les autres cas, même l'utilisation de t50 n'assure pas d'atteindre les 

normes du STWR (Lev et Regli, 1992b). 

En outre, utiliser la concentration résiduelle revient à sous estimer la quantité de 

désinfectant effectivement en contact avec les micro-orpnismes, sunout dans le cas 

d'oxydants ayant d e  forts taux de décomposition comme l'ozone. Dans leur étude sur le 

résiduel d'ozone a considérer dans le calcul des Ct, Lev et Regli ont émis des 

recommandations suivant les contacteurs utilisés. Par exemple, pour un système à 

contre courant, ils suggèrent de considérer une concentration moyenne C,,, : 

C s  C", = - 
C 

où Cs est le résiduel mesuré à la sortie du contacteur et S, un facteur de sécurité variant 

entre 2 a 3 (Lev et Regii, 1992a). 

L'utilisation de la loi de Chick-Watson, on l'a vu, a des limites tant au niveau 

théorique qu'au niveau pratique. II a donc fallu développer des modèles plus 

sophistiqués de prédiction de l'inactivation des micro-organismes tenant compte des 

propriétés des oxydants et des importances relatives du résiduel par rapport au temps de 

contact dans le processus d'inactivation, facteur négligé par ce modèle mais qui revêt 

une grande importance dans le cas d'oxydants puissants comme l'ozone. 



2.3. Applications de I'ozone 

2.3.1. Les propriétés chimiques de l'ozone 

2.3.1.1. Description générale 

Découvert en 1840 par Schonbein, I'ozone, de formule chimique 03, est un gaz 

bleu, instable, odorant et produit commercialement par l'action d'un arc électrique sous 

haute tension (de 4 000 à 30 000 V) dans une atmosphère sèche et purifiée (Doré, 

1989). En raison de sa grande instabilité, il doit être produit sur les lieux de son 

utilisation. En effet, à l'état gazeux, il se décompose très rapidement en oxygène au-dela 

de 35°C. La solubilité de I'ozone dans l'eau est un facteur qui affecte beaucoup le 

processus d'inactivation. A 20°C, sa solubilité est de seulement 4,7 mg/l (pour une 

2.3.1.2. Le cycie de décomposition de l'ozone 

En solution aqueuse, I'ozone est très instable et se décompose suivant un 

ensemble de réactions constituant un cycle. En raison de sa réactivité importante et desa 

grande vitesse de réaction, la caractérisation des processus de décomposition s'est 

avérée délicate. Les recherches effectuées jusqu'à présent ont conduit à l'élaboration de 

modèles de décomposition tels ceux proposés par Staehelin (Staehelin et Hoigné, 1985) 

et Tomiyasu (Tomiyasu et al., 1985). 

Ces modèles diffèrent sur les produits intermédiaires de la décomposition de la 

molécule, mais s'accordent sur un processus général comprenant essentiellement trois 

étapes : initiation, propagation et terminaison. La Figure 2.5 présente un cycle simplifié 

avec ces étapes. 



1 Initiation ( 
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intermédiaires 
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Fin de la chaîne de 
produits intermédiaires 

Figure 2.5 : Cycle simplifié de ia décomposition de I'ozone en solution aqueuse. Adapté 
de Nickols et Varas (1 992) 

Pour une solution aqueuse dans laquelle on introduit de l'ozone (gazeux ou 

dissous en solution aqueuse), la décomposition de la molécule est catalysée par les ions 

OA qui jouent ainsi le rôle d'initiateur. Cette étape dépend donc du pH. Le déroulement 

du cycle génère plusieurs produits intermédiaires (réactions de propagation) qui ont 

pour but de régénérer l'espèce chimique O;, afin d'entretenir le cycle. Le principal 

produit de la décomposition de I'ozone est le radical hydroxyle OH', espèce chimique 

très réactive, mais peu spécifique. Dans le milieu réactionnel, certains composés, 

appelés pièges à radicaux, peuvent réagir avec les radicaux O R  et freiner ou empêcher 

la décomposition de l'ozone. Ainsi, leur présence en solution stabilise I'ozone sous 

forme moléculaire. Ces espèces chimiques sont principalement les ions carbonates, 

bicarbonates et phosphates. 



2.3.1.3. Les différents modes d'oxydation 

Étant donnée la courte durée de vie des produits intermédiaires de la 

décomposition de l'ozone, l'espèce chimique la plus réactive vis à vis de la micro 

pollution aqueuse est le radical hydroxyle (Doré. 1989). Celui-ci est en outre beaucoup 

moins sélectif que la molécule d'ozone. On pariera d'oxydation radicalaire ou réaction 

indirecte, par opposition à i'oxydation moléculaire (réaction directe) dans le cas de 

l'ozone. 

Ainsi, la matrice de l'eau, et notamment la présence de pièges à radicaux, pourra 

modifier le cours des réactions d'oxydation par compétition : 

- des radicaux vis-à-vis des pièges à radicaux et de la matière à oxyder ; 

- de la matière à oxyder vis-à-vis des deux types d'oxydation : directe ou 

indirecte. 

mode d'oxydation : certains considèrent que l'oxydation directe est le mécanisme 

prépondérant (Finch et al., 1993b ; Hoigne et Bader, 1976 ; Labatiuk et al., 1994), alors 

que d'autres pensent que l'inactivation est principalement due à l'action des radicaux 

(Bancroft et al., 1984 ; Dahi, 1976). 

2.3.2. Les Ct d'inactivation de Giardia et de Cryptosporidium 

Depuis le début des années 1980, plusieurs chercheurs ont étudié I'ozonation des 

(oo)cystes de Gimdia et de C r p ~ o ~ d i u r n  pour déterminer leur résistance en 

calculant les Ct associés à différents taux d'inactivation. Les deux paragraphes qui 

suivent synthétisent les résultats obtenus, en précisant, dans la mesure du possible, les 

conditions expérimentales. Une distinction est faite pour la mesure de viabilité des 

(oo)cystes car deux méthodes sont généralement utilisées : 

- l'excystation in vitro qui consiste à dénombrer les (oo)cystes viables ; 

- le modèle animal où l'on fait ingérer à des souris, l'ensemble des (oo)cystes 

soumis à l'oxydant ; on estime ensuite le niveau d'inactivation des (oo)cystes 



en extrapolant a partir du nombre d'animaux contaminés par les organismes 

pathogènes. 

Cette distinction est importante, I'excystation surestimant l'inactivation par 

rapport au modèle animal (Finch et al., 1993b). En effet, le modèle animal est une 

mesure de la capacité des (oo)cystes à poursuivre leur cycle de vie, alors que 

I'excystation in vitro est un compte des (oo)cystes viables et tous ne sont peut être pas 

infectieux (Black et al., 1996). 

2.3.2.1. Les Ct d'inactivation de Giardia lumblia 

Les conditions expérimentales telles que la température, le pH, la concentration 

et le temps de contact concernant l'inactivation de Gimdia sont précisées au Tableau 

2.3. Ce tabieau met en évidence la différence de résultats entre les deux méthodes de 

mesure de viabilité des cystes (pour 2 log d'abattement). Un autre fait est a ne pas 

négliger : le protocole expérimental qui, dans le cas de I'ozonation en continu, maintient 

un résiduel constant alors que le résiduel d'ozone décroît dans un réacteur en cuvée. 

Cependant, il est difficile de dire dans quelle mesure ces différences affectent les 

résultats. 

Tableau 2.3 : Résumé des valeurs des Ct d'inactivation pour G. lamblia 

- -- - - - . - 

7 
-p 25 Ozonation en (Wickramanayake et al., 

continu 

2 loga 

3 log" 

2 loga 

3 loga 

1 0'65 22 Réacteur en (Finch et al., 1993b) 

22 cuvée 

0,63 6,8 22 Réacteur en (Finch et al.. 1994a) 1 0.95 6,8 22 
cuvée 

" : modèle animal 

: excystation in vitro 



2.3.2.2, Les Ct d'inactivation de Cryptosporiiiiunz pnrvum 

Tableau 2.4 : Résumé des valeurs des Ct d'inactivation pour C. parvurn 

cuvée 

2 log" 

2 loga 

3 log' 

3 loga 

2 log" 

Réacteur en (Langiais et al.. 1991) 
cuvée 

(i~g. t ? l i t ~ / '  Z ~ I ~ I Z S ~  

6-9 6 9  7 Réacteur en (Finch et al., 1994a) 

7,24 6,9 22 cuvée 

1 0,3 679 7 

3 ,7 6,9 22 

2-5 6,9 22 Réacteur en (Finch et al., 1994b) 

: excystation in vitro 

4 log" 

Une comparaison de ces valeurs de Ct avec celles de G. lamblia illustre la plus 

6-6 Réacteur en (Peeters et al., 1989b) 
cuvée 

grande résistance de C. pnrvz~m (pour des conditions expérimentales équivalentes). En 

" : modèIe animal 

outre, on remarque la disparité entre les résultats obtenus. Cela peut tenir à plusieurs 

facteurs (énumérés de façon non exhaustive) : les protocoles utilisés pour nettoyer les 

suspensions d'organismes (voir l'annexe 1), ['efficacité du mélange dans le réacteur, les 

procédures d'analyse du résiduel d'ozone, Ia méthode d'analyse de viabilité des 

(oo)cystes et la méthode utilisée pour calculer les Ct. 

2.3.3. Les facteurs influençant l'efficacité d'ozonation 

Les deux tableaux présentés précédemment illustrent l'importance des 

conditions expérimentales dans les essais d'inactivation par l'ozone. Plusieurs facteurs 

sont déterminant car ils influencent la cinétique de décomposition de l'oxydant. On peut 

ainsi citer les facteurs physico-chimiques (pH et température) et la matrice de l'eau (la 



matière organique et I'alcalinité). Le type et I'état des micro-organismes sont aussi à 

prendre en compte. 

2.3.3.1. La température et le pH 

Pour ce qui est de la température, eiie a une double action sur I'ozone : d'une 

part, elle diminue sa stabilité dans l'eau en augmentant son taux de décomposition 

(selon la loi de van't Hoff-Arrhénius) et d'autre part, elle augmente le taux de réaction 

entre l'oxydant et les micro-organismes. Mais globalement, l'efficacité de désinfection 

augmente avec la température (ceci est confirmé par les résultats des tableaux 

précédents). Cependant, Labatiuk obtient des résultats contradictoires, une hausse de 

température étant soit bénéfique, soit préjudiciable à l'inactivation de G. muris 

(Labatiuk et al., 1992). En outre, Wickramanayake a montré que le maintient des 

(oo)cystes de Giardia pendant plusieurs jours à SOC augmente leur résistance à 

I'ozonation (Wickramanayake et al., 1985). 

Dans le cas du pH, les mécanismes mis en jeu sont beaucoup moins clairs et les 

conclusions demeurent difficiles à établir. Une hausse du pH entraîne une augmentation 

de la décomposition de l'ozone en radicaux (il y a plus d'initiateurs du cycle). Pourtant, 

des essais effectués à différents pH et pour des résiduels constants ont montré que le 

degré d'inactivation demeurait quasi constant (Farooq et al., 1977). Wickrarnanayake 

est plus nuancé: même s'il relie l'augmentation d'efficacité d'inactivation à 

l'augmentation du pH (amibuable à des changements ayant lieu au niveau de la paroi 

des (oo)cystes), il suggère que les effets du pH sont étroitement Iiés aux organismes 

cibles (Wickramanayake et al., 1984). 

2.3.3.2. La matière organique et l'alcalinité 

Dans les eaux à traiter, les micro-organismes ne sont généralement pas dans un 

état libre. Ils sont le plus souvent sous forme d'agrégats, fixés sur de la matière 

organique ou sur des minéraux en solution, ou encore associés à des débris d'autres 

cellules. Ces effets sont difficilement quantifiables car la majorité des expériences 

utilisent des eaux de laboratoire, c'est-à-dire exemptes de toute matière en solution. 



Cependant, en ne lavant pas les cellules végétatives de B. cerrzis après les avoir 

cultivées sur gélose, (Broadwater et al., 1973) montre que la matière organique a un 

effet protecteur car elle exerce une demande en ozone, Celui-ci est alors moins 

disponible pour les micro-organismes à inactiver (et il est nécessaire d'augmenter les 

doses initiales d'ozone pour aiteindre un même taux d'inactivation). 

Cependant l'ajout de bentonite dans une eau de laboratoire n'affecte que très peu 

I'inactivation de G. muris' mais par contre améliore l'enlèvement physique du 

protozoaire par floculation (Labatiuk et al., 1992). Pour des eaux naturelles, la présence 

de turbidité fait augmenter la dose d'ozone nécessaire. II semble donc que les effets de 

la matière organique soient plus reliés au type de turbidité plutôt qu'à son niveau. même 

si cette étude montre que plus I'eau est turbide, plus la dose d'oxydant à utiliser est 

grande pour atteindre un taux d'inactivation donné. 

L'alcalinité est principdement fifie 2 ~ .  icnr c ~ h n n ~ t e s  et hic&enn~es ~resen' t~  

dans I'eau. Or, ces ions sont des pièges à radicaux qui ralentissent la décomposition de 

I'ozone. Mais l'effet de l'alcalinité n'est pas suffisamment documenté pour pouvoir tirer 

des conclusions claires. (Labatiuk et al., 1992) mentionne l'effet de l'alcalinité dans ses 

travaux en eaux naturelles : plus l'alcalinité est importante, plus les doses d'ozone 

requises augmentent pour un même taux d'inactivation car il faut compenser la plus 

grande décomposition de l'oxydant (même s'il faut prendre en considération les effets 

du pH et de la turbidité). 

2.3.3.3. La nature des micro-organismes 

Après avoir considéré les éléments intervenant au niveau de l'ozone et de son 

cycle de décomposition, il reste à analyser dans quelle mesure les micro-organismes ont 

eux aussi un impact sur les cinétiques d'inactivation. 

Dans une première approche, il semble évident que la nature même des micro- 

organismes est un facteur détermÏnant dans le processus d'inactivation (voir 

paragraphe 3). Wickrarnanayake le confirme en étudiant I'ozonation de Naegieria 

gruberis et de Gicadia muris : selon les conditions expérimentales de température et de 



pH, les (oo)cystes de N. grrîberis sont entre 2 et 7 fois plus résistants que ceux de 

G. muris. Cependant, une nuance est apportée : cette différence dépendrait 

essentiellement du pH et donc de la charge des parois des (oo)cystes (Wickrarnanayake 

et ai., 1984). 

Finch et al. (1994a) rapporte deux cinétiques d'inactivation bien distinctes pour 

les (oo)cystes de G. lamblia et les (oo)cystes de C. panmm : si un temps supérieur à 2 

minutes n'est plus significatif pour l'inactivation de Gimdin, ce temps passe à 5 

minutes dans le cas de Cryptosponndizcm pour des doses d'oxydant appliquées allant de 

1,l à 2,52 mg 0 3 A  et de 0-6 à 2,9 mg 0 3 A  respectivement. Ici, la composition de la 

coque des (oo)cystes est directement impliquée. 

Les facteurs physico-chimiques et la matrice de l'eau ont des influences sur 

l'eficacité d'ozonation en agissant soit au niveau du cycle de décomposition, soit en 

entrant en compétition avec les micro-organismes pour les réactions d'oxydation. En ce 

qui concerne les micro-organismes eux-mêmes, plusieurs hypothèses sont avancées sur 

les mécanismes d'inactivation, mais rien n'a été démontré jusqu'à présent. 

2.3.3.4. Conclusion 

Finalement, on constate qu'il est dificile de tirer des conclusions claires quant 

aux différents phénomènes mis en jeu dans l'inactivation des micro-organismes par 

ozonation. Les résultats parfois contradictoires rencontrés à propos de l'effet du pH, les 

conclusions divergentes sur les mécanismes d'oxydation et les hypothèses émises sur 

les phénomènes d'inactivation à l'échelle des micro-organismes illustrent Ia nécessité 

de définir précisément les conditions expérimentales, de travailler selon des protocoles 

clairs, d'utiliser des techniques permettant d'obtenir des résultats reproductibles, cela 

afin de pouvoir établir des comparaisons entre les résultats obtenus. C'est dans cette 

optique qu'un protocole a été établi pour l'ozonation des spores de BSA Basé en 

grande partie sur le travail de Finch et al. (1 994), il doit permettre de comparer les Ct 

d'inactivation des spores de BSA obtenus avec ceux des cyaes de G. lamblia et les 



oocystes de C. panmm. La mesure en continu du résiduel a été légèrement modifiée, et 

l'utilisation d'un modèle d'inactivation plus raffiné a permis de mieux caractériser les 

cinétiques d'inactivation des spores de BSA et de vérifier leur capacité à devenir un 

indicateur des (oo)cystes de protozoaires 



Chapitre 3 

Matériel et méthodes 

3.1. Description sommaire de la procédure expérimentale 

Ces essais ont pour objectif de calculer les Ct d'inactivation de différentes 

souches de BSA (souche de référence de B. mbMis et souche de BSA 

environnementale) par l'ozone afin de les comparer aux Ct des cystes de Giur-du et 

oocystes de Crypto.sporidzzim. Ils vont aussi permettre d'analyser I'influence du pH sur 

les valeurs obtenues. Pour cela, on réalise des essais dans un réacteur en cuvée (voir 

Figure 3 2). 

La premiere étape de ces essais est la préparation d'une solution mère d'ozone. 

Un certain volume de cette solution est ajouté dans le réacteur contenant déjà l'eau 

tamponnée stérile et une suspension de spores bactériennes (concentration de 4 3  

log/rnl). Le tout est agité à l'aide d'un agitateur magnétique. Le moment de I'ajout de la 

solution ozonée constitue le temps t = O des expériences. Pour assurer l'homogénéité 

dans le réacteur, un mélange rapide est effectué en augmentant pendant un très cours 

laps de temps (3 à 4 s) la vitesse d'agitation. 

A des temps de contact pré-déterminés, qui varient entre 1 et 10 minutes suivant 

les doses d'ozone injectées et les tampons utilisés, deux types d'échantillons sont 

prélevés du réacteur par l'intermédiaire du robinet en ~éflon". Le premier type 

d'échantillon est recueilli dans un tube à essais contenant du thiosulfate de sodium en 

excès. pour stopper la réaction d'oxydation. Ce type d'échantillon servira au 

dénombrement des organismes cultivabIes. La mesure de viabilité des spores se fait par 

la méthode de filtration sur membrane (après dilutions successives des échantillons), 

suivie d'une culture sur milieu nutritif (Barbeau et al., 1997). Les résultats sont 

exprimés en Unité formatrice de colonie (UFC)/ml. 



Le deuxième type d'échantillon est pris manuellement toutes les minutes, par 

l'intermédiaire du robinet en ~éflon" ; i l  sert à I'analyse du résiduel d'ozone, mesuré 

selon la méthode calorimétrique standard (APHA et al., 1992). Des échantillons de 1 mI 

sont déposés dans des tubes à essais contenant le réactif. Cette solution est plus ou 

moins diluée suivant les doses d'ozone injectées. En effet, pour obtenir une meilleure 

précision dans la détermination du résiduel d'ozone, il est important d'obtenir en tout 

temps au moins 10% de décoloration du réactif par rapport à L'échantillon témoin sans 

ozone (Bader et Hoigne, 198 1). 

3.2. Matériel utilisé 

3.2.1. Production de l'ozone et de la solution mère 

L'ozone est produit à p ~ ~ i r  &air pur de ydi?C z& (-Ak LIq~i-e, Mclitred, Oc), 

ayant un point de rosée inférieur à -50°C, pour éviter tout problème de corrosion dans 

l'appareil. L'ozoneur utilisé est un modèle Labo 76 (Emery-Trailigaz, Ozone Co), qui 

produit de I'ozone par décharge électrique dans I'air qui lui est envoyé. L'air ozoné, qui 

peut contenir jusqu'à 4% en masse d'ozone, passe dans un analyseur d'ozone (AFX 

mode1 Hl,  INUSA Inc) qui donne la teneur du gaz en ozone, exprimée en g/Nrn3. 

La solution mère d'eau ozonée est produite par barbotage de I'air ozoné dans 

400 ml d'eau ~ i l l i - Q @  contenant 50mgA équivalent CaC03 de bicarbonate de sodium. 

L'ozone en sortie du barboteur est neutralisé par une solution d'iodure de 

potassium à 2%. L'ozone dans les gaz d'évent est détruit dans un destructeur à chaleur. 

La Figure 3.1 présente le montage de génération d'ozone. 

Le résiduel d'ozone de la solution mère varie en fonction de plusieurs 

paramètres : 

- la puissance choisie pour la production d'ozone (déterminée par l'ampérage 

réglé sur I'ozoneur) ; 

- la température de la solution ozonée : pour augmenter le taux de transfert de 

l'ozone gazeux dans l'eau, on utilise un bain réfrigéré à 6°C ; 



- la quantité de bicarbonates de sodium dissous dans fa solution stock d'ozone, 

ici 50 mg (CaC03)A de NaHC03 ; 
- le temps d'ozonation : on considère que la concentration en ozone dissous à 

l'équilibre est atteinte au bout d'une heure. 

Dans les conditions expérimentales choisies, la valeur maximale de la 

concentration en ozone à l'équilibre se situe entre 18 et 20 mg03/l. - 

air 

1-1 air 

b 4  b 

PRODUCTION DESTRUCTION 

k 7  t 
KIà2% eau ~ i l l i - Q @  

+ 50 mg (CaC03) NaHCO3/I 

Figure 3.1 : Montage de production de l'ozone et de la solution mère d'oxydant 

3.2.2. Le réacteur 

Le réacteur utilisé pour les essais est un erlenmeyer de 250 mi légèrement 

modifié : un robinet en ~éflon' a été rajouté à sa base pour un prélèvement manuel des 

échantillons (Figure 3.2). Selon (Labatiuk, 1992)' un volume de 250 ml représente un 



volume optimal si l'on considère le nombre d'organismes requis initialement (4 log/& 

pour G- Ianzblia et 3.7 log/ml pour G. muris), celui que l'on recueille après l'essai, 

l'homogénéisation ainsi que la stabilité du résiduel d'ozone dans le réacteur. 

d" 
spores (= 4 3  log/d) puis ozone 

Analyse du résiduel 

rt---- réactif 

Analyse de la viabi 

d'ozone 

lité des spores 

échantillon I l 
thiosulfate de sodium 

(réducteur) 

Figure 3.2 : Schéma du montage expérimental pour la détermination des Ct 
d'inactivation par l'ozone 

3.2.3. Préparation du matériel 

3.2.3.1. La verrerie et le matériel de prélèvement des échantillons 

Avant chaque utilisation, les réacteurs sont trempés pendant au moins 1 h dans 

une solution ayant un résiduel d'ozone d'au moins 2 mg 03A, puis séchés à l'air libre. 

Les ouvertures des réacteurs sont ensuite recouvertes de papier aluminium pour éviter 

tout dépôt de poussière dans le réacteur. 

Avant leur première utilisation, les seringues d'injection d'ozone en 

polypropylène ont été trempées pendant 24 h dans une solution chlorée à 100 mg/l, puis 

pendant au moins 1 h dans une solution ozonée à 20 mg 03n. Elles ont ensuite séché à 

I'air libre. Les seringues en verre ont uniquement subi la dernière étape du traitement. 



Les seringues d'échantillonnage des spores (en polypropylène) sont lavées, 

rincées et séchées à l'air libre, puis passées a l'autoclave pour assurer leur stérilité. 

Les tubes à essais utilisés pour le recueil des échantillons et les dilutions sont 

lavés, rincés, séchés à l'air libre puis autoclavés. 

3.2.33. Les solutions d'indigo trisulfonate de potassium 

L'analyse du résiduel d'ozone est faite selon la méthode standard (4500-B 03) 

décrite dans le Standard Methods (APHA et al., 1992). et basée sur la méthode 

colorimétnque de Bader et Hoigné (Bader et Hoigné, 198 1). Cette méthode nécessite la 

préparation d'une solution mère d'indigo tnsulfonate de potassium (Aldrich) à 10-~  M. 

Pour les besoins de l'analyse, cette solution a été ensuite adéquatement diluée dans un 

tampon phosphate à pH 2. 

En solution aqueuse, l'ozone n'est pas stable et se décompose de façon plus ou 

moins importante selon les espèces chimiques présentes qui peuvent jouer le rôle 

d'initiateur de la décomposition (ions OH-) ou de piège à radicaux (ions carbonate, 

bicarbonate et phosphates). 

Les tampons les plus couramment utilisés en laboratoire pour des essais a pH 

constant sont les tampons phosphates ; or les ions phosphates sont des pièges à 

radicaux. Pour limiter leur effet sur la décomposition de l'ozone, nous avons procédé à 

la dilution des solutions mères des tampons phosphates, dans un rapport de 2: 100. Les 

ions borate n'ont pas cet effet de pièges à radicaux et laissent donc toute possibilité à 

l'oxydation radicalaire d'avoir lieu (Gurol et Singer, 1982). Dans le cadre de nos essais, 

ces deux types de tampons ont été utilises. Les deux tableaux ci-dessous donnent les 

compositions des tampons pour les pH auxquels nous avons travaillé. 

Dans le cas des tampons phosphates, les solutions mères sont diluées dans un 

rapport de 2:100 (la force ionique finale est donc de 0,02 moVl), puis autoclavées et 

conservées a 4°C. Pour les tampons borate, les solutions mères sont autoclavées et 



conservées à 4OC (forces ioniques finales de 0,52 et 0,46 moVl pour les pH 6,3 et 8-2, 

respectivement). 

Tableau 3. l : Tampon phosphate : quantités de produits chimiques pour 1 1 de solution 
mere (pKa = 7,12 à 25°C) 

Tableau 3.2 : Tampons borate : quantités de produits chimiques pour 1 1 de solution 
mere (pKa = 9,14 a 25°C) 

Na2m04 (g) 

(g) 

Comme le montrent les deux tableaux précédents, les différents tampons utilisés 

n'ont pas la même force ionique : ils sont plus ou moins concentrés. Dans leur étude de 

la cinétique de décomposition de l'ozone, Gurol et Singer (1982) montrent que dans le 

cas des phosphates, le taux de décomposition est afecté par la force ionique des 

tampons. ce qui n'est pas le cas des tampons borate dans la gamme des forces ioniques 

testées, soit entre 0'1 et 1 M. Nous pourrons donc considérer, dans notre cas, que les 

différentes forces ioniques ne représentent pas des conditions différentes pour la 

décomposition de l'ozone. Cependant, on ne sait pas quel pourrait être l'effet de cette 

variation de force ionique sur les charges surfaciques des micro-organismes. 

p H =  6.3 p H =  8.2 

h = IM) (P = IW 
34,12 56,3 8 

54-29 0,89 

3.2.3.4. Les cultures bactériennes 

La préparation des suspensions bactériennes est une étape essentielle qui 

nécessite rigueur et précautions pour obtenir des suspensions d'une grande pureté. 

L'annexe 1 fait état des différentes méthodes utilisées pour préparer des suspensions de 



micro-organismes. Il n'apparaît pas de consensus sur la méthode à utiliser. Nous avons 

choisi de travailler selon la méthode employée par Barbeau, car elle est simple, rapide et 

efficace pour obtenir des suspensions très pures (Barbeau. 1996). Celle-ci peut se 

résumer en quelques points : 

- après isolation d'une colonie et culture des bactéries sur milieu R2A (Difco) 

pendant une quinzaine de jours, grattage des Pétris pour récupérer les 

spores ; 

- mise en suspension des spores dans une solution d'eau tamponnée ; 

- homogénéisation sur vortex ; 

- centrifugation à 10 000 g pendant 15 min ; 

- rinçage du culot et resuspension des spores dans la solution tamponnée ; 

- répétition des étapes d'homogénéisation, de centrifugation et de rinçage, 2 

fois : 
- passage au bain-marie à 75°C pendant 15 min ; 

- conservation des suspensions à 4°C. 

Il est important de noter que les souches commerciales subissent le même 

traitement que les souches environnementales, afin de ne pas introduire de biais dans la 

mesure des Ct. En effet, les conditions de cultures (milieux et concentrations utilisés, 

température et durée d'incubation) induisent des changements au niveau des coques des 

spores, et modifient ainsi la résistance des micro-organismes (Setlow, 1994). 

- Sozrche de Bacillrrs mbtilis 

Nous avons utilisé une souche commerciale de référence de B. mbtilis 

(ATC 663 3, 0453-52-9) des laboratoires Difco. 

- Souche enviro~~nemenfale 

Une colonie provenant d'un Pétri de spores environnementales de l'eau brute 

de l'usine Ste-Rose (Ville de Laval) a été isolée et cultivée dans les conditions décrites 

précédemment. 



3.3. Méthodes analytiques 

3.3.1. Mesure du résiduel d'ozone 

Le résiduel d'ozone a été analysé selon la méthode ~010rimétrique à l'indigo 

trisulfonate de potassium (4500-0, B) décrite dans le Standard Methods (APHA et al.. 

1992). Des échantillons sont recueillis manuellement toutes les minutes de la façon 

suivante : 

- purge du volume mort contenu dans le robinet en ~ét lon" ; 

- recueil d'un échantillon dans un tube a essais ; 

- à l'aide d'une pipette pré-calibrée, prélèvement de 1 ml de l'échantillon qui 

est ensuite injecté dans un volume de 5 ml de  réactif dilué d'indigo contenu 

dans un tube à essai. 

~a reaction entre le réactif et I'ozone est instantanée et provoque une 

décoloration stable pendant 4h (Bader et Hoigné, 198 1). L'absorbante d e  I'échantillon 

est lue sur un spectrophotomètre (Spectronic 401 de Milton-Roy), dans une cellule en 

quartz, de 1 cm de trajet optique (HELLMA, 14385902C). Le calcul du résiduel 

d'ozone est fait par différence avec la décoloration d'un témoin, selon l'équation 

suivante : 

où : A b B  : absorbance du témoin ; 

A h E  : absorbance de l'échantillon ; 

VE : volume de l'échantillon ; 

2 : trajet optique de la ceIIde ; 

VT : volume total (réactif et échantiIlon) ; 

f = 0,42 (correspond à un coefficient d'absorption de I'ozone en phase 

aqueuse). 



3.3.2. Mesure de ta viabilité des spores 

Celle-ci se fait par la méthode de filtration sur membrane. Après dilutions 

successives des échantillons dans de l'eau tamponnée stérile, on procède à la filtration 

des dilutions sur filtres de porosité 0,45 prn (HAWC 047S3, Millipore). Les tiltres sont 

déposés sur des tampons (AP 10047S1, Millipore) imbibés de bouillon nutritif 

Triptycase Soy Broth (Becton Dickinson). Les boites de Pétri sont passées au bain- 

mane a 75°C pendant 15 min, puis incubées pendant 24 h a 35°C (Barbeau et al., 1997). 

Le dénombrement des colonies se fait par comptage direct. Les résultats sont donnés en 

Unité formatrice de colonie WC) par ml ou en log/ml. 

3.4. Analyses statistiques 

Toutes les analyses statistiques ont été réalisées avec différents modules du 

logiciel Statistica 5.0 (Statsofi, Tulsa, OK). 

3.4.1. Cinétique de décroissance de l'ozone : évaluation de k* 

3.4.1.1. Description des courbes de décroissance du résiduel d'ozone 

Conformément aux recommandations émises par Haas et al. (1995). un modèle 

de régression non linéaire, utilisant le critère des moindres carrés, a permis de 

déterminer dans chacun des cas la valeur de la constante ko du modèle de décroissance 

exponentielle : 

C = ~,e '* ' ,  

où Co : dose initiale théorique d'ozone ; 

C : résiduel mesuré au temps t. 

3.4.1.2. Ajustement du paramètre k' 

Dans un deuxième temps, une analyse ANOVA a été conduite pour déterminer 

ie(s) facteur(s) influençant la valeur de k*. Les facteurs étudiés étaient : 

- la nature du tampon ; 



- le p H ;  

- la dose initiale d'ozone ; 

- la souche bactérienne utilisée. 

3.4.2. Modèle de Hom modifié par Haas : évaluation de n, m et k 

Beliamy et al. (1998) fait une description détaillée et exhaustive des étapes à 

suivre pour la détermination des ces paramètres. C'est la méthode qui a été employée 

pour leur ajustement, avec la restriction faite concernant les études qui ne comportent 

pas de réplicats : il est alors impossible d'évaluer la précision du modèle. On ne  peut 

que calculer qu'une première estimation de cette précision. On peut résumer les 

différentes étapes nécessaires : 

- estimation des paramètres n, m et k ; 

- vérifications statistiques pour les valeurs calculées des 

paramètres : distribution normale des résidus. leur indépendance vis-à-vis 

des variables du modèle ; 

3.5. Vérifications et essais préliminaires 

Afin de justifier les hypothèses concernant les méthodes utilisées, plusieurs 

essais préliminaires ont été réalisés. Ceux-ci concernent essentiellement les 

interférences aux méthodes de mesure. 

3.5.1. Pouvoir tampon des solutions diluées 

Dans le cas des tampons phosphates, les solutions utilisées sont des dilutions 

2: 100 des solutions mères. Pour les tampons borate, les solutions mères n'ont pas été 

diluées. Les tests effectués sur les solutions tampon ont confirmé la stabilité du pH de 

ces solutions dans les conditions montrées au Tableau 3.3 : 



Tableau 3.3 : Pouvoir tampon des solutions diluées : stabilité du pH en fonction des 
doses d'ozone utilisées 

- -- 

Volume total dans Ie réacteur 
(mi) 

Volume de solution ozonée 
rajoutée (ml) 

Résiduel d'ozone théorique 
(mg03/1) 

pH initial 

pH final 

Borate Borate Phosphate Pho~phaze 

pH=6,4  pH=8.3 p H = 6 , 3  p H = 8 , 2  

3.5.2. Influence des tampons sur la viabilité des spores 

Atin de s'assurer que les tampons utilisés ne causent aucune mortaiire, et 

ce quelle que soit leur force ionique, plusieurs essais ont été réalisés avec B. mbtilis. 

Des spores ont été suspendues dans des tampons phosphate et borate (pH = 6,3), de 

forces ioniques 0,05 et 0.5. Un premier prélèvement a été fait après 15 min ; un 

deuxième, après 24 h. Dans les deux cas, la mesure de viabilité des spores s'est faite 

selon la méthode décrite au paragraphe 2. Le Tableau 3.4 résume les résultats obtenus. 

Tableau 3.4 : Effet des tampons et de leur forces ioniques sur la viabilité des spores sur 
une période de 24 h. Les forces ioniques sont exprimées en moi/l. Les résultats sont 

exprimés en log/ml 

Après 15 min 1 9.13 9,05 9,07 9,06 9,06 

Après 24 h 1 9-22 9,12 9,07 9,16 9-14 

Ces résultats montrent que les tampons utilisés entraînent une très légère baisse 

de la viabilité des spores. Un test t de Student a montré que les différences de viabilité 

observées n'étaient pas statistiquement significatives (p~O.05). La seule exception est le 



cas du tampon phosphate avec p = 0.5 moVI mais l'écart en terme de perte de viabiIité 

qui en résulte reste négligeable (< 0,15 log/ml). Les différences apparentes ne sont donc 

pas prises en compte dans l'analyse des résultats. 

3.5.3. Adsorption des spores sur les parois des réacteurs 

Ces essais ont pour objectif de vérifier et de quantifier le phénomène 

d'adsorption des spores sur les parois en verre des réacteurs utilisés. Des spores ont été 

ajoutés à 240 mI de tampon (phosphate et borate) d'obtenir une concentration de 

6 log/ml de spores dans le réacteur. Tout au long de l'expérience, l'ensemble est posé 

sur un agitateur magnétique et agité avec un barreau magnétique recouvert de ~éflon'? 

Après homogénéisation du mélange, soit 10 min, un échantillon de 1 ml est prélevé 

(t = O). Un deuxième prélèvement est effectué après 30 min. Le dénombrement des 

orsanismes cultivables se fait selon la méthode décrite au pamgaphe 2 Le Tableau 3.5 

ci-dessous montre les résultats obtenus pour les quatre tampons utilisés avec B. subtzlis 

et pour la souche environnementale dans les tampons phosphates. 

Tableau 3.5 : Adsorption des spores de B. srrbtiiis et de la souche environnementaie sur 
les parois des réacteurs pour les différents tampons utilisés 

Tampon utiIisi2 

Les résultats ci-dessus mettent en évidence un phénomène d'adsorption des 

spores sur les parois du réacteur; cependant, en pratique, il n'est pas suffisamment 

prononcé pour devoir en tenir compte dans les essais. 

Adsorption Adsorption 

B.rn6tilis Souche environ. 

Borate, pH = 6,3 

Borate, pH = 8,2 

Phosphate, pH = 6-5 

Phosphate, pH = 8,2 

0,l log/ml 

0,11 log/ml 

0,06 log/ml 0,l log/rnl 

0,08 @/ml 0,05 log/ml 



3.5.4. Influence des suspensions de spores sur la lecture 

spectrophotométrique 

Dans ses essais d'ozonation sur Escherichia col& Hunt et Marinas relatent une 

légère interfërence dans la lecture spectrophotométrique du résiduel d'ozone avec la 

méthode à l'indigo trisulfonate, interférence due aux micro-organismes (Hunt et 

Marinas, 1997). Afin de déterminer I'importance de cette interférence dans notre cas, 

deux tests ont été réalisés. Le premier consistait à mesurer I'absorbance de suspensions 

de spores à plusieurs concentrations. Le Tableau 3.6 résume les conditions 

expérimentales et les résultats obtenus. 

Tableau 3 -6 : Absorbance à 600 nm de suspensions de spores bactériennes de B. subtilis 
à plusieurs concentrations 

2 log 1 0,001 0,oo 1 

4 log 1 0,002 0,OO 14 

5 log 1 0,003 0,OO 1 

Le deuxième test consistait à mesurer l'absorbance d'une solution d'indigo 

6 log 

trisulfonate à laquelle on a rajouté des spores à différentes concentrations. Le Tableau 

0,O 1 * 

3.7 résume les conditions expérimentales et les résultats obtenus. 

* : inférieur à la limite de détection de l'appareil 

Les deux séries de résultats montrent que les interférences dues aux spores sont 

minimes ; il n'a donc pas été jugé nécessaire d'appliquer un facteur de correction sur les 

absorbantes lues au spectrophotomètre. 



Tableau 3.7 : Absorbance à 600 nrn de suspensions de spores bactériennes de B. slrbtiks 
à plusieurs concentrations dans une solution de potassium d'indigo trisulfonate 

Solution d'indigo 

Solution d'indigo +2 log 

Solution d'indigo +3 log 

Solution d'indigo +4 log 

Solution d'indigo +5 log 

Solution d'indigo +6 log 

3.5.5. Température de la solution dans les réacteurs 

Pour se trouver dans le cas d'un réacteur complètement mélangé, celui-ci est 

piacé sur un agitateur magnetique (iodei i 2 o m  Fisher) et agite avec un barrcau 

magnétique recouvert de ~éflon". Les essais réalisés ont pour but de quantifier 

l'élévation de température de l'eau du réacteur, car c'est un facteur important pour les 

cinétiques de décomposition de l'ozone d'une part, et d'inactivation d'autre part. Les 

différents tests réalisés à température ambiante et à des vitesses d'agitation comprises 

entre 2 et 4 (200 et 400 tr/min) indiquent une élévation de température de moins de 1°C 

sur une durée de 30 min (la plus forte élévation est obtenue pour la plus faible agitation, 

du fait des échanges thermiques moins importants avec l'atmosphère). 

Shechter a étudié I'influence de l'agitation sur la stabilité du résiduel d'ozone et 

conclu que pour des essais durant une quinzaine de minutes, une agitation optimale est 

obtenue avec une vitesse de 80 tr/min (Shechter, 1973). Or, dans nos conditions 

expérimentales, une tel le vitesse est trop faible pour obtenir une homogénéisation 

suffisamment rapide du milieu. On choisira donc une vitesse d'agitation de 200 tr/min. 



3.5.6. Cinétique de décroissance de l'ozone : mesure du résiduel à 15 

secondes 

Le protocole expérimental de mesure d u  résiduel d'ozone tel que décrit dans le 

paragraphe 1 ne prévoit pas d'échantillonnage avant la première minute de temps de 

contact. Or il est apparu nécessaire de mieux caractériser les premiers instants des essais 

pour ce qui est de l'évolution du résiduel d'ozone, en raison du mélange rapide appliqué 

systématiquement. C'est pourquoi une série de mesures de résiduel à 15 s a été réalisée, 

pour toutes les conditions de résiduels d'ozone, de  tampons et de pH étudiées- 

V I  1 I 

O 1 2 3 4 5 

Dose d'ozone appliq uée (mg 03/11 

Figure 3.3: Relations entre Ies résiduels d'ozone mesurés ii 15 secondes et les doses 
d'ozone appliquées, pour le tampon phosphate (a) et le tampon borate (O) 

Les résultats obtenus sont synthétisés sous forme de courbes qui sont présentées 

par la Figure 3.3. Dans chaque cas de tampon. les résultats obtenus pour les deux pH 

sont très bien décrits par une seule et même régression Iinéaire. Pour les deux catégories 

de tampon, le résiduel mesuré à 15 s est donc indépendant du pH. Cela est attribué au 

phénomène de dégazage de l'ozone dû essentiellement au mélange rapide. Ainsi, dans 



les 15 premières secondes, on perd par rapport à la dose initiale théorique, 25% d'ozone 

dans les tampons phosphate et 30% dans les tampons borate (en moyenne). Ces résultats 

ont donc été intégrés aux courbes de résiduel obtenues pendant les essais d'inactivation, 

en rajoutant une valeur de résiduel d'ozone a 15 S. 



Chapitre 4 

Résultats et discussion 

4.1. introduction 

Les résultats de l'étude réalisée sont présentés dans la section suivante, sous la 

forme d'un article qui a été soumis à la revue Water Research. L'objectif principal de 

ces travaux est de caractériser la résistance de spores bactériennes aérobies a l'ozone 

afin de vérifier leur potentiel en tant qu'indicateur des (oo)cyaes de protozoaires. Deux 

paramètres ont été étudiés pour la description et l'analyse des cinétiques d'inactivation : 

le pH et la souche bactérienne utilisée. La résistance des micro-organismes est 

déterminée par le calcul de leurs CT (résiduel d'ozone x temps de contact) pour 

différents niveaux d'inactivation (2, 3 et 4 log). Ces résultats sont comparés aux valeurs 

publiées dans la littérature pour l'inactivation des (oo)cystes de G. lamblia et de C. 

parvtrm, 
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4.2.1. Abstract 

The kinetics of inactivation of two strains of bacteriai aerobic spores were 

investigated in a batch reactor. Two buffers (phosphate and borate) and two pH Ievels 

(6.3 and 8.2) were tested The kinetics of ozone decomposition were found to fit a fmt- 

order decay model, regardess of the buffer. CT values were caIculated using the Hom 

equation with exponentid decay of the ozone residual. Lower pH resulted in lower CT 

values. Although neither buffer affects the decomposition rates of ozone at the ionic 

strengths tested, signif~cant differences among the estimated CI' values were measured 

at high pH values. The environmental strain tested was not as resistant to ozone than the 

reference stra in of B. subtilis. The overall results suggest that bacterial spores are a 

conservative surrogate for cysts of G- lamblia and oocysts of C. parum. 
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4-22, Introduction 

Protozoan cysts constitute the more m u e n t  identified cause of waterborne 

outbreaks in developed countries (Craun, 1998; Solo-Gabriele et al., 1996). Several 

methods have k e n  proposed for the direct detection of protozoan cysts (Jakubowski et 

al, 1996). However, routine monitoring of (oo)cysts is not possible because of its hi@ 

cost and senous methodological limitations (Fncker et Clancy, 1998). 

The potentid of several techniques such as particle counting, microscopie 

particdate analysis, or even coiiform bacteria and heterotrophic plate counts, and 

techniques involving parameters such as turbidity, have been investigated. However, 

these techniques cannot be used for routine analysis in water facilities because of 

interferences in analyticai rnethods, lack of indication of biological risk or high cost. 

(Jakubowski et al., 1996). Moreover, physical parameters do not provide any 

information on viability. More recently, Barbeau assessed the use of bacterial aerobic 

spores to monitor treatment efficiency and concluded that aerobic spores are a reliable 

and simple indicator of overall treatment (Barbeau, 1996). Full-scale studies have 

concluded that, even if spores are not indicators of the presence of protozoan parasites 

(Lytle et al., 1996), it is possible to correlate their removal with those of the protozoan 

(oo)cysts, provided their resistance to treatment is known. One of the prornising use of 

aerobic spores is their application to monitoring the efficiency of disinfection in full- 

scale plants. 

Because of its high efficiency, ozone is one of the most promising oxidants that 

can be used to chemicaUy inactivate protozoan cysts (Craun, 1998; Miller, 1994; Sous 

Comité fédéral-provincial sur l'eau potable, 1997). A recent study by Dyksen et al. 

shows that ozone inactivation is still the most cost-effecàve chernical treatment (Dyksen 

et al., 1998). Even though advanced UV technologies have shown great potentid for the 



inactivation of Cryptosporidium (Clancy et al-, 1998), it is too early to draw conclusions 

as to their perdformance in full-scale applications. 

The pupose of this work was to measure the inactivation CI' of two different 

strains of bacterial aerobic spores with ozone. A batch reactor was used and two factors 

were investigated: pH (6.3 and 8.2) and the bacterial strain (Bacillus subtilis and an 

environmental isolate). 

4.2-3. Materials and methods 

4.23.1. Laboratory waters 

AU laboratory waters were prepared with ~ i l l i - ~ @  water (Milli-Q UV Plus, 

Millipore Co., Bedford, MA) and an activated carbon carhidge (CPMQKOSRI, 

Millipore Co., Bedford, MA). AU chernical products were at least of andytical grade. 

Phosphate buffers with a ionic strength of 1 moM were prepared with Na2HP04 (S374- 

500, Fisher, Montréal, QC) and -PO4 (P285-500, Fisher, Montréal, QC) at pH levels 

of 6.3 and 8.2. Borate buffers were prepared with HB03 (A74-500, Fisher, Montréal, 

QC) and NaOH (SS254-1, Fisher, Montréal, QC) at pH levels of 6.3 and 8.2 with ionic 

strengths of 0.52 and 0.46 mou respectively. The pH was calibrated using an Accumet 

25 pH metre (F isherS~ien~c ,  Fisher, Montréal, QC). Dilution water was prepared as 

described in Standard Methods (APHA et al., 1992). 

The influence of the bufEer on the microorganism's viability was also 

investigated by comparing the impact of the buffers (phosphate and borate) and the 

ionic strengths (0.05 or 0.5 moM) after 15 minutes and 24 hours, at pH 6.3. The addition 

of the buffer solution to the spore suspension did result in slightly significant 

differences in the number of viable spores after contact time (pc0.05). Spore viability 

was influenceci more by phosphate buffer, at pH 6.3. 



4.23.2. Ozonation 

Ozone was produced from ultra pure air (Air Liquide, Montréal, QC) using an 

Labo 76 ozone generator (Emery-Trailigaz, Ozone Co., Cincinnati, OH). The average 

concentration of ozone in the gas flow was continuously measured by an ozone analyser 

Model Hl (IN USA hc ,  Needham, MA); an ozone concentration as hi& as 4 8  (w/w) 

could be attained by adjusting the amperage of the ozone generator. Ozone was bubbled 

for 1 hour in a 500-ml gas absorption flask fded with 400 ml ~ i l l i - ~ @  water in which 

50 mg (CaC03)A of sodium bicarbonate (S233-500, Fisher, Montréal, QC) were added 

in order to obtain a higher residual in the ozone stock solution. The impact of sodium 

bicarbonate on the viability of spores was investigated by adding a 50-mg (CaC03)A 

concentration to a spore suspension. No measurable impact was observed ( ~ 4 . 0 5 ) .  

M n g  bubbling, the gas absorption flask was kept in a 6°C refngerated water bath. The 

o= events were trapped in a 2% pota-ism io&& s~!i't_ion @P76?-5M, Ficher, 
Y 

Montréal, QC) in two 500 ml-gas absorption flasks. The three flasks were c o ~ e c t e d  

with viton@' tubing (E64 12- 17, Masterflex, Cole Parmer, Labcor, Anjou, QC). 

4.233. Bacterial culture 

Two different strains of bacterial aerobic spores were tested. The spores of the 

reference strain of Bacillus subtilis (ATTC 6633, 0453-52-9, Difco, Fisher, MontréaI, 

QC) were inoculated on R2A media (1 826-17-1, Difco) and placed in an incubator 

(Tempcon Incubator, Baxter, Fisher, Montréal, QC) for 15 days at 35°C. Spores were 

collected by rinsing the agar with a sterile phosphate buffer. They were harvested at 

10 000 g for 15 minutes (Bechan J2-HS Centrifuge, Fisher, Montréal, QC), then 

washed with the sterile phosphate buffer. Harvest and washout were repeated twice 

more. The suspension was maintained in a water bath (Fisher Waterbath, Fisher, 

Montréal, QC) at 75°C for 15 minutes and refngerated at 4°C. A single strain of 

environmental isolate (Mille nes River, Ville de Laval, QC) was grown in the same 

conditions. 



4.23.4. Glassware and other materials 

Before each use, the reactor vesse1 (250 mI Erlenlmeyer, Kimax, Fisher, 

Montréal, QC) was soaked for at least 1 hour in an ozone solution with a residual of 

2 mg Od 1 or more. It was rinsed with ~ i l l i - ~ *  water and dried, and then covered with 

aluminium foil to protect it from dust All the test tubes used for sampling or dilution 

were washed with laboratory soap (Versa Clean, 04-343, Fisherbrand, Fisher, Montréal, 

QC), rinsed with ~ i l l i -~@ water, dried and autoclaved. Before their first use, the 60-ml 

polypropylene seringes (Becton Dickinson, Fisher, Montréal, QC) used for stock ozone 

injection were soaked for 24 h in a 100 mg/i chlorine solution, rinsed, and soaked for at 

least 1 h in a 20 mg 03/1 ozone solution. Then, before their use, they were soaked for at 

least 1 h in an ozone solution with a residual of 2 mg 04 or more. They were rinsed, 

dried, and covered with aluminium foil to prevent any dust deposit. 

Ozone residud analyses were conducted following the standard colorhnetric 

method (APHA et al., 1992). The stock solution of indigo was prepared h m  potassium 

indigo aisulp honate (0253 S U ,  Aldrich, Sigma-Aldrich, Mississauga, ON), 

concentrated phosphoric acid (A242-1, Fisher, Montréal, QC) and anhydrous 

monobasic sodium phosphate (S374-500, Fisher, Montréal, QC). We used Reagent Il, 

prepared with the same chernicals. A 1 5  or 1:4 dilution of Reagent II was prepared in 

order to obtain greater decoloration of the solution for better precision in the ozone 

residual detennination. Samples were analysed at 600 nm with a Spectronic 401 (Milton 

Roy, Fisher, Montréal, QC), in a quartz ce11 of 1 cm light path (14385902C, HELLMA, 

Fisher, Montréal, QC). 

Spore viability measurements were taken following the procedure described by 

Barbeau (Barbeau et al., 1997). This technique is based on a membrane filtration of 

diluted samples. The 0.45 pm porosity filters (HAWG04753, Millipore Co., Bedford, 

MA) were placed in Petri dish-pads (PD1004755, MiIlipore Co., Bedford, MA) 

saturated witb 1.5 ml of TSB nutrient broth (Becton Dickinson, Fisher, Montréal, QC). 



These were then placed in a water bath (Fisher Waterbath, FisherScientific, Fisher, 

Montréal, QC) at 75'C for 15 min to promote germination, and incubated at 35°C for 24 

h. Each sample was analysed in duplicate over two decimal dilutions. Results are given 

in unity forming colonies (UFC)/ml. 

423.6. Statisticai anaiysis 

AU resuIts were andysed with Statistica 5.0 (Statsoft, Tulsa, OK). Ozone 

decomposition (decay rate) and inactivation kinetics (model's parameters) were 

analysed with non-linear regression of experimental data. 

4.2.3.7. Experimental procedure 

AU experiments were conducted at room temperature. A spore suspension was 

added to the reactor vessel containing about 200 ml of sterile buffered water to reach an 

average spore concentration of  IO"/^. This suspension was gently stirred for 10 

minutes to increase homogeneity in the reactor. A predetennined volume of the ozone 

stock solution wu then added. Just after the addition of the ozone, the stock solution in 

the vessel was flash-mixed for 3 or 4 seconds to rapidly disperse the ozone. The short 

flash-& period will have resulted in the rapid Ioss of some of the dissolved ozone to 

the gas phase, since the reactor was not head-space-free. This loss was q ~ a n ~ e d  by 

testing the degasing of ozone in the gas phase within the fmt  15 seconds after the 

addition of the stock solution, for both buffers, at each pH and for doses applied in the 

range used for the inactivation experiments. Figure 4.1 shows the ozone residuals 

rneasured after 15 seconds plotted against applied ozone doses. Values for both pH 

values are well within the regression iines. These iinear regressions aliowed a better fit 

of exponential decay to Our ozone residual data, and thus a better determination of the 

fmt-order decay constant k*. 

At predetermined contact times, samples were taken via a ~ef lon@ tap placed at 

the bottom of the reactor. A volume of I ml was taken with an Eppendorf mass 

calibrated pipette (mode1 48 10, 1Oe 1000 pl) for the ozone residual analysis (APHA et 

al., 1992). Unlike Hunt (Hunt et Marinas, 1997), we found no significant interference 



due to micoorganisms for the spectrophotometric ozone residual analysis (pd.05). A 

volume of 1 to 10 ml was taken with a polypropylene s e ~ g e  for the spore viability 

anaiysis (Barbeau et al., 1997). This sample was quenched with 1 ml of a 10% (w/w) 

sodium thiosulfate solution (SS364-1, Fisher, Montréal, QC). Throughout the 

experiments, the solution in the reactor vesse1 was stirred with a Teflon-coated stir bar 

and a magnetic stirrer (Mode1 120 MR, FisherScientinc, Fisher, Montréal, QC). 

1 2 3 4 
Applied ozone dose (mg 03n) 

Figure 4.1 : Relationships between measured ozone residuals at 15 seconds of contact 
time and applied ozone doses, in phosphate buffer ( ) and in borate b d e r  (m), for pH 

6.3 and pH 8.2 

4.23.8. Inactivation modets and Ct caiculations 

The Surface Water Treatrnent Rule CCJSEPA) uses the Chick-Watson law 

(Equation 4.1) to define the Cl' required to obtain a certain inactivation Ievei of Giardia 

cysts and other microorganisms. Adjustments are made depending on the pH, the 

temperature and the oxidant used in water treatment plants: 

where n is the dilution coefficient, and k depends on the microorganism. 

Several authors have questioned the ability of this mode1 to describe inactivation 

since deviations from this law are frequently observed (Haas et Joffe, 1994; Finch et al.. 



1988; Labatiuk, 1992). Furthemore, hypotheses underlying the model are not aiways 

verified (Barbeau, 1996). Hom proposed another model which describes the kinetics of 

inactivation better (Equation 4.2). Finch et ai., found this model to be more precise in 

the description of non-linear inactivation curves and in the prediction of inactivation 

levels (Finch et al., 1994). The improvement results fiom an additionai parameter, rn, 

which takes into account the relative weights of C and T. This is particularly useful for 

fitting the varying inactivation kinetics found for Giardia cysts and Cryptosporidizun 

oocysts, as dernonstrated by (Finch et al., 1994). 

One of the assumptions of this model, common to the Chick-Watson equation, is 

that the concentration of oxidant remains constant over t h e ,  which does not hoId in the 

w a  ûf üzüïi~. Dep~nBing on the type of reacror (nycirauïic or injection), (Lev et Reg& 

1992) proposed using a single-value approximation for the ozone residual. But the use 

of a single value estimates the acnial dose for the microorganism's inactivation. In 

1994, assuming a fmt-order decay, Haas integrated the ozone decomposition kinetics in 

the inactivation model (Equation 3): 

where Co is the applied ozone dose; k* the first-urder decay constant: and n, rn and k the 

three parameters of the mode1 maas et Joffe, 1994). As described by Haas, the use of 

this model requires: (1) the detennination of the k* value, and (2) the adjustment of the 

parameters n, rn and k (Haas et al., 1995). Barbeau appiied this model to the data of 

bacterial spore inactivation with chlorine. It was found to give significantly higher 

estimates of CT values than the Chick-Watson law. In spite of k ing flexible, it was not 

weU adapted to changes in experimental conditions, especially temperature, and showed 

great sensitivity to a change in the k* value (Barbeau, 1996). Haas showed better results 

when using a fured k* value instead of treating it as a parameter: lower error sums of 

squares were obtained in the fit with inactivation data (Haas et Joffe, 1994). 



This mode1 was used to calculate the ozone inactivation CT for the spores of 

B. subtilis and of the environmental strain. The Chick-Watson equation was also used, 

but for cornparison purposes only. 

4.2.4. Results and discussion 

4.2.4.1. Ozone decomposition and CT computation method 

Batch experiments were conducted at room temperature (20°C), under 

conditions listed in Table 4.1. 

Table 4.1: S U I I ~ I L ~ ~  of transferred ozone dosage ranges (mg 03/1) investigated to 
determine the inactivation kinetics of spores of B. subtilis and of an environmental 

strain in aqueous conditions using a batch reactor 

Borate buffer 1 B. subtilis 0.45-1 1-4-2.34 

Phosphate 

buffer 

As shown in Figure 4.2 and in accordance with other studies (Haas et Joffe, 

1994; Labatiuk, 1992), ozone decomposition kinetics were described welI by a fmt- 

order decay model: 

C = c&'*~, (4.4) 

where k* is the first-order constant which was determined for each plot of residual 

ozone against time using a non-linear regression (least squares rnethod). As observeci in 

Figure 4.2, ozone decomposition rates increased with increasing pH, and this translates 

into a larger value of k*. 

B. subtilis 0-45- 1.16 1.16-2.63 

Environmental isolate 0.45- 1.29 1.1 1-2.04 



Contact time (min) 

Figure 4.2: Typical ozone decomposition curves obtained in phosphate buffer at pH 6.3 
(m) and pH 8.2 (Li), at 20°C in a batch reactor 

Àppiied ozone dosage, pH, temperature and radical hydroxyl scavengers have 

been reported as the major factors driving the kinetics of ozone decomposition (Doré, 

1989; Labatiuk et al., 1992). The results of the ANOVA on our decomposition data also 

demonstrate that pH and applied ozone dosages were the significant factors afEecting 

the decomposition rates, under out- experirnental conditions (p<0.05). In the range of 

buffer ionic strength used, the buffer was not found to be a significant factor by Gurol 

and Singer (1982). On this basis, a single common k' value was used for each pH, 

computed on the complete data set, including al1 tests using either the borate or 

phosphate buffers. Cornbined k* values of 0.059 min" and 0.34 min-' were used for pH 

values of 6.3 and 8.3 respectively. These values compare well with the value of 0.073 

min'' reported by Haas at pH 6.9 for laboratory water in a batch reactor operated at 

18°C (Haas et al., 1995). Additional testing in the laboratory showed that the presence 

of spores (IO"' log/ml concentration) did not alter the k* value in the phosphate buffer 

at either pH level. 

Typical spore inactivation curves obtained in the phosphate buffer at pH levels 

of 6.3 and 8.2 are ploned on Figure 4.3. Most inactivation cuwes of B. subtilis included 

a lag phase whose duration decreased with increasing ozone dosage and higher pH. The 



inactivation curves at pH 8.2 showed some tailing behaviour at lower applied ozone 

dosages. After 8 to 10 minutes of contact time, only very low residuals were present 

following rapid ozone decay, and very linle incremental spore inactivation was 

measured. 

CT calculations were computed in two steps: e s t ,  the parameters (k, n and m) of 

the inactivation mode1 were estimated for each set of data combining results from 

several tests (buffer, pH and bacterial strain) using the best-fit least-squares method of 

non-linear regression (see Table 4.2). CTs were then computed for 2, 3 and 4 log of 

inactivation assuming the precision on parameter determination to have been 

acceptable. 

-5 1 
I 

I 1 1 1 l 1 

O 2 4  6 8 1 0 1 2  

Comct tirn: (min) 

Figure 4.3 : Typical inactivation curves for spores of B. subtilis, in  phosphate buffer, at 
pH 6.3 (m) and pH 8.2 ( i l ) ,  in a batch reactor at 20°C. (Applied ozone dose in mg 0311)  



Table 4.2: Summary of the kinetic parameters for the Hom model with exponential 
decay of ozone residual, conducted in a batch reactor at 20°C 

B. subtilis 

Phosphate, pH = 6.3 

Phosphate, pH = 8.2 

Borate, pH = 6.3 

Borate, pH = 8.2 

Environmental isolate 

Phosphate, pH = 6.3 

Experimental 
condition 

Phosphate, pH = 8.2 1 0.81 f 0.12 1-18 20.17 1.05 k0.1 

k n rn 

The parameters of the rnodified Hom model are given with the standard 

deviations provided by ~tatistica? By varying each parameter within its standard 

deviation, it was possible to compute the lower and upper bounds for the predicted 

curves. As shown in Figure 4.4, such calculations resulted in unrealistic variations. It is 

important to consider that the precision of the model is not directly related to the 

extreme values of the parameters, but to its ability to describe accurately experimental 

data. From our experience, experimental and predicted values (in terms of log of 

inactivation) were always within satisfactory bounds in the region of interest (2 to 4 

log) - 

4.2.4.2. Resuits of inactivation kùietics 

Figure 4.5 sumarizes the values computed with the modifed Hom mode1 

(exponential decay of ozone residual) for B. subtilis and the environmental strain, in 

both buffers and at both pH levels. 



Temps de contact (min) 

7 Environmenta1 strain 

Figure 4.5 : CT calculated with Hom mode1 with exponential decay, for B. su6iiii.s and 
an environmental strain, in phosphate (solid lines) and borate (dashed lines) buffers, in a 

batch reactor at 20°C 



One cannot help but notice the non-linearity of the results obtained at pH 8.2 

given by the modified Hom model. This is in accordance with published results (Finch 

er al., 1994a; Haas er al-, 1995; Hunt and Marinas, 1997). 

The spore inactivation CT vaIues of 3.15 and 3.96 rng.min/l for 2 and 3 log 

respectively can be compared to various published CT values for the inactivation of 

spores and (oo)cysts. Several factors may influence the estimation of the CT value: the 

test water, the type of reactor, the presence of radical scavengers, the nature and state of 

the test organism and the method of detection. 

Our ability to compare CT values was limited given the significant difference in 

experimental procedures and the lack of complete information regarding the detailed 

experimental protocols. Lytle et al. (1996) srudied the pilot-scale ozonation of 

indigenous endospores and calculated a CT value of 19 mg. min11 for 2 log inactivation. 
".- --- Xari pii, iemperature, turbiciity ana aikaiiniry were 8-05, a . a W L ,  Û.43 ntu anci 

59 mg CaC03A respectively. The Chick-Watson equation was used. Different reactors, 

experimental conditions and mathematical models limit the cornparison that cm be 

made. Depending on the organisms tested, higher pH and temperature may be 

responsible for higher CT values (Wickramanayake et a!., 1985). Turbidity as a 

protective effect and though increases the CT values (Labatiuk et ai., 1992). 

Our CT values for aerobic spores are significantly higher than the values of 0.63 

and 2.4 mg.rnin/I for G. lamblia cysts and 0.95 and 3.27 mg.min/l for C. pamm 

oocysts at pH 6.9 (Finch et ai., 1994a). Haas et al. (1995) reports a value of 0.33 

mg.min/l for 2 log inactivation in natural water (0.26-1.48 NTU, 1.0-1.7 mg/i TOC, pH 

7-7.2, 4-16OC). while Wickramanayake et al. found 0.27 mgmidl for 2 log inactivation 

at pH 7 (Wickramanayake et al., 1984). Peeters et al. report a CT value of 6.66 

mgmidl for 4 log inactivation of C. p a m m  oocysts; pH and temperature are not 

specified (Peeters et al., 1989a). 

Finch et ai. (1994) and Haas et al. (1995) used batch reactors and animal 

infectivity to assess CTs, while Wickramanayake et al. used a semi-batch reactor (gas 

bubbling) and in vitro excystation (Wickramanayake et aL, 1984). Gas bubbling 



provides a constant residual in the reactor (in this case, the dose urilised was not given), 

instead of the exponential decrease in concentration found in a batch reactor. In vitro 

excystation may overestimate viability (Black et al., 1996). As for inactivation in 

natural waters, organisms are protected by turbidity and organic matter (Labatiuk et al., 

1992), therefore Cï values are expected to be higher than in laboratory waters for 

equivalent conditions of pH and temperature. 

When comparing our CT fesults with those published for protozoan cysts, it 

appears that B. subtilis is a conservative surrogate for protozoan (oo)cysts since its Cf 

values exceed those for G. lamblia or C. p a r v m  cysts by a factor of 0.96 to 1 1. 

42.43. Influence of pH and b a e r  

It is weIl hown that pH is an important factor in the ozone decomposition 

process at pH values over 4 (Doré. 1989: Gurol et Singer, 1982). Since m^!ecdi cznne 

is a more effective biocide than free hydroxyl radicals, the latter k ing  short-lived and 

non-selective (Bablon et aL. 199 1 ; Hoigné et Bader, 1979), pH will directly influence 

C T s .  Published CT results were obtained using various buffers and b d e r  combinations 

in order to adjust and stabilise pH, and to provide varying levels of radical scavenging. 

One of the main objectives of this study was to investigate the impact of two 

combinations of buffers and pH values on aerobic spore inactivation. 

The ranges of ozone dosages applied were adjusted depending on the pH teste& 

since lower ozone doses were required at lower pH to achieve a given inactivation level. 

This is the direct result of the lower decomposition rate of ozone at lower pH. 

Molecular or direct oxidation takes place at low pH, whereas ozone rapidly decomposes 

at higher pH values (Farooq et al., 1977). 

Untike Farooq (1977) who found that pH had mi'inimal effect on inactivation 

kinetics, we came to the opposite conclusion on comparing results obtained in both 

buffers. As shown in Figure 4.6, the inactivation rates were greater at lower pH, and CT 

values at pH 6.3 were systematically lower than those found at pH 8.2. For instance, 

with an applied dose of 1.16 mg Ofl, the time required for 2 log of inactivation was 2 



min at pH 6.3, and more than 15 min at pH 8.2 (see Figure 4.6). Labatiuk also found 

that pH is a significant factor in a batch reactor (Labatiuk et al., 1992). whereas Farooq 

(1977) used a semi-continuous reactor (continuous gas-bubbling), thus allowing no 

decrease in the ozone residual. 

Figure 4.6: CT values for B. subtilis at pH 6.3 (dashed lines) and pH 8.2 (solid lines) in 
phosphate buffer for the same applied ozone dose of 1.16 mg 03/1, in a batch reactor at 

The fact that pH strongly influenced Our results contradicts the current 

assumption made by the USEPA that pH does not have a great impact on the 

inactivation rates for G. l a m b h  using ozone. The CT values for B. nrbtdis at pH 8.2 

range fkom 2.73 to 3.25 fold higher than those found at pH 6.3. The impact of pH was 

also noted for the environmental isolate, although it was not as pronounced for the high 

levels of inactivation. Even though most of this difference can be explained by the need 

to compensate ozone decay by increasing the applied dosage and by the poor 

inactivation eficiency of ozone decomposition by-products, it rnay be hypothesised that 

shifts in pH may alter the charges at the organism's outer surface and possibly its 

reactivity and permeability to ozone (Wickramanayake ei al.. 1981). 

The results obtained with the phosphate and borate buEers were not expected to 

differ very considerably, since neither buffer is considered to alter the rate of ozone 

decomposition. Phosphate can have a significant retardation efFect on the rate of ozone 



decomposition, at least when the phosphate concentration is sufficiently high 

(p = 1.0 moV1) (Gurol and Singer, 1982). However, the phosphate buffer was used in 

lower concentration (p = 0.02 rnoVI) and no significant impact of the buffer was 

expected. When comparing the CT obtained in the phosphate and borate buffers, we 

observe two trends: CT values are lower in the phosphate than in the borate buffer at 

pH 6.3, whereas the opposite trend is noted at pH 8.2. These trends are counterintuitive, 

since the phosphate buffer could have some small retardation effect on ozone 

decomposition at high pH, rnaking molecular ozone is more available, and resulting in 

slightly lower CTs. 

At low pH, it may be possible that the law small concentration of radical 

scavengers provided by the phosphate buffer contnbutes somewhat to slower ozone 

decomposition. At higher pH, as shown in Figure 4.7, the gap tends to lessen as the 

ozone uosage increases, the smaii quantity of scavengers becomtng insignitkant. Since 

the presence of scavengers should Iead to lower CTs, the differences between the results 

using the two buffers may also be caused by the impact of the buffer on the surface 

charges of the organisrns. This assumption is supported by the observations we made of 

the colonies after the incubation of the Petri dishes. There were significant differences 

in the aspect of the grown colonies depending on the buffer in which their spores had 

been ozonated. 

(Hoigne and Bader, 1976) estimated that hydroxyl radicals represent 50% of the 

decomposed ozone at pH 8. Although O r  radicals may contnbute to inactivation, their 

presence, even in high concentration at high pH, does not contnbute significantly to the 

inactivation of spores. Therefore, the inactivation process is mainiy due to direct or 

moiecular oxidation. This conclusion is consistent with those of other studies (Hoigne 

and Bader, 1976; Hunt and Marinas, 1997). Indeed, authors who stated that radicals 

were the proper oxidative agents (Dahi, 1976; Goepfert et al., 1995) were operating in 

different conditions where radicals were the only oxidative agents actualiy present in 

the reactor (ozone and H202 were decomposed by ultrasonic treatment or the addition of 



respectively). However, in the generai case, when the two species are present, molecular 

ozone is the preponderant oxidative agent. 

l 0 q ,  4 log 
m 

Figure 4.7: CT values against ozone dose obtained for B. subtilis, in phosphate buffer 
(solid h e s )  and in borate buffer (dashed lines) at pH 8.2, at room temperature in a 

batch reactor 

4.2.4.4. Influence of the strain 

The environmental strain isolated fiom surface water was less resistant to ozone 

than the reference strain of B. subtilis, as shown in Figure 4.8. For both pH levels tested 

in the phosphate buffer, the inactivation curves did not include a lag period: after 1 min 

of contact tirne, inactivation levels reached between 1.13 and 1.9 log at pH 8.2, and 

between 0.15 and 1.07 log at pH 6.3. However, as shown in Figure 4.8, as the applied 

ozone dosages increase, the CT values for a given inactivation leveI merge. 
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F- ripure 4.6.  CT vaiuos ubiaitieii rilr rekreriçe sirain OCS. subiih (~ùl iU lifis~j aiid 
environmental strain (dashed lines) in phosphate buffer at pH 8.2, at room temperature, 

in a batch reactor at 20°C 

Barbeau studied the inactivation of spores of B. subtilis and of two 

environmental strains by chlorine and found B. subtziis to possess an intermediate 

resistance (Barbeau, 1996). Miltner el al. studied pilote-scale ozonation of C. p m m  

oocysts and an environmental population of aerobic spores in naturai waters. He found 

that the environmental population of spores was more resistant than protozoan cysts, but 

only beyond 2 min (Miltner et al., 1997). 

Although the environmentai strain was expected to be more resistant, several 

hypotheses can account for our results. Inactivation with ozone results fiom membrane 

damage and not fkom DNA darnage (Finch el ai., 1994a; Kornanapalli el al., 1995), 

although protein and nucleic acid leakage may be observed as a result of  membrane 

disruption (Komanapalli el al., 1995; Popham el al., 1995). As hypothesised by 

Wickramanayake, differences in membrane constituents can lead to variations in ozone 

permeability or pH sensitivity (Wickramanayake et al., 1984). This last hypothesis is 

supponed by observations we made that both strains had similar responçes to ozone at 

pH 6.3 where differences in CT values were not significant. The environmental main 



was much less resistant than B. subtilis at pH 8.2 compared to B. subtilis. According to 

Langlais et Perrine, the components of the outer structure attacked by ozonation shouid 

be of mucopolysaccharidic nature, while resistant structures should be of a ceMosic 

nature (LangIais et Perrine, 1989). FinaiIy, the vitalistic theory states that a population is 

h e d  by individuds with varying resistances (Cerf, 1977)- It is feasibIe to believe that 

various strains may produce outer structures of various compositions. The 

environmental isolate we used for our study may not be representative of the overall 

resistance of an environmental assemblage of various species. Moreover, the 

environmental conditions causing spodation may influence the nature of the spore's 

outer shell (Setlow, 1994) . FinaUy, the age of the strain may be relevant since the 

environmental strain was younger than the B. subtilis srrain (3 and 9 months 

respectively). Wickramanayake mentioned no "age protective effecty', but for a 17-day 

period on1 y (Wicb-m-anay&e et n!. , 1985). LTnf~mxnatdy, e-_r d l t a  cstnnct ~lhstrntiat~ 

any of those hypotheses and additional research is needed to investigate these effects. 

4.2.45. Muence of the inactivation rnodel 

The modified Hom model is the better choice for assessing CT values with an 

oxidant charactensed by rapid decay (Barbeau, 1996; Haas et Joffe, 1994). The 

integration of oxidant decay in the inactivation rnodel provides a better description of 

the kinetics of inactivation. In order to compare our results with the CTs published by 

the SWTR (USEPA) for Giardia cyst inactivation, the Chick-Watson model was 

applied to our data. The results presented in Figure 4.9 show that the Chick-Watson 

model systematicaily underestimates the CT values required for a given inactivation 

level compared with CT values estirnated with the Hom model including the 

exponential decay of ozone (56% on average in the phosphate buffer). This effect is not 

as acute at pH 6.3 (2796 on average), since ozone decay is slower than at pH 8.2. At pH 

8.2, results provided by the Chick-Watson model were absurd, CT values decreased 

with increasing inactivation level. For exampie, in the phosphate buffer, CT values for 

B. subtilis were 1.78 mgmidi for 2 log inactivation and 0.9 mg.minn for 



B. szibtilis were 1.78 mg.min/l for 2 log inactivation and 0.9 mg-midl for 4 log 

inactivation. This is the result of using the residual at a given contact time rather than 

the dose utilised (which is the mathematical integration of exponential decay of the 

applied dose). Our resuIts highlight the inability of the model to describe inactivation by 

an oxidant with a rapid decay. 

The effect of pH is not considered to be significant under the USEPA STWR 

guidelines for the inactivation of G. lamblia. Based on the results of Wickramanayake 

(Wickramanayake et al., 1985) who worked at pH 6.9, the published value is 

0.72 mg.rnin/l for 3 log, and values for 2 and 4 log are deduced by linear extrapolation: 

0.48 and 0.96 mg.min/l respectively. We found 2.25 mg.min/l for 2 log and 2.99 and 

3.56 mg.min/l for 3 and 4 log respectively, in the phosphate buffer. 

Ct (mg-min/l)-Chick-Watson model 

Figure 4.9: Cornpanson of predicted CT values for B. subtilis using Hom model with 
exponential decay and Chick-Watson mode1 at pH 6.3 (0) and at pH 8.2 (a) 

Even if the Chick-Watson model is not appropriate for descnbing inactivation 

by a decaying oxidant, the cornparison between the CT of G. lamblia published by  the 

USEPA and our results shows that the resistance of B. subtilis is a conservative 

prediction of the resistance of the protozoan cysts (only results at pH 6.3 are 

considered) . 



Even though the Hom model using exponential ozone decay was statistically 

significant, as evaluated by the l e s t  squares method, for predicting CT values, it 

systemaîically overestimated the inactivation Ievels observed during our experiments. 

Its best predictions were for 3 log inactivation. Even with the flexibility given by three 

model parameters, it did not adequateiy describe the inactivation of bacterial spores 

under the experimental conditions tested Another weakness of this model is its high 

sensitivity to adequate kinetic decomposition data 

In conclusion, the most cornrnonly used rnodel (Chick-Watson) does not 

describe the inactivation of bacterial spores. The Hom model including exponential 

decay of ozone remains the best rnodel to consider for its ability to describe both 

shoulder and taiLing behaviours, but its lack of precision imp1ies that a customised 

model should be developed for accurate description of resistant microorganism 

inactivation. 

4.2.5. Conclusions 

General concIusions may be drawn from this study: 

- The resistance of B. subtilis provides a conservative estimate of the 

resistance of protozoan (oo)cysts in batch inactivation testing. Estimates 

computed using the Hom model with exponential decay gave simcantly 

higher Cï values than those reported in the Iiterature for protozoan 

(0o)cysts. 

- For both pH Ievels investigated, the kinetics of ozone decomposition were 

found to fit a fmt-order decay model, the rates of ozone decomposition 

being greater at higher pH. 
- The inactivation of bacterial spores is rnainly due to molecular oxidation. 

AIthough radicafs do possess an oxidative effect, their contribution to 

inactivation appears limitecl. 



- For both bacteriai strains tested, the inactivation rates were sipificantly 

greater at pH 6.3 than at 8.2, because of the slower ozone decomposition at 

lower pH. This conclusion goes against the USEPA CI' guidelines for 

Giardia inactivation and suggests that the impact of pH should be 

reconsidered. 

- The environmental isolate was less resistant to ozone than the reference 

strain of B. subtiIis. This implies that the resistance of aerobic spores could 

Vary fiom one source to another, or even within a year for a given source, 

reflecting variations in the species composition. 

- The modÏfied Hom mode1 remains the more appropriate mode1 to describe 

the kinetics of inactivation by ozone. The Chick-Watson equation is not 

diable since it does not describe either shoulder or taiIing behaviours, 

wbjçh we c~rnrnody & e ~ &  fc the b ~ f i v ~ ~ c  cf -?-y-- 

- Bacterial spores could be considered as a promising indicator of encysted 

protozoan inactivation in full-scale treatment plants. The measurement 

technique is simple, cheap and does not require highly skilled technical 

personnel. Nevertheless, severd issues remain to be addressed, such as: the 

variability of resistance of the nanval assemblage of spores present in a 

given water source and the difference in resistance between populations of 

aerobic spore-formers f?om different water sources. 
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Chapitre 5 

Conclusions et recommandations 

5.1. Synthèse des résultats 

La détection directe et la récupération des (oo)cystes de protozoaires relevant de 

techniques laborieuses et coûteuses, la détection indirecte de ces organismes pathogènes 

semble demeurer la meilleure alternative pour les producteurs d'eau. A ce titre, les 

bactéries sporulantes aérobies présentent des avantages qui en font un indicateur 

potentiel de choix : 

- présence en grande concentration dans les eaux ; 

- facilité de détection et de récupération ; 

- déveIoppement possible comme analyse de routine en laboratoire de 

contrÔIe ; 

- grande résistance aux divers traitements d'une filière de traitement d'eau 

potable. 

L'inactivation chimique demeure une étape essentielle dans la filière de 

potabilisation de I'eau, puisqu'elle constitue la dernière barrière de protection du 

consommateur avant le réseau de distribution. En ce qui a trait à l'ozone, son pouvoir 

oxydant supérieur à celui des autres produits couramment utilisés lui confère de grands 

avantages, surtout dans le cas de l'inactivation d'organismes très résistants comme le 

sont les (oo)cystes de protozoaires. 

Dans le cadre de l'évaluation des bactéries sporulantes aérobies comme 

indicateur de l'abattement des (oo)cystes de protozoaires potentiellement présents dans 

I'eau, I'étude menée constitue une première étape pour la caractérisation de leur 

résistance à I'ozonation. 

Dans un premier temps, les essais menés en laboratoire, dans un réacteur en 

cuvée, ont permis de préciser la cinétique de décomposition de I'ozone moléculaire. 



Celui-ci 

résiduel 

est caractérisé par 

d'ozone est donc 

un taux de décomposition du premier ordre. L'évolution du 

décrite par une décroissance exponentielle en fonction du 
3 temps. D'autres auteurs ont rapporté des cinétiques de décomposition d'ordre 2, /2 ou 1 

suivant le pH (d'après Gurol et Singer, 1982) . Ces résultats divergents sont sans aucun 

doute le fait de conditions expérimentales et de méthodes d'analyses différentes. 

L'efficacité d'inactivation par I'ozone augmente avec la diminution du pH. Ce 

résultat est directement lié à la stabilité du résiduel d'ozone et à l'oxydation 

moléculaire : le pH influence le taux de décomposition, qui à son tour influence le 

résiduel d'ozone. Des conditions acides favorisent la stabilisation du résiduel d'ozone et 

donc de l'ozone moléculaire. Il en découle un plus fort taux d'inactivation que dans des 

conditions basiques. 

La chimie de l'ozone en solution aqueuse reste un domaine évolutif dans la 

mesure où !e cycle de décompositirn de !'czor?e mr!écu!aire n'z pzr encore été 

clairement établi. Cependant, les diverses théories s'accordent sur ce point : la 

décomposition, catalysée par les ions OK, produit des radicaux hydroxyles O R ,  espèce 

oxydante hautement réactive mais très peu sélective. En ce qui concerne I'inactivation 

chimique des micro-organismes, les théories, là encore divergent : certains soutiennent 

que l'oxydation est principalement radicalaire, tandis que d'autres la négligent dans le 

processus global. Dans le cas de I'ozonation des spores, il a été démontré que 

l'inactivation provenait essentiellement de l'ozone moléculaire, l'effet de l'inactivation 

radicalaire restant mineur (observée dans des conditions basiques). 

L'ozonation d'une souche environnementale a montré que la nature des micro- 

organismes est un point clé dans le processus d'inactivation. Des temps de latence . 

observés uniquement pour B. mbfilis et des taux d'inactivation plus imporiants pour la 

souche environnementale à des doses d'ozone équivalentes suggèrent plusieurs 

hypothèses pour expliquer ces différentes cinétiques : 

- des réactivités différentes vis à vis de l'ozone, propres à des composants 

membranaires particuliers ; 



- une modification de la charge surfacique des spores en fonction du pH, due à 

une susceptibilité plus ou moins grande des composants membranaires aux 

ions O H  ; 

- des populations constituées d'organismes ayant des résistances variées, 

conformément à ce que suggère la théorie vitaliste (Cerf, 1977). 

Le meilleur modèle pour la description des cinétiques d'inactivation par l'ozone 

est sans conteste le modèle de Hom modifié par Haas : celui-ci intègre la cinétique de 

décomposition de l'oxydant. Cette caractéristique est essentielle dans le cas d'oxydants 

instables, car elle évite les situations aberrantes où l'on obtient des Ct décroissants pour 

des niveaux d'inactivation croissants. Cependant, force est de constater que des lacunes 

restent à combler : le modèle surestime systématiquement les niveaux d'inactivation 

observés et il est très sensible aux variations de ses paramètres, ce qui implique qu'une 

orande préricicn est &cc~s=ke d z s  ! e ~ r  d&~,~mins i~n-  
O----- 

Finalement, si l'on compare les Ct des souches testées aux valeurs rencontrées 

dans la littérature pour les cystes de G. lamblia et les oocystes de C. p m m ,  la souche 

de B. d r i l i s  est entre 0.7 et 11 fois plus résistante que les (oo)cynes de 

protozoaires selon les conditions de pH et les taux d'inactivation considérés. Pour ce qui 

est de la souche environnementale, elle présente une résistance inférieure à celle de la 

souche commerciaIe, mais les mêmes tendances restent valables. 11 semble donc 

raisonnable d'affirmer que les spores de bactéries aérobies constituent un bon indicateur 

de l'efficacité d'ozonation pour l'inactivation des (oo)cystes de protozoaires. Des 

conditions permettant d'obtenir 3 log d'inactivation des spores devraient pemettre 

d'atteindre plus de 3 log d'inactivation de cystes de G. lamblia et d'oocystes de 

C. parnim. 

5.2. Prochaines avenues 

Si ces travaux ont permis de dégager plusieurs conclusions importantes quant à 

l'inactivation des spores par oznation, certains points nécessitent un 



approfondissement pour une meilleure description et une compréhension accrue des 

phénomènes mis en jeu dans des cinétiques d'inactivation. 

A cet égard, le choix d'un modèle d'inactivation est crucial pour la modélisation 

et Ia prédiction des niveaux d'inactivation : il doit être flexible afin de décrire les 

diverses courbes d'inactivation obtenues (voir ANiexe II)' tout en étant robuste face à 

de faibles variations des conditions dans lesquelles il est utilisé. Par rapport à 

l'ensemble des modèles existants, le modèle de Horn modifié par Haas a donné les 

meilleurs résultats pour la description des courbes d'inactivation. Cependant, plusieurs 

inconvénients sont rattachés à son utilisation : 

- il s'est avéré très sensible à de faibles variations de km (taux de 

décomposition de l'ozone) ; 

- il a systématiquement surestimé les taux d'inactivation atteints. 

!! impnrte donc de d&e!qqer Zn mcdkig!e qrii rende  mie^ ccmpte des rlonnCer 

expérimentales, dans le cas d'organismes très résistants. Dans l'optique de l'utilisation 

des Ct comme mesure de la résistance à l'inactivation, une condition paraît cependant 

incontournable : l'intégration du modèle de décomposition de l'oxydant. Celle-ci 

permet de considérer la dose réelle en contact avec les organismes cibles, sachant que 

ne considérer qu'une valeur unique de résiduel introduit nécessairement un biais, 

difficilement quantifiable, étant données les non-linéarités des phénomènes de 

décroissance d'oxydant et/ou d'inactivation. En outre, une étude de la sensibilité du 

modèle par rapport aux incertitudes sur la détermination des paramètres devrait être 

conduite pour s'assurer que le modèle respecte les données expérimentales : 

I'évaluation de la précision d'un modèle ne doit pas uniquement se faire selon des 

critères statistiques, mais doit aussi se baser sur son adéquation avec les données qu'il 

est censé décrire. 

Plusieurs auteurs ont souligné l'inadéquation entre les résultats obtenus en 

laboratoire et ceux observés en usine. Les caractéristiques physico-chimiques de l'eau 

sont en grande partie responsables de la difficulté de transposer les résultats de 

laboratoire aux conditions d'usine. Barbeau (1996) souligne à cet effet de moins bonnes 



performances atteintes par rapport aux enlèvements théoriques attendus pour des 

conditions données. Il importe donc d'étudier le procédé d'ozonation en usine, afin de 

déterminer les facteurs à l'origine de telles déviations. Ces facteurs peuvent être de 

natures différentes : 

- paramètres physico-chimiques : pH, température, matrice de l'eau (turbidité, 

alcalinité, matière organique, etc) ; 

- paramètre microbiologique : souches de spores ; 

- influence de la nature et de l'hydraulique des contacteurs ; 

- conditions d'exploitation : taille des bulles d'ozone, mélange ou non dans les 

contacteurs, etc- 

De façon plus générale, la compréhension des phénomènes régissant 

I'inactivation des micro-organismes par un oxydant donné nécessite d'avoir une vue 

d'ensemble des facteurs influenqant les différents phenomenes mis en cause, ainsi qu'un 

outil adéquat permettant non seulement la description des mécanismes mis en jeu, mais 

encore leur interprétation en fonction des influences qu'ils subissent. 

Enfin, le concept de Ct tel qu'il est utilisé actuellement par I'USEPA, B savoir, 

résiduel x temps de contact, n'est certainement pas l'approche la plus appropriée pour 

décrire la résistance d'un organisme à un traitement. Une notion plus étendue de 

(( combinaisons possibles )) de résiduels et de temps de contact serait peut-être plus 

juste, dans la mesure ou elle serait plus descriptive des conditions dans lesquelles on 

peut ou non atteindre un certain niveau d'inactivation. La Figure 5.1 illustre bien cette 

notion, en montrant comment peuvent se décliner les valeurs de résiduels et de temps de 

contact sur les gammes définies. 

Ces enveloppes (régressions non linéaires établies à partir des Ct) sont 

équivalentes à des Ct évalués à 8,6, 12,9 et 15'6 mg.rnin/I pour 2, 3 et 4 log 

. d' inactivation respectivement (moyennes calculées sur 6 valeurs). Mais 1à encore, cette 

pratique nécessiterait d'avoir à sa disposition des outils parfaitement adaptés pour la 

description des divers mécanismes mis en jeu. 
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Figure S. I: Courbes d'abattement de B. subfilis, pour un niveau d'inactivation donné, en 
fonction de la dose d'ozone appliquée et du temps de contact, dans un tampon phosphate 
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5.3. Conclusion générale 

L'objectif de cette étude était de caractériser I'inactivation de spores 

bactériennes aérobies en fonction de deux paramètres définis (pH et souche bactérienne) 

en calculant leur Ct d'inactivation. Les essais réalisés dans un réacteur en cuvée et à 

température constante ont permis de dégager les conclusions suivantes : 

- une diminution du pH entraîne une augmentation du taux d'inactivation ; 

- l'inactivation par ozonation est essentiellement due à l'oxydation 

moléculaire. L'oxydation radicalaire est présente à pH élevée, mais son 

rendement reste faible ; 

- la souche environnementale testée s'est révélée moins résistante que 

B. sibtilis à I'ozonation ; la nature du micro-organisme est donc un facteur 

clé dans le processus d'inactivation ; 

- le modèle de Hom modifié par Haas (prise en compte de la décroissance 

exponentielle du résiduel) donne de meilleurs résultats que le modèle de 



Chick-Watson pour la description des cinétiques d'inactivation et la 

prédiction des Ct ; cependant, le modèle n'est pas bien adapté à la 

description de cinétiques d'inactivation dans le cas d'organismes très 

résistants ; 

- la comparaison des résultats obtenus pour les deux souches bactériennes 

avec les valeurs publiées pour les (oo)cystes de G. Iamblia et C. p u m m  

suggère que les spores bactériennes aérobies constituent de bons indicateurs 

de ces organismes pathogènes. 

Dans le cadre de la recherche d'un indicateur des (oo)cystes de protozoaires, les 

résultats obtenus sont très encourageants et se placent dans la lignée de ce qui a été fait 

dans le cas de l'inactivation par le chlore ou de l'abattement par des procédés 

physique- ; cependant, ils ne. mnstituea qu'une etape d'un travail de plus longe  

haleine dont l'urgence est de  plus en plus grande, comme en témoigne I'avis de bouillir 

du mois de juillet sous lequel près de quatre millions de consommateurs de la ville de 

Sydney sont toujours placés, au moment de rédiger ce mémoire. 
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Annexe 1 

Différentes méthodes de préparation des 

suspensions bactériennes 

Le tableau ci-après présente un bref aperçu de différents protocoles utilisés pour 

obtenir des suspensions de plusieurs micro-organismes : E. coli, cystes de Giardia et 

oocystes de C~yptosporidium ou encore des spores de bactéries sporulantes aérobies. 



Auteur Micro- 
organismes 

Milieu de 
culture 

Procédure de 
nettoyage 

Mise en 
suspension 

(Barbeau et 
al., 1997) 

NA, 10 jours 
environ 

- -  

+ répété 3 fois : 
- lavage avec tampon 
phosphate 
- centnfùgation, 
10000 g, 10 min 

- suspension de spore: 
et cellules 
dans eau déionisée 
stérile 
- chauffage I O  min à 
80 OC = spores 
- 3 lavages 
- centrifiigation 

2.0 ml de suspension 
centnfùgation 
7500 g , 10 min 
1 lavage 

- - - - - - - - - 

tampon 
phosphate, a 
4OC 

(Broadwater 
~t al., 1973) 

milieu de 
sporulation, 
incubation 12 h 
à 30°C, 
agitation 

500 ml d'eau 
déionisée 
stériIe 

vigoureuse 

E. coli inoculé d'agar 
nutritif dans 
TSB; incubation 
(1 8 h, 35"C), 
puis autre 
incubation dans 
TSB 

tampon 
phosphate 
0.05 M 

- - 

Finch et ai., 
1993 a) 

oocystes de 

Crypospori- 
riium 

Ib) 

lavage 
ventrifbgation 9 10 g, 
15 min 

eau ~ i l l i - Q @  

Finch et al., 
.993 b) 

kystes de 

5. lm b lia 

:cl 

+ répété au moins 3 
rois : 
- lavage avec eau 
~illi-Q" 
- centrifiigation 500 g, 
10 min 

E. coli nutrient agar 
18h, 35°C. puis 
Difco nutrient 
broth 

200 ml de 
solution 
tampon 



Auteur 

(Kawamura 
et al., 1986) 

(Labatiuk, 
1993) 

(Owens et 
al., 1994b) 

(Owens et 
al., 1994a) 

(Ricklo E, 
1987) 

Micro- 
organismes 

- -  

BSA 

kystes de 
G. muris 

kystes de 

G. rnziris 

(4 

oocystes de 
C parvzirn 

bactéries 
hétérotro- 
phes (a) 

- C. sporoge- 
nes 

Milieu de 
culture 

standard 
method agar 

Brain Heart 

Infusion Agar 

incubation 72h 
puis filtration à 
travers du coton 
stériIe 

Procédure de 
nettoyage 

- - 

eau stérile distillée 2 
fois 

+ répété 3 à 5 fois : 
- lavage dans eau 

~ i l l i -Q"  
- centrifugation 6000 
g, 10 min 

- série de tamis (20, 
40, 100, 250) 
- flottation dans 1 ,O M 
sucrose 
- 2 lavages au Tween 
20, 0,Ol % (v/v) 

- gradients de sucrose 
a 1,O et 0,85 M, à 
1200 g, 10 min 
- gradient au PercolI 
isopycnic 

- vortex dans 5 mi de 
tampon 
- phosphate (0,05 M), 
PH 7 

+ répété 3 fois : 
- centrifugation, 
18800 g, 20 min 
- culot suspendu dans 
le même voIume d'eau 
stérile 

Mise en 
suspension 

tampon 
phosphate 
pH=7,2 

eau Milli-Q" 
à 4°C 

entre 18 et 
48 h (*) 

eau distillée, 
à 4OC, 5 
jours 
maximum 

tampon 
phosphate + 
pénicilline et 
streptomyci- 
ne a 4°C 

tampon 
phosphate 
0,05 M (***) 

suspension à 
80°C, 20 min 
puis stockée 
au fiais 



Auteur 

-- 

(Venczel et 
al., 1997) 

:Wickraman 
iyake et al., 
1984) 

yickraman 
iyake et al., 
1985) 

kystes de 

G. kmb?!h 

(dl 

Micro- 
organismes 

kystes de 

G. rnzrris 

(a 

Milieu de 
culture 

Procédure de 
nettoyage 

Duncan-Strong 
sporulation 
medium, 42°C 

- filtration 
- centrifugation dans 
soiutions de 
sucrose et Percoll 
isopycnic 
- lavage dans eau 
saline (0,196 de sérum 
d'albumine bovine) 
isolation par flottation 
dans une solution de 
sucrose lM 

Légende : 

(a) : souche environnementale ; 

(b) : souche cornmerciale ; 

(c) : Eces animales ; 

(d) : fèces humaines ; 

-filtration et 
centrifugation 
- lavage du culot avec 
polysorbate 20 

- gradient de sucrose 
et lavages avec eau 
distillée 
- filtration 2 fois 

(25 ~ r m )  

Mise en 
suspension 

(**> 

I ml de 

tampon 
phosphate 

:au distillée, 
SOC,  7 jours 



(*) : contrôle qualité : mesure de l'absorbance à 260 nm d'une suspension de 4 

log/ml de kystes ; seules les suspensions ayant une absorbance inférieure à 0,03/cm sont 

utilisées (260 nm est la longueur d'onde avec laquelle le résiduel d'ozone est analysé) ; 

(**) : les suspensions utilisées contiennent au moins 95% de spores et sont 

exemptes d'agrégats visibles ; 

(***) : les suspensions sont filtrées sur dzs membranes en polycarbonate de 

porosité 8,s ou 3 pm pour éliminer les agrégats. 



Annexe II 

Courbes d'inactivation de B. subtilis et de la 

souche environnementale testée 

Cette annexe présente les courbes d'inactivation obtenues pour tous les essais 

réalises. Les courbes donnent le log d'enlèvement de la souche testée en fonction du 

temps de contact. 
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Temps de contact (min)  

Figure II. 1 : Souche de B. mbti[is, tampon phosphate, pH = 6.3 

1 Temps de contact (in in) 

Figure II. 2: Souche de B. subtilis, tampon phosphate, pH = 8.1 
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Figure II. 3: Souche de B. mbtiliv, tampon borate, pH = 6.3 
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Figure II. 4: Souche de B. szrbtilis, tampon borate, pH = 8.2 
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Figure II. 5: Souche environnementale. tampon phosphate. PH = 6.3 
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Figure II. 6:  Souche environnementale, tampon phosphate, pH = 8.2 




