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Résumé

Ce mémoire de maitrise vise & couvrir I’ensemble des techniques de normalisation
actuellement utilisées dans le domaine de la vérification du locuteur et de proposer
certaines nouvelles techniques qui semblent, & la lumiére des résultats obtenus et
présentés, permettre une amélioration de la qualité des systémes de vérification du
locuteur. Ce document vise aussi & décrire clairement les algorithmes utilisés pour le

traitement de signal et la modélisation des paramétres extraits de ce signal.

Les locuteurs utilisés comme imposteurs n’avaient pas d’intention délictueuse a
priori et sont appelés, en anglais, “casual impostors”. Autrement dit, ces locuteurs
ne tentaient pas d’accéder aux ressources d’une autre personne en imitant sa voix.
De tels corpora de données standards et avec un nombre important de locuteurs
n’existent pas encore. Naturellement, la tiche de vérification serait certainement plus
difficile et il est donc souhaitable qu’un tel corpus soit disponible sous peu, puisque
certaines applications commencent déja a voir le jour et que la tiche de vérification
qui correspond & un tel corpus de données se trouve beaucoup plus conforme & la
réalité & laquelle les systémes de vérification seront confrontés. La paramétrisation
d’un signal constitue en soi une hypothése, i.e., que ces parametres permettent d’ex-

traire les caractéristiques distinctives du signal observé pour la tiche envisagée. Les
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locuteurs sont modélisés par des mixtures de gaussiennes sur les parameétres extraits.

La aussi, la structure choisie pour la modélisation constitue une hypothése.

Les expériences ont été réalisées & 1’aide du systéme HTK de reconnaissance de
la parole -qui a été adapté & I’Ecole de Technologie Supérieure (ETS) et au Centre
de recherche informatique de Montréal (CRIM), pour la reconnaissance du locuteur.
Ces expériences ont été réalisées au CRIM sur des machines de type Sun Solaris sur

le systéme d’exploitation UNIX. Le corpus de données utilisé fut SPIDRE.

Les techniques de normalisation proposées de la museliére et de I'impact ont été
comparées a la technique de la cohorte. Les résultats semblent indiquer que lorsque
le systéme opére en situation d’appariement et que la durée des fichiers tests est
suffisante, la museliére et 'impact permettent de surpasser les résultats obtenus par
la cohorte. De plus, dans tous les cas observés, la museliere s’est révélée meilleure
que la cohorte lorsque le seuil d’acceptation est situé & un niveau élevé, i.e., pour des

applications de haute sécurité.

Les conclusions & tirer des expériences réalisées sont les suivantes: la museliére
devrait étre préférée a la cohorte en situation d’appariement et lorsque la durée des
fichiers de test est supérieure & environ 10 secondes, ou bien, lorsque des applications

a des fins relativement sécuritaires sont envisagées.

Certaines compagnies ont déja implanté des systémes de reconnaissance de locu-
teur. Les applications envisagées sont les suivantes: accés aux installations, guichets

automatiques, cartes d’appels (systéme téléphonique), accés par le téléphone i cer-
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tains services (banque, comptes personnels, impét, etc.), accés aux réseaux informa-

tiques et surveillance électronique.

La reconnaissance du locuteur par le biais du téléphone dispose d’un avantage
clair sur les autres biométriques qui pourraient éventuellement étre utilisées: un
réseau de transmission déja installé pratiquement partout sur la planéte. Cet avan-
tage lui réserve donc une panoplie d’applications pour lesquelles I’utilisation d’autres

biométriques nécessiterait le déploiement d’une infrastructure trop coiiteuse.



Abstract

‘This master’s thesis tries to cover all presently used background modelling techniques
in the field of speaker verification and to propose certain novel techniques that seem,
from the results obtained and presented, to allow an improvement of the verification
system’s quality. This document also wishes to clearly describe the algorithms used
for signal processing and the modelling of it.

Speakers used as imposters were casual imposters, that is they were not deliber-
ately trying to access the resources of another person by imitating his or her voice.
Yet, no such corpus with a sufficiently large number of speakers has been accepted as
standard in the research community. Naturally, the verification task would be more
difficult and hopefully, such a corpus will be available in the near future since some
applications are already being implemented on the field and the task corresponding
to such a corpus is closer to the reality that systems are about to face. The pa-
rameterization of a signal is a hypothesis in itself, i.e., that the parameters allow
the extraction of the distinctive characteristics of the observed signal for the task
at hand. The speakers are further modelled with gaussian mixture models on the

extracted parameters. There again lies a hypothesis.
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Experiments were done with the use of the HTK speech recognition system,
adapted at the Ecole de Technologie Supérieure (ETS) and at the Centre de recherche
informatique de Montréal (CRIM), for the speaker recognition task. These experi-
ments were conducted at CRIM on Sun Solaris machines with the UNIX operating
system. The standard SPIDRE data corpus was used.

The proposed normalization techniques, namely the muzzle and impact, were com-
pared to the impostor cohort normalization (ICN) technique. Results indicate that in
matched conditions and with sufficient test duration, the muzzle and impact beat the
cohort. Also, in all cases, the muzzle outperformed the cohort when the acceptance

threshold was set to a high level, that is, for high security applications.

The conclusions to which this document leads are as follows: the muzzle should
be preferred to the cohort in case of matched conditions and test durations greater

than 10 seconds or when relatively secure applications are envisioned.

Some enterprises have already implemented speaker recognition systems. The po-
tential applications of such systems are plant access, communication with automated
teller machines, telephone cards, access through telephone to certain services (bank-

ing, income taxes), access to computer networks and electronic surveillance.

Speaker recognition through the use of telephone has a clear advantage over other
biometrics: an almost ubiquitous transmission network. Some applications are there-
fore confined to choose speaker recognition among biometrics as the use of an other

one would require the building of a far too costly network.
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Liste des sigles et abréviations

v pour toutes les valeurs

E[-] espérance mathématique de

€ est élément de

Hz  un Hertz i.e., un cycle par seconde

kEHz mille Hertz

N ensemble des nombres naturels
I1 produit sur les valeurs
R ensemble des nombres réels

IR*  ensemble des nombres réels supérieurs ou égaux a zéro
> somme sur les valeurs

y/A ensemble des nombres entiers

— tens vers ou converge vers

= relation d’implication

~ approximativement égal &

> beaucoup plus grand que

< beaucoup plus petit que



Introduction

Les grandes entreprises du domaine des télécommunications ont clairement identifié
le défi qu’elles devront relever afin de se tailler une part du marché ou simplement de
préserver celle dont elles disposent: permettre I’accés rapide et fiable 4 une panoplie de
services a valeur ajoutée de méme qu’a plusieurs banques de données importantes et
parfois confidentielles. Nortel annongait, ce printemps 1998, son intention d’accélérer
la recherche dans la transmission de données numériques par la voie de communica-
tions mobiles. Pressée par le temps et peut-étre aussi par I’évolution de la compétition,
Nortel achetait, quelques mois plus tard, Bay Networks, une compagnie spécialisée

dans ce domaine.

Nortel s’est spécialisée, depuis plusieurs années, dans la transmission des données
de la voix (ou parole) entre divers agents mobiles. La demande croissante pour la
transmission de données numériques diverses aidant, le développement de la tech-
nologie nécessaire a cette fin suivra. La quantité accrue de données devant ainsi
étre transmises fait ressurgir le probléme fondamental de la rapidité de transmission.
Les solutions peuvent provenir du développement de nouveaux algorithmes ou de la

réallocation de la bande passante.



2

Advenant la réussite technologique permettant la réalisation d’un tel projet, son
épanouissement a grande échelle pourrait tout de méme étre ralenti si elle n’est pas ac-

compagnée, en paralléle, par le développement de systémes sécuritaires performants.

Plusieurs histoires cauchemardesques se sont succédées au cours des derniéres
années, dont la plus récente, liée au Pentagone, qui relate I'intrusion d’un groupe
international de “hackers” dans le réseau informatique de la défense américaine. La
firme comptable Ernst and Young estime que de 3 & 5 milliards de dollars (américains)

sont volés, chaque année, par voie informatique [3].

La sécurité est un concept général englobant, entre autres, la cryptographie et
P'authentification [2] d’une personne appellée utilisateur du systéme. Actuellement,
la plupart des systémes automatisés d’authentification requiérent un mot de passe ou
un numéro d’identification personnelle (NIP). Le déploiement de plusieurs systémes
de ce type a incité les clients & trouver des moyens mémotechniques allant souvent &
Pencontre de leur propre sécurité. Sous cet angle, les systémes actuels peuvent donc

étre vus comme victimes de leur propre succes.

Parallélement, on voit poindre ’aboutissement concret de décennies de recherche
dans le domaine des biométriques, c.-a-d. 'authentification par la mesure de paramétres

biologiques, entre autres la voix.

La reconnaissance d’une personne par le biais des traits caractéristiques de sa voix,
aussi appellée reconnaissance du locuteur, a largement évolué, depuis une recherche

confinée aux laboratoires vers des applications concrétes. Plusieurs entreprises, dont
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AT&T et TI (avec Sprint) ont implanté des applications, “sur le terrain”, de la tech-

nologie de la reconnaissance du locuteur.

Il reste toutefois plusieurs problémes ouverts dont la résolution est nécessaire au

développement & grande échelle de telles applications.



Chapitre 1

Description des systémes de

reconnaissance du locuteur

Les systémes de reconnaissance du locuteur peuvent étre implantés pour accomplir
diverses taches qui sont décrites dans ce chapitre. Celle qui sera étudiée dans ce

chapitre est identifiée en conclusion.

1.1 Schéma d’un systéme de vérification du locu-
teur

La figure 1.1 présente un schéma de vérification du locuteur. Suite 4 une procédure d’i-
dentification personnelile, le locuteur prononce les mots qui lui permettront d’accéder &
ses ressources. L’identité présumée du locuteur indique au systéme lequel des modéles
de locuteurs, parmi ceux du registre, doit étre confronté & la parole. Du signal de
parole sont extraits les paramétres d’intérét qui serviront, avec le modéle du locuteur

visé appelé désiré, a établir un niveau de similitude entre la parole de l'utilisateur
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actuellement en présence du systéme et le modéle du locuteur désiré qu’il prétend
étre. Si la similitude est suffisamment grande, i.e., supérieure & un certain seuil, alors
'utilisateur est accepté et 1’accés aux ressources lui est fourni. Sinon, il se voit refuser

cet acces.

Parol
ﬂ“@xtraction de paramétn%—'( SimﬂitudHDécision }—' Acceptation ou Rejet
r 3

Identité du locuteur visé _{ Modele du
locuteur visé

Seuil

Figure 1.1: Schéma d’un systéme de vérification du locuteur

1.2 Reconnaissance, identification et vérification

Pour ce qui est de la vérification automatique du locuteur, I'utilisateur doit initiale-
ment s’identifier. Le systéme établit alors un lien mathématique entre les données
du fichier test et les données du fichier d’entrainement. Cette tiche n’implique donc

qu’un seul calcul de distance.

La tache d’identification est généralement considérée comme étant plus complexe
puisque le locuteur ne s’identifie pas au systéme. On doit donc choisir, parmi les
membres du registre, lequel est le plus susceptible d’avoir prononcé les mots

enregistrés. Cette tiche implique donc un calcul pour chaque membre du registre.

En d’autres termes, l'identification tente de répondre i la question, “Qui es-tu

?7; la vérification tente de répondre 4 la question “Es-tu la personne que tu prétends



atre” [3].

Le systéme de reconnaissance, tant pour !'identification que pour la vérification,
peut commettre deux types d’erreurs: des fauz rejets et des fausses acceptations.
Dans le domaine de la vérification du locuteur, un faux rejet se produit lorsque le
systéme rejette un utilisateur qui tente d’accéder i ses propres ressources. Dans le
domaine de I'identification, un faux rejet se produit lorsque le systéme refuse 'acces
& un utilisateur faisant partie des membres du registre. En vérification, une fausse
acceptation se produit lorsque le systéme accepte un imposteur qui tente d’accéder
aux ressources d’une autre personne. En identification, une fausse acceptation cor-

respond & l’acceptation par le systéme d’une personne n’étant pas membre du registre.

La décision d’accepter ou de rejeter dépend de ce qui est appelé le seuil. Le seuil
correspond & la valeur numérique maximale (ou minimale) de la mesure de distance

(ou de proximité) calculée entre le fichier test et le fichier d’entrainement.

1.3 Les méthodes a vocabulaire fermé, vocabulaire
ouvert et vocabulaire dicté

Les méthodes a4 vocabulaire fermé exigent que I'utilisateur prononce une série de
mots clés qui sont les mémes que ceux utilisés lors de la phase d’entrainement. Ces
méthodes sont généralement basées sur les modéles cachés de Markov ou bien sur
des techniques d’anamorphose temporel (“dynamic time warping”) ou de recherche

dans une table d’exemples (“template matching”) [13]. Puisque les méthodes & vo-
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cabulaire fermé peuvent exploiter la répétition des mémes phonémes, elles obtiennent
généralement des taux de reconnaissance supérieurs par rapport aux méthodes & vo-

cabulaire ouvert.

Toutefois, certaines applications, telles la surveillance électronique, ne peuvent
compter sur la répétition d’'un texte prédéterminé. Ces applications doivent donc
utiliser des méthodes a vocabulaire ouvert. Un autre avantage de ces méthodes est le

fait que le locuteur n’ait pas i retenir un mot de passe ou une série de mots clés.

Ces deux types de méthodes souffrent malheureusement d’une sérieuse faiblesse:
un imposteur pourrait, & I’aide d’'un bon appareil électronique, faire jouer un enreg-

istrement de la voix d’un locuteur du regitre et accéder aux ressources de ce locuteur.

Afin de contourner ce probléme, des méthodes & vocabulaire dicté ont été pro-
posées: l'utilisateur doit, chaque fois, prononcer une nouvelle phrase choisie au hasard
par le systéme parmi un vocabulaire 4 toutes fins pratiques illimité. Un systéme de re-
connaissance de la parole vérifie initialement que 'utilisateur a correctement prononcé
la phrase qui lui a été demandée. Ensuite, le systéme de reconnaissance du locuteur
tente de reconnaitre I'utilisateur. Si la quantité de données d’entrainement fournies
au systéme est suffisamment importante, chaque phonéme des locuteurs du registre

pourrait étre modélisé.



1.4 Conclusion

Un schéma illustrant un systéme de vérification du locuteur a été présenté. Les termes
reconnaissance, identification et vérification ont été définis tels qu’ils sont utilisés
dans le cadre des systémes biométriques. Enfin, le texte prononcé par I'utilisateur du
systéme de vérification du locuteur est source d’une autre segmentation des tiches
entre vocabulaire fermé, ouvert ou dicté. Les expériences décrites dans les prochains

chapitres s’attardent & la vérification du locuteur & vocabulaire ouvert.



Chapitre 2

Les coefficients cepstraux

Dans le domaine de la reconnaissance de formes, le prétraitement du signal pour ’ob-
tention de parameétres qui le caractérisent bien est essentiel. Bien que cet ouvrage ne
soit pas voué & la recherche de ces paramétres, il est important de bien comprendre les
étapes qui permettent le calcul des coefficients cepstraux, aussi appelés MFCC (de
I'anglais “Mel-Frequency cepstral coefficients” ), utilisés ici pour la reconnaissance du
locuteur. Cette compréhension servira i saisir les hypothéses qui sont sous-jacentes

aux MFCC dans I’espoir d’en faire une utilisation plus éclairée.

Lorsque I'on tente de bien caractériser un signal, une application particuliére est
généralement envisagée. Or, les paramétres développés en fonction de cette appli-
cation peuvent s’avérer totalement inappropriés lorqu’utilisés pour une application

différente, méme si le signal traité reste le méme.

Davis et Mermelstein [10] avait initialement proposé les paramétres M FCC puisqu’ils

permettaient de bien caractériser les phonémes, indépendamment du locuteur. L’u-
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tilisation de ces mémes coefficients pour la reconnaissance du locuteur semble donc,
a priori, paradoxale. Pourtant, les plus récents résultats de recherche montrent qu'ils

restent, pour 'instant, parmi les meilleurs coefficients & utiliser.

Le développement des MFCC (voir Figure 2.1) est obtenu % la suite d’une série
d’étapes dont les plus importantes sont I’échantillonnage (section 2.1), la préemphase
(section 2.2), le fenétrage (section 2.3), la transformée rapide de Fourier (section
2.4) le calcul des amalgames (section 2.5) et la convolution cosinusoidale (section
2.6). Ces six étapes ne different d’une implantation a I’autre que par I’ajustement
de certains parameétres. Elles font donc chacune 'objet d’une section de ce chapitre.
D’autres ajustements qui peuvent faciliter le travail subséquent de reconnaissance
sont parfois utilisés et les plus importants sont briévement décrits & la section 2.7.
Parmi les M FCC, certains coefficients ont un pouvoir discriminant supérieur et il est
intéressant de constater que ceux qui apportent le plus d’information discriminante en
reconnaissance du locuteur ne sont pas les mémes qu’en reconnaissance de la parole
(section 2.8). Enfin, d’autres parametres sont utilisés en reconnaissance du locuteur.
Une justification de I'utilisation des M FCC est donc présentée a la section 2.9, en

guise de conclusion de ce chapitre.

2.1 Echantillonnage

L’échantillonnage est ’opération maitresse pour la conversion de signaux continus en
signaux discrets (conversion analogique-numérique). On peut modéliser ’échantillonnage

comme la multiplication du signal de base z(t) par un signal p(¢) constitué d’une série
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Signal (parole) ( Echantillonnage
AN
L Préemphase
[ Fenétrage

L’Dransformée Rapide de Fourier

[ Amalgames

Coefficients MFCC ( Transformée cosinusoidale

Figure 2.1: Développement des coefficients M FCC

d’impulsions unitaires [19] uniformément espacées sur la durée du signal. D’une im-

pulsion & ’autre s’écoule un temps T appelé période.

Considérons tout d’abord une seule impulsion. Soit §(¢), la fonction d’impulsion

unitaire, aussi appelée le delta de Dirac définie comme suit:

) = { 1 sit=0 o

0 sinon

En supposant que la durée du signal soit de n x T, on définit p(t), la série d’im-

pulsions unitaires ainsi :

pt) = 3°6(t—KT)

k=0
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1 sit=0,T,2T,...,nT
= (2.2)
0 sinon

p(t)

0 T 2T 3T 4T t

Figure 2.2: Série d’impulsions
Soit y(t), le signal échantillonné, on a

y(t) = z(t)-p(?)

Ainsi,

(2.3)

z(t) sit=0,T,2T,...,nT
y@t) =
0 sinon

Donc, y(t), le signal échantillonné, correspond, quant a elle, dans le domaine tem-
porel, au produit des signaux z(t) et p(t). La transformée de Fourier §(w) du signal
y(t) correspond a la convolution des transformées de Fourier #(w) et p(w) (des deux
signaux z(t) et p(¢)) dans le domaine fréquentiel).

Démonstration:
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1w) = [ y@)-e e

=/ : z(t) - p(t) - e7tdt

[0 [ 0004 -

¥y —_

= o [0 [T a)-8e) - eiOragar
= o [ [T a)-5e) - e5-atag
= 55 [ 0@ [[7 20) - e-0ar] ag
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1
— - Blw) * Z(w)
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La fonction p(t) étant périodique, p(w) doit étre trouvée a I’aide de la transformée

en séries de Fourier. La période de p(t) étant égale & T, chaque coefficient ¢, corre-

spond au taux de corrélation entre le signal z(¢) et un phaseur de fréquence w; = 2&,

oukeZ.

De fagon arbitraire, choisissons I’intervalle [0, T').

T .
[T ae) - et
0

. /OT(i §(t — mT)) - e Tkotdt

m=0

n T R
59 /0 §(t — mT) - e =Tty
m=0

T .
. / 5(t) - e Tkwotqy
0

e i T T T
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. e—jkwo()dt

e |k T

Donc, une série uniforme d’impulsions dans le domaine temporel correspond 4 une
série uniforme d’impulsions dans le domaine fréquentiel.

Le lecteur aura sans doute remarqué que la série de Fourier associée 3 une série
d’impulsions est indépendante du nombre d’impulsions et méme du statut fini ou
infini de ce nombre.

Les coefficients c; sont évalués sur une seule période du signal. La question 2
laquelle la tranformée en séries de Fourier ne répond pas est & quel moment sont
présentes les fréquences kwg. Dans notre cas, elles le sont aux temps 0, T, 27, ..., nT.
Dans le cas d’une série infinie d’impulsions, elles le seraient aux temps kT Vk € Z

Les conversations téléphoniques sont transmises & 1'aide de canaux dont la bande
passante va de 100H z & 3500H z. Une fréquence, lorsque considérée comme phénoméne
physique, ne peut étre que positive . Toutefois, les manipulations mathématiques de
nombres complexes associées aux transformées de Fourier nécessitent la considération
de fréquences négatives.

Par exemple, la simple fonction z(¢) = cos(wot) engendre les coefficients de Fourier

suivants:

1/2 k==+1
0 allleurs

Cr =

On en déduit que z(t) est composé d’une superposition de signaux émis & des
fréquences de —wp et wp. Ainsi, la transformée de Fourier d’un signal téléphonique

peut s’étendre sur une bande de —3500Hz & 3500H z, & I'exception des fréquences
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entre —300H z et 300H =.

¥(w) consiste donc en une série de répliques de #(w), chacune de ces répliques
étant déphasée de wy par rapport a la précédente. Ainsi, en filtrant 7(w) sur une
bande passante de (—wj,ws), on obtient y’(w) = #(w). Donc, la transformée inverse
de y'(w), ¥'(t) nous redonne le signal initial z(£). Il faut toutefois s’assurer que les
répliques de £(w) sont disjointes afin d’éviter toute superposition qui impliquerait une

perte irréversible d’information. Cette condition est respectée si et seulement si:

Wo—Wp > Wh

Wy > 2-wp

La fréquence d’échantillonnage doit donc étre au moins deux fois supérieure a la
fréquence maximale du signal d’entrée. C'est le théoréme d’échantillonnage ou le
théoréme de Nyquist.

Dans le cas particulier du signal de parole, ce théoréme implique une fréquence
d’échantillonnage supérieure & 7000Hz. Généralement, les études sont réalisées a
Iaide de données échantillonnées & 8000H z. C’est le cas de celles qui seront présentées

dans cet ouvrage.

2.2 Préemphase

Pour les sons voisés, I'intensité du signal de parole décroit en fonction de la fréquence.
Cette décroissance est d’environ 6 décibels par octave. En termes absolus, cer-
taines informations pertinentes de hautes fréquences sont donc noyées par les basses

fréquences qui occupent une place prépondérante dans ’amplitude du signal. Afin
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de donner & ces fréquences I'importance qui leur est due et puisque les sont voisés
sont plus fréquents que les sons non-voisés, on utilise, dans le domaine temporel, une
transformation (“autoregressive”) AR(1) du signal. Cette transformation permet de
redresser le spectre du signal et ainsi de détecter certaines variations aux hautes
fréquences. En termes relatifs, les hautes fréquences sont amplifiées par rapport aux
basses fréquences. Toutefois, les relations relatives entre fréquences voisines restent
a toutes fins pratiques intactes. Cette transformation permet aussi d’obtenir une

quantification plus efficace [33].

Zn] = z[n]—a-z[n -1] (2.4)

Ceci correspond a la multiplication de la transformée en z du signal par un filtre

“FIR” de premier ordre:

H(z = 1—a-2z7! (2.5)

ou, généralement, 0,9 < a < 1,0. Les expériences décrites au chapitre 6 utilisent

une valeur de a = 0, 97.

2.3 Fenétrage

L’échantillonnage effectué & 8kH= a permis d’évaluer le signal de parole en un nom-
bre fini de points sans affecter la quantité des fréquences transmises par le téléphone.
Cette propriété ne s’applique toutefois que pour le cas théorique d'un signal de

longueur infinie. De plus, 'information fréquentielle fournie représente une quantité
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“moyenne” sur la durée totale du signal. Or, la parole étant hautement dynamique,
on doit tenter d’extraire les parameétres fréquentiels sur une période beaucoup plus
courte pendant laquelle il est raisonnable de supposer un signal stable dans le do-
maine fréquenciel. Cecl est rendu possible grice a la relative lenteur de mouvement

du conduit vocal. Cette période plus courte est appelée trame.

Le terme fenétrage réfere a la multiplication d’un signal z[n] par une séquence

w(n] de durée finie, c.-3-d. :

J=0 pour n<0
w(n] #£0 pour 0<n< N
=0 pour n>N

Une fois qu’une portion du signal a été fenétrée, on en extrait les fréquences en
utilisant la transformée discréte de Fourier dont le calcul peut &tre simplifié & ’aide
de l'algorithme de la transformée rapide de Fourier (FFT). Cet algorithme sera traité

en détail dans la section 2.4.

Une fois que les parameétres ont été extraits sur la portion d’intérét du signal, on
fait “glisser” la fenétre pour traiter une portion ultérieure et ’on répéte le processus
d’extraction de parameétres. Ce procédé est communément appelé “Transformée de

Fourier & fenétre glissante”.

Dans le domaine de la reconnaissance de la parole, et en particulier dans le cas
des expériences présentées au chapitre 6, la fenétre s’étend sur une durée de 25ms et

le glissement est de 10ms. Donc, & chaque “trame” de 10ms est associé un ensemble
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de parameétres caractéristiques de la parole.

Tel que Fang [11] le mentionne, le choix de la durée de la fenétre est dictée par
deux objectifs qui se contre-balancent: La fenétre doit étre suffisamment courte afin
que les parameétres sous-jacents puissent étre considérés constants sur l’intervalle ob-
servé. Elle doit par contre étre d’une longueur suffisante afin de fournir I’information

suffisante & 1’extraction fiable des paramétres évalués.

Plusieurs modéles de fenétre ont été proposés. Le tableau 2.1 présente les valeurs
de quelques parametres qui servent 4 ’évaluation de quatre types de fenétres et la fig-
ure 2.3 permet de visualiser ces paramétres pour la fenétre de Hamming. L’avantage
principal de la fenétre de Hamming est la petitesse du lobe secondaire relativement
au lobe principal. Cette fenétre posséde donc une bonne résolution dans le domaine
fréquentiel. Cette fenétre est utilisée dans le domaine de la reconnaissance de la pa-

role et du locuteur, principalement pour cette raison.

Tableau 2.1: Paramétres pour ’évaluation de certaines fenétres

Fenétre Lobe secondaire | Décroissance | Lobe principal
Rectangulaire -13dB -6dB/oct 47 /N
Bartlett -25dB -12dB/oct 8w /N
Hanning -31dB -18dB/oct 87 /N
Hamming -41dB -6dB/oct 87 /N
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P ~Y UG S . I - n
netre de damming est la suivanie:

(
N

1) 0<n<N-1 (2.6)

g
=
S,

Il

2.4 Transformée rapide de Fourier

Aprés avoir fenétré une portion du signal échantillonné, la transformée discréte de

Fourier est utilisée afin de permettre I’étude de ce signal dans le domaine fréquentiel.

N-1
Xk = 3 zn]-e?®* N k=0,...,N—1 (2.7)

n=0
L’équation 2.7 requiert un nombre de multiplications de 'ordre de O(NN?2). L’algo-
rithme de la transformée rapide de Fourier permet d’obtenir les valeurs désirées avec
un nombre de multiplications beaucoup inférieur (ordre O(/Vlog N)) en utilisant la

programmation dynamique. La figure 2.4 illustre cet algorithme.
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il ® ® X[l
x W0

z(2] O }f% - X[1]

z[3] O & X[

Figure 2.4: Algorithme de la transformée rapide de Fourier en 4 points illustré par le
biais d’un treillis.

o = -

2 NalZames

.5 Les
Afin de réduire la quantité d’information fréquentielle générée par la transformée
rapide de Fourier, Davis et Mermelstein [10] ont proposé de regrouper les fréquences
en 20 amalgames. Les filtres (figure 2.5) sont triangulaires et répartis selon I’échelle
de Mel, i.e., de fagon linéaire entre 100 et 1000H 2, puis logarithmique par la suite,
Jusqu’aux environs de 4500H 2. Cette répartition des filtres correspond 4 la perception

auditive humaine qui est moins précise pour les hautes fréquences.
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Figure 2.5: Filtres de Mermelstein selon 1’échelle de Mel
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L’équation 2.8 donne la correspondance entre 1’échelle fréquentielle et ’échelle de

Mel telle qu’établie dans le logiciel HTK [51]:

Mel(f) = 2595-logyy(1 + f/700) (2.8)

2.6 Transformée cosinusoidale

Le cepsirum est la transformée de Fourier inverse du logarithme du spectrum. Le

cepstrum peut étre calculé en utilisant une transformée cosinusoidale des amalgames

[37].

P T
G = ijcos(F(j—Oj)) i=1,...,N (2.9)

j=1

Ou m; est le 7™ amalgame et P est le degré d’analyse, i.e., le nombre d’amal-
games qui ont été calculés. Généralement, N, le nombre de coefficients statiques
calculés est compris entre 7 et 12. Les expériences décrites dans ce document ont été

réalisées avec un ordre d’analyse de P = 20 et N = 12 coefficients statiques.

2.7 Autres ajustements apportés aux MFCC

En plus des M FCC, appelés coeflicients statiques, obtenus & la suite des opérations
décrites ci-haut, on calcule aussi leur variation d’une trame & l'autre, i.e., dans
le temps. Ces coefficents dynamiques sont appellés delta — MFCC (AMFCC).

De la méme fagon, certains chercheurs utilisent aussi les coefficients d’accélération
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15

Figure 2.6: Trois fonctions utilisées successivement pour la transformée avec les amal-

games: cos (Z(j — 0.5)) pour i = 0,1, 2.

delta — delta — MFCC (A2MFCC). Ces paramétres n’apportent toutefois pas tous

la méme quantité d’information discriminante quant a 'identité du locuteur.

2.8 Le pouvoir discriminant des M FCC

Il a été mentionné plus haut que !'utilisation des mémes paramétres MFCC i la
fois pour la reconnaissance de la parole et la reconnaissance de locuteur semblait
paradoxale. Les deux applications se distinguent toutefois par le pouvoir discrim-
inant qu’elles retirent de ces parameétres. Alors que le coefficient d’énergie permet
généralement I'identification d’une voyelle et posséde un fort pouvoir discriminant

en reconnaissance de la parole, certains chercheurs I’ignorent complétement pour la
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reconnaissance du locuteur puisque la valeur du paramétre d’énergie est beaucoup

plus influencée par le phonéme prononcé et le canal de transmission de la voix que

par le locuteur lui-méme.

Charlet et Jouvet [6] ont exploré de facon relativement exhaustive le pouvoir dis-
criminant des coefficients MFCC. Utilisant les coefficients statiques, dynamiques et
d’accélération, de 9 transformées cosinusoidales (incluant I’énergie), ils sont parvenus
4 montrer assez clairement la supériorité des coefficients de haut degré (i.e., cg, c7 et
cs) et des coefficients dynamiques (vs statiques et d’accélération). Enfin, la conclusion
la plus sévére fut & I’endroit des trois coefficients d’énergie qui se classérent parmi les

cinqg derniers quant au pouvoir discriminant, pour les raisons expliquées ci-haut.

2.9 Conclusion

Ce chapitre a présenté les étapes nécessaires i I'obtention des coefficients cepstraux,
aussi appelés MFCC. Ces étapes sont ’échantillonnage, la préemphase, le fenétrage,
la transformée rapide de Fourier, le calcul des amalgames et la transformée cos-
inusoidale. Certains autres ajustements peuvent étre apportés et ont été décrits.

Enfin, le pouvoir discriminant des différents paramétres a été briévement analysé.



Chapitre 3

Les Modeéles cachés de Markov

3.1 Introduction

La théorie des modéles cachés de Markov (ou “HMM?” de I’anglais “hidden Markov
models”) fut publiée par Baum et ses collegues vers 1970 et par la suite implantée
par Baker & CMU et Jelinek chez IBM. Rabiner et Juang [36] identifient clairement
I'hypothese fondamentale sur laquelle sont fondés les modeles cachés de Markov: le
signal de parole se caractérise bien par un processus stochastique dont les parameétres
peuvent étre estimés de facon précise. Puisque le signal de parole est échantillonné
avant d’étre traité, nous aborderons simplement les modéles de Markov en temps

discret.

Supposons qu'un processus se trouve dans un état quelconque parmi un certain
nombre d’états possibles. Supposons, de plus, que la sortie (que nous appellerons
observation) produite par ce processus dépende de l’état dans lequel il se trouve.

Supposons, enfin, que le processus puisse évoluer de son état actuel vers un autre
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état avec une certaine probabilité, ce qui aura donc une influence sur ’observation
générée. Si les probabilités de transition vers un nouvel état ne dépendent que de

Pétat actuel, on peut qualifier ce processus de Markovien.

Ce chapitre décrit briévement les chaines (section 3.2) et les modeles cachés (sec-
tion 3.3) de Markov. Par la suite, les solutions algorithmiques & deux probléemes
importants des modéles cachés de Markov sont décrites: les procédures prospective
et rétrospective pour la probabilité conditionnelle d’une séquence d’observations (sec-
tion 3.4) et I'algorithme de Viterbi pour la séquence optimale d’états cachés (section
3.5).

3.2 Les chaines de Markov

Une chaine de Markov est formée d’un certain nombre N d’états. Ces états sont in-

terconnectés par des probabilités de transitions pouvant étre représentées sous forme

matricielle:

aiy Q2 --- Qg
Q21 Q2

A= (3.1)
Gn1 Qnn

avec les propriétés suivantes:

A% (3:2)

&
v
[
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Zaij =1 Vi . (3.3)

Autrement dit, un processus se trouvant dans 1’état i au temps ¢ a une probabilité
a;; d’évoluer vers ’état j au temps t + 1. Ainsi, en supposant que 1'état réel dans

lequel le processus se trouve au temps ¢t est gz,

aij = P(qey1 = Jlg: = 1) (3.4)

A chaque état correspond une observation. La figure 3.1 représente une chaine de
Markov & trois états pour laquelle ’observation O; est associée a I’état 1, I’observa-

tion O, & I'état 2 et 'observation O 4 I'état 3.

Figure 3.1: Chaine de Markov avec N = 3
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3.3 Les modeéles cachés de Markov

Alors qu’une chaine de Markov associe une seule observation possible 3 chaque état,
un modele de Markov associe une distribution de probabilité de ’observation générée
par le processus & chaque état. C’est la distinction fondamentale entre une chaine et
un modele de Markov. Généralement, les distributions associées aux différents états
se recoupent. Donc, étant donné une observation, il n’est plus possible d'identifier
avec certitude I’état dans lequel se trouve le processus. On peut simplement, & ’aide
de la loi de Bayes pour les probabilités conditionnelles, identifier I’état le plus prob-

able d’étre a I'origine de I’observation en question.

bo (0)

a2

Figure 3.2: Modéle de Markov avec N = 3

La figure 3.2 présente un modéle de Markov a trois états. Nous utiliserons la nota-
tion compacte suivante pour symboliser la distribution de probabilité de I'observation

o; au temps t conditionnelle & la présence du processus dans I’état j & ce moment:

bj(o) = P(olge=3) 1<j<N (3.5)
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bjloe) = flodge=3) 1<j<N (3.6)

Les équations 3.5 et 3.6 s’appliquant dans le cas d’une distribution de probabilité

discréte ou continue respectivement.

Rabiner et Juang identifient les composantes essentielles d’un modéle HMM:

1. N, le nombre d’états du modele. Ce nombre est généralement inconnu puisque
le modéle est caché. Il doit donc étre estimé. Dans le cas de la reconnaissance
de locuteur, les résultats expérimentaux suggérent que la modélisation avec un
seul état émettant est suffisante, en particulier dans le cas de reconnaissance du
locuteur avec un texte ouvert. Pour l2 reconnaissance de la parole, on utilise
généralement 5 états pour la modélisation d’un phonéme: un état non-émettant
d’entrée, trois états émettants et un cinquiéme état non-émettant de sortie. On

note aussi ¢, I’état dans lequel se trouve réellement le processus au temps t.
2. A, la matrice des probabilités de transition entre les états.
3. B={bj(0)} 1<j<N
4. IT = {m;} 'ensemble des probabiltés initiales

Dans un but de simplification, nous utiliserons la notation plus compacte suivante:

A= (A,B,II).
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3.4 Les procédures prospective et rétrospective
pour la probabilité conditionnelle d’une séquence
d’observations

Nous pouvons poser un premier probléme relié aux modéles cachés de Markov: Etant
donné O = {o;}, 1 < t < T, une série d’observations, quelle est la probabilité que

cette série ait été générée par le modele. A = (A4, B,II) ?

La résolution de ce probléme nous permettrait d’établir, parmi une série de modéles
HMM possibles, lequel serait le plus probable d’étre a la source de cette série d’ob-

servations.

Par exemple, dans le cas de I'identification de locuteur (sans rejet), on voudra, &
partir d'un fichier audio et une banque de modeles de locuteurs, trouver la personne

la plus probable d’avoir généré ce fichier.

F o= argrflea%[P(rsc)]
~ a.rgnr'lea%[P(Orloc)]

~ arg IPEa%[P(/\rIOc)]

P())
P(O.)
= argmax[P(Oc|),) - P(\)]

= argmax{P(O|),) 1

= argmax[P(O[),)]
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Ot c désigne le locuteur qui tente d’accéder au systeme de reconnaissance, appellé
client et O, désigne la séquence d’observations utilisée pour reconnaitre le client. De
plus, O, désigne la séquence d’observations utilisée pour développer le modeéle A, du

locuteur r du registre R.

Les deux premiers passages sont rarement mis en évidence, malgré le fait qu’ils
constituent une hypothése et non une certitude. Le troisiéme passage s’effectue grace
a la loi de Bayes. Le quatriéme profite du fait que la valeur de P(O,) ne dépend
pas du locuteur du registre et n’a donc pas d’influence sur la sélection du meilleur

modele. Enfin, I’hypothése de locuteurs équiprobables permet le dernier passage.

Pour ce qui est de la vérification de locuteur ou de ’identification avec rejet, le
calcul de P(O,) reste un probléme complexe  la base des modéles de normalization

et sera discutée au chapitre 5.

L’hypothése de locuteurs équiprobables ne pourrait étre relaxée qu’én présence
d’un systéme d’identification ou de vérification implanté depuis quelques temps.
L’expérience réalisée pourrait alors servir & adapter les valeurs de P(A;). 1l est
toutefois, a priori, peu plausible de trouver 'existence d’une corrélation entre les
parameétres M FCC d'un locuteur et sa fréquence d’utilisation d’un systéme automa-

tisé. L’hypotheése utilisée semble donc valable.

Enfin, le calcul de P(O¢|A,) fait 'objet de cette section. L’algorithme vorace et

deux algorithmes de programmation dynamique, trés similaires, sont présentés.
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3.4.1 L’algorithme vorace

Soient:
O = (01,09,...,07) , une séquence de T observations
a9 = (q1,92,---,9T) , une séquence de T états cachés et
A = (A B]I) , le modele HMM a l'origine de la séquence q

En supposant que le modeéle comporte V états, il y a donc NT séquences q pos-

sibles.

Le but est de calculer P{0]A), la probabilité conditionneile d*obtenir ia séquence

d’observations O & partir du modéle HMM .

A cette fin, la séquence d’états successifs q est, dans un premier temps, fixée,
comme si elle était connue. Ceci permet le développement de certains résultats.

Dans un second temps, cette hypothése est relaxée pour obtenir le résultat désiré.

Il faut aussi souligner que les observations successives sont considérées indépendantes.
Cette hypothése est nécessaire & 'obtention du résultat désiré et ne pourra étre re-
laxée. Elle est malheureusement trés forte: par exemple, dans le cas d’une voyelle
dont le spectre fréquentiel est relativement stable, jusqu’a 7 observations de 10ms (7
trames) lui sont attribuées. Ces observations sont certainement fortement corrélées
et I'hypothése d’indépendance y est clairement non valide. Cette approximation
n’empéche toutefois pas les “HMM” d’obtenir d’excellents résultats dans une vaste

série d’applications, en particulier en reconnaissance de la parole et du locuteur.
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Donc, par indépendance des observations, on obtient que:

T
P(Olq,X) = I P(oda. )
= b4,(01) -b2(02) - -... - by (07) (3.7)

Maintenant,

P(ql’\) = Tq *CQqqp " -+ - CQqr_ g7 (3'8)

Et

P(Or ql’\) = Tq - bth (01) “CQqiqp ° btn (02) TeesQgr_ygr bQT(OT) (3-9)

Enfin,

P(O[xA) = Z gy - by, (01) - q1q; * by, (02) -...- Qgr_1q7 ° qu(OT) (3.10)
Vq

L’algorithme vorace doit donc calculer P(O, q|)) pour N7 séquences d’états pos-
sibles et sommer ces probabilités afin d’obtenir P(O|\).

L’algorithme vorace roule donc dans 1'ordre O(T - NT). On peut toutefois, par

programmation dynamique, faire beaucoup mieux.
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3.4.2 La procédure prospective

De fagon intuitive, on peut illustrer la propagation du processus dans le HMM sous
forme de treillis en deux dimensions: le nombre d’états du HMM, N et le nombre
d’observations 7". Le treillis est donc composé de N - T noeuds et chaque séquence

d’observations a la propriété de visiter exactement T noeuds, i.e., un noeud par

colonne.

Définissons la variable prospective:

(i) = P(01,02,04¢; =i|A) (3.11)

C.-4-d., la probabilité d’observer oy, 02,...,0; et que la séquence visite le noeud i

au temps ¢ étant donné le modéle sous-jacent A.

1) Initialisation

ai(i) = m-bfo)), 1<i<N
2) Induction
wn(f) = [T a(i)ay]bjlown) 1<t<T -1,
1<j<N

3) Conclusion

N
P(OJ) = > a(s)

i=1
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3.4.3 La procédure rétrospective

Définissons la variable rétrospective:

Be(z) = P(0¢41, 0t+2, orlg: =1, /\) (3-12)

1) Initialisation

2) Induction

D
~
3,
N
!

3) Conclusion

N
PO|X) = > mi-bi(o1) - Bi(5)

i=1

3.5 L’algorithme de Viterbi
pour la séquence optimale d’états cachés

Etant donné un modéle caché de Markov & N états et une séquence de 7" observations,
l'algorithme de Viterbi permet de trouver, parmi les NT suites d’états cachés, celle
qui est la plus probable d’avoir généré la séquence en question. L’algorithme suppose

la connaissance, a priori, des paramétres du modéle.
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L’algorithme vorace, qui calculerait la probabilité de chacune des séquences roule
dans I'ordre O(NT). L’algorithme de Viterbi, par I'utilisation de la programmation
dynamique permet, dans la plupart des cas, une réduction importante du nombre de

calculs puisqu'il roule dans I’ordre de O(N? - T)).

1) Prétraitement

Le prétraitement des probabilités pour travailler dans le domaine logarith-
mique permet de transformer une série de multiplications en additions et ainsi

d’accélérer le calcul de la séquence optimale.

7 = log(m) 1<i<N
bi(o) = log(bi(o))) 1<i< N, 1<t<T
Qij = log (a;) 1<4,j<N
2) Initialisation
01(2) = Ti+b(o1)) 1<i<N
(@) = 0 1<i<N
3) Induction
8:(j) = maxigenlbi(s) + di]+bi(0) 1<j<N,2<t<T
Y(j) = argmax)cicn([0e—1(3) + @y I1<j<N,2<Zt<T

4) Conclusion

P* = ma.X]_SisN[gT('l:)]

gr = arg maxls,-SN[c?T(i)]
5) Retour sur le chemin optimal

& = Ye(ad) t=T-1,T-2,...,1
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Les valeurs 6,() conservent la probabilité associée au meilleur (le plus probable)
chemin menant 4 Iétat 7, au temps ¢ depuis le temps initial. Les valeurs ¥¢(7), quant a
elles, conservent I'indice de I’état précédemment visité sur ce meilleur chemin. Ainsi,
au bout de T itérations, ces derniéres valeurs serviront 3 retrouver, rétrospectivement,

la série d’états successifs du chemin optimal.

3.6 Conclusion

Dans ce chapitre, les chaines et les modeéles cachés de Markov ont été présentés. Les al-
gorithmes de programmation dynamique des procédures prospectives et rétrospectives

de méme que l'algorithme de Viterbi ont été décrits.

Les modéles cachés de Markov connaissent présentement un grand succes dans le
domaine de la reconnaissance automatique de la parole. Toutefois, dans le domaine
de la reconnaissance du locuteur, les modéles actuellement utilisés découlent d’une

simplification des HMM et sont présentés au chapitre suivant.
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Chapitre 4

Les Modeéles GMM

Un troisiéme probléme, lié aux modeles cachés de Markov, n’a pas été analysé. Il
s'agit de ’estimation des paramétres des gaussiennes du modele. Cette analyse a été

reportée au chapitre présent puisqu’elle se trouve simplifiée par 'utilisation des GMM.

La section 4.1 offre une bréve description des modeéles GMM. La section 4.2
présente l'algorithme itératif EM pour l'estimation des paramétres d'une mixture
de gaussiennes. La section 4.3 porte sur ’adaptation d’un modeéle développé a priori

par les données observées du locuteur.

4.1 Interprétation

Les modéles GMM (de I’anglais “Gaussian Mixture Models”) ont été initialement
proposés par Reynolds [38] pour la reconnaissance du locuteur. Un modéle GMM

constitue en fait un modéle HMM & un seul état émettant. Cette simplification
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est généralement compensée par une augmentation du nombre de mixtures dans le
modele. II a été montré de fagon empirique que 1'utilisation d’un seul état émettant
ne réduisait pas le taux de reconnaissance tout en permettant une simplification de
I'estimation des parameétres du modzele. L’interprétation liée & 'utilisation d’un seul
état est simple: le locuteur représente 1’état et les mixtures représentent les différents
phonémes, ou classes de phonémes prononcés par cette personne. Cette affirmation
est surtout vraie dans les cas ot peu de données d’entrainement sont disponibles, ce

qui se produit généralement pour la vérification du locuteur.

pour l’estimation des parametres

Ce probléme ne posséde pas de solution analytique. La technique de Baum-Welch,
aussi appelée algorithme EM (“expectation-maximisation”) a été proposée afin de
résoudre le probléme d’estimation des parameétres de fagon itérative. La méthode
développée dans cette section permet d’évaluer les parameétres maximum de vraisem-

blance d’'un modéle GMM.
Les probabilités de transition entre les états (la matrice A) et les probabilités de
départ (le vecteur IT) ne s’appliquent plus aux modéles GMM. La notation compacte

A sera donc adaptée en conséquence:

Soient:
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w;, la probabilité que I'observation o, provienne de la %™ mixture,

ki, la moyenne vectorielle des observations provenant de la ji¢™e mixture,

%, la matrice de covariance des observations provenant de la i*¥™¢ mixture,

M, le nombre de mixtures et

m:, la mixture cachée qui a généré 'observation o;. .
On note A = {w;,u;, 55}, 1 = 1,2,..., M. Ainsi, 'algorithme EM peut main-

tenant étre présenté:

1. Initialisation: Choisir un modeéle initial A\ = )0,

” - .~ vo v Y o
k: Réestimer les paramétres pOuUr irouver un nouveau modele A/ 3

[AV]
oy
(Dv
5]
i
[&]
£3
o

'aide du modéle A selon les équations suivantes:

1 & :
wx(k) = —T—Zp('rn,t =zlot,,\)
t=1

(k) Tty p(ma = ilog, A) - 0
' iz 2(m; = dloy, A)

5(6) i P(me = ilo, A) - 000, L8 Y
: Y1 p(me = ilo;, A) s
ou
. P(m't = i1 Ota ’\)
=10, A) =
p(mt I ‘ ) P(On /\)
p(me =1i,04, )

;'\il p(mt = js O¢, /\)
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P(mt =1,A)- - p(og|m, =1, A)
121 P(me = 4, A) - p(ogJme = j, A)
p(A) -p(me = i|A) - -p(oglm, = 1, A)

E,;p(N) - p(me = 7[X) - plogme = 7, A)
w; - plogfm, =4, A)

2;&1 wj - plogjme = 4, A)
'wt b; (o)
—1 wj - bj(0:)

3. Si A®) est meilleur que ), alors mettre le modale & jour (A += A®)) et itérer une

k + 1°™ fois. Sinon, arréter.

4.3 Les modéles adaptés

Le probléme classique de la présence de données partielles pour le développement d’un
modele se retrouve aussi en reconnaissance de locuteur. Les fichiers tests peuvent par-
fois étre de trés courte durée et les paramétres estimés & I'aide de ces données peu
fiables. Certains chercheurs se sont attardés au développement de modéles adaptés:
dans un premier temps, un modéle global est développé & ’aide des données d’en-
trainement de tous les locuteurs. Par la suite, le modéle global est adapté pour chaque

locuteur du registre & ’aide de ses propres données.

Reynolds [39] a récemment proposé un algorithme de ce type:

1) Un modeéle global est développé a priori, & 'aide des données de tous les locu-

teurs:

{Wpis i 02} i=1,2,..., M
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2) Un modéle individuel est par la suite développé pour chaque locuteur du registre,

strictement a I'aide de ses propres données:

T
n; = Zp(ilot) (4.1)
t=1
1 T
psi = —> p(io) - o, (4.2)
Lt
2 1 4 ; - ’
psi = — > p(ilos) - diag(o.0}) (4.3)
L gy
Ufi = 2»“31'-/-‘3;' (4.4)
we = % (4.5)
(4.6)

donc,

’\s = {wsia,usi’ofi} i=1121-"7M
3) Un coefficient de crédibilité est calculé afin de mesurer le niveau de fiabilité qui

peut étre accordé aux données individuelles par rapport aux données globales.

o = —2 (4.7)
ni+r

4) Le modele individuel a posteriori est calculé pour chacun des locuteurs et cor-

respond au modeéle global adapté pour les données observées:
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Qi Wei + (1 - ai)wp,-

Was 4.8
TH ciwe + (1 — og)wg (48)
Hai = Oupisi + (1 — o) pp (4.9)
Hai = 0 Ppa+ (1 - o) - 2y (4.10)
Ufi = 2#ai - ﬂgi (4-11)

donc,

As = {wahﬂai?ofi} i=1721'--’M

La valeur du paramétre r, r € R* est généralement établie empiriquement. Ce
parametre correspond a l'inertie du modeéle a priors lorsque r — oo, on obtient

o; =0, Vi. Done, A, = A,. A linverse, sit =0, a; =0, Vi et A\, = \,.

Dans le domaine actuariel, le calcul du paramétre r a fait I’objet de nombreuses
études et toute la théorie de la crédibilité y est reliée. Ces études pourraient cer-
tainement étre utilisées a profit dans le domaine de la reconnaissance du locuteur si

le calcul de modéles adaptés devenait un champ de recherche fructueux.

4.4 Conclusion

Les modeles GMM ont été présentés et décrits. L’algorithme EM pour I’estimation
des parameétres a été énoncé dans sa version simplifiée, appliquée aux GMM. Enfin,

un des algorithmes permettant le calcul de modeles adaptés a été présenté.



Chapitre 5

Les techniques de normalisation

5.1 Introduction

La question de I’évaluation de la probabilité d’une séquence d’observations (P(O.))
générée par un utilisateur a été soulevée au chapitre 3. Le probléme est valide pour
Iidentification du locuteur avec la possibilité de rejet et la vérification du locuteur.

Ce chapitre s’attardera uniquement au second cas.

La complexité du probléme découle de la nécessité d’approximer un modele acous-

tique universel a partir de données relativement fractionnaires.

Pour ce qui est de la vérification du locuteur, la régle de décision (acceptation ou
rejet) peut s’exprimer ainsi:
(5.1)

b _ J A s PO4O)2S
R si P(\O.) < S
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ou bien, selon Bayes,

b {A si P(OcfA) - P(As)/P(O.) > S 62

R si P(O|Ag) - P(A4)/P(Oc) < S

ou Aq est le modéle développé pour le locuteur propriétaire des ressources auxquelles
Putilisateur désire accéder. A et R désignent l’acceptation et le rejet, respective-
ment. Enfin, S représente le seuil, i.e., la valeur minimale de P(O.[Ag)- P(Ag)/P(O,)

nécessaire afin que l'utilisateur puisse accéder aux ressources désirées.

De plus, en supposant des locuteurs équiprobables, on peut reformuler la régle de

D - A si P(O.Xs)/P(O.) > S (5.3)
R si P(O.\y)/P(O.) < S

Ou S est ajusté de facon appropriée. Cette derniére considération est toutefois
purement théorique puisque le seuil S est établi de facon empirique afin de minimiser
une combinaison quelconque des erreurs de type I et I qui seront appelées F A, pour

fausse acceptation et F'R pour faux rejet.

Le calcul de P(O,|\;) a été résolu au chapitre 3. Le calcul de P(O.) fera I'objet
de la premiére partie du chapitre. De nouvelles techniques de normalisation seront

par la suite proposées.
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9.2 Les cohortes

Soit (2, I’ensemble universel de tous les locuteurs. On peut exprimer P(O.) sous la

forme suivante:

P(Oc) = 3 P(O.5)- P(j) (5-4)

Jjen
Naturellement, personne ne dispose d’un corpus de données tel que cette somme
puisse étre évaluée. Toutefois, dans la mesure ou1 le nombre (Nz) de locuteurs faisant
partie du registre R est suffisamment élevé, et que ceux-ci peuvent étre considérés
comme représentatifs des utilisateurs plausibles du systéme de reconnaissance (ou-

biions ies perroquets), I’équation 5.4 peut étre approximée par la suivante:

P(O.) = 3 P(Oj)-P(jlj € R) (5.5)

JER
Il est important de souligner que le modele A;j est une approximation paramétrique
de la distribution fondamentale inconnue des observations pouvant étre générées par
le locuteur. Cette derniére observation, bien que triviale, met en relief la faiblesse
de la détermination, a priori, d’une architecture de modéle fixe et indépendante du
locuteur. La relaxation de cette hypothese, en particulier par le biais d’un nombre

variable de gaussiennes, fera, sous peu, I'objet de travaux de recherche.

Cette modélisation nous conduit donc vers une seconde approximation:

P(O:) =~ 3 P(O);)- P(jlj € R) (5.6)
JER
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La cardinalité (Nz) du registre peut étre telle que le calcul suggéré par ’équation
précédente soit prohibitif et justifie la recherche d’une approximation plus forte. Cer-
tains auteurs ont suggéré 1'établissement a priors, i.e., aprés le développement des
modeles individuels des locuteurs du registre mais avant la phase test du systéme,
d’une cohorte. La cohorte (Ca) du locuteur (d) est formée d’un sous-groupe des locu-

teurs du registre pour lesquels la probabilité conditionnelle P(O¢.|)\;) sera calculée:

P(Oc;) =~ 3 P(Oc|N) - P(jlj €Ca) (5.7)

JECq

La sélection des membres de la cohorte d'un locuteur a fait elle-méme I'objet de
plusieurs publications. Initialement, il a été proposé [17] que la coharte devait com-
prendre les locuteurs les plus susceptibles d’étre de bons imposteurs pour le locuteur
désiré. En second lieu, il fut remarqué que des observations éloignées pouvaient porter
a confusion puisque la soustraction d’une série de queues de distributions déterminait
la décision finale d’acceptation ou de rejet. Pour éviter ce probléme, Reynolds [39]
suggéra la présence, au sein de la cohorte, de locuteurs €loignés du locuteur désiré.
Troisi¢émement, afin d’éviter la redondance des locuteurs et de maximiser I'informa-
tion apportée par I'ensemble de la cohorte, il a été suggéré [17] de s’assurer que les

locuteurs de la cohorte soient eux-mémes éloignés les uns des autres.

La figure 5.1 illustre une situation ot C;, C, et Cj; sont des candidats potentiels
pour la cohorte du locuteur D. Supposons que C, ait déja été inséré au sein de la
cohorte. Bien que D soit plus rapproché de C; que de Cs, on préférera tout de méme
ce dernier puisque son insertion dans la cohorte permet 1’apport d’une quantité plus

importante d’information nouvelle quant & la provenance des observations. L'infor-
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Figure 5.1: La sélection des membres d’une cohorte: locuteurs rapprochés

mation fournie par C; est trop redondante par rapport & celle procurée par l'insertion

i

[mH

de C» au sein de la cohorte. L’observation X illustre 'importance
au sein de la cohorte. Donc, dans I’éventualité ou six locuteurs proches de D devaient
former la cohorte, C; serait rejeté; C, et C5 seraient insérés.

La figure 5.2 illustre une cohorte, pour le locuteur D, formée de six locuteurs rap-
prochés et bien dispersés les uns des autres. De plus, six autres locuteurs éloignés sont
inclus. Ces derniers sont eux aussi bien dispersés les uns des autres. L'observation X
illustre I'utilité de I'inclusion de locuteurs éloignés: sans la présence du locuteur C,

il est probable que X ait été considérée comme provenant de D.

Etant donné I'impossibilité d’établir, a priori, la valeur de P(j|j € C), on 'ap-
proxime par une fonction quelconque, choisie pour ses propriétés particuliéres. Ceci

nous conduit vers une quatriéme approximation:

P(O;) =~ ) P(ON)- f(5) (5.8)

JECq
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Figure 5.2: La sélection des membres d’une cohorte: locuteurs rapprochés et éloignés

ol

S FGE) =1 (5.9)

Jj€Cq
La fonction f(j) est généralement établie de sorte que P(O,) corresponde a la

moyenne

1
N,

Q

P(Oc) Z P(Ocl’\j) (5.10)

JE€Cy

Ou au maximum,

P(O.;) =~ argmaxP(O[)) (5.11)
J€Ca
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de I'ensemble des valeurs P(O.|);) ot j € Cj.

5.3 La proximité de deux locuteurs

Comme mentionné au chapitre 4, les gaussiennes, aussi appelées “mixtures” représentent
idéalement chacune un phonéme ou une classe de phonémes, parfois simplement une
portion d’un phonéme. On s’intéressera donc 3 connaitre la proximité, pour deux

locuteurs, de chacun de leurs phonémes, i.e., la proximité inter-locuteurs et intra-

phonétique.

Il faut donc utiliser une mesure de proximité dominée par la mesure entre les
éléments rapprochés et associés plutét qu’'une mesure de distance, dominée par la
mesure entre les éléments les plus éloignés, i.e., une mesure inter-phonétique. De

cette constatation découle I'utilisation du terme “proximité” de préférence au terme

“distance”.

Les méthodes de mesure de proximité peuvent étre classées en trois catégories:

données vs données, données vs modéle et modele vs modéle.

Supposons que les fichiers d’entrainement comportent tous un nombre similaire
d’observations. Soit N, le nombre moyen d’observations par fichier d’entrainement.
Soit M, le nombre de mixtures utilisées pour modéliser les locuteurs, avec M <« N.
Les trois catégories de mesure mentionnées ci-haut demandent un nombre d’opérations

dans I'ordre de O(N?), O(NM) et O(M?), respectivement.
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Peu de gens se sont attardés au calcul fastidieux de la proximité données vs
données. Ce calcul revét toutefois un avantage certain: il est indépendant de la

structure artificielle imposée par le modele choisi et de sa possible faiblesse.

Reymolds [39] a proposé un calcul simple et symétrique de la proximité données

vs modéle:

P(O4]AB) - P(Op|)4)
P(O4|A4) - P(O5|AB)

Finan et al. [12] ont analysé les effets de Iutilisation d’une méthode de type

proz(A,B) = (5.12)

modele vs modeéle pour le calcul de la proximité. Les résultats obtenus montrent que
ie ciassement des locuteurs du registre selon leur proximité les uns par rapport aux
autres est peu affecté par le type de la méthode utilisée (données vs modele ou modéle
vs modele). Ainsi, la composition de la cohorte des locuteurs est peu affectée par le

type de la méthode utilisée.

Enfin, étant donné que les valeurs nécessaires au calcul de proximité proposé par
Reynolds étaient déja disponibles et ne nécessitaient que peu de programmation, c’est
le calcul données vs modele qui a été choisi pour effectuer les expériences liées a la

cohorte.

9.4 Le modeéle universel de normalisation

Une des difficultés liée & I'utilisation de la cohorte est la sélection des membres de la
cohorte pour chacun des locuteurs du registre. De plus, pour chaque membre de la

cohorte d’un locuteur, un calcul de vraisemblance doit &tre effectué au moment de la
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vérification.

Le modéle universel de normalisation, ou “UBM” (de I'anglais “universal back-
ground model”) a ’avantage d’étre indépendant du locuteur. On évite donc le calcul
des proximités entre les différents modéles et I’établissement des cohortes. Un seul
modele global est entrainé une fois 4 ’aide des données de tous les Ioc?uteurs du reg-
istre et est utilisé lors de chaque vérification, quel que soit le locuteur désiré. Le UBM
devrait étre entrainé sur un large éventail de locuteurs, permettant ainsi de modéliser
'espace acoustique qui prévalait lors de P’entrainement. Le modéle ne devrait pas,
idéalement, é&tre trop influencé par les données individuelles d’un locuteur particulier

[39].

9.5 Le modéle universel de normalisation adapté
au combiné

Etudiant les résultats de reconnaissance de locuteur produits par différents systémes,
Reynolds [39] observa que les modeles de locuteurs produisaient différentes distribu-
tions de résultats pour les mémes séquences d’observations tests, en particulier dans

le cas de numéros de téléphone “mismatched”.

Cette observation, en combinaison avec d’autres études préalables le mena & croire
que le type de combiné utilisé, soit “carbon-button” ou “electret”, pouvait étre a 1’o-
rigine de ces divergences. C’est-a-dire que les fichiers tests, prononcés & l'aide d’un

combiné du méme type que celui utilisé par le locuteur désiré lors de ’entrainement
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de son modéle, obtenaient de meilleurs résultats que ceux qui avaient été prononcés

a l'aide d’un combiné de 'autre type.

Afin de tenir compte de ces effets, Reynolds [39] a proposé la méthode “hnorm”
selon laquelle, pour éhaque locuteur du registre, certaines informations supplémentaires

doivent étre stockées en mémoire:

Aznm = {/\d’ Hd,cs ad,t:a Hdes ad,e} (5~13)
ou
Ad = modéle GMM calculé pour le locuteur désiré.
Ld,c = moyenne des ratios de vraisemblance produits par
le modele A4 pour les séquences
d’observations provenant d’'un combiné de type
“carbon-button”
Odc = variance des ratios
Ude €t 0ge = idem pour un combiné de type “electret”

Donc, en supposant que I'’observation O, ait été identifiée comme provenant d’un

combiné de type “electret”, le nouveau calcul de vraisemblance s’exprime ainsi:

A(Ocl/\d) — Hd,e (5‘14)

Ahnorm (Ocll\d) p

Cette méthode est maintenant considérée comme I'une des plus performantes pro-

posées a ce jour (3], suite aux résultats obtenus par Reynolds.
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5.6 La vraisemblance des trames pour la normali-

sation

Nakagawa et Markov [26] ont étudié la normalisation au niveau de chacune des ob-

servations (trames), plut6t que pour la séquence compléte d’observations.

La comparaison s’est réalisée au niveau de la normalisation par cohorte. Tradi-

tionnellement, on a:

P(Ocl/\d)
A(OclAd) = N, P(O,[);)

L

ch =1

T
_ HE p(Toqtl/\d) (5.15)

1

Ne, &j=1 tzlp(oc,tl’\j)

Le nouveau ratio proposé correspond donc & ceci:

MO = ] 2ol (5.16)

=1 We, 2ej=1 P(0ctlA;)

_ e, pgzi,tl/\a) (5.17)

T
M= NLC.: 2;':1 P(Oc,tl’\j)
Cette méthode a elle aussi permis d’améliorer substantiellement les résultats obtenus
p

par le systéme de vérification sur lequel elles ont été implantées.

5.7 La museliére

Observant les résultats de reconnaissance du locuteur, il semblait que certaines séquences

d’observations obtenaient d’excellents résultats et ce, quel que soit le modéle auquel
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elles étaient confrontées. Ces séquences étaient donc a la source de plusieurs fausses
acceptations et constituaient donc, ce que I'on appelle des loups. Cette constatation
fut faite avant méme 'implantation d’une technique de normalisation (cohorte, UBM,

etc.), alors que le simple calcul de vraisemblance de base était utilisé:

A(Oc[As) = P(OAg) (5.18)

Le succes de ces séquences ne pouvait s’expliquer que par la présence d’un élément
commun a tous les modeles de locuteurs du registre et aussi présent dans la séquence
d’observations test du loup. Deux possibilités semblaient valides: ’environnement

acoustique et la structure de modele choisie.

Ace moment, la technique de normalisation envisagée était le UBM, généralement
constitué d’un nombre substantiellement supérieur de mixtures et donc peu valable
pour la vérification du succeés général de la séquence d’observations sur la structure
du modele. L’objectif visé par I'implantation d’un modéle de type UBM est d’ailleurs
plutot relié 4 la premiére possibilité mentionnée: la représentation de I’environnement
acoustique général, présent lors de ’entrainement des modéles des locuteurs du reg-
istre. Cet objectif est d’ailleurs clairement poursuivi avec I'introduction de la tech-

nique hnorm.

Afin d’étudier la seconde possibilité, i.e., vérifier la possibilité que la séquence
d’observations puisse étre bien représentée par le modele choisi, il fallait calculer
erreur d’entrainement (ou “goodness-of-fit”) des données de la séquence par rapport
au modeéle. Pour ce faire, I'idée simple de construire artificiellement un modéle selon

la méme structure utilisée pour les modéles du registre, mais avec les données de la
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séquence test observée fut envisagée. Le nouveau calcul de vraisemblance proposé

s’exprime donc ainsi:

P(O.])\a)
P(Oc|Ac)

La modélisation doit permettre d’optimiser un gain de simplification de calcul

A(Oc|Ag) (5-19)

contrebalancé par une perte d’information. L’architecture du modéle choisie et fixée
a priori permet un gain de simplification essentiellement semblable pour toutes les
séquences d’observations. La perte d’information n’est, quant 4 elle, pas nécessairement
constante d'une séquence a l'autre. Le calcul de P(O,|)\.), que nous appellerons la
museliére, permet de mesurer la qualité de représentation de la séquence d’observa-
ure du models, i-e., la quantiié d’inforination que revés ia séquence

et qui a été retenue par le modéle.

La valeur numérique de P(O.|\.;) est d’autant plus élevée que la séquence O,
peut étre bien représentée par la structure du modéle utilisé. Cette valeur devrait

idéalement nous permettre d’identifier, a priors, les loups.

L’estimation des parameétres du modele ). constitue le désavantage principal de la
technique présentée, ce modéle n’ayant pas été développé a priori. Le modeéle serait
donc probablement encore en phase de développement 3 la fin de la prononciation du
fichier test par le locuteur. Par la suite, la museliere devrait étre calculée. En somme,
la prise de décision du systéme ne pourrait s’effectuer en temps réel et étre livrée
apres un temps constant suivant la fin de la prononciation. Elle nécessiterait un délai
supplémentaire. L’analyse de ce délai supplémentaire n’a pas été effectuée et pourrait

faire 'objet de recherches subséquentes, dépendamment de la réussite expérimentale
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de la méthode et donc de I'intérét qu’elle pourrait susciter. Toutefois, compte tenu
de la longeur des séquences traitées (3, 10 ou 30 secondes), le probléme du temps
réel n’est pas aussi crucial que pour la reconnaissance de la parole. De plus, 'utili-
sation des techniques telless MLLR ou MAP permettrait de commencer I’estimation

des paramétres avant la fin de la phrase.

I convient maintenant de tenter de vérifier & quel point le calcul de la museliére
est corrélé a I'appétit (P(O.|);)) d’un fichier, i.e., d’un échantillon d’un locuteur. A
cette fin, une mesure valable de cet appétit consiste & calculer, a postertort, le succes
moyen du fichier sous étude sur I’ensemble des modeles. Ce calcul (équation 5.20) a

été effectué sur ’ensemble des 180 fichiers de la base de données du corpus de SPIDRE.

180

A = == 3 logP(ON) (5.20)
179 . =~
J=Llj#c

W. = logP(OA.) (5.21)

Le calcul de W, constitue, quant a lui, la mesure, a prior: de I'appétit du fichier
en question. L’hypothése qui fut initialement posée est qu’il existe une corrélation

tres fortement positive, entre les valeurs A, et W,.

Le nuage de points de la figure 5.3 illustre, de facon flagrante, l'existence de la
corrélation recherchée avec un coefficient de p = 0,97. La droite de régression linéaire

minimisant I'erreur quadratique moyenne suit I’équation suivante:
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Figure 5.3: Résultats de A, (a posteriori) en fonction de W, (a priori)

A, = 1.0716- W, +2.1003 (5.22)

Enfin, I'analyse ANOVA donne un coefficient de R? = 94%, i.e., que 94% de la

variation de A, peut s’expliquer par la variation de W.,.

Il semble donc clair que le calcul de W, permet d’établir de facon fiable, ’appétit
d’un fichier. L’analyse précédente porte toutefois sur la moyenne des résultats obtenus

par le fichier et une analyse plus compléte sur les résultats individuels est de mise.

La figure 5.4 illustre les (180 x 180 =) 32400 résultats de fichiers tests de 30

secondes sur les modéles développés a 1’aide des fichiers entiers d’une durée moyenne
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Figure 5.4: Résultats de R.4 = P(Oc|A4) (a posteriori) en fonction de W, = P(O,|\.)

(a priori)

de 66,4 secondes. En abscisse se trouve la valeur de W,, en ordonnée, les valeurs
individuelles de R.q4 = log P(O./\s). Ainsi, le graphique est formé de 179 colonnes
de points et d’une droite formée des valeurs de W, mises en ordonnée, i.e., la droite
d’équation y = z. Clairement, les valeurs de R. 4 sont corrélées avec les valeurs de W...
Pour les trois fichiers provenant du locuteur lui méme, on obtient une corrélation de
p = 0,90 (le fichier d’entrainement du locuteur ¢ a été retiré afin d’éviter I'introduc-
tion d’un biais positif). Dans le cas des 176 fichiers provenant de locuteurs différents,
p0,89 (34176 + 1 = 180). Le coefficient R?, quant a lui, tombe & 79%. Cette chute
indique que la valeur de W, n’est pas le seul facteur expliquant la variabilité des

résultats. D’autres sources doivent &tre proposées.



60

La valeur de A, étant donné le nombre assez élevé de fichiers ayant servi A son
calcul, devrait idéalement se trouver indépendante des observations individuelles des
locuteurs du registre (“speaker independent”) et ne dépendre que du fichier test et
de I'architecture du modéle. Le coefficient de R? = 94% indique que la variabilité des
résultats strictement due au fichier test peut s’expliquer essentiellement par la valeur
de W.. Donc, les sources de variabilité des résultats & trouver doivent donc provenir
du fichier ayant servi au développement du modéle du locuteur désiré, a la structure
du modéle, 4 leur interaction ou encore i I'interaction de I'un de ces trois éléments

avec le fichier test.

5.8 La museliére, Parmature, la contre-attaque et
Pimpact

Dans le domaine de la reconnaissance de formes, le probléme des loups et moutons
(en anglais, “wolves and sheeps”) est bien connu. Les loups (fichiers tests) réussissent
a obtenir d’excellents résultats sur presque tous les modeles développés. Les moutons
(fichiers d’entrainement), quant & eux, sont tels que plusieurs fichiers tests obtiennent
d’excellents résultats lorsque confrontés aux modéles développés pour ces moutons.

Les loups et les moutons sont donc & la source de plusieurs fausses acceptations (FA).

Les résultats obtenus avec le calcul de vraisemblance de base faisaient clairement
ressortir la présence de certains loups féroces, d’ou I'idée de la museliere. Cette

vigueur des loups pouvait, en fait masquer la faiblesse de certains moutons. Cette
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hypothése fut toutefois rejetée puisque méme aprés 'utilisation de la museliére, aucun

mouton ne semblait se distinguer.

Pourtant, Campbell [3] avait fait face au probléme inverse, i.e., la présence de
moutons trop faibles. Il m’apparut donc que la présence/abscence de loups et de
moutons dépende de la base de données et non d’une réalité universelle. La recherche
d’un ratio permettant de protéger les moutons semblait donc justifiée par le désir de

développer un calcul de vraisemblance plus robuste.

La premiére idée fut d’introduire, au dénominateur, [ ’armature, i.e., une protection

pour les moutons similaire 4 la museliére utilisée pour les loups:

P(O.[\s)
A(O A —_ 5.23
La seconde idée fut d’utiliser conjointement la museliére et ’armature:
P
A(©.IA) (Q:l2) (5.2

P(OclAc) - P(OulAa)

Les deux calculs obtinrent peu de succes et furent rapidement rejetés.

Pourtant, I'observation des résultats laissait entrevoir une corrélation évidente
entre le calcul de ’armature et la faiblesse de certains modeles. L’armature nécessitait
toutefois une certaine normalisation, son comportement étant tantét trop vif, tantot
trop faible. Le calcul de la contre-attaque (P(O4|).)) apparut approprié et permettant

le développement d’un calcul de vraisemblance symétrique, qui sera appelé 'impact:
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P(Oc|Ad) - P(O4l)c)

P(O.Ih) - P(Odhg) (5-25)

A(O¢|Aa)

L’impact, comme le chapitre 6 le montrera obtint des résultats spectaculaires.
Aprés m’étre longuement concentré sur le probléeme des loups et moutons, il fut
satisfaisant d’observer que ce calcul permettait de réduire substantiellement le probléme

des fausses acceptations.

L’impact et la museliére apportent la nouveauté du développement artificiel d’un
modele pour les données tests basé sur I’architecture utilisée pour les modéles des
fichiers d’entrainement. Cette derniére idée correspond donc a ’apport essentiel de

ia recherche effectuée et présentée dans ce mémoire.

5.9 Combiner les techniques de normalisation

La museliére et I'impact qui ont été proposées ne tiennent pas compte du modéle de
'environnement acoustique et de sa possible disparité entre celui prévalant lors de
I'enregistrement des données d’entrainement et celui prévalant lors de I’engistrement
des données tests de ['utilisateur. Cette disparité pourrait étre tenue en compte par le
développement d’un modeéle de type UBM, \,. Ainsi, la combinaison des différentes

techniques serait, idéalement, complémentaire et non redondante:

P(O.|Aq) - P(Og4]A;) - P(Og4lXs)

P(OcA) - P(Ogl)g) - P(ONy) (5.26)

A(Oc,/\d)
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5.10 Conclusion

Ce chapitre a présenté les techniques de normalisation récemment proposées et couram-

ment utilisées dans le domaine de la vérification du locuteur.

Les séquences d’observations tests sont généralement utilisées contre des modeles
développés a priori. L'apport essentiel de cet ouvrage réside donc dans le simple fait
de développer un modéle pour les données tests elles-mémes et de tenter d’utiliser ce

modele de la meilleure fagon possible.

Le désavantage de devoir développer ce modéle “on-line” et donc de ralentir le
service fourni par le systéme est contrebalancé par une amélioration substantielle des
résultats. Dans les applications requérant un niveau de sécurité élevé, un tel délai est
plus susceptible d’étre accepté du grand public. I est donc important de noter que
les améliorations apportées par les nouvelles techniques proposées, en particulier I'im-
pact, se situent au niveau des fausses acceptations et s’adressent donc aux systémes
cherchant & augmenter leur niveau de sécurité, ceux qui accepteraient vraisemblable-

ment une augmentation du délai de service.
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Chapitre 6
Résultats expérimentaux

Ce chapitre décrit les résultats expérimentaux obtenus & ’aide du systéme de vérification
du locuteur développé au CRIM et du logiciel HTK d’Entropie. Les critéres d’évaluation
des systémes de vérification du locuteur sont discutés a la section 6.1. Le corpus de
données utilisé fut SPIDRE et est décrit dans la section 6.2. Différentes segmentations
des données disponibles entre corpus d’entrainement et corpus test furent utilisées.
Ces segmentations seront appelées schémes et seront décrites a la section 6.3. Certains
parametres utilisés ne furent pas modifiés et sont brievement listés dans la section 6.4.
L’essentiel des expérimentations a porté sur des modeéles développés avec un nombre
fixe de 16 gaussiennes. L’utilisation de ce nombre est justifiée a la section 6.5. Les
résultats obtenus a 1’aide de la museliére et de I'impact sont analysés & la section 6.6.

Enfin, une comparaison de ces résultats avec ceux obtenus a I’aide de la cohorte est

présentée a la section 6.7
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6.1 Les critéres d’évaluation des systémes de vérification

6.1.1 La courbe “ROC” et le “EER?”

La courbe ROC (de I'anglais “Receiver Operating Curve”) est déployée sur le plan
FR x FA (ie, FR en abscisse, FA en ordonnée). La figure 6.1 illustre un exemple
d’une courbe ROC. Lorsque le seuil S d’acceptation de I'utilisateur en tant que client
cible est trop élevé, alors le systéme rejette tous les locuteurs: tous les imposteurs
mais aussi toutes les personnes qui désirent accéder & leurs propres ressources. Ainsi,
FR = 100% et FA = 0%. A mesure que 'on abaisse le seuil d’acceptation, la
quantité de faux rejets diminue. Toutefois, certains imposteurs sont acceptés. Donc

3 N

FR diminue et F'A angmente, jusqu’an noint o1 vty

1 1
le seuil est tel que tous los locuteurs

-

f

sont acceptés. A ce moment, le systéme ne rejette plus de bons clients mais accepte

tous les imposteurs. Donc, FR = 0% et FA = 100%
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Figure 6.1: Illustration de la courbe ROC et de la droite EER
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De facon générale, dans les domaines d’authentification, le courant actuel de la
recherche encourage la publication des résultats d’expérimentation sur la base du
EER (en anglais “equal error rate”). Afin d’établir la valeur du EER, on choisit le
seuil d’acceptation faisant en sorte que les erreurs de types a et B (ou I et II ou
encore HO et H1) soient équivalentes, i.e., que la probabilité que le systéme accepte
un faussaire (F'A pour fausse acceptation) est égale a la probabilité de rejeter un
client (FR pour faux rejet). Sur la figure 6.1, la droite FA = FR est tracée depuis
lorigine jusqu’a 'extrémité droite et haute du graphique. Le point de croisement de
la droite FA = FR avec la courbe ROC permet de bien voir le point correspondant

au EER.

Plusieurs résultats sont souvent présentés avec la simple valeur du EER. Cette
valeur ne représente pourtant qu’une fraction minime de I'information nécessaire a
’évaluation de la qualité d’un systéme de reconnaissance. Bien que l'utilisation de
la valeur EER puisse étre justifiée par des besoins de comparaison entre différents
systémes, la présentation de la courbe ROC permet au lecteur de visualiser, d’un
simple coup d’oeil, toute 'information pertinente reliée 2 la performance du systéme.
Trop de publications (e.g. [26]) ne se contentent que de fournir un tableau des valeurs
du EER pour une multitude de combinaisons possibles des divers parameétres de
leur systeme. La courbe ROC occupe, certes, beaucoup d’espace et les publications
limitées a 4 pages ne peuvent se permettre I'insertion d’un trop grand nombre de
graphiques. L’utilisation des deux mesures de performance s’avere donc souhaitable.
Il semble toutefois que 'apport informatif du EER soit largement sur-estimé, au

détriment de la courbe ROC.
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6.1.2 La droite-m de distance minimale par rapport 4 I’orig-
ine

Fondamentalement, la qualité d’un systéme de reconnaissance peut &tre mesurée par

le coit associé & son-utilisation. On entend ici par coiit, non pas les frais d’implanta-

tion ou de maintenance, mais les pertes encourues par le gestionnaire ou 'utilisateur

du systéme en cas d’erreur de reconnaissance, que ce soit une fausse acceptation ou

un faux rejet.

Etant donné la nature stochastique liée au processus, une mesure M valable du
colit peut étre représentée par l’espérance mathématique des frais encourus par util-
Isation du systéme. Le critére d’évaluation correspond donc & la minimisation, par

Vajustement du seuil S, de la valeur M = E[C]:

Soient:
M, la mesure utilisée pour évaluer la faiblesse du systéme,
C, le coiit encouru,
£, un faussaire (ou imposteur),
c, un client honnéte,
A, la décision du systéeme d’accepter I’utilisateur,
R, la décision du systéme de rejeter l'utilisateur,

FA, une fausse acceptation,

FR, un faux rejet,
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<
I
b

[C]
= E[C|f]-pr + E[Cld] - p.

= E[C|f,A] - psa+ E[C|f,R] - ps.r + E[Clc, A] - pea + E[Clc, R] - pe.r
= E[CIFA] -Pr.A -+ E[C,FR] - De,R
= E[C|FA]-prajy-ps+ E[C|FR] - prgyc - Pe (6.1)

Les valeurs de E[C|FA], E[C|FR], p; et p. doivent &tre estimées a priori. Les
valeurs de pra|s et prp|c sont estimées par les données empiriques obtenues, respec-

tivement F'A et FR. Elles dépendent donc du seuil S choisi.

En réalité, la probabilité (ps) qu'un faussaire tente de déjouer le systéme dépend
du gain (E[C|F A]) qu'il peut potentiellement (prajs) en retirer. De facon plus sub-
tile, il semble logique que dans le cas d’un petit nombre potentiel de faussaires (p
faible), ceux qui se présenteront seront particuliérement féroces (E[C|FA] élevée).
Ces références circulaires laissent présumer l’existence de plus d’un point de conver-

gence possible.

Lors de I’établissement initial du systéme on peut évaluer E[C|FA] et p f €N sup-
posant un état stable. Il faut toutefois prendre garde et considérer ces parametres
comme étant évolutifs, en particulier peu de temps aprés 'établissement initial du
systeme, puisque la perception du public évoluera rapidement au fur et & mesure que

les premiers succés ou échecs du systéme seront rapportés.

Une fois les quatre parameétres établis E[C|FA], E[C|FR], ps et p., on peut
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calculer le ratio suivant:

% ot me RY (6.2)

On peut interpré.ter m comme étant une mesure de sévérité qui sera imposée au
systéme. Une valeur élevée de m signifie que I'on cherche fortement i se protéger
des faussaires (e.g. applications bancaires) et le seuil S sera donc élevé. De la méme
facon, une valeur faible de m indique que les efforts sont concentrés sur la satisfaction

du client (e.g. cartes d’appels), le seuil S sera ajusté i une valeur plus basse et le

systéme sera plus tolérant, moins sévére.

De plus,

E[C] = (m-prays+Drrc)-E[C|FR]-p. (6.3)

Ainsi, dans le plan FR x F'A, pour une certaine valeur M, de M , 'ensemble des
points de coiit M, forment une droite de pente m’ = —#. Le but du systéeme étant
de minimiser M, on ajustera le seuil S afin de trouver le point de coiit minimal parmi

I’ensemble des points de la courbe ROC.
Au cours des deux derniéres années, les concours organisés par NIST (National

Institute for Standards in Technology) ont établi une régle de ce type en spécifiant

les parametres a priori [22]:

E[CIFA] = 10 (6.4)



Ainsi, dans ce cas particulier, m =

(F'R) sont donc particuliérement pénalisés.
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Figure 6.2: Quatre critéres différents pour I’évaluation de la performance d’un systéme
p P

de vérification

La figure 6.2 illustre quatre mesures différentes de la performance d’un systéme de

reconnaissance. Selon le EER, on observe le point de croisement de la courbe ROC

et de la droite FR = FA. On obtient ici le point (25.5,25.5). Selon le critére établi

pour les concours de NIST, les faux rejets sont pénalisés environ 10 fois plus que les

fausses acceptations, i.e., m ~ 0.1. Le point obtenu est (2.2,51.2). La droite de coiit

minimal avec m = 10 correspond & 'optimisation pour un systéme & haute sécurité.
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On obtient le point (97.8,0). Enfin, la droite de coiit minimal avec m = 1 est illustrée
afin de faire ressortir le fait que la mesure selon le EER. ne lui correspond pas, une
erreur d’interprétation parfois commise. Le point obtenu est (11.1,31.5). En fait, le
calcul du EER ne correspond pas & un calcul d’optimisation: on restreint 1’espace
d’analyse, depuis leiplan FR x FA, a la simple droite FR = F A, sachant que la
courbe ROC ne croisera cette droite qu’en un seul point. D’ou la faiblesse d’une

analyse effectuée strictement par le biais du EER.

6.1.3 Minimiser FFR pour FFA=0

Lors de I'implantation éventuelle d’un systéme 4 trés haute sécurité, on voudra & tout

g 2 = PR . 9 . . . , - ’ .
prix éviter 'intrusion d’imposteurs. On peut facilement imaginer une séric d’applica-

tions (accés 4 une centrale nucléaire, aux installations de la défense nationale ou util-
isation d’un enregistrement audio comme preuve judiciaire, etc.) pour lesquelles une
fausse acceptation entrainerait des conséquences catastrophiques (désastre écologique,

atteinte a la sécurité des citoyens, exécution d’un innocent, etc.).

De fagon mathématique:

E[C|FA] > E[C|FR] (6.8)
m — 0o (6.9)
m = 0 (6.10)

Il est donc intéressant de vérifier quel pourcentage des clients honnétes peuvent
étre acceptés avant méme ’acceptation d’un seul imposteur. Ceci correspond a laisser

glisser son regard le long de I'axe des abscisses, depuis I’extréme droite (F'R = 100%)
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jusqu’au point ou la courbe ROC quitte I'axe. Le plus pres de I’origine est situé ce
point, le mieux adapté sera le systéme en situation de haute sécurité. Les sections
a venir montreront que la museliére et I'impact réussissent, selon ce critere, et dans

certains cas, a battre les résultats publiés i ce jour.

6.1.4 La publication des résultats de cet ouvrage

Par conformisme, l'analyse des résultats publiés dans cet ouvrage sera essentielle-
ment basée sur le EER. Toutefois, une analyse plus appropriée sera présentée afin
d’améliorer la comparaison de certains systémes qui performent similairement en re-

gard de leur EER mais qui se distinguent sous d’autres aspects importants.

6.2 Le corpus de données SPIDRE

Le corpus de données SPIDRE (“SPeaker IDentification REsearch”) est un sous en-
semble de SWITCHBOARD et fait partie d’un nombre restreint de corpora de données

standards utilisés pour I'identification et la vérification du locuteur.

Les locuteurs sont divisés en deux groupes distincts. Le premier est formé de 45
personnes (27 hommes et 18 femmes) pour lesquels quatre fichiers audio ont été enreg-
istrés. De ces quatre fichiers, deux proviennent du méme numéro de téléphone. Ces
fichiers seront appelés pairés. Les deux autres fichiers proviennent de deux autres
numéros de téléphone. Ces fichiers seront appellés isolés. Donc, trois numéros de
téléphone ont été utilisés pour I’enregistrement des quatre conversations. Ces 45 lo-

cuteurs font partie du registre (en anglais “target speakers”). Nous les appellerons
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locuteurs internes. Le second groupe est formé de 160 locuteurs ayant prononcé un
total de 200 conversations. Ces locuteurs ne peuvent faire partie du registre et sont
utilisés strictement comme imposteurs (en anglais “nontarget speakers”). Ils sont
donc utiles pour I'identification avec rejet et la vérification du locuteur. Nous les

appellerons locuteurs erternes.

6.3 Les schémes

Les expérimentations en vérification de locuteur se classent généralement en deux sit-
uations: la situation d’appariement (en anglais “matched conditions”) et la situation
de disparité (en anglais “mismatched conditions”). La situation d’appariement, telle
que généralement définie, requiert que les fichiers de test et d’entrainement provien-
nent d’un seul et méme numéro de téléphone pour un locuteur particulier. Il est &
noter que cette situation n’implique pas nécessairement 'utilisation d’un type sem-
blable de combiné puisque de nos jours, une maison compte souvent plus d’un appareil
téléphonique. La situation de disparité, quant 3 elle, exige que pour chaque locuteur,
le fichier test provienne d’un numéro de téléphone différent de celui d’ol1 provient le
fichier d’entrainement. Soulignons encore qu'’il est tout de méme probable que deux
combinés d’'un méme type aient été utilisés par le biais de deux lignes téléphoniques

différentes.

Quatre schémes ont été développés pour les expérimentations présentées dans
ce chapitre. Pour le premier schéme, les fichiers pairés ont été utilisés pour I’en-

trainement de deux modgles différents pour chaque locuteur. Les deux fichiers isolés
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ont été, quant a eux, utilisés comme fichiers test. De plus, les fichiers isolés des 44
autres locuteurs internes ont été utilisés comme fichiers test d’imposteurs. Donc, cha-
cun des 90 modeles développés s’est vu confronté & deux fichiers test provenant du bon
locuteur et 88 fichiers d’imposteurs. Ce schéme génére donc en tout 8100 confronta-
tions. Idéalement, 90 de ces confrontations devraient étre acceptées par le systéme
et 8010 devraient étre rejetées. Parmi les 4 schemes développés, celui-ci représente
la tache la plus difficile puisque malgré 1'utilisation de 2 fichiers d’entrainement, le
systeme ne peut généraliser I'information acquise sur le locuteur puisque ces deux
fichiers sont pairés, i.e., proviennent du méme numéro de téléphone. De plus les deux
fichiers test isolés proviennent de deux autres numéros. Le code utilisé pour identifier

ce schéme sera, “9090”.

Le second schéme fut choisi puisqu’il avait été préalablement utilisé au sein de
notre groupe et permettait ainsi certaines comparaisons initiales de performance.
Pour chaque locuteur, un seul fichier isolé fut utilisé comme test. Les trois autres
(le second fichier isolé et les deux fichiers pairés) furent utilisés comme fichiers d’en-
trainement. Les 44 autres locuteurs fournirent un fichier isolé, utilisé comme fichier
d’imposteur. Trois modgles furent donc développés pour chaque locuteur, 135 en tout.
Chaque modele fut confronté & un bon fichier et 44 fichiers d’imposteurs. Globale-
ment, 6075 confrontations furent générées, 135 (3 modeéles x 1 test x 45 locuteurs)
provenant de locuteurs tentant d’accéder légitimement & leurs propres ressources et
5940 (3 modeéles x 44 tests x 45 locuteurs) provenant d’imposteurs. Le code utilisé

pour identifier ce schéme sera “45135”.

Le troisi¢me schéme correspond & la situation inverse du précédent. Le fichier
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isolé, utilisé comme test dans le schéme précédent fut utilisé comme fichier d’en-
trainement pour le schéme présent. Ainsi, chacun des 45 modéles fut confronté a
trois bons fichiers et 132 fichiers d’imposteurs. Encore une fois, 6075 confrontations
furent générées, 135 (1 modele x 3 tests x 45 locuteurs) provenaient de bons locu-
teurs et 5940 (1 modéle x 132 tests x 45 locuteurs) provenaient d'imposteurs. Le

code utilisé pour identifier ce schéme sera “13545”.

Contrairement au trois précédents, le dernier schéme reproduit une situation d’ap-
pariement. Pour chaque locuteur, un fichier pairé fut utilisé pour ’entrainement et le
second pour le test. Chaque modéle fut confronté & un bon fichier et 44 imposteurs.
Il y eu donc 2025 confrontations, 45 bonnes et 1980 provenant d’imposteurs. Le code

utilisé pour identifier ce schéme sera “4545”.

6.4 Les parametres fixes

Les chercheurs utilisent généralement de 7 & 12 coefficients cepstraux statiques. Le
logiciel HTK a été implanté au CRIM en fonction d’une utilisation de 12 MFCC sta-
tiques. Au total, 12 MFCC statiques, 12 MFCC dynamiques, 1 coefficient d’énergie
et 1 coefficient de variation d’énergie ont été utilisés. Chaque trame de 10ms était

donc représentée a l'aide de 26 paramétres.

Au sein de la communauté scientifique, les résultats en reconnaissance du locuteur
sont généralement présentés pour des durées d’enregistrement des fichiers tests de 30,

10 et 3 secondes. Les fichiers tests utilisés ont donc été tronqués afin de respecter
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cette convention. Une exception, toutefois: afin de déterminer le nombre approprié
de gaussiennes 3 utiliser pour les expériences subséquentes, les fichiers tests n’ont pas

été tronqués, par but de simplicité.

6.5 Lenombre de gaussiennes pour la modélisation

Tadj [48] a analysé I'effet de certaines variations du nombre de gaussiennes utilisées
pour la modélisation des locuteurs sur la tiche d’identification (sans rejet). De facon
empirique, une “régle du pouce” pour le calcul du nombre optimal N de gaussiennes a

utiliser en fonction de la durée T (en secondes) du fichier d’entrainement a été établie:

N = 0,36-T+4 (6.11)

La durée moyenne des fichiers de SPIDRE pour les locuteurs du registre est de
66,4 secondes. Donc, selon I'équation précédente, le nombre optimal moyen de gaussi-
ennes était de 27 (minimum:10; maximum:59). L'expérience fut donc réalisée 3 1'aide
d’un nombre variable de gaussiennes pour la modélisation de chacun des locuteurs,
dépendamment de la durée du fichier d’entrainement afin de déterminer les parametres
(0,36 et 4) de I’équation linéaire. La performance d’identification fut de 78% pour

une durée de 30 secondes des fichiers tests.

Par la suite, la méme expérience fut reconduite avec un nombre fixe de gaussi-
ennes. Le tableau 6.1 donne les résultats obtenus pour différents nombres de mixtures.

Le but était de vérifier si 'utilisation d’un nombre variable de gaussiennes, adapté au
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Tableau 6.1: Pourcentage d’identification pour différents nombres de gaussiennes fixés

a priori (tiré de Tadj [48])

Nombre de gaussiennes | 10 16 27 32 59
Identification 67% | 67% | 73% | T1% | 69%

fichier d’entrainement du locuteur permettait d’obtenir de meilleurs résultats.

L

We {16 gauss innes)
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8
:
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(4] 22000 4000 6000
Nombre de tames de 10me

Figure 6.3: Graphique de W, calculé avec 16 gaussiennes, en fonction de T, le nombre

de trames de 10ms (ou durée).

La conclusion fut donc qu’un nombre variable de gaussiennes, déterminé selon
I'équation 6.11 était souhaitable. La question se pose, toutefois, & savoir si la durée
du fichier d’entrainement est réellement représentative du nombre optimal de gaussi-

ennes a utiliser pour la modélisation.

Les figures 6.3, 6.4 et 6.5 illustrent, en fonction de la durée du fichier d’en-
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Figure 6.4: Graphique de W, calculé avec 32 gaussiennes, en fonction de T, le nombre

de trames de 10ms (ou durée).

trainement, la valeur de W, calculée A I’aide de 16, 32 et 64 gaussiennes, respec-
tivement. La valeur du coefficient de corrélation est de p = —0,10, p = —0,16 et

p = —0,25, pour 16, 32 et 64 gaussiennes, tout aussi respectivement.

Les trois graphiques sont trés similaires et les points semblent, dans les trois cas, se
répartir relativement uniformément. Par contre, I'augmentation (en termes absolus)
de la corrélation entre la durée d’entrainement et la valeur de W, au fur et & mesure
que le nombre de gaussiennes utilisées augmente nous force & jeter un second coup
d’oeil: ce sont les fichiers de courte durée qui bénéficient le plus de 'augmentation de

la complexité du modéle.

La figure 6.6 illustre la différence entre W, calculé & I’aide de 64 gaussiennes et W,
calculé & I'aide de 16 gaussiennes en fonction de la durée T du fichier d’entrainement.

Toutes les valeurs sont positives, ce qui signifie que I’augmentation de la complexité
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Figure 6.5: Graphique de W, calculé avec 64 gaussiennes, en fonction de T, le nombre

de trames de 10ms (ou durée).

du modéle a permis une réduction de ’erreur d’entrainement. D’un simple coup
d’oeil, on peut voir que les fichiers de courte durée sont les plus grands bénéficiaires
de cette augmentation de la capacité du modéle. Plus précisément, la corrélation
entre la différence et la durée est de p = —0, 65. Encore plus forte est la corrélation
entre la différence et la transformée logarithmique de la durée: p = —0,74. La figure

6.6 illustre la courbe de régression linéaire simple sur cette transformée.

Aucun test n’a été effectué pour observer ’évolution de I’erreur de généralisation.
En fait, peu de chercheurs du domaine de la reconnaissance du locuteur s’y attardent,
malgré 'intérét que cette analyse peut comporter et qui fera probablement ’objet de

recherches futures.

La figure 6.7 permet d’émettre certaines hypothéses pour linterprétation des
gur P Ip

résultats de la figure 6.6. Selon la théorie des “learning machines” [27], 'augmentation
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Figure 6.6: Réduction de I’erreur d’entrainement (lorsque 64 gaussiennes sont utilisées
pour la modélisation au lieu de 16), en fonction de T, le nombre de trames de 10ms

(ou durée).

de la capacité d’une machine, en particulier par le biais de I’augmentation du nombre
de parameétres, permet d’obtenir, lorsque le nombre de données d’entrainement con-
verge vers l'infini, non seulement une erreur d’entrainement inférieure, mais aussi et
surtout, une erreur de généralisation inférieure. En fait, ces deux erreurs convergent
vers une seul et méme valeur. A l'autre extréme, alors que le nombre de données
d’entrainement est minime, le modéle peut arriver & surentrainer les données. Sur la
figure 6.7, pour une machine de capacité &, si le nombre de données d’entrainement est
inférieur & Ny, Perreur d’entrainement est nulle. Toutefois, I’erreur de généralisation
est énorme. La question essentielle tourne autour de 'estimation de Ng s, le nombre
de données d’entrainement nécessaires pour justifier le passage d’une capacité h a
une capacité h'. Ce nombre correspond au point de croisement des courbes d’erreur
de généralisation et ne peut étre déduit des courbes d’erreur d’entrainement, d’oi

I'intérét clair d’une analyse sur la base de ’erreur de généralisation.
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Figure 6.7: Interprétation de ’amélioration de I'erreur d’entrainement, & l’aide de
la théorie des “learning machines”, pour une augmentation de la complexité (ou

capacité) du modele de 16 4 64 gaussiennes.
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Pour le cas particulier des modeéles de mixtures de gaussiennes avec une matrice
de covariance diagonale, le nombre N est légérement supérieur au nombre de mix-
tures utilisées. Donc, le nombre (T') de données utilisées est amplement suffisant (i.e.,
T >> N,) pour éviter le surentrainement. Le fait que les fichiers de durée inférieure
bénéficient le plus de I’augmentation de la capacité du modele, correspond au rap-
prochement des deux courbes d’erreur d’entrainement: étant donné une variation
fixe de capacité, la différence entre les erreurs d’entrainement est plus grande si le
nombre de données est inférieur. La question reste toutefois en suspens a savoir si
Nj pr < 2000 = Tnin, ot h et b’ sont les capacités des modeles 3 16 et 64 gaussiennes
respectivement. Cette situation justifierait le passage d’'un modele 4 16 gaussiennes

Vers un wodeie a 64 gaussiennes pour tous les locuteurs.

Donc, I'idée de choisir une architecture adaptée au fichier d’entrainement du locu-
teur pour le modéliser semble prometteuse. Par contre, le choix de la durée du fichier
d’entrainement comme seule variable déterminante de ce nombre n’est sans doute pas
la plus heureuse. L’avantage marqué de cette méthode est I'extréme simplicité de
calcul du nombre (présumément) approprié du nombre de gaussiennes. L’utilisa.tio'ﬁ‘
du calcul de la muselitre, W, plutét que la durée fera I'objet (encore une fois) de

recherches sous peu.

Les figures 6.8, 6.9 et 6.10 montrent que les courbes ROC sont trés similaires, que
le nombre de gaussiennes utilisées soit de 16, 32 ou 64. Cette observation est vraie
pour les trois schémes 9090, 45135 et 4545. La table 6.2 donne les valeurs du EER

Les fichiers test ont été utilisés en entier pour obtenir ces valeurs. Encore une fois,
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le nombre de gaussiennes utilisées semble n’avoir qu'un effet marginal sur les résultats.

Les résultats obtenus par Tadj, indique que le nombre optimal de gaussiennes est
de 27. Nous nous sommes toutefois limité & ’expérimentation de modéles développés
a I'aide de 16, 32 et 64 gaussiennes, i.e., les puissances de 2 rapprochées de 27. Sur
la base de ces observations initiales, il semble donc que la modélisation a ’aide 16
gaussiennes offre le meilleur rapport qualité/complexité. Les résultats présentés dans

les sections suivantes sont donc tous basés sur des modéles développés a I’aide de 16

gaussiennes.

Tableau 6.2: Calcul du EER. Modeles & 16, 32 et 64 gaussiennes. Schémes: 9090,

40135 et 4545. Les fichiers d’entrainement n’ont pas été tronqués.

Gaussiennes
Schéme 16 32 64
9090 35.5% | 34.4% | 34.0%
45135 | 34.1% | 32.6% | 32.6%
4545 23.2% | 22.2% | 20.9%
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Figure 6.8: Courbe ROC pour modéles & 16, 32 et 64 gaussiennes. Schéme 9090,

utilisation du fichier d’entrainement en entier, aucune normalisation.
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Figure 6.9: Courbe ROC pour modeles & 16, 32 et 64 gaussiennes. Schéme 45135,

utilisation du fichier d’entrainement en entier, aucune normalisation.
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Figure 6.10: Courbe ROC pour modgles & 16, 32 et 64 gaussiennes. Schéme 4545,

utilisation du fichier d’entrainement en entier, aucune normalisation.
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6.6 La museliere et I'impact

Le tableau 6.3 donne la valeur du EER calculé pour les 4 schémes décrits 4 la section
6.3, les 3 durées standard pour les fichiers test (30, 10 et 3 secondes) et 3 techniques
de normalisation (aucune museliére et impact). Donc, 36 valeurs qui correspondent

aux 36 courbes ROC illustrées sur les figures 6.11 & 6.22 inclusivement.

Chacune de ces 12 figures démontre clairement ’amélioration apportée par la

museliére par rapport au calcul de vraisemblance de base. L’apport de I'impact est

similaire & celui de la museliére.

Les résultats obtenus par les deux techniques sont difficilement dissociables. Une
seule observation: il semble qu’a 3 secondes de test, la museliére performe mieux que
I'impact. Cette différence doit étre attribuée soit 4 ’armature (P(O4lrg)), soit a la
contre-attaque (P(Og|Ac))- Or, le calcul de armature ne dépend pas de la durée
du fichier test et si la différence en question lui était due, alors les résultats & 10 et
30 secondes de test seraient eux aussi affectés, ce qui n’est pas le cas. Donc, par
élimination, la contre-attaque doit étre pointée du doigt.

Les schémes reproduisant des situations de disparité obtiennent des résultats trés
similaires. A I’exception du résultat obtenu avec 3 secondes de test et sans normali-
sation, le scheme 9090 obtient les pires résultats de tous, tel que prévu (voir section

6.3). Les deux schémes 45135 et 13545 sont similaires en terme de difficulté.

Les résultats obtenus en situation d’appariement (schéme 4545) sont nettement

meilleurs. De plus, 'effet de la museliére et de I'impact est encore plus prononcé,
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en particulier pour une durée de 30 secondes de test. Ainsi, dans la mesure ou le
modele de normalisation “UBM?” est utilisé afin de modéliser I’environnement acous-
tique d’entrainement, on peut présumer que les techniques de la museliere (ou de

Vimpact) et du “UBM” seront complémentaires et non redondantes.

Tableau 6.3: Calcul du EER. Schémes: 9090, 45135, 13545 et 4545. Durée de test:

30, 10 et 3 secondes. Normalisation: aucune, museliere et impact.

Schéme | Temps Sans Museliére | Impact
(secondes) | Normalisation
30 35.8% 20.0% 20.6%
9030 HY 35.5% 20.5% 23.5%
3 39.4% 27.0% 28.3%
30 34.8% 17.8% 15.9%
45135 10 35.6% 20.0% 20.7%
3 40.0% 23.0% 27.2%
30 33.8% 18.9% 17.8%
13545 10 35.6% 19.3% 18.5%
3 38.5% 25.8% 25.2%
30 25.5% 4.7% 4.4%
4545 10 28.1% 6.7% 6.7%
3 32.9% 11.6% 15.3%
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Figure 6.19: Courbes ROC. Schéme 9090. Modele & 16 gaussiennes. Fichier test

tronqué a 03 secondes.
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6.7 La cohorte et la museliére

La cohorte a été calculée en utilisant la moyenne des résultats des fichiers tests con-
frontés & 15 locuteurs choisis de fagon aléatoire parmi les locuteurs internes. Chaque
locuteur du registre disposait de sa propre cohorte. Bien qu’il ait été souligné que
les fichiers tests d’imposteurs ne pouvaient provenir strictement de locuteurs internes
dont certains enregistrements avaient servi au développement d’un modéle de nor-
malisation tel le UBM ou la cohorte, cette régle n’a pas été respectée, et les résultats

obtenus par la cohorte sont donc surestimés.

Toutefois, les techniques de la museliére et de I'impact sont développées de facon
indépendante des autres locuteurs internes et 'utilisation d’imposteurs internes n'in-
duit pas de biais sur les résultats. Ainsi, I'interprétation des résultats obtenus, qui
tente de démontrer la supériorité de la museliére et de I'impact dans certains cas, est

conservatrice.

Puisque les schémes de disparité obtiennent des résultats similaires, seul le schéme
9090, le plus difficile, a été retenu. Le schéme 4545 a été aussi retenu afin de pouvoir

comparer les techniques de normalisation en situation d’appariement.

Le tableau 6.4 présente le EER pour les schémes 9090 et 4545 et pour des durées
test de 30, 10 et 3 secondes. Les résultats montrent la supériorité de la museliére et
de I'impact pour les durées de 30 et 10 secondes en situation d’appariement. Avec
3 secondes de test et donc, selon les expériences réalisées, avec 300 observations, la

borne sur I’écart entre l’erreur de généralisation et ’erreur d’entrainement est
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probablement trop élevée. Ainsi, I’estimateur utilisé, W, n’est pas suffisamment fi-
able. Ceci explique la contre-performance de la museliére et de I'impact lorsque la
durée test est de 3 secondes. Le calcul de la museliere utilise la. confrontation entre
des données et un modele dont les données proviennent nécessairement d’un méme
combiné (ce sont les mémes données). Donc, la museliére ne permet pas la normali-
sation de fagon indépendante du combiné, contrairement & la cohorte, puisque cette

derniére utilise les résultats obtenus par le fichier test sur 15 locuteurs du registre.

Tableau 6.4: Calcul du EER. Schémes: 9090 et 4545. Durée de test: 30, 10 et 3

secondes. Normalisation: cohorte, museliére et impact.

Schéme |  Temps | Cohorte | Muselizre | Impact
(secondes)
30 17.9% 20.0% 20.6%
9090 10 18.5% 20.9% 23.9%
3 20.0% 27.0% 28.3%
30 6.0% 4.7% 4.4%
4545 10 7.3% 6.7% 6.7%
3 9.8% 11.6% 15.3%

L’observation des figures 6.23 4 6.28 permet d’ajouter une remarque importante:
pour 'ensemble des expériences, la museliére réussit & battre la cohorte lorsque le

seuil d’acceptation est élevé, i.e., lorsque le critére d’optimisation du systéme corre-

spond & celui d’une application & haute sécurité.
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Les courbes présentées correspondent & la courbe ROC représentée sur une échelle
logarithmique-logarithmique, afin de mieux percevoir les détails du comportement du
systéme lorsque les taux d’erreur sont faibles. Ces courbes sont appelées courbes DET

(de I'anglais “Detection Error Tradeoff”).
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Figure 6.24: Courbes DET. Schéme 4545. Modele 4 16 gaussiennes. Fichier test

tronqué a 30 secondes. Normalisation: museliére (trait plein: -) et cohorte (trait

pointillé: -.).
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Figure 6.26: Courbes DET. Schéme 4545. Modele 4 16 gaussiennes. Fichier test
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tronqué & 03 secondes. Normalisation: museliére (trait plein: -) et cohorte (trait
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Figure 6.28: Courbes DET. Schéme 4545. Modele 4 16 gaussiennes. Fichier test

tronqué a 03 secondes. Normalisation: museliére (trait plein: -) et cohorte (trait

pointillé: -.).



110

6.8 Conclusion

Au niveau du calcul du EER, les résultats obtenus par la museliére battent ceux
de la cohorte pour des durées suffisamment longues selon le schéme d’appariement
utilisé. Toutefois, 12 ou la museliére revét le plus grand potentiel est lorsque le seuil

d’acceptation est élevé et correspond & une situation de haute sécurité.
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Conclusion

Pistes

Le standard établi par NIST pour 1’évaluation des systémes de vérification fait en
sorte que les faux rejets sont particuliérement pénalisés. Selon ce critére, le calcul
de la museliere ne pourra obtenir le méme succés que celui de la cohorte. Dans
I’éventualité ol une équipe se formerait afin de participer & ce concours, il serait im-
portant de modifier I’objectif recherché au cours des expériences réalisées et présentées
dans ce document: les loups ont été particuliérement ciblés alors que l'effort devrait
plutdt étre concentré sur ’amélioration des résultats obtenus par certains fichiers de

locuteurs honnétes, qui sont de piétre qualité et causent trop de faux rejets.

Le calcul de la museliére peut étre interprété de diverses fagons. Si ’on établit un
lien avec 'erreur d’entrainement, on peut voir que le choix, & priori, d’un nombre fixe
de gaussiennes pour la modélisation de chacun des locuteurs semble inapproprié.La
faiblesse de la corrélation entre la durée du fichier et le calcul de la museliere (We)
a été démontrée au chapitre 6. Certains algorithmes d’apprentissage pourraient étre
développés afin de choisir le nombre de mixtures approprié en minimisant ’erreur

d’entrainement a laquelle serait ajoutée une pénalité & la complexité. Mieux encore,
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le calcul de I'erreur de généralisation du modeéle pourrait étre utilisé afin de deter-

miner la capacité optimale du modzale.

Le calcul de la museliére utilisé

P(Oc|Aq)

MO = o)

pourrait étre adapté afin de tenir compte de I’équation 5.22 selon laquelle:

-~

A. = 1.0716 - W_+ 2.1003

La museliére adaptée pour ce résultat empirique serait la suivante:

P(Ocl’\d)
[P(Ocl/\c)] 1.0716

A(Oclrg) =

La base de données utilisée n’a pas permis de mettre en valeur le calcul de I'im-
pact qui semble toutefois intuitivement plus robuste. II est possible que la présence
de forts loups ne soit dépendante que de la base de données utilisée et que 'utilisation
d’une base plus importante permette de faire ressortir sa supériorité. En particulier,
la base de données utilisée en 1997 pour le concours de reconnaissance du locuteur
et qui comprenait 417 locuteurs sera disponible sous peu auprés de DARPA. Il sera

alors intéressant de pouvoir comparer les performances des diverses méthodes.
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Synthése

La contribution la plus importante de cet ouvrage est la proposition et I’expérimentation
d’un nouveau calcul de vraisemblance pour la tiche de vérification du locuteur, ap-
pelé la museliére. L’impact, dérivé de la museliére a aussi été proposé. La museliére
a réussi, dans certaines des expériences réalisées, i battre la cohorte, 'une des tech-

niques présentement utilisées par les meilleurs systémes.

Les premiers chapitres de ce document ont révisé les étapes liées au développement
des coeflicients MFCC. Les modeles cachés de Markov (HMM) ont été présentés, de
méme que les modéles & mixtures de gaussiennes (GMM). Les meilleures techniques
de normaiisation présentement utilisées de méme que la museliére et I'impact ont été
décrits. Enfin, une batterie de tests a été implantée sur la base de données SPIDRE

afin de tester les idées proposées.

De ces expériences ressort la conclusion que la museliére pourrait s’avérer trés
utile dans le cas de "implantation de systémes de vérification a haute sécurité. Le
développement d’un modele artificiel & partir des données test reste, a la fois, I'idée
originale liée & la museliére et le désavantage majeur de ce calcul: il doit étre fait
apres la prononciation du fichier test et allonge donc le délai de réponse du systéme.
Toutefois, dans la mesure ol 'éviction des imposteurs est cruciale pour le systéme
développé, il est vraisemblable que la durée de réponse du systéme soit justifiable,
contrairement & une application ol ’on s’attarde surtout & éviter les faux rejets afin

de ne pas décevoir les utilisateurs.
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