
Titre:
Title:

Etude de la copolymérisation en émulsion de l'acétate de vinyle et 
de l'acrylate de butyle

Auteur:
Author:

Cristina Georgiana Burac 

Date: 1998

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Burac, C. G. (1998). Etude de la copolymérisation en émulsion de l'acétate de 
vinyle et de l'acrylate de butyle [Mémoire de maîtrise, École Polytechnique de 
Montréal]. PolyPublie. https://publications.polymtl.ca/6878/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/6878/

Directeurs de
recherche:

Advisors:
Pierre Bataille 

Programme:
Program:

Non spécifié

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/6878/
https://publications.polymtl.ca/6878/


NOTE TO USERS 





ÉTUDE DE LA COPOLYMÉRISATION EN ÉMULSION 

DE L'ACÉTATE DE VINYLE ET DE L'ACRYLATE DE BUTYLE 

CRISTINA BURAC 

DÉPARTEMENT DE GÉNIE CHIMIQUE 

ÉCOLE POLYTECHNIQUE DE MONTRÉAL 

MÉMOIRE PRÉSENTÉ EN VUE DE L~OBTENTION 

DU DIPLÔME DE WTRISE ÈS SCIENCES APPLIQUÉES 

(GÉNDE CEHIMIQUE) 

Septembre 1998 



National Library Bibliothèque nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services services bibliographiques 

395 Welligtan Street 395. rue Wellington 
Ottawa ON K1A ON4 OttawaON KtAON4 
Canada Canada 

Your IS& Votre fëferena, 

Our üie W e  rekkmce 

The author has granted a non- L'auteur a accordé une licence non 
exclusive licence allowing the exclusive permettant à la 
National Library of Canada to Bibliothèque nationale du Canada de 
reproduce, i o a  distribute or sell reproduire, prêter, distribuer ou 
copies of this thesis in rnicrofam, vendre des copies de cette thèse sous 
paper or electronic formats. la forme de microfiche/film, de 

reproduction sur papier ou sur format 
électronique. 

The author retauls ownership of the L'auteur conserve la propriété du 
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. 
thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels 
may be printed or otherwise de celle-ci ne doivent être imprimés 
reproduced without the author's ou autrement reproduits sans son 
permission. autorisation. 



UMVERSITÉ DE MONTRÉAL 

ECOLE POLYTECHNIQUE DE MONTRÉAL 

Ce mémoire intitulé: 

ÉTUDE DE LA COPOLYMÉIUSATION EN ÉMULSION 

DE L'ACÉTATE DE VINYLE ET DE L'ACRYLATE DE BUTYLE 

présenté par: BURAC Cristina 

en vue de l'obtention du diplôme de: Maîtrise Gs sciences appliquées 

a été dûment accepté par le jury d'examen constitué de: 

M. JOLICOEUR Mario, Ph.D., président 

M. BATAILLE Pierre, Ph.D., membre et directeur de recherche 

M. LAFLEUR Pierre, PhB., membre 



À ma famille 



REMERCIEMENTS 

Je tiens à remercier Dr. Pierre BATAILLE, professeur au Département de Génie 

Chimique de l'École Polytechnique de Montréal et directeur de recherche, pour les 

discussions techniques, pour les conseils qu'il m'a donnés sur la rédaction du présent 

mémoire et aussi pour le support accordé pour mes études à l'École Polytechnique de 

Montréal. 

J'aimerais aussi remercier M. Saïd POORMAHDIAN, étudiant au doctorat à l'École 

Polytechnique de Montréal pour ses conseils et pour son aide. 

J'aimerais également remercier les techniciens Carol PAINCHAUD et Robert DELISLE 

pour leur aide dans le laboratoire. 



Le latex d'acétate de vinyle est d'un très grand intérêt car il est uulisé dans plusieurs 

applications industrielles. La copolymérisation en émulsion de l'acétate de vinyle avec 

des esters insaturés tel l'acrylate de butyle a été souvent étudiée. Ceci, en effet, a permis 

d'élargir la plage d'utilisation de l'acrylate de vinyle. 

La cinétique de la polymérisation pour l'acétate de vinyle présente des déviations 

importantes par rapport aux théories classiques de Harkins-Smith-Ewart, à cause des 

propriétés particulières de l'acétate de vinyle: solubilité dans I'eau de 290 mM et 

réactivité (ri) de 0.024. À cause de la grande solubilité dans l'eau de I'acétate de vinyle, 

une nucléation homogène prend place dans la phase aqueuse, qui rivalise avec la 

nucléation micellaire. 

La copolymérisation de l'acétate de vinyle avec des acrylates implique d'importants 

problèmes à cause de leurs valeurs très différentes pour leur solubilité dans l'eau ainsi 

que leurs réactivités. Pour I'acrylate de butyle la solubilité dans l'eau est de 1 lmM et sa 

réactivité (r2) est de 10.7. 

La copolyrnénsation en émulsion peut être effectuée dans un réacteur fermé (cuvée), 

semi-continu ou en continu. Une copolymérisation effectuée dans un réacteur cuvée 

donne des copolymères hautement hétérogènes en ce qui concerne leur composition et 

leur microstmctue, ce qui peut être évité en utilisant le procédé plüs ccq!exe de 

copolymérisation en procédé semi-con tinu. 



Les objectifs de ce travail sont d'obtenir un copolymère d'acétate de vinyle et d'acrylate 

de butyle dont la composition lors de la polymérisation serait contrôlée et d'établir 

l'influence de cette composition sur certaines propriétés du copolymère: conversion, 

taux de polymérisation, taille de particule, température de transition vitreuse. Pour 

atteindre ces objectifs, la copolyrnérisation de L'acétate de vinyle et de l'acrylate de 

butyle a été effectuée dans un réacteur semi - continu, à des paramètres d'opération 

préalablement fixés. Les variables d'opération sont la façon d'ajout de l'acétate de 

vinyle, le de%it d'ajout de l'acrylate de butyle dans le réacteur, ainsi que le rapport 

volumique des deux monomères. 

Le copolymère obtenu a eu, dans tous les cas, une structure homogene, tei qu'indique 

par une seule température de transition vitreuse (TV). La valeur de la température de 

transition vitreuse est en fonction de la composition molaire du latex. La conversion 

maximale obtenue a été environ 90% dans toutes les expériences, après deux heures de 

réaction, intermédiaire entre une conversion obtenue habituellement dans un réacteur en 

cuvée et un réacteur continu, d'après les données de la littérature. Par contre, la vanation 

en temps de la conversion est en fonction de la manière d'ajout des monomères. 

La composition molaire du latex a été déterminée par analyse spectroscopique RMN; les 

résultats ont démontré sa dépendance de la recette utilisée et de la façon d'ajout de 

l'acétate de vinyle dans le réacteur. 

Importante pour les applications industrielles du latex, la taille moyenne des particules 

dans le latex a été dételminée par spectroscopie laser. Les résultats indiquent que la 

taille des particules est en fonction de la composition molaire et par conséquence, de la 

façon d'ajout des monomères dans la réaction. 



ABSTRACT 

The emulsion copolymerization of Vinyl Acetate with non-saturated esters, lïke Butyl 

Acrylate, has been often investigated. This has aIlowed fmding new applications for this 

family of copolymers. 

The kinetics of polymerization of Vinyl Acetate deviates considerübly fiom the classical 

Harkins-Smith-Ewart theory, due to the particular physical characteristics of Vinyl 

Acetate: water solubility of 290mM and reactivity of 0.024. Due to the high water 

solubility of Vinyl Acetate monomer, homogenous nucleation in the water phase occurs 

and cornpetes with micellar nucleation. 

The copolymerization of Vinyl Acetate with acrylates encounters important problems in 

relation with the large discrepancy in their water solubility and reactivity ratios. For the 

Butyl Acrylate monomer, the water solubility is 1 lmM and the reactivity ratio is 10.7. 

The emulsion polymerization can be carried out usuig batch, semi-continuous or 

continuous processes. By batch polymerization process, a wide heterogeneity in 

composition and microstmcture is obtained, which can be avoided by using a more 

complex process of semi-continuous polymerization. The airn of this present work is to 

obtain a Vinyl Acetate-Butyl Acrylate copolymer with a controlled composition and to 

investigate the influence of this composition on some of the copolymer properties: 

conversion, glass-transition temperature, particle size and molar composition. 



In order to reach th is  objective, the copolyrnerization of Vinyl Acetate with Butyl 

AcryIate was carried out in a semi-continuous reactor, at predetermined operation 

parameters. Among these parameters we can mention the way in which the Vinyl 

Acetate was added in the reactor and the rate of feeding for the Butyl Acrylate. 

A homogenuous copolyrner was obtained in each case, as indicated by a single glass- 

transition temperature. This glass-transition temperature however depends on the latex 

molar composition. 

About 90% conversion was obtained for each experiment, afier two-hour reaction. This 

conversion is about half way between a batch process conversion and a continuous 

process conversion. The variation of conversion with time was shown to depend on the 

way in wbich the Vinyl Acetate monomer was added in the reactor. 

The molar compositions of latexes have been studied by 'H RMN; the results proved 

dependence on the recipe and on the way in which the Vinyl Acetate monomer was 

added in the reactor, 

An important characteristic for the latex applications, the particle size was determined 

by using a laser light scattering goniorneter. The results show that the particle size 

depends on the molar composition of latex and consequently on the way in which the 

Vinyl Acetate monomer was added in the reactor. 
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CHAPITRE I 

INTRODUCTION 

1.1 GÉNÉRALITÉS S U R  LA POLYMÉRISATION EN ÉMULSION 

Les émulsions trouvent toujours de nouvelles applications. Une des premières références 

sur les émulsions a été enregistrée par Galen (13 1-201), un physicien grec [l]. Depuis, 

la science d'émulsions s'est beaucoup développée. Parmi les utilisations les plus 

connues des émulsions on peut citer la fabrication d'adhésifs, de peintures et de 

cosmétiques, le traitement du papier, ainsi que dans le domaine pharmaceutique et 

médical. 

Dans le domaine de la peinture, par exemple, on a tendance a remplacer les peintures à 

base d'huile avec des émuisions à base d'eau à cause des effets des solvants sur 

l'environnement. L'utilisation d'eau, comme milieu de dispersion, en plus de diminuer 

les coûts, on réduit considérablement le danger d'explosion. 

D'autre part, les émulsions sont assez difficile à obtenir. Une petite variation de la 

température, de la vitesse d'agitation ou la présence d'impuretés peut avoir comme 

résdtat une émulsion non-stable. La production d'une émulsion bonne et stable est un 

procédé qui nécessite de très hautes connaissances et une technique particulière. 

La polymérisation en émulsion est un procédé de polymérisation radicalaire en chaîne; 

elle consiste à polymériser les monomères sous forme de dispersions colloïdales. Le 

produit obtenu s'appelle latex et il est utilisé le plus souvent comme tel; il peut être 

utilisé aussi après la précipitation du polymère. 



Le système initial de polymérisation contient de l'eau comme phase continue, les 

monomères, I'agent émulsifiant et l'amorceur soluble dans l'eau. On peut trouver 

également d'autres constituants dans le système, comme les agents de transfert, par 

exemple. 

La cinétique de la polymérisation en émulsion est basée sur le modèle qualitatif de 

Harkins [2] et sur le modèle quantitatif de Smith et Ewart [3]. D'autres chercheurs ont 

complété ces théories: Poehlein [4,5,6] et Fitch [7]. 

Théorie de Harkins [2] 

La représentation des étapes d'une polymérisation en émulsion idéale, selon les 

hypothèses dYHarkins, se trouve dans la figure 1.1. 

Le milieu initial de polymérisation est composé de l'eau (phase continue), monomère(s), 

un agent tensioactif et un amorceur. L'eau agit comme milieu dispersant pour les 

particules colloïdales finales et comme milieu de transfert pour la chaleur émise durant 

le procédé de polymérisation. Le monomère est dispersé dans l'eau par agitation 

mécanique. Le rôle de l'agent émulsifiant est de stabiliser les phases organiques dans 

l'eau pour former une émulsion de particules colloïdales. 

Les monomères, insolubles ou très peu solubles dans l'eau, sont localisés dans des 

gouttelettes des monomères (la plus grande fraction) ou dans des micelles, de petits 

agrégats colloïdaux formés par l'agent tensioactif qui agit grâce au caractère 



Figure no.l.1- Étapes de la polymérisation selon la théorie de Harkins 



amphipatique de ses molécules possédant à la fois des segments hydrophiles et des 

segments hydrophobes. Une très petite quantité des monomères se dissout dans l'eau. 

Les gouttelettes des monomères sont stabilisées par les molécules d'agent tensioactif 

adsorbées à leur surface et leur taille dépend de la vitesse d'agitation. 

D'après Harkins, lors de la réaction de polymérisation en émulsion, trois étapes sont à 

considérer: 

Sous l'effet de la température, l'arnorceur présent dans la phase aqueuse se décompose 

en radicaux libres qui pénètrent dans les micelles. hiisqu'il est insoluble dans le 

monomère, il ne peut pas pénétrer dans Les gouttelettes de monomères. Pour un 

monomère peu soluble dans l'eau, la polymérisation en solution est aussi possible, mais 

elle n'est pas significative. Ainsi, les radicaux initient la polymérisation surtout à 

l'intérieur des micelles, avec une vitesse très importante vu la haute concentration. Ils 

transforment les micelles chargées de monomère en petites particules de polymère dans 

un temps très court. 

À mesure que la réaction de polymérisation avance, les micelles grossissent par 

l'addition du monomère provenant de la phase aqueuse dont la concentration est 

maintenue constante par la dissolution du monomère venant des gouttelettes. L'agent 

tensioactif libre et celui qui forme des micelles vides est adsorbé à la surface des 

miceIIes dans lesquelles à lieu la polymérisation. Le nombre de particules nucléés est 

maximum quand tout l'agent tensioactif disponible a été adsorbé à la surface des 

particules de latex. À une conversion de 10-20% la concentration du tensioactif tombe 



sous la concentration critique des micelles (C.M.C.). Les micelles inactives deviennent 

alors instables et disparaissent. 

Dans cette étape, le taux de polymérisation est constant; le volume des particules 

augmente, leur nombre demeure presque le même. La concentration du monomère dans 

la particule est constante. 

Les gouttelettes de monomère alimentent les micelles par diffusion dans la phase 

aqueuse, jusqu'à la disparition des gouttelettes. Le taux de polymérisation diminue 

jusqu'à 100% conversion. La réaction de polymérisation va s'arrêter lorsque tout le 

monomère est consommé. 

Le latex final est formé des particules de polymère ayant des diamètres entre 500 et 

1000 A, intermédiaire entre la taille des micelles et celie des gouttelettes de monomère 

initiales. 

Théorie de Smith et Ewart [3] 

Le modèle cinétique de Smith et Ewart est, en grande partie, basé sur les hypothèses 

d7Harkins. Ils ont obtenu des équations permettant de déterminer la vitesse d'apparition 

des radicaux libres, le taux de polymérisation, le degré de polymérisation et le nombre 

total de particules de polymère. 



Théorie de Poehlein [ 4,S, 

Poehiein et Song ont développé une théorie pour la cinétique de la polymérisation du 

styrène, sans émulsifiant, théorie qui a été considérée appropriée aussi pour la 

polymérisation du N-Butyle Methacrylate [8]. Il s'agit d'une cinétique à deux étapes : la 

première étape est caractérisée par la génération d'un grand nombre de particules 

oligomères qui ressemblent à des micelles. Ces particules vont perdre leur stabilité et 

vont coalescer à la fin de cette étape, quand la stabilité colloïdale diminue à cause de la 

formation de paaicules de grande masse molaire. La deuxième étape commence avec 

une diminution du nombre de particules, dû à la coa,dation et continue par un équilibre 

dynamique entre la nucléation des particules et la coalescence. 

Théorie de Fitch ( nucléation homogène) [7] 

L'approche théorique proposée de Fitch est basée sur les conditions suivantes: 

- Le monomère est partiellement soluble dans l'eau; 

- L'agent tensioactif se trouve dans le système dans une faible concentration. 

- Le modèle de nucl&tion proposé suit le même schéma que celui de Harkins, mais les 

radicaux libres ne pénètrent pas dans les micelles. Ils grossissent dans la phase aqueuse 

est forment un oligomère qui précipite sur lui-même pour former une particule de 

polymère, stabilisé par l'agent tensioactif. La réaction de polymérisation va continuer à 

I'intérieur de ces paaicules, par l'entrée des nouveaux radicaux et par le transfert du 

monomère présent dans les gouttelettes. À l'intérieur des micelles ne se passe rien, elle 

jouant seulement le rôle de fournisseurs d'agent tensioactif. 

Dans cette théorie, il y a deux cas possibles: 

- le radical oligomère précipite sur lui-même et forme une particule de polymère; 

- le radical pénètre une particule de polymère antérieurement formé. Dans ce cas, la 

vitesse de génération des particules peut s'exprimer: 



où RI est la vitesse de formation des radicaux oligomères et & est la vitesse de capture 

de l'oligomère par une particule de polymère déjà formé. 

Le modèle de nucléation homogène proposé par Fitch semble s'approcher pIus de la 

vérité pour des monomères comme l'acétate de vinyle et le méthacrylate de méthyle. 

1.3 VARIABLES AFFECTANT LA POLYMÉHSATION EN ÉMULSION 

Ii y a deux types de variables qui peuvent influencer la polymérisation en émulsion: 

variables chimiques et variables opérationnelles. 

1.3.1 Variables chimiques 

Il a été démontré que ce type de polymérisation est très sensible aux inhibiteurs comme 

l'oxygène et aux impuretés, qui aec tent  le déroulement du procédé et les propriétés du 

latex. 

Les agents tensioactifs jouent un rôle primordial, le type et la concentration 

d'émulsifiant étant décisifs dans la polymérisation en émulsion. 

La vitesse de polymérisation dépend de la concentration d'émulsifiant, d'après 

l'équation : 



où Rp est la vitesse de polymérisation, k est la constante de réaction, [ 1 ] est la 

concentration d'initiateur, [ E ] est la concentration d'émulsifiant et [ M ] est la 

concentration du monomère dans les particules. Expérimentalement, une augmentation 

de la concentration d'émulsifiant entraîne une augmentation dans la vitesse de réaction. 

Si la concentration de l'émulsifiant est faible, les effets suivants peuvent être observés: 

- augmentation de la taille des particules; 

- coagulation des particules de latex (quantité d'émulsifiant insuffisante); 

- diminution du nombre de particules; 

- diminution du taux de polymérisation; 

- diminution de la conversion finale. 

Ltnc ~ p ~ n t ~ ~ ~ ~  ci_e !z r ~ ~ ~ e ~ ~ ~ f i ~ n _  d ' z g ~ t  ~en-icac~f en&&ne: 

- augmentation du nombre des particules de latex; 

- diminution de la taille des particules; 

- augmentation du taux de polymérisation; 

- augmentation de la conversion finale. 

La quantité optimale d'agent émulsifiant est donc établie en conformité avec le produit 

désiré. 

Le type d'émulsifiant contribue, lui *aussi, dans le procédé de polymérisation en 

émulsion. Par exemple, un émulsifiant anionique donne d'habitude un taux de 

polymérisation plus élevé qu'un émulsifiant non-ionique. 

Le type et la concentration d'initiateur exercent aussi un effet important sur le 

déroulement de la polymérisation en émulsion. Ainsi, un initiateur redox va causer une 

augmentation de la vitesse de polymérisation et va permettre de travailler à une 

température plus faible. La concentration de l'initiateur a un effet sur la vitesse de 



polymérisation, sur la conversion fmde, sur le nombre de particules formées et sur le 

degré de polymérisation [ 12- 141. 

Enfin, la concenrration initiale en monomère a un certain effet dans la polymérisation, 

de sorte qu'une augmentation donne une augmentation de la vitesse de polymérisation et 

du nombre des particules [ 12, 151. 

13.2 Variables opérationnelles 

Les plus importantes variables d'opération sont la température et le degré d'agitation. 

La température joue un rôle assez important dans la polymérisation en émulsion, 

influençant la stabilité des émulsions, le taux de décomposition de l'initiateur, la 

solubilité de l'agent tensioactif et le taux d'avancement de la réaction. 

Quelques travaux ont étudié l'effet de la vitesse d'agitation [18-201. Généralement, la 

vitesse d'agitation doit être assez élevée pour disperser la phase du monomère en 

gouttelettes, mais pas trop, pour ne pas créer une force de cisaillement qui peut 

provoquer la coagulation du produit fmai. 

Si une faible agitation est employée lors de l'émulsification, les gouttelettes formées 

seront peu nombreuses, donc une relativement petite quantité d'émulsifiant sera uulisée 

pour les stabiliser. Ainsi, le nombre de micelles augmentera et plus des particules de 

polymère seront générées. La vitesse de réaction sera plus importante, mais pour la 

stabilité des particules une quantité d'émulsifiant plus grande sera nécessaire. S'il n'y a 

pas suffisamment émulsifiant présent à la surface des gouttelettes, elles finiront par 

coalescer. 

Une trop forte agitation peut avoir comme résultat l'apparition d'un grand nombre de 

gouttelettes de monomère, de petite taille, qui nécessiteront une grande quantité d' agent 



tensioactif, afin de maintenir la stabilité d'émulsion. Le nombre des micelles diminuera, 

ainsi que la stabilité des particules de polymère qui se forment. 

1.4 TYPES DE RÉAcTEURS UTILISÉS DANS LA POLYMÉRISATION EN 

ÉMULSION 

Le procédé de polymérisation en émulsion peut s'effectuer dans plusieurs types de 

réacteurs (figure 1.2) qui se différentient par les modes d'opération: alimentation des 

matières premières, récupération du latex, contrôle de la température, influence de 

l'agitation ou du régime d'écoulement. 

Réacteur de type cuvée (fermé) 

Pour effectuer une polymérisation dans un réacteur fermé (Figure 1.2 a), tous les 

ingrédients, sauf l'amorceur (monomère(s), eau et émulsifiant), sont introduits et 

mélangés dans une cuve, à température constante. De l'azote barbote tout le temps 

durant la préparation de l'émulsion, ainsi qu'au cours de la réaction, l'atmosphère 

d'azote est maintenue afin d'empêcher la présence d'oxygène (inhibiteur pour la 

réaction de polymérisation). Quand l'émulsion est stable, après un certain temps 

d'agitation, l'amorceur est ajouté et il déclenche la polymérisation. Une nouvelle 

polymérisation peut prendre place après la récupération du produit final et le lavage du 

réacteur. 



Réacteur semiccontinu (C.S.T.R.) 

Ce type de réacteur (Figure 1.2 b) permet l'alimentation préférentielle des ingrédients 

pour la polymérisation en émulsion. Deux procédés semi-contenus sont utilisés plus 

souvent dans L'industrie 1191: 

- une partie du monomère, l'eau, l'émulsifiant et I'amorceur sont introduits dans le 

réacteur en de%ut de la polymérisation et l'autre partie du monomère est ajoutée 

continuellement à mesure que la réaction avance; 

- une partie d'émulsion, contenant tous les réactifs, est introduite dans le réacteur et 

l'autre partie est ajouté graduellement, sous forme d'émulsion. 

Réacteur en continu 

Il y a deux types de réacteurs continus: 

- le réacteur en cascade parfaitement agité (Figure 1.2 c), formé d'une série de cuvés 

reliées entre eues. L'alimentation des réactifs et le déchargement du produit fial se font 

continuellement . 
- le réacteur tubuIaire est fomé d'un tube d'une certaine longueur. L'alimentation des 

ingrédients, préalablement ramenés sous forme d'émulsion, est faite par une extrémité et 

le déchargement par l'autre. La réaction commence au moment de L'ajout de I'amorceur 

et progresse tout le long du tube, maintenu à température contrôlée. 

La conversion obtenue avec un tel type de réacteur est assez faible. Par contre, il y a 

d'autres avantages: opération en continu, contrôle facile de la température, faible coûts 

d'opération, problèmes de transfert de chaleur éliminés. Dans la recherche, le réacteur à 

boucle fermé (Figure 1.2 d) remplace d'habitude le réacteur tubulaire (Figure 1.2 e), 

pour réduire la Iongueur du tube. 



Dans ce travail, un réacteur semi-continu a été utilisé. En de'but de la réaction ont été 

ajoutés l'eau, l'agent tensioactif, l'amorceur et un des monomères, l'acétate de vinyle, 

en totalité ou en partie. L'autre monomère, l'acrylate de butyle, a été ajouté 

graduellement, à mesure que la polymérisation était en cours. 



rQc tifs I 

C) RQcteur en cascade 

d) Réacteur en boucle fermée 
1 

e) Réacteur continu (tubulaire) 

Figure no. 1.2 - Réacteurs utilisés pour la polymérisation en émulsion 



1.5. OBJECTIFS 

Dans les procédés industriels de copolyrnérisation de l'acétate de  vinyle et de l'acrylate 

de butyle, le latex qu'on obtient est constitué d'un copolymère block et de l'acétate de 

vinyle non-réactioné. Ceci est dû au fait que l'acrylate de butyle, qui a une réactivité très 

élevée par rapport à l'acétate de vinyle, est consommé le premier et puis l'acétate de 

vinyle vient s'accrocher aux séquences de l'acrylate de butyle. 

L'objectif de ce travail est d'obtenir un copolymère d'acétate de vinyle et d'acrylate de 

butyle dont la composition lors de la polymérisation est contrôlée. On cherche à obtenir 

un copolymère au hasard, à structure homogène. On veut également établir l'influence 

de la méthode d'ajout des monomères sur certaines propriétés du copolymère: 

conversion. taille de particule, température de transition vitreuse. 

Pour atteindre cet objectif, la copolyrnérisation de I'acétate de vinyle et de l'acrylate de 

butyle a été effectuée dans un réacteur semicontinu, à des paramètres d'opération 

préalablement fixés. Les variables d'opération sont la façon d'ajout de l'acétate de 

vinyle, le deôit d'ajout de I'acrylate de butyle dans le réacteur, ainsi que le rapport 

volumique entre les deux monomères. 



CHAPITRE 2 

ÉTUDE DE LA COPOLYMÉRISATION EN ÉMUI;SI:ON DE L~ACÉTATE DE 

VINYLE ET DE L'ACRYLATE DE BUTYLE 

L'application des théories élaborées par Harkins, Smith et Ewart est souvent restreinte à 

cause des particularités des monomères étudiés. Le monomère qui trouve la meilleure 

applicabilité dans ces théories est le styrène, dont la principale caractéristique est son 

insolubilitédans l'eau. Par contre, pour des monomères plus solubles dans l'eau, comme 

l'acétate de vinyle, il est difficile d'attribuer le même comportement. La solubilité de 

l'acétate de vinyle dans l'eau tend à diminuer le rôle de l'émulsifiant dans la cinétique 

de la réaction de polymérisation. Ainsi, pour le styrène il a été démontré [19] que la 

vitesse de polymérisation augmente brusquement dans la région de la C.M.C. et puis 

elle augmente avec l'augmentation de la concentration de l'émulsifiant, ce qui est en 

accord avec le modèle micellaire proposé par Harkins. Par contre, pour l'acétate de 

vinyle, l'augmentation de la concentration de l'émulsifiant au-delà de la C.M.C. n'a pas 

d'effet sur la vitesse de polymérisation [20]. 

De plus, l'acétate de vinyle possède une certaine polarité, grâce à son groupement ester, 

polarité qui peut affecter les interactions moléculaires aux interfaces, ayant un effet 

direct sur les interactions entre les particules, la stabilité du monomère et l'adsorption de 

l'émulsifiant. Ainsi, la concentration du monomère dans les particules augmentera à 

cause de la diminution de l'énergie interfaciale. 



Par ailleurs, l'amorceur se décompose beaucoup plus rapidement dans une solution 

aqueuse saturée de monomère que dans l'eau pure [21], ce qui donne une valeur de la 

vitesse de polymérisation plus élevée que pour les monomères insolubles. 

Une autre observation importante dans la polymérisation en émulsion de l'acétate de 

vinyle est que les interactions moléculaires à l'interface eau-rnonomère favorisent la 

formation des particules dans l'eau, par germination homogène. 

Pour établir le lieu de polymérisation, il y a beaucoup de controverses dans la Littérature. 

Celle-ci peut prendre place dans la phase organique, aqueuse ou les deux. 

Travaux portés sur la cinétique de la polymérisation en érnukion de l'acétate de 

vinyle 

Ayant la disposition les théories de Harkins, Smith et Ewart, beaucoup des travaux ont 

essayé d'expliquer le mécanisme de la polymérisation en émulsion de l'acétate de 

vinyle. French [IO] est un des premiers qui s'est rendu compte que ces théories ne 

peuvent pas s'appliquer pour des monomères comme L'acétate de vinyle, plus solubles 

dans l'eau que le styrène. Cette solubilité de l'acétate de vinyle permet au monomère de 

diffuser dans les particules de polymère plus tôt dans la réaction. Il a aussi constaté que 

le nombre des particules de polymère, qui est proportionnel avec la concentration 

d'émulsifiant, reste constant tout au long de la réaction. 



Quelques années plus tard, Lia et al [13] supposent une cinétique de polymérisation 

pour l'acétate de vinyle, basée sur les observations suivantes: le taux de polymérisation 

est indépendant de la concentration d'émulsifiant et du nombre de particules, il reste 

constant jusqu'à 80-85% conversion et le rendement de la polymérisation est 

proportionnel à la concentration d'amorceur. Ainsi, le déroulement de la polymérisation 

est envisagé de la façon suivante: 

- l'initiation et l'évolution de la polymérisation prennent place dans la phase aqueuse. 

Les particules formées sont stabilisées par l'émulsifiant et leurs nombre et tailZe restent 

constants entre 20 et 80% conversion du monomère; 

- il y a des transferts de chaînes au monomère et au polymère dans la phase aqueuse. La 

molécule de polymère est probablement absorbée par une particule et la réaction prend 

place dans la particule jusqu'un nouveau transfert de chaîne, au monomère. 

- le monomère diffuse dans la phase aqueuse où la réaction continue, jusqu'à 

l'absorption de fa nouvelle molécule de polymère dans une particule. 

- la polymérisation évolue jusqu'à la terminaison. 

Napper et Parts [23] ont af51rmé que le mécanisme de la polymérisation en émulsion de 

l'acétate de vinyle peut être décrite par le troisième cas de la théorie de Smith et Ewart 

et que la réaction prend place dans la phase organique. 

Lia et al [12] ont &mé, dans leurs études, qu'une polymérisation dans les deux 

phases, organique et aqueuse, est la plus probable pour l'acétate de vinyle. La majeure 

partie de la polymérisation se passe, d'après eux, dans la phase organique. 

Un autre partisan de la théorie de polymérisation dans la phase organique est Harriot 

[24]. D'après lui, la contribution de la polymérisation dans la phase aqueuse est 

négligeable, fait démontré par la forte augmentation de la vitesse de polymérisation 

quand le volume de la phase polymérique augmente. 



Friis et Hamielec [14] affirment que la polymérisation a lieu seulement dans la phase 

organique et que le nombre des radicaux libres par particule est beaucoup plus faible 

que l'unité, ce qui correspond au premier cas du modèle de Smith et Ewart. 

Nomura et al [9] suggèrent un modèle semblable à celui de Friis, les particules de 

polymère étant formées à partir des micelles. Le phénomène de désorption des radicaux 

des particules de polymère et des micelles est à la base de leur modèle- 

En 1978, Bataille et ai [19] étudient, dans un procédé semi-continu, la masse molaire et 

sa dishibution, ainsi que les dimensions des particules. Ils constatèrent que la 

conversion varie de façon linéaire avec le de%it, que la taille des particules augmente et 

que leur nombre diminue en temps. Ces variations sont expliquées par la consommation 

de l'agent tensioactif en temps, qui conduit à la coagulation des particules. Ils suggèrent 

une polymérisation dans la phase aqueuse, ainsi que dans les micelles. Les particules 

formées dans la phase aqueuse sont alimentées en monomère qui est foumi par les 

gouttelettes. Quand les oligornères formés dans la phase aqueuse se déstabilisent, ils 

libèrent émulsifiant qui forme des autres micelles où des autres particules prend 

naissance. 

Plus récemment, Bataille et al [25] ont étudié l'effet des ions métalliques sur la 

polymérisation de l'acétate de vinyle. La présence des ions ~ g +  et NO< augmente la 

vitesse de polymérisation. Les auteurs suggèrent une polymérisation dans la phase 

aqueuse ainsi que dans les micelles dans le cas de l'utilisation d'un émulsifiant ionique 

et une polymérisation prédominante dans les micelles quand un émulsifiant non-ionique 

est employé. 



Travaux portés sur le procédé de polymérisation en émufion de l'acétate de vinyle 

La différence entre les procédés de polymérisation de l'acétate de vinyle implique 

l'utilisation d'un réacteur fermé (en cuvée), en continu (tubulaire ou en boucle fermé) 

ou un réacteur semi-continu- 

La plupart des études cinétiques évoquées plus tôt ont été effectuées dans des réacteurs 

en cuvée. La polyméi-ïsation de l'acétate de vinyle en cuvée a été étudiée par quelques 

chercheurs, comme Friïs et Hamielec [14], qui ont donné des résultats sur la 

polydispersité, la distribution de la masse molaire et la variation de la masse molaire 

moyenne en fonction de la conversion. 

Nomura et al [9] ont étudié la tension de surface, la concentration d'émulsifiant et la 

concentration en initiateur en fonction du nombre de particules, ainsi que le taux de 

polymérisation. 

Le rapport monomère - eau en fonction de la masse molaire moyenne et la conversion 

en temps pour la polymérisation de l'acétate de vinyle en cuvée ont été étudiés par 

Trivedi et al [15]. 

De plus, il y a aussi les travaux de Bataille et al [25], qui ont porté leurs travaux sur 

I'étude des effets des ions métalliques sur le taux de polymérisation, sur la masse 

molaire moyenne et sur la vitesse de décomposition de l'initiateur. 

Bataille et al [25], ont étudié l'effet de la vitesse d'agitation sur la conversion et 

l'infiuence de la concentration de l'émulsifiant sur la réaction de polymérisation. 



Peu d'études ont été portées sur la polymérisation de l'acétate de vinyle dans un réacteur 

continu. Parmi les plus récentes il y a les travaux de Bataille et Dalpé 126, 271, qui ont 

étudié la conversion optimale obtenue dans un tel procédé, ainsi que la concentration de 

l'émulsifiant optimale et ceux de Bataille et Iabbadène [28], qui ont fait des recherches 

sur l'influence du nombre de Reynolds, l'effet des ions métalliques, la distribution des 

masses molaires et la dimension des particules. 

Encore moins nombreux sont les travaux qui. étudient la polymérisation de l'acétate de 

vinyle dans un réacteur semi-continu. On peut citer ici l'étude de Bataille et a l  [19]. Ils 

ont étudié la variation en temps des dimensions des particules, la masse molaire du latex 

obtenu et sa distribution, ainsi que la variation de la conversion en fonction du de%it. 

2.3 C O P O L ~ S A R I O N  EN ÉMULSION DE L'ACÉTATE DE V I N n E  ET 

DE L'ACRYLATE DE BUTYLE 

Dans le domaine de la polymérisation en émulsion, le latex d'acétate de vinyle est d'un 

très grand intérêt pour différentes applications (peintures, adhésifs, etc.). Beaucoup des 

travaux ont portés sur l'étude de la copolymérisation en émulsion de l'acétate de vinyle 

avec des esters insaturés. 

La cinétique de la polymérisation pour l'acétate de vinyle présente des déviations 

importantes par rapport aux théories classiques de Harkins-Smith-Ewart, à cause des 



propriétés spéciales de l'acétate de vinyle: solubilité dans l'eau de 290 rnM et réactivité 

rl de 0.024 [37]. À cause de la grande solubilité dans l'eau de l'acétate de vinyle, une 

nucIéation homogène prend place dans la phase aqueuse, qui rivalise avec la nucléation 

micellaire, comme quelques chercheurs ont suggéré. 

La copolymérisation de l'acétate de vinyle implique d'autres problèmes encore, surtout 

quand il s'agit des acrylates, à cause de leurs valeurs très différentes pour la solubilité et 

pour la réactivité. Par exemple, pour l'acrylate de butyle ces valeurs sont: solubilité dans 

l'eau de L lmM et réactivité rz de 10.7 [37]. Les copolymères acétate de vinyle - 

acrylates ont beaucoup d'application, srnout dans l'industrie des adhésifs et des 

peintures, 

La copolymérisation en émulsion peut être effectuée dans un réacteur fermé (cuvée), 

semi-continu ou en continu. Une copolymérisation effectuée dans un réacteur cuvée 

donne des copolymères hautement hétérogènes en ce qui concerne leur composition et 

leur microstructure [30], ce qui peut être évité en utilisant le procédé plus complexe de 

copolymérisation en procédé semi-continu [3 11. 

Pour les acrylates, peu d'études ont été portées sur le système acétate de vinyle - acrylate 

de butyle. Les pionniers en ces travaux sont Chujo et al [32]. Ils ont suggéré que le 

procédé de synthèse du copolymère joue un rôle important sur la microstmcture et sur 

les propriétés mécaniques du latex. D'autres études, plus récentes, ont démontré que, 

dans un réacteur en cuvée, un copolymère riche en acrylate de butyle est formé jusqu'à 

ce que l'acrylate de butyle est épuisé. Par la suite le poly (acétate de vinyle) est formé. 

Ainsi, les particules de copolymères finales ont une morphologie appelée « core - 

shell », ayant à l'intérieur beaucoup plus d'acrylate de butyle et dans la couche 

extérieure, de l'acétate de vinyle [33]. Cette différence, de la polymérisation de 

l'acrylate au debut, est expliquée par le fait que l'acétate, qui est plus soluble dans l'eau, 



se trouve dans la phase aqueuse, tandis que l'acrylate, qui est plus hydrophobe, se trouve 

dans la phase du monomère-polymère. Ainsi, l'acrylate se polymérise premièrement, 

produisant des longues séquences jusqu'à leur épuisement, puis prend place la 

polymérisation de l'acétate de vinyle. Les séquences d'acétate de vinyle sont produites 

surtout par homopolymérisation dans la phase aqueuse. 

Durant cette polyrnérisation, le monomère dans la phase aqueuse diffuse jusqu'aux 

particules des monomère - polymère. La concentration des monomères dans la phase 

aqueuse est maintenue par diffusion du monomère à partir des gouttelettes. Ceci suggère 

que le centre principal de la polymérisation soit la phase organique. 

Par contre, quand le latex est préparé par un procédé semi-continu, cette morphologie 

est remplacée par une distribution des monomères plus homogène dans les particules 

[W. 

23.1 REVUE DE LA LITTERATURE SUR LA C O P O L ~ R I S A T I O N  EN 

É ~ S I O N  DE L'ACÉTATE DE VINYLE ET DE L'ACRYLATE DE BUTYLE 

Après les premiers essais d'étudier la copolymérisation de l'acétate de vinyle et de 

I'acrylate de buSe,  en 1969, par Chugo et al [32], ce fût en début des années 1980 que 

d'autres chercheurs ont commencé des travaux à ce sujet. Iis ont tenté d'expliquer la 

cinétique de la copolymérisation, les différences de procédés et les propriétés du 

copolymère acétate de vinyle - acrylate de butyle. 



Le mécanisme de copolymérisation en émulsion de l'acétate de vinyle et de l'acrylate de 

butyle, particulièrement complexe, à été étudié principalement par Vanderhoff [34, 351 

et par Kong et al [36]. Ils ont collecté des données cinétiques, en considérant que la 

polymérisation de l'acétate de vinyle se passe dans la phase aqueuse et dans la phase 

organique aussi. IIs ont trouvé de valeurs pour la constante de vitesse globale de 

polymérisation, qui change en fonction de la conversion et du nombre des radicaux par 

particule. Ils ont observé aussi un taux de polymérisation plus bas pour la 

copolymétisation, par rapport à la polymérisation, ce qui peut être expliqué par le 

changement dans la constante de vitesse globale. Leurs données expérimentales et celles 

obtenues par simulation théorique concordent avec un mécanisme homogène de 

nucléation des particules. Plusieurs chercheurs, comme Bataille et Bourassa 1371, ont 

calculé' par différentes méthodes. les réactivités de l'acétate de vinyle et de l'acrylate de 

butyle. Les valeurs trouvées sont de 0.024 pour l'acétate et de 10.7 pour l'acrylate [37]. 

Tous ceux qui ont travaillé sur la copolymérisation en émulsion de l'acétate de vinyle et 

de I'acrylate de butyle se sont rendu compte des différences entre les propriétés des 

copolymères, en fonction du procédé employé: en cuvée, en continu ou en semi-continu. 

Ceux qui ont dirigé leurs travaux vers des études cinétiques de la copolymérisation, ont 

travaillé surtout dans des réacteurs fermés: Vanderhoff et al [34, 351, Kong et al [36] et 

Bataille et Bourassa [37]. 

Kong et ai [36] ont aussi obtenu des données colloïdales (taille des particules et 

distribution de la taille des particules). Ils ont trouvé que la dimension finale des 

particules augmente avec l'augmentation du contenu d'acrylate de butyle dans le latex; 

cette dimension varie tout au long de la polymérisation pour les recettes avec un haut 

contenu d'acrylate de butyle et beaucoup moins pour ceux avec plus d'acétate de vinyle. 



Ils affirment aussi que le nombre de radicaux par particule varie en fonction de la 

concentration initiale des monomères. 

Pichot et al [30] ont procédé à la copolymérisation dans un réacteur en cuvée et en semi- 

continu et ont énidié la structure des copolymères obtenus, par spectroscopie RMN 'H et 
13 C. La polymérisation en réacteur fermé a donné un copolymère hétérogène et le latex 

obtenu en semi-continu a eu une distribution plus homogène. 

El-Aasser et al [38] ont étudié différentes propriétés des copolymères d'acétate de vinyle 

et d'acrylate de butyle, simultanément en procédé fermé et en procédé semicontinu. Ils 

affirment que les dimensions des particules finales diminuent avec l'augmentation de la 

quantité d'acrylate de butyle dans le procédé semi-continu et ne dépendent pas du 

contenu en acrylate dans le procédé fermé. De plus, la masse molaire moyenne dépend 

de la composition en monomères dans un réacteur fermé, contrairement au procédé 

semi-continu, où la masse molaire dépend beaucoup moins de la composition. 

Un autre travail de la même équipe de chercheurs [31] étudie les propriétés 

morphologiques et mécaniques des copolymères acétate de vinyle - acrylate de butyle 

obtenus par les deux procédés, propriétés différentes en fonction de la composition et de 

la structure des copolymères. Ils ont trouvé une seule température de transition vitreuse 

pour le Iatex obtenu en semi-continu et deux pour le copolymère obtenu en réacteur 

fermé; ceci démontre la structure plus homogène obtenue en semi-continu. Les 

propriétés mécaniques (résistance à la rupture, module de Young, allongement à la 

rupture) ont été meilleures pour le film de copolymère obtenu en réacteur fermé, ce qui 

est expliqué par les différences de morphologie entre les deux copolymères. 



En plus des données cinétiques, Vanderhoff [34, 351 a étudié diverses propriétés du 

latex obtenu en procédé fermé et en procédé semi-continu. II observe que les dimensions 

des particules sont plus petites dans un latex obtenu en semi-continu par rapport au latex 

obtenu dans un réacteur fermé. Ces différences ont été attribuées à l'étape de nucléation 

plus longue et aux plus nombreuses particules initiales formées dans une 

copolymérisation en semi-continu. La taille finale des particules dans un latex obtenu en 

semi-continu diminue avec L'augmentation de la quantité d'acrylate de butyle, à cause de 

la stabilité des particules formées dans les premières étapes de la polymérisation. 

Contrairement aux Kong et al [36], Vanderhoff affirme que la taille des particules du 

copoiymère obtenu dans un réacteur fermé ne dépend pas de la concentration en acrylate 

de butyle. 

Vanderhoff obtient aussi des données sur la distribution des masses molaires et suggère 

que les masses moléculaires moyennes sont plus importantes pour les copolymères 

obtenus en cuvée et elles ne varient presque pas avec le contenu d'acrylate de butyle, 

contrairement au procédé en semi-continu. 

Une étude importante a été effectuée par Bourassa et Payette [39]. L'influence des ions 

métalliques, de l'agent tensioactif et de l'agitation sur la conversion et sur la masse 

molaire du copolyrnère a été étudiée, pour le procédé en cuvée et pour le procédé en 

semi-continu. Pour le dernier a été aussi déterminé l'infiuence du de'bit sur la conversion 

et sur la masse molaire. L'analyse spectroscopique a indiqué la structure hétérogène 

pour le copolymère en cuvée. La conversion est affectée positivement par la présence 

d'ions métalliques, Ag+ et Cu* pour les deux types de copolymères. Les agents 

tensioactifs ont aussi effet sur la conversion, avec des influences différentes, en fonction 

du type et de leur concentration. L'étude de l'effet de l'agitation dans un réacteur en 

cuvée sur la conversion démontre que le meilleur rendement apparaît à la plus basse 

vitesse et le taux de polymérisation ne semble pas affecté par les différentes vitesses. 



Un des plus récents travaux est celui d'Erbil [29]. Il procède à la copolymérisation en 

semi-continu de l'acétate de vinyle et de l'acrylate de butyIe et trouve la distribution des 

particules dans le latex, la masse molaire en viscosité, la température de transition 

vitreuse et la composition molaire du copolymère. Ii calcule aussi l'énergie de surface 

des films de copolymère, à partir des données d'angle de contact des différents liquides, 

en utilisant la méthode Van Oss-Good [29]. Ses résultats montrent une diminution des 

tailles des particules et de la température de transition vitreuse avec l'augmentation du 

contenu en acryiate de butyle. La masse molaire en viscosité augmente jusqu'à 40% 

molaire d'acrylate de butyle et diminue par la suite. 

L'équipe de chercheurs formé par Delgado et al. [34, 40'41, 421 a donné une série de 

travaux sur le procédé de copol~érisation en miniémulsion de l'acétate de vinyle et de 

l'acryiate de butyle. Ils étudient des propriétés des copolyrnères obtenus par un tel 

procédé et ils font, dans leur première étude, des comparaisons avec le procédé habituel 

de polymérisation en émulsion. 

Les travaux antérieurs décrits ont employé soit un procédé en cuvée, soit un procédé 

semi-continu. Dans le procédé semi-continu, les monomères ont été ajoutés dans le 

réacteur sous forme de mélange de monomères ou sous forme d'émulsion. Dans le 

présent travail, on a changé cette procédure, en ajoutant les monomères séparément dans 

le réacteur, à de de3its différents et de façon différente, comme on va détailler dans le 

chapitre suivant. 



CHAPITRIE 3 

DESCRIPTION DU MONTAGE ET DE LA PROCÉDURE D'OPÉRATION 

Un schéma du réacteur utilisé pour ce travail est présenté dans la figure 3.1. 

Ce réacteur semi-continu comprend: 

1 - Réacteur en verre de 1 litre capacité pourvu d'un couvercle à quatre tubulures; 

2 - Bassin en verre avec de l'eau, pour contrôler la température du réacteur, 

3 - Agitateur demi-lune, en acier inoxydable; 

4 - Thermorégulateur permettant de maintenir la température d'opération à 60°C; 

5 - Tube de verre qui permet l'entrée d'un courant continu d'azote; 

6 - Ouverture permettant: 

- Le contrôle de la température dans le réacteur, avec un thermomètre; 

- L'ajout de l'initiateur, en de%ut de la réaction; 

- La pnse des échantillons, avec une pipette graduée; 

7 - Adapteur à deux branches, pour l'entrée des deux monomères; 

8 - Réservoir gradué pour l'ajout de l'acryiate de butyle; 

9 - Pompe pour l'ajout de l'acétate de vinyle; 

10 - Résenroir pour l'acétate de vinyle. 



Figure no.3.l - Réacteur serni-continu pour la copolymérisation en émulsion de l'acétate 

de vinyle (AV) et de l'acrylate de butyle (AB) 



La formulation pour la procédure d'opération a été établie généralement en conformité 

avec les travaux effectués antérieurement [39,43,443- 

3.2.1 RECETTE DE BASE 

Pour tous les essais, les monomères (acétate de vinyle + acrylate de butyle) constituent 

50% de la masse totale des ingrédients présents [39]. 

La quantité d'agent tensioacllf est de 2.7 x C.M.C. ( pour le sulfate lauryle de sodium, la 

C.M.C. est de 2.6 g / 1 eau ), choisie en conformité avec les résultats expérimentaux de 

Dalpé [43] et Iabbadène [44]. 

Le pourcentage de I'amorceur dans la recette a été choisi d'après les mêmes travaux 

(1 .O5g / 1 eau). 

Tableau .3.1 - Recette pour la copolyrnérisation en émulsion de l'acétate de vinyle et 

de l'acrylate de butyle 

Quantité dans le réacteur 

Amorceur : persulfate de potassium 

( K2S208 

- -- 

Monomères 

( acétate de vinyle + acrylate de butyle ) 

Eau déminéralisée 

Agent tensioacaf: sulfate de Lauryle 

( S.L.S. ) 

300 ml 

300 mi 

Anti-mousse 

NOPCO 5 gouttes 



Paramètres consran ts: 

- Rapport volumique monomères / ingrédients dans le réacteur. 50%; 

- Quantité d'agent tensioactif = constante; 

- Quantité d'amorceur = constante; 

- Température: 60°C; 

- Pression: atmosphérique; 

- Vitesse d'agitation: 175 rpm [39] ; 

- Barbotage et atmosphère inerte d'azote; 

- Temps de préparation de I'émulsion: 50 min; 

- Temps de réaction: deux heures; 

- Toute la quantité d'initiateur est ajoutée dans le réacteur en début de réaction. 

Paramètres variables: 

- Rapport volumique acétate de vinyle: acrylate de butyle (% 

- 95: 5 

- 85: 15 

- 75: 25 

- Manière d'ajout de l'acétate de vinyle: 

- Toute la quantité ajoutée en de%ut de réaction; 

- La moitié de la quantité ajoutée en deout de la réaction, l'autre moitié ajoutée 

graduellement, tout le temps durant la réaction, à l'aide d'une pompe doseuse; 

- Toute la quantité ajoutée tout le long de la réaction, à l'aide d'une pompe 

doseuse. 



- Manière d'ajout de I'acwlate de butyle: 

- Toute la quantité d'acrylate de butyle est ajoutée à l'aide d'un réservoir 

gradué, suivant une séquence prédéterminée, durant la réaction de 

polymérisation. Pour chaque rapport acétate de vinyle: acrylate de butyle il y a 

trois de%its d'acrylate de butyle. 

Note: les de%its de l'acétate de vinyle et de l'acrylate de butyle sont choisis de façon à 

ce qu'ils soient légèrement inférieurs à la vitesse de réaction. 

Le tableau suivant ( 3.2 a et b ) présente les paramètres variables Btudiés dans ce travail. 

Tableau 3.2.a - Paramètres variables pour la polymérisation en émulsion de l'acétate 

de vinyle et de l'acrylate de butyle 

Rapport 
volumique 

Av:AB 

95: 5 

- -- -- 

Débit d'AB 

- 

2 ml / 16 min* 

2-5 ml / 20 min 

3 d/24 min 

Façon d'ajout d'AV 

Tout 1'AV 
présent dans le 
réacteur dès le 

début 

2ml AB/ 16 min 
285mLAV initial 

285mlAV initial 

3rd AB/ 24 min 

285miAV initial 

?h de 1'AV 
présent dans le 

réacteur, le reste 
ajouté en 

fonction du 
temps 

2nd AB/ 16 min 
142SmlAVinitial 
0.0197mlAV / s 
2.5mlA.B/20min 

3 d  AB/ 24 min 

142.5rnlAVinitia.l 
0.0 197mlAV / s 

Tout I'AV 
ajouté en 

fonction du 
temps avec la 

Pompe 

2.5rilIAB / 20 

min 

0.039d AV/s 

3ml AB/ 24 

min 

0.039ml AV/s 

* 2 ml d'acrylate de butyle versés à chaque 16 min; Le même principe est employé pour 

les autres de%its d'acrylate de butyle. 



Tableau 3.2.b - Paramètres variables pour la polymérisation en émulsion de l'acétate 

de vinyle et de I'acrylate de butyle 

Façon d'ajout d9AV 

Tout I"AV 
ajouté en 

fonction du 
temps avec la 

e * w e  

?A de I'AV 
présent dans le 

réacteur, le reste 
ajouté en 

fonction du 

Tout I'AV 
présent dans le 
réacteur dès le 

de'but 

Débit d'AB 

temps 
3 ml AB/ 8 min 3 ml AB/ 8 

min 

0.035ml Avis 

3 d / 8  min 

4SmlAB/l2 

min 

0.035rnlAV/s 

4.5rnlAB/ 12min 

255mlAV initial 4.5 ml / 12 min 

lSmlAB/ 15min 

255mlAV initial 15 ml/ 15 min 

7SmlAB112 

min 

0.03 lm1 AVfs 

7SrniAB/l2min 

225mlAV initial 7.5 ml 1 12 min 

9.3dAB/15 

min 

0.03 1 mlAV/s 

9.3mlAB/lSmin 

225mlAV initial 

- 

12.5rnlAB/20 

min 

0.03 1 ml AVIS 

- -  - 

12.5mlA.BI20mi 

225mlAV initial 



3.23 PROCÉDÉ DE RÉALISATION D'UN ESSAI TWE 

Préparation des réactifs 

L'acétate de vinyle est purifié par distillation sous vide, afin d'éliminer l'inhibiteur, 

l'hydroquinone. Le monomère pmé est entreposé dans une bouteille brune au 

congélateur, à une température de - 9S°C. II peut être conservé ainsi pendant deux mois. 

Avant chaque expérience, on mesure le volume nécessaire du monomère, sachant que sa 

densité est 0.93 1 7g/cm3 à la température ambiante. 

L'acrylate de butyle est purifié par lavages répétés avec une solution aqueuse de NaOH 

10%. Le lavage final est fait avec de L'eau distillée. Il est conservé dans les mêmes 

conditions que l'acétate de vinyle. La densité de I'acrylate de butyle est 0.8898 @rn3 à 

la température ambiante. 

La solution d'émulsifiant est préparée par la dissolution de la quantité nécessaire dans 

100 ml d'eau, à l'aide d'un agitateur. Quelques gouttes d'agent anti-mousse NOPCO 

sont ajoutés dans la solution. 

La quantité nécessaire d'initiateur est dissoute dans 50 ml de l'eau. 

Préparation du réacteur 

Le réacteur d'abord nettoyé est fixé, à I'aide des supports, dans le bain d'eau. 

L'agitateur est positionné à un tiers du fond du réacteur et à deux tiers de la surface. 

L'étanchéité de la tige de l'agitateur est assurée en entourant la tige de métal avec un 

ruban de téflon au niveau du joint. Le thermorégulateur dans le bain d'eau est mis en 

marche après la préparation de I'émulsion, pour obtenir une température constante de 

60°C dans le réacteur. 



L'eau déminéralisée et l'agent tensioactif sont introduits dans le réacteur, sous agitation 

continue (la vitesse d'agitation choisie est de 175 rprn). De l'azote est barboté dans ce 

mélange pendant 30 minutes, afin d'éliminer l'oxygène (inhibiteur pour la réaction de 

polymérisation). L'acétate de vu-yle est ensuite ajouté et le barbotage d'azote est 

poursuivi pour encore 20 minutes. 

La température dans le réacteur est maintenue à 60°C et est vérifiée continuellement. 

Mise en marche de la réaction 

L'atmosphère d'azote est maintenue au-dessus du mélange réactionnel tout au long de la 

réaction. La polymérisation deTbute au moment du transfert de Ia solution d'arnorceur 

dans le réacteur. 

L'acryiate de butyle est ajouté goutte à goutte, à des deôits préétablis. Quand il n'est pas 

déjà présent dans le réacteur (tout ou en moitié), la quantité restante de l'acétate de 

vinyle est ajoutée continuellement à l'aide d'une pompe doseuse. 

Le temps total de réaction est de deux heures. 

Procédure d'échantillonnage 

Durant la réaction, des échantillons de latex sont prélevés, à chaque 10 minutes. Ce 

prélèvement est fait à l'aide d'une pipette graduée de 5 ml et chaque échantillon contient - 

environ 4 ml de latex. Les échantillons sont versés partiellement dans des cristallisoirs 

de pyrex préalablement pesés et contenant une solution d'hydroquinone (0.0423 gA), un 

inhibiteur qui va arrêter la réaction de polymérisation. Une petite quantité 



est versée également dans des petites bouteilles de scintillation contenant de 

l'hydroquinone. 

Les cristallisoirs contenant le latex sont pesés et puis placés sous une Lampe infrarouge à 

une distance de 8 cm, pour environ 15 minutes, afin de sécher les échantillons. Ils sont 

placés ensuite dans une étuve sous vide à la température ambiante, pour 24 heures. Les 

cristallisoirs avec le latex complètement séché (sans l'eau ou monomère non-réagi) sont 

de nouveau pesés pour permettre le calcul de la conversion par analyse gravimétrique. 

Les échantillons sont ensuite utilisés pour l'analyse spectroscopique au RMN afin de 

déterminer la composition du copolymère et pour la détermination de la température de 

transition vitreuse. Pour la détermination de la taille de particules on a utilisé les 

échantillons non-séchés gardés dans les bouteilles de scintillation. 

Arrêt et nettoyage du réacteur 

Après deux heures de réaction, la pompe est arrêtée, ainsi que l'agitateur et le 

thermorégulateur. Le réacteur est détaché de ses supports et vidé dans des bouteilles 

étiquetées et envoyées pour analyses (voir l'annexe F - protocole pour la manipulation 

des produits nocifs). 

Le réacteur est d'abord rincé à l'eau puis avec du T.H.F. (tetrahydrofurane) et 

fmaiement avec de l'eau, 



Les échantillons de latex obtenus par la copolymérisation en émulsion de l'acétate de 

vinyle et de l'acrylate de butyle ont été analysés pour la conversion, la température de 

transition vitreuse, la composition molaire et pour la taille de particules. On a fait aussi 

une tentative pour la détermination de la masse molaire. 

3.3.1 DÉTERM~NATION DE LA CONVERSION PAR ANALYSE 

GRAVIMÉTRIQUE 

La conversion des monomères en copolyrnère a été déterminée tout au long de la 

réaction, à des intervailes de temps de 10 minutes (12 déterminations par réaction). Les 

résultats obtenus permettent d'apprécier l'efficacité du procédé de polymérisation. 

L'analyse gravirnétrique utilisée pour le calcul de la conversion exige la pesée des 

cristallisoirs vides, ensuite avec I'hydroquinone et puis avec l'échantillon de latex. La 

dernière pesée est faite après le séchage des échantillons sous la lampe infrarouge et 

dans l'étuve à vide. La manière d'échantillonnage est décrite dans le sous-chapitre 

antérieur. 

La précision des pesées est de 0.000 1 g. 

Les équations qui servent au calcul de la conversion sont présentées dans l'annexe A. 



3.3.2 DÉTERMINATION DES TEMPÉRATURES DE TRANSITION 

VITREUSES PAR ANALYSE ENTHALPLQUE D~ÉRENTIELLE 

La température de transition vitreuse (TV) a été déterminée pour connaître l'architecture 

moléculaire des copolymères obtenus. La TV peut donner aussi des informations 

concernant le degré de réticulation des copolymères. 

Pour la détermination de la température de transition vitreuse on a utilisé un analyseur 

enthalpique différentiel ( DSC = Differential Scanning Calorimeter ) de la compagnie 

Perkin-Elver, le modèle DSC Pyrïs 1, qui utilise un gaz de purge à l'azote couplé à un 

système de refroidissement à l'eau. Il est entièrement contrôlé par ordinateur. Un 

logÏciel permet d'effectuer le traitement des données et d'effectuer la plupart des calculs 

désirés. L'appareil nécessite un calibrage avant l'utilisation, ainsi qu'un étalonnage 

effectué à l'aide d'un échantillon étalon aux propriétés connues. 

Par l'analyse enthalpique différentielle, on mesure en fonction de la température, 

L'apport de chaleur nécessaire pour maintenir deux cellules de mesure ( l'échantillon et 

une référence ) à la même température. Pour la détermination de la TV on fait un 

balayage en température et on obtient un thennogramme de la température en fonction 

de la différence de puissance de chauffe. 

La TV est une transition de second ordre qui représente une transition de l'état vitreux à 

l'état caoutchouteux de la phase amorphe. Ce type de transition est enregistré par le 

DSC comme des changements brusques de sipal ,  traduits dans le thennogramme dans 

des changements de pente. 



3 3 3  DETERMINATION DE LA C O M P O S ~ O N  MOLAIRE DU LATEX PAR 

ANALYSE SPECTROSCOPIQUE RMN 

L'anaiyse spectroscopique donne des informations sur la composition molaire du 

copolymère formé tout au long de la réaction de polymérisation. Pour chaque expérience 

quatre échantillons prélevés à des intervalles de temps différents ont été analyses par 

RMN, par la résonance protonique ( RMN 'H ). L'appareil utilisé, de l'université de 

Montréal, a les spécifications suivantes: 

B R U E R  - WH - 400 

RMN 'H (400.13 MHz) 

Température: 2 1 OC. 

Un exemple de spectre obtenu par RMN est présenté dans la figure suivante. 

Figure no. 3.2 - Spectre RMN 

La surface du pic correspondant à l'acrylate de butyle est notée avec SI et celie 

correspondant à l'acétate de vinyle avec Sz. 

Sachant que le pic de 5.35 ppm correspond à l'acétate de vinyle et le pic de 4.23 ppm à 

l'acrylate de butyle, la composition molaire est calculée de la façon suivante: 



La composition instantanée [45] peut aussi être calculée: 

ou: Ml et M2 sont les concentrations des monomères dans le milieu de réaction; 

s et rz sont les rapports de réactivité pour les deux monomères, 0.024 pour l'acétate 

de vinyle et respectif 10.67 pour l'acrylate de butyle [37]. 

3.3.4 DÉTERMINATION DE LA GROSSEUR DES PARTICULES PAR 

SPECTROSCOPIE LASER 

La grosseur des particules a été déterminée à l'aide d'un spectromètre laser ( LLS = 

Laser Light Scattering ). L'appareil utilisé. un goniometre modèle BI-200SM, provient 

de la compagnie c Brookhaven Instruments Corporation ». 

Les échantillons sont préparés dans des éprouvettes bien rincées. L'eau utilisée est 

deionisée, distillée deux fois et filtrée à l'aide d'un filtre à 2pm diamètre de maille. Pour 

chaque analyse, une goutte de latex est diluée dans l'éprouvette. 

L'homogénéisation du latex dans l'eau est effectuée en gardant l'éprouvette dans un 

appareil à ultrasons pendant 40 secondes. Les échantillons sont ensuite placés dans un 

bain de paraffine maintenu à la température constante de 25' C. 



Le faisceau de lumière laser est dirigé vers l'échantillon à travers deux miroirs. 

L'appareil est contrÔ1é par un ordinateur (BI-2030 AT Digital Corrolator). Le traitement 

des données est fait par un logiciel, qui donne la taille moyenne des particules, ainsi que 

la distribution des tailles des particules dans un échantillon. 

33.5 TENTATIVE DE DÉTÉRMINATION DE LA MASSE MOLAIRE 

Pour déterminer la masse molaire, ainsi que la distribution de la masse molaire, on a 

tenté de dissoudre des échantillons de polymère dans du tetrahydrofurane (T.H.F.). Les 

échantillons choisis étaient les derniers de chaque expérience: chaque échantillon a été 

séché et 0.W g ont ete  dissout dans i O  mi de T.flS. 

Même après deux mois, ces échantillons ont simplement gonflé dans le T.H.F., ce qui 

confume L'effet de reticulation et de branchement de l'acétate de vinyle déjà observé 

dIeurs [45], surtout à des hautes conversions. 



CHAIPITRE 4 

RÉSULTATS ET DISCUSSION 

4.1 INTRODUCTION 

Dans ce chapitre sont présentés les résultats des travaux expérimentaux de 

copolymérisation en émulsion de l'acétate de vinyle et de l'acrylate de butyle, dans un 

réacteur semi-continu. 

En fonction de la manière d'ajout des monomères dans le réacteur, les propriétés 

étudiées du latex sont: conversion, température de transition vitreuse, composition 

molaire, taille des particules. Une tentative pour la détermination de la masse molaire a 

été aussi effectuée. 

Avant de commencer les expériences, la copolymérisation de l'acétate de vinyle et de 

I'acrylate de butyle a été effectuée trois fois dans les mêmes conditions opératoires, pour 

chaque série d'expériences. Les figures 4.1 à 4.6 montrent que les mesures sont bien 

reproductibles, un écart type de maximum 2.7% étant calculée pour chaque série 

d'expériences. 



Conversion versus temps 

O ~ 0 0 0 0 0 0 0 0 0 0 0  
N o n L n a b c O c n ~ ~ ~  

temps (min) 

Figure 4.1 - Expérience de reproductibilité 

pour Ia première série d'expériences 

(tout 1' acétate de vinyle est présent dans le réacteur en debut de la réaction) 



- - - - - - - - 

Conversion versus terrps - erreur expérimentale 
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Figure 4.2 - Erreur expérimentale pour la première série d'expériences 

(tout l'acétate de vinyle est présent dans le réacteur en de5but de la réaction) 



Conversion versus temps 

O 20.00 40.00 60.00 80.00 100.00 120.00 

temps (min) 

Figure 4.3 - Expérience de reproductibilité 

pour la deuxième série d'expériences 

(la moitié de la quantité d'acétate de vinyle est présente dans le 

réacteur en début de la réaction, le reste est ajouté graduellement) 



Conversion versus temps - erreur expérimentale 

temps (min) 

Figure 4.4 - Erreur expérimentaie pour ta deuxième série d'expériences 

(la moitié de la quantité d'acétate de vinyle est présente dans le 

réacteur en de%ut de la réaction, le reste est ajouté graduellement) 



Conversion versus temps 

O 20.00 40.00 60.00 80.00 100.00 120.00 

tem ps (m in) 

Figure 4.5 - Expérience de reproductibilité 

pour la dernière série d'expériences 

(tout l'acétate de vinyle est ajouté graduellement dans le réacteur) 



Conversion versus temps - erreur expérimentale 

* o s a g z s z s r n g ~ ~  
temps (m in) 

Figure 4.6 - Erreur expérimentale pour la demière série d'expériences 

(tout l'acétate de vinyle est ajouté graduellement dans le réacteur) 



La variation de la conversion massique globale en temps est influencée par la façon 

d'ajout des monomères dans le réacteur, ainsi que par la composition molaire des 

copolymères. 

Dans I ' a ~ e x e  A sont présentés les valeurs de conversion massique obtenues, en 

fonction du temps, pour chaque expénence. 

Les figures 4.7 - 4.15 présentent la variation de la conversion, en fonction du temps, 

pour chaque expénence. Les graphiques ont été groupés en fonction de la façon d'ajout 

de l'acétate de vinyle et en fonction de la recette de base utilisée pour la 

copolymérisation. 



Variation de la conversion en fonction du temps pour 
différents débits d'acrylate, lorsque tout ['acétate est 
présent dans le réacteur dès le début de la réaction 

( VASA = 95:5 ) 

Figure no.4.7 

*expérience no.1: débit d'acrylate de butyle = 2.5 ml / 20 min 

**expérience no.7: de'bit d'acrylate de butyle = 3 ml / 24 min 

***expérience no.10: deoit d'acrylate de butyle = 2 ml 1 16 min 



Variation de la conversion en fonction du temps, lorsque 
tout l'acétate de vinyle est ajouté en  début de réaction 

( VA:BA = 8S:l5) 

0 ~ 0 0 0 0 0 0 0 0 0 0 0  a m * m a t - m m ~ ~ ~  

te rn ps (m in) 

Figure no.4.8 

"expérience no.2: débit d'acrylate de butyle = 3 ml 1 8 min 

**expérience 110.3: deoit d' acrylate de butyle = 4.5 ml 1 12 min 

***expérience 110.8: débit d' acrylate de butyle = 5.6 ml / 15 min 



Variation de la conversion en fonction du temps, lorsque 
tout t'acétate de vinyle est ajouté en début de la réaction 

(AV:AB = 75:25) 

*expérience no.4: débit d7acryIate de butyle = 7.5 ml 1 12 min 

**expérience no.5: delit d'acrylate de butyle = 9.375 ml / 15 min 

***expérience 110.9: de3it d'acrylate de butyle = 12.5 ml / 20 min 



Variation de la conversion en fonction du temps, lorque la 
moitié de la quantité d'acétate de vinyle est présente dans 

le réacteur dès le début de la réaction (AV:AB = 955) 

temps (min) 

Figure 110.4.10 

*expérience no. 14: deoit d'acrylate de butyle = 2.5 ml 1 20 min 

**expérience no. l 1 : deôit d'acrylate de butyle = 3 ml / 24 min 

***expérience no. 15: debit d'acrylate de butyle = 2 r d  / 16 min 



Variation de la conversion en fonction du temps, lorsque 
fa moitié de la quantité d'acétate de vinyle est présente 

en début de la réaction (AV:AB = 85:15) 

0 0 0  8 T N a 5 : s ~ z F  
temps (min) 

- - 

Figure 110.4.1 1 

*expérience no.16: débit d'acrylate de butyle = 3 ml / 8 min 

**expérience no. 17: deôit d'acrylate de butyle = 4.5 ml 1 12 min 

***expérience no. 12: débit d'acrylate de butyle = 6 ml / 15 min 



Variation de la conversion en fonction du temps, lorsque 
fa moitié de la quantité d'acétate de vinyle est ajouteé en 

début de la réaction (AV:AB = 7525)  

te m ps (m in) 

Figure no, 4.12 

*expérience no. 18: deôit d'acrylate de butyle = 7.5 ml / 12 min 

**expérience no. 13: de%it d'acrylate de butyle = 9.375 ml / 15 min 

***expérience no. 19: débit d'acrylate de butyIe = 12.5 ml 1 20 min 



Variation de la conversion en fonction du temps, lorsque 
tout l'acétate de vinyle est ajouté graduellement dans le 

réacteur (AV:AB = 95:s) 

temps (min) 

Figure 110.4. 1 3 

*expérience 110.20: delit d'acrylate de butyle = 2.5 ml / 20 min 

**expérience no.21: deoit d'acrylate de butyle = 3 ml 1 24 min 

***expérience no.23: débit d'acrylate de butyle = 2 ml / 16 min 



Variation de la conversion en fonction du temps, lorsque 
tout l'acétate de vinyle est ajouté graduellement dans le 

réacteur (AV:AB = 85:15) 

*expérience no.25: deoit d'acrylate de butyle = 3 ml 1 8 min 

**expérience no.24: de%it d'acrylate de butyle = 4.5 ml / 12 min 

***expérience no.22: deoit d'acrylate de butyle = 6 ml / 15 min 



Variation de la conversion en fonction du temps, lorsque 
toute la quantité d'acétate de vinyle est ajoutée 
graduellement dans le réacteur (AV:AB = 7525) 

temps (m in) 

*expérience no.28: débit d'acrylate de butyle = 7.5 ml 1 12 min 

**expérience no.27: de%it d'acrylate de butyle = 9.375 ml 1 15 min 

***expérience no.26: de%it d' acrylate de butyle = 12.5 ml 1 20 min 



Variation de la conversion en fonction du temps pour les 
trois façons d'ajout de l'acétate de vinyle dans le réacteur, 

lorsque la composition volumique de base est selon le 
rapport AV:AB = 75:25 

te m ps (m in) 

- -  - - . - - - - -- 

Figure no. 4.16 

1*- Toute la quantité d'acétate de vinyle est présente dans le réacteur dès le de%ut de la 

réaction; 

2**- La moitié de la quantité d'acétate de vinyle est présente dans le réacteur en début 

de la réaction, le reste est ajouté continuellement pendant la réaction, à I'aide d'une 

pompe doseuse; 

3**- Toute la quantité d'acétate de vinyle est ajoutée continuellement dans le réacteur, à 

I'aide d'une pompe doseuse. 



Influence de la façon d'ajout de l'acétate de vinyle sur la variation de lu conversion 

en temps 

La variation en temps de la conversion est fonction de la manière d'ajout de l'acétate de 

vinyle dans ie réacteur. 

Les figures 4.7 - 4.9 montrent la variation de la conversion en temps pour la série 

d'expériences où tout l'acétate de vinyle est présent dans le réacteur en début de la 

réaction de copolymérïsution. L'allure des courbes ressemble à ceiles obtenues dans la 

littérature [35] pour une copolymérisation en émulsion dans un procédé semi-continu. 

On peut voir qu'après un intervalle de temps relativement court, de 20-30 minutes, la 

conversion a déjà des valeurs autour de 70%. Après cet intervalle, la conversion 

augmente lentement jusqu'à la conversion maximale finale. Autrement dit, on obtient un 

plateau après 20-30 minutes de réaction. 

Cette variation peut être expliquée par la présence dans le réacteur, dès le de%ut de la 

réaction de polymérisation, d'une grande quantité de monomère (l'acétate de vinyle). 

L'acrylate de butyle, qui est ajouté en séquence, contribue, lui aussi, à l'augmentation 

brusque de conversion dès les 30 premières minutes, mais moins que l'acétate de vinyle 

à cause de sa petite proportion dans le mélange, par rapport à l'acétate. 

Le de%it d'ajout de l'acrylate de butyle (la quantité ajoutée par intervalle de temps) n'a 

pas une influence sur la variation de la conversion. 

Quand la moitié de la quantité de l'acétate de vinyle est présente en début de la réaction 

et l'autre moitié est ajoutée continuellement en temps, la variation de la conversion en 

temps a l'dure présentée dans les figures 4.10 - 4.12. 

Le plateau de conversion est aussi obtenu, mais un peu plus tard, après environ 40 

minutes. Ceci peut être expliqué par la présence dans le milieu de réaction d'une 



quantité moins importante de monomères que dans le premier cas, mais élevée quand 

même, puisque l'augmentation brusque de la conversion est aussi obtenue. 

Dans la dernière série d'expériences l'acétate de vinyle est ajouré continuellement dam 

le réacteur, avec une pompe doseuse, à un deoit légèrement inférieur à la vitesse de 

réaction. 

Les courbes de variation de la conversion en temps (figures 4.13-4.15) sont différentes 

par rapport aux deux premières séries d'expériences. L'augmentation de la conversion 

en temps est presque linéaire. Cette variation est normale, parce que les monomères 

(acétate de vinyle et acrylate de butyIe) entrent en réaction à mesure qu'ils sont ajoutés 

dans le réacteur- 

La variation de la conversion en temps pour les trois façons d'ajout de l'acétate de 

vinyle est présentée globalement dans la figure 4.16. On peut facilement observer la 

différence de pente entre les trois séries d'expériences. Ainsi, lorsque l'acétate de vinyle 

est dans le réacteur dès le deout de la réaction, une pente d'environ 2.5 a été mesurée 

pour l'augmentation brusque de la conversion. Pour la deuxième série d'expériences, 

l'augmentation brusque de la conversion est illustrée par une pente d'environ 1.6, alors 

que dans la série correspondant à l'ajout graduel de tout l'acétate de vinyle, la pente est 

d'environ 1. Donc, le déroulement de la réaction de copolymérisation dépend du 

procédé d'ajout des monomères. 

4.4. TEMPÉRATURE DE TRANSITION VITREUSE 

Pour chaque expérience les échantillons finals de latex ont été analysés pour la 

détermination de la température de transition vitreuse, à l'aide du DSC. 



La température de transition vitreuse de l'acétate de vinyle est entre 28-3 1°C et celle de 

l'acrylate de butyle est de -5S°C, données trouvées dans la Littérature [47,48]. 

Une seule température de transition vitreuse (TV ) a été mesurée pour chaque échantillon 

analysé, ce qui confirme la structure homogène des copolymères obtenus. Chaque TV 

mesurée a une valeur entre les TV des deux monomères. 

La température de transition vitreuse varie en fonction de la composition molaire du 

latex. Les valeun de la TV en fonction de la composition molaire du latex sont 

présentées dans l'annexe B (tableau B 1)' pour chaque série des expériences (chaque 

série correspond à une manière d'ajout de l'acétate de vinyle dans le réacteur). Les 

figures 4.17 - 4.19 présentent la variation des TV en fonction de la composition molaire 

pour chaque série et la figure 4.20 présente la même variation, mais de façon globale, 

pour toutes les expériences. 

Les valeurs obtenues pour les TV diminuent à mesure que la proportion d'acrylate de 

butyle dans le latex augmente, parce que la TV correspondant à l'acrylate est beaucoup 

plus basse que celle correspondant à l'acétate. Ceci est vrai pour n'importe quelle façon 

d'ajout de l'acétate de vinyle ou deôit d'acrylate de butyle. Pour seulement deux 

échantillons de latex la TV trouvée a été égale ou en dessous de 0°C (O°C et -lS°C), 

valeurs correspondant à une composition molaire du latex de 43.2% et 68.6% en 

acrylate de butyle. 

La température de transition vitreuse dépend, parmi beaucoup d'autres facteurs, du 

degré de ramification du polymère; sa valeur diminue avec l'augmentation de la 

ramification. Puisque dans la dernière série expérimentale on a travaillé dans des 

conditions où les deux monomères ont été ajoutés à un débit plus petit que la vitesse de 

réaction, le degré de ramification doit être plus important que dans les deux premières 



séries. Ceci est confirmé par les valeurs des TV, trouvées un peu moins élevées dans le 

dernier cas (voir figure 4.19). 

On peut remarquer qu'une TV égaie à 0°C à été mesurée pour une composition molaire 

du latex de 43% en acrylate de butyle, alors que dans la littérature on trouve la même TV 

pour 33.8% acrylate de butyle [29]. Dans le travail présent, une TV de 8.2OC a été 

mesurée pour une composition molaire de 30.7% en acrylate de butyle. Cette différence 

est due à une structure différente du copolymère: on a obtenu un copolymère qui a un 

degré de ramification moins important que dans l'étude cité [29]. 

De façon globale, on peut constater qu'on peut obtenir un copolymère ayant une 

température de transition vitreuse entre -15OC et 25OC, en fonction de la composition 

molaire initiale en monomères utilisée et de la manière d'ajout des monomères dans la 

réaction (voir figure 4.20). 



TV versus composition molaire du latex 
( L'acétate présent dès le début dans le réacteur ) 

9.8 15.8 15.9 17.4 23 23.6 24 

acrylate de butyle 
(%moi)  

Figure no.4.17 



TV versus composition molaire du latex 
(La moitié de la quantité d'acétate ajoutée dans le 

réacteur graduellement durant la réaction) 

6.7 7.7 9.9 14.4 17.9 19 23.8 28.5 31 -5 
acrylate de butyle 

(a/anoi) 

Figure no.4.18 



TV versus composition molaire du latex 
( tout l'acétate de vinyle est ajouté dans le réacteur 

30 
graduellement durant la réaction ) 

acrylate de butyle ( O/an 01 ) 

Figure no.4.19 



TV versus composition molaire du latex pour les trois 
façons d'ajout de l'acétate de vinyle 

+ Tvl 
' .Tv2 

A Tv3 

acrylate de butyle (%) 

Figure no.4.20 

Note: - TvI correspond à la première série d'expériences, quand tout l'acétate de vinyle 

est présent dès le début dans le réacteur; 

- TV? correspond à la deuxième série d'expériences, quand la moitié de la quantité 

d'acétate de vinyle est présente dès le début dans le réacteur, le restant étant ajouté 

continuellement en temps; 

- TV, correspond à la troisième série d'expérience, quand tout l'acétate de vinyle est 

ajouté continuellement en temps dans le réacteur. 



4.5. COMPOSITION RaOLALRE DU LATEX 

La composition molaire du latex à différents temps de réaction, à été déterminée par 

spectroscopie RMN. Trois échantillons de latex ont été analysés pour chaque 

expérience, à 20, 40 et 120 minutes de réaction. Les résultats obtenus sont présentés 

dans l'annexe C (tableaux Cl - C3), en fonction de la façon d'ajout de l'acétate de 

vinyle dans le réacteur, de la recette de base utilisée, ainsi que du de%it d'ajout de 

I'acrylate de butyle. 

La figure 4.21 présente la variation de la composition molaire du copolymère en temps, 

pour les trois faqons d'ajout de l'acétate de vinyle dans la réaction. 

La composition molaire en acrylate de butyle augmente avec le temps, quand l'acétate 

de vinyle est dans le réacteur en deout de réaction (tout ou en moitié), parce que la 

quantité d'acrylate dans le réacteur augmente en temps, par rapport à la quantité déjà 

existante d'acétate de vinyle. 

Par contre, lorsque les deux monomères sont ajoutés tout au long de la réaction, la 

composition molaire en acrylate de butyle diminue avec le temps, parce que la quantité 

d'acrylate de butyle diminue par rapport à l'acétate de vinyle, qui est ajouté en réacteur à 

un de%it supérieur. 

La composition molaire instantanée (m = dmi/dm2) du latex a été calculée et présentée 

dans les tableaux C4, pour chaque série des expériences, et sa variation est présentée 

dans les figures 4.22 - 4.24. La composition molaire instantanée, autrement dit la 

composition du copolymère qui se forme, est différente de la composition ML/M2 du 

milieu de copolymérisation. Si on veut obtenir un copolymère d'une certaine 

composition, il est nécessaire de réajuster constamment la composition du milieu durant 

la réaction. 



La variation de la composition molaire instantanée du latex en temps, pour les trois 

façons d'ajout de l'acétate de vinyle et en fonction de Ia composition molaire de base en 

monomères est présenté dans les figures 4.22 - 4.24 et globalement dans la figure 4.25. 

On peut constater que, pour la série d'expériences où tout l'acétate de vinyle est dans le 

réacteur en de%ut de réaction, la composition molaire instantanée diminue avec le temps, 

plus important pour la composition molaire de base acétate de vinyle: acrylate de butyle 

de 7525, à cause de L'ajout constamment dans le milieu de réaction de I'acrylate de 

butyle (voir figure 4.22)- 

On observe la même variation pour le cas où la moitié de la quantité d'acétate est 

ajoutée en temps, mais la pente de la courbe est un peu moins brusque (voir figure 4.23). 

Finalement, pour le cas où les deux monomères sont ajoutés en temps dans le milieu de 

réaction, on observe une augmentation de la composition molaire instantanée en temps, 

parce que la quantité d'acétate de vinyle ajoutée constamment dans le milieu de réaction 

est nettement supérieure à celle d'acrylate de butyle. Pour une recette de 75:25, la 

variation de la composition molaire instantanée est très petite (voir figure 4.24). 



Variation de la composition molaire du copolymère en 
fonction du temps, pour les trois façons d'ajout de 

70 l'acétate de vinyle dans le réacteur 

40 

Temps (min) 

1*- Toute la quantité d'acétate de vinyle est présente dans le réacteur dès le de%ut de la 

réaction ; 

2**- La moitié de la quantité d'acétate de vinyle est présente dans le réacteur en debut 

de la réaction, le reste est ajouté continuellement pendant la réaction, à l'aide d'une 

pompe doseuse; 

3**- Toute la quantité d'acétate de vinyle est ajoutée continuellement dans le réacteur, à 

l'aide d'une pompe doseuse, 



Variation de la composition molaire inentanée (m) en 
fonction du temps, lorsque tout l'acétate est présent dans 

le réacteur dès le début de la réaction 

tem ps (m in) 

Figure no.4.22 



Variation de la composition molaire instantanée (m) en 
fonction du temps, lorsque la moitié de fa quantité 

d'acétate est a joutée en temps 

0.8 - 

-+- ml (AV:AB=95:5) 

+ W(AV:AB=85:15) 

E 0.4 - + m3(AV:AB=75:25) 

0.1 O 1 
20 40 120 

te rn ps (min) 

Figure no-4.23 



Variation de la composition molaire instantanée (m) en 
fonction du temps, lorsque tout l'acétate est ajouté en 

temps 

temps (min) 

- - 

Figure no.4.24 



Variation de fa composition molaire instantanee (m) du 
latex en fonction du temps, pour les trois façons d'ajout de 

l'acétate de vinyle dans le réacteur 

Temps (min) 

-- -- - 

Figure no.4.25 

mi*- Toute la quantité d'acétate de vinyle est présente dans le réacteur dès le debut de la 

réaction; 

mz**- La moitié de la quantité d'acétate de vinyle est présente dans le réacteur en début 

de la réaction, le reste est ajouté continuellement pendant la réaction, 2 l'aide d'une 

pompe doseuse; 

m3**- Toute la quantité d'acétate de vinyle est ajoutée continuellement dans le réacteur, 

à l'aide d'une pompe doseuse. 



4-6- GROSSEUR DES PARTIClJLES 

La taille moyenne des particules du latex est présentée dans l'annexe D (tableau Dl), 

pour chaque expérience. 

Les tableaux D2 présentent la taille moyenne des particules en fonction de la manière 

d'ajout de l'acétate de vinyle dans le réacteur et de la recette de base utilisée et les 

figures no- 4.26 - 4.29 illustrent ces variations. 

Dans une polymérisation en réacteur fermé, la dimension des particules est 

indépendante de la composition molaire du copolymère [9]. Par contre, quand un 

procédé en semicontinu est employé, les résultats obtenus prouvent que la taille 

moyenne de particules diminue avec l'augmentation du pourcentage de l'acrylate de 

butyle. Cette variation peut être expliquée par l'effet de la morphologie des particules 

sur l'adsorption de l'agent tensioactif et par la stabilité colloïdale pendant la réaction de 

polymérisation. 

Ainsi, dans le procédé semi-continu de polymérisation en émulsion, la nucléation des 

particules est supposée de prendre place surtout dans la phase aqueuse [49,50]. Alors, 

les particules sont formees dans un plus long intervalle de temps, pendant toute la 

réaction de polymérisation. La croissance des particules est faite surtout par coalescence 

des particules de petite taille ou des oligomères de petite masse molaire avec des 

particules plus grandes, ou par la difision des monomères et polymérisation dans la 

particule. 



Variation de la taille des particules en fonction du temps, 
lorsque tout l'acétate est présent dès le début dans le 

réacteur 
600 i 

tem ps (m in) 

Figure 110.4.26 



Variation de la taille des particules en fonction du temps, 
lorsque la moitié de la quantité d'acétate est présente 

dans te réacteur dès le début et le reste est ajouté 
graduellement en temps 

#O 1 

20 40 80 100 120 

temps (min) 

Figure no.4.27 



-- 

Variation de la taille des particules en fonction du temps, 
lorsque toute la quantité d'acétate est a joutée 

graduellement en temps 

80 

temps (min) 



Variation de la taille de particule en fonction du temps 
pour les trois façons d'ajout de l'acétate de vinyle dans la 

450 réaction, lorsque la composition volumique de bas 
selon le rapport AV:AB=7SW25 

est 

40 100 

Temps (min) 

__ _ _ _ _ _  - _  _ _-_. --___II____I _ _ _ _ _ 
Figure no.4.29 

1*- Toute la quantité d'acétate de vinyle est présente dans le réacteur dès le début de la 

réaction; 

2**- La moitié de la quantité d'acétate de vinyle est présente dans le réacteur en de%ut 

de la réaction, le reste est ajouté continuellement pendant la réaction, à l'aide d'une 

pompe doseuse; 

3**- Toute la quantité d'acétate de vinyle est ajoutée continuellement dans le réacteur, à 

l'aide d'une pompe doseuse. 



Variation de la taille moyenne des particules du latex 
versus composition molaire du latex 

acrylate de butyle (Ym 01) 

+ série 1 ' 

série 2" 

A série 3- 

Figure 110.4.30 

* série 1 = quand toute la quantité d'acétate de vinyle est présente dans le milieu de 

réaction dès le de%ut de l'expérience; 

** série 2 = quand la moitié de la quantité d'acétate de vinyle est présente dans te milieu 

de réaction dès le deout de l'expérience et l'autre moitié est ajoutée continuellement à 

l'aide d'une pompe; 

*** série 3 = quand toute la quantité d'acétate de vinyle est ajoutée continuellement en 

temps. 



Quand le latex est plus riche en monomère hydrophilique (L'acétate de vinyle), les 

nouvelles particdes formées dev ie~ent  moins stables contre la coalescence, à cause de 

I'adsorption moins importante de l'agent émulsifiant sur leur surface. La coalescence 

des petites particules entre elles ou avec des particules plus grandes donne des particules 

de taille moyenne grande. 

Quand la quantité de l'acrylate de butyle dans le latex augmente, le caractère 

hydrophobique du monomère favorise l'adsorption de L'agent émulsifiant sur la surface 

des particules. Ainsi, la stabilité colloïdale des nouvelles particules augmente et leurs 

dimensions restent petites. 

La figure no.4.29 présente la variation globale de la taille des particules en temps, pour 

les trois façons d'ajout d'acétate de vinyle dans la réaction, quand la composition 

molaire de base est selon le rapport AV:AB=75:25. Dans les deux premières séries 

d'expériences on peut voir facilement que la taille des particules diminue en temps, à 

cause de l'ajout graduel de I'acrylate de butyle. Pour la dernière série, quand l'acétate de 

vinyle est ajouté en réaction lui  aussi, la t d e  des particules augmente en temps, parce 

que la proportion de l'acrylate diminue en temps, par rapport à l'apport d'acétate de 

vinyle. La même variation est observée pour Les autres rapports molaires AV:AB (955 

et 85:15)- voir tableaux D2 dans l'annexe D. 

4.7. MASSE MOLALRE 

La tentative de préparation des échantillons pour la détermination de la masse molaire 

du copolymère obtenu a été sans succès. Le T.H.F. utilisé pour la dissolution des fiirns 

secs de latex n'a réussi qu'à gonfler les échantillons, même après deux mois. 

Ce fait suggère que le copolymère obtenu est très réticulé, phénomène déjà observé 

ailleurs [46]. 



CKAPrrRES 

CONCLUSIONS ET RECOMMANDATIONS 

5.1 CONCLUSIONS 

La copolyménsation en émulsion de l'acétate de vinyle et de l'acrylate de butyle a été 

effectuée dans un réacteur semi-continu. Le Iatex obtenu a une structure homogène, tel 

qu'indiqué par la détermination d'une seule température de transition vitreuse, dont la 

valeur est en fonction de la composition molaire du latex. 

Les variables étudiées sont le rapport volumique des deux monomères, la manière 

d'ajout de l'acétate de vinyle et le de'bit d'ajout de l'acrylate de butyle dans le réacteur. 

Le rapport volumique des deux monomères a une importante influence sur la 

composition instantanée du latex. Pour obtenir un copolymère d'une certaine 

composition, il est nécessaire de réajuster constamment la composition du milieu durant 

la réaction, 

De même, la composition molaire du Iatex joue un rôle important dans les valeurs des 

températures de transition vitreuses, qui augmentent avec la diminution de la quantité 

d'acrylate de butyle. 

La taille moyenne des particules est aussi en fonction de la composition molaire du 

latex: elle diminue avec l'augmentation de la quantité d'acrylate de butyle dans le latex. 



L'acrylate de butyle a été ajouté dans le milieu de réaction graduellement, de temps en 

temps. Le deoit d'ajout (la quantité ajoutée sur l'intervalle de temps) n'a pas une 

infiuence visible sur les propriétés du latex. 

La manière d'ajout de 1' acétate de vinyle dans la réaction est le facteur décisif dans 

toutes les propriétés du copolymère. Ainsi, la conversion massique en temps augmente 

brusquement en de%ut de réaction (les 20-30 premières minutes) quand l'acétate de 

vinyle (tout ou moitié de la quantité) est ajouté continuellement en temps; elle atteint un 

plateau après ce temps. Lorsque l'acétate est ajouté en totalité tout au long de la 

réaction, la variation de la conversion est presque linéaire. 

La composition molaire du copolymère obtenu est aussi influencée par la façon d'ajout 

de l'acétate de vinyle. Les résultats obtenus pour la composition molaire instantanée 

prouvent ceci- 

La température de transition vitreuse est influencée par la façon d'ajout d'acétate de 

vinyle dans le milieu de réaction. L'ajout des monomères à un deoit inférieur à la vitesse 

de polymérisation donne des copolymères ayant un degré de ramification important qui 

diminue les valeurs de la température de transition vitreuse. Alors, des valeurs un peu 

moins élevées sont obtenues quand les deux monomères sont ajoutés en même temps 

dans le réacteur. 

La taille moyenne des particules varie principalement en fonction de la composition 

molaire du latex. Puisque cette composition varie elle aussi en fonction de la manière 

d'ajout des monomères, la taille des particules sera indirectement influencée par ce 

paramètre. Ainsi, les dimensions les plus réduites des particules ont été trouvées pour 

une composition du latex la plus riche en acrylate de butyle, correspondant au cas ou 

tout l'acétate de vinyle est ajouté en temps dans la réaction. 



5.2 RECOMMANDATIONS 

Pour les travaux hturs, quelques recommandations peuvent être considérées: 

- Étudier l'effet des autres paramètres: nature de l'agent tensioactif, de l'amorceur, 

variation de la température etc. 

- Étudier l'effet de la variation de la vitesse d'agitation. 

- L'ajout de l'amorceur continuellement dans la réaction, le même temps que les 

monomères. 

- Travailler avec des compositions molaires de 25% et plus en aciylate de butyle. 

- Déterminer la masse molaire et Ia distribution des masses molaires par d'autres 

méthodes que le GPC. 

- L'ajout de l'acrylate de butyle pas graduellement, de temps en temps, mais 

continuellement, à l'aide d'une pompe doseuse à debit très faible. 

- Améliorer le taux de conversion, qui est légèrement inférieur par rapport à un réacteur 

en cuvée. Ceci peut être obtenu par l'optimisation de la vitesse d'agitation. 
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ANNEXE A 

CALCUL DE LA CONVlERSION MASSIQUE 

RÉSULTATS DE LA CONVERSION MASSIQUE EN FONCTION DU TEMPS 



CALCUL DE LA CONVERSION MASSIQUE (%) 

Le calcul suivant permet de calculer la conversion massique, en pourcentage, pour 

toutes les expériences de copolyrnérîsation en émulsion de l'acétate de vinyle et de 

l'acryiate de butyle, effectuées dans le réacteur semi-continu. 

Puisque la quantité des monomères présente dans le réacteur change avec le temps, il 

faut déterminer la masse de monomères présente au temps où l'échantillon est prélevé. 

Plus précisément, il faut calculer la fkaction massique du monomère au temps lorsque 

l'échantillon est prélevé (a), ainsi que la fraction massique de l'agent tensioactif + 
initiateur au même instant fi), 

La formde qui donne la conversion massique est: 

Masse de polymère sec dans l'échantillon 
%conv. = -- - x 100 

Masse de polymère dans l'échantillon 

ou: 

où: 

A = Masse du cristallisoir vide; 

B = Masse du crïstallisoir + hydroquinone; 

C = Masse du crîstallisoir + hydroquinone + échantillon; 



D = Masse du cnstallisoir + échantillon sec; 

a = Fraction massique des monomères; 

b = Fraction massique de l'agent tensioactif + initiateur; 

c = Masse de l'échantillon de latex = C - %; 

d = Masse de l'agent tensioactif et de l'initiateur dans l'échantillon de latex = b x c; 

e = Masse du résidu sec = D - A; 

f = Masse du monomère dans l'échantillon de latex = a x c; 

g = Masse du copolymère sec dans l'échantillon de latex = e - d; 

Avec ces notations, on peut écrire: 

% conversion = ( g / f ) x 100 

Pour le calcul de la conversion de la copolymérisation en procédé semicontinu, la 

fraction massique des monomères (a) et la fiaction massique de l'agent tensioactif + 
initiateur (b) sont calculées de la façon suivante: 

Masse des monomères à un instant donné (AV)~+QAV* t + Q m  * t  
a = ------ -------- - - ---- 

Masse des réactifs dans le réacteur à cet instant m, + (AVi + QAV * t + QAB * t 

Masse de l'agent tensioactif + initiateur E 
b=-- - -- ----- - _ ------ -a- 

Masse de réactifs dans le réacteur au temps t m, + (Awi + QAv * t + QAB * t 
où: 

(AV)i = La quantité d'acétate de vinyle existante dans le réacteur en deôut de réaction; 

QAv = De%it massique d'ajout d'acétate de vinyle; 

QAB = Deoit massique d'ajout d'acrylate de butyle; 

t = Le temps de réaction pour chaque échantillon; 

m, = Masse initiale de réactifs; 

E = Masse de l'agent tensioactif + Masse de l'initiateur. 



EXEMPLE DE CALCUL DE LA CONVERSION MASSIQUE 

EWÉRIENCE: no. 1 

EAU: 300 mi 

MONOMÈRES: Acétate de vinyle = 285 mi (pAv = 0.93 17 g I cm3 ) 

Acrylate de butyle = 15 ml  (pm = 0.8898 g / cm3 ) 

AGENT TENSOACTIF: S.L.S. = 3.3033 g 

AMORCEUR: 0.4029 g 

AGENT ANTI-MOUSSE: NOPCO = 5 gouttes 

VITESSE D'AGITATION: 175 rpm 

TEMPERARE: 60' C 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

t 
(min) 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 

Série no.1 - AV:AB = 955; AB =2.5rnV20rnins tout l'acétate (285ml) 
présent dans le réacteur des le début. 

Variation de la conversion en fonction du temps 

Figure A-l 



VARIATION DE LA CONVERStON EN FONCTION DU TEMPS 

Série no.7 - AV:AB = 955; débit d'AB: 3mU24min; tout l'acétate présent 
dès le début de la réaction dans le réacteur 

Variation de la conversion en fonction du temps 

Figure A-2 
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VARlATlGN DE LA CONVERSION EN FONCTION DU TEMPS 

Série no-10 - AVAB = 95:5; débit d'AB: 2mU16min; tout l'acétate 
présent dès le début dans le réacteur 

Variation de la conversion en fonction du temps 

- 0 0 0 0 0 0  
v - C U m * r n w  

g g g o o o  
z z $ !  

temps [m in] l 

Figure A-3 



VARIATION DE LA CONVERStON EN FONCTION DU TEMPS 

Série no2 - AV:AB = 85:lS;débit d'AB =3mV8min, fout l'acétate 
présent dans le réacteur dès le début 

- - - -- - 

Variation de la conversion en fonction du temps 

.-. E P P S 8 P F ? % g g  " 
tem ps[m in] 

Figure A 4  



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.33 - AV:AB = 75:25;débit d'AB =9.375mU15min, tout l'acétate 
(225ml) présent dans le réacteur dès le début. 

Variation de la conversion en fonction du temps 

C ~ ~ ~ ~ g 0 0 0 0 0 0 0  
l c o r c m m g = $ !  

l tem ps[m in] 
l 

Figure A-5 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.8 - AV:AB = 85:15; débit de BA: 5.6mUlSmin: tout l'acétate 
présent dès le début dans le réacteur 

Variation de la conversion en fonction du temps 

1 tem ps [m in] 

Figure A-6 
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VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.4 - AV:AB = 75:25; débit d'AB =7.5mV12min, tout l'acétate 
présent dans le réacteur dès le début. 

Variation de ta conversion en fonction du temps 

Y O s 8 g g g ~ Z ~ ~ z o 0  3 

z e 
te m ps [m in] 
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! 

Figure A-7 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.33 - AV:AB = 7525; débit d'AB =9.375mVl5min, tout l'acétate 
(225ml) présent dans te réacteur dès le début. 

t 
(min) 

10 
20 
30 
40 
50 
60 
70 
80 
90 

1 O0 
110 
1 20 

Variation de la conversion en fonction du temps 

CI z s o S 8 s E z r n ~ p ~  
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Figure A-8 



VARlATlON DE LA CONVERSION EN FONCTION DU TEMPS 

- 
t 

(min) 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
1 20 

Série no.9 - AV:AB = 75:25; débit d'AB: 12.5mV20min; tout l'acétate 
présent dans le réacteur dès le début 

Variation de la conversion en fonction du temps 

Figure A-9 
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VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.14 - AV:AB = 95:5; débit d'AB: 2.5ml/20min;142.5ml d'acétate 
présents dès  le début dans le réacteur, 142.5ml AV ajoutés avec la 

- -- 

Variation de la conversion en fonction du temps 

Figure A- 1 O 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no-1 1 - AVAB = 955; débit d'AB: 3mY24min;142.5ml d'AV présents 
dès le début dans le réacteur, 142.5mI AV ajoutés avec la pompe, 

- - - 

t A B c D a b 
(min) 

10 48.9276 49.4658 53.1 238 49.1 1 09 0.32283099 0.00735778 

Variation de la conversion en fonction du temps 

Figure A- 1 1 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.15 - AV:AB = 95:5; débit d'AB: 2mV16min;i42.5ml d'AV présents 
dès le début dans le réacteur, 142.Sml VAV ajoutés avec la pompe, 

Variation de la conversion en fonction du temps 

Figure A- 12 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.16 - AV:AB = 85:15; débit d'AB: 3mV8min;127.5mi d'AV présents 
dès le début dans le réacteur, 127.5mt AV ajoutés avec la pompe, 

Variation de la conversion en fonction du temps 

tem ps [m in] 

Figure A43 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.17 - VkBA = 85:15; débit de BA: 4.5mV12rnin;127.5mlVA présents 
dès le début dans le réactei 

en2h 
Ir, 127.5rnl VA ajoutés avec la pompe, 

t 
(min) 

Variation de la conversion en fonction du temps 

tem ps[m in] ! 
j 

A 

Figure A 4 4  

B C D I 



VARIATON DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.12 - AV:AB = 85:15; débit d'AB: 5.6mU15min;127.5ml AV présents 
dès le début dans le réacteur, l2ï.Sml AV ajoutés avec la pompe, 

t A B C D A b 
(min) 

1 0 48.9286 49.5373 52.61 74 48.973 0.29461 52 0,00766435 
20 49.41 34 49.7637 52,721 2 49.731 4 0.31 503369 0.0074425 
30 47.423 48.0604 50.224 47.8778 0.33430336 0.00723315 
40 54.4291 54.765 57.5889 55.1 446 0.35251 848 0.00703521 
50 55.8089 56.5231 59.3024 56.5707 0.36976334 0.00684782 
60 55.7547 56.2546 58.646 56.4584 0.3861 1343 0.0066701 E 
70 54.1 938 55.04 58.65 55.3046 0.401 63665 0.00650151 

Variation de la conversion en fonction du temps 
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VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.18 - AV:AB = 75:25; débit d'AB: 7.5mU12min;l12.5mlAV présents 
dès le début dans le réacteur, 112.5ml AV ajoutes avec la pompe, 

en2h 

Variation de la conversion en fonction du temps 

i - 
l z a ~ s ~ ~ ~ ~ a g ~ ~  
i I 

1 temps [m in] 
! 
L 

Figure A-16 



VARIATiON DE LA CONVERSION EN FONCTlON DU TEMPS 

Série no.13 - VASA = 75:25; débit de BA: 9.375rnU15mir 
présent dès le début dans le réacteur, 112.5 ml ajoutés 
la DomDe. en 2 heures 

Variation de la conversion en fonction du temps 

Figure A-17 



VARIATION DE LA CONVERSION EN FONCTlON DU TEMPS 

Série no.19 - AV:AB = 75:25; débit d9AB:1 2.5mWûmin; 1 l2.5ml AV 

t 
(min) 

10 
20 

, 30 
40 
50 
60 
70 
80 
90 
100 
110 
120 

wésents dans le réacteur, 112.5ml AV ajoutés avec la pompe, en 2 h 
B C D A .  b conv(96) A 

48.9299 
49.3747 
47.3998 
54.435 
55.7815 
55.8022 
54.1586 
57.5875 
50.2989 
57.8246 
55.0594 
48.4052 

Variation de la conversion en fonction du temps 

temps [m in] 1 

l 
1 

Figure A 4  8 



t 
(min) 

10 
20 
30 
40 
50 
60 
70 
80 
90 

VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.20 - AV:AB = 955; débit d'AB: 2.5müYOmin; tout l'acétate 
ajouté avec la pompe, en 2 heures 

Course = 22.Débit d'AV = 0.0395mVs 

Variation de la conversion en fonction du temps 

l tem pslm in] 

Figure A-19 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

t 
[min) 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
= 

Série no21 - AV:AB = 95:s; débit d'AB = 3mV24min; tout I'AV 
avec la pompe, en 2 heures. Course = 2.2; débit d'AV = 0.0395mVs 

Variation de la conversion en fonction du temps 

I - 0 0 0 0  a Q> 0 0 0 0 0 0  N d L O  z z :  
! 

tem ps[m in] I 
I 

Figure A-20 



- 
t 

(min) 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
If0 
120 

VARIATION DE LA CONVERSION EN FONCTlON DU TEMPS 

Série no.23 - AV:AB = 95:S;débit d'AB = 2mVIGrnin, tout l'acétate ajouté 
avec la pompe, en 2 h. Course = 2.2; débit d'acétate = 0.0395rnVs 

Variation de la conversion en fonction du temps 

Figure A-21 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.25 - AV:AB = 85:lS; débit d'AB =3mU8min, tout l'acétate (255ml) 
: débit d'acétate = 0.035mVs ajouté avec la pompe, en 2 h. Course = 2.i 

Variation de la conversion en fonction du temps 

C 0 0 0 0 0 0 0 0 0 0 0  
Z ~ m r m m r - m m o = q  

1 ; 
temps[m ln] i 

1 

Figure A-22 

D 

48.9435 

C 

51 -1 22 

a 

0.06850492 

B 

49.9934 

t 
[min) 

10 

A 

48.9299 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série 110.24 - AV:AB = 85~15; débit d'AB =4.5mV12rnin, tout l'acétate 

Variation de la conversion en fonction du temps 

ajouté avec la pompe, en 2 h. Course = 2.0; débit d'acétate 0.035mU1 

Figure A-23 

t 
(min) 

, 1 O 
20 
30 
40 
50 
60 
70 
80 
90 

100 
1 10 
120 

A 

48.9299 
49.3747 
47.3998 
54.435 

55.7815 
55.8022 
54.1 586 
57.5875 
50.2989 
57.8246 
55.0594 
48.4052 

B 

49.6529 
50.1436 
48.3654 
55.01 12 
56.558 

56.3809 
54.9891 
56.21 72 
51.6021 
59.01 99 
56.31 39 
49.7871 

C 

51.1 91 
51 -7501 
49.81 71 
56.6075 
57.759 

58.2409 
56.6263 
60.0273 
53.748 

60.91 91 
58.095 
51 -847 

D 

48.9468 
49-41 58 
47.4639 
54.5328 
55.9124 
56.0576 
54.4633 
58.4933 
50.901 6 
58.5023 
55.801 2 
49-31 57 

a 

0.06850492 
0.1 2822574 
0.1 8075019 
0.2273051 1 
0.26885345 
0.3061 61 61 
0.3398471 9 
0.37041 337 
0.39827427 
0.42377384 
0.44720005 
0.46879592 

b 

0.01 01 21 15 
0,00947226 
O.OO89Ol55 
0.00839571 
0.00794427 
0.0075389 

O.OO717289 
0.00684077 
0.00653805 
0.00626098 
0.00600644 
O.OO577179 

conv(%) 

1 -2 
12.5 
1 9.5 
23.2 
37.5 
42.3 
52.6 
62.3 
68.8 
82.7 
91 -7 
93.0 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no.22 - AV:AB = 85:15; débit d'AB = 5.6 mumin; tout l'acétate ajouté 
avec ta pompe, en 2 heures. Course = 2.0; débit d'acétate = 0.035mVs 

Variation de la conversion en fonction du temps 

tem ps[m hl 
, 

Figure A-24 



VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série no28 - AVAB = 75:25; AB =7.5mV12min, tout l'acétate de vinyle 
ajouté avec la pompe, en 2 h. Course = 1.75; débit d'acétate = 0.031 mils 

[min) 
1 O 48.92991 49.451 6 50.5028 

- - - - - - -- - 

Variation de la conversion en fonction du temps 

- o z o g  g g g g g o o o  z z 2  
temps[m in] 

1 



t 
(min) 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
1 20 

VARIATION DE LA CONVERSION EN FONCTION DU TEMPS 

Série n0.27 - AV:AB = 7525; débit d'AB =9.37SmUl Smin, tout l'acétate 
ajouté avec la pompe, en 2 h. Course = 1.75; débit d'acétate = 0.031 mVs 

Variation de la conversion en fonction du temps 

, tem ps[m in] 
, 

L 

Figure A-26 



t 
(min) 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 

VARIATION DE LA CONVERSlON EN FONCTION DU TEMPS 

Série no26 - AV:AB = 75:25; débit d'AB =12.5mV20min, tout l'acétate 
ajouté avec la pompe, en 2 h. Course = 1.75; débit d'acétate = 0.031 mus 

Variation de la conversion en fonction du temps 

te m ps [m in] 

Figure A-27 



Tableau A-1: VARIATION DE LA CONVERSION EN TEMPS, POUR UNE COMPOSïTlON 
DE BASE AcÉTATE DE VINYLE: ACRYLATE DE BUTYLE = 95: 5, 

QUAND TOUT L'ACÉTATE EST PRÉSENT EN DÉBUT DE LA RÉACTION 

CONVERSION (O, 

'expérience no.1: débit d'ajout d'acrylate de butyie = 2.5mV20min 
"expérience no.7: débit d'ajout d'acrylate de butyie = 3mV24min 
"expérience no.1 O: débit d'ajout d'acryiate de butyle = 2mV1 Grnin 

Tableau A-2: VARIATION DE LA CONVERSION EN TEMPS, POUR UNE COMPOSlTlON 
DE BASE ACÉTATE DE VINYLE: ACRYLATE DE BUTYLE = 85: 15, 

QUAND TOUT L'ACÉTATE EST PRÉSENT EN &BUT DE LA RÉACTION 

CONVERSION (9 

"expérience no.2: débit d'ajout d'acrylate de butyle = 3mU8min 
"expérience no.3: débit d'ajout d'acryiate de butyle = 4.5mV12min 
"expérience no.8: débit d'ajout d'acrylate de butyle =5.6mV1 Smin 



Tableau A-3: VARIATION DE LA CONVERSION EN TEMPS, POUR UNE COMPOSITION 
DE BASE A C ~ A T E  DE VINYLE: ACRYLATE DE BUTYLE = 75: 25, 

QUAND TOUT L ' A C ~ A T E  EST PRESENT EN DEBUT DE LA R ~ C T I O N  

CONVERSION (9 

"experience no.4: debit d'ajout d'acrylate de butyle = 7.5mVl2min 
*'experience no.5: debit d'ajout d'acryfate de butyle = 9.375mVl 5min 
'"experience n0.9: debit d'ajout d'acrylate de butyle = 12.5mV20min 

Tableau A-4: VARIATION DE LA CONVERSION EN TEMPS, POUR UNE COMPOSITION 
DE BASE A C ~ A T E  DE VINYLE: ACRYLATE DE BUTYLE = 95: 5, 

QUAND LA MOITIE DE LA QUANTITE D ' A C ~ A T E  EST PRESENTE EN 
DEBUT DE LA REACTION ET LE RESTANT EST AJOUTE EN TEMPS 

CONVERSION (%) 

'experience no.14: debit d'ajout d'acrylate de butyle = 2.5mV20min 
**experience no.11: debit d'ajout d'acrylate de butyie = 3mV24min 
"experience no.15: debit d'ajout d'acrylate de butyle = 2mVl6min 



Tableau A-5: VARIATION DE LA CONVERSION EN TEMPS, POUR UNE COMPOSITION 
DE BASE ACÉTATE DE VINYLE: ACRYLATE DE BUNLE = 85: 15, 

QUAND LA MOITIE DE LA QUANTITÉ D'ACÉTATE EST PRESENTE 
EN DEBUT DE LA RÉACTION ET LE RESTE EST AJOUTÉ EN TEMPS 

CONVERSION (%] 

'expérience no.16: débit d'ajout d'acryiate de butyle = 3mV8min 
"expérience no.17: débit d'ajout d'acryfate de butyie = 4.5mVl2min 
"'expérience no.12: débit d'ajout d'acrylate de butyle = 5.6mV1 Smin 

Tableau A-6: VARIATION DE LA CONVERSION EN TEMPS, POUR UNE COMPOSITION 
DE BASE ACÉTATE DE VINYLE: ACRYLATE DE BUNLE = 75: 25, 

QUAND LA MOITIÉ DE LA QUANTITE D'ACÉTATE EST PRESÉNTE 
EN DÉBUT DE LA R ~ C T I O N ,  LE RESTE ÉTANT AJOUTÉ EN TEMPS 

CONVERSION (9 

'expérience no-1 8: débit d'ajout d'acryfate de butyle = 7.5mVl2min 
"expérience no-1 3: débit d'ajout d'acryiate de butyie = 9.375mVl Smin 
""expérience no.19: débit d'ajout d'acryiate de butyie = 12.5mV20min 



Tableau A-7: VARIATION DE LA CONVERSION EN TEMPS, POUR UNE COMPOSITION 
DE BASE ACÉTATE DE VINYLE: ACRYLATE DE BUTYLE = 95: 5, 

QUAND TOUT L'ACÉTATE DE VINYLE EST AJOUTÉ CONTINUELLEMENT 
EN TEMPS 

'expérience no.20: débit d'ajout d'acrylate de butyle = 2.5rnV20rnin 
**expenence no.21: débit d'ajout d'acryiate de butyle = 3mV24min 
***expérience no.23: débit d'ajout d'acrylate de butyle = 2mVl Gmin 

Tableau A-& VARIATION DE LA CONVERSION EN TEMPS, POUR UNE COMPOSITION 
DE BASE ACÉTATE DE VINYLE: ACRYLATE DE BUTYLE = 85: 15, 

QUAND TOUT L'ACÉTATE DE VINYLE EST AJOUTE 
GRADUELLEMENT EN TEMPS 

CONVERSION ('3 

*expérÏence no.25: débit d'ajout d'acrylate de butyle = 3rnU8rnin 
"expérience no.24: débit d'ajout doa&late de butyle = 4SrnVl2min 
'"expérience no.22: débit d'ajout d'acrylate de butyie = 5.6mV15min 



Tableau A-9: VARIATION DE LA CONVERSION EN TEMPS, POUR UNE COMPOSiTlON 
DE BASE AC-E DE VINYLE: ACRYLATE DE BUTYLE = 75: 25, 

QUAND TOUTE LA QUANTITÉ D'ACÉTATE DE VINYLE EST AJOUTÉE 
EN TEMPS 

CONVERSION (9 

"expérience no.28: débit d'ajout d'acrylate de butyle = 7.5rnVl2min 
"expérience no.27: débit d'ajout d'acrylate de butyle = 9.375mVl Smin 
"'expérience no.26: débit d'ajout d'acryfate de butyle = 12.5mV20min 



ANNEXE B 



Figure B 1 : Variation de la TV en fonction de la composition molaire du latex 

Série 1. Tout I'acétate de vinyle présent dès le début dans ie réacteur 

Sériez. La moitié de la quantité d'acétate de vinyle présente dès le début dans le 
réacteur, le reste est ajouté continuellement en temps 

acrylate de butyle (%mol) 
6.7 
7.7 
9.9 
14.4 
17.9 
19 
23.8 
28.5 
31 -5 

Série 3. Tout l'acétate de vinyle est ajouté en temps dans le réacteur 

acrylate de butyle (%mol) 



Figure no.B 2: VARIATION DE LA TEMPÉRATURE DE TRANSITION VITREUSE 
(Tv) EN FONCTION 

DE LA COMPOSlTiON MOUURE DU LATEX 

'Série 1. Tout I'acétate de vinyle est présent dès le début dans le réacteur; 
"Série2. La moitié de la quantité d'acétate de vinyle est présente dès le début 
dans le réacteur, le restant étant ajouté en temps; 
'**Serie 3. Tout l'acétate de vinyie est ajouté en temps dans le réacteur. 



ANNEXE C 



Tableau C 1 
COMPOSITION MOLAIRE DU LATEX DETTÉRMINEE PAR ANALYSE RMN, POUR UN 

RAPPORT MOLAIRE ACÉTATE DE VINYLE : ACRYLATE DIE BUTYLE DANS LA RECETTE DE BASE 
95: 5 

POUR TROIS DÉBITS D'ACRYLATE DE BUTYLE: 2mU116min, 2.5mVZOmln et 3mU24min 

1 .Tout l'acétate de vinyle présent dés te 
début dans le réacteur 
Zomposition molaire 

du latex (%mol) 
composition 
instantanée 

du latex 
m 
0.83 
0.94 
0.68 

- ~~~~~ 

2.112 de I'AV dans le réacteur, le 
restant aiout6 en temps 

I Composition molaire Composition 
t du latex (%mol) 1 lwtantan6e 

3.Tout l'acétate de vinyle ajout6 en 
temns dans le rdacteur 

(min) 
t 

(min) , 

AV 1 AB 

Compositlon molaire Compositlon 
du latex (%mol) instantanée I du latex du latex 

m 



Tableau C 2 
COMPOSITION MOLAIRE DU LATEX DÉTÉRMINÉE PAR ANALYSE RMN, POUR UN 

RAPPORT MOLAIRE ACÉTATE DE VINYLE : ACRYLATE DIE BUTYLE DANS LA RECETTE DE 
BASE 

85: 15 
POUR TROIS DEBITS D'ACRY LATE DE BUTYLE: BmVlImin, 4.5mV12min et 5.6mVlSmin 

1 .Tout l'acétate de vinyle présent dès le 1 début dans le réacteur 
Composition molaire Composition 

t 1 d;âtex,(?&moIi 1 instantanée _ 
(min) du latex 

2.112 de I'AV dans le réacteur, le 3.Tout 11ac6tate de vinyle ajout6 en 
restant ajouté en 

Composition molaire 
t du latex (%mol) du latex (%mol) instantanée 

1 du latex I(min)l 1 du latex 



Tableau C 3 
COMPOSITION MOLAIRE DU LATEX DÉTÉRMINÉE PAR ANALYSE RMN, POUR UN 

RAPPORT MOLAIRE ACÉTATE DE VINYLE : ACRYLATE DE BUTYLE DANS LA RECETTE DE 
BASE 

75: 25 
POUR TROIS DEBITS D'ACRY LATE DE BUTYLE: 7,5mU12min, 9,375mVl Smin et 12SmV20rnin 

I1.Tout l'acétate de vinyle présent d8s le 1 2.112 de I'AV dans le réacteur, le 13.~0ut I0ac6tate de vinyle ajouté en 
début dans le réacteur 

du latex (%mol) instantanée 

restant ajouté en temps 

du latex (%mol) instantanée 
du latex 

- 
t 

(min) 

- 
20 
40 
120 
20 
40 
120 
20 
40 
120 - 

temns dans le réacteur 
Composition molaire Composition 

du latex (%mol) I instantanée 
du latex 



Tableau C 4: 
VARIATION DE LA COMPOSITION MOLAIRE INSTANTANEE DU 

LATEX (rn) EN TEMPS, 
POUR LES TROIS FAÇONS D'AJOUT D'ACÉTATE DE VINYLE 

Série 1 : tout l'acétate est dans le réacteur en début de la réaction 

Série 2: la moitié de la quantité d'acétate est dans le réacteur, 
le reste est ajouté en temps 

Série 3: tout l'acétate de vinyle est ajouté en temps 



ANNEXE D 

RÉSULTATS POUR LA TAILLE DE PARTICULES 



Tableau Dl : DlSTRlBUTiON DE LA TAlLLE MOYENNE DES PARTICULES EN TEMPS 

(min) r 
1 .Tout l'acétate présent 

dès le début dans 
le réacteur 

differents 1 G!: 
débits d'AB 

2.112 d'acétate est présent 
dans le réacteur, le reste 
est ajouté en ternos 

Composition 
molaire 
de base 
95% AV 
5% as; 

Composition 
molaire 
de base 
85% AV 
15% AB; 
différents 

débits d'AB 

3.Tout l'acétate ajouté 
en temps dans le 

réacteur 

20 
40 
100 
120 
20 
40 
100 

- --- - - 

Composition 
molaire 
de base 
75% AV 
25% AB; 
différents 1 yoO 

débits d'AB 

Taille moyenne 
des particules 

(nm) 
509.9 
422.4 
329.5 
276 
588.2 
252.9 
332.4 
295 
506.4 
477.7 
382.3 
329.5 

Taille moyenne 1 ( i n )  1 Des particules 
t 

(min 

- 
20 
40 
60 
80 - 
20 
60 
1 O0 
1 20 
20 
60 
1 O0 
120 

Taille moyenne 
des particules 

(nm) 
287.6 
237.2 
230.8 
443.3 
239.5 
404.8 
252.3 
244.9 
1 12.8 
258.5 
275.5 
293 



Tableau 02: 
VARIATION DE LA TAILLE DES PARTICULES EN TEMPS 

POUR DIFFERENTES EXPÉRIENCES 

I 
- - 

  out l'acétate de vinyle est ajouté dans le réacteur 
dès le début de l'expérience 

exp.1 I exp.2 I exp.5 
Composition molaire de base 

11/2 de la quantité d'acétate est présente dans le 1 -1 réacteur dès le début, le restant est ajouté 1 
1 araduellement en t e m ~ s  1 

Composition molaire de base 
5%AB 1 15%AB 1 25%AB 

lTout I'acétate de vinyle est ajouté graduellement 1 

1 tlminl 

Composition molaire de base 
' 5%AB 1 15%AB 1 25%AB 



ANNEXE E 

CALIBRATION DE LA POMPE 



La pompe ( MiltenRoy) utilisée pour l'ajout de l'acétate de vinyle dans le réacteur a 

trois têtes. Alors, la calibration a été faite pour toutes les trois têtes. 

Pour la tête no. 1 ont été obtenus les résultats suivants: 

Tableau E. 1 - Calibration de la tête no. 1 

de la pompe 

No. Débit pompe 1 
( m i l s )  

0.01 8 
0.033 
0.049 
0.066 
0.08 î 
0.095 
0-1 11 
0.128 
0.143 
0.1 47 

1 Échelle sur 
1 la pompe 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

La variation du débit de la pompe en fonction de l'échelle de la pompe est représentée 

dans la figure E. 1. 

L'équation qui décrit la courbe de calibrage de la pompe est: 

Course = -2.1673 19 + 277.3584 * QI - 7536.435 * ( QI )'+ 116030.2 * ( QI )3 - 

80452 1.1 * ( QI )4 + 2056796 * ( Qi )5 

Alors, la course de la pompe est choisie par calcul, à partir de l'équation précédente. 



0.018 0.033 0.049 0.066 0.081 0.095 0.111 0.128 0.143 0.147 

Débit pompe 1 ( m l / s  ) 

Figure E. L - Calibration de la tête no. 1 de la pompe 



Pour la tête no- 2 ont été obtenus les résultats suivants: 

Tableau E.2 - Calibration de la tête no-2 

de la pompe 

No. Débit pompe 2 
( m i l s )  

Échelle sur 
la pompe 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

La variation du deoit de la pompe en fonction de l'échelle de la pompe est représentée 

dans la figure E.2. 

L'équation qui décrit la courbe de calibrage de la pompe est: 

Course = -0.2643 127 + 86.89295 * Qr - 1233.782 + ( Qz )' + 21029.64 * ( Qz )3 - 

146399.6 * ( Qz )4+ 354715.1 * ( Q2 )' 



-- --- 

Figure E.2 - Calibration de la tête no.2 de la pompe 



Pour Ia tête no- 3 ont été obtenus les résultats suivants: 

Tableau E.3 - Calibration de la tête no.3 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

4 n 
I 

La variation du débit de la pompe en fonction de l'échelle de la pompe est représentée 

dans la figure E.3. 

de la pompe 

L'équation qui décrit la courbe de calibrage de la pompe est: 

Débit pompe 3 
( m i l s )  
0.01 7 
0.034 
0.053 
0.071 
0.091 
0.1 1 1  
0.1 23 
0.143 
0.1 54 
CI 4 c  u. IV I 

Course = -0.9303608 + 157.8156 * Q3 - 3395.846 * ( Q3 )' + 49103.65 * ( Q3 )3 - 

324509 * ( Q3 )4+ 801828.3 * ( Q3 )' 

Echelle sur 
la pompe 

1 
2 
3 
4 
5 
6 
7 
8 
9 

4 n  
I u 



0.017 0.034 0.053 0.071 0.091 0.111 0.123 0.143 0.154 0.16 

Débit pompe 3 ( m I / s )  

Figure E.3 - Calibration de Ia tête no.3 de Ia pompe 



ANNEXE F 

PROTOCOLE POUR LWTILISATION DE L'ACÉTATE DE V I N ~ E  ET DE 

L'ACRYLATE DE BUTYLE 

DANS LE LABORATOIRE A-641 



I~tformations générales sur l'acétate de vinyle et sur l'acrylate de butyle [SOI 

DESCRIPTION 

liquide incolore, monomère très 

réac tif 

FORMULE C7H1202 

masse molaire: 128.2; point 

d'ébullition: 6g°C à 50 mm; 

point de congélation: 

-64.6OC; pression de vapeurs: 

10 mm a 355°C 

Degré de roxicité [SOI 

ACRYLATE DE 

BUTYLE 

liquide incolore qui peut 

polymériser sous 

infiuence de la lumière 

masse molaire: 86.05; 

point d'ébullition: 73OC; 

pression de vapeurs: 100 

mm à 21S°C 

1. EXPOSITION DE COURTE DURÉE - matériaux qui sont inhalés ou absorbés par 

la peau ou par les membranes muqueuses suite à une exposition d'une durée des 

secondes, minutes ou heures et DOW des matériaux aui sont ingérés dans une seule 

quantité ou dose. 

ACÉTATE DE VINYLE 

IRR~TABILITÉ (effets sur la 

peau ou sur les membranes 

muqueuses) 

INHALATION, 

INGESTION 

toxicité faible 

toxicité faible 

ACRYLATE DE 

BUTYLE 

toxicité modérée 

toxicité modérée 



2. EXPOSITION DE LONGUE DURÉE - s'applique aux substances qui sont inhalés, 

absorbés par la peau ou ingérés de façon répétée (jours, mois ou ans). 

1 peau ou sur les membranes 1 toxicité faible 1 toxicité inconnue 1 
IRRITABILITÉ (effets sur la 

1 muqueuses) I I I 

ACÉTATE DE VINYLE 

" Toxicitk faible " - s'applique aux substances qui peuvent produire des changements 

dans le corps humain, changements qui sont réversibles et qui vont disparaître à la fiin de 

l'exposition, avec ou sans traitement médical. 

ACRYLATE DE 

BUTYLE 

INHALATION, 

INGESTION 

" Toxicité modérée"- s'applique aux substances qui peuvent produire des changements 

reversibles ou irréversibles dans le corps humain. Ces changements ne sont pas assez 

sévères pour menacer la vie ou pour produire des affections physiques importantes. 

" Toxicité inconnue " - s'applique aux substances pour qu'il n'y ait pas un nombre 

suffisant des données concernant leur toxicité. 

toxicité inconnue 

Informations sur I'utiZisation de l'acétate de vinyle et I'acrylate de butyle 

toxicité inconnue 

Obiectif des expériences: copolymérisation en émulsion de l'acétate de vinyle et de 

i'acrylate de butyle. 



Réacteur utilise: semi - continu, de capacité maximale de 1000 ml, installé sous une 

hotte. 

Ouantités des monomères utilisés au cours d'une expérience 

- acétate de vinyle: 225 - 285 mi, ajoutés dès le début dans le réacteur ou avec une 

pompe, tout au long de la réaction de polymérisation; 

- acqlate de butyle: 15-75 ml, ajoutés dans le réacteur. 

Durée d'une réaction: 2 heures. 

Nombre des expériences par iour: 1. 

Manipulation des monomères et du produit final: sous la hotte. 

. Produit final: 

copolymère en émulsion ( acétate de vinyle - acrylate de butyle). 

à la fm de chaque réaction, l'émulsion est déposée dans une bouteille vide qui est 

livrée au technicien responsable de la gestion des produits dangereux. 




