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RESUME

La modélisation de la performance aérodynamique des aéronefs demeure un domaine de
recherche en constante évolution, soutenu par le développement continu de nouvelles méth-
odes numériques en mécanique des fluides. Parmi celles-ci, les approches dites haute fidél-
ité, telles que les simulations basées sur la famille de modeles Reynolds-Averaged Navier-
Stokes (RANS), se distinguent par leur grande précision. Toutefois, leur cotit computationnel
demeure a ce jour un facteur limitant, ce qui les rend peu propices pour le design préliminaire
ot plusieurs centaines voir milliers d’itérations de design sont analysées. A I'opposé, les méth-
odes basse fidélité reposent sur des hypotheses simplificatrices qui réduisent la précision des
résultats, mais offrent une rapidité d’exécution supérieure de plusieurs ordres de grandeur.
Entre ces deux extrémes se trouvent les approches dites moyenne fidélité, qui visent a offrir

un compromis entre précision et performance.

Parmi les méthodes a fidélité moyenne prometteuses figurent les modeles d’écoulement po-
tentiel non linéaire, lesquelles ont démontré leur efficacité tant dans le milieu académique
qu’industriel, produisant des résultats cohérents avec les simulations RANS et les essais en
soufflerie. Ce présent travail s’appuie sur ces approches dans le but ddans le but de dévelop-
per une méthode moyenne fidélité permettant ’analyse de configurations avion générales et

complexes, avec un niveau de précision comparable a celui des méthodes RANS.

La méthode proposée repose sur le Nonlinear Vortex-Lattice Method (NL-VLM), permettant
de capturer les principaux effets non linéaires. Elle s’appuie sur une base de données issue
de simulations RANS 2.5D réalisées sur des sections d’aile prenant en compte les effets de
fleche, ensuite couplées avec le solveur potentiel. Les effets du fuselage et des nacelles sont
modélisés a 'aide d’une méthode des panneaux, tandis que les effets visqueux sont intro-
duits a 'aide de corrections semi-empiriques. L’influence de surfaces portantes auxiliaires,
telles que les empennages ou les supports, est également prise en compte. Une vérifica-
tion des différentes composantes du solveur est présentée, et sa validation est effectuée sur
plusieurs configurations du modele Common Research Model (CRM) de la NASA, dans le
cadre des ateliers Fifth High-Lift Prediction Workshop (HLPW5) et Sixth Drag Prediction
Workshop (DPW6). Les résultats démontrent que cette approche est capable de reproduire
les principaux effets non linéaires associés aux configurations complexes, bien que certaines

limitations soient identifiées et discutées.

Dans un second temps, une tentative d’intégration des effets de 'effilement dans le processus

de génération de la base de données RANS est proposée. Ce développement, fréquemment



vi

désigné comme méthode 2.75D, repose sur 'hypothese d’une distribution radiale constante
de I'écoulement, et s’appuie pour cela sur une discrétisation des équations d’Euler en coor-
données sphériques. Bien que la méthode permette de retrouver les cas limites attendus, elle

présente des limites physiques importantes pour les ailes a fort effilement.

Enfin, une discussion sur le potentiel d’intégration de cette méthode dans un contexte indus-

triel est proposée, et les limitations de celle-ci sont exposées.
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ABSTRACT

The assessment of the aerodynamic performance of aircraft remains an active area of research,
driven by the continued development of numerical methods in fluid mechanics. Among
them, high-fidelity approaches such as the Reynolds-Averaged Navier-Stokes (RANS) family
of solvers stand out for their high accuracy. However, their computational cost remains so
significant that such methods still are inadequate for preliminary design endeavors, where
several hundreds or even thousands of design iterations are performed. At the other end of the
spectrum, low-fidelity methods rely on simplifying assumptions that affect accuracy, yet offer
execution speeds several orders of magnitude faster. In between the two are medium-fidelity

methods, which aim to balance accuracy with computational efficiency.

A promising class of medium-fidelity approaches is based on nonlinear potential flow models,
which have demonstrated successful application in both academic and industrial contexts,
yielding results consistent with RANS simulations and wind tunnel experiments. Building on
these methods, the present work proposes a medium-fidelity framework for analyzing complex

and general aircraft configurations, targeting a level of accuracy comparable to RANS.

The proposed method is based on the Nonlinear Vortex-Lattice Method (NL-VLM), which
introduces key nonlinear effects into the solution process. A database of 2.5D RANS simu-
lations taking the effects of sweep into account is generated for discrete wing sections and
coupled with the potential solver. The aerodynamic effects of the fuselage and nacelles are
modelled using a panel method, while viscous effects are introduced through semi-empirical
corrections. The inclusion of auxiliary lifting surfaces, such as empennages and wing pylons, is
also investigated. Each solver component is individually verified, and validation is performed
on multiple NASA Common Research Model (CRM) configurations from the Fifth High-Lift
Prediction Workshop (HLPW5) as well as the Sixth Drag Prediction Workshop (DPWG6).
The results demonstrate that medium-fidelity methods can capture most major nonlinear

effects of complex configurations, though certain limitations remain are discussed thereafter.

Secondly, the integration of taper effects into the RANS database generation process is ex-
plored. This extension, referred to as the 2.75D method, assumes a constant radial flow
distribution and discretizes the Euler equations in spherical coordinates. While the method
recovers the expected limiting cases, its underlying assumptions lead to physical inaccuracies

for highly tapered wings.

Finally, the possible applications of this framework within industrial context is discussed,

and the limitations of the proposed methodology are highlighted.
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CHAPTER 1 INTRODUCTION

Despite a nearly eight-fold improvement in air transport efficiency over the past six decades,
the aerospace industry has committed to reducing its environmental impact by 50% in ac-
cordance with the United Nations Convention on Climate Change [1]. In this regard, the
improvement and development of new aircraft designs plays a key role in the quest for better
overall efficiency. However, the inherent complexity of acrodynamic numerical models makes
the analysis of complex aircraft configurations challenging, especially in preliminary design
endeavors where thousands of design iterations are performed. Hence, a compromise on fi-
delity /accuracy and computational cost is often necessary to achieve fast turnaround time

as well as to have enough confidence in the true performance of the generated designs.

An effective way of reducing the computational cost of a numerical method is to construct a
Reduced Order Model (ROM) via the introduction of a set of idealized simplifying hypotheses.
These hypotheses are constructed by neglecting behaviors that have low to no effects on the
solution of the underlying physical law. Nonlinear effects are often selected as such as they
are generally more expansive to evaluate in a numerical context. Aircraft aerodynamics is
a tightly coupled field of engineering that involves several physical models, phenomena and
geometries. Consequently, the choice of adequate simplifying hypotheses is critical for a

successful physics-based ROM.

This research aims to assess the nonlinear behavior of a specific subset of ROMs used in

aircraft aerodynamics: nonlinear potential low methods.

1.1 Definition of Basic Concepts

1.1.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) describes the study of the behavior of fluids via
the direct application of physical laws to a given problem. More specifically, the physical
laws dictating the behavior of homogenous fluids are the Navier-Stokes Equations. They
are generally expressed as conservation laws taking the form of a system of three Partial

Differential Equations (PDEs), that is the conservation of mass, momentum, and energy.

% +V-(pV)=0
WV 1V (pVOV)+Vp—V-7=0 (1.1)
E 4 7. (pVH) =V - (1-V) =0



where the three primitive variables are the density of the fluid p, its velocity V and its
pressure p. The nonlinear nature of the Navier-Stokes equations makes them almost always
impossible to be solved analytically, except in extremely simplified and idealized conditions
(e.g. Couette and Poiseuille flow). For more practical cases, they need to be solved numeri-
cally by subdividing the fluid continuum in a finite number of primitive elements. This step
is denoted as discretization and results in a mesh of the simulation domain. Common nu-
merical approaches for solving the Navier-Stokes equations are the Finite Difference, Finite

Volume and Finite Element methods.

Computational Aerodynamics is defined as a subset of CFD where the studied fluid is gener-
ally a compressible fluid of low viscosity such as air. These two properties makes aerodynamic
problems especially hard to solve, as they both tend to increase the occurrence of highly non-

linear phenomenons in the solution:

e Shock Waves: Apparition of sharp discontinuities in the solution field when the local

velocity approaches the sonic point

o Turbulence: Apparition of strong and chaotic gradients in the solution field when

inertial forces dominate over viscous forces

Thus, these phenomenons have to be properly included and modelled, creating additional

computational overhead within the solution process.

1.1.2 Fidelity of Numerical Methods

The fidelity of a computational method is defined as its capacity to accurately produce
solutions that are coherent with experimental data for given flow conditions. CFD methods
are hierarchized into families depending on what simplifying hypotheses they include in their

formulation. Figure 1.1 summarizes this hierarchy.

Navier-Stokes-Based Approaches

Direct Numerical Simulation (DNS) is the method with the highest fidelity level. As its name
suggests, it solves the Navier-Stokes system directly without any additional assumption.
For turbulent flows, DNS must solve turbulence on all scales, thus requiring prohibitively
refined meshes (at the order of billions of unknowns). Combined with the unsteady and
three-dimensional nature of turbulence itself, DNS is extremely expensive to evaluate and is

currently inadequate for most common applications.



Navier-Stokes Direct Numerical Simulation Large-Eddy Simulation Reynolds-Averaged Navier-Stokes
(DNS) (LES) (RANS)
Discretisation I—>Smal| scale turb. model I—> Full turb. model
r Inviscid < Thin viscous layer <
Euler Full Potential Linear Potential Panel Method
(Laplace)
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[ Thin-Layer Navier-Stokes J [ Boundary Layer J [ ortex (E\IILI:Ae) etno
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Vp-n=0
Lifting Line Method
(LLM)

Figure 1.1 Hierarchy of the fidelity of numerical methods in Computational Aerodynamics

Instead of solving turbulence on all scales, Large-Eddy Simulation (LES) methods solves
large scale turbulence in the same way as DNS while small scale turbulence is modelled
using a closure/turbulence model. While becoming more accessible in recent years due to
the availability of High-Performance Computing (HPC) resources, LES methods are still very
expensive for high Reynolds number applications in aerodynamics and are yet unsuitable for

rapid development.

Reynolds-Averaged Navier-Stokes (RANS) greatly reduces computational costs by solving
only the mean flow, while chaotic perturbations due to turbulence are entirely modelled using
a closure. RANS-based methods are quite accurate and provide more modest computational
costs, and are therefore state-of-the-art methods for most aerodynamic applications. The
success of a RANS simulation however still highly depend on mesh quality, which is generally a
time-consuming, iterative and difficult task especially when complex and variable geometries

are involved.

By completely neglecting viscosity, the Navier-Stokes system is reduced the Euler equations.
A notable advantage of the Euler equations is that they obviate the need for supplementary
modeling and, furthermore, the absence of thin shear layers yields significantly improved mesh
conditioning, which in turn enhances convergence properties and reduces execution time.
However, the effects of viscosity are most often non-negligible except for simple geometries

at very low angles of attack.



Potential-Based Approaches

By assuming that the flow of interest has no vorticity, that is,
w=VxV=0 (1.2)
the velocity field V(z,y, z) can be described by a scalar potential function ®(x,y, z) where
V=Vo (1.3)

By formulating the Euler equations in terms of the potential instead of (p,V,p), the so-called
Full Potential equations are obtained.
9p

o TV (V) =0 (1.4a)

] 1/(v-1)

71 2
=[1-——|V® 1.4b
p= -2 v (1.4)

The potential formulation is highly efficient as it only requires the solution of a single scalar
PDE instead of a system of two scalar and one vectorial equations. Furthermore, it is in
compressible form with the hypothesis of isentropic flow, allowing the capture of weak shocks
in the solution. Due to the absence of vorticity, all potential formulations do not intrinsically
yield any lift force. However, by artificially prescribing a stagnation point at the trailing edge,

the correct flow topology is recovered (Figure 1.2). This is known as the Kutta condition.

Lastly, if the flow is assumed fully incompressible (0p/0t = 0, Vp = 0), the Full Potential

formulation reduces to the Laplace equation.
V20 =0 (1.5)

The Laplace equation has the form of a Poisson equation and is therefore a linear homogenous
PDE. Hence, according to the superposition theorem, the solution space can be represented

as a superset of solutions to the Laplace equation.
N
i=1
where ®* is the total potential, while ®; and «; are elementary solutions and weights com-

posing the global solution space. This fact alone allows the solution process to be performed

using a linear combination of basic elementary solutions to model complex flow topologies.
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Figure 1.2 Effect of the Kutta condition on the position of stagnation points and streamlines

- [2]

This kind of approach is referred to as singularity-based, as the elementary solutions are

perceived as singular perturbations in the flow:
O*(x) = Doy + P(x) (1.7)

with @ the perturbation potential caused by the presence of the aerodynamic body in the
freestream flow ®.,. Linear potential flow methods are one of the fastest physics-based
approaches in aerodynamic analysis due to their linear nature combined with the absence
of volume/farfield meshes. They however are the lowest fidelity methods as they neglect
critical physical nonlinear phenomena that appear throughout the flight envelope of most

commercial aircraft.

Coupled Methods

Since the most computationally challenging phenomenons are due to viscous and compress-
ibility effects, an effective way to limit the computational cost of a flow solver is to segregate
highly nonlinear effects using a coupled approach. Since they involve some level of approxi-
mation, this kind of methods generally sits between Navier-Stokes-based and potential-based

approaches in terms of accuracy.

Popular choices of coupled methods include:

o Inviscid / Boundary Layer: The computational domain is subdivided into a viscous
region, at the boundary of the body, and an inviscid region around it. The viscous region

is modeled with a Boundary Layer solver, while the inviscid region is modeled with an



inviscid method. The coupling is done iteratively on the thickness of the boundary

layer region.

 Singularity-based Potential Flow / Sectional RANS: Considering a sufficiently
slender geometry, the latter can be discretized in a finite number of streamwise airfoil
sections. Each section is thereafter modeled using higher-fidelity RANS simulations
based on local flow properties determined by a fast three-dimensional potential flow
solver. The coupling is done iteratively on the local load distribution (e.g. the local lift
coefficient Cl(y)).

1.1.3 Dimensionality of the Navier-Stokes Equations

The Navier-Stokes equations are most commonly solved in three-dimensional or two-dimensional
form. The former involves a 5 x 5 system of equations, whereas the latter involves a 4 x 4
system since the momentum perpendicular to the computational plane is uniformly zero.
Other simplifications of a similar nature can be performed when flow quantities are assumed
constant according to given conditions. For example, in the special case of the infinite swept
wing, all primitive flow quantities are known to be constant along sweep lines. Hence, the
three-dimensional Navier-Stokes equations can be reduced to a two-dimensional problem,
while still involving five equations and unknowns to solve for. Since the infinite swept wing
problem sits between a two-dimensional and a three-dimensional problem, this simplification
is referred to as 2.5D. In addition to effects caused by sweep, one could also consider a series
of geometrically similar (but of different chord lengths) wing sections in order to attempt
to introduce taper into the simplified Navier-Stokes model. Techniques that incorporate ta-
pering are often denoted as 2.75D methods, as they endeavor to approximate most of the
original three-dimensional system with increased fidelity compared to 2.5D. A schematic

representation of this hierarchical framework is provided in Figure 1.3.

1.2 Definition of the Problem

1.2.1 Preliminary/Conceptual Design

As the last sections suggest, the core challenge of preliminary design lies in the balance
between fidelity and computational cost. Indeed, the necessity of generating several design
configurations necessitates fast simulation execution times, lest the simulation process itself
becomes a limiting factor in the design optimization workflow. Conversely, high-fidelity
simulations are essential to ensure that the accuracy of the results does not impede decision-

making.



Figure 1.3 Dimensionality of the Navier-Stokes equations

Furthermore, several nonlinear multiphysics (aeroelasticity, maneuvers) and geometrical (wing-
body and wing-tail interactions) effects are tightly coupled together. As a result, designing
aircraft components separately is rarely an adequate option. Hence, the idea of a fast medium-
fidelity method incorporating most of the components and behavior of the real aircraft is
desirable. This allows for a fast turnaround time as it would provide a better understanding
of the design configurations prior to the detailed design phases involving detailed three-

dimensional simulations.

1.2.2 Multi-Fidelity Methodologies

Both high-fidelity and low-fidelity methods have distinct roles in the aircraft design process.
The choice of the most appropriate method depends on the requisite level of detail and
computational resources required and available at each stage. Combined, they unify the

analysis process to form multi-fidelity methodologies.

Nonlinear potential flow methods share properties specific to both high-fidelity and low-
fidelity methods. They are therefore compatible with higher fidelity methods and thus insert
themselves well in the multi-fidelity workflow as a bridge between the high and low-fidelity
realms. The challenge of multi-fidelity methods is to find an equilibrium between the required

level of accuracy and computational cost.



1.2.3 Complex Aircraft Configurations

As mentioned previously, the design of aircraft components is a tightly-coupled endeavor. [3]
illustrates this principle in the attempt of finding minimum induced drag for canard wing
configurations. It is shown that the lift distribution leading to maximum efficiency deviates
from the classical elliptical shape when the interaction with other aerodynamic bodies is non-
negligible. In the particular context of canard configurations, the optimal load distribution on
the main wing should take into account the contribution in lift of the canard in the inboard
portion of the span so that the global lift distribution is optimal (Figure 1.4). In fact,
optimizing the isolated wing would lead to suboptimal performance once the full aircraft is
considered. This rationale can be extended to complex configurations, wherein the inclusion
of additional interactions yields results that increasingly approximate the actual optimal

design solutions. This is critical in a multi-fidelity design context.

1.3 Research Objectives

Based on the underlying problematic raised throughout the precedent sections, this research
aims at developing a medium-fidelity numerical solver than can model general aircraft con-
figurations as well as nonlinear behavior with increased fidelity. Having proved its validity
and maturity in the past, singularity-based potential flow methods are selected to handle
the three-dimensional modeling of the geometry of interest, while coupled sectional data is
used to include nonlinear effects. A balance between accuracy, modelling complexity and

computational cost is sought for the development of the solver.

In this regard, the following research objectives are proposed:

1. Introduce and investigate general aircraft configurations using a nonlinear singularity-

based potential flow approach;

(a) Assess the modeling of fuselage effects;

(b) Assess the impact of auxiliary lifting surfaces on the resulting lift distributions;

2. Investigate the fidelity of the 2.5D RANS hypothesis for full aircraft configurations in

separated and transonic flow conditions compared to 3D RANS and wind tunnel data;

3. Introduce and investigate the modeling of taper effects in the sectional data (2.75D
RANS);

(a) Propose a solver methodology for 2.75D RANS
(b) Assess the impact of the 2.75D hypothesis on the convection of flow quantities
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Figure 1.4 Optimal load distribution for a wing placed downstream of a canard wing of
shorter span - Adapted from [3]

1.4 Plan of Thesis

To address the research objectives, the remainder of this work is organized into three primary
sections. Firstly, a review of the literature is presented, focusing on the state-of-the-art in
medium-fidelity methods. This includes a fundamental review of linear potential flow theory,
where the development of singularity-based numerical methods is highlighted. Subsequently,
an overview of cutting-edge coupling methods that incorporate viscous effects into initially
inviscid flows is provided. Finally, the underlying physical assumptions governing the com-

putation of sectional data used in nonlinear coupling algorithm are detailed.

In Chapter 3, the formulation of the potential solver is elaborated upon. The baseline linear
potential flow solver is verified through a series of unit tests, specifically designed to assess the
impact of horizontal and vertical lifting surfaces, as well as fuselage effects. Thereafter, the
coupling algorithm introducing nonlinear effects is detailed. The algorithm is then verified
through canonical 2D and 2.5D cases. Finally, a validation of the complete nonlinear potential
flow solver is performed, and the outcome is compared with higher fidelity CFD results as

well as with wind tunnel data.

Chapter 4 addresses the issue of wing taper in the generation of the sectional coupling data

used in the nonlinear potential flow solver. A general methodology for tackling 2.75D is
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proposed leveraging the conical flow assumption within the spherical form the of Navier-
Stokes equations. A spherical coordinates discretization scheme of the Euler Equations is
detailed.

In conclusion, the present study is summarized, and its limitations are discussed, while

avenues for future research are identified and highlighted.
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CHAPTER 2 LITERATURE REVIEW

2.1 Potential Flow Theory

Singularity-based potential low methods have proven successful, particularly in an era where
computational resources were limited and unable to match the numerical and physical com-
plexity of higher fidelity models such as the RANS family of solvers. Even today, these
methods remain integral to fast iterative workflows. Although these approaches are feasible
in two dimensions, they are especially prevalent in three-dimensional applications because
of their significant computational efficiency relative to RANS/Euler solvers. In addition,
they provide critical insight on various aerodynamic phenomena, such as the estimation
of the induced drag force. The following section explores how singularity-based potential
flow methods can estimate the aerodynamic behavior of finite wings and bodies of arbitrary

shapes.

2.1.1 Lifting Line/Surface

The first major application of potential flow theory to finite wings through Prandtl’s Lifting-
Line Method (LLM). The idea behind the LLM can be visualized by considering the concept
of effective angle of attack. For a finite wing of span b, where —b/2 < y < b/2, the effective

angle of attack at a given spanwise location g, is defined as:

ae(yo) = a — a;(yo) (2.1)

where «; is the induced angle of attack, which is associated with a spanwise variation of
the local lift force. Consequently, the local lift for a wing section at position 1 is given by
Cl(yo) = f(ae(yo)), with f(«) representing the lift polar of the local 2D airfoil section. For
thin uncambered airfoils, this relationship is commonly approximated as f(a) = 2wa. The

induced angle of attack also plays a crucial role in the estimation of induced drag.

The LLM represents a finite lifting entity as a vortex segment of strength I', producing lift
via the Kutta-Joukowski theorem. However, formulating a wing as a single vortex segment

violates the Helmholtz vortex theorem, which establishes two fundamental conditions:

1. The circulation I' must remain constant throughout the vortex segment.

2. A vortex segment must extend to the farfield, either by positioning at least one end at

infinity or by looping the segment back onto itself.
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To satisfy these conditions, the LLM must be bent and trailed along the freestream direction
to infinity, forming a horseshoe vortex of constant strength I'. This vortex consists of a bound
segment and two free wake/trailing segments (Figure 2.1). A spanwise variation of the lift is

achieved by stacking infinitesimally small horseshoe vortices along the span.

The vortex segment is a fundamental solution to the Laplace equation, allowing the induced

angle of attack a;(yp) to be expressed analytically as:

b/2 dF/dy
47TV —b/2 Yo —

i(Yo) (2.2)

By rearranging (2.1) and (2.2), and applying the Kutta-Joukowski theorem, the LLM equa-

tion is derived:
' (yo) b/2 dI'/ dy

Voo(yo) 47TV —b/2 Yo —

a(yo) = (2.3)

This equation can be discretized and solved using N horseshoe vortices. Generally, this
discretization is followed by a Fourier series decomposition to obtain a spectral representation
of the lift distribution I'(d), where y = —2 cos §. Once the N coefficients of the series (denoted
A,,) are obtained, the Kutta-Joukowski theorem and (2.2) can be used to compute the lift

and induced drag forces:

CL == 7TA1AR (2 4)
2 .
Cpi =i |1+ Znan (%)

Although the LLM is simple and practical for high-aspect-ratio (AR > 4) straight wings, it is
less effective for more complex modern wing designs. In particular, it struggles to accurately
model general planforms, such as swept wings with non-negligible dihedral, and fails to
provide accurate estimates for highly cambered wings (thus leading to a very poor estimation
of the pitching moment). Although variations of the original method, such as the Finite Step
Method [4, 5], have been developed to address these limitations, alternatives such as the
Lifting Surface Theory offer a more comprehensive approach by allowing a multidimensional

variation of circulation.

One of the most widely used algorithms based on this theory is the Vortex-Lattice Method
(VLM) [6]. Unlike the combination of N horseshoe vortices, the VLM discretizes the wing
planform into a grid of N x M horseshoe vortices, allowing for a general circulation distri-
bution I'(u(x,y, 2),v(x,y, 2)) (Figure 2.2). Rather than directly using the effective angle of
attack, the VLM enforces the flow-tangency boundary condition at the N x M collocation
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Figure 2.1 Modeling of a straight wing using a horseshoe vortex element
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Figure 2.2 Modeling of an arbitrary-shaped wing using the VLM - The Kutta condition must
be taken into account adequately depending on the type of element (horseshoe/ring)
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points distributed on the surface of the wing.
NxM
> Vii+Vo| m=0 Vi=12_... NxM (2.5)
j=1

where V,_,; represents the velocity induced by the j-th horseshoe vortex at the -th collocation
point. (2.5) can be rearranged in a linear system of equations of the form AT’ = b, which
is then solved for the unknown singularity strengths I'. The core of the method is therefore
mainly based on the computation and inversion of matrix A, which is commonly referred to

as the Aerodynamic Influence Coefficient (AIC) matrix.

As with the LLM method, the trailing segments of each horseshoe vortex must extend to the
farfield to satisfy the Helmholtz theorem, resulting in a semi-infinite vortex sheet composed

of M streamwise sections. This vortex sheet maintains constant strength:

N
PwJ:ZPi Vi=1,2,....M (2.6)

Alternatively, the N x M planform-bound horseshoe vortex elements can be lumped into
vortez ring elements, as proposed in [6] and illustrated in Figure 2.2. In this case, the
trailing vortex sheet is also replaced by M vortex rings, with their circulation defined from

the values at the trailing edge from which they have been shed:
Tw;j=Trep; Vi=12,...,M (2.7)

where I'rg ; is the circulation at the trailing edge of the j-th streamwise section. The two

aforementioned approaches are mostly equivalent and only differ slightly in implementation.

2.1.2 Panel Method

It is generally adequate to represent modern wing designs using LLMs or VLMs, since they
generally feature high aspect ratios and low thickness. However, the modeling of blunt and
low-aspect ratio bodies is often necessary for an accurate analysis of a complete aircraft.
Those bodies range from the short delta-shaped wings of fighter jets to the conventional

cylindrical fuselage and nacelles found on most commercial aircraft.

The Panel Method [7], although quite similar to the VLM, extends its capabilities by includ-
ing thickness effects in its solution process. More generally, the body of interest is represented

as a watertight surface subdivided into a set of N panels of arbitrary shape (generally tri-
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angular or quadrilateral) as shown in Figure 2.3. It also uses variations of the flow-tangency

condition as its core to ensure the impermeability of the body.

In its most primitive form, each panel that makes up the body is made of a source singularity
of constant-strength ¢ uniformly distributed on its surface. Depending on the sign of o, a
panel can act as source (¢ > 0) or a sink (0 < 0). For example, a strong positive source will

be found near an upstream stagnation point, and vice versa.

Although resulting in streamlines tangent to the body of interest, the absence of vorticity
(Kutta condition) results in the method yielding zero lift. For this purpose, modern three-
dimensional panel methods generally involve a combination of antisymmetric flow singularity
types, such as the vortex ring and the distributed doublet panel. There is a significant
number of combinations in that regard, each with their own advantages and drawbacks; the

most common ones are detailed in [6] and are summarized in Table 2.1.

Table 2.1 Common singularity and boundary condition combinations for the panel method

) ] Boundary cos o
Singularity Condition Lifting? Pros Cons
Neumann
Source (V" - n = 0) No - -
Doublet Ne*umann Yes Simple Oscillations in
(V@ -n=0) implementation velocity near-field
Vortex Ne*umann Yes Second order [ll-conditioned AIC
(V@ -n=0) accurate matrix
Dirichlet Convergence issues
Doublet (@ = 0) Yes Numerically efficient  for large singularity
values
Source + Dirichlet Yes Stable even for Requires two AIC
Doublet (] = Poo) N>1 matrices

2.2 Nonlinear Coupling Algorithms for Potential Flow Methods

Although potential-flow-based methods are computationally and physically efficient in pre-
dicting the aerodynamic performance of an aircraft at idealized (linearized) flow conditions,

their realm of application remains quite narrow, that is, for attached, low speed and mostly
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Figure 2.3 Panel method discretization of a wing-body configuration - Wake panels are shed
from a sharp trailing edge and are modeled as thin vortex sheets - [§]

inviscid flows. The idea of many coupling algorithms is to introduce nonlinear effects via the
integration of higher fidelity data within a potential-based (or generally inviscid) flow solver.
This high-fidelity data, generally based on a set of simplifying hypotheses for computational
efficiency, are obtained either in a Just-In Time (JIT) manner or precomputed and stored in
a database. The coupling process is performed via a series of iterations following a common
loosely-coupled algorithm. We define in Algorithm 1 P the model handling the coupling (the
potential /inviscid flow solver in this case), D the coupled model accounting for nonlinear

effects and Zp_,p and Zp_,p the interfaces between the two models.

In this procedure, D acts as the nonlinear counterpart of P for a quantity of interest, while
the interfaces act as correctors for the inputs of each models/solvers. Consequently, for a
given potential flow model P, proper definitions of D, Zp_.p and Zp_,p are required. The
following section describes popular coupling algorithms for inviscid/potential flow solvers.

They are also summarized in Table 2.2.

2.2.1 Boundary Layer Coupling

Boundary layer methods use the assumption that the shear layer near a body is infinitesimally
thin, such that the Navier-Stokes equations can be simplified into a set of curvilinear PDE

defined on the boundary of a body. The surrounding flow region can then be adequately mod-
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Algorithm 1 General steps for nonlinear coupling algorithms with potential low methods

1: Initialize P at its linear conditions

2: Define a convergence criterion C(€) where € is the tolerance of the iterative process

3: Define an initial guess for 2%

4: yp + P(zp)

5: 2%« Ipp(yd) > An initial step is performed at linear flow conditions
6: for iteration ¢ in maxlIterations do

7. ys < D(vh) > The nonlinear coupled data is evaluated
8: zh — Ipp(yh) > The coupling variable of D is mapped as an input for P
9 yh <« P(ah) > The potential /inviscid solver is evaluated
10: Ayp=yp—yp
11: 8" = C(Ayh) > The convergence criteria is evaluated
12: if §' < e then

13: break

14: else
15: z' + Ip_,p(ys) > The potential /inviscid solver is corrected for the next iteration

16: Compute quantities of interest

eled with an inviscid or panel method. The thickness of the boundary layer being unknown
and dependent on pressure distribution along the walls, the coupling between the inviscid
and boundary layer solvers is done iteratively. The direct form of the algorithm consists
of iterating between each solver sequentially. At each iteration, the airfoil is thickened ac-
cording to the boundary layer calculation, which in turn influences the pressure distribution.
Convergence is reached when the difference in thickness between two successive iterations is

small enough.

These methods generally yield good results for mostly attached flows. However, the parabolic
form of the equations makes the algorithm unstable and generally inaccurate at the separation
point when using the direct formulation (that is, when the local velocity changes direction).
Strongly coupled algorithms such as the triple layer formulation of [9] and the fully coupled
methodology of [10] are good alternatives because they offer increased stability for detached

flows at the cost of slightly increased computational time per iteration.

2.2.2 T Coupling

The so-called I'-coupling methods were the first invented for accounting for nonlinearities via
sectional high-fidelity data. The original approach was first introduced by [11] and couples
the spanwise lift distribution I'(y) (hence the name) to the local effective angle of attacks
a.(y). The high fidelity data is usually taken from two-dimensional RANS solutions of

the sections of the wing. From a known lift distribution, the effective angles of attacks of
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each wing sections are found using a potential flow solver (for example, with (2.2)) and the
corresponding local high-fidelity lift values are computed at their respective angles. The local
circulation distribution is then updated using the Kutta-Joukowski theorem evaluated at the
high-fidelity lift value. The iterative process is then repeated until the local lift outputs of

the two solvers are close enough.

Although this method shows good agreement on simple cases when compared to reference
data, significant convergence issues make the method impractical for more complex analyses
[2,12]. It was pointed out by [2] that a very low relaxation factor is necessary to reach
a convergent solution, which requires several hundred iterations. Additionally, even with a
prohibitively low relaxation value, the algorithm mostly fails to reach convergence in near and
post stall regions. This phenomenon was studied by [13] and more recently with [14] and [15].
Once a local section reaches its Cl,,q, (that is when dCl/da becomes zero), oscillating stall
cells appear in the lift distribution and make the algorithm converge to a non-unique number
of possible solutions. In this regard, [14] introduced an artificial dissipation factor into his
algorithm in order to smooth the lift distribution and help converge to a unique solution. [15],
on the other hand, applies a low-pass Gaussian filter in the goal of dissipating the high-
frequency modes found in the lift distribution at high angles. This filtering, however, leads to
two distinct lift distributions for a converged solution: the first obtained from the integrating
the high-fidelity at the local effective angles of attack, and the other from the filtered lift

distribution.

2.2.3 « Coupling

First introduced by [16], a-coupling methods replace the dependency on the local circulation
value as a coupling variable by instead using directly the local effective angle of attack as
its base. The effective angles of attacks are corrected by comparing the values of the lift
coefficients obtained by the inviscid and reduced high-fidelity models. The updated angles
of attacks are then applied in the potential flow solver as an artificial twist and the inviscid

lift coefficient is re-evaluated. This principle is illustrated in Figure 2.4.

The idea of using the a-coupling algorithm with linear potential flow methods was popularized
by [18], and for this reason this algorithm is often referred to as Van Dam’s algorithm. A
particularity of Van Dam’s method is that the angle of attack correction A« is computed
directly using the differential relation bridging Cl(y) and «a(y).

dCl
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Figure 2.4 General principle of the a-coupling algorithm - The converged state of the algo-
rithm is shown - [17]

However, the existence of two distinct lift polars makes the definition of dC1/da ambiguous.
In his initial proposition, Van Dam uses the local viscous lift slope. This however leads to
stability problems near the stall region where the lift slope decreases to zero and changes in
sign. Instead, [19] proposed using Thin Airfoil Theory (TAT) to predict the local lift polar
derivative in the inviscid realm, such that dCl/da = 271 = constant. This implies that the
potential solver must not assume small angles so that the inviscid lift slope remains constant
throughout the whole polar. Therefore, the angle of attack correction procedure must be

modified to enforce a coherence between the predictions of the potential solver and TAT.

The a-coupling method family continues to be improved and extended to this day in the
context of preliminary design and analysis. In more recent years, [17] extended this algorithm
to Multi-Disciplinary Optimization (MDO) by introducing flow-dependent design criterion.
For example, wing stall optimization was performed by utilizing the position of appearance
of stall cells along the span as a design objective. The stall cell phenomenon was also further
studied by [20] using a a-coupled lifting surface in the goal of investigating the discoveries
of [15]. Good qualitative agreement in the number and wavelength of the cells with CFD and
experimental results was observed. It was also mentioned that for the coupling algorithm to

be stable, a local minima must be present in the lift polar after stall, with the lift converging
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asymptotically to a constant value being the limit case. This suggests that the high-fidelity
database must cover a wide range of values in the post-stall regime for the algorithm to
be stable in Cl,,., studies. Finally, [21] extended the realm of application even further by
applying this coupling algorithm to unsteady aerodynamics and aeroelasticity. His solver
uses a frequency-domain formulation allowing an unsteady problem to be solved for given
user-defined modes. Furthermore, this formulation still uses steady local high-fidelity data
for the coupling, while the inertial terms due to the unsteady physics are treated in the

potential flow solver.



Table 2.2 Summary of the components and interfaces used in the principal coupling algorithms for inviscid/potential flow

methods.
Inviscid High-Fidelity
Method Solver (P) Interface P — D Data (D) Interface D — P
Boundary Euler / Full Parabolic o
Layer Potential / Pressure/Velocity distribution Boundary Layer G;fg?ggﬁ;ﬁfﬁgg? /
Coupling Panel Method Solver p Y
2D RANS /
. b/2 .
I'-Coupling LLM / VLM ae(yo) = a — 47&/00 L{) /o dyzé d;’ Experimental / I'= %pooVO%Clmc
2D RANS /
a-Coupling LLM / VLM Qe = dgl[‘/";a — Aa+ ag Experimental / Ao = 70“35/%”’“

1¢
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2.3 Computation of High Fidelity Coupling Data

The accuracy of nonlinear potential flow methods is highly dependent on the quality of
the high-fidelity data used in the coupling. For example, the introduction of a non-zero
Clyiscous,o in lift-based coupling algorithms will be directly reflected in the converged solution,
even though the linear potential flow solver has no notion whatsoever of the camber of the
individual wing sections. Hence, the hypothesis used in the computation of the local high-
fidelity data must be as close of the actual resultant three-dimensional flow as possible. This
section highlights the physical and numerical considerations on the generation of adequate

sectional high-fidelity data.

2.3.1 Infinite Swept Flow Theory

The generation of sectional high-fidelity data for the I'-coupling and a-coupling algorithms
generally consists in two-dimensional RANS solutions taken at the local Mach and Reynolds
numbers. This is however a significant simplification that results in poor agreement for
highly-swept wings. This is due to the fact that different flow topologies come into play
when a non-negligible sweep angle is introduced. Firstly, a stagnation line is observed rather
than a stagnation point (Figure 2.5a). Secondly, oblique shocks are observed in transonic

conditions rather than normal shocks (Figure 2.5b).

[23] introduced a simple way to correct 2D line-of-flight solutions using incompressible and
inviscid transformations (2.9) based on the flow conditions perpendicular to the sweep line.
The corrected lift coefficient is obtained via (2.10).

M, = My cos ¢
My = Mysing

(2.9)

Cl'  MZcos¢

Cl— 1— M2 cos?¢ (2.10)

Using this transformation recovers the correct local lift slope Cl,, and must be used within
the a-coupling algorithm instead of 27 in order to obtain an accurate solution for swept
wings. Furthermore, this approximates the magnitude of the crossflow velocity as constant

(which is true for inviscid flows).

Another possible approach to tackle swept wings is the integration of sweep effects directly
into a RANS flow solver by introducing the hypothesis that flow quantities are constant along

the sweep line (0/0y’ ~ 0). This approach is commonly referred to as 2.5D RANS; as it allows
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Figure 2.5 Main features of infinite swept flows in viscous and transonic conditions - [22]

reducing the three-dimensional Navier-Stokes system of equations to a two-dimensional one
combined with an extra equation for the momentum in the crossflow. Figure 2.6 illustrates

two common ways of handling 2.5D problems.

In the sheared-cell approach (Figure 2.6a), the full 3D RANS equations are used on a trid-
mensional mesh. The 2.5D mesh is made of a standard 2D mesh of the airfoil which is then
extruded by exactly one cell according to the sweep line. A periodic boundary condition is
then applied on both longitudinal surfaces. The § approach (Figure 2.6b) uses a coordinate
transformation (2.11) to keep the topology of the mesh two-dimensional [24]. The topology,
however, remains three-dimensional due to the sideslip angle § of the freestream velocity
in the transformed simulation domain. Hence, the momentum equation in the transverse

direction can be decoupled from the system and solved in a loosely-coupled fashion.

x cos¢ —sing 0| |z
y p=|sing cos¢p 0|1y (2.11)
Z 0 0 1 | =

Applying both these approaches to various flow conditions showed excellent agreement with
both 3D CFD and experimental results, where the expected flow topologies are recovered.
Although the results yielded by both methods are similar, it was pointed out by [24] that the
B approach is both more computationally efficient and accurate than its 3D counterpart. In
fact, the loosely-coupled strategy uses 4 x 4 instead of 5 x 5 Jacobian matrices when using
an implicit time-stepping scheme and remove the need of adding two layers of ghost cells on

both periodic planes for the computation of the boundary conditions. Furthermore, only two
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Figure 2.6 Two common ways modeling infinite swept flow problems using a two-dimensional
geometry - Note that method (b) can be achieved using a 2D mesh topology by specifying
no boundary conditions on the lateral sides.

instead of three eigenvalues are used in local time-stepping and artificial dissipation schemes.

Hence, the sheared-cell approach is known to yield slightly more dissipative solutions.

2.3.2 Considerations for Tapered Wings

The core idea of infinite swept flow theory is to assume that variations of flow quantities
perpendicular to the local isobars are negligible. While this is mostly valid for high aspect-
ratio wings, this hypothesis becomes invalid as the taper ratio of the wing A\ = ¢,/ Croot 18
far from unity. In this case, the isobars follow a conical distribution rather than a series of
parallel lines. This is also true for wings presenting a Yehudi break, where the sweep angle

at the trailing edge of the inboard portion of the wing is significantly reduced.

When taper is significant, the choice of an adequate sweep angle is crucial as it directly
dictates the apparition of the main flow features, and thus significantly impacts the resulting
solution. The chosen sweep angle is referred to as the effective sweep angle ¢*. [17] and [19]
both made interesting studies on the influence of the sweep angle on the results obtained
from a-coupling method coupled with 2.5D RANS data. On the Bombardier Research Wing
(BRW), it was found that the results correlates with reference data best when ¢* is evaluated
at the quarter chord point. For inboard wing sections, it was found that the half chord point
is often preferred, presumably because of the reduced transversal flow in the separation

topology at the trailing edge. On the DLRF4 in transonic flow conditions, ¢* is chosen
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Figure 2.7 Conventional commercial aircraft wing presenting a Yehudi break. The inboard
region with non-negligible taper is subject to the conical flow assumption.

at the location of the oblique shock (located between the quarter and half chord points),
since the local isobars are mostly aligned with it. Thus, generating 2.5D data in transonic

conditions requires knowledge about the location of the shock a priori.

It is in this regard that methods based on the conical flow assumption have been developed.
These methods are based on the fact that the isobars are defined parallel and constant to

the local sweep lines. Two families of approaches are presented in the following section.

Relations Between 2D and 3D Pressure Distributions

[25] first introduced the idea of relating three-dimensional pressure distributions to equivalent
two-dimensional pressure distributions. The concept of his method is heavily inspired on the
work of [23], where the pressure distribution obtained from a 2D RANS simulation is corrected
so that the chordwise local Mach number distribution Msp, equals the local Mach number
of a conical wing normal to the isobars Msp,. This is done using the following isentropic

relation: -
1 + %(’Y — 1)(M3D COS ¢(II))2 _ 1 + %,VM:?DOPQ.'%D v K
1+ 3(y—1)M3, 1+ 37 M3,Cpap

(2.12)

where C'pop and C'ps 75p are respectively the input 2D and output 2.75D pressure coefficients,

¢(2') is the local sweep angle, and Msp = M3p cos ¢* is a reference Mach number for the local
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two-dimensional section taken at a nominal sweep angle ¢* (evaluated at the quarter chord
point or at the location of the shock). In other words, whereas the normal Mach number is
constant for an infinite swept wing, this method essentially translates a tapered wing as a
series of infinite swept wings where the local normal Mach number varies along the chord.
This methodology was used by [26] for supercritical wing design. Their analysis showed that
the isentropic hypothesis on which the transformation is based still holds in the presence of

a shock wave if it is aligned with the local sweep lines.

This approach was enhanced by [27] to model more accurately regions of subsonic flows,
where according to them the initial assumptions of Lock are not satisfied. Their idea is
to eliminate the need for a reference Mach number Msp by instead using the local value
M}, (2") = M;spcos¢(2’). The 2D RANS flow simulation is computed at Maop; Cpop(a)
is transformed to match M), (z') using the Karman-Tsien compressibility correction. The
results of [27] seemed to be in quite good agreement with their in-house 3D CFD solver for
low angles of attack. However, this solution is still limited by its isentropic hypothesis, and
it is unclear whether the geometrical shape of the airfoil section and its angle of attack can

be directly determined without prior knowledge of the 3D pressure distribution.

2.75D Flow Solvers

Analogous to the benefits observed with 2.5D, the incorporation of sweep and taper effects
directly into a 2.75D flow solver is advantageous, as it enables the accurate representation of
diverse topological features specific to conical flow. Such methods, for instance, would allow
the possibility of a stagnation point (not line) at the leading edge while also allowing for

crossflow separation at the trailing edge.

The initial emergence of 2.75D approaches manifested in the form of boundary layer methods.
(28], [29] and more recently [30] proposed similar coordinate transformations to the standard
compressible boundary layer equations (Figure 2.8). The polar coordinate system (r,0) is
used such that r is defined from an apex point ry and is oriented along the isobars towards
the root of the wing. After formulating the equations in full polar non-axisymmetric form,
Op/0r = 0 is enforced according to the conical flow hypothesis. The simulation domain
consists of the curvilinear boundary defined by the intersection of a sphere of radius r with
the conical wing surface. The simulation process is then performed by marching downstream

from the leading edge stagnation point.

Attempts to extend conical flow assumptions to full RANS solvers have also been made,
nonetheless with mixed results. The main difficulty arising from applying conical flow as-

sumption to those methods is the fact that hyperbolic PDEs require a simulation domain
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Computational Domain

Figure 2.8 Theoretical representation of the conical flow assumption - The isobars are follow-
ing rays radiating from the apex

extending up to the farfield. It is however unclear how this hypothesis must be handled when
¢ — oo. In their structured RANS solver, [31] used what they refer to as a relaxed conical flow
boundary condition, where the apex of the cone moves to infinity along ¢ = (¢rp + Org)/2
when the distance to the nearest wall is large. Hence, the farfield points behave like an infinite
swept flow, while the points near the airfoil behave according to the full 2.75D hypothesis. [31]
also showed that for slender cones, the flow asymptotically converges to a solution satisfying

the conical flow hypothesis.

[32] used a similar methodology is his study of the DLRF4 aircraft in transonic flow con-
ditions, where poor agreement with the inboard shock location was observed using regular
2.5D. His solver consisted in a generalization of the sheared-cell approach, where the com-
putational plane is extruded and shrunk following the local isobars towards the apex of the
conical wing. Using this methodology, the location of the inboard shock was improved, but
an overestimation of the total drag was observed in addition to the fact that the temporal
scheme relied significantly on the usage of Selective Frequency Damping (SFD) schemes to
achieve proper convergence. In addition, it was noticed that changing the length of the ex-
trusion of the computational domain lead to different results. Yet, the solution was found to

converge to constant value as this length approached zero.
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CHAPTER 3 MODELING OF FULL ATIRCRAFT CONFIGURATIONS
USING NONLINEAR POTENTIAL FLOW

Modern commercial aircraft are composed of several distinct components, each with their
own purpose and characteristics. As their aerodynamic behavior is tightly coupled, it is
desirable to include as much of them as possible in the context of preliminary design/anal-
ysis. Singularity-based potential flow methods are especially suitable for these endeavors,
since they only require surface meshes rather than full field discretizations. Wings can be
further simplified by projecting the full geometries into their planforms. Other components,
such as nacelles, have non-negligible thickness and must be shaped according to their actual
representations in three-dimensional space. The following sections present a hybrid poten-
tial flow solver with nonlinear capabilities and with the purpose of modeling various aircraft

components.

3.1 Singularity-Based Potential Flow Solver

The idea behind a hybrid potential flow solver is to couple different modeling strategies
in a single solver. In this work, thin and thick/blunt surfaces are modeled respectively
using a VLM and Panel method. These methods were implemented in the CHAMPS [33]

multidisciplinary aerodynamic framework using the Chapel programming language [34].

3.1.1 Thin Surface Modeling

Thin lifting surfaces such as wings and tail planes are modeled using a standard VLM leverag-
ing lumped vortex ring elements (Figure 2.2) and following closely the implementation of [6].
In contrast to lifting line methods, the VLM relies on the flow-tangency condition (2.5) to
compute the multivariate lift distribution I'(u,v). This condition is applied numerically by
evaluating the total velocity induced at collocation points. By using as many collocation

points as there are vortex rings, the linear system formed by (2.5) can be solved for T.

As the vortex segments forming the rings are themselves singularities (V;,q — o0), the
location of the collocation points must be chosen cleverly. By positioning the collocation
point at the center of each vortex rings, this interference is minimized. Furthermore, by
shifting back each vortex rings by a quarter-chord length, the local lift slope is guaranteed
to be 2m and is then coherent with two-dimensional TAT. This statement is however based

on the assumption of small angles of attack. For analysis at high angles of attack (e.g. for
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Clinas studies), the collocation point must be corrected using the following correction [19]:

P (3.1)

2 sin o,

where r is the distance between the center point of the leading vortex segment to the collo-
cation point and c the full length of vortex ring and «. is the local effective angle of attack

taking wing twist and camber into account.

Once the location of the vortices and collocations points are fixed, the induced velocity at
each collocation point is computed, summed and stored into an AIC matrix. The AIC matrix

is computed using the Biot-Savart solution for a vortex segment [6]:

V(I)vortex = : &I‘ ( o =2 ) (32)

Am e x o2 | Jr|

where r; and ry are the vectors between each of the endpoints and rg is the director vector
of the vortex segment. With four segments per vortex ring, each entry of the linear system

of equation is then given by

a; = (VO 4+ VO, + VO, + V&) - 5.3

bi=—Vo 1, '
The Kutta Condition is included in the linear system of equations via (2.7). This is applied
numerically by adding the influence of wake panels to their trailing edge counterpart in the
AIC. Wake panels are assumed to be parallel to the freestream and are propagated 1000c

downstream.

Compressibility Correction

The VLM can be enhanced to approximate high-speed flow using various compressibility
corrections. CHAMPS VLM solver uses the Prandtl-Glauert Transformation (PG) compress-
ibility correction for this purpose. This correction works by applying the following change of
variable [22].

T x
T =140y (3.4)
Z Bz

where 8 = /1 — M2 is the PG factor and (7,7,Z) are the freestream-aligned coordinates

(x,y,z) in the new PG space. Following the transformation in this space, the standard
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VLM linear resolution process is performed. This process yields the circulation distribution
['(z,7,%) in PG space, which then needs to be converted back to the solution space using the
inverse transformation. B

- r

<I>:62<I><:>F:E (3.5)
Although this formulation does not model nor allow shock waves near the sonic point, it
allows the VLM to recover the correct modified linear lift polar slope, as shown in Figure
3.1. The PG correction is well suited for compressible flows at |M,, < 1|; however, as
indicated in [35], there is a tendency for the predicted velocities near the sonic point to be

underestimated.

Computation of Loads

The computation of the different forces acting on the thin geometry of interest is divided in

two parts:

1. Computation of the lift force and aerodynamic moment

2. Computation of the induced drag

The computation of the local forces and moments is done via the Kutta-Joukwski theorem

linking directly the circulation distribution to the local loads.

F(u,v) = pool'(u,v) V4 x Id

(3.6)
M(u,v) =1 X (pool'(u,v) Vo x [d)

where F is the total force vector and where [ and d are respectively the length and the
director vector of the leading vortex. For a planar wing, (3.6) reduces to the standard form
of the Kutta-Joukowski theorem dL = po Voo I

The computation of the induced drag D; is more involved as it requires the integration of
velocity perturbations infinitely far downstream. This is done by evaluating quantities at a
plane (the Trefftz plane) sufficiently far from the body (about 1000 chords). In the case of
thin wake sheets, the surface integral on the plane is reduced to a curvilinear integral (Figure
3.2).

Di = —%“ [ w(s)D(s)ds (3.7)

where 7 is the curve formed by the intersection of the wake sheet with the Trefftz plane and

w is the local downwash. First, the downwash normal to the wake is evaluated at the Trefftz
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plane using the two-dimensional point vortex singularity kernel (3.9) for each of the M + 1

wake trailing vortices. The integral is then carried on numerically.

g

p M +1
==y L7 n,)Tdl; (3.8)
2 j=1 k:l

SR\ SRR 1T VRN 39
27y QW\/(AZ/{WV + (Az,)?

where (2/,y/, 2") forms a local coordinate system with e, aligned with the director vector of

the kth trailing vortex.

The global lift force can also be obtained from Trefftz plane integration.
= Poo Voo Z N)T;dl; (3.10)

where N is the global lift axis of the aircraft.

An important note about (3.8) and (3.10) is that only values defined at the Trefftz plane
are used for the computation (assuming that the Trefftz plane is positioned sufficiently far
downstream of the lifting surface, that is about 1000c). Consequently, this formulation is

both more stable and efficient than computing the downwash directly at the aerodynamic
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body, since the calculation is independent of the chordwise resolution of the mesh in the

nearfield.

3.1.2 Vertical Surface Modeling

Thin vertical surfaces such as vertical tail planes and wing pylons and fences play important
roles in modern aircraft configurations. While they generally have minor effects on viscous
lift and drag, their influence on lift-induced quantities such as the induced drag can be

significant.

The case of wing pylons and fences is particularly interesting because their presence directly
interferes with the resulting spanwise lift distribution. In the limit case where a wing py-
lon/fence is both perpendicular to the wing and parallel to the flow, the influence on the
lift distribution is reduced to a point discontinuity (Figure 3.3), where a strong upwash is
induced inboard, while a strong downwash is induced outboard of the vertical component.
Similarly, this discontinuity creates variations in the effective angles of attack distribution,
meaning that the resulting induced drag will be necessarily affected. The implementation of
vertical surfaces in a VLM solver is quite straightforward. The vertical surface is discretized
using vortex rings along the vertical axis. In addition, for the vertical to carry a side force, a
vertical wake sheet is meshed in order to satisfy the Kutta condition. Finally, a connection
boundary condition is used at the junction of the two trailing vortices at the planform.

[wing — prvlen (3.11)

2,Jo 2,J0

where the pylon is located at the joth wing station.

[5] was one of the first to study the effects of vertical surfaces within singularity-based
potential flow theory using a Finite Step method. Several hypothetical cases were studied,
where low-speed experimental data was used in some of them as basic validation data. These
results are used therein as a verification exercise for the current implementation. From the
results of Figure 3.4a, the implementation of the wing-pylon interaction in the VLM solver is
in agreement with the observations of Blackwell. As expected, the upwash and downwash at
the immediate inboard and outboard regions of the pylon are observed while the loads at the
root and tip remains more or less unchanged. Figure 3.4b shows also good agreement with
low-speed experimental data at the wing fence, where the magnitude of the lift discontinuity

is of the same order.
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Figure 3.2 Representation of the Trefftz plane analysis for thin vortex sheet elements
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Figure 3.3 Discontinuity in the spanwise circulation/lift distribution caused by the presence
of a thin wing pylon on a finite wing - [37]
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Figure 3.4 Comparison of the effects of thin vertical surfaces on the lift distribution - Graph
taken from [37] - Geometry and reference data taken from [5]

3.1.3 Multi-Plane Drag

An advantage of the VLM is that the elliptical nature of potential low makes the modelling
of multi-plane/wing configurations very easy. Each of the lifting surfaces are represented as
separate planforms with each their respective Kutta conditions and wakes. Numerically, this

is done by subdividing the dense linear system into blocks.

Alﬁ\l A2a1 An~>1 1—‘1 bl
A1'—>2 A2‘—>2 A7T—>2 Ijz _ b‘2 (3.12)
An—>2 An—>2 An—m Pn bn

where A;_,; is the AIC of the ith lifting surface acting on the jth lifting surface and b; is
the standard boundary condition vector for the ith surface as shown in (3.3). Hence, the
computation of the global AIC matrix is done by first computing the individual sub-matrices

(generally using multithreading) and by assembling them in a dense block matrix.

Concerning the induced drag calculation, since there are as many distinct wakes as there are
lifting surfaces, the Trefftz integral (3.7) is split among N7 intersection curves instead of only

one.

D; = —%” Zl / wn(s)La(s)ds (3.13)

From this formulation we note that this approach is coherent with Munk’s stagger theorem

[38] stating that the induced drag of a system is equivalent to the superposition of the loading
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of all surfaces. In fact, this analogy can be illustrated conveniently using Prandtl’s biplane

formula [38] for two elliptically loaded wings.

_ 3.14
qmbs qmbiby  qmb3 (3.14)

The first and last terms of this equation represent self-induced drag quantities, while the
middle term acts as an interference term with k = f(b;/ba, 2h/b1), a nonlinear parameter
depending on the span and vertical gap ratios. Being based on the assumption of elliptically
loaded surfaces, this equation consists in a valid approximation only for by /by ~ 1 and/or
2h/b; > 0. Table 3.14 illustrates a numerical comparison between the induced drag obtained
via Trefftz plane integration (3.13) and the biplane formula (3.14) for two elliptical wings of
the same span (b /by = 1).

In addition to the induced drag calculation, special care must be taken when modeling aircraft
presenting a conventional wing-tail or canard configuration. In fact, these configurations
are at risk of presenting mesh intersections causing very large induced velocities when a
collocation point is close to a strong wake vortex, as it is the case in Figure 3.5. This
situation is mitigated by introducing the Vatista [39] relaxation to the vortex segment kernel
(3.2) so that the resulting induced velocity is smoothed when the distance r to the singularity

approaches zero, as shown in Figure 3.6. The Vatista smoothed kernel is defined as

r X
V(I)vatista = al 2 /n o - <r1 - r2> (315)

AT (Jry X To|? + |omo|) it o

where ¢ and n are user-defined parameters for controlling the radius and smoothing of the

relaxed kernel in the vicinity of the singularity.

Table 3.1 Comparison of the induced drag for a biplane configuration with varying vertical
gap ratio 2h/by (in drag counts) - [37]

2h/by CHAMPS VLM (3.13) Biplane formula (3.14) Error

0.2 7.157 7.156 -0.001
0.5 6.811 6.877 -0.066
0.8 6.526 6.586 -0.060

1.0 6.389 6.386 0.003
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Figure 3.5 Mesh intersection caused by the wake of a wing with the horizontal tail plane
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3.1.4 Fuselage and Nacelle Modeling

For bodies for which thickness effects cannot be neglected, such as fuselages and nacelles,
a three-dimensional panel method solver is used. The implementation of the panel method
in the CHAMPS potential flow solver uses either source or a combination of source and
doublet singularity elements. These panels are stored in an unstructured memory layout
allowing for geometrically complex shapes to be meshed easily using arbitrary triangles and

quadrilaterals.

As mentioned in section 2.1.2, the choice of singularity elements also comes with the choice
of an adequate boundary condition defined at N collocation points on the surface of the aero-
dynamic body. This boundary condition can take a direct or indirect form. The direct form
consists in a Neumann boundary condition where the flux of the total potential perpendicular
to the surface is set to zero.

Vo' -n =0 (3.16)

The indirect form is a Dirichlet boundary condition directly specifying the total internal
potential referential to a constant value. It can be loosely interpreted as the implicit/integral

formulation of the flow-tangency condition.

oF = constant (3.17)

Although these two forms ultimately result in streamlines tangent to the surface, the imple-
mentation effort and the resulting stability of the methods vary. In particular, the induced
quantity kernel (V® or ®) changes depending on the boundary condition enforced at a par-
ticular collocation point. These kernels are more or less expensive to evaluate numerically

depending on the choice of singularity elements and boundary conditions.

Panel Method with Source Singularities

If the body of interest is assumed non-lifting, source singularity elements can be used. Fol-
lowing [6] and Table 2.1, the Neumann boundary condition is selected. Using this approach,
the resolution process follows closely what was presented in section 3.1.1. Yet, the distributed

source induced velocity kernel is used instead.

1
Dsource (T 2') ds 3.18
S A e e e R .
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where (2',y/,2") forms the local coordinate system of the panel (Figure 3.7). Analytical
solutions to the surface integral as well as for the induced velocity V® are detailed in [6]
and [8]. Following the resolution of the linear system, the pressure coefficient distribution is

computed using the incompressible Bernoulli law.

Ve
V|

Cp=1- ( (3.19)
In addition to the zero-lift assumption, the computation of the loads is a clear disadvantage
of using this approach. In fact, the evaluation of V®* is an O(n?) operation and is therefore

expensive for high-resolution meshes.

Panel Method with Source-Doublet Singularities

If a combination of source and doublet singularity elements is chosen, the problem can be
conveniently formulated as a constrained Dirichlet boundary condition problem. Indeed, as
using two singularity elements per panel makes the problem overconstrained (2N unknowns
for N collocation points), the value of one of the two singularities must be prescribed in

advance.

To formulate a constraint, the singularity strengths can be related to their respective potential

jump values normal to the boundary of the body [6].

—p =P — o7 (3.20a)
90" 9D
o= - (3.20b)

By selecting the total internal potential ®; to be equal to the constant freestream value ®,
in (3.17), a constraint for o is obtained using (3.20b).
0P~ 0P} 0D,

=V, -n= o= —0=—0

0z’ 0z’

c=—-Vs-n (3.21)

With o being known, the linear system created by expanding (3.17) is made of two AICs (A
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Figure 3.7 Local coordinate system for the evaluation of the induced velocity and potential
kernels. 2’ is perpendicular to the body defined by (u(x,y, 2),v(z,y, 2))

and B) and takes the following form.

151 G251 ... Qpsi M1 bisi by ... by 01
12 G252 ... (Ap2 H2 bia baso ... by 02 (3 22)
A1—n A25p - Qpon Hn bl—)n b2—>n s bn—>n On

with a;_,; and b;_,; are respectively the doublet (3.23) and source (3.18) induced potential

kernels. /

D gounter (7', Y, 2') // T (yz—y) (o )]3/2dS (3.23)

Forces are calculated using an approach similar to the previous method, that is, using (3.19).

However, the evaluation of |[V®*| on the boundary is improved by reintroducing potential

jump relations (3.20):

op/ou 0
Vo* = v(I)oo + VCI)doublet|z’=0 + V(I)source‘z’:o = Voo - a,u/av + 0 (324)
0 o

where the gradient of the doublet potential V®yupiet|.—0 on the unstructured surface mesh
is computed using a Weighted Least-Square (WLS) approach. The advantage of using such a
methodology for the calculation of loads is that the operation is O(n) instead of O(n?). This
approach also mitigates the instabilities caused by the induced velocity of strong singularities

on neighboring collocation points.
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The PG correction of Section 3.1.1 can also be applied to panel methods in order to approx-
imate global compressibility effects. Figure 3.8 shows a comparison of the pressure along an
ellipsoid for different Mach numbers. It can be seen that the agreement between the com-
bined source-doublet and Euler approaches is good even near the sonic point. This shows
that the PG correction is a good approximation for compressible flows on thick bodies, where
the critical Mach number is generally closer to unity than for thin ones. Lastly, the source-
only panel method tends to present erroneous results (even divergent in Figure 3.8d) as the
freestream Mach number increases, showing that the source-doublet combination may be
more suitable. Another reason for preferring this version of the panel method is the fact
that having a combination of two elements per panel lowers the intensity of the resulting

singularities, effectively resulting in a numerically more robust method [§].

3.1.5 Hybrid Formulation

Being of the same nature, the VLM and the panel method can be linked by their respective
boundary conditions in order to obtain a hybrid potential flow solver. Figure 3.9 illustrates

the rationale of the methodology.

Considering the wing-body configuration of Figure 3.9 proposing a VLM and a source-doublet
panel method, the interaction is carried out by calculating the appropriate induced quantity
at a given location point. In other words, the required influence kernel (gradient or integral)
depends on the body on which the collocation point lies on, while the kernel type depends
on the singularity type of the influencing element. This methodology leads to the following

{ r } - _ {M} (3.25)
M BX

It is interesting to note that the induced potential and velocity kernels for the doublet and

block-based linear system of equations.

AVLM%VLM ‘ APanel%VLM

AVLM—>Panel APanel—)Panel

vortex ring elements are the same [6]. This fact simplifies the implementation of the influence

kernels, as it reduces the number instances from six to four.

Considerations for Fixed-Wake Wing-Body Configurations

In the particular case of wing-body configurations, special care must be taken in the simplified
representation of the fixed-wake mesh. In first approximation, fuselages such as the one
depicted in Figure 3.9 are assumed non lifting because of the lack of any sharp trailing edge

and thus of resultant vorticity. However, the presence of a fuselage influences the propagation
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Figure 3.9 Interaction of the VLM and panel methods within the hybrid potential flow solver
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of the local streamlines in the nearfield. Consequently, the orientation of the wake panels are
no longer parallel to the freestream, but rather parallel to the local streamlines as shown in
Figure 3.10. As suggested by [22], the local velocity distribution along the wake path can
be computed iteratively within the potential low model or in an unsteady fashion. In the
current implementation, the Nikolski contraction [22,40] is used for its simplicity. Taking into
account local axisymmetric sections of the fuselage, the deviated streamline at ¢ associated

with the wing station at y can be calculated according to d and d, the local and trailing

y= Jyz + (g)Q — <g>2 (3.26)

This has the effect of extending the wake of the wing to the symmetry plane. However, the

edge-aligned fuselage diameters.

effective span length at the farfield b is shorter than the actual full span b of the aircraft.
Hence, b/2 instead of b/2 must be used along with the shifted circulation distribution I'(%)
when computing the induced drag and lift force at the Trefftz Plane using (3.8) and (3.10).

By following the local streamlines, the wake trailing vortices are essentially stitched to the

side of the fuselage until the symmetry plane is met at y = 0. This can cause strong induced
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Figure 3.10 Local streamlines for potential flow around a fuselage. The Nikolski contraction
assumes constant mass flow through axisymmetric stream tubes. - [22]

velocities on the fuselage, especially in high-lift conditions where the circulation in the wake
is significant. In the case of the source-only panel method, this effect can be mitigated
by using the Vatista kernel relaxation (3.15) for wake trailing vortices. In the case of the
combined source-doublet panel method, the potential jump relations at the boundary (3.20)
are not valid across discontinuities in the potential field. Hence, the gradient across any
wake or thin vortex-lattice surfaces is neglected. Figure 3.11 illustrates the resulting pressure
solution at the wake-fuselage intersection for both methodologies, where numerical artifacts

are discernible in the solution from the source-only panel method.

In order to model wake interaction accurately, it is preferable to orient the wake mesh in
the direction of the freestream flow. This however becomes challenging for wing-body con-
figurations, since the topology of the wake changes dramatically with the angle of attack
and the geometry of the fuselage. In fact, in this particular case, a distinct mesh must be
generated for each angle of attack. This step can be automated at runtime using a mesh
generation subroutine (Figure 3.12) leveraging an altered home-made version of the original

A* algorithm [41] with the cost and heuristic functions at node n + 1 defined as follows.

cost(n + 1) = cost(n) + wy - dist(n,n + 1) + wy - deviation(n + 1) (3.27a)
heuristic(n + 1) = w; - dist(n + 1, goal) + w, - deviation(n + 1) (3.27b)

where dist () is the Euclidean distance, deviation() is the deviation from the freestream

plane and w; ~ 0.2 and w, ~ 0.8 are the weights of the cost function.



44

0.6 7.9e01

04

02

Cp
-1 08 06 04 02 0

-1.3e+00

(a) Source-doublet panel method

0.6 7.9e01

04

02

cp
-1 08 06 04 02 0

-1.3e+00

(b) Source-only panel method with Vatista vortex relaxation (o = 0.1, n = 2)

Figure 3.11 Influence of thin vortex surfaces such as wings and wakes on the fuselage pressure

distribution

projected onto the freestream

plane

(b) Calculate path following lo- (c) Surface mesh is adapted and

cal flow using A*

(a) Initial geometry

for automatic adaptative wake mesh generation for wing-body configura-

Figure 3.12 Steps

tions



45

3.2 Nonlinear Coupling and Viscous Effects

Nonlinear phenomena for finite wings, including viscous boundary layers and stall, are in-
corporated into the potential low solver through an iterative coupling algorithm. Empirical

formulations are employed concurrently to represent the viscous drag of non-lifting bodies.

3.2.1 Coupling Algorithm

Van Dam’s a-coupling algorithm of Section 2.2.3 is selected as the iterative method for incor-
porating nonlinear effects for its ability to accurately model stall phenomena with minimal
convergence issues. Due to its iterative nature, the a-coupling algorithm with a VLM solver
is often denoted as the Nonlinear Vortex-Lattice Method (NL-VLM). A single iteration of

the method is implemented as follows:

1. After evaluating the potential flow solver, the distribution of effective angles of attack
a.(n) is calculated, where 7 is a curvilinear coordinate following the dihedral of the

wing. The angle of attack correction Aa(n) is initialized at zero.

o Clzn'u
- dCl/da

Qe — Ao+ ap (3.28)

The choice of dCl/da is of capital importance as it significantly influences both the
converged solution and the convergence properties of the algorithm itself. This value
should be as close as possible to the actual local inviscid lift slope. [19] initially proposed
using 27 in coherence with TAT. As this value is inadequate for swept wings [17],
2w cos ¢ may be used according to infinite swept flow theory. However, these two
variations do not take into account the increase in the lift slope due to compressibility

effects. In this regard, one can use the derivation proposed by [22] leveraging the normal
Mach number and PG constant /3, = /1 — M2.

da B2

(3.29)

aci 1 (dCl) B 27 coS ¢
da \/[)’2 cos? ¢ + sin? ¢

This formulation implies two requirements: 1) that the PG transformation is also ap-
plied to the potential flow model according to Section 3.1.1 and 2) that the local VLM
lift slope is corrected for all angles of attack so that the value of 27 is recovered after
transformation to PG space (e.g. using (3.1)). This application of the PG correc-
tion within the NL-VLM algorithm has been initially proposed by [42] and a better
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agreement with reference data has been observed in comparison with the usage of the

standard 27 slope.

2. The local viscous lift coefficient C'l,;,. of each streamwise wing sections is interpolated

in a high-fidelity data according to the local c..

3. An angle of attack correction is formulated according to the difference between the

viscous and inviscid lift coefficients.

Clvisc - Clinv

Aa"“zAa”—i— k

(3.30)
where k is generally defined as 27. This value does not impact the resulting solution
as long as none of the underlying wing sections are interpolated at post-stall a,. After
stall, the nonuniqueness of the solution means that slightly different results might be

obtained for different values of k.

4. The new angle of attack correction is added to the potential flow solver. A common
way to achieve this is to rotate the normals of all panels belonging to a wing section

by Aa around the e, axis.

A common approach used to validate this methodology is through the infinite wing case,
where CL = Cl(y) = constant for any prescribed sectional lift polar in accordance with
the outlined assumptions of (3.29). Results for sectional lift polars, considering variations
in linearity, Mach number, and sweep angles, are presented in Figure 3.13. These results
demonstrate that the NL-VLM successfully captures the expected changes in the lift slope,

thereby confirming that the assumptions defined within the coupling algorithm are satisfied.

3.2.2 High-lift Devices

In the context of modeling high-lift devices and control surfaces, two distinct methodologies

can be employed:

1. Meshing control and high-lift surfaces both in the potential flow solver and high-fidelity
data.

2. Meshing the clean wing in the potential solver and including deflected wing elements
only in the high-fidelity data.
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Figure 3.13 Verification of the NL-VLM algorithm with the straight and swept infinite wing
cases (AR ~ 1 x 109)

It was found by [19] that these two approaches lead to similar results, thus categorizing the
physical representation of high-lift devices as a second-order effect. Hence, a clear advan-
tage of the second approach is that the potential flow mesh remains identical for all wing

configurations of a given aircraft.

3.2.3 Artificial Dissipation

When significant nonlinear behavior is present in the input lift polars (e.g. near Cl,,4,), an
artificial dissipation factor is used to obtain better convergence properties. This is done by
adding a term to (3.30) [19].

cz;czn + u6*(Aa™) (3.31)

Ao = Aa™ +w
where w € [0,1] is a relaxation factor, p ~ 0.1 is the scalar dissipation factor and 62 is
the second order central finite-difference operator. This artificial dissipation has the effect
of smoothing the resulting lift distribution in cases where Aa(y) is discontinuous (Figure
3.14), such as in the presence of stall cells or at the junction of high-lift devices with different

deployment configurations.
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3.2.4 Pitching Moment Correction

While local lift coefficients are corrected using the a-coupling algorithm, viscous drag and
pitching moment coefficients remain uncorrected. Their corrected values are instead obtained
from the converged a. at the end of the solving process. For cases where the chordwise
distribution of the local forces must be known with higher fidelity, the pitching moment can
be introduced as a constraint so that the chordwise potential distribution matches the one
found in the RANS simulation. In practice, a WLS problem is formulated for each streamwise

section following the work of [43].

1+¢
L lo ... I ] l+e _ { Lyise } (3.32)
My My .. My : My vise
1+e,

where [; and m,,; are the lift force and the pitching moment generated by the ¢th chordwise
vortex-ring while L;. and M, ;5. are the total section-wise high-fidelity lift force and pitching
moment. This is particularly useful when an accurate representation of the local pitching

moment is necessary.
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3.2.5 Handling of Fuselage Viscous Effects

As the coupling is not used for quantities on the fuselage, viscous effects are included semi-
empirical drag calculations. Assuming fully turbulent flow, the viscous drag for the fuselage

is given by the turbulent boundary layer solution multiplied by a user-defined form factor K.

0.455K S,
(log Rep,)?8 4+ (1 4 0.144M2)065 S, ¢

Cpy =~ (3.33)
where Rej, is the Reynolds number based on the length of the fuselage, Sy and S,.; are

respectively the fuselage and reference areas. K may be selected using Hoerner’s formula [44].

3 /d 3/2 d 3
K=1+>(=]) +7(+
o(z) () -

~ 1.2 for conventional aircraft

3.3 Program Implementation

The nonlinear potential flow solver described in the previous sections is part of the CHAMPS
aerodynamic and multidisciplinary framework. CHAMPS is written in the Chapel program-
ming language focusing on native parallel programming and easy interfacing with various C
libraries. It is using object-oriented programming principles allowing for the easy addition of
modules and models in the framework. Furthermore, recent benchmarks show similar exe-
cution time and executable size as well-established programming languages such as C/C++,
Fortran and Julia (Figure 3.15). For full aircraft cases, the number of elements/panels can be
significant, and the execution time grows quadratically, with the main bottleneck being the
calculation and assembly of the dense AIC matrices. In this regard, AIC matrices are subdi-
vided into blocks and computed using the native forall directive allowing shared-memory

parallelism.

In addition, since the AIC matrix is dense, the inversion of the linear system can take up
to 90% of the computational time per iteration. Instead, the matrix can be pre-inverted
at the beginning of the coupling algorithm and multiplied by the varying right-hand side
at each iteration. This is done concretely by applying a LU factorization to the AIC and
storing the result in memory. Hence, the pre-treatment procedure itself becomes slightly more
expensive at the benefit of faster execution time per iteration. All linear algebra operations

are performed using Chapel bindings of the popular LAPACK C library.

The current implementation of the program is capable of generating a full lift polar solution

(ranging from 0° to 20° in 1° increments, computed sequentially) in approximately 20-30
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Figure 3.15 Comparison of the execution of most popular programming languages - [45]

seconds for simpler wing-only configurations. For more complex cases involving multiple
bodies and/or highly nonlinear flow behaviors, the simulation time may extend up to 10-15
minutes per polar. In contrast, the equivalent simulation using CHAMPS 3D RANS can
require up to 1-2 days with half the number of angles of attack. Furthermore, it is to note
that the aforementioned results were obtained using an eight-core workstation computer,
while the CHAMPS 3D RANS simulations were conducted on a HPC cluster leveraging

several hundred computer cores.

3.4 Generation of Sectional High-Fidelity Data

2.5D RANS flow simulations are used as sectional high-fidelity for the coupling algorithm.
The RANS module of the CHAMPS solver is used in that regard. It features an unstructured
and cell-centered second-order finite-volume approach. The Spalart-Allmaras (SA) model
is used for turbulence closure while the Roe approximate Riemann solver is used for the

upwinding of the convective fluxes.

The 8 approach of Figure 2.6b is used for converting two-dimensional airfoils to 2.5D prob-
lems. After applying the infinite swept flow transformation given by (2.11), the 2.5D problem

is formulated as follows.
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2 " tana’ = tana/ cos ¢*
Py = Y (3.35) sin 8’ = cosassin ¢* (3.36)
4 2/ cos ¢ Re' = (Re/cos¢") =

In the case of tapered wings, the effective sweep angle ¢* used in the definition of the infinite

swept flow problem is taken at the quarter-chord or half-chord points.

Figure 3.16 shows a verification of CHAMPS 2D/2.5D flow solver for basic airfoils. The
NACA0012 validation case [46] is used as the baseline for the assessment of the flow solver,
whereas the swept ONERA D airfoil [24,47] is investigated for assessing the integration of
sweep in the numerical solver using the g approach. For the low-speed straight NACA0012
(M = 0.2; Re = 6 x 10°), it is seen that CHAMPS is in good agreement with both numerical
and experimental reference data. In the case of the transonic swept ONERA D airfoil (M =
0.78; Re., = 2.5 x 10°), the 2.5D solutions are in excellent agreement with wind tunnel

measurements at a = 0.

The process of extracting sectional data from the three-dimensional geometry of an aircraft
can be cumbersome, time-consuming and error-prone. For this matter, the pre-processing
steps are automatized using a wrapper script written in Python. This program handles the

following steps:

1. Discretization and extraction of the geometry in N wing sections (including multi-

element /high-lift sections)
2. Preparing the geometry for CFD (sections are untwisted and normalized to unit chord)

3. Scripted unstructured quad-based mesh generation using the Pointwise software (a

mesh example is given in Figure 3.17)

4. Automatic batch job submission in parallel to the HPC node (including post-processing

and data retrieval)

3.5 Validation Results

The implementation of the hybrid nonlinear potential flow solver described previously is
assessed in the following sections using a combination of high-lift and high-speed cases.
First, a configuration build-up on the NASA Common Research Model (CRM) [48] in low-
speed conditions is performed in order to assess the baseline accuracy of the solver as well

as the impact of the addition of auxiliary aircraft components in the aerodynamic model.
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Figure 3.17 Example of § approach automatic 2.5D mesh generation using the Pointwise
mesh solver. The farfield boundary is located at a distance of 1000c¢ from the origin.

High-speed cases are also included for the investigation of the accuracy of the model in the
upper range of the flight envelope. Results are compared with three-dimensional CFD data
as well as with wind tunnel measurements provided publically within the Fifth High-Lift
Prediction Workshop (HLPW5) [49] and the Sixth Drag Prediction Workshop (DPW6) [50].
For all following cases, lifting surfaces are discretized using 23 linearly-interpolated 2.5D wing

sections.

3.5.1 High-Lift Common Research Model Configuration Build-Up

The investigation of the CRM in low-speed conditions is proposed in this section. The CRM
is the standard configuration used in the HLPW5. The clean wing-body configuration is
shown in Figure 3.18. A configuration build-up is performed at M., = 0.2, Re,, ~ 5 x 10°
based on the reference chord c,.y = 275.8 in. The half wing span and reference area of the
CRM are about 1157in and 2973604n?, resulting in an effective aspect ratio of approximately
9.0.

Isolated Wing

The clean CRM isolated wing is first investigated as baseline results. The wing present a
Yehudi break at around 40% of the wing span. The sectional data generated with CHAMPS
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Figure 3.18 Clean CRM wing-body geometry

2.5D solver are presented in Figure 3.19. As this case is not officially part of the required cases
of the HLPW5, the results are compared using in-house 3D RANS simulations performed
with the TAU [51] solver on a grid of approximately 30 million cells. The VLM wing is
discretized using approximately one panel per ten inches using a cosine distribution that
provides increased clustering near the wing-tip, where the discretization error is generally

more significant.

It is found from Figure 3.20 that the NL-VLM coupled with local 2.5D data yield good
agreement with three-dimensional simulations, as pointed out by similar studies in the sci-
entific literature. Quantitative agreement is observed in mostly linear flow conditions (i.e.

a <~ 13deg), while qualitative agreement is observed once Cf, 4, is reached. More signifi-
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Figure 3.19 Normalized CRM wing sections used as input for the a-coupling algorithm
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Figure 3.20 Force and moment coefficients on the low-speed CRM isolated wing

cant discrepancies are observed for the pitching moment, yet it still remains quite represen-
tative of the general behavior of the curve. Besides, depending on the chosen effective sweep
angle, some variations in the solution is observed. In this particular case, it would seem that
the effective sweep angle leading to the best agreement would be taken between the quarter-
chord and half-chord points, or taken as a linear function of the two. This case proves once
more that the NL-VLM can capture nonlinear phenomenons such as high-angle-of-attack

low-speed flow as long as the hypothesis of locally infinite swept flow is verified.

By taking a closer look at the spanwise lift distribution, the impact of local discrepancies can
be assessed more clearly. Figure 3.21 shows the propagation of stall cells in near and post stall
conditions in comparison with three-dimensional RANS. As expected, good agreement with
RANS is obtained in the absence of massive flow separation. However, at the predicted C, ;42
(around « ~ 14 deg), the NL-VLM predicts a larger separation zone than what is predicted
by higher-fidelity methods at the 40% wing-span mark. This explains the underestimated
value of the Cf ;4. in Figure 3.20a. Nonetheless, the separation bubble appearing at the
wing-tip appears to be captured with good accuracy. A similar conclusion can be taken
for a« = 16 deg, where the propagation of the stall region from the tip towards the root is

overestimated.
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Wing-Body

The very first case of the HLPW5 is the study of the clean Wing-Body (WB) configuration
of the CRM. For this case, participants were asked to provide a mesh refinement study at
a = 11.0deg and at the same flow conditions as the previous case. The hybrid NL-VLM-
Panel Method proposed in this work is leveraged for this specific problem. The fuselage is

discretized using about 3000 isotropic triangles.

The global force coefficients obtained with CHAMPS NL-VLM are presented in Table 3.2
along with results provided by other participants of the workshop. As no experimental data
is available as this time, the highest resolution simulation (participant W-005) is taken as the
reference for the calculation of the relative error. It can be concluded from the error values
that the NL-VLM yields results comparable to other higher-fidelity solutions. However, all
three force coefficients are found to be underestimated. The pitching moment discrepancy
as well as a significant dependency on the selected effective sweep angle are still present in
this case. Yet, the error remains within a similar margin as the RANS solvers. Oddly, it
would also seem that the NL-VLM results are more inline with the Wall-Modeled Large-Eddy
Simulation (WMLES) results than the RANS results. It is however unclear at this stage if
this difference is simply fortuitous or if a more subtle discretization/modeling mechanism is

at play.

In order to understand the impact of the 2.5D hypothesis on the solution, streamwise cuts
of the local forces are shown in Figure 3.22 at 17%, 61% and 95% of the wing span. This
figure clearly highlights the fact that the accuracy of infinite swept flow is excellent in the
mid-span region (Figure 3.22¢, 3.22d), while it is degraded near the wing root (Figure 3.22a,
3.22b) where both fuselage and taper effects are non-negligible. In fact, Figure 3.22a shows
erroneous values of the pressure at the stagnation point because the actual leading edge sweep
angle ¢rp is larger than both ¢./4 and ¢,/ due to the non-negligible taper ratio inboard of
the Yehudi. Finally, a significant discrepancy is observed near the wing tip (Figure 3.22e,
3.22f) due to the presence of a separated region that appears in the NL-VLM at a slightly
larger angle of attack (see Figure 3.21).

Horizontal and Vertical Tail Planes

The following case in the HLPW5 is the CRM Wing-Body-HTP-VTP (WBHV), which con-
sists in the addition of horizontal and vertical tail planes to the geometry as shown on the
right-hand side of Figure 3.18. Furthermore, three Flap Track Fairings (FTFs) are added to
the main wing. The effect of the modeling of these components in the context of the NL-VLM
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Table 3.2 Force coefficients on the clean configuration of the CRM WB at o« = 11.0deg and
M = 0.2. W-005 is taken as the reference for the calculation of the error.

C C C
Source Mesh Size L b My
Value FError Value Error Value Error
NL-VLM - ¢4 - 1.0246 —2.01% 0.0602 —4.14% -0.0267 —39.59%
NL-VLM - ¢./2 - 1.0386 —0.67% 0.0607 —3.34% -0.0353 —20.14%

RANS R-011 232403516  1.0762 2.93% 0.0637 1.43% -0.0649 46.83%

RANS R-021 370545701 1.0785 3.15%  0.0679 8.12% -0.0645  45.93%
WMLES W-012 228885243 1.0500 0.42%  0.0607 —3.34% -0.0432 —2.26%
WMLES W-005 1422917806 1.0456 - 0.0628 - -0.0442 -

framework is briefly assessed in this section. The Horizontal Tail Plane (HTP) is coupled
with 2.5D RANS while the Vertical Tail Plane (VTP) is only modelled for viscous drag using
empirical formulas. The 2.5D RANS data on the HTP are performed at an effective sweep
angle defined at the quarter-chord point.

Naturally, including the HTP and VTP introduces additional three-dimensional and nonlin-
ear effects that are captured in a limited way due to the 2.5D hypothesis. Consequently,
additional discrepancies in the solution are expected. In fact, Figure 3.23a shows different
values of C'p, resulting in a constant underestimation of the lift throughout the whole angle
of attack range (the correct lift slope is recovered). Another important discrepancy resides
in the slope of the pitching moment coefficient. These two observations informs that other
phenomenons are at play that are not captured by the solver. One possibility is that the
fixed-wake hypothesis does not hold for complex wing-tail interactions. On the other hand, it
is possible that the mesh resolution used in the higher-fidelity simulations is not appropriate
for the capture of this interaction. Despite these differences, good agreement is still obtained
considering the simplifications of the hybrid-NL-VLM model. Indeed, the evolution of the
drag coefficient (3.23c) accurately follows the trend of the higher-fidelity methods, meaning
that the NL-VLM can be used to model the induced drag of complex lifting systems subject

to viscous flow.

The chordwise pressure distribution along the mid-span of the HTP for various angles of
attack are shown in Figure 3.24. Good agreement is observed at a = 10.0 deg (Figure 3.24b),
where the wing-tail interaction is moderate. At o = 6.0deg (Figure 3.24a), the fixed-wake
topology intersects the HTP and causes a tighter interaction. Finally, at o = 14.0 deg (Figure
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Figure 3.23 Force and moment coefficients on the low-speed CRM WBHV

3.24¢), 3D RANS predicts heavy separation on the HTP, while the NL-VLM predicts its stall
at around 16 deg. This explains the discrepancy in the pitching moment of Figure 3.23c at
high angles of attack, as the loading of the HTP has a major influence on it.

Lastly, the impact of the addition of the three FTFs is considered for this case. In this
regard, Figure 3.25 shows the expected jumps across each of the three FTFs. However,
the infinitely thin approximation inherent to the VLM underestimates this difference when
compared to three-dimensional RANS. Nonetheless, the characteristic inboard upwash and
outboard downwash effects are still captured, indicating that such an approach could be
used for the design or analysis of the FTFs. It is also worth mentioning that the change in
local effective angle of attack caused by the FTFs creates more significant changes with the
appearance of stall cells (Figure 3.25¢). This could indicate that thin vertical surfaces could
be used to characterize stall propagation in cases where the effect of these components is

non-negligible.

High-Lift Devices

The effect of deployed high-lift devices is now investigated. The considered case is the CRM
Wing-Body-Slat-HTP-VTP (WBSHV) geometry. In addition to the FTFs, this geometry

includes sixteen brackets that are joining the slats to the main wing (Figure 3.26). The effect
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of these components within the NL-VLM framework is also assessed in this section.

The results of this case are compared with RANS data from other participants as well as with
wind tunnel data provided by the HLPW5 committee. Figure 3.27 illustrates this comparison
for the overall forces on the aircraft. Similar conclusions as the precedent cases can be drawn.
In addition, it can be noticed that the NL-VLM is in better agreement with the experimental
data than 3D RANS at high angles of attack. This difference is likely due to the fact that the
meshing strategies used in RANS and the NL-VLM differ significantly. In fact, the quality
of meshes used in the HLPW5 was brought up many times during the workshop, where flow
solutions were observed to be highly dependent on the discretization throughout the whole
range of angles of attack. As the NL-VLM ultimately only require two-dimensional meshes,
it is generally much easier to obtain a high quality mesh, causing the issue of discretization

errors to become less significant.

A more important discrepancy can be observed in the drag polar shown in Figure 3.27b,
where the drag coefficient is underestimated at higher angles of attack compared to both 3D
RANS and wind tunnel measurements. By taking a closer look at RANS solutions, it was
found that the presence slat brackets induces trailing vortices that cause cones of separated
flow (referred to as pizza slices in the literature). The hypothesis is that these increased
separation zones at higher angles of attack are responsible for this deviation in the drag

coefficient, as shown in Figure 3.28a and 3.28d.

An attempt at modelling the effects of slat brackets using thin vertical surfaces within the
NL-VLM as been performed, and the impact on the local skin friction coefficient is shown
in Figure 3.28. In comparison to RANS, it seems that the effect of the slat brackets is

underestimated, although some subtle discontinuities in the spanwise distribution of the C

|
N

Figure 3.26 Representation of the sixteen slat brackets on the CRM WBSHYV. These brackets
can be approximated as thin vertical surfaces in the context of the NL-VLM.
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Figure 3.27 Force and moment coefficients on the low-speed CRM WBSHV

can be observed where the brackets are present. The locations of stalled regions also differ,
as the separation zones are not captured in the same way. This difference is explained by the
fact that the coupling data is not aware of the presence of the slat brackets. Consequently,
although the streamwise 2.5D RANS sections are interpolated at a slightly altered effective
angle of attack, the separated flow zone behind the brackets does not exist in the pre-
generated database. The influence of the brackets on the local velocity field would need to
be taken into account at the time of generating the 2.5D database for the effect be captured
similarly as 3D RANS.

Landing Configuration

In this last section concerning the HLPW5, the CRM in landing configuration with nacelles
and pylons is investigated. The pylon is modelled as a thin vertical surface, similarly to
the previous cases, while the nacelle is modelled as a panel shell made of a few thousand

triangles. The full surface mesh for the potential flow simulation is shown in Figure 3.29.

Figure 3.30 illustrates the global forces obtained for the full landing configuration. At first
glance, a significant discrepancy for all three aerodynamic coefficients can be noticed between
the results of the NL-VLM and the high-fidelity measurements and calculations. The exact

origin of this discrepancy is unknown due to the lack of available local data for comparison.
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Figure 3.28 Effects of the modeling of slat brackets on the skin friction forces of the CRM
WBSHV
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Figure 3.29 Full surface mesh used in the hybrid NL-VLM method

A plausible explanation is that the complex interaction between the strong vortex induced by
the flaps with the fuselage lead to underestimated lift, and therefore underestimated induced
drag. Nonetheless, this difference is mostly constant throughout the whole angle of attack

range for all three curves, indicating that most of the flow physics are well captured.

Figure 3.31 illustrates a comparison between the same quantities with the constant gap re-
moved. In this graph, it is possible to see that most of the features shown in the experimental
measurements are also well captured by the NL-VLM. The correct lift slope (Figure 3.31a)
is once again adequately estimated, while the Cf 4, is slightly overestimated but within
an acceptable range. Some nonlinear characteristics present in Figure 3.31b and 3.31c are
also present. For example, a slight inflexion point in the evolution of the drag coefficient at
a ~ 20deg seems to be well modelled when taking the effective sweep at the quarter-chord
point. This phenomenon is also present in the pitching moment curve. Lastly, similar con-
clusions as the precedent case concerning the increase in drag at higher angles of attack due

to the slat-bracket-induced flow separation can be drawn.

3.5.2 High-Speed Common Research Model Configuration Increment

In this section, a validation of the current model in transonic conditions is performed. The
CRM Wing-Body-HTP (WBH) and Wing-Body-HTP-Nacelle-Pylon (WBHNP) with pre-
calculated aeroelastic deflections are investigated as stated in the second case of the DPW6.
The simulation is carried out at M = 0.85, Re = 5x 10° and at a target C;, = 0.500040.0001,
where the target is achieved iteratively using a bisection algorithm. The main objective of

the case is to measure the drag increment caused by the addition of the nacelle and pylon
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to the aircraft. 3D RANS simulations as well as wind tunnel data provided publically in the

context of the workshop are used as reference data.

Table 3.3 shows a comparison of the absolute and relative values of the drag and pitching
moment coefficients for the NL-VLM and reference sources. While a non-negligible difference
exists between the absolute values of the drag and pitching moment coefficients, the increment
between the two configurations seems in good agreement with the reference. For example, a
delta of seven drag counts is found between the results of the best NL-VLM results and wind

tunnel measurements.

Streamwise cuts of the surface pressure field explain the discrepancy observed in the absolute
values of the drag and pitching moment coefficients. Indeed, Figure 3.32 illustrates how the
2.5D hypothesis fails near the wing root. Figure 3.32b shows that the strength of the shock
is largely overestimated despite its accurate location, while Figure 3.32a indicates massively
detached flow at the wing-body junction. It is interesting to note that this separation pattern

at the root is also present in 3D RANS solutions, but at a larger angle of attack.

Furthermore, choosing the effective angle of attack at the mid-chord point yields better
agreement with both 3D RANS and experimental measurements than at the quarter-chord
point. This is in agreement with the three-dimensional solution, where the main shock follows
the mid-chord point throughout the most part of the wing. Finally, the shape of the pressure
distribution at 73% of the wing-span (Figure 3.32¢) shows that the 2.5D hypothesis remains
mostly valid for negligible wing taper and root/tip effects.

Table 3.3 Force coefficients on the CRM WBH and WBHNP at C;, = 0.5000 £ 0.0001 and

M = 0.85. A represents the increment of a value after the addition of the nacelle and pylon.

Cp WBH ACp Cny WBH ACHhyy
Source

Value Error Value Error Value Error Value Error
NL-VLM ¢.o  0.0292 12.31% 0.0030 0.0007 -0.1795 77.02% 0.0366 0.0304
NL-VLM ¢./4  0.0315 21.15% 0.0051 0.0028 -0.1036 2.17% 0.0543 0.0481
TAU 3D RANS 0.0260 - 0.0022 -0.0001 -0.1014 - 0.0062 -

Wind Tunnel - - 0.0023 - - - _ _
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3.6 Discussion

In the precedent sections, the medium-fidelity solver proposed in this work has been put to
the test in various flow conditions and configurations. In most cases, excellent agreement
was observed with both three-dimensional flow solvers and wind tunnel experiments. These
cases prove that nonlinear potential flow methods are suitable for the study of complex
aircraft configurations in low-speed high-angle-of-attack as well as in transonic conditions.
The addition of a fuselage, HTP and VTP as well as other aircraft components allowed to
recover most of the physics of interest. These results are particularly impressive considering
that the entirety of the cases presented in this work can be run serially under an hour on most
personal workstations, while the 3D RANS equivalent would take several days of runtime on
a HPC cluster.

Nonetheless, certain limitations were highlighted in the validation process.

1. The fixed-wake hypothesis was shown to yield discrepancies when the wing-tail interac-
tion was noneligible. Most of the differences were found on the pitching moment polar,

while the influence on drag was more subtle.

2. The modelling of slat brackets and thin vertical surfaces was shown to yield inadequate
predictions of the skin friction forces. Coupling the velocity field induced by these com-
ponents at the time of generating the 2.5D database could help to introduce additional

three-dimensional effects to the model.

3. A significant dependency on the chosen effective sweep angle was observed in the pres-

ence of highly nonlinear phenomenons (e.g. near-stall and transonic conditions).

The latter is a significant limitation of the NL-VLM, as choosing the wrong effective sweep
angle can lead very poor accuracy. This is mostly due to the fact that multiple flow topologies
each happen according to the orientation of the local isobars. For example, it is impossible
to capture correctly a leading edge stagnation line at the same time a shock at the mid-chord
point, as both of these phenomenons are characterized and are highly dependent on different
sweep angles in the case of a tapered wing. An attempt at solving this issue is addressed in

the following chapter.
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CHAPTER 4 DEVELOPMENT OF A 2.75D FLOW SOLVER
ACCOUNTING FOR TAPER EFFECTS

It was noticed in previous sections that the Infinite Swept Flow Theory reaches its limit
when non-negligible taper is introduced in the geometry of interest. As a remedy, an effective
sweep angle ¢* had to be assumed in order to obtain an approximate result. However, as
mentioned previously, using this approach only approximate flow topologies (Figure 2.5).
This approximation is quite significant in transonic flow conditions, where the location and
orientation of the main shock depends heavily on the prescribed ¢*, which is dependent on

the case.

The objective of this section is to attempt to extend a 2.5D infinite swept flow RANS solver
to include the effects of taper (2.75D). This alternate solver is based on the conical flow
assumption, which assumes a null flux along rays emanating from the apex created by the

convergence point of a wing’s leading and trailing edges (Figure 2.8).

4.1 Governing Equations

Similarly to the 2.5D method, the proposed 2.75D method is built directly by simplifying
the three-dimensional compressible Navier-Stokes system (given as a reference in (1.1)). Fur-
thermore, in order to simplify the equations according to the conical flow assumption, a
coordinate transform must first be defined so that the proper flux terms can be cancelled out

when necessary.

4.1.1 Coordinates Transformation

First, an arbitrary frame of reference (£, 1, () is defined according to the following potentially

nonlinear transformation.

dx g
dy ¢ = J(&n, Q) dn (4.1a)
dz d¢
_ 0z,y.2)
1= 96 n.0) (4.10)
J = det(J) (4.1c)

Applying this transformation directly to the Navier-Stokes equations using the chain rule

and after expanding the dyadic product V ® V, the conservative contravariant form of the
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Navier-Stokes system is obtained (using Einstein notation)

M + 0;(JpU;) =0 (4.2a)
ot
0 JPU it c v
((%J) +0i(JpU;U; + pdiy) — 0y(J7") = J(S;° + S}") (4.2b)

with the transformed contravariant velocity defined as the following.
U=J'V (4.3)

The contravariant metric tensor ¢“ defining the metric quantities of the transformed coordi-
nate system is obtained from the inverse of the covariant metric tensor g;;, which in turn is

related to the differential arc length ds in the transformed coordinate system.
d52 = gz]dfjdgz (44)

Lastly, the expansion of covariant derivatives in a non-Euclidean space also generate addi-
tional terms, which are shown in the right-hand side of (4.2b) and (4.2c) as S* and S?. These
terms are function of the Christoffel Symbols of the second kind TV, which are specific to a

given coordinate system and are obtained from the following general relation.

I, == Jm — 4.
L= (e et - %) 4

Convective Source Term

The convective source term appears after the expansion of the dyadic product in the momen-
tum equations. Furthermore, the conservative formulation of the pressure flux, obtained by
including pd;; in the divergence term, creates additional terms in the momentum equation.
Using the chain rule as well as the covariant derivative definition, the following formula is

obtained.
Sl = —plh UU; — SP (4.6)

where S7 is the pressure flux term and is dependent on the metrics of the chosen frame of

reference.
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Viscous Flux and Source Terms

The viscous source term appears in the momentum and energy equations due to the diver-
gence of the viscous stress tensor. Additionally, the stress tensor itself includes covariant
derivatives as well as divergences of the velocity vector. Consequently, its formulation is

significantly more involved than its counterpart in cartesian coordinates.

For a general coordinate system, the covariant Newtonian viscous stress tensor is defined

from the following relation
7i; = W(Vju; + Viu,) + Agi;0;U; (4.7)

where V; and wu; are the covariant derivative and covariant velocity vector, respectively. pu
and A = —2p/3 are the dynamic and second viscosity coefficients. Expanding the covariant

derivatives once more, the covariant viscous stress tensor takes the following form.

7ij = (Oui + Oy — 2T uk) + Agi;0,U; (4.8)

The contravariant viscous stress tensor is obtained using a double contraction with the con-

travariant metric tensor.

77 = g" gy (4.9)

Finally, the covariant derivative (i.e. divergence) of 7%, a contravariant second order tensor,
is given as follows.
V77 =9t + F%ij + I‘f}bﬂkm (4.10)

The first term in (4.10) is the viscous momentum flux term, while the other ones are part of

the momentum source term.

v k mj j km

As for the viscous work terms, a similar procedure is performed and the following flux and

source terms are obtained.
V; (77'u;) = 3j(7jiu,;) + I‘i‘anmiu,» + Fianmjui — TﬂPZ-LUm (4.12)
20 _jiTm J mi 7 mj

Due to the inherent complexity of the viscous fluxes, their effects are neglected in the scope
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of this work. Consequently, the following sections are focused on the discretization of the

Euler equations.

4.1.2 Conical Flow Transformation

In order to apply the assumption of conical flow, the fluxes along the radial component
originating from the apex of the tapered wing must be zero. Consequently, the spherical co-
ordinate system (r,0,¢) is selected as the transformation basis. After derivation, the following

metric quantities are found for the spherical frame of reference.

x rsin 6 cos ¢ sinfcos¢ rcosfcos¢ —rsinfsing
Yy ¢ =4 rsinfsing¢ (4.14a) J = |sinfsing rcosfsing rsinfcosg | (4.14b)
z rcosf cosf —rsinf 0
J=r*sinf (4.14c)
10 0 0 0 0
gij = [0 r? 0 (4.14d) =10 —r 0 (4.14e)
0 0 r2sin?6 0 0 —rsin?d
0 1/r 0 0 0 1/r
r’=11/r 0 0 (4.14f) =10 0 cotf (4.14g)
0 0 —sinfcosb 1/r cotf 0

After applying the transformation, the physical meaning of the additional terms is now more
obvious. In fact, they are akin to forces appearing in a rotating frame of reference. For
example, the equivalent centripetal acceleration term V?2/r is recovered by inserting (4.14e)
into (4.2b). Similarly, the other terms appearing in the polar (4.14f) and azimuthal (4.14g)

momentum equations act as Coriolis-like forces.

Lastly, the conical flow assumption is applied by forcing 9/0r = 0 when expanding the
divergence terms in (4.2). This last trick is the key to reduce the three-dimensional Navier-

Stokes system to a geometrically two-dimensional case.

4.2 Discretization of the Governing Equations

The equations are discretized using a finite volume method. The finite volume framework

already implemented in the CHAMPS solver is reused and extended to account for the addi-



75

tional terms and altered fluxes of (4.2). The computational domain used for the simulation is
shown in Figure 4.1. This approach can be considered as a mix between the sheared-cell and
[ approaches of Figure 2.6. It is however important to stress that a purely two-dimensional

computational domain is defined.

4.2.1 Convective Fluxes

According to the finite volume paradigm, the convective and inertial terms are discretized

according their integral formulations.
d
f/ Jde+f J(F, — F,)dA :/ J(S. + S,)dV (4.15)
dt Jo, 50 Q

with W, F and S are respectively the conservative variables, the fluxes and the source terms,

while V' and A are the volume and surface vector of control volume .

p pU*
pU pU*U + pn.
W =< pV (4.16a) F.= ¢ pU*V + pnl (4.16b)
pW pU*W + pni
pE pU*H
0
pr(U% + W?sin? 0) 4 2
Sc=1p <W2 sin 6 cos ) — 2%) + peotd (4.16¢)
—2p (UW cot 0 + @)
0

where U* = Uyn.

The cancellation of the flux term in the r direction is applied by setting the surface vector
as dA¢ = nedAs = (0,dAcp,dA¢s) (assuming the normal vector is still of unit length).
Modifications to the Roe dissipation flux and spectral radii must also be taken into account,

as the resulting eigenvalues of the convective flux Jacobian are altered.

4.2.2 Source Term

The extra terms appearing in the non-Euclidean formulation of the Navier-Stokes system ac-
cumulate in the form of a source term. The convective source terms affecting the momentum

equations are discretized implicitly as suggested in [52] in the case of stiff source terms. The
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Figure 4.1 Computational domain used for 2.75D simulations. The polar angle # is defined

perpendicular to the page.

Jacobian of this term is defined as follows.

00 0 0 0
A B C D 2vy-1)

ds°_dsTdU 1, . L s Neotd

AW  dUdW r |2 2 (v—Deo
I J —2w K 0
00 0 0 0

with
q = u® + r?v® + r*w?sin?0
A=vq-rq
B=2u(—y+r*+1)
C =2r’v(1 —7)
D = 2r°w(2 — ) sin* @
= —rw? sin(20) + 4ruv + (y — 1)gcot §
F=—u(y—1)cotd —2v
2u

=— —1)cotd — —
rv(y —1)co .

(4.17)

(4.18a)
(4.18D)

(4.18¢)
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4.18e)

—_—
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4.18g)
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H = rw(—~r +r + 2)sin(20) (4.18i)
I = 2w(ucot9+g) (4.18j)
r
= —2rwcot 6 (4.18k)
2ru
K=—- -2 4.181
tang " ( )

In addition to stiffening the temporal scheme, the presence of a stiff source term can hinder
the definition of the Roe dissipation flux. In fact, the presence of this source term affects the
balance of the approximate Riemann solver by altering the strength of the waves [53]. Simi-
larly, this term affects the treatment of the characteristic-based farfield boundary conditions

used in subsonic flows. Both of these effects, are neglected in the scope of this work.

4.3 Results

In the goal of assessing the finite volume implementation of the spherical coordinates form

of the Euler equations, simple canonical cases are considered.

4.3.1 Recovery of Two-Dimensional Flow

In this first case, the recovery of two-dimensional flow solutions is investigated using the
spherical form of the Euler equations. Indeed, by setting » — oo, the system of equations
is expected to converge asymptotically to the standard two-dimensional formulation. In this
limit case, e, — e,, eg = —e, and e, — e,. The geometry of interest is the NACA0012
at M = 0.2 and M = 0.8 where » = 1 x 10%. The solutions are compared with standard
CHAMPS two-dimensional flow module.

As observed in Figure 4.2, the conical/spherical form of the Euler equations allows recovering
two-dimensional flow when r — oo and ¢ — —m/2. As the source term is very close to zero

as r tends to infinity, similar convergence properties between the two solvers are observed.

4.3.2 Recovery of Infinite Swept Flow

Similarly, by setting ¢ — —m/4 and r — oo, the system of equations is expected to converge

asymptotically to the infinite swept flow case with a sweep angle of 45 deg.

Once again, the 2.75D method recovers the infinite swept flow case when r — co and ¢ —
—m/4 as observed in Figure 4.3. However, higher discrepancies are observed for higher

angles of attack. The source of this discrepancy was found to be in the discretization of
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the upwinding flux of the Roe scheme, where reorientation of the fluxes with the spherical
coordinates metrics introduces additional dissipation (see Section 4.2.2). Furthermore, the
expected constant crossflow along the swept isobars is recovered for this case, as shown in
Figure 4.4.

4.3.3 Discussion Concerning Tapered Cases

Unfortunately, although the limit cases have been recovered, the application of the solver
to any geometries of non-negligible taper leads to either highly nonphysical results or to
penalizing convergence problems. As mentioned previously, the main issue of this 2.75D
approach is the treatment of the conical boundary conditions far from airfoil’s surface. As a
result, the solver is unable to recover the expected flow topologies. It is also possible that the
source term as a leading role in the convergence of the solver when non-negligible taper is
introduced. Investigating the impact of the source term on the upwinding of the Roe fluxes
and on the characteristic-based boundary conditions in subsonic flow is a possible future
research avenue. These facts however indicate that a 2.75D approach for hyperbolic solvers
such as the Euler or RANS equations may not be suitable for most applications. Alternatives

that could be considered in the scope of this work are as follows:

o Use/Define an empirically-defined distribution of the effective sweep angle along the
span of the wing to capture the primary flow features. As it was previously observed,
a reduced sweep near the wing root often leads to best agreement with higher fidelity

methods.

o Introduce additional coupling terms between the NL-VLM and the RANS data gener-
ation so that the database generation procedure becomes aware of the presence of the
aircraft. This could help introduce the reduction in crossflow caused by the proximity

to a symmetry plane or a fuselage at the wing root.

o Replace 2.5D RANS by a coupled panel method and 2.75D compressible boundary
layer approach. As boundary layers are mainly parabolic and thus do not require the
resolution of the farfield, the 2.75D assumption is better defined.
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Crossflow Velocity

1.66578339e-01 Max: 1.66695367e-01

Figure 4.4 Constant crossflow velocity recovered by the 2.75D solver in spherical coordinates
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CHAPTER 5 CONCLUSION

The precedent sections presented in this work detailed and investigated a medium-fidelity
aerodynamic framework based on nonlinear potential flow. This section aims to summarize
the observations and to highlight the perspective of such methods for preliminary design and

analysis.

5.1 Summary of Works

The main objective of this work was to develop, to investigate and to put in application
a medium-fidelity methodology for the analysis of general and complex aircraft geometries.
Throughout the development of the solving procedure, a compromise between accuracy and

computational efficiency was sought.

First, the introduction of additional aircraft components other than the main wing in a hybrid
VLM-panel method approach was investigated in the goal of increasing the complexity of the
cases to be modelled within the framework. It was shown that the coupled effects of such
lifting and non-lifting systems can be captured adequately by the proposed approach. The
inclusion of auxiliary lifting surfaces such as empennages and pylons showed non-negligible
impacts on the spanwise loading of wings, and it was shown that potential flow solvers are

able to capture such effects.

The hybrid potential low framework was put to the test for various configurations of the CRM
in varying flow conditions. First, it was shown that the expected accuracy of the NL-VLM
for isolated wings was recovered for low-speed flows in near-stall conditions. Furthermore,
the inclusion of fuselage and tailplane effects showed excellent agreement with RANS and
wind tunnel measurements. In fact, most of the calculations performed in this work were in
similar error margins as other state-of-the-art RANS solvers when compared to experimental
data. Similar conclusions were drawn for the high-lift devices case, although the inclusion of
slat brackets in the model led to discrepancies in regions of separated flow. The application
of the model to transonic flow conditions also showed that the formulation used in this work
can predict quite accurately the increment in the drag coefficient caused by the addition of
nacelle and pylon components. However, poor prediction of the shock location and strength
was observed near the root of the wing, where the 2.5D hypothesis failed, leading to a poor

estimation of the absolute values of the drag and pitching moment coefficients.

An attempt at introducing taper effects in the generation of the local database was detailed
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in the precedent sections. Although the solver was able to recover limit cases, such as the
two-dimensional and infinite swept flow cases, prohibiting convergence issues were observed
as soon as non-negligible taper was introduced. Consequently, an alternative approach may

have to be considered for increasing the fidelity and accuracy for highly tapered wings.

The overall results obtained throughout this work highlights the potential of the framework
for preliminary design and analysis of complex aircraft geometries. The reasonable accuracy
and exceptional computational efficiency of the solver makes it also a promising candidate for
coupled full-aircraft multi-physics simulations, where higher fidelity methods show limited
applicability in an industrial context. In fact, the absence of volumetric meshing makes
the method ideal for cases where changes in geometry are expected, as three-dimensional

automatic re-meshing can lead to poor quality meshes and thus to suboptimal solutions.

5.2 Limitations

As mentioned during the analysis of the validation cases, simplifying assumptions have been
made in order to keep the complexity and execution time of the solver low. These simpli-
fying assumptions however introduced discrepancies in some of the results. The pinpointed

limitations are as follows:

o The fixed-wake approach lead to poorer agreement with high-fidelity solutions for the
wing-tail interaction case. Although the downwash created by the main wing was well
captured, nonlinear interactions near stall lead to less accurate predictions, especially

of the pitching moment.

 Since singularity-based methods are elliptical, the simulation time necessary for meshes
of increasing size is proportional to the square of the number of panels. This makes the
simulation of complex aircraft configurations considerably more expensive than isolated
wings. It however still remains several orders of magnitudes faster than an equivalent

three-dimensional RANS simulation.

» Viscous effects for thick bodies such as fuselages are taken into account using basic
semi-empirical formulas. Consequently, complex boundary layer interactions are not

solved for nor modelled.

e The sectional RANS simulations composing the viscous database are generated in open
air. Consequently, the influence of other aircraft components on the local velocity field

is ignored.
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5.3 Future Research

An assessment of the aforementioned limitations could help understand the potential of the

framework for future applications. Some avenues of research in this regard are as follows:

o Remove the assumption of fixed-wake in order to account for complex wing-tail inter-
actions. A hybrid vortex particle approach as used in [54] could be considered as a
way to achieve a robust and physically-accurate solver. However, as the problem would

become unsteady, an increase in the computational cost is expected.

« Introduce viscous effects of fuselage using a coupled panel-method/boundary-layer ap-
proach. This could potentially be beneficial for capturing complex viscous interactions,

such as at wing-fuselage junctions.

o Include the sectional RANS simulations in the nonlinear potential flow solver in a
tightly-coupled manner, i.e. by generating the sectional data as part of the iterative
NL-VLM process. This way, the actual velocity field perturbations induced by the
aircraft could be included in the RANS simulations so that additional three-dimensional
effects could be captured. This research avenue could be an interesting successor to the

2.75D approach.
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