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On a constaté que le blocage était fonction de la direction de l'écoulement, du 

débit et de la conductivité thermique du milieu encaissant. La formation de 

glace à l'intérieur des géocomposites est favorisée par une conductivité 

thermique des matériaux encaissants élevée, un faible débit intermittent et un 

écoulement horizontal. Les essais verticaux n'ont pas présenté de blocage. 

Pour les essais horizontaux il y a eu blocage dans les cas suivants:, dalle de 

béton et débit maximal (21 jours) et dalle de béton et débit minimal (5 jours). 

Les conditions sous iesquelles il y a eu blocage ne se retrouvent que très 

rarement sur le terrain. Le blocage des couches drainantes sous conditions de 

terrain est donc improblable. 

Les conditions d'expérimentation étant soit représentatives ou plus sévères que 

sur le terrain, on conclut que l'utilisation des géocomposites en tant qu'écran de 

rive ne pose pas de problème de blocage par formation de glace lors de 

périodes de dégel. 



ABSTRACT 

In northem climate, subsurface road drainage involves the presence of 

materials with large pores within the frost penetrated zone. One of the road 

designs uses horizontal open graded drainage layers (OGDL) laid directly 

under the pavement and connected to edge drains. In some instances, 

relatively thin geotextiles with smaller pores have been used. These drains are 

subject to extreme weather conditions: the proper evacuation of wôter frorn 

pavement cracks, joints or unpaved shoulders can be hampered if it freezes 

inside the system and blocks it- The thesis wiil present the results of a testing 

program designed to simulate these conditions on a needlepunched 

geocomposite. The premise is that the input of heat of the flowing water 

through the fibres is sufficient to compensate the influx of cold from the 

confining medium. A polypropylene geocomposite, constituted of coarse 

filaments sandwiched between two filter layers, was tested. The samples were 

confined by materials with different thermal conductivities: concrete slab or 

sand layer with degrees of saturation of 0, 70 and 100 % . Water was 

circulated vertically and horizontally through the sample for 30 days inside a 

freezing cabinet. The applied flowrates of 100 and 600 rnllmin per Iinear meter 

corresponded to the minimum (winter) and maximum (thaw) observed in a field 



test section. Intermittent flows were also applied to simulate alternating daily 

thaw-freezing conditions. 

The testing conditions applied through the testing program were either 

representative of the field condition or more severe. So, the conclusion that can 

be made from the results of the tests is that total blockage by ice is unlikely 

inside vertical edge drain and blanket drain under field conditions. 
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Cette observation a amené le développement d'un projet d'étude expérimentale 

sur la performance de nouveaux produits géosynthétiques dans les chaussées 

drainantes. Ce projet a été mis sur pied par le Ministère des Transports du 

Québec et réalisé à l'École Polytechnique. II consiste à recréer les conditions 

in-situ dans un montage et à tester un géocomposite sous diverses conditions 

d'utilisation. 

Le chapitre 2 explique la problématique de l'étude. Avant de développer un 

processus expérimental, on doit comprendre le problème à résoudre. Les 

conditions d'utilisation des drains routiers synthétiques sont étudiées dans ce 

chapitre. 

Le chapitre 3 décrit le b anc d'e et les conditions d'expérimentation 

appliquées lors du programme d'essais. L'étude consiste à reproduire en 

laborâtoire des conditions d'utilisation de terrain, le banc d'essai doit être le 

plus fidèle possible à la réalité. Dans le cas contraire on ne pourra pas 

généraliser les conclusions sur l'utilisation des drains sur le terrain. 

Le chapitre 4 donne les résultats des différents essais et en présente une 

analyse sommaire en fonction des facteurs suivants: débit, milieu encaissant et 

direction de l'écoulement. 



Le chapitre 5 analyse les résultats et la représentativité des conditions 

d'expérimentation. II est très important de vérifier si les conditions 

d'expérimentation sont le reflet de la réalité. La géométrie du banc d'essai, les 

températures impliquées, la durée des essais ainsi que la nature des matériaux 

encaissants utilisés sont étudiés. Les facteurs non considérés lors de la 

réalisation des essais sont commentés brièvement. 

Le chapitre 6 contient les conclusions de l'étude. À partir des résultats des 

essais, on conclut sur la possibilité de blocage par formation de glace à 

I'intérieur des géocomposite. Le chapitre inclut aussi une discussion sur 

l'observation de glace a I'intérieur d'un écran de rive lors sur le rang St-CHarles 

par le Ministère des Transports. 



l'hydrogéologie du site ainsi que de la situation géographique (rurale ou 

urbaine) (Savard, 1996). 

Les drains synthétiques peuvent être utilises en tant que couche drainante ou 

écran de rive. Les couches drainantes sont placées directement sous le 

revêtement (interception des eaux d'infiltration). Les écrans de rive doivent être 

placés à la ligne de rive pour capter efficacement les eaux d'infiltration des 

accotements. La figure 2.1 montre les positionnements des drains synthétiques 

dans une chaussée. 

Revêtement 
I Accotement 

! Fondation 
L 

I 

; Sous-fondation 
I 

1 

; Infrastructure 
I 

Éxutoire f l  
Couche drainante 

Figure 2.1 Drainage à l'aide de géocomposite 

L'utilisation des drains synthétiques en est à ses débuts au Québec. Une 

couche drainante en géocomposite à été utilisée sous la chaussée rigide de 



l'autoroute 15 au nord de I'autoroute Métropolitaine de Montréal en 1994 

(Théoret, 1997). Trois types d'écrans de rive en géocomposite ont été testés 

sur la route 329 à St-Donat (Lafleur & Savard., 1996) ainsi que sur le rang St- 

Charles à St-Jules en Beauce et sur t'autoroute Henri V à Québec en 1988 

(Ministère des Transport, 1991). Dans les deux derniers cas, des excavations 

de vérification ont permis de constater la présence de glace à l'intérieur des 

drains. 

2.2 Problématique du drainage interne des chaussées 

Les drains sont exposés à des conditions d'utilisation sévères. Les périodes de 

froid intense et la présence de sol gelé sont des facteurs favorisant la formation 

de glace à l'intérieur des drains. Deux périodes sont critiques: un redoux avec 

pluie hivernale et le dégel printanier. Lors de ces deux périodes, une zone 

dégelée repose sur une zone gelée imperméable (Figure 2.2). Les bancs de 

neige près des accotements agissent comme isolants thermiques et le dégel est 

plus lent à cet endroit, ce qui crée une cuvette qui garde l'eau captive sous la 

chaussée. 
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Figure 2.2 Vue en coupe d'une route durant une période de dégel 

Les deux périodes critiques présentent les caractéristiques suivantes: 

1. lors des périodes de redoux avec pluie hivernale, les débits à évacuer sont 

plus faibles et doivent passer à travers les drains qui sont entourés de 

matériaux gelés. La durée d'un redoux est de quelques jours. 

2. lors du dégel printanier, les débits sont plus grands que lors des périodes 

hivernales et le sol est partiellement dégelé. La durée du dégel est environ 

un mois. 

2.3 Problématique de l'écran de rive 

L'écran de rive doit évacuer I'eau provenant de la couche drainante en plus 

d'évacuer les eaux d'infiltration de l'accotement. Si l'évacuation est empêchée, 

I'eau reste captive sous la chaussée et la perte de capacité portante est en 

partie réduite. 



La profondeur de l'écran de rive dépend de l'épaisseur de la fondation et de la 

sous-fondation. Le radier du drain doit être placé en-dessous de la ligne 

d'infrastructure pour être efficace (Savard, 1996). Si le drain n'atteint pas la 

ligne d'infrastructure, une partie de l'eau présente dans la sous-fondation n'est 

pas évacuée et les problèmes de pertes de capacité portante en période de 

dégel ne sont pas éliminés. 

2.4 Problématique de la couche drainante 

La couche drainante posée directement sous le revêtement a été choisie pour 

les simulations. Les conditions d'utilisation sont plus sévères que pour la 

couche drainante posée à la ligne d'infrastructure. Elle est exposée à de 

grandes variations de températures tandis que celle posée à la ligne 

d'infrastructure est soumise à des température moins extrêmes et plus 

constantes. La largeur de la couche drainante dépend du type de route. 

2.5 Hypothèse de base 

L'eau qui circule a une énergie qui peut être transmise aux matériaux 

environnants. Lorsque cette énergie est suffisante pour contrer l'apport de froid 



provenant des matériaux encaissants, il n'y a pas formation de glace. Toutefois, 

la répartition aléatoire des fibres cause des variations dans la vitesse 

d'écoulement de I'eau. Ces variations produisent un phénomène de turbulence 

qui résulte en une perte d'énergie de I'eau. Si la perte d'énergie calorifique est 

importante, la formation de glace à l'intérieur des géocomposite est possible. 

Le but de l'étude est de vérifier si les géocornposites peuvent être bloqués par 

la glace sous les conditions d'utilisation pendant les deux périodes critiques. 



Dans le système de géotextile tricouche, les vides sont beaucoup plus petits et 

nombreux. 

3.1 .l Description 

Le géocomposite choisi est le système Draincotex (Théoret, 1997) utilisé sur 

une section de l'autoroute 15 (autoroute des Laurentides). II est constitué d'une 

âme drainante en polypropylène aiguilleté, enveloppée de deux nappes 

filtrantes du même matériel. Les caractéristiques techniques du géocomposite 

sont tirées d'une étude précédente (Gonthier & al, 1997). 

Filtre: Géocomposite en fibres de polypropylène aiguilletées ayant un 

diamètre de 26 Pm. 

Masse surfacique: 1 50 g/m2 f 15 glm2 

Ouverture de filtration: 90 Pm (Og5 ) + 15 pm 

Permitivité: 2,73 s" f 0,8 s" 

Épaisseur: 0,9 mm environ 



Drain: Géocomposite en fibres de polypropylène aiguilletées ayant un 

diamètre de 92 Pm. 

Masse surfacique: 600 glm2 t 60 glm2 

Ouverture de filtration: 250 Fm (O9$ ) C 75 Pm 

Épaisseur: 8 mm environ 

3.1.2 Transrnissivité 

La transmissivité O d'un géotextile est le produit de la perméabilité transversale 

kp du milieu poreux sujet à l'écoulement, par son épaisseur T,. On peut aussi 

exprimer la transmissivité en fonction de la vitesse d'écoulement v a  ou du débit 

volumique dans le plan Q,, . 

- - - - -  

avec Qp : débit volumique dans le pian (m3/s) 

Tg : épaisseur du géocomposite (m) 

kp : perméabilité dans le plan du géocomposite (mls) 

vdp : vitesse d'écoulement (définie par la loi de Darcy) 

I : gradient hydraulique 

LÎ : largeur du géocomposite (m) 



Lors de t'étude de Gonthier & al. (1997), des essais de perméabilité ont été 

effectués sur le géocomposite du système Draincotex pour déterminer la 

transmissivité du géocomposite en fonction de contraintes appliquées. Les 

résultats obtenus sont présentés dans le tableau suivant. 

Tableau 3-1 Transmissivité du géocomposite (Gonthier 8 al, 1997) 

3.1.3 Comparaison avec les débits appliqués 

I 

À partir des valeurs de transmissivité, on peut calculer les débits volumiques 

dans le plan (QJ que le géocomposite peut évacuer, en fonction des 

contraintes. Les résultats sont présentés à la figure 3.1, pour une largeur 

unitaire de géocomposite et un gradient hydraulique de 1 (essai vertical). 

Contraintes Transmissivité 



Les valeurs des débits minimum et maximum de 100 ml/min/m et de 

600 rnl/min/m ont été choisies à partir de données obtenues sur le site de St- 

Donat (Lafleur & Savard, 1996) et sont considérées comme représentatives des 

conditions de terrain. 

- QP 
+ Débit maximum 
4 Débit minimum 

Contraintes (kPa) 

Figure 3.1 Capacité d'évacuation de l'écran de rive 

La courbe Qp correspondant aux débits calculés à partir des valeurs de l'essai 

de transmissivité. Les deux autres droites sont celles des débits appliqués lors 

des essais de cette étude. On remarque que les débits appliqués lors des 

essais verticaux sont inférieurs à la capacité d'évacuation du géocomposite. 

Pour les essais horizontaux, en prenant une largeur unitaire de geocomposite 

et un gradient de 0.03, on obtient les résultats suivants. 



1 / + Débit maximum 1 
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Figure 3.2 Capacité d'évacuation de la couche drainante 

A cause du faible gradient hydraulique impliqué dans la couche drainante, la 

capacité d'évacuation du géocomposite est faible. On remarque que la couche 

drainante ne peut évacuer un débit de 600 ml/minlm lin (avec un gradient 

hydraulique de 0.03). Pour évacuer un débit de 600 ml/minlm lin, il faudrait 

avoir un gradient de 0.08. Effectivement, lors des essais à écoulement 

horizontal et débit maximum, il y a accumulation d'eau dans le déversoir. 

On a décelé de plus, une faible mouillabilité du géocomposite. Ainsi, lorsque 

de l'eau est déversée sur les filtres, celle-ci à tendance à rester en surface 

avant de pénétrer à l'intérieur. Puisque Mme drainante est faite du même 

matériau que les filtres, cela peut amener sur le terrain des baisses de la 

transmissivité du géocomposite. En effet, si le géotextiie utilisé pour la 

fabrication de l'âme drainante est hydrophobe, l'évacuation des bulles d'air peut 



être empêchée en partie. La présence de bulles d'air diminue la section 

mouillée L2 * Tg du géocomposite et donc la capacité d'évacuation. 

3.2 Description du montage vertical 

Le banc d'essai est similaire à celui de Lafleur & Boursier (1994). La section 

3.2 décrit en détail le montage vertical. Les sections 3.3 et 3.4 décrivent les 

modifications qui ont dû être apportées au montage pour passer d'un 

écoulement vertical à un écoulement horizontal. 

3.2.1 Banc d'essai 

Le banc d'essai est constitué d'un échantillon de géocomposite, d'une longueur 

de 1 m, coincé entre deux sacs flexibles en néoprène remplis d'un matériel 

encaissant qui crée une pression latérale sur le géocomposite et transmet un 

flux de température uniforme au géocomposite. Pour être efficace, le radier 

d'un drain longitudinal doit être placé sous la ligne d'infrastructure (Savard, 

1996). Puisque l'épaisseur des fondations et sous-fondations varie en général 

entre 0.3 m à 1 m, la longueur de 1 m pour le géocomposite est appropriée. Un 

système en circuit fermé permet d'alimenter le montage en eau à débit et 



température constants. Le tout est disposé dans une chambre froide avec 2 

thermocouples (température de I'eau et de la chambre froide). 

Les dimensions de chaque sac sont de 1 m x 0.5 m x 0.14 m. Les sacs sont 

munis à chaque extrémité de bouchons dévissables (2 cm de diamètre). Les 

parois verticales du banc d'essai sont faites de deux planches de bois de 1 m x 

0.5 m et de deux plaques en plastique translucide de 1 m x 0.30 m qui 

permettent la visualisation de la progression du gel (Figure 3.3). Le plancher 

du montage est constitué d'une planche de bois avec une ouverture de 2 cm 

de large (Figure 3.4) pour permettre à I'eau de s'écouler et empêcher le 

géocomposite d'être coincé. Deux coins en membrane PEHD sont placés le 

long de l'ouverture et empêchent le géocomposite d'être pincé par les deux 

sacs. Deux trous permettent aux bouchons des sacs de passer à travers le 

plancher. Les parois de bois sont vissées au plancher du montage et les parois 

de plastique sont vissées aux parois de bois. Ainsi on peut enlever n'importe 

laquelle des parois sans défaire le montage au complet. Une structure 

métallique est vissée à la partie supérieure des parois de bois pour supporter le 

déversoir et le tuyau d'alimentation en eau. 



aluminium, placés aux coins des sacs en contact avec les géomembranes 

permettent de maintenir le géocomposite sur un plan, lors du remplissage des 

sacs. Les coins métalliques ne sont pas en contact avec le géocomposite. 

Coin en aluminium Coin en géomembrane 

Figure 3.4 Plancher du montage 

Le déversoir est fabriqué à partir d'une géomernbrane PEHD. II a une forme en 

V et est troué à intervalles réguliers (17 trous de 1 cm) pour permettre à l'eau 

de se distribuer uniformément le long du géocornposite (Figure 3.5). Le 

déversoir est placé de façon à être contenu par les deux géomembranes et que 

les trous soient alignés sur le géocomposite. 



a) vue en coupe b) vue en plan 

Figure 3.5 Déversoir 

3.2.2 Alimentation en eau 

L'alimentation peut être de continue ou intermittente. 

3.2.2.1 Alimentation continue 

L'eau circule en circuit fermé, elle est pompée du réservoir et passe dans un 

bain thermostaté avant d'être déversée dans le déversoir. Elle coule à l'intérieur 

du géocomposite et est captée à la sortie du géocomposite dans le bac 

réservoir. La figure 3.6 montre le schéma d'alimentation en eau du montage. 
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Figure 3.6 Alimentation continue 

3.2.2.2 Alimentation intermittente 

Les débits testés sont en général de type continu. Les températures, durant le 

jour lors d'un période de dégel hivernal ou printanières sont au-dessus de O OC, 

tandis qu'en hiver et au début de la période de dégel printanière, elles sont 



Figure 3.7Alimentation intermittente 

3.2.3 Therrnocouples 

Six thermocouples ont été placés de façon à obtenir les températures du 

matériau encaissant et à l'intérieur du géocomposite. La figure 3.8 montre le 

positionnement des thermocouples. 



a Thermocouples placés à I'intérieur du géocompositel paroi avant 
O Thermocouples placés a l'intérieur du géocomposite1 paroi amère 
o Thermocouples placés à l'intérieur des sacs, approximativement au centre 

Figure 3.8 Positionnement des thermocouples 

Les deux thermocouples à I'intérieur des sacs, permettent de vérifier la 

température du matériau encaissant. Les quatre therrnocouples à I'intérieur du 

géocornposite ont été prévus pour obtenir les variations de températures en 

fonction de la progression de la glace. L'enfoncement des thermocouples dans 

le géocomposite est cependant difficile à cause de l'enchevêtrement des fibres. 

Ils sont positionnés en périphérie du géocomposite et donnent les 

températures aux bordures. L'information provenant des quatre thermocouples 

est donc assujetie à erreur et ils ont été éliminés lors des derniers essais à 

écoulement vertical. 



Un thermocouple à l'intérieur de la chambre froide permet de vérifier la 

température ambiante. Un autre thermocouple est placé dans le déversoir pour 

vérifier la température de I'eau. 

3.2.4 Isolation du montage 

Le banc d'essai est isolé à l'aide de laine minérale (R-12) aux extrémités 

(déversoir et réservoir) pour empêcher I'eau de geler à l'entrée et à la sortie. 

Au début du programme les quatre faces latérales n'étaient pas isolées. On a 

réalisé que ces conditions étaient plus sévères que la réalité et pouvaient 

favoriser l'amorce de formation de glace sur les bordures de l'échantillon. On a 

par la suite posé de l'isolation latérale le long des panneaux en plastique pour 

empêcher un apport de froid bidimensionnel. La figure 3.9 compare l'apport de 

froid sur le terrain (Figure 3.9 a) et dans le montage (Figure 3.9 b et c). La 

figure 3.10 montre une photo de l'isolation lors d'un essai à écoulement vertical 

et débit intermittent. 



Figure 3.10 Isolation du montage lors d'un essai à écoulement vertical et 
débit intermittent 

3.3 Montage horizontal 

Pour les essais simulant une couche drainante, on a utilisé le même banc 

d'essai. Pour une couche drainante, 1 m est représentatif des conditions 

prévalant avant la connexion avec l'écran de rive. Pour une route, la longueur 

du géocomposite dépend du nombre de voie et l'eau d'infiltration est exposée 

au froid sur une plus grande distance que dans le cas d'un drain vertical. 



Toutefois, la longueur de l'échantillon peut être considérée comme 

représentative. Au milieu de la route, les débits sont très petits et vont en 

augmentant vers les épaulements. Si les débits sont trop petits, I'eau va geler 

au tout début du géocomposite et va bloquer l'entrée de I'eau dans le 

géocomposite. L'eau va alors se déplacer vers la prochaine fissure et faire 

augmenter le débit entrant dans cette fissure. Les problèmes sont donc 

attendus vers la fin de la couche drainante. 

Le montage est couché avec une pente de 3 % sur l'horizontale pour se 

conformer à une section transversale de route type. Le bas du montage (sac 

et géomernbrane inférieur) a été étanchéisé pour empêcher les fuites le long 

des parois latérales. Pour faciliter le montage, on a dû éliminer les 

thermocouples dans le montage. Tous les essais horizontaux ont été effectués 

avec de l'isolation latérale. 

3.4 Montage de la dalle de béton 

Le montage avec la dalle de béton est une variante du montage à écoulement 

horizontal (figure 3.1 1). Le sac placé sur le géocomposite et le géocomposite 

sont remplacés par une dalle de béton qui a été préalablement coulée 

directement sur le géocomposite (Gonthier & al., 1997). Le sac sur lequel la 



dalle de béton est placé est empli de sable sec. La dalle de béton fait 0.65 m 

de long X 0.35 m de large X 0.25 m d'épaisseur. Pour agir en tant que 

déversoir et forcer I'eau à passer dans le géocomposite, une géomembrane 

semi-rigide est placée sous le géocomposite et rabattue le long des parois de la 

dalle. La membrane est fixée à la dalle a l'aide de rivets. 

Figure 3.11 Dalle de béton 

Un tuyau a été ajouté pour évacuer l'excès d'eau à l'intérieur du déversoir. Le 

trop plein est placé de façon a évacuer I'eau excédant une hauteur de 13 cm 

par rapport au géocomposite (Figure 3.12). Le montage est isolé latéralement. 
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Figure 3.13 Profil de température dans une route (Roy & al. 1992) 

On observe une variation de - 15 O C  à + 7 O C  près de la surface, qui s'atténue 

pour atteindre O OC à 1 m de profondeur. La courbe de 91-01-25 est 

représentative d'un profil hivernal. La courbe 91 -02-06 montre une période de 

réchauffement, la température en surface augmente tandis qu'il y a peu de 

variation en profondeur. Les deux autres courbes sont typiques du début et de 

la fin du dégel printanier. La température a la surface passe de - 2 OC à 7 OC 

tandis que la température en profondeur passe de - 2 OC à O OC. Ces variations 

de température étant difficiles à simuler dans la chambre froide, la température 

ambiante a été fixée à - 6 OC pour obtenir des températures de - 2 OC à 

l'intérieur des matériaux encaissants. 



3.5.2 Température de I'eau 

Sur le terrain, la température de I'eau n'est pas constante. L'eau qui vient de 

dégeler a une température de près de O OC. La température de I'eau de pluie et 

de I'eau en mouvement dépend de la température extérieure, de 

I'ensoleillernent, de la vitesse d'écoulement etc. En considérant les limites de 

précision du bain thermostaté et que I'eau à O OC peut être difficile à pomper, 

la température a été fixée à 2 OC. 

3.5.3 Matériaux encaissants 

Les matériaux encaissants jouent un double rôle: ils confinent le géocomposite 

et permettent un apport de froid uniforme. Dans le cas des écrans de rive, les 

débits appliqués sont beaucoup plus faibles que la capacité d'évacuation du 

géocomposite (voir figure 3.1), ils ne sont donc pas affectés par les variations 

de transmissivité. Dans le cas des couches drainantes, les débits appliqués 

sont du même ordre de grandeur que la capacité d'évacuation. Elles sont donc 

affectées par les variations de la transmissivité. 



Les matériaux encaissants utilisés sont un sable à degrés de saturation sec, 

partiellement saturé et totalement saturé et une dalle de béton. Un mélange 

eau-antigel est utilisé pour saturer le sable. 

3.5.3.1 Mélange eau-antigel 

Le mélange eau-antigel est constitué d'un volume d'antigel pour trois volumes 

d'eau. On a utilisé ce mélange pour saturer le sable encaissant, afin d'éviter 

que l'eau interstitielle ne se transforme en glace (augmentation de volume et 

des contraintes sur le banc d'essai) durant un essai. 

3.5.3.2 Caractéristiques du sable 

Le matériau choisi pour emplir les sacs est un sable (Cu = 1.6, 0.3 mm c d < 

1.25 mm) classifié SP selon USCS (ASTM, 1997). La courbe granulométrique 

du sable est présentée à la figure 3.1 4. 



Grosseurs des particules (mm) 

Figure 3.14 Courbe granulométrique du sable 

Les caractéristiques du sable en place (dans les sacs) sont présentées au 

tableau 3.2. Le détail de la méthode de remplissage est présenté en annexe B. 

Tableau 3-2 Caractéristiques des sables à l'intérieur des sacs 

Écoulement vertical 1 Écoulement horizontal 

1 Matériaux 1 Sec 1 Partiellement 

1 saturé 

Saturé s 



Pour le calcul des contraintes horizontales maximales (essais avec écoulement 

vertical), le coefficient des terres au repos est supposé égal à 0.45 (Ko d'un 

sable normalement consolidé selon Holtz et Kovacs, 1991 ). 

3.5.3.3 Dalle de béton 

La dalle de béton utilisé lors des essais provient d'une étude antérieure 

(Gonthier & al., 1997). La dalle de béton ayant une masse totale de 137 kg, la 

contrainte appliquée sur le géocomposite est donc de 6 kPa. 

3.5.3.4 Conductivité thermique 

L'apport de froid à travers le matériau encaissant vers le géocomposite est lié à 

la conductivité thermique du matériau. Plus la conductivité thermique est 

élevée, plus l'apport de froid est grand. Pour un sable, la conductivité 

thermique dépend entre autres, de la teneur en eau, de la porosité et de la 

masse volumique sèche (Ladanyi, 1996). 

Le mélange eau-antigel a une conductivité thermique de 0.37 Wfm°K (voir 

calcul en annexe A) tandis que la glace a une conductivité thermique de 



2.2 W/m°K La conductivité thermique d'un sable gelé sur le terrain est donc 

plus élevée que celle du sable utilisé dans notre montage. 

De plus, sur le terrain, le géocomposite est en contact direct avec le sol. Dans 

le banc d'essai, la quantité de froid provenant de l'air ambiant et allant vers le 

géocomposite, est diminuée par la présence de la géomembrane, des parois du 

sac et de la paroi de bois du montage. 

La conductivité thermique globale kg d'un système dépend de l'épaisseur 4 

dans le sens du gradient de température de chaque matériau et de sa 

conductivité thermique ki. On peut l'évaluer l'aide de l'équation suivante: 

où 1, est la somme des épaisseurs 

Les résultats sont donnés dans le tableau 3.3. 11 est à noter que les coins en 

aluminium et les coins en géomembrane ainsi que les débordements vers 

l'intérieur du montage. du déversoir et de la bavette sur le géocomposite n'ont 

pas été pris en compte. Les variations de conductivités thermiques dues à leur 

présence sont minimes (ordre du centième de W/m°K) et localisées. 



Tableau 3-3 Conductivités thermiques des matériaux utilisés lors des 
essais 

Matériaux encaissant 

Sable Sr = O % 
L 

Béton 

Conductivité 

thermique 

ki (Wh°K) 

0,6* 

Sable Sr = 70 % 

1 Sacs I O, 3- I I 

0, 92* 

Sable Sr = 100 % 

Géomembrane PEHD 

1 Bois 1 0,126 * 1 19.0 1 

, 
Epaisseur 

li (mm) 

150 

1-78" 

* de Harlan & Nixon (1 978) 

Conductivité 

thermique globale 

kg (W/m°K) 
I 

0.41 

250 

1 -94' 

0,3" 

" de Toulikian & al. (i 970) 

0.91 

150 

3.5.4 Durée 

0.71 

i 50 

1 

Etant donné qu'un sol prend environ 1 mois pour dégeler en profondeur (Roy & 

al, 1992), la durée maximale de chaque essai a été fixée à 30 jours. 

0.73 

Sur le terrain, les 50 premiers centimètres dégèlent rapidement (= une 

semaine). Une durée d'un mois est donc représentative pour les essais à 

écoulement vertical mais sévère pour les essais à écoulement horizontal. 



Les réchauffements hivernaux sont en général de quelques jours seulement 

(Environnement Canada, 1994-1 998) et une période d'un mois peut-être 

considérée comme sévère pour les couches drainante et les écrans de rives. 

3.6 Procédure 

3.6.1 Préparation 

Une fois le banc d'essai monté (détail en annexe C), les thermocouples placés 

et le montage isolé thermiquement, on met en route la chambre froide, la 

pompe, le bain thenostaté et le rhéostat. On ajuste au préalable la vitesse de 

la pompe pour avoir le débit désiré. Durant les heures suivantes, on vérifie la 

température de I'eau et on ajuste le bain thermostaté de façon à obtenir une 

température de 2 OC. 

3.6.2 Déroulement de l'essai 

À chaque jour, on vérifie l'alimentation en eau et on relève les températures de 

l'air ambiant, de I'eau et des therrnocouples placés à l'intérieur des sacs et du 

géocomposite. 



Lorsque le débit est nul (ou après 30 jours), on arrête la pompe et on ferme le 

rhéostat ainsi que le bain thermostaté. On enlève l'isolation et le déversoir et 

on démonte la structure métallique. On couche le montage à l'horizontale et 

on dévisse la planche de bois du dessus. On enlève la géomembrane puis on 

observe l'état du géocomposite. Si il y a formation de glace, on en relève 

l'étendue. 

3.7 Programme d'essais 

Quatre matériaux encaissants ont été testés: sable sec, sable saturé, sable 

partiellement saturé et dalle de béton. Les directions d'écoulement ainsi que 

les débits ont varié. Le programme d'essai est présenté dans le tableau 3.4. 

Tableau 3-4 Programme d'essai 

Direction 

d'écoulement 

Vertical 

Horizontal 

1 Débit 

: (ml/min/m lin) 

1 O0 (i) 

100 (i + 1) 

1: essai avec isolation latérale 

i: essai avec débit intermittent 

Sable 1 Sable 1 Sable 

Sr=O% Sr=70% Sr=100% 

Béton 



Chapitre 4 Résultats 

Ce chapitre présente les observations au cours des essais et fait une analyse 

sommaire des résultats: L'influence de facteurs tels la direction d'écoulement, 

les débits appliqués et la nature du matériau encaissant est commentée. 

4.1 Blocage du géocomposite 

L'ensemble des résultats d'essais est présenté au tableau 4.1. Lorsqu'il y a un 

écoulement à travers le géocomposite après 30 jours, le résultat est considéré 

comme étant non bloqué (N.B.). Lors de certains essais, de la glace s'est 

formée à I'intérieur du géocomposite sans toutefois empêcher l'écoulement de 

l'eau. Les croquis des formations de glace à l'intérieur du géocomposite au 

démontage sont présentés à l'annexe D. II est à noter que les zones avec 

formations de glace sont solides, c'est-à-dire que le géocomposite est raide 

(non pliable). On dénote l'influence des trois facteurs ci-haut mentionnés. 

Dans les sections suivantes, on a isolé chacun des facteurs. 



Tableau 4-2 Comparaison des résultats selon les débits 

non isolé) K L  

Matériau 

encaissant 

Sable sec 

Béton 

Sable saturé 

Débit 

(rnl/rnin/m lin) 

L'influence de la continuité des débits est 

qu'un débit intermittent est plus favorable 

Résultats 

N.B. 

N.B., gelé aux bordures 

Bloqué en 21 jours 

Bloqué en 5 jours 

N.B. 

Bloqué en 5 jours 

montrée au tableau suivant. 

à la formation de glace. 

Tableau 4-3 Influence de la continuité du débit 

1 Écoulement 1 Matériau 1 Débit 

I 1 encaissant 1 (rni/rn/m lin) 

100 intermittent I 
Horizontal 

On voit 

Résultat 

Sable sec N.B. un peu de glace en 100 continu 

bordure 

N.B. glace partout sauf en 

bordure 



par un gain d'énergie cinétique (vitesse d'écoulement) ou thermique (libération 

de chaleur). Donc, pour un débit et un matériau encaissant identiques, la perte 

de chaleur est moindre pour I'écoulement vertical que pour I'écoulement 

horizontal. Le tableau 4.5 montre l'influence de la direction d'écoulement sur la 

formation de glace. 

Tableau 4-5 Comparaison des résultats selon la direction d'écoulement 

4.2 Analyse sommaire pour les essais avec écoulement vertical 

Écoulement 

Vertical (non-isolé) 

Horizontal 

Pour les essais à écoulement vertical, il y a eu blocage avec sable saturé et 

débit minimum et lors de l'essai avec sable partiellement saturé et débit 

minimum. Ces essais ont cependant été effectués sans isolation latérale. Cela 

représente une condition beaucoup plus sévère que sur 

un sable partiellement saturé avec débit minimum a été 

Matériau 

encaissant 

Sable Sr = 100 % 

e terrain. Un essai sur 

effectué avec isolation 

latérale pour vérifier l'influence de l'isolation latérale sur les résultats. L'essai 

n'a présenté aucun blocage et la quantité de glace à l'intérieur du 

géocomposite permet de supposer qu'un essai sur un sable saturé avec débit 

Débit (mllminlm lin) 

600 

Résultats 

N.B. 

4 jours 



minimum ne bloquerait pas s'il y avait une isolation latérale du montage ou du 

moins prendrait quelques semaines avant de présenter un blocage total. Même 

sans aucune isolation latérale il n'y a pas eu de blocage dans les essais avec 

sable sec et I'essai avec sable saturé et débit maximum. Cessai avec sable 

partiellement saturé, débit minimum intermittent et isolation latérale a présenté 

qu'un petite formation de glace. L'influence de l'intermittence du débit dans le 

cas des essais à débit vertical est donc faible. 

4.3 Analyse sommaire des résultats des écoulement horizontal 

Pour les essais à écoulement horizontal, il y a eu blocage lors des essais avec 

dalle de béton (débit minimum et maximum) et pour I'essai avec sable saturé et 

débit maximum. Lors de l'essai avec débit intermittent (sable sec et débit 

minimum), il n'y a pas eu de blocage mais la formation de glace à l'intérieur du 

géocomposite était plus importante que lors de I'essai à débit continu. 



Chapitre 5 Discussion 

Outre les dimensions, la température de l'eau et la valeur des débits discutés 

au chapitre 3, ce chapitre porte sur I'applicabilité des résultats d'essai aux 

conditions de terrains. 

5.1 Température ambiante 

Les températures à l'intérieur de la structure d'une route durant un 

réchauffement (dégel) hivernal et durant le dégel printanier dans la région de 

Québec ont été obtenues de la figure 3.13. Elles sont présentées au tableau 

5.1 et comparées aux conditions d'essais. 

Les profils de température sont difficiles à reproduire en laboratoire, 

spécialement pour les drains horizontaux qui sont exposés à de grandes 

Tableau 5-1 Représentativité des températures 

Représentativité 

variable 

représentatif 

sévère 

représentatif 
* 

Température 

du sable (O C) 

- 2 

- 2 

- 2 
- 2 

Période 

Dégel 

hivernal 

Dégel 

printanier 

Niveau 

mm 

50 

800 

50 

800 

Température sur 

le terrain (OC) 

+ 1 

- 3 
+ 1 

- 2 



variations de températures. La température des sables 

conditions en profondeur (800 mm) mais elle est sévère 

est représentative des 

pour les conditions en 

surface, spécialement pour les essais représentant un drain de surface en 

période de dégel (où les températures peuvent monter au-dessus de 5 OC en 

peu de temps). 

Pour un réchauffement hivernal, la température près de la surface varie selon 

l'intensité et la durée du réchauffement. Si la période précédant le 

réchauffement est froide et que le réchauffement est court et peu intense, alors 

la température du sol peut rester sous zéro. En profondeur, la température ne 

varie pas beaucoup. La température est donc représentative en profondeur et 

en surface si le réchauffement est peu intense. La température est toutefois 

sévère si le réchauffement est intense (température élevée le jour et la nuit). 

Pour les essais avec la dalle de béton, les conditions d'essai étaient très 

sévères pour un réchauffement hivernal et pour un dégel. La surface du béton 

était en contact direct avec l'air ambiant de la chambre froide (- 6 OC). Cette 

température est beaucoup plus sévère que celles observées lors d'un dégel 

hivernal et printanier. Les températures moyennes lors des dégels du mois de 

janvier et d'avril des cinq dernières années (Environnement Canada, 1994- 

1998) sont données dans le tableau 5.2. 



l'eau, fait que le sable ne gèle pas. Tous ces facteurs réduisent la valeur 

globale de la conductivité thermique du système. Les calculs de conductivité 

thermique global du montage ont été faits à la section 3.5.3.4 et ont été 

présentés au tableau 3.3. 

5.2.3 Comparaison des conductivités thermiques 

Les valeurs des conductivités thermiques ont été déduites de Xarlan & Nixon 

(1978) en prenant pour le terrain les valeurs correspondant aux sables gelés et 

pour les essais, les valeurs de conductivité thermique globale. Ces valeurs 

sont comparées dans le tableau 5.3. 

Tableau 5-3 Comparaison des conductivités thermiques 

1 Matériaux de 1 pd 1 Conductivité thermique (W/m°K) 1 

* selon Harlan & Nixon (1978) 

confinement 

Sable (essai) 

Sable (terrain) 

Les conductivités thermiques des matériaux d'essai sont plus faibles que celles 

rencontrées sur le terrain (excepté pour celle du sable sec). Les conditions 

d'essais semblent être moins sévères que sur le terrain. 

(kg/m3) 1 1 '  
0.73 

4.0" 

0.71 

3. O* 

1600 

2000 

0.41 

0.5" 



5.2.4 Conditions aux frontières - Rux thermique 

Tel qu'expliqué à la section 3.2.4, I'apport de froid vers le géocomposite est 

différent géométriquement pour le banc d'essai et pour le terrain. Dans le 

premier cas, il est uniforme dans une direction horizontale alors que dans le 

deuxième cas il est presque vertical. La quantité de chaleur vers le 

géocomposite se calcule à l'aide de l'équation de Fourier: 

où k est la conductivité thermique (W/m°K), AB est une différence de 

température (OK), Ax est la distance (m) sur laquelle il y a ce changement de 

température et A est la surface normale au flux thermique (m2) sur laquelle on 

veut connaitre l'apport en chaleur. Le gradient thermique est toujours dirigé de 

la température la plus chaude vers la température la plus froide. Par 

convention, une valeur négative de QG indique une perte de chaleur (apport en 

froid). Pour simplifier la compréhension, les apports en froid seront indiqués 

par le symbole Qr et donnés en valeur absolue. 



5.2.4.1 Dans le banc d'essai 

Pour les essais, la température ambiante est de - 6 OC tandis que la 

température mesurée à l'intérieur des sacs est de -2 OC. Le gradient de 

température est toujours perpendiculaire au géocomposite et il est symétrique 

de part et d'autre du géocomposite sauf pour l'essai avec dalle de béton ou 

I'apport provenant de la dalle est différent de I'apport provenant du sac sur 

lequel repose la dalle. On obtient les résultats suivants comme apport de froid. 

Pour fin de comparaison, on trouve pour la valeur de QI total du système avec 

la dalle de béton I'apport de froid équivalent qui se dirigerait vers le 

géocomposite si la dalle avait les mêmes dimensions que l'échantillon. On voit 

que I'apport de froid obtenu à partir du sable sec est près de l'apport à travers 

la dalle de béton. 

Tableau 5-4 Apport de froid vers le géocornposite lors des essais en 
laboratoire 

sr 

(%) 

O 

70 

1 O0 

Dalle 

k 

(Wlm°K) 

0.41 

0.71 

0.73 

0.91 

0 

("K) 

4 

4 

4 

4 

Qf (1 sac) 

(w) 
4.8 

8.3 

8.3 

5.5 
I 

x 

(ml 

0.171 

0.1 71 

0.1 71 

0.1 51 

Qr total 

(w) 
9.6 

16.6 

17.0 

10.3 

A 

(m2) 

0.5 

0.5 

0.5 

0.23 



5.2.4.2 Sur te terrain 

Sur le terrain, le flux thermique est presque vertical. En effet, si l'on regarde les 

courbes isothermes de la figure 5.1 sous une chaussée, on voit qu'elles sont 

presque horizontales. 

Centre de Centre de i2paufement 
la route la voie 

Direction du gradient thermique (froid) 

Figure 5.A Profil des températures sous la route 122 au début du dégel 
printannier, le 12 mars 91 (d'après Roy & al., 1992) 

II y a des distorsions aux abords de la ligne de rive (fin du revêtement des voies 

de roulement) qui inclinent légèrement le gradient thermique vers les 

accotements. On pose comme hypothèse que la présence d'un géocomposite 

n'aurait pas d'effet sur le profil thermique sous la route. Bien que le 



géocomposite soit fait d'un matériel synthétique (k = 0.3 Wlm°K) et d'air 

(k = 0.024 W/m°K), son effet est très limité à cause de sa faible épaisseur. 

Les profils de températures varient avec la température de l'air et dans le temps 

(Ladanyi, 1996). En profondeur, les variations sont moindres mais en surface, 

le profil peut varier grandement d'une semaine à l'autre. La figure 3.13, montre 

un profil de température mesuré durant un dégel hivernal (06102191). Le profil 

est similaire à un profil de début de dégel printannier. Les apports de froid sont 

donc du même ordre de grandeur lors des deux dégels. Pour le dégel 

printanier, avec la progression du dégel à l'intérieur du sol dans le temps, ies 

apports de froid diminuent pour atteindre zéro. 

À partir des valeurs du profil du 6 février 91 de la figure 3.13, on calcule les 

apports de froid pour l'écran drainant et la couche drainante. La figure 5.2a 

montre le profil général sous la route, la figure 5.2b montre le détail pour le 

calcul de I'écran de rive et la figure 5 . 2 ~  le détail pour la couche drainante. 

L'inclinaison de 25 ' des gradients de froid près de I'écran de rive provient de la 

figure 5.1. Les distorsions du profil de températures sont dues à la présence de 

matériaux ayant des conductivités thermiques différentes. Puisque les 

conductivités thermiques du revêtement et des épaulements ne varient pas 



I'amortissement des variations de température à travers ces deux couches est 

toujours le même. 

Revêtement ~~aulernent 

1 

profil typique d'une période de dégel 

E 

2 

c) couche drainante 

- 0°C : gradient thermique (froid) - - - _  - 
b) écran de rive 

Figure 5.2 Calcul de l'apport de froid vers un écran de rive et une couche 
drainante lors d'une période de dégel 

Pour l'apport de froid vers l'écran de rive (figure 5.2b), on calcule l'apport vers 

la surface Al et la surface AI (les deux surfaces ont les mêmes dimensions: 

largeur de 0.21 rn et longueur de 0.5 m). La longueur de 0.5 m a été choisie 



température (et donc des apports de froid) pourrait indiquer les cas présentant 

des apports de froid plus sévères que ce qui a été calculé ci-haut. 

5.2.4.3 Résumé de la représentativité des matériaux encaissants 

Si l'on considère la conductivité thermique globale du montage, on aurait 

tendance à croire que les conditions d'expérimentation ne sont pas assez 

sévères. Toutefois en calculant les apports de froid, on démontre que les 

apports de froid vers les écrans de rive et vers les couches drainantes lors des 

essais sont beaucoup plus sévères que ce qui s'observe sur le terrain. Les 

résultats sont donc très pessimistes au point de vue de l'apport de froid. 

5.2.5 Conditions aux frontières - flux hydraulique 

Dans le montage, l'alimentation en eau se fait uniquement sur un plan amont 

perpendiculaire à la nappe, par l'intermédiaire du déversoir. Bien que ce 

dispositif reproduise fidèlement le cas de l'apport d'une couche drainante 

raccordée à l'écran de rive, il est possible que ce dernier soit aussi alimenté en 

tout ou en partie par suintement le long des faces latérales, par l'eau libre 

contenue dans les agrégats de fondation et de sous-fondations. Les faibles 

débits impliqués dans ce suintement peuvent cependant amener un bourrage 



graduel par la glace, des pores de l'écran de rive s'il n'est pas périodiquement 

alimenté par une eau plus chaude. 

5.3 Facteurs non considérés 

5.3.1 Salinité de I'eau 

Les essais sont faits avec de I'eau claire non saline, donc plus sévères que sur 

le terrain ou une certaine quantité de sel peut s'y retrouver. Le fait que le sel 

abaisse le point de congélation de I'eau cela pourrait empêcher I'eau de geler à 

l'intérieur du géocomposite. Toutefois les périodes où du sel se retrouve dans 

I'eau sont en général courtes et la variation des concentrations en sel est très 

grande (8randt. 1973). On ne doit pas compter sur le sel pour empêcher le gel 

lors de la conception des drains et c'est pourquoi il n'a pas été considéré lors 

de cet étude. 

5.3.2 Contraintes latérales 

Les valeurs des contraintes horizontales n'ont pas été prises en considération. 

Les valeurs obtenues lors des essais sont toutefois du même ordre de grandeur 

que ce que l'on peut rencontrer sur le terrain. Puisque les débits testés sont 



bien en-dessous de la capacité d'évacuation du géocomposite, les variations de 

transmissivité en fonction des contraintes n'affectent pas l'écoulement pour les 

écrans de rives. Pour les couches drainantes, la capacité d'évacuation est 

atteinte et les variations de transmissivité ont un effet. Les contraintes 

appliquées par les sacs sont inférieures à 17 kPa. Les variations de 

transmissivité ne sont donc pas assez grandes (Gonthier & a1.,1997) pour être 

prises en compte. 

Sur le terrain, la présence de lentilles de glace peut provoquer des contraintes 

localisées (effet de poinçonnement) sur le géocomposite. En choisissant un 

mélange eau-antigel pour saturer le sable lors des essais, on a évité les 

contraintes excessives sur les parois du montage mais on perd cet effet sur le 

géocomposite. 

La mouillabilité des fibres constituant les filtres du géocornposite n'a pas été 

étudiée dan le cadre de ce projet. On a pu, néanmoins faire les constatations 

suivantes: on a déposé sur une table un échantillon sur lequel on a versé 

délicatement de l'eau qui a formé une Raque avant d'être absorbée par la 

couche filtrante. Cette expérience a été répétée sur un échantillon placé sur le 



hivernal) puisque les dégels hivernaux durent en moyenne 3 jours. Pour les 

essais avec débit maximum, la durée est elle aussi, sévère puisque les 20 

premiers centimètres dégèlent très rapidement (moins de 2 semaines). 

Les conditions d'expérimentation étant représentatives, on peut donc conclure 

sur l'utilisation des géocomposites tri-couche en tant que drains routiers pour 

des régions avec un indice de gel de 1200 OC-jour ou moins. 



thermique étaient beaucoup plus sévères que celles rencontrées sur le terrain. 

Ceci nous amène donc à tirer certaines conclusions quant à l'utilisation des 

géocomposites tricouche pour le drainage des structures de chaussées. On a 

noté par ordre d'importance décroissante l'influence des facteurs suivants : 

Direction de I'écoulement 

En direction verticale (écrans de rive), les gradients hydrauliques sont de 

100%. Les écoulements sont relativement rapides, la durée théorique de 

passage d'une particule d'eau sur une hauteur d'un mètre étant de l'ordre de 

quelques minutes. L'eau demeure donc pour un très court laps de temps à 

I'intérieur du géocornposite et le blocage par la glace est improbable. En fait, 

on n'a pas observé de blocage complet de la section d'écoulement dans aucun 

des essais verticaux (avec isolation latérale). 

En direction horizontale (couches drainantes), les gradients hydrauliques ne 

sont que de 3%. Les vitesses d'écoulement se trouvent ainsi réduites par un 
# 

facteur de 33 par rapport à l'écran de rive et la durée de percolation de l'eau à 

l'intérieur du géocomposite excède une heure. Cette condition a été suffisante 

pour amener le blocage complet de certains échantillons. Dans ce cas, d'autres 

facteurs interviennent: 



Intensité et continuité des débits 

Les résultats des observations ont fait ressortir que les vitesses d'écoulement 

(et les masses d'eau en transit) jouaient un rôle dans la formation de glace. 

Lorsque le débit minimum de 100 mllminlrn était appliqué, le blocage se faisait 

plus rapidement. A titre d'exemple le blocage complet par la glace sous la dalle 

de béton, s'est fait en 5 jours avec le débit minimum, comparativement à 21 

jours avec un débit 6 fois plus élevé. 

L'application de débits intermittents (12 heures avec écoulement, suivies de 12 

heures sans écoulement) a généré des conditions plus propices à la formation 

de glace. Le nombre limité d'essais n'a cependant pas permis de quantifier 

cette influence. 

Flux thermique à travers le milieu encaissant 

Pour fin de comparaison, divers milieux encaissants ont été utilisés : sable sec, 

partiellement ou complètement saturé et dalle de béton. Ce dernier était le plus 

représentatif des conditions de terrain. Les observations ont fait ressortir une 

relation directe entre la rapidité de blocage et la quantité de froid disponible au 

géocomposite. Les essais (horizontaux) avec le débit maximum permettent 



cette comparaison : par ordre décroissant de flux thermique, le sable saturé 

(QI= 17.0 W) a amené le géocornposite à bloquer complètement en 4 jours 

alors qu'avec la dalle de béton (Qf = 10.3 W), le géocomposite a mis 21 jours à 

se bloquer. Avec le sable sec (QI = 9.6 W), il n'a pas gelé au cours des 30 jours 

d'essai. 

6.2 Obseivations faites aux sites d'exhumation 

Tel que mentionné en introduction, les observations faites par le Ministère des 

Transports du Québec (1991) dans le rang St-Charles à St-Jules et dans un 

tronçon de l'autoroute Henri IV à Québec ont motivé la présente étude 

expérimentale. Des écrans drainants de 1 à 1.8 rn de profondeur avaient été 

mis en place dans des sols contenant un pourcentage appréciable de fines, peu 

perméables et gélifs. Les écrans n'ont pas amélioré la performance de la 

route : les niveaux piézométriques sont sensiblement les mêmes dans les 

zones drainées et dans les zones non drainées. On a de plus noté la présence 

de cristaux de glace à l'intérieur du géocomposite. 

Le rapport ne fournit cependant pas d'indications sur le profil du radier des 

écrans drainants, l'état des exutoires pendant l'hiver et l'élévation des fossés. 

L'efficacité d'un drainage est intimement reliée à ces facteurs. 



les structures de chaussée à la condition expresse qu'il y ait suffisamment 

d'apport de chaleur des eaux d'infiltration pour empêcher la formation de glace. 

6.4 Recommandations pour travaux futurs 

Les données présentées dans ce rapport ont été obtenues à partir d'un 

processus expérimental qui a évolué considérablement au fur et à mesure de la 

progression des travaux. II est indispensable que ces observations soient 

validées par des études de comportement en vraie grandeur sur le terrain. 

En parallèle à cette étude, il serait souhaitable de procéder à une simulation 

numérique de la progression du front de dégel, couplée à une étude des 

écoulements saturésInon saturés dans la structure de chaussée, avec ou sans 

couche drainante. Cette étude permettrait en plus, d'optimiser la localisation 

des éléments de drainage. 
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ANNEXE A CALCUL DE LA CONDUCTIVITÉ THERMIQUE 

DU MÉLANGE EAU-ANTIGEL 

Pour calculer la conductivité thermique du mélange eau-antigel. on suppose 

que l'antigel est composé d'éthylène glycol (CH20HCHIOH). La masse 

moléculaire de l'éthylène glycol est de 62 glmol. 

L'équation prise pour calculer la conductivité thermique d'un mélange eau- 

éthylène glycol est celle de Rastorguev et Ganiev (Toulikian & al., 1970). 

où km est la conductivité thermique du mélange (W/m°K) 

kl est la conductivité thermique de l'éthylène glycol (W/m°K) 

k2 est la conductivité thermique de l'eau (W/m°K) 

X ,  est la fraction moléculaire de l'éthylène glycol 

x2 est la fraction moléculaire de l'eau 

t est la température moyenne du mélange (OC) 

1 ) Calcul de la fraction moléculaire 

Pour un mélange qui contient 3 volumes d'eau pour un volume d'éthylène glycol 

on obtient les masses suivantes. 



Tableau A. 1.1 Caractéristiques du mélange eau-antigel 

1 Ethylène glycol 1 Eau 

Masse moléculaire 

Masse dans le mélange 

Les conductivités thermiques respectives pour une température de -6 OC sont 

k, = 0.2531 8 W/rn°K 

k2 = 0.55024 W/m°K 

Nombre de moles 

Fraction moléculaire 

En prenant t = -6 OC 

62 g/mol 

624.71 g 

on obtient k = 0.37 W/m°K 

18 g/mol 

200 g 

1 0.07 mol 

0.475 

Note: pour le calcul, on suppose que la température du mélange est à ô OC. La 

température à l'intérieur des sacs n'a pas été prise lors de l'essai avec eau- 

antigel. Puisque la conductivité thermique augmente avec la chaleur pour l'eau 

et l'éthylène glycol, la valeur k*,,, calculée est légèrement inférieure qu'à la 

valeur réelle. Toutefois, les variations de conductivités thermiques avec la 

températures sont faibles et la valeur calculée est donc très près de la réalité 

? l . l f  mol 

O. 524 



ANNEXE B MISE EN PLACE DU SABLE À 

LYNTÉRIEUR DES SACS 

Les sacs sont mis en place dans le montage (position verticale) et sont emplis 

simultanément. Une quantité de sable sec est versée dans un sac, puis la 

même quantité est versée dans l'autre sac. De cette façon on évite 

l'affaissement des sacs lors du remplissage, ce qui courberait le géocomposite 

(on veut qu'il reste plane). Le sable est versé dans les sacs à I'aide 

d'entonnoir. L'ouverture des sacs étant de petit diamètre (<p = 25 mm), on ne 

peut pas compacter le sable. 

La masse volumique ( pd ) du sable sec est calculée approximativement en 

mesurant le poids total de sable ajouté et le volume des sacs. La porosité 

n = Vv / Vt est calculée en estimant la masse des grains solides à 

pa 2650 kg/m3. À I'aide de l'indice des vides, on peut calculer le volume du 

mélange eau-antigel nécessaire pour obtenir une saturation de 100 % et 70 %. 

Lors des essais avec sable saturé et partiellement saturé, on emplit les sacs du 

sable sec puis on ajoute la quantité du mélange eau-antigel nécessaire au 

degré de saturation voulue. 



Problèmes de saturation des sables 

Lors des essais avec sable saturé et partiellement saturé, on emplit les sacs de 

sable sec puis on ajoute la quantité du mélange eau-antigel nécessaire pour 

atteindre le degré de saturation voulu. Cette méthode est la seule réalisable 

puisque le sable déjà saturé est très difficile à faire entrer dans les sacs. La 

méthode ne cause aucun problème pour un sable totalement saturé. Toutefois, 

pour le sable partiellement saturé, on se retrouve avec le sable dans le bas des 

sacs qui est totalement saturé et le sable dans le reste des sacs qui est saturé 

à un degré moindre. 

Un test a été fait pour vérifier l'influence sur I'homogéneité de la teneur en 

solution. Le fait d'humidifier le sable avant de le déverser dans les sacs ne 

produit pas de meilleurs résultats qu'un simple déversement. Dans les deux 

cas, la distribution de la solution à l'intérieur des sacs est non uniforme parce 

que le sable est non capillaire. Lors des essais avec sable partiellement saturé 

il y a une saturation totale dans le bas des sacs et une saturation beaucoup 

moindre dans le reste. 



ANNEXE C DÉTAILS DE LA PRÉPARATION DU MONTAGE 

On place le banc d'essai sur deux poutre en bois (pour que I'on puisse poser un 

bac réservoir sous le banc d'essai). On place le géocomposite à l'intérieur du 

montage puis les sacs, pour se faciliter la tâche on peut enlever une des parois 

de plastique lors de la mise en place du géocomposite. On s'assure que le tout 

est le plus plane possible avant de commencer à remplir les sacs (détails en 

annexe 4). Une fois les sacs emplis, on pose le déversoir et la structure 

métallique. On fixe le tuyau d'alimentation sur la structure de façon à ce que 

I'eau s'écoule dans le milieu du déversoir. On place les thermocouples (s'il y a 

lieu) puis on place le bac servant de réservoir et on emplit d'eau. On installe à 

l'intérieur l'élément chauffant et le tuyau d'alimentation qui relie le réservoir au 

bain thermostaté. On place l'isolant thermique (laine minérale) en le faisant 

tenir en place à I'aide de corde. II ne reste alors qu'à faire fonctionner la 

chambre froide, la pompe, le bain thermostaté et le rhéostat. 

Pour le montage à écoulement horizontal, on procède de la même façon pour 

remplir les sacs (montage à la vertical). Une fois les sacs emplis, on verse le 

montage à l'horizontal. On enlève le sac et la geomembrane qui repose sur le 

géocornposite ainsi que le géocomposite. À I'aide de ruban adhésif de 

ventilation, on colmate les espaces où I'eau peut fuir, c'est-à-dire que I'on joint 



la géomembrane inférieur et les parois de plastiques ensemble. II faut aussi 

coller la membrane à la planche de bois qui sert de plancher. On colle ensuite 

la bavette en place. On étend le géocomposite en place et on soulève 

l'extrémité amont du banc à l'aide d'un vérin hydraulique. On place des bouts 

de bois sur la poutre qui est du coté amont pour élever cette extrémité du 

montage. On vérifie l'inclinaison du géocomposite avec un niveau et une mire. 

Un fois l'inclinaison de 3% obtenue, on retire le vérin. On installe le déversoir 

pour écoulement horizontal puis la géomembrane supérieure et le sac de 

sable, on remet ensuite la paroi de bois. On installe le tuyau d'alimentation à 

l'intérieur du déversoir (en ayant au préalable ajusté le débit) et on place un bac 

réservoir en amont en s'assurant que la bavette déverse bien l'eau dans le bac. 

On isole les extrémités amont et aval du montage puis on isole les parois 

latérales. Une fois complété on fait partir la pompe, la chambre froide, le bain 

thermostaté et le rhéostat. 



Croquis des formations de glace au démontage pour les essais qui n'ont pas présenté un blocage- 
Lorsqu'il n'y a pas de croquis du gécomposite cela veut dire qu'il n'y avait pas de formation de glace. 

Matériau encaissantsable sec 
Direction d'8coulernent vertical 
DBbit 600 ml/min/rn lin, continu 
Isolation latérale: non 
Résultat légèrement gelé 

entrée 

6 
m 
in 

Matériau encaissantsable sec 
Direction d'écoulement: vertical 
Débit: 100 rnl/rninlrn lin, continu 
Isolation latérale: non 
Résuitat aucune formation de glace 

-- 

Matériau encaissant: sable Sr = 70 % 
Direction d'écoulement: vertical 
Débit: 100 ml/rnin/m lin, continu 
Isolation latérale: oui 
Résultat gelé en partie 

entrée 

soortie 



Croquis des formations de glace au démontage pour les essais qui n'ont pas présenté un blocage. 
Lorsqu'il n'y a pas de croquis du gécomposite cela veut dire qu'il n'y avait pas de formation de glace. 

- - - - - -- - - -- - - - 

Matériau encaissantsable Sr = 70% 
Direction d'écoulement vertical 
Débit: 100 mVmin/m lin, intermittent 
Isolation latérale: oui 
Résultat légèrement gelé 

Matériau encaissant:sable sec 
Direction d'écoulement: horizontal 
Débit: 100 rnllmidrn lin, continu 
Isolation latérale: oui 
Résultat: glace en bordure 

entrée 

sortie 

MatérÏau encaissant:sable Sr = 100% 
Direction d16coulement vertical 
Débit: 100 mUminfm lin, continu 
Isolation latérale: non 
Résultat: glace en bordure 

entrée 

sortie 

Matériau encaissant:sable sec 
Direction d'écoulement: horizontal 
Débit: 100 rnl/min/m lin, intermittent 
Isolation latérale: oui 
Résultat: formation de glace importante 

1 W sortie 
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