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RESUME

L’accélération des changements climatiques entraine une intensification des événements mé-
téorologiques extrémes, avec des impacts majeurs sur les populations, les infrastructures et les
écosystemes. Les projections climatiques a haute résolution sont indispensables pour anticiper
ces évolutions, mais les modeles climatiques globaux offrent une résolution spatiale insuffi-
sante pour représenter les phénomenes de fine échelle, impliquant une sous-représentation des
extrémes, souvent tres localisés. Les modeles régionaux, bien qu’offrant une meilleure résolu-

tion, restent coliteux et limitent la production d’ensembles de simulations a haute résolution.

L’apprentissage profond constitue une alternative prometteuse pour la réduction d’échelle
des variables climatiques. Ce mémoire explore I'utilisation d’un réseau convolutif profond de
type UNet pour effectuer de la réduction d’échelle de champs de précipitations journalieres.
Deux défis majeurs sont ciblés : (1) la sous-estimation des précipitations intenses et (2) la
dégradation des performances en climat non stationnaire, par exemple dans un contexte
de changements climatiques. Ces limites freinent ’application concréte de l'apprentissage
profond pour cette tache. Nous formulons I'’hypothese qu’elles seraient en partie dues au non-

apprentissage de la dépendance des précipitations intenses a 1’évolution des températures.

Deux contributions principales sont proposées. Premierement, une contrainte douce inspirée
de la relation de Clausius-Clapeyron est ajoutée a la fonction de perte pour inciter le modele
a produire des champs de précipitations dont 1’évolution avec la température reste cohérente
avec les données de référence. Deuxiemement, deux approches complémentaires integrent
au modele des a priori issus de la théorie des valeurs extrémes. La non-stationnarité liée a
I’évolution des températures est ainsi encodée par les parametres d’extensions de la loi de

Pareto généralisée, améliorant la représentation des événements extrémes.

Les méthodes sont évaluées sur des données issues d’un vaste ensemble de simulations clima-
tiques régionales couvrant la période 1955—2099 et incluant notamment le sud du Québec. Les
résultats mettent d’abord en évidence une dépendance avérée des extrémes de précipitations
a 1’évolution des températures moyennes, tout en soulignant que les modeles d’apprentissage
profond peinent a reproduire fidelement cette relation. Ils montrent ensuite le potentiel des
approches développées pour améliorer la prédiction des précipitations extrémes et ouvrent

des perspectives prometteuses pour de futurs travaux.
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ABSTRACT

The acceleration of climate change is driving an intensification of extreme weather events,
with major impacts on populations, infrastructure, and ecosystems. High-resolution climate
projections are essential to anticipate these changes, but global climate models provide insuf-
ficient spatial resolution to capture fine-scale phenomena, leading to an underrepresentation
of extremes, which are often highly localized. Regional climate models, while offering bet-
ter resolution, remain costly and limit the production of large ensembles of high-resolution

simulations.

Deep learning offers a promising alternative for the downscaling of climate variables. This
thesis explores the use of a deep convolutional network (UNet) to perform downscaling of
daily precipitation fields. Two main challenges are targeted: (1) the underestimation of
high-intensity precipitation and (2) the degradation of performance under a non-stationary
climate, as under climate change. These limitations hinder the practical application of such
approaches. We hypothesize that they are partly due to the model’s failure to learn the

dependence of extreme precipitation on temperature changes.

Two main contributions are proposed. First, a soft constraint inspired by the Clausius-
Clapeyron relations is added to the loss function to encourage the model to produce precip-
itation fields whose evolution with temperature remains consistent with the reference data.
Second, two complementary approaches integrate priors from extreme value theory into the
model. The non-stationarity linked to temperature evolution is thus encoded through the
parametrization of extensions of the generalized Pareto distribution, improving the represen-

tation of extreme events under future climate.

Proposed approaches are evaluated on data originating from a large ensemble of regional
climate simulations covering years 1955 to 2099. The results first highlight a clear depen-
dence of precipitation extremes on mean temperature changes, while underscoring that deep
learning models struggle to faithfully reproduce this relationship. They then demonstrate
the potential of the proposed approaches to improve the prediction of extreme precipitation

and open promising avenues for future research.
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CHAPITRE 1 INTRODUCTION

L’accélération des changements climatiques renforce la vulnérabilité des populations, des éco-
systemes et des infrastructures humaines. Elle s’accompagne de modifications profondes des
régimes climatiques, caractérisées notamment par une intensification et une fréquence accrue
des événements extrémes tels que les vagues de chaleur, les inondations et les précipitations
intenses. En particulier, la distribution des précipitations pourrait étre significativement mo-
difiée selon les régions, avec, dans certains cas, une diminution des précipitations annuelles

moyennes, mais une augmentation de la fréquence et de I'intensité des événements extrémes.

Pour anticiper au mieux ces évolutions, il est essentiel de produire des projections clima-
tiques a fine échelle, afin de pouvoir modéliser les fortes disparités pour certaines variables
atmosphériques, dans les zones « complexes » telles que les régions a forte orographie, les
zones cotieres ou, par exemple, celles soumises a des vents intenses. L’amélioration continue
des modeles climatiques au cours des cinquante dernieres années a permis de générer des
projections globales avec une résolution spatiale d’environ = 50 — 100 kilometres (km), une
échelle toutefois insuffisante pour simuler certains processus de fine échelle, pourtant cruciaux
pour la prévision des événements extrémes. Les modeles climatiques régionaux constituent
une solution partielle, offrant une résolution spatiale d’environ &~ 10 km pour les modeles
les plus performants, ce qui améliore significativement la représentation des précipitations,
en particulier pour les fortes intensités. Cependant, le cotit élevé en temps de calcul de ces
modeles limite le nombre de simulations réalisables, surtout lorsqu’il s’agit de constituer de
larges ensembles de projections, pourtant indispensables pour représenter correctement la

variabilité naturelle du climat.

La quantité croissante d’observations atmosphériques (issues de stations terrestres, ballons,
bouées, et satellites) et de simulations numériques, couplée aux récents progres en apprentis-
sage profond, ont permis d’ouvrir de nouveaux horizons en modélisation numérique du climat,
avec 1’essor des approches basées sur les données. Initialement limitées a des taches relati-
vement simples, les méthodes fondées sur les réseaux de neurones sont désormais capables
d’émuler des modeles climatiques numériques a 1’échelle globale, avec des performances com-
parables, tout en réduisant le cotit de calcul de maniére drastique. Par ailleurs, 'utilisation
de I'apprentissage profond pour le raffinement de la résolution spatiale des simulations clima-
tiques s’est fortement développée ces dernieres années, offrant une alternative prometteuse

aux approches traditionnelles de réduction d’échelle.

Dans ce mémoire, nous nous intéressons a I'augmentation de la résolution spatiale (appelée



aussi « réduction d’échelle ») des précipitations issues de simulations climatiques a 1’aide de
réseaux de neurones. Cette tache, illustrée par la figure 1.1, consiste a estimer la fonction
inconnue de réduction d’échelle h, liant les champs de précipitations basse résolution, a ceux
haute résolution, a ’aide d’un réseau de neurones fy paramétré par ’ensemble de poids 6. Plus
particulierement, nous considérons les réseaux convolutifs profonds, qui exploitent 'opéra-
tion de convolution discrete pour traiter efficacement des données multidimensionnelles (e.g.,
images médicales ou champs de variables atmosphériques). Malgré leur potentiel, les réseaux
de neurones présentent plusieurs limitations bien connues qui restreignent leur application
a des contextes concrets. D'une part, en raison de phénomenes tels que 'apprentissage par
raccourci et le surapprentissage, les modeles d’apprentissage profond peuvent encoder des
relations artificielles ou physiquement incohérentes, qui ne se maintiennent pas hors de leur
domaine et période d’entrainement, en particulier dans le contexte des changements clima-
tiques. D’autre part, ces modeles peinent a représenter correctement les valeurs extrémes, en
raison de leur biais en faveur des signaux de basse fréquence. Dans le cadre de la réduction
d’échelle des champs de précipitations, les conséquences de ces limites sont bien documentées

et confirmées par nos expérimentations :

1. Une dégradation des performances au fur et a mesure que la période d’évaluation
s’éloigne de celle d’entrainement, sous l'effet de l'intensification des changements cli-
matiques ;

2. Des champs de précipitations a haute résolution présentant des structures floues et
peu localisées, les modeles d’apprentissage profond ayant tendance a converger vers
des solutions moyennes pour minimiser I’erreur, au détriment de la représentation des

événements extrémes.

L’objectif central de ce mémoire est d’atténuer ces deux principales limites. Nous faisons le
choix de limiter la taille du modele, et de fixer a priori une architecture, afin de concentrer la
plus grande partie de nos efforts sur le développement de méthodes pouvant s’adapter a tout
type de modele d’apprentissage profond appliqué a la réduction d’échelle de champs de pré-
cipitations. Pour ce faire, nous introduisons des concepts issus des sciences atmosphériques,
tels que la relation de Clausius-Clapeyron, qui quantifie I’évolution de la pression saturante
d’un gaz (e.g., vapeur d’eau dans I’atmosphere) par rapport a sa température, afin d’intégrer
au modele la dépendance des extrémes de précipitations a 1’évolution des températures en
changements climatiques. Nous exploitons également des méthodes issues de la théorie des
valeurs extrémes pour intégrer des a priori statistiques sur la distribution des précipitations
lors de I’entrainement des modeles, afin d’améliorer la représentation des extrémes, tout en

intégrant la non-stationnarité liée aux températures.

Ce mémoire est structuré comme suit : la section 2 présente le cadre théorique ainsi que les



Champs de précipitations basse résolution

( & covariables aux résolutions arbitrairse) . Champs de précipitations haute résolution
h (inconnue)

réseau de neurones

\_/

e.g., simulations GCM f 9

e.g., observations satellitaire,
simulations RCM, réanalyses, etc.

Ficure 1.1 Illustration du cadre théorique de réduction d’échelle des précipitations par
apprentissage profond.

méthodes mobilisées, suivie d’une revue de littérature en section 3. La section 4 décrit le
jeu de données utilisé pour I'évaluation des méthodes développées et propose une analyse
exploratoire afin de mettre en évidence certaines caractéristiques. L’architecture du modele
d’apprentissage profond, le traitement des données, et ’évaluation des performances du mo-
dele en changements climatiques sont détaillés a la section 5. La section 6 développe les
approches introduites pour mieux représenter les extrémes et intégrer la dépendance aux
températures. Les résultats des méthodes proposées sont présentés et analysés a la section
7. Enfin, la section 8 synthétise les principales contributions de ce mémoire, discute de leurs

limites et propose de nouvelles perspectives de recherche.



CHAPITRE 2 CADRE THEORIQUE

Ce chapitre a pour objectif d’introduire les bases théoriques des méthodes et approches uti-
lisées a travers ce mémoire. Le corps méthodologique des travaux présentés appartenant a
I’apprentissage profond, nous présentons la famille d’origine du modele utilisé : les réseaux
convolutifs profonds (CNN), ainsi que le modele choisi pour notre projet. Un tour d’horizon
de la théorie des valeurs extrémes permettra de poser les bases théoriques sur lesquelles re-
posent certaines stratégies de réduction d’échelle développées dans ce mémoire. Finalement,
nous introduirons la relation de Clausius-Clapeyron, ainsi que les différentes méthodes utili-
sées pour estimer les taux de dépendance entre les températures et les précipitations. Cela
servira ensuite a évaluer la capacité des modeles d’apprentissage profond a apprendre des
caractéristiques physiquement cohérentes afin d’améliorer leur robustesse aux changements

introduits par les réchauffements climatiques.

2.1 Apprentissage profond

L’apprentissage profond est une branche de I'intelligence artificielle, consistant a entrainer des
réseaux de plusieurs couches de parametres, via I'algorithme de rétro-propagation, pour ap-
prendre des représentations d’un jeu de données, et utiliser ces représentations pour résoudre

des taches, comme la reconnaissance d’image, ou la traduction de texte [3,4].

2.1.1 Réseaux convolutifs profonds

Les réseaux convolutifs profonds (ou Convolutional Neural Networks en anglais, CNN) consti-
tuent une famille importante de modeles d’apprentissage profond congus pour traiter majo-
ritairement des données spatiales. Leur structure consiste en une succession de couches de
convolutions, chacune composée d'un ou plusieurs filtres (ou noyaux) permettant d’extraire

des motifs spatiaux caractéristiques des données, grace a I'opération de convolution discrete.

Considérons un ensemble C' € N*. de champs bidimensionnels : 2 € R“*#*W de dimensions
spatiales H € N* et W € N%, et un filtre k € R"** de hauteur h € N* et de largeur w € N*.
avec h < H et w < W. La valeur de la cellule (7, j) du champ bidimensionnel y, résultant de
I’application de 'opération de convolution discrete aux champs d’entrée x, peut étre exprimé
en suivant la formule :

C h w
Yij = Z Z Z ki+u,j+v Lejitu,j+v (21)

c=1u=0v=0



Les dimensions des filtres étant généralement bien inférieures a celles des données (h <
H, et w < W, le nombre de parametres par couche restant ainsi faible comparé a une
couche dense traditionnelle, dans laquelle chaque variable d’entrée est reliée a chaque variable
de sortie par un parametre distinct), cela permet de construire des modeles profonds, avec
de nombreuses couches et plusieurs filtres par couche. Le modele CNN, consistant en une
succession de couches de convolutions séparées par des opérateurs d’agrégation et de non-
linéarité, détient la capacité d’apprendre des structures complexes représentant de son jeu de
données d’entrainement, en exploitant a la fois les connexions locales et globales au sein des

données, comme illustré a la figure 2.1.
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FIGURE 2.1 Illustration du champ réceptif d'une cellule (couche 3 - orange), qui correspond
A la portion de Dentrée a laquelle elle est sensible. A mesure que l'on progresse a travers les
couches du réseau, le champ réceptif s’élargit (rouge a la couche 2 puis orange a la couche
3), permettant aux neurones de capter des caractéristiques de plus haut niveau. Dans cet
exemple, les filtres sont de dimensions 3 x 3, et le pas, correspondant au déplacement du
filtre de convolution dans chaque direction, de 1. Le champ réceptif r; de la couche ¢, pour un
filtre de dimension k;, et le pas de la couche précédente s; 1 est égala :r; = r; 1+ (k;—1)-s;_1.

La non-linéarité, inhérente aux données complexes, est prise en compte par 'ajout de fonc-
tions d’activation entre les couches de convolution, comme ReLLU(z) = max(0, z) ou SiLU(z) =
z - sig(z), ou sig(z) = 1/(1 4+ e™*) est la fonction sigmoide. D’autres opérateurs, notamment

d’agrégation par maximum, permettent de modéliser la non-linéarité des données.

Les parametres des couches de convolution sont estimés par descente de gradient stochastique,
via la rétro-propagation. Soit fy le CNN paramétré par les poids 6 € R?, regroupés dans un
vecteur de dimension d, destiné a modéliser h : * — y, ou = et y sont des tenseurs a
valeurs réelles, de dimensions arbitraires. L’apprentissage des parametres s’effectue par la

minimisation d’une fonction de cotit £ selon la regle :

9i+1 _ 92 —n- Velﬁ(fel (:L,(ni:n(i—&-l)))7 y(ni:n(i+1))) (22)



avec 1) le pas d’apprentissage, et a0+ ¢ g (a1 © 4 Jes j-éme mini-lots de don-
nées, de n échantillons. Les parametres 1 et n n’étant pas appris, on les fixe manuellement
ou via des algorithmes d’optimisation d’hyperparametres. La fonction de cofit joue un role
central en apprentissage profond, car elle définit ’espace dans lequel les parametres 6 sont
optimisés, influencant ainsi fortement les performances et le comportement du modele apres
I’apprentissage. L’impact de la fonction de cotlit pour la réduction d’échelle est exploré plus

en détails & la section 3.3.1.

Les CNNs ont d’abord été développés et utilisés pour de la reconnaissance d’images, en
utilisant les opérateurs d’agrégation pour réduire les dimensions spatiales tout en conservant
les caractéristiques dominantes des données [5]. Ils ont rapidement été adaptés a des taches
dites image vers image, notamment en imagerie médicale, nécessitant une sortie pour chaque

pixel de 'entrée. C’est dans ce contexte qu’a été introduite I’architecture UNet [6].

2.1.2 UNet

Initialement congue pour de la segmentation d’images médicales, cette architecture s’est im-
posée a travers de multiples applications, et comme un modele convolutif profond de référence.
Le UNet est composé de deux chemins symétriques, contractif et expansif, fonctionnant tel

un encodeur/décodeur :

— L’encodeur : agit comme un extracteur de caractéristiques F : © — z. Contenant
L niveaux, F transforme une entrée x € RE*H*W de grandes dimensions spatiales,

L , .
xW/2" contractée, mais avec de nombreuses

en une représentation latente z € RP*H/2"
caractéristiques, aussi appelées canaux (D € R% > (). Chaque niveau est composé
d’au moins une couche de convolution, suivie d’une fonction d’activation, et d’une
opération d’agrégation (par moyenne ou maximum) permettant de réduire la résolution
spatiale.

— Le décodeur : permet de recomposer les détails de la sortie y € REXH*W 4 partir

€ RIXH2XW/2 jsques du niveau | € [|1, L]

des caractéristiques intermédiaires Ej(x)
de I'encodeur et comprenant C' < d; € R, < D canaux, et de la sortie de I'encodeur :
D : (z, Ey.-1(z)) — y. Chaque niveau utilise une couche de convolution transposée
(ou un opérateur de sur-échantillonnage, suivi d’une couche de convolution) pour
augmenter la résolution spatiale, en intégrant les caractéristiques apprises a chaque
niveau de ’encodeur par des connexions de saut. Comme pour I’encodeur, une fonction

d’activation est appliquée apres chaque couche de convolution.

Les connexions de saut (skip connecions en anglais) sont cruciales pour le UNet, permettant

de conserver I'information spatiale fine qui serait sinon perdue par la réduction de résolution



spatiale lors de la contraction vers 'espace latent. La figure 2.2 représente une architecture

UNet standard avec 3 niveaux.

De nombreuses améliorations a I’architecture initiale ont été proposées, comme l'intégration
de blocs résiduels, 'ajout de connexions denses entre niveaux, l'utilisation des mécanismes
d’attention pour pondérer les régions de I'image, ou des combinaisons de ces améliorations
[7-9]. Dans ce mémoire, nous utiliserons un modele UNet résiduel issu de la littérature,

introduit plus en détails dans la section 5.1.1.

64x64
64x64
64x64
64x64
64x64
64x64
64x64

—>

‘ 2x2 max pool
T transposed conv
fI)ersampling +3x3 conv

3x3 conv +RelLU

32x32
32x32
32x32
32x32
32x32
32x32

concatenation

16x16
16x16
16x16

F1GURE 2.2 UNet composé de 3 niveaux, avec convolution transposée ou suréchantillonnage
et convolution. L’entrée et la sortie sont de dimensions 64 x 64 x 3, et 'espace latent 16 x
16 x 256.

2.2 Théorie des valeurs extrémes

La théorie des valeurs extrémes est une branche des probabilités et des statistiques qui s’in-
téresse spécifiquement aux événements rares et aux queues des distributions. Cette théorie
trouve de nombreuses applications dans des domaines variés tels que la météorologie ou la
finance [10].



2.2.1 Approche par maximum de blocs

Soit une séquence de variables aléatoires indépendantes X7, ..., X, (correspondant au « bloc
»), suivant une méme fonction de répartition F', la loi des valeurs extrémes généralisée s’in-

téresse au comportement de la variable :

M, = max{Xy, ..., X, }. (2.3)

Théoriquement, il est possible d’obtenir la densité de la variable aléatoire M,,, en utilisant
I'indépendance des variables (X)) :

P(M, <z)=P(X; <z--,X,<z2)=]]PX; <z2)={F(2)}". (2.4)

i=1

Or, en pratique, F' est inconnue et d’infimes erreurs d’estimation (inévitables) peuvent mener
a de larges erreurs lorsque n est grand. Une autre approche consiste a approximer directement

la distribution F™ lorsque n — oo.

Une propriété importante a noter, est que pour tout z < z, = inf{z € R | F(z) = 1}, on a
{F(2)}" — 0 lorsque n — oco. Autrement dit, la densité de probabilité de la variable M,
se concentre asymptotiquement au voisinage supérieur de la borne z,. Il est donc nécessaire
d’effectuer une renormalisation de M,, pour stabiliser son emplacement et sa variance lorsque
n augmente. Le théoreme 1 donne, sous ’hypothese de la renormalisation, une famille de lois

permettant de modéliser F™ pour n assez grand.

Théoréme 1 (Théoréme de Fisher-Tippett-Gnedenko) Soient Xi,--- , X, une séquence
de variables aléatoires indépendantes et identiquement distribuées, et M,, = max{Xy, -+, X, }.

Pour deux suites appropriées {a, > 0} et {b,} telles que :

P (A/[n_bn < z) — G(z) lorsque n — o0 (2.5)

Qn

pour une fonction de distribution G non-dégénérée, alors G est de la forme :

exp{—[1 +&(554)] 76} siE#0

G(z) = e _
exp{—exp(=*)} si&=0

(2.6)

définit pour {z € R | 1+ &§(z — p)/o > 0}, avec p € R, 0 € RY, et £ € R.

Sous cette forme, G regroupe trois familles de lois de probabilités : Gumbell (£ = 0), Fréchet



(€ > 0), et Weibull (£ < 0), offrant donc une flexibilité de modélisation accrue. On nomme

cette famille par son acronyme anglais : GEV (Generalized Extreme Value).

Généralement, on appelle respectivement les parametres u, o et € les parametres de localisa-
tion, d’échelle et de forme. La figure 2.3 montre le role du parametre de forme &, contrélant

I’allure et le poids de la queue de G.

—— Gumbell (xi = 0)
—— Weibull (xi = 0.5)
—— Frechet (xi = -0.5)

Densité de probabilité - g(z)
o
2

-4 -3 -2 -1 0 1 2 3 4

FI1GURE 2.3 Densités de probabilité pour différentes valeurs de £ correspondant aux 3 familles
incluent dans la GEV, avec u =0, et 0 = 1.

En pratique, les constantes de normalisation {a,, > 0} et {b,}, inconnues, ne posent pas
de difficultés car elles peuvent étre absorbées par GG. Pour n suffisamment grand, et sous

I’hypothese que :

z—b,

P (J\/[n_bn < z) ~ G(z) alors P(M, <z2)~G (
Qn

=G*(z 2.7
e e
avec G* appartenant également a la famille GEV. Il n’est donc pas nécessaire de considérer
{an, > 0} et {b,} en pratique.

Finalement, une considération importante est a noter par rapport aux valeurs de £. Les
propriétés asymptotiques nécessaires pour 'estimation par maximum de vraisemblance ne
sont pas satisfaites pour £ < —0.5, notamment car 'information de Fisher n’est plus définie

ou tend vers l'infini [11].

2.2.2 Approche par dépassement de seuil

La modélisation des valeurs extrémes par la GEV a l'inconvénient de restreindre fortement le
nombre de points de données utilisés, alors que d’autres valeurs extrémes peuvent étre dispo-
nibles, sans garantir que les valeurs sélectionnées soient elles mémes extrémes. Contrairement

a la modélisation des maxima par blocs, la modélisation par dépassement de seuil permet de
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potentiellement tirer profit de plus grandes séries de données.

Théoréme 2 (Théoréme de Pickands-Balkema-De Haan) Soit X,---, X, une suite
de variables aléatoires indépendantes et identiquement distribuées selon F'. Sous les mémes
conditions que théoréme 1, c’est-a-dire lim,,_,o, F™(z) = G(z;p,0,€), alors pour un seuil u
suffisamment grand, la fonction de distribution de la variable Y = X —u, conditionnellement
a X > u, est donnée par :
_1
1—(14+&%) ¢ s 0
lim PY=X—-u<y|X>u)=H(y) = ( 5”) $7 (2.8)
u—z+ y . o
1—exp<—g> si&=0

définit pour {y € R| 14+£&y/d >0} et 6 = 0+ &(u—p) > 0, avec z+ la limite supérieure du

domaine de X .

La famille des distributions définie par I’équation (2.8) se nomme la famille de Pareto géné-

ralisée (Generalized Pareto Distribution en anglais, GPD).

2.2.3 Extension de la loi de Pareto généralisée

L’extension de la loi de Pareto généralisée vise a définir une distribution capable de modéliser
I'ensemble de la gamme des précipitations non nulles (faibles, modérées et extrémes) tout en
préservant les propriétés asymptotiques de la théorie des valeurs extrémes dans la queue de
la distribution [1].

Une propriété intéressante de la théorie des valeurs extrémes est sa capacité a également
modéliser les valeurs de faibles intensités. Prenons comme exemple les séries de précipitations,
bornées inférieurement par 0, et inversons leur signe pour construire la variable ¥ = —X.
Les plus grandes valeurs de Y peuvent alors étre modélisées par une distribution de Pareto
généralisée, avec un parametre de forme & négatif, correspondant au cas de Weibull pour la

loi des valeurs extrémes généralisée (voir figure 2.3).

Fixons un seuil v définissant la frontiére avec les faibles valeurs de X. On note £ = —1/k
avec k > 0. Suivant 'hypothese précédente, on peut trouver la forme de la distribution des
faibles valeurs de X [1] :

_ — 1_ K
IP’(XSx’XSU):IP’(Y>—:c|Y>—v)%H_1/,€( x—i—v):(l_ x—f—v) :
o K o

la condition H_, /x(0) = 0, découlant de la contrainte imposée par la borne supérieure de

Y sur la fonction de survie F[_l/n, implique aussi que v = ko, car H_I/R(O) =(1-2) =
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0 = v = ko. Par conséquent, les faibles valeurs de X peuvent étre approximativement
décrites par une loi de puissance, et il est possible de modéliser I’ensemble de la gamme de

précipitations, a l’exclusion de 0, par une loi de la forme :

1 —cstx He (2 our un « grand » x,
P(X <z)~ ¢ <") P &

1 —cst x a® pour un « petit » x.

La distinction entre les « petites » et les « grandes » valeurs implique le choix dun seuil, ce qui
limite considérablement la flexibilité de la méthode. Or, celle-ci vise & modéliser I’ensemble de
la distribution des précipitations de maniere simple et efficiente du point de vue numérique.
Afin d’introduire le coeur de leur approche, les auteurs utilisent comme base une méthode
permettant d’étendre les capacités de modélisation de la loi de Pareto généralisée [12]. Sachant
qu'il est possible d’échantillonner une GPD par o H- Y(u) avec u ~ U(0, 1), on peut augmenter
la flexibilité de I’échantillonnage en transformant u par 'inverse d’une fonction K partageant

les propriétés d’une fonction de répartition définit sur [0, 1]. Ainsi, on a :

X = o Hy YK (u)}. (2.9)

Afin de garantir que la queue de la distribution de X adopte bien un comportement conforme
a une GPD avec £ comme parametre de forme, et que les valeurs proches de zéro suivent
une loi de puissance, les auteurs imposent trois contraintes que doit respecter la fonction K.

Quatre familles de fonctions paramétriques satisfaisant ces contraintes ont été proposées :
1. K(v) =v" avec k > 0;
2. K(v) =pv™ + (1 — p)v"™ avec kg > k1 > 0 et p € [0,1];
3. K(v) =1 —Qs{(1 —v)°} avec § > 0 et Qs la fonction de répartition d’une variable
aléatoire ~ 5(1/0,2);
4. K(v) =[1 — Qs{(1 —v)?}]*/2, avec k,d > 0 et Qs définit précédemment.
Par soucis de simplicité, et au vu de sa performance jugée satisfaisante pour décrire les
précipitations par plusieurs travaux, nous nous limiterons a l'utilisation du modele (1) dans
ce mémoire [1,13,14]. La figure 2.4 illustre son comportement selon plusieurs valeurs de &, et

propose une comparaison avec la loi Gamma, particulierement pertinente pour les grandes

valeurs.

Il est important de noter que des méthodes plus complexes, étendant les capacités de 'ex-
tension de la loi de Pareto généralisée pour les précipitations, ont été proposées, mais nous

laissons leur utilisation & des travaux futurs [15].
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FIGURE 2.4 Densités du modele (1) pour des « petites » et « moyennes » valeurs (gauche) et
des « grandes » valeurs (droite), en fonction de k. La forme de la GPD est retrouvée lorsque
rk = 1. La distribution Gamma avec comme parametres (1.4, 1.4) est affichée en comparaison.
Figure inspirée de [1].

2.3 Relation entre les précipitations et les températures

2.3.1 Clausius-Clapeyron

La relation de Clausius-Clapeyron décrit le lien entre la pression de vapeur saturante d’un
corps et sa température. Introduite entre les années 1824 et 1850 par plusieurs travaux, cette
relation fondamentale de la thermodynamique joue un role important en sciences atmosphé-
riques, notamment dans 1’étude des précipitations, car elle quantifie la capacité de l'air a
contenir de la vapeur d’eau selon sa température. Dans le cas d'un changement de phase

entre liquide et vapeur a saturation, la relation de Clausius-Clapeyron s’écrit :

des  Lyes
oT  R,T?

(2.10)

avec e, la pression de vapeur saturante (en hPa), T la température (en Kelvin), L, la chaleur
latente de vaporisation (en J- K1), et R, la constante des gaz parfait spécifique au corps a
I'étude (en J - kg=! - K71).

Sous I’hypothese que L,(T') soit constante, la formule d’Auguste-Roche-Magnus offre une
solution approximative de I’équation de Clausius-Clapeyron pour la vapeur d’eau dans I'at-
mosphere :

(2.11)

17.625T
eS(T)z6.1O94exp( 7625 )

243.04 +T

avec e la pression saturante de la vapeur d’eau (en hPa), et T" la température (en °Celsius).

Cette solution a la particularité d’étre sous une forme exponentielle, et sa dérivée montrant
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une évolution de la pression saturante de maniere exponentielle en fonction de la tempéra-
ture, suivant un taux entre 6 et 7%. Ce résultat représente la base physique de I’hypothése
de transférabilité de la formule de Clausius-Clapeyron aux précipitations, supposant que les
extrémes de précipitations augmenteraient en fonction des températures a un rythme simi-

laire.

2.3.2 Estimation par méthode de regroupement

La relation entre les précipitations extrémes et la température a été fréquemment étudiée
a l'aide de la méthode dite de « regroupement » (ou binning method en anglais). Cette
approche a été largement utilisée dans les premieres tentatives visant a valider empirique-
ment I’hypothese de 'amplification des précipitations extrémes selon la relation de Clausius-
Clapeyron [16,17].

Les faibles intensités de précipitations (généralement inférieures & 0.1-2 mm - h™') sont
d’abord exclues de la série de données. Les valeurs restantes sont ensuite regroupées en
intervalles définis selon la température associée. La taille de ces intervalles peut étre déter-
minée soit en fonction d’un nombre fixe d’observations, soit en fonction d’une largeur donnée
sur ’échelle des températures (e.g., 2,° C). Pour chaque intervalle, on calcule la température
moyenne ainsi qu'un quantile élevé ¢ (tel que le 99éme niveau de quantile) des précipitations.
Une régression linéaire est ensuite ajustée sur les données transformées logarithmiquement,
en modélisant la relation entre le quantile de précipitations P, et la température moyenne
T 18] :

log (P,) = aT + B. (2.12)

Le taux, exprimé en pourcentage, d’augmentation des précipitations par degré Celsius est
obtenu a partir du coefficient « :

%{];] =100(e* — 1) (2.13)
Cette méthode présente I'avantage d’étre a la fois simple a mettre en ceuvre et facile a
interpréter. Toutefois, plusieurs limitations doivent étre prises en compte. D’une part, le
choix du seuil d’exclusion initial peut influencer significativement les taux d’augmentation
obtenus. D’autre part, une inversion de la relation entre température et précipitations est
fréquemment observée au-dela d’un certain seuil thermique, situé typiquement entre 20 et
30°C, ce qui s’explique par la diminution de I’humidité disponible a haute température. Deux
stratégies sont généralement proposées pour remédier a cette non-linéarité : (1) substituer

la température de l'air par le point de rosée comme variable explicative, ou (2) intégrer



14

explicitement un point de bascule dans la régression linéaire [19].

Enfin, une méthode alternative, fréquemment utilisée et conceptuellement proche, consiste
a appliquer une régression de quantile directement sur I’ensemble des données, sans recourir

au regroupement préalable [20,21].

2.3.3 Estimation par la loi des valeurs extrémes généralisée

Plusieurs travaux ont néanmoins émis des critiques envers 'approche de regroupement [22,23].
Notamment, les variations saisonnieéres influencant simultanément les températures et les
précipitations, introduisent un facteur de confusion qui remet en question I’existence d’un lien
causal direct entre ces deux variables [24]. La pertinence de la méthode de regroupement pour
mesurer I'impact des changements climatiques sur les précipitations extrémes est donc remise
en question, le lien entre températures et précipitations journalieres (pouvant étre expliqué
par des variations saisonnieres) étant sensiblement différent de celui lié a un réchauffement

global.

Pour pallier a ce probleme, on peut estimer le taux d’augmentation des précipitations en
fonction des anomalies de températures en changements climatiques a 1’aide d'une loi GEV
non-stationnaire [24]. Les maxima annuels de précipitations sont sélectionnés et normalisés,
en les divisant par la médiane de la série. Une loi GEV est ensuite ajustée sur ces données,
en utilisant comme covariable les anomalies annuelles (ou limitées a la saison présentant la
plus forte probabilité d’occurrence de précipitations extrémes (e.g., I'été)) de températures
moyennes. La paramétrisation de la dépendance des parametres de la loi GEV aux anomalies

de température dépend des implémentations. Certains utilisent [25] :
W(T) = o+ T, o(T) = explog+ oiT), &(T) = & (2.14)

Le taux d’augmentation entre les précipitations extrémes et les températures (en anglais
Temperature- Precipitation Scaling Rate, ou TPSR) s’obtient en calculant le quantile ¢ obtenu
pour les anomalies de températures 17 et 15, menant a ()1 et (). Tout quantile de niveau ¢

en fonction de 7T; peut étre obtenu par la formule :

p(Ti) — o (T3) log [—log ()] si §(T;) = 0 et g € (0,1);

Qusn (D)o (1) £E) =0 S ET) > 0ege )
M(TZ)+ £(Ti){[ 1 g(Q)] 1} ou f(TZ) <Oetqe (0, 1]'

(2.15)
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Finalement, le TPSR a (en %/°C') est donné comme la solution de la formule :

Q2 = Q1(1 4 0.001a)™> " (2.16)

En général on choisira AT =T, — T} = 1, car la valeur de AT n’a que peu d’impact sur le
résultat [26].
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CHAPITRE 3 REVUE DE LITTERATURE

Ce chapitre vise a fournir une synthese de la littérature concernant les principaux themes et
enjeux abordés dans ce mémoire. Dans un premier temps, nous proposerons un bref résumé
de I'histoire de la modélisation numérique du climat, de ses avancées majeures, et ses défis
actuels. Nous couvrirons ensuite les méthodes standards de réduction d’échelle, avant de nous
intéresser a l'utilisation de I'apprentissage profond dans ce contexte, en portant une attention

particuliere aux approches dites « informées par la physique ».

3.1 Modélisation numérique du climat

Le premier modele numérique du climat est proposé en 1955, simulant I'atmosphere sur 2
niveaux verticaux, sur une durée de 31 jours [27]. Ces travaux initiaux, combinés au progres
des puissances de calcul, et a la quantité grandissante de données récoltées, meneront a
I'apparition des premiers modeles climatiques globaux (ou Climate Global Models en anglais,

GCMs) durant les décennies suivantes [28].

Les GCMs sont des modeles numériques comprenant d’une part, un « coeur » dynamique,
permettant de résoudre les équations fondamentales de I’atmospheére (e.g., Navier-Stokes),
et d’autre part, une partie physique qui modélise les échanges entre les grands « corps »
de la planete : océans, continents, atmosphere. Certains processus physiques se produisant a
une échelle plus fine que la résolution des GCMs sont représentés par des paramétrisations
empiriques, sources d’incertitude qui motivent l'augmentation de la résolution spatiale et
temporelle des modeles [29,30]. En intégrant progressivement les interactions entre climat
et biosphere, et en modélisant explicitement de plus en plus de phénomenes (biogéochimie
marine, aérosols, etc.), les GCMs ont évolué vers des modeles maintenant appelés Modeles
du Systeme Terre (ou Farth System Model en anglais, ESMs) [28,31].

En parallele de cette évolution, les applications de la modélisation climatique numérique se
sont considérablement élargies. L’avenement des simulations climatiques globales au cours
des dernieres décennies a permis des avancées majeures dans la compréhension des causes et
des conséquences des changements climatiques [32,33]. Les projections climatiques établies
selon différents scénarios d’émissions de gaz a effet de serre (GES) ont largement contribué
a orienter les politiques nationales et internationales, ainsi qu’a anticiper 1’évolution des
événements météorologiques extrémes, tels que les inondations associées a un niveau de retour

de 100 ans, ou encore a estimer les besoins futurs en eau des zones urbaines et du secteur
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agricole [29,34-36]. Malgré les améliorations récentes, la complexité de calcul actuelle des
ESMs reste prohibitive, ce qui rend la production de simulations a des résolutions spatiales

inférieures a 50 kilometres (km) irréalisable sur le plan opérationnel [37].

Etant donné que de nombreux processus physiques ne peuvent étre résolus qu’a une résolu-
tion spatiale plus fine, les simulations a grande échelle ne disposent pas des détails physiques
nécessaires pour prendre en compte la dynamique a petite échelle. Cependant, il existe un
besoin aigu de simulations climatiques a haute résolution pour évaluer les impacts des chan-
gements climatiques, dans le cadre d’études d’impact climatique régionales ou locales [38,39],
d’évaluations des risques liés aux phénomenes météorologiques extrémes [40], de la modéli-
sation hydrologique [41], ou de la modélisation des incendies de forét [42]. Pour répondre a
ce besoin, des techniques de réduction d’échelle ont été développées afin d’accroitre la ré-
solution des simulations climatiques, le plus souvent en restreignant la couverture sur une
région donnée. On distingue deux grandes approches : la réduction d’échelle dynamique ou

statistique.

3.2 Réduction d’échelle dynamique et statistique

La réduction d’échelle dite dynamique consiste a réaliser une simulation a 1’aide d’un modele
climatique régional (ou Regional Climate Model en anglais, RCM) a haute résolution sur un
domaine spatial restreint, en le contraignant aux frontieres par les sorties d'un modele global
A plus faible résolution. A linverse, les approches statistiques cherchent & établir des rela-
tions empiriques entre les données a haute résolution (e.g., observations historiques, données
satellitaires, simulations a haute résolution) et les simulations climatiques a basse résolution,

afin d’estimer les variables climatiques locales a partir des champs globaux.

Les modeles dynamiques de réduction d’échelle integrent des processus, dynamiques et bio-
chimiques propres a chaque région simulée. Les conditions aux frontieres latérales et supé-
rieures sont fixées par les simulations de modeles globaux a chaque pas de temps, assurant
la cohérence avec la circulation atmosphérique a large échelle [43]. Ces modeles permettent
d’obtenir des simulations aux résolutions spatiales allant jusqu’a 10 km [44]. Pour référence,
le RCM canadien : CRCM5 (5th Canadian Regional Climate Model), permet d’obtenir des
simulations climatiques a une résolution de 0.11° ~ 12 km sur le domaine de I’Amérique du
Nord, incluant 685 x 668 cellules, sur 56 niveaux verticaux et 17 niveaux de surface, pour un

pas de temps de 5 minutes [45,46].

L’augmentation de la résolution spatiale et temporelle des RCM rend possible la modélisation

d’un plus grand nombre de phénomenes et d’interactions a fine échelle, réduisant les biais des
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simulations globales [47]. Toutefois, leur cotit numérique élevé limite encore la disponibilité
d’ensemble de simulations climatiques a long terme, pourtant essentielles pour modéliser la

variabilité naturelle du climat et évaluer une diversité de scénarios d’émissions de GES [48].

Contrairement a la méthode dynamique, la réduction d’échelle statistique ne résout pas ex-
plicitement de processus physiques. Cette famille de méthodes vise a établir des relations
statistiques entre les variables atmosphériques & faible résolution issues des GCMs (ou par-
fois des RCMs), et des données a haute résolution (observées ou issues de simulations dans le

cadre d’émulateurs). Il existe différents cadres méthodologiques séparant ces méthodes [49] :

— Perfect Prognosis (PP) : Ces méthodes consistent a calibrer un modele statistique
entre des prédicteurs a grande échelle (issus idéalement de réanalyses, c’est-a-dire des
simulations alignées sur les observations) et des observations locales. Le modéle ainsi
formé, reposant en général sur de la régression, est ensuite appliqué aux sorties de
GCMs, corrigées, ou jugées sans biais, pour générer des projections locales. La qualité
des prédicteurs est cruciale pour la réussite des approches PP.

— Model Output Statistics (MOS) : Cette approche consiste a corriger la distri-
bution des sorties des GCMs pour les aligner avec celles des observations locales, en
effectuant une correction statistique, typiquement via des méthodes de quantile map-
ping, ou de correction d’échelle. Les méthodes MOS correspondent généralement a de
la correction de biais.

— Weather Generators (WG) : Ces modeles reposent sur des approches stochastiques
pouvant s’inscrire tant dans le cadre du PP que du MOS. Les WG modélisent les
propriétés marginales et la structure temporelle des variables météorologiques, tout

en étant parfois capables de reproduire la dépendance spatiale entre les prédicteurs.

Les méthodes de réduction d’échelle statistiques sont couramment utilisées dans la littérature,
en partie grace a leur simplicité d’implémentation et aux faibles cotits de calcul associés.
Par exemple, certains travaux ont évalué 'impact des réchauffements climatiques sur les
inondations en appliquant des méthodes relevant de chacun des cadres de réduction d’échelle

susmentionnés pour affiner la résolution d’un ensemble de simulations issues de GCMs [50].

Un autre cadre méthodologique couramment utilisé en apprentissage profond, et adopté dans
ce mémoire, se nomme le Perfect Upscaling (PU). Ce cadre, proche de celui du PP, repose
sur 'hypothese que la relation entre les prédicteurs (simulations a basse résolution, et poten-
tielles covariables aux résolutions variables) et les prédictants (simulations, ou observations
a haute résolution) est exactement l'inverse d'un processus d’agrégation (e.g., une moyenne

ou une accumulation). Il ignore ainsi le probleme du biais des GCM.
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3.3 Apprentissage profond pour la réduction d’échelle

Ces dix derniéres années, ’apprentissage profond a graduellement gagné en popularité dans
le domaine de la modélisation climatique [51]. Ces méthodes ont démontré leur efficacité dans
des applications variées, notamment pour la simulation du climat global [52], la réalisation de
prévisions météorologiques, aux performances comparables a celles des modeles numériques
traditionnels [53], la paramétrisation des modeles numérique de climat afin d’améliorer la
modélisation des processus de fine échelle [54], ainsi que la réduction d’échelle de simulations

climatiques [55].

Les premieres applications de I'apprentissage profond a la réduction d’échelle de simulations
climatiques se sont inspirées des progres réalisés en super-résolution, une tache de vision par
ordinateur visant a reconstruire une image haute résolution a partir d’une version dégradée.
Probleme inverse mal-posé, la super-résolution cherche a restaurer des détails spatiaux fins,
perdus lors de la dégradation. Ces travaux ont jeté les bases des premieéres tentatives d’adap-
tation de ces modeles a la réduction d’échelle de simulations climatiques. Dans la continuité
de la section 2.1, nous présenterons séparément les travaux ayant recourt a des approches

déterministes, de ceux reposant sur des méthodes génératives.

3.3.1 Meéthodes déterministes

Les modeles déterministes ont été les premiers a étre utilisés pour effectuer de la réduction
d’échelle de variables climatiques. Le potentiel des réseaux de neurones convolutifs profonds
pour cette tache a été démontré en adaptant un modele issu de la littérature de la super-
résolution pour la réduction d’échelle spatiale de précipitations journalieres, augmentant la
résolution des simulations de 1° a 0.125°, et obtenant des performances supérieures aux
approches de correction de biais et désagrégation spatiale (BCSD), ou de régression automa-
tique [56-58|. Les résultats soulignent également l'importance de 1'adaptation des architec-
tures issues de la super-résolution (traitant principalement des images RGB) pour prendre

en compte les caractéristiques des variables climatiques.

Par la suite, de nombreux travaux ont implémenté et comparé des CNNs aux méthodes
statistiques classiques. Certains se sont focalisés sur la modélisation des précipitations ex-
trémes [59], d’autres ont exploré des architectures hybrides combinant CNN et perceptrons
multicouches (MLP) [60], ou ont utilisé des CNNs pour estimer les parametres de distribu-
tions probabilistes censées représenter les données de précipitations [61]. Des améliorations
du modele issu de [58] ont également été proposées, améliorant sensiblement les performances

tout en réduisant le colit numérique [62]. Des modeles de type UNet ont aussi été utilisés
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pour effectuer de la réduction d’échelle de variables climatiques [63-65].

D’autres modeles déterministes plus lourds et complexes (en termes de parameétres et d’ar-
chitecture) ont également été utilisés avec succes, mais ces approches ne sont pas explorées
dans ce mémoire. Un modele de type Transformers pré-entrainé sur de tres larges jeux de
données hétérogenes, a permis ensuite d’obtenir des performances remarquables sur un cer-
tain nombres de taches, incluant la réduction d’échelle [66]. D’autres modeles Transformers
(SwinlR et Uformer) ont été implémentés pour de la réduction d’échelle et de la correction de
biais de température et vitesse de vent [67]. Le modele Mamba, de la famille des State Space
Model, a également été appliqué a la réduction d’échelle de précipitations contraint par la
topographie [68]. Enfin, d’autres travaux ont proposé une approche basée sur les opérateurs

de Fourier permettant d’effectuer de la réduction d’échelle & une résolution arbitraire [69].

La fonction de perte utilisée pour 'entrainement des modeles a également fait 'objet de plu-
sieurs études, notamment dans le but d’améliorer la représentation des événements extrémes.
Par exemple, il a été démontré qu'un modele de type UNet, entrainé a ’aide d’une combi-
naison d’une perte quadratique a pondération exponentielle et d’'une métrique de similarité
issue de la vision par ordinateur (SSIM), est capable de modéliser I’ensemble de la distribu-
tion des précipitations a haute résolution, y compris la queue et les valeurs extrémes [70].
Une fonction de perte asymétrique a également été concue pour pénaliser plus fortement les
sous-estimations, de maniere proportionnelle a 'intensité de la valeur cible, ce qui permet
une meilleure capture des valeurs extrémes [65]. Enfin, certains travaux avancent que la perte
de Charbonnier [71] Lcarm offre une alternative plus robuste aux fonctions de perte standards
Ly et Ly [67] :

Leharn (0) = ]1[2; (9i — yi)2 + €2 (3.1)
Ly(0) = ]1[221 |9i — il (3.2)
L) = > (5w (33

@
Il
i

ou N est le nombre d’échantillons, y; la valeur cible, §; = fy(x;) la prédiction du modele avec
parametres 0, et € un petit terme positif (e.g., 107%) assurant la différentiabilité.
3.3.2 Meéthodes génératives

De par leur nature probabiliste, les méthodes génératives offrent deux avantages principaux

par rapport aux approches déterministes : (1) en modélisant la distribution conditionnelle
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d’une variable, les modeles de cette famille permettent de mieux modéliser la variabilité
naturelle liée au climat, et (2) il est possible de quantifier les incertitudes de leurs prédictions,

ce qui est important pour la réduction d’échelle d’éveénements météorologiques extrémes.

Afin de tirer profit des avantages des méthodes génératives, tout en conservant les capacités
de 'architecture du UNet, une méthode permettant d’adapter ce modele a un contexte proba-
biliste dans le cadre de la segmentation d’images médicales a été développée [72]. Les auteurs
proposent d’apprendre un espace latent représentant les parametres d’une loi gaussienne,
et d’échantillonner cette loi pour enrichir les prédictions du UNet. Cette approche permet
de modéliser la variabilité inhérente aux solutions, liée a la nature mal posée du probleme
inverse. Dans le cadre d’un projet collaboratif non mentionné dans ce mémoire, nous ap-
pliquons avec succes cette méthode a la réduction d’échelle de précipitations, et améliorons
la conservation des hautes fréquences des données, ainsi que la prédiction des événements

extrémes.

Bien qu’elles ne soient pas abordées en détail dans ce mémoire, plusieurs approches gé-
nératives ont été appliquées avec succes a la réduction d’échelle climatique. En particulier,
plusieurs études récentes ont mis en évidence les performances supérieures des modeles de dif-
fusion [73] pour la reconstruction de champs a haute résolution [74-76]. Un réseau antagoniste
génératif (ou Generative Adversarial Network en anglais, GAN) de type CycleGAN [77,78],
capable de reproduire fidelement les fines structures spatiales des précipitations tout en cor-
rigeant les biais systématiques présents dans les sorties des ESM a également été récemment

proposé [79].

3.4 Apprentissage profond informé par la physique

La nature de la tache de réduction d’échelle, combinée aux contraintes physiques inhérentes
de la modélisation climatique, constituent une double motivation pour le développement de

méthodes dites « informées par la physique ».

Premiérement, la réduction d’échelle (dans le domaine climatique) constitue un probléme in-
verse mal posé pour deux raisons : (1) la solution n’est pas nécessairement unique, en raison
de la perte d’'information entre la haute a la basse résolution, et (2) la solution ne dépend pas
de maniére continue des données d’entrée, dans la mesure ou de faibles perturbations peuvent
provoquer des variations significatives de la solution [80]. Pour remédier a ces limitations, il
est nécessaire d’introduire des a priori sur le systeme, dans le but de réduire la sensibilité
aux perturbations et de contraindre 1’espace des solutions admissibles. Deuxiemement, les

prédictions issues des méthodes d’apprentissage profond peuvent présenter des incohérences
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physiques [81]. L’introduction d’a priori, qu’ils soient simples ou sophistiqués, vise a amélio-
rer le réalisme des résultats, a renforcer la robustesse face aux situations hors distribution
d’apprentissage, ainsi qu’a accroitre la confiance des utilisateurs et des utilisatrices dans les

modeles.

Parmi les approches dites « informées par la physique », on distingue généralement deux
grandes catégories. La premiere regroupe les méthodes intégrant des contraintes, dures ou
douces, a la fonction de cotit afin d’imposer le respect, total ou partiel, de lois physiques
ou de principes de conservation. La seconde catégorie repose sur l'incorporation d’a priori
directement au sein de l’architecture du modele, en s’appuyant sur des connaissances du
systéme (également appelées « connaissances du domaine » ou « domain knowledge » en
anglais) pour guider sa conception. Une revue de littérature liste les différentes approches
visant a intégrer des contraintes physiques ainsi que des a priori issues des sciences du climat

dans les méthodes d’apprentissage profond appliquées a la modélisation climatique [82].

Au sein des approches par contraintes, on différencie généralement deux types : les contraintes
dures et les contraintes douces. Une contrainte est dite dure lorsqu’elle doit étre strictement
satisfaite par toute solution admissible, tandis qu’une contrainte douce est introduite sous
forme de pénalité dans la fonction de perte, pondérée par un coefficient, ce qui offre davantage
de flexibilité mais moins de garantie. Dans cette optique, des autrices et auteurs proposent
plusieurs formulations de contraintes dures pour imposer la conservation de la masse dans un
cadre de réduction d’échelle appliqué aux colonnes de vapeur d’eau, et comparent les perfor-
mances de plusieurs modeles d’apprentissage profond sans contraintes, ou avec contraintes
dures ou douces [83]. Leurs conclusions indiquent que l'introduction de contraintes permet
de réduire les erreurs dans les régions a forte complexité spatiale, telles que les zones cotieres
ou montagneuses, contribuant également a une amélioration notable de la qualité visuelle
des prédictions. D’autres travaux exploitent la relation de Clausius-Clapeyron pour intégrer
des contraintes dures, ou douces respectivement dans des contextes de post-traitement et
de réduction d’échelle de variables atmosphériques [84, 85]. Enfin, une autre approche par
contrainte dure consiste a imposer, en post-traitement, une contrainte d’équilibre entre les
prédictions du GAN a haute résolution et les valeurs agrégées des champs d’entrée, afin de
renforcer la cohérence physique et d’améliorer la robustesse des prédictions en changements

climatiques [70].

La seconde catégorie regroupe une famille de méthodes plus large, qui proposent d’intégrer
des a priori a travers la conception des architectures d’apprentissage profond, ou dans les
étapes du traitement de données. Par exemple, une approche issue de la littérature permet-

tant d’améliorer la réduction d’échelle d’événements de précipitations a tres haute résolution
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(250 metres), adapte une méthode de super-résolution pour vidéos, en remplagant le champ
de « flux optiques », utilisé pour transmettre I'information entre trames, par le champ d’ad-
vection du vent [86]. Cette substitution exploite les connaissances sur la forte dépendance
entre la précipitation et la dynamique du vent, permettant ainsi de générer des champs a
tres fine échelle cohérents spatialement. Une autre approche propose d’intégrer un modeéle
orographique (permettant de mieux modéliser la structure des précipitations dans les régions
a orographie complexe) au sein d'un GAN, et de conditionner l'espace latent du modele
génératif a 'aide d’un ensemble de processus gaussiens pour obtenir un point de départ
statistiquement et physiquement enrichi [87]. Certains proposent de modéliser les processus
climatiques sous la forme d’une équation aux dérivées partielles d’advection, et prédisent
I’évolution du champ de vitesse a 'aide de réseaux de neurones [88]. Cette approche permet
d’intégrer explicitement la dynamique physique du systeme climatique dans les prédictions.
Enfin, d’autres auteurs et autrices introduisent une série de transformations inspirées des
sciences atmosphériques, permettant d’effectuer différentes taches de modélisation climatique

dans un espace invariant en réchauffements climatiques [89].
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CHAPITRE 4 DONNEES ET ANALYSE EXPLORATOIRE

L’objectif de ce chapitre est de présenter en détail le jeu de données utilisé dans ce mémoire,

et de proposer une analyse statistique exploratoire des variables d’intérét.

4.1 ClimEx : grand ensemble de simulations en réchauffements climatiques

Le projet ClimEx (ou CRCM5-LE) fournit un ensemble de 50 simulations climatiques régio-
nales indépendantes, a une résolution spatiale de 0.11° &~ 12 km. Ces simulations couvrent
deux domaines géographiques : le nord-est de I’Amérique du Nord, et I’Europe, sur une pé-
riode allant de 1950 a 2099, a une résolution temporelle de 5 minutes [90]. Afin d’obtenir
ces simulations a haute résolution, une réduction d’échelle dynamique a été effectuée, en
utilisant un ensemble de 50 simulations globales indépendantes générées par I'ESM canadien
CanESM2, a une résolution spatiale de 2.8° ~ 310 km. Celles-ci ont servi de forcage au RCM
canadien CRCM5 (version 5), développé a I’Université du Québec a Montréal (UQAM). Le
caractere indépendant des membres de I’ensemble repose sur l'introduction de perturbations
initiales appliquées a la simulation globale du CanESM?2 : 5 perturbations en 1850, suivies de
10 en 1950. Ces perturbations permettent de générer 50 trajectoires globales indépendantes
a partir de 1955, capturant la variabilité naturelle du climat. Le forcage radiatif appliqué a
partir de 2006 correspond au scénario d’émission de GES RCP8.5. En résultat, une cinquan-
taine de variables par simulation ont été archivées, avec des pas de temps allant de I’horaire

au journalier. Certaines variables sont disponibles en libre acces au pas de temps journalier

via la plateforme PAVICS.

Les travaux présentés dans ce mémoire s’appuient sur un sous-ensemble du jeu de données
ClimEx. Plus précisément, nous utilisons les sorties d’un seul membre de ’ensemble (membre
kdf), en laissant I’étude de 'apprentissage et de la généralisation inter-membres & des travaux

ultérieurs. Les accumulations journalieres de précipitations (pr), exprimées en kg - m~2 -

s~!, sont extraites, ainsi que les statistiques journalieres de température : moyennes (tas),
minima (tasmin) et maxima (tasmax), exprimées en kelvins (K). L’intégration de covariables
climatiques supplémentaires pour la réduction d’échelle des précipitations est laissée a des
travaux futurs. Par ailleurs, pour des raisons de contraintes numériques, le domaine spatial
initial, comprenant 280 x 280 cellules, est restreint a une région de 128 x 128 cellules, couvrant
le sud du Québec, une partie des provinces maritimes canadiennes, et du nord-est des Etats-

Unis (voir Figure 4.1 (a)).


https://pavics.ouranos.ca/datasets.html#a
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4.2 Analyse statistique exploratoire

Afin d’identifier des tendances pouvant étre liées aux changements climatiques, on distingue
deux périodes : A et B (1955 — 2030 et 2025 —2099), couvrant 75 ans de données journalieres
chacune, avec une superposition de 5 ans. On peut considérer la période A comme une
période avec des changements climatiques faibles, et la période B avec des changements
climatiques forts, selon le scénario RCP8.5. La carte de la différence absolue de la médiane
des températures moyennes journalieres, présentée a la Figure 4.1 (a), met en évidence le
réchauffement général des températures sur tout le domaine ClimEx, et particulierement
dans le Nord. Elle souligne également 1’hétérogénéité de la réponse du domaine choisi pour
ce mémoire en ce qui concerne I’évolution des températures en changements climatiques. La
différence la plus importante du sous-domaine est de 5.07°C, la plus petite de 2.40°C, et la
médiane de 3.52°, comparées a 5.51°C, 2.11°C, et 3.37°C pour le domaine entier, suggérant
que le sous-domaine choisi est représentatif du domaine ClimEx quant & la réponse aux

changements climatiques.

Les cartes (b:e) de la figure 4.1 se restreignent au sous-domaine de 128 x 128 cellules. Les cartes
(b) et (c) présentent respectivement la médiane et le 95éme quantile des précipitations non-
nulles pour la période A. On remarque que les régions avec une médiane élevée correspondent
aux régions montagneuses proches de la cote : les monts Chics-Chocs en Gaspésie, le Plateau
du Cap-Breton en Nouvelle-Ecosse, et les monts Long-Range en Terre-Neuve-et-Labrador.
En raison de leur orographie complexe, ces régions posent généralement plus de difficultés
lors de la réduction d’échelle, car les fines dynamiques liées a cette orographie ne sont pas pris
en compte par les GCMs. Les fortes précipitations observées dans les régions cotieres (carte
(c)) s’expliquent par la convergence fréquente de systémes dépressionnaires en provenance de

I’Atlantique Nord, dont I'intensité est amplifiée par 'apport d’humidité du Gulf Stream.

Les cartes (d) et (e) illustrent les variations relatives, entre périodes B et A, de la médiane et
du 95eme quantile des précipitations journalieres non-nulles. On observe des motifs spatiaux
marqués pour la médiane, avec une forte augmentation sur les zones continentales, attei-
gnant jusqu'a 49.2%, une quasi-stabilité le long des cotes, ainsi qu'une diminution notable
de la médiane des précipitations sur 'océan Atlantique et les Grands Lacs (en bas a gauche
sur la carte (d)), jusqu’'a —18.7%. Cette hétérogénéité suggere que I’évolution des précipita-
tions faibles & modérées dépend fortement de facteurs externes, tels que I'orographie ou les
conditions atmosphériques régionales. En revanche, les précipitations extrémes (représentées
par le 95¢me quantile) sont en hausse sur ’ensemble du domaine, sans motif spatial particu-
lier. L’augmentation varie de de 5.14% a 27.6%, avec une moyenne de 15.99%. Toute réserve

gardée, cette tendance généralisée a la hausse, en parallele de 'élévation des températures
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FIGURE 4.1 Soient une période A allant de 1955 a 2030, et une période B chevauchant de
cing ans allant de 2025 a 2099. (a) Différence absolue, entre périodes B et A, de la médiane
des températures moyennes journalieres sur le domaine de ClimEx, et en pointillés noirs : le
sous-domaine utilisé dans ce mémoire. (b) Médiane des précipitations journalieres non-nulles
sur la période A. (c) 95eme quantile des précipitations journalieres non-nulles sur la période
A. (d) Différence relative de la médiane des précipitations non-nulles. (e) Différence relative
du 95eme quantile des précipitations non-nulles.
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moyennes (cf. carte (a)), semble cohérente avec la relation théorique de Clausius-Clapeyron,

présentée a la section 2.3.

Comme énoncé a la section 3.2, les travaux de ce mémoire s’appuient sur le cadre métho-
dologique du Perfect Upscaling. On suppose donc que les champs de précipitations a haute
résolution correspondent a l'inverse d’une agrégation par moyenne. On considere les données
issues de ClimEx comme les données a haute résolution, et on effectue un moyennage spatial
par blocs de 256 cellules (16 x 16) pour obtenir les données a basse résolution. Un exemple
aléatoire du résultat de cette opération est présenté sur la partie droite de la figure 4.2.
On observe logiquement une perte significative d’information due a I’agrégation spatiale. En
Ioccurrence, les motifs fins associés aux précipitations disparaissent en grande partie, ce qui
rend difficile I'identification de structures météorologiques précises, ainsi que la localisation
d’évenements de précipitations extrémes, souvent concentrés sur de petites zones, ou sur des

bandes.

—— 1955-2025 LR 57.5°N
—— 2025-2099 LR
10t 1955-2025 HR
—— 2025-2099 HR 55°N

52.5°N
10°

mm/jour
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[hfln | o
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FIGURE 4.2 Afin de simuler des observations a basse résolution (LR), les précipitations
journaliéres haute résolution (HR) issues de ClimEx sont agrégées en moyennant des blocs
de 256 cellules (16 x 16). (A gauche) Les histogrammes des précipitations journaliéres,
séparés selon les intensités (0 — bmm/jour en haut, et > 5mm/jour en bas) comparant les
périodes A et B, en haute et basse résolution. (A droite) Un champ de précipitations
journalieres sélectionné aléatoirement (en haut), et sa version agrégée (en bas).

L’analyse des histogrammes de précipitations (voir figure 4.2), calculés sur I'agrégation de
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toutes les cellules du domaine, met en évidence les effets de 'agrégation spatiale : a basse
résolution, la densité des faibles précipitations augmente, en raison de la dilution des cellules
sans pluie dans les zones voisines. En revanche, les précipitations modérées deviennent net-
tement sous-représentées, conséquence directe du lissage spatial. Enfin, la majeure partie de
la queue de la distribution, correspondant aux fortes précipitations a haute résolution, est
fortement atténuée, voire totalement absente a basse résolution. Lorsqu’on sépare les données
par période, on observe clairement que la queue de la distribution des précipitations pour
la période B est généralement plus lourde, ce qui témoigne d’une tendance d’augmentation

marquée des précipitations extrémes en changements climatiques.

La capacité a restituer les détails spatiaux fins propres aux événements de précipitations, a
reconstruire fidelement la queue de leur distribution, et a intégrer 'amplification des valeurs
extrémes liée aux changements climatiques constituent les principaux défis que les travaux

présentés dans ce mémoire cherchent a relever.
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CHAPITRE 5 APPRENTISSAGE PROFOND ET REDUCTION
D’ECHELLE DES PRECIPITATIONS EN CHANGEMENTS CLIMATIQUES

Dans ce chapitre, nous détaillons ’architecture du modele d’apprentissage profond utilisé
pour effectuer la réduction d’échelle des champs de précipitations. Nous présentons ensuite
une premiere évaluation de ses performances, et nous analysons ses limites afin de motiver

les améliorations méthodologiques proposées au chapitre suivant.

5.1 UNet pour la réduction d’échelle

Cette section vise a présenter l'architecture originale du modele UNet utilisé dans ce mé-
moire, et présenter la stratégie employée pour effectuer la réduction d’échelle des champs de

précipitations avec ce modele.

5.1.1 Présentation de ’architecture

Comme indiqué précédemment, nous utilisons comme point de départ une architecture issue
de travaux antérieurs [2]. L’architecture suit une structure classique encodeur/décodeur, dont
chaque niveau est composé de plusieurs blocs résiduels, avec des sauts de connexions propres,
et une intégration de I'information temporelle afin de guider le UNet. Nous présentons ici les

détails de cette architecture, illustrées a la figure 5.1.

L’encodeur est composé de quatre niveaux, chacun doublant le nombre de canaux (dimension
des « caractéristiques », comme les trois canaux RGB pour une image en couleur) du précédent,
et réduisant de moitié leurs dimensions spatiales. Ainsi, une entrée de 128 x 128 cellules est
transformée en cartes de caractéristiques de 16 x 16 cellules. Chaque niveau de l’encodeur
comprend trois blocs résiduels : le premier réalise une agrégation spatiale par moyenne, le
deuxieme double le nombre de canaux, et le troisieme conserve les dimensions. Le décodeur
comporte lui quatre blocs résiduels par niveau : le premier effectuant le sur-échantillonnage,
et les autres réduisant le nombre de canaux tout en intégrant les informations issues des sauts

de connexions des blocs correspondants de ’encodeur.

La structure originale des blocs résiduels est illustrée a la Figure 5.1, et peut inclure se-
lon le contexte, un opérateur d’agrégation ou de sur-échantillonnage par plus proche voisin.
Aucun gain de performance significatif n’ayant été observé lors de tests avec des méthodes
d’interpolation bilinéaire ou cubique, le sur-échantillonnage par plus proche voisin a été re-

tenu pour sa simplicité et 'absence de biais introduit. La fonction d’activation utilisée est
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SiLU(z) = wxsig(x), fréquemment employée en raison de sa dérivabilité en tout point, son
gradient lisse comparable a celui de la sigmoide, et son comportement non-linéaire proche
de celui de la fonction ReLU(z) = max(0,z) [91]. La normalisation par groupe permet de
stabiliser I’entrainement, tout en étant plus robuste que la normalisation par lot pour les lots
de petites tailles [92]. La normalisation par groupe centre les valeurs au sein d’un groupe
(fixé a 32 ici) de cartes de caractéristiques, et en réduit la variance a l'unité. Ces cartes
correspondent aux différentes sorties (équivalent aux canaux) produites par les filtres d’une

couche de convolution.

Une couche de dropout est introduite dans chaque bloc résiduel, afin de fixer a zéro aléa-
toirement 100 x p % des valeurs des cartes caractéristiques a ’entrainement. Ce mécanisme
permet de limiter le sur-apprentissage, en empéchant le modele de « mémoriser » une solu-
tion [93]. La probabilité p est un hyper-parametre que nous gardons fixé a p = 0.1 tel que

dans l’architecture d’origine.

Les informations temporelles liées a 'entrée X sont intégrées a plusieurs reprises dans le
UNet afin de pouvoir prendre en compte les différences saisonnieres, et I’évolution dans le
futur. Nous utilisons une représentation permettant de modéliser a la fois le cycle des jours
dans le mois, des mois dans ’année, ainsi que la progression des années. Pour chaque date

(m/j/a), nous calculons la variable :

4 — Qmin 27T.] . 2mm
=\ a1 e 1
! <amax - amin) o8 ( 31 ) S ( 12 ) ' (5 )

avec j € [|1,31]], m € [|1,12]] et a € [|1955,2099]] respectivement le jour, le mois, et I'an-
née du champ de précipitations. apa, €t amin correspondent aux années maximum et mini-
mum de la période d’entrainement. La variable t est ensuite transformée par un perceptron
multicouche (ou Multilayer Perceptron en anglais, MLP) comportant une couche cachée de
dimension 128, et produisant deux sorties : un parametre d’échelle v € R, et un parametre
de phase 8 € R. Ces deux parametres sont utilisés pour appliquer une transformation affine

aux cartes de caractéristiques z tel qu’illustré sur la figure 5.1 :

y="z+ (1+0). (5.2)
Finalement, les parametres ¢ du modele sont initialisés aléatoirement par échantillonnage
d’une distribution uniforme de « Kaiming » [94] :

O~ U(=bb) avee b= |—— (5.3)

ni—



31

3 Bloc résiduel avec agrégation spatiale

t

3 Bloc résiduel avec sur-échantillonnage
™™ Bloc résiduel

) Convolution 3x3
3 Convolution 3x3 en profondeur
1 Convolution 1x1

7 Normalisation par groupe
3 SiLU

1 Dropout

{Z37] Agrégation spatiale par moyenne

} Sur-échantillonnage par plus proche voisin

V' MLP i une couche cachée

® Transformation affine
¢ Addition
—0

Concaténation

FIGURE 5.1 Présentation de l'architecture du modele UNet utilisé, et des modifications
effectuées sur le bloc résiduel original [2].
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ou n;_; correspond au nombre de canaux en entrée de la couche .

5.1.2 Stratégie, pré et post traitement des données

Dans le cadre du Perfect Upscaling, les champs de précipitations a basse résolution sont géné-
rés artificiellement par moyennage spatial des données journalieres haute résolution issues de
ClimEx (voir section 4). Afin d’évaluer de maniere pratique les capacités de I'apprentissage
profond pour la réduction d’échelle, nous adoptons un facteur d’agrégation de 16, sensi-
blement plus élevé que dans la majorité des travaux existants, tout en conservant un niveau
d’information suffisant sur notre domaine restreint. Chaque champ basse résolution comprend

ainsi 8 x 8 cellules, résultant de 1’agrégation de blocs de 256 cellules haute résolution.

L’architecture du UNet nécessite que 'entrée et la sortie aient des dimensions spatiales si-
milaires, afin d’assurer la continuité des sauts de connexions. Ainsi, il est nécessaire de sur-
échantillonner les champs de précipitations a basse résolution avant de les fournir en entrée du
modele. Une autre approche pouvant étre envisagée consiste a étendre le décodeur afin d’ob-
tenir une sortie de dimensions plus élevée que ’entrée, mais nos expérimentations n’étant pas
concluantes, nous avons décidé de nous concentrer sur la premiere approche [95]. Plusieurs
travaux utilisent l'interpolation bilinéaire ou bicubique pour effectuer ce sur-échantillonnage.
Nous avons fait le choix d’effectuer un sur-échantillonnage par plus proche voisin, afin de ne
pas introduire de biais a cet étape, et ne remarquant pas d’impact sur les performances sur

les expérimentations préliminaires.

Soient z,y € RT*W deux champs de précipitations de haute résolution totalisant H x W cel-
lules, respectivement obtenus par interpolation depuis la basse résolution, et issus directement
des données haute résolution. Une premiere approche consiste a entrainer un UNet fy, para-
métré par 6, pour prédire y & partir de x et de covariables éventuelles v, soit fp(z,v) = y. Une
alternative consiste & modéliser uniquement le résidu r = y — x, en apprenant fy(x,v) = r.
Cette stratégie permet de focaliser I'apprentissage sur les détails absents de l'interpolation,
plutét que sur la totalité du champ, dont certaines composantes ont déja été perdues par
I’encodeur. Nous retenons cette approche dans la suite, ayant observé des performances sys-

tématiquement supérieures, en accord avec des travaux antérieurs [2,74].

Les champs journaliers de précipitations et de températures moyennes entre 1955 et 2020 sont
utilisés pour constituer I’ensemble d’entrainement. Afin d’optimiser ’architecture du UNet,
cet ensemble est scindé en un sous-ensemble d’entrainement couvrant la période 1955-2010,
et un ensemble de validation allant de 2010 a 2020. L’ensemble de test, quant a lui, s’étend
de 2020 a 2099, de maniere a évaluer les performances du modele dans un contexte de

changements climatiques marqués, et pour analyser 1’évolution de ses capacités a mesure que
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ses effets s’intensifient.

L’optimisation des parametres est effectuée a 'aide de 1'algorithme Adam [96], avec une taille
de mini-lot fixée a N = 32, sauf indication contraire. Le modele UNet est entrainé en mini-
misant erreur quadratique moyenne (MSE) entre ses prédictions et les valeurs cibles. Soient
R € RV*HXW Jeg champs de résidus cibles, X € RY**W leg champs de précipitations in-
terpolés a partir des données basse résolution, V € R¥*H#*W Jes champs de covariables, et fy
le UNet paramétré par 6. La fonction de perte utilisée pour I’entrainement est alors donnée

par :

1 N )
L(0) fo(Xs, Vi) — Ri5 - (5.4)
=1

T NHW &

Pré-traitement

Comme l'illustrent les histogrammes de la figure 4.2, les précipitations sont fortement concen-
trées autour de zéro, avec une queue de distribution marquée. Cette structure motive I'ap-
plication d’une transformation des valeurs de précipitations pour deux raisons principales :
(1) élargir la plage des faibles précipitations, souvent sous-représentées, et (2) réduire la pro-
portion de prédictions négatives, qui traduisent une incohérence physique et génerent une
surabondance de zéros apres troncation. Pour répondre a ces objectifs, nous comparons deux
transformations, notées 17 et Ty, congues pour relacher la contrainte de positivité sur I’espace

transformé, et données par les équations suivantes [70] :

Ti(x,¢e) = log (e“:Jre - 1) , (5.5)
Ty(z,€) = log(1l + z) — log(e), (5.6)

avec ¢ = 1075 (correspondant a la valeur permettant d’obtenir le moins d’incohérence lors
de nos expérimentations préliminaires). Les résultats pour la réduction d’échelle de préci-
pitations présentés au tableau 5.1 montrent clairement leur efficacité pour réduire, tant la
proportion de prédictions négatives, que 'amplitude de ces incohérences. Les deux trans-
formations permettent également d’améliorer I'erreur moyenne absolue (ou Mean Absolute

Error en anglais, MAE) de maniére comparable.

Pour la suite nous conservons la transformation 7). Les données sont normalisées par la

méthode min/max sur l'axe temporel. Soit X € RN*#XW yne séquence de N champs de

précipitations transformés (par 77), le résultat de la normalisation est obtenu par : Xorm =

X—minn X» -~ Afin d’6tre conforme au cadre de la réduction d’échelle de simulations clima-
maxy, Xn—ming, X,

tiques, nous utilisons les minima et maxima des champs de précipitations basse-résolution

Yominn Xo T eg résidus normalisés

maxy Xp—ming X,

pour normaliser les champs haute-résolution : Y, omm =
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TABLEAU 5.1 MAE (en mm/jour), proportions et la norme ¢, des valeurs négatives, pour
aucune transformation, 77 ou T,. UNet entrainé sur la période 1960 — 2000, et évalué sur
2000 — 2010.

MAE | Neg. % | ¢> Neg.
Sans transformation | 1.1236 | 12.88 | 228.73
Avec T} 1.0866 2.20 18.3

Avec T, 1.0856 9.47 27.92

sont donc égaux a :

}/norm - Xnorm
R= n . (5.7)

max, X, — min, X,

Post-traitement

Une fois les opérations de prétraitement (résidus, normalisation, transformation) inversées,
une étape supplémentaire de post-traitement est introduite. En effet, le modele n’est sou-
mis a aucune contrainte explicite garantissant la cohérence entre la valeur d’une cellule a
basse résolution et la distribution des valeurs prédites dans les cellules haute résolution qui
lui correspondent. Ce déséquilibre, bien que parfois discret a ’entrainement, peut devenir
problématique hors distribution. Pour y remédier, nous imposons une contrainte sur les pré-

dictions du UNet, apres entrainement, assurant cette cohérence entre échelles [79] :

N, rid

Ak ZZ ® ‘/'UZ A

Y, = Ngrid Yi, (58)
2 Yi

ou ¢; désigne une cellule de précipitations a haute résolution prédite par le UNet, x; la valeur
correspondante a basse résolution, et Ngiq le nombre de cellules haute résolution agrégées

dans chaque cellule basse résolution.

Le tableau 5.2 présente la MAE du UNet avec et sans application de la contrainte de post-
traitement (5.8), ainsi que la MAE calculée au voisinage de certains niveaux de quantile (0.5,
0.9, 0.95 et 0.99). On observe qu’en dépit d’une légere hausse de 'erreur globale due princi-
palement a une dégradation des performances sur les précipitations moyennes (i.e., autour de
la médiane), application de la contrainte permet une nette amélioration des prédictions sur
les valeurs extrémes (au-dela du 90éme quantile). Par ailleurs, ’histogramme des prédictions
(voir figure 5.2) met en évidence un élargissement de la gamme des précipitations prédites,

traduisant une meilleure représentation des fortes intensités.
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TABLEAU 5.2 UNet entrainé sur la période 1955 — 2010 et évalué sur la période 2010 — 2020,
sur 50 époques. Comparaison des performance avec ou sans la contrainte de post-traitement
(5.8). MAE générale (en mm/jour), et calculée au voisinage de certains quantiles (0.5, 0.90,

0.95, et 0.99).
MAE | MAE-q (0.5) | MAE-q (0.9) | MAE-q (0.95) | MAE-q (0.99)
sans contrainte | 1.1754 0.7824 3.6363 6.3347 16.1048
avec contrainte | 1.1928 0.8594 3.6044 6.0203 14.6546
w01l [ — référence

E —— sans contrainte
-E' 1072 4 avec contrainte
§ 1073 4
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F1GURE 5.2 Histogrammes des précipitations prédites par le UNet avec ou sans la contrainte
(5.8) sur la période d’évaluation (2010 — 2020).
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5.2 Ameéliorations du UNet

Dans l'objectif d’améliorer les performances du UNet, nous intégrons plusieurs recomman-
dations issues de la littérature, visant a renforcer les modeles convolutifs profonds [97]. En
cohérence avec les auteur(rice)s de ces recommandations, nous effectuons les modifications sé-
quentiellement, et conservons uniquement les modifications permettant d’améliorer la MAE.
Il est important de souligner que notre objectif principal n’est pas ici d’identifier les choix
architecturaux optimaux du UNet, ce qui impliquerait de comparer plusieurs combinaisons
de modifications, mais plutét de nous appuyer sur la littérature pour tenter d’améliorer ses

performances.

La premiere modification consiste a ajuster le nombre de blocs résiduels par niveau, de
maniére a concentrer la capacité du modele sur les niveaux pouvant étre plus influents (voir
Figure 5.1). Alors que I'encodeur original suit une séquence (3—3—3—3), nous expérimentons
deux répartitions : (2—2—4—4), et (4—4—2—2). Le tableau 5.3 montre une amélioration
marginale des performances, malgré une augmentation du nombre de parametres pour une

des séquences. Pour la suite, nous conservons le nombre initial de blocs par niveaux.

TABLEAU 5.3 MAE pour différentes séquences de blocs par niveau de 'encodeur (décodeur
symétrique avec un bloc supplémentaire par niveau). UNet entrainé sur 50 époques avec 64
échantillons par mini-lot.

Séquence de blocs résiduels | MAE | Evol. rel. MAE | Nb. parameétres
(3—3-3-3) 1.1975 NA 5.709 x 10°
2-2-4—4) 1.1947 —0.23% 6.740 x 10°
(4—-—4-2-2) 1.1953 —0.18% 4.679 x 10°

Le nombre de canaux au premier niveau de ’encodeur est initialement fixé a 32 afin de res-
pecter nos contraintes en terme de mémoire vive GPU ~ 24 Gb (Graphic Processor Unit).
Pour optimiser 'utilisation des parametres, nous modifions les deux premieres couches de
convolution de chaque niveau. La premiere, chargée de faire varier le nombre de canaux
(dans I’encodeur ou le décodeur), utilise des filtres de taille 1 x 1 au lieu de 3 x 3, concen-
trant 'apprentissage sur la dimension des canaux uniquement. La seconde, qui conserve le
nombre de canaux, est remplacée par une convolution groupée en profondeur, c’est-a-dire
une convolution appliquée indépendamment a chaque canal, sans interaction entre eux. Ces
ajustements réduisent significativement le nombre de parametres, ce qui permet de doubler
le nombre de canaux initiaux tout en maintenant un budget mémoire constant. Le tableau
5.4 met en évidence 'amélioration nette de l'erreur absolue moyenne (MAE) obtenue grace

a ces modifications.
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Pour la suite, nous conservons cette modification.

TABLEAU 5.4 MAE pour différents types de convolutions et nombre de canaux initiaux.
UNet entrainé sur 50 époques.

Types de convolution Nb. canaux init. | MAE | Evol. rel. MAE | Nb. param
(3x3), (3x3) 32 1.1928 NA 5.709 x 10°
(1 x 1), (3 x 3 en profondeur) 64 1.1782 —1.22% 4.609 x 10°

Grace a la réduction du nombre de parametres du modele, il est suggéré qu’augmenter la
taille des filtres des couches de convolutions (3 x 3) a (7 x 7) permettrait d’améliorer les
performances en agrandissant le champ réceptif. Le tableau 5.5 indique une forte dégradation
dans notre cas.

Pour la suite, nous conservons la taille de filtre (3 x 3).

TABLEAU 5.5 MAE pour différentes tailles de filtres de convolution. UNet entrainé sur 50
époques.

Taille de filtre | MAE | Evol. rel. MAE | Nb. parametres
(3 x 3) 1.1782 NA 4.609 x 10°
(7Tx7) 1.1883 +0.86% 4.796 x 10°

Les dernieres modifications effectuées consistent a : (1) retirer la premiere couche SiLU du
bloc résiduel, et (2) retirer la deuxieme couche de normalisation du bloc résiduel. Ces recom-
mandations sont inspirées de I'architecture des modeles de type Transformers. Le tableau 5.6
indique que ces deux modifications permettent de légerement améliorer les performances du
UNet. Notons également que l'erreur diminue pour tous les quantiles évalués, indiquant un
réel gain de performances.

Pour la suite, nous retirons ces couches des bloc résiduels.

TABLEAU 5.6 MAE avec certaines couches du bloc résiduel retirées : (1) seulement SiLU, et
(2) SiLU et normalisation par groupe (GN). UNet entrainé sur 50 époques.

Couches retirées | MAE | Evol. rel. MAE | Nb. paramétres
Aucune 1.1782 NA 4.609 x 10°
SiLU 1.1741 —0.35% 4.609 x 10°
SilU 4+ GN 1.1732 —0.42% 4.600 x 10°

Les modifications apportées a l'architecture originale permettent de retrouver une MAE si-
milaire & celle obtenue sans la contrainte de post-traitement (5.8), soit une réduction totale
de 1.64% de la MAE, tout en conservant les améliorations pour les hauts quantiles de préci-

pitations.
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5.3 Evaluation en changements climatiques

Pour motiver la pertinence de 1'objectif de ce projet, qui vise a renforcer la robustesse en
changements climatiques des modeles convolutifs profonds pour la réduction d’échelle des
précipitations, il est d’abord nécessaire de dresser le constat de la sensibilité du UNet aux

changements climatiques.

Nous entrainons le UNet pendant 50 époques sur la période 1955—2020, soit un total de 23 725
champs de précipitations journalieres. L’évaluation de ses performances est ensuite réalisée sur
un jeu de test couvrant la période 2020 — 2099. Il convient de souligner que, sur cette période
future, la température moyenne du domaine connait une hausse significative, doublant entre
les décennies 2020 — 2029 (5,37 °C) et 2090 — 2099 (11,04 °C). Cette période d’évaluation

est donc représentative d'un climat fortement impacté par les changements climatiques.

La figure 5.3 présente (en haut) la MAE annuelle du UNet sur la période d’évaluation (en
mm/jour), et (en bas) 'évolution relative a l’erreur moyenne sur 2020 — 2025 de la MAE
évaluée aux voisinages de plusieurs quantiles. On remarque d’abord une nette augmentation
de Derreur alors que les changements climatiques s’intensifient, passant de ~ 1.2 mm/jour
entre 2020 et 2030 & plus de &~ 1.4 mm/jour sur la derniére décennie, correspondant & une
augmentation de 16.67%. Si on ajuste une relation linéaire aux erreurs annuelles, on obtient
une tendance linéaire de l'erreur de 0.0031, c¢’est-a-dire + 0.15 mm/jour d’erreur moyenne
supplémentaire tous les 50 ans. C’est significatif, car cet ordre de grandeur correspond a peu

pres au premier quartile des précipitations sur le domaine de test.

L’évaluation de la MAE dans le voisinage de différents quantiles permet d’identifier les inten-
sités de précipitations qui contribuent le plus a la dégradation des performances du modele.
Le second graphique de la figure 5.3 montre que cette dégradation est d’autant plus marquée
que le quantile considéré est élevé : ’évolution relative de la MAE atteint environ 25% pour
le quantile de niveau ¢ = 0.99, contre seulement 5 a 8% pour le quantile de nivea ¢ = 0.5
en fin de période. Cette observation appuie 'hypothese selon laquelle le UNet ne parvient
pas a modéliser de maniere satisfaisante la relation de dépendance entre 'augmentation des

températures et I'intensification des précipitations extrémes.

On sépare la période de test en deux sous-périodes : 2020 — 2059 et 2060 — 2099 couvrant
chacune la moitié de la période de test. L’évolution relative de la MAE entre la premiere et
la seconde sous-période, présentée a la figure 5.4a, est positive sur a peu pres 'entiereté du
domaine géographique. On peut observer une corrélation au nord-ouest du domaine, entre les
augmentation marquées de la MAE et de la température moyenne (figure 5.4b). Notons que la

partie du domaine recouverte par ’océan ne peut pas étre analysée sous la méme perspective,
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FIGURE 5.3 (Haut) MAE moyenne annuelle (en mm/jour) du UNet sur la période de test.
(Bas) Evolution relative (en %) de la MAE annuelle, comparée & la période 2020-2025,
calculée au voisinage des niveaux de quantile 0.5,0.75,0.90,0.95 et 0.99. Courbes obtenues
par moyenne mobile sur 10 valeurs.
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car les précipitations sont soumises & des phénomenes différents (e.g., dépressions océaniques,
Gulf Stream). Ce constat renforce notre hypothese selon laquelle le UNet n’integre pas bien

le mécanisme d’augmentation des précipitations sous élévation des températures.

4.5

4.0

52.5°N [

3.0

47.5°N

25

(a) Evolution relative de la MAE. (b) Evolution absolue de la température.

FIGURE 5.4 Comparaison de ’évolution de Ierreur absolue moyenne (MAE) des prédictions
de précipitations haute résolution du UNet entre les périodes 2020 — 2059 et 2060 — 2099,
par rapport ’évolution des températures sur ces mémes périodes.

5.3.1 Estimation des TPSRs par la loi des valeurs extrémes généralisée

Afin de mieux comprendre la relation liant les performances du UNet en changements cli-
matiques a I'évolution des températures, nous appliquons la méthode décrite en section 2.3.3
pour estimer les taux de progression des maxima annuels de précipitations en fonction des
anomalies de température (TPSRs), a la fois sur les données de référence et sur les prédictions

issues du UNet. Nous adoptons la méthodologie suivante, détaillée en plusieurs étapes :

Nous sélectionnons les maxima annuels de précipitations par cellule sur la période d’estima-
tion. Les séries de maxima sont ensuite normalisées (division par la médiane sur la période).
Parallelement, les anomalies saisonnieres de température, calculées pour la période de mai
a septembre de chaque année, sont extraites afin d’analyser la sensibilité des précipitations
extrémes a I’évolution des températures [25]. Pour chaque cellule, une loi GEV est ajus-
tée aux maxima de précipitations, avec des parametres qui sont fonction des anomalies de

température.

Afin de réduire les incertitudes liées a I’échantillonnage lors de I'estimation des parametres

de la loi GEV, nous appliquons un regroupement spatial consistant a agréger les données des
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cellules voisines disposées en grille 3 x 3 autour de chaque cellule analysée [26]. Les parameétres
de chaque cellule seront donc estimés en utilisant les données de ses neufs cellules voisines.
Pour éviter d’obtenir des parametres et des taux incohérents, nous ne considérons pas les

cellules sur les bords du domaine.

Pour déterminer la forme fonctionnelle de la dépendance des parametres de la loi GEV aux

anomalies de température 71", nous considérons les modeles suivants :

— Parameétre de localisation u(7') : trois modeles :

My u(T) = po,
M;L,? : /’L(T) = Mo + :ulTa
My o (T') = exp(po + mT).

— Parametre d’échelle o(7') : deux modeéles :

M1 :o(T)
Myo : 0(T) = exp(og + 01 7T).

00,

— Parametre de forme : indépendant de T' car complexe a estimer :
§(T) =¢.

Les parametres sont estimés par maximisation de la log-vraisemblance, en utilisant 1’algo-
rithme d’optimisation L-BFGS-B (ou en anglais Limited-memory BFGS for Bounds constraints)
pour controler les limites du parametres de forme : £ € (—0.5,0.5), et assurer la positivité
du parameétre d’échelle : o(T) > 0 [98]. Soient yi, ..., y, les maxima de précipitations nor-
malisés pour une cellule donnée, t4,...,%, les anomalies de températures, et les parametres

w(T),o(T) et &, la log-vraisemblance de la GEV est donnée par :

=S logo(ty) — (1+1) S log (1 + 4202

e\ —1/€ .
U, 0,€) = { =2,y (14 g8spbe) si € #0, (5.9)
=S logo(t) — Yoy ol — o exp (U2A0)) i =0,
définie sur le support Vi : 1 4 ¢¥=£%) 5 (. On utilise la librairie JAX pour calculer auto-

O'(ti)
matiquement la jacobienne de {(u, o, &) et paralléliser 'optimisation des cellules. Le tableau

5.7 indique la log-vraisemblance négative (NLL) moyenne pour chaque combinaison des mo-

deles de u(T') et o(T). Les résultats confirment la pertinence de I'intégration des anomalies
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de températures, la combinaison My + M, ayant la plus forte NLL. Nous conservons la

combinaison M, 3 + M, .

TABLEAU 5.7 Log-vraisemblance négative moyenne des lois de GEV du domaine sur la
période 2020 — 2099 pour toutes les combinaisons de modeles des parametres (7)) et o (7).

Combinaison de modeles | NLL moyenne
My1 + Mgy 289.91
M2 + Mg 281.67
M3 + Mg 281.56
M1+ Mo 285.99
M2 + Mo 275.67
M,5 + M, 275.53

Une fois les parametres estimés pour chaque cellule, nous calculons les TPSRs a partir de
la loi GEV ajustée. Pour ce faire, on calcule la moyenne des anomalies de températures
T = (1/n) X, ti, et T® =Ty + 1, et les quantiles de niveaux ¢ associés, z{!) et z{¥, par
la fonction de quantile de la GEV :

oM~ logq)™¢ — si
2o(T) = w(T) + T2 [(—logq) > — 1] si{#0, (5.10)

u(T) = o(T)log(—logq)  si&=0.
Finalement, on calcule pour chaque cellule le TPSR « (en %/°C') par la formule :

@) _ (1) 7@ _11)
z,) =z, (1+0.01a) . (5.11)
Les log-vraisemblances négatives par cellule de la combinaison M, 4 + M, 2, pour les données
de référence, et les prédictions du UNet, sont disponibles a 'annexe A. Les valeurs par cellule
de chaque parametre, pour les données de référence et les prédictions du UNet sont également

incluses.

Résultats

La figure 5.5 présente les TPSRs évalués au niveau de quantile ¢ = 0.99 pour les données de
référence (figure 5.5a) et les prédictions du UNet (figure 5.5b) pour la période de test 2020 —
2099. 11 est important de noter que I’évaluation des TPSRs comporte de fortes incertitudes
entre membres de simulations climatiques. Le taux moyen de 3.2% /°C observé sur les données

de référence ici appartient a l'intervalle des taux observés par d’autres travaux a travers tous
les membres de ClimEx [25].
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F1GURE 5.5 Comparaison des TPSRs pour le niveau de quantile ¢ = 0.99 estimés sur la
période de test 2020 — 2099 a partir des données de référence, et des prédictions du UNet.

On observe que la proportion de taux négatifs semble plus élevée lorsque estimés sur les
prédictions du UNet, et de plus forte intensité. Cette observation est partagée pour les taux
de tous les quantiles estimés, comme indiqués par le tableau 5.8, et la figure 5.6, présentant
respectivement la moyenne, et les quartiles des taux de chaque quantile. Néanmoins, on note
tout de méme que la distribution spatiale des TPSRs est & peu pres similaire entre les données

de référence et les prédictions du UNet.

Les taux estimés a partir des prédictions du UNet étant systématiquement inférieurs a ceux
obtenus sur les données de référence, cela suggere que les précipitations extrémes prédites
progressent moins rapidement avec 'augmentation des températures que dans la réalité. On
en déduit que les difficultés du UNet a représenter correctement les extrémes sont amplifiées

dans un contexte de changements climatiques.

TABLEAU 5.8 Moyennes des TPSRs estimés a plusieurs niveaux de quantiles pour les données
de référence, et les prédictions du UNet, pour la période de test 2020 — 2099.

Quantiles | Référence | UNet
0.5 2.24% 1.49%
0.75 2.61% 1.69%
0.90 2.87% 1.83%
0.95 3.00% 1.91%
0.99 3.20% 1.92%
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FIGURE 5.6 Boites a moustaches des TPSRs estimés a plusieurs quantiles pour les données
de référence, et les prédictions du UNet, pour la période de test 2020 — 2099.
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CHAPITRE 6 INTEGRATION DE LA RELATION
TEMPERATURE-PRECIPITATIONS POUR LA REDUCTION D’ECHELLE

Au chapitre précédent, nous avons formulé '’hypothese que la dégradation des performances
du UNet en changements climatiques résulte en partie de son incapacité a reproduire cor-
rectement les taux d’augmentation des précipitations extrémes en fonction de 1’évolution des
températures. Dans ce chapitre, nous explorons plusieurs approches visant a mieux intégrer

cette relation lors de I’entrainement du modele d’apprentissage profond.

6.1 Contrainte douce de Clausius-Clapeyron par approche de regroupement

Comme indiqué a la section 2.3.2, deux méthodes permettent d’évaluer si les extrémes de
précipitations sont cohérents avec la dépendance a la température décrite par la relation de
Clausius-Clapeyron. Dans cette section, nous nous concentrons sur la premiere approche, dite
« par regroupement », et présentons une tentative d’intégration de cette méthode au sein de
I’apprentissage du modele UNet, dans le but de mieux intégrer la relation entre température

et précipitations.

6.1.1 Intégration de la relation précipitations-températures par contrainte douce

Contrairement a la pression de vapeur saturante, dont la dépendance a la température
est exactement décrite par la relation de Clausius-Clapeyron, les précipitations extrémes
n’obéissent pas strictement a cette loi. La relation Clausius-Clapeyron pour les précipita-
tions constitue donc une approximation statistique observée dans certaines conditions, et non
une contrainte déterministe. Ainsi, il n’est pas pertinent d’imposer au UNet une contrainte
physique exacte, ou « dure ». Néanmoins, afin de mieux intégrer la relation de dépendance
existante entre les extrémes de précipitations et la température, on peut chercher a « guider »
le UNet vers un équilibre, via une pénalité sur sa fonction de perte, c’est-a-dire une contrainte

« douce ».

On note C : Y € RVXZXHXW _y o ¢ RIXW 15 fonction qui permet de calculer un champ de
taux ¢ (en %/°C') d’évolution des extrémes de précipitations en fonction de la température
pour une séquence de champs de précipitations et de températures journalieres Y. Dans le
cadre de 'entrainement du UNet par mini-lots, on considere un mini-lot de N champs de
précipitations interpolés a partir de données de basse-résolution z € RV*"*® les champs de

résidus cibles a haute résolution r € RV*#*W 'les champs de températures a haute résolution
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T € RVXW 1o UNet f, paramétré par 6, et v > 0 la pondération de la pénalité. La fonction

de perte avec contrainte douce par approche de regroupement est donnée par :

['9(% Ta ’T‘) = 'Creco(x? Ta T, 9) + ’Y'CC'C(Zm Ta r, 9)7 (61)
N H W

avec  Lyeco(x, T, 1,0) W S (folwn, Th)iy — Uniij)s (6.2)
n=11i=1 j=1

{C(fo(x,T)ij+7i5Tij)—Clxis+r.isTij)}>

M%

H
et Leoco(z,T,r,0) H Z

=17

I
—

(6.3)

La fonction C regroupe les différentes étapes de I'approche dite « par regroupement ». Etant

donné une suite de N précipitations journalieres y;.x (en mm/jour) et températures t1.y (en

°C) :

1. Filtrage des tres faibles intensités : Conserver uniquement les journées dont les

précipitations dépassent un seuil s :
S={n"e{l,....N} |y > s}. (6.4)

2. Tri et regroupement : Ordonner les indices n* € S par ordre croissant des tem-

pératures t;, puis diviser la liste obtenue en D intervalles {Gy,...,Gp} de capacité
constante m : S
Ga={n;M, .. 0™y ouma |D| (6.5)

3. Calcul des statistiques par groupe : Pour chaque groupe d € {1,..., D} :

. >ty Yy = quantile, ({yn nt € Gd}). (6.6)

M p-eay
4. Régression pour estimer la dépendance : On suppose une relation log-linéaire :
logyl = a+ Bty +eq. (6.7)
L’estimateur des moindres carrés pour 3 est donné par :
B = (THTp) "' THQ,, (6.8)

ou
Tp =l do), @y =[ogyls... . logyhl. (6.9)



47

5. Calcul du taux : Finalement, on calcule le taux ¢ par la formule suivante :
¢ = exp(f) — 1. (6.10)

N’ayant pas observé de forte sensibilité au nombre D d’intervalles, nous fixons D = 10 pour
obtenir des capacités d’intervalles suffisamment élevées. N’ayant pas non plus observés de
forte sensibilité aux niveaux de quantile parmi ¢ € {0.90,0.95,0.99}, nous fixons ¢ = 0.90
afin de réduire les erreurs d’estimation lorsque m, le nombre de données par intervalle, est
petit. Afin de s’assurer que chaque mini-lot de prédictions du UNet comporte assez de valeurs
supérieurs au seuil s pour remplir D = 10 intervalles, on entraine d’abord le modeéle sur L,qco
pendant deux époques. Les résultats et I'impact des hyper-parametres s et v sont présentés

a la section 7.2.1.

6.1.2 Limites de 'approche par regroupement

La fonction C, utilisée pour estimer la dépendance entre températures et précipitations ex-
trémes, est définie a partir d’un regroupement nécessitant un nombre suffisant d’observations
pour produire des taux stables. Dans notre contexte, I’entrée de C est constituée des couples

(Y, t,) appartenant au mini-lot d’apprentissage de N couples {(y,,tn)}Y.

n=1"
Or, pour obtenir une estimation robuste des taux issus de cette procédure, la taille de mini-
lot N doit étre relativement grande. Cette contrainte implique des mini-lots volumineux,
augmentant significativement la mémoire vive requise lors de I'entralnement du réseau et

limitant I’application de la méthode pour des réseaux de neurones comme le UNet.

Pour illustrer cette limite, nous avons restreint le domaine spatial a 32 x 32 cellules afin de
libérer de la mémoire et d’augmenter la taille des mini-lots d’apprentissage. La figure 6.1 pré-
sente 1’évolution de Lo en fonction de la taille de mini-lots, et montre clairement la nécessité
de pouvoir fixer N > 512 pour que les erreurs convergent vers zéro. Malheureusement, les
ressources a notre disposition (déja significatives) ne nous permettent d’augmenter la taille

des mini-lots que jusqu'a N = 150 pour le domaine complet.

Une piste non explorée dans ce mémoire consisterait a entrainer le modele UNet sur des «
patchs » spatiaux superposés du domaine. Cette approche permettrait de réduire le poids

des dimensions spatiales des mini-lots, et donc d’en augmenter le nombre d’échantillons [99].
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FIGURE 6.1 Lo¢ pour la période 1955 — 2020 sur un domaine restreint en fonction de tailles
croissantes de mini-lots (256,512, 1024, 2048, et 4096).

6.2 Intégration d’a priori statistiques issus de la théorie des valeurs extrémes

Tel qu’expliqué a la section 2.3.3, la méthode par approche de regroupement comporte I'incon-
vénient de ne pas pouvoir réellement mesurer le lien causal entre évolution des températures
et extrémes de précipitations, les variations saisonnieres introduisant un facteur de confusion

important [24].

Basées sur la théorie des valeurs extrémes, les approches alternatives modélisent les pré-
cipitations extrémes en capturant la non-stationnarité via des parametres dépendants des
anomalies annuelles ou saisonniéres de température. Dans cette section, nous étudions com-
ment exploiter ces distributions comme a priori statistiques afin de renforcer la robustesse

du modele d’apprentissage profond dans un contexte de changements climatiques.

6.2.1 Modélisation des précipitations par extension de la loi de Pareto généra-

lisée

L’extension de la loi de Pareto généralisée (ou Ezxtended Generalized Pareto Distribution
en anglais, ExtGPD), présentée a la section 2.2.3, permet de modéliser la totalité de la
gamme des précipitations (& l'exclusion des précipitations nulles), et de conserver les pro-

priétés asymptotiques de la théorie des valeurs extrémes [1]. Notre objectif consiste & obtenir
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une distribution (dépendante des anomalies de température) précise des précipitations pour
chaque cellule de notre domaine, en utilisant nos données d’entrainement, pour ensuite utiliser

cette distribution lors de la réduction d’échelle par apprentissage profond.

La fonction de répartition d’une variable aléatoire suivant une loi ExtGPD est donnée par :

Fz) = K{HE (i)} (6.11)

avec K un modele paramétrique soumis a certaines conditions, H la fonction de répartition
de la loi de Pareto généralisée (voir eq. 2.8) avec & > 0, et ¢ > 0 le parametre d’échelle.
Nous utilisons le modele proposé par les auteurs K (v) = v" avec k > 0. Par conséquent, la

fonction de densité s’écrit :

0 0 T\ x\r! x
—F —H: (=) =kH: (= h <) - 6.12
J(w) = Ox (z) = o ¢ <0) e ((T) ‘\o)? ( )
avec He et he respectivement les fonctions de répartition et de densité de la loi de Pareto
généralisée :
1—(1+&)7Y sic+o,
He(z) = (422 7 (6.13)
1 —exp(—=2) si & =0,
14 &2) e g 0,
he(z) = (L+8&2) S (6.14)
exp (—z2) si € =0.

Nous devons estimer trois parametres pour chaque cellule du domaine : kK > 0, o > 0, et
& > 0 pour ajuster 'ExtGPD aux données de précipitations. Nous effectuons 'estimation des
parametres par maximisation de la log-vraisemblance censurée a gauche, tel que suggéré par
les auteurs. L’effet de bruine (ou drizzle effect en anglais), responsable d’une surreprésentation
des faibles valeurs de précipitations, est pris en compte par I'application d’un seuil de 1
mm/jour [100]. Etant donné notre choix K (v) = v*, F la fonction de répartition de la loi
ExtGPD, et f la fonction de densité, la log-vraisemblance des parametres de I’ExtGPD, pour

. : i.i.d. - e ;o
le seuil C' = lmm/jour, et y1,...,y, ~ F une série de précipitations non-nulles, s’écrit :

le(k,0,8) = log{ II F(©) 11 f(%’)} (6.15)

= ﬁzgcllog{ﬂg (CS} —l—z zgclog/i +(k—1) chlog{]-lg ( )} (6.16)
+ 3 1og{h5( )} Y logo. (6.17)

i:y; >C 1:y; >C
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Ainsi, pour £ = 0, on obtient :

le(k,0,6=0)=kK > log{l—exp (—S)}—l—(/ﬂ—l)'z log{l—exp (—%)} (6.18)

iy <C iy; >C
+ > logk — L. > logo, (6.19)
iy >C iyi>C 9 iyi>C

et pour £ > 0 :

o e () e Z -2 )

iy, <C iy 2C
(6.20)
+ > logr—(E+1)/¢ > log{l—l—ﬁyai}— > logo. (6.21)

iy >C iy >C iy >C

Pour estimer les parametres de la loi en maximisant la log-vraisemblance définie par I'équa-
tion (6.17), nous utilisons 'algorithme d’optimisation L-BFGS. Afin de garantir le respect
des contraintes sur les parametres, nous appliquons des transformations appropriées de ces
derniers. Cette approche s’est révélée plus stable que l'utilisation directe de I’algorithme
L-BFGS-B, qui impose des bornes mais a montré des instabilités pour ’ajustement de cette

loi.

Dans le but d’inclure la non-stationnarité liée a 1’évolution des températures, nous choisis-
sons de faire dépendre les parameétres o et k aux anomalies annuelles de température. Les
parametres k, o et &, pour les anomalies de température 7', sont définis lors de I'optimisation

par les transformations suivantes :

K(T) = exp(ap + o T') (6.22)
o(T) = exp(Bo + /i T) (6.23)
E(T)=0.5/{1+exp(—v)} (6.24)

avec «q, a1 g, f1, v € R. Afin d’éviter que les parametres x et o ne divergent vers des
valeurs irréalistes lors de 1'optimisation, nous ajoutons un terme de pénalisation de 10° a la
log-vraisemblance négative pour chaque cas ou k(7T") > 2, ou o(T") > 30. Ces seuils ont été
définis empiriquement a partir des bornes maximales observées lors d’estimations précédentes

avec contraintes explicites. Pour rappel, nous fixons C' = 1 mm/jour.

La log-vraisemblance négative moyenne obtenue dans le cas stationnaire («; = ;1 = 0) est de

43784.86, contre 43 778.69 dans le cas non-stationnaire. La figure 6.2 présente la distribution
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spatiale de la log-vraisemblance négative dans le cas non-stationnaire. On observe des valeurs
élevées dans les régions a forte orographie : on distingue notamment les Laurentides, les monts
Chics-Chocs, le plateau du Cap-Breton et les monts Long-Range. La NLL est également élevée
dans le sud-est du domaine, en zone océanique, caractérisée par de fortes précipitations comme

le montre la figure 4.1(c).

Les figures 6.3 et 6.4 présentent la distribution spatiale des parametres obtenus dans le cas
non-stationnaire. On observe a la figure 6.3a que le parameétre stationnaire k(7)) est plus
élevé sur la zone continentale, en particulier dans les régions montagneuses. Cela suggere
des distributions plus étalées, avec une densité réduite autour des faibles intensités de pré-
cipitations. La figure 6.3b montre quant a elle que le parametre stationnaire o(7) distingue
nettement les zones continentales et océaniques, cette derniere étant associée a des valeurs

plus élevées du parametre d’échelle.

Concernant les composantes non stationnaires, représentées aux figures 6.3c et 6.3d, on ob-
serve une dynamique opposée sur les zones maritimes, avec une augmentation du parametre
d’échelle o(T) et une diminution de (7). Par ailleurs, le coefficient f3; est globalement positif
sur ’ensemble du domaine, indiquant une réponse croissante des précipitations extrémes avec
I’augmentation des températures. Enfin, la figure 6.4 révele que le parametre de forme & est

plus élevé sur les zones continentales, traduisant des queues de distribution plus lourdes.

Quatre cellules, représentatives de la diversité du domaine géographique, sont identifiées par
les étoiles 1 a 4 de la figure 6.2. Afin de s’assurer de la viabilité de la loi ExtGPD pour
décrire les précipitations journalieres, et évaluer la pertinence de la prise en compte des
températures, nous calculons les diagrammes quantile-quantile de chacune de ces cellules. La
figure 6.5 montre les diagrammes quantile-quantile pour chaque cellule dans le cas stationnaire
(y = B1 = 0), ainsi que les histogrammes des quantiles obtenus. La figure 6.6 présente les
mémes éléments dans le cas non-stationnaire. Afin d’évaluer la pertinence de la prise en
compte de I’évolution des températures, les comparaisons sont effectuées sur les données de
la période 2020 — 2099, tandis que les parametres ont été estimés sur la période historique
1955 — 2020.

Ces diagrammes quantile-quantile, ainsi que les histogrammes correspondants, illustrent la
pertinence de la prise en compte de I’évolution des anomalies de températures. En effet, dans
le cas stationnaire (ag = f; = 0), présenté a la figure 6.5, on observe une sous-estimation
systématique des quantiles élevés (sur la période 2020-2099) par la loi ajustée sur la période
1955-2020. A D'inverse, la figure 6.6 montre des diagrammes quantile-quantile quasi parfaits et
des histogrammes tres bien alignés. Ainsi, I'inclusion des anomalies de températures permet

d’adapter plus fidelement la distribution des précipitations non nulles dans un contexte de
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35000 40000 45000 50000 55000 60000
NLL

F1GURE 6.2 Log-vraisemblance négative obtenue apres optimisation des parametres définis
en (6.22-6.24) de la loi ExtGPD, ajustée indépendamment sur chaque cellule du domaine a
partir des données de référence couvrant la période 1955-2020. Les étoiles numérotées 1 a 4
identifient les cellules analysées aux figures 6.5 et 6.6.
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) Valeurs du parameétre exp(ag) correspon- (b) Valeurs de exp(/f3p) correspondant & la par-
dant a la partie stationnaire du parametre tie stationnaire du parametre o(7).
k(T).

(c) Valeurs de ayq correspondant & la partie (d) Valeurs de f; correspondant & la partie
non-stationnaire du parametre (7). non-stationnaire du parametre (7).

FIGURE 6.3 Valeurs des parametres exp(ayp), a1, exp(f), 81 pour chaque cellule du domaine
apres maximisation de la log-vraisemblance (6.17).
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FIGURE 6.4 Valeurs du parametre £ apres application de la transformation (6.24).

changements climatiques.

6.2.2 Réduction d’échelle par prédiction des niveaux de quantile

Contrairement a ’approche classique de réduction d’échelle, qui consiste a entrainer un mo-
dele d’apprentissage profond afin de prédire directement la valeur de précipitation a haute
résolution (ou, dans notre cas, le résidu par rapport a la basse résolution), nous proposons
une méthode fondée sur la structure statistique des précipitations haute résolution. Plus

précisément, pour chaque cellule, nous exploitons la loi ExtGPD ajustée précédemment.

Soient x et y deux champs de précipitations respectivement a basse et haute résolution,
associés a un champ d’anomalies saisonniéres de températures tp. Pour chaque cellule (4, j) de
la grille haute résolution, le modele de réduction d’échelle a pour objectif de prédire le niveau
de quantile p;;(x) € (0,1) tel que @;;, la valeur de précipitation correspondante, s’obtienne
par inversion de la fonction de répartition F;

ij, dépendante des anomalies de températures,

estimée a partir de la loi ExtGPD ajustée pour cette cellule :

9ij = F;' (Dig (), tpij) - (6.25)
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FIGURE 6.5 (Premiére ligne) Diagrammes quantile-quantile des données de la période
2020 — 2099 provenant des cellules 1 a 4 (voir figure 6.2), pour les modeles stationnaires
(y = p1 = 0) ajustés sur la période 1955 — 2020. (Deuxiéme ligne) Histogramme des
quantiles obtenus.
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FIGURE 6.6 (Premiére ligne) Diagrammes quantile-quantile des données de la période
2020 — 2099 provenant des cellules 1 & 4 (voir figure 6.2), pour les modeles non-stationnaires
ajustés sur la période 1955 — 2020. (Deuxieéme ligne) Histogramme des quantiles obtenus.
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Cette approche permet d’intégrer les propriétés de la théorie des valeurs extrémes pour amé-
liorer la représentation des précipitations de forte intensité. De plus, en faisant dépendre la
fonction de répartition F;; aux anomalies de températures annuelles, on renforce la robus-
tesse du modele en changements climatiques. L’inverse de la fonction de répartition de la loi

ExtGPD peut se calculer par la formule :

o [l
—olog(1 —p'/*) si €& =0.

(6.26)
L’ensemble du champ haute résolution prédit ¢ est alors reconstruit en appliquant cette

opération a chaque cellule de la grille Gy :
§= {Z?ij = F; Py (), tpig) | (i,9) € QHR}- (6.27)

Les niveaux de quantile associés aux lois ExtGPD ajustées n’étant pas uniformément répar-
tis (ils sont en grande majorité concentrés vers les faibles valeurs, proches de zéro), nous
choisissons d’entrainer le modele fy a prédire une transformation logarithmique du niveau de
quantile. Plus précisément, si p; ; = F(y; ;, tp; ;) désigne le niveau de quantile correspondant
a la valeur cible y; j, selon la fonction de répartition F' de la loi ExtGPD dépendante de tp; j,

alors le modele est entrainé a approximer :

fo(x)ij =log (1 —pij) = pij =1—exp(—fo(2)i;) (6.28)

ou z désigne l'entrée interpolée de la basse résolution, fy(z);; la sortie du modele pour la
cellule (7,7), et p;; le niveau de quantile prédit.

Soient Y € RM**W yn mini-lot de N champs de précipitations journalieres de référence

RN>H>W yn mini-lot correspondant interpolé a partir de données

a haute résolution, X €
basse résolution, et T' € RV *H*W ]e mini-lot des anomalies de températures haute résolution,
les champs de parameétres x, 0y, o1, & € RT*W ajustés au préalable pour chaque cellule de la
grille, et F'(-,T; ;) la fonction de répartition de la loi ExtGPD dépendante par les anomalies

de température, pour la cellule (i, j).

Nous entrainons alors le UNet en minimisant la fonction de perte suivante :

1
NHW

>33 (fo Xt = 1081 = F (Vo Tona)) ) (6:29)

n=1h=1w=1

cExtGPDl (9) =
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6.2.3 Apprentissage par alignement des niveaux de quantile

Une autre approche consiste a utiliser la prédiction de précipitations }Afn,i,j = fo(X,)i; pro-
duite par le UNet, puis a projeter cette valeur dans l'espace des niveaux de quantiles en
appliquant la fonction de répartition F; ;(-, T, ;) associée a la cellule (7, 7). On compare en-
suite le niveau de quantile prédit au niveau de quantile cible p,;; = F(Y,ij, Tni;), sans
appliquer la transformation logarithmique détaillée précédemment, car la valeur de précipi-

tations prédite n’est pas directement dépendante du niveau de quantile :

1
NHW

N H W 2
Locen, (0) = YY Y (F<f9<xn>h,w, To) — F(Yo o, Tn,h,w>) . (630)

n=1h=1w=1
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CHAPITRE 7 EVALUATION

Ce chapitre vise a présenter et analyser les résultats de chacune des méthodes proposées au
chapitre précédent, en comparaison a ceux du UNet présenté au chapitre 5, entrainé sur la

perte quadratique des résidus (5.4).

7.1 Meétriques

L’objectif principal de la réduction d’échelle est de reproduire les structures fines des champs
de précipitations a haute résolution a partir de champs dégradés qui ne capturent que les
structures de grande échelle. Le modele de réduction d’échelle doit également étre en me-
sure de généraliser dans un contexte de changements climatiques, alors que les températures

moyennes augmentent.

Atteindre cet objectif nécessite la satisfaction simultanée de plusieurs critéres de perfor-

mance :

1. Restitution des intensités locales : le modele doit étre capable de reproduire
fidelement les valeurs de précipitations a haute résolution, ainsi que 1’étendue des
évenements de précipitations.

2. Reconstruction de la distribution statistique : il est essentiel que le modeéle puisse
reconstituer la distribution des précipitations a haute résolution, et en particulier de
bien pouvoir représenter les valeurs extrémes. Cela suppose une bonne estimation des
queues de distribution.

3. Fidélité fréquentielle : les champs reconstruits doivent contenir la bonne quantité
d’information a chaque échelle spatiale. Cela suppose une reconstruction précise des
structures de précipitation sur un intervalle de fréquences spatiales, avec le moins de

distorsion possible.

Afin de comparer la capacité des modeles a satisfaire le critere (1), nous mesurons U'erreur
absolue moyenne (MAE) (exprimée en mm/jour) entre les champs de précipitations géné-
rés par la réduction d’échelle et les données de référence. La prédiction des précipitations
extrémes a haute résolution représentent un défi particulier pour les modeles. Pour évaluer
plus finement les performances dans les régions extrémes de la distribution, nous calculons
aussi la MAE aux voisinages de plusieurs niveaux de quantiles, en suivant la méthodologie

suivante :
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1. Les quantiles de niveaux g + 0.025 sont estimés sur I’ensemble des données de référence.

2. Nous identifions les points de données de I’ensemble de référence dont les valeurs de
précipitation sont comprises entre ces deux quantiles. Cela définit une plage locale

autour du quantile de niveau gq.

3. La MAE est ensuite calculée uniquement sur cet ensemble restreint de points.

Nous calculons également la MAE pour chaque année de la période de test. Cette évaluation
permet d’analyser I’évolution des erreurs au fil du temps, et de comparer la capacité de

généralisation aux changements climatiques entre modeles.

Pour évaluer le respect du criteére (2), nous comparons, en agrégeant toutes les cellules du do-
maine, les histogrammes des précipitations sous une échelle logarithmique pour se concentrer

sur la queue de la distribution.

Finalement, pour évaluer le respect du critére (3), nous analysons la fidélité fréquentielle des
champs de précipitations reconstitués a travers la densité spectrale de puissance moyennée
radialement (ou Radial-Averaged Power Spectral Density en anglais, RA-PSD). Cette mé-
trique permet de quantifier la distribution de la variance spatiale du champ en fonction des
fréquences spatiales, et fournit ainsi une mesure directe de la capacité des modeles a restituer

les structures présentes a différentes échelles.

Pour un champ de précipitations Y € Rf *W la RA-PSD est obtenue & partir de la transfor-

mée de Fourier discréte bidimensionnelle :

N H-1W-1 o kph | kyw
Y (kn, kw) = Yiwe ’ ( o ) (7.1)
h=0 w=0
1 - 2
PSD (ki ku) = 7o Y (kn, k)| (7.2)

La densité spectrale de puissance (PSD) bidimensionnelle est ensuite moyennée radialement,
c’est-a-dire par intervalle d’anneaux successifs de rayon k = /k? + k2, afin d’obtenir une
PSD unidimensionnelle notée PSD(k). Les vecteurs de PSD unidimensionnels ainsi obtenus
pour chaque champ de précipitations sont ensuite moyennés, fréquence par fréquence, pour

produire une PSD moyenne représentative de I’ensemble des données pour chaque modele.

Pour évaluer la qualité de reconstruction fréquentielle des modeles, nous analysons la RA-

PSD relative entre les champs générés et les données de référence, définie par :

PSD1noazte (K
PSD,a(k) = 53D ,f,dl ( ( /3) (7.3)
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Une valeur de PSD,(k) = 1 indique une restitution parfaite de la variance a 1’échelle spa-
tiale correspondante. Des valeurs inférieures a 1 traduisent une perte de variance (sous-
représentation des structures), tandis que des valeurs supérieures a 1 révelent une surestima-

tion.

7.2 Résultats

Chaque modele comparé est entrainé selon la méme procédure, et avec les mémes hyperpara-
metres d’entralnement. La graine aléatoire est fixée a 351 pour I’ensemble des entrainements.
L’algorithme d’optimisation utilisé est Adam, avec ses parametres standards et un taux d’ap-
prentissage de 1073, Les champs de précipitations journaliéres sont mélangés aléatoirement,
et la taille du mini-lot est fixée a 32 journées, sauf pour les variantes de ’approche par
regroupement, pour lesquelles elle est fixée a 150. Chaque modele est entrainé pendant 50

époques.

Pour rappel, I'ensemble d’entrainement couvre la période 1955 —2020, correspondant a 23 725
points de données par cellule, et ’ensemble de test couvre la période allant de 2020 a 2099,

totalisant 28 835 points de données par cellule.

L’interpolation bicubique est utilisée comme méthode de référence (baseline), fournissant une
borne inférieure de comparaison pour évaluer les performances des modeles. L’erreur absolue

moyenne de cette méthode est présentée au tableau 7.1.

TABLEAU 7.1 MAE globale et évaluée aux voisinages de plusieurs niveaux de quantiles pour
I'interpolation bicubique sur la période de test.

MAE | MAE-q (0.5) | MAE-q (0.75) | MAE-q (0.9) | MAE-q (0.95) | MAE-q (0.99)
1.570 1.181 2.446 1,050 6.983 20.949

7.2.1 Contrainte douce par approche de regroupement

Nous analysons les performances de I'approche consistant a ajouter a la fonction de perte
du modele une contrainte douce censée permettre d’aligner les prédictions du modele sur la
relation entre les températures et les extrémes de précipitation. Cette contrainte définit par

I’approche de regroupement est définie a la section 6.1.

Dans l'objectif de mieux comprendre le comportement du modele lors de 'application de
cette contrainte, nous comparons les résultats en fonction de plusieurs valeurs du parametre

v € {0,1,10,50,100}, qui module I'intensité de la pénalité appliquée a la fonction de perte
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(v = 0 correspondant a la perte quadratique, et v = 100 impliquant une pénalité a peu pres
du méme ordre de grandeur que la fonction de perte initiale). Nous comparons également les

performances des modeles en fonction du seuil de filtrage s (6.4), fixé a 0 ou 1 mm/jour.

Les tableaux 7.2 et 7.3 présentent les valeurs de MAE sur la période de test pour les dif-
férentes configurations étudiées. Aucun gain significatif de performance n’est observé suite
a I'introduction de la pénalité, quel que soit le seuil s. Au contraire, pour des coefficients
v > 10, une dégradation marquée des performances est constatée. Les résultats obtenus
pour les coefficients modérés (y € 1,10) sont toutefois systématiquement meilleurs lorsqu’'un
filtrage des précipitations inférieures a s = 1 mm/jour est appliqué — a l'exception de la
médiane. Cette amélioration peut s’expliquer par une concentration de I'apprentissage sur les
fortes intensités, les faibles précipitations étant écartées. Néanmoins, cet effet restant mar-
ginal, ces résultats doivent étre interprétés avec prudence et nécessitent des investigations

complémentaires pour étre consolidés.

TABLEAU 7.2 MAE globale et évaluée aux voisinages de plusieurs niveaux de quantiles, en
fonction de la valeur du coefficient v de la fonction de perte (6.1), pour s = 0.0 mm/jour

(seuil de filtrage (6.4)).

v | MAE [ MAEq (0.5) | MAE-q (0.75) | MAE-q (0.9) | MAE-q (0.95) | MAFE-q (0.99)
0 | 1.329 0.918 2.273 1,045 6.744 17.151
1 | 1.331 0.931 2.290 1,044 6.710 17.123
10 | 1.328 0.944 2.255 3.939 6.624 17.306
50 | 1.375 0.987 2.314 1032 6.813 17.773
100 | 1.393 1.010 2.315 1028 6.810 18.073

TABLEAU 7.3 MAE globale et évaluée au voisinage de plusieurs niveaux de quantiles, en
fonction de la valeur du coefficient v de la fonction de perte (6.1), pour s = 1.0 mm/jour
(seuil de filtrage (6.4)).

v | MAE | MAEq (0.5) | MAE-q (0.75) | MAE-q (0.9) | MAE-q (0.95) | MAFE-q (0.99)
0 | 1.329 0.918 2.273 1,045 6.744 17.151
1 | 1.323 0.933 2.268 3.989 6.599 17.083
10 | 1.321 0.937 2.260 3.908 6.503 17.376
50 | 1.365 1.010 2.272 3.879 6.594 18.128
100 | 1.391 1.037 2.297 3.948 6.730 18.308

Pour la suite des évaluations, nous retenons pour chaque seuil s la configuration avec v = 10,
ce coefficient offrant généralement les meilleurs performances. L’évolution de la MAE sur la
période de test, présentée en figure 7.1, montre que les modeles pénalisés (courbes orange et

violette) ne parviennent pas a atténuer la tendance croissante de 'erreur au cours du temps.
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Par ailleurs, la figure 7.2 confirme les limites évoquées en section 6.1.2 : les modeles entrainés
avec une pénalité (v > 0) n’améliorent pas I’alignement des TPSRs avec ceux des données de
référence, en comparaison avec I’entrainement basé uniquement sur L,..,. La séparation en
deux sous-périodes suggere enfin que ces taux d’évolution ne présentent pas de dynamique

sensible a ’accélération des changements climatiques.
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FIGURE 7.1 MAE annuelle (en mm/jour) pour la perte MSE (v = 0), et pour s =0ous =1
mm/jour avec v = 10. L’erreur de I'interpolation cubique n’est pas affichée pour préserver la
lisibilité de la figure. Lissage par moyenne mobile sur 10 valeurs.
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FIGURE 7.2 Boites a moustaches des TPSRs (en %/°C') obtenus via la méthode définie a la
section 6.1 pour chaque modele. On sépare I’ensemble de test en deux périodes : 2020 — 2050,
et 2050 — 2099, pour évaluer I’évolution temporelle.

L’étendue des précipitations prédites par les modeles n’est pas améliorée par 1'ajout de la

contrainte, comme le montre la figure 7.3, qui présente les histogrammes des précipitations
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pour chaque modele sur la période de test (toutes les cellules du domaine étant agrégées).
On observe en revanche une amélioration marginale de la PSD relative pour les fréquences
supérieures & environ 0, 047 km ™", ce qui correspond & une échelle spatiale inférieure & quatre
cellules. La chute des courbes de PSD a ces fréquences s’observe également dans les données
de référence. Elle peut traduire d’une distorsion propre au modele RCM a cette échelle,
possiblement liée & une transition entre deux schémas physiques, ou encore a un effet de

filtrage numérique.
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Fi1GURE 7.3 Histogramme des précipitations pour chaque modele, incluant ’ensemble des
cellules du domaine sur la période de I'’ensemble de test 2020 — 2099

Comme discuté a la section 6.1.2, une taille de lot bien supérieure a N = 150 échantillons
serait nécessaire pour obtenir une estimation robuste des TPSRs en utilisant la méthode par
regroupement. Une telle estimation est indispensable pour que la pénalisation issue de cette
méthode définisse un paysage d’optimisation cohérent avec I'objectif annoncé : aligner les
taux de progression des extrémes de précipitations en fonction des températures avec ceux

observés dans les données de référence.

Cependant, les limitations en mémoire vive rendent impossible I'utilisation de tailles de lot
supérieures a 256 tout en conservant un domaine suffisamment vaste pour contenir une di-

versité d’information.

Une solution consiste a entrainer le modele sur un ensemble de sous-domaines superposés (ou
patches en anglais) extraits du domaine initial. Cette approche permettrait une réduction
significative du besoin de mémoire, rendant possible I’apprentissage du UNet avec la fonction

de perte proposée, pour des tailles de lot dépassant 512. Nous encourageons donc la poursuite
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FiGURE 7.4 PSD, pour chaque modele par rapport a la densité spectrale de puissance des
données de référence, calculées suivant la méthode détaillée a la section 7.1.

de ces travaux, afin de pouvoir réellement évaluer la pertinence de cette approche pour

améliorer la prédiction des extrémes et la robustesse aux changements climatiques.

7.2.2 Intégration d’a priori statistiques issus de la théorie des valeurs extrémes

Nous évaluons chacune des méthodes proposées dans deux configurations : stationnaire et
non-stationnaire, correspondant respectivement a ’exclusion ou a l'inclusion des anomalies
de températures dans la fonction de perte, et le calcul du quantile. Toutefois, ces anomalies ne
sont jamais utilisées comme covariables explicites a I’entrée des modeles. En effet, leur inclu-
sion aux co6tés des précipitations a basse résolution et de la température moyenne journaliere a
systématiquement conduit a une dégradation des performances lors de nos expérimentations.
Seulement un modele parmi ceux évalués a acces aux anomalies de températures annuelles
lors de I’évaluation sur la période de test : Lrxapp, (1), car cette variable est nécessaire pour

le calcul du quantile de précipitation pour le cas de la loi ExtGPD non-stationnaire.

Le tableau 7.4 met en évidence 'intérét d’utiliser I’a prior: statistique offert par la loi ExtGPD
pour les niveaux de quantile ¢ € [0.75,0.95]. Néanmoins, notons que la médiane des préci-
pitations haute résolution est systématiquement sujette a des erreurs plus importantes en
suivant ces approches. Malgré des améliorations, les progres restent marginaux, on ne peut
donc pas tirer de conclusion évidente quant a l'intérét de ces méthodes pour améliorer la

prédiction des extrémes de précipitations.

Similairement, I'inclusion des anomalies de températures, bien que bénéfique pour modéliser
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TABLEAU 7.4 MAE globale (en mm/jour) et évaluée au voisinage de plusieurs niveaux de
quantiles, pour le UNet standard L., et les méthodes de prédictions et d’alignement sur les
niveaux de quantile de la loi ExtGPD : Lgxigpp, (1) et Lrwapp, (2), avec ou sans anomalies
de températures T

Modele | MAE | MAE (0.5) | MAE (0.75) | MAE (0.9) | MAE (0.95) | MAE (0.99)
Lrow | 1329 | 0918 2.273 4.045 6.744 17.151
1 1.330 | 0.942 2.223 3.920 6.662 17.729
1+7 |1.336] 0.943 2.257 3.993 6.734 17.629
2 1318 | 0.928 2.251 3.956 6.590 17.221
2+ 7 | 1.321 | 0.926 2.258 3.086 6.631 17.175

la distribution des précipitations en changements climatiques, comme noté a la section 6.2.1,
semble avoir 'effet inverse de celui attendu, avec une augmentation plus rapide des erreurs par
rapport aux autres modeles, ce qu’on peut observer a la figure 7.5. Néanmoins, cela ne doit
pas forcément étre considéré comme une dégradation des performances, car comme indiqué
par 'histogramme des précipitations du modeéle Lgxcpp,(T) & la figure 7.7, la prédiction
des niveaux de quantile et l'inclusion des anomalies de températures permet d’élargir la
limite des intensités obtenues en changements climatiques. Or, dans le cas ou I’événement de
précipitations contenant une de ces intensités extrémes n’est pas exactement bien situé par
le UNet, le modele sera doublement pénalisé par rapport a un autre modele ayant largement

sous-estimé les intensités de précipitations du champ.
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FIGURE 7.5 MAE (en mm/jour) annuelle pour le UNet standard (L) et les variantes
stationnaire et non-stationnaire de la méthode de prédiction des niveaux de quantile (voir
section 6.2.2) des lois ExtGPD ajustées précédemment : Lgyapp, et Lexiapp, (T'). La courbe
est obtenue par moyenne mobile sur une fenétre de 10 valeurs.

La double pénalité remet donc en cause la pertinence de la seule utilisation de la MAE
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pour mesurer les performances du UNet en changements climatiques, surtout concernant les

extrémes de précipitations.
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FIGURE 7.6 MAE (en mm/jour) annuelle pour le UNet standard (L,eo) et les variantes
stationnaire et non-stationnaire de la méthode d’alignement des niveaux de quantile (voir
section 6.2.3) : Lexiapp, et Lexwapp, (T). La courbe est obtenue par moyenne mobile sur une
fenétre de 10 valeurs.

Lors des expérimentations menées avec les modeles de prédiction des niveaux de quantile
des lois ExtGPD, nous avons observé une tendance systématique a sous-estimer les hauts
quantiles, conduisant a des précipitations simulées nettement inférieures a celles observées
dans les données de référence. Afin d’atténuer cet effet, la transformation logarithmique a été
introduite dans la fonction de perte (6.29), ce qui a permis de corriger partiellement ce biais.
L’amélioration de la représentation des précipitations extrémes et la meilleure conservation
de la variance spatiale (voir figure 7.8) suggérent que l'intégration d’informations issues de
la loi ExtGPD au sein des modeles d’apprentissage profond pour la réduction d’échelle des

précipitations conserve un potentiel important.

La figure 7.9 illustre les champs de précipitations simulés pour deux journées distinctes de la
période de test, en comparant les sorties des différents modeles étudiés aux données de réfé-
rence a haute résolution issues de ClimEx. Cette visualisation permet de mettre en évidence
la complexité de la tache de réduction d’échelle des précipitations, surtout sans ayant recourt

a de nombreuses covariables.

Les méthodes proposées n’atteignent pas pleinement les objectifs fixés : (1) améliorer la ré-
duction d’échelle des précipitations extrémes, et (2) renforcer la robustesse du UNet face aux
changements climatiques, notamment en intégrant la relation de dépendance entre précipita-
tions et évolution des températures. Malgré cela, les résultats obtenus restent prometteurs et

encouragent a poursuivre les recherches afin de mieux exploiter le potentiel de ces approches.
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FIGURE 7.8 PSD,q pour chaque modele par rapport a la PSD des données de référence,
calculées suivant la méthode détaillée a la section 7.1.
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FIGURE 7.9 Champs de précipitations a basse résolution (interpolation 1nn), interpolés par
méthode bicubique, prédits par chacun des modeles étudiés, et a haute résolution issus de
ClimEx, pour deux dates sélectionnées aléatoirement sur la période de test.



69

CHAPITRE 8 CONCLUSION

8.1 Syntheése des travaux

Les changements climatiques intensifient les événements extrémes et modifient profondément
la distribution de variables atmosphériques comme les précipitations, avec des impacts ma-
jeurs sur les populations et les écosystemes. Des projections climatiques a haute résolution
sont essentielles pour anticiper ces évolutions et s’y adapter. Les méthodes d’apprentissage
profond représentent une opportunité importante pour produire des simulations a haute ré-
solution a bas colit. Ce mémoire s’est concentré sur la réduction d’échelle des précipitations
par apprentissage profond, en mettant en lumiere certaines vulnérabilités des réseaux de neu-
rones, notamment leur difficulté a prédire les extrémes et leur manque de robustesse face aux

changement climatiques.

Apres avoir implémenté un réseau convolutif profond de type UNet pour la tdche de réduction
d’échelle des champs de précipitations, incluant la définition d’une stratégie de pré- et post-
traitement des données, plusieurs améliorations structurelles issues de la littérature ont été

intégrées afin d’en renforcer les performances.

L’évaluation du UNet en changements climatiques, accompagnée de I'implémentation de mé-
thodes d’estimation de TPSRs inspirées en partie de la théorie des valeurs extrémes, a permis
de formuler I’hypothese supposant que la dégradation des performances de réduction d’échelle
des précipitations en changements climatiques serait liée a la non-intégration de la relation

de Clausius-Clapeyron au sein des caractéristiques apprises.

De ce constat a découlé la proposition d’incorporer au sein de I’entrainement du UNet 'infor-
mation issue des TPSRs, en utilisant ’approche de regroupement. Malgré une implémentation
fonctionnelle, le potentiel de la méthode n’a pas pu étre réellement explorée, incitant a repen-
ser la stratégie d’intégration de l'information obtenue par cette approche. Deux approches
alternatives ont donc été développé, consistant a conditionner 'apprentissage par une fonc-
tion de répartition, issue de la théorie des valeurs extrémes, représentant la distribution des
précipitations de chaque cellule en fonction de I’évolution des anomalies de températures.
Les parametres de cette loi ont été estimés pour chaque cellule du domaine, et nous avons
explicitement modélisé la dépendance aux anomalies de températures, permettant de mieux

représenter les précipitations en changements climatiques.

Les résultats obtenus ne permettent pas, a ce stade, de conclure favorablement quant a 1’effi-

cacité des méthodes proposées pour pallier aux limites identifiées du UNet pour la réduction
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d’échelle des précipitations. Toutefois, certains éléments laissent entrevoir un potentiel non
négligeable, et suggerent que des travaux complémentaires sont nécessaires pour mieux ex-

ploiter les approches développées.

8.2 Perspectives de recherche

Comme évoqué dans ce mémoire, une stratégie prometteuse consisterait a partitionner le do-
maine spatial en sous-domaines superposés, et a entrainer le UNet sur cette nouvelle structure.
Une telle approche permettrait d’augmenter significativement la taille des mini-lots, condition
essentielle pour garantir une estimation robuste des TPSRs wvia I’approche par regroupement.
Comme le suggerent les résultats de la section 6.1.2, cette méthode faciliterait également la

convergence de la fonction de perte Lo définie en (6.1).

Concernant les méthodes fondées sur l'extension de la loi de Pareto généralisée, une analyse
plus approfondie de l'influence des anomalies de température sur la modélisation des pré-
cipitations serait nécessaire. Il serait également pertinent d’envisager une combinaison des
fonctions de perte proposées, dans le but de combiner les forces de chaque approche. En-
fin, en s’inspirant des travaux en apprentissage profond appliqués aux problemes inverses,
I'introduction de couches d’échantillonnage directement issues de la loi ExtGPD au sein du
UNet pourrait constituer une piste prometteuse. Cette intégration architecturale permettrait
d’incorporer de maniere explicite les a priori sur la forme des distributions de précipitations,

ainsi que leur dépendance aux températures.
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ANNEXE A ESTIMATION DES TPSRS PAR LA LOI DES VALEURS
EXTREMES GENERALISEE

Les figures A.1, A.2, A.3, A4, A.5, et A.6 présentent respectivement les NLLs, et les para-
metres [, (1, 0o, 01 et € estimés a partir des données de référence et des prédictions du
UNet pour la période de test 2020 — 2099.
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FiGUurRE A.1 Log-vraisemblance négative a l'issue de 'optimisation des parameétres sous la
combinaison M, 4 + M, pour les données de référence (4 gauche) et les prédictions du
UNet (a droite).
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FIGURE A.2 Parametres 19 de M, 4 pour les données de référence (a gauche) et les prédic-
tions du UNet (a droite).
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FIGURE A.3 Parametres ;11 de M, 4 pour les données de référence (a gauche) et les prédic-
tions du UNet (a droite).
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FIGURE A.4 Parametres oy de M, 5 pour les données de référence (& gauche) et les prédic-
tions du UNet (a droite).
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FIGURE A.5 Parametres oy de M, 5 pour les données de référence (& gauche) et les prédic-
tions du UNet (a droite).

FIGURE A.6 Parameétres & pour les données de référence (a gauche) et les prédictions du
UNet (a droite).
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