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RÉSUMÉ

L’accélération des changements climatiques entraîne une intensification des événements mé-
téorologiques extrêmes, avec des impacts majeurs sur les populations, les infrastructures et les
écosystèmes. Les projections climatiques à haute résolution sont indispensables pour anticiper
ces évolutions, mais les modèles climatiques globaux offrent une résolution spatiale insuffi-
sante pour représenter les phénomènes de fine échelle, impliquant une sous-représentation des
extrêmes, souvent très localisés. Les modèles régionaux, bien qu’offrant une meilleure résolu-
tion, restent coûteux et limitent la production d’ensembles de simulations à haute résolution.

L’apprentissage profond constitue une alternative prometteuse pour la réduction d’échelle
des variables climatiques. Ce mémoire explore l’utilisation d’un réseau convolutif profond de
type UNet pour effectuer de la réduction d’échelle de champs de précipitations journalières.
Deux défis majeurs sont ciblés : (1) la sous-estimation des précipitations intenses et (2) la
dégradation des performances en climat non stationnaire, par exemple dans un contexte
de changements climatiques. Ces limites freinent l’application concrète de l’apprentissage
profond pour cette tâche. Nous formulons l’hypothèse qu’elles seraient en partie dues au non-
apprentissage de la dépendance des précipitations intenses à l’évolution des températures.

Deux contributions principales sont proposées. Premièrement, une contrainte douce inspirée
de la relation de Clausius-Clapeyron est ajoutée à la fonction de perte pour inciter le modèle
à produire des champs de précipitations dont l’évolution avec la température reste cohérente
avec les données de référence. Deuxièmement, deux approches complémentaires intègrent
au modèle des a priori issus de la théorie des valeurs extrêmes. La non-stationnarité liée à
l’évolution des températures est ainsi encodée par les paramètres d’extensions de la loi de
Pareto généralisée, améliorant la représentation des événements extrêmes.

Les méthodes sont évaluées sur des données issues d’un vaste ensemble de simulations clima-
tiques régionales couvrant la période 1955−2099 et incluant notamment le sud du Québec. Les
résultats mettent d’abord en évidence une dépendance avérée des extrêmes de précipitations
à l’évolution des températures moyennes, tout en soulignant que les modèles d’apprentissage
profond peinent à reproduire fidèlement cette relation. Ils montrent ensuite le potentiel des
approches développées pour améliorer la prédiction des précipitations extrêmes et ouvrent
des perspectives prometteuses pour de futurs travaux.



vi

ABSTRACT

The acceleration of climate change is driving an intensification of extreme weather events,
with major impacts on populations, infrastructure, and ecosystems. High-resolution climate
projections are essential to anticipate these changes, but global climate models provide insuf-
ficient spatial resolution to capture fine-scale phenomena, leading to an underrepresentation
of extremes, which are often highly localized. Regional climate models, while offering bet-
ter resolution, remain costly and limit the production of large ensembles of high-resolution
simulations.

Deep learning offers a promising alternative for the downscaling of climate variables. This
thesis explores the use of a deep convolutional network (UNet) to perform downscaling of
daily precipitation fields. Two main challenges are targeted: (1) the underestimation of
high-intensity precipitation and (2) the degradation of performance under a non-stationary
climate, as under climate change. These limitations hinder the practical application of such
approaches. We hypothesize that they are partly due to the model’s failure to learn the
dependence of extreme precipitation on temperature changes.

Two main contributions are proposed. First, a soft constraint inspired by the Clausius-
Clapeyron relations is added to the loss function to encourage the model to produce precip-
itation fields whose evolution with temperature remains consistent with the reference data.
Second, two complementary approaches integrate priors from extreme value theory into the
model. The non-stationarity linked to temperature evolution is thus encoded through the
parametrization of extensions of the generalized Pareto distribution, improving the represen-
tation of extreme events under future climate.

Proposed approaches are evaluated on data originating from a large ensemble of regional
climate simulations covering years 1955 to 2099. The results first highlight a clear depen-
dence of precipitation extremes on mean temperature changes, while underscoring that deep
learning models struggle to faithfully reproduce this relationship. They then demonstrate
the potential of the proposed approaches to improve the prediction of extreme precipitation
and open promising avenues for future research.
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CHAPITRE 1 INTRODUCTION

L’accélération des changements climatiques renforce la vulnérabilité des populations, des éco-
systèmes et des infrastructures humaines. Elle s’accompagne de modifications profondes des
régimes climatiques, caractérisées notamment par une intensification et une fréquence accrue
des événements extrêmes tels que les vagues de chaleur, les inondations et les précipitations
intenses. En particulier, la distribution des précipitations pourrait être significativement mo-
difiée selon les régions, avec, dans certains cas, une diminution des précipitations annuelles
moyennes, mais une augmentation de la fréquence et de l’intensité des événements extrêmes.

Pour anticiper au mieux ces évolutions, il est essentiel de produire des projections clima-
tiques à fine échelle, afin de pouvoir modéliser les fortes disparités pour certaines variables
atmosphériques, dans les zones « complexes » telles que les régions à forte orographie, les
zones côtières ou, par exemple, celles soumises à des vents intenses. L’amélioration continue
des modèles climatiques au cours des cinquante dernières années a permis de générer des
projections globales avec une résolution spatiale d’environ ≈ 50 − 100 kilomètres (km), une
échelle toutefois insuffisante pour simuler certains processus de fine échelle, pourtant cruciaux
pour la prévision des événements extrêmes. Les modèles climatiques régionaux constituent
une solution partielle, offrant une résolution spatiale d’environ ≈ 10 km pour les modèles
les plus performants, ce qui améliore significativement la représentation des précipitations,
en particulier pour les fortes intensités. Cependant, le coût élevé en temps de calcul de ces
modèles limite le nombre de simulations réalisables, surtout lorsqu’il s’agit de constituer de
larges ensembles de projections, pourtant indispensables pour représenter correctement la
variabilité naturelle du climat.

La quantité croissante d’observations atmosphériques (issues de stations terrestres, ballons,
bouées, et satellites) et de simulations numériques, couplée aux récents progrès en apprentis-
sage profond, ont permis d’ouvrir de nouveaux horizons en modélisation numérique du climat,
avec l’essor des approches basées sur les données. Initialement limitées à des tâches relati-
vement simples, les méthodes fondées sur les réseaux de neurones sont désormais capables
d’émuler des modèles climatiques numériques à l’échelle globale, avec des performances com-
parables, tout en réduisant le coût de calcul de manière drastique. Par ailleurs, l’utilisation
de l’apprentissage profond pour le raffinement de la résolution spatiale des simulations clima-
tiques s’est fortement développée ces dernières années, offrant une alternative prometteuse
aux approches traditionnelles de réduction d’échelle.

Dans ce mémoire, nous nous intéressons à l’augmentation de la résolution spatiale (appelée
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aussi « réduction d’échelle ») des précipitations issues de simulations climatiques à l’aide de
réseaux de neurones. Cette tâche, illustrée par la figure 1.1, consiste à estimer la fonction
inconnue de réduction d’échelle h, liant les champs de précipitations basse résolution, à ceux
haute résolution, à l’aide d’un réseau de neurones fθ paramétré par l’ensemble de poids θ. Plus
particulièrement, nous considérons les réseaux convolutifs profonds, qui exploitent l’opéra-
tion de convolution discrète pour traiter efficacement des données multidimensionnelles (e.g.,
images médicales ou champs de variables atmosphériques). Malgré leur potentiel, les réseaux
de neurones présentent plusieurs limitations bien connues qui restreignent leur application
à des contextes concrets. D’une part, en raison de phénomènes tels que l’apprentissage par
raccourci et le surapprentissage, les modèles d’apprentissage profond peuvent encoder des
relations artificielles ou physiquement incohérentes, qui ne se maintiennent pas hors de leur
domaine et période d’entraînement, en particulier dans le contexte des changements clima-
tiques. D’autre part, ces modèles peinent à représenter correctement les valeurs extrêmes, en
raison de leur biais en faveur des signaux de basse fréquence. Dans le cadre de la réduction
d’échelle des champs de précipitations, les conséquences de ces limites sont bien documentées
et confirmées par nos expérimentations :

1. Une dégradation des performances au fur et à mesure que la période d’évaluation
s’éloigne de celle d’entraînement, sous l’effet de l’intensification des changements cli-
matiques ;

2. Des champs de précipitations à haute résolution présentant des structures floues et
peu localisées, les modèles d’apprentissage profond ayant tendance à converger vers
des solutions moyennes pour minimiser l’erreur, au détriment de la représentation des
événements extrêmes.

L’objectif central de ce mémoire est d’atténuer ces deux principales limites. Nous faisons le
choix de limiter la taille du modèle, et de fixer a priori une architecture, afin de concentrer la
plus grande partie de nos efforts sur le développement de méthodes pouvant s’adapter à tout
type de modèle d’apprentissage profond appliqué à la réduction d’échelle de champs de pré-
cipitations. Pour ce faire, nous introduisons des concepts issus des sciences atmosphériques,
tels que la relation de Clausius-Clapeyron, qui quantifie l’évolution de la pression saturante
d’un gaz (e.g., vapeur d’eau dans l’atmosphère) par rapport à sa température, afin d’intégrer
au modèle la dépendance des extrêmes de précipitations à l’évolution des températures en
changements climatiques. Nous exploitons également des méthodes issues de la théorie des
valeurs extrêmes pour intégrer des a priori statistiques sur la distribution des précipitations
lors de l’entraînement des modèles, afin d’améliorer la représentation des extrêmes, tout en
intégrant la non-stationnarité liée aux températures.

Ce mémoire est structuré comme suit : la section 2 présente le cadre théorique ainsi que les
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Figure 1.1 Illustration du cadre théorique de réduction d’échelle des précipitations par
apprentissage profond.

méthodes mobilisées, suivie d’une revue de littérature en section 3. La section 4 décrit le
jeu de données utilisé pour l’évaluation des méthodes développées et propose une analyse
exploratoire afin de mettre en évidence certaines caractéristiques. L’architecture du modèle
d’apprentissage profond, le traitement des données, et l’évaluation des performances du mo-
dèle en changements climatiques sont détaillés à la section 5. La section 6 développe les
approches introduites pour mieux représenter les extrêmes et intégrer la dépendance aux
températures. Les résultats des méthodes proposées sont présentés et analysés à la section
7. Enfin, la section 8 synthétise les principales contributions de ce mémoire, discute de leurs
limites et propose de nouvelles perspectives de recherche.
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CHAPITRE 2 CADRE THÉORIQUE

Ce chapitre a pour objectif d’introduire les bases théoriques des méthodes et approches uti-
lisées à travers ce mémoire. Le corps méthodologique des travaux présentés appartenant à
l’apprentissage profond, nous présentons la famille d’origine du modèle utilisé : les réseaux
convolutifs profonds (CNN), ainsi que le modèle choisi pour notre projet. Un tour d’horizon
de la théorie des valeurs extrêmes permettra de poser les bases théoriques sur lesquelles re-
posent certaines stratégies de réduction d’échelle développées dans ce mémoire. Finalement,
nous introduirons la relation de Clausius-Clapeyron, ainsi que les différentes méthodes utili-
sées pour estimer les taux de dépendance entre les températures et les précipitations. Cela
servira ensuite à évaluer la capacité des modèles d’apprentissage profond à apprendre des
caractéristiques physiquement cohérentes afin d’améliorer leur robustesse aux changements
introduits par les réchauffements climatiques.

2.1 Apprentissage profond

L’apprentissage profond est une branche de l’intelligence artificielle, consistant à entraîner des
réseaux de plusieurs couches de paramètres, via l’algorithme de rétro-propagation, pour ap-
prendre des représentations d’un jeu de données, et utiliser ces représentations pour résoudre
des tâches, comme la reconnaissance d’image, ou la traduction de texte [3, 4].

2.1.1 Réseaux convolutifs profonds

Les réseaux convolutifs profonds (ou Convolutional Neural Networks en anglais, CNN) consti-
tuent une famille importante de modèles d’apprentissage profond conçus pour traiter majo-
ritairement des données spatiales. Leur structure consiste en une succession de couches de
convolutions, chacune composée d’un ou plusieurs filtres (ou noyaux) permettant d’extraire
des motifs spatiaux caractéristiques des données, grâce à l’opération de convolution discrète.

Considérons un ensemble C ∈ N∗
+ de champs bidimensionnels : x ∈ RC×H×W , de dimensions

spatiales H ∈ N∗
+ et W ∈ N∗

+, et un filtre k ∈ Rh×w de hauteur h ∈ N∗
+ et de largeur w ∈ N∗

+

avec h ≪ H et w ≪ W . La valeur de la cellule (i, j) du champ bidimensionnel y, résultant de
l’application de l’opération de convolution discrète aux champs d’entrée x, peut être exprimé
en suivant la formule :

yi,j =
C∑

c=1

h∑
u=0

w∑
v=0

ki+u,j+v xc,i+u,j+v (2.1)
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Les dimensions des filtres étant généralement bien inférieures à celles des données (h ≪
H, et w ≪ W , le nombre de paramètres par couche restant ainsi faible comparé à une
couche dense traditionnelle, dans laquelle chaque variable d’entrée est reliée à chaque variable
de sortie par un paramètre distinct), cela permet de construire des modèles profonds, avec
de nombreuses couches et plusieurs filtres par couche. Le modèle CNN, consistant en une
succession de couches de convolutions séparées par des opérateurs d’agrégation et de non-
linéarité, détient la capacité d’apprendre des structures complexes représentant de son jeu de
données d’entraînement, en exploitant à la fois les connexions locales et globales au sein des
données, comme illustré à la figure 2.1.

Figure 2.1 Illustration du champ réceptif d’une cellule (couche 3 - orange), qui correspond
à la portion de l’entrée à laquelle elle est sensible. À mesure que l’on progresse à travers les
couches du réseau, le champ réceptif s’élargit (rouge à la couche 2 puis orange à la couche
3), permettant aux neurones de capter des caractéristiques de plus haut niveau. Dans cet
exemple, les filtres sont de dimensions 3 × 3, et le pas, correspondant au déplacement du
filtre de convolution dans chaque direction, de 1. Le champ réceptif ri de la couche i, pour un
filtre de dimension ki, et le pas de la couche précédente si−1 est égal à : ri = ri−1+(ki−1)·si−1.

La non-linéarité, inhérente aux données complexes, est prise en compte par l’ajout de fonc-
tions d’activation entre les couches de convolution, comme ReLU(z) = max(0, z) ou SiLU(z) =
z · sig(z), où sig(x) = 1/(1 + e−x) est la fonction sigmoïde. D’autres opérateurs, notamment
d’agrégation par maximum, permettent de modéliser la non-linéarité des données.

Les paramètres des couches de convolution sont estimés par descente de gradient stochastique,
via la rétro-propagation. Soit fθ le CNN paramétré par les poids θ ∈ Rd, regroupés dans un
vecteur de dimension d, destiné à modéliser h : x → y, où x et y sont des tenseurs à
valeurs réelles, de dimensions arbitraires. L’apprentissage des paramètres s’effectue par la
minimisation d’une fonction de coût L selon la règle :

θi+1 = θi − η · ∇θi
L(fθi

(x(ni:n(i+1))), y(ni:n(i+1))) (2.2)
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avec η le pas d’apprentissage, et x(ni:n(i+1)) ⊂ x, y(ni:n(i+1)) ⊂ y les i-ème mini-lots de don-
nées, de n échantillons. Les paramètres η et n n’étant pas appris, on les fixe manuellement
ou via des algorithmes d’optimisation d’hyperparamètres. La fonction de coût joue un rôle
central en apprentissage profond, car elle définit l’espace dans lequel les paramètres θ sont
optimisés, influençant ainsi fortement les performances et le comportement du modèle après
l’apprentissage. L’impact de la fonction de coût pour la réduction d’échelle est exploré plus
en détails à la section 3.3.1.

Les CNNs ont d’abord été développés et utilisés pour de la reconnaissance d’images, en
utilisant les opérateurs d’agrégation pour réduire les dimensions spatiales tout en conservant
les caractéristiques dominantes des données [5]. Ils ont rapidement été adaptés à des tâches
dites image vers image, notamment en imagerie médicale, nécessitant une sortie pour chaque
pixel de l’entrée. C’est dans ce contexte qu’a été introduite l’architecture UNet [6].

2.1.2 UNet

Initialement conçue pour de la segmentation d’images médicales, cette architecture s’est im-
posée à travers de multiples applications, et comme un modèle convolutif profond de référence.
Le UNet est composé de deux chemins symétriques, contractif et expansif, fonctionnant tel
un encodeur/décodeur :

— L’encodeur : agit comme un extracteur de caractéristiques E : x → z. Contenant
L niveaux, E transforme une entrée x ∈ RC×H×W de grandes dimensions spatiales,
en une représentation latente z ∈ RD×H/2L×W/2L contractée, mais avec de nombreuses
caractéristiques, aussi appelées canaux (D ∈ R∗

+ ≫ C). Chaque niveau est composé
d’au moins une couche de convolution, suivie d’une fonction d’activation, et d’une
opération d’agrégation (par moyenne ou maximum) permettant de réduire la résolution
spatiale.

— Le décodeur : permet de recomposer les détails de la sortie y ∈ RC×H×W à partir
des caractéristiques intermédiaires El(x) ∈ Rdl×H/2l×W/2l issues du niveau l ∈ [|1, L|]
de l’encodeur et comprenant C < dl ∈ R∗

+ < D canaux, et de la sortie de l’encodeur :
D : (z, E1:L−1(x)) → y. Chaque niveau utilise une couche de convolution transposée
(ou un opérateur de sur-échantillonnage, suivi d’une couche de convolution) pour
augmenter la résolution spatiale, en intégrant les caractéristiques apprises à chaque
niveau de l’encodeur par des connexions de saut. Comme pour l’encodeur, une fonction
d’activation est appliquée après chaque couche de convolution.

Les connexions de saut (skip connecions en anglais) sont cruciales pour le UNet, permettant
de conserver l’information spatiale fine qui serait sinon perdue par la réduction de résolution
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spatiale lors de la contraction vers l’espace latent. La figure 2.2 représente une architecture
UNet standard avec 3 niveaux.

De nombreuses améliorations à l’architecture initiale ont été proposées, comme l’intégration
de blocs résiduels, l’ajout de connexions denses entre niveaux, l’utilisation des mécanismes
d’attention pour pondérer les régions de l’image, ou des combinaisons de ces améliorations
[7–9]. Dans ce mémoire, nous utiliserons un modèle UNet résiduel issu de la littérature,
introduit plus en détails dans la section 5.1.1.

Figure 2.2 UNet composé de 3 niveaux, avec convolution transposée ou suréchantillonnage
et convolution. L’entrée et la sortie sont de dimensions 64 × 64 × 3, et l’espace latent 16 ×
16 × 256.

2.2 Théorie des valeurs extrêmes

La théorie des valeurs extrêmes est une branche des probabilités et des statistiques qui s’in-
téresse spécifiquement aux événements rares et aux queues des distributions. Cette théorie
trouve de nombreuses applications dans des domaines variés tels que la météorologie ou la
finance [10].
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2.2.1 Approche par maximum de blocs

Soit une séquence de variables aléatoires indépendantes X1, ..., Xn (correspondant au « bloc
»), suivant une même fonction de répartition F , la loi des valeurs extrêmes généralisée s’in-
téresse au comportement de la variable :

Mn = max{X1, ..., Xn}. (2.3)

Théoriquement, il est possible d’obtenir la densité de la variable aléatoire Mn, en utilisant
l’indépendance des variables (Xi)[1,n] :

P(Mn ≤ z) = P(X1 ≤ z, · · · , Xn ≤ z) =
n∏

i=1
P(Xi ≤ z) = {F (z)}n . (2.4)

Or, en pratique, F est inconnue et d’infimes erreurs d’estimation (inévitables) peuvent mener
à de larges erreurs lorsque n est grand. Une autre approche consiste à approximer directement
la distribution F n lorsque n → ∞.

Une propriété importante à noter, est que pour tout z < z+ = inf{z ∈ R | F (z) = 1}, on a
{F (z)}n −→ 0 lorsque n → ∞. Autrement dit, la densité de probabilité de la variable Mn

se concentre asymptotiquement au voisinage supérieur de la borne z+. Il est donc nécessaire
d’effectuer une renormalisation de Mn pour stabiliser son emplacement et sa variance lorsque
n augmente. Le théorème 1 donne, sous l’hypothèse de la renormalisation, une famille de lois
permettant de modéliser F n pour n assez grand.

Théorème 1 (Théorème de Fisher-Tippett-Gnedenko) Soient X1, · · · , Xn une séquence
de variables aléatoires indépendantes et identiquement distribuées, et Mn = max{X1, · · · , Xn}.
Pour deux suites appropriées {an > 0} et {bn} telles que :

P
(

Mn − bn

an

≤ z

)
−→ G(z) lorsque n → ∞ (2.5)

pour une fonction de distribution G non-dégénérée, alors G est de la forme :

G(z) =

exp{−[1 + ξ( z−µ
σ

)]−1/ξ} si ξ ̸= 0

exp{− exp( z−µ
σ

)} si ξ = 0
(2.6)

définit pour {z ∈ R | 1 + ξ(z − µ)/σ > 0}, avec µ ∈ R, σ ∈ R∗
+, et ξ ∈ R.

Sous cette forme, G regroupe trois familles de lois de probabilités : Gumbell (ξ = 0), Fréchet



9

(ξ > 0), et Weibull (ξ < 0), offrant donc une flexibilité de modélisation accrue. On nomme
cette famille par son acronyme anglais : GEV (Generalized Extreme Value).

Généralement, on appelle respectivement les paramètres µ, σ et ξ les paramètres de localisa-
tion, d’échelle et de forme. La figure 2.3 montre le rôle du paramètre de forme ξ, contrôlant
l’allure et le poids de la queue de G.

Figure 2.3 Densités de probabilité pour différentes valeurs de ξ correspondant aux 3 familles
incluent dans la GEV, avec µ = 0, et σ = 1.

En pratique, les constantes de normalisation {an > 0} et {bn}, inconnues, ne posent pas
de difficultés car elles peuvent être absorbées par G. Pour n suffisamment grand, et sous
l’hypothèse que :

P
(

Mn − bn

an

≤ z

)
≈ G(z) alors P(Mn ≤ z) ≈ G

(
z − bn

an

)
= G∗(z) (2.7)

avec G∗ appartenant également à la famille GEV. Il n’est donc pas nécessaire de considérer
{an > 0} et {bn} en pratique.

Finalement, une considération importante est à noter par rapport aux valeurs de ξ. Les
propriétés asymptotiques nécessaires pour l’estimation par maximum de vraisemblance ne
sont pas satisfaites pour ξ ≤ −0.5, notamment car l’information de Fisher n’est plus définie
ou tend vers l’infini [11].

2.2.2 Approche par dépassement de seuil

La modélisation des valeurs extrêmes par la GEV a l’inconvénient de restreindre fortement le
nombre de points de données utilisés, alors que d’autres valeurs extrêmes peuvent être dispo-
nibles, sans garantir que les valeurs sélectionnées soient elles mêmes extrêmes. Contrairement
à la modélisation des maxima par blocs, la modélisation par dépassement de seuil permet de
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potentiellement tirer profit de plus grandes séries de données.

Théorème 2 (Théorème de Pickands-Balkema-De Haan) Soit X1, · · · , Xn une suite
de variables aléatoires indépendantes et identiquement distribuées selon F . Sous les mêmes
conditions que théorème 1, c’est-à-dire limn→∞ F n(z) = G(z; µ, σ, ξ), alors pour un seuil u

suffisamment grand, la fonction de distribution de la variable Y = X −u, conditionnellement
à X > u, est donnée par :

lim
u→z+

P(Y = X − u ≤ y | X > u) = H(y) =

1 −
(
1 + ξ y

σ̃

)− 1
ξ si ξ ̸= 0

1 − exp
(
− y

σ̃

)
si ξ = 0

(2.8)

définit pour {y ∈ R | 1 + ξy/σ̃ > 0} et σ̃ = σ + ξ(u − µ) > 0, avec z+ la limite supérieure du
domaine de X.

La famille des distributions définie par l’équation (2.8) se nomme la famille de Pareto géné-
ralisée (Generalized Pareto Distribution en anglais, GPD).

2.2.3 Extension de la loi de Pareto généralisée

L’extension de la loi de Pareto généralisée vise à définir une distribution capable de modéliser
l’ensemble de la gamme des précipitations non nulles (faibles, modérées et extrêmes) tout en
préservant les propriétés asymptotiques de la théorie des valeurs extrêmes dans la queue de
la distribution [1].

Une propriété intéressante de la théorie des valeurs extrêmes est sa capacité à également
modéliser les valeurs de faibles intensités. Prenons comme exemple les séries de précipitations,
bornées inférieurement par 0, et inversons leur signe pour construire la variable Y = −X.
Les plus grandes valeurs de Y peuvent alors être modélisées par une distribution de Pareto
généralisée, avec un paramètre de forme ξ négatif, correspondant au cas de Weibull pour la
loi des valeurs extrêmes généralisée (voir figure 2.3).

Fixons un seuil v définissant la frontière avec les faibles valeurs de X. On note ξ = −1/κ

avec κ > 0. Suivant l’hypothèse précédente, on peut trouver la forme de la distribution des
faibles valeurs de X [1] :

P(X ≤ x |X ≤ v) = P(Y > −x |Y > −v) ≈ H̄−1/κ

(−x + v

σ

)
=
(

1 − 1
κ

−x + v

σ

)κ

,

la condition H̄−1/κ(0) = 0, découlant de la contrainte imposée par la borne supérieure de
Y sur la fonction de survie H̄−1/κ, implique aussi que v = κσ, car H̄−1/κ(0) = (1 − v

κσ
)κ =
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0 =⇒ v = κσ. Par conséquent, les faibles valeurs de X peuvent être approximativement
décrites par une loi de puissance, et il est possible de modéliser l’ensemble de la gamme de
précipitations, à l’exclusion de 0, par une loi de la forme :

P(X ≤ x) ≈

1 − cst × H̄ξ

(
x
σ

)
pour un « grand » x,

1 − cst × xκ pour un « petit » x.

La distinction entre les « petites » et les « grandes » valeurs implique le choix d’un seuil, ce qui
limite considérablement la flexibilité de la méthode. Or, celle-ci vise à modéliser l’ensemble de
la distribution des précipitations de manière simple et efficiente du point de vue numérique.
Afin d’introduire le cœur de leur approche, les auteurs utilisent comme base une méthode
permettant d’étendre les capacités de modélisation de la loi de Pareto généralisée [12]. Sachant
qu’il est possible d’échantillonner une GPD par σH−1

ξ (u) avec u ∼ U(0, 1), on peut augmenter
la flexibilité de l’échantillonnage en transformant u par l’inverse d’une fonction K partageant
les propriétés d’une fonction de répartition définit sur [0, 1]. Ainsi, on a :

X = σH−1
ξ {K−1(u)}. (2.9)

Afin de garantir que la queue de la distribution de X adopte bien un comportement conforme
à une GPD avec ξ comme paramètre de forme, et que les valeurs proches de zéro suivent
une loi de puissance, les auteurs imposent trois contraintes que doit respecter la fonction K.
Quatre familles de fonctions paramétriques satisfaisant ces contraintes ont été proposées :

1. K(v) = vκ avec κ > 0 ;
2. K(v) = pvκ1 + (1 − p)vκ2 avec κ2 ≥ κ1 > 0 et p ∈ [0, 1] ;
3. K(v) = 1 − Qδ{(1 − v)δ} avec δ > 0 et Qδ la fonction de répartition d’une variable

aléatoire ∼ β(1/δ, 2) ;
4. K(v) = [1 − Qδ{(1 − v)δ}]κ/2, avec κ, δ > 0 et Qδ définit précédemment.

Par soucis de simplicité, et au vu de sa performance jugée satisfaisante pour décrire les
précipitations par plusieurs travaux, nous nous limiterons à l’utilisation du modèle (1) dans
ce mémoire [1,13,14]. La figure 2.4 illustre son comportement selon plusieurs valeurs de κ, et
propose une comparaison avec la loi Gamma, particulièrement pertinente pour les grandes
valeurs.

Il est important de noter que des méthodes plus complexes, étendant les capacités de l’ex-
tension de la loi de Pareto généralisée pour les précipitations, ont été proposées, mais nous
laissons leur utilisation à des travaux futurs [15].
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Figure 2.4 Densités du modèle (1) pour des « petites » et « moyennes » valeurs (gauche) et
des « grandes » valeurs (droite), en fonction de κ. La forme de la GPD est retrouvée lorsque
κ = 1. La distribution Gamma avec comme paramètres (1.4, 1.4) est affichée en comparaison.
Figure inspirée de [1].

2.3 Relation entre les précipitations et les températures

2.3.1 Clausius-Clapeyron

La relation de Clausius-Clapeyron décrit le lien entre la pression de vapeur saturante d’un
corps et sa température. Introduite entre les années 1824 et 1850 par plusieurs travaux, cette
relation fondamentale de la thermodynamique joue un rôle important en sciences atmosphé-
riques, notamment dans l’étude des précipitations, car elle quantifie la capacité de l’air à
contenir de la vapeur d’eau selon sa température. Dans le cas d’un changement de phase
entre liquide et vapeur à saturation, la relation de Clausius-Clapeyron s’écrit :

∂es

∂T
= Lves

RvT 2 (2.10)

avec es la pression de vapeur saturante (en hPa), T la température (en Kelvin), Lv la chaleur
latente de vaporisation (en J · K−1), et Rv la constante des gaz parfait spécifique au corps à
l’étude (en J · kg−1 · K−1).

Sous l’hypothèse que Lv(T ) soit constante, la formule d’Auguste-Roche-Magnus offre une
solution approximative de l’équation de Clausius-Clapeyron pour la vapeur d’eau dans l’at-
mosphère :

es(T ) ≈ 6.1094 exp
( 17.625T

243.04 + T

)
(2.11)

avec es la pression saturante de la vapeur d’eau (en hPa), et T la température (en ◦Celsius).

Cette solution a la particularité d’être sous une forme exponentielle, et sa dérivée montrant



13

une évolution de la pression saturante de manière exponentielle en fonction de la tempéra-
ture, suivant un taux entre 6 et 7%. Ce résultat représente la base physique de l’hypothèse
de transférabilité de la formule de Clausius-Clapeyron aux précipitations, supposant que les
extrêmes de précipitations augmenteraient en fonction des températures à un rythme simi-
laire.

2.3.2 Estimation par méthode de regroupement

La relation entre les précipitations extrêmes et la température a été fréquemment étudiée
à l’aide de la méthode dite de « regroupement » (ou binning method en anglais). Cette
approche a été largement utilisée dans les premières tentatives visant à valider empirique-
ment l’hypothèse de l’amplification des précipitations extrêmes selon la relation de Clausius-
Clapeyron [16,17].

Les faibles intensités de précipitations (généralement inférieures à 0.1–2 mm · h−1) sont
d’abord exclues de la série de données. Les valeurs restantes sont ensuite regroupées en
intervalles définis selon la température associée. La taille de ces intervalles peut être déter-
minée soit en fonction d’un nombre fixe d’observations, soit en fonction d’une largeur donnée
sur l’échelle des températures (e.g., 2,◦ C). Pour chaque intervalle, on calcule la température
moyenne ainsi qu’un quantile élevé q (tel que le 99ème niveau de quantile) des précipitations.
Une régression linéaire est ensuite ajustée sur les données transformées logarithmiquement,
en modélisant la relation entre le quantile de précipitations Pq et la température moyenne
T̄ [18] :

log (Pq) = αT̄ + β. (2.12)

Le taux, exprimé en pourcentage, d’augmentation des précipitations par degré Celsius est
obtenu à partir du coefficient α :

∂Pq

∂T
= 100(eα − 1) (2.13)

Cette méthode présente l’avantage d’être à la fois simple à mettre en œuvre et facile à
interpréter. Toutefois, plusieurs limitations doivent être prises en compte. D’une part, le
choix du seuil d’exclusion initial peut influencer significativement les taux d’augmentation
obtenus. D’autre part, une inversion de la relation entre température et précipitations est
fréquemment observée au-delà d’un certain seuil thermique, situé typiquement entre 20 et
30◦C, ce qui s’explique par la diminution de l’humidité disponible à haute température. Deux
stratégies sont généralement proposées pour remédier à cette non-linéarité : (1) substituer
la température de l’air par le point de rosée comme variable explicative, ou (2) intégrer
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explicitement un point de bascule dans la régression linéaire [19].

Enfin, une méthode alternative, fréquemment utilisée et conceptuellement proche, consiste
à appliquer une régression de quantile directement sur l’ensemble des données, sans recourir
au regroupement préalable [20,21].

2.3.3 Estimation par la loi des valeurs extrêmes généralisée

Plusieurs travaux ont néanmoins émis des critiques envers l’approche de regroupement [22,23].
Notamment, les variations saisonnières influençant simultanément les températures et les
précipitations, introduisent un facteur de confusion qui remet en question l’existence d’un lien
causal direct entre ces deux variables [24]. La pertinence de la méthode de regroupement pour
mesurer l’impact des changements climatiques sur les précipitations extrêmes est donc remise
en question, le lien entre températures et précipitations journalières (pouvant être expliqué
par des variations saisonnières) étant sensiblement différent de celui lié à un réchauffement
global.

Pour pallier à ce problème, on peut estimer le taux d’augmentation des précipitations en
fonction des anomalies de températures en changements climatiques à l’aide d’une loi GEV
non-stationnaire [24]. Les maxima annuels de précipitations sont sélectionnés et normalisés,
en les divisant par la médiane de la série. Une loi GEV est ensuite ajustée sur ces données,
en utilisant comme covariable les anomalies annuelles (ou limitées à la saison présentant la
plus forte probabilité d’occurrence de précipitations extrêmes (e.g., l’été)) de températures
moyennes. La paramétrisation de la dépendance des paramètres de la loi GEV aux anomalies
de température dépend des implémentations. Certains utilisent [25] :

µ(T ) = µ0 + µ1T, σ(T ) = exp(σ0 + σ1T ), ξ(T ) = ξ. (2.14)

Le taux d’augmentation entre les précipitations extrêmes et les températures (en anglais
Temperature-Precipitation Scaling Rate, ou TPSR) s’obtient en calculant le quantile q obtenu
pour les anomalies de températures T1 et T2, menant à Q1 et Q2. Tout quantile de niveau q

en fonction de Ti peut être obtenu par la formule :

Q (q; µ (Ti) , σ (Ti) , ξ (Ti)) =


µ (Ti) − σ (Ti) log [− log (q)] si ξ(Ti) = 0 et q ∈ (0, 1);

µ (Ti) + σ(Ti)
ξ(Ti) {[− log (q)]−ξ(Ti) − 1}

si ξ(Ti) > 0 et q ∈ [0, 1),

ou ξ(Ti) < 0 et q ∈ (0, 1].
(2.15)
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Finalement, le TPSR α (en %/◦C) est donné comme la solution de la formule :

Q2 = Q1(1 + 0.001α)T2−T1 (2.16)

En général on choisira ∆T = T2 − T1 = 1, car la valeur de ∆T n’a que peu d’impact sur le
résultat [26].
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CHAPITRE 3 REVUE DE LITTÉRATURE

Ce chapitre vise à fournir une synthèse de la littérature concernant les principaux thèmes et
enjeux abordés dans ce mémoire. Dans un premier temps, nous proposerons un bref résumé
de l’histoire de la modélisation numérique du climat, de ses avancées majeures, et ses défis
actuels. Nous couvrirons ensuite les méthodes standards de réduction d’échelle, avant de nous
intéresser à l’utilisation de l’apprentissage profond dans ce contexte, en portant une attention
particulière aux approches dites « informées par la physique ».

3.1 Modélisation numérique du climat

Le premier modèle numérique du climat est proposé en 1955, simulant l’atmosphère sur 2
niveaux verticaux, sur une durée de 31 jours [27]. Ces travaux initiaux, combinés au progrès
des puissances de calcul, et à la quantité grandissante de données récoltées, mèneront à
l’apparition des premiers modèles climatiques globaux (ou Climate Global Models en anglais,
GCMs) durant les décennies suivantes [28].

Les GCMs sont des modèles numériques comprenant d’une part, un « cœur » dynamique,
permettant de résoudre les équations fondamentales de l’atmosphère (e.g., Navier-Stokes),
et d’autre part, une partie physique qui modélise les échanges entre les grands « corps »
de la planète : océans, continents, atmosphère. Certains processus physiques se produisant à
une échelle plus fine que la résolution des GCMs sont représentés par des paramétrisations
empiriques, sources d’incertitude qui motivent l’augmentation de la résolution spatiale et
temporelle des modèles [29, 30]. En intégrant progressivement les interactions entre climat
et biosphère, et en modélisant explicitement de plus en plus de phénomènes (biogéochimie
marine, aérosols, etc.), les GCMs ont évolué vers des modèles maintenant appelés Modèles
du Système Terre (ou Earth System Model en anglais, ESMs) [28,31].

En parallèle de cette évolution, les applications de la modélisation climatique numérique se
sont considérablement élargies. L’avènement des simulations climatiques globales au cours
des dernières décennies a permis des avancées majeures dans la compréhension des causes et
des conséquences des changements climatiques [32, 33]. Les projections climatiques établies
selon différents scénarios d’émissions de gaz à effet de serre (GES) ont largement contribué
à orienter les politiques nationales et internationales, ainsi qu’à anticiper l’évolution des
événements météorologiques extrêmes, tels que les inondations associées à un niveau de retour
de 100 ans, ou encore à estimer les besoins futurs en eau des zones urbaines et du secteur
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agricole [29, 34–36]. Malgré les améliorations récentes, la complexité de calcul actuelle des
ESMs reste prohibitive, ce qui rend la production de simulations à des résolutions spatiales
inférieures à 50 kilomètres (km) irréalisable sur le plan opérationnel [37].

Étant donné que de nombreux processus physiques ne peuvent être résolus qu’à une résolu-
tion spatiale plus fine, les simulations à grande échelle ne disposent pas des détails physiques
nécessaires pour prendre en compte la dynamique à petite échelle. Cependant, il existe un
besoin aigu de simulations climatiques à haute résolution pour évaluer les impacts des chan-
gements climatiques, dans le cadre d’études d’impact climatique régionales ou locales [38,39],
d’évaluations des risques liés aux phénomènes météorologiques extrêmes [40], de la modéli-
sation hydrologique [41], ou de la modélisation des incendies de forêt [42]. Pour répondre à
ce besoin, des techniques de réduction d’échelle ont été développées afin d’accroître la ré-
solution des simulations climatiques, le plus souvent en restreignant la couverture sur une
région donnée. On distingue deux grandes approches : la réduction d’échelle dynamique ou
statistique.

3.2 Réduction d’échelle dynamique et statistique

La réduction d’échelle dite dynamique consiste à réaliser une simulation à l’aide d’un modèle
climatique régional (ou Regional Climate Model en anglais, RCM) à haute résolution sur un
domaine spatial restreint, en le contraignant aux frontières par les sorties d’un modèle global
à plus faible résolution. À l’inverse, les approches statistiques cherchent à établir des rela-
tions empiriques entre les données à haute résolution (e.g., observations historiques, données
satellitaires, simulations à haute résolution) et les simulations climatiques à basse résolution,
afin d’estimer les variables climatiques locales à partir des champs globaux.

Les modèles dynamiques de réduction d’échelle intègrent des processus, dynamiques et bio-
chimiques propres à chaque région simulée. Les conditions aux frontières latérales et supé-
rieures sont fixées par les simulations de modèles globaux à chaque pas de temps, assurant
la cohérence avec la circulation atmosphérique à large échelle [43]. Ces modèles permettent
d’obtenir des simulations aux résolutions spatiales allant jusqu’à 10 km [44]. Pour référence,
le RCM canadien : CRCM5 (5th Canadian Regional Climate Model), permet d’obtenir des
simulations climatiques à une résolution de 0.11◦ ≈ 12 km sur le domaine de l’Amérique du
Nord, incluant 685 × 668 cellules, sur 56 niveaux verticaux et 17 niveaux de surface, pour un
pas de temps de 5 minutes [45,46].

L’augmentation de la résolution spatiale et temporelle des RCM rend possible la modélisation
d’un plus grand nombre de phénomènes et d’interactions à fine échelle, réduisant les biais des



18

simulations globales [47]. Toutefois, leur coût numérique élevé limite encore la disponibilité
d’ensemble de simulations climatiques à long terme, pourtant essentielles pour modéliser la
variabilité naturelle du climat et évaluer une diversité de scénarios d’émissions de GES [48].

Contrairement à la méthode dynamique, la réduction d’échelle statistique ne résout pas ex-
plicitement de processus physiques. Cette famille de méthodes vise à établir des relations
statistiques entre les variables atmosphériques à faible résolution issues des GCMs (ou par-
fois des RCMs), et des données à haute résolution (observées ou issues de simulations dans le
cadre d’émulateurs). Il existe différents cadres méthodologiques séparant ces méthodes [49] :

— Perfect Prognosis (PP) : Ces méthodes consistent à calibrer un modèle statistique
entre des prédicteurs à grande échelle (issus idéalement de réanalyses, c’est-à-dire des
simulations alignées sur les observations) et des observations locales. Le modèle ainsi
formé, reposant en général sur de la régression, est ensuite appliqué aux sorties de
GCMs, corrigées, ou jugées sans biais, pour générer des projections locales. La qualité
des prédicteurs est cruciale pour la réussite des approches PP.

— Model Output Statistics (MOS) : Cette approche consiste à corriger la distri-
bution des sorties des GCMs pour les aligner avec celles des observations locales, en
effectuant une correction statistique, typiquement via des méthodes de quantile map-
ping, ou de correction d’échelle. Les méthodes MOS correspondent généralement à de
la correction de biais.

— Weather Generators (WG) : Ces modèles reposent sur des approches stochastiques
pouvant s’inscrire tant dans le cadre du PP que du MOS. Les WG modélisent les
propriétés marginales et la structure temporelle des variables météorologiques, tout
en étant parfois capables de reproduire la dépendance spatiale entre les prédicteurs.

Les méthodes de réduction d’échelle statistiques sont couramment utilisées dans la littérature,
en partie grâce à leur simplicité d’implémentation et aux faibles coûts de calcul associés.
Par exemple, certains travaux ont évalué l’impact des réchauffements climatiques sur les
inondations en appliquant des méthodes relevant de chacun des cadres de réduction d’échelle
susmentionnés pour affiner la résolution d’un ensemble de simulations issues de GCMs [50].

Un autre cadre méthodologique couramment utilisé en apprentissage profond, et adopté dans
ce mémoire, se nomme le Perfect Upscaling (PU). Ce cadre, proche de celui du PP, repose
sur l’hypothèse que la relation entre les prédicteurs (simulations à basse résolution, et poten-
tielles covariables aux résolutions variables) et les prédictants (simulations, ou observations
à haute résolution) est exactement l’inverse d’un processus d’agrégation (e.g., une moyenne
ou une accumulation). Il ignore ainsi le problème du biais des GCM.
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3.3 Apprentissage profond pour la réduction d’échelle

Ces dix dernières années, l’apprentissage profond a graduellement gagné en popularité dans
le domaine de la modélisation climatique [51]. Ces méthodes ont démontré leur efficacité dans
des applications variées, notamment pour la simulation du climat global [52], la réalisation de
prévisions météorologiques, aux performances comparables à celles des modèles numériques
traditionnels [53], la paramétrisation des modèles numérique de climat afin d’améliorer la
modélisation des processus de fine échelle [54], ainsi que la réduction d’échelle de simulations
climatiques [55].

Les premières applications de l’apprentissage profond à la réduction d’échelle de simulations
climatiques se sont inspirées des progrès réalisés en super-résolution, une tâche de vision par
ordinateur visant à reconstruire une image haute résolution à partir d’une version dégradée.
Problème inverse mal-posé, la super-résolution cherche à restaurer des détails spatiaux fins,
perdus lors de la dégradation. Ces travaux ont jeté les bases des premières tentatives d’adap-
tation de ces modèles à la réduction d’échelle de simulations climatiques. Dans la continuité
de la section 2.1, nous présenterons séparément les travaux ayant recourt à des approches
déterministes, de ceux reposant sur des méthodes génératives.

3.3.1 Méthodes déterministes

Les modèles déterministes ont été les premiers à être utilisés pour effectuer de la réduction
d’échelle de variables climatiques. Le potentiel des réseaux de neurones convolutifs profonds
pour cette tâche a été démontré en adaptant un modèle issu de la littérature de la super-
résolution pour la réduction d’échelle spatiale de précipitations journalières, augmentant la
résolution des simulations de 1◦ à 0.125◦, et obtenant des performances supérieures aux
approches de correction de biais et désagrégation spatiale (BCSD), ou de régression automa-
tique [56–58]. Les résultats soulignent également l’importance de l’adaptation des architec-
tures issues de la super-résolution (traitant principalement des images RGB) pour prendre
en compte les caractéristiques des variables climatiques.

Par la suite, de nombreux travaux ont implémenté et comparé des CNNs aux méthodes
statistiques classiques. Certains se sont focalisés sur la modélisation des précipitations ex-
trêmes [59], d’autres ont exploré des architectures hybrides combinant CNN et perceptrons
multicouches (MLP) [60], ou ont utilisé des CNNs pour estimer les paramètres de distribu-
tions probabilistes censées représenter les données de précipitations [61]. Des améliorations
du modèle issu de [58] ont également été proposées, améliorant sensiblement les performances
tout en réduisant le coût numérique [62]. Des modèles de type UNet ont aussi été utilisés
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pour effectuer de la réduction d’échelle de variables climatiques [63–65].

D’autres modèles déterministes plus lourds et complexes (en termes de paramètres et d’ar-
chitecture) ont également été utilisés avec succès, mais ces approches ne sont pas explorées
dans ce mémoire. Un modèle de type Transformers pré-entrainé sur de très larges jeux de
données hétérogènes, a permis ensuite d’obtenir des performances remarquables sur un cer-
tain nombres de tâches, incluant la réduction d’échelle [66]. D’autres modèles Transformers
(SwinIR et Uformer) ont été implémentés pour de la réduction d’échelle et de la correction de
biais de température et vitesse de vent [67]. Le modèle Mamba, de la famille des State Space
Model, a également été appliqué à la réduction d’échelle de précipitations contraint par la
topographie [68]. Enfin, d’autres travaux ont proposé une approche basée sur les opérateurs
de Fourier permettant d’effectuer de la réduction d’échelle à une résolution arbitraire [69].

La fonction de perte utilisée pour l’entraînement des modèles a également fait l’objet de plu-
sieurs études, notamment dans le but d’améliorer la représentation des événements extrêmes.
Par exemple, il a été démontré qu’un modèle de type UNet, entraîné à l’aide d’une combi-
naison d’une perte quadratique à pondération exponentielle et d’une métrique de similarité
issue de la vision par ordinateur (SSIM), est capable de modéliser l’ensemble de la distribu-
tion des précipitations à haute résolution, y compris la queue et les valeurs extrêmes [70].
Une fonction de perte asymétrique a également été conçue pour pénaliser plus fortement les
sous-estimations, de manière proportionnelle à l’intensité de la valeur cible, ce qui permet
une meilleure capture des valeurs extrêmes [65]. Enfin, certains travaux avancent que la perte
de Charbonnier [71] Lcharb offre une alternative plus robuste aux fonctions de perte standards
L1 et L2 [67] :

Lcharb(θ) = 1
N

N∑
i=1

√
(ŷi − yi)2 + ϵ2 (3.1)

L1(θ) = 1
N

N∑
i=1

|ŷi − yi| (3.2)

L2(θ) = 1
N

N∑
i=1

(ŷi − yi)2 (3.3)

où N est le nombre d’échantillons, yi la valeur cible, ŷi = fθ(xi) la prédiction du modèle avec
paramètres θ, et ϵ un petit terme positif (e.g., 10−3) assurant la différentiabilité.

3.3.2 Méthodes génératives

De par leur nature probabiliste, les méthodes génératives offrent deux avantages principaux
par rapport aux approches déterministes : (1) en modélisant la distribution conditionnelle
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d’une variable, les modèles de cette famille permettent de mieux modéliser la variabilité
naturelle liée au climat, et (2) il est possible de quantifier les incertitudes de leurs prédictions,
ce qui est important pour la réduction d’échelle d’évènements météorologiques extrêmes.

Afin de tirer profit des avantages des méthodes génératives, tout en conservant les capacités
de l’architecture du UNet, une méthode permettant d’adapter ce modèle à un contexte proba-
biliste dans le cadre de la segmentation d’images médicales a été développée [72]. Les auteurs
proposent d’apprendre un espace latent représentant les paramètres d’une loi gaussienne,
et d’échantillonner cette loi pour enrichir les prédictions du UNet. Cette approche permet
de modéliser la variabilité inhérente aux solutions, liée à la nature mal posée du problème
inverse. Dans le cadre d’un projet collaboratif non mentionné dans ce mémoire, nous ap-
pliquons avec succès cette méthode à la réduction d’échelle de précipitations, et améliorons
la conservation des hautes fréquences des données, ainsi que la prédiction des évènements
extrêmes.

Bien qu’elles ne soient pas abordées en détail dans ce mémoire, plusieurs approches gé-
nératives ont été appliquées avec succès à la réduction d’échelle climatique. En particulier,
plusieurs études récentes ont mis en évidence les performances supérieures des modèles de dif-
fusion [73] pour la reconstruction de champs à haute résolution [74–76]. Un réseau antagoniste
génératif (ou Generative Adversarial Network en anglais, GAN) de type CycleGAN [77, 78],
capable de reproduire fidèlement les fines structures spatiales des précipitations tout en cor-
rigeant les biais systématiques présents dans les sorties des ESM a également été récemment
proposé [79].

3.4 Apprentissage profond informé par la physique

La nature de la tâche de réduction d’échelle, combinée aux contraintes physiques inhérentes
de la modélisation climatique, constituent une double motivation pour le développement de
méthodes dites « informées par la physique ».

Premièrement, la réduction d’échelle (dans le domaine climatique) constitue un problème in-
verse mal posé pour deux raisons : (1) la solution n’est pas nécessairement unique, en raison
de la perte d’information entre la haute à la basse résolution, et (2) la solution ne dépend pas
de manière continue des données d’entrée, dans la mesure où de faibles perturbations peuvent
provoquer des variations significatives de la solution [80]. Pour remédier à ces limitations, il
est nécessaire d’introduire des a priori sur le système, dans le but de réduire la sensibilité
aux perturbations et de contraindre l’espace des solutions admissibles. Deuxièmement, les
prédictions issues des méthodes d’apprentissage profond peuvent présenter des incohérences
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physiques [81]. L’introduction d’a priori, qu’ils soient simples ou sophistiqués, vise à amélio-
rer le réalisme des résultats, à renforcer la robustesse face aux situations hors distribution
d’apprentissage, ainsi qu’à accroître la confiance des utilisateurs et des utilisatrices dans les
modèles.

Parmi les approches dites « informées par la physique », on distingue généralement deux
grandes catégories. La première regroupe les méthodes intégrant des contraintes, dures ou
douces, à la fonction de coût afin d’imposer le respect, total ou partiel, de lois physiques
ou de principes de conservation. La seconde catégorie repose sur l’incorporation d’a priori
directement au sein de l’architecture du modèle, en s’appuyant sur des connaissances du
système (également appelées « connaissances du domaine » ou « domain knowledge » en
anglais) pour guider sa conception. Une revue de littérature liste les différentes approches
visant à intégrer des contraintes physiques ainsi que des a priori issues des sciences du climat
dans les méthodes d’apprentissage profond appliquées à la modélisation climatique [82].

Au sein des approches par contraintes, on différencie généralement deux types : les contraintes
dures et les contraintes douces. Une contrainte est dite dure lorsqu’elle doit être strictement
satisfaite par toute solution admissible, tandis qu’une contrainte douce est introduite sous
forme de pénalité dans la fonction de perte, pondérée par un coefficient, ce qui offre davantage
de flexibilité mais moins de garantie. Dans cette optique, des autrices et auteurs proposent
plusieurs formulations de contraintes dures pour imposer la conservation de la masse dans un
cadre de réduction d’échelle appliqué aux colonnes de vapeur d’eau, et comparent les perfor-
mances de plusieurs modèles d’apprentissage profond sans contraintes, ou avec contraintes
dures ou douces [83]. Leurs conclusions indiquent que l’introduction de contraintes permet
de réduire les erreurs dans les régions à forte complexité spatiale, telles que les zones côtières
ou montagneuses, contribuant également à une amélioration notable de la qualité visuelle
des prédictions. D’autres travaux exploitent la relation de Clausius-Clapeyron pour intégrer
des contraintes dures, ou douces respectivement dans des contextes de post-traitement et
de réduction d’échelle de variables atmosphériques [84, 85]. Enfin, une autre approche par
contrainte dure consiste à imposer, en post-traitement, une contrainte d’équilibre entre les
prédictions du GAN à haute résolution et les valeurs agrégées des champs d’entrée, afin de
renforcer la cohérence physique et d’améliorer la robustesse des prédictions en changements
climatiques [70].

La seconde catégorie regroupe une famille de méthodes plus large, qui proposent d’intégrer
des a priori à travers la conception des architectures d’apprentissage profond, ou dans les
étapes du traitement de données. Par exemple, une approche issue de la littérature permet-
tant d’améliorer la réduction d’échelle d’évènements de précipitations à très haute résolution
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(250 mètres), adapte une méthode de super-résolution pour vidéos, en remplaçant le champ
de « flux optiques », utilisé pour transmettre l’information entre trames, par le champ d’ad-
vection du vent [86]. Cette substitution exploite les connaissances sur la forte dépendance
entre la précipitation et la dynamique du vent, permettant ainsi de générer des champs à
très fine échelle cohérents spatialement. Une autre approche propose d’intégrer un modèle
orographique (permettant de mieux modéliser la structure des précipitations dans les régions
à orographie complexe) au sein d’un GAN, et de conditionner l’espace latent du modèle
génératif à l’aide d’un ensemble de processus gaussiens pour obtenir un point de départ
statistiquement et physiquement enrichi [87]. Certains proposent de modéliser les processus
climatiques sous la forme d’une équation aux dérivées partielles d’advection, et prédisent
l’évolution du champ de vitesse à l’aide de réseaux de neurones [88]. Cette approche permet
d’intégrer explicitement la dynamique physique du système climatique dans les prédictions.
Enfin, d’autres auteurs et autrices introduisent une série de transformations inspirées des
sciences atmosphériques, permettant d’effectuer différentes tâches de modélisation climatique
dans un espace invariant en réchauffements climatiques [89].
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CHAPITRE 4 DONNÉES ET ANALYSE EXPLORATOIRE

L’objectif de ce chapitre est de présenter en détail le jeu de données utilisé dans ce mémoire,
et de proposer une analyse statistique exploratoire des variables d’intérêt.

4.1 ClimEx : grand ensemble de simulations en réchauffements climatiques

Le projet ClimEx (ou CRCM5-LE) fournit un ensemble de 50 simulations climatiques régio-
nales indépendantes, à une résolution spatiale de 0.11◦ ≈ 12 km. Ces simulations couvrent
deux domaines géographiques : le nord-est de l’Amérique du Nord, et l’Europe, sur une pé-
riode allant de 1950 à 2099, à une résolution temporelle de 5 minutes [90]. Afin d’obtenir
ces simulations à haute résolution, une réduction d’échelle dynamique a été effectuée, en
utilisant un ensemble de 50 simulations globales indépendantes générées par l’ESM canadien
CanESM2, à une résolution spatiale de 2.8◦ ≈ 310 km. Celles-ci ont servi de forçage au RCM
canadien CRCM5 (version 5), développé à l’Université du Québec à Montréal (UQAM). Le
caractère indépendant des membres de l’ensemble repose sur l’introduction de perturbations
initiales appliquées à la simulation globale du CanESM2 : 5 perturbations en 1850, suivies de
10 en 1950. Ces perturbations permettent de générer 50 trajectoires globales indépendantes
à partir de 1955, capturant la variabilité naturelle du climat. Le forçage radiatif appliqué à
partir de 2006 correspond au scénario d’émission de GES RCP8.5. En résultat, une cinquan-
taine de variables par simulation ont été archivées, avec des pas de temps allant de l’horaire
au journalier. Certaines variables sont disponibles en libre accès au pas de temps journalier
via la plateforme PAVICS.

Les travaux présentés dans ce mémoire s’appuient sur un sous-ensemble du jeu de données
ClimEx. Plus précisément, nous utilisons les sorties d’un seul membre de l’ensemble (membre
kdf ), en laissant l’étude de l’apprentissage et de la généralisation inter-membres à des travaux
ultérieurs. Les accumulations journalières de précipitations (pr), exprimées en kg · m−2 ·
s−1, sont extraites, ainsi que les statistiques journalières de température : moyennes (tas),
minima (tasmin) et maxima (tasmax), exprimées en kelvins (K). L’intégration de covariables
climatiques supplémentaires pour la réduction d’échelle des précipitations est laissée à des
travaux futurs. Par ailleurs, pour des raisons de contraintes numériques, le domaine spatial
initial, comprenant 280×280 cellules, est restreint à une région de 128×128 cellules, couvrant
le sud du Québec, une partie des provinces maritimes canadiennes, et du nord-est des États-
Unis (voir Figure 4.1 (a)).

https://pavics.ouranos.ca/datasets.html#a
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4.2 Analyse statistique exploratoire

Afin d’identifier des tendances pouvant être liées aux changements climatiques, on distingue
deux périodes : A et B (1955−2030 et 2025−2099), couvrant 75 ans de données journalières
chacune, avec une superposition de 5 ans. On peut considérer la période A comme une
période avec des changements climatiques faibles, et la période B avec des changements
climatiques forts, selon le scénario RCP8.5. La carte de la différence absolue de la médiane
des températures moyennes journalières, présentée à la Figure 4.1 (a), met en évidence le
réchauffement général des températures sur tout le domaine ClimEx, et particulièrement
dans le Nord. Elle souligne également l’hétérogénéité de la réponse du domaine choisi pour
ce mémoire en ce qui concerne l’évolution des températures en changements climatiques. La
différence la plus importante du sous-domaine est de 5.07◦C, la plus petite de 2.40◦C, et la
médiane de 3.52◦, comparées à 5.51◦C, 2.11◦C, et 3.37◦C pour le domaine entier, suggérant
que le sous-domaine choisi est représentatif du domaine ClimEx quant à la réponse aux
changements climatiques.

Les cartes (b:e) de la figure 4.1 se restreignent au sous-domaine de 128×128 cellules. Les cartes
(b) et (c) présentent respectivement la médiane et le 95ème quantile des précipitations non-
nulles pour la période A. On remarque que les régions avec une médiane élevée correspondent
aux régions montagneuses proches de la côte : les monts Chics-Chocs en Gaspésie, le Plateau
du Cap-Breton en Nouvelle-Écosse, et les monts Long-Range en Terre-Neuve-et-Labrador.
En raison de leur orographie complexe, ces régions posent généralement plus de difficultés
lors de la réduction d’échelle, car les fines dynamiques liées à cette orographie ne sont pas pris
en compte par les GCMs. Les fortes précipitations observées dans les régions côtières (carte
(c)) s’expliquent par la convergence fréquente de systèmes dépressionnaires en provenance de
l’Atlantique Nord, dont l’intensité est amplifiée par l’apport d’humidité du Gulf Stream.

Les cartes (d) et (e) illustrent les variations relatives, entre périodes B et A, de la médiane et
du 95ème quantile des précipitations journalières non-nulles. On observe des motifs spatiaux
marqués pour la médiane, avec une forte augmentation sur les zones continentales, attei-
gnant jusqu’à 49.2%, une quasi-stabilité le long des côtes, ainsi qu’une diminution notable
de la médiane des précipitations sur l’océan Atlantique et les Grands Lacs (en bas à gauche
sur la carte (d)), jusqu’à −18.7%. Cette hétérogénéité suggère que l’évolution des précipita-
tions faibles à modérées dépend fortement de facteurs externes, tels que l’orographie ou les
conditions atmosphériques régionales. En revanche, les précipitations extrêmes (représentées
par le 95ème quantile) sont en hausse sur l’ensemble du domaine, sans motif spatial particu-
lier. L’augmentation varie de de 5.14% à 27.6%, avec une moyenne de 15.99%. Toute réserve
gardée, cette tendance généralisée à la hausse, en parallèle de l’élévation des températures
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Figure 4.1 Soient une période A allant de 1955 à 2030, et une période B chevauchant de
cinq ans allant de 2025 à 2099. (a) Différence absolue, entre périodes B et A, de la médiane
des températures moyennes journalières sur le domaine de ClimEx, et en pointillés noirs : le
sous-domaine utilisé dans ce mémoire. (b) Médiane des précipitations journalières non-nulles
sur la période A. (c) 95ème quantile des précipitations journalières non-nulles sur la période
A. (d) Différence relative de la médiane des précipitations non-nulles. (e) Différence relative
du 95ème quantile des précipitations non-nulles.
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moyennes (cf. carte (a)), semble cohérente avec la relation théorique de Clausius-Clapeyron,
présentée à la section 2.3.

Comme énoncé à la section 3.2, les travaux de ce mémoire s’appuient sur le cadre métho-
dologique du Perfect Upscaling. On suppose donc que les champs de précipitations à haute
résolution correspondent à l’inverse d’une agrégation par moyenne. On considère les données
issues de ClimEx comme les données à haute résolution, et on effectue un moyennage spatial
par blocs de 256 cellules (16 × 16) pour obtenir les données à basse résolution. Un exemple
aléatoire du résultat de cette opération est présenté sur la partie droite de la figure 4.2.
On observe logiquement une perte significative d’information due à l’agrégation spatiale. En
l’occurrence, les motifs fins associés aux précipitations disparaissent en grande partie, ce qui
rend difficile l’identification de structures météorologiques précises, ainsi que la localisation
d’évènements de précipitations extrêmes, souvent concentrés sur de petites zones, ou sur des
bandes.

Figure 4.2 Afin de simuler des observations à basse résolution (LR), les précipitations
journalières haute résolution (HR) issues de ClimEx sont agrégées en moyennant des blocs
de 256 cellules (16 × 16). (À gauche) Les histogrammes des précipitations journalières,
séparés selon les intensités (0 − 5mm/jour en haut, et ≥ 5mm/jour en bas) comparant les
périodes A et B, en haute et basse résolution. (À droite) Un champ de précipitations
journalières sélectionné aléatoirement (en haut), et sa version agrégée (en bas).

L’analyse des histogrammes de précipitations (voir figure 4.2), calculés sur l’agrégation de
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toutes les cellules du domaine, met en évidence les effets de l’agrégation spatiale : à basse
résolution, la densité des faibles précipitations augmente, en raison de la dilution des cellules
sans pluie dans les zones voisines. En revanche, les précipitations modérées deviennent net-
tement sous-représentées, conséquence directe du lissage spatial. Enfin, la majeure partie de
la queue de la distribution, correspondant aux fortes précipitations à haute résolution, est
fortement atténuée, voire totalement absente à basse résolution. Lorsqu’on sépare les données
par période, on observe clairement que la queue de la distribution des précipitations pour
la période B est généralement plus lourde, ce qui témoigne d’une tendance d’augmentation
marquée des précipitations extrêmes en changements climatiques.

La capacité à restituer les détails spatiaux fins propres aux événements de précipitations, à
reconstruire fidèlement la queue de leur distribution, et à intégrer l’amplification des valeurs
extrêmes liée aux changements climatiques constituent les principaux défis que les travaux
présentés dans ce mémoire cherchent à relever.
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CHAPITRE 5 APPRENTISSAGE PROFOND ET RÉDUCTION
D’ÉCHELLE DES PRÉCIPITATIONS EN CHANGEMENTS CLIMATIQUES

Dans ce chapitre, nous détaillons l’architecture du modèle d’apprentissage profond utilisé
pour effectuer la réduction d’échelle des champs de précipitations. Nous présentons ensuite
une première évaluation de ses performances, et nous analysons ses limites afin de motiver
les améliorations méthodologiques proposées au chapitre suivant.

5.1 UNet pour la réduction d’échelle

Cette section vise à présenter l’architecture originale du modèle UNet utilisé dans ce mé-
moire, et présenter la stratégie employée pour effectuer la réduction d’échelle des champs de
précipitations avec ce modèle.

5.1.1 Présentation de l’architecture

Comme indiqué précédemment, nous utilisons comme point de départ une architecture issue
de travaux antérieurs [2]. L’architecture suit une structure classique encodeur/décodeur, dont
chaque niveau est composé de plusieurs blocs résiduels, avec des sauts de connexions propres,
et une intégration de l’information temporelle afin de guider le UNet. Nous présentons ici les
détails de cette architecture, illustrées à la figure 5.1.

L’encodeur est composé de quatre niveaux, chacun doublant le nombre de canaux (dimension
des « caractéristiques », comme les trois canaux RGB pour une image en couleur) du précédent,
et réduisant de moitié leurs dimensions spatiales. Ainsi, une entrée de 128 × 128 cellules est
transformée en cartes de caractéristiques de 16 × 16 cellules. Chaque niveau de l’encodeur
comprend trois blocs résiduels : le premier réalise une agrégation spatiale par moyenne, le
deuxième double le nombre de canaux, et le troisième conserve les dimensions. Le décodeur
comporte lui quatre blocs résiduels par niveau : le premier effectuant le sur-échantillonnage,
et les autres réduisant le nombre de canaux tout en intégrant les informations issues des sauts
de connexions des blocs correspondants de l’encodeur.

La structure originale des blocs résiduels est illustrée à la Figure 5.1, et peut inclure se-
lon le contexte, un opérateur d’agrégation ou de sur-échantillonnage par plus proche voisin.
Aucun gain de performance significatif n’ayant été observé lors de tests avec des méthodes
d’interpolation bilinéaire ou cubique, le sur-échantillonnage par plus proche voisin a été re-
tenu pour sa simplicité et l’absence de biais introduit. La fonction d’activation utilisée est
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SiLU(x) = x sig(x), fréquemment employée en raison de sa dérivabilité en tout point, son
gradient lisse comparable à celui de la sigmoïde, et son comportement non-linéaire proche
de celui de la fonction ReLU(x) = max(0, x) [91]. La normalisation par groupe permet de
stabiliser l’entraînement, tout en étant plus robuste que la normalisation par lot pour les lots
de petites tailles [92]. La normalisation par groupe centre les valeurs au sein d’un groupe
(fixé à 32 ici) de cartes de caractéristiques, et en réduit la variance à l’unité. Ces cartes
correspondent aux différentes sorties (équivalent aux canaux) produites par les filtres d’une
couche de convolution.

Une couche de dropout est introduite dans chaque bloc résiduel, afin de fixer à zéro aléa-
toirement 100 × p % des valeurs des cartes caractéristiques à l’entraînement. Ce mécanisme
permet de limiter le sur-apprentissage, en empêchant le modèle de « mémoriser » une solu-
tion [93]. La probabilité p est un hyper-paramètre que nous gardons fixé à p = 0.1 tel que
dans l’architecture d’origine.

Les informations temporelles liées à l’entrée X sont intégrées à plusieurs reprises dans le
UNet afin de pouvoir prendre en compte les différences saisonnières, et l’évolution dans le
futur. Nous utilisons une représentation permettant de modéliser à la fois le cycle des jours
dans le mois, des mois dans l’année, ainsi que la progression des années. Pour chaque date
(m/j/a), nous calculons la variable :

t =
(

a − amin

amax − amin

)
cos

(2πj

31

)
sin

(2πm

12

)
, (5.1)

avec j ∈ [|1, 31|], m ∈ [|1, 12|] et a ∈ [|1955, 2099|] respectivement le jour, le mois, et l’an-
née du champ de précipitations. amax et amin correspondent aux années maximum et mini-
mum de la période d’entraînement. La variable t est ensuite transformée par un perceptron
multicouche (ou Multilayer Perceptron en anglais, MLP) comportant une couche cachée de
dimension 128, et produisant deux sorties : un paramètre d’échelle γ ∈ R, et un paramètre
de phase β ∈ R. Ces deux paramètres sont utilisés pour appliquer une transformation affine
aux cartes de caractéristiques x tel qu’illustré sur la figure 5.1 :

y = γx + (1 + β). (5.2)

Finalement, les paramètres θ du modèle sont initialisés aléatoirement par échantillonnage
d’une distribution uniforme de « Kaiming » [94] :

θl ∼ U(−b, b) avec b =
√

9
nl−1

, (5.3)



31

Figure 5.1 Présentation de l’architecture du modèle UNet utilisé, et des modifications
effectuées sur le bloc résiduel original [2].



32

où nl−1 correspond au nombre de canaux en entrée de la couche l.

5.1.2 Stratégie, pré et post traitement des données

Dans le cadre du Perfect Upscaling, les champs de précipitations à basse résolution sont géné-
rés artificiellement par moyennage spatial des données journalières haute résolution issues de
ClimEx (voir section 4). Afin d’évaluer de manière pratique les capacités de l’apprentissage
profond pour la réduction d’échelle, nous adoptons un facteur d’agrégation de 16, sensi-
blement plus élevé que dans la majorité des travaux existants, tout en conservant un niveau
d’information suffisant sur notre domaine restreint. Chaque champ basse résolution comprend
ainsi 8 × 8 cellules, résultant de l’agrégation de blocs de 256 cellules haute résolution.

L’architecture du UNet nécessite que l’entrée et la sortie aient des dimensions spatiales si-
milaires, afin d’assurer la continuité des sauts de connexions. Ainsi, il est nécessaire de sur-
échantillonner les champs de précipitations à basse résolution avant de les fournir en entrée du
modèle. Une autre approche pouvant être envisagée consiste à étendre le décodeur afin d’ob-
tenir une sortie de dimensions plus élevée que l’entrée, mais nos expérimentations n’étant pas
concluantes, nous avons décidé de nous concentrer sur la première approche [95]. Plusieurs
travaux utilisent l’interpolation bilinéaire ou bicubique pour effectuer ce sur-échantillonnage.
Nous avons fait le choix d’effectuer un sur-échantillonnage par plus proche voisin, afin de ne
pas introduire de biais à cet étape, et ne remarquant pas d’impact sur les performances sur
les expérimentations préliminaires.

Soient x, y ∈ RH×W deux champs de précipitations de haute résolution totalisant H ×W cel-
lules, respectivement obtenus par interpolation depuis la basse résolution, et issus directement
des données haute résolution. Une première approche consiste à entraîner un UNet fθ, para-
métré par θ, pour prédire y à partir de x et de covariables éventuelles v, soit fθ(x, v) = y. Une
alternative consiste à modéliser uniquement le résidu r = y − x, en apprenant fθ(x, v) = r.
Cette stratégie permet de focaliser l’apprentissage sur les détails absents de l’interpolation,
plutôt que sur la totalité du champ, dont certaines composantes ont déjà été perdues par
l’encodeur. Nous retenons cette approche dans la suite, ayant observé des performances sys-
tématiquement supérieures, en accord avec des travaux antérieurs [2, 74].

Les champs journaliers de précipitations et de températures moyennes entre 1955 et 2020 sont
utilisés pour constituer l’ensemble d’entraînement. Afin d’optimiser l’architecture du UNet,
cet ensemble est scindé en un sous-ensemble d’entraînement couvrant la période 1955–2010,
et un ensemble de validation allant de 2010 à 2020. L’ensemble de test, quant à lui, s’étend
de 2020 à 2099, de manière à évaluer les performances du modèle dans un contexte de
changements climatiques marqués, et pour analyser l’évolution de ses capacités à mesure que
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ses effets s’intensifient.

L’optimisation des paramètres est effectuée à l’aide de l’algorithme Adam [96], avec une taille
de mini-lot fixée à N = 32, sauf indication contraire. Le modèle UNet est entraîné en mini-
misant l’erreur quadratique moyenne (MSE) entre ses prédictions et les valeurs cibles. Soient
R ∈ RN×H×W les champs de résidus cibles, X ∈ RN×H×W les champs de précipitations in-
terpolés à partir des données basse résolution, V ∈ RN×H×W les champs de covariables, et fθ

le UNet paramétré par θ. La fonction de perte utilisée pour l’entraînement est alors donnée
par :

L(θ) = 1
N H W

N∑
i=1

∥fθ(Xi, Vi) − Ri∥2
2 . (5.4)

Pré-traitement

Comme l’illustrent les histogrammes de la figure 4.2, les précipitations sont fortement concen-
trées autour de zéro, avec une queue de distribution marquée. Cette structure motive l’ap-
plication d’une transformation des valeurs de précipitations pour deux raisons principales :
(1) élargir la plage des faibles précipitations, souvent sous-représentées, et (2) réduire la pro-
portion de prédictions négatives, qui traduisent une incohérence physique et génèrent une
surabondance de zéros après troncation. Pour répondre à ces objectifs, nous comparons deux
transformations, notées T1 et T2, conçues pour relâcher la contrainte de positivité sur l’espace
transformé, et données par les équations suivantes [70] :

T1(x, ϵ) = log
(
ex+ϵ − 1

)
, (5.5)

T2(x, ϵ) = log(1 + x) − log(ϵ), (5.6)

avec ϵ = 10−5 (correspondant à la valeur permettant d’obtenir le moins d’incohérence lors
de nos expérimentations préliminaires). Les résultats pour la réduction d’échelle de préci-
pitations présentés au tableau 5.1 montrent clairement leur efficacité pour réduire, tant la
proportion de prédictions négatives, que l’amplitude de ces incohérences. Les deux trans-
formations permettent également d’améliorer l’erreur moyenne absolue (ou Mean Absolute
Error en anglais, MAE) de manière comparable.

Pour la suite nous conservons la transformation T1. Les données sont normalisées par la
méthode min/max sur l’axe temporel. Soit X̃ ∈ RN×H×W une séquence de N champs de
précipitations transformés (par T1), le résultat de la normalisation est obtenu par : X̃norm =

X̃−minn X̃n

maxn X̃n−minn X̃n
. Afin d’être conforme au cadre de la réduction d’échelle de simulations clima-

tiques, nous utilisons les minima et maxima des champs de précipitations basse-résolution
pour normaliser les champs haute-résolution : Ỹnorm = Ỹ −minn X̃n

maxn X̃n−minn X̃n
. Les résidus normalisés



34

Tableau 5.1 MAE (en mm/jour), proportions et la norme ℓ2 des valeurs négatives, pour
aucune transformation, T1 ou T2. UNet entraîné sur la période 1960 − 2000, et évalué sur
2000 − 2010.

MAE Neg. % ℓ2 Neg.
Sans transformation 1.1236 12.88 228.73
Avec T1 1.0866 2.20 18.3
Avec T2 1.0856 9.47 27.92

sont donc égaux à :

R = Ỹnorm − X̃norm

maxn X̃n − minn X̃n

. (5.7)

Post-traitement

Une fois les opérations de prétraitement (résidus, normalisation, transformation) inversées,
une étape supplémentaire de post-traitement est introduite. En effet, le modèle n’est sou-
mis à aucune contrainte explicite garantissant la cohérence entre la valeur d’une cellule à
basse résolution et la distribution des valeurs prédites dans les cellules haute résolution qui
lui correspondent. Ce déséquilibre, bien que parfois discret à l’entraînement, peut devenir
problématique hors distribution. Pour y remédier, nous imposons une contrainte sur les pré-
dictions du UNet, après entraînement, assurant cette cohérence entre échelles [79] :

ŷ∗
i =

∑Ngrid
i xi∑Ngrid
i ŷi

 ŷi, (5.8)

où ŷi désigne une cellule de précipitations à haute résolution prédite par le UNet, xi la valeur
correspondante à basse résolution, et Ngrid le nombre de cellules haute résolution agrégées
dans chaque cellule basse résolution.

Le tableau 5.2 présente la MAE du UNet avec et sans application de la contrainte de post-
traitement (5.8), ainsi que la MAE calculée au voisinage de certains niveaux de quantile (0.5,
0.9, 0.95 et 0.99). On observe qu’en dépit d’une légère hausse de l’erreur globale due princi-
palement à une dégradation des performances sur les précipitations moyennes (i.e., autour de
la médiane), l’application de la contrainte permet une nette amélioration des prédictions sur
les valeurs extrêmes (au-delà du 90ème quantile). Par ailleurs, l’histogramme des prédictions
(voir figure 5.2) met en évidence un élargissement de la gamme des précipitations prédites,
traduisant une meilleure représentation des fortes intensités.
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Tableau 5.2 UNet entraîné sur la période 1955 − 2010 et évalué sur la période 2010 − 2020,
sur 50 époques. Comparaison des performance avec ou sans la contrainte de post-traitement
(5.8). MAE générale (en mm/jour), et calculée au voisinage de certains quantiles (0.5, 0.90,
0.95, et 0.99).

MAE MAE-q (0.5) MAE-q (0.9) MAE-q (0.95) MAE-q (0.99)
sans contrainte 1.1754 0.7824 3.6363 6.3347 16.1048
avec contrainte 1.1928 0.8594 3.6044 6.0203 14.6546

Figure 5.2 Histogrammes des précipitations prédites par le UNet avec ou sans la contrainte
(5.8) sur la période d’évaluation (2010 − 2020).
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5.2 Améliorations du UNet

Dans l’objectif d’améliorer les performances du UNet, nous intégrons plusieurs recomman-
dations issues de la littérature, visant à renforcer les modèles convolutifs profonds [97]. En
cohérence avec les auteur(rice)s de ces recommandations, nous effectuons les modifications sé-
quentiellement, et conservons uniquement les modifications permettant d’améliorer la MAE.
Il est important de souligner que notre objectif principal n’est pas ici d’identifier les choix
architecturaux optimaux du UNet, ce qui impliquerait de comparer plusieurs combinaisons
de modifications, mais plutôt de nous appuyer sur la littérature pour tenter d’améliorer ses
performances.

La première modification consiste à ajuster le nombre de blocs résiduels par niveau, de
manière à concentrer la capacité du modèle sur les niveaux pouvant être plus influents (voir
Figure 5.1). Alors que l’encodeur original suit une séquence (3−3−3−3), nous expérimentons
deux répartitions : (2 − 2 − 4 − 4), et (4 − 4 − 2 − 2). Le tableau 5.3 montre une amélioration
marginale des performances, malgré une augmentation du nombre de paramètres pour une
des séquences. Pour la suite, nous conservons le nombre initial de blocs par niveaux.

Tableau 5.3 MAE pour différentes séquences de blocs par niveau de l’encodeur (décodeur
symétrique avec un bloc supplémentaire par niveau). UNet entraîné sur 50 époques avec 64
échantillons par mini-lot.

Séquence de blocs résiduels MAE Évol. rel. MAE Nb. paramètres
(3 − 3 − 3 − 3) 1.1975 NA 5.709 × 106

(2 − 2 − 4 − 4) 1.1947 −0.23% 6.740 × 106

(4 − 4 − 2 − 2) 1.1953 −0.18% 4.679 × 106

Le nombre de canaux au premier niveau de l’encodeur est initialement fixé à 32 afin de res-
pecter nos contraintes en terme de mémoire vive GPU ≈ 24 Gb (Graphic Processor Unit).
Pour optimiser l’utilisation des paramètres, nous modifions les deux premières couches de
convolution de chaque niveau. La première, chargée de faire varier le nombre de canaux
(dans l’encodeur ou le décodeur), utilise des filtres de taille 1 × 1 au lieu de 3 × 3, concen-
trant l’apprentissage sur la dimension des canaux uniquement. La seconde, qui conserve le
nombre de canaux, est remplacée par une convolution groupée en profondeur, c’est-à-dire
une convolution appliquée indépendamment à chaque canal, sans interaction entre eux. Ces
ajustements réduisent significativement le nombre de paramètres, ce qui permet de doubler
le nombre de canaux initiaux tout en maintenant un budget mémoire constant. Le tableau
5.4 met en évidence l’amélioration nette de l’erreur absolue moyenne (MAE) obtenue grâce
à ces modifications.
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Pour la suite, nous conservons cette modification.

Tableau 5.4 MAE pour différents types de convolutions et nombre de canaux initiaux.
UNet entraîné sur 50 époques.

Types de convolution Nb. canaux init. MAE Évol. rel. MAE Nb. param
(3 × 3), (3 × 3) 32 1.1928 NA 5.709 × 106

(1 × 1), (3 × 3 en profondeur) 64 1.1782 −1.22% 4.609 × 106

Grâce à la réduction du nombre de paramètres du modèle, il est suggéré qu’augmenter la
taille des filtres des couches de convolutions (3 × 3) à (7 × 7) permettrait d’améliorer les
performances en agrandissant le champ réceptif. Le tableau 5.5 indique une forte dégradation
dans notre cas.
Pour la suite, nous conservons la taille de filtre (3 × 3).

Tableau 5.5 MAE pour différentes tailles de filtres de convolution. UNet entraîné sur 50
époques.

Taille de filtre MAE Évol. rel. MAE Nb. paramètres
(3 × 3) 1.1782 NA 4.609 × 106

(7 × 7) 1.1883 +0.86% 4.796 × 106

Les dernières modifications effectuées consistent à : (1) retirer la première couche SiLU du
bloc résiduel, et (2) retirer la deuxième couche de normalisation du bloc résiduel. Ces recom-
mandations sont inspirées de l’architecture des modèles de type Transformers. Le tableau 5.6
indique que ces deux modifications permettent de légèrement améliorer les performances du
UNet. Notons également que l’erreur diminue pour tous les quantiles évalués, indiquant un
réel gain de performances.
Pour la suite, nous retirons ces couches des bloc résiduels.

Tableau 5.6 MAE avec certaines couches du bloc résiduel retirées : (1) seulement SiLU, et
(2) SiLU et normalisation par groupe (GN). UNet entraîné sur 50 époques.

Couches retirées MAE Évol. rel. MAE Nb. paramètres
Aucune 1.1782 NA 4.609 × 106

SiLU 1.1741 −0.35% 4.609 × 106

SiLU + GN 1.1732 −0.42% 4.600 × 106

Les modifications apportées à l’architecture originale permettent de retrouver une MAE si-
milaire à celle obtenue sans la contrainte de post-traitement (5.8), soit une réduction totale
de 1.64% de la MAE, tout en conservant les améliorations pour les hauts quantiles de préci-
pitations.
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5.3 Évaluation en changements climatiques

Pour motiver la pertinence de l’objectif de ce projet, qui vise à renforcer la robustesse en
changements climatiques des modèles convolutifs profonds pour la réduction d’échelle des
précipitations, il est d’abord nécessaire de dresser le constat de la sensibilité du UNet aux
changements climatiques.

Nous entraînons le UNet pendant 50 époques sur la période 1955−2020, soit un total de 23 725
champs de précipitations journalières. L’évaluation de ses performances est ensuite réalisée sur
un jeu de test couvrant la période 2020−2099. Il convient de souligner que, sur cette période
future, la température moyenne du domaine connaît une hausse significative, doublant entre
les décennies 2020 − 2029 (5, 37 ◦C) et 2090 − 2099 (11, 04 ◦C). Cette période d’évaluation
est donc représentative d’un climat fortement impacté par les changements climatiques.

La figure 5.3 présente (en haut) la MAE annuelle du UNet sur la période d’évaluation (en
mm/jour), et (en bas) l’évolution relative à l’erreur moyenne sur 2020 − 2025 de la MAE
évaluée aux voisinages de plusieurs quantiles. On remarque d’abord une nette augmentation
de l’erreur alors que les changements climatiques s’intensifient, passant de ≈ 1.2 mm/jour
entre 2020 et 2030 à plus de ≈ 1.4 mm/jour sur la dernière décennie, correspondant à une
augmentation de 16.67%. Si on ajuste une relation linéaire aux erreurs annuelles, on obtient
une tendance linéaire de l’erreur de 0.0031, c’est-à-dire + 0.15 mm/jour d’erreur moyenne
supplémentaire tous les 50 ans. C’est significatif, car cet ordre de grandeur correspond à peu
près au premier quartile des précipitations sur le domaine de test.

L’évaluation de la MAE dans le voisinage de différents quantiles permet d’identifier les inten-
sités de précipitations qui contribuent le plus à la dégradation des performances du modèle.
Le second graphique de la figure 5.3 montre que cette dégradation est d’autant plus marquée
que le quantile considéré est élevé : l’évolution relative de la MAE atteint environ 25% pour
le quantile de niveau q = 0.99, contre seulement 5 à 8% pour le quantile de nivea q = 0.5
en fin de période. Cette observation appuie l’hypothèse selon laquelle le UNet ne parvient
pas à modéliser de manière satisfaisante la relation de dépendance entre l’augmentation des
températures et l’intensification des précipitations extrêmes.

On sépare la période de test en deux sous-périodes : 2020 − 2059 et 2060 − 2099 couvrant
chacune la moitié de la période de test. L’évolution relative de la MAE entre la première et
la seconde sous-période, présentée à la figure 5.4a, est positive sur à peu près l’entièreté du
domaine géographique. On peut observer une corrélation au nord-ouest du domaine, entre les
augmentation marquées de la MAE et de la température moyenne (figure 5.4b). Notons que la
partie du domaine recouverte par l’océan ne peut pas être analysée sous la même perspective,
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Figure 5.3 (Haut) MAE moyenne annuelle (en mm/jour) du UNet sur la période de test.
(Bas) Évolution relative (en %) de la MAE annuelle, comparée à la période 2020–2025,
calculée au voisinage des niveaux de quantile 0.5, 0.75, 0.90, 0.95 et 0.99. Courbes obtenues
par moyenne mobile sur 10 valeurs.
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car les précipitations sont soumises à des phénomènes différents (e.g., dépressions océaniques,
Gulf Stream). Ce constat renforce notre hypothèse selon laquelle le UNet n’intègre pas bien
le mécanisme d’augmentation des précipitations sous élévation des températures.

(a) Évolution relative de la MAE. (b) Évolution absolue de la température.

Figure 5.4 Comparaison de l’évolution de l’erreur absolue moyenne (MAE) des prédictions
de précipitations haute résolution du UNet entre les périodes 2020 − 2059 et 2060 − 2099,
par rapport l’évolution des températures sur ces mêmes périodes.

5.3.1 Estimation des TPSRs par la loi des valeurs extrêmes généralisée

Afin de mieux comprendre la relation liant les performances du UNet en changements cli-
matiques à l’évolution des températures, nous appliquons la méthode décrite en section 2.3.3
pour estimer les taux de progression des maxima annuels de précipitations en fonction des
anomalies de température (TPSRs), à la fois sur les données de référence et sur les prédictions
issues du UNet. Nous adoptons la méthodologie suivante, détaillée en plusieurs étapes :

Nous sélectionnons les maxima annuels de précipitations par cellule sur la période d’estima-
tion. Les séries de maxima sont ensuite normalisées (division par la médiane sur la période).
Parallèlement, les anomalies saisonnières de température, calculées pour la période de mai
à septembre de chaque année, sont extraites afin d’analyser la sensibilité des précipitations
extrêmes à l’évolution des températures [25]. Pour chaque cellule, une loi GEV est ajus-
tée aux maxima de précipitations, avec des paramètres qui sont fonction des anomalies de
température.

Afin de réduire les incertitudes liées à l’échantillonnage lors de l’estimation des paramètres
de la loi GEV, nous appliquons un regroupement spatial consistant à agréger les données des
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cellules voisines disposées en grille 3×3 autour de chaque cellule analysée [26]. Les paramètres
de chaque cellule seront donc estimés en utilisant les données de ses neufs cellules voisines.
Pour éviter d’obtenir des paramètres et des taux incohérents, nous ne considérons pas les
cellules sur les bords du domaine.

Pour déterminer la forme fonctionnelle de la dépendance des paramètres de la loi GEV aux
anomalies de température T , nous considérons les modèles suivants :

— Paramètre de localisation µ(T ) : trois modèles :

Mµ,1 : µ(T ) = µ0,

Mµ,2 : µ(T ) = µ0 + µ1T,

Mµ,3 : µ(T ) = exp(µ0 + µ1T ).

— Paramètre d’échelle σ(T ) : deux modèles :

Mσ,1 : σ(T ) = σ0,

Mσ,2 : σ(T ) = exp(σ0 + σ1T ).

— Paramètre de forme : indépendant de T car complexe à estimer :

ξ(T ) = ξ.

Les paramètres sont estimés par maximisation de la log-vraisemblance, en utilisant l’algo-
rithme d’optimisation L-BFGS-B (ou en anglais Limited-memory BFGS for Bounds constraints)
pour contrôler les limites du paramètres de forme : ξ ∈ (−0.5, 0.5), et assurer la positivité
du paramètre d’échelle : σ(T ) > 0 [98]. Soient y1, . . . , yn les maxima de précipitations nor-
malisés pour une cellule donnée, t1, . . . , tn les anomalies de températures, et les paramètres
µ(T ), σ(T ) et ξ, la log-vraisemblance de la GEV est donnée par :

ℓ(µ, σ, ξ) =


−∑n

i=1 log σ(ti) −
(
1 + 1

ξ

)∑n
i=1 log

(
1 + ξ yi−µ(ti)

σ(ti)

)
−∑n

i=1

(
1 + ξ yi−µ(ti)

σ(ti)

)−1/ξ
si ξ ̸= 0,

−∑n
i=1 log σ(ti) −∑n

i=1
yi−µ(ti)

σ(ti) −∑n
i=1 exp

(
yi−µ(ti)

σ(ti)

)
si ξ = 0.

(5.9)

définie sur le support ∀i : 1 + ξ yi−µ(ti)
σ(ti) > 0. On utilise la librairie JAX pour calculer auto-

matiquement la jacobienne de ℓ(µ, σ, ξ) et paralléliser l’optimisation des cellules. Le tableau
5.7 indique la log-vraisemblance négative (NLL) moyenne pour chaque combinaison des mo-
dèles de µ(T ) et σ(T ). Les résultats confirment la pertinence de l’intégration des anomalies
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de températures, la combinaison M0 + Mσ,0 ayant la plus forte NLL. Nous conservons la
combinaison Mµ,3 + Mσ,2.

Tableau 5.7 Log-vraisemblance négative moyenne des lois de GEV du domaine sur la
période 2020 − 2099 pour toutes les combinaisons de modèles des paramètres µ(T ) et σ(T ).

Combinaison de modèles NLL moyenne
Mµ,1 + Mσ,1 289.91
Mµ,2 + Mσ,1 281.67
Mµ,3 + Mσ,1 281.56
Mµ,1 + Mσ,2 285.99
Mµ,2 + Mσ,2 275.67
Mµ,3 + Mσ,2 275.53

Une fois les paramètres estimés pour chaque cellule, nous calculons les TPSRs à partir de
la loi GEV ajustée. Pour ce faire, on calcule la moyenne des anomalies de températures
T (1) = (1/n)∑n

i=1 ti, et T (2) = T1 + 1, et les quantiles de niveaux q associés, z(1)
q et z(2)

q , par
la fonction de quantile de la GEV :

zq(T ) =

µ(T ) + σ(T )
ξ

[(− log q)−ξ − 1] si ξ ̸= 0,

µ(T ) − σ(T ) log(− log q) si ξ = 0.
(5.10)

Finalement, on calcule pour chaque cellule le TPSR α (en %/◦C) par la formule :

z(2)
q = z(1)

q (1 + 0.01α)T (2)−T (1)
. (5.11)

Les log-vraisemblances négatives par cellule de la combinaison Mµ,4 + Mσ,2, pour les données
de référence, et les prédictions du UNet, sont disponibles à l’annexe A. Les valeurs par cellule
de chaque paramètre, pour les données de référence et les prédictions du UNet sont également
incluses.

Résultats

La figure 5.5 présente les TPSRs évalués au niveau de quantile q = 0.99 pour les données de
référence (figure 5.5a) et les prédictions du UNet (figure 5.5b) pour la période de test 2020 −
2099. Il est important de noter que l’évaluation des TPSRs comporte de fortes incertitudes
entre membres de simulations climatiques. Le taux moyen de 3.2%/◦C observé sur les données
de référence ici appartient à l’intervalle des taux observés par d’autres travaux à travers tous
les membres de ClimEx [25].
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(a) TPSRs au 99ème quantile des données de
référence sur la période de test 2020 − 2099.

(b) TPSRs au 99ème quantile des prédictions
du UNet sur la période de test.

Figure 5.5 Comparaison des TPSRs pour le niveau de quantile q = 0.99 estimés sur la
période de test 2020 − 2099 à partir des données de référence, et des prédictions du UNet.

On observe que la proportion de taux négatifs semble plus élevée lorsque estimés sur les
prédictions du UNet, et de plus forte intensité. Cette observation est partagée pour les taux
de tous les quantiles estimés, comme indiqués par le tableau 5.8, et la figure 5.6, présentant
respectivement la moyenne, et les quartiles des taux de chaque quantile. Néanmoins, on note
tout de même que la distribution spatiale des TPSRs est à peu près similaire entre les données
de référence et les prédictions du UNet.

Les taux estimés à partir des prédictions du UNet étant systématiquement inférieurs à ceux
obtenus sur les données de référence, cela suggère que les précipitations extrêmes prédites
progressent moins rapidement avec l’augmentation des températures que dans la réalité. On
en déduit que les difficultés du UNet à représenter correctement les extrêmes sont amplifiées
dans un contexte de changements climatiques.

Tableau 5.8 Moyennes des TPSRs estimés à plusieurs niveaux de quantiles pour les données
de référence, et les prédictions du UNet, pour la période de test 2020 − 2099.

Quantiles Référence UNet
0.5 2.24% 1.49%
0.75 2.61% 1.69%
0.90 2.87% 1.83%
0.95 3.00% 1.91%
0.99 3.20% 1.92%
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Figure 5.6 Boîtes à moustaches des TPSRs estimés à plusieurs quantiles pour les données
de référence, et les prédictions du UNet, pour la période de test 2020 − 2099.
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CHAPITRE 6 INTÉGRATION DE LA RELATION
TEMPÉRATURE-PRÉCIPITATIONS POUR LA RÉDUCTION D’ÉCHELLE

Au chapitre précédent, nous avons formulé l’hypothèse que la dégradation des performances
du UNet en changements climatiques résulte en partie de son incapacité à reproduire cor-
rectement les taux d’augmentation des précipitations extrêmes en fonction de l’évolution des
températures. Dans ce chapitre, nous explorons plusieurs approches visant à mieux intégrer
cette relation lors de l’entraînement du modèle d’apprentissage profond.

6.1 Contrainte douce de Clausius-Clapeyron par approche de regroupement

Comme indiqué à la section 2.3.2, deux méthodes permettent d’évaluer si les extrêmes de
précipitations sont cohérents avec la dépendance à la température décrite par la relation de
Clausius-Clapeyron. Dans cette section, nous nous concentrons sur la première approche, dite
« par regroupement », et présentons une tentative d’intégration de cette méthode au sein de
l’apprentissage du modèle UNet, dans le but de mieux intégrer la relation entre température
et précipitations.

6.1.1 Intégration de la relation précipitations-températures par contrainte douce

Contrairement à la pression de vapeur saturante, dont la dépendance à la température
est exactement décrite par la relation de Clausius-Clapeyron, les précipitations extrêmes
n’obéissent pas strictement à cette loi. La relation Clausius-Clapeyron pour les précipita-
tions constitue donc une approximation statistique observée dans certaines conditions, et non
une contrainte déterministe. Ainsi, il n’est pas pertinent d’imposer au UNet une contrainte
physique exacte, ou « dure ». Néanmoins, afin de mieux intégrer la relation de dépendance
existante entre les extrêmes de précipitations et la température, on peut chercher à « guider »
le UNet vers un équilibre, via une pénalité sur sa fonction de perte, c’est-à-dire une contrainte
« douce ».

On note C : Y ∈ RN×2×H×W → c ∈ RH×W la fonction qui permet de calculer un champ de
taux c (en %/◦C) d’évolution des extrêmes de précipitations en fonction de la température
pour une séquence de champs de précipitations et de températures journalières Y . Dans le
cadre de l’entraînement du UNet par mini-lots, on considère un mini-lot de N champs de
précipitations interpolés à partir de données de basse-résolution x ∈ RN×h×w, les champs de
résidus cibles à haute résolution r ∈ RN×H×W , les champs de températures à haute résolution
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T ∈ RN×H×W , le UNet fθ paramétré par θ, et γ ≥ 0 la pondération de la pénalité. La fonction
de perte avec contrainte douce par approche de regroupement est donnée par :

Lθ(x, T, r) = Lreco(x, T, r, θ) + γLCC(x, T, r, θ), (6.1)

avec Lreco(x, T, r, θ) = 1
N H W

N∑
n=1

H∑
i=1

W∑
j=1

(fθ(xn, Tn)i,j − yn,i,j)2, (6.2)

et LCC(x, T, r, θ) = 1
H W

H∑
i=1

W∑
j=1

{C(fθ(x, T ).,i,j + r.,i,j, T.,i,j) − C(x.,i,j + r.,i,j, T.,i,j)}2.

(6.3)

La fonction C regroupe les différentes étapes de l’approche dite « par regroupement ». Étant
donné une suite de N précipitations journalières y1:N (en mm/jour) et températures t1:N (en
◦C) :

1. Filtrage des très faibles intensités : Conserver uniquement les journées dont les
précipitations dépassent un seuil s :

S = {n∗ ∈ {1, . . . , N} | yn∗ > s}. (6.4)

2. Tri et regroupement : Ordonner les indices n∗ ∈ S par ordre croissant des tem-
pératures tl, puis diviser la liste obtenue en D intervalles {G1, . . . , GD} de capacité
constante m :

Gd = {n∗
d

(1), . . . , n∗
d

(m)}, où m ≈ |S|
D

. (6.5)

3. Calcul des statistiques par groupe : Pour chaque groupe d ∈ {1, . . . , D} :

t̄d = 1
m

∑
n∗∈Gd

tn∗ , yq
d = quantileq

(
{yn∗ : n∗ ∈ Gd}

)
. (6.6)

4. Régression pour estimer la dépendance : On suppose une relation log-linéaire :

log yq
d = α + βt̄d + εd. (6.7)

L’estimateur des moindres carrés pour β est donné par :

β̂ = (T T
DTD)−1T T

DQy, (6.8)

où
TD = [t̄1, . . . , t̄D], Qy = [log yq

1, . . . , log yq
D]. (6.9)
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5. Calcul du taux : Finalement, on calcule le taux c par la formule suivante :

c = exp(β̂) − 1. (6.10)

N’ayant pas observé de forte sensibilité au nombre D d’intervalles, nous fixons D = 10 pour
obtenir des capacités d’intervalles suffisamment élevées. N’ayant pas non plus observés de
forte sensibilité aux niveaux de quantile parmi q ∈ {0.90, 0.95, 0.99}, nous fixons q = 0.90
afin de réduire les erreurs d’estimation lorsque m, le nombre de données par intervalle, est
petit. Afin de s’assurer que chaque mini-lot de prédictions du UNet comporte assez de valeurs
supérieurs au seuil s pour remplir D = 10 intervalles, on entraîne d’abord le modèle sur Lreco

pendant deux époques. Les résultats et l’impact des hyper-paramètres s et γ sont présentés
à la section 7.2.1.

6.1.2 Limites de l’approche par regroupement

La fonction C, utilisée pour estimer la dépendance entre températures et précipitations ex-
trêmes, est définie à partir d’un regroupement nécessitant un nombre suffisant d’observations
pour produire des taux stables. Dans notre contexte, l’entrée de C est constituée des couples
(yn, tn) appartenant au mini-lot d’apprentissage de N couples {(yn, tn)}N

n=1.

Or, pour obtenir une estimation robuste des taux issus de cette procédure, la taille de mini-
lot N doit être relativement grande. Cette contrainte implique des mini-lots volumineux,
augmentant significativement la mémoire vive requise lors de l’entraînement du réseau et
limitant l’application de la méthode pour des réseaux de neurones comme le UNet.

Pour illustrer cette limite, nous avons restreint le domaine spatial à 32 × 32 cellules afin de
libérer de la mémoire et d’augmenter la taille des mini-lots d’apprentissage. La figure 6.1 pré-
sente l’évolution de LCC en fonction de la taille de mini-lots, et montre clairement la nécessité
de pouvoir fixer N > 512 pour que les erreurs convergent vers zéro. Malheureusement, les
ressources à notre disposition (déjà significatives) ne nous permettent d’augmenter la taille
des mini-lots que jusqu’à N = 150 pour le domaine complet.

Une piste non explorée dans ce mémoire consisterait à entraîner le modèle UNet sur des «
patchs » spatiaux superposés du domaine. Cette approche permettrait de réduire le poids
des dimensions spatiales des mini-lots, et donc d’en augmenter le nombre d’échantillons [99].
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Figure 6.1 LCC pour la période 1955 − 2020 sur un domaine restreint en fonction de tailles
croissantes de mini-lots (256, 512, 1024, 2048, et 4096).

6.2 Intégration d’a priori statistiques issus de la théorie des valeurs extrêmes

Tel qu’expliqué à la section 2.3.3, la méthode par approche de regroupement comporte l’incon-
vénient de ne pas pouvoir réellement mesurer le lien causal entre évolution des températures
et extrêmes de précipitations, les variations saisonnières introduisant un facteur de confusion
important [24].

Basées sur la théorie des valeurs extrêmes, les approches alternatives modélisent les pré-
cipitations extrêmes en capturant la non-stationnarité via des paramètres dépendants des
anomalies annuelles ou saisonnières de température. Dans cette section, nous étudions com-
ment exploiter ces distributions comme a priori statistiques afin de renforcer la robustesse
du modèle d’apprentissage profond dans un contexte de changements climatiques.

6.2.1 Modélisation des précipitations par extension de la loi de Pareto généra-
lisée

L’extension de la loi de Pareto généralisée (ou Extended Generalized Pareto Distribution
en anglais, ExtGPD), présentée à la section 2.2.3, permet de modéliser la totalité de la
gamme des précipitations (à l’exclusion des précipitations nulles), et de conserver les pro-
priétés asymptotiques de la théorie des valeurs extrêmes [1]. Notre objectif consiste à obtenir
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une distribution (dépendante des anomalies de température) précise des précipitations pour
chaque cellule de notre domaine, en utilisant nos données d’entraînement, pour ensuite utiliser
cette distribution lors de la réduction d’échelle par apprentissage profond.

La fonction de répartition d’une variable aléatoire suivant une loi ExtGPD est donnée par :

F (x) = K
{

Hξ

(
x

σ

)}
, (6.11)

avec K un modèle paramétrique soumis à certaines conditions, Hξ la fonction de répartition
de la loi de Pareto généralisée (voir eq. 2.8) avec ξ ≥ 0, et σ > 0 le paramètre d’échelle.
Nous utilisons le modèle proposé par les auteurs K(v) = vκ avec κ > 0. Par conséquent, la
fonction de densité s’écrit :

f(x) = ∂

∂x
F (x) = ∂

∂x
Hξ

(
x

σ

)κ

= κHξ

(
x

σ

)κ−1
hξ

(
x

σ

)
σ−1, (6.12)

avec Hξ et hξ respectivement les fonctions de répartition et de densité de la loi de Pareto
généralisée :

Hξ(z) =

1 − (1 + ξz)−1/ξ si ξ ̸= 0,

1 − exp (−z) si ξ = 0,
(6.13)

hξ(z) =

(1 + ξz)−(ξ+1)/ξ si ξ ̸= 0,

exp (−z) si ξ = 0.
(6.14)

Nous devons estimer trois paramètres pour chaque cellule du domaine : κ > 0, σ > 0, et
ξ ≥ 0 pour ajuster l’ExtGPD aux données de précipitations. Nous effectuons l’estimation des
paramètres par maximisation de la log-vraisemblance censurée à gauche, tel que suggéré par
les auteurs. L’effet de bruine (ou drizzle effect en anglais), responsable d’une surreprésentation
des faibles valeurs de précipitations, est pris en compte par l’application d’un seuil de 1
mm/jour [100]. Étant donné notre choix K(v) = vκ, F la fonction de répartition de la loi
ExtGPD, et f la fonction de densité, la log-vraisemblance des paramètres de l’ExtGPD, pour
le seuil C = 1mm/jour, et y1, . . . , yn

i.i.d.∼ F une série de précipitations non-nulles, s’écrit :

ℓC(κ, σ, ξ) = log

 ∏
i:yi<C

F (C)
∏

i:yi≥C

f(yi)

 (6.15)

= κ
∑

i:yi<C

log
{

Hξ

(
C

σ

)}
+

∑
i:yi≥C

log κ + (κ − 1)
∑

i:yi≥C

log
{

Hξ

(
yi

σ

)}
(6.16)

+
∑

i:yi≥C

log
{

hξ

(
yi

σ

)}
−

∑
i:yi≥C

log σ. (6.17)
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Ainsi, pour ξ = 0, on obtient :

ℓC(κ, σ, ξ = 0) = κ
∑

i:yi<C

log
{

1 − exp
(

−C

σ

)}
+ (κ − 1)

∑
i:yi≥C

log
{

1 − exp
(

−yi

σ

)}
(6.18)

+
∑

i:yi≥C

log κ −
∑

i:yi≥C

yi

σ
−

∑
i:yi≥C

log σ, (6.19)

et pour ξ > 0 :

ℓC(κ, σ, ξ > 0) = κ
∑

i:yi<C

log
{

1 −
(

1 + ξ
C

σ

)−1/ξ
}

+ (κ − 1)
∑

i:yi≥C

log
{

1 −
(

1 + ξ
yi

σ

)−1/ξ
}

(6.20)

+
∑

i:yi≥C

log κ − (ξ + 1)/ξ
∑

i:yi≥C

log
{

1 + ξ
yi

σ

}
−

∑
i:yi≥C

log σ. (6.21)

Pour estimer les paramètres de la loi en maximisant la log-vraisemblance définie par l’équa-
tion (6.17), nous utilisons l’algorithme d’optimisation L-BFGS. Afin de garantir le respect
des contraintes sur les paramètres, nous appliquons des transformations appropriées de ces
derniers. Cette approche s’est révélée plus stable que l’utilisation directe de l’algorithme
L-BFGS-B, qui impose des bornes mais a montré des instabilités pour l’ajustement de cette
loi.

Dans le but d’inclure la non-stationnarité liée à l’évolution des températures, nous choisis-
sons de faire dépendre les paramètres σ et κ aux anomalies annuelles de température. Les
paramètres κ, σ et ξ, pour les anomalies de température T , sont définis lors de l’optimisation
par les transformations suivantes :

κ(T ) = exp(α0 + α1T ) (6.22)

σ(T ) = exp(β0 + β1T ) (6.23)

ξ(T ) = 0.5/{1 + exp(−ν)} (6.24)

avec α0, α1 β0, β1, ν ∈ R. Afin d’éviter que les paramètres κ et σ ne divergent vers des
valeurs irréalistes lors de l’optimisation, nous ajoutons un terme de pénalisation de 106 à la
log-vraisemblance négative pour chaque cas où κ(T ) > 2, ou σ(T ) > 30. Ces seuils ont été
définis empiriquement à partir des bornes maximales observées lors d’estimations précédentes
avec contraintes explicites. Pour rappel, nous fixons C = 1 mm/jour.

La log-vraisemblance négative moyenne obtenue dans le cas stationnaire (α1 = β1 = 0) est de
43 784.86, contre 43 778.69 dans le cas non-stationnaire. La figure 6.2 présente la distribution
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spatiale de la log-vraisemblance négative dans le cas non-stationnaire. On observe des valeurs
élevées dans les régions à forte orographie : on distingue notamment les Laurentides, les monts
Chics-Chocs, le plateau du Cap-Breton et les monts Long-Range. La NLL est également élevée
dans le sud-est du domaine, en zone océanique, caractérisée par de fortes précipitations comme
le montre la figure 4.1(c).

Les figures 6.3 et 6.4 présentent la distribution spatiale des paramètres obtenus dans le cas
non-stationnaire. On observe à la figure 6.3a que le paramètre stationnaire κ(T ) est plus
élevé sur la zone continentale, en particulier dans les régions montagneuses. Cela suggère
des distributions plus étalées, avec une densité réduite autour des faibles intensités de pré-
cipitations. La figure 6.3b montre quant à elle que le paramètre stationnaire σ(T ) distingue
nettement les zones continentales et océaniques, cette dernière étant associée à des valeurs
plus élevées du paramètre d’échelle.

Concernant les composantes non stationnaires, représentées aux figures 6.3c et 6.3d, on ob-
serve une dynamique opposée sur les zones maritimes, avec une augmentation du paramètre
d’échelle σ(T ) et une diminution de κ(T ). Par ailleurs, le coefficient β1 est globalement positif
sur l’ensemble du domaine, indiquant une réponse croissante des précipitations extrêmes avec
l’augmentation des températures. Enfin, la figure 6.4 révèle que le paramètre de forme ξ est
plus élevé sur les zones continentales, traduisant des queues de distribution plus lourdes.

Quatre cellules, représentatives de la diversité du domaine géographique, sont identifiées par
les étoiles 1 à 4 de la figure 6.2. Afin de s’assurer de la viabilité de la loi ExtGPD pour
décrire les précipitations journalières, et évaluer la pertinence de la prise en compte des
températures, nous calculons les diagrammes quantile-quantile de chacune de ces cellules. La
figure 6.5 montre les diagrammes quantile-quantile pour chaque cellule dans le cas stationnaire
(α1 = β1 = 0), ainsi que les histogrammes des quantiles obtenus. La figure 6.6 présente les
mêmes éléments dans le cas non-stationnaire. Afin d’évaluer la pertinence de la prise en
compte de l’évolution des températures, les comparaisons sont effectuées sur les données de
la période 2020 − 2099, tandis que les paramètres ont été estimés sur la période historique
1955 − 2020.

Ces diagrammes quantile-quantile, ainsi que les histogrammes correspondants, illustrent la
pertinence de la prise en compte de l’évolution des anomalies de températures. En effet, dans
le cas stationnaire (α1 = β1 = 0), présenté à la figure 6.5, on observe une sous-estimation
systématique des quantiles élevés (sur la période 2020–2099) par la loi ajustée sur la période
1955–2020. À l’inverse, la figure 6.6 montre des diagrammes quantile-quantile quasi parfaits et
des histogrammes très bien alignés. Ainsi, l’inclusion des anomalies de températures permet
d’adapter plus fidèlement la distribution des précipitations non nulles dans un contexte de
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Figure 6.2 Log-vraisemblance négative obtenue après optimisation des paramètres définis
en (6.22-6.24) de la loi ExtGPD, ajustée indépendamment sur chaque cellule du domaine à
partir des données de référence couvrant la période 1955–2020. Les étoiles numérotées 1 à 4
identifient les cellules analysées aux figures 6.5 et 6.6.
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(a) Valeurs du paramètre exp(α0) correspon-
dant à la partie stationnaire du paramètre
κ(T ).

(b) Valeurs de exp(β0) correspondant à la par-
tie stationnaire du paramètre σ(T ).

(c) Valeurs de α1 correspondant à la partie
non-stationnaire du paramètre κ(T ).

(d) Valeurs de β1 correspondant à la partie
non-stationnaire du paramètre σ(T ).

Figure 6.3 Valeurs des paramètres exp(α0), α1, exp(β0), β1 pour chaque cellule du domaine
après maximisation de la log-vraisemblance (6.17).
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Figure 6.4 Valeurs du paramètre ξ après application de la transformation (6.24).

changements climatiques.

6.2.2 Réduction d’échelle par prédiction des niveaux de quantile

Contrairement à l’approche classique de réduction d’échelle, qui consiste à entraîner un mo-
dèle d’apprentissage profond afin de prédire directement la valeur de précipitation à haute
résolution (ou, dans notre cas, le résidu par rapport à la basse résolution), nous proposons
une méthode fondée sur la structure statistique des précipitations haute résolution. Plus
précisément, pour chaque cellule, nous exploitons la loi ExtGPD ajustée précédemment.

Soient x et y deux champs de précipitations respectivement à basse et haute résolution,
associés à un champ d’anomalies saisonnières de températures tp. Pour chaque cellule (i, j) de
la grille haute résolution, le modèle de réduction d’échelle a pour objectif de prédire le niveau
de quantile p̂ij(x) ∈ (0, 1) tel que ŷij, la valeur de précipitation correspondante, s’obtienne
par inversion de la fonction de répartition Fij, dépendante des anomalies de températures,
estimée à partir de la loi ExtGPD ajustée pour cette cellule :

ŷij = F −1
ij (p̂ij(x), tpi,j) . (6.25)
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Figure 6.5 (Première ligne) Diagrammes quantile-quantile des données de la période
2020 − 2099 provenant des cellules 1 à 4 (voir figure 6.2), pour les modèles stationnaires
(α1 = β1 = 0) ajustés sur la période 1955 − 2020. (Deuxième ligne) Histogramme des
quantiles obtenus.

Figure 6.6 (Première ligne) Diagrammes quantile-quantile des données de la période
2020 − 2099 provenant des cellules 1 à 4 (voir figure 6.2), pour les modèles non-stationnaires
ajustés sur la période 1955 − 2020. (Deuxième ligne) Histogramme des quantiles obtenus.
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Cette approche permet d’intégrer les propriétés de la théorie des valeurs extrêmes pour amé-
liorer la représentation des précipitations de forte intensité. De plus, en faisant dépendre la
fonction de répartition Fi,j aux anomalies de températures annuelles, on renforce la robus-
tesse du modèle en changements climatiques. L’inverse de la fonction de répartition de la loi
ExtGPD peut se calculer par la formule :

F −1(p) =


σ
ξ

[(
1 − p1/κ

)−ξ
− 1

]
si ξ > 0,

−σ log(1 − p1/κ) si ξ = 0.
(6.26)

L’ensemble du champ haute résolution prédit ŷ est alors reconstruit en appliquant cette
opération à chaque cellule de la grille GHR :

ŷ =
{
ŷij = F −1

ij (p̂ij(x), tpi,j) | (i, j) ∈ GHR

}
. (6.27)

Les niveaux de quantile associés aux lois ExtGPD ajustées n’étant pas uniformément répar-
tis (ils sont en grande majorité concentrés vers les faibles valeurs, proches de zéro), nous
choisissons d’entraîner le modèle fθ à prédire une transformation logarithmique du niveau de
quantile. Plus précisément, si pi,j = F (yi,j, tpi,j) désigne le niveau de quantile correspondant
à la valeur cible yi,j, selon la fonction de répartition F de la loi ExtGPD dépendante de tpi,j,
alors le modèle est entraîné à approximer :

fθ(x)i,j = log (1 − pi,j) =⇒ p̂i,j = 1 − exp(−fθ(x)i,j) (6.28)

où x désigne l’entrée interpolée de la basse résolution, fθ(x)i,j la sortie du modèle pour la
cellule (i, j), et p̂i,j le niveau de quantile prédit.

Soient Y ∈ RN×H×W un mini-lot de N champs de précipitations journalières de référence
à haute résolution, X ∈ RN×H×W un mini-lot correspondant interpolé à partir de données
basse résolution, et T ∈ RN×H×W le mini-lot des anomalies de températures haute résolution,
les champs de paramètres κ, σ0, σ1, ξ ∈ RH×W ajustés au préalable pour chaque cellule de la
grille, et F (· , Ti,j) la fonction de répartition de la loi ExtGPD dépendante par les anomalies
de température, pour la cellule (i, j).

Nous entraînons alors le UNet en minimisant la fonction de perte suivante :

LExtGPD1(θ) = 1
N H W

N∑
n=1

H∑
h=1

W∑
w=1

(
fθ(Xn)h,w − log(1 − F (Yn,h,w, Tn,h,w))

)2
, (6.29)
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6.2.3 Apprentissage par alignement des niveaux de quantile

Une autre approche consiste à utiliser la prédiction de précipitations Ŷn,i,j = fθ(Xn)i,j pro-
duite par le UNet, puis à projeter cette valeur dans l’espace des niveaux de quantiles en
appliquant la fonction de répartition Fi,j(· , Tn,i,j) associée à la cellule (i, j). On compare en-
suite le niveau de quantile prédit au niveau de quantile cible pn,i,j = F (Yn,i,j, Tn,i,j), sans
appliquer la transformation logarithmique détaillée précédemment, car la valeur de précipi-
tations prédite n’est pas directement dépendante du niveau de quantile :

LExtGPD2(θ) = 1
NHW

N∑
n=1

H∑
h=1

W∑
w=1

(
F (fθ(Xn)h,w, Tn,h,w) − F (Yn,h,w, Tn,h,w)

)2
. (6.30)
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CHAPITRE 7 ÉVALUATION

Ce chapitre vise à présenter et analyser les résultats de chacune des méthodes proposées au
chapitre précédent, en comparaison à ceux du UNet présenté au chapitre 5, entraîné sur la
perte quadratique des résidus (5.4).

7.1 Métriques

L’objectif principal de la réduction d’échelle est de reproduire les structures fines des champs
de précipitations à haute résolution à partir de champs dégradés qui ne capturent que les
structures de grande échelle. Le modèle de réduction d’échelle doit également être en me-
sure de généraliser dans un contexte de changements climatiques, alors que les températures
moyennes augmentent.

Atteindre cet objectif nécessite la satisfaction simultanée de plusieurs critères de perfor-
mance :

1. Restitution des intensités locales : le modèle doit être capable de reproduire
fidèlement les valeurs de précipitations à haute résolution, ainsi que l’étendue des
évènements de précipitations.

2. Reconstruction de la distribution statistique : il est essentiel que le modèle puisse
reconstituer la distribution des précipitations à haute résolution, et en particulier de
bien pouvoir représenter les valeurs extrêmes. Cela suppose une bonne estimation des
queues de distribution.

3. Fidélité fréquentielle : les champs reconstruits doivent contenir la bonne quantité
d’information à chaque échelle spatiale. Cela suppose une reconstruction précise des
structures de précipitation sur un intervalle de fréquences spatiales, avec le moins de
distorsion possible.

Afin de comparer la capacité des modèles à satisfaire le critère (1), nous mesurons l’erreur
absolue moyenne (MAE) (exprimée en mm/jour) entre les champs de précipitations géné-
rés par la réduction d’échelle et les données de référence. La prédiction des précipitations
extrêmes à haute résolution représentent un défi particulier pour les modèles. Pour évaluer
plus finement les performances dans les régions extrêmes de la distribution, nous calculons
aussi la MAE aux voisinages de plusieurs niveaux de quantiles, en suivant la méthodologie
suivante :
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1. Les quantiles de niveaux q ± 0.025 sont estimés sur l’ensemble des données de référence.
2. Nous identifions les points de données de l’ensemble de référence dont les valeurs de

précipitation sont comprises entre ces deux quantiles. Cela définit une plage locale
autour du quantile de niveau q.

3. La MAE est ensuite calculée uniquement sur cet ensemble restreint de points.

Nous calculons également la MAE pour chaque année de la période de test. Cette évaluation
permet d’analyser l’évolution des erreurs au fil du temps, et de comparer la capacité de
généralisation aux changements climatiques entre modèles.

Pour évaluer le respect du critère (2), nous comparons, en agrégeant toutes les cellules du do-
maine, les histogrammes des précipitations sous une échelle logarithmique pour se concentrer
sur la queue de la distribution.

Finalement, pour évaluer le respect du critère (3), nous analysons la fidélité fréquentielle des
champs de précipitations reconstitués à travers la densité spectrale de puissance moyennée
radialement (ou Radial-Averaged Power Spectral Density en anglais, RA-PSD). Cette mé-
trique permet de quantifier la distribution de la variance spatiale du champ en fonction des
fréquences spatiales, et fournit ainsi une mesure directe de la capacité des modèles à restituer
les structures présentes à différentes échelles.

Pour un champ de précipitations Y ∈ RH×W
+ , la RA-PSD est obtenue à partir de la transfor-

mée de Fourier discrète bidimensionnelle :

Ŷ (kh, kw) =
H−1∑
h=0

W −1∑
w=0

Yh,w e
−2πi

(
khh

H
+ kww

W

)
(7.1)

PSD(kh, kw) = 1
H W

∣∣∣Ŷ (kh, kw)
∣∣∣2 (7.2)

La densité spectrale de puissance (PSD) bidimensionnelle est ensuite moyennée radialement,
c’est-à-dire par intervalle d’anneaux successifs de rayon k =

√
k2

h + k2
w, afin d’obtenir une

PSD unidimensionnelle notée PSD(k). Les vecteurs de PSD unidimensionnels ainsi obtenus
pour chaque champ de précipitations sont ensuite moyennés, fréquence par fréquence, pour
produire une PSD moyenne représentative de l’ensemble des données pour chaque modèle.

Pour évaluer la qualité de reconstruction fréquentielle des modèles, nous analysons la RA-
PSD relative entre les champs générés et les données de référence, définie par :

PSDrel(k) = PSDmodèle(k)
PSDréférence(k) (7.3)
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Une valeur de PSDrel(k) = 1 indique une restitution parfaite de la variance à l’échelle spa-
tiale correspondante. Des valeurs inférieures à 1 traduisent une perte de variance (sous-
représentation des structures), tandis que des valeurs supérieures à 1 révèlent une surestima-
tion.

7.2 Résultats

Chaque modèle comparé est entraîné selon la même procédure, et avec les mêmes hyperpara-
mètres d’entraînement. La graine aléatoire est fixée à 351 pour l’ensemble des entraînements.
L’algorithme d’optimisation utilisé est Adam, avec ses paramètres standards et un taux d’ap-
prentissage de 10−3. Les champs de précipitations journalières sont mélangés aléatoirement,
et la taille du mini-lot est fixée à 32 journées, sauf pour les variantes de l’approche par
regroupement, pour lesquelles elle est fixée à 150. Chaque modèle est entraîné pendant 50
époques.

Pour rappel, l’ensemble d’entraînement couvre la période 1955−2020, correspondant à 23 725
points de données par cellule, et l’ensemble de test couvre la période allant de 2020 à 2099,
totalisant 28 835 points de données par cellule.

L’interpolation bicubique est utilisée comme méthode de référence (baseline), fournissant une
borne inférieure de comparaison pour évaluer les performances des modèles. L’erreur absolue
moyenne de cette méthode est présentée au tableau 7.1.

Tableau 7.1 MAE globale et évaluée aux voisinages de plusieurs niveaux de quantiles pour
l’interpolation bicubique sur la période de test.

MAE MAE-q (0.5) MAE-q (0.75) MAE-q (0.9) MAE-q (0.95) MAE-q (0.99)
1.570 1.181 2.446 4.050 6.983 20.949

7.2.1 Contrainte douce par approche de regroupement

Nous analysons les performances de l’approche consistant à ajouter à la fonction de perte
du modèle une contrainte douce censée permettre d’aligner les prédictions du modèle sur la
relation entre les températures et les extrêmes de précipitation. Cette contrainte définit par
l’approche de regroupement est définie à la section 6.1.

Dans l’objectif de mieux comprendre le comportement du modèle lors de l’application de
cette contrainte, nous comparons les résultats en fonction de plusieurs valeurs du paramètre
γ ∈ {0, 1, 10, 50, 100}, qui module l’intensité de la pénalité appliquée à la fonction de perte



61

(γ = 0 correspondant à la perte quadratique, et γ = 100 impliquant une pénalité à peu près
du même ordre de grandeur que la fonction de perte initiale). Nous comparons également les
performances des modèles en fonction du seuil de filtrage s (6.4), fixé à 0 ou 1 mm/jour.

Les tableaux 7.2 et 7.3 présentent les valeurs de MAE sur la période de test pour les dif-
férentes configurations étudiées. Aucun gain significatif de performance n’est observé suite
à l’introduction de la pénalité, quel que soit le seuil s. Au contraire, pour des coefficients
γ > 10, une dégradation marquée des performances est constatée. Les résultats obtenus
pour les coefficients modérés (γ ∈ 1, 10) sont toutefois systématiquement meilleurs lorsqu’un
filtrage des précipitations inférieures à s = 1 mm/jour est appliqué — à l’exception de la
médiane. Cette amélioration peut s’expliquer par une concentration de l’apprentissage sur les
fortes intensités, les faibles précipitations étant écartées. Néanmoins, cet effet restant mar-
ginal, ces résultats doivent être interprétés avec prudence et nécessitent des investigations
complémentaires pour être consolidés.

Tableau 7.2 MAE globale et évaluée aux voisinages de plusieurs niveaux de quantiles, en
fonction de la valeur du coefficient γ de la fonction de perte (6.1), pour s = 0.0 mm/jour
(seuil de filtrage (6.4)).

γ MAE MAE-q (0.5) MAE-q (0.75) MAE-q (0.9) MAE-q (0.95) MAE-q (0.99)
0 1.329 0.918 2.273 4.045 6.744 17.151
1 1.331 0.931 2.290 4.044 6.710 17.123
10 1.328 0.944 2.255 3.939 6.624 17.306
50 1.375 0.987 2.314 4.032 6.813 17.773
100 1.393 1.010 2.315 4.028 6.810 18.073

Tableau 7.3 MAE globale et évaluée au voisinage de plusieurs niveaux de quantiles, en
fonction de la valeur du coefficient γ de la fonction de perte (6.1), pour s = 1.0 mm/jour
(seuil de filtrage (6.4)).

γ MAE MAE-q (0.5) MAE-q (0.75) MAE-q (0.9) MAE-q (0.95) MAE-q (0.99)
0 1.329 0.918 2.273 4.045 6.744 17.151
1 1.323 0.933 2.268 3.989 6.599 17.083
10 1.321 0.937 2.260 3.908 6.503 17.376
50 1.365 1.010 2.272 3.879 6.594 18.128
100 1.391 1.037 2.297 3.948 6.730 18.308

Pour la suite des évaluations, nous retenons pour chaque seuil s la configuration avec γ = 10,
ce coefficient offrant généralement les meilleurs performances. L’évolution de la MAE sur la
période de test, présentée en figure 7.1, montre que les modèles pénalisés (courbes orange et
violette) ne parviennent pas à atténuer la tendance croissante de l’erreur au cours du temps.
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Par ailleurs, la figure 7.2 confirme les limites évoquées en section 6.1.2 : les modèles entraînés
avec une pénalité (γ > 0) n’améliorent pas l’alignement des TPSRs avec ceux des données de
référence, en comparaison avec l’entraînement basé uniquement sur Lreco. La séparation en
deux sous-périodes suggère enfin que ces taux d’évolution ne présentent pas de dynamique
sensible à l’accélération des changements climatiques.

Figure 7.1 MAE annuelle (en mm/jour) pour la perte MSE (γ = 0), et pour s = 0 ou s = 1
mm/jour avec γ = 10. L’erreur de l’interpolation cubique n’est pas affichée pour préserver la
lisibilité de la figure. Lissage par moyenne mobile sur 10 valeurs.

Figure 7.2 Boites à moustaches des TPSRs (en %/◦C) obtenus via la méthode définie à la
section 6.1 pour chaque modèle. On sépare l’ensemble de test en deux périodes : 2020−2050,
et 2050 − 2099, pour évaluer l’évolution temporelle.

L’étendue des précipitations prédites par les modèles n’est pas améliorée par l’ajout de la
contrainte, comme le montre la figure 7.3, qui présente les histogrammes des précipitations
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pour chaque modèle sur la période de test (toutes les cellules du domaine étant agrégées).
On observe en revanche une amélioration marginale de la PSD relative pour les fréquences
supérieures à environ 0, 047 km−1, ce qui correspond à une échelle spatiale inférieure à quatre
cellules. La chute des courbes de PSD à ces fréquences s’observe également dans les données
de référence. Elle peut traduire d’une distorsion propre au modèle RCM à cette échelle,
possiblement liée à une transition entre deux schémas physiques, ou encore à un effet de
filtrage numérique.

Figure 7.3 Histogramme des précipitations pour chaque modèle, incluant l’ensemble des
cellules du domaine sur la période de l’ensemble de test 2020 − 2099

Comme discuté à la section 6.1.2, une taille de lot bien supérieure à N = 150 échantillons
serait nécessaire pour obtenir une estimation robuste des TPSRs en utilisant la méthode par
regroupement. Une telle estimation est indispensable pour que la pénalisation issue de cette
méthode définisse un paysage d’optimisation cohérent avec l’objectif annoncé : aligner les
taux de progression des extrêmes de précipitations en fonction des températures avec ceux
observés dans les données de référence.

Cependant, les limitations en mémoire vive rendent impossible l’utilisation de tailles de lot
supérieures à 256 tout en conservant un domaine suffisamment vaste pour contenir une di-
versité d’information.

Une solution consiste à entraîner le modèle sur un ensemble de sous-domaines superposés (ou
patches en anglais) extraits du domaine initial. Cette approche permettrait une réduction
significative du besoin de mémoire, rendant possible l’apprentissage du UNet avec la fonction
de perte proposée, pour des tailles de lot dépassant 512. Nous encourageons donc la poursuite
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Figure 7.4 PSDrel pour chaque modèle par rapport à la densité spectrale de puissance des
données de référence, calculées suivant la méthode détaillée à la section 7.1.

de ces travaux, afin de pouvoir réellement évaluer la pertinence de cette approche pour
améliorer la prédiction des extrêmes et la robustesse aux changements climatiques.

7.2.2 Intégration d’a priori statistiques issus de la théorie des valeurs extrêmes

Nous évaluons chacune des méthodes proposées dans deux configurations : stationnaire et
non-stationnaire, correspondant respectivement à l’exclusion ou à l’inclusion des anomalies
de températures dans la fonction de perte, et le calcul du quantile. Toutefois, ces anomalies ne
sont jamais utilisées comme covariables explicites à l’entrée des modèles. En effet, leur inclu-
sion aux côtés des précipitations à basse résolution et de la température moyenne journalière a
systématiquement conduit à une dégradation des performances lors de nos expérimentations.
Seulement un modèle parmi ceux évalués a accès aux anomalies de températures annuelles
lors de l’évaluation sur la période de test : LExtGPD1(T ), car cette variable est nécessaire pour
le calcul du quantile de précipitation pour le cas de la loi ExtGPD non-stationnaire.

Le tableau 7.4 met en évidence l’intérêt d’utiliser l’a priori statistique offert par la loi ExtGPD
pour les niveaux de quantile q ∈ [0.75, 0.95]. Néanmoins, notons que la médiane des préci-
pitations haute résolution est systématiquement sujette à des erreurs plus importantes en
suivant ces approches. Malgré des améliorations, les progrès restent marginaux, on ne peut
donc pas tirer de conclusion évidente quant à l’intérêt de ces méthodes pour améliorer la
prédiction des extrêmes de précipitations.

Similairement, l’inclusion des anomalies de températures, bien que bénéfique pour modéliser
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Tableau 7.4 MAE globale (en mm/jour) et évaluée au voisinage de plusieurs niveaux de
quantiles, pour le UNet standard Lreco et les méthodes de prédictions et d’alignement sur les
niveaux de quantile de la loi ExtGPD : LExtGPD1 (1) et LExtGPD2 (2), avec ou sans anomalies
de températures T .

Modèle MAE MAE (0.5) MAE (0.75) MAE (0.9) MAE (0.95) MAE (0.99)
Lreco 1.329 0.918 2.273 4.045 6.744 17.151

1 1.330 0.942 2.223 3.920 6.662 17.729
1 + T 1.336 0.943 2.257 3.993 6.734 17.629

2 1.318 0.928 2.251 3.956 6.590 17.221
2 + T 1.321 0.926 2.258 3.986 6.631 17.175

la distribution des précipitations en changements climatiques, comme noté à la section 6.2.1,
semble avoir l’effet inverse de celui attendu, avec une augmentation plus rapide des erreurs par
rapport aux autres modèles, ce qu’on peut observer à la figure 7.5. Néanmoins, cela ne doit
pas forcément être considéré comme une dégradation des performances, car comme indiqué
par l’histogramme des précipitations du modèle LExtGPD1(T ) à la figure 7.7, la prédiction
des niveaux de quantile et l’inclusion des anomalies de températures permet d’élargir la
limite des intensités obtenues en changements climatiques. Or, dans le cas où l’évènement de
précipitations contenant une de ces intensités extrêmes n’est pas exactement bien situé par
le UNet, le modèle sera doublement pénalisé par rapport à un autre modèle ayant largement
sous-estimé les intensités de précipitations du champ.

Figure 7.5 MAE (en mm/jour) annuelle pour le UNet standard (Lreco) et les variantes
stationnaire et non-stationnaire de la méthode de prédiction des niveaux de quantile (voir
section 6.2.2) des lois ExtGPD ajustées précédemment : LExtGPD1 et LExtGPD1(T ). La courbe
est obtenue par moyenne mobile sur une fenêtre de 10 valeurs.

La double pénalité remet donc en cause la pertinence de la seule utilisation de la MAE
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pour mesurer les performances du UNet en changements climatiques, surtout concernant les
extrêmes de précipitations.

Figure 7.6 MAE (en mm/jour) annuelle pour le UNet standard (Lreco) et les variantes
stationnaire et non-stationnaire de la méthode d’alignement des niveaux de quantile (voir
section 6.2.3) : LExtGPD1 et LExtGPD1(T ). La courbe est obtenue par moyenne mobile sur une
fenêtre de 10 valeurs.

Lors des expérimentations menées avec les modèles de prédiction des niveaux de quantile
des lois ExtGPD, nous avons observé une tendance systématique à sous-estimer les hauts
quantiles, conduisant à des précipitations simulées nettement inférieures à celles observées
dans les données de référence. Afin d’atténuer cet effet, la transformation logarithmique a été
introduite dans la fonction de perte (6.29), ce qui a permis de corriger partiellement ce biais.
L’amélioration de la représentation des précipitations extrêmes et la meilleure conservation
de la variance spatiale (voir figure 7.8) suggèrent que l’intégration d’informations issues de
la loi ExtGPD au sein des modèles d’apprentissage profond pour la réduction d’échelle des
précipitations conserve un potentiel important.

La figure 7.9 illustre les champs de précipitations simulés pour deux journées distinctes de la
période de test, en comparant les sorties des différents modèles étudiés aux données de réfé-
rence à haute résolution issues de ClimEx. Cette visualisation permet de mettre en évidence
la complexité de la tâche de réduction d’échelle des précipitations, surtout sans ayant recourt
à de nombreuses covariables.

Les méthodes proposées n’atteignent pas pleinement les objectifs fixés : (1) améliorer la ré-
duction d’échelle des précipitations extrêmes, et (2) renforcer la robustesse du UNet face aux
changements climatiques, notamment en intégrant la relation de dépendance entre précipita-
tions et évolution des températures. Malgré cela, les résultats obtenus restent prometteurs et
encouragent à poursuivre les recherches afin de mieux exploiter le potentiel de ces approches.
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Figure 7.7 Histogramme des précipitations pour chaque modèle, incluant l’ensemble des
cellules du domaine sur la période de l’ensemble de test 2020 − 2099.

Figure 7.8 PSDrel pour chaque modèle par rapport à la PSD des données de référence,
calculées suivant la méthode détaillée à la section 7.1.
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(a) Précipitations du 03 mai 2078. (b) Précipitations du 21 juillet 2085.

Figure 7.9 Champs de précipitations à basse résolution (interpolation 1nn), interpolés par
méthode bicubique, prédits par chacun des modèles étudiés, et à haute résolution issus de
ClimEx, pour deux dates sélectionnées aléatoirement sur la période de test.
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CHAPITRE 8 CONCLUSION

8.1 Synthèse des travaux

Les changements climatiques intensifient les événements extrêmes et modifient profondément
la distribution de variables atmosphériques comme les précipitations, avec des impacts ma-
jeurs sur les populations et les écosystèmes. Des projections climatiques à haute résolution
sont essentielles pour anticiper ces évolutions et s’y adapter. Les méthodes d’apprentissage
profond représentent une opportunité importante pour produire des simulations à haute ré-
solution à bas coût. Ce mémoire s’est concentré sur la réduction d’échelle des précipitations
par apprentissage profond, en mettant en lumière certaines vulnérabilités des réseaux de neu-
rones, notamment leur difficulté à prédire les extrêmes et leur manque de robustesse face aux
changement climatiques.

Après avoir implémenté un réseau convolutif profond de type UNet pour la tâche de réduction
d’échelle des champs de précipitations, incluant la définition d’une stratégie de pré- et post-
traitement des données, plusieurs améliorations structurelles issues de la littérature ont été
intégrées afin d’en renforcer les performances.

L’évaluation du UNet en changements climatiques, accompagnée de l’implémentation de mé-
thodes d’estimation de TPSRs inspirées en partie de la théorie des valeurs extrêmes, a permis
de formuler l’hypothèse supposant que la dégradation des performances de réduction d’échelle
des précipitations en changements climatiques serait liée à la non-intégration de la relation
de Clausius-Clapeyron au sein des caractéristiques apprises.

De ce constat a découlé la proposition d’incorporer au sein de l’entraînement du UNet l’infor-
mation issue des TPSRs, en utilisant l’approche de regroupement. Malgré une implémentation
fonctionnelle, le potentiel de la méthode n’a pas pu être réellement explorée, incitant à repen-
ser la stratégie d’intégration de l’information obtenue par cette approche. Deux approches
alternatives ont donc été développé, consistant à conditionner l’apprentissage par une fonc-
tion de répartition, issue de la théorie des valeurs extrêmes, représentant la distribution des
précipitations de chaque cellule en fonction de l’évolution des anomalies de températures.
Les paramètres de cette loi ont été estimés pour chaque cellule du domaine, et nous avons
explicitement modélisé la dépendance aux anomalies de températures, permettant de mieux
représenter les précipitations en changements climatiques.

Les résultats obtenus ne permettent pas, à ce stade, de conclure favorablement quant à l’effi-
cacité des méthodes proposées pour pallier aux limites identifiées du UNet pour la réduction
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d’échelle des précipitations. Toutefois, certains éléments laissent entrevoir un potentiel non
négligeable, et suggèrent que des travaux complémentaires sont nécessaires pour mieux ex-
ploiter les approches développées.

8.2 Perspectives de recherche

Comme évoqué dans ce mémoire, une stratégie prometteuse consisterait à partitionner le do-
maine spatial en sous-domaines superposés, et à entraîner le UNet sur cette nouvelle structure.
Une telle approche permettrait d’augmenter significativement la taille des mini-lots, condition
essentielle pour garantir une estimation robuste des TPSRs via l’approche par regroupement.
Comme le suggèrent les résultats de la section 6.1.2, cette méthode faciliterait également la
convergence de la fonction de perte LCC définie en (6.1).

Concernant les méthodes fondées sur l’extension de la loi de Pareto généralisée, une analyse
plus approfondie de l’influence des anomalies de température sur la modélisation des pré-
cipitations serait nécessaire. Il serait également pertinent d’envisager une combinaison des
fonctions de perte proposées, dans le but de combiner les forces de chaque approche. En-
fin, en s’inspirant des travaux en apprentissage profond appliqués aux problèmes inverses,
l’introduction de couches d’échantillonnage directement issues de la loi ExtGPD au sein du
UNet pourrait constituer une piste prometteuse. Cette intégration architecturale permettrait
d’incorporer de manière explicite les a priori sur la forme des distributions de précipitations,
ainsi que leur dépendance aux températures.
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ANNEXE A ESTIMATION DES TPSRS PAR LA LOI DES VALEURS
EXTRÊMES GÉNÉRALISÉE

Les figures A.1, A.2, A.3, A.4, A.5, et A.6 présentent respectivement les NLLs, et les para-
mètres µ0, µ1, σ0, σ1 et ξ estimés à partir des données de référence et des prédictions du
UNet pour la période de test 2020 − 2099.

Figure A.1 Log-vraisemblance négative à l’issue de l’optimisation des paramètres sous la
combinaison Mµ,4 + Mσ,2 pour les données de référence (à gauche) et les prédictions du
UNet (à droite).

Figure A.2 Paramètres µ0 de Mµ,4 pour les données de référence (à gauche) et les prédic-
tions du UNet (à droite).
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Figure A.3 Paramètres µ1 de Mµ,4 pour les données de référence (à gauche) et les prédic-
tions du UNet (à droite).

Figure A.4 Paramètres σ0 de Mσ,2 pour les données de référence (à gauche) et les prédic-
tions du UNet (à droite).
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Figure A.5 Paramètres σ1 de Mσ,2 pour les données de référence (à gauche) et les prédic-
tions du UNet (à droite).

Figure A.6 Paramètres ξ pour les données de référence (à gauche) et les prédictions du
UNet (à droite).


	DÉDICACE
	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES SIGLES ET ABRÉVIATIONS
	LISTE DES ANNEXES
	1 INTRODUCTION
	2 CADRE THÉORIQUE
	2.1 Apprentissage profond
	2.1.1 Réseaux convolutifs profonds
	2.1.2 UNet

	2.2 Théorie des valeurs extrêmes
	2.2.1 Approche par maximum de blocs
	2.2.2 Approche par dépassement de seuil
	2.2.3 Extension de la loi de Pareto généralisée

	2.3 Relation entre les précipitations et les températures
	2.3.1 Clausius-Clapeyron
	2.3.2 Estimation par méthode de regroupement
	2.3.3 Estimation par la loi des valeurs extrêmes généralisée


	3 REVUE DE LITTÉRATURE
	3.1 Modélisation numérique du climat
	3.2 Réduction d'échelle dynamique et statistique
	3.3 Apprentissage profond pour la réduction d'échelle
	3.3.1 Méthodes déterministes
	3.3.2 Méthodes génératives

	3.4 Apprentissage profond informé par la physique

	4 DONNÉES ET ANALYSE EXPLORATOIRE
	4.1 ClimEx : grand ensemble de simulations en réchauffements climatiques
	4.2 Analyse statistique exploratoire

	5 APPRENTISSAGE PROFOND ET RÉDUCTION D'ÉCHELLE DES PRÉCIPITATIONS EN CHANGEMENTS CLIMATIQUES
	5.1 UNet pour la réduction d'échelle
	5.1.1 Présentation de l'architecture
	5.1.2 Stratégie, pré et post traitement des données

	5.2 Améliorations du UNet
	5.3 Évaluation en changements climatiques
	5.3.1 Estimation des TPSRs par la loi des valeurs extrêmes généralisée


	6 INTÉGRATION DE LA RELATION TEMPÉRATURE-PRÉCIPITATIONS POUR LA RÉDUCTION D'ÉCHELLE
	6.1 Contrainte douce de Clausius-Clapeyron par approche de regroupement
	6.1.1 Intégration de la relation précipitations-températures par contrainte douce
	6.1.2 Limites de l'approche par regroupement

	6.2 Intégration d’a priori statistiques issus de la théorie des valeurs extrêmes
	6.2.1 Modélisation des précipitations par extension de la loi de Pareto généralisée
	6.2.2 Réduction d'échelle par prédiction des niveaux de quantile
	6.2.3 Apprentissage par alignement des niveaux de quantile


	7 ÉVALUATION
	7.1 Métriques
	7.2 Résultats
	7.2.1 Contrainte douce par approche de regroupement
	7.2.2 Intégration d’a priori statistiques issus de la théorie des valeurs extrêmes


	8 CONCLUSION
	8.1 Synthèse des travaux
	8.2 Perspectives de recherche

	RÉFÉRENCES
	ANNEXES

