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RÉSUMÉ

Le givrage en vol est un danger bien connu pour la sécurité et les performances des aéronefs.
Il se produit généralement dans des conditions météorologiques froides, lorsqu’un avion ren-
contre un nuage surfondu. L’un des principaux effets de ce phénomène est la dégradation des
performances aérodynamiques. Malgré le développement de systèmes de protection contre
le givrage, les avions commerciaux doivent pouvoir démontrer leur capacité à voler dans de
telles conditions. Par conséquent, l’intérêt pour le développement de simulations de givrage
en vol s’est accru ces dernières années, avec un focus particulier sur les simulations 3D.

Les simulations numériques du givrage reposent généralement sur l’hypothèse que le temps
d’exposition de la surface aux conditions de givrage est significativement plus long que le
temps caractéristique de l’écoulement aérodynamique. Cette différence d’échelle temporelle
permet une stratégie de modélisation modulaire, dans laquelle le processus global est dé-
composé en une succession d’appels de modules. Tout d’abord, un maillage volumique est
généré à partir de la surface considérée afin de résoudre l’écoulement aérodynamique sta-
tionnaire et les trajectoires des gouttes surfondues. Ensuite, un bilan thermodynamique est
fait à la surface afin de déterminer l’épaisseur locale de glace. Enfin, la géométrie est mise
à jour pour intégrer la nouvelle couche de glace formée. Dans une simulation multi-step, le
temps d’exposition est subdivisé en plusieurs incréments. Cette approche répète de manière
itérative la succession des modules, permettant ainsi à la simulation de prendre en compte
l’évolution de la géométrie et son influence sur l’écoulement et l’impact des gouttes, amélio-
rant ainsi la précision de la solution. Cependant, des défis importants apparaissent lors de
l’automatisation de ce processus, principalement en raison de la complexité associée à la
génération de maillages de haute qualité à chaque itération.

L’objectif principal de ce travail est d’intégrer les méthodes de frontières immergées (Im-
mersed Boundary Method, IBM) dans le cadre de simulation du givrage afin d’éliminer la
nécessité de générer un maillage volumique à chaque étape, tout en conservant le niveau de
précision obtenu avec une approche conforme (Body-Fitted, BF). Ceci permet d’utiliser un
seul maillage volumique tout au long des étapes d’une simulation multi-steps, facilitant ainsi
l’automatisation du processus.

Tout d’abord, une méthode IBM est développée pour les simulations 3D d’écoulement d’air,
où l’écoulement non-visqueux est modélisé en résolvant les équations d’Euler. Cependant,
comme le bilan thermodynamique à la surface dépend des échanges diffusifs, la solution
d’Euler doit être couplée à un solveur de couche limite. Une méthode IBM basée sur un
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forçage discret à partir d’un maillage conforme à la géométrie initiale lisse a été développée
afin de prendre en compte la modification de la géométrie à chaque pas d’accrétion.

Ensuite, une IBM pour les équations eulériennes 3D des gouttes est nécessaire. En raison
de la nature des équations et des conditions aux limites, une méthode de pénalisation a été
choisie. Cette méthode a été validée dans des simulations 3D, démontrant la préservation de
la précision de la solution.

Enfin, les IBMs développées sont intégrées dans IGLOO3D, la suite de simulation 3D de
givrage de l’ONERA, pour réaliser des simulations multi-steps. Cela nécessite des modifica-
tions mineures dans le reste de la chaine de simulation. Différents cas de givrage sont étudiés,
incluant des profils 2D et des ailes 3D en flèche, ainsi que des conditions de givre blanc (rime)
et givre transparent (glaze). Les résultats montrent une bonne concordance avec l’approche
BF. Comparée aux données expérimentales, la méthodologie donne globalement de bonnes
performances. Cependant, des défis subsistent dans les cas où un décollement massif de
l’écoulement est attendu, ouvrant la voie à de futures recherches.
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ABSTRACT

In-flight ice accretion is a well-known hazard to flight safety and performance. It typically
occurs under cold weather conditions, when an aircraft encounters a supercooled cloud. One
of the main results of the presence of this phenomenon is the degradation of the aerodynamic
performance, increasing the drag and reducing the lift of the aircraft, but it also impairs
the controllability of the aircraft as well as the data readout among others. Despite the
development of aircraft ice protection systems, commercial aircraft must be able to prove that
they are capable of flying under icing conditions. As a result, there has been an increased
interest in developing simulations of in-flight ice accretion. In recent years, work has focused
on the development of three-dimensional simulations.

Numerical simulations of ice accretion commonly rely on the assumption that the surface
exposure time to icing conditions is significantly longer than the characteristic time of the
aerodynamic flow. This time scale difference enables a modular modeling strategy, in which
the overall process is decomposed into a sequential call of modules. First, a volume mesh is
generated from the surface under consideration to solve the steady-state aerodynamic flow
and the trajectories of the supercooled water droplets. Next, the thermodynamic exchanges
at the surface are evaluated to determine the local ice thickness. Finally, the geometry is
updated to include the newly formed ice layer. In a multi-step simulation, the exposure time
is subdivided into multiple steps. This approach iteratively repeats the sequential call of
modules, enabling the simulation to capture the evolving geometry and its impact on the
flow and droplet impingement, thereby enhancing solution accuracy. However, significant
challenges arise in automating this process, primarily due to the complexity involved in
generating high-quality meshes at each iteration.

The main objective of this work is to integrate Immersed Boundary Methods (IBMs) into the
ice accretion framework to eliminate the need for volume mesh generation at each step, while
preserving the level of accuracy achieved with a Body-Fitted (BF) approach. This allows
a single volume mesh to be used throughout all steps of a multi-step simulation, thereby
enhancing the automation of the process.

First, an IBM is developed for three-dimensional airflow simulations, where the inviscid flow
is modeled by solving the Euler equations. However, since the thermodynamic exchanges at
the surface depend on the diffusive transfer quantities, the Euler solution must be coupled
with a boundary layer solver. An IBM method based on a discrete forcing starting from a
body-conformal mesh around the smooth initial geometry has been developed to account for
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the modification of the geometry at each step of the accretion process.

Second, an IBM for the three-dimensional Eulerian droplet equations is needed. Due to
the nature of the governing equations and boundary conditions, a penalization method was
chosen. This method has been validated in three-dimensional simulations, demonstrating
preservation of solution accuracy.

Finally, the previously developed IBMs are integrated into IGLOO3D, the three-dimensional
ice accretion suite of ONERA, to perform multi-step simulations. This requires minor mod-
ifications to the rest of the simulation workflow. Different ice accretion cases are considered,
including two-dimensional airfoils and three-dimensional swept wings, as well as rime and
glaze icing conditions. The results show good agreement with the BF approach. When com-
pared to experimental data, the methodology performs well overall; however, challenges arise
in cases where significant flow separation is expected, paving the way for future research.
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CHAPTER 1 INTRODUCTION

1.1 Context

In-flight ice accretion is a well-known hazard to flight safety and performance. It typically
occurs under cold weather conditions, when an aircraft encounters supercooled clouds. A
droplet is called supercooled when it is in liquid phase but its temperature is below the freezing
point. This metastable state may persist from a few seconds to several days. However, minor
exterior perturbations, such as the impact with an aircraft, can initiate the phase change,
causing ice accretion. One of the main consequences of this phenomenon is the degradation
of the aerodynamic performance, increasing the drag and reducing the lift, but it also impairs
the controllability of the aircraft as well as the data readout among others.

While icing was not initially considered a major issue in the early days of aviation, its impor-
tance gradually increased over time. Starting in the 1940s, research on icing became more
relevant, particularly from theoretical and experimental perspectives. Icing wind tunnels be-
came necessary, not only to assess the degradation of aerodynamic performance, but also to
evaluate the effectiveness of de-icing and anti-icing systems. The National Aeronautics and
Space Administration (NASA) was the first institution to develop an icing wind tunnel, the
Icing Research Tunel (IRT) [93]. Shortly thereafter, the National Research Council (NRC)
of Canada built the Low-Speed Icing Tunnel to support similar experimental studies [123].
Figure 1.1 shows an example of an icing experiment performed in the IRT. Since then, sev-
eral other research centers have developed their own icing wind tunnels, such as those of Rail
Tec Arsenal (RTA) in Austria [66] or ONERA (Office National d’Études et de Recherches
Aérospatiales) in France [21].

The development of computational capabilities from the 1980s onward enabled the creation of
the first ice accretion codes. Due to the inherent difficulty in accurately predicting ice shapes,
collaboration between research centers has existed from the very beginning. In the 1990s,
NASA, DRA (Defence Research Agency), and ONERA led the first comparison studies of
simulation results [189], with the aim of improving and validating aircraft icing simulation
codes. In recent years, this spirit of collaboration has evolved into the organization of ice
prediction workshops. To date, the first two editions of these workshops have been held
[84, 86]. The objective remains the same: to improve and validate icing codes. To that
end, several test cases are defined, experiments are conducted in icing wind tunnels, and the
numerical results from different participants are compared and analyzed. These workshops
help identify the main challenges in ice accretion simulations, as well as define guidelines for
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future work aimed at improving the codes.

Figure 1.1 Icing of inlet of B-58 airplane in the IRT. Image from [119].

1.1.1 Ice Morphologies

Depending on the icing conditions, different types of ice can form. At very low temperatures,
supercooled droplets freeze almost immediately upon impact, trapping air and forming a
porous, opaque accretion known as rime ice. As the temperature increases, the solidification
process is delayed, allowing for the development of a liquid water film on the surface. In re-
gions with enhanced convective heat transfer, this film may flow downstream, a phenomenon
known as runback, before eventually freezing. This process leads to the formation of a denser,
more transparent accretion referred to as glaze ice, often characterized by horn-like shapes.
The term mixed ice is sometimes used to describe cases where the surface simultaneously
exhibits features of both rime and glaze ice.

Additionally, for swept wings in glaze or mixed icing conditions, ice accretion can be divided
into three subcategories known as complete scallops, incomplete scallops, and no scallops [53]
(see Fig. 1.2). Scallops refer to spanwise-periodic patterns of ice ridges that form along the
leading edge of the wing [29]. They often resemble overlapping lobster tails, with a series of
rounded ridges separated by troughs. From a numerical perspective, these complex three-
dimensional features are particularly challenging to capture accurately and typically require
high-fidelity ice accretion models [126].
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Figure 1.2 Scallop ice patterns observed on the CRM65 midspan model in the IRT for the
2nd IPW. Image from [126].

1.1.2 Icing Certification

With the increasing number of flights, flying in icing conditions has become increasingly
common since the 1920s, leading to the formulation of specific certification requirements to
ensure safety. Historically, the foundational regulatory framework for icing certification has
been defined in Appendix C, which characterizes typical in-flight icing conditions. Initially
developed by the Federal Aviation Administration (FAA) in December 1964 and later adopted
by the European Union Aviation Safety Agency (EASA) under CS-25 [63], this appendix
defines the certification envelope for typical icing conditions (e.g., by restricting droplet
diameters to values below 50 µm) and has served as the primary reference for Ice Protection
Systems (IPS) design and validation for several decades.

However, a number of incidents during the 1990s and early 2000s revealed the limitations of
Appendix C, particularly in its inability to account for more complex and hazardous icing
environments, such as those involving droplet sizes beyond the Appendix C range, including
Supercooled Large Droplets (SLD) and ice crystals. Notable examples include the crash of
American Eagle Flight 4184 in 1994 [120], and the accident involving Air France Flight 447 in
2009 [32]. These events prompted significant research efforts and joint regulatory initiatives
between the FAA and EASA, ultimately leading to the introduction of Appendix O and
Appendix P, which extend the icing certification envelope to SLD and ice crystals conditions
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respectively.

Despite the efforts of certification authorities to ensure flight safety in icing conditions, ac-
cidents due to ice accretion continue to occur, as evidenced by the accident involving the
domestic Brazilian passenger flight 2283 operated by Voepass in December 2024. The air-
craft involved, an ATR 72-500, crashed after entering flat spin. The preliminary report of the
accident [2], published by CENIPA, the Brazilian Aeronautical Accidents Investigation and
Prevention Center, confirmed that pilots faced difficulties with icing buildup and de-icing
attempts.

The development of IPSs has not eliminated the requirement for commercial aircraft to
demonstrate their ability to operate under icing conditions. This process involves three
different types of studies related to ice accretion: flight tests, wind tunnel experiments, and
numerical simulations. Flight tests are the most costly option and are generally not conducted
as an initial step due to the inherent risks involved. Moreover, since icing conditions are
difficult to predict, they are typically carried out using artificial ice shapes, obtained either
from wind tunnel experiments or numerical simulations. Wind tunnel experiments pose
significant challenges when scaling the problem. Specifically, establishing a similarity analysis
on icing-relevant dimensionless numbers is generally difficult or insufficient, typically leading
a mitigation based on the modification of the wing shape [29]. Additionally, icing experiments
are known to exhibit considerable variance, meaning that two identical tests conducted in
the same icing wind tunnel can yield different ice shapes. Due to these challenges, there is a
growing need to conduct in-flight ice accretion simulations.

1.1.3 Ice Accretion Simulations

Ice accretion is a highly multi-physics phenomenon. However, the process is typically ad-
dressed by dividing it into three main blocks. First, the aerodynamic flow around the wing is
computed. Then, based on this flow field, the trajectories and impingement of the supercooled
droplets are evaluated. Finally, a thermodynamic mass and energy balance is performed to
determine the ice thickness on the exposed surfaces.

Given the large difference in time scales, with surface exposure to icing conditions typically
lasting hundreds of seconds and the characteristic time of the airflow and droplets being
around hundredths of a second, the phenomenon can be considered quasi-steady. Further-
more, due to the low water concentration, with typical volume fractions around 1 · 10−6,
two-way coupling between the airflow and the droplet trajectory solver is not required, i.e.,
the effect of droplets on the aerodynamic solution is neglected. As a result, each block can
be solved sequentially, as illustrated in Fig. 1.3, where two additional modules are employed:
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mesh generation and geometry update. The former generates the volume mesh used by both
the airflow and droplet solvers, while the latter displaces the ice shape from the ice thickness.

Mesh Generation

Airflow Solver

Droplet Solver

Ice Accretion Solver

Geometry Update

Multi-Layer
(timeloop)

Figure 1.3 Sequential call to modules in ice accretion simulations.

In a one-shot simulation, also known as one-step or single-step simulation, the main loop is
only performed once. While this is the most cost-effective method, it is also the least accurate
for ice accretion simulations. One alternative, which enhances the accuracy of the simulation
without a substantial increase in computational cost, is the use of a predictor-corrector ap-
proach [141]. A more commonly used alternative, known as the multi-step method, involves
dividing the exposure time into N discrete steps. This allows for the consideration of vari-
ations in both the surrounding flow and the droplet impingement as the ice accretes [176].
As the number of steps increases, so does the computational cost of the simulation, and the
feasibility of automation is hindered. To better illustrate the procedure, Fig. 1.4 shows the
multi-step approach used for a two-dimensional ice accretion simulation.

1.2 Problem Statement

In two-dimensional ice accretion simulations, the multi-step approach is widely adopted. A
good practice when performing ice accretion simulations is to ensure convergence by progres-
sively increasing the number of steps, thereby verifying that the solution remains unchanged
when reducing the time step used to update the ice shape. Some studies even employ over
hundred steps to achieve this [69]. However, the high number of steps gives rise to two main
challenges: the computational cost and the level of automation of the entire simulation. The
latter is primarily due to mesh generation, which typically requires manual intervention.
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(a) Airflow solution (b) Droplet solution

(c) Ice accretion and geometry update (d) New mesh generation

Figure 1.4 Illustration of the multi-step approach. At each iteration, a new ice layer is
computed, and a volume mesh is generated for use in the next iteration.

In three-dimensional simulations, these difficulties increase significantly. New equations must
be solved and the total number of cells grow exponentially, making the computational cost
much higher compared to two-dimensional simulations. Furthermore, volume mesh gener-
ation around complex iced surfaces becomes a highly demanding task. The complexity of
these simulations was evident during the 1st Ice Prediction Workshop (IPW) [86], where fewer
than 25 percent of participants chose to undertake multi-step three-dimensional simulations.
However, multi-step simulations are essential for accurately predicting three-dimensional ic-
ing features such as scallops. These scallops create a masking effect on the water collection
that cannot be properly resolved without accounting for the evolution of the ice shape.
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1.3 Preceding Research

This thesis builds upon the doctoral work of Pierre Lavoie [87], carried out jointly by Poly-
technique Montréal and ONERA, which focused on the use of Immersed Boundary Meth-
ods (IBMs) for two-dimensional ice accretion simulations.

Immersed Boundary Methods are numerical techniques typically used to simulate fluid flows
around complex or moving geometries without the need to conform the computational mesh
to the body’s shape. By embedding the solid object within a fixed grid, IBMs simplify the
meshing process. Figure 1.5 compares a classical Body-Fitted (BF) mesh against an Immersed
Boundary (IB) mesh around a GLC305 iced airfoil. For multi-step ice accretions, the need
of generating a new mesh at each iteration is then avoided, improving the automation of the
ice accretion chain.

(a) Body-fitted mesh (b) IB Cartesian mesh

Figure 1.5 Comparison between BF and IB meshes around a iced GLC305 airfoil.

Whether using conventional BF meshes or IBMs, the level of fidelity of the aerodynamic
solution in the simulations significantly impacts their computational cost. In particular, the
airflow simulation is often one of the most computationally demanding when high-fidelity
methods are employed. For instance, Reynolds-Averaged Navier–Stokes (RANS) models,
which account for the viscous boundary layer by refining the mesh around the wall, has
become the standard practice in ice accretion simulations. However, this model significantly
increases the computational cost of the simulation compared to inviscid approaches, such as
the Euler equations or even panel methods. As an alternative, inviscid flow models weakly
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coupled with an integral boundary layer are still advantageous in ice accretion simulations.
Notably, IGLOO2D [176], the two-dimensional ice accretion suite developed by ONERA, and
LEWICE [152], NASA’s ice accretion code, are both based on inviscid flow assumptions and
are widely recognized for their effectiveness in this context.

It is in this context that Lavoie’s thesis was carried out, focusing on the development of two-
dimensional IBMs to solve the inviscid flow and compute droplet trajectories in IGLOO2D.
Several conclusions can be drawn from his work:

• The use of IBM enabled fully automated multi-step ice accretion simulations. Particular
care must be taken during the geometry update phase to prevent overlaps in the newly
formed ice layer.

• The IBM implemented in the airflow solver was limited to first-order accuracy. As
a result, the solver may struggle to capture small variations in the ice shape, which
restricts the maximum number of accretion steps that can be employed.

• In contrast, the IBM developed for the droplet solver achieved second-order accuracy.
Furthermore, its extension to three-dimensional simulations is expected to be relatively
straightforward.

Another important prior contribution is the work conducted at ONERA on integral boundary
layer solvers. In particular, the doctoral thesis of Charlotte Bayeux [13] aimed to develop a
three-dimensional integral method that, when coupled with an inviscid flow simulation, could
yield results comparable to those obtained with RANS models, while significantly improving
the efficiency and reducing the computational cost of the aerodynamic simulation. While
the model proved successful in two-dimensional cases, its extension to three-dimensions still
presents some robustness challenges.

1.4 Objectives of the Present Study

The primary objective of this thesis by compendium is to explore the application of Immersed
Boundary Methods in 3D ice accretion simulations under Appendix C icing conditions, with a
dual focus on substantially streamlining the automation process while maintaining the high ac-
curacy standards achievable through Body-Fitted approaches. This global objective is achieved
by specific objectives in terms of solver development and validation, solution integration as
well as applicability of the presented methodology.

Therefore, to accomplish the main objective, the following sub-objectives are defined:
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Development of Numerical Methods and Validation:

O.1 Design a 3D Immersed Boundary Method for Aero-Icing Computations
The first task of the present work is to develop an IBM to solve the 3D Euler
equations. Firstly, second-order accuracy in benchmark test cases must be demon-
strated. Secondly, flow over complex geometries should be analyzed, including two-
dimensional and three-dimensional ice shapes. Additionally, the solution must be
validated with results from BF simulations or solutions from other codes.

O.2 Verify and Validate the Proposed 3D Immersed Boundary Method for
the Calculations of Droplet Trajectories The penalization method for the Eu-
lerian droplet impingement equations, presented in IGLOO2D, must be validated in
three-dimensional simulations. To this end, the method will be applied to a set of
benchmark problems, including both two-dimensional and three-dimensional cases,
with well-established reference solutions.

O.3 Propose a Simplified Integral Method for Modeling Boundary Layers on
3D Surfaces The simplified integral method, which is currently restricted to laminar
flows, should be extended to turbulent flows. Knowledge of boundary layer theory,
as well as numerical methods for its modeling, is required. The proposed code should
support laminar-turbulent transition, and allow the simulation of three-dimensional
swept wings. Furthermore, verification and validation cases should be presented, and
a comparison of the solution against other codes should be analyzed.

Solver Integration:

O.4 Integrate the Immersed Boundary Methods into a 3D Computational
Workflow The present work should be integrated into the three-dimensional ice
accretion suite of ONERA, IGLOO3D. Firstly, connection between the different mod-
ules must be verified. Therefore, converter scripts need to be developed. Secondly,
modifications to the existing codes may be required, as the boundary conditions of
the volume mesh do not match the ice-fluid interface.

Applications:

O.5 Evaluate the Proposed Methodology in Ice Accretion Simulations Scenar-
ios The present methodology should be applied to typical ice accretion simulations.
Two- and three-dimensional representative icing cases should be chosen to assess the
effectiveness of the IB multi-step simulations.
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1.5 Scientific Dissemination

This thesis has resulted in various publications and presentations, summarized as follows. In
particular, it includes two first-authored submitted publications in Computers & Fluids and
Journal of Aircraft, fulfilling the requirements of both Polytechnique Montreal and ISAE.

1.5.1 Journal Publications

Submitted Manuscripts

• Elices Paz, P., Radenac, E., Péron, S., Blanchard, G., Laurendeau, E., & Villedieu,
P. (2025). Second-Order Ghost-Cell Immersed Boundary Methodology for Inviscid 3D
Flows in Complex Geometries. Computers & Fluids. (Under review. Submitted on 14
February 2025)

• Elices Paz, P., Radenac, E., Blanchard, G., Péron, S., Laurendeau, E., & Villedieu, P.
(2025). Immersed Boundary Methodology for 3D Multi-Step Ice Accretion Simulations.
Journal of Aircraft. (Under review. Submitted on 19 June 2025)

1.5.2 Conference Publications
• Elices Paz, P., Radenac, E., Péron, S., Blanchard, G., Laurendeau, E., & Villedieu,

P. (2023). 3D Immersed Boundary Methods for the Calculations of Droplet Trajectories
towards Icing Application. SAE Technical Paper 2023-01-1458, 2023,
https://doi.org/10.4271/2023-01-1458

• Elices Paz, P., Radenac, E., Blanchard, G., Péron, S., Laurendeau, E., & Villedieu,
P. (2024, July 29). Immersed Boundary Methodology for 3D Multi-Step Ice Accretion
Simulations. AIAA Aviation Forum and Ascend 2024, Las Vegas, Nevada.
https://doi.org/10.2514/6.2024-4161

1.6 Thesis Outline

This manuscript is presented as an article-based thesis and is organized as follows.

Chapter 2 provides a comprehensive literature review, covering existing two- and three-
dimensional ice accretion codes, as well as the various IBMs available in the literature, with
particular attention to their application in ice accretion simulations.

Chapter 3 outlines the overall strategy for integrating the IBMs into the three-dimensional
ice accretion framework and introduces the articles that form the core of this thesis.
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Chapter 4 presents the first article, which focuses on the definition and implementation of a
ghost-cell IBM for inviscid three-dimensional flows.

Chapter 5 provides a detailed presentation of the three-dimensional simplified integral bound-
ary layer method.

Chapter 6 contains the second article, analyzing the results of three-dimensional multi-step
ice accretion simulations using the presented IB ice accretion framework.

Chapter 7 analyzes the strengths and limitations of the proposed methodology.

Finally, Chapter 8 summarizes the main contributions of this work, and outlines potential
directions for future research.
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CHAPTER 2 LITERATURE REVIEW

Simulating in-flight ice accretion involves several multiphysics phenomena, such as fluid dy-
namics, multiphase flows, heat transfer and thermodynamic balance on the iced surface. As
a result, a wide range of modeling strategies have been developed over the years, leading
to significant variation across existing ice accretion codes, depending on the specific choices
made by each developer. The first part of this chapter is therefore dedicated to examining
the different models currently employed to perform ice accretion simulations under icing con-
ditions. Particular focus is placed on the first two Ice Prediction Workshops (IPWs) [84, 86],
which serve as key references for understanding the modeling approaches currently employed
by the community.

The second part of the chapter shifts focus to Immersed Boundary Methods. We review the
main types of IBMs, including cut-cell, continuous, and discrete approaches, outlining their
principles and key differences.

Finally, the chapter examines the application of IBMs in ice accretion simulations. This
includes a comprehensive review of existing codes that have integrated IBMs, emphasizing
their advantages and limitations.

2.1 Ice Accretion Models

To assess the current state-of-the-art in ice accretion codes, the models employed by all
participants of the 1st IPW [86] held in 2022 are taken as a representative sample. The
workshop submission included results from many research and industry institutions, as shown
in Table 2.1.

ID Participant
1 Boeing
2 -
3 NASA
4 ONERA
5 Georgia Tech/NASA
6 Politechnico Di Milano
7 Textron

ID Participant
8 CIRA
9 Oxford
10 AIT
11 NTNU
12 NRC
13 ANSYS-Bombardier
14 Embraer

ID Participant
15 Polytechnique Montreal
16 FAA
17 Honeywell
18 AeroTex GmbH
19 Siemens - Lockheed
20 Universität Braunschweig
21 ATS

Table 2.1 Participants of the 1st IPW [86].

The first notable observation when analyzing the different ice accretion models is that they
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all adopted the previously introduced quasi-steady assumption, which allows the ice accretion
process to be modeled through a sequential call of individual modules. Figure 2.1 illustrates
the detailed workflow of the multi-step approach, which was consistently followed by all
participants.

Initial Conditions Surface Mesh

ilayer = 0

Mesh Generation

Airflow Solver

Droplet Solver

Ice Accretion Boundary Layer

Geometry Update

ilayer = N?

ilayer+ = 1

Ice Prediction

Figure 2.1 Typical multi-step ice accretion simulations workflow.

The number of layers employed by each participant varied significantly. In two-dimensional
cases, 33% of the participants performed one-shot simulations, while in the three-dimensional
simulations, this percentage increased to 75%. These values highlight the challenges asso-
ciated with conducting multi-step simulations in three-dimensional cases. Moreover, one of
the conclusions drawn from the workshop was the notable sensitivity of the predicted ice
shapes to the number of layers, influencing, for instance, the total ice mass [126]. Further-
more, convergence studies of the predicted ice shape with increasing number of layers (see,
e.g., [69, 176]) were notably absent, primarily due to the difficulty and computational cost
associated with such studies.

An analysis of the different models used in each module of the workflow is presented below.
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2.1.1 Mesh Generation

The simulation begins with the volume mesh generation, built from the geometry under
study. Both structured and unstructured meshes can be used. To generate these meshes,
a wide range of techniques has been developed over the years. Structured grids are often
created by solving partial differential equations [167]. In contrast, unstructured meshes are
typically built using different algorithms [104], such as the Delaunay triangulation [137] or
the advancing-front method [132]. As an illustration, Fig. 2.2 shows both type of meshes
provided by the 1st IPW committee for Case 361, which involves a 30º swept NACA 0012
wing. Although structured solvers typically provide higher performance, the flexibility of
unstructured meshes in representing complex geometries has made them the preferred choice
for ice accretion simulations, particularly in three-dimensional cases, as evidenced in previous
IPWs [84, 86].

(a) Structured mesh (b) Unstructured mesh

Figure 2.2 Provided meshes by the 1st IPW for Case 361.

Despite the efforts made over the past decades to automate this process, the generation of
high-quality meshes from complex geometries remains far from fully automatic. Whether
structured or unstructured grids are desired, the algorithms typically require several input
parameters, often making human intervention necessary to verify the resulting mesh and, in
most cases, to modify parameters or adjust the mesh to improve the result.

When performing multi-step simulations, this task must be repeated after the computation
of each ice layer. As an alternative, mesh deformation techniques [172], commonly used
in moving boundary problems, can be employed [55]. These methods are generally less
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computationally expensive than regenerating the volume mesh at each step. However, despite
their development, they often fail to preserve mesh quality when applied to complex ice
shapes. For the 1st IPW, both mesh deformation [113] and mesh regeneration [141] have
been employed.

2.1.2 Aerodynamic Flow Model

Solving the aerodynamic flow serves three main purposes in the context of ice accretion
simulations: it governs the particle trajectories, provides the wall heat transfer field, and
defines the direction of water runback on the surface.

The first generation of ice accretion codes relied on 2D inviscid solvers, typically panel meth-
ods, to compute the pressure distribution around the airfoil. Most of these codes were devel-
oped before the 2000s. Examples include LEWICE [188], developed by NASA; ONICE [70],
developed by ONERA; and CANICE [153], developed at Polytechnique Montréal. These
were weakly coupled with integral boundary layer solvers to estimate the convective heat
transfer. This approach has been largely replaced by RANS models. Concerning the choice
made by the participants of the 1st IPW, most of the codes relies on RANS models. The most
commonly used turbulence models were either Spalart–Allmaras [165] or k–ω (Menter [105]
or variants thereof), and surface roughness effects were generally accounted for.

While RANS simulations improve the fidelity of the results, they require extremely fine grid
resolution near the wall, which significantly increases the computational cost. Nonetheless,
the steady growth in computational resources has made such simulations feasible. How-
ever, this approach also complicates mesh generation, particularly for 3D geometries, which
partially explains the low number of participants performing multi-step simulations in 3D
cases.

Inviscid solvers address both of these issues (computational cost and mesh generation) but
rely on integral boundary layer solvers. Although strong coupling between the inviscid and
boundary-layer equations can theoretically reproduce RANS-level accuracy [41, 85], the icing
community typically employs weak coupling schemes, as the region of interest is usually
confined to the vicinity of the leading edge.

Among the 1st IPW participants, IGLOO2D [142], and LEWICE are examples of codes that
rely on inviscid flow solvers. Some other participants also performed inviscid simulations,
primarily as a means of comparison with their RANS results. As part of the effort to evaluate
the impact of using different aerodynamic models, the IPW committee included the wall
pressure distribution over the clean geometry as one of the comparison metrics. The results
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showed a generally good agreement among participants.

In contrast, the wall heat transfer coefficient htc was one of the variables that exhibited the
most significant differences across participants. This is mainly because, even when RANS
simulations are conducted, the airflow solver typically does not provide this variable as an
output. As a result, it is often necessary to perform two separate RANS simulations or rely
on approximation methods to estimate it [141]. A more detailed analysis is presented in
Chapter 5.

2.1.3 Droplet Trajectory Model

Accurately predicting droplet impingement on exposed surfaces is a critical aspect of ice
accretion simulations, as it determines where and how much water is available to freeze. The
amount and size of droplets suspended in the airflow are typically characterized by two key
parameters: the Liquid Water Content (LWC) and the Median Volume Diameter (MVD).
The LWC quantifies the mass of liquid water per unit volume of air and depends strongly on
the atmospheric conditions. For instance, LWC values can range from as low as 0.001 g/m3

in cirrus clouds to over 3 g/m3 in cumulonimbus [151]. The MVD represents the diameter
that splits the droplet volume distribution in two equal halves and is used to characterize
the droplet size spectrum.

The typically low values of LWC found in icing conditions imply very small liquid volume
fractions in the air, commonly denoted by α. This parameter represents the ratio between
the volume of droplets and the total volume of air. In most atmospheric icing scenarios, α is
on the order of 3 · 10−6 or lower. This allows the use of a one-way coupling assumption [59]:
the droplets, representing the dispersed phase, are transported by the airflow, but they do
not influence the flow field nor interact with each other. This assumption greatly simplifies
the droplet trajectory computation and the entire ice accretion simulation.

Additionally, the motion of the water droplets is assumed to be only affected by aerodynamic
forces and gravity [192]. Under typical icing conditions, the aerodynamic force is dominant,
leading some models to neglect gravitational effects altogether. This aerodynamic force
is commonly expressed through the drag coefficient, CD, of a droplet, which is generally
assumed to be spherical. Figure 2.3 illustrates the evolution of CD as a function of the
particle (droplet) Reynolds number Rep, showing several models proposed in the literature
as well as experimental data. For instance, the Schiller-Naumann model [121] is used in both
the two- [176] and three-dimensional [141] solvers developed at ONERA.

The main output of droplet trajectory simulations is the collection efficiency, denoted by β.
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Figure 2.3 Evolution of the flow regime and the drag coefficient of a rigid sphere particle, CD
as a function of the Reynolds number of the particle Rep. Image from [97].

This dimensionless quantity represents the ratio between the water droplet mass flux on the
surface to that of the freestream. As an illustrative example, Fig. 2.4 shows the collection
efficiency distribution on a swept wing.

From a numerical perspective, two main approaches are employed to compute droplet trajec-
tories: the Lagrangian and the Eulerian approaches (see, e.g., [161] for a thorough review).

In the Lagrangian method, droplets are treated as individual entities, and their trajectories
are computed based on Newton’s second law. This approach is particularly efficient when
the airflow is solved using potential methods, as no volume mesh is required. However, in
other cases, the computational cost is typically one of the main drawbacks of the method,
primarily for two reasons. First, since droplet positions rarely coincide with the flow grid,
costly numerical procedures are generally required to determine the exact location of each
droplet within the mesh and to perform the necessary interpolations. Second, parallelizing
the computation is generally challenging [160]. Additionally, the seeding region must be
sufficiently large, and the seeding density high enough, to ensure adequate resolution and
statistical convergence over the entire impingement area, which often involves a large number
of droplets.

In the Eulerian approach, the dispersed phase is treated as a continuous field. Under this
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Figure 2.4 Collection efficiency distribution on a 30º swept wing. Data from a computation
with IGLOO3D [142].

assumption, their transport is typically described by solving a hyperbolic partial differential
equation for the volume fraction and droplet velocity, in a manner similar to how the Euler
equations are computed 1. A major advantage of this method is its natural compatibility
with the volume mesh used by the airflow solver, which simplifies implementation and enables
straightforward parallelization. Nevertheless, certain physical phenomena related to SLD,
such as droplet rebound, splashing, and breakup, are more challenging to represent within
an Eulerian framework compared to a Lagrangian one [71].

A notable shift is observed when comparing the droplet approaches reported in the 1st and
2nd IPW datasets. The 1st IPW showed an even split between Eulerian and Lagrangian
approaches (13 each), reflecting no clear preference within the community at the time. In
contrast, the 2nd IPW shows a strong predominance of Eulerian formulations, with 13 partic-
ipants adopting this approach and only 4 using Lagrangian methods. This pronounced shift
may be partly explained by the increased focus on three-dimensional cases in the 2nd IPW,
where the computational cost of Lagrangian tracking can become significantly higher.

1The main differences between the droplet transport equations and the Euler equations lie in two aspects:
the absence of a pressure term, and the presence of a source term in the momentum equation. As a result, the
conservation equations are not strictly hyperbolic, and a mathematical relaxation procedure is often required
[161].
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2.1.4 Ice Accretion Model

The Messinger model [106] is one of the most widely used approaches in ice accretion codes
(see, e.g., [88] for an almost comprehensive review of thermodynamics models for 2D ice
accretion simulation). It consists of mass and energy balances at the icing surface, accounting
for droplet impingement, liquid-water runback, phase changes (evaporation, sublimation, and
solidification), and convective heat exchange with the surrounding airflow, as illustrated in
Fig. 2.5.

Air

Water

Ice

Wall

mimp mes

macc

mrb,in mrb,out

(a) Mass balance

Air

Water

Ice

Wall

Qimp

Qrb,out

Qes

Qrb,in

Qc

(b) Energy balance

Figure 2.5 Mass and energy balance in Messinger approach.

The model typically assumes an adiabatic wall, which is generally valid as long as heated sur-
faces, such as those commonly used in IPS, are not considered. In addition, under Appendix
C icing conditions, where neither SLDs nor ice crystals are present, the entire impinging
droplet mass is treated as deposited mass. In a general presentation of the model, no water
accumulation is considered.

The mass balance considers incoming water through both droplet impingement ṁimp and
incoming runback ṁrb,in. It is balanced by outgoing runback ṁrb,out, mass loss due to evapo-
ration or sublimation ṁes, and the accumulation of ice through solidification ṁacc. All mass
rates are expressed in kg/(m2s):

ṁimp + ṁrb,in = ṁrb,out + ṁes + ṁacc (2.1)

Note that, in the original Messinger model, any unfrozen water inside a face must be trans-
ferred to the next face as runback water, meaning that liquid water cannot accumulate inside
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a face.

The energy balance accounts for the incoming runback flow Q̇rb,in, the outgoing runback
Q̇rb,out, the cooling effect due to droplet impingement Q̇imp, latent heat losses due to evapora-
tion or sublimation Q̇es, and convective heat exchange with the air flow Q̇c. The combination
of these terms determines the variation of the total energy of the water system (ice and liquid
water) ∆U :

∆U = Q̇imp + Q̇rb,in − Q̇rb,out − Q̇evs + Q̇c (2.2)

Once the convective heat transfer and droplet impingement rates are known (obtained from
airflow and droplet trajectory simulations), the system of Eqs. 2.1 and 2.2 contains three
unknowns: the wall temperature Tw, the surface ice accretion rate ṁacc, and the outgoing
water runback flux ṁrb,out. To close the system, an additional thermodynamic relation must
be introduced, which depends on the state of the surface:

• Rime-ice regime: All incoming water freezes upon impact, resulting in no outgoing
runback, i.e., ṁrb,out = 0.

• Glaze-ice regime: A part of the incoming water freezes, while the rest forms a liquid film
that runs back along the surface. In this case, ṁrb,out > 0, and the wall temperature
reaches the melting point, Tw = Tm.

• Liquid-surface regime: No ice forms on the surface, meaning that ṁacc = 0, and all
incoming water remains in liquid form.

• Dry surface: No water is present on the surface, so no ice accretion occurs, and conse-
quently, ṁacc = 0.

The model was initially presented in two-dimensional geometries with a single stagnation
point, making the direction of the runback straightforward: from the stagnation point to
the trailing edge. However, in complex two-dimensional geometries with multiple stagnation
points, or in three-dimensional cases, the direction of the runback must be defined. In
these cases, a commonly used option is the direction of skin friction. Additionally, in three-
dimensional surfaces, the alignment between the mesh and the runback direction is generally
lost; therefore, there is no longer a direct relation between the variation of the structured
wall index i and the direction of the runback flow. As a result, an iterative method is often
employed to obtain a converged solution of the thermodynamic balance, which is referred to
as the iterative Messinger model [195].
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Several alternatives to the original Messinger model have been proposed to improve the
modeling of the freezing process. Myers et al. [117] extended the Messinger model by
incorporating heat conduction through the ice layer, accounting for the temperature difference
between the airfoil surface and the ice surface.

Another significant development is the Shallow Water Icing Model (SWIM) presented by
Bourgault et al. [26], which is based on lubrication theory. This model treats the freezing
process in an unsteady manner, extending the range of applicable conditions at the expense of
significantly higher computational cost compared to approaches based on Messinger’s energy
balance.

Regarding the models used by the participants of the 1st IPW, the majority employed a
Messinger-based model, while only one participant used the SWIM model.

2.1.5 Ice Density Model

In numerical simulations, the density model directly plays a key role, as it affects the predicted
ice thickness hice, and consequently, the resulting ice shape:

hice(∆t) = ṁacc∆t
ρice

(2.3)

where ∆t is the ice accretion time step and ρice is the ice density, which can vary significantly
depending on the ice accretion conditions [180].

For unswept wings, typically modeled as two-dimensional, a value of 917 kg/m3 is commonly
used under glaze icing conditions. Under rime icing conditions, however, the ice tends to be
more porous, and lower values are often employed. For instance, IGLOO3D [141] uses the
density model of Makkonen and Stallabras [102], and constrains the density values between
750 and 917 kg/m3. For swept wings, the bulk density is affected not only by the porosity
of the ice but also by the scallop structure, whose voids are challenging to capture. Conse-
quently, lower values are frequently used [143]. For example, in the 2nd IPW, typical values
range from 350 to 450 kg/m3 [84, 181].

Regarding the 1st IPW results, one of the conclusions drawn is the variability in the ice density
values used [86]. For instance, Fig. 2.6 shows the ice density values adopted by participants
for cases 361 and 362, which examine ice accretion on a 30º swept wing under rime and glaze
icing conditions, respectively. The figure illustrates the wide range of densities selected by
different models, reflecting the diversity in assumptions related to ice microstructure and
porosity.
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Figure 2.6 Cases 361 and 362 from the 1st IPW [86]. Comparison between ice density values
on a 30º swept wing.

2.1.6 Surface Deformation Model

The final step of the ice accretion loop consists in updating the geometry based on the
computed ice thickness. The most widely adopted approach so far has been to apply a
Lagrangian displacement of each node of the discretized surface along the normal direction
n⃗, i.e.,

x⃗new = x⃗old + hicen⃗ (2.4)

where x⃗ denotes the position of a surface node.

A limitation of this method may arise in multi-step simulations, particularly when complex
ice shapes are formed: it may lead to self-intersections (commonly referred to as overlaps),
which may significantly affect the robustness of the simulation [27]. For instance, Fig. 2.7
shows the predicted ice shape for a two-dimensional rime case obtained from one- and five-
step simulations. In the case of a one-step simulation, the Lagrangian displacement updates
the surface nodes effectively. However, in a five-step simulation, the final iteration cannot
be completed, as the overlaps generated during the fourth step prevent the generation of the
next volume mesh.

To improve the robustness of ice accretion simulations, several research groups have explored
alternatives to the Lagrangian displacement method [124]. One of the most widely adopted
strategies consists in solving the level-set equation. Originally introduced by Osher and
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Figure 2.7 Example of self-intersection in a 2D multi-step ice simulation. Image from [87].

Sethian [125], the level-set equation is a simplified form of the Hamilton-Jacobi equation
used to track evolving implicit interfaces. It provides an Eulerian description of the evolution
of the signed distance, represented as a scalar variable ϕ, which is advected according to a
propagation velocity field V⃗ . The level-set equation reads:

∂ϕ

∂t
+ V⃗ · ∇⃗ϕ = 0 (2.5)

and is typically solved using upwind schemes without the need for artificial dissipation [27].

For multi-step ice accretion simulations, Eq. 2.5 is solved until the defined ice accretion
time step ∆t is reached. At this point, the updated geometry is implicitly defined by the
level-set field. Specifically, the new interface corresponds to the iso-surface where ϕ = 0.
To proceed with subsequent iterations, a surface mesh must then be generated. Extract-
ing this iso-surface is a nontrivial task, particularly when a high-quality surface mesh is
required. Common numerical techniques used for this purpose include the marching cubes
algorithm [96] and marching tetrahedra [175]. If needed, a B-spline geometry representation
can be employed to improve the surface mesh [28].

Alternatively, Radenac et al.[141] propose a hybrid approach, where a Lagrangian displace-
ment of the surface mesh is performed based on the level-set field. In this method, the ice
growth direction n⃗ϕ is defined in the volume mesh as:

n⃗ϕ = ∇⃗ϕ
||∇⃗ϕ||

. (2.6)
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When NL sub-iterations are considered, the displacement of each node at iteration k is indeed
given by the following equation:

∆x⃗k = hice

NL
n⃗ϕ(x⃗k) (2.7)

where ∆x⃗k is the displacement of each node, and n⃗ϕ(x⃗k) is the interpolated normal vector
at the current position x⃗k.

Level-set methods have gained attention in recent years for ice accretion simulations, lead-
ing in the development of various numerical approaches [7, 28, 56, 57, 90, 141]. However,
this interest has not yet been reflected in the choices of participants in the first two IPW,
where alternatives to Lagrangian displacement remain rare and have so far been limited to
contributions from Politecnico di Milano [54, 113].

Another approach to updating the iced geometry relies on an advancing front method cou-
pled with a stochastic model, also known as a morphogenetic or nondeterministic model.
Originally proposed by Szilder and Lozowski [169], this morphogenetic approach simulates
ice accretion by incorporating stochasticity and accumulating ice in discrete building blocks,
analogous to pixels, on a Cartesian grid. Stochasticity is introduced in two key aspects of the
icing simulation process: (1) droplet impingement and (2) the random motion and freezing
of fluid elements on the surface [168]. Unlike traditional methods, the ice density is not
prescribed as an input but emerges as an output of the simulation. A comprehensive analysis
of the morphogenetic model can be found in the PhD thesis of Bourgault-Côté [27]. Mor-
phogenetic simulations in previous IPWs have so far been limited to work led by Szilder’s
team at the National Research Council Canada [67] and research efforts at Polytechnique
Montréal [24].

2.2 Immersed Boundary Methods

The Immersed Boundary Methods (IBMs) refers to any approach that solves the governing
equations on a computational mesh that does not conform to the boundaries describing the
geometry. The boundary condition is then recovered implicitly by locally forcing the solution
in the vicinity of the obstacle. Immersed Boundary Methods thus have the advantage of
reducing the cost of the mesh generation step, particularly to deal with complex geometries in
CFD. Their implementation on automatically generated adaptive Cartesian grids eliminates
the bottleneck of the mesh generation step. They can also be applied to a body-conforming
mesh that represents a simplified geometry, in order to take into account for local details.

The origins of IBMs trace back to the pioneering work of Charles Peskin in the early
1970s [133]. Motivated by the need to simulate blood flow through the human heart, Pe-



25

skin introduced a method to represent flexible, moving boundaries within a fixed Cartesian
grid by adding force terms in the incompressible Navier–Stokes equations to account for the
presence of boundaries. Since then, the popularity of IBMs in Computational Fluid Dynam-
ics (CFD) has increased significantly, especially over the last two decades. To illustrate this
trend, Fig. 2.8 shows the number of annual publications that include the term “immersed
boundary” or “immersed boundaries” in the title, abstract, or keywords, based on a search
conducted using a similar methodology to that of [182]. The data, updated to include re-
cent years, confirms the sustained growth in interest in IBMs. It is worth noting that this
analysis underestimates the actual number of studies involving IBMs, as many works adopt
alternative terminology (such as embedded boundaries, immersed interfaces, immersed body,
penalty method or ghost-cell method among others), or apply IBMs-related concepts without
explicitly referring to them.
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Figure 2.8 Number of publications per year containing the terms “immersed boundary” or
“immersed boundaries” in the title, abstract or keywords. Data from Scopus (accessed May
16, 2025).

Immersed Boundary Methods have been primarily employed in the simulation of fluid dy-
namics. Applications span a wide range of flow regimes, from inviscid flows [31, 47] to
turbulent flows [73, 170]. They have also been used in the simulation of multiphase flows
[127, 184]. In addition, IBMs have been extensively applied to fluid–structure interaction
problems [72, 174, 191]. Their use has also been extended to other areas, including solid
mechanics [144] and electromechanical systems [10], among others.
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2.2.1 Immersed Boundary Meshes

The main advantage of IBMs is that they allow the use of general meshes that are independent
of the geometry under study. For instance, Fig. 2.9 compares a traditional BF mesh with
an IB mesh for the simulation of the flow around a two-dimensional cylinder. While IBMs
are compatible with arbitrary mesh types, Cartesian meshes are particularly advantageous,
as they enable the application of high-performance structured solvers, which significantly
improves the overall efficiency of the simulation. The key benefit of using IBMs is clear:
the same mesh can be employed regardless of whether the target geometry is a cylinder, an
airfoil, or any other complex shape.

(a) Body-Fitted (b) Immersed Boundary

Figure 2.9 Different type of meshes to simulate flow around a 2D cylinder.

2.2.1.1 Mesh Adaptation on Cartesian Grids

While Cartesian meshes offer advantages such as simplicity, ease of generation, and high-
performance numerical methods, they present a significant challenge when it comes to per-
forming local refinement in a targeted zone. In contrast, Body-Fitted (BF) structured meshes
naturally incorporate information about the wall geometry, explicitly defining both the nor-
mal and tangential directions relative to the surface. This allows for anisotropic mesh refine-
ment, particularly in the direction normal to the wall, where gradients of key flow variables
tend to be the largest. As a result, very fine cells can be concentrated near the surface,
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while coarser cells can be used farther away, where the influence of the solid boundary is
minimal and flow gradients are expected to be small. This limitation of using Cartesian
meshes without an adaptation technique becomes even more critical in high Reynolds num-
ber flows, where resolving the boundary layer accurately requires extremely fine resolution in
the direction normal to the surface, typically requiring the use of wall models [76, 116, 150].

The challenge of achieving local refinement in Cartesian grids has been the focus of numerous
studies. Among these, two techniques stand out:

• Adaptive Mesh Refinement (AMR): Originally proposed by Berger and Oliger [20],
AMR dynamically increases the mesh resolution in regions of interest based on a pre-
defined criterion, often represented by a sensor field. In its basic formulation, each
tagged cell in the Cartesian mesh is subdivided into N isotropic cells, with N = 4
in two dimensions and N = 8 in three dimensions. To ensure a smooth transition
between refinement levels, adjacent cells may also be subdivided in accordance with
prescribed mesh regularity constraints. The most basic sensor is simply the location of
the fluid–solid interface (see Fig. 2.10a). The resulting mesh is typically unstructured
and the number of neighbors per cell is no longer constant, which also complicates data
management and increases the complexity of numerical algorithms. A key drawback of
AMR is that it typically requires significant modifications to the solver, as the struc-
tured nature of the Cartesian mesh is lost. However, AMR benefits for a high level
of flexibility. This is a widely adopted refinement strategy in the context of Immersed
Boundary Methods [34, 50].

• Octree-Based Mesh Adaptation: This approach was initially introduced by MacNeice
et al. in PARAMESH [98]. Starting from one root cell representing the whole compu-
tational domain, an octree is built by recursively dividing the root cell into N children
cells until the desired resolution is reached. Again, N = 4 and N = 8 for two- and
three-dimensional meshes, respectively. Examples of the application of octree-based re-
finement technique to IBMs are presented in [118, 139]. An adaptation of this method
has been built inside Cassiopee [138], accounting for curved bodies. This approach uses
the overset grid methods [166], also referred to as Chimera methods [18] to build an
octree structure based on overlapping uniform Cartesian meshes. As an illustration,
Fig. 2.10b shows the resulting octree-based mesh using Cassiopee. As the resulting
mesh is structured and isotropic, the solver can benefits from the high-performance
achieved when performing CFD computation on uniform Cartesian blocks; however,
the solver must be capable of handling overset grids.
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(a) Adaptive Mesh Refinement (b) Octree

Figure 2.10 Representative mesh adaptation strategies commonly applied in IB simulations.

Recent internal studies conducted at ONERA have compared the performance of both mesh
refinement techniques in practical applications for the same mesh resolution. In particular,
simulations using AMR within the unstructured solver CODA2 were compared to those using
octree-based refinement with the structured solver FAST. In both cases, mesh adaptation was
performed using Cassiopee. The findings indicate that, although AMR typically results in a
significantly lower number of cells (often less than half of those required by the octree), the
performance of the overall simulation is comparable to the octree-based approach. This is
primarily due to the high computational efficiency achievable when solving fluid dynamics
problems on uniform Cartesian blocks. As a result, the increased number of cells required
by octree-based refinement is often offset by faster solver execution, leading to comparable
overall performance. These results highlight that the choice between the two strategies is not
straightforward.

2.2.1.2 Local Immersed Boundary on Body-Conforming Meshes

For some applications, it is more advantageous to apply the IBMs locally, i.e., only to a por-
tion of the geometry, an approach sometimes referred to as hybrid IBM in the literature [196].
Typical examples involve control devices. For instance, Mochel et al.[110] employ an IBM
exclusively for the control device of a simplified space launcher afterbody, thereby avoiding
the difficulties associated with generating structured body-fitted meshes around the control

2CODA is an unstructured CFD software jointly developed by ONERA, DLR and Airbus.
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device. Similarly, Zhu et al.[196] apply an IBM to the moving trailing-edge flap of a NACA
0012 airfoil to study its unsteady behavior on a fixed grid. As an illustration, Fig. 2.11
presents a zoomed view of the structured mesh around the trailing edge.

Figure 2.11 Mesh configuration used in the hybrid IBM approach. The volume mesh corre-
sponds to a BF mesh from the clean airfoil, while IBMs are restricted to the trailing-edge
flap. Image from [196].

2.2.2 Immersed Boundary Types

There is no universally accepted classification of IBMs in the literature [109, 164], as various
authors propose different categorizations depending on the context, the governing equations,
or the specific application. Following the classification proposed by Lavoie [87], IBMs can
be grouped into cut-cell, continuous forcing, and discrete forcing methods. In the following,
each of these categories is briefly described.

2.2.2.1 Cut-Cell Method

The first category of IBMs features a single approach: the cut-cell method. Originally
introduced by Clarke et al. [43] in 1986 for the simulation of two-dimensional inviscid flows,
it has since been extended to a broad range of aerodynamic applications involving rigid bodies,
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viscous [114] and turbulent [107] flows, as well as multiphase flows with moving boundaries
[190]. In this method, cells cut by the immersed boundary are truncated so that they conform
to the body shape of the boundary surface, as illustrated in Fig. 2.12, thereby imposing the
boundary conditions as in a BF approach. Because this method involves exclusively direct
modification of the computational mesh, some authors do not classify it as an IBM.

(a) Tagging of solid cells.
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(b) Resulting cut-cell mesh.

Figure 2.12 Cut-cell Method. Domain identification (left) and cut mesh (right). Solid cells
are shown in gray, and fluid cells in white.

The method therefore focuses on a pre-processing stage. Typically applied to Cartesian
meshes, it begins by identifying the cells intersected by the IB, followed by the trimming of
the mesh.

The main advantage of this approach lies in its strict global and local conservation of mass,
momentum, and energy, as well as in its good accuracy near sharp-interface boundaries, which
are, in general, common issues in IBMs. However, two main challenges arise, which become
more severe in 3D simulations. The first issue is related to the morphology of the cut cells.
For instance, in the case shown in Fig. 2.12, the intersection of the IB with the Cartesian
grid results in various polygonal shapes near the geometry, such as triangles, trapezoids, or
pentagons. Consequently, the solver must be able to handle general polyhedral elements,
typically losing the structured nature of the solver. On the other hand, cut cells may be
arbitrarily small, which has several implications. Since the Courant number is inversely
proportional to the cell dimension, very small cells may require significantly reduced time
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steps to preserve numerical stability when explicit time integration schemes are used. In
addition, the strong variation in cell sizes can lead to stiffness in the resulting linear systems.
To avoid this problem, numerical mesh techniques can be employed such as cell merging
[75, 178] or cell linking [81].

2.2.2.2 Continuous Forcing Methods

The second category of IBMs is the class of continuous forcing methods. In this approach,
a distributed force term is introduced directly into the continuous form of the equations to
represent the interaction between the fluid and the immersed boundary [109].

To illustrate this, the mass and momentum equation of the incompressible Navier-Stokes
equations are considered:

∇ · u⃗ = 0 (2.8a)
∂u⃗

∂t
+ u⃗ · ∇u⃗ = −∇p

ρ
+ ν∇2u⃗+ f⃗ (2.8b)

where u⃗ is the velocity field, ρ the fluid density, p the pressure, ν the kinematic viscosity and
f⃗ represents the additional forcing term introduced to model the presence of the immersed
boundary. Several expressions for f⃗ are possible, depending on the specific IBM employed.

In the following, a detailed analysis of two continuous forcing methods is presented. The first
corresponds to Peskin’s original immersed boundary method, whose applicability is essentially
restricted to elastic boundaries, whereas the second is the penalization method, intended for
rigid boundaries.

Peskin’s Immersed Boundary Method

The original IBM of Peskin [133] was designed to model the elastic boundary of the heart. In
this method, the IB is represented in a Lagrangian manner, by a set of nodes. Each node of the
boundary, X⃗k is subjected to external (hydrodynamic) and internal (boundary deformation)
loads, represented by a total force F⃗k. The influence of each node to the surrounding cells of
the volume mesh x⃗ij is made through a smooth distribution function d(|x⃗ij − X⃗k|), as shown
in Fig. 2.13. In this manner, the force applied to the IB F⃗k is spread to the surrounding fluid
cells via f⃗ :

f⃗(x⃗ij, t) =
∑
k

F⃗k(t)d(|x⃗ij − X⃗k|) (2.9)

The choice of the distribution function d is a key aspect and it varies between different
methods [133, 154].
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Fk

k

Figure 2.13 Transfer of forcing F⃗k(t) from the IB node k to surrounding fluid cells. Shaded
region represent the extent of the force distribution.

Although there exist adaptations of this method for rigid boundaries, its application to flows
involving rigid bodies presents significant challenges. This is primarily because the consti-
tutive laws formulated for elastic boundaries are generally ill-posed in the rigid limit [109],
generally leading to stability issues.

Penalization Immersed Boundary Method

For flows involving rigid boundaries, the volume penalization method constitutes a commonly
adopted alternative continuous forcing approach. It was initially introduced by Arquis and
Caltagirone [12] to simulate flow through a porous medium using Darcy’s law. Later, it was
proven that the method can be applied to the Navier-Stokes equations with no-slip boundary
conditions [11], modeling the solid interface as a porous medium with very low permeability.

Here, a source term, typically referred to as the penalization term, is introduced and is
activated only in the solid domain, therefore, requiring a mask function χ to distinguish
between the fluid Ωf and the solid Ωs region:

χ(x⃗, t) =

1, if x⃗ ∈ Ωs,

0, otherwise.
(2.10)

In the case of the incompressible Navier–Stokes equations (Eq. 2.8), the penalization term
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takes the following form:
f⃗ = χ

η
(u⃗bc − u⃗) (2.11)

where u⃗bc is the boundary condition for velocity in the solid interface and η is the penalization
parameter, which has units of time. By defining η small enough, the rest of the terms are
negligible in front of the penalization terms, and the boundary conditions is recovered inside
the solid:

u⃗bc − u⃗ = 0 (2.12)

Note that the physical interpretation of volume penalization method is that the solid is
assumed to be a porous medium with sufficiently small permeability in the solid. In this
way, reducing the value of the penalization parameter effectively decreases the permeability
inside the solid region. This leads to a stronger enforcement of the boundary conditions, as
the fluid velocity is more strongly damped within the solid. As a result, the accuracy of the
overall solution is improved. However, small η leads to very stiff source terms, compromising
the stability of the simulation. In other words, the values of η are desired to be as small as
possible without compromising the stability of the solution.

One of the key advantages of the penalization method lies in its straightforward implementa-
tion, as it typically requires only the definition of the mask function to distinguish between
fluid and solid cells. Another important benefit is that the penalization method has a well-
established theoretical foundation. Rigorous mathematical analyses have demonstrated the
convergence of the method as the penalization parameter tends to zero. In particular, it is
possible to derive error estimates that quantify the influence of the penalization parameter
on the accuracy of the solution [155]. In addition, the method is compatible with a wide
range of numerical discretizations and can be directly integrated into existing solvers with
minimal modifications. Its versatility, combined with low preprocessing requirements, makes
it a robust and efficient choice for simulating flows involving rigid or moving solid boundaries.

Despite their advantages, penalization IBMs present several limitations. First, sharp in-
terfaces are smeared over a region comparable to the local mesh width, which reduces the
accuracy of the solution near the boundary, i.e., boundary conditions are applied on an
approximation of the IB. As a result, these methods are typically limited to first-order ac-
curacy in space. However, high-order methods are becoming increasingly widespread. For
instance, Kou et al. [82] proposed a high-order volume penalization approach within a Finite
Element framework for solving compressible viscous flows. In their method, the distinction
between solid and fluid regions is made at each solution point, corresponding to the Gaussian
quadrature points within each element. This allows the penalization term to be applied in
a spatially localized and continuous manner across elements, enabling a more accurate and



34

flexible representation of the IB.

Another drawback of this type of IBM is the reliance on adjustable parameters. In the pre-
sented case, only a single penalization parameter, η, is required. However, more complex
boundary conditions generally involve additional parameters. For instance, the volume pe-
nalization approach of Brown-Dymkoski et al. [30], developed for compressible viscous flows,
requires three penalization parameters.

2.2.2.3 Discrete Forcing Method

One of the earliest formulations of the direct discrete forcing method within the IB frame-
work can be attributed to the work of Mohd-Yusof [111], who in 1997 introduced a simple yet
effective strategy to impose boundary conditions on Cartesian grids. Unlike Peskin’s original
IBM [133], the approach of Mohd-Yusof explicitly modified the discretized momentum equa-
tions near the solid interface to enforce the desired velocity field. This direct imposition of
the boundary condition laid the foundation for a family of sharp-interface IBMs that would
later be developed and refined for a wide range of applications.

Originally developed in the context of spectral methods, the direct discrete forcing approach
was soon adapted to other numerical frameworks. In particular, it was rapidly extended to
Finite Difference [64] and later to Finite Volume [80] methods.

In this approach, the discrete forcing term is applied to the time-discrete equations. For the
Navier–Stokes equations, and using a forward Euler time-integration scheme, the momentum
equation at an immersed boundary point can be written as [64]:

u⃗n+1 − u⃗n

∆t = RHS n+1/2 + f⃗ n+1/2 (2.13)

where ∆t is the time step, RHS represents the discretized form of the convective, viscous
and pressure gradient terms, and the superscript n denotes the current time level. The
forced term f⃗ n+1/2 is evaluated in an intermediate time step to impose the desired boundary
condition u⃗n+1 = u⃗bc on the immersed boundary interface ΩIB:

f⃗ n+1/2 =


1

∆t(u⃗bc − u⃗n) −RHS n+1/2, on ΩIB,

0, elsewhere.
(2.14)

Although this method is presented by introducing a forcing term f⃗ , in practice, it is not
explicitly computed. Instead, the velocity at the cell is directly overwritten with the desired
boundary value. Majumdar et al. [100] interpreted this approach as a generalization of the
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ghost-cell approach, traditionally used in body-fitted simulations to fulfill the numerical sten-
cil of the cells around the wall. However, it was Tseng and Ferziger [177] who first coined
the term Ghost-Cell Immersed Boundary Method (GCIBM) for this category of IBMs. Fig-
ure 2.14 illustrates this method using a two-dimensional cylinder immersed in a Cartesian
mesh. The first fluid cells around the geometry (gray cells) require fulfillment of their com-
putational stencil. This is achieved by enforcing values in the ghost cells (red cells), thereby
accounting for the presence of the IB.

Figure 2.14 Illustration of the GCIBM applied to a two-dimensional cylinder immersed in a
Cartesian grid.

Up to this point, the value assigned to ghost cells has typically been taken directly as the
boundary condition u⃗bc. Although this represents the simplest approach to enforcing bound-
ary conditions, it introduces significant numerical errors and consequently limits the solution
accuracy to first order in the vicinity of the IB. Furthermore, the staircase representation of
the IB on Cartesian grids often induces spurious oscillations near the solid interface.

A common strategy to achieve a smoother solution consists in evaluating the volume fraction
ψs of each cell occupied by the solid relative to the total cell volume ψ (see Fig. 2.15a).
The ratio ψs/ψ is then employed to scale the forcing term, effectively smoothing the imposed
boundary conditions.

An alternative and widely adopted approach in GCIBM involves determining the ghost-cell
values by interpolation from neighboring fluid cells. Various interpolation techniques have
been proposed in the literature [64, 73]. The most straightforward consists of a linear one-
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dimensional interpolation between the ghost cell and a nearby fluid cell, with the boundary
condition u⃗bc known at the intersection point between the immersed boundary and the line
connecting the two cells (see Fig. 2.15b). More sophisticated interpolations incorporate
multiple fluid cells to enhance accuracy (see Fig. 2.15c) [73]. Another frequently adopted
method employs the symmetric point of the ghost cell with respect to the immersed boundary,
often referred to as the image point or target point (see Fig. 2.15d). Since this point generally
does not coincide with a computational grid node, additional interpolation steps are required
to obtain its value [48, 49, 51].

(a) Volume fraction weighting interpo-
lation

(b) Linear one-dimensional interpola-
tion

(c) Linear multi-dimensional interpo-
lation

(d) Image point and multi-dimensional
interpolation

Figure 2.15 Sketch of the interpolation procedures in GCIBM.
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Up to this point, only one row of ghost cells has been considered to complete the computa-
tional stencil of fluid cells adjacent to the IB. However, the required number of ghost-cell rows
depends on several factors, such as the numerical scheme employed and the specific boundary
conditions imposed. For instance, Dadone et al. [49] use a five-cell stencil in each spatial
direction to solve the Euler equations, which requires the addition of two rows of ghost cells
within the solid domain. In simulations involving more complex flows or numerical methods,
the number of ghost-cell rows may increase [45].

The advantages of these methods lie in their ability to accurately represent the geometry, and
when appropriate interpolation algorithms are employed, they do not reduce the numerical
scheme’s order of accuracy. Furthermore, the solver itself requires minimal modification, as
only the manner of imposing boundary conditions is altered by adding an interpolation step.
However, these methods also present several drawbacks. To begin with, the preprocessing step
necessary to identify ghost cells and the associated interpolation data can be non-negligible in
terms of computational cost. Additionally, in certain cases, such as highly complex geometries
or regions with sharp features, it can be challenging to position the required number of ghost
cells [49, 118].

Despite its widespread use, the GCIBM is not the only type of discrete forcing method.
For instance, Capizzano [33, 34] developed a face-based discrete forcing method. In this
approach, instead of enforcing values in certain cells of the grid, the fluxes are directly
imposed on the faces of fluid cells that intersect the IB. The fluxes at these so-called IB-
faces are reconstructed using a target (or image) point, in a manner similar to ghost-cell
methods (see Fig. 2.16). One major advantage of enforcing the solution at the IB-faces
is that it circumvents the limitations associated with insufficient space for inserting ghost
cells near complex immersed boundaries. However, unlike ghost-cell methods, where the flux
computation for fluid cells remains unchanged, face-based approaches require a dedicated
treatment of fluxes at the IB-faces.

2.3 Current Use of Immersed Boundary Methods for Ice Accretion

In this section, we present a concise review of the different IBMs that have been used specifi-
cally for ice accretion simulations. Table 2.2 summarizes the characteristics of the IBMs used
by all research centers identified in this review as having applied such methods to ice accretion
simulations. Other icing-related applications, such as the assessment of aerodynamic perfor-
mance degradation due to ice [156, 187] or the prediction of ice shedding trajectories [16],
are not considered here, as they fall outside the scope of this review.
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Figure 2.16 Illustration of the face-based discrete IBM. Image from [34].

Institution CIRA ONERA U. Strasbourg Poly. Montreal
Code SIMBA IGLOO2D NSMB-ICE CHAMPS
Airflow RANS/RANS-LES Euler Laminar NS Laminar NS
Airflow IBM Discrete Continuous Continuous Discrete
Droplets Eulerian Eulerian Eulerian Eulerian
Droplets IBM Discrete Continuous Discrete Continuous
Domain 2D/3D 2D 2D 2D

Table 2.2 Comparison of IBMs employed by research centers in ice accretion simulations.

2.3.1 CIRA: SIMBA

The Italian Aerospace Research Center (Centro Italiano Ricerche Aerospaziali – CIRA) is one
of the earliest institutions to have applied IBMs to ice accretion simulations [38]. CIRA devel-
oped the in-house numerical tool system SIMBA (Simulation system based on an IMmersed
Boundary Approach), to perform two- and three-dimensional aerodynamic-based simulations.
SIMBA incorporates several specialized modules to perform ice accretion computations [37]:

• Mesh generation module:
The volume meshes are generated from a coarse Cartesian grid around the wing. Then,
a non-isotropic AMR procedure is applied to achieve the desired mesh resolution near
the wall [35].
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• Airflow module:
A Finite Volume Method (FVM) is used to solve inviscid/viscous flows [33, 34]. For
IB ice accretion simulations, RANS equations are typically solved applying the κ − ω

TNT turbulence model, and IB conditions are imposed using proper turbulent wall
models [34].

• Droplet trajectory module:
The Eulerian droplet trajectory equations are solved to obtain the water impingement
on exposed surfaces [38].

• Ice accretion module:
The Messinger mass and energy balance is used to obtain the ice thickness [52].

• Geometry update module:
The geometry update module performs a Lagrangian displacement of the surface [52].

The SIMBA code developed by CIRA represents one of the most advanced and comprehensive
IBM-based frameworks for ice accretion simulations currently available. One of its major
strengths lies in its ability to perform fully three-dimensional IB simulations, which is still
uncommon among other research institutions. SIMBA is also the only code in this review
that presented results using IBMs in both the first and second Ice Prediction Workshops
[36, 37, 84, 86]. Another major advantage is the high level of integration within SIMBA: all
stages of the simulation seem to be handled in a single environment specifically designed for
IBMs. This avoids the need for external preprocessing or coupling tools, enabling a seamless
and consistent workflow.

2.3.2 ONERA: IGLOO2D

As a result of the doctoral work of P. Lavoie [87], the IGLOO2D code was extended to
incorporate an IB methodology for two-dimensional ice accretion simulations. In particular,
two penalization IBMs were developed to perform the aerodynamic and droplet trajectory
simulations. These approaches rely on two distinct mask functions. The first one, denoted
by χ, is the standard mask function used to distinguish between solid (χ = 1) and fluid
(χ = 0) cells. The second, χd, is employed exclusively by the droplet trajectory solver to
differentiate between the shadow zone (outgoing characteristics, χd = 1) and the impingement
zone (incoming characteristics, χd = 0) [91]. Figure 2.17 illustrates both mask functions for
a cylinder.

According to [90], the employed modules used for two-dimensional ice accretion simulations
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χ = 0

χ = 1

(a)

χd = 0 χd = 1

outgoing incoming

(b)

Figure 2.17 Mask function (a) and droplet mask function (b) for a cylinder. Image adapted
from [91].

are the following:

• Mesh generation module:
The proposed approach implemented in IGLOO2D employs the BF unstructured mesh
of the clean airfoil for the entire multi-step simulation. This way, the IBMs are only
applied in the ice zone, while the rest of the solid boundary is treated as BF, enhancing
the accuracy. Specifically, unstructured meshes are generated using Gmsh [68].

• Airflow module:
IGLOO2D computes the inviscid airflow using a weak coupling with an integral bound-
ary layer model [176]. Regarding the IBM, the Euler equations are solved via a penaliza-
tion approach [89]. This IB methodology distinguishes itself by replacing the standard
slip boundary condition with the more sophisticated Curvature-Corrected Symmetry
Technique (CCST) [46], which incorporate curvature effects in the pressure gradient
and ensure conservation of entropy and total enthalpy in the wall-normal direction.
The developed IBM yields lower error levels compared to other penalization approaches
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for the Euler equations, specially on coarse meshes. However, its limitation to first-
order accuracy represents a significant drawback.

• Droplet trajectory module:
Similarly, a penalization methodology is implemented in IGLOO2D to solve the Eu-
lerian droplet trajectory equations. Two methods were developed: the Volume Penal-
ization (VP) and the Volume Penalization Solid Source Off (VP-SSO). While the VP
method offers a more natural formulation, it requires solving the airflow field within
the solid region. In contrast, the VP-SSO computes droplet trajectories independently
of the air velocity inside the solid. Despite their differences, both methods converge
to the BF solution. Due to the nature of the boundary conditions in the impingement
zone, the penalization methods achieves second-order accuracy in space [91].

• Ice accretion module:
The Messinger balance is used to compute the ice thickness at the surface [176].

• Geometry update module:
The level-set method is used to update the geometry avoiding surface mesh overlaps,
and a post-processing step is added to extract the surface mesh from the level-set field
using an edge-based interpolation method [90].

The results obtained in two-dimensional simulations are satisfactory, including both rime and
glaze ice cases, as well as studies on multi-element airfoils, demonstrating the robustness of
the method [90]. Among the advantages, the proposed IBMs allow straightforward extension
to three-dimensional solvers and avoid complex pre-processing steps. However, the method
presents some limitations, notably the first-order accuracy of the aerodynamic solver and
the necessity of extracting and generating a surface mesh from the level-set, which can be
challenging in three-dimensional simulations.

2.3.3 University of Strasbourg: NSMB-ICE

The University of Strasbourg has also been one of the first research centers to include IBMs
in the two-dimensional Navier-Stokes Multi-Block ice accretion solver, NSMB-ICE [131]. The
development of these methods has been primarily carried out as part of the doctoral thesis of
Al-Kebsi [6]. However, in this review, we focus on [7] to analyze their IB ice accretion suite.

• Mesh generation module:
Two types of meshes are typically used in NSMB-ICE: typical Cartesian multi-block
grids and structured Chimera grids.
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• Airflow module:
A penalization method was developed to solve the laminar Navier–Stokes equations
[7], based on the approach of Abgrall et al. [4]. However, later work [6] reported
difficulties in accurately modeling turbulent flows with the implemented penalization
method. As a result, a discrete forcing method combined with a wall model [15, 76]
was also developed to simulate turbulent flows more effectively.

• Droplet trajectory module:
The droplet transport module developed in NSMB uses an Eulerian approach. Con-
cerning the IBM implemented, a forcing discrete method is used to define the value of
the fluid cells around the solid.

• Ice accretion module:
The SWIM model is used to obtain the ice thickness at the discretized surface [17, 26].

• Geometry update module:
The evolution of the ice-air interface is computed using a level-set approach [131].

The simulations presented in [6] include two-dimensional rime and glaze ice accretion cases,
showcasing the code’s ability to model different icing conditions. NSMB-ICE was also among
the first to combine level-set methods with immersed boundary techniques for ice accretion
simulations, establishing a foundation that has influenced the development of other codes in
this field.

2.3.4 Polytechnique Montréal: CHAMPS

The ice accretion software developed at Polytechnique Montréal, CHApel MultiPhysics Simu-
lations (CHAMPS) compute different multi-physical calculations [130]. Concerning ice accre-
tion simulations, Blanchet et al. [24] introduced the first IBM-based simulations of CHAMPS
at the 2nd IPW. This approach is notable for combining IBMs with a stochastic surface evo-
lution model [27, 129] in 2D multi-step ice accretion simulations. The main features of each
module are listed below:

• Mesh generation module:
Cartesian multi-block grids are employed.

• Airflow module:
The RANS equations are solved using a FVM. The IBM employed, consist in a discrete
forcing method, following the ghost-cell methodology presented in [6].
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• Droplet trajectory module:
The penalization method presented by Lavoie et al. [91] for 2D simulations and ex-
tended to 3D cases in [61] is used to solve the Eulerian droplet trajectory equations.

• Ice accretion module:
The Messinger balance is used to compute the ice thickness at the surface [176].

• Geometry update module:
The stochastic approach is used to track the evolution of the geometry [27, 129]. How-
ever, in order to be able to run multi-step simulations, surface meshes are needed at
the end of each iteration of the ice accretion loop. To do that, Blanchet et al [24] use
the 3D alpha wrapping library from CGAL [9].

CHAMPS, despite being at an early stage in the integration of IBM, demonstrates a promising
and innovative approach by effectively coupling IBMs with a stochastic modeling framework.
While current limitations include its restriction to laminar flows and the lack of mesh refine-
ment techniques [24], these challenges also highlight clear pathways for future development,
such as extending the model to turbulent regimes and incorporating AMR.

2.4 Intermediate Conclusions

This section reviewed the state of the art in three distinct areas: ice accretion simulations,
IBMs, and the integration of IBMs into icing frameworks.

Ice accretion simulations greatly benefit from a modular segmentation of the entire process.
This not only simplifies the overall simulation workflow but also allows existing codes to
integrate different models for each individual module. To improve the accuracy of ice shape
predictions, multi-step simulations are required in order to account for the time evolution of
the geometry. However, despite the development of improved numerical methods in recent
decades, two major challenges often hinder the automation and robustness of the overall
simulation: geometry update and the subsequent volume mesh generation. These issues
motivate the exploration of alternative strategies, such as the use of IBMs.

Immersed Boundary Methods are a suitable option when dealing with complex geometries
or moving boundaries. While several approaches were reviewed in this chapter, two rep-
resentative methods stood out: the penalization method and the ghost-cell method. The
former falls under the continuous forcing category and had been applied to a wide range of
aerodynamic models. Its implementation in existing codes is generally straightforward, with
preprocessing typically limited to distinguishing between fluid and solid cells. However, in
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applications based on the FVM, the spatial accuracy is often limited to first-order conver-
gence due to the sharp representation of the fluid–solid interface. In contrast, the ghost-cell
method is a discrete forcing IBM. Several applications can be found in the literature involving
different governing equations and aerodynamic models. Unlike the penalization approach,
preprocessing for ghost-cell methods tends to be more challenging, particularly when dealing
with complex geometries. Nevertheless, it remains a promising alternative, as maintaining
the convergence order of the solver is more feasible, being primarily tied to the interpolation
scheme used for the image point.

In the context of ice accretion, there had been growing interest in applying IBMs to avoid
mesh regeneration at each step of a multi-step simulation. Several research centers, including
CIRA, ONERA, the University of Strasbourg, and Polytechnique Montréal, had incorporated
IBMs into their icing codes. A comparison of these frameworks revealed that each group
adopted a different implementation strategy, primarily distinguished by the type of mesh
used (e.g., Cartesian multi-blocks, Cartesian grids with anisotropic refinement, or BF meshes
derived from the clean geometry) and by the IBM selected (i.e., continuous or discrete forcing
methods). Among these, CIRA is the only research center currently performing full three-
dimensional ice accretion simulations.
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CHAPTER 3 THESIS STRUCTURE

The present doctoral work is written in the form of a thesis by compendium. It is composed
of two peer-reviewed journal articles, which are presented in Chapters 4 and 6. Chapter 5
presents additional unpublished work that complements the main contributions of the thesis.
It is written in the format of a journal article in order to maintain stylistic consistency
throughout the document.

Initial Conditions Surface Mesh

ilayer = 0

Mesh Generation (CASSIOPEE)

IB Preprocessing (CASSIOPEE)

Airflow Solver (FASTS)

Droplet Solver (SPIREE)

IB Post-processing (CASSIOPEE)

Ice Accretion (MESSINGER3D) Boundary Layer (HTC3D)

Geometry Update (LEVELSET3D)

ilayer = N?

ilayer+ = 1

Ice Prediction

Figure 3.1 Sequential call to modules in multi-step icing simulations using IBMs in IGLOO3D.
Modified or new modules are highlighted in red.

As a reminder, the general objective of this research project is to investigate the application
of Immersed Boundary Methods (IBMs) in three-dimensional multi-step ice accretion simula-
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tions, enhancing the automation of the entire simulation by avoiding the generation of a new
volume mesh at each ice layer. For this purpose, the three-dimensional ice accretion suite
of ONERA, IGLOO3D, is chosen as the development platform. Figure 3.1 illustrates the
sequential call of modules in a multi-step ice accretion simulation carried out in this thesis,
indicating which code is used for each module. In this framework, the two volume solvers
rely on an IB approach, which requires the addition of dedicated pre- and post-processing
IB modules. In order to adapt IGLOO3D to IBMs, most of its modules have been modified;
these are highlighted in red in Fig. 3.1. The only module that has remained unchanged is
the ice accretion module MESSINGER3D.

For mesh generation, this thesis continues with the strategy adopted in the IB version of
IGLOO2D [90]. Specifically, it starts from a BF mesh of the initial geometry and applies the
IBMs exclusively in the regions where ice has grown. This approach is referred to as local IBM
or hybrid IBM in the literature (see Sec. 2.2.1). However, unlike IGLOO2D, a requirement
of the simulation chain presented here is that the meshes must be structured, as required by
the airflow solver. This poses additional challenges in mesh generation, particularly around
the wing tip of three-dimensional wings. These difficulties become even more pronounced
when comparing the IB with BF meshes, since generating structured meshes around complex
iced shapes is precisely what this thesis aims to avoid. In the proposed approach, O-type
meshes are employed. The procedure is briefly explained below. The structured mesh on the
wall serves as the first layer of the volume mesh. This layer is then extruded in the normal
direction to obtain a new layer. When complex geometries are involved, the normal field can
be smoothed. The extrusion process is repeated layer by layer until the desired distance to

(a) Body-fitted (b) Immersed boundary

Figure 3.2 Examples of volume meshes used in multi-step ice accretion simulations with either
BF or the IB approach proposed in this thesis. The ice shape is shown by a thick blue line.
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the farfield boundary is reached. In three-dimensional meshes, the initial structured surface
mesh is divided into two blocks: one for the wingtip and the other for the rest of the wing.
This alleviates the previously discussed challenge associated with meshing three-dimensional
wings.

For the results presented in this thesis, all meshes have been generated using Cassiopee (CFD
Advanced Set of Services In an Open Python Environment) [19]. Cassiopee is an open-source
library developed at ONERA, primarily for performing pre- and post-processing tasks in CFD
simulations. As illustrated in Fig. 3.1, Cassiopee is also used for the pre- and post-processing
of the IBMs.

A complementary study related to surface mesh smoothing techniques in multi-step ice ac-
cretion simulations has been carried out as part of this thesis. This work was presented at
the 2024 AIAA Aviation Forum [60] and is detailed in Appendix A of this document.

The remaining modifications and developments applied to the other modules represent the
fundamental contributions of this doctoral work. These core components are briefly intro-
duced below, providing a general overview that links them together.

3.1 First Article

The first article of this thesis, presented in Chapter 4, aims to fulfill Objective O.1: the
development of an IBM for solving the three-dimensional Euler equations.

The preceding thesis by P. Lavoie [87] investigated the application of IBMs to ice accretion
simulations and highlighted some inherent limitations of the penalization method applied to
the Euler equations, in particular its restriction to first-order accuracy. Additionally, ONERA
has been investigating the use of other IBMs in ice accretion simulations for several years, as
part of its private research project TRICEPS.

In fact, ONERA has been developing a suite of high-performance computing CFD solvers
focused on IBMs, known as Flexible Aerodynamic Solver Technology (FAST) [3]. This nu-
merical tool includes two main solvers: FastS, a Navier–Stokes solver, and FastLBM, a
Lattice Boltzmann solver. Both solvers employ structured grids to maximize computational
efficiency. FastS, in particular, is a FVM solver capable of simulating aerodynamic flows
at various levels of fidelity, supporting models ranging from inviscid flow to large eddy sim-
ulation (LES) [139]. An IBM approach based on a discrete forcing has been developed in
Cassiopee/FAST framework.

As part of the TRICEPS project, comparative studies were carried out analyzing results
obtained with the ghost-cell method of FastS and the penalization method developed in
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IGLOO2D. These studies included a range of test cases, including subsonic flows around
three geometries: a cylinder, a NACA 0012 airfoil, and a GLC305 iced airfoil, the latter
representing the most challenging case. The investigations examined mesh convergence,
the influence of the employed mesh type (either through a local IBM as implemented in
IGLOO2D or by using adaptive Cartesian mesh refinement in overset grids), and the impact
of placing ghost cells either within the fluid or solid regions. One of the main conclusions
drawn was the difficulty of obtaining steady solutions without spurious recirculation zones
when simulating complex geometries such as the iced GLC305 airfoil. Specifically, both FastS
and the penalization method in IGLOO2D encountered challenges in reaching steady-state
solutions, and neither method demonstrated consistent convergence upon mesh refinement
for this case.

Addressing these challenges was therefore identified as one of the main objectives of this
thesis. Following a thorough review of the literature, the decision was made to develop within
Cassiopee/FAST framework an improved GCIBM for three-dimensional inviscid simulations,
tailored to handle complex geometries effectively.

As a first step, more accurate boundary conditions were implemented, following the work of
Dadone and Grossman [46] and the improvements demonstrated by P. Lavoie [89]. Subse-
quently, the effect of the ghost-cell positioning was studied in detail. Three configurations
were investigated: GC-in-solid, where all ghost cells are placed in the solid; GC-in-fluid,
where they are placed in the fluid; and GC-surrounding, where the first row of ghost cells
is in the fluid and the second in the solid. This intermediate work formed the core of the
publication presented at the 2023 International Conference on Icing of Aircraft, Engines, and
Structures (SAE) [61] and serves as the starting point of the first article.

The first article presents a GCIBM well-suited for complex geometries, such as those typically
encountered in ice accretion simulations. The proposed method, named the Adaptive Ghost-
Cell-Surrounding (AGCS) method, introduces an innovative strategy for ghost-cell placement
based on the local curvature of the geometry. The method is compared against both body-
fitted simulations and more standard ghost-cell approaches for inviscid flows, such as GC-in-
solid. Various cases are analyzed, including subsonic flows around a 2D cylinder and a 3D
sphere, demonstrating that the method retains the second-order accuracy of the numerical
scheme. Additionally, the accuracy of the results is evaluated on a manufactured 2D iced
airfoil and a 30º swept NACA 0012 iced wing obtained from an ice accretion simulation.
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3.2 Simplified Integral Boundary Layer Solver

Using an inviscid model in ice accretion simulations requires coupling with a boundary layer
solver to compute two key inputs for the ice accretion module: the convective heat transfer
coefficient and the recovery temperature. An accurate resolution of these quantities requires
solving the full boundary layer equations, which is a complex task that could justify a dedi-
cated research project. To address this challenge in a practical and efficient manner, this work
proposes the development of a three-dimensional simplified integral boundary layer solver.
This development specifically addresses Objective O.3 of the thesis.

The starting point for this development is the work presented in [141], where, as part of a
broader study, a simplified method for solving the laminar boundary layer was introduced.
Building upon that foundation, the objective of this chapter is to extend the existing model to
also account for turbulent boundary layers. The proposed method is based on the simplified
integral approach developed in IGLOO2D and is here generalized to three dimensions.

Although Chapter 5 is not based on a journal article, it follows the same structure (introduc-
tion, methodology, results, and conclusion) to ensure consistency and clarity throughout the
thesis. The proposed method provides a trade-off between physical accuracy and robustness,
making it suitable for estimating convective heat transfer in the context of this work.

The method is subsequently integrated into the ice accretion framework presented in the
second journal article, where it enables multi-step simulations and assesses its predictive
capabilities under realistic icing conditions.

3.3 Second Article

The second article aims to perform three-dimensional ice accretion simulations using IBMs.
To achieve this, the remaining objectives outlined at the beginning of the thesis must be
addressed.

First, to address Objective O.2, the validation of the penalization method used for droplet
trajectory simulations, introduced by P. Lavoie [91], is carried out in three-dimensional sim-
ulations. This validation was presented in the SAE publication [61], demonstrating that the
method retains the second-order spatial convergence of the numerical scheme employed.

Following the validation of the IBMs, their integration into IGLOO3D is carried out to
fulfill Objective O.4. Although most modules rely on CGNS-formatted input and output
files, format converters are necessary to meet the specific formatting requirements of each
individual module. Additionally, minor modifications were made to the geometry update
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module, LEVELSET3D. This module, originally developed to perform BF simulations, is
based on a hybrid Lagrangian-Eulerian approach based on the level-set field. Consequently,
adaptations were necessary to enable its use in simulations involving IBMs.

The publication of the second journal article, presented in Chapter 6, builds upon the earlier
work introduced in the 2024 AIAA Aviation conference paper [60], where initial ice accretion
simulations using IBMs were performed. The journal article offers a more comprehensive
and detailed study of the methodology and its applications, thus addressing the final specific
objective of the thesis, Objective O.5. Since the IB and BF approaches are expected to
produce consistent results, both methods are compared for each case studied through two-
step simulations. Specifically, three cases from the 1st IPW are analyzed in detail: the two-
dimensional cases 241 and 242, corresponding to rime and glaze icing conditions, respectively,
and case 361, which involves the study of a 30º sweep angle NACA 0012 wing under rime
icing conditions.
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CHAPTER 4 ARTICLE 1: SECOND-ORDER GHOST-CELL IMMERSED
BOUNDARY METHODOLOGY FOR INVISCID 3D FLOWS IN COMPLEX

GEOMETRIES

P. Elices Paz, E. Radenac, S. Péron, G. Blanchard, É. Laurendeau, and P. Villedieu,
“Second-Order Ghost-Cell Immersed Boundary Methodology for Inviscid 3D Flows in Com-
plex Geometries,” (submitted to Computers & Fluids on 14 February 2025)

4.1 Abstract

Inviscid flow simulations are crucial in various aerospace and engineering applications, par-
ticularly when computational cost is a primary concern. However, even for such flows, the
generation of meshes may become challenging when complex geometries are involved, espe-
cially in 3D cases. As a result, there is special interest in methods that can bypass this issue.
In this context, the Adaptive Ghost-Cell-Surrounding (AGCS) method is introduced for sim-
ulating compressible, inviscid flows around complex, rigid geometries using a second-order
finite volume solver. The method is grounded in the Immersed Boundary Method (IBM)
framework, specifically using the ghost-cell method to impose boundary conditions on non-
conforming meshes. AGCS employs a local curvature-based criterion to determine ghost cell
placement, significantly enhancing accuracy, notably on coarse meshes. Verification tests
demonstrate that the method achieves second-order spatial accuracy in numerical simula-
tions of 2D cylindrical and 3D spherical geometries. Additionally, the AGCS method has
been applied to 2D and 3D wings with complex ice accretion shapes, further demonstrating
its robustness and precision. The results highlight the advantages of the proposed approach,
including improved solution convergence and reduced entropy generation compared to con-
ventional ghost-cell methods.

4.2 Introduction

Several benchmarking activities in the field of aerodynamics as applied to aircraft analysis
and design, such as the American Institute of Aeronautics and Astronautics (AIAA) series
of workshops (Drag, High-Lift, Aeroelastic, etc.) have focused on improving upon the in-
dustrial state of the art Reynolds-Averaged Navier–Stokes (RANS) models. These activities
either try to achieve mesh convergence on high-lift take-off/landing phases, increase order
of accuracy, develop effective viscous mesh adaptation or further increase the fidelity of the
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model towards Large Eddy Simulations. However, recent advances in artificial intelligence
call for mutlifidelity approaches, as the large amount of datasets needed for training the
algorithms becomes very expensive when examining highly non-linear phenomena, as found
on aircraft geometries. For instance, Renganathan et al. [147] employ an inviscid solver for
training machine learning models, while Catalini et al. [39] couple it with a viscous boundary
layer to generate datasets. Inviscid flow models are also found in aerodynamic optimization
of aircraft configurations [103], and ice accretion calculations [90, 176], among other areas.
A common characteristic of these applications is the need to conduct numerous simulations
with variations in geometry. Geometry modeling and the associated mesh generation for
field methods used in aerospace poses significant challenges. First, body-fitted meshes re-
quire closed CAD surfaces and, when morphing [172], must retain non-negative cell volumes.
The 2021 and 2023 AIAA Ice Prediction Workshops, in which RANS remains the baseline
approach [84, 86], have shown that mesh deformation continues to be a critical limitation to
ice shape simulations on simple cases while industrial cases pose even higher constraints. For
inviscid flow simulations, the boundary layer is not resolved, eliminating the need for highly
refined meshes in the wall-normal direction. Although this alleviates some of the key chal-
lenges associated with mesh deformation, the task remains difficult to automate, specially
when 3D complex surfaces are involved.

This paper presents a new Immersed Boundary Method (IBM) for the solution of the Euler
equations to address issues related to mesh generation. The inviscid model can eventually
be coupled to boundary-layer models, which is left out-of-scope in the present discussion
without losing generality. The concept of IBMs was first introduced by Charles Peskin in
the 1970s [133] to simulate blood flow around heart valves. Since then, numerous IBMs have
been developed, which can be categorized into two distinct groups [109]. The continuous
forcing approach adds source terms to the continuous equations prior to discretization, re-
sulting in an easy method to implement. However, the application of this method usually
introduces challenges, primarily because of the forcing terms added, leading to a negative
impact on both the numerical stability and the accuracy of the solution near the body in-
terface. Different methods have been developed for both inviscid [89] and viscous flows [31].
Although this approach is typically limited to first order accuracy, second order adaptations
are also found in the literature [157]. In contrast, the discrete forcing approach selects spe-
cific cells, commonly referred to as ghost cells [49, 139], or immersed faces [33, 34], where the
solution is reconstructed to replicate the presence of the interface. These methods mitigate
issues related to accuracy and stability; however, their implementation involves a complex
preprocessing step.

This paper introduces an efficient and robust ghost-cell method, referred to as Adaptive
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Ghost-Cell-Surrounding (AGCS), for simulating compressible, inviscid flows around complex,
rigid geometries. The proposed method builds on the work of Dadone and Grossman [49, 51],
Nakahashi [118], and Péron et al. [139]. A detailed review of the ghost-cell methodology is
provided in Sec. 4.5. The method uses a second-order accurate finite volume solver designed
for structured grids. Unlike other ghost-cell methods, the proposed approach places the ghost
cells according to a local curvature-based criterion. In regions where the local curvature radius
is significantly smaller than the cell size, ghost cells are positioned within the fluid domain,
acting as a pseudo wall function and significantly improving solution accuracy, especially on
coarse meshes.

This method has primarily been designed for icing applications. In fact, simplified versions of
it have previously been presented by the authors for calculating droplet trajectories [61] and
conducting multi-step ice accretion simulations [60]. However, in this paper, it is presented
in a more general form, as its application could also be useful in other fields dealing with
complex geometries.

This paper is organized in the following manner. Section 4.3 provides a description of the gov-
erning equations. Section 4.4 concerns the numerical implementation of the Euler equations.
Additionally, a review of the commonly used boundary conditions is provided. Section 4.5
discusses the simplest ghost-cell method, highlighting its main issues and the common ap-
proaches used to address them. Section 4.6 describes the new AGCS method. Section 4.7
presents four numerical simulations. The first two cases focus on verification tests, where the
method is applied on Cartesian meshes. Specifically, the simulations involve the inviscid flow
around a 2D cylinder and a 3D sphere. Following this, the method is validated on 2D and
3D ice shapes by comparing its results with those from body-fitted simulations.

4.3 Governing Equations

The dynamics of a compressible fluid for which the effects of body forces, viscous stresses
and heat flux are neglected is governed by the time-dependent Euler equations. They are a
system of non-linear hyperbolic conservation laws. The conservative variables vector, W⃗ , can
be derived from the physical variables: density (ρ), pressure (p) and velocity (v⃗ = (u, v, w)):

W⃗ = [ρ, ρu, ρv, ρw, ρE]T (4.1)

Here E is the total energy per unit mass:

E = e+ ||v⃗||2

2 = e+ u2 + v2 + w2

2 , (4.2)
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and e is the internal energy.

Consider a 3D control volume Ω as the computational domain and ∂Ω its boundary, the
governing equations, in the integral form, can be expressed as:

∂

∂t

∫
Ω
W⃗dΩ +

∮
∂Ω
F⃗invdS = 0 (4.3)

where F⃗inv is the vector of the inviscid fluxes

F⃗inv =



ρ(u⃗ · n⃗)
ρu(u⃗ · n⃗) + nxp

ρv(u⃗ · n⃗) + nyp

ρw(u⃗ · n⃗) + nzp

(ρE + p)(u⃗ · n⃗)


, (4.4)

and n⃗ = (nx, ny, nz) is the normal vector to the surface ∂Ω, pointing outward from the solid.

To complete the system, two additional equations are required, which will establish thermo-
dynamic relationships between the state variables. For a calorically perfect gas, the equations
are:

p = ρrT, (4.5)

e = r

γ − 1T, (4.6)

where r denotes the specific gas constant, T the temperature and γ = cP/cV is the ratio of
specific heat coefficients.

For inviscid flows, the only physical condition is that the fluid slips along the surface, i.e., the
velocity vector must remain tangent to the surface, with no flow passing through the surface,
that is,

(v⃗ · n⃗)w = 0, (4.7)

where the subscript w refers to the wall.

4.4 Numerical Method

The ONERA HPC FastS solver [3] is used to solve the compressible Euler equations using a
cell-centered finite-volume method on structured meshes. The temporal integration is solved
implicitly using a second-order backward differentiation formula. The Roe scheme [149] is
used to compute the inviscid fluxes and a MUSCL (Monotone Upstream-centered Schemes for
Conservation Laws) [179] extrapolation with a minmod slope limiter is employed to achieve
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second-order accuracy in space. The left and right values of the conservative variables at the
interface i+ 1/2 are obtained according to the following expressions:

 WL = Wi + 1
2Φ (rL) (Wi+1 −Wi)

WR = Wi+1 − 1
2Φ (rR) (Wi+2 −Wi+1)

(4.8)

where Φ is the slope limiter and rL = Wi−Wi−1
Wi+1−Wi

and rR = Wi+1−Wi

Wi+2−Wi+1
are the slopes at each

side of the interface. This results in a five-cell computational stencil in each direction.

4.4.1 Wall Boundary Conditions

Wall boundary conditions play a fundamental role in simulating inviscid flows. From a
numerical perspective, when imposing the slip boundary conditions (Eq. 4.7), additional in-
formation is required. In body-fitted simulations, where the cell interfaces align with the wall,
the non-penetration condition ensures that the inviscid fluxes (Eq. 4.4) depend exclusively
on the pressure at the wall, i.e.,

F⃗inv =



0
nxpw

nypw

nzpw

0


. (4.9)

Various methods can be used to determine the wall pressure using a cell-centered approach.
For instance, Dadone and Grossman [46] developed two methods: the Symmetry Technique
(ST), only valid for planar walls; and the Curvature-Corrected Symmetry Technique (CCST),
which takes into account the curvature of the solid surface. The latter has proven to be an
excellent option for simulating inviscid flows around high-curvature geometries, significantly
enhancing solution accuracy.

Both boundary conditions involve introducing two additional rows of ghost cells within the
solid (denoted as -1 and -2 in Fig. 4.1), also known as dummy cells, to fulfill the computational
stencil of the fluid cells near the boundary. These are constructed by reflecting the internal
cells 1 and 2 symmetrically across the body surface.

For the CCST [46], the variable states W⃗ at the ghost cells are set to make the wall act as
a streamline, ensuring the non-penetration condition (Eq. 4.7), the wall normal momentum
relation [148], (

∂p

∂n

)
w

= −ρw ||v⃗w||2 κw, (4.10)
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Figure 4.1 Ghost cells used in a body fitted simulation to impose the symmetry technique
wall boundary conditions.

and the conservation of the entropy ((n⃗ · ∇s)w = 0) and total enthalpy ((n⃗ · ∇H)w = 0)
along the wall normal. In Eq. 4.10, κw refers to the signed curvature of the surface at the
wall point w. It is considered positive when the center of curvature lies within the solid and
negative when it is located within the fluid.

Subsequently, modifications were introduced to simplify this original formulation [49, 51].
First, the wall density and velocity values of Eq. 4.10 were replaced by the fluid cell values,
i.e., ρw = ρi and ||v⃗w||2 = (v τi )2. In addition, the non penetration condition was also
simplified, and antisymmetric values were used. This leads to the following set of boundary
conditions:

vn−i = −vn+i (4.11)

p−i = p+i − ρ+i(v τ+i)2κw∆ni (4.12)

ρ−i = ρ+i

(
p−i

p+i

)1/γ

(4.13)

(v τ−i)2 = (v τ+i)2 + 2γ
γ − 1

(
p+i

ρ+i
− p−i

ρ−i

)
(4.14)

where vn = v⃗ · n⃗ and vτ = v⃗ · τ⃗ are the normal and the tangential component of the velocity
to the body, ∆ni is the distance between points +i and −i, and the subscript i indicates the
cell index relative to the wall (as illustrated in Fig. 4.1). Note that the tangential unit vector



57

τ⃗ is defined as
τ⃗ = v⃗ − (v⃗ · n⃗)n⃗

||v⃗ − (v⃗ · n⃗)n⃗||
. (4.15)

When the curvature is neglected, the ST boundary conditions are recovered:

p−i = p+i (4.16)

ρ−i = ρ+i (4.17)

v n−i = −v n+i (4.18)

v τ−i = v τ+i (4.19)

As noted [89], the error committed on the pressure extrapolation, ϵp, when using the ST
instead of the CCST can be expressed as:

ϵp = ρw ||v⃗w||2 κw∆x (4.20)

where ∆x is the characteristic wall cell size. It becomes apparent that the CCST method is
particularly useful in highly curved accelerated regions.

Employing CCST boundary conditions therefore offers significant advantages for the analysis
of inviscid flows around complex geometries. This approach leads to reduced numerical
entropy and promotes faster grid convergence in both body-fitted [46] and immersed boundary
methods for 2D [49] and 3D [51] simulations. Furthermore, its suitability in icing applications
has been confirmed in previous research [60, 90].

4.4.2 Numerical Assessment of Boundary Curvature

In two dimensions, the definition of the curvature is unambiguous and can be analytically
determined when the mathematical expression of the curve is known. For a curve y = f(x),
the curvature κ is obtained from the following expression:

κ = |f ′′|
(1 + f ′2)3/2 . (4.21)

where f ′ and f ′′ are the first and second derivatives of f(x) with respect to x respectively.
Note that this value depends exclusively on geometrical aspects. In three dimensions, the
needed value does not correspond to the curvature of the three-dimensional surface, but to
the curvature of the intersection of the osculating plane, formed from the streamline direction
and the surface normal, with the body interface [51, 194]. In this way, this task can be seen
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as a bi-dimensional problem. However, the curvature becomes dependent on the direction of
the flow velocity vector around the wall.

For discrete curves, the literature presents various approaches to define the local curvature.
If the curve is connected by straight segments, the first and second derivatives of f(x) can
be approximated by central differences [95, 194]. The curvature can also be calculated using
the radius of the circumcircle formed by three successive points of the discrete curve [185].
Alternatively, using a signed distance field ϕ allows a simple evaluation of the normal n⃗ϕ and
the curvature [31] fields:

n⃗ϕ = ∇⃗ϕ, (4.22)

κ = τ⃗ · (τ⃗ · ∇⃗)n⃗ϕ, (4.23)

where the signed distance field is defined negative in the solid (ϕ < 0) and positive in the
fluid (ϕ > 0); and the normal field to the wall, n⃗ϕ, points towards the fluid zone. For two-
dimensional geometries, the flow dependency is lost, and a simplified expression is obtained
[89],

κ = ∇⃗ · n⃗ϕ. (4.24)

This results in a convenient approach when dealing with an immersed boundary, as it is
usually represented by the level-set ϕ = 0.

4.5 The Ghost-Cell Immersed Boundary Method

The Ghost-Cell Immersed Boundary Method expands upon the concept of ghost cells pre-
sented above, by enabling the definition of boundary conditions in meshes that do not conform
to the solid geometry. In this case, the grid cells are misaligned with respect to the normal
of the solid interface, as illustrated in. Fig. 4.2. The general process can be divided into four
steps:

1. Identification of the ghost cells (point GC in Fig. 4.2). For inviscid flows, ghost cells are
commonly located in the solid cells around the geometry [49, 51, 118]. In the remainder
of this paper, this approach is referred to as the GC-in-solid method. The number of
ghost cells needed in each direction depends on the size of the solver stencil.

2. Projection of the ghost-cell centers on the solid interface to determine the wall point
(point w in Fig. 4.2). This can typically be made by an orthogonal projection or
following a normal direction n⃗ϕ.

3. Identification of the image points as the symmetric point of the ghost-cell center to
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the wall (point IP in Fig. 4.2). They will be used to set the flow state values W⃗
of the corresponding ghost cell. Since the image points do not necessarily coincide
with the grid points, their values must be obtained from the neighboring points (i.e.,
D1, D2, D3, D4 as shown in Fig. 4.2). The interpolation algorithm and its stencil may
vary across the different existing ghost-cell methods.

4. The values at the ghost cells are determined using the data from image points when
applying the boundary conditions. In this context, the CCST is usually employed
[49, 51, 95, 185].

Figure 4.2 2D sketch illustrating the Ghost-Cell Immersed Boundary Method. Immersed
boundary is represented in a dashed dot thick line and solid cells in dark gray.

The simulation can then be conducted without significant modifications to the solver, as no
changes to the equations are necessary. The only required adjustment occurs just before
imposing the boundary conditions (step 4) where the interpolation is performed. All other
aspects remain unchanged.

Nevertheless, the literature highlights two major difficulties with this immersed boundary
methodology [33, 49, 118, 139]. The first, referred to as the multi-value problem, presents
the main challenge of the method, while the second involves the placement of image points
in complex geometries.
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4.5.1 Multi-Value Cells

In thin surfaces, such as trailing edges or elongated iced horns, there is often insufficient space
to insert the desired number of ghost cells within the solid. The issue becomes particularly
critical when no ghost cells can be placed inside the solid, leading to simulations where the
surface becomes non-existent for the computed cells.

For instance, consider the region surrounding a complex, high-curvature geometry, as shown
in Fig 4.3. In this sketch, the ghost cell highlighted (point P) is surrounded by three computed
cells, with centers designated as Q, R, and S. In this scenario, the ghost cell should have three
values, depending on which interface is being evaluated. This is the so-called multi-value
problem. In addition, given the non-compact stencil used in this article, cell P is not the only
one with multiple values in the figure presented. When linear extrapolation is employed to
reconstruct the state variables at the interface, additional cells are utilized to interpolate the
values on both sides of the interface. For example, at the interface between Q and P, cell S is
used to obtain the value on the southern side of the interface. This implies that cells S and
Q must have a double value, as they can be computed cells or ghost cells depending on the
interface of the cell P which is being computed.

Figure 4.3 Illustration of multi-value cells. The image (blue square) and wall (green diamond)
points are shown for a specific ghost cell (red circle). Solid cells (ϕ < 0) are displayed in dark
gray.

The literature presents various approaches to address this issue. For instance, Dadone and
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Grossman [49] suggest storing the multiple values of the affected cells and applying each value
according to the specific interface being solved. Although this method effectively addresses
the problem, it requires special treatment in structured solvers, rendering its implementation
less straightforward.

Nakahashi [118] presents a simpler alternative approach to the issue. First, the MUSCL
extrapolation at interfaces is not applied when ghost cells are involved, significantly reducing
the risk of creating multi-value cells but also reducing to a 1st-order accurate flow at the wall.
In addition, ghost cells can be placed within the fluid regions of the domain. In the example
discussed above, cells P, Q and R would be classified as ghost cells, resulting in the absence
of multi-value cells.

4.5.2 Issue with Image Point Location

Another challenge may arise when defining the image points as the symmetric points of the
ghost cell centers. First, when the ghost cell is positioned in close proximity to the wall, its
symmetric point will also remain near it, and consequently, the ghost cell may fall within the
interpolation stencil of the image point, leading to an implicit rather than explicit definition
of itself. In contrast, when the ghost cell is positioned farther from the wall, its symmetric
point may be located at a significantly greater distance. This effect is especially relevant in
inviscid flow simulations, which are the focus of the present study, as larger computational
cells are used compared to viscous flow computation. Consequently, in concave regions, the
symmetric point may fall within the solid domain (Fig. 4.4a). This issue is more commonly
found in 3D simulations.

Nakahashi [118] proposes shifting the image point farther from the wall when the ghost cell
is positioned close to it, typically by half the cell size, thereby avoiding the inclusion of the
ghost cell within the interpolation stencil of the image point. However, no maximum distance
is defined, potentially leading to the image point falling within the solid. Péron et al. [139]
propose an alternative approach, which involves constructing a front surface where the image
points must lie. This front, illustrated in blue in Fig. 4.4b, is defined by the first computed
cells at the fringe of the ghost cells, which helps to address both issues.

In summary, a Ghost-Cell Immersed Boundary Method is defined by four primary param-
eters: the positions of the ghost cells (GC), wall points (WP), and image points (IP), and
the boundary conditions. In addition to these primary parameters, secondary parameters,
typically derived from the primary ones, are essential in determining the overall accuracy of
the method. These secondary parameters include the total number of triplets (GC, WP, and
IP) and how multi-value cells are treated.
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(a) Image point as the symmetric point of the
ghost cell.

(b) Image point as the projection of the ghost
cell on the front surface.

Figure 4.4 Illustration of image point definitions in ghost-cell methods around a complex
geometry. Ghost cells are represented in circles. The image point (blue square) and wall
(green diamond) points are shown for a specific ghost cell (red circle). Solid cells (ϕ < 0) are
displayed in dark gray.

4.6 The Adaptive Ghost-Cell-Surrounding Method

This section introduces a new ghost-cell method, the Adaptive Ghost-Cell-Surrounding
(AGCS), which aims to address the challenges discussed above and improve the solution
for high-curvature geometries. Based on an extended stencil, and therefore requiring two
rows of ghost cells, the key principle of the methods relies in locally allowing the possibility
of placing the first row of ghost cells in the fluid and the second row in the solid region,
i.e., placing the ghost cells surrounding the wall surface. This approach can be viewed as an
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extension of Nakahashi’s method [118], which uses only a single row of ghost cells and allows
their placement in the fluid region where the body thickness is smaller than the cell size.
Our method expands upon this idea, significantly reducing the likelihood of encountering the
multi-value problem while preserving the discretization order near the wall.

This approach significantly enhances solution accuracy, as will be demonstrated later. The
CCST method is employed to enforce the immersed boundary (IB) conditions like in Dadone
and Grossman’s work [49, 51]. We will show in Section 4.7.3.1 that part of the improvement
brought by the AGCS method does not come exclusively from addressing the multi-value
problem. Rather, it arises from the CCST reconstruction of the solution in ghost cells placed
in the fluid, which acts as a pseudo-wall function, enabling more accurate gradient predictions
near the wall streamline in regions of high dimensionless curvature. A detailed explanation
of the method follows.

4.6.1 IB Preprocesing

The steps undertaken during the preprocessing phase of the method are detailed below. This
phase primarily focuses on setting up the necessary triplets, i.e, the ghost cells, and their
corresponding image and wall points.

1. First, a line-of-sight algorithm [19] is used to distinguish solid and fluid cells. Figure 4.5a
displays the nature of each cell.

2. Then, the signed distance field from the IB, ϕ, is computed. Note that the location of
the IB is defined by the level-set ϕ = 0. Then normal field n⃗ϕ is computed following
Eq. 4.22. The signed distance and the normal direction, which has been materialized
with streamtraces, are displayed in Fig. 4.5b. Similarly, the derivatives of the normal
field are obtained in order to calculate the curvature (Eq. 4.23). In 3D simulations,
the curvature depends on the velocity direction, so its value must be updated during
the simulation.

3. The next step is to identify the ghost cells. Typically, two rows of ghost cells are
positioned within the solid; however, in the present method, some fluid cells around
the interface of the solid may be considered as ghost cells. These exceptions are outlined
in detail below:

• In high-curvature regions, and where the geometry is locally convex, the solution
is improved by adding ghost cells in the fluid zone. Cells are considered locally
convex if they meet the local dimensionless curvature criterion κ∆x > 1/10. Note
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that the criterion is mainly geometry-base and that the arbitrary value of 1/10
will be justified later, in Section 4.7.1.2. In Fig. 4.5c, these additional cells are
those located in the white fluid zone, which indicate that they meet the criterion
for dimensionless curvature.

• If the thickness of a body narrows and there is insufficient space to place four
ghost cells, some ghost cells must account for both sides of the body. Following
the approach proposed by Nakahashi [118], ghost cells are added into the flow
region to mitigate the multi-value problem. In Fig. 4.5c, these additional cells
are those located in the dark fluid zone, which indicate that, despite they don’t
meet the criterion for dimensionless curvature, they are added to alleviate the
multi-value problem.

As will be demonstrated in Section 4.7.3, these cells significantly enhance the solution
without increasing the complexity of the algorithm.

4. Then, the front surface is determined at the fringe of the ghost cells. In some regions
the wall may coincide with this front, potentially leading to numerical inconsistencies.
To mitigate this issue, a minimum distance, typically set as a fraction of the cell size,
is required. Numerical experiments suggest that the method is not highly sensitive to
the distance of the image points to the wall, as will be shown in Section 4.7.3.1. The
image points are obtained by projecting, following the normal field n⃗ϕ, the centers of
the ghost cells onto the front, while the wall points are the projections onto the wall.
Figure 4.5d displays the IB triplets as well as the front surface, which is represented by
a blue solid line.

5. Finally the interpolation data for image points are computed (donor cell indices and
weights). In the present approach, the interpolation is achieved by a 2nd-order Lagrange
interpolation. The interpolation stencil consists of two cell centers in each direction
surrounding the image point, i.e., 4 points are used for 2D simulations, while 8 points
are required for 3D simulations.

At the conclusion of the preprocessing stage, all cells of the grid are classified as computed
cells, ghost cells, or non-computed cells, where solution is not obtained. It is important to
note that non-computed cells are those for which obtaining a solution is unnecessary, as they
do not influence the remainder of the simulation domain.
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(a) (b)

(c) (d)

Figure 4.5 Close-up view near the top horn of the manufactured iced geometry (dashed-
dotted line) around the GLC305 airfoil (solid line), illustrating the IB preprocessing steps.
Ghost cells are indicated by red circles, wall points by green diamonds, and image points by
blue squares.

4.6.2 IB Conditions

The CCST method is used to enforce the immersed boundary conditions. Unlike other
ghost-cell methods [49, 51], in this approach, the image point of each ghost cell is not located
symmetrically with respect to the immersed boundary, as illustrated in Fig. 4.6.

Consequently, the non-penetration condition (Eq. 4.11) must account for the different signed
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Figure 4.6 Ghost cell used in an IB simulation to impose the boundary conditions. Immersed
boundary is represented in a dashed dot thick line and solid cells in dark gray.

distances between the image point and the ghost cell relative to the wall, that is,

vn
GC

= α

β
vn

IP
, (4.25)

where α = a⃗ · n⃗ and β = b⃗ · n⃗ are the signed distance between the wall point to the ghost cell
and to the image point respectively, with a⃗ and b⃗ displayed in Fig. 4.6.

The application of the normal momentum relation (Eq. 4.12) and normal entropy conserva-
tion (Eq. 4.13) is straightforward:

pGC = pIP − ρIP(vτ
IP

)2κw(β − α), (4.26)

ρGC = ρIP

(
pGC

pIP

)1/γ

. (4.27)

However, the total enthalpy conservation (Eq. 4.14) requires additional considerations. Since
the normal velocity component does not necessarily take the same value for the ghost cell and
the image point (Eq. 4.25), these variables must be taken into account in the total enthalpy
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conservation equation:

(vτ
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)2 = (vτ
IP

)2 + (vn
IP

)2 + 2γ
γ − 1

(
pIP

ρIP

− pGC

ρGC

)
−
(
α

β
vn

IP

)2

. (4.28)

Note that under certain conditions the term −
(
α
β
vn

IP

)2
may become predominant in Eq. 4.28.

This dominance may result in a non-physical solution for the tangential velocity at the ghost
cell ((vτ

GC
)2 < 0), and instead, a symmetrical value is used: vτ

GC
= vτ

IP
. However, such

circumstances are extremely rare and are typically confined to points where the velocity at
the image point aligns with the surface normal. For instance, in the case of the flow around
the cylinder discussed in Section 4.7.1.1, this phenomenon occurs in only four ghost cells
across all studied meshes: two in the leading-edge region and two in the trailing-edge region.

4.6.3 IB Post-Processing

In contrast to body-fitted approaches, extracting the flow fields directly at wall boundaries is
not straightforward when using IBMs. Different methods can be used to obtain the solution
at the nodes of the discrete surface. In this approach, the same interpolation technique used
to derive the value of the image point is employed, i.e., a 2nd-order Lagrange interpolation.

To perform the interpolation, all cells in the interpolation stencil for each node of the discrete
surface must be classified as either computed or ghost cells. However, since the present
method may place some ghost cells in the fluid domain, the two rows of the ghost cells and
the non-computed cells may locally be shifted away from the solid region. There may thus
be instances where non-computed cells are included in the interpolation stencil. An example
is illustrated in Fig. 4.7, where the discrete surface is represented by a dashed dot thick line.
In this figure, cell A is not initially required to be a ghost cell, as no fluid cell includes it
in its computational stencil. However, during the post-processing step, all wall nodes within
the dashed square require its information for interpolation. For this reason, the flow state
variables of cell A are determined by treating it as a ghost cell, meaning its values are derived
from its associated image and wall points.

4.7 Numerical Results

The current method demonstrates a degree of flexibility that makes it suitable for various
applications; however, it has been primarily designed for conducting multi-step icing simu-
lations. These simulations present several noteworthy aspects. First, the initial geometry,
without any ice accretion, is well-known and has been extensively studied, allowing for easy
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Figure 4.7 Classification of a non-computed cell (A) as a ghost cell for post-processing inter-
polation.

access to pre-existing volume meshes of the wing. In addition, ice typically accumulates on
a limited region of the wing, such as the leading edge in single-element airfoil simulations,
leaving much of the geometry unchanged. Finally, the aerodynamic solver is often integrated
with other simulations, such as the droplet trajectory module, requiring the meshes to be
easily transferable between different codes. While many IBMs are employed with Cartesian
meshes, it is advantageous here to use body-fitted meshes for the clean initial geometry and
apply the IBM only in the localized region around the ice accretion, as has been successfully
applied in previous studies [61, 89].

In this section, the performance of the Adaptive Ghost-Cell-Surrounding method is presented
across various test cases. First, two verification cases are analyzed, where the new approach
is studied in detail on Cartesian meshes: the flow around a two-dimensional cylinder and
a sphere. These cases are used to confirm that second-order accuracy in space is achieved.
Next, two real-world applications of icing simulations are examined to validate the method.
The first case involves a manufactured iced geometry, based on a GLC305 airfoil, which
features two horns near the leading edge. This case shows the interest of the AGCS method.
The final case study focuses on an iced shape around a three-dimensional swept wing.

In the following simulations, convergence is assessed using the L2 and L∞ norms of the
density, momentum, and energy residuals.
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4.7.1 Verification Case 1: Flow Around a Cylinder

The effectiveness of the present method on 2D Cartesian grids has been thoroughly evaluated
by examining the subsonic, compressible, and inviscid flow around a cylinder. The analysis
assumes a freestream Mach number of M∞ = 0.38, leading to a peak Mach number of about
0.92 on the cylinder’s surface. This case has previously been studied in other immersed
boundary methods for 2D simulations [49, 185].

A set of five meshes is created (see Table 4.1), with D/∆x values of 10, 20, 40, 80 and 160,
where D represents the cylinder’s diameter and ∆x denotes the Cartesian cell size of the inner
region. For each mesh, the refined central region extends horizontally and vertically 2.5D,
ensuring improved resolution in critical areas. Beyond this region, the grid cells increase
progressively in size, resulting in a coarser mesh that effectively minimizes the total number
of cells required for the simulation. The far-field boundary is 20 diameters from the cylinder.
Figure 4.8 presents a partial view of the mesh with cell size D/∆x = 20. Additionally, to
minimize errors associated with geometric discretization, the cylinder surface is represented
using 2,048 points. For the results presented below, the residuals are converged to 10−8 using
a CFL number of 2.

D/∆x Total number of cells
10 3,200
20 6,400
40 25,600
80 102,400
160 409,600

Table 4.1 2D cylinder case: mesh parameters.

4.7.1.1 Mesh Convergence

To evaluate the accuracy of the IBM, the method’s order of convergence, p, is determined
using the finest meshes with grid resolutions of 40, 80, and 160. Due to the cylinder’s constant
curvature along its surface, κ = 2/D, no ghost cells are located within the fluid region for
the meshes considered. This occurs because the local curvature values in these grids do not
meet the established criterion (κ̃ ≥ 1/10).

The evaluation of the order of convergence focuses on analyzing three key variables across
the selected grids. According to other ghost-cell methods [49, 51], the root mean square
(RMS) of the dimensionless velocity normal to the surface, ⟨ṽn⟩, is used. In addition, the
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Figure 4.8 2D cylinder case: partial view of the mesh with cell size D/∆x = 20.

Mach number at the leading edge Mle and at the trailing edge Mte are also employed. It is
important to note that the three variables of interest tend toward zero, allowing their values
to be interpreted as the corresponding errors. These three parameters are plotted in Fig. 4.9.
The results indicate that the asymptotic region of convergence has been attained.

The observed order of convergence p, derived from the errors of two meshes [1], is expressed
as follows:

p = ln(Eh2/Eh1)
ln(r21)

, (4.29)

where Ehi
represents the error associated with mesh i, and r21 = ∆x2/∆x1 denotes the re-

finement factor. In this case, for two consecutive meshes r21 = 2. The convergence orders
observed from the last three, p40−160, and the last two, p80−160, meshes are reported in Ta-
ble 4.2. Despite some oscillations in the ⟨ṽn⟩ curve, the observed order of convergence closely
aligns with the theoretical value of p = 2.

Mle Mte ⟨ṽn⟩
Order p40−160 1.98 1.96 1.83
Order p80−160 1.99 1.98 2.28

Table 4.2 2D cylinder case: observed order of convergence using the present IBM.
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Figure 4.9 2D cylinder case: mesh convergence using the present IBM.

4.7.1.2 Local dimensionless curvature criterion

The objective of this subsection is to justify the election of κ̃ ≥ 1/10 as the curvature-based
criterion of the AGCS method. Although the cylinder is a relatively simple geometry, it
allows to analyze the impact of the value used in the local dimensionless curvature criterion.
Due to its constant curvature, there exists a cell size at which the transition occurs from the
GC-surrounding method, where the first row of ghost cells is positioned on the fluid side, to
the GC-in-solid method, where all ghost cells are placed within the solid. By adopting the
threshold value of the dimensionless curvature κ̃ = 1/10, the smallest cell size where ghost
cells are still placed on the fluid side corresponds to D/∆x = 20.

To conduct this research, the RMS of two variables are chosen to carry out this study: the
dimensionless velocity normal to the wall and the normalized surface total pressure error,

p̃t − 1 = pt − pt,∞
pt,∞

. (4.30)

The convergence of each error is shown in Fig. 4.10.

Concerning the normal velocity error, GC-surrounding provides better results for all meshes,
as it involves a larger number of ghost cells, and therefore, reducing the discretization error
of the boundary. For the studied meshes, the total number of ghost cells of both methods
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(a) Surface normal velocity error

(b) Total pressure error

Figure 4.10 2D cylinder case: mesh convergence using different methods. Solid lines refer to
GC-in-solid, dashed lines to GC-surrounding, and “X” marks to AGCS.

are presented in Table 4.3. In this context, Fig. 4.10a further validates the previous dis-
cussion, illustrating the trends observed in the normal velocity error and confirming that
GC-surrounding performs better than the GC-in-solid method, especially for the coarser
meshes.

Mesh, D/∆x 10 20 40 80 160
GC-in-solid 48 108 220 444 900

GC-surrounding 68 136 264 536 1068

Table 4.3 2D cylinder case: number of ghost cell for the studied meshes for the GC-in-solid
and GC-surrounding methods.

Regarding the total pressure error, Fig. 4.10b highlights the importance of transitioning
to the GC-in-solid method as the mesh resolution increases. For meshes with cell sizes
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D/∆x ≤ 20, the GC-surrounding method exhibits lower total pressure error. In contrast, for
finer meshes (D/∆x > 20), the GC-in-solid method presents better performance. Based on
the results of this case, the criterion for considering locally convex cells has been established,
κ̃ ≥ 1/10. However, it is important to note that this value is not an absolute optimum, as the
optimal threshold depends on various aspects of the simulation, including the geometry, the
slope limiters employed, and the free-stream conditions, among other factors. Furthermore,
additional simulations with slight variations in the transition value for complex geometries
have demonstrated that the results are not particularly sensitive to these changes. Moreover,
it has also been observed that total enthalpy conservation improves when using the GC-in-
solid approach.

In Section 4.7.3.1, a high-curvature 2D geometry is studied, demonstrating the advantage of
positioning ghost cells in high-curvature regions within the fluid.

4.7.2 Verification Case 2: Flow Around a Sphere

To further verify the performance of the present IBM, we analyze the subsonic, compressible,
and inviscid flow around a sphere. This case examines a freestream Mach number of M∞ =
0.52, producing a peak Mach number of approximately 0.89 at the sphere’s surface, at x = 0
[51].

For this case, three grid resolutions with D/∆x values of 16, 24, and 32 are used (see Ta-
ble 4.4), where D represents the diameter of the sphere and ∆x is the size of the Cartesian
cells in the refined region around the sphere. The computational domain extends 10D in each
direction, ensuring negligible influence of the outer boundary on the flow near the sphere.
The central refined region spans 1.5D in each direction around the sphere, providing higher
resolution close to the surface, while grid cell sizes progressively increase in the outer regions
to reduce computational cost.

D/∆x Total number of cells
16 512,000
24 1,728,000
32 4,096,000

Table 4.4 3D sphere case: mesh parameters.

The sphere’s surface is represented by 14,406 quadrilaterals to ensure high accuracy in geo-
metric discretization. Residuals are converged to a value of 10−8 for all simulations, using a
CFL number of 2.
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The convergence rate of the present IBM is evaluated again by examining ⟨ṽn⟩, Mle and
Mte. These variables, once more, tend toward zero, allowing their values to serve as error
measures. Figure 4.11 presents the convergence behavior for these three parameters.

Figure 4.11 3D sphere case: mesh convergence using the present IBM.

The convergence orders p are calculated again based on the errors obtained from two pairs
of meshes and are presented in Table 4.5. The results show that p ≈ 2 is achieved for each
variable, aligning with the second-order accuracy expected of the method.

Mle Mte ⟨ṽn⟩
Order p16−32 1.90 1.81 1.92
Order p24−32 2.06 1.87 1.99

Table 4.5 3D sphere case: observed orders of convergence using the present IBM.

4.7.3 Application Case 1: Flow Around an Iced Airfoil.

In this section, the flow around an artificially defined iced GLC305 airfoil is examined. The
geometry replicates characteristic double-horn shapes observed in experimental studies, such
as Case 242 from the 1st Ice Prediction Workshop (IPW) [86]. The analysis considers subsonic
flow at a freestream Mach number M∞ = 0.25 and zero angle of attack, α = 0. Please, note
that the shape created is intentionally slightly non-symmetrical to represent a more realistic
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case. Specifically, the small difference between the upper and lower horns results in a higher
intensity of the suction peak in the lower horn. For all simulations performed in this case,
the residuals converge to 10−6, using a CFL number of 2.

Two types of mesh are analyzed: body-conforming and non-conforming. The body-conforming
meshes, also referred as Body-Fitted (BF) meshes, represent the ideal case for an IBM, as
the cells align with the geometry, avoiding the multi-value problem (Fig. 4.12 top). These
meshes not only provide a reference solution for comparison, but also allow for a detailed
examination of the effect of identifying certain fluid cells as ghost cells in regions of high di-
mensionless curvature near the wall. The non-conforming meshes, also referred as Immersed
Boundary (IB) meshes, demonstrate a practical application in ice accretion simulations (Fig.
4.12 bottom). As previously mentioned, a body-fitted mesh of the clean airfoil, without ice,
is utilized. In addition, the mesh size is kept constant in the normal direction to the wall
for a distance of approximately 10% of the characteristic length, in an attempt to maintain
consistent discretization error.

Figure 4.12 2D iced airfoil case: partial view of the coarse meshes used (∆xle/c = 2 · 10−3).
The ice shape is represented by a thick solid line, while the clean GLC305 airfoil by a thick
dashed line.

For each type of mesh, a family of meshes has been obtained, progressively doubling the
number of cells in each direction. The parameters are presented in Table 4.6, where ∆xle/c

represents the non-dimensional mesh size at leading edge (c is the chord length), and N the
total number of cells. Figure 4.12 provides a comparison of both mesh types for a given size.
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Mesh name ∆xle/c NBF NIB
Coarse 2 · 10−3 40,888 43,560

Medium 1 · 10−3 163,552 174,240
Fine 5 · 10−4 654,208 696,960

Very fine 2.5 · 10−4 2,616,832 -

Table 4.6 2D iced airfoil case: mesh parameters. NBF and NIB represent the total number of
cells for the body-fitted and immersed boundary meshes, respectively.

4.7.3.1 Solution on Body-Conforming Meshes

The application of a classic wall boundary condition for a body-conformal mesh is obtained
using two layers of ghost cells within FastS solver. In this case, the GC-in-solid approach
replicates the classic boundary condition. However, applying the AGCS method on these
meshes allows for isolating the impact of placing certain ghost cells within the fluid domain,
as most of the other parameters remain constant. Notably, the number of triplets remains
unchanged regardless of whether the ghost cells are placed in the solid or fluid regions.
Additionally, due to the mesh conformity to the geometry, no cell encounters the multi-
valued problem.

First, a reference solution is obtained. Next, the solution obtained using the AGCS method
is presented. Finally, a detailed comparison is made between the AGCS solution and that of
the GC-in-solid method.

Reference Solution
The very fine body-conforming mesh is used to obtain a reference solution. Specifically, the
distribution of the pressure coefficient on the iced profile has been selected as the variable
for analysis. However, achieving a converged solution in such complex geometries presents
significant challenges, even for inviscid flows and body-conforming grids [89]. For the very
fine grid, the mesh size is sufficiently small to consider all the cells around the wall locally
flat. Consequently, the dimensionless curvature criterion is not met, and all ghost cells are
positioned within the solid domain. In other words, the AGCS and GC-in-solid methods
become equivalent, yielding identical solutions. In addition, the slope limiters could be
deactivated while still achieving a solution with residuals converging to 10−6 on the fine
meshes. Compared to the fine mesh, the differences in the two minimum pressure peaks are
minimal, as shown in Fig. 4.13 allowing the very fine solution to serve as the reference, which
will be used henceforth to assess the level of accuracy of the compared methods.
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Figure 4.13 2D iced airfoil case: Cp convergence on body-conforming meshes. 2nd order
solution without slope limiters.

AGCS Solution
When using the coarsest meshes, slope limiters are essential to ensure both flow attachment
and solution convergence. In this study, the minmod slope limiter has been selected, and it
will be applied consistently in all subsequent analyses and results presented, unless explicitly
mentioned.

Figure 4.14 illustrates CP distribution around the leading edge of the geometry. Notably,
regardless of the mesh resolution employed, the flow remains attached to the curved surface,
indicating the robustness of the computational approach in preserving the physical charac-
teristics of inviscid flow.

Comparison of AGCS and GC-in-solid
Next, the AGCS and GC-in-solid methods are compared. The study aims to exclusively
analyze the influence of the position of the ghost cells. By applying the same boundary
conditions (CCST), there are indeed only two parameters that change: the location of the
ghost cells and their corresponding image points. Therefore, three simulations are conducted
which vary the location of the ghost cells and their image points, as presented in Table 4.7
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Figure 4.14 2D iced airfoil case: partial view of the flow field CP using the fine body-
conforming mesh (∆xle/c = 5 · 10−4). 2nd order AGCS solution with slope limiters.

and Fig. 4.15. Note that an intermediate method is used for the comparison, and it is
referred to as GC-in-solid-AIP, where AIP stands for Adaptive Image Points. This method
facilitates a direct assessment of the influence of image point placement when compared to
the GC-in-solid approach. Similarly, when compared to the AGCS method, the focus shifts
to evaluating the impact of ghost cell positioning on the results.

GC-in-solid GC-in-solid-AIP AGCS
GC solid solid based on κ̃
IP fringe of solid cells based on κ̃ based on κ̃

Table 4.7 2D iced airfoil case: position of the ghost cell and image points for each performed
simulation.

For the AGCS method, the number of ghost cells in the fluid zone is 17, 30, and 16 for the
coarse, medium, and fine meshes, respectively.

The pressure coefficient distribution of the three simulations are displayed in Figure 4.16. Two
key conclusions can be drawn from the results. First, the solutions of GC-in-solid and GC-in-
solid-AIP show only minimal differences, confirming that the image point location does not
significantly affect accuracy. This is primarily because, beside GC-in-solid-AIP uses image
points farther away from the wall to fulfill the ghost cells, the CCST boundary conditions
account for this distance, leading to comparable values. In contrast, a more pronounced
impact is observed when varying the position of the ghost cells, with the improvements
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(a) GC-in-solid (b) GC-in-solid-AIP (c) AGCS

Figure 4.15 2D iced airfoil case: triplets in body-conforming meshes. Ghost cells are repre-
sented by red circles, wall points by green diamonds, and image points by blue squares.

introduced by the AGCS method being particularly significant. This enhancement is evident
not only at the suction peak but also in the region downstream of the horns (x/c > 0).
Notably, for a given mesh resolution, the AGCS solution achieves an error comparable to
that obtained with the GC-in-solid method on the next finer mesh. As the mesh size is
reduced, the discrepancy between solutions decreases, as a smaller percentage of cells satisfy
the dimensionless curvature criterion.

In addition to the position of the ghost cells and image points, an indirect influence between
the simulations may arise from the spatial discretization and the activation or non-activation
of the slope limiters. To make sure that the improvement comes exclusively from the position
of some ghost cells in the fluid, it has been decided to deactivate the MUSCL reconstruction,
assuming piecewise constant values within the cells and achieving a first order solution. The
same conclusions can be drawn in this case, as shown in Fig. 4.17. Once again, the AGCS
method demonstrates a significant improvement, and the differences between GC-in-solid
and GC-in-solid-AIP are further reduced.

It can be concluded that reconstructing the values of selected fluid cells using CCST boundary
conditions enhances the accuracy compared to directly solving the Euler equations numeri-
cally on high-curvature regions when using coarse meshes.

Since the CCST method is based on the normal momentum relation (Eq. 4.10), an additional
analysis is conducted to assess whether the discretized Euler equations solution of the AGCS
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(a) Coarse (b) Medium (c) Fine

Figure 4.16 2D iced airfoil case: CP convergence around the leading edge on body-conforming
meshes. 2nd order solution.

(a) Coarse (b) Medium (c) Fine

Figure 4.17 2D iced airfoil case: CP convergence around the leading edge on body-conforming
meshes. 1st order solution.

method results in reduced errors in pressure gradient estimations compared to the GC-in-solid
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method. To this end, the error in the dimensionless normal pressure gradient,

∆(n⃗ · ∇⃗p̃) = |(n⃗ · ∇⃗p̃) − (n⃗ · ∇⃗p̃)veryF ine|, (4.31)

is analyzed, where the pressure is expressed in terms of its freestream value, p̃ = p/p∞. Note
that the very fine solution is not available at the centers of the coarse grid cells. Therefore,
interpolation has been employed to facilitate the comparison of the data. Figure 4.18 displays
the error field on the coarse body-conforming mesh around the leading edge. The MUSCL
extrapolation is used with the minmod slope limiter again. The results indicate a significant
reduction in error at the horn tips when employing the proposed method (see Fig. 4.15c).
In this region, the maximum value obtained by GC-in-solid is ∆(n⃗ · ∇⃗p̃) ≈ 45, while AGCS
provides a much lower value ∆(n⃗ · ∇⃗p̃) ≈ 22.

(a) GC-in-solid (b) AGCS

Figure 4.18 2D iced airfoil case: dimensionless pressure gradient error field on the coarse
body-conforming mesh (∆xle/c = 2 · 10−3). 2nd order solution.

The pressure gradient is therefore more accurately represented by Eq. 4.10 than by the
solution of the Euler equation on coarse meshes. The CCST approach can thus be viewed
as a pseudo wall function, which obtains more accurate values of the pressure gradient in
high-curvature cells when the discretization error is large.

Following the pressure error analysis, the error in entropy, s, should also be assessed, as
entropy should be conserved throughout the computational domain due to the lack of heat
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sources and external forces in the presented inviscid flow. The entropy error is calculated
relative to the freestream conditions

∆s = s− s∞

s∞
, (4.32)

where p∞ = 100kPa and T∞ = 273.15K are used for the reference state.

Figure 4.19 illustrates the contours for the entropy error, again for both methods on the coarse
body-fitted mesh. Similar to the pressure gradient error, the GC-in-solid method exhibits
larger entropy errors downstream of the horns, with a maximum error of ∆sGC-in-solid = 0.014.
In contrast, the AGCS method significantly reduces the entropy error in these critical regions,
achieving a maximum error of ∆sAGCS = 0.007, and providing a smoother and more consistent
error distribution throughout the computational domain.

(a) GC-in-solid (b) AGCS

Figure 4.19 2D iced airfoil case: entropy error around the leading edge on the coarse body-
conforming mesh (∆xle/c = 2 · 10−3). 2nd order solution.

Based on the previous observations, it can be concluded that, in body-conforming meshes,
the AGCS method is more accurate and better suited for geometries with high curvature,
particularly when applied to coarser meshes. Next, the solution using immersed boundary
meshes will be analyzed in detail.
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4.7.3.2 Solution on Immersed Boundary Meshes

A more relevant test case for icing application involves the treatment of the iced shape as
an immersed boundary. A crucial parameter in this area is the location of the triplets.
Figure 4.20 illustrates it positions for the studied meshes. In coarse meshes (Fig. 4.20a)
accurately representing geometry is challenging, leading to a high likelihood of multi-valued
cells. Introducing additional cells within the fluid zone alleviates this issue. When the mesh
is sufficiently refined (Fig. 4.20b), multi-valued cells are avoided, and the only criterion for
placing ghost cells in the fluid is the local curvature. Further refinement (Fig. 4.20c) causes
cells to be treated as locally flat, resulting in most of the ghost cells being placed in the solid.

(a) Coarse (b) Medium (c) Fine

Figure 4.20 2D iced airfoil case: triplets in immersed boundary meshes. Ghost cells are
represented by red circles, wall points by green diamonds, and image points by blue squares.

The CP distributions of the three meshes using the AGCS method are presented with red
dashed lines in Fig. 4.21. Again, solutions are obtained assuring that the residuals converge
to 10−6. The minimum CP values are accurately captured even on the coarsest meshes,
although a slight offset is present at the location where this value is obtained. As the mesh is
refined, the solution converges towards the reference solution. In the finest mesh, the errors
in the pressure peaks at the upper and lower horns are below 1%.

Comparing the present method with the GC-in-solid IBM is challenging, mainly due to the
lack of a mechanism in this study to handle multi-value cells. For the coarse mesh, the
improvement observed with the present method stems from two key factors. First, there is
a reduction in the number of cells classified as multi-value. For instance, on the coarsest
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mesh, GC-in-solid encounters the multi-value problem on 14 ghost cells, whereas AGCS only
involves one. Additionally, as previously demonstrated, positioning ghost cells within the
fluid zone in regions of high local curvature enhances the solution. For the other meshes,
the GC-in-solid method does not encounter any multi-value cell, so the improvement with
the present method is entirely attributable to a more accurate representation of the pressure
gradient normal to the wall around the horns.

(a) Coarse (b) Medium (c) Fine

Figure 4.21 2D iced airfoil case: CP converge around the leading edge using immersed bound-
ary meshes. 2nd order solution.

For the fine mesh, the pressure coefficient CP field around the horns is shown in Fig. 4.22
and can be compared to the results of the body-conforming mesh simulation (see Fig. 4.14).
It is noteworthy that, despite the use of coarse meshes and the complexity of the geometry
studied, all solutions obtained exhibit attached flow.

4.7.4 Application Case 2: Flow Around an Iced Wing.

The last application case deals with a NACA0012 30-degree swept wing, with a chord length
of 0.914 m. This case was part of the baselines of the 1st Ice Prediction Workshop [86], where
it is referred to as case 361. The ice shape was obtained through a simulation similar to
that described in [61], at a free-stream Mach number of M∞ = 0.32 and zero degree angle
of attack. This new geometry, obtained by simulating icing conditions, is symmetrical with
respect to the plane z = 0 and it is shown in Fig. 4.23, where the dark region represents the
ice accretion and the lighter region corresponds to the wing surface.
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Figure 4.22 2D iced airfoil case: partial view of the flow field CP using the fine immersed
boundary mesh (∆xle/c = 5 · 10−4). 2nd order AGCS solution.

Figure 4.23 3D iced wing case: 3D view of the ice shape.

The IB simulation is performed from the volume mesh of the clean NACA0012 wing with a
total number of cells of 1,839,712. The mesh size around the leading edge is ∆x = 3 · 10−3,
and it is maintained over a distance approximately equal to 10% of the chord length to the
wall. The farfield extends around 4 wing-root chords in all directions. A symmetry boundary
condition is enforced at the wing-root y = 0 plane. The three-dimensional ice shape consists
of 25,664 faces and will be used as an input to perform the immersed boundary simulation.
The body-conforming mesh, used for comparison, is built from the ice shape, keeping the
mesh resolution of ∆x = 3 · 10−3 at the wall.
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The AGCS preprocessing is conducted and the total number of ghost cells obtained is 43,077.
Figure 4.24 shows a three-dimensional view of the triplet arrangement around the ice shape.
The close-up view highlights the triplets located between two sections of the wing, focusing on
the leading edge. Ghost cells are marked with red circles, wall points with green diamonds and
image points with blue squares. Note that the studied iced shape is relatively smooth, typical
of low-temperature ice accretion simulations, so the local dimensional curvature criterion is
not met. Therefore, no ghost cells are positioned within the fluid region.

Figure 4.24 3D iced wing case: triplets in the immersed boundary mesh.

Local views of the solution pressure coefficient field at the wall is shown in Fig. 4.25. Fig-
ure 4.26 compares the Cp distribution obtained with the presented AGCSmethod (shown in
red circles) and the body-fitted solution (shown in black lines), considered as references, at
three spanwise locations, y/b =0.25, 0.5 and 0.75, where b is the wing span. The results
show good agreement between the presented method and the reference solution. The AGCS
method reproduces the Cp distribution with remarkable precision, demonstrating its ability
to capture the complex flow features over a swept wing. These results highlight the effec-
tiveness of the AGCS method and further validate its potential as a reliable tool to perform
inviscid simulations in aerodynamics.
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Figure 4.25 3D iced wing case. The color contours represent the distribution of pressure
coefficient Cp over the iced wing surface, with the Cp isolines displayed on the y = 0 plane.

Figure 4.26 3D iced wing case: pressure coefficient Cp curves at the three spanwise locations,
y/b =0.25, 0.5 and 0.75.
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4.8 Conclusion

The paper presents a novel ghost-cell method, the Adaptive Ghost-Cell-Surrounding (AGCS)
method, for simulating compressible, inviscid flows around complex, rigid geometries. The
key principle of the method lies in locally allowing the first row of ghost cells to be placed
in the fluid and the second row in the solid region, based on a local dimensionless curvature
criterion. Additionally, the approach employs the Curvature-Corrected Symmetry Technique
(CCST) boundary conditions, which account for wall curvature. In regions of high dimen-
sionless curvature, where ghost cells are placed in the fluid, the CCST method acts as a
pseudo-wall function, improving gradient predictions near the wall streamline. This im-
provement could also make the method advantageous for applications involving body-fitted
meshes.

The investigation of compressible inviscid flow around a 2D cylinder and a 3D sphere demon-
strates second-order accuracy on Cartesian meshes. Furthermore, the method was applied to
iced shapes. The flow around a manufactured double-horn was extensively analyzed, com-
paring the effect of marking fluid cells as ghost cells in both body-conforming and immersed
boundary meshes. Results show that the present method converges faster and generates less
entropy compared to a classical IBM where the ghost cells are placed in the solid. Finally,
subsonic inviscid flow over an iced 30-degree swept wing was simulated. The computed iso-
bars on the wing surfaces and surface pressure distributions at various spanwise locations
exhibit excellent agreement with body-fitted mesh results. These comparisons validate the
ability of the proposed ghost-cell method to accurately model three-dimensional flow around
complex ice shapes in practical applications.

Overall, the proposed method meets the original motivations as a robust and flexible simu-
lation tool for predicting inviscid flows around complex geometries. Future work will focus
on adding coupling procedures for viscous-inviscid interactions.
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CHAPTER 5 THREE-DIMENSIONAL SIMPLIFIED INTEGRAL
BOUNDARY-LAYER METHOD

Computing the boundary layer is necessary to obtain the diffusive transfer quantities on the
wall, specifically the convective heat transfer coefficient htc and the recovery temperature
Tr. These variables are used in the ice accretion solver to compute the wall convective heat
flux Q̇c and the evaporated mass flow-rate ṁevs. Since the airflow solver generally does not
provide htc and Tr directly, different strategies for estimating these quantities can be found
in the literature [140, 141].

The first approach consists in performing two Navier–Stokes simulations with different isother-
mal wall boundary conditions, Tw,1 and Tw,2. Based on the wall heat fluxes Q̇w,1 and Q̇w,2,
which are provided by the airflow solver, the computation of htc and Tr is performed by
solving the following system:

Q̇w,1 = htc (Tw,1 − Tr) (5.1a)

Q̇w,2 = htc (Tw,2 − Tr) (5.1b)

where both the heat transfer coefficient and the recovery temperature are assumed to be
independent of the wall thermal condition. This approach is, however, demanding in terms
of computational cost, as two Navier–Stokes simulations are required per ice accretion step.

An alternative method requires only one Navier-Stokes simulation, significantly reducing
the computational cost. In this approach, the recovery temperature is determined from the
recovery coefficient rrec:

Tr = Te

(
1 + rrec

γ − 1
2 M2

e

)
, (5.2)

where γ = 1.4 is the heat capacity ratio of air. Te and Me are the temperature and the Mach
number at the edge of the boundary layer and can be computed from the isentropic relations
[141]. The recovery coefficient is obtained from the Prandtl number of air, Pr = 0.7. For a
laminar boundary layer, rrec = Pr1/2. while in turbulent regime rrec = Pr1/3.

Another option is the use of integral boundary layer models. This approach is mandatory
when performing inviscid airflow simulations [176], but it has also been used in viscid simu-
lations [141].

Solving the inviscid flow in ice accretion simulations, as chosen in the present work, pro-
vides significant advantages, as it reduces computational cost and the complexity of mesh
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generation, as fine mesh cells near the wall are not required in contrast to Navier-Stokes
simulations. Among the different ice accretion codes, LEWICE [152] and IGLOO2D [176],
are well-known examples that rely on simplified integral boundary layer methods. Addition-
ally, ONERA has developed an integral boundary layer method (BLIM2D and BLIM3D) as
part of Charlotte Bayeux’s thesis [13]. It has been applied to two- and three-dimensional ice
accretion simulations [14, 23], improving the solution compared to the 2D simplified integral
method and extending its applicability to the simulation of Ice Protection Systems (IPS).
However, its application to certain 3D configurations still faces robustness issues.

Therefore, this chapter focuses on the extension of the simplified integral boundary layer
method to three-dimensional simulations as a simple alternative to the use of BLIM3D.
Section 5.1 provides an introduction to the modeling of the boundary layer, presenting the
classical models commonly employed in integral solvers. Section 5.2 describes the proposed
3D simplified integral boundary layer method, detailing its formulation and implementation.
Finally, Section 5.3 presents validation test cases, where the method is evaluated in two cases:
the steady flows over a flat plate without pressure gradient and over a rough cylinder.

5.1 Introduction to the Modeling of the Boundary Layer

The solution of the complete viscous fluid flow around a body poses significant mathematical
challenges, particularly for complex geometries. A major advancement in this field was made
by Prandtl in 1904 [135], who demonstrated that for sufficiently high Reynolds numbers,
viscous effects dominate only in a thin region near the wall, while the outer flow behaves
as an ideal (inviscid) fluid. This insight fundamentally decoupled flow analysis into two
regimes, as shown in Fig. 5.1. Within this near-wall region, known as the boundary layer,
viscous forces remain comparable to inertial forces. The velocity at the wall is zero due to
the no-slip condition, while at the boundary with the outer flow, it matches the velocity
of the ideal fluid. Strictly speaking, the velocity within the boundary layer asymptotically
approaches that of the ideal fluid only at an infinite distance from the wall, leading to some
ambiguity in the definition of boundary layer thickness. A common convention is to define
this thickness as the distance from the wall at which the longitudinal velocity reaches 99%
of the outer flow velocity. An analogous concept applies to the thermal boundary layer,
where temperature gradients become significant near the wall, as presented by Prandtl in
1910 [136]. In this region, the wall temperature is typically prescribed, and the temperature
gradually approaches that of the outer flow with increasing distance from the wall.
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Figure 5.1 Two-dimensional momentum boundary layer.

5.1.1 Prandtl Equations

The Prandtl equations can be easily derived from the two-dimensional, incompressible, steady
Navier-Stokes equations through an order-of-magnitude analysis. By assuming that the
boundary-layer thickness is small relative to all other characteristic flow dimensions, the
following conditions hold within the boundary layer [158]:

u ≫ v (5.3)
∂u

∂y
≫ ∂u

∂x
,
∂v

∂x
,
∂v

∂y
(5.4)

where, u and v are the x- and y-components of the fluid velocity in the curvilinear coordinate
system, used for convenience (see Fig. 5.1). In these coordinates, x is the distance measured
along the body surface from the forward stagnation point, and y is the normal distance from
the body. The coordinates (x, y) are not Cartesian unless the body surface is flat, but they
behave as such for all practical purposes if y is small compared to the radius of curvature R
of the surface, which is assumed to be of the order of the body’s characteristic length.

One key result of performing the order-of-magnitude analysis on the y-momentum equation
is that the pressure remains constant in the normal direction to the wall. As a result, its
value is the same as the pressure outside the boundary layer, typically given by the inviscid
flow solution pe. This leads to the following form of the Prandtl equations:

∂u

∂x
+ ∂v

∂y
= 0, (5.5)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂pe

∂x
+ 1
ρ

∂τxy
∂y

, (5.6)

where ρ is the density and τxy represents the shear stress in the xy-plane. For laminar flows,
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it is defined as τxy = µ∂u
∂y

, while for turbulent flows, it is given by τxy = µ∂u
∂y

− ρ⟨u′v′⟩. The
term ⟨u′v′⟩ represents the Reynolds stress, which quantifies the turbulent momentum flux
due to the correlation between the velocity fluctuations in the x and y directions.

Similarly, to characterize the temperature distribution, T , within the boundary layer, the
thermal energy equation can be simplified under the boundary layer assumptions (see, e.g.,
[158]). This yields:

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
= −∂ϕ

∂y
+ Φν (5.7)

where cp is the isobaric specific heat capacity, ϕ is the heat flux, and Φν is the viscous
dissipation function. Analogously to the shear stress, the heat flux is defined generally as

ϕ = −k∂T
∂y

+ ρcp⟨T ′v′⟩ (5.8)

with k representing the thermal conductivity. The second term, ρcp⟨T ′v′⟩, accounts for
turbulent heat transport and therefore is absent in laminar flow regimes.

Equations 5.5, 5.6, and 5.7 define the Prandtl boundary-layer equations, which are valid
for steady and incompressible flows. Here, as ρ and µ are assumed constant, the dynamic
and thermal equations can be decoupled, thereby simplifying their solution. Adopting a
more general formulation broadens the range of problems that can be addressed; however, it
sacrifices the ability to solve each equation independently.

In certain cases, analytical simplifications can be introduced, enabling simple solutions of the
laminar boundary-layer equations. For instance, in specific flow configurations, self-similar
solutions can be derived. Notable examples include the Blasius solution (1908) [25], which
describes the steady flow over a flat plate at constant velocity and the Falkner-Skan solutions
(1931) [65] for flows with pressure gradients. Similarly, Eckert (1942) [58] extended this
approach to thermal boundary layers, deriving a solution for heat transfer over a flat plate.
A more detail explanation can be found in [77]. These similarity solutions offer valuable
insights and serve as benchmarks for validating more complex numerical methods, such as
integral boundary layer solvers, which are employed in cases where analytical solutions are
not possible.

5.1.2 Integral Methods for the Dynamic Boundary Layer

Integral boundary layer methods, initially developed by von Kármán [83] and Pohlhausen
[134], are a practical and efficient option due to their simplicity and ease of implementation,
when compared to differential methods [78, 79]. Integral methods are based on the idea that
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it is not necessary to know the detailed velocity profile within the boundary layer to calculate
key parameters such as the skin friction coefficient. Instead, they solve the integral form of
the governing equations, derived by integrating the Prandtl equations in the direction normal
to the wall across the entire boundary layer thickness.

The most commonly used integral equation is the von Kármán equation, obtained by in-
tegrating Eq.5.6 in the y direction (see, e.g., [77]). This equation allows the definition of
unambiguous boundary-layer thickness: the displacement thickness δ1 and the momentum
thickness δ2, typically referred to as θ:

δ1 =
∫ ∞

0

(
1 − u

ue

)
dy (5.9)

θ =
∫ ∞

0

u

ue

(
1 − u

ue

)
dy (5.10)

The displacement thickness δ1 quantifies the effective displacement of the outer streamlines
due to the presence of the boundary layer, while the momentum thickness θ measures the
momentum decrement caused by the boundary layer. For an incompressible flow, with no
flow through the wall, the von Kármán equation reads:

Cf

2 = dθ

dx
+ θ

(
2 + δ1

θ

)
1
ue

due

dx
(5.11)

where Cf/2 = τw/(ρeu
2
e) is the local skin-friction coefficient, τw = µ(∂u

∂y
)w is the wall shear

stress, and the pressure gradient term has been expressed in terms of the outer velocity,
−1
ρ
dpe
dx

= ue
due
dx

. The ratio δ1
θ

is usually referred to as the shape factor H.

Other integral equations, such as the kinetic energy integral equation, are found in the
literature [13, 145].

Whether using the von Kármán equation or multiple integral equations, the system always
contains more unknowns than equations. Consequently, all integral methods rely on one or
more additional relations, known as closure relations, to solve the system of equations. These
closure relations can be classified into three categories depending on whether they are based
on self-similar solutions, empirical correlations, or assumed velocity profiles. Moreover, their
formulation varies depending on the nature of the flow, whether laminar or turbulent.

The following sections provide a concise overview of two integral methods for solving the
viscous boundary layer in laminar and turbulent regimes. The first is the well-known Thwaites
integral method [173], designed for laminar boundary layers, while the second is a simplified
integral approach proposed by Kays and Crawford [77] for the turbulent boundary layer.
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These classical methods are widely used in ice accretion codes, such as IGLOO2D [176] and
LEWICE [152]. A comprehensive review of other models employing one or two integral
equations with various closure relations is available in Bayeux’s thesis [13].

5.1.2.1 Thwaites Method for the Laminar Boundary Layer

Thwaites method [173] is an integral approach for solving the laminar boundary layer by
simplifying the von Kármán equation through empirical assumptions. The method introduces
the dimensionless parameter

T = θ

δ4
(5.12)

where δ4 = µue/τw represents the shear thickness of the boundary layer. By substituting this
definition into the von Kármán equation (Eq. 5.11), the momentum integral equation can
be rewritten as

ue

ν

d (θ2)
dx

= 2 [T − (H + 2)λ], (5.13)

where λ is defined as
λ = θ2

ν

due

dx
. (5.14)

Thwaites method is based on the assumption that both T and the shape factor H depend ex-
clusively on λ. To further simplify the equation, Thwaites introduced a linear approximation
for the right-hand side of Eq. 5.13:

ue

ν

d (θ2)
dx

= a− bλ (5.15)

where the coefficients proposed by Thwaites are a = 0.44 and b = 5.68. This formulation
allows Eq. 5.15 to be integrated analytically, yielding an expression for the momentum
thickness evolution within the boundary layer:

θ(s) = 0.664
ue(s)2.84

√∫ s

0
νe (s′)ue (s′)4.68 ds′. (5.16)

Once θ(x) is computed for a given external velocity ue, λ(x) can be determined from Eq.
5.14. The remaining boundary layer properties can then be derived from λ, if T (λ) and H(λ)
are known. Thwaites [173] numerically defines these functions by matching their values to
the Blasius solution for a flat plate, presenting the results in tabular form. Alternatively,
Cebeci and Cousteix [41] provide analytical expressions for these functions, derived from
various exact solutions.
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5.1.2.2 Simplified Integral Method for the Turbulent Boundary Layer

The simplified integral method proposed by Kays and Crawford [77] solves the von Kármán
equation by assuming a predefined velocity profile within the turbulent boundary layer and
considering a constant free-stream velocity. While this assumption limits its applicability
to turbulent flow over a flat plate, it has been shown to provide reliable results even for
accelerating or mildly decelerating flows.

The method is based on a power-law representation of the velocity profile within the turbulent
boundary layer, given by:

u+ = 8.75y1/7, (5.17)

where the dimensionless velocity and wall-normal coordinate are defined as:

u+ = u

uτ
, y+ = yuτ

ν
, with uτ =

√
τw

ρ
. (5.18)

This profile, which has been validated for y+ < 1500 and zero pressure gradient, allows the
velocity distribution to be expressed as a function of the wall-normal coordinate y and the
wall shear stress τw:

u√
τw/ρ

= 8.75
y

√
τw/ρ

ν

1/7

(5.19)

At the edge of the boundary layer (y = δ), the velocity u equals the external flow velocity ue.
Substituting this condition into Eq. 5.19 yields an expression for the wall shear stress τw:

τw = 0.0225ρu2
e

(
δue

ν

)−1/4

(5.20)

From this, the local skin-friction coefficient can be derived as:

Cf

2 = τw

ρu2
e

= 0.0125Re−1/4
θ , (5.21)

where Reθ = ueθ
ν

is the Reynolds number based on the local momentum thickness θ. To
obtain this expression of the local skin-friction coefficient, the relation θ/δ = 0.097 has been
used [77], derived by substituting Eq. 5.17 into Eq. 5.10.

Once τw is known, the velocity profile u(y) is fully defined within the boundary layer. The
displacement thickness δ1 and the momentum thickness θ can then be computed as functions
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of the boundary layer thickness δ by evaluating the integrals in Eqs. 5.9 and 5.10:

δ1 = 0.125δ and θ = 0.097δ (5.22)

These results can be substituted in the von Kármán equation (Eq. 5.11), yielding an ordinary
differential equation with θ as the only unknown:

dθ

dx
+ 3.29 θ

ue

due

dx
= 0.0125

(
ueθ

ν

)−1/4

(5.23)

This equation can be further rearranged into a form that is more convenient for integration:

d
(
θ2.5u4.11

e

)
= 0.0156u3.86

e ν0.25dx, (5.24)

which yields the following expression for the momentum thickness:

θ = θtr +
(

0.016
u4.11

e

∫ s

str
ν0.25

e u3.86
e ds′

)0.8

(5.25)

where str is the laminar-turbulent transition point, and θtr is the corresponding momentum
thickness. However, many applications assume that the boundary layer is fully turbulent,
i.e., integrating from s = 0. This assumption introduces minimal errors when the region of
interest is sufficiently far from the stagnation point.

The remaining boundary layer properties, such as Cf/2 or δ, can then be derived from θ(x).

5.1.3 Integral Methods for the Thermal Boundary Layer

Integral methods for the thermal boundary layer follow a similar approach to those used
for the dynamic boundary layer. They rely on integrating the energy equation (Eq. 5.7) in
the wall-normal direction and introducing closure relations to solve the resulting system of
equations. In this context, the variable of primary interest is typically the Stanton number
St, which characterizes the convective heat transfer at the wall:

St = htc

ρecpue
, (5.26)

The simplest method to calculate the Stanton number is the Reynolds analogy. This analogy
is derived from the study of incompressible flow over a flat plate with no pressure gradi-
ent. When the Prandtl number is equal to unity, the non-dimensional momentum equation
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becomes equivalent to the non-dimensional thermal equation, with the same boundary con-
ditions. This implies that the Stanton number and the friction coefficient become equivalent:

St = Cf
2 . (5.27)

Additionally, the resolution of the thermal boundary layer can be slightly modified to account
for other Prandtl numbers, leading to the following expression:

St = Cf

2 Pr
−2/3. (5.28)

While this analogy is applicable to both laminar and turbulent boundary layers, its assump-
tions are highly restrictive. As a result, more accurate models are often employed, especially
in ice accretion applications. For laminar flows, the method proposed by Smith and Spald-
ing [162] is widely used. For turbulent flows, most methods account for surface roughness,
making models for smooth thermal boundary layers less common in practice. In this section,
we focus on the Smith and Spalding method for laminar flows, while the turbulent ther-
mal boundary layer is addressed in Sec. 5.1.4, where a variation of the Reynolds analogy
accounting for rough walls is presented.

5.1.3.1 Smith and Spalding Method

In ice accretion codes, the most commonly used approach to determine the heat transfer
coefficient in the laminar region is the method proposed by Smith and Spalding [162]. This
method gives a solution for the conduction thickness ∆cond = k

htc
based on similarity solutions

for Falkner-Skan flows. This allows to obtain a heat transfer solution that only depends on
the external velocity, meaning that the explicit solution of the dynamic boundary layer is
not required. For the air (Pr = 0.7), the Stanton number is given by:

St = 0.2926νe

ue Pr

√
u2.87

e /
∫ s

0
νeu1.87

e ds′ (5.29)

This expression, however, exhibits a singularity at the stagnation point. As a consequence,
stagnation point corrections are required to ensure a robust solution.

5.1.4 Roughness effects in boundary layers

Wall roughness primarily affects the near-wall region of the turbulent boundary layer, which
leads to significant changes in wall-related quantities, such as the skin friction and the heat
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transfer coefficients, which depend on the gradients of velocity and temperature at the wall.
Additionally, the wall roughness also affects the laminar-turbulent transition, promoting the
development of a turbulent boundary layer.

y

Boundary layer

Surface
roughness

Ice

Wing

s

k

y=δ

u(y)

Figure 5.2 Two-dimensional momentum boundary layer over a rough iced surface.

In ice accretion modeling, it is essential to consider the effects of surface roughness for two
primary reasons. First, ice accretion naturally leads to the formation of rough surfaces.
Second, the heat transfer coefficient, which is strongly affected by surface roughness, plays a
critical role in accurately predicting the ice shape.

Despite its importance, the surface roughness induced by ice remains poorly understood.
Experimental data on ice surface roughness are scarce, and most computational models rely
on the equivalent sand-grain roughness as a global parameter. In this approach, the roughness
height k is treated as a constant, typically denoted as ks. However, this global parameter
fails to capture the inherently non-homogeneous nature of ice-shape roughness, which has
led to the development of local roughness models. Yet, such models are seldom employed
in ice accretion simulations, as demonstrated by the 1st IPW[86], where only two out of 24
participants incorporated a local roughness model.

The determination of the equivalent sand-grain is, however, not straightforward [74]. Some
ice accretion codes employ different definition of ks and may vary across the studied case.
For instance, a common practice in ONERA’s codes [142, 176] is to define the equivalent
sand-grain roughness height as:

ks = c/1000, (5.30)

where c is the chord of the 2D airfoil. For 3D wings, although using c as a reference length is
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less straightforward, the numerical experiment have shown satisfactory results when applied
to constant-chord swept wings [142].

5.1.4.1 Laminar-turbulent transition on rough walls

Surface roughness affects the laminar-turbulent transition by promoting earlier transition
due to increased disturbances in the boundary layer. Even small roughness elements can
generate localized flow instabilities, leading to earlier breakdown of laminar flow. In icing
applications [101, 141, 152, 176], the laminar-turbulent transition criterion is usually based
on the roughness Reynolds number [183]:

Rek(xtr) = ukk

νe
= 600. (5.31)

The flow is considered laminar at lower values of the roughness Reynolds number and tur-
bulent at higher values. In Eq. 5.31, uk represents velocity at the height of the roughness
elements k . While k is usually replaced by the equivalent sand-grain height ks, different ve-
locities are used to define the roughness Reynolds number. IGLOO2D [176] uses the velocity
at the outer edge of the boundary layer, uk = ue, whereas LEWICE3D [152] and Makkonen
[101] propose modeling the velocity profile using a fourth-order polynomial, allowing uk to be
computed as uk = u(ks). Despite the difference in the definition of the roughness Reynolds
number, both codes have shown similar transition points.

5.1.4.2 Skin Friction Coefficient on Rough Walls

When the boundary layer has been found turbulent, i.e. Rek > 600, the wall behaves as a fully
rough surface [77]. A key feature of such surfaces is that the skin friction coefficient becomes
independent of the Reynolds number, indicating that viscous effects are no longer significant.
Instead, the wall shear stress is primarily governed by pressure drag acting on individual
roughness elements. Following a similar approach to that described in Section 5.1.2.2, Kays
and Crawford [77] proposed the following expression of the skin friction coefficient on fully
rough surfaces:

Cf, rough

2 = 0.168
ln2 (864θ/ks)

(5.32)

This expression is commonly used in ice accretion models based on integral boundary layer
solvers [101, 176]; however, a slightly more accurate result can be obtained by avoiding certain
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simplifications, which yields:

Cf, rough

2 = 0.168
ln2 (864θ/ks + 2.568)

(5.33)

This alternative expression is also employed in several icing simulation codes [141, 152].

Whether using Eq. 5.32 or 5.33 to estimate the skin-friction coefficient, the determination
of the turbulent momentum boundary layer thickness over a rough surface is nontrivial. As
a result, it is a common practice to employ the value computed for smooth-wall conditions
[101, 152, 176]. However, the validity of this assumption remains debatable.

5.1.4.3 Heat Transfer Coefficient on Rough Walls

A widely used approach to estimate the heat transfer coefficient in turbulent boundary layers
is based on a modified Reynolds analogy that accounts for surface roughness. The formula-
tion, proposed by Kays and Crawford [77], is given by:

St = Cf, rough

Prt +
√
Cf, rough/Stk

(5.34)

where Prt = 0.9 is the turbulent Prandtl number of air and Stk is the roughness Stanton
number, given by:

Stk = C
(
k+

s

)−α
Pr−β (5.35)

where k+
s is the equivalent sand-grain roughness height ks made non-dimensional in wall

coordinates (see Eq 5.18). Furthermore, C, α and β are constants that depend on the type
of roughness and are typically determined from experimental data. Commonly used values
in ice accretion models [101, 141, 176] are:

C = 1.92 α = 0.45 β = 0.8 (5.36)

5.2 3D Simplified Integral Boundary Layer Solver

The 3D simplified integral boundary layer method described here builds upon the physical
2D models outlined in the previous section. The method incorporates laminar-turbulent
transition based on the local roughness Reynolds number. In the laminar regime, the heat
transfer coefficient is calculated using the Smith and Spalding formula. In the turbulent
regime, the modified Reynolds analogy is used to estimate heat transfer on rough surfaces.
For this, the momentum thickness is evaluated across the entire surface, using the Thwaites’
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method in the laminar region and the simplified approach by Kays and Crawford in the
turbulent region. The overall procedure is summarized in Algorithm 1, which presents the
main steps of the 3D simplified integral method. This approach is implemented in the HTC3D
module of the IGLOO3D framework.

Algorithm 1 3D Simplified Integral Method
1: Read data from aerodynamic solution
2: Compute recovery temperature

Eq. 5.2
3: Identify the local flow regime

Eq. 5.31
4: Propagation of flow regime
5: Compute streamline integrals

Eqs. 5.16, 5.25 and 5.29
6: Compute the laminar momentum thickness

Eq. 5.16
7: Propagate the laminar momentum thickness from the laminar-turbulent front
8: Compute the turbulent momentum thickness

Eq. 5.25
9: Compute the heat transfer coefficient according to the local flow regime

Eq. 5.29 or Eq. 5.33

While the original models are formulated for two-dimensional boundary layers, the present
approach extends their applicability to three-dimensional geometries by applying the method
along surface streamlines, under the assumption that the boundary layer remains locally two-
dimensional in this direction. This approximation circumvents the complexity associated with
modeling cross-flow inside the boundary layer (see Figure 5.3). It is important to note that
cross-flow outside the boundary layer is accounted for through the external velocity field;
only the cross-flow inside the boundary layer is neglected in this model. For slightly swept
wings, this procedure is generally adequate; however, it may lose accuracy in the presence
of strong pressure gradients normal to the streamline direction, as typically encountered in
turbomachinery or on helicopter blades, which are beyond the scope of the present study
[99]. In addition, the current approach assumes a uniform wall temperature, which limits its
applicability to cases without heated surfaces.

5.2.1 Numerical Method

From a numerical perspective, the main challenge stems from the fact that the face centers of
the surface do not align with the streamline direction. This contrasts with two-dimensional
simulations, where all nodes lie on a single plane. As a result, computing quantities along
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Figure 5.3 Schematic of a three-dimensional boundary layer on a generic swept wing.

inviscid wall streamlines becomes more complex, particularly in the evaluation of curvilinear
integrals and in the propagation of the momentum thickness from the laminar–turbulent
transition front. The procedures adopted to perform these calculations are described below.

5.2.1.1 Computation of Integrals Along Streamlines

The numerical method presented in [141], which is used to compute integrals along stream-
lines, is outlined below. In a general form, the integrals of Eqs. 5.16, 5.25 and 5.29 can be
written, as:

ψ =
∫ s

0
ϕ(s′) ds′ =

∫ s

0
dψ′ (5.37)

where s is the local value of the curvilinear abscissa along the streamline and ϕ is the function
to be integrated. Note that for ϕ(s) = 1, the value of the curvilinear abscissa is obtained
(ψ =

∫ s
0 ds′).

Moving along the streamline, the time step is given by

dt = κdψ (5.38)

where κ is a unit scalar such that its units are compatible with the pseudo time step. Equa-
tion 5.38 can be expressed as dt = κϕds, allowing the following definition of a local propa-
gation velocity:

V⃗ψ = ds
dt e⃗s = 1

κϕ(s) e⃗s (5.39)

where e⃗s = u⃗e
||u⃗e|| , consistently with the fact that integrals are computed along streamlines.
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Moreover, defining κ = 1, Eq. 5.38 implies:

dψ
dt = 1 = ∂ψ

∂t
+ V⃗ψ · ∇⃗ψ (5.40)

which can be expressed in a conservative form:

∂ψ

∂t
+ ∇⃗ ·

(
ψV⃗ψ

)
= 1 + ψ∇⃗ · V⃗ψ (5.41)

obtaining a hyperbolic PDE that can be solved with a FVM. The methodology presented in
[141] is followed, which employs a basic upwind flux scheme based on the orientation of the
local velocity V⃗ψ, and uses the Gauss-Seidel algorithm to achieve the steady-state solution.

Specific treatment is made in the vicinity of the stagnation point. Three conditions are tested
to check if a face i is a stagnation point:

• For all the computed edges of face i, the flux is outgoing from face i.
• For at least one edge of face i, the flux is outgoing on both sides of the edge.
• For one edge of face i a boundary condition is detected.

Figure 5.4 illustrates the stagnation point detection on a discretized 30º swept NACA 0012
wing, where two faces meet the required conditions. It should be noted that the exact location
of the stagnation point is unknown. As a result, all integral calculations start from one of the
center of the faces identified as stagnation points. This introduces an error of order O(∆x)
in the local value of the curvilinear abscissa, which may also affect the integral calculations.

X
Y

Z

00
0.5

1Stagnation point

Figure 5.4 Illustration of the stagnation point detection and the velocity streamtraces for a
swept wing.
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5.2.1.2 Stagnation Point Correction

Integral boundary layer methods often require stagnation point corrections. Whether in
2D solvers, where the surface is represented by nodes, or in 3D solvers, where the surface
is represented by faces, the node or face corresponding to the stagnation point defines the
starting point of the integration. As a result, singularities arise at these locations when
numerically solving Eq. 5.29, and an alternative approach is required to estimate the heat
transfer coefficient.

For instance, in the model of Makkonen [101] the Stanton number is assumed to be

St = Re−1/2Pr−1, (5.42)

an expression that has also been adopted in LEWICE [152]. Alternatively, the present method
assumes a linear velocity profile in the vicinity of the stagnation point:

ue(s) = U0s, (5.43)

where U0 is a constant determined from the neighborhood of the face. This assumption allows
for an analytical solution of Eq. 5.29:

htc = ρecp
0.2926

Pr

√
2.87U0νe, (5.44)

thus avoiding the singularity at the stagnation point.

Similarly, the momentum boundary layer thickness can be obtained by substituting Eq. 5.43
into Eq. 5.16:

θ =
√

0.077νe

U0
(5.45)

5.2.1.3 Propagation Along the Streamline Direction

To compute the momentum boundary layer thickness in the turbulent zone, each turbulent
face must know the value of the momentum thickness in the laminar-turbulent transition
θtr. To achieve this, a procedure similar to that used for the computation of integrals along
the streamline is applied. In this case, θtr remains constant in the streamline direction, and
therefore:

dθtr

dt = 0 = ∂θtr

∂t
+ V⃗s · ∇⃗θtr (5.46)
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where the propagation velocity is V⃗s = e⃗s. This equation can also be expressed in conservative
form as:

∂θtr

∂t
+ ∇⃗ ·

(
θtrV⃗s

)
= θtr∇⃗ · V⃗s (5.47)

which is again computed using the FVM of [141].

Figure 5.5 shows a zoomed-in view of the leading edge near the wing tip of a 30º swept NACA
0012 wing. In the figure, θtr is obtained at a turbulent face (black circle) by propagating the
momentum thickness values from the laminar cells adjacent to the laminar-turbulent front
(red circles) in the streamwise direction (streamtrace).

Laminar

Turbulent X
Y

Z

θ
tr
: 9.00E­05 1.03E­04 1.16E­04 1.29E­04 1.42E­04 1.56E­04

1.25E­041.19E­04

1.22E­04

Figure 5.5 Numerical propagation of the momentum thickness of the boundary layer at the
laminar-turbulent front.

A similar approach is employed to propagate the flow regime. The laminar–turbulent tran-
sition criterion used (Eq. 5.31) allows transitions from turbulent to laminar flow along a
streamline, that would be unphysical. To prevent this, the flow regime is instead propagated
downstream from the stagnation point, ensuring that each face has access to upstream in-
formation. Consequently, if any upstream cell along the streamline has been identified as
turbulent, downstream laminar faces are reclassified as turbulent to maintain physical con-
sistency. From a numerical perspective, this is achieved by propagating a flag variable that
defines the flow regime at each face.

5.3 Validation Test Cases

The validation of the simplified integral method is focused on assessing its ability to predict
the heat transfer coefficient. However, obtaining reliable reference values for this quantity
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is particularly challenging, even in two-dimensional configurations. In recent ice prediction
workshops [84, 86], large discrepancies have been reported among the results of different
ice accretion codes for the same test case (see Fig. 5.6). In some instances, the predicted
heat transfer coefficients differed by more than a factor of five between participants. These
discrepancies have underscored the difficulty of validating heat transfer predictions, which is
partly due to the fact that this quantity is rarely measured directly in experiments.
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Figure 5.6 Convective heat transfer predictions for two cases from ice prediction workshops.

As a result of these difficulties, most boundary layer codes rely on highly simplified cases for
the validation of heat transfer predictions. In this context, two validation cases are considered
in this section. The first focuses on flow over a flat plate with zero pressure gradient, a classical
test that enables well-defined comparisons in both laminar and turbulent regimes. The second
involves flow around a rough cylinder, a case commonly used in previous integral boundary
layer validations [101, 152]. This configuration introduces more complex flow features and
the influence of surface roughness, providing an additional benchmark for evaluating the
method’s performance under more realistic, challenging conditions. Additionally, Chapter 6
presents ice accretion simulations for some baseline cases of 1st IPW, where the predicted
heat transfer is further validated by comparing the results with those of the participants. As
a possible future validation case, the flow over a swept cylinder could be considered [40].
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5.3.1 Flat Plate Without Pressure Gradient

The boundary layer flow over a flat plate without pressure gradient is one of the most classical
and extensively studied cases in the literature. This case is the simplest and represents a
fundamental step for validating the simplified integral method developed, as its solution is
well established. A flat plate of length L is considered, placed at zero angle of attack in a
viscid, incompressible flow. The steady flow is parallel to the x axis with free stream velocity
U∞. In this case, the outer inviscid velocity is constant, that is dpe/dx = 0. Two different
studies will be conducted to analyze the accuracy of the presented method in laminar and
turbulent regimes.

The sensitivity of the solution to mesh orientation is also investigated by considering two
types of surface meshes. The first configuration is a structured mesh of size N × 1, in which
all face centers are aligned with the free-stream velocity direction. This type of meshes is
referred to as aligned mesh and is shown in Fig. 5.7.
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Figure 5.7 Two-dimensional aligned mesh for the flat plate (N = 50).

A more challenging surface mesh, referred to as the rotated mesh, is also considered. In this
case, a square flat plate of dimensions L/

√
2 × L/

√
2 is discretized using N ×N faces. The

mesh is then rotated 45° about the z-axis, as shown in Fig. 5.8. This configuration ensures
that the diagonal of the square matches the plate length L, enabling a direct comparison
between both mesh orientations.
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Figure 5.8 Two-dimensional rotated mesh for the flat plate (N = 50).

5.3.1.1 Laminar Boundary Layer on a Flat Plate

The solution of the laminar boundary layer on a flat plate is well established in the litera-
ture, with the Blasius solution serving as one of the most widely used references. Based on
similarity solutions to the Prandtl equations, the evolution of the dynamic boundary layer is
given by (see, e.g. [13]):

H = 2.591; δ1

s
= 1.721√

Res
; θ

s
= 0.664√

Res
; Cf

2 = 0.332√
Rex

(5.48)

Simulation parameters are set at a Reynolds number of 6.4 · 104 for a 1m flat plate length
at p∞ = 101325Pa and T∞ = 303.15K. To maintain laminar flow within the boundary
layer, the equivalent sand-grain height is selected to ensure the laminar-turbulent transition
criterion is not met. Four numerical simulations are performed with increasing number of
faces N = 50, 100, 200, 400. Figure 5.9 presents the numerical solution obtained with the
aligned meshes, compared to the Blasius solution. The agreement between both solutions
indicates good convergence. To further assess the robustness of the method, Fig. 5.10 shows
a comparison between the solutions obtained with aligned and rotated meshes, both using
N = 100. The results indicate that the method is not highly sensitive to mesh orientation.

For the laminar thermal boundary layer, the Reynolds analogy (see Eq. 5.28) allows to obtain
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Figure 5.9 Laminar boundary layer on a flat plate. Convergence of the momentum boundary
layer thickness with increasing number of faces N using aligned meshes.

an analytical solution, following the same strategy as that used by Blasius for the dynamic
boundary layer. The reference heat transfer coefficient can thus be expressed as:

htc = ρecpuePr−2/3 0.332√
Rex

(5.49)

Figure 5.11 compares the numerical results with the Reynolds analogy, showing good agree-
ment overall. Minor discrepancies are observed near the stagnation point. Although these
differences are small, it is worthwhile to understand their origin. They can be mainly at-
tributed to two factors. First, as discussed in Section 5.2.1.1, there is an error of order O(∆x)
in the computation of the curvilinear abscissa. For this case, since the stagnation point is
located at x = 0, the associated error amounts to ∆x/2, which explains the downstream
shift observed in the numerical results. Second, in the present case, the external velocity is
constant across all faces, ue = U∞, including at the stagnation point. However, the correction
presented in Section 5.2.1.2 assumes a linear velocity profile in the vicinity of the stagnation
point, i.e., ue = U0s, which yields in slightly different values at this face (see Eq. 5.29). Note
that in practical applications, the face corresponding to the stagnation point is expected to
have zero velocity, meaning that this error will not be present.
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Figure 5.10 Laminar boundary layer on a flat plate. Comparison of the momentum boundary
layer thickness obtained with aligned and rotated meshes, both using N = 100.

Besides these discrepancies, the numerical solution captures the overall heat transfer distri-
bution with high accuracy. The agreement with the Reynolds analogy confirms the validity
of the present approach in laminar flow conditions over a flat plate. Additional results using
a rotated mesh are presented in Fig. 5.12, further demonstrating the method’s consistency
with respect to mesh orientation.

5.3.1.2 Turbulent Boundary Layer on a Flat Plate

In contrast to the laminar case, validating the turbulent boundary layer over a flat plate is
more challenging, particularly due to the absence of an analytical solution. Several experi-
ments can be found in the literature that provide measurements of the momentum boundary
layer thickness over smooth walls. However, in the case of heat transfer over rough surfaces,
experimental data are more scarce. For this validation test, we focus exclusively on validating
the boundary layer thickness over a smooth wall. To this end, the experiment conducted by
Weighardt and Tillmann [186] is used, as it has also been employed for validation in previous
boundary layer solvers [13].

The experiment was conducted at atmospheric pressure, on a flat plate of 5 meters in length,
with a constant freestream velocity of 33 m/s and a kinematic viscosity of 1.51 · 10−5 m2/s.
The input data for this test case are listed in Table 5.1.
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Figure 5.11 Laminar boundary layer on a flat plate. Convergence of the heat transfer coeffi-
cient with increasing number of faces N using aligned meshes.
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Figure 5.12 Laminar boundary layer on a flat plate. Comparison of the heat transfer coeffi-
cient obtained with aligned and rotated meshes, both using N = 100.

Again, four simulations are performed with increasing the number of faces using aligned
meshes. Figure 5.13 presents the numerical results compared to the values obtained in the
experiments conducted by Weighardt and Tillmann. The results are highly satisfactory,
even for the coarsest mesh studied, showing a good match with the experimental data. This
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M∞ P∞ (Pa) T∞ (K) L (m)
0.096 101325 294 5

Table 5.1 Turbulent boundary layer on a flat plate. Simulation parameters.

suggests that the method accurately captures the boundary layer growth, even with relatively
low mesh resolution. Further results obtained with the rotated mesh are presented in Fig.
5.14, showing a good agreement with the aligned mesh.
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Figure 5.13 Turbulent boundary layer on a flat plate. Convergence of the momentum bound-
ary layer thickness with increasing number of faces N using aligned meshes.

5.3.2 Boundary Layer on a Rough Cylinder

The study of boundary layer behavior on rough surfaces has been a significant topic in fluid
dynamics research for several decades. In particular, from the 1970s, efforts to understand
how surface roughness influences boundary layer intensified. While most research focused on
the dynamic boundary layer, investigating the thermal boundary layer proved to be more
challenging, and only a few studies addressed this aspect. A key contribution to this field
was Achenbach’s work [5], which explored the effect of surface roughness on heat transfer on
a cylinder. His experiments provided valuable data that helped establish a clearer under-
standing of the impact of roughness on heat transfer, which has since been used to validate
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Figure 5.14 Turbulent boundary layer on a flat plate. Comparison of the momentum bound-
ary layer thickness obtained with aligned and rotated meshes, both using N = 100.

boundary layer solvers in the context of icing simulations. Examples of such codes include
the method developed by Makkonen [101] and LEWICE [152].

The Achenbach experiments were conducted in a high-pressure wind tunnel operating with
air at up to 40 bar and constant temperature, which enabled measurements at high Reynolds
numbers. Specifically, three Reynolds numbers were tested: Re = 4.8 · 104, 2.8 · 105, and
8.8 · 105. The measurements were performed on a 15-cm diameter rough cylinder. The
roughness element height was k = 0.9 mm, and the equivalent sand grain roughness was
ks = 1.35 mm. Results were expressed in terms of the Nusselt number scaled with the square
root of the Reynolds number, Nu/

√
Re. Note that the Nusselt number can be easily obtained

from the Stanton number:
Nu(x) = St(x)RePr (5.50)

In order to perform the numerical simulation, the solution provided by the potential flow
theory introduces significant errors. Instead, slight variations in the pressure and velocity
distribution are considered. The following expressions come from empirical fit, as proposed
by Makkonen [101]:

Cp = (pe − p∞)
0.5ρeU2

∞
= 1 − 2.5 sin2(1.233ϕ(x)) (5.51)

ue = 1.58 sin(1.233ϕ(x))U∞ (5.52)
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where ϕ(x) denotes the angular position of the cylinder, measured from the front stagnation
point.

A structured mesh is generated from a quarter-cylinder geometry, discretized into 100 faces.
Three simulations were carried out, corresponding to the different Reynolds numbers under
study. Figure 5.15 presents the results obtained with the current approach (denoted HTC3D),
compared to the experimental measurements of Achenbach and the numerical results from
Makkonen and LEWICE. Overall, the simplified integral method implemented in HTC3D
yields satisfactory agreement with reference data. At the lowest Reynolds number, both
HTC3D and LEWICE predict a transition around ϕ = 50, whereas no transition is observed
in Achenbach’s measurements or Makkonen’s model. For the other Reynolds numbers, the
HTC3D results are in good agreement with those predicted by Makkonen’s approach.
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Figure 5.15 Boundary layer on a rough cylinder (D = 15 cm, ks = 1.35 mm). Comparison of
numerical and experimental local heat transfer Nu/
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5.4 Conclusions

This chapter has presented a three-dimensional simplified integral boundary layer solver
developed specifically for ice accretion simulations. The method enables the computation
of diffusive transfer quantities, such as the heat transfer coefficient, from inviscid airflow
computations. The approach extends simplified two-dimensional boundary layer methods
to three-dimensional surfaces using a FVM, under the assumption that the flow remains
two-dimensional in the streamwise direction.

The formulation distinguishes between laminar and turbulent boundary layers and incor-
porates the effects of surface roughness. A dedicated numerical treatment has also been
introduced to handle the stagnation region appropriately.

Validation cases have shown that the solver captures the expected trends in heat transfer
distributions when compared to reference solutions. While the method does not resolve
the full boundary layer profile, it yields accurate surface estimates that are crucial for icing
simulations. Further validation is presented in Chapter 6, where the predicted heat transfer
coefficients are compared with results from other codes submitted to recent ice prediction
workshops.
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CHAPTER 6 ARTICLE 2: IMMERSED BOUNDARY METHODOLOGY
FOR 3D MULTI-STEP ICE ACCRETION SIMULATIONS

P. Elices Paz, E. Radenac, G. Blanchard, S. Péron, É. Laurendeau, and P. Villedieu, “Im-
mersed Boundary Methodology for 3D Multi-Step Ice Accretion Simulations,” (submitted to
Journal of Aircraft on 19 June 2025)

6.1 Abstract

In-flight ice accretion poses a significant risk to aircraft safety and performance. Despite ad-
vancements in ice protection systems, aircraft must demonstrate the ability to operate safely
under icing conditions, highlighting the importance of reliable ice accretion simulations. Tra-
ditional multi-step simulations divide the ice accretion process into discrete stages, improving
the accuracy of ice predictions. However, this approach increases computational costs and
reduces automation, as the evolving ice shapes necessitate the generation of new grids. This
paper investigates the application of Immersed Boundary Methods (IBMs) to eliminate the
need for volume remeshing, thereby enhancing the automation of multi-step simulations. The
proposed framework, integrated into the ONERA 3D icing suite IGLOO3D, uses a ghost-cell
method for modeling the airflow and a penalization approach for simulating droplet impinge-
ment, building upon recent work by the authors. By relying on inviscid flow simulations,
the method significantly reduces computational costs; however, boundary layer calculations
are required. To address this, a 3D simplified integral boundary layer solver based on the
resolution of partial differential equations on a surface is presented. Results from three cases
of the 1st Ice Prediction Workshop are presented and analyzed, demonstrating the potential
of IBMs to enhance the efficiency and practicality of 3D ice accretion simulations.

6.2 Introduction

In-flight ice accretion is a well-known hazard to flight safety and performance. It typically
occurs under cold weather conditions, when an aircraft encounters a supercooled cloud. One
of the main results of the presence of this phenomenon is the degradation of the aerodynamic
performance, increasing the drag and reducing the lift, but it also impairs the controllability
of the aircraft as well as the data readout among others. Despite the development of aircraft
ice protection systems, commercial aircraft must be able to prove that they are capable of
flying under icing conditions. Thus, there is a need for ice-accretion modeling. In particular,
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the development of 3D numerical tools is of growing interest, as evidenced by the regular
workshops held on this subject [84, 86].

Numerical simulations of ice accretion typically commence with the premise that the surface
exposure time to icing conditions, texp, significantly exceeds the characteristic time of the
aerodynamic flow. This facilitates the division of the entire phenomenon into distinct modules
(see Fig. 6.1).

Mesh Generation

Airflow Solver

Droplet Solver

Ice Accretion Boundary Layer

Geometry Update

Multi-Layer
(timeloop)

Figure 6.1 Sequential call to modules in multi-step icing simulations.

First, the steady-state aerodynamic flow is solved. Depending on the desired level of fidelity,
this can be done using potential methods, solving the Euler equations, or employing more
precise models like the Reynolds-Averaged Navier–Stokes (RANS) equations. It should be
noted that when performing inviscid simulations, the boundary layer must be solved to feed
the ice accretion simulation. It is a common practice in icing codes to weakly couple these
solvers, i.e., the effect of the boundary layer on the inviscid flow is neglected. Concerning the
results of the 1st Ice Prediction Workshop (IPW), all participants solved the RANS equations,
while only a few participants also studied the use of potential methods (LEWICE [188] and
Multi-Ice [37, 108]) or inviscid flow (IGLOO2D [142, 176]) for 2D simulations. The use of
higher-fidelity techniques, such as Large Eddy Simulation (LES), is rare in the literature
and is restricted to the simulation of some specific physcial phenomena like droplet splashing
but not of the whole ice accretion phenomenon [193]. Next, the trajectories of supercooled
water droplets are typically computed using either an Eulerian or a Lagrangian approach.
Regarding the outcomes of the 1st IPW, half of the participants use one approach while the
remaining half employ the other. Finally, the ice thickness is typically obtained by solving
the Messinger model [106] or an alternative approach like the extended Messinger model
[117] or the Shallow Water Icing Model (SWIM) [26]. Once the ice thickness is known, the
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exposed surface can be deformed through either a Lagrangian displacement of the surface
mesh nodes [188] or through a level-set resolution [28, 90, 131].

In a one-shot simulation, also known as one-step or single-step simulation, the main loop is
only performed once. This is the most cost-effective yet the least accurate method for con-
ducting an ice accretion simulation. One alternative, which enhances the accuracy of the sim-
ulation without a substantial increase in computational cost, is the use of a predictor-corrector
approach [141]. A more commonly used alternative, known as the multi-step method, in-
volves dividing the exposure time into N discrete steps. This allows for the consideration of
variations in both the surrounding flow and the droplet impingement as the ice accretes [176].
As the number of steps increases, so does the computational cost of the simulation, and the
feasibility of automation is hindered. This challenge is predominantly attributed to the in-
tricate task of generating meshes at the beginning of each iteration. Hence, conducting such
simulations, particularly in 3D scenarios, proves challenging. For instance, in the 1st IPW,
only 25% of the participants successfully performed multi-step 3D simulations.

To solve these problems, an efficient alternative is the use of Immersed Boundary Methods
(IBMs) that allows eliminating or, at least, significantly reducing the remeshing phase, which
facilitates the automation of the process. The concept of IBM was developed by Peskin [133]
in 1972 to simulate cardiac mechanisms associated with blood flow. Since then, the use of
IBMs has become an interesting alternative to the usual Body-Fitted (BF) approach when
dealing with complex and/or moving geometries.

Currently, there is a large variety of IBM types [109]. On the one hand, the continuous forcing
approach is characterized by adding a forcing term to the continuous equations. This forcing
term is only activated in the solid domain, although the flow equations are solved in the
whole computational domain. It is an easy approach to implement; nevertheless, the method
generally has a low order of accuracy. On the other hand, the discrete forcing approach
introduces the forcing after the equations are discretized. For this purpose, some geometry
preprocessing is often required, which can become challenging in most cases. Among them,
there is the ghost-cell method, in which the solution is forced into ghost cells in order to
impose the boundary conditions on the immersed boundary (IB).

The use of IBMs for ice accretion simulations, though still relatively limited, is gaining trac-
tion in the field. Several research centers and universities, including CIRA [33, 37, 38],
ONERA [89, 90, 91], Polytechnique Montreal [24] and Strasbourg University [7] have devel-
oped IBM-based frameworks for ice accretion simulations. A summary of these methods and
their key characteristics is presented in Table 6.1.

In a previous publication [61], the authors introduced a new framework for airflow and
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Institution Software Airflow Airflow IBM Droplets IBM Domain
CIRA SIMBA RANS and RANS-LES Discrete Discrete 2D/3D
ONERA IGLOO2D Euler Continuous Continuous 2D
ONERA IGLOO3D Euler Discrete Continuous 2D/3D
Poly. Montreal CHAMPS Laminar NS Discrete Continuous 2D
Uni. Strasbourg NSMB-ICE Laminar NS Continuous Discrete 2D

Table 6.1 Comparison of current ice accretion simulation methods using IBMs.

droplet trajectory calculations in three-dimensional simulations, relying exclusively on im-
mersed boundary methods. This approach combines two distinct techniques: a ghost-cell
method for solving the Euler equations [62] and a penalization method [91] for the droplet
solver. This paper examines the application of these IBMs to three-dimensional in-flight ice
accretion simulations within the IGLOO3D icing suite [141], using a multi-step approach.
Section 6.3 describes the models used for the simulations and details the modifications made
to IGLOO3D. Section 6.4 presents and analyzes ice accretion results for three cases from the
1st IPW. Finally, Section 6.5 discusses some limitations of the proposed methodology.

6.3 Methodology

The development environment is the 3D ice accretion suite, IGLOO3D [141]. Designed with
a modular architecture, this numerical tool enables different solvers to interact with each
other via CGNS file inputs and outputs [112], facilitating all the necessary steps for ice
accretion simulations. It includes several modules, such as those for estimating the heat
transfer coefficient and surface mesh displacement, with the ice accretion module being the
main component.

Regarding the IBMs, two different solvers are employed for the aerodynamics and the droplet
trajectories. The former is computed using the ONERA HPC FastS solver [3]. In particular,
FastS applies the Adaptive Ghost-Cell Surrounding method [62] to solve the Euler equa-
tions. The latter is computed using CEDRE [146], the ONERA’s multi-physics numerical
tool, which includes unstructured solvers for several physical problems (airflow, droplet tra-
jectories, conductive heat transfer, radiative heat transfer, etc.). Among these solvers, the
Eulerian dispersed multiphase flow solver SPIREE [115] is used to solve the penalized droplet
trajectory equations presented in [91].

The remaining modules are used from IGLOO3D [141]. The simplified integral method,
developed in HTC3D, is used for computing the heat transfer coefficient at the wall, de-
rived from the inviscid flow and grounded on assumptions associated with 2D flow [176].
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Serving as the cornerstone of IGLOO3D, the ice accretion module, MESSINGER3D [141],
determines the ice thickness by solving iteratively a Messinger-type mass and energy balance
equation. Finally, LEVELSET3D [141] updates the iced surface from the level-set field. Fig-
ure 6.2 shows the new sequential call to modules, where the modules related to the IBM are
highlighted in red.

Mesh Generation

IB Preprocessing
(CASSIOPEE)

Airflow Solver
(FastS)

Droplet Solver
(SPIREE)

IB Post-processing
(CASSIOPEE)

Ice Accretion
(MESSINGER3D)

Boundary Layer
(HTC3D)

Geometry Update
(LEVELSET3D)

Multi-Layer
(timeloop)

Figure 6.2 Sequential call to modules in multi-step icing simulations using IBMs.

In terms of mesh generation, it is important to highlight that this paper adopts the strategy
shown in [90]. In this approach, the mesh for the entire multi-step simulation is derived from
a BF mesh generated from the clean geometry of the wing. This method entails employing
IBMs exclusively in the icing zone while treating the remainder of the wall as BF. Therefore,
the same volume mesh is employed for all the iterations of the multi-step simulation. In addi-
tion, this mesh must be structured, as mandated by the aerodynamic solver’s requirements.
Concerning the iced surface mesh, it is updated at each iteration and refined in order to keep
the same mesh size when it is deformed.

In the following sections, we discuss the modified modules as well as the advancements in
the HTC3D module, which has undergone further development since its initial presentation
in [141].
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6.3.1 IB Preprocessing

During a multi-step simulation, volume solvers must implicitly define the geometry. This is
usually achieved by establishing a variable that denotes the distance to the iced surface. With
the surface explicitly known, the distance is computed by an orthogonal projection of each
cell center of the volume mesh onto the surface. Additionally, a line-of-slight algorithm [19]
is used to obtain the signed distance ϕ, which enables the distinction between fluid (ϕ > 0)
and solid (ϕ < 0) cells. Finally, the normal vector to the IB n⃗ϕ is required, which can be
obtained from the signed distance field:

n⃗ϕ = ∇⃗ϕ
∥∇⃗ϕ∥

(6.1)

In the presented methodology, these geometric operations are performed using Cassiopee
(CFD Advanced Set of Services In an Open Python EnvironmEnt) [19].

6.3.2 Aerodynamic Solver

This section briefly presents the immersed boundary methodology used to solve the inviscid
flow.

6.3.2.1 Governing Equations

The conservative continuity, momentum, and energy Euler equations are respectively:

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0 (6.2a)

∂ (ρv⃗)
∂t

+ ∇⃗ · (ρv⃗ ⊗ v⃗ + pI) = 0 (6.2b)

∂ (ρE)
∂t

+ ∇⃗ · ((ρE + p) v⃗) = 0 (6.2c)

where ρ is the density, v⃗ is the velocity, p is the pressure, I is the identity tensor and E

is the total energy per unit mass. To complete the system, two additional equations are
required, which will establish thermodynamic relationships between the state variables. For
a calorically perfect gas, the equations are:

p = ρrT, (6.3)

E = r

γ − 1T + ||v⃗||2

2 , (6.4)
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where r denotes the specific gas constant, T the temperature and γ = cP/cV is the ratio of
specific heat coefficients.

The system of Eqs. 6.2 is solved in FastS [3], using a cell-centered finite-volume method
on structured meshes. In the presented simulations, the inviscid fluxes are computed using
a Roe scheme [149] and a second-order MUSCL (Monotone Upstream-centered Schemes for
Conservation Laws) extrapolation [179], without slope limiter. This is accomplished in FastS
by using a stencil of 5 cells in each spatial direction. For temporal discretization, an implicit
second-order backward differentiation formula is applied to ensure stable resolution to steady-
state. The CFL number used in all the simulations is set to 2.

6.3.2.2 The Adaptive Ghost-Cell-Surrounding Method

In body-fitted simulations, ghost cells are added at the boundary to fulfill the calculation
stencils of fluid cells near the boundary. The Ghost-Cell Immersed Boundary Method expands
upon this concept by enabling the definition of boundary conditions in meshes that do not
conform to the solid geometry (see Fig. 6.3).

Body­conforming

Immersed Boundary

Figure 6.3 Comparison of the locations of ghost cells, shown as red circles, in body-conforming
(top) and immersed boundary (bottom) meshes. The boundary of the manufactured ice shape
is represented by the thick black solid line.

In contrast to traditional methods, where the ghost cells are positioned either within the solid
or fluid, the Adaptive Ghost-Cell-Surrounding (AGCS) method [62] places the ghost cells
according to a local curvature-based criterion. Specifically, ghost cells are placed in the fluid
domain if κ∆x > 10, where κ is the local curvature, positive when the center of curvature lies
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within the solid. If this criterion is not met, the ghost cells are instead positioned within the
solid. Additionally, the Curvature-Corrected Symmetry Technique [46] is employed to impose
slip boundary conditions on the ghost cell, accounting for the wall curvature in the normal
momentum equation while ensuring the conservation of total enthalpy and entropy in the
direction normal to the wall. This approach is particularly effective for complex geometries,
such as those typically found on icing applications.

To impose the boundary condition, each ghost cell has an image point, located within the
computational domain, and a wall point, which corresponds to the projection of the ghost cell
center onto the surface. Figure 6.4 illustrates the distribution of triplets (ghost cells, image
points, and wall points) used to enforce the boundary conditions for the 2D manufactured
ice shape of [62].

Figure 6.4 Triplets distribution for the 2D manufactured ice shaped. Ghost cells are repre-
sented by red circles, wall points by green diamonds, and image points by blue squares. Solid
cells are displayed in dark gray.

6.3.3 Droplet Solver

Lavoie et al. [91] introduced the penalization method to solve the droplet trajectory equa-
tions, initially applying it to 2D cases. This approach was later employed in 3D simulations
in [61]. The penalization method modifies the governing equations of the droplet trajectory
by adding penalty terms to enforce boundary conditions. At the impingement zone, where
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the non-dimensional droplet velocity v⃗d and the normal vector to the surface n⃗ϕ have op-
posing directions, i.e. v⃗d · n⃗ϕ ≤ 0, droplets can enter the solid interface. In contrast, when
droplets would re-enter the computational domain from the solid, i.e. v⃗d · n⃗ϕ > 0, a zero-flux
condition is imposed to prevent re-injection. This is achieved by setting α = 0 and v⃗d = 0,
where α is the non-dimensional volume fraction of water.

In the VP-SSO (Volume Penalization Solid Source Off) [91] method, two mask functions are
employed to activate or deactivate the penalization terms in order to enforce the boundary
conditions. First, the conventional mask function χ is used to distinguish between the solid
and fluid regions (see Fig. 6.5a):

χ =

 0 ϕ ≥ 0 (fluid)
1 ϕ < 0 (solid)

(6.5)

Additionally, a second mask function, referred to as droplet mask function χd, differentiates
between the impingement zone and the shadow zone (see Fig. 6.5b):

χd =

 0 αv⃗d · n⃗ϕ ≤ 0 (impingement zone)
1 αv⃗d · n⃗ϕ > 0 (shadow zone)

(6.6)

χ

0

(a)

χ
d

0

(b)

Figure 6.5 Mask function (a) and droplet mask function (b) for the 2D manufactured case.

To ensure the penalization terms are applied exclusively within the solid region, the two mask
functions are combined as displayed in Fig. 6.6.
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χχ
d

0

Figure 6.6 Combined mask function and droplet streamtraces for the 2D manufactured case.

When neglecting the influence of gravity, these equations are as follows:

∂α

∂t
+ ∇⃗ · (αv⃗d) = −χχd

η
α (6.7a)

∂ (αv⃗d)
∂t

+ ∇⃗ · (αv⃗d ⊗ v⃗d) = (1 − χ) CD Red

24 Stk α (v⃗ − v⃗d) −2χχd

η
αv⃗d (6.7b)

where CD is the droplets drag coefficient, Red is the droplets Reynolds number, Stk is the
Stokes number, and η ≪ 1 is chosen small enough such that the penalization terms become
predominant when applied. Here, η is selected as 10−7. In the impingement zone of the solid
region, the physical source terms are deactivated, making the droplet solution independent
of the gas velocity field.

The system of Eqs. 6.7 are solved using SPIREE [115], where the Schiller and Naumann
model for drag computation is employed. The Eulerian droplet-trajectory solver employs
the finite-volume method on unstructured grids. In the simulations discussed in this paper,
a first-order Euler implicit scheme was employed for time discretization and a second-order
spatial discretization was used, employing a Godunov-like scheme [92, 115] and MUSCL
extrapolation.

6.3.4 IB Post-processing

Essential surface data obtained from the volume solvers needs to be transmitted to the surface
solvers during each iteration of the multi-step loop. In contrast to body-fitted approaches,
extracting the flow fields directly at wall boundaries is more complex when using IBMs. Vari-
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ous methods can be employed to obtain the solution at the cell centers of the discrete surface.
In this framework, a second-order Lagrange interpolation is performed using Cassiopee [19].

6.3.5 Boundary Layer

The principal aim of the boundary layer module, HTC3D, is to determine the value of the
convective heat transfer coefficient, which is a key parameter in ice accretion simulations.
In the previous version of HTC3D, this variable was obtained from the results of a RANS
simulation. The current approach introduces a simplified method to derive this value di-
rectly from the inviscid flow solution. This section first outlines the model, highlighting the
key assumptions and simplifications made, followed by a brief explanation of the numerical
methods used, including how the stagnation point is treated. Additionally, the proposed
methodology has been validated against Achenbach’s measurements [5], which provide heat
transfer data for a rough cylinder (see Appendix). This case has been commonly used to
validate integral boundary layer methods, such as those of Makkonen [101] and LEWICE
[152].

In the subsequent section, the typical boundary layer notation is applied, wherein the aero-
dynamic variables are referenced to the outer edge of the boundary layer (·e). The IB post-
processing module supplies these variables in the present icing suite.

6.3.5.1 Simplified Integral Method

HTC3D employs a simplified integral method, based on the work of Trontin et al. [176] for
2D simulations. In the present 3D approach, the effect of transverse flow inside the boundary
layer is neglected, assuming a two-dimensional behavior in the streamwise direction.

The method distinguishes between two different regions: a laminar region, confined to a small
zone in the vicinity of the stagnation point, and a turbulent region, where the roughness of
the surface is taken into account. The laminar-turbulent transition used is based on the
roughness Reynolds numbers [183], Rek. Here it is defined as:

Rek = ksue

νe
> 600 (6.8)

where ks is the equivalent sand-grain roughness, while ue and νe are the velocity and kinematic
viscosity of the airflow at the edge of the boundary layer, i.e. the Euler solution values at
the wall in our case. As in other ONERA’s codes, the value of ks is set to one-thousandth of
the wing chord length.
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In the laminar region, the computation of the heat transfer coefficient relies on the Smith
and Spalding formula [162], expressed as:

htc = ρecpue
0.2926νe

ue Pr

√
u2.87

e /
∫ s

0
νe (s′)ue (s′)1.87 ds′ (6.9)

where cp is the air specific heat capacity at constant pressure, Pr = 0.7 is the air Prandtl
number and s is the curvilinear abscissa, being 0 at the stagnation point.

In the turbulent region, the expression is formulated as follows [152, 176]:

htc = ρecpue
Cf/2

Prt +
√
Cf/2/

(
1.92k+−0.45

s Pr−0.8
) (6.10)

where Cf is the skin friction coefficient, k+
s = ue

√
Cf/2ks
νe

is the non-dimensional sand-grain
roughness height, and Prt = 0.9 is the turbulent Prandtl number. In HTC3D, the skin
friction coefficient is computed as [77, 152]:

Cf

2 = 0.168
ln (864θT/ks + 2.568)2 (6.11)

where θT is the momentum thickness of the turbulent boundary layer; therefore, the dynamic
boundary layer must be solved. In the laminar zone, the Thwaites method [173], originally
developed for 2D flows, is used:

θL = 0.664
u2.84

e

√∫ s

0
νe (s′)ue (s′)4.68 ds′ (6.12)

In the turbulent zone, the approach presented by Kays and Crawford [77] is used. This
method is based on a power-law velocity profile within the turbulent region, allowing to
obtain the momentum thickness as follows:

θT = θtr +
(

0.016
u4.11

e

∫ s

str
νe (s′)1/4

ue (s′)3.86
ds′
)4/5

(6.13)

where θtr is the value of the momentum thickness of the boundary layer at the laminar-
turbulent front following the streamline direction and str is the local value of the curvilinear
abscissa along the streamline from the laminar-transition front.
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6.3.5.2 Numerical Method

From a numerical perspective, the main difficulty of the simplified method lies in the compu-
tation of integrals along the parietal streamline. These integrals are found in Eqs. 6.9, 6.12
and 6.13 and, in a general form, they can be written as:

ψ =
∫ s

0
ϕ(s′) ds′ =

∫ s

0
dψ′ (6.14)

where s is the local value of the curvilinear abscissa along the streamline and ϕ is the function
to be integrated. To compute these integrals, the finite-volume method presented in [141] is
used. In this approach, a pseudo time step dt is defined:

dt = κdψ (6.15)

where κ is a unit scalar such that its units are compatible with the pseudo time step. The
propagation velocity can be then defined locally from the velocity field, u⃗e, consistently with
the fact that integrals are computed along streamlines:

V⃗ψ = ds
dt e⃗s = 1

κϕ(s)
u⃗e

||u⃗e||
(6.16)

This formulation enables Eq.6.15 to be rewritten as a hyperbolic PDE, which can be expressed
in both non-conservative and conservative forms:

dψ
dt = 1

κ
= ∂ψ

∂t
+ V⃗ψ · ∇⃗ψ (6.17a)

∂ψ

∂t
+ ∇⃗ ·

(
ψV⃗ψ

)
= 1
κ

+ ψ∇⃗ · V⃗ψ (6.17b)

Additionally, the value of the momentum thickness of the boundary layer at the laminar-
turbulent front has to be propagated in the turbulent zone following the streamwise direction.
To accomplish this, a procedure analogous to the one used for computing integrals along the
streamline is employed. In this case, θtr remains constant in the streamline direction, and
therefore:

dθtr

dt = 0 = ∂θtr

∂t
+ V⃗s · ∇⃗θtr (6.18a)

∂θtr

∂t
+ ∇⃗ ·

(
θtrV⃗s

)
= θtr∇⃗ · V⃗s (6.18b)

where the propagation velocity is the normalized velocity vector V⃗s = e⃗s. Figure 6.7 shows a
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zoomed-in view of the leading edge near the wing tip of a 30º swept NACA 0012 wing. In
the figure, θtr is obtained at a turbulent face (black circle) by propagating the momentum
thickness values from the laminar cells adjacent to the laminar-turbulent front (red circles)
in the streamwise direction (streamtrace).

Laminar

Turbulent X
Y

Z

θ
tr
: 9.00E­05 1.03E­04 1.16E­04 1.29E­04 1.42E­04 1.56E­04

1.25E­041.19E­04

1.22E­04

Figure 6.7 Numerical propagation of the momentum thickness of the boundary layer at the
laminar-turbulent front.

6.3.5.3 Stagnation Point Correction

The simplified integral boundary layer method does not provide a solution at the faces corre-
sponding to stagnation points, where the streamlines begin. Specifically, in these faces ψ = 0
and an alternative is required to provide values of the momentum boundary layer thickness
and the heat transfer coefficient. To address this issue, the proposed correction entails an
analytical solutions of the integrals found in Eqs. 6.9 and 6.12 by assuming a linear velocity
around the stagnation point [65]

ue(s) = U0s, (6.19)

where U0 is a constant that can be assessed from the neighborhood of the face.

6.3.6 Geometry Update

When performing body-fitted simulations, the typical method for generating a new geometry
involves a straightforward grid deformation technique based on a Lagrangian node displace-
ment. Given the assumption of perpendicular ice accretion to the body, once the ice thickness
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over the surface is determined, the new geometry can be obtained:

x⃗new = x⃗old + hicen⃗ (6.20)

where x⃗ represents the node locations, hice is the ice thickness, provided by the ice accretion
solver, and n⃗ is the normal direction to the wall, pointing toward the fluid.

The use of this Lagrangian approach is recognized to entail significant challenges. Specifically,
issues such as overlapping tend to arise readily, particularly in concave regions, thereby
compromising the integrity of the surface mesh and disrupting the main loop of a multi-step
simulation. One of the most commonly used alternatives, especially when using immersed
boundary methods, is the level-set method [90, 141].

6.3.6.1 Level-Set Method

The level-set method available in IGLOO3D was first presented in [141] for BF simulations.
This approach is based on a Lagrangian displacement driven by an Eulerian field. When
doing NL sub-iterations, the displacement of each node at iteration k, ∆x⃗k, is indeed given
by the following equation:

∆x⃗k = hice(x⃗0)
NL

n⃗ϕ(x⃗k), ∀k ∈ [1, NL] (6.21)

where hice(x⃗0) is the ice thickness of the node obtained by the ice accretion solver, n⃗ϕ(x⃗k) is
the interpolated normal vector at the current position x⃗k (inferred from the level-set field).
As a result, the value of n⃗ϕ(x⃗k) is updated during each iteration as node x⃗k is shifted.

The number of sub-iterations is a parameter that reduces the likelihood of overlaps in the final
surface mesh. When NL = 1, a classical Lagrangian deformation is performed, which, under
certain conditions, may lead to overlaps. By increasing the number of sub-iterations, the
advancement direction of the geometry is updated at each step, decreasing the probability of
overlap formation, as the direction is determined based on the normal field (see Fig. 6.8, where
the signed distance field and normal directions refers to the iced shape). In the limiting case
of an infinite number of sub-iterations, overlaps cannot occur. For all simulations presented
in this paper, NL = 50 has proven adequate.

Although it was initially developed for body-fitted simulations, its application in IBM simu-
lations is straightforward.
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φ: ­0.007 0 0.007 0.014

Figure 6.8 Signed distance field and normal directions, represented as streamlines, around
the 2D manufactured iced geometry.

6.3.6.2 Surface Mesh Refinement

When employing IBMs for ice accretion simulations, the level-set method has traditionally
been the predominant approach for updating the geometry. In typical level-set methods, an
Eulerian advection equation is solved to displace the iso-0 level [90], and the final geometry is
implicitly determined at the end of the simulation. Consequently, numerical post-processing
tools are required to extract the geometry from the volume mesh. In contrast, the proposed
approach directly displaces all surface nodes, eliminating the need for such post-processing.
However, while the number of surface nodes remains constant before and after displacement,
this can lead to unevenly distributed nodes, resulting in widely spaced cells. To maintain the
initial mesh resolution, surface refinement is often necessary.

To address this issue, surface refinement is performed using an interpolating cubic spline
[19, 159]. This method ensures that the surface solvers maintain a consistent and high-
quality mesh resolution throughout the simulation. By doing so, potential numerical issues
are mitigated, particularly in critical regions such as around the stagnation line.

6.4 Results

This section presents the results of applying the proposed IB approach to multi-step 3D
icing simulations. Several cases from the 1st IPW were selected, allowing comparison with
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both experimental data and other ice simulation codes. The study focuses on three baseline
cases, which include both 2D and 3D geometries as well as rime and glaze icing conditions.
Under rime icing conditions, characterized by low temperatures, ice formation is primarily
governed by collection efficiency, as water freezes immediately upon impingement, resulting
in relatively streamlined ice shapes. In contrast, under glaze icing conditions, higher tem-
peratures allow for water runback, where impinging droplets remain liquid and flow further
downstream before freezing. For all cases, the icing conditions follow Appendix C [63], as-
suming supercooled water droplets small enough to deposit on exposed surfaces. As a result,
effects like splashing are disregarded.

The analysis begins with the 2D rime and glaze icing regimes on a straight-wing NACA 23012
at a 2º angle of attack. Then, the new framework is evaluated on a 3D NACA 0012 wing
with a 30º sweep angle and a zero-degree angle of attack under rime conditions. Table 6.2
summarizes the simulation parameters for each case.

Case 241 242 361
Tunnel run ED1977 [94] ED1978 [94] AF2146 [22]
Airfoil NACA 23012 NACA 23012 NACA 0012
Sweep Angle [º] - - 30
Chord [m] 0.4572 0.4572 0.91438
Angle of Attack [º] 2.0 2.0 0
Mach [-] 0.325 0.315 0.32
Pstatic [Pa] 92528 92941 92321
Tstatic [K] 250.15 266.05 257
LWC [Kg/m3] 0.42 · 10−3 0.81 · 10−3 0.5 · 10−3

MVD [m] 30 · 10−6 15 · 10−6 34.7 · 10−6

Icing Time [s] 300 300 1200
Roughness (ks) [m] 0.4572 · 10−3 0.4572 · 10−3 0.91438 · 10−3

LWC = Liquid Water Content
MVD = Median Volume Diameter

Table 6.2 Simulation Parameters

Note that for all simulations, the workshop organizing committee has recommended using a
7-bin distribution to represent the droplet-size distribution in the wind tunnel [86]. However,
for simplicity, in this paper all simulations are performed using a mono-dispersed droplet
size, unless stated otherwise.
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6.4.1 Case 241

A series of multi-step ice accretion simulations was performed to verify and validate the
proposed IB approach under 2D rime icing conditions. The numerical experiments included
simulations with 2, 8, 16, 32, and 64 steps, demonstrating that the framework imposes no
restriction on the number of steps. Comparisons were made both against BF meshes and the
experimental data [94].

When performing IB simulations, the volume mesh remains unchanged throughout all steps.
The initial geometry of the NACA 23012 airfoil, discretized using 552 faces, serves as the basis
for generating the volume mesh. The mesh size around the leading edge is ∆x/c = 1.5 · 10−3,
and this resolution is maintained within a region extending approximately 10% of the chord
length c from the wall, as shown in Fig. 6.9. The farfield boundary is placed at a distance
of roughly 20 chord lengths, resulting in a computational domain comprising 69k cells. For
the BF meshes of the intermediate layers, the number of cells is increased while preserving
the same farfield distance and mesh resolution around the wall.

Figure 6.9 Structured mesh around a NACA 23012 airfoil.

The presented methodology is first verified by comparing the ice shapes with those obtained
using the conventional BF approach. To this end, 2-step simulations have been analyzed in
detail, where the first layer obtained is always identical in both cases, as the two method-
ologies start from the body-conforming mesh of the ice-free airfoil. Figure 6.10 presents a
comparison of the pressure coefficient, Cp, and the collection efficiency, β, for the BF and IB
methods applied to the first ice layer of the 2-step simulation. In Fig. 6.10b, s/c refers to
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the dimensionless surface wrap distance. The positive values correspond to the suction side
of the airfoil. The Cp and β curves for both methods exhibit a close match, with only mi-
nor differences observed, indicating a strong correlation between the BF and IB approaches.
The close agreement between the curves translates into nearly identical ice shapes for both
methods, as shown in Fig. 6.11a. As more steps are employed, one would typically expect
the differences between the IB and BF methods to become more pronounced. However, the
8-step simulation continues to yield results that closely match the BF solution, as illustrated
in Fig. 6.11b, demonstrating the robustness of the proposed IB approach.
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Figure 6.10 Case 241, 2-step simulation. Comparison of wall surface solution on the first ice
layer for the BF and IB methods.

To validate the current methodology, the different ice shapes obtained by increasing the
number of layers are compared to the experimental results, as shown in Fig. 6.12. The
experimental run was performed on a 3D straight wing at the NASA Icing Research Tunnel
(IRT) [94], showing slight differences in the spanwise direction. Here, the result presented
shows the envelope along the entire span on the xy-plane. The ice shapes simulated by the
present approach converge asymptotically toward the results obtained with 64 steps. A low
number of steps results in a higher total ice mass. As the number of steps increases, the
predicted ice shape more closely aligns with the experimental measurements, capturing the
overall ice accretion patterns with greater accuracy.

Additionally, a 32-step simulation was performed considering the 7-bin Langmuir-D droplet
size distribution [128]. The resulting ice predictions, shown in Fig. 6.13, demonstrate an
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Figure 6.11 Case 241. Comparison of BF and IB ice shapes predictions for different multi-
steps simulations.

Figure 6.12 Case 241, IB simulations. Ice shape comparison with increasing number of layers.

improvement, particularly around the stagnation point and at the impingement limits. By
accounting for droplet size variation, the predicted ice shape better matches the experimental
data.
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Figure 6.13 Case 241, 32-step IB simulation. Comparison of ice shapes predictions using
mono-dispersed and Langmuir-D droplet sizes distribution.

6.4.2 Case 242

Glaze icing conditions are also assessed for the NACA 23012 airfoil. These conditions, dis-
tinguished by elevated temperatures, facilitate water runback behavior. This phenomenon
entails the deposited water remaining partially in a liquid state rather than instantly freezing,
allowing it to flow downstream before undergoing freezing. Predicting the outcomes of these
simulations can be notably challenging, as evidenced by the results from the 1st IPW [86].

A key factor contributing to the huge discrepancies in the ice shapes obtained by the 1st

IPW participants is the prediction of the convective heat transfer coefficient, htc, which
plays a crucial role in glaze icing conditions. Given its importance, the analysis begins with
an examination of the htc distribution over the clean airfoil. In Fig. 6.14, the results of the
current approach are compared with those from IGLOO2D, presented in [90]. Similar to the
present approach, IGLOO2D solves the inviscid flow and uses a simplified integral method
to resolve the two-dimensional boundary layer. Additionally, to highlight the significant
disparity observed in the 1st IPW, the curves from some participants have been included. All
participant curves were not added, in order to facilitate data readability in the figure. The
present method shows good agreement with the IGLOO2D data, serving also as a validation
test for HTC3D.

Different multi-step simulations are performed and compared against both the BF method
and experimental results. As this case analyze the same geometry as Case 241, the same
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Figure 6.14 Case 242. Comparison of the heat transfer coefficient distribution produced by
the present method, IGLOO2D and the participants of the IBM [86].

volume mesh is employed (see Fig. 6.9). Figure 6.15 compares the pressure coefficient,
Cp, and the collection efficiency, β, for both the BF and IB approaches applied to the first
ice layer in a 2-step simulation. The Cp distribution is accurately captured using the IB
method. Despite the complexity of the intermediate layer, this outcome was expected, as
the AGCS method has demonstrated a strong ability to simulate inviscid flows in complex
geometries [62]. Regarding the collection efficiency distribution, Fig. 6.15b demonstrates
good agreement between the two curves, with only slight differences observed at the limits
of the impingement zone and around the stagnation point. Consequently, the final ice shape
displayed in Fig. 6.16 is very similar in both approaches, with only a minor difference
observed at the boundaries of ice shapes at the upper and lower regions of the wing, which
compensates each other to predict approximately the same total ice mass.

Again, the experimental runs of the NASA IRT [94] are used for comparison. Contrary to the
rime case, the ice shape encountered bigger variations in the spanwise direction. In order to
better understand the discrepancies, five repetitions of the experiment were carried out [86].
After analyzing all the experimental ice shapes, the presence of two horns were confirmed, as
well as an invariant stagnation region ice thickness. The location of the horns and their sizes
had significant variations. Figure 6.17a compares the predicted ice shape to experimental
data. Here, all the experimental ice shapes are plotted using a grayscale, with the grayscale
representing the likelihood of ice formation. The two ice horns observed in the wind tunnel
experiments are not captured in our simulation, primarily due to the low number of ice



138

x/c

C
p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­5

­4

­3

­2

­1

0

1
Body­Fitted
Immersed Boundary

(a) Pressure coefficient

s/c

β

­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06

­0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Body­Fitted

Immersed Boundary

(b) Collection efficiency

Figure 6.15 Case 242, 2-step simulation. Comparison of wall surface solution on the first ice
layer for the BF and IB methods.
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Figure 6.16 Case 242, 2-step simulation. Comparison of BF and IB ice shapes predictions.

accretion steps. However, the simulation accurately reproduces the ice thickness around the
stagnation point, and the predicted total ice mass appeared consistent with experimental
values. It is worth noting that this case has proven challenging, even for codes employing
higher-fidelity numerical methods for airflow and droplet trajectory computations. Figure
6.17b compares the numerical ice shapes from the IPW participants, highlighting the difficulty
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of accurately predicting the ice horns.
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Figure 6.17 Case 242, 2-step IB simulation. Ice shape comparison against experimental data
(a) and the results of all participants of the first IPW (b).

Improved results are expected as the number of steps employed increases. Figure 6.18 presents
the final ice shape obtained from a 5-step simulation, including all the intermediate layers.
Notably, the staircase-like pattern observed in the 2-step simulation has been eliminated,
resulting in a more continuous ice accretion. Simulations with a higher number of steps,
however, fail to accurately predict the ice shape. This is primarily due to the poor aerody-
namic solution obtained in the region behind the horns, where flow separation is expected.
A detailed review of this limitation is provided in Section 6.5.

6.4.3 Case 361

The third test case involves rime ice accretion on a NACA 0012 airfoil with a 30º sweep angle.
The volume mesh of the clean wing is again used for the entire IB simulation, comprising
around 2.4M cells and it is shown in Fig. 6.19. The mesh size around the leading edge is
approximately ∆x/c = 3 · 10−3, maintained over a distance of 10% of the chord length from
the wall. The farfield extends around 20 chords in all directions, with a symmetry boundary
condition enforced at the wing-root y = 0 plane. The three-dimensional wing is discretized
with 25,664 faces. Again, the BF meshes of the intermediate layers, used for comparison
purposes, maintain the same mesh parameters.
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Figure 6.18 Case 242, 5-step IB simulation. Ice shape prediction and intermediate layers.

X

Y

Z

Figure 6.19 Structured mesh around a 30º sweep-angle NACA 0012 airfoil

Experimental ice shape tracings were measured at two spanwise locations by Bidwell [22]
at the NASA IRT. For the numerical ice shape post-processing, ten cross-sections were
extracted between the two experimental spanwise stations. Figure 6.20 illustrates the top
view of the wing, showing the experimental measurement stations in red and the numerical
cross-sections in black. In this section, the ice shapes are presented using the coordinate
system (x′, y′, z′), which is derived from a 30º rotation about the y-axis from the reference
coordinate system (x, y, z), as shown in Fig. 6.20.
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Figure 6.20 Case 361. Top view of the 30º sweep-angle NACA 0012 wing, showing the
experimental measurement stations (red lines) and the numerical cross-sections (black lines).

For the clean surface geometry, the result of the simplified integral boundary layer method de-
scribed in this paper are compared to the results presented by ONERA at the 1st IPW[142].
These results include the heat transfer coefficient distributions using both IGLOO2D and
IGLOO3D ice accretion suites. The approach used in IGLOO3D differs from both the present
method and IGLOO2D. Specifically, rather than weakly coupling the inviscid flow and bound-
ary layer solvers, htc is directly obtained from a RANS simulation of the airflow. Overall,
the three codes provide the same order of magnitude, as shown in Fig. 6.21. Additionally,
the good agreement between the present method and IGLOO2D, both based on simplified
integral methods, further validates the presented 3D boundary layer solver. However, around
the stagnation point, both IGLOO2D and the current method predict low values for the heat
transfer coefficient, htc, which allows for the formation of runback and, consequently, leads
to a decrease in ice thickness in this region.

This behavior has been previously observed in LEWICE3D [22], a 3D code that incorporates
droplet trajectory, heat transfer, and ice shape calculations. LEWICE3D can use potential
flow solutions as input, employing an integral boundary layer method to calculate the heat
transfer coefficient. For swept wings, LEWICE3D also predicts a low heat transfer at the
stagnation line, where the flow is considered laminar. To improve ice shape predictions,
a correction to the heat transfer coefficient was introduced in this region. The proposed
correction involves interpolating htc at the stagnation line between the peak values on either
side. While HTC3D models the stagnation line as a turbulent region, the heat transfer
remains insufficient. Rather than using a method based on interpolation as in LEWICE3D,
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Figure 6.21 Case 361. Comparison of the heat transfer coefficient distribution produced by
the present method, IGLOO2D and IGLOO3D.

a simple approach based on thresholding the htc value was used, the ambition of the article
being focused more on IBMs than on fine heat transfer modeling. Then, a minimum value
of 400 W/(m2K) is imposed around the stagnation line to enhance the ice shape prediction.
The effect of the enhancement is presented in Fig. 6.22, where 2-step IB simulations have
been performed with and without the proposed correction, illustrating its impact and the
necessity of its application.

To compare the BF and IBM solution, 2-step ice accretion simulations are performed, where
the heat transfer correction has been employed. The first ice layer, obtained in the same
manner for both approaches, is shown in Fig. 6.23. In Fig. 6.24, the pressure coefficient
and collection efficiency are compared for the first ice layer at two different cross-sections.
For simplicity, the collection efficiency is presented only for the lower cut. Regarding the
pressure distribution, good agreement is observed between both methods; however, the IB
solution shows higher values at the suction peak. Slight differences are also observed in the
collection efficiency, particularly at the limit of the impingement zone, around x′/c = 0.1 in
Fig. 6.23. These discrepancies are expected to decrease as the mesh is refined.

The ice shapes produced by both the BF and IB approaches are shown in Fig. 6.25, alongside
the experimental values. The ice thickness at the stagnation line remains constant in the
spanwise direction and closely matches the experimental data.
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Figure 6.22 Case 361, 2-step IB simulation. Comparison of ice shapes predictions with and
without the stagnation line correction.
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Figure 6.23 Case 361, 2-step simulation. Intermediate ice layer.
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Figure 6.24 Case 361, 2-step simulation. Comparison of wall surface solution on the first ice
layer for the BF and IB methods.
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Figure 6.25 Case 361, 2-step simulation. Comparison of BF and IB ice shapes predictions.

6.5 Limitations of the Present Methodology

Inviscid flow simulations provide an idealized representation of fluid dynamics by neglecting
viscous effects. However, when applied to complex geometries or multi-element airfoils, the
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accuracy and physical relevance of these solutions become a subject of discussion. This section
focuses on better understanding the solution accuracy in complex geometries, where flow
separation is commonly observed in real flows. Figure 6.26 illustrates the temperature field
and streamlines around the leading edge of a 2D manufactured ice shape, comparing results
obtained using a first-order scheme (Fig. 6.26a) and a second-order MUSCL extrapolation
(Fig. 6.26b).

Temperature: 256 260 264 268 272 276

(a) 1st-order

Temperature: 256 260 264 268 272 276

(b) 2nd-order

Figure 6.26 Temperature field and streamlines around the leading edge of the 2D man-
ufactured ice shape. Convective fluxes are computed (a) without and (b) with MUSCL
reconstruction.

The first-order solution introduces significant artificial viscosity, numerically induced by sharp
gradients, and leads to the formation of a spurious recirculation zone downstream of the
horns. This behavior is not representative of the true Euler solution but produces a stream-
line pattern that more closely resembles experimental observations where physical viscosity
is present. In contrast, the second-order MUSCL reconstruction minimizes numerical dissi-
pation which in turn better resolves the expected inviscid solution of the Euler equations.
However, this leads to the emergence of steep pressure and temperature gradients at the top
of the ice horns, which, although not physically realistic, are consistent with the formulation
of inviscid flows.

The horn ice shapes are typical ice shapes obtained in so-called glaze-ice or mixed-ice con-
ditions. Under these conditions, and when performing multi-step simulations, the presented
methodology may fail if some water runback is expected at the top of horns. Specifically, if
a complex shape is obtained as an intermediate layer, the Euler solution predicts extremely
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low pressure and temperature downstream the ice horns. As a result, this region acts as an
intensified runback blockage point, causing any incoming liquid water to freeze instantly and
leading to the formation of what we define as an inviscid-driven ice horn.

It is important to note that inviscid flow solvers coupled with boundary layer methods (one-
way coupling) remain a standard approach in modern ice accretion codes (e.g., LEWICE,
IGLOO2D) for both rime and glaze ice conditions. The present methodology extends this
well-established framework to three-dimensional cases, using immersed boundary methods.
However, in cases involving extremely complex geometries, such as case 242 from 1st IPW,
this approach may exhibit limitations.

For instance, consider case 242, analyzed in Section 6.4.2. In the 2-step simulation, the inter-
mediate ice layer, presented in Fig. 6.16, exhibits a distinct discontinuity at both the upper
and lower regions. This corresponds to two suction peaks, with Cp ≈ −5 and Cp ≈ −1.3, as
it can be observed in Fig. 6.15a, where the temperature drops to values of 235K and 260K,
respectively. As a result, any liquid water reaching these points would freeze immediately.
However, in the 2-step simulation, this does not occur, as no liquid water reaches these re-
gions. In the 5-step simulation (see Fig. 6.18), blockage points at both the upper and lower
limits of the ice shape become evident, and the formation of inviscid-driven ice horns begins
to appear. To better observe this phenomenon, a 6-step simulation was performed. The final
ice shape and the intermediate layers are presented in Fig. 6.27. Here, the inviscid-driven
ice horns become more pronounced.
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Figure 6.27 Case 242, 6-step IB simulation. Ice shape prediction and intermediate layers.

Therefore, to improve ice shape prediction under these challenging icing conditions, a mecha-
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nism to better capture the physics around the ice horns may be necessary to improve ice shape
predictions. An interactive viscous/inviscid procedure is expected to address the limitations
presented. While some researchers have successfully developed such techniques [42, 44], their
implementation remains a challenging task, particularly due to their lack of robustness in 3D
simulations.

6.6 Conclusions

In this work, we introduced an innovative framework for three-dimensional in-flight ice ac-
cretion simulations based on Immersed Boundary Methods (IBMs) within IGLOO3D, the
ONERA icing suite. When performing multi-step simulations, the presented methodology
effectively resolves the automation challenges commonly encountered in body-fitted simu-
lations, notably by eliminating the re-generation of the volume mesh at each intermediate
ice layer. The proposed framework integrates discrete and continuous forcing IBMs. In this
setup, the aerodynamic solver employs a ghost-cell method to accurately resolve the Euler
flow, while the droplet trajectory calculations rely on a penalization method, ensuring robust
and reliable solutions for both aerodynamic flow and droplet dynamics under icing condi-
tions. Additionally, developments in the boundary layer module, HTC3D, were presented.
This work builds upon a simplified integral boundary layer method, enabling the modeling
of heat transfer in inviscid flows.

The effectiveness of the proposed framework was demonstrated through a series of test cases
from the 1st IPW, encompassing both 2D and 3D configurations under rime and glaze icing
conditions. In these simulations, special focus was placed on modeling heat transfer in
clean surfaces. The results obtained from HTC3D were compared with those from similar
methodologies and participants of the 1st IPW, validating the proposed approach in various
icing conditions. The ice shape results showed close agreement with those obtained from
traditional body-fitted approaches, validating the accuracy and reliability of the IBM-based
framework. This agreement underscores the potential of IBMs as a viable alternative to
body-fitted solvers, offering comparable accuracy while significantly enhancing automation.

However, the study also identified areas for improvement. One of the main challenges is
the inability to properly capture flow separation, which can significantly affect the predicted
ice shapes in multi-step simulations. This highlights the need for further refinements to
improve accuracy under complex icing conditions. Future work will focus on addressing this
limitation, potentially by considering 3D viscous-inviscid interaction. These developments
will contribute to more accurate ice accretion predictions in challenging icing scenarios.
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Appendix

This appendix presents a validation case for the simplified integral boundary layer solver. It
is based on Achenbach’s [5] heat transfer measurements for a rough cylinder with a diameter
of 0.15 m, tested at various Reynolds numbers. The roughness element height, k, is 0.9 mm,
and the equivalent sand grain roughness height, ks, is 1.35 mm. A detailed description of the
simulation parameters can be found in [101].

The results are compared with those of Makkonen [101] and LEWICE [152], as shown in
Fig. 6.28. HTC3D yields results similar to those of Makkonen, except for the simulation
conducted at a Reynolds number of Re = 4.8 · 104, where both HTC and LEWICE predict
the laminar-turbulent transition at approximately θ = 50º.

Angle θ (º)

N
u

 R
e

­0
.5

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

11

HTC3D

Makkonen (1985)
LEWICE (1990)

Achenbach (1977)

Re=4.8 x 10
4

Re=2.8 x 10
5

Re=8.8 x 10
5

Figure 6.28 Comparison of calculated and experimental convective heat transfer on a rough
cylinder.
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CHAPTER 7 GENERAL DISCUSSION

The preceding chapters have presented a methodology for integrating Immersed Boundary
Methods into ONERA’s three-dimensional ice accretion code, IGLOO3D. The three stud-
ies constitute the core contributions of this dissertation, demonstrating that this approach
accurately predicts ice accretion shapes while fully eliminating the need for volume mesh
regeneration during simulations. In this manner, Chapters 4, 5, and 6 collectively address
the five objectives of this research project O.1–O.5, as explained in Chapter 3. The pro-
posed methodology offers a robust and efficient foundation for advancing automation in
three-dimensional, multi-step ice accretion simulations.

7.1 Overview of the Proposed Methodology

As discussed in Section 2.3 (Current Use of Immersed Boundary Methods for Ice Accretion),
several efforts have been made in the last decade to integrate Immersed Boundary Methods
into ice accretion codes, each implementation with different mesh handling strategies, types
of IBMs, and approaches to update the geometry. The present thesis contributes to this
growing body of work by introducing a new IBM-based framework. This new contribution
shares the same goals as those previously reviewed: to increase automation throughout the
simulation process while delivering results comparable to those achieved with a BF approach.
A summary of its main characteristics is provided in Table 7.1 and explained in more detail
below, following the same structure used to describe the other solvers in Section 2.3.

Institution ONERA
Code IGLOO3D
Airflow Euler
Airflow IBM Discrete
Droplets Eulerian
Droplets IBM Continuous
Domain 2D/3D

Table 7.1 Overview of the key characteristics of the presented IBM-based ice accretion frame-
work.

• Mesh generation:

The proposed approach employs the BF mesh of the clean wing throughout the entire
multi-step simulation, following the strategy introduced in the IB version of IGLOO2D.
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However, unlike the two-dimensional code, this approach requires the use of structured
grids. Here, O-type structured meshes are used. The mesh size is typically preserved
over a distance corresponding to 10% of the chord length from the wall in order to
maintain a consistent wall cell size near the IB throughout multi-step simulations.

• Airflow module:

In this thesis, IGLOO3D computes the inviscid airflow using a weak coupling with
an integral boundary layer model. Regarding the IBM, a new ghost-cell method, the
AGCS method, has been developed for three-dimensional simulations in FAST and has
been shown to be well suited for complex geometries. The developed IBM achieves
second-order spatial accuracy and improves solution quality compared to conventional
ghost-cell methods, especially on coarse meshes. Regarding the integral boundary layer
computations, a simplified three-dimensional integral method has been developed to
compute diffusive transfer quantities.

• Droplet trajectory module:

Following the developments made in IGLOO2D [90, 91], a volume penalization method
is used to solve the three-dimensional Eulerian droplet trajectory equations in SPIREE.
Currently, the only available method is Volume Penalization Solid Source Off (VP-SSO),
which shows good agreement with BF solutions.

• Ice accretion module:

The Messinger balance is used to compute the ice thickness at the surface, as in the
BF version of IGLOO3D [141].

• Geometry update module:

A hybrid approach, based on the Lagrangian displacement of nodes following the Eule-
rian level-set field, is used to obtain the new ice layer at each iteration. The methodology
presented in [141] for BF simulations has been adapted to IB meshes.

7.2 Main Advantages of the Proposed Methodology

The IBM-based framework introduced in this work offers several notable advantages over
existing methods.

First, the developed IBM for solving the Euler equations has proven to be a well-suited
approach for simulations involving complex geometries, such as ice-horn shapes encountered
in glaze icing conditions. Accurately capturing wall curvature effects is essential in these
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simulations. Consequently, the use of CCST boundary conditions is required to enhance the
accuracy of the solution. The AGCS method further improves the results, especially on coarse
meshes, by using the CCST boundary conditions as a pseudo-wall function in wall regions
with high curvature. The methodology reliably achieves converged solutions and successfully
eliminates recirculation zones that were sometimes reported in previous studies at ONERA
preceding this thesis.

Additionally, the simplified integral method used to obtain diffusive transfer quantities offers
several advantages, despite its inherently two-dimensional nature. While it is not ideally
suited for strongly three-dimensional configurations, it remains highly robust and easy to
apply. Its simplicity and stability make it particularly attractive for preliminary studies.
Furthermore, its computational cost is expected to be substantially lower than that of higher-
fidelity alternatives. It is worth noting that such simplified methods are still employed in
practice; for example, NASA uses a similar approach in the LEWICE3D code, where the
boundary layer is solved on selected spanwise sections.

Moreover, both implemented IBMs preserve the second-order accuracy of their respective
solvers. This represents a significant improvement compared to the IB version developed
in IGLOO2D, presented in the doctoral thesis of Pierre Lavoie [87], where the penalization
method developed in the aerodynamic solver was limited to first-order accuracy. As a result,
IGLOO2D may struggle to capture small variations in the ice shape when IBM are used,
restricting the total number of ice layers. In contrast, the present methodology does not
impose such limitation, as evidenced by the convergence studies conducted in this thesis,
where simulations with up to 64 layers were performed. This value could be further increased,
as the approach implies no inherent restriction on the number of layers.

The high number of steps employed also demonstrates the robustness of the method. Typ-
ically, ice accretion codes face two major challenges related to robustness and automation:
the volume mesh generation and the displacement of the surface mesh nodes from the ice
thickness field. While the use of IBMs addresses the first challenge by eliminating the need for
volume mesh regeneration, the geometry update process can still pose difficulties. However,
the hybrid approach employed here has shown to be an effective solution, even for complex
geometries, as it enables geometry updates while preventing self-intersections. Additionally,
the new iced surface is explicitly known through the geometry update computation, avoiding
the need for surface mesh extraction at each new ice layer.

Additionally, although computational performance is not the main concern of this thesis, the
proposed framework exhibits high computational efficiency. Regarding the airflow solver, the
present approach computes the inviscid flow weakly coupled with an integral boundary layer
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solver. As a consequence, the need of anisotropic refined meshes close to the wall is avoided
and the computational cost of the simulations is reduced, compared to typical Navier-Stokes
simulations. Additionally, FAST benefits from a hybrid parallelization MPI/OpenMP. In
this thesis, MPI has not been used in the airflow solver for the sake of simplicity; however,
no particular difficulty is expected if MPI is used. On the other hand, the droplet solver
SPIREE only uses MPI parallelization, which has been employed in the presented simulations
to reduce the computational cost. As an illustration, in the three-dimensional ice accretion
simulations presented in Chapter 6, run on structured meshes with approximately 2.5 million
cells, each iteration of the multi-step simulation requires slightly over one hour of wall-clock
time when executed on a single node (44 cores) equipped with Skylake Intel® Xeon® Gold
6130 CPUs, available on ONERA’s supercomputer, SPIRO. To provide further insight into
the computational cost of the simulation, Fig. 7.1 shows the relative cost of each module.

Airflow Solver

45%Boundary Layer

3%

Droplet Solver

42%

Ice Accretion

3%
Geometry Update

7%

Figure 7.1 Relative computational cost of each module in the proposed IB-based framework.

7.3 Observed Limitations and Recommendations

As previously discussed, the proposed IB-based ice accretion framework still presents certain
limitations. These are outlined below, along with potential strategies to address them.

Regarding the airflow solution, one of the main limitations lies in its inability to accurately
capture the aerodynamic behavior in regions where severe flow separation are expected, such
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as downstream of complex ice horns typically formed under glaze icing conditions. The invis-
cid formulation provides an idealized representation of the flow, in which streamlines remain
attached to the surface. As a result, the Euler solution tends to predict unrealistically low
pressure and temperature values around the ice horns. These regions then act as artificially
intensified runback blockage points, which complicates the convergence of multi-step simu-
lations, particularly when a large number of steps is used. In order to address this problem,
different solution may be considered. For instance, a strong coupling between the inviscid
solution and the boundary layer computations should alleviate the encountered low pressure
and temperature peaks. This alternative should improve the solution without considerably
increasing the computational cost of the simulation. Another option is to shift to RANS
simulations employing turbulent wall models. In this manner, the solution should be im-
proved without requiring highly refined mesh around the wall. Immersed Boundary Method
for RANS models are already developed in FAST, therefore, its integration into IGLOO3D is
not expected to introduce any implementation difficulties. However, the computational cost
of this approach is expected to be notably higher.

Additionally, in three-dimensional simulations, the simplified integral boundary layer method
employed in this thesis tends to significantly underpredict the heat transfer coefficient near
the stagnation line when compared to more accurate approaches. To compensate for this
limitation, a corrective procedure is applied by thresholding the heat transfer coefficient.
Although similar strategies are commonly adopted in ice accretion codes when using simplified
integral solvers, they require defining an appropriate threshold value, a task that is inherently
nontrivial and case-dependent. As an alternative, the full boundary layer equations could
be solved, as demonstrated, for instance, in the work of Charlotte Bayeux [13]. However,
implementing such an approach involves considerable complexity and may exhibit robustness
issues, specially for three-dimensional simulations.

The current approach imposes a constraint to preserve the mesh resolution near the wall
during accretion: the mesh height in the direction normal to the wall remains unchanged
over a distance of approximately 10% of the characteristic length (the chord). This strategy
does not allow for the accurate modeling of larger ice shapes and increases the total number
of mesh cells, especially in 3D.

Alternative strategies could be considered, based on a local hierarchical mesh adaptation
around the ice shape at each ice accretion iteration. Such approaches are already imple-
mented for performance degradation assessment due to icing in the context of local immersed
boundaries on unstructured meshes using the CODA solver [122]. In our case, which relies
on a structured solver, local refinement could be introduced via a local patch mesh in the
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vicinity of the ice shape, where the IBM is applied, using a Chimera-type approach that
overlaps with the BF mesh. A Cartesian approach with multiple refinement levels applied to
the entire configuration could also be considered. However, these alternatives require modi-
fications to the droplet trajectory solver SPIREE, in order to handle overlapping meshes or
AMR. An alternative would be to directly solve the droplet trajectory equations within the
aerodynamic solver.
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CHAPTER 8 CONCLUSION

This thesis investigates the application of Immersed Boundary Methods (IBMs) in ice accre-
tion frameworks under Appendix C icing conditions, with the objective of evaluating their
feasibility as an alternative to traditional Body-Fitted (BF) approaches, while enhancing the
automation of multi-step ice accretion simulations.

The three-dimensional ice accretion suite developed at ONERA, IGLOO3D, has been adapted
to integrate IBMs for the computation of aerodynamic and droplet trajectory simulations.
With this approach, the volume mesh remains unchanged throughout the simulation. An
outstanding feature of the proposed methodology is the use of an inviscid model for the
airflow solver. Additionally, the Euler equations are weakly coupled with a boundary layer
solver to provide the diffusive transport quantities required by the thermodynamic model to
compute ice thickness. Furthermore, an Eulerian approach has been adopted for the droplet
trajectory solver.

As a first step, an IBM method was developed to solve the Euler equations. To preserve the
accuracy of the airflow solver, a ghost-cell method was selected. Solving inviscid flows over
complex geometries is a challenging task, often characterized by unexpected flow recircula-
tion and convergence difficulties. The developed Adaptive Ghost-Cell-Surrounding (AGCS)
method addresses these issues by accounting for wall curvature in the boundary conditions
and placing some ghost cells within the fluid domain near the solid–fluid interface in high-
curvature regions. In these zones, the Curvature-Corrected Symmetry Technique (CCST)
boundary conditions acts as a pseudo-wall function, enhancing the solution for both body-
conforming and Immersed Boundary (IB) meshes. This new approach has been thoroughly
evaluated in this thesis. First, its order of accuracy was assessed by solving the flow around
a two-dimensional cylinder and a three-dimensional sphere on Cartesian meshes. Then,
the method has been tested on a two-dimensional manufactured iced geometry. The study
involved body-conforming and IB meshes. In the latter, the mesh is built from the clean air-
foil, meaning that IBM is only applied where ice has been accreted. Compared to traditional
ghost-cell methods, which place ghost cells exclusively in the solid domain, the proposed
method converges faster and generates less numerical entropy. Its performance was also
validated on an iced 30-degree swept wing, showing good agreement with the body-fitted
approach.

As a second step, a simplified integral boundary layer solver has been specifically developed
for ice accretion simulations. This choice is primarily motivated by its high robustness and by
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the manageable development complexity, making it feasible to implement within the scope of
this thesis. The solver enables the computation of both the heat transfer coefficient and the
recovery temperature from the inviscid flow solution, accounting for the distinction between
laminar and rough turbulent boundary layers. It builds upon existing two-dimensional simpli-
fied boundary layer theory, extending it to three-dimensional surfaces under the assumption
that the flow remains two-dimensional within the boundary layer in the streamwise direction.
The approach is significantly original, as the use of FVM in three-dimensional simplified inte-
gral boundary layer solvers is rare in the literature. The developed code is validated through
several test cases, including the flat plate and a two-dimensional rough cylinder, both com-
monly used in the validation of integral boundary layer models. In addition, selected two-
and three-dimensional ice accretion cases from the 1st Ice Prediction Workshop (IPW) are
used to evaluate the solver’s performance.

As a third step, the penalization IBM for the Eulerian droplet equations, originally developed
in a previous thesis, was validated through three-dimensional simulations. The validation was
carried out by comparing the IBM results with those obtained using a BF approach. To this
end, several cases were analyzed, including both two- and three-dimensional ice accretion
cases from the IPW.

As a fourth step, the remaining components of the ice accretion suite IGLOO3D were adapted
to support IBM. This included modifications to the geometry update module, as well as
the integration of the necessary inter-module connections to enable automated ice accretion
simulations.

As the final step, the proposed methodology was applied to perform multi-step ice accretion
simulations. For this purpose, various ice accretion cases from the 1st IPW were selected.
First, the performance of the methodology was evaluated using case 241, a two-dimensional
NACA 23012 airfoil under rime icing conditions. A convergence study with an increasing
number of steps was conducted, demonstrating that the proposed methodology does not
impose limitations on the number of steps used. Additionally, the predicted ice shapes
were compared with experimental results obtained at NASA’s Icing Research Tunel (IRT),
showing excellent agreement between numerical and experimental shapes. The same airfoil
was also analyzed under glaze icing conditions in case 242, one of the most challenging cases
of the 1st IPW, where most participants struggled to replicate the experimental ice shapes.
Although the predicted total ice mass appeared consistent with experimental values, the
present method had difficulty accurately predicting the formation of ice horns. Finally, the
IB version of IGLOO3D was tested on a 30-degree swept wing. The numerical results showed
good agreement with both BF simulations and experimental ice shapes.
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Future research directions extend beyond the scope of this thesis and offer numerous oppor-
tunities for improving and expanding the proposed methodology. Several promising avenues
are identified:

• Improve the aerodynamic modeling. Refining the airflow solution in scenarios involving
significant flow separation could be beneficial. This may be achieved through a stronger
coupling between the inviscid flow solver and the boundary layer solver, or by incorpo-
rating higher-fidelity models such as RANS simulations. In cases where inviscid models
continue to be used, improvements in the boundary layer solver will be advantageous.

• Incorporate adaptive mesh refinement techniques. Locally refining the mesh around
the ice shape could improve solution accuracy while maintaining a manageable com-
putational cost for the overall simulation. If the selected mesh refinement approach is
not directly compatible with both the aerodynamic solver and the droplet trajectory
solver, necessary adaptations to these solvers must be implemented to ensure proper
integration and functionality.

• Evaluate the parallel performance of the current workflow. Leveraging parallelism could
further reduce the time required to perform 3D ice accretion simulations, making the
workflow more practical for industrial applications. Although the present methodology
benefits from parallel execution, it has not yet been fully tested in this context. Con-
ducting scalability studies could provide valuable insights into potential performance
improvements and help identify any computational bottlenecks.

• Evaluate the presented methodology in complex geometries and multi-element configu-
rations. Future work should assess the accuracy of the proposed IB-based framework in
more challenging scenarios, broadening the applicability of the approach. For instance,
the presented methodology could be evaluated in the High-Lift Common Research
Model (CRM) or in multi-body interactions, such as wing-fuselage junctions.

• Investigate the application of the presented methodology to rotorcrafts. The low com-
putational cost of the current workflow could be advantageous for performing ice ac-
cretion simulations in such applications. However, modifications to the volume solvers
may be required to account for the unsteady behavior associated with the periodic
motion of the rotor blades.
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APPENDIX A SURFACE MESH SMOOTHING TECHNIQUES FOR ICE
ACCRETION SIMULATIONS

A common issue may arise if small perturbations are introduced in the geometry when per-
forming a multi-layer simulation [28, 55]. This leads to a fluctuating collection efficiency,
worsening the situation by generating a geometry with larger perturbations. Such oscilla-
tions can pose challenges as they induce significant fluctuations in the local curvature of the
geometry, thereby compromising the stability of the aerodynamic solution at the wall.

This issue was encountered during the development of this thesis due to numerical oscillations,
which were later resolved. Nonetheless, surface mesh smoothing techniques were investigated
as a means to mitigate such behavior. In what follows, multi-step ice accretion simulations
for case 241 from the 1st IPW are considered. Figure A.1 illustrates the problem in an 8-
step simulation where no smoothing is applied. The resulting oscillations exhibit a chaotic
component. While they are barely noticeable in simulations with a small number of steps,
they become increasingly pronounced as the number of steps is significantly increased.

Figure A.1 Geometry evolution in an 8-step ice accretion simulation without surface smooth-
ing, showing growing numerical oscillations.

To prevent the emergence of large oscillations, the surface mesh can be smoothed. In icing
applications, it is crucial to carefully select the smoothing method, to minimize shrinkage as
much as possible. Here, three types of surface smoothing are studied. These three options,
already implemented in Cassiopee, are based on local approximations of the Laplacian. These
methods use the differential coordinates, also called Laplacian coordinates, ∆x⃗, to perform
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the mesh transformation. The Laplacian coordinates can be interpreted as the difference
between the original mesh x⃗ and a smoothed version of this mesh x⃗′ [8, 163]. The discrete
Laplacian of a discrete surface is usually defined by weighted averages over the neighborhoods.
For a node i:

∆x⃗i =
∑
j∈i⋆

wi,j(x⃗j − x⃗i) (A.1)

where the weight wi,j, are positive numbers that sum to one, and i⋆ represents the total
number of neighboring cells. In general, these weights can be defined as a function φ(x⃗j, x⃗i):

wi,j = φ(x⃗j, x⃗i)∑
h∈i⋆ φ(x⃗i, x⃗h)

(A.2)

In practice, the smoothed nodes are consequently derived using the following expression:

x⃗′
i = x⃗i + λ∆x⃗i (A.3)

where λ is the scale factor (0 < λ < 1) [171]. Notably, if λ ≥ 1, the algorithm enhances high
frequencies rather than attenuating them. The previous equation can also be expressed in
matrix form:

X⃗ ′ = (I − λK)X⃗ (A.4)

where the square matrix K = I −W is defined, with I representing the identity matrix and
W denoting the matrix of weights. Note that wi,j = 0 if the node j is not a neighbor of
the node i. This method, known as Gaussian filtering, is performed Ns times. The first two
smoothing algorithms studied fall into this category.

When φ(x⃗j, x⃗i) = 1 is defined, an isotropic smoothing is performed. This type of smoothing,
controlled by the parameters λ and Ns, effectively mitigates oscillations but at the cost
of significant shrinkage. An inappropriate choice of the number of iterations can result in
a substantial underestimation of the simulated ice amount. When applying this type of
smoothing to case 241 using 10 smoothing iterations, the resulting ice shape is depicted in
Fig. A.2a, where all simulation layers employing this smoothing technique are illustrated in
red, juxtaposed with the final solution without smoothing. Despite noticeable shrinkage, the
elimination of oscillations is evident. However, if 100 iterations are performed (Fig. A.2b),
increasing the pseudo final time of the diffusion process, the obtained ice shape changes
significantly, exhibiting substantial shrinkage. The choice of the parameters λ and Ns is
essential in this method, frequently disrupting process automation and necessitating operator
intervention.
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(a) Ns = 10 (b) Ns = 100

Figure A.2 Geometry evolution in an 8-step ice accretion simulation with isotropic smoothing
using λ = 0.333 (red) and without surface smoothing (blue).

A better solution is obtained by using φ(x⃗j, x⃗i) = 1
|x⃗j − x⃗i|

. However, this method, known as
scale smoothing, is less stable than the previous one and may disrupt the simulation. Once
again, the examination of the influence of this smoothing technique across varying values of
Ns is conducted for the icing conditions of Fig. A.1. The results are shown in Fig. A.3. In
this case, the impact of the number of iterations is comparatively minor, resulting in a less
noticeable shrinkage phenomenon.

One alternative to alleviate the shrinkage effect involves treating the discrete surface as sig-
nals, which allows for the application of discrete Fourier analysis. As demonstrated in [171],
when a first-order neighborhood structure is employed, the matrix K possesses real eigen-
values 0 ≤ k1 ≤ . . . ≤ kn ≤ 2 and corresponding linearly independent real unit length right
eigenvectors u1, u2, . . . , un. These eigenvectors can be interpreted as the natural vibration
modes of the surface, with the eigenvalues representing the associated natural frequencies. In
this context, the term (I − λK) in Eq. A.4 can be considered as a transfer function, which
can be expressed generally as f(K), leading to:

x⃗′ = f(K)x⃗ =
n∑
i=1

ξif(ki)ui (A.5)

because Kui = kiui.

A low-pass filter can be constructed to mitigate the shrinkage effect (f(ki)N ≈ 1 for low
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(a) Ns = 10 (b) Ns = 100

Figure A.3 Geometry evolution in an 8-step ice accretion simulation with scale smoothing
using λ = 0.333 (red) and without surface smoothing (blue).

frequencies) and suppress high-frequency oscillations (f(ki)N ≈ 0 for high frequencies). The
transfer function utilized, as proposed in [171], is:

f(k) = (1 − λk)(1 − µk) (A.6)

where the typical choice of scale factors, λ = 1/3 and µ = −1/3, are used. When λ and µ are
defined, the regulation of the filter is achieved through the number of iterations Ns, which
will define how fast the transfer function descends.

The influence of Ns on controlling high frequencies is evident in Fig. A.4. When Ns = 10
(Fig. A.4a) is employed, high-frequency oscillations (upper part) are smoothed while low-
frequency oscillations (lower part) remain unaltered. Increasing the number of smoothed
iterations to Ns = 1000 (Fig. A.4b) alters the filter configuration, expanding the stop-band
region, and, therefore, smoothing the bottom part as well. Nonetheless, even with a high
number of iterations, both simulations maintain the total amount of simulated ice unchanged.

Certainly, Taubin’s method is well-suited for multi-layer icing simulations, facilitating pro-
cess automation and allowing precise control over the smoothing extent via the filter cutoff
frequency.
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(a) Ns = 10 (b) Ns = 1000

Figure A.4 Geometry evolution in an 8-step ice accretion simulation with Taubin smoothing
using λ = 0.333 (red) and without surface smoothing (blue).
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