
Titre:
Title:

QRNN-ASNN-CEM/PF: A Sample Efficient Model Predictive Control
Method In Model Based Reinforcement Learning for Modeling,
Control, and Planning in Robotics

Auteur:
Author:

Nicolas Leblanc

Date: 2025

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Leblanc, N. (2025). QRNN-ASNN-CEM/PF: A Sample Efficient Model Predictive
Control Method In Model Based Reinforcement Learning for Modeling, Control, and
Planning in Robotics [Mémoire de maîtrise, Polytechnique Montréal]. PolyPublie.
https://publications.polymtl.ca/68406/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/68406/

Directeurs de
recherche:

Advisors:
Marco Bonizzato, & Isabeau Prémont-Schwarz

Programme:
Program:

Génie électrique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/68406/
https://publications.polymtl.ca/68406/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

QRNN-ASNN-CEM/PF: A Sample Efficient Model Predictive Control Method
In Model Based Reinforcement Learning for Modeling, Control, and Planning

in Robotics

NICOLAS LEBLANC
Département de génie électrique

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées
Génie électrique

Août 2025

© Nicolas Leblanc, 2025.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

QRNN-ASNN-CEM/PF: A Sample Efficient Model Predictive Control Method
In Model Based Reinforcement Learning for Modeling, Control, and Planning

in Robotics

présenté par Nicolas LEBLANC
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

David SAUSSIÉ, président
Marco BONIZZATO, membre et directeur de recherche
Isabeau PRÉMONT-SCHWARZ, membre et codirecteur de recherche
Bowen YI, membre

iii

DEDICATION

To my father, who left us so young, this is for you. I hope you well wherever you are in
this universe, and I hope you are proud. I love you.

iv

ACKNOWLEDGEMENTS

I want to thank my supervisor, Marco Bonizzato, for allowing me to work with him in a
UPIR project during my bachelor’s studies, which helped kick-start my Master’s, and for the
opportunity to pursue this Master’s research under his guidance. Thank you for believing in
my ambitious plan to finish my Master’s in only four terms and for always being there for
discussions, ideas, and support.

I would also like to thank my co-supervisor, Isabeau Prémont-Schwarz, for his infinite pa-
tience, support, guidance, and knowledge. Without you, this project wouldn’t have been
what it is, and I wouldn’t have learned as much. I am also grateful for the time you took to
read my thesis in-depth, as well as for the comments and suggestions you provided.

I want to thank the Natural Sciences and Engineering Research Council of Canada (NSERC)
for financing my research, as well as the Digital Research Alliance of Canada and Calcul
Québec for the computing resources I had access to for running my experiments. Having
access to powerful servers allowed me to run many more tests than I could have on any
computer in the lab.

I want to thank all my friends from the Cepsum gym—Erwan, Pascale, Abbie, Félix, Clara,
and Pierre for being there to talk with me every morning about everything and nothing, and
for asking about updates on my Master’s. Your support means a lot to me.

To my friends from Génie Physique, including Arnaud P. and Benjamin P.-R., who have
remained friends to this day, thank you for our discussions about my project, your suggestions
on improving my workflow, and for being great friends.

Thank you to my mother for her support and belief in me.

To my grandmother, thank you for always being there to talk, for your immense belief in me,
your support, all the delicious food you cook for me, and for always being there, especially
when I needed it the most.

Thank you to my godmother and godfather, as well as their family, for always supporting
me, teaching me so many life lessons, and believing in me. I wouldn’t be the person I am
today, nor would I have been able to complete this Master’s without you all.

Thank you to all my fellow lab members for making lunch times fun and full of entertaining
discussions. I want to extend special thanks to Rose G.-H. and Lison K. for their guidance,
support, and encouragement, particularly during the more challenging times of this Master’s

v

program, when they were available to discuss ideas and offer valuable feedback. I want to
thank Juan G. for connecting me with Dr. Prémont-Schwarz. I want to thank Mauricio R.
and Théodore de L. for their support and the time they took to discuss various ideas that
could be applied to my project. I would like to thank Rima E. for her support and our
numerous discussions on various topics. Thank you to all the other lab members.

vi

RÉSUMÉ

L’apprentissage par renforcement utilisant un modèle (MBRL) résout généralement de manière
plus efficace des problèmes que l’apprentissage par renforcement sans modèle (MFRL). La
commande prédictive (MPC), qui peut être formulée comme un algorithme de MBRL, peut
être utilisé pour résoudre des problèmes où l’agent à pour but d’atteindre une position
précise. Nous proposons la méthode QRNN-ASNN-CEM/PF pour modéliser, résoudre et
planifier des problèmes de contrôle et de robotique avec des actions continues ou discrètes.
L’algorithme proposé utilise un réseau de neurones quantile (QRNN) comme un modèle de
l’environnement qui prédit une distribution sur les prochains états. De plus, la méthode
utilise un réseau de neurones pour générer des actions (ASNN) au lieu d’échantillonner une
distribution uniforme, et soit le filtrage particulaire (PF) ou la méthode de l’entropie croisée
(CEM) pour optimiser les séquences d’actions dans MPC. Nous comparons QRNN-ASNN-
CEM/PF à plusieurs algorithmes qui sont ablations de la méthode proposée, ainsi qu’à de
méthodes provenant de la littérature du MBRL, MFRL et de l’optimisation de trajectoire.

vii

ABSTRACT

Model-based reinforcement learning (MBRL) generally solves tasks more sample-efficiently
than model-free reinforcement learning (MFRL). Model predictive control (MPC), which
can be formulated as an MBRL algorithm, can be used to solve problems with a clear goal
state. In this work, we propose QRNN-ASNN-CEM/PF method to model, solve, and plan
in control and robotics problems with continuous or discrete action spaces. The method
uses a model a quantile regression neural network (QRNN) as a model of the environment
that predicts a distribution over next states. It also uses an action sequence neural network
(ASNN) to generate actions instead of sampling a uniform distribution, and either particle
filtering (PF) or the cross-entropy method (CEM) to optimize the action sequences in MPC.
We compare it to multiple ablations of the proposed method, as well as algorithms from the
MBRL, MFRL, and trajectory optimization literature.

viii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . vi

ABSTRACT . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xi

LIST OF FIGURES . xiv

LIST OF SYMBOLS AND ABBREVIATIONS . xvi

LIST OF APPENDICES . xix

CHAPTER 1 INTRODUCTION . 1
1.1 The problem we are trying to solve . 2
1.2 Research objectives . 3
1.3 Contributions . 4
1.4 Thesis outline . 4

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 6
2.1 Background of Reinforcement learning . 6

2.1.1 Markov decision process and returns 6
2.1.2 Characterizing RL algorithms . 8

2.2 Literature review of RL algorithms . 9
2.2.1 Deep RL . 9
2.2.2 Discrete actions - DQN methods . 9
2.2.3 Continuous actions and off-policy . 10
2.2.4 On-policy and any actions (discrete or continuous) 11

2.3 Background of Model Predictive Control in MBRL 11
2.4 Literature review of some control methods 12

2.4.1 MPC shooting algorithms . 13

ix

2.4.2 Trajectory optimization control algorithms 15
2.5 Recap of the literature review . 18

CHAPTER 3 METHODS . 20
3.1 Our different MPC methods and their components 20

3.1.1 Methods to generate action sequences 21
3.1.2 Models of the environment . 25
3.1.3 How to modify the action sequences after taking a step in the environ-

ment . 27
3.1.4 MPC technique to optimize the action sequences 29
3.1.5 The different MPC methods . 32

3.2 RL benchmark environments . 34
3.2.1 Images of the envs . 34
3.2.2 Environment descriptions . 34
3.2.3 Length of an environment time step 40
3.2.4 Dynamics of the environments . 43
3.2.5 Cost function used in MPC for each environment 45

3.3 Description of the tests . 48
3.3.1 Test of the validity of QRNN model’s quantile predictions 48
3.3.2 Hyperparameter testing of noise levels in MPC particle filtering . . . 50
3.3.3 Comparison of methods . 50
3.3.4 Other tests . 53

CHAPTER 4 RESULTS . 56
4.1 Quantile regression neural network predictions 56
4.2 Mean episodic return graphs . 56
4.3 Area under the curve of the episodic return tables 57
4.4 Normalized mean area under the curve of the episodic return tables 63
4.5 Overall algorithm comparison . 66
4.6 Interpretation of the Results on the OpenAI Gymnasium and Panda Gym

environments . 69
4.7 Recap of results . 73
4.8 Other tests . 74

4.8.1 Sampling method for QRNN next state prediction 74
4.8.2 Compare repeating 4 times the optimized action to not doing so for

the Mountain Car environments . 74

x

CHAPTER 5 DISCUSSION - OVERALL ALGORITHM COMPARISON 77
5.1 Discrete action space . 77
5.2 Continuous action space . 77

CHAPTER 6 CONCLUSION . 79
6.1 Summary . 80
6.2 Limitations . 81
6.3 Future Research . 81

REFERENCES . 82

APPENDICES . 89

xi

LIST OF TABLES

Table 1.1 Comparison of the strengths and weaknesses of GPBO, RL, and an
MPC method using a model of the environment in the form of a neural
network that predicts a distribution of next states as presented above. 3

Table 2.1 Recap of literature review algorithms 19
Table 3.1 Cart Pole environment physics variables 36
Table 3.2 Pendulum environment physics variables 38
Table 3.3 Acrobot environment physics variables 40
Table 3.4 Recap of action space types . 41
Table 3.5 Recap of action space types . 42
Table 3.6 Recap of cost functions . 49
Table 3.7 Recap of environment properties . 54
Table 4.1 Area under the curve of the episodic return for discrete action space

problems . 57
Table 4.2 Area under the curve of the episodic return for the continuous action

space problems Cart Pole continuous, Mountain Car continuous, Lunar
Lander continuous, and Inverted Pendulum 62

Table 4.3 Area under the curve of the episodic return for the continuous action
space problems Pendulum, MuJoCo Reacher, Panda Reach sparse, and
Panda Reach dense . 63

Table 4.4 Normalized area under the curve of the episodic return for discrete
action space problems . 64

Table 4.5 Normalized area under the curve of the episodic return for the con-
tinuous action space problems Cart Pole Continuous, Mountain Car
Continuous, Lunar Lander Continuous, and Inverted Pendulum . . . 65

Table 4.6 Normalized area under the curve of the episodic return for the continu-
ous action space problems Pendulum, MuJoCo Reacher, Panda Reach
Sparse, and Panda Reach Dense . 66

Table 4.7 Average normalized area under the curve of the episodic return for
discrete space environments in decreasing order 67

Table 4.8 Average normalized area under the curve of the episodic return for
continuous space environments . 68

Table 4.9 Recap of Results Across Environments 73

xii

Table 4.10 Area under the curve of the episodic return on the discrete Cart Pole
environment for our MPC methods using the mid quantile or sampling
the quantiles for next state prediction 74

Table 4.11 Area under the curve of the episodic return for the continuous and
discrete versions of the Mountain Car environment when taking one
or four steps with the optimized action 76

Table A.1 A2C hyperparameters used on the continuous and discrete Cart Pole
environments . 89

Table A.2 PPO hyperparameters used on the Acrobot environment 89
Table A.3 A2C hyperparameters used on the continuous and discrete Cart Pole

environments . 90
Table A.4 PPO hyperparameters used on the continuous and discrete Cart Pole

environments . 91
Table A.5 PPO hyperparameters used on the discrete Lunar Lander environment 91
Table A.6 PPO hyperparameters used on the discrete Lunar Lander environments 91
Table A.7 PPO hyperparameters used on the discrete Mountain Car environment 92
Table A.8 PPO hyperparameters used on the discrete Mountain Car environment 92
Table A.9 A2C hyperparameters used on the Pendulum environment 93
Table A.10 DDPG hyperparameters used on the Pendulum environment 93
Table A.11 PPO hyperparameters used on the Pendulum environment 94
Table A.12 SAC hyperparameters used on the Pendulum environment 94
Table A.13 TD3 hyperparameters used on the Pendulum environment 94
Table A.14 TQC hyperparameters used on the Pendulum environment 95
Table A.15 PPO hyperparameters used on the continuous and discrete Cart Pole

environments . 95
Table A.16 PPO hyperparameters used on the continuous and discrete Cart Pole

environments . 96
Table A.17 PPO hyperparameters used on the continuous and discrete Cart Pole

environments . 96
Table A.18 SAC hyperparameters used on the continuous and discrete Cart Pole

environments . 97
Table A.19 TD3 hyperparameters used on the continuous and discrete Cart Pole

environments . 97
Table A.20 TQC hyperparameters used on the continuous and discrete Cart Pole

environments . 98

xiii

Table A.21 PPO hyperparameters used on the continuous Mountain Car environ-
ments . 98

Table A.22 PPO hyperparameters used on the continuous Mountain Car environ-
ments . 98

Table A.23 PPO hyperparameters used on the continuous Mountain Car environ-
ments . 99

Table A.24 SAC hyperparameters used on the continuous Mountain Car environ-
ments . 99

Table A.25 TD3 hyperparameters used on the continuous Mountain Car environ-
ments . 100

Table A.26 TQC hyperparameters used on the continuous Mountain Car environ-
ments . 100

Table A.27 TQC hyperparameters used on the Panda Reach sparse environments 101
Table B.1 Average normalized area under the curve of the episodic return for

control environments with continuous spaces 112
Table B.2 Average normalized area under the curve of the episodic return for

robotics environments with continuous spaces 113

xiv

LIST OF FIGURES

Figure 2.1 Components of a reinforcement learning problem [1] 6
Figure 2.2 Mountain car [2] . 8
Figure 2.3 General idea of an MPC-based method applied to an RL problem . . 12
Figure 3.1 Discrete ASNN architecture . 22
Figure 3.2 Continuous ASNN architecture . 24
Figure 3.3 QRNN architecture . 26
Figure 3.4 Ways to change particle after a step in the environment 29
Figure 3.5 How to optimize action sequences in MPC for continuous and discrete

action spaces . 32
Figure 3.6 Visualization of QRNN-ASNN . 33
Figure 3.7 Images of the benchmark RL environments 35
Figure 4.1 Different quantile predictions for x and v next state components of the

Mountain Car environment . 56
Figure 4.2 Episodic return averaged over seeds 0, 8, and 15 for the Cart Pole,

Acrobot, Mountain Car, and Lunar Lander environments. 58
Figure 4.3 Episodic return averaged over seeds 0, 8, and 15 for the Mountain Car,

continuous Cart Pole, and continuous Lunar Lander environments. . . 59
Figure 4.4 Episodic return averaged over seeds 0, 8, and 15 for the continuous

Lunar Lander, Pendulum, MuJoCo Reacher environments. 60
Figure 4.5 Episodic return averaged over seeds 0, 8, and 15 for the MuJoCo

Reacher and Panda Reach with sparse and dense reward environments. 61
Figure 4.6 Visualization of QRNN-ASNN . 74
Figure 4.7 Comparing the performance of our MPC methods on the discrete

Mountain Car when taking the optimized action once or repeating
it four times in the environment. 75

Figure 4.8 Comparing the performance of our MPC methods on the continuous
Mountain Car when taking the optimized action once or repeating it
four times in the environment. 76

Figure B.1 Different quantile predictions for the next state components of the
Acrobot environment . 103

Figure B.2 Different quantile predictions for the next state components x, v, θ,
and ω of the Cart Pole environment 104

xv

Figure B.3 Different quantile predictions for the next state components x, y, vx,
vy, ωx, and ωy of the Lunar Lander environment 105

Figure B.4 Different quantile predictions for the left leg in contact and the right
leg in contact next state components of the Lunar Lander environment 106

Figure B.5 Different quantile predictions for the next state components cos (θ1),
sin (θ1), cos (θ2), sin (θ2), ω1, and ω2 of the MujoCo Reacher environment107

Figure B.6 Different quantile predictions for cos (θ1) and sin (θ1) next state com-
ponents of the MuJoCo Reacher environment 108

Figure B.7 Different quantile predictions for the next state components x, v, z,
vx, vy, and vz of the Panda Reach environment 109

Figure B.8 Different quantile predictions for the next state components x = cos(θ),
y = sin(θ) and ω of the Pendulum environment 110

Figure B.9 Different quantile predictions for the next state components x, v, θ,
and ω of the Inverted Pendulum environment 111

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

GP Gaussian process
µ GP output mean
σ GP output standard deviation
BO Bayesian optimization
GPBO Gaussian process-based bayesian optimization
RL Reinforcement Learning
µRL Discrete RL policy
πRL Stochastic RL policy
s State
s′ Next state
st State at time step t

spred Predicted next state
senv Environment next state
a Action
adim Dimention of action space
alow Action lower bounds
ahigh Action upper bounds
Na Number of actions (discrete action space)
AS Action sequences/particles
NAS Number of action sequences/particles
Rt Reward at time step t

Gt Episodic return from time step t

γ Discount factor
DRL Deep reinforcement learning
NN Neural network
DNN Deep neural network
MFRL Model-free Reinforcement Learning
MBRL Model-based Reinforcement Learning
DQN Deep-Q Network
DDQN Double Deep-Q Network
SARSA State-action-reward-state-action algorithm
IV-DQN Inverse-variance DQN
QR-DQN Quantile regression DQN

xvii

NN Neural Network
DNN Deep Neural Network
DPG Deep deterministic policy
DDPG Deep deterministic policy gradient
TD3 Twin delayed DDPG
SAC Soft actor-critic
TQC Truncated quantile critic
A2C Advantage actor-critic
PPO Proximal policy optimization
QRNN Quantile Regression Neural Network
50NN Neural Network predicting the 50% quantile
MSENN Neural Network that predicts a single value and uses the mean square

error
MPC Model Predictive Control
env Environment of an RL problem
seed Number used to reset the RL environment to a common start state
PF Particle filtering
CEM Cross-entropy method
iCEM Improved cross-entropy method
iLQR Iteration linear quadratic regression
ASNN A neural network to generate an action sequence
MPPI Model path integral method
RS Random shooting
PETS Probalistic ensemble trajectory sampling
GP-MPC Gaussian process model predictive control
RBF Radial basis function
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
H MPC time horizon
U Uniform distribution
N Normal/Gaussian distribution
P Action probability distribution used when generating action sequences
Nq Number of quantiles
τi Qauntile i used in quantile regression loss
L Loss function used to update neural networks
ln Loss at step n

Nbatch Bath size

xviii

p Probability of change (used in the discrete action sparce version pf PF)
Bern Bernouilli distribution (used in the discrete action sparce version pf

PF)
σ2 Gaussian noise variance (used in the continuous action space version of

PF)
ε Gaussian noise (used in the continuous action space version of PF)
Ntop The number of top action sequences
AStop Top action sequences (the ones with the smallest cost)
α Laplace smoothing coefficient
ct Cost at time step t

C Cost function
Σ Covariance function
std Standard deviation
D Discrete action space
C Continuous action space

xix

LIST OF APPENDICES

Appendix A Stable baselines3 RL algorithm hyperparameters 89
Appendix B Quantile regression neural network next state predictions comparison

with those of the environment . 102

1

CHAPTER 1 INTRODUCTION

This master’s thesis was completed in Marco Bonizzato’s sciNeurotech laboratory, where
neurostimulation is a crucial component of the experimental side of the research laboratory,
and Gaussian process-based Bayesian optimization (GPBO) is a specialty of the computa-
tional side [3]. The goal of neurostimulation is to aid in rehabilitation by stimulating the
patient’s brain or spinal cord via electrical signals [3]. Neurostimulation can be thought of
as an optimization problem where an algorithm needs to find the simulation parameters to
maximize an output, like the step height. GPBO is a black-box optimization method [4]. It
uses a GP as a surrogate or an approximation of the objective function that is assumed to
be unknown. A GP outputs a mean µ and an uncertainty σ. These parameters enable the
creation of an acquisition map, from which the following query to evaluate is obtained using
BO. GPBO has been used in various contexts, including material science [5], drug discov-
ery [6], hyperparameter tuning [7], and neurostimulation [3]. In neurostimulation, standard
experiments such as reaching and grasping [8] or treadmill walking [3] can be considered
single-step problems where the goal is to maximize an output by selecting an input, like a
multi-armed bandit problem [9]. More precisely, a set of stimulation parameters is chosen
and input into the system, the corresponding output is measured, and the system is reset.
The GPBO process involves BO selecting the following input parameter, and the system
outputs a value representing the input’s effect. This value, along with the system input, is
used to train the GP model [4]. In neurostimulation experiments, the parameter space can
be large, and we want to minimize the number of queries made [3]. This makes GPBO very
useful since it is sample-efficient. However, when wishing to perform multiple stimulations
one after another sequentially, like a Markov decision process (MDP) problem [9], GPBO
can no longer be used, as Bayesian optimization (BO) generally plans one step at a time
and therefore cannot consider delayed rewards. Moreover, GP struggles with computational
complexity, making it a less suitable option for longer MDP problems [4]. On the other
hand, reinforcement learning could be used to solve this type of task.

Reinforcement learning (RL) algorithms are made for solving sequential decision-making
problems and handling delayed rewards [9]. However, they are often extremely sample
inefficient, needing thousands or even millions of training iterations to learn a task, especially
for model-free RL (MFRL) algorithms [10]. This can be explained by the fact that an RL
method generally learns from a scalar reward, which can be ill-defined or sparse [11]. This
slow learning is not inherently problematic in benchmark examples, as the environment has

2

no time constraints, costs, or risks. This is quite the opposite in real-world applications, such
as robot control or neurostimulation, where the task must be solved as quickly and safely as
possible. To enhance sample efficiency, model-based reinforcement learning (MBRL) can be
employed [12]. In addition to learning a policy, which refers to the method by which actions
are chosen, an MBRL algorithm must also learn a model of the environment. When the
studied task has a clearly defined goal state, we can formulate the classic control method,
model predictive control (MPC), as an MBRL method [13].

1.1 The problem we are trying to solve

By definition an MPC method assumes a model of the task is known and will be used to
simulate action sequences to find the next action to take [13]. As mentionned previously,
there is not a known model for neurostimulation problems. A model of the problem must be
learnt, where it would be used to predict the following state based on the current state and
the chosen simulation parameters. If we want a computational cheap version of a GP as a
model of the task, we could use a neural network that predicts a distribution over the next
states. We would then need to use a method to select the next state from the distribution.
The model would be trained using the states, which should lead to being much more sample
efficient than an model-free reinforcement learning (MFRL) method. The idea of MPC as
an MBRL algorithm is to test multiple candidate action sequences or particles at each time
step by simulating them using a model of the environment, computing their cost, and using
the first action of the particle with the smallest cost in the given task [12]. Using a cost
function that primarily depends on the agent’s state components allows avoiding the need
to model the rewards, which can be poorly defined or sparse for the given problem, and
therefore complicate learning [11].

In this thesis, Model Predictive Control (MPC) as an MBRL algorithm is applied to solve
control and robotics problems with a clearly defined goal state and no known model of the
problem’s dynamics, unlike in classic MPC. We decide to work with these problems, since
they share similarities with a sequential neurostimulation problem for which no such problem
has been developped and is ready for testing. Our work covers the following component of
a robotics problem:

• Modeling [14], since a model of the environment is learnt

• Control [14,15], since we use an MPC method adapted to MBRL to solve the tasks

• Planning [15], since we use MPC to simulate the action sequences using the model of

3

the environment.

Table 1.1 Comparison of the strengths and weaknesses of GPBO, RL, and an MPC method
using a model of the environment in the form of a neural network that predicts a distribution
of next states as presented above.

Characteristic GPBO RL

MPC with
a neural

network that predicts
a distribution

over states
Sample efficient ✓ ✗ ✓

Optimizes over
multiple timesteps ✗ ✓ ✓

Predicts a distribution ✓ ✗ ✓

Not computationally complex ✗ ✓ ✓

Handles delayed rewards ✗ ✓ ✓

Learns from Query x and f(x) Scalar reward States

1.2 Research objectives

The goals of our project were to:

1. Developp a MBRL type MPC method with a computationally cheap model of the
problem that predicts a distribution of next state and that can be used without
any pre-training.

2. Validate the developped method on control and robotics tasks with a:

• Clearly defined goal state.

• Continuous or discrete action spaces.

3. Compare the developped method with:

• Multiple ablations that are obtained using different models of the problem dy-
namics, methods to generate action sequences, techniques used to optimize them
in MPC.

4

• Algorithms from the model-free RL, model-based RL, and trajectory optimization
literature.

1.3 Contributions

The contributions of this Master’s thesis are:

1. A Model predictive control based method using a:

• Quantile regression neural network (QRNN) as a model of the environment,

• Neural network to generate an action sequence neural network (ASNN),

• And Particle filtering (PF) or the cross-entropy method (CEM) to optimize action
sequences in the MPC loop for continuous and discrete action space problems.

2. Multiple simplifications of the proposed method to show the impact of each component
of a MPC method in MBRL, which are:

• Different models of the problem dynamics

• Techniques to generate action sequences

• Methods to optimize the action sequences in MPC

• Ways to modify action sequences before the following MPC optimization loop to
find the next action

3. A thorough comparison of the proposed method with its simplifications and multiple
standard MFRL, MBRL, and trajectory optimization methods from the literature.

1.4 Thesis outline

The following pages are subdivided into six chapters: Introduction, Literature review and
background, Methodology, Results, Discussion, and Conclusion.

• The first chapter is the introduction we just covered.

• The second chapter will present a literature review and some background. The chap-
ter is separated into four parts. The first part will present the necessary theory on
reinforcement learning, Markov decision processes, and returns. The second part will
cover the different model-free reinforcement learning algorithms present in the litera-
ture. The third section will give a background on model predictive control. The final
section will present MBRL and trajectory optimization algorithms from the literature.

5

• The third chapter is the methodology. It will explain the studied benchmark problems
and the methods used to compare the algorithms.

• In the fourth chapter, the results will be presented and analyzed.

• The fifth chapter goes over the general trends in the results.

• The final chapter will present a conclusion recapping the work done, the limits of the
developed algorithm, and future work.

6

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

The background will cover the necessary theory and concepts of Reinforcement learning (RL)
and Model predictive control (MPC). The literature review will cover the pertinent RL and
MPC-based methods present in the literature relevant to the project.

2.1 Background of Reinforcement learning

2.1.1 Markov decision process and returns

Reinforcement learning is a subfield of artificial intelligence where an agent must learn to se-
lect the best action to take in each state, thereby maximizing its long-term return [9]. Figure
2.1 shows the different components of an RL problem: Agent, state, action, environment,
and reward.

Figure 2.1 Components of a reinforcement learning problem [1]

The agent is what the RL algorithm controls [9]. The environment is the problem setting
and what the agent interacts with. The different positions in the environment are referred
to as the states defined as s or st. In each state s, the agent chooses an action a following
a certain strategy known as stochastic policy πRL. The agent will then transition following
the environment’s dynamics to the following state s′ or st+1. The policy πRL is generally a
probability distribution of possible actions to take in a state s as defined in Equation 2.1 [16]:

a ∼ πRL(st) (2.1)

7

The policy can also be deterministic, meaning that it will always suggest the same a for a
given s. It is defined as µ and is shown in Equation 2.2 [16]:

a = µRL(st) (2.2)

The reward r is a number that quantifies how desirable or not the result of the sequence of
actions is so far.

The RL problems considered in this thesis will have a finite time horizon, meaning there is
a clear ending to an episode [9]. You can think of an episode as a run or a test of a certain
length at solving a given task. In an episodic problem, it is possible to define the episodic
return Gt obtained as the sum of all the obtained rewards in an episode as described in
Equation 2.3 [9]:

Gt = Rt+1 + Rt+2 + ... + RT =
T∑

k=0
γkRt+k+1 (2.3)

where

• T is the last time step of the episode

• Rt+i is the reward at a the time step t + i, i ∈ [t + 1, T]

When the problem does not have a clear ending, it is considered as a continuing task. For
this type of task, the discounted return is used as presented in Equation 2.4 [9]:

Gt =
∞∑

k=0
γkRt+k+1 = Rt+1 +

∞∑
k=1

γkRt+k+1 (2.4)

where

• Rt+k+1 is the reward at the t + k + 1 time step

• γ is the discount factor.

The discounted return can also be used for episodic tasks. In this case, the summation upper
bound would have to be replaced by the termination time step T .

For γ=0, the agent only considers immediate rewards since Gt = Rt+1. The agent is therefore
myopic. For γ = 1, the agent equally considers immediate and future rewards.

Gt =
∞∑

k=0
Rt+k+1 = Rt+1 +

∞∑
k=1

Rt+k+1 (2.5)

8

For γ ∈]0, 1[, the agent will give more importance to more recent rewards and progressively
less importance to reward terms in the future.

The concept of a delayed reward is essential because an action’s effect or result may not
happen immediately in each problem [9]. An example is the mountain car example [2]. The
agent must reach the top of the mountain as presented in figure 2.2. The mountain is such
that the agent must gain momentum by moving left to reach the top. This is an example of
delayed rewards since on the short-term moving to the left is bad but in the long term it is
a good thing since it allows the agent to attain the goal.

Figure 2.2 Mountain car [2]

2.1.2 Characterizing RL algorithms

Other important definitions in RL are off- versus on-policy algorithms and model-based
(MBRL) versus model-free RL (MFRL).

The agent uses the same policy for action selection and learning in on-policy algorithms [9].
In off-policy algorithms, the agent uses a target policy for learning and a behaviour policy for
action selection. Examples of off-policy algorithms are Q-learning, deep Q-network (DQN)
[17], deep deterministic policy gradient (DDPG), twin delayed DDPG (TD3), soft actor-
critic (SAC), and truncated quantile critic (TQC). Examples of on-policy algorithms include
the state-action-reward-state-action (SARSA) algorithm, the proximal policy optimization
method (PPO) and the advantage actor-critic (A2C) algorithm.

In a model-free RL (MFRL) algorithm, the agent learns by interacting with the environment
and trying different actions in different states. Example MFRL algorithms are DQN [17],
SAC [18], DDPG [19], TD3 [20], and PPO [21]. A model-based RL (MBRL) algorithm is
either given or learns a model of the environment and uses it for planning in future time
steps. More precisely, for a given state and a chosen action, the agent attempts to predict
the next state, and the reward obtained. Example MBRL algorithms are PILCO [22], and
model predictive control type (MPC) methods [13] like PETS-CEM [23], POPLIN [24], and

9

random shooting [25]. An MBRL algorithm is often much more sample-efficient since it can
test actions before taking them, but this is only true if a quality model of the environment
is learnt.

The following subsections provide a more in-depth discussion of different RL and control
algorithms.

2.2 Literature review of RL algorithms

Below is a review of Deep reinforcement learning, different model-free RL methods for con-
tinuous state spaces and discrete or continuous action spaces.

2.2.1 Deep RL

Deep reinforcement learning (DRL) is the subfield of RL where deep neural networks (DNN),
as applied in Deep learning, are integrated into RL algorithms [16, 26]. In Deep learning,
one generally has a pre-collected dataset that will be used for analysis [27]. This isn’t the
case in RL [9]. Instead, the dataset used to train the neural networks is collected during the
episodes. Using a DNN enables RL algorithms to be applied to problems with more than
just discrete action spaces, such as those with continuous action spaces and other interesting
inputs, like images [16,26].

2.2.2 Discrete actions - DQN methods

Q-learning, SARSA, and DQN

Two classic RL methods for problems with discrete states and actions are Q-learning and the
state-action-reward-state-action (SARSA) algorithm [9]. When the states are continuous, it
is no longer possible to use tabular methods like Q-learning and SARSA. Function approx-
imations, such as neural networks (NN), are used instead [9]. The deep Q-network (DQN)
method extends Q-learning by using a neural network instead of a table to store the differ-
ent Q-values for each state-action (st, at) pair [17]. The limitations of DQN are that it can
diverge during learning, struggles with the maximization or overestimation bias, is sample-
inefficient, and does not consider uncertainty [28–30]. More advanced DQN methods, such as
double DQN (DDQN), quantile regression DQN (QR-DQN) [29] and inverse-variance DQN
(IV-DQN) [30], address some of these problems.

10

QR-DQN

The quantile regression DQN (QR-DQN) uses a quantile regression neural network to get a
distribution of Q-values instead of a single value [29]. This allows for better consideration of
uncertainty and noise in environments by considering multiple predictions, which leads to a
more sample-efficient method.

IV-DQN

The inverse-variance DQN (IV-DQN) predicts the Q values like a standard DQN would,
but it also predicts the heteroskedastic noise in the target model predictions [30]. It uses
importance sampling to update the Q-values. The weight associated with the different
updated Q-values depends on the prediction variance, where a higher weight is given to
predictions with a smaller variance. This leads to IV-DQN being more sample-efficient and
less affected by the overestimation bias.

2.2.3 Continuous actions and off-policy

Some of the standard deep RL methods that are off-policy and compatible with continuous
action spaces are the deep deterministic policy gradient (DDPG) [19], twin delayed DDPG
(TD3) [20], soft actor-critic (SAC) [18], and truncated quantile critic (TQC) [31].

DDPG

The deep deterministic policy gradient (DDPG) improves on the DQN and the Deterministic
Policy Gradient (DPG) [19] algorithms. Like DQN, DDPG uses a replay buffer and a target
network to approximate the Q-values. Unlike DQN though, it is compatible with continuous
action spaces. The learnt policy is deterministic, like DPG, but the method adds an actor-
critic framework. The method’s limitations include its susceptibility to the overestimation
bias and its hyperparameter sensitivity.

TD3

The twin delayed DDPG (TD3) method is an off-policy algorithm that outperforms and is
more stable than its predecessor, DDPG [20]. Key elements of the technique include adding
noise to the actions, known as target policy smoothing, delayed policy updates to smooth out
the agent’s learning, where the actor is updated less frequently than the critic, and taking

11

the minimum of the predictions from twin Q-networks, similar to what was presented in
double DQN [20,28].

SAC

The soft actor-critic (SAC) method maximizes simultaneously the reward and the policy
entropy [18]. The latter is a classic representation of disorder and a hyperparameter that
affects the randomness in the actions taken and exploration, similar to ε in the ε-greedy
algorithm. Compared to other MFRL algorithms, the method is known to be very stable
and less sensitive to hyperparameters.

TQC

The truncated quantile critic (TQC) method solves continuous action space RL problems [31].
It combines quantile regression from QR-DQN [29], the actor-critic framework from SAC [18],
and the truncation of the model outputs similar to TD3 [20]. The idea is to

• Use multiple quantile regression critic function approximation models,

• Create a mixture of the models by aggregating the outputs of the quantile critics,

• Truncate the predicted Q-values by removing the k-ones with the most significant
values to lessen the overestimation bias.

The improvements brought by TQC are primarily demonstrated in complex, continuous
control tasks [32], such as the MuJoCo Walker environment [2].

2.2.4 On-policy and any actions (discrete or continuous)

Two on-policy RL algorithms compatible with continuous or discrete action spaces are ad-
vantage actor-critic (A2C) and proximal policy optimization (PPO). For the PPO method,
two sub-methods exist that use clipping or a penalty to prevent the policy from changing
too much.

2.3 Background of Model Predictive Control in MBRL

Model predictive control (MPC) aims to optimize action sequences over a time horizon H to
minimize a cost function C [13]. The cost function generally depends on the distance between
the current state st and the goal state sg. C can also depend on other problem-dependent

12

variables, such as velocity v, the action taken a, or the reward r. As MBRL algorithm, MPC
selects the following action based on the current state st. This action is then taken in the
environment, which can be described as (st, at) → st+1. The process of selecting the next
action is then repeated from st+1.

As Figure 2.3 shows, the three-part structure of applying an MPC-based method problem.
The first is to generate action sequences, reinitializing the environment and initializing a
model of the environment. The second is to simulate the action sequences using the model
of the environment, calculate the cost of each action sequence, and then optimize them using
a chosen method. The final part consists of taking a step in the environment with the best
action sequence, which is the one with the smallest cost, and then modifying the action
sequences or generating new ones before repeating the MPC optimization loop.

Figure 2.3 General idea of an MPC-based method applied to an RL problem

2.4 Literature review of some control methods

Below is a review of different MPC shooting and trajectory optimization control algorithms
for continuous state spaces and discrete or continuous action spaces.

13

2.4.1 MPC shooting algorithms

Random shooting

The idea of random shooting (RS) is to [12]:

• Randomly generate action sequences at each step of an episode,

• Roll them out or simulate them using a model of the environment in an MPC fashion,
and

• Take a step in the environment with the first action of the action sequence with the
smallest cost

PETS

Probabilistic ensemble trajectory sampling with the cross-entropy method (PETS-CEM)
uses multiple probabilistic neural networks to model the environment, a trajectory sampling
method to determine which models are used, as well as the cross-entropy method (CEM)
to generate action sequences [23]. The authors present two sampling methods: TS1 and
TS∞. The first resamples a new model for each particle, defined as a state sequence, at each
time step. The second samples a model at the first time step and sticks to it for the rest of
the time for each particle. The multiple probabilistic neural networks allow to learn a good
model of the environment, and the trajectory sampling considers the uncertainty in the state
predictions.

POPLIN

The POPLIN method is known to improve PETS [24]. It can optimize in the action
(POPLIN-A) or the parameter (POPLIN-P) space. POPLIN-A uses a policy network to
generate initial action sequences, which is a major difference from PETS. The action se-
quences are modified with the addition of Gaussian noise. The noise parameters (µ, σ) are
optimized using the cross-entropy method (CEM) for multiple optimization steps, where at
each optimization step only the top ζ action sequences are used. The authors used a de-
terministic ensemble of neural networks as a model of the environment, but a probabilistic
ensemble could be used instead. The POPLIN-P method instaed adds noise to the policy
network parameters. Once again, CEM is used to optimize the noise.

14

GP-MPC

GP-MPC is an MPC method that utilizes a Gaussian process (GP) with a radial basis func-
tion (RBF) kernel to model the environment. S. Kamthe and M.P. Deisenroth proposed the
idea [33]. Although their official implementation is not available, an unofficial implementa-
tion is [34]. The latter, which is based on Deisenroth‘s PhD thesis [35] and their article [33],
is explained below.

The GP predicts the difference in the next state components in the form of an expected
mean µt and a covariance matrix Σst [34]. The author of the implementation considers
the state components to be independent, which is consistent with the work of Kamthe and
Deisenroth [33]. In MPC, the GP model with an RBF kernel is used to roll out action
sequences generated using the L-BFGS-B method [34], which is a version of BFGS with
limited memory and that is compatible with constraints of the form lb ≤ s ≤ ub, where lb

is a lower bound and ub is an upper bound [36]. The author decided to use a quadratic
cost function as was presented in equation 3.58 of Deisenroth’s PhD thesis [35] and given in
Equation 2.6:

c(st) = (s− sgoal)T W −1(s− sgoal) (2.6)

where W −1 is a symmetric weight matrix.

Equations 2.7 and 2.8 represent the expected and the variance of the predicted cost for a
given time step t, as described in equations 3.59 and 3.60 of Deisenroth’s PhD thesis [35]:

Est [c(st)]Cµ,t = eT
t W −1et + tr(W −1Σst,at) (2.7)

varst [c(st)] = 2tr(W −1Σst,atW
−1Σst,at) + 4eT

t W −1Σst,atW
−1et (2.8)

where et =
µst

µat

 −
starget

atarget

 includes the error in the next state prediction st and the

difference in the current action at and the goal action [34]. Σst,at =
Σst 0

0 0

 is the combined

state-action covariance matrix. In the Cµ,t calculation, constraints could be considered, but
they are not in the given implementation.

For the last state of the prediction time horizon sH , the idea is the same, but the weight
matrix WH may differ, and the cost functions are slightly different. The cost functions are
given in equations 2.9 and 2.10, as described in equations 3.59 and 3.60 of Deisenroth’s PhD

15

thesis [35]:
EsH

[c(sH)] = eT
HW −1

H eH + tr(W −1
H ΣsH

) + Constraints (2.9)

varsH
[c(sH)] = 2tr(W −1

H ΣsH
W −1

H ΣsH
) + 4eT

HW −1
H ΣsH

W −1
H eH (2.10)

where eH = µsH
− starget includes the error in the next state prediction st [34].

Using the mean and variance of the cost at time step t, we can use the lower confidence
bound (LCB) to determine a value of the cost while being optimistic [34,37]. Equation 2.11
shows this:

ct,LCB = Est [c(st)]− κ · varst [c(st)] (2.11)

Based on the cost of each time step, the average cost of the trajectory of an action sequence
can be computed using Equation 2.12 shows [34,37]:

CLCB = 1
H

T∑
t=0

ct,LCB (2.12)

Using this cost function, multiple iterations of LBFGS are done, and the action used for the
following Nrepeat steps will be the first of the best action sequences, which is the one with the
smallest cost [34]. After taking these steps in the environment, the action sequence is shifted
to remove the action that was just taken, and the last action is unchanged [a0, a1, ..., aH]→
[a1, a2, ..., aH−1, aH , aH]. This serves as the starting point for the subsequent L-BFGS-B
optimization.

Using a quadratic cost function in GP-MPC has multiple limitations. First, σst [c(st)] =√
varst [c(st)] increases as µst moves farther from the target state st,target, which with ex-

ploration favors states further from the goal state [35]. Second, a quadratic cost function
stronly depends on the worst state of a given sequence of states [35]. This means a sequence
of states that went far from the goal but eventually reaches it will be considered as worse
than a sequence of states that never attained the goal state.

2.4.2 Trajectory optimization control algorithms

CEM and iCEM

The cross-entropy method (CEM) is a sampling-based optimization method that can be used
to generate action sequences to be optimized in MPC [38–40]. For each time step t over the
time horizon H, the idea of CEM is:

16

1. To maintain a Gaussian distribution with a mean µt and a variance σt

2. Do multiple CEM optimization iterations, where each one consists of:

• Sampling the distribution to generate action sequences

• Simulate the action sequences using a model of the environment in MPC to obtain
trajectories

• Calculate the costs associated with the action sequence’s trajectories

3. Update the distribution parameters µ and σ based on the top action sequences

4. Take a step in the environment with the first action of the best action sequence

The iCEM method uses an improved MPC-CEM method [41]. Some of the important im-
provements by the authors are [41,42]:

• Saving the K top particles and reusing them for the next CEM optimization step to
help accelerate things.

• For every first CEM optimization step, some of the top K particles obtained from the
previous time step CEM optimization are used by shifting them to remove the action
taken, and the last vacant action is replaced by a random one.

• Using colored noise when creating action sequences. This leads to the particles being
more correlated and a better exploration method. The colored noise depends on a
parameter β, the colored-noise scaling exponent, which is a value that must be tuned
for a given problem.

MPPI

Model Predictive Path Integral (MPPI) is a sampling-based Model Predictive Control (MPC)
method [43,44]. The method starts with an initial action sequence at sampled from a uniform
distribution and generates K action sequences from it by adding noise sampled from a
Gaussian distribution as equation 2.13 describes:

a
(k)
t = at + ε

(k)
t where ε

(k)
t ∼ N (0, Σ) (2.13)

where (k) represents the kth action sequence.

17

The action sequences are then simulated using a model of the environment, such as a standard
feed-forward neural network, and the total cost of a given action sequence a(k) is computed
using Equation 2.14:

C
(k)
t = cH(xH) +

H−1∑
t=0

ct(xk, a
(k)
t) (2.14)

where ct(xk, ak) is the cost used throughout the episode and cH(xH) is the cost at the end
of the planning time horizon.

Based on the costs, each action sequence is associated with a weight ωk as shown by Equation
2.15 [43,44]:

ω(k) =
exp

(
− 1

λ
·

(
C(k)

))
∑K−1

i=0 exp
(
− 1

λ
·

(
C(i)

)) (2.15)

where λ is a temperature parameter that affects the importance of lower cost trajectories [45].
With a lower λ, a more exploitative weighting scheme will be used, and more importance will
be given to lower-cost trajectories. A higher λ corresponds to a more exploratory weighting
scheme, which means larger cost trajectories are considered more.

From there, the best action sequence is obtained by using the Boltzmann weighing of the
particles [46] presented in Equation 2.16 [43,44]:

a∗
t = at +

K−1∑
k=0

ω(k)ε
(k)
t (2.16)

The first action of the newly obtained best action sequence a∗
t is taken in the environment,

and the method starts again a∗
t .

As the equations above show, MPPI is a gradient-free method, which makes it more robust
to non-smooth environment dynamics.

iLQR

Iteration Linear Quadratic Regulator (iLQR) is a trajectory optimization method, and it can
be integrated into a classic MPC algorithm where a model f(s, a) of the task is known [47].
The idea is to consider the environment dynamics as locally linear and the cost function as
locally quadratic. Based on an initial randomly generated action sequence, the method be-
gins with the forward pass, which involves rolling out the action sequence using the known
problem dynamics. From the obtained sequence of states {s0, s1, ..., sH}, where H is the

18

prediction time horizon, the environment state dynamics are approximated by doing a lin-
earization as described by equation 2.17:

δst+1 = ∂

∂s
f(st, at)δst + ∂

∂a
f(st, at)δat (2.17)

The cost function is then calculated based on the approximate trajectory. Then comes the
backward pass, which consists in calculating a key matrix Kt and a vector kt, which can be
obtained looking over the LQR literature. Kt and kt are then both inserted into Equation
2.18:

δat+1 = α · kt + Kt · δst+1 (2.18)

From here, a new action sequence is obtained, which can be rolled out from the start state
s0 using the actual environment dynamics. The process continues with the backward pass
and forward pass until convergence.

Neural iLQR

The neural iLQR method utilizes a neural network to learn the environment’s dynamics,
rather than relying on the ground truth dynamics [48]. This is particularly useful in the
iLQR backward pass, where the derivatives required for gradient and Hessian calculations
must now be estimated using methods such as automatic differentiation. Neural iLQR can
be used as an alternative to iLQR when the ground-truth dynamics are unknown. The
author’s code isn’t available, and nobody else has tried to implement it.

2.5 Recap of the literature review

Table recaps the algorithms presented in the literature review. It shows the different methods
compatible with continuous action spaces, the ones compatible with discrete action spaces,
and those that learn a model of the environment.

19

Table 2.1 Recap of literature review algorithms

Algorithm
Compatible with

continuous
action spaces

Compatible with
discrete

action spaces

Learns a model
of the environment

DQN ✗ ✓ ✗

QR-DQN ✗ ✓ ✗

IV-DQN ✗ ✓ ✗

DDPG ✓ ✗ ✗

TD3 ✓ ✗ ✗

SAC ✓ ✗ ✗

TQC ✓ ✗ ✗

A2C ✓ ✓ ✗

PPO ✓ ✓ ✗

RS ✓ ✓ ✓

PETS-CEM ✓ ✗ ✓

POPLIN ✓ ✗ ✓

GP-MPC ✓ ✗ ✓

CEM ✓ ✗ ✓

iCEM ✓ ✗ ✓

MPPI ✓ ✗ ✓

iLQR ✓ ✗ ✗

Neural iLQR ✓ ✗ ✓

20

CHAPTER 3 METHODS

This section presents the proposed set of QRNN-ASNN methods, along with their multiple
simplifications. We also explain the benchmark environments used to compare the different
algorithms and provide essential information needed to replicate the results, including the
cost functions used, the number of steps per episode, and the number of episodes for each
benchmark environment.

3.1 Our different MPC methods and their components

We test a wide variety of MPC methods that differ in their model of the environment, as
well as different techniques used to generate action sequences, modify them after taking a
step in the environment, and improve the action sequences in MPC. Algorithm 1 presents a
general pseudocode for the episodic loop of the MPC algorithms given below:

Algorithm 1 General MPC algorithm episodic loop
Require: Nepisodes: Number of episodes, Nsteps: Number of max steps per episode, env:

Problem to be studied, seed: Environment reset seed value
1: for i = 0 to Nepisodes do
2: s, info ← env.reset(seed) ▷ Reset the environment
3: Initialize model and its replay buffer
4: Generate initial action sequences
5: for j = 0 to Nsteps do
6: Get best and optimized action sequences from MPC
7: The action to take a is the first action of the best action sequence
8: reward, s′, terminated, truncated, info = env.step(a)
9: done ← (terminated or truncated)

10: if done then
11: break
12: end if
13: Train the model using (s, s′)
14: s← s′

15: Modify action sequences before next MPC optimization
16: end for
17: end for

Algorithm 1 presents a simplified pseudocode of the MPC methods. The idea is to generate
particles with one of the methods mentioned in Section 3.1.1. The generated action sequences
are then passed to MPC, as described in Algorithm 9, where the model, among the ones

21

presented in Section 3.1.2, is used to predict the next state. The MPC action sequences are
then optimized using one of the techniques presented in Section 3.1.3. The outputs of the
MPC optimization are the optimized action sequences and the best action sequence, which
is the one with the smallest computed cost. After taking a step in the environment with
the first action of the best action sequence, the particles are modified by using one of the
methods presented in Section 3.1.4.

The proposed novelties in 1 explained below are:

• Use the ASNN to generate initial action sequences and to modify the action sequences
before the next action search with the MPC optimization. The ASNN is explained in
section 3.1.1.

• QRNN and 50NN as models of the environment. They are presented in sections 3.1.2.

• A comparison of generating new action sequences at each step in the environment
or modidying the ones from the previous MPC optimization loop. These ideas are
presented in section 3.1.3.

• A comparison of particle filtering (PF) and the cross-entropy method (CEM) to op-
timize action sequences in MPC for continuous and discrete action spaces. These
methods are presented in section 3.1.4.

We will now go over the different components of an MPC method we tested.

3.1.1 Methods to generate action sequences

The two methods to generate initial action sequences below can be used to replace the
Generate initial action sequences module in Algorithm 1.

Uniform

To generate the initial action sequences, sampling a uniform probability distribution is often
used. In the discrete action space case, an action among the possible ones is chosen. In the
continuous action space, a uniform distribution with bounds (amin, amax) is used, where amin

is the action lower bound and amax is the action upper bound.

Algorithm 2 presents how the QRNN model predicts the next state s′ based on the current
state s and an action a:

22

Algorithm 2 Randomly uniformly generating action sequences
Require: NAS: Number of particles, H: Time horizon, Na: Number of actions (discrete

action space), (amin, amax): Action bounds (continuous action space), adim: Action di-
mension

1: if Action space is discrete then
2: AS ← randint(0,Na) ▷ Dimension (NAS, H, adim)
3: else if Action space is continuous then
4: AS ← U(amin, amax) ▷ Dimension (NAS, H, adim)
5: end if

ASNN

Instead of generating values by sampling a uniform distribution, a neural network can be
used based on the current state s and the goal state sg to generate a distribution of possible
actions that can be sampled to create new particles. This action sequence generator neural
network will be referred to as an ASNN from now on.

For discrete action space problems, the ASNN predicts a categorical distribution of possible
actions, assigning a probability to the likely subsequent actions. Figure 3.1 presents the
architecture used for the discrete ASNN:

Figure 3.1 Discrete ASNN architecture

The negative log likelihood (NLL) loss is used to train the discrete ASNN neural network.
Since the ASNN outputs a discrete probability distribution on the possible actions, we take

23

the negative logarithm of these probabilities, and the loss ln for a given sample of the replay
buffer is simply the value associated with the target action. Equation 3.1 shows this [49]:

ln(â, a) = −log(pa) (3.1)

where pa is the ASNN predicted probability associated with the target action a obtained
from the replay buffer. The ASNN is trained with the first action of the best particles found
by MPC, thereby integrating the learning of the MPC into the ASNN.

When we consider Nbatch elements sampled from the replay buffer, the mean loss is as shown
in equation 3.2 [49]:

l(â, a) =
∑Nbatch

n=1 ln(â, a)
Nbatch

(3.2)

For continuous action space problems, the ASNN predicts a mean µa and a standard devia-
tion σa associated with the predicted next action to take. To be able to predict a µa and a
σa we would need to represent the output of a Gaussian of the form [50]:

π(a|s, sgoal) = 1√
2πσ2

a

exp
{
− 1

2
(a− µa)

σ2
a

}
(3.3)

The loss function L(π) used would be [50]:

L(π) = − log π(a|s, sgoal) = 1
2 log(2π(a|s, sgoal)σ2

a) + 1
2

(a− µa)
σ2

a

(3.4)

At each step, there will be a new state s, and therefore a new µa and a new σa. Sampling a
Gaussian distribution using these two parameters as inputs will allow the generation of new
possible actions. At the start of an episode, the alternation between next action prediction
based on the current state and next state prediction using a model of the environment will
enable the generation of initial action sequences.

Figure 3.2 presents the architecture used for the continuous ASNN:

ASNN training

The ASNN model training is done via the following steps:

• The (s, sg, a) triplets are stored at each step in the environment in a replay buffer

24

Figure 3.2 Continuous ASNN architecture

• At every Nbatch = 32 steps, a batch of 32 elements is sampled from the replay buffer.

• Predict the probability distribution parameters using the ASNN(s, sg).

• Compare the probability distribution parameters with the actions sampled the replay
buffer using the categorical cross-entropy loss when the action space is discrete and
the gaussian negative log likelihood loss when the action space is continuous.

Comparison of the computational burden of sampling a uniform distribution or
the action sequence neural network

Sampling a uniform probability distribution does not require training a neural network to
generate actions. For the ASNN, you must train a neural network, use it predict the pa-
rameters of a probability distribution, and then sample the probability distribution. It is
clear that using the ASNN to generate an action is more costly than sampling a uniform
distribution. However, using the ASNN to generate actions should improve to the agent’s
performance compared to a uniform distribution, since the ASNN is learning a distribution
over the actions directly based on the states.

25

3.1.2 Models of the environment

The different models of the environment presented below can replace the model module in
Algorithm 1.

QRNN

To model the environment dynamics, we use a quantile regression neural network (QRNN),
similar to the one used in QR-DQN from W. Dabney’s paper, entitled Distributional Re-
inforcement Learning with Quantile Regression [29]. A quantile is a number that separates
data into subgroups of the same size [51]. For example, the value of a quantity representing
the 90% quantile will have 90% of the rest of the data below it and 10% above it. The num-
ber of quantiles Nq is a hyperparameter. We chose to use 11 quantiles from 0% to 100% in
10% increments, where 0% and 100% are included. The critical difference in using a QRNN
to obtain a distribution over next states, rather than next actions, enables our method to be
applied to problems without any restriction on the type of state and action space, whether
continuous or discrete. A distribution of Nq quantiles as predictions for the next state allows
for the consideration of possible uncertainty in an environment by considering a distribution
over next states. When making a prediction using the QRNN, we currently only use the mid
or 50% quantile for simplicity. The purpose of predicting multiple quantiles is to ultimately
utilize the entire distribution of the next states in MPC.

Figure 3.3 presents the architecture used for the QRNN:

Algorithm 3 presents how the QRNN model predicts the next state s′ based on the current
state s and an action a:

Algorithm 3 QRNN next state prediction
Require: QRNN: Quantile regression neural network, s: Current state, a: Action

1: s′
Q = QRNN(s, a) ▷ Next state quantiles

2: s′ = s′
Q[:, 5, :] ▷ Mid quantile

The loss function used is the quantile regression loss, which contains a summation over the
Nq quantiles as Equation 3.5 [52]:

L(spred, senv) =
Nq∑
i=0

max
(

τi(spred − senv), (τi − 1)(spred − senv)
)

(3.5)

where senv is the true environment state, spred is the 50% quantile predicted by the QRNN,
and τi is the quantile. The QRNN is trained by comparing its predictions with those of the

26

Figure 3.3 QRNN architecture

environment.

50NN

A simplification of the QRNN is only to predict the mid or 50% quantile. This NN is referred
to as 50NN. The quantile loss is still used but only with τ = 0.5. The 50NN is a test to
determine if there is an advantage in predicting all quantiles compared to just predicting the
50% quantile.

Algorithm 4 presents how the 50NN model predicts the next state s′ based on the current
state s and an action a:

Algorithm 4 50NN next state prediction
Require: 50NN: Mid quantile neural network, s: Current state, a: Action

1: s′ = 50NN(s, a)

A simplification of the QRNN is to predict only the 50% quantile. The loss function used
is still the quantile regression loss, with τ = 0.5 as described in Equation 3.6, which is
equivalent to the mean absolute loss multiplied by 0.5 [52]:

27

L(spred, senv) = max
(

τ(spred,i − senv,i), (τ − 1)(spred − senv)
)

= 0.5|spred − senv| (3.6)

MSENN

MSENN is the standard feed-forward neural network used for next state prediction in mul-
tiple trajectory optimization methods [39,41–44,48,53,54]. It predicts a single value.

Algorithm 5 presents how the MSENN model predicts the next state s′ based on the current
state s and an action a:

Algorithm 5 MSENN next state prediction
Require: MSENN: Mean squared error neural network, s: Current state, a: Action

1: s′ = MSENN(s, a)

The MSENN is trained using the mean-squared error [55], as described by equation 3.7:

L(spred, senv) = (spred − senv)2 (3.7)

Model of the environment training

As a reminder, these models are used as part of a MPC method adapted for MBRL. There-
fore, a model of the environment is not known and must be learnt online. The QRNN, 50NN,
MSENN model training is done via the following steps:

• The (s, a, s′) triplets are stored at each step in the environment in a replay buffer

• At every Nbatch = 32 steps, a batch of 32 elements is sampled from the replay buffer.

• The model predicts the next states spred based on the sampled (s, a) pairs.

• The predicted next states spred are compared to the ones of the environment senv = s′

using the loss function associated to the model as defined above.

3.1.3 How to modify the action sequences after taking a step in the environment

After taking a step in the environment with the first action of the best action sequence found
using MPC, we compare three different methods to change the action sequences before the
next MPC optimization. These can replace the Modify action sequences before next MPC
optimization module of Algorithm 1.

28

Completely random

Completely random consists of forgetting the previous iteration’s optimized action sequences
and generating new ones from a uniform distribution.

Algorithm 6 presents how to generate new action sequences after taking a step in the envi-
ronment:

Algorithm 6 Generate new action sequences using a uniform distribution
Require: NAS: Number of particles, H: Time horizon, Na: Number of actions (discrete

action space), (amin, amax): Action bounds (continuous action space)
1: AS ←MPC(s, AS) ▷ Discard the action sequences given by MPC
2: if Action space is discrete then ▷ Generate new action sequences
3: AS ← randint(0,Na) ▷ Dimension (NAS, H, adim)
4: else if Action space is continuous then
5: AS ← U(amin, amax) ▷ Dimension (NAS, H, adim)
6: end if

Shift the action sequences and replace with one sampled uniformly

To consider the previous step’s optimized action sequences, we shift them to remove the
column of the action taken, and we replace the last column with the vacant action with ones
sampled from a uniform distribution.

Algorithm 7 presents how to generate new action sequences after taking a step in the envi-
ronment:

Algorithm 7 Shift old action sequences and replace vacant actions by sampling a uniform
distribution
Require: H: Time horizon, Na: Number of actions (discrete action space), (amin, amax):

Action bounds (continuous action space), AS: Action sequences, shape (NAS, A, adim)
1: AS[0 : H − 1]← AS[1 : H] ▷ Shift the action sequences
2: if Action space is discrete then ▷ Generate new action sequences
3: AS[H − 1]← randint(0,Na)
4: else if Action space is continuous then
5: AS[H − 1]← U(amin, amax)
6: end if

Shift the action sequences and replace with one sampled from the ASNN

This method is identical to the previous ones, but the new actions are sampled from the
ASNN. The replacement of the vacant action can only be done at the H− 1 time step of the

29

prediction time horizon in MPC, since the sH−1 time step is not known beforehand.

Algorithm 8 presents how to generate new action sequences after taking a step in the envi-
ronment:

Algorithm 8 Shift old action sequences and replace vacant actions by sampling a uniform
distribution
Require: NAS: Number of particles, H: Time horizon, Na: Number of actions (discrete

action space), (amin, amax): Action bounds (continuous action space), adim: Action di-
mension, AS: Action sequences, shape (NAS, H, adim)

1: AS[0 : H − 1]← AS[1 : H] ▷ Shift the action sequences
2: Pa,H−1 ← ASNN(sH−1, sgoal) ▷ For time step t = H − 1 in MPC
3: AS[H − 1] ∼ Pa,H−1 ▷ Sample action probability distribution

Recap of the methods to modify action sequences

Figure 3.4 recaps the ways to modify action sequences after taking a step in the environment
and before the following MPC optimizations iterations, which give the action for the next
step in the environment:

Figure 3.4 Ways to change particle after a step in the environment

3.1.4 MPC technique to optimize the action sequences

After iterating over all the particles and before performing another MPC iteration, the
particles should be optimized to improve them. We consider two possible methods: particle
filtering (PF) [24, 43, 44] and the cross-entropy method (CEM) [23, 38–40]. We implement
versions of PF and CEM adapted for continuous and discrete action spaces. In both cases,

30

the new action sequences are generated based on the top Ntop action sequences with the
smallest costs. The pseudocode 9 below shows a simplified MPC code in which PF or CEM
is used to replace the Update action sequences module. This function can replace the Get
best and optimized action sequences from MPC module of Algorithm 1.

Algorithm 9 MPC optimization function
Require: AS: Action sequences, s0: Current state, C: Cost function, number of action

sequences NAS, Nrep: Number of repetitions MPC, problem: RL environment to solve
1: for i = 0 to Nrep do
2: costs = zeros(NAS)
3: for t = 0 to H do ▷ Simulate action sequences and calculate their costs
4: at = AS[t]
5: st = clip(st, smin, smax)
6: at = clip(at, amin, amax)
7: Predict next state st+1 using model
8: st = clip(st, smin, smax)
9: if problem is Panda reach, Panda reach dense, or MuJoCo reacher then

10: costs+ = C(st, t, H, at, sgoal)
11: else
12: costs+ = C(st, t, H, at)
13: end if
14: end for
15: if min(costs)<costmin then ▷ Update best cost value and best action sequence
16: costmin ← min(costs)
17: ASbest ← argmin(costs)
18: end if
19: Itop ← argsort(costs)[: Ntop] ▷ Indexes of top particles
20: AStop ← AS[Itop] ▷ Top particles
21: Update action sequences
22: end for
23: Return ASbest and costmin

Particle filtering

After an MPC iteration, our PF samples with replacement among the top Ntop particles to
generate a new set of NAS particles. In the discrete action case, PF associates a probability
of change p to each action in a sequence. The probability of change distribution is then
sampled to associate a True value if an action must be changed and a False value if it must
not. If the action must be changed, a random one is chosen. For continuous action space
problems, a noise sampled from a Gaussian distribution N (0, σ) is added to the particles,
similar to what is done in MPPI [43,44] and POPLIN [24].

31

Algorithm 10 Pseudocode for particle filtering (PF)
Require: NAS: Number of top particles, AStop: Ntop top particles, p: Probability of change

(discrete actions), Na: Number of possible actions (discrete actions), N (0, σ): Gaussian
noise (continuous actions)

1: A particle is a unidimensional array of length [H · adim]
2: AStop is of shape (Ntop, H · adim)
3: AS ← {a(1), a(2), ..., a(i), ..., a(NAS)}, where i ∼ U(0, NAS) and a(i) = AStop[i]
4: if discrete action space then
5: mask ∼ Bern(p)
6: AS[mask] ← randint(0, Na)
7: else ▷ Continuous action space
8: ε ∼ N (0, σ2)
9: AS ← clip(AS + ε, alow, amax)

10: end if

Cross-entropy method

For discrete actions, our CEM sums the number of times each action was taken at a given
time step t. It calculates the probability of occurrence of each action by dividing the number
of occurrences in which an action was selected by the total number of particles Np. To avoid
the effect of an action never appearing in the count of a given time step, one is added to all
action counts. This is called Laplace smoothing [56]. New particles can then be chosen by
sampling the probability distribution of actions for each time step of the time horizon.

Algorithm 11 Pseudocode of the cross-entropy method (CEM) for discrete actions
Require: AStop: Ntop top particles, Na: Number of possible actions (discrete actions)

1: α = 1 ▷ Laplace alpha
2: newAS ←zeros(Np, H)
3: for t = 0 to H do
4: ct = bincount(AStop[:, t], minlength = Na) ▷ Ex: ct =dict(0:1, 1:2, 2:0)
5: ct,smoothed = ct + α ▷ Ex: ct =dict(0:2, 1:3, 2:1)
6: pt = ct,smoothed

sum(ct,smoothed) ▷ Ex: pt =dict(0:1/3, 1:2, 2:1/6)
7: newAS[:, t] ∼ pt

8: end for

In the continuous case, a Gaussian distribution is used based on the mean and variance,
or covariance, depending on the dimensionality, of the particles from the previous MPC
iteration, as is done in this GitHub repository [57]. This distribution can then be sampled to
generate new action sequences. It is also possible to add noise to the variance or covariance,
where the noise is a single value in the variance case or an identity matrix multiplied by a
noise factor in the covariance matrix case [40, 57]. The noise can be constant or decrease

32

with the optimization process.

Algorithm 12 Pseudocode of the cross-entropy method (CEM) for continuous actions
Require: AStop: Ntop top particles, adim: Dimension of action space

1: µ← mean(AStop, axis=0)
2: if adim > 1 then
3: Σ← cov(AStop, rowvar=False, bias=True)
4: new AS ∼ N (µ, Σ)
5: else
6: σ = std(AStop, axis=0)
7: new AS ∼ N (µ, σ2)
8: end if

Figure 3.5 recaps the ways to optimize action sequences after an MPC iteration for continuous
and discrete action spaces:

Figure 3.5 How to optimize action sequences in MPC for continuous and discrete action
spaces

3.1.5 The different MPC methods

QRNN-ASNN-PF/CEM

Our proposed method is a model predictive control (MPC) approach utilizing:

33

• A quantile regression neural network (QRNN) as a learned stochastic model of the
environment transitions,

• A neural network to generate action sequences (ASNN),

• Particle filtering (PF) or the cross-entropy method (CEM) to optimize action sequences
in MPC.

The Figure 3.6 recaps the proposed QRNN-ASNN method:

Figure 3.6 Visualization of QRNN-ASNN

Simplifications of the proposed method

We now consider the multiple simplifications of the QRNN-ASNN-PF/CEM method.

We replaced the QRNN with the ASNN and the MSENN. This led to the 50NN-ASNN-
PF/CEM and MSENN-ASNN-PF/CEM methods.

The methods model-basic-PF/CEM, model-rnd-PF/CEM, and model-RS all generate their
initial action sequences using a uniform distribution instead of the ASNN, where model is
one of the ones defined in 3.1.2. The difference between these three methods lies in the
method used to modify the action sequences after taking a step in the environment, as well
as the number of MPC optimization iterations.

34

The model-basic-PF/CEM algorithms perform multiple MPC optimization iterations. They
use a method that shifts particles after each environment step and replaces vacant actions
with ones sampled from a uniform distribution.

The model-RS algorithms generate new action sequences at each environment step. They
also only do one MPC iteration, so the action sequences are never optimized.

The model-rnd-PF/CEM algorithms are identical to the model-RS methods, but they do
multiple MPC optimization iterations.

3.2 RL benchmark environments

The OpenAI Gymnasium Classic control, MuJoCo, and Panda Gym environments were used
to test the different algorithms. Below are images and descriptions of each problem, along
with the cost functions used in MPC.

3.2.1 Images of the envs

The different algorithms mentioned were tested on the following OpenAI Gymnasium envi-
ronments: Cart Pole (continuous and discrete), Acrobot, Pendulum, Lunar Lander (contin-
uous and discrete), and Mountain Car (continuous and discrete), as well as the Reacher and
Pusher environments from Panda Gym and OpenAI’s MuJoCo. Images of each environment
are shown in Fig. 3.7.

3.2.2 Environment descriptions

Cart Pole (continuous and discrete action space)

The Cart Pole environment consists of a cart with a pole attached to its center [2]. The cart
can move freely from side to side, and the pole will rotate depending on the cart’s movements.
The goal is to balance the pole for as long as possible. The original Cart Pole environment
has discrete actions and continuous states. It is also possible to adapt the environment to
have continuous actions [59]. Each episode terminates if the angle of the pole to the vertical
is larger than ±12◦, if the position of the cart is larger than ±2.4 horizontal units. The
v1 version of the environment was used, but the truncated condition was capped at 200 to
accelerate the tests. The agent is considered to have learned when it can consistently attain
the 200 steps per episode mark for 100 consecutive episodes. The reward at each timestep is
+1, which includes the last timestep. The state components are the cart’s horizontal position
x, horizontal velocity v, angle of the pole to the vertical θ, and angular velocity of the pole

35

(a) Cart pole
[2] (b) Inverted Pendu-

lum [2] (c) Lunar lander [2]

(d) Pendulum
[2]

(e) Mountain car [2] (f) Acrobot [2] (g) MuJoCo Reacher [2]
(h) PandaGym
Reach [58]

Figure 3.7 Images of the benchmark RL environments

ω. In the discrete action space case, the action a consists of either pushing the cart to the
left with the action 0 or pushing it to the right with action 1. The magnitude of the applied
force F is a contant value of 10 with arbitrary units. This means that for the action [2]:

• 0: The cart will be pushed to the left with a force of -10

• 1: The cart will be pushed to the right with a force of 10

In the continuous action space case, the action a is the force applied to the cart, and its
value is between -1 and 1 [60].

In both cases, the [2]:

• Cart position x is bounded between -4.8 and 4.8

• Cart velocity v is unbounded

• Pole angle θ is bounded between −24◦ and 24◦

• Pole angular velocity ω is unbounded

The table 3.1 gives the remaining values of important physics variables of the Cart Pole
environment:

36

Table 3.1 Cart Pole environment physics variables

Variable Value

Gravity (g) 9.8

Cart mass (mc) 1.0

Pole mass (mp) 0.1

Half of the pole’s length (lp) 0.5

Inverted Pendulum

The Inverted Pendulum environment follows the same idea as the Cart Pole environment,
but the maximum episode length is 1000 steps, and the action space is continuous [2]. Also,
the pole must stay in the angle range of ±0.2 radians for the episode to continue. The state
components are the same as for the Cart Pole environment and they are all unbounded.

Lunar Lander (continuous and discrete action space)

The Lunar Lander environment is a rocket in space that needs to land between two flags on
a hill [2]. The rocket has a central main engine and two lateral engines that can be activated.
For discrete actions, the agent decides not to activate an engine or to activate one of the
three possible ones. For continuous actions, the agent decides the force to be applied to the
main engine and one of the lateral engines. No truncation condition is defined; however, the
episode terminates if the rocket exits the environment domain or the agent crashes. The
reward at each time step depends on multiple factors, including the rocket’s distance from
the ideal landing position, its tilt, and the number of frames the engine is firing.

The state components are the 2D position (x, y), 2D velocity (vx, vy), velocity v, angular
velocity ω, and two variables (left_contact, right_contact) that are True when the respective
leg of the rocket touches the ground. Here are the bounds of each state component [2]:

• The rocket’s 2D position (x, y) is bounded between -2.5 and 2.5 for each component

• The rocket’s 2D velocity (vx, vy) is bounded between -10 and 10 for each component

• The angle θ is bounded between -6.2831855 and 6.2831855

• The angular velocity ω is bounded between -10 and 10

37

• The two (left_contact, right_contact) are either False (0) or True (1)

For a discrete action space, the action 0 is do nothing, action 1 is to fire the left engine,
action 2 is to fire the main engine, and action 3 is to fire the right engine. For a continuous
action space, the action a = (a1, a2) is 2D and is bounded between -1 and 1. a1 is the throttle
of the center engine and a2 is for the throttle of either the left or right engine. The following
piece-wise function discribes the throttle of the center and lateral engines depending on the
value of a1 and a2:

engines throttle =



center engine is off, if a1 < 0,

center engine is on and increases with a1, if 0 ≤ a1 ≤ 1

left engine is on, if a2 < −0.5,

right engine is on, if a2 < 0.5,

left and right engines are off, if − 0. < a2 < 0.5,

left engine is on and increases opposite to a2, if − 1 ≤ a1 ≤ −0.5

right engine is on and increases with a2, if 0.5 ≤ a1 ≤ 1

The default gravity value is -10. It is possible to add wind, define the strength of the linear
and rotational wind. Wind isn’t activate for our tests.

Pendulum

The Pendulum environment consists of a pole fixed at one end that is free to rotate [2]. The
goal is to bring the pole vertical and then balance it upwards. There is no clear episode
termination condition, and the truncation condition, which determines when the episode
ends, is 200 timesteps. The agent receives a reward of -1 for each time step. The first way
of defining the state components is the cosine of the pole’s angle x = cos (θ), the sine of the
pole’s angle y = sin (θ), and the pole’s angular velocity ω. It is also possible to access the
actual state components used in the environment’s dynamics, which include the pole’s angle
to the vertical, θ, and the pole’s angular velocity, ω. The action a is the torque applied to
the pole and its in N·m.

Here are the bounds of the state components and the torque [2]:

• x = cos (θ) is bounded between -1 m and 1 m

38

• x = sin (θ) is bounded between -1 m and 1 m

• ω is bounded between -8 rad/s and 8 rad/s

• a is bounded between -2 N·m and 2 N·m

The table 3.2 gives the remaining values of important physics variables of the Pendulum
environment:

Table 3.2 Pendulum environment physics variables

Variable Value

Gravity (g) 9.8

Pole mass m 1.0

Pole mass l 0.1

The reward function is given in Equation 3.8:

r = −(θ2 + 0.1ω2 + 0.001a2) (3.8)

Mountain Car (discrete and continuous action space)

The Mountain Car consists of a car that starts at the bottom of two hills [2]. The goal is
to reach the top of the right side of the mountain. To do so, the agent must move up the
left side of the hill to gain enough momentum to go up the right side of the mountain. The
goal position is 0.45 for the continuous action space Mountain Car and 0.5 for the discrete
version of the environment. By moving up the left hill, the agent moves away from the goal
state, which exemplifies a classic demonstration of delayed rewards. The environment has
both discrete and continuous action space versions. In both cases, the states are continuous.
The reward at each timestep is -1 for the discrete version. For the continuous version, the
reward at each timestep is −0.1 · a2, where a is the action. A reward of +100 is also given
when the agent reaches the goal. The state components are the horizontal position, x, and
the velocity of the car, v. The action a is the force applied to the cart. When the action
space is discrete:

• Action 0 will move the cart to the left with a force F = 0.001

39

• Action 1 will do nothing

• Action 2 will move the cart to the right with a force F = 0.001

When the action space is continuous, the action a = F will be a force with a continuous
value between -1 and 1.

Here are the bounds of the state components [2]:

• The horizontal position of the car x is bounded between -1.2 and 1.2

• The horizontal velocity of the car v is bounded between -0.07 and 0.07

The gravity used is 0.0025.

Acrobot

The goal of the Acrobot environment consists of two poles connected at a joint, and the
system is fixed at one end of the top pole [2]. The goal is to bring the bottom part of
the lower pole up to a height of 1. The action a consists of applying a torque to the link
between the two poles. The state and action spaces are continuous. The state components
are the cosine of θ1, the sine of θ1, the cosine of θ2, the sine of θ2, the angular velocity of
θ1 and the angular velocity of θ2 where θ1 is the angle the top pole makes with the vertical
axis pointed downwards and θ2 is the angle the bottom pole makes with the top pole. The
possible actions are [2]:

• 0: Torque of -1 to the joint connecting the two poles

• 1: No torque is applied

• 2: Torque of 1 to the joint connecting the two poles

The bounds of the state components are [2]:

• cos (θ1), sin (θ1), ,cos (θ2), and sin (θ2) are bounded between -11 and 1

• ω1 and ω2 are bounded between −4π and 4π

The table 3.3 gives the remaining values of important physics variables of the Acrobot
environment:

The agent receives a reward of -1 for each time step, and the optimal reward is -100.

40

Table 3.3 Acrobot environment physics variables

Variable Value

Gravity (g) 9.8 m/s2

Top link mass m1 1.0 kg

Bottom link mass m2 1.0 kg

Top link length l1 1.0 m

Bottom link length l2 1.0 m

Center of mass position of the top link lc1 0.5 m

Center of mass position of the top link lc2 0.5 m

Reacher - Mujoco and Panda Gym

The MuJoCo Reacher environment is a 2D robotic arm with one end fixed on a surface and
the other end free to move [2]. The goal is to bring the end of the free robotic arm to a goal
position. The state space is 10d and consists of the sine, the cosine, and the angular velocity
of both joints of the robotic arm, the x- and y-coordinates of the target position, and the
distance in x and y between the robotic arm’s tip and the goal position.

The Panda Gym Reach environment consists essentially of a 3D version of the robotic arm
reaching task [58]. The state space is 6D and consists of the 3D Cartesian position and 3D
velocity of the robotic arm’s free end. The action is the 3D movement of the free end of the
robot arm. The reward structure can either be sparse or dense. For sparse rewards, a reward
is only given when the agent succeeds in the task. For dense rewards, a reward is given at
each time step. In this case, the reward is the negative of the distance between the agent’s
current free end arm position and the goal position.

Recap of environment action space type

The table 3.4 recaps the action space type for each environment.

3.2.3 Length of an environment time step

We now give the length of taking a step in the environment using env.step(action) for the
different benchmark environments. We will use the standard convention of calling it dt.

41

Table 3.4 Recap of action space types

Environment
Action space
C: continuous

D: discrete
Nsteps

Acrobot D 200

Cart pole C + D 200

Inverted Pendulum C 1000

Moutain car continuous C 500

Moutain Car Discrete D 200

Lunar Lander C + D 1000

Pendulum C 200

MuJoCo Reacher C 50

Panda Reach C 50

Cart Pole

For the Cart Pole enviroment, the dt is defined as tau and is worth 0.02 s [2].

Acrobot

The dt for the Acrobot environment is 0.2 s [2].

Pendulum

The dt for the Pendulum environment is 0.05 s [2].

Inverted Pendulum and MuJoCo Reacher

For the Inverted Pendulum, MuJoCo Reacher, and all the other MuJoCo environments, the
dt is defined as in Equation 3.9:

dt = 1
frame_skip ×model.opt.timestep (3.9)

For the Inverted Pendulum and MuJoCo Reacher environments, frame_skip = 2 s and

42

model.opt.timestep = 0.002 s. The lenght of a time step is therefore dt = 0.004 s [2].

Panda Reach

For the Panda Gym environments, the dt is obtained by multiplying the number of time steps
run by the simulation and the duration of a simulator time step as presented in Equation
3.10 [58]:

dt = number_simulator_time_steps× duration_of_time_step = 20× 2 · 10−3 s = 0.1 s
(3.10)

Mountain Car, and Lunar Lander

There is no defined dt value for the Mountain Car, and Lunar Lander environments [2].

Recap of environment time step length

The table 3.5 recaps the action space type for each environment.

Table 3.5 Recap of action space types

Environment
Action space
C: continuous

D: discrete
Nsteps dt (s)

Acrobot D 200 0.2

Cart pole C + D 200 0.02

Inverted Pendulum C 1000 0.004

Moutain car continuous C 500 -

Moutain Car Discrete D 200 -

Lunar Lander C + D 1000 -

Pendulum C 200 0.05

MuJoCo Reacher C 50 0.004

Panda Reach C 50 0.1

43

3.2.4 Dynamics of the environments

We will now go over the equations representing the dynamics of each environment.

Cart Pole and Inverted Pendulum

For the Cart Pole and Inverted Pendulum environments, as presented in Florian’s technical
report [61], the linear acceleration ax = ẍ and the angular acceleration α = θ̈ are as given in
Equations and [2,61]:

θ̈ =
g sin (θ) + cos (θ)

(
−F −mplθ̇2 sin (θ)

mc+mp

)
l
(

4
3 −

mp cos2 (θ)
mc+mp

) (3.11)

ẍ =
F + mpl

(
θ̇2 sin (θ)− θ̈ cos (θ)

)
mc + mp

(3.12)

The next state components (x, v = ẋ, θ, ω = θ̇) are then calculated using Euler [62] as an
integration method as given in Equations 3.13, 3.14, 3.15, and 3.16 [2]:

x← x + dt · ẋ (3.13)

ẋ← ẋ + dt · ẍ (3.14)

θ ← θ + dt · θ̇ (3.15)

θ̇ ← θ̇ + dt · θ̈ (3.16)

Lunar Lander

The dynamics of the Lunar Lander environments are quite complex. We suggest the inter-
ested reader to look at the Gymnasium source code: https://github.com/Farama-Foundation/
Gymnasium/blob/main/gymnasium/envs/box2d/lunar_lander.py.

https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/box2d/lunar_lander.py
https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/box2d/lunar_lander.py

44

Pendulum

The Pendulum task dynamics are described in Equations and .

θ̇ ← θ̇ +
(3g

2l
sin (θ) + 3

m · l2 a
)

dt (3.17)

θ ← θ + θ̇ · dt (3.18)

The new state is obtained with: (x, y, ω) = (cos (θ), sin (θ), ω).

Mountain Car

The dynamics of the discrete action space version of the Mountain Car environment are
given in Equations 3.19 and 3.20:

v ← v + (a− 1) · F + cos (3x) · (−g) (3.19)

x← x + v (3.20)

The continuous action space Mountain Car environment dynamics are presented in Equations
3.21 and 3.22:

v ← v + F · P − g · cos (3x) where the Power P is worth 0.0015 (3.21)

x← x + v (3.22)

Acrobot

The dynamics of the Acrobot Equation based on Sutton’s work [9,63] are given in Equations
3.23, 3.24 with d1, d2, ϕ1, and ϕ2 defined in Equations 3.25, 3.26, 3.27, and 3.28.

θ̈1 = −d−1
1 (d2θ̈2 + ϕ1) (3.23)

45

θ̈2 =
(

m2l
2
c2 + I2 −

d2
2

d1

)−1(
τ + d2

d1
ϕ1 − ϕ2

)
where τ = a the action taken in the environment

(3.24)

d1 = m1l
2
c1 + m2

(
l2
1 + l2

c2 + 2l1lc2 cos (θ2)
)

+ I1 + I2 (3.25)

d2 = m2
(
l2
c2 + l1lc2 cos (θ2)

)
+ I2 (3.26)

ϕ1 = −m2l1lc2θ̇2
2 sin (θ2)− 2m2l1lc2θ̇2θ̇1 sin (θ2) + (m1lc1 + m2l1)g cos (θ1 − π/2) + ϕ2 (3.27)

ϕ2 = m2lc2g cos (θ1 + θ2 − π/2) (3.28)

The system of equations is solved using a 4th order Runge-Kutta method [62].

MuJoCo Reacher and Panda Reach

The MuJoCo Reacher and Panda Reach environments do not provide clear dynamics.

3.2.5 Cost function used in MPC for each environment

Below are the cost functions used for the different MPC, MBRL, and trajectory optimization
methods used later on. It is worth noting that we chose to clip the state components to the
acceptable range before being passed to the cost function as a hard constraint.

Cart Pole and Inverted Pendulum

For the Cart Pole and the Inverted Pendulum environments, the cost function is given in
Equation 3.29:

C =
H−1∑
t=0

(θ2
t + 0.1 · x2

t + 0.1 · v2
t) (3.29)

The goal is to balance the pole and not stray too far from the center, which explains the first
two terms of the cost function that we will want to minimize. The third term represents the
idea that smaller velocities will allow the agent to balance the pole more easily.

46

Acrobot

For the Acrobot environment, the distance of the height of the free end of the bottom pole
from the goal height of 1 is important, so the cost function is described in Equation 3.30:

C =
H−1∑
t=0

[
1 + cos (θ1,t) + cos (θ1,t + θ2,t)

]2
(3.30)

When θ1,t = 0, the top pole will be oriented downwards, and when θ2,t = 0, the bottom pole
will align with the top pole. The smallest possible cost is -1 which is when θ1,t = π and
θ2,t = 0.

Mountain Car

For the mountain car environment, the goal is to reach the goal state located at the top right
of the hill, which is achieved when the agent’s horizontal position exceeds xg. We will then
want to minimize the agent’s distance from the goal, but we will add an inverse discount
factor to encourage the agent to get as close as possible to the goal near the end of the
episode. This allows the agent to move away from the goal early on and eventually approach
it more closely as the episode progresses without penalizing it for doing so prematurely. The
cost function used is the following Equation 3.31:

C =
H−1∑
t=0

γH−t−1 · (xt − xg)2 (3.31)

For the discrete environment, xg = 0.45 and xg = 0.5 for the continuous version. Depending
on the chosen γ value, we can consider more or less the importance of the different steps
along the prediction horizon. For example, when γ = 0, only the cost of the last step is
considered. Multiple γ values were tested (0, 0.5, 0.99). The value γ = 0.5 was chosen based
on my tests.

For the continuous Mountain Car environment, the GP-MPC method repeated the action
found using MPC 4 times. This led to excellent performance. In section , we compare the
performance of our MPC methods, CEM, iCEM, and MPPI, when we take four steps with
the optimized action and when we only take one.

47

Lunar Lander

To successfully solve the task, the rocket must minimize its distance from the center position
of the landing pad, situated at (0, 0), land with as little angle as possible, and turn off its
thrusters once it has landed. The cost function for the discrete action space version of the
environment is as described in Equation 3.32:

C =
H−1∑
t=0

x2
t + y2

t + 0.1(v2
x,t + v2

y,t) + 0.3(θ2
t + ω2

t)− 10(LL + RL) (3.32)

For the continuous action space version of the environment, we add the actions in the cost
function of Equation 3.33:

C =
H−1∑
t=0

x2
t + y2

t + 0.1(v2
x,t + v2

y,t) + 0.3(θ2
t + ω2

t) + 0.001(a2
1 + a2

2)− 10(LL + RL) (3.33)

where a1 is the thrust applied to the main engine and a2 is the one associated with the side
engines.

The specific value of the weights used is arbitrary; what matters in our cost functions is
the relative importance of the variables based on the associated weights. The LL and RL
parameters represent the booleans for the left and right legs of the rocket being in contact
with the ground.

Here’s the chosen importance of the different quantities in decreasing order:

• The contact of the legs with the ground

• The distance to the center

• The angle and angular velocity

• The linear velocity

• The action applied

Pendulum

For the pendulum env, minimizing θ, ω, and τ is important, so the cost function used is
defined in Equation 3.34:

C =
H−1∑
t=0

γ(H−t−1)(θ2
t + 0.1 · ω2

t + 0.01τ 2) (3.34)

48

The inverse discounting γ(H−t−1) gives more importance to the later costs than the early
ones in the prediction horizon. This is important since the agent should be closer to the goal
position of being vertical later on in the time horizon. The parameter γ = 0.99 was chosen
because it yielded promising results.

MuJuCo Reacher and Panda Gym Reach

For the MuJoCo Reeacher and Panda Gym Reach problems, we aim to minimize the distance
between the current position of the free end of the robot arm, Pe,t, and the goal position, dg.
For MuJoCo Reacher, we also want to especially minimize excessive and large movements.
The MPC cost functions used for each environment are given in Equations 3.35 and 3.36:

C =
H∑

t=0
∥Pe,t − Pg∥+0.1(a2

x,t +a2
y,t) =

H∑
t=0

√
(xe,t − xg)2 + (ye,t − yg)2 +0.1(a2

x,t +a2
y,t) (3.35)

C =
H−1∑
t=0
∥Pe,t − Pg∥ =

H∑
t=0

√
(xe,t − xg)2 + (ye,t − yg)2 + (ze,t − z2

g) (3.36)

Recap of cost functions used in MPC

The table 3.6 recaps the cost functions used in MPC for each environment.

3.3 Description of the tests

3.3.1 Test of the validity of QRNN model’s quantile predictions

To test the quantile predictions of the QRNN, 20,000 steps were taken using a randomly
sampled action in each environment. At each step, the prediction provided by the QRNN for
each state component was compared to the actual next state prediction of the environment.
When the true state component value was below that of a given quantile, a counter was
augmented by 1, and then the value of the counter at this step was divided by the total
number of steps up to that point. This calculation aims to determine the percentage of time
the different quantile predictions exceed those of the environment. Pseudocode 13 explains
this.

49

Table 3.6 Recap of cost functions

Environment Cost function C = ∑H−1
t=0

Acrobot
[
1 + cos (θ1,t) + cos (θ1,t + θ2,t)

]2

Cart Pole θ2
t + 0.1 · x2

t + 0.1 · v2
t

Inverted Pendulum θ2
t + 0.1 · x2

t + 0.1 · v2
t

Mountain Car γ(H−t−1)(xt − xg)2

Lunar Lander discrete
x2

t + y2
t + 0.1(v2

x,t + v2
y,t)

+ 0.3(θ2
t + ω2

t)− 10(LL + RL)

Lunar Lander continuous
x2

t + y2
t + 0.1(v2

x,t + v2
y,t)

+ 0.3(θ2
t + ω2

t) + 0.001(a2
1 + a2

2)

− 10(LL + RL)

Pendulum γ(H−t−1)(θ2
t + 0.1 · ω2

t + 0.01τ 2
t)

MuJoCo Reacher ∥Pe,t − Pg∥+ 0.1(a2
x,t + a2

y,t)

Panda Reach ∥Pe,t − Pg∥

50

Algorithm 13 Pseudocode of the QRNN next state prediction compared to the environ-
ment’s
Require: i: Number of state components, j: Number quantiles, senv: Environment true

next state, squantile: QRNN predicted next state
1: counter0=0, counter1=0, ..., counterj=0 ▷ Initialize a counter for each quantile
2: for each state component i do
3: for each quantile j do
4: if senv,i < squantilej ,i then ▷ Take the ith state component of the jth quantile
5: counterj += 1
6: end if
7: Save counterj/(i + 1)
8: end for
9: end for

3.3.2 Hyperparameter testing of noise levels in MPC particle filtering

Our different MPC-based methods were run on the benchmark environments for seeds 0,
8, and 15. Different probabilities of change (p) were tested for the different MPC methods
applied to problems with discrete action spaces, and the one that seemed the most effective
was chosen. Similarly, these tests were repeated with the different standard deviations σ for
the MPC methods applied to continuous action spaces.

3.3.3 Comparison of methods

The methods that are compared in the results are now given and we explain why certain
methods mentioned previously are not included.

QRNN-ASNN-PF/CEM and its ablations

Our different MPC methods utilize three models of the environment (QRNN, 50NN, or
MSENN) and either particle filtering (PF) or the cross-entropy method (CEM) to modify the
action sequences in MPC. The general groups of methods are: model-ASNN-PF, model-basic-
PF, model-rnd-PF, model-ASNN-CEM, model-basic-CEM, model-rnd-CEM, and model-RS,
where the possible choices for model are defined in Section 3.1.2. This results in 21 different
MPC methods that we test, comprising the QRNN-ASNN method and its various ablations.
For discrete action space problems, the probability of change p used in particle filtering is
set to 0.1. For continuous action space problems, the standard deviation σ as part of the
Gaussian noise added to the particles is 0.3.

51

MFRL

The standard MFRL algorithms used for comparison later on are DQN [17], IV-DQN [30],
QR-DQN [29], SAC [18], TD3 [20], DDPG [19], TQC [31], PPO [21], and A2C [64].

DQN [17] and IV-DQN [30] are the latter author’s implementations [65]. They only run
their code for the discrete versions of the Mountain Car and the Lunar Lander environment.
They specify DQN and IV-DQN hyperparameters for both, but we ultimately used the
default hyperparameters for Lunar Lander. This is because the performance did not change
for Mountain Car and was worse when using their chosen hyperparameters. Similarly, since
the authors did not run DQN and IV-DQN for Acrobot and Cart Pole, Iwe decided to use
the default hyperparameter values. We made this choice since the hyperparameter tuning
method described by the authors is quite exhaustive, and they did not provide any code
for their hyperparameter tuning method. Here’s an excerpt of the authors’ hyperparameter
tuning method [30]:

For every result presented in this paper, the hyperparameters for each algorithm
were tuned using grid search. Each combination of hyperparameters was run
five times, with different seeds on both initialization and environment. The
best 3 or 4 configurations were then selected to be run 25 times - this time,
the combinations of 5 environment and 5 initialization seeds. The configuration
selected to be shown in the paper is the best of these configurations based on the
25 runs

QR-DQN [29] is from an unofficial reimplementation of the method [66]. We ran their code
as is, besides changing the environment.

The other RL methods are from the stable-baseline3 (sb3) package [67]. The hyperparame-
ters used for our tests are from sb3’s Hugging Face page [68]. Appendix A lists the different
hyperparameters used for clarity. Some of the given hyperparameters are no longer used
by sb3, such as normalize, noise_std, noise_type, normalize_kwargs, learning_starts, ac-
tion_noise, and env_wrapper. The hyperparameters were provided for the Acrobot, Cart
Pole, Lunar Lander, Mountain Car, Pendulum, and the sparse reward version of Panda
Reach. The default algorithm hyperparameters were assumed for the other environments.
It is worth noting that only the TQC hyperparameters were provided for the Panda Reach
environment. For most environments for which hyperparameters were provided, we were
able to use the same hyperparameters as those used in our tests for the corresponding envi-
ronment version. However, for the Lunar Lander environments, the hyperparameters were

52

specified for the v2 version of the environment, not the v3 version. We ran the algorithms
on the v2 version of the discrete Lunar Lander environment and on the v3 version of the
continuous Lunar Lander environment, as v2 is deprecated. We therefore assumed that the
hyperparameters for the v2 version of the continuous Lunar Lander were acceptable to use
for the v3 version. The hyperparameters for the continuous Cart Pole were assumed to be
the same as those for the discrete version of the environment, as they were not provided,
and the environment is essentially the same, except that it has continuous instead of discrete
actions. This means that only A2C and PPO have the sb3-defined hyperparameters for the
continuous Cart Pole environment. The other algorithms use the default ones.

MPC-based and trajectory sampling

The MPC and trajectory sampling methods used as benchmarks are PETS-CEM [23], MPPI
[43,44], GP-MPC [33,35], CEM [38,39], and MPC-iCEM [41].

PETS-CEM [23] is from the Facebook archived MB-RL library [59]. The authors imple-
mented their code for the continuous Cart Pole environment. We use the code as is, besides
modifying the environment and the cost function used. An important note is that the cost
functions used for the Pendulum and Mountain Car continuous environments for PETS-
CEM are the ones given earlier but without the γ discount factor term, since the code did
not allow to simply integrate the time step t into the cost function.

MPPI [43, 44] is from the Pytorch-MPPI package [54], CEM [39] is from the Pytorch-CEM
repository [42], and iCEM [41] is from the Pytorch-iCEM package [42]. These three algo-
rithms are from the same author, who implemented them for the Pendulum environment.
They specify that the important hyperparameters are the terminal_state_cost, lambda_,
num_samples, and noise_mu. We do not use a different cost function or a bonus for the
final state therefore we do not use the terminal_state_cost parameter. The authors suggest
to use 1e-2 for lambda_, so that is what we used. Num_samples is the number of action
sequences to test. We use the same amount as we used for QRNN-ASNN and its ablations.
We kept the default value of 0 for noise_mu.

GP-MPC [33, 35] is from an unofficial implementation [34]. The authors implemented their
code for the Pendulum and Mountain Car environments. We use their code as is, besides
modifying specific parameters and the cost function based on the environment.

53

Algorithms not included

POPLIN-A is omitted, as we were unable to get the author’s code working. Their code [60]
was programmed with such specific requirements that the only way to get their code to work
would be to use their computer. Even with a lot of help from Réjean Lepage in the Electrical
Engineering department at l’École Polytechnique Montréal, and even running the code on
a computer with a Linux version and hardware from 2015-2016, the code still did not work.
The authors mentioned when they published their work that it is an unfinished product, and
there does not seem to have been any advances since then, which might explain the extreme
difficulty in running their code.

iLQR is omitted [47] since none of the other methods we propose or consider as benchmarks
assume that the environment dynamics are known. We would use Neural iLQR if an imple-
mentation were available, but there is none. If we wanted to use iLQR using a known model
of the environment, we could use this implementation [69].

Tests run

To compare the different methods, they were run on various benchmark problems with
environment initialization seeds of 0, 8, and 15. The episodic returns were averaged over the
seeds. Then, a moving average was applied to the last Nmov values to smooth out the curves,
where Nmov varies depending on the desired level of smoothness in the collected data. The
number of steps per episode and the number of episodes run depend on the problem. The
table 3.7 shows the different number of steps per episode Nsteps and the number of episodes
Nep run for each environment.

3.3.4 Other tests

Sampling method for QRNN next state prediction

An idea to consider the whole quantile distribution in the QRNN next state prediction would
be to do the following steps, as suggested by my co-supervisor Dr. Prémont-Schwarz:

1. For a given state st and a chosen state at, we will predict a distribution over the next
state st+1 using the QRNN

2. The steps below will be repeated over Nsamples and we will iterate of j:

• Randomly choose a real number i sampled from U(0, 10(for each particles and
each state component

54

Table 3.7 Recap of environment properties

Environment
Action

C: continuous
D: discrete

Cost function C = ∑H−1
t=0 Nsteps Nep dt (s)

Acrobot D [1 + cos θ1,t + cos (θ1,t + θ2,t)]2 200 300 0.2
Cart Pole C+D θ2

t + 0.1x2
t + 0.1v2

t 200 300 0.02
Inverted Pendulum C θ2

t + 0.1x2
t + 0.1v2

t 200 300 0.004
Mountain Car C+D γ(H−t−1)(xt − xg)2 200 300 -

Lunar Lander discrete D x2
t + y2

t + 0.1(v2
x,t + v2

y,t)
+ 0.3(θ2

t + ω2
t)− 10(LL + RL)

1000 300 -

Lunar Lander continuous C
x2

t + y2
t + 0.1(v2

x,t + v2
y,t)

+ 0.3(θ2
t + ω2

t) + 0.001(a2
1 + a2

2)
− 10(LL + RL)

1000 300 -

Pendulum C γ(H−t−1)(θ2
t + 0.1ω2

t + 0.01τ 2
t) 200 300 0.05

MuJoCo Reacher C ∥Pe,t − Pg∥+ 0.1(a2
x,t + a2

y,t) 50 300 0.004
Panda Reach C ∥Pe,t − Pg∥ 50 300 0.1

55

• Get a next state prediction sj
t+1 = (1− i+ ⌊i⌋)q⌊i⌋ +(i−⌊i⌋)q⌊i⌋+1 and save it (For

a given state component and particle as mentioned at 1)

3. Calculate the j costs, the next state prediction st+1 is associated with smallest cost

Algorithm 14 presents the above in pseudocode form:

Algorithm 14 QRNN next state prediction by sampling the quantiles
Require: QRNN: Quantile regression neural network, s: Current state, a: Action, NQ:

Number of quantiles
1: s′

Q = QRNN(s, a) ▷ Next state quantiles
2: for j = 0 to Nsamples do
3: sj

t+1 = [] ▷ Create tensor to store possible next states
4: for p = 0 to Np do
5: for c = 0 to Ns,c do
6: i ∼ U(0, NQ) ▷ Select a quantile
7: ifloor=floor(i)
8: iceil = ifloor+1
9: qlow = s′

Q[p, c, ifloor]
10: qhigh = s′

Q[p, c, iceil]
11: sc = (1 + i + ifloor)qlow + (i− ifloor)qhigh
12: Add sc to element of sj

t+1 associated to the component c and the particle p
13: end for
14: end for
15: end for
16: Calculate costs associated with the different next states in the sj

t+1 tensor
17: The next state is the one with the smallest cost

56

CHAPTER 4 RESULTS

4.1 Quantile regression neural network predictions

The following graphs in Figure 4.1 show the quantile predictions for the x and v next state
components for the discrete Mountain Car environment with these cumulative counter values,
though the results shouldn’t change for the continuous version. The next state prediction
comparison graphs for the other environments are shown in Annexe B.

(a) x (b) v

Figure 4.1 Different quantile predictions for x and v next state components of the Mountain
Car environment

The tendencies of Fig. 4.1 show a quick learning of the different quantile predictions by the
QRNN model. While most quantiles only converge after around 7500 steps, the quantile
tendencies learn by the model are the correct ones only after a couple of hundred steps or
less. For the QRNN next-state predictions in the other environments shown in Annex B, the
correct quantile prediction tendencies are learned over a varying number of episode steps.

4.2 Mean episodic return graphs

Figures 4.2, 4.3, 4.4, and 4.5 present the mean episodic reward graphs of the different algo-
rithms applied to the benchmark environments. Fig. 4.2 shows the results for the discrete
Cart Pole, Acrobot, and discrete Lunar Lander problems. Fig. 4.3 is for the discrete Moun-
tain Car, continuous Cart Pole, and continuous Mountain Car environments. Fig. 4.4 is for
the continuous Lunar Lander, Inverted Pendulum, and Pendulum problems. Fig. 4.5 shows
the results for the MuJoCo Reacher, in addition to the sparse and dense reward versions of

57

the Panda Reach environment.

Each figure organizes data into three columns:

• MPC-PF methods

• MPC-CEM methods

• Top three algorithms from the MPC-PF and MPC-CEM methods, as well as the other
benchmark algorithms.

4.3 Area under the curve of the episodic return tables

Table 4.1 shows the normalized mean and standard deviation of the area under the curve
(AUC) of the mean episodic return for the different algorithms applied to the benchmark
environments with a discrete action space.

Table 4.1 Area under the curve of the episodic return for discrete action space problems

Acrobot Cart Pole Lunar Lander Mountain Car

QRNN-ASNN-PF −28689.00 ± 1296.94 59305.33 ± 699.56 −48587.72 ± 17147.57 −59799.33 ± 0.94
QRNN-basic-PF −31032.67 ± 1241.48 59243.67 ± 786.77 −51911.79 ± 22503.81 −59781.00 ± 19.61
QRNN-rnd-PF −31767.00 ± 1423.24 59424.00 ± 531.74 −51796.42 ± 20282.50 −59800.00 ± 0.00
QRNN-RS −37135.83 ± 798.06 59418.67 ± 539.29 −84800.03 ± 48710.93 −59757.67 ± 25.00
50NN-ASNN-PF −29807.50 ± 866.15 59216.17 ± 794.06 −45510.71 ± 13709.11 −59800.00 ± 0.00
50NN-basic-PF −59800.00 ± 0.00 2591.33 ± 140.95 −237153.22 ± 98016.51 −59800.00 ± 0.00
50NN-rnd-PF −33033.33 ± 1182.28 58768.67 ± 1458.53 −50685.63 ± 24348.51 −59762.33 ± 45.05
50NN-RS −37649.33 ± 760.09 59235.17 ± 798.79 −79663.60 ± 45101.08 −59790.33 ± 8.18
MSENN-ASNN-PF −29086.00 ± 1516.73 59120.67 ± 829.56 −68139.01 ± 30516.77 −59357.17 ± 294.15
MSENN-basic-PF −31076.17 ± 2093.78 59295.00 ± 714.18 −59295.08 ± 25582.97 −59765.00 ± 25.15
MSENN-rnd-PF −33232.67 ± 1052.73 59091.83 ± 841.48 −59780.33 ± 26732.23 −59778.00 ± 31.11
MSENN-RS −37765.67 ± 890.60 59104.00 ± 954.75 −121314.94 ± 57540.93 −59728 ± 47.42

QRNN-ASNN-CEM -26047.00 ± 599.26 59216.00 ± 825.90 −42705.73 ± 11515.52 −59800.00 ± 0.00
QRNN-basic-CEM −26957.67 ± 1256.68 59053.50 ± 1055.71 −46083.07 ± 14078.49 −59671.00 ± 45.99
QRNN-rnd-CEM −27614.00 ± 573.17 59197.00 ± 852.77 −39717.68 ± 10104.95 −59760.00 ± 56.57
50NN-ASNN-CEM −27760.50 ± 366.96 59399.83 ± 565.92 −44834.81 ± 11295.70 −59782.00 ± 10.98
50NN-basic-CEM −59800.00 ± 0.00 3192.00 ± 146.33 −107406.96 ± 28496.87 −59721.33 ± 14.82
50NN-rnd-CEM −27966.17 ± 48.24 59543.00± 363.45 −46379.54 ± 8400.29 −59800.00 ± 0.00
MSENN-ASNN-CEM -26731.00 ± 1156.87 58903.00 ± 838.72 −59763.88 ± 20532.07 −59133.67 ± 244.19
MSENN-basic-CEM -26728.33 ± 1303.24 59156.00 ± 841.36 −59323.06 ± 22940.22 −59066.00 ± 705.91
MSENN-rnd-CEM −28454.17 ± 180.72 58964.67 ± 1137.78 −57459.30 ± 19774.73 −59780.67 ± 13.77

A2C −41984.33 ± 7789.17 26731.00 ± 4120.32 −15338.93 ± 6400.97 −59800.00 ± 0.00
PPO −36909.67 ± 1895.65 40018.17 ± 3158.19 −42493.16 ± 5499.64 −59800.00 ± 0.00

DQN −51376.33 ± 2239.63 17194.33 ± 218.63 10366.16 ± 6716.96 −55685.67 ± 1896.94
QR-DQN −30390.83 ± 2202.62 36698.83 ± 22378.26 24594.92 ± 16502.78 -47409.17 ± 3416.06
IV-DQN −40393.00 ± 297.23 22942.17 ± 1869.13 14651.49 ± 5757.50 −57488.50 ± 1268.37

Tables 4.2 and 4.3 show the mean and standard deviation of the AUC of the mean episodic
return for the different algorithms applied to the benchmark environments with a continuous
action space.

58

(a) Acrobot

(b) Discrete Cart Pole

(c) Discrete Lunar Lander

Figure 4.2 Episodic return averaged over seeds 0, 8, and 15 for the Cart Pole, Acrobot,
Mountain Car, and Lunar Lander environments.

59

(a) Discrete Mountain Car

(b) Continuous Cart Pole

(c) Continuous Mountain car

Figure 4.3 Episodic return averaged over seeds 0, 8, and 15 for the Mountain Car, continuous
Cart Pole, and continuous Lunar Lander environments.

60

(a) Continuous Lunar Lander

(b) Inverted Pendulum

(c) Pendulum

Figure 4.4 Episodic return averaged over seeds 0, 8, and 15 for the continuous Lunar Lander,
Pendulum, MuJoCo Reacher environments.

61

(a) MuJoCo Reacher

(b) Panda Reach sparse rewards

(c) Panda Reach dense rewards

Figure 4.5 Episodic return averaged over seeds 0, 8, and 15 for the MuJoCo Reacher and
Panda Reach with sparse and dense reward environments.

62

Table 4.2 Area under the curve of the episodic return for the continuous action space problems
Cart Pole continuous, Mountain Car continuous, Lunar Lander continuous, and Inverted
Pendulum

Cart Pole Continuous Mountain Car Continuous Lunar Lander Continuous Inverted Pendulum

QRNN-ASNN-PF 59045.17 ± 924.33 22510.25 ± 2687.41 −31113.95 ± 1316.16 133146.00 ± 15642.87
QRNN-basic-PF 59271.67 ± 728.87 24463.34 ± 2600.91 −32717.46 ± 7097.44 181218.00 ± 7624.33
QRNN-rnd-PF 59376.33 ± 594.92 −4031.02 ± 3416.00 −28573.99 ± 4056.70 290150.67 ± 9457.55
QRNN-RS 59399.33 ± 566.63 22571.00 ± 2022.86 −24697.70 ± 2868.93 37620.83 ± 3684.21
50NN-ASNN-PF 59102.00 ± 745.32 21156.89 ± 5282.43 −28158.63 ± 2417.63 200374.50 ± 6575.47
50NN-basic-PF 9397.00 ± 1679.53 23620.66 ± 2716.22 −55294.50 ± 16318.88 162573.33 ± 7780.51
50NN-rnd-PF 59481.50 ± 331.53 −3668.27 ± 5845.17 −29004.51 ± 3049.95 293743.17 ± 5455.89
50NN-RS 59548.67 ± 301.97 23475.75 ± 2487.08 −25529.63 ± 4834.29 37455.67 ± 2708.10
MSENN-ASNN-PF 59268.17 ± 416.50 22646.30 ± 1621.73 −40777.65 ± 842.84 178113.00 ± 4146.38
MSENN-basic-PF 58758.33 ± 844.52 23406.81 ± 996.06 −39033.16 ± 1928.96 185951.17 ± 36114.23
MSENN-rnd-PF 59156.33 ± 805.20 −3186.53 ± 2272.49 −45197.36 ± 6558.42 261737.00 ± 29926.80
MSENN-RS 59256.67 ± 607.20 24779.16 ± 377.49 −43005.02 ± 10168.95 35424.50 ± 4711.04

QRNN-ASNN-CEM 18070.67 ± 3188.99 21774.89 ± 73.42 −31760.22 ± 4483.96 4290.33 ± 795.54
QRNN-basic-CEM 18510.83 ± 3068.17 26366.36 ± 973.40 −24053.43 ± 3280.14 6889.83 ± 637.67
QRNN-rnd-CEM 59334.83 ± 624.21 −6563.22 ± 4608.83 −26484.40 ± 4853.13 265183.83 ± 6636.04
50NN-ASNN-CEM 17865.33 ± 2542.95 22553.39 ± 3850.98 −30082.03 ± 11660.14 7374.17 ± 663.79
50NN-basic-CEM 2915.00 ± 149.59 25931.50 ± 1544.34 −241166.18 ± 104020.89 6260.83 ± 866.03
50NN-rnd-CEM 59533.50 ± 246.57 2700.03 ± 13084.25 −26906.45 ± 3534.27 254636.50 ± 15829.31
MSENN-ASNN-CEM 17909.50 ± 3009.13 22376.78 ± 3499.66 −108650.17 ± 30791.40 6960.67 ± 409.10
MSENN-basic-CEM 17630.67 ± 2727.13 26346.90 ± 809.08 −74216.88 ± 34473.95 5995.83 ± 503.50
MSENN-rnd-CEM 58522.67 ± 1453.37 −1451.56 ± 11856.69 −56682.71 ± 28269.55 172981.17 ± 17415.03

A2C 13240.33 ± 2010.27 23869.03 ± 279.92 −173736.97 ± 59740.15 27405.50 ± 1831.70
PPO 39278.17 ± 11254.01 −5961.02 ± 6138.63 −29289.58 ± 7843.26 2305.50 ± 109.28
DDPG 2816.50 ± 19.30 −4.97 ± 0.53 −43258.09 ± 5443.25 8890.83 ± 9974.04
SAC 2804.83 ± 15.74 27223.34 ± 168.75 5774.24 ± 28151.24 123590.33 ± 7457.22
TD3 2927.50 ± 180.34 −7.28 ± 0.70 −61906.61 ± 23650.56 3149.00 ± 2200.29
TQC 2808.67 ± 20.83 27001.77 ± 70.68 50448.08 ± 4889.07 116316.33 ± 19573.50

MPPI 12173.67 ± 3176.01 −531.36 ± 27.06 −39199.82 ± 8640.33 5678.17 ± 963.55
CEM 13979.00 ± 9007.91 −3724.58 ± 1155.38 −76178.52 ± 34314.74 2240.50 ± 497.68
iCEM 22492.17 ± 1382.98 18885.45 ± 2124.18 −97883.40 ± 14614.77 3676.83 ± 886.85
GP-MPC 7440.17 ± 209.10 26375.91 ± 7.77 −41935.81 ± 2479.64 1557.33 ± 21.06
PETS-CEM 59690.33 ± 46.46 −16522.36 ± 106.63 −176626.20 ± 60431.69 3042.50 ± 276.05

63

Table 4.3 Area under the curve of the episodic return for the continuous action space problems
Pendulum, MuJoCo Reacher, Panda Reach sparse, and Panda Reach dense

Pendulum MuJoCo Reacher Panda Reach sparse Panda Reach dense

QRNN-ASNN-PF −50566.89 ± 1893.46 −3768.78 ± 1095.11 -931.33 ± 280.03 −149.71 ± 81.78
QRNN-basic-PF −62423.38 ± 5255.86 −7735.50 ± 1740.14 -956.33 ± 299.73 -141.42 ± 72.11
QRNN-rnd-PF −48334.66 ± 2051.91 −7878.76 ± 1144.03 −1045.00 ± 418.72 −144.88 ± 62.97
QRNN-RS −67757.61 ± 2708.83 −9420.25 ± 392.20 −2067.33 ± 464.32 −254.06 ± 57.74
50NN-ASNN-PF −68423.97 ± 4940.63 −4209.75 ± 1935.39 -900.17 ± 273.59 -141.23 ± 83.08
50NN-basic-PF −444781.26 ± 4779.90 −5183.74 ± 540.23 −11728.83 ± 1599.37 −9736.58 ± 964.17
50NN-rnd-PF −54983.23 ± 8619.08 −8898.68 ± 1412.97 −1055.50 ± 296.61 −158.73 ± 85.41
50NN-RS −78347.40 ± 3892.22 −9704.82 ± 624.40 −2067.33 ± 464.32 −240.36 ± 60.94
MSENN-ASNN-PF −65285.52 ± 1875.90 −5008.59 ± 2236.41 −1170.33 ± 456.83 -131.02 ± 58.94
MSENN-basic-PF −75304.65 ± 13082.64 −8340.40 ± 1325.34 −1173.67 ± 417.02 −281.64 ± 258.12
MSENN-rnd-PF −49745.17 ± 2413.38 −8996.69 ± 1095.72 −1221.67 ± 326.96 −248.87 ± 187.75
MSENN-RS −73355.04 ± 2889.18 −10216.22 ± 946.98 −2067.33 ± 464.32 −267.65 ± 68.38

QRNN-ASNN-CEM −534814.86 ± 9114.03 -1926.03 ± 336.28 −2178.67 ± 757.71 −269.83 ± 99.43
QRNN-basic-CEM −535268.56 ± 9116.50 −3075.66 ± 195.50 −2670.50 ± 928.40 −286.73 ± 117.84
QRNN-rnd-CEM -47382.41 ± 2580.26 −4367.64 ± 934.68 −1653.17 ± 377.96 −188.39 ± 52.07
50NN-ASNN-CEM −532741.88 ± 10011.77 -2228.83 ± 497.77 −2018.33 ± 899.01 −215.54 ± 89.63
50NN-basic-CEM −374486.07 ± 87569.26 −3343.29 ± 268.90 −14950.00 ± 0.00 −8985.52 ± 1614.02
50NN-rnd-CEM −55279.43 ± 3055.49 −4978.76 ± 1246.09 −1596.17 ± 376.11 −187.91 ± 55.77
MSENN-ASNN-CEM −523445.21 ± 12021.27 −2819.56 ± 241.31 −2379.17 ± 947.13 −279.53 ± 134.55
MSENN-basic-CEM −521272.86 ± 11508.91 −3629.88 ± 293.76 −3170.17 ± 1246.26 −391.97 ± 149.99
MSENN-rnd-CEM −47665.20 ± 4816.93 −5253.12 ± 1120.96 −1794.00 ± 405.26 −207.02 ± 63.73

A2C −460152.51 ± 7622.30 −20708.68 ± 2890.80 −13189.00 ± 112.33 −3338.66 ± 197.77
PPO −157429.34 ± 3942.44 −17156.65 ± 106.14 −13127.00 ± 229.52 −3191.12 ± 115.24
DDPG −59428.56 ± 1276.20 -2722.29 ± 91.03 −13856.50 ± 123.44 −2870.66 ± 305.19
SAC −59894.24 ± 2428.59 −5031.53 ± 61.38 −13240.00 ± 26.17 −2927.82 ± 59.77
TD3 −75016.92 ± 1414.30 −3133.22 ± 43.77 −13921.00 ± 185.48 −2783.64 ± 125.49
TQC −59958.40 ± 1136.59 −5096.24 ± 5.07 −13176.67 ± 100.67 −2710.74 ± 34.49

MPPI -43317.12 ± 1452.93 −3871.10 ± 571.40 −8154.17 ± 4243.01 −475.91 ± 310.16
CEM −54577.26 ± 12386.34 −15022.86 ± 684.61 −7290.67 ± 2951.20 −907.98 ± 545.07
iCEM -36832.39 ± 940.64 −25154.36 ± 497.51 −6900.33 ± 5601.44 −838.75 ± 189.60
GP-MPC −138375.38 ± 9584.98 −12552.08 ± 163.47 −13971.33 ± 356.84 −6678.02 ± 263.29
PETS-CEM −339150.29 ± 4772.69 −3715.01 ± 1150.74 −10280.33 ± 6603.91 −2194.12 ± 1496.71

4.4 Normalized mean area under the curve of the episodic return tables

Table 4.4 shows the normalized mean of the area under the curve (AUC) of the mean episodic
return for the different algorithms applied to the benchmark environments with a discrete
action space.

Tables 4.5 and 4.6 show the normalized mean and standard deviation of the AUC of the
mean episodic return for the different algorithms applied to the benchmark environments
with a continuous action space.

In both cases, the normalization for the AUCs of a given problem was done by comparing
algorithm j’s average and standard deviation AUC with the best and worst mean AUC of
all the methods as described by equation 4.1:

64

Table 4.4 Normalized area under the curve of the episodic return for discrete action space
problems

Acrobot Cart Pole Lunar Lander Mountain Car

QRNN-ASNN-PF 0.9217 ± 0.0384 0.9847 ± 0.0373 0.7204 ± 0.0655 0.0001 ± 0.0001
QRNN-basic-PF 0.8523 ± 0.0368 0.9814 ± 0.0420 0.7077 ± 0.0860 0.00015 ± 0.0016
QRNN-rnd-PF 0.8305 ± 0.0422 0.9910 ± 0.0284 0.7081 ± 0.0775 0.0000 ± 0.0000
QRNN-RS 0.6715 ± 0.0236 0.9908 ± 0.0288 0.5821 ± 0.1861 0.0034 ± 0.0020
50NN-ASNN-PF 0.8886 ± 0.0257 0.9801 ± 0.0425 0.7322 ± 0.0524 0.0000 ± 0.0000
50NN-basic-PF 0.0000 ± 0.0000 0.0000 ± 0.0025 0.0000 ± 0.3745 0.0000 ± 0.0000
50NN-rnd-PF 0.7930 ± 0.0350 0.9563 ± 0.0775 0.7124 ± 0.0930 0.0030 ± 0.0036
50NN-RS 0.6563 ± 0.0225 0.9815 ± 0.0418 0.6017 ± 0.1723 0.0008 ± 0.0007
MSENN-ASNN-PF 0.9100 ± 0.0449 0.9782 ± 0.0466 0.6457 ± 0.1166 0.0357 ± 0.0237
MSENN-basic-PF 0.8510 ± 0.0620 0.9880 ± 0.0328 0.6795 ± 0.0977 0.0028 ± 0.0020
MSENN-rnd-PF 0.7871 ± 0.0312 0.9781 ± 0.0467 0.6776 ± 0.1021 0.0018 ± 0.0025
MSENN-RS 0.6528 ± 0.0264 0.9838 ± 0.0375 0.4426 ± 0.2198 0.0058 ± 0.0038

QRNN-ASNN-CEM 1.0000 ± 0.0178 0.9799 ± 0.0441 0.7429 ± 0.0440 0.0058 ± 0.0057
QRNN-basic-CEM 0.9730 ± 0.0372 0.9713 ± 0.0564 0.7300 ± 0.0538 0.0104 ± 0.0037
QRNN-rnd-CEM 0.9536 ± 0.0170 0.9789 ± 0.0455 0.7543 ± 0.0386 0.0032 ± 0.0046
50NN-ASNN-CEM 0.9492 ± 0.0109 0.9898 ± 0.0302 0.7347 ± 0.0432 0.0015 ± 0.0009
50NN-basic-CEM 0.00 ± 0.00 0.0107 ± 0.0027 0.4957 ± 0.1089 0.0063 ± 0.0012
50NN-rnd-CEM 0.9431 ± 0.0014 1.0000 ± 0.0157 0.7288 ± 0.0321 0.0000 ± 0.0000
MSENN-ASNN-CEM 0.9797 ± 0.0343 0.9771 ± 0.0444 0.6777 ± 0.0784 0.0538 ± 0.0197
MSENN-basic-CEM 0.9798 ± 0.0386 0.9793 ± 0.0427 0.6794 ± 0.0876 0.0592 ± 0.0570
MSENN-rnd-CEM 0.9287 ± 0.0054 0.9713 ± 0.0557 0.6865 ± 0.0755 0.0016 ± 0.0011

A2C 0.5278 ± 0.2308 0.1654 ± 0.1248 0.8474 ± 0.0245 0.0000 ± 0.0000
PPO 0.6782 ± 0.0562 0.2483 ± 0.0151 0.7437 ± 0.0210 0.0000 ± 0.0000

DQN 0.2496 ± 0.0664 0.0292 ± 0.0033 0.9565 ± 0.0460 0.3320 ± 0.1531
QR-DQN 0.8713 ± 0.0653 0.5172 ± 0.3418 1.0000 ± 0.0630 1.0000 ± 0.2757
IV-DQN 0.5750 ± 0.0088 0.0366 ± 0.0037 0.9620 ± 0.0220 0.1865 ± 0.1024

65

AUCnorm,j = µnorm AUC,j ± σnorm AUC,j (4.1)

where µnorm AUC,j and σnorm AUC,j are described by Equations 4.2 and 4.3:

µnorm AUC,j =
µAUCj

−max(µAUC)
max(µAUC)−min(µAUC) (4.2)

σnorm AUC,j =
σAUCj

max(µAUC)−min(µAUC) (4.3)

where AUCnorm is the normalized AUC, µAUC contains the mean AUC of all the algorithms
for a given problem, µAUC,j is the mean AUC of an algorithm, and σAUC,j is the standard
deviation AUC of an algorithm.

Table 4.5 Normalized area under the curve of the episodic return for the continuous action
space problems Cart Pole Continuous, Mountain Car Continuous, Lunar Lander Continuous,
and Inverted Pendulum

Cart Pole Continuous Mountain Car Continuous Lunar Lander Continuous Inverted Pendulum

QRNN-ASNN-PF 0.9887 ± 0.0162 0.8923 ± 0.0614 0.7203 ± 0.0045 0.4504 ± 0.0535
QRNN-basic-PF 0.9926 ± 0.0128 0.9369 ± 0.0595 0.7148 ± 0.0243 0.6149 ± 0.0261
QRNN-rnd-PF 0.9945 ± 0.0105 0.2855 ± 0.0781 0.7290 ± 0.0139 0.9877 ± 0.0324
QRNN-RS 0.9949 ± 0.0100 0.8937 ± 0.0462 0.7423 ± 0.0098 0.1234 ± 0.0126
50NN-ASNN-PF 0.9897 ± 0.0131 0.8613 ± 0.1208 0.7304 ± 0.0083 0.6804 ± 0.0225
50NN-basic-PF 0.1159 ± 0.0295 0.9176 ± 0.0621 0.6374 ± 0.0560 0.5511 ± 0.0266
50NN-rnd-PF 0.9963 ± 0.0058 0.2938 ± 0.1336 0.7275 ± 0.0105 1.0000 ± 0.0187
50NN-RS 0.9975 ± 0.0053 0.9143 ± 0.0569 0.7395 ± 0.0166 0.1229 ± 0.0093
MSENN-ASNN-PF 0.9926 ± 0.0073 0.8954 ± 0.0371 0.6872 ± 0.0029 0.6043 ± 0.0142
MSENN-basic-PF 0.9836 ± 0.0148 0.9128 ± 0.0228 0.6932 ± 0.0066 0.6311 ± 0.1236
MSENN-rnd-PF 0.9906 ± 0.0142 0.3048 ± 0.0519 0.6720 ± 0.0225 0.8905 ± 0.1024
MSENN-RS 0.9924 ± 0.0107 0.9441 ± 0.0086 0.6795 ± 0.0349 0.1159 ± 0.0161

QRNN-ASNN-CEM 0.2684 ± 0.0561 0.8755 ± 0.0017 0.7181 ± 0.0154 0.0094 ± 0.0027
QRNN-basic-CEM 0.2761 ± 0.0539 0.9804 ± 0.0223 0.7445 ± 0.0112 0.0183 ± 0.0022
QRNN-rnd-CEM 0.9938 ± 0.0110 0.2277 ± 0.1054 0.7362 ± 0.0166 0.9023 ± 0.0227
50NN-ASNN-CEM 0.2648 ± 0.0447 0.8932 ± 0.0880 0.7238 ± 0.0400 0.0199 ± 0.0023
50NN-basic-CEM 0.0019 ± 0.0026 0.9705 ± 0.0353 0.0000 ± 0.3567 0.0161 ± 0.0030
50NN-rnd-CEM 0.9972 ± 0.0043 0.4394 ± 0.2991 0.7347 ± 0.0121 0.8662 ± 0.0542
MSENN-ASNN-CEM 0.2655 ± 0.0529 0.8892 ± 0.0800 0.4544 ± 0.1056 0.0185 ± 0.0014
MSENN-basic-CEM 0.2606 ± 0.0479 0.9800 ± 0.0185 0.5725 ± 0.1182 0.0152 ± 0.0017
MSENN-rnd-CEM 0.9795 ± 0.0255 0.3445 ± 0.2710 0.6326 ± 0.0969 0.5867 ± 0.0596

A2C 0.1834 ± 0.0353 0.9233 ± 0.0064 0.2312 ± 0.2049 0.0885 ± 0.0063
PPO 0.6412 ± 0.1978 0.2414 ± 0.1403 0.7266 ± 0.0269 0.0026 ± 0.0004
DDPG 0.0002 ± 0.0003 0.3776 ± 0.0000 0.6787 ± 0.0187 0.0251 ± 0.0341
SAC 0.0000 ± 0.0003 1.0000 ± 0.0039 0.8468 ± 0.0965 0.4177 ± 0.0255
TD3 0.0022 ± 0.0032 0.3775 ± 0.0000 0.6147 ± 0.0811 0.0054 ± 0.0075
TQC 0.0001 ± 0.0004 0.9949 ± 0.0016 1.0000 ± 0.0168 0.3928 ± 0.0670

MPPI 0.1647 ± 0.0558 0.3655 ± 0.0006 0.6926 ± 0.0296 0.0141 ± 0.0033
CEM 0.1964 ± 0.1584 0.2925 ± 0.0264 0.5658 ± 0.1177 0.0023 ± 0.0017
iCEM 0.3461 ± 0.0243 0.8094 ± 0.0486 0.4913 ± 0.0501 0.0073 ± 0.0030
GP-MPC 0.0815 ± 0.0037 0.9806 ± 0.0002 0.6832 ± 0.0085 0.0000 ± 0.0001
PETS-CEM 1.0000 ± 0.0008 0.0000 ± 0.0024 0.2213 ± 0.2072 0.0051 ± 0.0009

66

Table 4.6 Normalized area under the curve of the episodic return for the continuous action
space problems Pendulum, MuJoCo Reacher, Panda Reach Sparse, and Panda Reach Dense

Pendulum MuJoCo Reacher Panda Reach Sparse Panda Reach Dense

QRNN-ASNN-PF 0.9724 ± 0.0038 0.9207 ± 0.0471 0.9978 ± 0.0199 0.9981 ± 0.0085
QRNN-basic-PF 0.9487 ± 0.0105 0.7499 ± 0.0749 0.9960 ± 0.0213 0.9989 ± 0.0075
QRNN-rnd-PF 0.9769 ± 0.0041 0.7437 ± 0.0493 0.9897 ± 0.0298 0.9986 ± 0.0066
QRNN-RS 0.9380 ± 0.0054 0.6774 ± 0.0169 0.9169 ± 0.0330 0.9872 ± 0.0060
50NN-ASNN-PF 0.9366 ± 0.0099 0.9017 ± 0.0833 1.0000 ± 0.0195 0.9989 ± 0.0086
50NN-basic-PF 0.1815 ± 0.0096 0.8598 ± 0.0233 0.2293 ± 0.1138 0.0000 ± 0.1004
50NN-rnd-PF 0.9636 ± 0.0173 0.6998 ± 0.0608 0.9889 ± 0.0211 0.9971 ± 0.0089
50NN-RS 0.9167 ± 0.0078 0.6651 ± 0.0269 0.9169 ± 0.0330 0.9886 ± 0.0063
MSENN-ASNN-PF 0.9429 ± 0.0038 0.8673 ± 0.0963 0.9808 ± 0.0325 1.0000 ± 0.0061
MSENN-basic-PF 0.9228 ± 0.0262 0.7239 ± 0.0571 0.9805 ± 0.0297 0.9843 ± 0.0269
MSENN-rnd-PF 0.9741 ± 0.0048 0.6956 ± 0.0472 0.9771 ± 0.0233 0.9877 ± 0.0195
MSENN-RS 0.9267 ± 0.0058 0.6431 ± 0.0408 0.9169 ± 0.0330 0.9858 ± 0.0071

QRNN-ASNN-CEM 0.0009 ± 0.0183 1.0000 ± 0.0145 0.9090 ± 0.0539 0.9855 ± 0.0104
QRNN-basic-CEM 0.0000 ± 0.0183 0.9505 ± 0.0084 0.8740 ± 0.0661 0.9838 ± 0.0123
QRNN-rnd-CEM 0.9788 ± 0.0052 0.8949 ± 0.0402 0.9464 ± 0.0269 0.9940 ± 0.0054
50NN-ASNN-CEM 0.0051 ± 0.0201 0.9870 ± 0.0214 0.9204 ± 0.0640 0.9912 ± 0.0093
50NN-basic-CEM 0.3226 ± 0.1757 0.9390 ± 0.0116 0.0000 ± 0.0000 0.0782 ± 0.1680
50NN-rnd-CEM 0.9630 ± 0.0061 0.8686 ± 0.0536 0.9505 ± 0.0268 0.9941 ± 0.0058
MSENN-ASNN-CEM 0.0237 ± 0.0241 0.9615 ± 0.0104 0.8947 ± 0.0674 0.9845 ± 0.0140
MSENN-basic-CEM 0.0281 ± 0.0231 0.9266 ± 0.0126 0.8384 ± 0.0887 0.9728 ± 0.0156
MSENN-rnd-CEM 0.9783 ± 0.0097 0.8568 ± 0.0483 0.9364 ± 0.0288 0.9921 ± 0.0066

A2C 0.1507 ± 0.0153 0.1914 ± 0.1245 0.1253 ± 0.0080 0.6661 ± 0.0206
PPO 0.7580 ± 0.0079 0.3443 ± 0.0046 0.1298 ± 0.0163 0.6814 ± 0.0120
DDPG 0.9547 ± 0.0026 0.9657 ± 0.0039 0.0778 ± 0.0088 0.7148 ± 0.0318
SAC 0.9537 ± 0.0049 0.8663 ± 0.0026 0.1217 ± 0.0019 0.7088 ± 0.0062
TD3 0.9234 ± 0.0028 0.9480 ± 0.0019 0.0732 ± 0.0132 0.7238 ± 0.0131
TQC 0.9536 ± 0.0023 0.8635 ± 0.0002 0.1262 ± 0.0072 0.7314 ± 0.0036

MPPI 0.9870 ± 0.0029 0.9163 ± 0.0246 0.4837 ± 0.3020 0.9641 ± 0.0323
CEM 0.9644 ± 0.0249 0.4362 ± 0.0295 0.5452 ± 0.2101 0.9191 ± 0.0567
iCEM 1.0000 ± 0.0019 0.0000 ± 0.0214 0.5729 ± 0.3987 0.9263 ± 0.0197
GP-MPC 0.7963 ± 0.0192 0.5425 ± 0.0070 0.0697 ± 0.0254 0.3184 ± 0.0274
PETS-CEM 0.3935 ± 0.0096 0.9230 ± 0.0495 0.3324 ± 0.4700 0.7852 ± 0.1558

4.5 Overall algorithm comparison

To obtain an overall comparison of all the algorithms tested on the benchmark problems,
the average normalized mean area under the curve is computed by summing the normalized
mean AUCs for a given algorithm across all discrete and continuous action space problems.
The root-mean squared (rms) normalized normalized AUC std is also computed. To get an
algorithm’s average normalized AUC over the Nproblems different problems with its standard
deviation, Equation 4.4 is used:

AUCnorm,j =
(1

Nproblems

Nproblems∑
i=0

µnorm AUC,j

)
±

√√√√∑Nproblems
j=0 σ2

norm AUC,j

Nproblems
(4.4)

Tables 4.7 and 4.8 provide these values in the discrete and continuous action space cases,
respectively.

67

Table 4.7: Average normalized area under the curve of the episodic return for discrete space
environments in decreasing order

Model Average normalized AUC
QR-DQN 0.8675 ± 0.2443
QRNN-ASNN-CEM 0.6857 ± 0.0250
MSENN-basic-CEM 0.6779 ± 0.0562
QRNN-rnd-CEM 0.6763 ± 0.0225
QRNN-basic-CEM 0.6762 ± 0.0340
MSENN-ASNN-CEM 0.6750 ± 0.0445
50NN-ASNN-CEM 0.6707 ± 0.0228
50NN-rnd-CEM 0.6680 ± 0.0164
QRNN-ASNN-PF 0.6595 ± 0.0385
50NN-ASNN-PF 0.6538 ± 0.0300
MSENN-rnd-CEM 0.6517 ± 0.0392
MSENN-ASNN-PF 0.6460 ± 0.0640
QRNN-basic-PF 0.6391 ± 0.0473
QRNN-rnd-PF 0.6341 ± 0.0444
MSENN-basic-PF 0.6322 ± 0.0582
50NN-rnd-PF 0.6237 ± 0.0514
MSENN-rnd-PF 0.6147 ± 0.0539
QRNN-RS 0.5637 ± 0.0939
50NN-RS 0.5633 ± 0.0872
IV-DQN 0.5202 ± 0.0550
PPO 0.5198 ± 0.0408
MSENN-RS 0.5234 ± 0.1110
A2C 0.4498 ± 0.1215
DQN 0.4459 ± 0.0844
50NN-basic-CEM 0.1281 ± 0.0545
50NN-basic-PF 0.0000 ± 0.1872

68

Table 4.8: Average normalized area under the curve of the episodic return for continuous
space environments

Model Average normalized AUC
50NN-ASNN-PF 0.8874± 0.0534
MSENN-ASNN-PF 0.8713± 0.0388
QRNN-basic-PF 0.8691± 0.0374
QRNN-ASNN-PF 0.8676± 0.0347
MSENN-basic-PF 0.8540± 0.0520
50NN-rnd-CEM 0.8517± 0.1097
QRNN-rnd-PF 0.8382± 0.0368
QRNN-rnd-CEM 0.8343± 0.0424
50NN-rnd-PF 0.8334± 0.0535
MSENN-rnd-PF 0.8116± 0.0462
MSENN-rnd-CEM 0.7884± 0.1063
QRNN-RS 0.7842± 0.0222
50NN-RS 0.7827± 0.0263
MSENN-RS 0.7756± 0.0237
TQC 0.6328± 0.0246
SAC 0.6144± 0.0355
QRNN-basic-CEM 0.6034± 0.0325
50NN-ASNN-CEM 0.6007± 0.0453
QRNN-ASNN-CEM 0.5958± 0.0295
MSENN-basic-CEM 0.5743± 0.0564
MPPI 0.5735± 0.1100
MSENN-ASNN-CEM 0.5615± 0.0568
iCEM 0.5192± 0.1437
CEM 0.4902± 0.1051
DDPG 0.4743± 0.0181
TD3 0.4585± 0.0296
PETS-CEM 0.4576± 0.1906
PPO 0.4407± 0.0866
50NN-basic-PF 0.4366± 0.0635
GP-MPC 0.4340± 0.0154
A2C 0.3200± 0.0862
50NN-basic-CEM 0.2910± 0.1532

69

4.6 Interpretation of the Results on the OpenAI Gymnasium and Panda Gym
environments

Acrobot

Figure 4.2a shows that the MPC methods are overall better. This is true except for the
50NN-basic-PF and 50NN-basic-CEM methods. The left figure allows us to see that RS is
worse than the other MPC methods. This indicates that the use of PF or CEM to optimize
action sequences in MPC has a positive effect. Overall, the MPC-CEM are better than the
MPC-PF ones.

Among the RL methods, QR-DQN performs best initially, and IV-DQN achieves the best
convergence. The latter one attains a similar convergence value to the best MPC-methods,
which are QRNN-ASNN-CEM, 50NN-ASNN-CEM, and MSENN-basic-CEM, as the area
under the curve (AUC) tables 4.1 and 4.4 show. The tables also clearly show that MPC
methods using CEM are generally superior to those using PF.

Discrete Cart Pole

Figure 4.2b shows that the MPC-PF and MPC-CEM methods give slight variations early
on but can quickly converge and solve the task. This is true, except for the 50-basic-PF and
50NN-basic-CEM, which are similar to the results for the Acrobot environment. Overall,
the MFRL methods yield poor results, although QR-DQN is the best among them. These
performances are based on the fact that we only ran the algorithms on 100 episodes, which
is quite minimal.

Tables 4.1 and 4.4 show that the top three methods are QRNN-rnd-PF, 50NN-rnd-CEM,
and QRNN-RS. To solve the task, the agent must attain an episodic reward of 200. Most
MPC methods have achieved this goal, whereas none of the RL methods have. Overall, there
doesn’t seem to be a significant difference between using PF or CEM.

Discrete Lunar lander

Figure 4.2c shows that the MPC-PF and MPC-CEM methods give similar results. They are
also generally better than RS. This is true, except for 50NN-basic-PF and 50NN-basic-CEM,
which are the worst of the MPC methods, and 50NN-basic-CEM, which performs slightly
better than MSENN-RS.

Tables 4.1 and 4.4 show that the best MPC methods are QRNN-ASNN-CEM, QRNN-rnd-
CEM, and 50NN-ASNN-CEM. These methods exhibit similar behaviour to the PPO, which

70

is considered the worst of the RL algorithms. The best algorithms overall are three DQN
methods. They achieve much better results than the best MPC methods. To solve the task,
the agent must attain an episodic reward of 200. None of the methods have achieved this
goal, but the DQN methods are the closest and have been able to solve the task properly
sometimes. Overall, the MPC-CEM methods are slightly better than the MPC-PF algo-
rithms.

Discrete Mountain Car

Figure 4.3a shows that A2C, PPO and the MPC methods aren’t able to solve the task
successfully. This is clear since the agents constantly receive an episodic reward of -200,
which is the result of the -1 reward for each time step. The DQN methods have more
success, with QR-DQN performing the best initially and DQN performing better later on.
Surprisingly, IV-DQN does very poorly, but it is better than the MPC methods.

Tables 4.1 and 4.4 support the conclusions from the graphs that the DQN and QR-DQN are
the two best methods, and the rest are never able to solve the task or do so significantly
less than them. In this case, there isn’t a difference between the MPC-PF and MPC-CEM
algorithms.

Continous Cart Pole

Figure 4.3b shows that most of the MPC-PF algorithms and the different MPC-rnd-CEM
methods are the best overall and converge quickly, solving the task. Once again, the two
50NN-basic methods are the worst MPC methods. The non-rnd MPC-CEM methods behave
much worse compared to their PF equivalents. The different MFRL, trajectory optimization
and benchmark MBRL algorithms yield poor performance. Though, A2C and PPO are the
best of them.

Tables 4.2 and 4.5 show that the top three methods are 50NN-RS, 50NN-rnd-PF, and 50NN-
rnd-CEM. Overall, there’s a slight advantage in using PF over CEM in an MPC algorithm.

Continuous Mountain Car

Figure 4.3c shows that the three basic-CEM methods (50NN-basic-CEM, QRNN-basic-CEM,
MSENN-basic-CEM) outperform the other MPC methods. The rnd-PF and rnd-CEM meth-
ods perform the worst of our MPC methods. Overall, using PF in MPC seems to be better
than CEM, but the top MPC methods use CEM. Among the trajectory optimization meth-
ods, iCEM performs the best, but it still struggles to achieve performance comparable to the

71

top algorithms. For the RL methods, SAC, TQC, and A2C are the top ones. As tables 4.2
and 4.5, the top three algorithms are TQC, SAC, and GP-MPC. As mentioned earlier, the
MPC-PF methods overall outperform the MPC-CEM ones. PETS-CEM is the worst of all.
For the continuous Mountain Car environment, there is no defined expected episodic return
to state that the task has been learned confidently. However, a larger reward is better since
it indicates that the agent attained the goal in a few steps and received the +100 bonus for
reaching the goal state.

Continuous Lunar Lander

Figure 4.4a shows that the spread in the performance in the MPC-PF methods is slimmer
than for the MPC-CEM algorithms.

Tables 4.2 and 4.6 show that the top three algorithms are TQC, SAC, and QRNN-basic-
CEM. Overall, the MPC-PF methods outperform the MPC-CEM ones. As for the discrete
Lunar Lander environment, the task is considered learned by an algorithm when the episodic
return exceeds 200. TQC is the only method that attains this goal.

Inverted Pendulum

Figure 4.4b shows that the random versions of the MPC-PF and MPC-CEM methods are
the best. The top MFRL methods are TQC and SAC. To successfully solve the task, the
agent must achieve a return of 1000 as an episodic reward. 50NN-rnd-PF, QRNN-rnd-
PF, TQC, and SAC are the four methods that attain this goal at convergence. 50NN-
rnd-PF and QRNN-rnd-PF converge significantly faster than TQC and SAC. The other
algorithms perform poorly and do not converge to an episodic return of 1000. The poor
performance of the MPC-ASNN methods is surprising, considering they performed well on
similar control tasks, such as the continuous Cart Pole and Pendulum. This may be caused
by the fact that the environment’s state variables are unbounded, which leads to a potentially
huge discrepancy in orders of magnitude between the different state components. This can
significantly affect the ASNN’s predictions.

Tables 4.2 and 4.5 show that the top three algorithms are 50NN-rnd-PF, QRNN-rnd-PF,
and QRNN-rnd-CEM. Overall, the MPC-PF algorithms outperform the MPC-CEM ones.

Pendulum

Figure 4.4c shows that all MPC methods using PF give similar performances except for
50NN-basic-PF. For the MPC methods using CEM, most aren’t effective except for the

72

three rnd-CEM methods: QRNN-rnd-CEM, 50NN-rnd-CEM, and MSENN-rnd-CEM. The
trajectory optimization methods iCEM and MPPI perform extremely well and converge
virtually instantly. The best MFRL method is DDPG, which starts poorly early on but
quickly attains similar performance to the best MPC and trajectory optimization algorithms.
SAC and TQC do slightly worse.

Tables 4.3 and 4.6 show that the best methods are iCEM, MPPI, and QRNN-rnd-CEM.
Overall, the PF methods are much better than the CEM ones.

MuJoCo Reacher

Figure 4.5a shows two groupings in the results for the MPC-PF. The ASNN methods have a
clear advantage compared to the others. This distinction remains present for the MPC-CEM
algorithms, but it is less pronounced since the non-ASNN methods perform better. For the
MFRL, MBRL, and control methods, DDPG and TD3 converge the quickest.

Tables 4.3 and 4.6 show that the top three methods are QRNN-ASNN-CEM, 50NN-ASNN-
CEM, and DDPG. Overall, there is a clear advantage in using CEM over PF for the MuJoCo
reacher environment. Additionally, the ASNN is a valuable addition to the MPC methods.

Panda 3D sparse reward Reach

Figure 4.5b shows a clear distinction again between RS and the other MPC-PF methods.
The latter all give similar performance, except 50NN-basic-PF. This separation isn’t present
for the MPC-CEM methods, except for 50NN-basic-CEM, which is once again inferior to
the rest. The control methods all do very poorly. The benchmark MBRL and RL methods
do even worse. These results are expected and logical, given the sparse rewards. This means
that the agents do not receive any useful rewards unless they happen to randomly attain
the goal. The agent must perform this task sufficiently often to learn an effective policy,
which is very challenging in only 300 episodes. The overall better performance of the MPC
methods demonstrates their strength, as they do not depend on the given problem’s reward
structure.

Tables 4.3 and 4.6 show that the best MPC methods are QRNN-ASNN-PF, QRNN-basic-
PF, and 50NN-ASNN-PF. Using PF in MPC is generally better than CEM for the sparse
reward version of the Panda Reach environment.

73

Panda 3D dense reward Reach

Figure 4.5c shows that there is very little difference between the MPC-PF and MPC-CEM
algorithms, though the PF ones are slightly better. The two 50NN-basic methods are once
again much worse than the rest. The trajectory optimization methods outperform the MBRL
and MFRL methods. The MFRL, trajectory optimization, and MBRL algorithms still per-
form significantly worse than the MPC methods; however, their performance has improved
substantially compared to that obtained for the sparse reward version of the Panda Reach
environment. This highlights the crucial role of reward distribution in algorithms that learn
based on the rewards.

Tables 4.3 and 4.6 show that the best MPC methods are 50NN-ASNN-PF, QRNN-basic-
PF, and MSENN-ASNN-PF. Once again, using PF has a clear advantage over CEM in this
environment. Adding an ASNN to an MPC algorithm also appears to improve performance
generally.

4.7 Recap of results

The table 4.9 recaps the key trends in the results and analysis presented above. The colours
used here are to mimic the ones used in the graphs.

Table 4.9 Recap of Results Across Environments

Environment PF/CEM Top 3 Algorithms
Acrobot CEM 1. QRNN-ASNN-CEM, 2. MSENN-basic-CEM, 3. MSENN-ASNN-CEM
Discrete Cart Pole Equivalent 1. 50NN-rnd-CEM, 2. QRNN-rnd-PF, 3. QRNN-RS
Discrete Lunar Lander CEM 1. QR-DQN, 2. IV-DQN, 3. DQN
Discrete Mountain Car PF 1. QR-DQN, 2. DQN, 3. IV-DQN
Continuous Cart Pole PF 1. PETS-CEM, 2. 50NN-RS, 3. 50NN-rnd-CEM
Inverted Pendulum PF 1. 50NN-rnd-PF, 2. QRNN-rnd-PF, 3. QRNN-rnd-CEM
Continuous Mountain Car PF 1. SAC, 2. TQC, 3. GP-MPC
Continuous Lunar Lander CEM 1. TQC, 2. SAC, 3. QRNN-basic-CEM
Pendulum PF 1. iCEM, 2. MPPI, 3. QRNN-rnd-CEM
MuJoCo Reacher CEM 1. QRNN-ASNN-CEM, 2. 50NN-ASNN-CEM, 3. DDPG
Panda Reach (sparse) PF 1. 50NN-ASNN-PF, 2. QRNN-ASNN-PF, 3. QRNN-basic-PF
Panda Reach (dense) PF 1. MSENN-ASNN-PF, 2. 50NN-ASNN-PF, 3. QRNN-basic-PF

74

4.8 Other tests

4.8.1 Sampling method for QRNN next state prediction

The Figure 4.6 compares the results for the QRNN algorithms using the mid quantile and
the sampling method described in 3.3.4 for next state prediction:

Figure 4.6 Visualization of QRNN-ASNN

Table 4.10 Area under the curve of the episodic return on the discrete Cart Pole environ-
ment for our MPC methods using the mid quantile or sampling the quantiles for next state
prediction

Using the mid
quantile

Sampling the
generated quantiles

QRNN-ASNN-PF 59305.33 ± 699.56 6682.83 ± 153.14
QRNN-basic-PF 59243.67 ± 786.77 6607.67 ± 128.83
QRNN-rnd-PF 59424.00 ± 531.74 6615.33 ± 216.13
QRNN-RS 59418.67 ± 539.29 6822.00 ± 177.29

QRNN-ASNN-CEM 59216.00 ± 825.90 6909.67 ± 104.44
QRNN-basic-CEM 59053.50 ± 1055.71 7051.00 ± 241.24
QRNN-rnd-CEM 59197.00 ± 852.77 6890.67 ± 207.93

Figure 4.6 and Table 4.10 clearly show that for next state prediction using the QRNN, it is
much better to use the mid quantile than sampling the quantiles using the described method.

4.8.2 Compare repeating 4 times the optimized action to not doing so for the
Mountain Car environments

As described above in section 3.2.5, the GP-MPC method repeats the action found for four
steps in the environment and this idea was applied to our MPC methods, CEM, iCEM and
MPPI. We now compare the performance of these methods when repeating the action four

75

times and only using the action found for a single step in the environment. This comparison
was done for the continuous and discrete versions of the Mountain Car environment. Figures
4.7 and 4.8 show the episodic rewards of our MPC methods and the trajectory optimization
algorithms when taking the action found for a single step and repeating it for four steps in
the environment. Table 4.11 presents the area under the curve of the episodic return for the
continuous and discrete versions of the Mountain Car environment in both cases.

Figure 4.7 Comparing the performance of our MPC methods on the discrete Mountain Car
when taking the optimized action once or repeating it four times in the environment.

Figure 4.7 and Table 4.11 show that repeating the same action for four environment steps
is very slightly advantageous compared to only taking it once in our MPC methods when
applied to the discrete Mountain Car environment. Using this idea for the MPC methods
and the three trajectory optimization methods (CEM, iCEM, and MPPI) generally leads to
huge improvements for the continuous Mountain Car environment as Figure 4.8 and Table
4.11 show. There is no data for MPPI, CEM, and iCEM for the discrete Mountain Car task,
since these methods are made for continuous action spaces.

76

Figure 4.8 Comparing the performance of our MPC methods on the continuous Mountain
Car when taking the optimized action once or repeating it four times in the environment.

Table 4.11 Area under the curve of the episodic return for the continuous and discrete versions
of the Mountain Car environment when taking one or four steps with the optimized action

Mountain Car Discrete
repeated 1 step

Mountain Car Discrete
repeated 4 steps

Mountain Car Continuous
1 step

Mountain Car Continuous
repeated 4 steps

QRNN-ASNN-PF −59800.00 ± 0.00 −59799.33 ± 0.94 −1251.85 ± 9755.01 22510.25 ± 2687.41
QRNN-basic-PF −59800.00 ± 0.00 −59781.00 ± 19.61 −3259.55 ± 15340.32 24463.34 ± 2600.91
QRNN-rnd-PF −59800.00 ± 0.00 −59800.00 ± 0.00 19671.26 ± 1699.08 −4031.02 ± 3416.00
QRNN-RS −59800.00 ± 0.00 −59757.67 ± 25.00 −6741.55 ± 1859.36 22571.00 ± 2022.86
50NN-ASNN-PF −59800.00 ± 0.00 −59800.00 ± 0.00 −107.67 ± 9222.49 21156.89 ± 5282.43
50NN-basic-PF −59800.00 ± 0.00 −59800.00 ± 0.00 3009.88 ± 9906.88 23620.66 ± 2716.22
50NN-rnd-PF −59800.00 ± 0.00 −59762.33 ± 45.05 17755.07 ± 3139.43 −3668.27 ± 5845.17
50NN-RS −59800.00 ± 0.00 −59790.33 ± 8.18 −7477.44 ± 1262.09 23475.75 ± 2487.08
MSENN-ASNN-PF −59800.00 ± 0.00 −59357.17 ± 294.15 4624.14 ± 7014.74 22646.30 ± 1621.73
MSENN-basic-PF −59800.00 ± 0.00 −59765.00 ± 25.15 8272.69 ± 5056.53 23406.81 ± 996.06
MSENN-rnd-PF −59800.00 ± 0.00 −59778.00 ± 31.11 19758.46 ± 1647.30 −3186.53 ± 2272.49
MSENN-RS −59800.00 ± 0.00 −59728.00 ± 47.42 −3657.45 ± 1215.75 24779.16 ± 377.49

QRNN-ASNN-CEM −59800.00 ± 0.00 −59728.33 ± 70.77 −28828.97 ± 1507.05 21774.89 ± 73.42
QRNN-basic-CEM −59800.00 ± 0.00 −59671.00 ± 45.99 −27104.62 ± 2251.05 26366.36 ± 973.40
QRNN-rnd-CEM −59800.00 ± 0.00 −59760.00 ± 56.57 6364.54 ± 5107.60 −6563.22 ± 4608.83
50NN-ASNN-CEM −59800.00 ± 0.00 −59782.00 ± 10.98 −27745.67 ± 3017.28 22553.39 ± 3850.98
50NN-basic-CEM −59800.00 ± 0.00 −59721.33 ± 14.82 −25068.01 ± 5765.54 25931.50 ± 1544.34
50NN-rnd-CEM −59800.00 ± 0.00 −59800.00 ± 0.00 1882.73 ± 8688.69 2700.03 ± 13084.25
MSENN-ASNN-CEM −59800.00 ± 0.00 −59133.67 ± 244.19 −27160.30 ± 3854.85 22376.78 ± 3499.66
MSENN-basic-CEM −59800.00 ± 0.00 −59066.00 ± 705.91 −23263.88 ± 5918.65 26346.90 ± 809.08
MSENN-rnd-CEM −59800.00 ± 0.00 −59780.67 ± 13.77 4761.95 ± 5127.12 −1451.56 ± 11856.69

MPPI NA NA −4647.97 ± 517.69 −531.36 ± 27.06
CEM NA NA −13377.27 ± 929.09 −3724.58 ± 1155.38
iCEM NA NA −26390.42 ± 4195.58 18885.45 ± 2124.18

77

CHAPTER 5 DISCUSSION - OVERALL ALGORITHM COMPARISON

5.1 Discrete action space

As table 4.7 shows, the top three methods are QR-DQN, QRNN-ASNN-CEM, and QRNN-
basic-CEM. The use of CEM appears to have a clear advantage compared to PF for environ-
ments with discrete action spaces. The QRNN-ASNN-CEM and the other top MPC-CEM
methods were able to solve the Cart Pole and Acrobot environments virtually immediately;
however, they were unable to solve the Mountain Car and Lunar Lander environments. The
QR-DQN was the overall best method and initially performed worse than the MPC methods,
but it quickly converged to similar values or overpassed them. Overall, QR-DQN appears
to be the most reliable method for discrete action space problems. For the MPC methods,
using the QRNN as a model of the environment seems to be advantageous compared to
the 50NN or the MSENN. Similarly, using the ASNN over generating action sequences by
randomly uniformly picking among the possible actions seems slightly better.

The general trends in the results for problems with discrete action spaces are the following:

• CEM > PF > RS

• ASNN > basic > rnd

• QRNN > MSENN > 50NN

5.2 Continuous action space

As table 4.8 shows, the top three algorithms are 50NN-ASNN-PF, MSENN-ASNN-PF, and
QRNN-basic-PF. Overall, using PF or CEM in MPC yields similar results, but PF appears
to be slightly more advantageous for continuous action space tasks. More precisely, the
MPC-rnd algorithms perform exceptionally well on control environments, such as Cart Pole
continuous, Inverted Pendulum, and continuous Lunar Lander. Similarly, the MPC-basic-
CEM methods had excellent performance on the continuous Mountain Car problem. Using
the QRNN seems to be somewhat beneficial compared to the 50NN and MSENN models of
the environment. This is especially true when it is combined with PF on problems such as
continuous Cart Pole, Pendulum, MuJoCo Reacher, and Panda Reach. The QRNN and the
other models weren’t suitable for environments where it was challenging to learn a model
of the environment, such as the continuous Lunar Lander environment. This is because the

78

performance relies heavily on the quality of the model, as it is used to predict the next state
when generating action sequences. In comparison, the MPC-ASNN algorithms do better on
robotics environments, such as MuJoCo Reacher and Panda Reach. For these environments,
a model of the environment appears to be more intuitive for learning. In contrast, MPC-rnd
algorithms do not rely on the model of the environment to generate action sequences and
therefore outperform the other algorithms.

The general trends in the results for problems with continuous action spaces are the following:

• CEM ↔ PF, but PF is generally slightly better

• MPC methods using PF or CEM are better than RS, besides the 50NN-basic algorithms

• basic > ASNN > rnd on control tasks (Cart Pole, Lunar Lander, Mountain Car,
Inverted Pendulum, Pendulum). See Table B.1 for the in-depth data.

• ASNN > rnd > basic on robotics tasks (MuJoCo Reacher, Panda Reach). See Table
B.2 for the in-depth data.

• QRNN > 50NN > MSENN

79

CHAPTER 6 CONCLUSION

Before giving a summary, limitations and future work, let’s recap the different components
of the MPC methods I have presented.

Models of the environment:

• QRNN: The neural network (NN) predicts 11 quantiles for the next state but only uses
the 50% quantile. Trained with quantile regression loss. We also compare only using
the mid quantile for next state prediction or sampling the predicted quantiles.

• 50NN: Predicts a single next state, trained with quantile regression loss using only the
50% quantile.

• MSENN: Predicts a single next state, trained with mean squared error (MSE).

Ways to generate initial particles:

• Sample a neural network: Used in the discrete and continuous versions (though the
sampling method differs) of the MPC algorithms using an action sequence neural net-
work (ASNN).

• Uniformly randomly (discrete) pick among the possible actions: Used in the discrete
action space environment versions of the MPC algorithms called basic, rnd, and RS.

• Sample a uniform distribution: Used in the continuous action space environment ver-
sions of the MPC algorithms called basic, rnd, and RS.

How to modify the action sequences after taking a step in the environment:

• Sample a neural network: Shift the previous step’s action sequences and replace the
vacant column with actions sampled from an NN, used in the MPC methods using an
ASNN.

• Shift the action sequences to replace the action taken and uniformly at random pick
among the possible actions: Used in the discrete action space environment versions of
the MPC algorithms called basic.

• Shift the action sequences to replace the action taken and sample a uniform distribu-
tion: Used in the continuous action space environment versions of the MPC methods
called rnd and RS.

80

MPC techniques used to improve the action sequences:

• Particle filtering (PF)

• Cross-entropy method (CEM)

See Section 3.1.4 for more details on them and our specific implementation.

6.1 Summary

This thesis presented an in-depth study of the impact of the different components of an
MPC algorithm. More precisely, we studied the use of different models of the environment,
methods to generate action sequences at the start of an episode, MPC techniques to improve
the action sequences, and strategies to modify them after taking a step in the environ-
ment with the first action of the best action sequences found by MPC. This lead to the
comparison of 21 different algorithms (QRNN-ASNN-PF, QRNN-basic-PF, QRNN-rnd-PF,
QRNN-RS, 50NN-ASNN-PF, 50NN-basic-PF, 50NN-rnd-PF, 50NN-RS, MSENN-ASNN-PF,
MSENN-basic-PF, MSENN-rnd-PF, MSENN-RS, QRNN-ASNN-CEM, QRNN-basic-CEM,
QRNN-rnd-CEM, 50NN-ASNN-CEM, 50NN-basic-CEM, 50NN-rnd-CEM, MSENN-ASNN-
CEM, MSENN-basic-CEM, MSENN-rnd-CEM). We compared these methods to multiple
algorithms from the literature, including those from the MFRL (DQN, IV-DQN, QR-DQN,
A2C, PPO, DDPG, SAC, TD3, TQC), MBRL (GP-MPC, PETS-CEM), and trajectory op-
timization (MPPI, CEM, iCEM). Twelve standard RL benchmark environments with a clear
goal state, drawn from the OpenAI Gymnasium [2] and Panda Gym [58] packages, were used.
The comparisons among the algorithms for a given problem were made by examining the
area under the curve (AUC) of the episodic return learning curves. To obtain an overall com-
parison of the algorithms, the AUC for each problem was averaged over each algorithm for
each action space problem type. Ultimately, the top three methods for discrete action space
problems were QR-DQN, QRNN-ASNN-CEM, and MSENN-basic-CEM. For continuous ac-
tion space problems, they were 50NN-ASNN-PF, MSENN-ASNN-PF, and QRNN-basic-PF.
It appears that PF is slightly preferable to CEM for continuous action space problems,
while CEM is better suited for discrete action space problems. However, the most effective
method found depends on the specific environment. Similarly, the QRNN seems to be gen-
erally more advantageous than the 50NN and MSENN models of the environment. This is
clearer for the discrete action space environments than for the continuous action space ones.
The MPC-basic methods are generally more suitable for continuous control problems, while
the MPC-ASNN algorithms are preferable for robotic environments.

81

6.2 Limitations

The project’s main limitation is that the QRNN model only uses the mid or 50% quantile for
its prediction of the next state instead of utilizing the full quantile distribution. While we
present a method that samples the generated quantiles, it assumes that they are independent,
which isn’t the case. Another limitation is that only the standard noiseless versions of the
benchmark problems were used. It isn’t possible to say with certainty that each algorithm
would perform similarly in a noisy version of the environment or a real-world control task.

6.3 Future Research

Future research should focus on integrating multiple quantiles into the QRNN model’s next
state prediction process, as well as comparing different algorithms on more complex control
and robotics tasks, such as the MuJoCo Pusher [2], the Panda Gym Push, and the Panda
Gym slide environments [58].

The QRNN next state prediction sampling method described in section 3.3.4 of the method-
ology produces poor results compared to the mid/50% quantile method as shown in section
4.8.1. This is because it assumes that the state components are independent. A method
that would not make this assumption would be to have a neural network that predicts the
principal component analysis (PCA) vectors of the covariance matrix of the next state pre-
dictions. For each vector, we can predict the quantiles, which can be sampled independently
to get a next state prediction.

82

REFERENCES

[1] Piscine26, “Reinforcement learning is type of basic machine learn-
ing paradigms, alongside supervised learning and unsupervised learn-
ing,” Adobe Stock. [Online]. Available: https://stock.adobe.com/ca/images/
reinforcement-learning-is-type-of-basic-machine-learning-paradigms-alongside-

[2] “Gymnasium,” Farama Foundation, 2025. [Online]. Available: https://gymnasium.
farama.org/

[3] S. L. C. E. M. L. C. U. M. S. L. P. S. S. Q. G. L. M. M. N. D.
Marco Bonizzato, Rose Guay Hottin, “Autonomous optimization of neuroprosthetic
stimulation parameters that drive the motor cortex and spinal cord outputs in rats
and monkeys,” Cell Reports Medicine, vol. 4, no. 4, Apr. 2023. [Online]. Available:
https://doi.org/10.1016/j.xcrm.2023.101008

[4] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv, Jul. 2018. [Online].
Available: https://arxiv.org/abs/1807.02811

[5] L. C. . C. Muller, “Benchmarking the performance of bayesian optimization across
multiple experimental materials science domains,” npj Computational Materials, vol. 7,
Nov. 2021. [Online]. Available: https://doi.org/10.1038/s41524-021-00656-9

[6] ——, “Bayesian optimization in drug discovery,” Methods in Molecular Biology,
vol. 2716, Sep. 2023. [Online]. Available: https://link.springer.com/protocol/10.1007/
978-1-0716-3449-3_5

[7] R. P. A. Jasper Snoek, Hugo Larochelle, “Practical bayesian optimization of
machine learning algorithms,” arXiv, Jun. 2012. [Online]. Available: https:
//arxiv.org/abs/1206.2944

[8] K. S. D. M. D. P. K. S. Pawan Sharma, Yixuan Du, “Novel comprehensive
analysis of skilled reaching and grasping behavior in adult rats,” Journal
of Neuroscience Methods, vol. 411, Apr. 2024. [Online]. Available: https:
//doi.org/10.1016/j.jneumeth.2024.110271

[9] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 2nd ed.
Cambridge, MA: MIT Press, 2018. [Online]. Available: http://www.incompleteideas.
net/book/the-book-2nd.html

https://stock.adobe.com/ca/images/reinforcement-learning-is-type-of-basic-machine-learning-paradigms-alongside-
https://stock.adobe.com/ca/images/reinforcement-learning-is-type-of-basic-machine-learning-paradigms-alongside-
https://gymnasium.farama.org/
https://gymnasium.farama.org/
https://doi.org/10.1016/j.xcrm.2023.101008
https://arxiv.org/abs/1807.02811
https://doi.org/10.1038/s41524-021-00656-9
https://link.springer.com/protocol/10.1007/978-1-0716-3449-3_5
https://link.springer.com/protocol/10.1007/978-1-0716-3449-3_5
https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/1206.2944
https://doi.org/10.1016/j.jneumeth.2024.110271
https://doi.org/10.1016/j.jneumeth.2024.110271
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html

83

[10] V. Jain, S. Liu, and G. Iyer, “Coping with sample ineffi-
ciency of deep-reinforcement learning (drl) for embodied ai,” CML
WiML, Jul. 2020. [Online]. Available: https://www.ri.cmu.edu/publications/
coping-with-sample-inefficiency-of-deep-reinforcement-learning-drl-for-embodied-ai/

[11] A. J. S. Ibrahim, M. Mostafa and P. Osinenko, “Comprehensive overview of reward
engineering and shaping in advancing reinforcement learning applications,” arXiv, Jul.
2024. [Online]. Available: https://arxiv.org/html/2408.10215v1

[12] I. C. J. H. Y. W. E. L. S. Z. G. Z. P. A. J. B. Tingwu Wang, Xuchan Bao,
“Benchmarking model-based reinforcement learning,” arXiv, Jul. 2019. [Online].
Available: https://arxiv.org/abs/1907.02057

[13] T. B. M. Schwenzer, M. Ay and D. Abel, “Review on model predictive
control: an engineering perspective,” The International Journal of Advanced
Manufacturing Technology, vol. 117, pp. 1327–1349, Nov. 2021. [Online]. Available:
https://link.springer.com/article/10.1007/s00170-021-07682-3#citeas

[14] H. S. Spong, M.W. and M. Vidyasagar, Robot Modeling and Control, 1st ed.
New York, NY: Wiley, 2006. [Online]. Available: https://www.researchgate.
net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/
attachment/59d6361b79197b807799389a/AS%3A386996594855942%401469278586939/
download/Spong+-+Robot+modeling+and+Control.pdf

[15] S. Q. Oussama Khatib and D. Williams, “Robot planning and control,” Robotics
and Autonomous Systems, vol. 21, no. 3, Sep. 1997. [Online]. Available:
https://doi.org/10.1016/S0921-8890(96)00078-4

[16] “Part 1: Key concepts in rl,” Open AI Spinning Up, 2025. [Online]. Available:
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

[17] V. Mnhih and al., “Playing atari with deep reinforcement learning,” arXiv, Dec. 2013.
[Online]. Available: https://arxiv.org/abs/1312.5602

[18] P. A. S. L. Tuomas Haarnoja, Aurick Zhou, “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor,” arXiv, Jan. 2018.
[Online]. Available: https://doi.org/10.48550/arXiv.1801.01290

[19] A. P. N. H. T. E. Y. T. D. S. D. W. Timothy P. Lillicrap, Jonathan J. Hunt,
“Continuous control with deep reinforcement learning,” arXiv, Sep. 2015. [Online].
Available: https://doi.org/10.48550/arXiv.1509.02971

https://www.ri.cmu.edu/publications/coping-with-sample-inefficiency-of-deep-reinforcement-learning-drl-for-embodied-ai/
https://www.ri.cmu.edu/publications/coping-with-sample-inefficiency-of-deep-reinforcement-learning-drl-for-embodied-ai/
https://arxiv.org/html/2408.10215v1
https://arxiv.org/abs/1907.02057
https://link.springer.com/article/10.1007/s00170-021-07682-3#citeas
https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%3A386996594855942%401469278586939/download/Spong+-+Robot+modeling+and+Control.pdf
https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%3A386996594855942%401469278586939/download/Spong+-+Robot+modeling+and+Control.pdf
https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%3A386996594855942%401469278586939/download/Spong+-+Robot+modeling+and+Control.pdf
https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/How_to_avoid_singular_configurations/attachment/59d6361b79197b807799389a/AS%3A386996594855942%401469278586939/download/Spong+-+Robot+modeling+and+Control.pdf
https://doi.org/10.1016/S0921-8890(96)00078-4
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://arxiv.org/abs/1312.5602
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.1509.02971

84

[20] D. M. Scott Fujimoto, Herke van Hoof, “Addressing function approximation
error in actor-critic methods,” arXiv, May 2018. [Online]. Available: https:
//doi.org/10.48550/arXiv.1802.09477

[21] P. D. A. R. O. K. John Schulman, Filip Wolski, “Proximal policy optimization
algorithms,” arXiv, Jul. 2017. [Online]. Available: https://doi.org/10.48550/arXiv.
1707.06347

[22] C. E. R. Marc Peter Deisenroth, “Pilco: a model-based and data-efficient approach
to policy search,” ICML, 2011. [Online]. Available: https://dl.acm.org/doi/10.5555/
3104482.3104541

[23] R. M. S. L. Kurtland Chua, Roberto Calandra, “Deep reinforcement learning in a
handful of trials using probabilistic dynamics models,” ArXiv, May 2018. [Online].
Available: https://arxiv.org/abs/1805.12114

[24] J. B. Tingwu Wang, “Exploring model-based planning with policy networks,” arXiv,
Jun. 2019. [Online]. Available: https://arxiv.org/abs/1906.08649

[25] A. Rao, “A survey of numerical methods for optimal control,” Advances in
the Astronautical Sciences, vol. 135, Jan. 2010. [Online]. Available: https:
//arxiv.org/html/2408.10215v1

[26] R. I. M. G. B. Vincent François-Lavet, Peter Henderson and J. Pineau, “An introduction
to deep reinforcement learning,” Foundations and Trends in Machine Learning, vol. 11,
no. 3-4, Apr. 2018. [Online]. Available: https://doi.org/10.48550/arXiv.1811.12560

[27] M. S. Jim Holdsworth, “what is deep learning?” IBM, june 2024. [Online]. Available:
https://www.ibm.com/think/topics/deep-learning

[28] M. H. H. v. H. M. L. Z. Wang, T. Schaul and N. de Freitas., “Dueling network
architectures for deep reinforcement learning,” arXiv, Nov. 2015. [Online]. Available:
https://arxiv.org/abs/1511.06581

[29] M. G. B. W. Dabney, M. Rowland and R. Munos, “Distributional reinforcement
learning with quantile regression,” arXiv, Oct. 2017. [Online]. Available: https:
//arxiv.org/abs/1710.10044

[30] K. M. V. Mai and L. Paull, “Sample efficient deep reinforcement learning via uncertainty
estimation,” arXiv, Jan. 2022. [Online]. Available: https://arxiv.org/abs/2201.01666

https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://dl.acm.org/doi/10.5555/3104482.3104541
https://dl.acm.org/doi/10.5555/3104482.3104541
https://arxiv.org/abs/1805.12114
https://arxiv.org/abs/1906.08649
https://arxiv.org/html/2408.10215v1
https://arxiv.org/html/2408.10215v1
https://doi.org/10.48550/arXiv.1811.12560
https://www.ibm.com/think/topics/deep-learning
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1710.10044
https://arxiv.org/abs/1710.10044
https://arxiv.org/abs/2201.01666

85

[31] A. G. D. V. Arsenii Kuznetsov, Pavel Shvechikov, “Controlling overestimation bias
with truncated mixture of continuous distributional quantile critics,” arXiv, May 2020.
[Online]. Available: https://doi.org/10.48550/arXiv.2005.04269

[32] “Nllloss,” PyTorch, 2025. [Online]. Available: https://docs.pytorch.org/docs/stable/
generated/torch.nn.NLLLoss.html#torch.nn.NLLLoss

[33] M. P. D. Sanket Kamthe, “Data-efficient reinforcement learning with probabilistic
model predictive control,” ArXiv, Feb. 2018. [Online]. Available: https://doi.org/10.
48550/arXiv.1706.06491

[34] “Data-efficient-reinforcement-learning-with-probabilistic-model-predictive-control,”
GitHub, 2021. [Online]. Available: https://github.com/SimonRennotte/
Data-Efficient-Reinforcement-Learning-with-Probabilistic-Model-Predictive-Control

[35] M. P. Deisenroth, “E cient reinforcement learning using gaussian processes,”
doctoral thesis, Faculty of Informatics Institute for Anthropomatics Intelligent
Sensor-Actuator-Systems Laboratory (ISAS), Seattle, WA, USA, 2010. [Online].
Available: https://deisenroth.cc/pdf/thesis.pdf

[36] “The l-bfgs-b algorithm,” Stanford Exploration Project, 2004. [Online]. Avail-
able: https://sepwww.stanford.edu/data/media/public/docs/sep117/antoine1/paper_
html/node6.html

[37] N. d. F. Eric Brochu, Vlad M. Cora, “A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning,” arXiv, Dec. 2010. [Online]. Available: https://arxiv.org/abs/1012.2599

[38] M. Kobilarov, “Cross-entropy motion planning,” The International Journal of
Robotics Research, vol. 31, May 2012. [Online]. Available: https://doi.org/10.1177/
0278364912444543

[39] R. R. . Y. G. Shie Mannor, “Review on model predictive control: an engineering
perspective,” The International Journal of Advanced Manufacturing Technology, 2003.
[Online]. Available: https://link.springer.com/article/10.1007/s00170-021-07682-3

[40] I. Szita and A. Lörincz, “Learning tetris using the noisy cross-entropy method,” Neural
Computation, vol. 18, no. 12, 2006. [Online]. Available: https://doi.org/10.1162/neco.
2006.18.12.2936

https://doi.org/10.48550/arXiv.2005.04269
https://docs.pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html#torch.nn.NLLLoss
https://docs.pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html#torch.nn.NLLLoss
https://doi.org/10.48550/arXiv.1706.06491
https://doi.org/10.48550/arXiv.1706.06491
https://github.com/SimonRennotte/Data-Efficient-Reinforcement-Learning-with-Probabilistic-Model-Predictive-Control
https://github.com/SimonRennotte/Data-Efficient-Reinforcement-Learning-with-Probabilistic-Model-Predictive-Control
https://deisenroth.cc/pdf/thesis.pdf
https://sepwww.stanford.edu/data/media/public/docs/sep117/antoine1/paper_html/node6.html
https://sepwww.stanford.edu/data/media/public/docs/sep117/antoine1/paper_html/node6.html
https://arxiv.org/abs/1012.2599
https://doi.org/10.1177/0278364912444543
https://doi.org/10.1177/0278364912444543
https://link.springer.com/article/10.1007/s00170-021-07682-3
https://doi.org/10.1162/neco.2006.18.12.2936
https://doi.org/10.1162/neco.2006.18.12.2936

86

[41] S. B. J. A. J. S. M. R. G. M. C. Pinneri, S. Sawant, “Sample-efficient
cross-entropy method for real-time planning,” arXiv, Aug. 2020. [Online]. Available:
https://arxiv.org/abs/2008.06389

[42] “Pytorch cem implementation,” GitHub, 2019. [Online]. Available: https://github.
com/LemonPi/pytorch_cem/tree/master

[43] B. G. J. M. R. Grady Williams, Paul Drews and E. A. Theodorou, “Aggressive
driving with model predictive path integral control,” IEEE International Conference
on Robotics and Automation, May 2016. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/7487277

[44] B. G. P. D. J. M. R. B. B. E. A. T. Grady Williams, Nolan Wagener, “Information
theoretic mpc for model-based reinforcement learning,” IEEE International Conference
on Robotics and Automation, Feb. 2017. [Online]. Available: https://doi.org/10.1109/
ICRA.2017.7989202

[45] J. Noble, “What is llm temperature?” IBM, Dec. 2004. [On-
line]. Available: https://www.ibm.com/think/topics/llm-temperature#:
~:text=Different%20temperature%20settings%20essentially%20introduce,world%
20applications%20of%20text%20generation.

[46] “Boltzmann weight,” Encyclopedia of Mathematics, Jul. 2020. [Online]. Available:
https://encyclopediaofmath.org/wiki/Boltzmann_weight

[47] E. T. Weiwei Li, “Iterative linear quadratic regulator design for nonlinear
biological movement systems,” Proceedings of the 1st International Conference on
Informatics in Control, Automation and Robotics, Jan. 2004. [Online]. Available:
http://maeresearch.ucsd.edu/skelton/publications/weiwei_ilqg_biological.pdf

[48] K. C. J. M. T. L. Z. Cheng, Y. Li, “Neural-ilqr: A learning-aided shooting
method for trajectory optimization,” arXiv, Nov. 2020. [Online]. Available:
https://arxiv.org/abs/2011.10737

[49] “Stable-baselines3 contrib docs!” Stable-Baselines3 Contrib, 2025. [Online]. Available:
https://sb3-contrib.readthedocs.io/en/master/index.html

[50] D. A. Nix and A. S. Weigend, “Estimating the mean and variance of the
target probability distribution,” arXiv, vol. 1, Jun. 1994. [Online]. Available:
https://ieeexplore.ieee.org/document/374138

https://arxiv.org/abs/2008.06389
https://github.com/LemonPi/pytorch_cem/tree/master
https://github.com/LemonPi/pytorch_cem/tree/master
https://ieeexplore.ieee.org/abstract/document/7487277
https://ieeexplore.ieee.org/abstract/document/7487277
https://doi.org/10.1109/ICRA.2017.7989202
https://doi.org/10.1109/ICRA.2017.7989202
https://www.ibm.com/think/topics/llm-temperature#:~:text=Different%20temperature%20settings%20essentially%20introduce,world%20applications%20of%20text%20generation.
https://www.ibm.com/think/topics/llm-temperature#:~:text=Different%20temperature%20settings%20essentially%20introduce,world%20applications%20of%20text%20generation.
https://www.ibm.com/think/topics/llm-temperature#:~:text=Different%20temperature%20settings%20essentially%20introduce,world%20applications%20of%20text%20generation.
https://encyclopediaofmath.org/wiki/Boltzmann_weight
http://maeresearch.ucsd.edu/skelton/publications/weiwei_ilqg_biological.pdf
https://arxiv.org/abs/2011.10737
https://sb3-contrib.readthedocs.io/en/master/index.html
https://ieeexplore.ieee.org/document/374138

87

[51] S. Turney, “Quartiles quantiles | calculation, definition interpretation,” may 2022.
[Online]. Available: https://www.scribbr.com/statistics/quartiles-quantiles/

[52] V. Efimov, “Quantile loss quantile regression,” towards data sci-
ence, Jan. 2023. [Online]. Available: https://towardsdatascience.com/
quantile-loss-and-quantile-regression-b0689c13f54d/

[53] “Pytorch icem implementation,” GitHub, 2023. [Online]. Available: https:
//github.com/UM-ARM-Lab/pytorch_icem

[54] “Pytorch mppi implementation,” GitHub, 2023. [Online]. Available: https:
//github.com/UM-ARM-Lab/pytorch_mppi/tree/master

[55] Britannica, “Mean squarred error,” june 2025. [Online]. Available: https:
//www.britannica.com/science/mean-squared-error

[56] V. Jayaswal, “Laplace smoothing in naive bayes algorithm,” towards
data science, Nov. 2020. [Online]. Available: https://towardsdatascience.com/
laplace-smoothing-in-naive-bayes-algorithm-9c237a8bdece/

[57] “Learning tetris using the noisy cross entropy method,”
GitHub, 2023. [Online]. Available: https://github.com/corentinpla/
Learning-Tetris-Using-the-Noisy-Cross-Entropy-Method/tree/main

[58] E. D. Q. Gallouédec, N. Cazin and L. Chen, “panda-gym: Open-source goal-
conditioned environments for robotic learning,” arXiv, Jun. 2021. [Online]. Available:
https://arxiv.org/abs/2106.13687

[59] “Mbrl-lib,” GitHub, 2021. [Online]. Available: https://github.com/facebookresearch/
mbrl-lib

[60] “mbbl,” GitHub, 2019. [Online]. Available: https://github.com/WilsonWangTHU/mbbl

[61] R. V. Florian, “Correct equations for the dynamics of the cart-pole system,” Center
for Cognitive and Neural Studies (Coneural), Cluj-Napoca, Romania, Tech. Rep., Jul
2005, updated Feb. 10, 2007. [Online]. Available: http://coneural.org/florian/papers/
05_cart_pole.pdf.

[62] A. Fortin, Analyse numérique pour ingénieurs, 5th ed. Presses Intern. Polytechnique,
2016.

https://www.scribbr.com/statistics/quartiles-quantiles/
https://towardsdatascience.com/quantile-loss-and-quantile-regression-b0689c13f54d/
https://towardsdatascience.com/quantile-loss-and-quantile-regression-b0689c13f54d/
https://github.com/UM-ARM-Lab/pytorch_icem
https://github.com/UM-ARM-Lab/pytorch_icem
https://github.com/UM-ARM-Lab/pytorch_mppi/tree/master
https://github.com/UM-ARM-Lab/pytorch_mppi/tree/master
https://www.britannica.com/science/mean-squared-error
https://www.britannica.com/science/mean-squared-error
https://towardsdatascience.com/laplace-smoothing-in-naive-bayes-algorithm-9c237a8bdece/
https://towardsdatascience.com/laplace-smoothing-in-naive-bayes-algorithm-9c237a8bdece/
https://github.com/corentinpla/Learning-Tetris-Using-the-Noisy-Cross-Entropy-Method/tree/main
https://github.com/corentinpla/Learning-Tetris-Using-the-Noisy-Cross-Entropy-Method/tree/main
https://arxiv.org/abs/2106.13687
https://github.com/facebookresearch/mbrl-lib
https://github.com/facebookresearch/mbrl-lib
https://github.com/WilsonWangTHU/mbbl
http://coneural.org/florian/papers/05_cart_pole.pdf
http://coneural.org/florian/papers/05_cart_pole.pdf

88

[63] R. S. Sutton, “Generalization in reinforcement learning: Successful examples
using sparse coarse coding,” in Advances in Neural Information Processing
Systems, D. Touretzky, M. C. Mozer, and M. Hasselmo, Eds., vol. 8. MIT
Press, 1996. [Online]. Available: https://proceedings.neurips.cc/paper/1995/file/
8f1d43620bc6bb580df6e80b0dc05c48-Paper.pdf

[64] M. M. A. G. T. P. L. T. H. D. S. K. K. Volodymyr Mnih, Adrià Puigdomènech Badia,
“Asynchronous methods for deep reinforcement learning,” arXiv, Feb. 2016. [Online].
Available: https://doi.org/10.48550/arXiv.1602.01783

[65] “Iv-rl: Sample efficient deep reinforcement learning via uncertainty estimation,”
GitHub, 2021. [Online]. Available: https://github.com/montrealrobotics/iv_rl

[66] “Quantile regression dqn,” GitHub, 2018. [Online]. Available: https://github.com/
senya-ashukha/quantile-regression-dqn-pytorch/tree/master

[67] “Stable-baselines3 docs - reliable reinforcement learning implementations,” Stable-
Baselines3, 2025. [Online]. Available: https://stable-baselines3.readthedocs.io/en/
master/

[68] “Stable-baslines3,” Hugging Face, 2022. [Online]. Available: https://huggingface.co/sb3

[69] “ilqr,” GitHub, 2021. [Online]. Available: https://github.com/Bharath2/iLQR/tree/
main

https://proceedings.neurips.cc/paper/1995/file/8f1d43620bc6bb580df6e80b0dc05c48-Paper.pdf
https://proceedings.neurips.cc/paper/1995/file/8f1d43620bc6bb580df6e80b0dc05c48-Paper.pdf
https://doi.org/10.48550/arXiv.1602.01783
https://github.com/montrealrobotics/iv_rl
https://github.com/senya-ashukha/quantile-regression-dqn-pytorch/tree/master
https://github.com/senya-ashukha/quantile-regression-dqn-pytorch/tree/master
https://stable-baselines3.readthedocs.io/en/master/
https://stable-baselines3.readthedocs.io/en/master/
https://huggingface.co/sb3
https://github.com/Bharath2/iLQR/tree/main
https://github.com/Bharath2/iLQR/tree/main

89

APPENDIX A STABLE BASELINES3 RL ALGORITHM
HYPERPARAMETERS

Let’s list out all the hyperpameters used by each algorithm for the different benchmark
environments. These are taken from Stable baselines3 Hugging face page [68].

A.1 Acrobot

A.1.1 A2C

Table A.1 gives the hyperparameters used.

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
ent_coeff 0.0

Table A.1 A2C hyperparameters used on the continuous and discrete Cart Pole environments

A.1.2 PPO

Table A.2 gives the hyperparameters used.

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
ent_coeff 0.0

gae_lambda 0.94
gamma 0.99

n_epochs 4
n_steps 256

Table A.2 PPO hyperparameters used on the Acrobot environment

90

A.2 Discrete and continuous Cart Pole

As mentionned earlier on, the hyperparameters were given for the discrete version of the
environment but I assumed it was fair to reuse them for the continuous version of the
environment. This leads to only A2C and PPO having precise hyperparameters. The other
algorithms use the default ones.

A.2.1 A2C

Table A.3 gives the hyperparameters used.

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
batch_size 256
clip_range ’lin_0.2’
ent_coeff 0.0

gae_lambda 0.8
gamma 0.8

learning_rate ’lin_0.001’
n_epochs 20
n_steps 32

Table A.3 A2C hyperparameters used on the continuous and discrete Cart Pole environments

A.2.2 PPO

Table A.4 gives the hyperparameters used.

A.3 Discrete Lunar Lander

A.3.1 A2C

Table A.5 gives the hyperparameters used.

A.3.2 PPO

Table A.6 gives the hyperparameters used.

91

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
batch_size 256
ent_coeff 0.0

gae_lambda 0.8
gamma 0.8

learning_rate ’lin_0.001’
n_epochs 20
n_steps 32

Table A.4 PPO hyperparameters used on the continuous and discrete Cart Pole environments

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
ent_coeff 1e-05
gamma 0.995

learning_rate ’lin_0.00083’
n_steps 5

Table A.5 PPO hyperparameters used on the discrete Lunar Lander environment

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
batch_size 64
ent_coeff 0.01

gae_lambda 0.98
gamma 0.999

n_epochs 4
n_steps 1024

Table A.6 PPO hyperparameters used on the discrete Lunar Lander environments

92

A.4 Discrete Mountain Car

A.4.1 A2C

Table A.7 gives the hyperparameters used.

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
ent_coeff 0.0

Table A.7 PPO hyperparameters used on the discrete Mountain Car environment

A.4.2 PPO

Table A.8 gives the hyperparameters used.

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
ent_coeff 0.0

gae_lambda 0.98
gamma 0.99

n_epochs 4
n_steps 16

Table A.8 PPO hyperparameters used on the discrete Mountain Car environment

A.5 Pendulum

A.5.1 A2C

Table A.9 gives the hyperparameters used.

A.5.2 DDPG

Table A.10 gives the hyperparameters used.

93

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
ent_coeff 0.0

gae_lambda 0.9
gamma 0.99

learning_rate 7e-4
max_grad_norm 0.5

n_steps 8
normalize_advantage False

policy_kwargs dict(log_std_init=-2, ortho_init=False)
use_rms_prop True

use_sde True
vf_coef 0.4

Table A.9 A2C hyperparameters used on the Pendulum environment

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

buffer_size 200000
gamma 0.98

gradients_steps -1
learning_rate 0.001
policy_kwargs dict(net_arch=[400,300])

train_freq (1,’episode’)

Table A.10 DDPG hyperparameters used on the Pendulum environment

A.5.3 PPO

Table A.11 gives the hyperparameters used.

A.5.4 SAC

Table A.12 gives the hyperparameters used.

A.5.5 TD3

Table A.13 gives the hyperparameters used.

94

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
clip_range 0.2
ent_coeff 0.0

gae_lambda 0.95
gamma 0.9

learning_rate 0.001
n_epochs 10
n_steps 1024

sde_sample_freq 4
use_sde True

Table A.11 PPO hyperparameters used on the Pendulum environment

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

learning_rate 0.001

Table A.12 SAC hyperparameters used on the Pendulum environment

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

buffer_size 200000
gamma 0.98

gradients_steps -1
learning_rate 0.001
policy_kwargs dict(net_arch=[400,300])

train_freq (1,’episode’)

Table A.13 TD3 hyperparameters used on the Pendulum environment

A.5.6 TQC

Table A.14 gives the hyperparameters used.

95

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

learning_rate 0.001

Table A.14 TQC hyperparameters used on the Pendulum environment

A.6 Lunar Lander continuous

A.6.1 A2C

Table A.15 gives the hyperparameters used.

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
batch_size 256
clip_range ’lin_0.2’
ent_coeff 0.0

gae_lambda 0.9
gamma 0.99

learning_rate 7e-4
max_grad_norm 0.5

n_steps 8
normalize_advantage False

policy_kwargs dict(log_std_init=-2, ortho_init=False)
use_rms_prop True

use_sde True
vf_coef 0.4

Table A.15 PPO hyperparameters used on the continuous and discrete Cart Pole environ-
ments

A.6.2 DDPG

Table A.16 gives the hyperparameters used.

A.6.3 PPO

Table A.17 gives the hyperparameters used.

96

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

buffer_size 200000
gamma 0.98

gradients_steps -1
learning_rate 0.001
policy_kwargs dict(net_arch=[400,300])

train_freq (1, ’episode’)

Table A.16 PPO hyperparameters used on the continuous and discrete Cart Pole environ-
ments

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
batch_size 64
ent_coeff 0.0

gae_lambda 0.98
gamma 0.999

n_epochs 4
n_steps 1024

Table A.17 PPO hyperparameters used on the continuous and discrete Cart Pole environ-
ments

A.6.4 SAC

Table A.18 gives the hyperparameters used.

A.6.5 TD3

Table A.19 gives the hyperparameters used.

A.6.6 TQC

Table A.20 gives the hyperparameters used.

97

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
batch_size 256
buffer_size 1000000
ent_coeff ’auto’

gae_lambda 0.98
gradient_steps 1
learning_rate ’lin_7.3e-4’
policykwargs dict(netarch = [400, 300])

tau 0.01
train_freq 1

Table A.18 SAC hyperparameters used on the continuous and discrete Cart Pole environ-
ments

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
buffer_size 200000

gamma 0.98
gradient_steps -1
learning_rate 0.001
policy_kwargs dict(net_arch=[400,300])

train_freq (1,’episode’)

Table A.19 TD3 hyperparameters used on the continuous and discrete Cart Pole environ-
ments

A.7 Mountain Car continuous

A.7.1 A2C

Table A.21 gives the hyperparameters used.

A.7.2 DDPG

Table A.22 gives the hyperparameters used.

98

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
batch_size 256
buffer_size 1000000
ent_coeff ’auto’

gae_lambda 0.98
gradient_steps 1
learning_rate ’lin_7.3e-4’
policy_kwargs dict(net_arch=[400, 300])

tau 0.01
train_freq 1

Table A.20 TQC hyperparameters used on the continuous and discrete Cart Pole environ-
ments

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
ent_coeff 0.0
n_steps 100

policy_kwargs dict(log_std_init=0.0, ortho_init=False)
sde_sample_freq 16

use_sde True

Table A.21 PPO hyperparameters used on the continuous Mountain Car environments

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
ent_coeff 0.0
n_steps 100

policy_kwargs dict(log_std_init=0.0, ortho_init=False)
sde_sample_freq 16

use_sde True

Table A.22 PPO hyperparameters used on the continuous Mountain Car environments

99

A.7.3 PPO

Table A.23 gives the hyperparameters used.

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
batch_size 256
clip_range 0.1
ent_coeff 0.00429

gae_lambda 0.9
gamma 0.9999

learning_rate ’lin_7.77e-05’
n_epochs 10
n_steps 8

policy_kwargs dict(log_std_init=-3.29, ortho_init=False)
use_sde True
vf_coeff 0.19

Table A.23 PPO hyperparameters used on the continuous Mountain Car environments

A.7.4 SAC

Table A.24 gives the hyperparameters used.

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
batch_size 512
buffer_size 50000
enf_coeff 0.1
gamma 0.9999

gradient_steps 32
learning_rate 0.0003
policy_kwargs dict(log_std_init=-3.67, net_arch=[64, 64])

tau 0.01
train_freq 32
use_sde True

Table A.24 SAC hyperparameters used on the continuous Mountain Car environments

100

A.7.5 TD3

Table A.25 gives the hyperparameters used.

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
ent_coeff 0.0
n_steps 100

policy_kwargs dict(log_std_init=0.0, ortho_init=False)
sde_sample_freq 16

use_sde True

Table A.25 TD3 hyperparameters used on the continuous Mountain Car environments

A.7.6 TQC

Table A.26 gives the hyperparameters used.

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
batch_size 512
buffer_size 50000
enf_coeff 0.1
gamma 0.9999

gradient_steps 32
learning_rate 0.0003
policy_kwargs dict(log_std_init=-3.67, net_arch=[64, 64])

tau 0.01
train_freq 32
use_sde True

Table A.26 TQC hyperparameters used on the continuous Mountain Car environments

A.8 Panda Reach Sparse

A.8.1 TQC

Table A.27 gives the hyperparameters used.

101

Hyperparameter Value
policy "MlpPolicy"
env "CartPole-v0"

device ’cpu’
batch_size 256
buffer_size 1000000
enf_coeff ’auto’
gamma 0.95

learning_rate 0.001
policy_kwargs dict(net_arch=[64,64], n_critics=1)

replay_buffer_class ’HerReplayBuffer’

replay_buffer_kwargs
dict(online_sampling=True,

goal_selection_strategy=’future’,
n_sampled_goal=4)

Table A.27 TQC hyperparameters used on the Panda Reach sparse environments

A.8.2 A2C, DDPG, PPO, SAC, TD3

No hyperparameters are defined for these problems, so the default ones are used.

A.9 MuJoCo Reacher, Inverted Pendulum, Panda Reach Dense, MuJoCo Pusher,
and Panda Push

Sb3 doesn’t define any hyperparameters for any algorithm applied to the MuJoCo Reacher,
Inverted Pendulum, Panda Reach Dense, MuJoCo Pusher, and Panda Push (dense and
sparse reward versions) environments. The default hyperparameters are used for all methods
on these problems.

102

APPENDIX B QUANTILE REGRESSION NEURAL NETWORK NEXT
STATE PREDICTIONS COMPARISON WITH THOSE OF THE

ENVIRONMENT

Appendix B presents the comparison of the next state prediction between the quantile neural
network and the environment using the cumulative counter values for the other benchmark
environments.

B.1 Quantile regression neural network predictions

B.1.1 Acrobot

The following graphs in Figure B.1 show the quantile predictions for the different state
components of the Acrobot environment using the cumulative counter values.

B.1.2 Cart Pole

The following graph, Figure B.2, shows a comparison of the quantile predictions with the
ground truth environment predictions for the different state components of the Cart Pole
environment, using the cumulative counter values. The results are for the discrete version of
the environment, but the results shouldn’t change for the continuous version.

B.1.3 Lunar Lander

The following graphs in Figures B.3 and B.4 show a comparison of the quantile predictions
with the true environment predictions for the different state components of the MuJoCo
Reacher environment, using the cumulative counter values. The results are for the discrete
version of the environment, but the results shouldn’t change for the continuous version.

B.1.4 MuJoCo Reacher

The following graphs in Figures B.5 and B.6 show a comparison of the quantile predictions
with the true environment predictions for the different state components of the MuJoCo
Reacher environment, using cumulative counter values.

103

(a) cos (θ1) (b) sin (θ1)

(c) cos (θ2) (d) sin (θ2)

(e) ω1 (f) ω2

Figure B.1 Different quantile predictions for the next state components of the Acrobot en-
vironment

104

(a) x (b) v

(c) θ (d) ω

Figure B.2 Different quantile predictions for the next state components x, v, θ, and ω of the
Cart Pole environment

B.1.5 Panda Reach

The following graphs in Figure B.7 show a comparison of the quantile predictions with
the true environment predictions for the different state components of the Panda Reach
environment, using cumulative counter values. The results are for the sparse reward version
of the environment, but they should remain unchanged for the dense reward version.

B.1.6 Pendulum

The following graphs in Figure B.8 show a comparison of the quantile predictions with the
true environment predictions for the different state components of the Pendulum environ-
ment, using cumulative counter values.

105

(a) x (b) y

(c) vx (d) vy

(e) ωx (f) ωy

Figure B.3 Different quantile predictions for the next state components x, y, vx, vy, ωx, and
ωy of the Lunar Lander environment

B.1.7 Inverted Pendulum

The following graph Figure B.9 presents a comparison of the quantile predictions with the
true environment predictions for the different state components of the Inverted Pendulum
environment, using cumulative counter values.

106

(a) Left leg is in contact variable (b) Right leg is in contact variable

Figure B.4 Different quantile predictions for the left leg in contact and the right leg in contact
next state components of the Lunar Lander environment

B.2 Deeper data analysis of control and robotics environments with continuous
action spaces

Tables B.1 and B.2 present the AUC data for the control and robotics environments with
continuous action spaces.

107

(a) cos (θ1) (b) sin (θ1)

(c) cos (θ2) (d) sin (θ2)

(e) ω1 (f) ω2

Figure B.5 Different quantile predictions for the next state components cos (θ1), sin (θ1),
cos (θ2), sin (θ2), ω1, and ω2 of the MujoCo Reacher environment

108

(a) xdist (b) ydist

Figure B.6 Different quantile predictions for cos (θ1) and sin (θ1) next state components of
the MuJoCo Reacher environment

109

(a) x (b) y

(c) z (d) vx

(e) vy (f) vz

Figure B.7 Different quantile predictions for the next state components x, v, z, vx, vy, and
vz of the Panda Reach environment

110

(a) x = cos(θ) (b) y = sin(θ)

(c) ω

Figure B.8 Different quantile predictions for the next state components x = cos(θ), y = sin(θ)
and ω of the Pendulum environment

111

(a) x (b) v

(c) θ (d) ω

Figure B.9 Different quantile predictions for the next state components x, v, θ, and ω of the
Inverted Pendulum environment

112

Table B.1: Average normalized area under the curve of the episodic return for control envi-
ronments with continuous spaces

Model Average normalized AUC
QRNN-basic-PF 0.8416± 0.0319
50NN-ASNN-PF 0.8397± 0.0555
MSENN-basic-PF 0.8287± 0.0579
MSENN-ASNN-PF 0.8245± 0.0182
QRNN-ASNN-PF 0.8048± 0.0373
50NN-rnd-CEM 0.8001± 0.1361
50NN-rnd-PF 0.7963± 0.0611
QRNN-rnd-PF 0.7947± 0.0386
QRNN-rnd-CEM 0.7677± 0.0491
MSENN-rnd-PF 0.7664± 0.0528
QRNN-RS 0.7384± 0.0225
50NN-RS 0.7382± 0.0271
MSENN-RS 0.7317± 0.0184
MSENN-rnd-CEM 0.7043± 0.1320
TQC 0.6683± 0.0309
SAC 0.6436± 0.0447
iCEM 0.5308± 0.0331
GP-MPC 0.5083± 0.0095
50NN-basic-PF 0.4807± 0.0416
PPO 0.4740± 0.1092
MPPI 0.4448± 0.0283
DDPG 0.4072± 0.0174
CEM 0.4043± 0.0897
QRNN-basic-CEM 0.4039± 0.0278
TD3 0.3846± 0.0365
50NN-ASNN-CEM 0.3814± 0.0485
QRNN-ASNN-CEM 0.3744± 0.0273
MSENN-basic-CEM 0.3713± 0.0586
MSENN-ASNN-CEM 0.3303± 0.0647
PETS-CEM 0.3240± 0.0928
A2C 0.3154± 0.0933
50NN-basic-CEM 0.2622± 0.1785

113

Table B.2: Average normalized area under the curve of the episodic return for robotics en-
vironments with continuous spaces

Model Average normalized AUC
QRNN-ASNN-PF 0.9722± 0.0300
50NN-ASNN-PF 0.9669± 0.0497
50NN-ASNN-CEM 0.9662± 0.0393
QRNN-ASNN-CEM 0.9649± 0.0328
MSENN-ASNN-PF 0.9494± 0.0588
MSENN-ASNN-CEM 0.9469± 0.0402
QRNN-rnd-CEM 0.9451± 0.0281
50NN-rnd-CEM 0.9377± 0.0348
QRNN-basic-CEM 0.9361± 0.0391
MSENN-rnd-CEM 0.9284± 0.0327
QRNN-basic-PF 0.9149± 0.0452
MSENN-basic-CEM 0.9126± 0.0525
QRNN-rnd-PF 0.9107± 0.0335
MSENN-basic-PF 0.8962± 0.0402
50NN-rnd-PF 0.8953± 0.0375
MSENN-rnd-PF 0.8868± 0.0324
QRNN-RS 0.8605± 0.0217
50NN-RS 0.8569± 0.0249
MSENN-RS 0.8486± 0.0306
MPPI 0.7880± 0.1759
PETS-CEM 0.6802± 0.2873
CEM 0.6335± 0.1268
DDPG 0.5861± 0.0192
TD3 0.5817± 0.0108
TQC 0.5737± 0.0046
SAC 0.5656± 0.0040
iCEM 0.4998± 0.2308
PPO 0.3852± 0.0120
50NN-basic-PF 0.3630± 0.0886
50NN-basic-CEM 0.3391± 0.0972
A2C 0.3276± 0.0730
GP-MPC 0.3102± 0.0220

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 The problem we are trying to solve
	1.2 Research objectives
	1.3 Contributions
	1.4 Thesis outline

	2 BACKGROUND AND LITERATURE REVIEW
	2.1 Background of Reinforcement learning
	2.1.1 Markov decision process and returns
	2.1.2 Characterizing RL algorithms

	2.2 Literature review of RL algorithms
	2.2.1 Deep RL
	2.2.2 Discrete actions - DQN methods
	2.2.3 Continuous actions and off-policy
	2.2.4 On-policy and any actions (discrete or continuous)

	2.3 Background of Model Predictive Control in MBRL
	2.4 Literature review of some control methods
	2.4.1 MPC shooting algorithms
	2.4.2 Trajectory optimization control algorithms

	2.5 Recap of the literature review

	3 METHODS
	3.1 Our different MPC methods and their components
	3.1.1 Methods to generate action sequences
	3.1.2 Models of the environment
	3.1.3 How to modify the action sequences after taking a step in the environment
	3.1.4 MPC technique to optimize the action sequences
	3.1.5 The different MPC methods

	3.2 RL benchmark environments
	3.2.1 Images of the envs
	3.2.2 Environment descriptions
	3.2.3 Length of an environment time step
	3.2.4 Dynamics of the environments
	3.2.5 Cost function used in MPC for each environment

	3.3 Description of the tests
	3.3.1 Test of the validity of QRNN model's quantile predictions
	3.3.2 Hyperparameter testing of noise levels in MPC particle filtering
	3.3.3 Comparison of methods
	3.3.4 Other tests

	4 RESULTS
	4.1 Quantile regression neural network predictions
	4.2 Mean episodic return graphs
	4.3 Area under the curve of the episodic return tables
	4.4 Normalized mean area under the curve of the episodic return tables
	4.5 Overall algorithm comparison
	4.6 Interpretation of the Results on the OpenAI Gymnasium and Panda Gym environments
	4.7 Recap of results
	4.8 Other tests
	4.8.1 Sampling method for QRNN next state prediction
	4.8.2 Compare repeating 4 times the optimized action to not doing so for the Mountain Car environments

	5 DISCUSSION - OVERALL ALGORITHM COMPARISON
	5.1 Discrete action space
	5.2 Continuous action space

	6 CONCLUSION
	6.1 Summary
	6.2 Limitations
	6.3 Future Research

	REFERENCES
	APPENDICES
	A.1 Acrobot
	A.1.1 A2C
	A.1.2 PPO

	A.2 Discrete and continuous Cart Pole
	A.2.1 A2C
	A.2.2 PPO

	A.3 Discrete Lunar Lander
	A.3.1 A2C
	A.3.2 PPO

	A.4 Discrete Mountain Car
	A.4.1 A2C
	A.4.2 PPO

	A.5 Pendulum
	A.5.1 A2C
	A.5.2 DDPG
	A.5.3 PPO
	A.5.4 SAC
	A.5.5 TD3
	A.5.6 TQC

	A.6 Lunar Lander continuous
	A.6.1 A2C
	A.6.2 DDPG
	A.6.3 PPO
	A.6.4 SAC
	A.6.5 TD3
	A.6.6 TQC

	A.7 Mountain Car continuous
	A.7.1 A2C
	A.7.2 DDPG
	A.7.3 PPO
	A.7.4 SAC
	A.7.5 TD3
	A.7.6 TQC

	A.8 Panda Reach Sparse
	A.8.1 TQC
	A.8.2 A2C, DDPG, PPO, SAC, TD3

	A.9 MuJoCo Reacher, Inverted Pendulum, Panda Reach Dense, MuJoCo Pusher, and Panda Push
	B.1 Quantile regression neural network predictions
	B.1.1 Acrobot
	B.1.2 Cart Pole
	B.1.3 Lunar Lander
	B.1.4 MuJoCo Reacher
	B.1.5 Panda Reach
	B.1.6 Pendulum
	B.1.7 Inverted Pendulum

	B.2 Deeper data analysis of control and robotics environments with continuous action spaces

