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RÉSUMÉ

Les transports publics jouent un rôle central dans l’organisation des villes en facilitant la
mobilité des populations, en réduisant la congestion routière et en limitant les émissions de
Gaz à Effet de Serre (GES). La fiabilité des correspondances constitue un enjeu majeur pour
améliorer l’expérience des passagers et renforcer l’attractivité du transport collectif.

Cette thèse porte sur la synchronisation en temps réel des correspondances dans les réseaux
de transport public, un levier clé pour améliorer la qualité du service et réduire les temps
de parcours. L’objectif est de concevoir et d’évaluer des approches d’optimisation dynamique
permettant d’améliorer la fiabilité des correspondances à travers des tactiques de contrôle en
temps réel, telles que l’attente aux arrêts, le saut d’arrêt et le contrôle de vitesse.

Dans un premier temps, un modèle d’optimisation hors ligne basé sur des graphes temporels
intégrant ces tactiques pour un horizon donné est développé. Il vise à minimiser le temps total
de parcours des passagers en optimisant les correspondances tout en réduisant les écarts par
rapport à l’horaire planifié. Ce modèle hors ligne constitue une preuve de concept et démontre
sa capacité à traiter des instances impliquant plusieurs dizaines d’arrêts de contrôle et un
nombre élevé de correspondances en temps réel. Pour évaluer l’efficacité du modèle hors
ligne dans un environnement à information partielle, une version dynamique générant un
scénario unique à chaque réoptimisation est développée. Différents niveaux d’incertitude sont
considérés lors de la génération des scénarios. Les deux approches sont ensuite testées sur
des données réelles de la ligne 70 du réseau d’autobus de la STL. Les résultats confirment
l’efficacité des méthodes et montrent que la génération déterministe de scénarios offre les
meilleures performances lorsque l’optimisation dynamique repose sur un unique scénario.
Toutefois, un écart de performance subsiste entre le modèle hors ligne à information parfaite
et son équivalent dynamique déterministe, soulignant les limites de ce dernier face aux aléas
du réseau.

Ensuite, un cadre de simulation à événements discrets est développé pour intégrer les incer-
titudes inhérentes aux conditions de circulation et aux flux de passagers. Deux algorithmes
d’Optimisation Stochastique En Ligne (OSEL) sont adaptés au problème de synchronisa-
tion des correspondances, exploitant des données historiques et en temps réel pour générer
plusieurs scénarios et prendre des décisions dynamiques. Ces algorithmes sélectionnent les
tactiques de contrôle optimales en considérant l’ensemble des scénarios simulés. Testés sur 29
lignes du réseau de la STL, ils permettent une amélioration significative du taux de corres-
pondances réussies et une réduction du temps total de parcours des passagers. Les résultats
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montrent que les algorithmes stochastiques en ligne atteignent une performance proche du
modèle hors ligne tout en s’adaptant aux conditions dynamiques du réseau.

Enfin, l’approche est étendue à l’ensemble du réseau multiligne de la STL à l’aide d’un
simulateur reproduisant les opérations à partir de données historiques détaillées. Le modèle
hors ligne et les algorithmes d’optimisation stochastiques sont adaptés et implémentés dans
le simulateur. L’objectif est d’évaluer l’impact d’une optimisation simultanée de plusieurs
lignes sur la performance globale du réseau. Cette étude permet également d’évaluer différents
contextes, comprenant des lignes à haute ou basse fréquence ainsi que des sous-réseaux maillés
ou radiaux. L’analyse révèle le potentiel d’une régulation à l’échelle du réseau pour améliorer
la fiabilité des correspondances sans générer de perturbations excessives.

Les travaux de cette thèse illustrent l’apport des approches d’optimisation stochastique en
temps réel pour la synchronisation des correspondances de réseaux de transport public. Ces
méthodologies, alliant efficacité computationnelle et robustesse face aux incertitudes, ouvrent
des perspectives d’application concrètes pour les opérateurs de transport.
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ABSTRACT

Public Transit (PT) plays a crucial role in urban development and in reducing congestion
and greenhouse gas emissions. The reliability and timeliness of transfers are key factors
influencing ridership and user experience in PT networks.

This dissertation focuses on real-time transfer synchronization in public transportation net-
works, an essential approach for improving service quality and reducing passenger travel
times. The objective is to develop and evaluate dynamic optimization approaches that en-
hance transfer reliability by implementing real-time control tactics such as holding, skip-stop,
and speed control.

First, an offline arc-flow model is developed using time-expanded graphs to integrate all
possible control tactics within a given control horizon. The model minimizes total passen-
ger travel time by optimizing transfers while reducing schedule deviations. As a proof of
concept, it demonstrates the ability to handle large-scale instances, involving several dozen
control stops and numerous transfer connections, in real time. To assess the performance of
the offline model in an environment with partial information, a dynamic version generating
a single scenario is designed. Different levels of uncertainty are evaluated in the scenario
generation. Both methodologies are tested using real-world passenger demand and ridership
data from bus route 70 of the STL network. Results confirm the effectiveness of this approach
for transfer synchronization and indicate that, when considering a single scenario, a deter-
ministic scenario generation method yields the best performance. However, a performance
gap remains between the perfect information offline model and its deterministic dynamic
counterpart, highlighting the latter’s limitations in handling network uncertainties.

Next, a discrete-event simulation framework is developed to incorporate the inherent uncer-
tainties of traffic conditions and passenger flows. Two Online Stochastic Optimization (OSO)
algorithms, CONSENSUS (C) and REGRET (R), are adapted from the literature for the
transfer synchronization problem, leveraging historical and real-time data to generate multi-
ple scenarios and make robust decisions. These algorithms evaluate the solutions of the offline
model for all scenarios to determine optimal control tactics at stops. Tested on 29 bus routes
within the STL network, the algorithms significantly improve successful transfer rates and
reduce total passenger travel time. The results demonstrate that OSO achieves performance
levels comparable to the offline model while maintaining adaptability to dynamic network
conditions.

Finally, the approach is extended to the full STL network using a network-wide simulator
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replicating real-time stochastic conditions based on fine-grained, comprehensive historical
data on network operations and passenger demand. The offline model and the online al-
gorithms are adapted and implemented in the simulator. The objective is to evaluate the
impact of the simultaneous optimization of multiple routes on overall network performance.
The study also examines various contexts, including high- and low-frequency routes as well
as grid and radial sub-networks. This analysis highlights the potential of network-wide syn-
chronization to improve transfer reliability without causing excessive disruptions.

The work presented in this thesis demonstrates the contributions of real-time stochastic opti-
mization approaches to synchronizing transfers in PT networks. These methodologies, which
combine computational efficiency with robustness, open up concrete application opportuni-
ties for transport operators.
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CHAPITRE 1 INTRODUCTION

1.1 Contexte

Le transport public joue un rôle central dans le fonctionnement des sociétés modernes. Il
facilite l’accès à l’emploi, aux soins de santé, aux services et aux activités de la vie quotidienne.
En tant qu’outil structurant du territoire, il contribue au dynamisme des milieux de vie,
renforce l’équité sociale et appuie la transition socioécologique.

Au-delà de son rôle social et environnemental, le secteur du transport public constitue un
catalyseur économique puissant [1], notamment en stimulant la croissance locale. Au Québec,
le secteur du transport représente environ 4% du Produit Intérieur Brut (PIB). Bien que le
transport public y occupe une part plus modeste en termes de valeur marchande, ses retom-
bées sont loin d’être négligeables. En 2022, les dix membres de l’Association du Transport
Urbain du Québec (ATUQ) ont permis 330 millions de déplacements, soutenu plus de 28 000
emplois, injecté 4,7 milliards de dollars dans l’économie québécoise et généré près de 795 mil-
lions de dollars en revenus fiscaux pour les gouvernements provincial et fédéral [2]. À Laval,
la STL a contribué à hauteur de 180 millions de dollars en valeur ajoutée. Le rapport entre la
richesse créée et les dépenses initiales atteint 82% à l’échelle provinciale, et 79% pour la STL,
ce qui illustre la rentabilité économique de ces investissements. Ces résultats témoignent de
l’effet multiplicateur du secteur, dont les retombées s’étendent de l’amont (infrastructures,
services) à l’aval (emplois, fiscalité, vitalité urbaine). En plus de stimuler l’activité locale,
ces investissements contribuent à réduire les coûts sociaux liés à la pollution et à l’exclusion
territoriale.

En revanche, la prédominance de la voiture comme mode de déplacement entraîne des
coûts élevés pour les individus et pour la collectivité. Au Québec, le transport représente
le deuxième poste de dépense des ménages, devant l’alimentation, avec une moyenne an-
nuelle dépassant 10 000 dollars canadiens, dont moins de 10% sont consacrés au transport
public. Cette situation s’explique en partie par une motorisation croissante : les ménages
possèdent de plus en plus de véhicules, malgré une taille moyenne en diminution. À Laval, on
comptait 1,51 véhicule par ménage en 2023, contre 1,27 en région et 0,94 à Montréal [3]. Au-
delà de l’impact sur le budget des ménages, cette dépendance automobile a des conséquences
économiques plus larges : une part importante des dépenses liées à l’achat de véhicules et
de carburant est dirigée vers l’importation, limitant ainsi les retombées locales. Les dépenses
annuelles des ménages québécois liées à l’automobile sont estimées à 37 milliards de dollars,
dont plus de la moitié pour des biens importés [4]. À cela s’ajoutent des coûts indirects liés à
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la congestion, à la perte de productivité, à la dégradation de la qualité de l’air et à la pression
sur les infrastructures.

Le secteur des transports est également l’un des principaux contributeurs aux émissions de
GES, tant à l’échelle mondiale que locale. À l’échelle planétaire, il représente plus de 20%
des émissions de GES qui pourraient augmenter de 60% d’ici 2050 en l’absence de mesures
structurantes [5]. Au Canada, les transports comptent pour environ 25% des émissions an-
nuelles, se classant au deuxième rang des secteurs les plus polluants [6]. Au Québec, le secteur
du transport constitue la première source d’émissions, avec 43,3% du total provincial [7], et
jusqu’à 57% sur le territoire lavallois [8]. Les véhicules particuliers jouent un rôle central dans
ce bilan : ils sont responsables de 22% des émissions au Québec. La progression constante
du parc automobile — près de 5 millions de voitures ou camions légers en 2022 — renforce
cette tendance [9]. Dans ce contexte, le transport public représente un levier incontournable
pour réduire les émissions, diminuer la pression sur les réseaux routiers et accompagner la
transition énergétique.

Au Québec, les sociétés de transport public font face à des défis structurels, accentués par
les effets de la pandémie et le développement du télétravail. À Laval, la part modale du
transport public atteignait seulement 15% en 2018, contre 26% à Montréal [10]. Cet écart
s’explique notamment par une desserte moins fréquente sur un territoire étendu et moins
dense, ainsi que par l’absence d’un réseau structurant comparable au métro, beaucoup plus
développé sur l’île de Montréal. Bien que la Politique de Mobilité Durable 2030 du Québec
prévoit des investissements majeurs – dont plus de 2,2 milliards de dollars pour des projets
structurants en transport public [11] - la fréquentation des réseaux peine toujours à retrouver
ses niveaux d’avant-pandémie, fragilisant les finances des sociétés de transport [12]. Dans ce
contexte, l’ATUQ souligne l’importance d’un financement public stable et prévisible, aligné
sur les objectifs de mobilité durable des municipalités.

Malgré ces contraintes, la STL affiche des objectifs clairs : atteindre 30 millions de déplace-
ments d’ici 2031, soit une hausse de presque 50% par rapport à 2023 [8]. La STL fait ainsi
face à un double défi : gagner la confiance des usagers dans un contexte de concurrence
modale accrue tout en améliorant la performance de son réseau d’autobus. Plusieurs pro-
jets soutiennent cette vision, dont la création d’un service rapide par bus, l’étude d’un mode
structurant dans l’axe du métro, et l’agrandissement du garage municipal pour soutenir l’élec-
trification de la flotte [13]. La STL s’est également engagée dans une refonte de son réseau,
une démarche ambitieuse qui nécessite le recours à des outils d’analyse avancés pour guider
les choix de réaménagement, optimiser les correspondances au sein de son futur réseau et
structurer l’offre. Dans un contexte budgétaire contraint et face aux nombreux défis auxquels
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la STL est confrontée, l’optimisation de l’utilisation des ressources existantes s’impose comme
un levier stratégique. Elle permet d’améliorer la qualité du service et la fiabilité du réseau
sans nécessiter de nouveaux investissements majeurs en infrastructures. Laval apparaît ainsi
comme un terrain d’expérimentation particulièrement pertinent pour étudier les conditions
d’une amélioration ciblée, réaliste et durable de la performance du transport public en milieu
urbain.

C’est dans cette perspective que cette thèse propose de nouvelles méthodes pour améliorer
l’utilisation des ressources existantes en transport public par l’optimisation en temps réel des
opérations des sociétés de transport. Elle s’intéresse plus particulièrement au problème de la
synchronisation en temps réel des correspondances dans les réseaux de transport public, avec
un focus opérationnel sur la ville de Laval.

1.2 Problématique

Dans un réseau de transport public, la synchronisation des correspondances consiste à co-
ordonner les arrivées et départs de plusieurs véhicules à un arrêt, afin de permettre aux
passagers de poursuivre leur trajet avec un temps d’attente minimal. Cette coordination
repose sur des tactiques de contrôle, comme l’attente aux arrêts, et vise à améliorer la qua-
lité de service en optimisant l’utilisation des ressources disponibles. En pratique, elle peut
réduire les correspondances manquées (qui sont prévues selon l’horaire planifié, mais n’ont
pas pu se réaliser en raison d’aléas opérationnels), améliorer la régularité du service, et, plus
globalement, accroître l’efficacité opérationnelle du réseau.

Malgré ces avantages, la synchronisation en temps réel demeure peu exploitée dans la pra-
tique. Cette situation s’explique notamment par les défis liés à sa mise en œuvre dans des
contextes opérationnels complexes et dynamiques, ainsi que par la diversité des contextes
urbains. L’objectif de cette thèse est de développer des méthodes d’optimisation pour la syn-
chronisation des correspondances en temps réel, qui soient à la fois efficaces et applicables.

Le caractère « efficace » relève plusieurs volets. Premièrement, les algorithmes proposés
doivent améliorer significativement les opérations des systèmes de transport. De plus, ces
algorithmes doivent être capables de fournir des résultats satisfaisants en temps réel. Le
caractère « applicable » recouvre également plusieurs dimensions. Premièrement, les mé-
thodes doivent être reproductibles, s’appuyer sur des standards de données largement utilisés
et permettre une analyse transparente des résultats. Elles doivent également être réalistes,
c’est-à-dire testées à partir de données empiriques et dans des conditions représentatives de
l’exploitation en temps réel. Les méthodologies doivent aussi adopter une approche intégrée,
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en considérant de manière cohérente les différentes composantes de la mobilité : la circulation
des véhicules, les flux de passagers ou encore les interactions entre lignes. Elles doivent être
suffisamment flexibles pour s’adapter à la diversité des architectures de réseau et des profils
de lignes. Elles doivent en outre être fiables, c’est-à-dire robustes face à l’incertitude et aux
aléas courants dans l’exploitation quotidienne. Enfin, elles doivent être évolutives, capables
de traiter des lignes comportant de nombreuses correspondances et passer à l’échelle pour
traiter des réseaux de grande taille.

Les exigences posées par une méthodologie applicable et efficace soulèvent un ensemble de
défis méthodologiques et opérationnels, liés aux réalités complexes des réseaux de transport
public. Ces défis concernent à la fois la localisation des tactiques de contrôle, le choix des
lignes, les effets à l’échelle du réseau, la modélisation des comportements des usagers, ainsi
que la prise de décision en contexte incertain et dynamique. Ces décisions doivent s’appuyer
sur des données opérationnelles disponibles en temps réel, telles que les positions Global
Positioning System (GPS) des véhicules, les historiques d’achalandage ou les validations par
carte à puce, tout en tenant compte de leur variabilité et de leur caractère partiellement
observable.

L’un des premiers enjeux porte sur la sélection des lignes sur lesquelles appliquer des tac-
tiques de synchronisation. L’impact d’une intervention dépend fortement du profil de la
ligne : fréquence de passage, achalandage, rôle structurant dans le réseau. Certaines lignes
plus isolées ou faiblement desservies peuvent nécessiter des interventions ciblées pour limiter
les correspondances manquées. Des tactiques appliquées à des lignes fortement achalandées
vont affecter plus de passagers. De plus, la structure du réseau influence directement les ef-
fets d’une décision locale. Une synchronisation réussie sur une ligne peut générer des retards
sur une autre, perturber des correspondances futures, ou au contraire, fluidifier l’ensemble
d’un corridor de transport. À mesure que le nombre d’arrêts ciblés augmente, la complexité
combinatoire du problème s’intensifie, mais les possibilités d’amélioration se multiplient. Une
modélisation réaliste et intégrée de la synchronisation doit ainsi tenir compte non seulement
de la ligne ciblée, mais aussi de ses interconnexions et des passagers impactés présents et
futurs. Dans ce contexte, représenter fidèlement les trajets des usagers et leurs interactions
avec l’offre devient essentiel. Chaque tactique appliquée implique un arbitrage entre plusieurs
objectifs parfois contradictoires : minimiser les temps de trajet, maximiser la synchronisation,
préserver la régularité des véhicules et maintenir l’adhérence aux horaires planifiés. Ces arbi-
trages doivent être réalisés en temps réel, sous des contraintes computationnelles strictes. Ils
s’appuient sur des informations partielles, tant sur les comportements des usagers — souvent
modélisés de manière agrégée ou implicite faute d’observabilité directe — que sur l’état du
réseau de transport public. Or, ces éléments présentent une forte variabilité et influencent
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l’efficacité des tactiques de contrôle proposées. La robustesse des décisions devient donc une
exigence centrale, qui impose de modéliser explicitement l’incertitude et de concevoir des
méthodes capables de s’adapter à des contextes dynamiques tout en maintenant une certaine
stabilité et fiabilité opérationnelle.

Un dernier défi concerne la conception de méthodes capables de traiter des lignes d’autobus
dans leur intégralité ainsi que des réseaux de grande taille, tout en demeurant applicables
en temps réel. La méthodologie développée doit être suffisamment modulable pour s’adapter
à différentes échelles d’analyse, qu’il s’agisse d’un réseau multiligne interconnecté complet
ou d’un sous-réseau ciblé, identifié comme prioritaire par l’opérateur. Pour maintenir des
temps de calcul compatibles avec les exigences opérationnelles, il est nécessaire de découper
le problème en sous-problèmes, tout en contrôlant les interactions pour éviter les effets de
bord indésirables. Cette articulation entre différents niveaux d’analyse – de la trajectoire
individuelle à l’ensemble du réseau – ajoute une complexité supplémentaire à la prise de
décision. L’ensemble de ces défis, présenté dans la figure 1.1, est examiné plus en détail dans
le chapitre suivant.

Figure 1.1 Problématique, besoins identifiés, objectifs et contributions de la thèse.

Cette thèse est structurée de la façon suivante. Le chapitre 2 introduit une revue de la
littérature et adresse les défis majeurs à relever. Le chapitre 3 introduit les données ainsi que
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la méthodologie utilisées dans les articles qui suivent. Le chapitre 4 présente l’article Data
driven synchronization strategies of a bus line in a transit network publié dans Transportation
Research Procedia. Le chapitre 5 contient l’article Online stochastic optimization for real-
time transfer synchronization in public transit networks soumis à INFORMS Journal on
Computing. Le chapitre 6 contient l’article Network-wide transfer synchronization strategies
in a public bus system with real-time AVL and smart card data soumis à Public Transport. Le
chapitre 7 propose une discussion générale sur les contributions des trois articles précédents.
Finalement, le chapitre 8 conclut la thèse.
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CHAPITRE 2 REVUE DE LITTÉRATURE

La revue de littérature s’articule autour de deux axes. La section 2.1 présente différentes
tactiques de contrôle utilisées pour la synchronisation des correspondances et leur application
en temps réel. La section 2.2 présente comment modéliser l’incertitude dans le cadre de la
synchronisation des correspondances et discute de plusieurs méthodes pour résoudre des
problèmes dynamiques en temps réel.

2.1 Contrôle en temps réel pour la synchronisation des correspondances

La synchronisation des correspondances peut être réalisée soit lors de la phase de planification
des horaires, soit durant la phase de contrôle, et a fait l’objet de nombreuses revues [14–16]. Ce
domaine suscite un intérêt croissant avec l’émergence et l’accès accru à des données en temps
réel, issues de systèmes embarqués ou d’applications utilisateur. Les auteurs de l’article [17]
proposent une revue exhaustive des travaux sur la synchronisation des correspondances en
temps réel. Cela inclut le contrôle aux arrêts, tel que l’attente aux arrêts ou le saut d’arrêt,
ainsi que le contrôle inter-arrêts, comme le contrôle de vitesse.

2.1.1 Tactiques de contrôle

Les tactiques de contrôle aux arrêts et inter-arrêts sont nombreuses, mais cette revue de
littérature se concentre sur trois tactiques principales : l’attente aux arrêts, le saut d’arrêt et
le contrôle de vitesse. Ces tactiques sont souvent appliquées en combinaison dans les travaux
existants.

L’attente aux arrêts consiste à retenir un véhicule à un arrêt pendant une durée prédéter-
minée. Elle est utilisée pour attendre l’arrivée d’un véhicule de correspondance, améliorer la
régularité du service pour les véhicules en avance, ou atténuer le regroupement des véhicules
(bus bunching). Reconnue comme l’une des tactiques les plus efficaces et simples à mettre
en œuvre [14], elle implique néanmoins la résolution de problèmes d’optimisation complexes,
dont le nombre de variables croît avec le produit des arrêts ciblés et des véhicules pris en
compte. Ces défis expliquent pourquoi de nombreuses études se limitent à une seule ligne et
à un nombre restreint d’arrêts [18]. Le saut d’arrêt est le fait de ne pas s’arrêter à un ou plu-
sieurs arrêts consécutifs. Cette tactique réduit les temps de trajet pour les passagers à bord,
mais peut pénaliser ceux souhaitant monter ou descendre aux arrêts sautés, en particulier
sur des lignes à faible fréquence. Le saut d’arrêt peut permettre un comportement similaire
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à des lignes rapides ou express. Enfin, le contrôle de vitesse, et notamment l’accélération,
est une tactique simple à mettre en œuvre en l’absence de congestion et dans le respect des
limitations de vitesse. Elle permet de réduire les retards, de maintenir la régularité du service
et de faciliter les correspondances. Dans la littérature, cette tactique est généralement utilisée
en combinaison avec d’autres mesures.

La combinaison de plusieurs tactiques de contrôle peut renforcer leur efficacité pour la syn-
chronisation des correspondances. Cependant, cette approche élargit considérablement l’es-
pace décisionnel et augmente la complexité des problèmes à résoudre. Par exemple, les au-
teurs de l’article [19] proposent une combinaison d’attente et de saut d’arrêt pour minimiser
le temps de trajet des passagers tout en augmentant le nombre de correspondances directes
(situations où deux véhicules se retrouvent au même arrêt au même moment, permettant des
transferts immédiats dans les deux sens). Leur modèle est testé sur un réseau à trois lignes et
deux arrêts de correspondance avec des données simulées sur la demande et met en évidence
les bénéfices potentiels de cette approche. Cette analyse est approfondie dans l’article [20],
qui utilise les mêmes tactiques pour réduire les correspondances ratées. Dans l’article [21], les
auteurs y ajoutent une tactique de demi-tour dans une méthodologie visant à maximiser les
correspondances directes et à minimiser le temps total de trajet des passagers. La résolution
de ces modèles s’effectue en temps exponentiel et limite leur applicabilité à des réseaux de
petite taille, ou à des réseaux simplifiés.

2.1.2 Emplacement des points de contrôle

Les arrêts auxquels on peut appliquer une tactique de contrôle sont appelés points de contrôle
ou arrêts de contrôle. Le choix du nombre et de l’emplacement des points de contrôle est cru-
cial pour garantir la fluidité du service, réduire les irrégularités et optimiser l’efficacité opé-
rationnelle. Leur sélection, notamment pour l’attente aux arrêts, fait l’objet de nombreuses
études soulignant son impact sur la performance des réseaux.

Les auteurs de l’article [22] montrent que multiplier les points de contrôle contribue à régula-
riser les intervalles. De plus, l’étude menée dans l’article [23] indique qu’introduire un nombre
suffisant d’arrêts de contrôle pour l’attente aux arrêts peut améliorer l’adhérence aux horaires
sans entraîner des coûts d’attente élevés pour les passagers. De leur côté, les auteurs de l’ar-
ticle [24] observent que considérer tous les arrêts comme points de contrôle permet une gestion
distribuée sur l’ensemble de la ligne, ce qui permet un meilleur contrôle des perturbations.
Malgré les avantages associés à l’utilisation de plusieurs arrêts de contrôle, la performance
des modèles de synchronisation des correspondances est plus sensible à l’emplacement des
arrêts de contrôle qu’à leur nombre [25]. Cette sensibilité dépend des caractéristiques du ser-
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vice et de la stratégie d’attente aux arrêts employée. Une forte incertitude inhérente pourrait
nécessiter davantage de points de contrôle, tandis qu’une stratégie intégrant la connaissance
des positions de tous les véhicules pourrait diminuer leur importance.

L’achalandage aux arrêts est aussi un facteur à considérer lors du choix de points de contrôle.
Les arrêts où les véhicules sont très chargés mais présentent peu d’embarquements et débar-
quements devraient être évités comme points de contrôle d’attente. En effet, ils engendrent
des temps d’attente importants pour les nombreux passagers déjà à bord [26]. Enfin, les au-
teurs de l’article [27] concluent également que les points de contrôle devraient se situer aux
arrêts avec des taux d’embarquement élevés, de préférence en début de ligne.

Bien que de nombreuses études se concentrent sur le choix des arrêts de contrôle, aucune
n’évalue systématiquement l’impact de la synchronisation des correspondances en fonction
du choix des lignes et de la typologie des réseaux.

2.1.3 Accès aux données

L’accès aux données en temps réel est un facteur clé pour améliorer l’efficacité des modèles de
synchronisation des correspondances, car il permet d’anticiper plus finement les dynamiques
des réseaux de transport et de répondre aux imprévus. Cette section retrace l’évolution des
données utilisées et leur impact sur les stratégies de contrôle.

Avant le déploiement des systèmes intelligents de transport, tels que les systèmes Automated
Vehicle Location (AVL) et Automatic Passenger Counter (APC), les stratégies de contrôle
en temps réel reposaient sur des décisions prises par du personnel positionné stratégiquement
en station [28]. Les premières approches, basées sur des informations limitées, utilisent les
horaires planifiés ou les temps entre les passages de véhicules consécutifs pour appliquer des
temps d’attente à des points de contrôle prédéfinis [29]. Les auteurs de l’article [18] sont les
premiers à utiliser des données de localisation de véhicules précises, supposées disponibles en
temps réel. Ils montrent que la connaissance de l’emplacement des véhicules permet d’amé-
liorer la régularisation des intervalles par l’attente aux arrêts, ainsi que la synchronisation
des correspondances grâce à des estimations plus fiables des heures d’arrivée.

Historiquement, les données sur les flux de passagers, telles que la charge des véhicules, les
arrivées aux arrêts et la demande en correspondances, étaient estimées à partir d’observations
empiriques ou même à partir de matrices origine-destination. Ces informations sont désormais
accessibles plus rapidement, et même en temps réel, grâce aux systèmes de comptage automa-
tique des passagers (APC), aux validations de cartes à puce ou aux systèmes de tarification
anticipée. Lorsque les destinations des passagers ne sont pas directement enregistrées via les
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validations, elles peuvent être inférées à l’aide d’algorithmes sophistiqués [30,31]. Les auteurs
de l’article [32] explorent l’impact de la disponibilité de différents types d’informations, no-
tamment les données en temps réel sur la demande en passagers et les horaires d’arrivée des
véhicules. Ils concluent que les données sur la demande en temps réel sont particulièrement
bénéfiques pour la synchronisation des correspondances dans des réseaux à faible fréquence.
Des travaux récents renforcent cette tendance en utilisant des données passagers réelles plutôt
que des moyennes historiques ou des simulations, bien que les études de cas restent de tailles
limitées. Par exemple, l’article [33] évalue trois niveaux d’accès à l’information pour optimi-
ser la synchronisation des correspondances et la régularité du service : absence de données
en temps réel (demande modélisée par une loi de Poisson), taux d’occupation des véhicules
en temps réel, et intégration des validations de cartes à puce avec les taux d’occupation en
temps réel. Les tests, effectués avec le modèle de simulation de transports publics BusMezzo,
portent sur deux lignes, un arrêt de correspondance et cinq arrêts de contrôle dans le réseau
de La Haye, aux Pays-Bas. Les résultats indiquent que ces stratégies sont particulièrement
efficaces dans des contextes de faible affluence et que l’utilisation des données issues des cartes
à puce améliore significativement la synchronisation des correspondances.

De nombreuses études supposent que les données sur les véhicules et/ou sur la demande sont
entièrement disponibles et précises. Par exemple, les auteurs de l’article [34] proposent une
stratégie combinant attente aux arrêts et contrôle de vitesse pour la synchronisation des cor-
respondances. Leur modèle d’optimisation, appliqué à un réseau de trois lignes d’autobus et
cinq points de correspondance, s’appuie sur des données en temps réel concernant la vitesse et
la position des véhicules, tout en supposant la demande en passagers et les correspondances
connues. De manière similaire, les auteurs de l’article [35] développent un modèle à base de
règles intégrant les mêmes tactiques pour maximiser les correspondances directes et réduire
le regroupement des autobus en temps réel. Bien que leur modèle soit résolu en temps poly-
nomial, il repose sur des hypothèses strictes concernant la connaissance des temps de trajet,
des arrivées de passagers et de la demande en correspondances.

La mise en œuvre de stratégies de synchronisation efficaces repose sur l’intégration simultanée
de données concernant la demande en passagers et les positions des véhicules. Ces informa-
tions permettent d’évaluer avec précision l’impact des tactiques de contrôle sur l’ensemble des
passagers, qu’ils soient en correspondance ou non, tout en préservant la régularité du service.
En combinant ces données, il devient possible de concevoir des solutions adaptées aux besoins
des passagers tout en optimisant l’exploitation des véhicules. Pour garantir des stratégies de
synchronisation réalistes et applicables, il est essentiel de s’appuyer sur des données réelles
reflétant la complexité des réseaux de transport urbains. Toutefois, les stratégies déployées en
temps réel doivent se baser exclusivement sur des données disponibles en temps réel, souvent
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partielles et imprécises, ce qui limite la compréhension complète de l’état du réseau. Ainsi, les
modèles doivent intégrer l’incertitude inhérente aux opérations afin de produire des solutions
robustes et opérationnelles.

2.2 Modélisation de l’incertitude

Cette section examine les principales sources d’incertitude dans le cadre de la synchronisation
des correspondances en temps réel et explore les approches permettant de les modéliser et
de les intégrer dans des problèmes dynamiques.

2.2.1 Optimisation dynamique et optimisation en temps réel

Dans la synchronisation des correspondances, l’état du réseau de transport évolue en perma-
nence. Les temps de trajet et les charges à bord sont mis à jour de manière périodique, ce qui
exige une réoptimisation dynamique des décisions de contrôle en fonction des informations
disponibles. Cette dynamique complexifie la résolution du problème en élargissant l’espace
des décisions possibles. Par ailleurs, ces décisions doivent être prises dans des délais courts.
Par exemple, déterminer un temps d’attente optimal au prochain arrêt impose de finaliser les
calculs avant l’arrivée du véhicule à l’arrêt. La synchronisation des correspondances en temps
réel combine ainsi optimisation dynamique, qui intègre l’évolution progressive du système, et
optimisation en temps réel, qui impose des temps de calcul réduits malgré la complexité du
problème.

Les auteurs de l’article [36] développent un modèle de programmation dynamique combinant
les tactiques d’attente aux arrêts et de saut d’arrêt pour minimiser le temps total de trajet
des passagers, incluant le temps d’attente pendant les correspondances. Ils introduisent un
modèle de simulation pour estimer la probabilité de rencontre entre deux bus partageant
plusieurs arrêts communs. La borne supérieure de cette probabilité est ensuite intégrée dans
le modèle de programmation dynamique. Le modèle est testé sur un réseau artificiel avec deux
lignes et trois arrêts. Cette approche est améliorée dans [37] avec un modèle dynamique en
temps polynomial testé sur un réseau artificiel composé d’une ligne principale, trois lignes de
correspondances et trois segments de correspondances. Les données sur les temps de parcours
et la demande en passagers sont simulées. L’article [38] prolonge cette méthodologie en y
ajoutant la tactique de demi-tour, qui consiste à faire retourner un véhicule avant son terminus
pour renforcer l’offre dans le sens inverse en cas de déséquilibre de la demande. Cependant,
dans [19], les auteurs soulignent que l’approche par programmation dynamique utilisée par
[38] est plus difficile à mettre en oeuvre que leur modèle statique résolu à l’aide d’un solveur
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commercial.

D’autre part, les auteurs de l’article [39] proposent un modèle en temps réel à base de règles
pour synchroniser les correspondances dans un réseau multimodal, validé par des simulations
impliquant quatre véhicules et environ quarante passagers effectuant une correspondance. Le
modèle calcule la durée d’attente maximale admissible pour un véhicule contrôlé à un arrêt
de correspondance. Si un véhicule de correspondance est attendu pendant cet intervalle,
un temps d’attente est appliqué. Cette approche prend en compte l’incertitude des heures
d’arrivée des véhicules et minimise le temps total de trajet des passagers, en considérant le
temps d’attente et le temps à bord.

L’optimisation dynamique et en temps réel demeure un défi majeur dans le cadre de la
synchronisation des correspondances. Elle requiert le développement de méthodologies alliant
rapidité et précision, tout en étant adaptées à des systèmes de transport de grande taille.

2.2.2 Sources d’incertitude

La synchronisation des correspondances dans les réseaux de transport public est soumise
à de multiples sources d’incertitude qui affectent tant la planification que les opérations.
Les temps de trajet des véhicules fluctuent sous l’effet de la congestion et des conditions
météorologiques, tandis que les temps d’arrêt varient selon les flux d’embarquements et de
débarquements des passagers. L’incertitude sur les horaires des véhicules impacte directement
la faisabilité des correspondances et la répartition des flux de passagers. La demande en
passagers dépend de facteurs spatio-temporels tels que l’heure, le jour et la localisation (par
exemple, centre-ville ou banlieue). Les comportements des passagers ajoutent une complexité
supplémentaire : leurs choix d’itinéraires ne suivent pas toujours une logique rationnelle et
sont influencés par des préférences individuelles, ou par une information imparfaite. Ces
décisions ne peuvent être reproduites de manière fiable qu’à partir de données historiques.
La plupart des modèles dans la littérature adoptent une vision simplifiée de la demande, la
traitant comme déterministe [34, 35] ou suivant des distributions à taux constant [40]. Or,
ces approches ne reflètent ni la variabilité ni la complexité réelles des réseaux, qui peuvent
présenter de fortes fluctuations.

Ces incertitudes impactent directement les décisions de contrôle, mais ne sont révélées qu’après
leur mise en œuvre. Une prise en compte rigoureuse de l’incertitude est donc essentielle pour
garantir des solutions robustes et performantes. Toutefois, la littérature n’intègre jamais si-
multanément l’ensemble de ces sources d’incertitude.
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2.2.3 Intégration de prévisions

Lorsqu’une décision sur une tactique de contrôle est prise, les données sur les états futurs
d’un réseau de transport sont inaccessibles. Toutefois, l’état actuel du système fournit des
informations partielles donnant des indices sur les évolutions possibles du réseau. Les décisions
doivent donc être ajustées dynamiquement en intégrant à la fois l’état actuel et les évolutions
possibles anticipées du système. Dans ce contexte, la modélisation de l’incertitude devient un
élément clé pour obtenir des résultats pratiques et pertinents [41]. Elle repose généralement
sur des prévisions de certaines variables décrivant le système ou sur la génération de scénarios
simulant ses états futurs.

Les auteurs de l’article [42] démontrent que l’intégration de prévisions des horaires d’arrivée
des véhicules pour déterminer les temps d’attente aux arrêts réduit significativement les
temps de trajet des passagers, comparée à une stratégie sans prévisions. Toutefois, comme
le soulignent [43], l’efficacité des méthodes prédictives dépend fortement de la précision des
prévisions utilisées. Dans un autre contexte, les auteurs de l’article [44] utilisent des données
historiques sur les paires origine-destination et des données issues de systèmes Automated
Fare Collection (AFC) (embarquement et débarquement) supposées disponibles en temps
réel pour effectuer des prévisions sur la demande. Ils synchronisent les correspondances d’un
seul arrêt entre une ligne principale et une ligne secondaire. Les auteurs concluent que des
prévisions dynamiques sur la demande sont nécessaires dans les réseaux avec de nombreuses
correspondances et présentant une forte variabilité de la demande de correspondances. Enfin,
les auteurs de l’article [45] proposent un modèle dynamique à base de règles intégrant trois
tactiques de contrôle : l’attente aux arrêts, le saut d’arrêt et le contrôle de vitesse. Une
procédure de simulation basée sur la méthode de Monte Carlo est utilisée pour évaluer la
performance du système face aux fluctuations. Ils modélisent les temps de trajet avec des
variables aléatoires ayant des moyennes et des variances dérivées des données historiques. Ce
modèle est appliqué à un réseau de deux lignes d’autobus, deux arrêts de correspondance et
huit correspondances de passagers. Les simulations montrent que ce modèle peut réduire le
temps total de déplacement des passagers, bien qu’il puisse parfois accroître l’irrégularité du
service au profit d’une meilleure qualité des correspondances.

Plus récemment, l’utilisation de scénarios englobant l’ensemble des variables décrivant les
états futurs du réseau est employée pour la synchronisation des correspondances. Les auteurs
de l’article [40] proposent une simulation à événements discrets avec un horizon glissant.
Chaque réoptimisation repose sur un scénario unique représentant un état prévisionnel du
réseau dans l’horizon, où les temps de trajet sont générés à partir de moyennes historiques et
les arrivées des passagers sont modélisées par une loi de Poisson. Leur modèle, combinant les
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tactiques d’attente aux arrêts et d’accélération, minimise le temps total de déplacement des
passagers. Validée à l’aide du simulateur BusMezzo, cette approche est testée sur un réseau de
trois lignes et trois arrêts de correspondance du système Métronit à Haïfa, en Israël. L’étude
utilise un scénario unique sur l’état du système, ce qui ne permet pas de prendre en compte
la variabilité de l’ensemble de ses éléments.

Bien que des outils tels que BusMezzo permettent une simulation détaillée, la synchronisation
des correspondances en temps réel nécessite des solutions capables d’intégrer des réoptimi-
sations réseau fréquentes, multi-lignes et avec des tactiques combinées, tout en maintenant
une efficacité computationnelle élevée.

2.2.4 Optimisation Stochastique En Ligne (OSEL)

L’OSEL est une discipline essentielle pour la prise de décision dans des environnements
dynamiques sous incertitude. Elle vise à élaborer des stratégies robustes, capables de s’adapter
aux variations du système.

Les algorithmes d’OSEL basés sur la génération de scénarios multiples, ou l’échantillonnage,
comportent trois composantes principales : un générateur de scénarios, un solveur hors ligne
qui calcule une solution pour chaque scénario, et un processus décisionnel qui intègre les
informations provenant de toutes les solutions [46,47]. Les générateurs de scénarios présentent
une grande flexibilité vis-à-vis des hypothèses sur les distributions des variables générées,
mais un nombre élevé de scénarios est nécessaire pour représenter fidèlement la variabilité
du système.

Les algorithmes d’OSEL les plus couramment utilisés pour générer plusieurs scénarios sont
EXPECTATION (E) [48], C et R. Ces algorithmes sont adaptés à diverses applications [49],
mais n’ont pas encore été appliqués au problème de synchronisation des correspondances.
L’algorithme E, appliqué au problème de tournées de véhicules, évalue le coût de visiter
chaque client en premier en imposant cette décision dans tous les scénarios, puis optimise
complètement pour les clients restants. Bien que l’algorithme E fournisse une évaluation ex-
haustive, sa complexité computationnelle limite son utilisation en temps réel. L’algorithme
C [50, 51] sélectionne la décision qui est optimale pour le plus grand nombre de scénarios.
Enfin, l’algorithme R [52] offre une approximation de E en évitant une réoptimisation com-
plète pour tous les scénarios. Bien que ces algorithmes puissent partager le même générateur
de scénarios et le même solveur hors ligne, ils se distinguent par leurs processus décision-
nels. Dans la littérature sur la synchronisation des correspondances, même si de nombreuses
études intègrent des prévisions sur certaines variables du système, aucune n’évalue différents
processus décisionnels dans le cadre d’OSEL.
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D’autres études améliorent l’efficacité computationnelle en générant moins de scénarios, mais
plus pertinents, à partir de données historiques [53–55]. Par ailleurs, des avancées dans la
génération de scénarios sont réalisées grâce à des techniques d’apprentissage automatique
(Machine Learning) et à l’échantillonnage à partir de données historiques [56].

L’utilisation d’algorithmes d’OSEL basés sur l’échantillonage permet de résoudre des pro-
blèmes dynamiques rapidement tout en modélisant l’incertitude. Ces méthodes présentent
un fort potentiel pour la synchronisation des correspondances en temps réel. Dans cette
recherche, nous concentrons notre attention sur les algorithmes C et R, en raison de leur
capacité à intégrer l’incertitude via des scénarios multiples tout en respectant les contraintes
computationnelles du temps réel. Leur structure décisionnelle permet une sélection rapide de
tactiques sans nécessiter de réoptimisation complète de tous les scénarios à chaque événement.

2.3 Lacunes et défis

Les travaux sur la synchronisation des correspondances en temps réel se concentrent majori-
tairement sur des études de cas de petite taille, en raison des contraintes computationnelles.
Cette limitation réduit la portée pratique des résultats et limite leur applicabilité à des ré-
seaux de grande envergure. Par ailleurs, l’efficacité des stratégies de synchronisation n’a pas
été systématiquement évaluée selon les différentes typologies de réseaux de transport public.
Il devient donc nécessaire de concevoir des approches capables d’optimiser la coordination à
l’échelle de lignes complètes, voire de réseaux entiers, et de tester leur robustesse dans des
contextes variés.

De plus, les objectifs considérés dans la littérature demeurent souvent locaux, se concen-
trant principalement sur la réduction du nombre de correspondances manquées, sans prise
en compte du temps généralisé de déplacement à l’échelle du système. Une évaluation plus
globale, tenant compte de l’impact sur l’ensemble des usagers et non uniquement sur les
passagers en correspondance, apparaît essentielle pour refléter la performance réelle des stra-
tégies proposées.

Malgré l’abondance croissante de données en temps réel issues de systèmes embarqués, leur
intégration effective dans les processus décisionnels reste limitée. Peu d’approches exploitent
ces données pour anticiper l’évolution du réseau ou modéliser dynamiquement le comporte-
ment des passagers. En particulier, l’utilisation en temps réel des données issues des systèmes
de validation de cartes à puce, pourtant riches en informations sur les flux de passagers, de-
meure marginale.

Enfin, l’incertitude liée à la demande et aux temps de trajet est rarement modélisée de
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manière conjointe. Ces composantes sont souvent traitées séparément à partir de données
historiques, ce qui limite la robustesse des décisions en temps réel. Deux défis majeurs sub-
sistent : intégrer explicitement la stochasticité de l’ensemble des composantes du système de
transport public mentionnées ci-dessus, et développer des méthodes efficaces capables d’ex-
ploiter conjointement les données historiques et en temps réel pour améliorer la réactivité et
la robustesse des décisions sur les tactiques de contrôle.

Ces constats soulignent la nécessité de développer des approches stochastiques adaptées au
temps réel, capables d’intégrer la variabilité opérationnelle tout en maintenant une faible
complexité computationnelle. C’est dans cette perspective que s’inscrit la méthodologie pro-
posée dans ce travail.
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CHAPITRE 3 DONNÉES ET MÉTHODOLOGIE

Cette thèse se concentre sur la synchronisation en temps réel des correspondances dans les
réseaux de transport public. L’objectif principal est de développer des méthodes efficaces
capables de résoudre rapidement des problèmes à grande échelle tout en exploitant les données
de mobilité en temps réel et en intégrant l’incertitude inhérente aux opérations des réseaux.
Les approches proposées reposent sur des techniques identifiées dans la revue de littérature
pour produire des solutions réalistes, robustes et applicables à des instances de grande taille.
À ce jour, aucune des méthodes recensées dans le chapitre 2 ne répond de manière satisfaisante
à ces défis.

Pour répondre à ces enjeux, ce chapitre décrit les données utilisées, les outils d’intelligence
artificielle mobilisés pour accompagner certaines étapes du travail, ainsi que la méthodologie
développée.

3.1 Données

La méthodologie développée dans cette thèse s’appuie sur un ensemble de données historiques
issues du réseau de transport de la STL. Le réseau de transport public de la STL dessert
la ville de Laval, au Québec, avec une population de presque 450 000 habitants et une
superficie de 267 km2. Le réseau comporte 45 lignes d’autobus interconnectées, dont plusieurs
convergent vers des pôles d’échange multimodaux permettant les correspondances avec le
métro de Montréal et d’autres lignes de bus structurantes. Ces lignes couvrent près de 1
500 km de réseau desservant 2 779 arrêts d’autobus. Le service quotidien dure 23 heures en
semaine et en fin de semaine. Les autobus de la STL parcourent plus de 14,2 millions de
kilomètres tous les ans avec près de 550 000 heures de service annuelles.

Les données partagées par la STL, couvrant l’ensemble du mois de novembre 2019, décrivent
de manière détaillée les différentes composantes du système : les passagers, les véhicules,
les trajets, les arrêts, et les correspondances possibles. La STL dispose de données riches,
alimentées en continu, intégrant des traitements avancés tels que l’inférence automatique
des origines et destinations, l’estimation de la charge à bord, ou encore la détection des
correspondances effectives. Les données sur les passagers proviennent des systèmes de cartes
à puce et ont été enrichies à l’aide d’un algorithme d’inférence des origines et destinations
appliqué en amont, avant la transmission des données dans le cadre de cette thèse. Chaque
événement de montée ou descente est horodaté avec précision, ce qui permet de reconstituer
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les trajets individuels et d’identifier avec fiabilité les correspondances effectuées. Les données
des véhicules incluent les positions GPS haute fréquence et la charge à bord, utilisée pour
valider les inférences origine-destination. Les données de réseau suivent le format standardisé
General Transit Feed Specification (GTFS) et permettent de reconstruire les horaires planifiés,
les trajets des lignes, les arrêts desservis et les possibilités de correspondance.

L’exploitation de ces données nécessite un important travail de prétraitement, entièrement
automatisé et réutilisable pour tout réseau disposant de données GTFS et AFC. Celui-ci
inclut le nettoyage des voyages invalides (par exemple : directions mal renseignées, temps de
trajet incohérents), la correction des absences d’arrêts dans les enregistrements GPS, ainsi
que la reconstruction de trajectoires complètes lorsque certaines données sont manquantes.
Par ailleurs, les données de cartes à puce ont été croisées avec les données GTFS et GPS afin
de retracer avec précision les trajets des usagers dans le réseau. En effet, cette intégration
permet d’identifier précisément les heures d’embarquement et de débarquement des usagers
grâce aux horodatages issus des traces GPS. Cette analyse exploratoire a permis d’identifier
les hubs les plus fréquentés, les flux de passagers, les retards causés par des correspondances
manquées, ainsi que des points d’amélioration potentiels. Une attention particulière est portée
à l’identification des arrêts connectés (ensemble d’arrêts entre lesquels on peut effectuer une
correspondance) et des points névralgiques du réseau.

Enfin, les données historiques sont utilisées pour générer des scénarios représentatifs des
conditions d’opérations réelles. Le mois de données est divisé en trois ensembles : 80% pour
l’entraînement (prétraitement et clustering), 10% pour les tests de calibration (recherche
des meilleurs paramètres), et 10% pour la validation finale des algorithmes. Des méthodes
de clustering, détaillées dans le chapitre suivant, sont utilisées pour regrouper les données
historiques selon les heures de la journée afin de construire une base de cas pour la simulation
du réseau en temps réel. Lors de la simulation, les scénarios sont générés par tirage aléatoire
au sein du cluster associé à l’heure de l’événement simulé. Ces scénarios alimentent ensuite
les outils d’évaluation et les expérimentations décrits dans les chapitres suivants.

3.2 Outils d’intelligence artificielle

Dans le cadre de la rédaction de cette thèse, j’ai eu recours de manière ciblée à des outils
d’intelligence artificielle pour m’accompagner dans certaines étapes du travail. J’ai utilisé
ChatGPT pour la relecture de textes que j’avais rédigés, notamment pour la détection de
coquilles, ainsi que pour la correction grammaticale et orthographique. L’outil m’a égale-
ment aidée à reformuler certains passages afin d’en améliorer la clarté, la fluidité et le style
rédactionnel, tant en français qu’en anglais. Sur le plan technique, j’ai utilisé ChatGPT pour
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m’assister dans la compréhension de messages d’erreur, le débogage de code, l’amélioration
de fonctions en Python ainsi que dans l’utilisation de divers outils informatiques essentiels à
mon projet, notamment Slurm, GitHub, Visual Studio Code, et Latex. J’ai eu ponctuellement
recours à d’autres outils, tels que DeepL Write pour des suggestions de reformulation et An-
tidote pour la correction linguistique. L’ensemble de ces usages est demeuré complémentaire
à mon travail intellectuel, dont j’assume pleinement la responsabilité.

3.3 Méthodologie

Le chapitre 4 propose une nouvelle modélisation du problème de synchronisation des corres-
pondances en temps réel intégrant des tactiques de contrôle telles que l’attente aux arrêts,
le saut d’arrêts et la modification de vitesse. Cette approche repose sur un modèle de flot
hors ligne basé sur un graphe temporel à flots entiers, capable d’énumérer exhaustivement
l’ensemble des tactiques possibles dans un horizon donné. Le modèle applique les tactiques
de contrôle à un véhicule d’une ligne principale, tout en tenant compte de leurs effets sur
les véhicules de correspondance et les déplacements des passagers concernés. L’objectif est
de minimiser le temps total de déplacement des passagers en optimisant les correspondances,
tout en réduisant les écarts par rapport aux horaires planifiés. Pour évaluer la performance
de cette approche dans un environnement réaliste, une version dynamique du modèle est
développée et testée sous différents niveaux d’incertitude, calibrés à partir de données empi-
riques. Un scénario unique est généré à chaque réoptimisation. Un cadre de simulation basé
sur des données réelles issues des systèmes de cartes à puce et des positions GPS de la ligne
70 du réseau de la STL est mis en place pour tester ces méthodes. Les résultats confirment
l’efficacité du modèle hors ligne, qui produit des solutions optimales de haute qualité avec des
temps de calcul réduits. Le modèle dynamique améliore significativement la performance par
rapport aux opérations observées dans les données réelles, mais conserve un écart de perfor-
mance par rapport au modèle hors ligne à information parfaite. Ce travail est présenté dans
l’article intitulé Data Driven Synchronization Strategies of a Bus Line in a Transit Network,
publié dans Transportation Research Procedia.

Le chapitre 5 présente deux algorithmes d’OSEL, nommés C et R, pour résoudre le problème
de synchronisation des correspondances en temps réel. Ces algorithmes s’appuient sur le mo-
dèle de flot hors ligne développé dans le chapitre 4, amélioré afin de réduire davantage le
nombre de variables dans les graphes tout en intégrant l’ensemble des tactiques de contrôle
possibles. Ils tiennent compte de la nature stochastique des opérations de réseaux de trans-
port public en exploitant des données de mobilité, à la fois historiques et en temps réel, afin
de générer des scénarios prédictifs des conditions futures du réseau. Évalués dans un envi-
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ronnement dynamique sur 29 lignes du réseau de la STL, ces algorithmes démontrent leur
efficacité par rapport au modèle déterministe. Les résultats révèlent des améliorations signifi-
catives du taux de correspondances réussies et des temps de déplacement des passagers. Cette
étude illustre le potentiel pratique de l’OSEL pour renforcer la synchronisation des corres-
pondances en temps réel, offrant une solution robuste pour accroître la fiabilité et l’efficacité
des systèmes de transport urbain. Ces algorithmes et résultats sont présentés dans l’article
Online Stochastic Optimization for Real-Time Transfer Synchronization in Public Transpor-
tation Networks, soumis à INFORMS Journal on Computing. Il a reçu le prix du meilleur
article étudiant décerné par la Société Canadienne de Recherche Opérationnelle (SCRO) ainsi
que le prix Gilbert Laporte du meilleur article étudiant du groupe d’intérêt en transport et
logistique de la SCRO, en 2024.

Le chapitre 6 étend les méthodologies précédentes pour permettre l’application simultanée
de tactiques de contrôle à plusieurs lignes de transport interconnectées. Le modèle de flot
et les algorithmes d’OSEL développés dans les chapitres précédents sont intégrés dans un
simulateur à l’échelle du réseau de transport public de la ville de Laval. En utilisant des
données historiques des véhicules et des cartes à puce, ce simulateur reproduit les condi-
tions stochastiques en temps réel du réseau. L’approche décompose le problème en plusieurs
sous-problèmes locaux limités à un horizon spatial centré autour du véhicule réoptimisé. Ce
découpage permet de contourner les temps de calcul prohibitifs, tout en rendant possible la
synchronisation de 29 lignes du réseau de la STL, ce qui dépasse de loin les applications exis-
tantes dans la littérature. Les résultats mettent en lumière des améliorations significatives
des temps de déplacement et des correspondances des passagers, démontrant la scalabilité et
la pertinence de la synchronisation en temps réel pour les réseaux urbains multilignes. De
plus, cette méthodologie est testée sur plusieurs typologies différentes de sous-réseaux au sein
de la STL, pour établir un diagnostic de l’efficacité des méthodes proposées selon différents
contextes d’exploitation. Cet article offre ainsi des lignes directrices claires sur les conditions
d’application des stratégies de synchronisation proposées. Ces résultats sont présentés dans
l’article intitulé Network-wide transfer synchronization strategies in a public bus system with
real-time AVL and smart card data soumis à Public Transport.

L’ensemble des résultats obtenus, ainsi que leur application potentielle au niveau opération-
nel, sont discutés dans le chapitre 7, avant une conclusion générale dans le chapitre 8.
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CHAPITRE 4 ARTICLE 1 : DATA DRIVEN SYNCHRONIZATION
STRATEGIES OF A BUS LINE IN A TRANSIT NETWORK

L. Kolcheva, A. Legrain et M. Trépanier ont écrit cet article et l’ont publié le 9 janvier 2025
dans Transportation Research Procedia.

4.1 Introduction

PT networks are becoming increasingly important considering concerns about climate change.
PT companies and services develop inter-route, inter- and intra-modal transfers in order to
achieve a better connectivity of the network and more flexible route planning. An efficient
PT system can retain existing customers and attract more people to leave their cars behind
and opt for public transportation.

Research shows that users are reluctant to engage in multi-segment trips if transfer times
are uncertain [57]. The level of satisfaction of users is highly dependent on waiting times,
since their personal evaluation of waiting time is higher compared to other parts of a trip
(e.g. : access time, in-vehicle time [58]). It is therefore increasingly important to synchronize
transfers. There are multiple stages of planning and operating a PT network (e.g. : network
design, timetabling, vehicle scheduling, operation, etc.) as defined in [59]. This research will
concentrate on the control stage of operating a PT network. The context in which a planned
and synchronized bus schedule takes place is stochastic and dynamic. Even an optimal ti-
metable can be subject to unpredictable congestion or route incidents. This is why real-time
control strategies are needed to mitigate the undesirable effects of uncertain events.

This research is based on one month of real passenger- and bus-related data provided by the
STL. It uses data from AVL, APC and AFC and integrate it in real-time control tactics. Using
this historical data, relevant time-dependent travel times, passenger demand and transfer
demand are generated to input into a real-time control arc-flow model. First, the model is
tested with existing non-stochastic data. Then different levels of uncertainty are introduced
in a simulation framework to test the reliability of the model and to examine the relative
value of the available data.

4.1.1 Contributions

To the author’s knowledge, no research on real-time control strategies has been implemented
using an arc-flow model. In our model, a node represents a bus arrival or a passenger arrival
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at a stop and at a certain time. All tactics are dependent on discrete events such as passenger
arrivals, bus arrivals and transfer arrivals. A tactic cannot be implemented if no such event
occurs. This limits the number of executable tactics at each stop to only a few possibilities,
as opposed to tactics represented by integer variables in the literature, or rule-based models.
This allows for timely resolution and thus a possible execution of proposed tactics in real-
time. Moreover, different combinations of control tactics are tested with different levels of
uncertainty in a rolling-horizon simulation framework. Finally, we test our methodology on
a large real data set from a dense urban transit network.

4.2 Literature Review

Control strategies can be divided into three categories : stop control, inter-stop control, and
others [60]. Stop control strategies include tactics implemented at stops, for example holding
for a certain amount of time at a stop or skipping stops. Inter-stop strategies include speed
changes or traffic lights control. The last category includes tactics such as adding or removing
vehicles.

4.2.1 The holding problem

The holding tactic is the easiest to implement and the literature review shows that holding,
by itself, is the most effective tactic to save time [14]. Holding can be used to either maintain
a certain headway between buses [22,23,61,62], or to minimize waiting times [18,63,64].

[18] define the holding problem as a deterministic quadratic problem and proposes an algo-
rithm to solve it. The research proposes a rolling horizon for the holding problem. [26] formu-
lates the holding problem as a convex quadratic program at a number of control points. [63]
define a control model based on a compromise between passengers on board and passen-
gers further along the line, using stochastic arrivals at stops. The holding problem is also
considered with bus capacity constraints using real-time bus locations in a heuristic algo-
rithm [65]. [66] implement two strategies (holding and limiting the number of passengers to
be able to get on a bus at certain stops) in a deterministic optimization model considering
all waiting times of passengers.

4.2.2 Real-time control

[17] present an extensive literature review of public transport transfer synchronisation at
the real-time control phase. [42] prove the impact of real-time control in intelligent systems.
In fact, having real-time information on bus locations, passenger demands, arrival times



23

and passenger origin/destination pairs allows for timed transfers. Later, [32] show that this
information was especially useful in networks with many connecting buses.

[67] propose a non-linear integer programming problem using two different stop-skipping
tactics for real-time control and test each one’s performance with different route scena-
rios. Real-time information on bus locations is used to predict next-stop departure times
in [68], with a genetic algorithm to optimize holding times. Many studies concentrate on
synchronizing transfers using real-time control. [36] develop a new definition of synchronized
transfers and apply it to multiple consecutive transfers stops (transfer segments) rather than
to single transfer points. This approach was improved in later articles using dynamic pro-
gramming [38]. [69] introduce a dynamic transit-simulation model using real-time data on
congestion, passenger demand and bus activity. The article uses the mean headway from the
preceding and succeeding buses as a basis for holding tactics. In recent years, the combination
of different real-time control strategies has been studied. [57] and [20] propose a combination
of holding and skip-stop/skip-segment in order to minimize total passenger travel time by
increasing the number of direct transfers. Travel times, passenger demand and transfers are
assumed to be known and are deterministic. Moreover, passenger arrivals are independent of
bus arrivals. The work is continued in [21] where short turning is implemented as a real-time
control action. Travel times are fixed, as well as passenger arrival rates and transfers. [70]
use a tactic-based predictive control approach under dynamic and stochastic traffic environ-
ment. Finally, [33] proposes two different transfer synchronization controllers using different
real-time passenger data to show the importance of passenger data on the performance on
transfer control.

4.2.3 Headway control

The literature also addresses the regulation of bus headways using holding and other real-
time control tactics. [61] minimize headway variation by minimizing the average waiting time
at stops, not considering in-bus delays. [34] implement an optimization model with holding
and speed change tactics. Two objective functions are tested (minimizing headway gap or
total passenger travel time) using transfers at single points or along shared corridors. [23]
studies high frequency bus routes, shows that control is necessary to avoid bus bunching
and proposes a real-time holding strategy at pre-defined control points. [62] present a novel
approach by defining headways according to system states and behaviour, instead of using
static headways. Holding times are calculated using the headway from previous bus. [71]
propose a dynamic model to regulate headways and avoid bus bunching.
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4.2.4 Dynamic models

More recently, the literature focuses on the dynamical use of real-time data. [43] compare
and evaluate different holding methods used in real life and proposed in the literature. The
research shows that prediction-based methods achieve the best results when considering both
holding time and headway regularity. The drawback of prediction-based methods is their
sensitivity to prediction accuracy. [72] propose a model that considers the dynamic nature
of travel times and demand and show the importance of accurate estimations of the current
state of the PT network. [40] present a simulation framework that considers multiple and
entire bus lines (as opposed to single transfer stops in the previous literature) and takes into
account all stages of passenger trips (in-bus time, dwell time, transfer time and extra time
if a passenger is unable to board a bus) with a capacity constraint. The model defines an
optimization horizon at each step considering the actual state of the PT network.

The rest of the article is organized as follows. Section 4.3, describes the case study and
the underlying problem. Section 4.4 describes the mathematical formulation of the problem.
Section 4.5 presents our optimization model and simulation framework, as well as our tests
and results. Finally, section 4.6 presents our conclusion and possible further work.

4.3 Problem description

4.3.1 Data presentation and pre-processing

This work is based on a full month of anonymous data on the whole network of the STL
(routes, buses, passengers, transport tickets, etc.). GTFS 1 files are generated for each day of
the month and are then used as inputs to our model. The data is organized as follows.

— Stops, routes and trips : The data contains route and schedule information on all
stops and routes in the STL network. A route is a PT service associated to a bus line
that follows a sequence of stops. There can be multiple daily trips along the same
route.

— Dwell times and travel times : The case study has information on dwell times as
well as planned and real travel-times across the PT network. When the real dwell time
at a stop is null, the stop is skipped.

— Passenger demand : This research uses passenger flow information coming from
AFC systems on buses and in metro stations. The STL also estimates individual trip
destinations using AFC data, as defined in [30]. All origin-destination (OD) pairs
are generated using this data and buses are “filled” accordingly. On the other hand,

1. More information on the GTFS format here : https ://gtfs.org/
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passenger information from APC systems was not used as it was not reliable.
— Transfer demand : Data generated by the AFC systems, allowed the reconstruc-

tion of multi-segment passenger trips. Using the information on transfer demand, this
research determines synchronized transfers between buses. A synchronized transfer is
when two or more buses arrive at a transfer point at the same time and allow passen-
gers to transfer instantly. If a transfer isn’t synchronized, passengers have to wait for
their connecting buses. Not all transfers are synchronized.

The GTFS files described above as well as data from the GPS systems in the PT network
are used as inputs for the model. The data was pre-processed to create classes of data for
the modeling. These instances are used to generate graphs for the multi-commodity arc-flow
model. Figure 4.1 illustrates how this data is used to generate instances for our model.

Figure 4.1 Data processing and generation.

4.3.2 Initial data analysis

After pre-processing the data, an initial analysis was conducted to determine where the PT
network operation could be improved. Passenger flows on all bus lines and along all route
segments were analyzed. We then identified corridors with the most passengers and bus
stations with the biggest passenger flows. Lines, segments and hubs with the most transfers
were identified and used in this research. Finally, the differences between planned and actual
travel and transfer times for all passengers were analyzed. The biggest source of delay in
passenger travel times was missed or late transfers.

4.3.3 Description of control tactics

Real-time control tactics can help synchronize transfers and ensure planned transfers take
place. The following real-time control tactics are implemented in order to improve travel
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times and transfer times.

Holding : Holding makes a bus wait for a predetermined amount of time at a certain
stop. Holding is used in order to reduce bus-bunching, schedule deviation and to synchronize
transfers before or at transfer points. The holding tactic can therefore impact the travel time
of three groups of passengers. Firstly, holding affects passengers on board the bus who add
the holding time to their travel time. Secondly, passengers on board who want to transfer will
spend more time in the bus, but their transfer time decreases. Finally, passengers waiting at
further stops along the route add the holding time to their waiting times for the bus.

Skip-stop/Skip-segment : Skip-stop is a tactic consisting of skipping a stop along a bus
route to avoid dwell times at the stop and deceleration/acceleration time before and after
the stop. The skipping of multiple consecutive stops is introduced as the skip-segment tactic
in [20]. Skip-stop/skip-segment is a tactic devised to gain time, but it impacts passengers
differently. Passengers on board that do not wish to alight on any of the skipped stops have
a shorter travel time. Passengers wishing to alight at a skipped-stop, get off at the nearest
stop and walk to their destination. Passengers waiting to board the bus at a skipped-stop
wait for the next bus and their waiting time increases. Passengers waiting further along the
line have shorter waiting times. Finally, passengers on board wishing to transfer arrive at
their transfer stops faster but have longer waiting transfer times out of the bus.

Speed control : The speed control tactic consists of making a bus drive faster or slower.
In this research, only the effects of speeding up are evaluated. After discussion with the PT
operator, a speedup factor of 0.8 was chosen. The speed control tactic affects both passengers
on the bus and out of the bus. Passengers on board have a shorter travel time. Those wishing
to transfer arrive at their transfer stops faster but have longer waiting transfer times out of
the bus. Passengers waiting further along the line wait less for the bus to arrive. Transferring
passengers from other lines decrease their transfer time. If the bus arrives at a stop too early
before its planned arrival time, passengers arriving on time miss the bus and must wait for
the next one.

All control tactics can be implemented individually or at the same time. Unlike in most
previous studies where tactics were applied at a few predetermined stops, here all stops are
control stops. All impacts of each tactic on passenger transit times are taken into account in
our model.
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4.4 Problem formulation

This research formulates an arc-flow model to represent the bus network and evaluate the
impact of real-time control tactics. The formulation contains all the implemented tactics. The
model seeks to minimize total passenger travel times by improving, among others, transfer
times and reducing deviations from the bus schedule. The impact of the implemented tactics
is evaluated using total passenger travel time, the number of successful transfers, individual
passenger travel times and passenger waiting times (in and out of the bus). This research
uses a single low frequency line with many feeder lines and transfer points. Tactics can only
be applied to the buses of the main line. The model calculates optimal control tactics for all
stops and buses in a predefined optimization horizon. The arrival times of feeder lines are
not influenced by control tactics.

4.4.1 Methodology

This section describes how the graphs for the arc-flow model are built and how the proposed
control tactics are incorporated into the graphs. Figure 4.2 illustrates a simple example of
a graph. This example does not contain real data for confidentiality reasons. Figure 4.2a)
shows a graph without any control tactics. Figure 4.2b) shows the same case graph with the
holding tactic after optimization. The number of passengers along an edge is displayed on
it. The time of each node is written on top of it. The exogenous flow of a node, if non-zero,
is displayed above it. The horizontal distance between nodes is proportional to the time
between two nodes. The vertical distance between nodes represents the distance traveled by
the bus. Arrival and departure nodes of the same stop are not aligned in the figures for the
sake of clarity. This mock example contains two buses, one departing a time equal to 100
and the next departing at time 300. In the no tactics case, four passengers wish to board the
first bus at stop number one but arrive at the stop after the bus has departed. Moreover,
two passengers coming from a feeder line wish to transfer at stop number two and board
the second bus in the horizon. They arrive too late at stop number two to be able to board
the second bus. In the case including the holding tactic, we can see that new possible paths
for the buses were added in the graph. The optimization model then makes decisions on the
paths for each bus by minimizing the total passenger travel time.

The model uses space-time dependent networks built as follows.

Nodes : A node represents a passenger arrival at a bus stop or a time for a bus to arrive
at/depart from a stop. There are arrival nodes and departure nodes to distinguish when buses
arrive at and leave stops. Passenger flows are represented by exogenous flows at each node.
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Figure 4.2 Example of a graph construction. a) No tactics. b) Hold tactic.

Edges : The weight of an edge represents the time difference between the origin and destina-
tion nodes of the edge (the destination node must occur after the origin node). Dwell-times
are represented by edges between arrival and departure nodes of the same stop. Travel-times
are represented by edges between the departure node of one stop and an arrival node of the
next stop (see indications on figure 4.2). It is possible for an edge to link two nodes from
different buses (e.g. : a passenger misses their bus and has to wait for the next bus). All edges
are directed and have a capacity constraint related to the capacity of the vehicles.

Graphs : A graph has source and sink nodes. The source node has an exogenous bus flow
equal to the number of trips. The sink node has an exogenous bus flow opposite to the number
of trips. The source node can be seen as a bus depot from which all trips depart. Graphs are
built in consecutive steps for each bus trip. For each stop, the travel time, the arrival time,
the dwell time and the departure time are represented in the graphs. To begin, an arrival
node is created at the time of arrival of the bus at the first stop. The source node and the first
stop are linked with an edge of weight equal to the travel time to this stop. The departure of
the bus from the stop is represented by a departure node. The arrival and departure nodes
are linked with an edge with weight equal to the dwell time at the stop. For the speed control
tactic, the travel time to the stop is smaller and so the bus arrives earlier at the stop. The
corresponding arrival and departure nodes are added to create an additional possible path
for the bus from the source. Any passenger arriving before the departure of a bus from a stop
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can board the bus. Nodes with positive exogenous flows representing boarding passengers
are linked to the bus paths. If any transfer passengers from other lines want to board at this
stop, transfer nodes with the corresponding positive exogenous flows are created at the time
of arrival of the feeder lines. On the other hand, some passengers will want to alight the bus.
This is represented by a negative exogenous flow. If passengers want to transfer to another
line at this stop, a transfer node with negative exogenous flow is created at the time of the
departure of the feeder line from this stop. If a skip-stop/skip-segment tactic is applied, no
passengers can board or alight at this stop. Passengers will then have to walk to the nearest
non-skipped stop. Finally, the holding tactic is represented by the time between possible
departures. Edges are added between consecutive possible departure nodes. A holding tactic
can be implemented only as a waiting time between two existing nodes, e.g., a bus can wait
for a transfer passenger coming to the same stop. The last node for the stop is linked to the
next bus to allow passengers that missed the current bus to board the next one.

The rest of the graph is constructed by iterating these steps over the remaining stops. Starting
from the first stop, all possible paths to the second stop are created and so on. The graphs
built in this manner incorporate all possible tactics. The model uses these graphs as inputs
to determine optimal bus paths and tactics.

4.4.2 Mathematical formulation

The following assumptions are made for the offline model. We have knowledge on route
information, real and planned travel times, real and planned dwell times, passenger demand,
transfer demand, transfer stops, bus schedules and delays. In the online application of the
model, real information is not available for all stops. The missing information is generated
based on historical data and available real-time data as described in section 4.5.3. Road
congestion conditions allow the implementation of the speed control tactic. Passengers are
informed of the skip-stop/skip-segment tactic before the first skipped stop. Passengers waiting
to board at a skipped stop wait for the next bus. Transfer passengers that miss their transfer
will wait for the next possible transfer. Passengers always choose the fastest option available
to them. Passenger demand does not change because of a bus delay. Finally, passengers arrive
at a stop shortly before the scheduled time of arrival of the bus, since the case study is based
on a low frequency line.

We use the following notations to describe the model parameters and variables.
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Sets
N b ∈ B, v ∈

Nsink

set of nodes with s the source node and t the sink node.

N - set of normal and transfer nodes with negative exogenous flows, not
including t

A set of arcs (u,v)
B set of buses
S set of stops
As

b b ∈ B, s ∈
S

set of arcs for the bus b between stops s and s + 1

AN v
b b ∈ B, v ∈

N -
for node u and for the bus b, ANu

b is the set of arcs passengers alighting
at node u take to board the bus b. There is
one arc per passenger.

AM v
b b ∈ B, v ∈

N -
for node u and for the bus b, AMu

b is the set of arcs taken by passengers
from the previous bus if they miss their bus
and have to alight at node u. There is one arc per passenger.

Parameters
cuv (u, v) ∈ A passenger flow capacity on arc (u, v)
wuv (u, v) ∈ A travel time between nodes u and v.
fv k ∈ K, v ∈

N
exogenous passenger flow at node v

gv k ∈ K, v ∈
N

bus departures or bus arrivals at node v

M bus capacity
p 1 ≤ p out of bus waiting times as perceived by passengers
Variables
xuv (u, v) ∈ A xuv ∈ N, passenger flow on arc (u, v)
yuv (u, v) ∈ A binary variable for the bus flow on arc (u, v)
zuv (u, v) ∈ A zuv ∈ N, indicator variable equal to xuv if yuv=0, and 0 otherwise
x+

uv (u, v) ∈ A binary variable. x+
uv = 1 if passenger flow on arc (u, v) is positive, and

0 otherwise.

Objective

min
∑

(u,v)∈A

wuvxu,v +
∑

(u,v)∈A

wuv(p− 1)zu,v (4.1)

Constraints

∑
(v,w)∈A

xvw −
∑

(u,v)∈A

xuv = fv,∀v ∈ N \N -, v ̸= t (4.2)
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∑
(v,w)∈A

xvw −
∑

(u,v)∈A

xuv = fv +
∑

(u,w)∈ANv
b

(1− x+
uw)−

∑
(u,w)∈AMv

b

(1− x+
uw),

∀b ∈ B, v ∈ N− (4.3)

∑
(v,w)∈A

yvw −
∑

(u,v)∈A

yuv = gv,∀v ∈ N (4.4)

xuv ≤ cuvyuv,∀b ∈ B, s ∈ S, (u, v) ∈ As
b (4.5)

xuv − cuvyuv ≤ zuv, ∀(u, v) ∈ A (4.6)

zuv ≤ xuv,∀(u, v) ∈ A (4.7)

xuv − x+
uvM ≤ 0, ∀(u, v) ∈ A (4.8)

0 ≤ xuv − x+
uv,∀(u, v) ∈ A (4.9)

yuv, x+
uv ∈ {0, 1},∀(u, v) ∈ A (4.10)

0 ≤ xuv, zuv,∀(u, v) ∈ A (4.11)

Eq. 4.1 describes the objective function of the model, minimizing total passenger travel
times as perceived by passengers. This includes in-bus and out-bus travel times. The first
sum in the objective function represents total passenger travel time. The second sum in the
objective function represents the additional cost perceived by passengers of waiting out of bus.
Constraints 4.2 ensure flow conservation for passenger flows. The incoming flow of a node,
added to the number of passengers wishing to board/alight at a node must be equal to the
number of passengers leaving a node. Constraints 4.3 update flows for alighting passengers.
If a passenger didn’t board the current bus, then they cannot alight from the current bus.
Passengers that missed their bus will board and alight from the next possible bus and are
added to the alighting flows for the next bus. Constraints 4.4 ensure that each bus takes a
single path. The source node has a positive exogenous bus flow equal to the number of buses
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departing from the origin of the bus line. The sink node has a negative bus flow equal to the
opposite of the source node. Constraints 4.5 ensure that passengers cannot travel between
stops without being on a bus. A bus can travel empty. Constraints 4.6 and 4.7 ensure the
relationship between variables x, y and z. If yuv = 1 then zuv = 0 and if yuv = 0 then
zuv = xuv. The variable z is used to linearize the product between the variables x and y. In
reality, zuv = xuv(1 − yuv). Constraints 4.8 and 4.9 ensure that if xuv > 0 then x+

uv = 1 and
if xuv = 0 then x+

uv = 0. Constraints 4.10 describe that a bus can either travel on an edge or
take another edge. Two buses cannot take the same path at once. Finally, constraints 4.11
indicate that passenger flows must always be non-negative.

4.5 Experiments

This section describes all the experiments made in this research and presents our results.
Firstly, we describe the simulation framework and discuss the data generation for the ins-
tances used in the simulations. All possible combinations of parameters for the simulation
framework are tested and the performances of the model are compared for each case. Five
scenarios are used for the simulated network. The first case is the case without optimization.
In the second scenario only the holding tactic is applied. The third scenario combines the
holding and skip-stop/skip-segment tactics. The fourth scenario combines the holding and
speed control tactics. The last scenario combines all three tactics.

All coding is in Python and the Python MIP 2 package is used to solve all instances of the
optimization problem. The results presented in this research are based on the data of line 70
of the STL network, but the code works for any other line of the PT network. Line 70 is a
line with 91 stops and 30 different feeder lines. Transfers occur at many different stops along
line 70, but most feeder lines transfer in 5 major transfer stops along the line.

4.5.1 Simulation Framework

In this research a simulation framework is designed to test and validate the results from
the deterministic optimization model. Figure 4.3 illustrates the simulation framework. The
simulation evaluates a dynamic optimization algorithm. The discrete-event simulation runs
a re-optimization every time a bus reaches a stop within the current optimization horizon.
First, the optimization horizon is redefined. The optimization horizon consists of all the buses
and stops that will be included in the current step of the simulation. It contains the next few
stops on the main line of the bus trip currently being optimized. The optimization horizon

2. Package available here : https ://www.python-mip.com/
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Figure 4.3 Simulation framework for the optimization model testing and validation

also includes the previous and next buses on the main line. Finally, the optimization horizon
includes buses on feeder lines potentially transferring at the next few stops of the main line.
Then data for the re-optimization is collected and generated as described in section 4.5.3.
The data generation is based on historic data as well as available real-time data. We use real
data for all stops that have already been visited. Passengers that missed their bus or transfer
are also taken into consideration. The generation type for the data can be changed between
steps of the simulation. Then a graph corresponding to the generated information is built and
the associated optimization problem is solved. The solution describes control tactics for all
stops in the optimization horizon. We apply the inter-stop speed control tactics for the next
stop of each bus. Finally, the stop control tactics are applied to the first stop that is reached
in the current optimization horizon. As soon as a bus reaches a stop in the optimization
horizon, a new step is started in the simulation. All other control actions are re-evaluated in
the next iteration of the simulation.

[40] apply holding and speed control to a stop that has just been reached. This method
does not allow for sufficient time to inform the bus drivers of the tactics to be implemented.
For this to be possible, the calculations need to be made between stops. If the calculations
are made once a stop is reached, they must be intended for tactics starting from the next
stop. In this research, there are on average 150 nodes and 200 arcs in the optimization in
each step. The mean computation time per step of the simulation is 0.3 seconds. This short
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computation time allows for a timely implementation in real-time.

4.5.2 Data sources

The data used in the case study of this research originates from the bus network of the STL,
Canada, a city of 436,000 inhabitants. The network has 46 bus lines and about 1,000 stops.
Data comes from the AVL systems, the APC systems and the AFC systems. The case study in
our research differs from most experiments in the literature for the following reasons. Firstly,
the STL has a team of data scientists working on improving the level of service and daily
operations. The STL already implements different tactics and communicates with bus drivers
when they are behind schedule or when they are running early. From its AVL systems, the
STL also has real-time information on bus bunching and can give instructions to drivers on
how to mitigate the effects of such delays on passengers. This means that the ’no optimization’
scenario in our case study presents a well monitored and dynamically controlled bus network.
Secondly, by using the STL smartphone application, passengers have access to real-time data
about the positions and time of arrival of buses. In this network, and particularly for the case
of the low frequency line 70, passengers can plan their trips before leaving using the most
up-to-date information about the state of the bus network. Only trips that are likely to be
successful will be offered to passengers planning multi-legged trips. Transfers that are too
short and risky (less than a few minutes transfer time between buses) will not be included
in the options available to users on the application. Finally, the information on passenger
arrivals and transfers is exact and comes from smart card data (AFC). Hence, we do not
model passenger arrivals. All stages of each passenger’s trip are taken into account : waiting
at stops, in bus travel time, in bus waiting time, waiting for transfers, walking time if skipped
stops. Any improvements made in the model and simulations are calculated precisely for each
passenger in the system (with or without transfers).

4.5.3 Data generation

The real data provided by the STL is used as a basis for the instances generated in the
simulations. The month of data is divided into three working sets. The training set consists
of the first twenty-four days of the month (or eighty percent of the data set). The testing set
contains three weekdays of the remaining week (or ten percent of the data set) and is used
to find the best parameters for the simulations. Finally, the remaining three weekdays of the
data set are used for the validation set (ten percent of the data set). A second validation
set is used consisting of three days of data on line number 42, a busier line of the STL bus
network.
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Before the simulations, the data of the training set was clustered for dwell times at each stop,
travel times between each pair of consecutive stops, number of boarding/alighting passengers
at each stop, number of boarding/alighting transfer passengers at each stop and finally,
headways between buses. The data is clustered using K-means algorithm. The clusters are
based on the time of occurrence. For example, dwell times happening around the same time
of the day are in the same group. Extreme data points were removed from all clusters (e.g.,
dwell times significantly higher than all other dwell times in the same cluster). An example
of clustering for the number of passengers boarding at a stop of line 70 is shown in figure 4.4.
There are 3 clusters, depending on the time of day. The time stops at 25 hours because the
service ends after midnight.

Figure 4.4 Clustering of the number of passengers boarding at a specific stop.

Bus trips are then generated using these clusters. First a set of consecutive bus trips is
chosen from the testing or validation set and a planning horizon is defined. Then the same
number of trips covering the same planning horizon will be generated iteratively to be used
in the simulation. When generating bus trips, there are multiple types of data generation
for each component of the trip. Type "real" returns the real data from the bus trips in the
testing set. If all the components of the trip are generated using real data, the simulation
gives the same results as the deterministic model (perfect information scenario). Type "mean"
generates the mean of the data points of the cluster corresponding to the time of the day of
the generated event. Type "sample" draws randomly from the cluster corresponding to the
time of the day of the generated event. Finally, type "planned" returns the planned value
of the corresponding event. Boarding and alighting passengers are generated separately and
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not as origin/destination pairs. Feeder line arrival times can also be generated using the
current delay at the time of the simulation, the expected delay calculated at the time of the
simulation, the planned arrival time or the real arrival time. Table 4.1 shows what type of
data generation is possible for each of the components of the generated instances.

Table 4.1 Types of data generation for each component of the trip

Generated Data Real Mean Sample Planned
Dwell times X X X
Travel times X X X X
Headway times X X X X
Boarding/alighting passengers X X X
Boarding/alighting transfer passengers X X X

First, the optimal simulation parameters were determined by testing all parameters on buses
of the testing set. The optimal parameters for our simulation framework are presented in Table
4.2. The best results were obtained using the real values for all data types (corresponding to
the perfect information scenario). Nevertheless, the second-best parameter was chosen for the
data types for which real information is not available in real-time (e.g., boarding/alighting
(transfer) passengers, dwell times, travel times, arrival times of feeder lines). The generation
of dwell times had little impact on the performance of the optimization model. The travel
times between pairs of stops had little variation for instances in the same cluster. Planned
headway times were well respected by the PT operator and were in most cases equal to the real
headways. The number of alighting/boarding (transfer) passengers had the biggest impact
on the decisions made in the simulations. The integer mean of the number of passengers
boarding/alighting at each stop proved to give the best results. Finally, the predictions of
arrival times of feeder lines using available real-time data gave results close to tests with the
real values of the data. After the optimal parameters were determined, we tested all instances
of the validation set with the optimal simulation parameters. Finally, the optimal parameters
and the simulation were tested on another line altogether.

4.5.4 Results

Figure 4.5 shows the distributions of passenger travel times in the experiments. Buses were
clustered in five groups depending on the time of day (early morning (before 7AM), morning
rush hour (7AM to 10AM), midday (10AM-4PM), evening rush hour (4PM to 8PM) and
end-of-service (after 8PM)). For all buses, passenger travel times are divided into waiting
for the bus to arrive (with or without transfer), travelling in bus, waiting in bus due to
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Table 4.2 Optimal types of data generation for each component of the trip

Generated Data Optimal Generation Type
Dwell times Mean
Travel times Mean
Headway times Planned
Boarding/alighting passengers Mean
Boarding/alighting transfer passengers Mean
Arrival time of feeder lines Current Delay

Figure 4.5 Passenger travel time distributions for all buses. Holding only.

holding tactics, waiting for a connecting bus of a feeder line (if there is one) and walking (in
cases of skipped-stops). Figure 4.5 presents the distribution of passenger travel times when
only the holding tactic is allowed. We compare passenger travel times for the no tactics case
with the online simulation holding case and the perfect information, offline holding case.
Both the simulation and perfect information cases of the model perform better than the no
optimization case when there are some missed transfers to improve. Nevertheless, we can see
that the simulations perform worse in cases where there were no missed transfers. When the
model has perfect information, no tactics are needed when there are no missed transfers.
In the simulation case, some predictions about the number of transferring passengers were
inaccurate, inducing needless holding time. In general, the simulations activate more holding
time than the perfect information offline optimal case. This is due to some inaccuracies
related to the data generation in the simulation framework. Figure 4.6 presents the difference
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in individual travel times between the simulation case and the optimal case of the holding
only scenario. We compare individual travel times using boxplots. We can see that most
individuals have a very small variation in travel times, and that the time gains are made
for the few individuals that managed to get their transfer after applying tactics. Figure
4.6 also presents the percentage of passengers with successful or missed transfers and the
percentage of passengers that missed their bus (not counting missed transfers). Finally, table
A.1 summarizes this information.

Figure 4.6 Passenger travel time variations for all buses and percentage of passenger trans-
fers. Holding only.

Table A.3 summarizes passenger travel times for the case with holding and skip-stop tactics.
We can note that the additional walking time due to skip-stop tactics is minimal. When
looking at individual passenger travel time variations for the case with holding and skip-stop
tactics, we can note that the boxplots remain compact. This indicates that time gains are
again mainly explained by turning missed transfers into successful transfers. Passenger travel
time gains because of skipped stops are minimal. Table A.4 presents the passenger travel
times for the holding with speed control tactic case. We note that the speed control tactic
case has overall passenger travel times smaller than the skip-stop tactic case. We note that
the speed control tactic was less effective than the skip-stop tactic in increasing the number
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of successful transfers. Moreover, there was a bigger variation in individual passenger travel
times due to the decrease in in-bus travel time. Finally, table A.5 presents the passenger
travel times for the holding with skip-stop and speed control tactics case.

Figure 4.7 presents the bus travel times for holding tactic only, comparing the no tactics case,
the online simulation framework case and the offline perfect information case. Figure 4.7 also
presents the percentage of stops at which tactics are applied for each cluster. We note that the
differences in mean bus travel times are minimal between the three cases. Moreover, holding
tactics are applied to a very limited number of stops. Table A.2 further summarizes these
results. Table A.6 summarizes bus travel times for the case with holding and skip-stop tactics,
and shows the percentage of stops with different tactics. In this case, the skip-stop tactics
compensate for any additional time added by the holding tactic. The skip-stop tactic is used
more often than the holding tactic. Table A.7 presents the bus travel times the holding with
speed control tactics case. It also shows the percentage of stops where tactics were applied.
The speed control tactic was applied to a large proportion of stops (more than 30%). This
was compensated by more holding time when the bus had to wait for transfer passengers, or
in order not to be too early compared to the schedule. Finally, table A.8 presents the bus
travel times for the holding with skip-stop and speed control tactics case. It also shows the
percentage of stops where tactics were applied.

4.6 Conclusion

Real-time control is a crucial part of planning for PT operators. The waiting times of pas-
sengers and the reliability of transfers significantly influence the service quality of PT. This
research concentrates on improving transfers times and reducing travel times by using real-
time control tactics. The methodology is based on a case study of the city of Laval, Canada
with a month of data from their PT network data. A deterministic arc-flow model is deve-
loped to integrate three different real-time control tactics : holding, skipping stops/skipping
segments and speeding up. Firstly, the model is tested using real data from the case study.
Then, to simulate real-time operations, a stochastic simulation framework generating data
with different levels of uncertainty is created. This research evaluates five cases in the simula-
tion framework : no tactics, holding only, holding with skip-stop/skip-segment, holding with
speed control and finally holding combined with both speed control and skipping stops. For
each run of the simulation, the results of the simulation are compared to the results of the
perfect information, deterministic case. The model is tested on a large number of instances
to determine optimal data generation parameters in the simulation framework. Finally, more
simulation runs are made to validate the optimal parameters of the simulation and the results
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Figure 4.7 Bus travel time and percentage of stops with tactics. Holding only.

of the model.

The results show that an improvement in total travel times, in individual travel times and in
the number of successful transfers is made for any type of data generation compared to the no
tactics case. The best improvements occur in the cases when buses are in advance compared
to their planned schedules. In these cases, small holding times allow for great improvements
in passenger travel times.

The performance of the model is limited by the assumption that passengers do not leave the
system but wait for the next bus. In an urban environment, it is unlikely that a passenger
will always wait 20 to 30 minutes for the next bus. For future research, the performance of
the model could be improved by an in-depth analysis of travel origin/destination pairs. In
that case, boarding and alighting passengers could be generated together and not separately.
Moreover, the research on a single main line could be expanded to multiple lines in the bus
network.
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CHAPITRE 5 ARTICLE 2 : ONLINE STOCHASTIC OPTIMIZATION
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TRANSIT NETWORKS
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dans INFORMS Journal on Computing.

5.1 Introduction

Public transit (PT) systems play an increasingly vital role in addressing urban growth, traffic
congestion, and sustainable development. PT networks are developed through several phases,
including planning, operation, and control, with network redesigns and operational adjust-
ments often being costly and challenging. However, innovative control strategies offer a more
cost-effective means of enhancing PT network performance.

Research shows that transfer speed and reliability are critical factors influencing passengers’
willingness to use public transit [19]. While transfers are typically synchronized during the
planning phase, buses operate in a stochastic environment that often leads to schedule de-
viations, resulting in missed transfers and reduced ridership. Consequently, real-time transfer
synchronization strategies are attracting increasing attention. This study proposes an arc-
flow formulation to address the real-time transfer synchronization problem within a dense
PT network. Three control tactics are employed, either individually or in combination, to
optimize transfers and minimize passenger travel times. These tactics are integrated into the
arc-flow formulation, where variables capture passenger flows across the network. We then
implement two online stochastic optimization (OSO) algorithms, incorporating the offline
arc-flow model in a dynamic, event-based environment with a rolling control horizon. Predic-
tions of the future state of the PT system are generated using a combination of real-time and
historical data provided by the Société de Transport de Laval (STL). The key contributions
of this study are as follows :

— Development of an arc-flow formulation that enumerates all control tactics for the
real-time PT transfer synchronization problem, designed to solve large-scale instances
with multiple feeder lines and extended planning horizons in real time.

— Introduction of two online stochastic optimization algorithms specifically tailored for
the real-time transfer synchronization problem.

— Integration of real-time data from multiple sources, including AVL systems and smart
card data, to generate relevant scenarios and address uncertainty in decision-making.
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— Performance evaluation on a large-scale real dataset with 29 lines from a mid-size PT
network.

5.2 Literature review

Transfer synchronization has been extensively studied in the PT literature [14–16]. More
recently, [17] provide a comprehensive overview of transfer synchronization strategies speci-
fically in the real-time control phase.

5.2.1 Hold tactic

The hold tactic requires a bus to wait at a designated stop for a specified period, which
can result in reduced operating speed and increased passenger travel or waiting times as a
trade-off. Despite these drawbacks, the hold tactic is widely regarded in the literature as
one of the most effective control measures [14]. Its effectiveness can be further enhanced by
using multiple control stops. [24] demonstrate that when all stops serve as control points,
disruptions are more effectively contained through distributed control across the entire line.

The hold tactic can be used to ensure successful planned transfers. For instance, [73] apply
this tactic using real-time bus location data to support transfers synchronized during the
planning phase, validating their method on an artificial network with three transfer points.
Similarly, [74] implement hold times to protect planned transfers by waiting for delayed buses,
taking into account the stochastic nature of travel times and modeling random passenger
arrivals. Their model is tested with two transfer points. Lastly, [39] propose a dynamic model
for the hold tactic to synchronize transfers within a multimodal transportation network.
They demonstrate their approach using simulations involving four bus trips and around 40
transferring passengers.

Recent studies have increasingly examined the use of real-time passenger data. In a study
by [44], real-time synchronization of transfers between a main line and a feeder line is im-
plemented at a single stop using dynamic predictions of passenger transfer demand. This
approach combines historical data on passenger origin-destination pairs with real-time infor-
mation derived from smart card usage. The study assumes that AFC data of both boarding
and alighting is available in real time. [33] evaluate holding strategies aimed at balancing
service regularity with transfer synchronization on a high-frequency bus line. Real-time pas-
senger demand is integrated into this study through bus occupancy data and smart card
validation records from the tramway network in The Hague, The Netherlands. Tests are
conducted using BusMezzo, a traffic simulation model, and encompass two lines with two
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transfer stops and a total of five control stops.

5.2.2 Skip-stop and combined tactics

While the skip-stop tactic can reduce travel times for onboard passengers, it may inconve-
nience passengers who wish to board or alight at skipped stops, especially on low-frequency
bus lines. [37] introduce the concept of transfer segments - consecutive stops where two ve-
hicles can exchange passengers. The authors present a dynamic programming model that
minimizes total passenger travel time by applying both hold and skip-stop tactics. They
test it on an artificial network with three bus lines and fourteen transfer segments. Subse-
quently, [19] develop a mixed-integer program running in exponential time using the hold and
skip-stop tactics for the transfer synchronization problem. The model is tested on a similar
artificial network with simulated demand on three bus lines with two transfer points.

In recent years, an increasing number of studies have employed simulation to address the
transfer synchronization problem. [75] combine the skip-stop and hold tactics within a rule-
based method with polynomial running time. They use microsimulation to evaluate the per-
formance of different rules for applying these tactics at a single, high-ridership transfer stop,
relying on historical data for passenger demand. Similarly, [40] develop an event-based si-
mulation using a rolling prediction horizon where each re-optimization considers a single
predicted state of the PT network and includes approximately forty variables. Their opti-
mization model minimizes total passenger travel time by combining the hold and speedup
tactics. The authors test the model on a network with three lines and three transfer stops,
achieving an average runtime of 1.25 seconds over a horizon of the same scale.

5.2.3 Online stochastic optimization algorithms

Considering uncertainty has become essential for obtaining practical and relevant results [41].
Uncertainty can be modeled by generating multiple scenarios to represent possible future
states of the system, thus providing more robust solutions. OSO algorithms based on multiple
scenarios generally comprise three main components : a sampler that generates scenarios, an
offline solver that provides a solution for each scenario, and a decision process that integrates
information from all solutions [46, 47].

The most commonly used OSO algorithms generating multiple scenarios are E [48], C and R.
These algorithms have been adapted for various applications [49], but not for the transfer syn-
chronization problem. Algorithm E, when applied to the Vehicle Routing Problem, evaluates
the cost of visiting each customer first by enforcing this decision across all scenarios, then
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performs a complete optimization for the remaining customers. While Algorithm E provides
a comprehensive evaluation, its computational intensity can make it less suitable for online
applications. Algorithm C [50,51] selects the statistically optimal decision over all scenarios.
Lastly, Algorithm R [52] approximates Algorithm E by avoiding full re-optimization of all
scenarios, selecting a decision that performs reasonably well across the scenario set. While
these algorithms may share the same sampler and offline solver, they differ in their deci-
sion processes. Other studies have enhanced computational efficiency by generating fewer,
yet more relevant, scenarios based on historical data [53–55]. Additionally, advancements in
scenario generation have been achieved through the use of machine learning techniques and
sampling from historical data [56].

5.2.4 Research gap

Existing studies on transfer synchronization primarily focus on a single stop or a limited
number of stops, constrained by high computational costs. Passenger demand is frequently
modeled using average arrival rates, rather than leveraging actual historical data. Moreo-
ver, the utilization of real-time data is generally confined to AVL and APC systems, with
other data sources being incorporated only in offline methodologies. Real-time integration of
smart card data, which provides precise passenger demand information and facilitates im-
proved demand forecasting, remains largely under explored. Lastly, while OSO algorithms
have demonstrated potential in related fields, their application in the context of transfer
synchronization has yet to be investigated.

The rest of this article is organized as follows. Section 5.3 presents the offline arc-flow for-
mulation for the transfer synchronization problem. Section 5.4 describes the implementation
of OSO algorithms based on the offline solver. Section 5.5 introduces the case study used to
test the methodology, provides a sensitivity analysis of the models, and details the results of
all experiments. Lastly, Section 5.6 offers our conclusions, including a discussion of findings
and suggestions for future research.

5.3 Offline model

We formulate an arc-flow model to tackle the offline transfer synchronization problem through
the application of control tactics, minimizing total passenger travel time by improving trans-
fer times. This model builds upon and refines the authors’ previous work [76] enhancing
both computational efficiency and variable reduction by limiting the number of paths added
through predefined rules. The arc-flow formulation uses time-expanded graphs incorporating
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control tactics. Upon launching the model, users can specify which tactics—individually or
in combination—should be considered during graph construction.

5.3.1 Arc-flow formulation

The arc-flow model optimizes transfer synchronization along a main line within a predefined
control horizon. Feeder lines, connecting to the main line at transfer stops, are treated as fixed
inputs with predetermined arrival times, unaffected by control tactics. Each main line stop
within the control horizon, up to the final transfer stop, serves as a control point enabling more
efficient control. The model accounts for all trip stages—waiting, travel, and transfers—for
both onboard passengers and those intending to board. In the arc-flow model, graph nodes
represent stops at specific times, with boarding and alighting passengers modeled as positive
and negative exogenous flows, respectively. Transfers are determined by feeder line arrival
times at transfer stops, while direct boarding passengers are assumed to arrive shortly before
the main line bus’s arrival time. Graph arcs capture travel or waiting times, weighted by
the time difference between origin and destination nodes. Passengers can wait for either a
main line or feeder line bus at their current stop, but travel between stops in the horizon is
only allowed when onboard a main line bus. To accurately represent flow dynamics, travel
arcs link consecutive main line stops, while feeder lines are modeled only by their arrival and
departure times at transfer points.

In the graph construction phase, control tactics are incorporated to achieve two objectives :
(1) enabling missed transfers and (2) maintaining adherence to planned schedules for timely
boarding of non-transfer passengers. The hold tactic is modeled by adding arcs between
existing nodes to represent waiting times at stops, simplifying the graph by avoiding the
creation of additional nodes and reducing possible hold durations. Before integrating speedup
and skip-stop tactics at a stop, the model evaluates whether the bus is behind schedule or
if applying these tactics could enable missed transfers. If neither condition applies—or if the
bus is significantly ahead of schedule—these tactics are excluded for that stop. The speedup
tactic, with a speedup factor of 0.8 (based on STL recommendations), reduces travel time
between stops by allowing the bus to reach the next stop earlier. A "faster" arc is added with
a new node representing an earlier arrival time. This tactic is applied only when inter-stop
travel times exceed 30 seconds to ensure safety and meaningful time savings. The skip-
stop tactic bypasses selected stops by adding a node and arc where boarding is prohibited.
Passengers needing to alight at skipped stops are accommodated with walking arcs reflecting
the required walking time from the closest non-skipped stop. Transfer stops, however, cannot
be skipped to maintain transfer reliability.
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Figure 5.1 Mock example of a graph construction. Left-no tactics, right-with tactics.

Figure 5.1 provides a conceptual visualization of the graph construction, illustrating how
control tactics create additional bus paths and enable more transfer opportunities. Arcs
are labeled with non-zero passenger counts for clarity, with arrival and departure nodes
slightly offset on the y-axis for better visualization. Bold black arcs indicate the optimized
path derived from the arc-flow model solution, while gray arcs represent alternative routes.
Exogenous flows are depicted on the nodes. The figure example includes two main line vehicles
and three stops within the control horizon. In the “no tactics” case (left), two passengers miss
the first bus at “stop 1” and must wait for the next one. At “stop 2,” a late-arriving transfer
bus causes two passengers to miss their intended connection to the main line, leaving them
unable to board a main line bus within the control horizon, as shown by the red dotted arrow.
In the “with tactics” case (right), additional arcs create alternative paths for both buses. In
the optimized solution, specific hold times enable passengers to make their transfers, thereby
minimizing total passenger travel time.

The time-expanded graphs, which integrate all possible tactics, serve as inputs for a minimum-
cost flow problem. The integration of tactics—and the resulting addition of new paths—is
automated and constrained by the previously mentioned conditions. This approach ensures
that only realistic alternative paths within a defined time window around the planned sche-
dule or current delay are considered. All paths incorporated into the graphs are then evaluated
in the optimization problem.
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Table 5.1 Sets, parameters and variables used in the mathematical formulation.

Sets
N Set of nodes with s as the source node and t as the sink node.
N− Set of nodes with negative exogenous flows, not including t.
A Set of arcs (u, v) in the graph.
B Set of main line buses available for routing in the graph.
S Set of main line stops within the control horizon.
As

b b ∈ B, s ∈
S

Set of arcs for the bus b between stops s and s + 1, used to define
stop-to-stop travel.

Atravel
v,b b ∈ B, v ∈

N−
Set of arcs used to board bus b by passengers alighting from bus b at
node v. There is one arc per passenger.

Amissed
v,b b ∈ B, v ∈

N−
Set of arcs used to board bus b by passengers who missed a previous
bus, and are now alighting from bus b at node v. There is one arc per
passenger.

Parameters
cuv (u,v) ∈ A Passenger flow capacity on arc (u, v), representing bus capacity.
wuv (u,v) ∈ A Travel time between nodes u and v.
fv v ∈ N Exogenous passenger flow at node v (passengers boarding or alighting

at stops).
gv v ∈ N Exogenous bus flow at node v (gs = |B|, gt = −|B|, gv = 0,∀v ̸= s, t)

for source, sink, and intermediate nodes respectively.
p p ≥ 0 Additional perceived cost for waiting outside the bus relative to in-bus

waiting.
Variables
xuv (u, v) ∈ A Passenger flow on arc (u, v), where xuv ∈ N
yuv (u, v) ∈ A Binary variable for bus flow on arc (u, v), where yuv ∈ {0, 1}. Here,

yuv = 1 if a bus is present on arc (u, v), and yuv = 0 otherwise.

zuv (u, v) ∈ A Indicator variable defined as zuv =
{

xuv, if yuv = 0
0, if yuv = 1 captures out-

of-bus waiting time for passengers when no bus is present on arc (u, v).

5.3.2 Mathematical formulation

The following assumptions are made for the offline model. When faced with multiple possible
paths in the time-expanded graphs, passengers choose the fastest route. Due to access to real-
time information, passengers arrive shortly before the bus arrival. Street conditions permit
the application of speedup tactics between stops. Passengers are informed in advance if their
intended stop will be skipped. If they cannot alight due to this tactic, they will disembark at
the closest available stop and proceed on foot to their original destination through a walking
arc with the corresponding walking time. Passengers who miss boarding due to a skipped
stop or who miss their transfer, wait at their current stop for the next available bus.
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Objective

min
∑

(u,v)∈A

wuvxu,v +
∑

(u,v)∈A

wuvpzu,v (5.1)

Constraints

∑
(v,w)∈A

xvw −
∑

(u,v)∈A

xuv = fv,∀v ∈ N \N−, v ̸= t (5.2)

∑
(v,w)∈A

xvw −
∑

(u,v)∈A

xuv = fv +
∑

(u,w)∈Atravel
v,b

(1− xuw)−
∑

(u,w)∈Amissed
v,b

(1− xuw),

∀b ∈ B, v ∈ N− (5.3)∑
(v,w)∈A

yvw −
∑

(u,v)∈A

yuv = gv,∀v ∈ N (5.4)

xuv ≤ cuvyuv,∀b ∈ B, s ∈ S, (u, v) ∈ As
b (5.5)

xuv − cuvyuv ≤ zuv,∀(u, v) ∈ A (5.6)

yuv ∈ {0, 1},∀(u, v) ∈ A (5.7)

xuv, zuv ≥ 0,∀(u, v) ∈ A (5.8)

The objective 5.1 minimizes the perceived passenger travel time, with an additional cost
associated with out-of-bus waiting time. The first term minimizes the total passenger travel
time across all arcs. The second term accounts for the additional cost of out-of-bus waiting
time, using the parameter p to weigh the discomfort of waiting outside the bus relative
to in-bus travel. Constraints 5.2 ensure the flow conservation for passenger flows at nodes
without negative exogenous flow. Constraints 5.3 ensure the flow conservation for passengers
at nodes where passengers may alight, adjusting for passengers who miss their intended bus
and rejoin the flow with the next available bus. These constraints maintain the alignment
of solution flows with historical passenger origin/destination pairs, and allow the calculation
of the number of missed transfers. Constraints 5.4 ensure the flow conservation for buses.
The source node has a positive exogenous bus flow, while the sink node has a negative
exogenous bus flow, both corresponding to the number of main line buses in the control
horizon. Constraints 5.5 ensure passengers can only travel between stops while aboard a
main line bus. If no bus is present (i.e., yuv = 0), the flow xuv is restricted to 0. Constraints
5.6 calculate out-of-bus waiting times by defining zuv to capture out-of-bus waiting periods
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on arcs where no bus is present (i.e., yuv = 0). Constraints 5.7 define the bus flow variables
and constraints 5.8 ensure that passenger flows are non-negative.

5.4 Online stochastic optimization

The offline model presented in this work assumes perfect knowledge of the system for an
unlimited control horizon, allowing control tactics for improving passenger transfers to be
predetermined. However, PT operations are dynamic and often uncertain, with stochastic
passenger demand, travel times, and bus arrival times. To address these challenges, we for-
mulate a dynamic environment that leverages real-time data. Then we implement two OSO
algorithms (C and R) based on the offline model to make real-time operational decisions
under uncertainty. To evaluate their performance, we implement two additional approaches :
a Deterministic (D) algorithm, which relies on average historical data, and a Perfect
Information (PI) solution, which assumes complete knowledge of the system state. By
contrasting these approaches, we evaluate the added value of real-time data and the use of
scenarios to model uncertainty in the real-time dynamic transfer synchronization problem.

5.4.1 Dynamic environment

To account for the gradual reveal of real-time data in PT operations, we implement a discrete-
event dynamic environment, illustrated in Figure 5.2. This environment triggers a system
re-optimization each time a main line bus departs from its current stop.

Figure 5.2 Dynamic environment for the online application of the arc-flow model.

At the start of each iteration, the system state S is updated with real-time data, including bus
positions and delays from AVL systems, occupancy levels from APC systems, and passenger
demand at previous stops from real-time smart card data, all within a defined control horizon
h. This updated state serves as input for the OSO algorithms. The first main line stop in S

is designated as s0, where an OSO algorithm selects a control tactic σs0 from tactics hold,
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speedup, a combination of both, or skip-stop for non-transfer stops. The selected tactic σs0

is applied and the system updates the positions of buses, the number of passengers onboard,
and those waiting at stops within the control horizon according to the impact of σs0 . The re-
optimization process is then complete, with s0 becoming the new current stop. This iterative
process continues until the bus reaches the end of the line.

5.4.2 Sources of uncertainty and scenario generation

While S captures the current state of the transit system, key information about future travel
and dwell times, passenger arrivals, transfer demand, and feeder line arrival times remains
unknown, introducing uncertainty into the optimization process.

To address this uncertainty, our OSO algorithms generate scenarios integrating historical
and real-time data to model possible realizations of the system state. To generate a scena-
rio, we consider the following parameters of the state S : the main line, the starting time
corresponding to the time of departure from the current stop and the control horizon of h

stops. Travel times, dwell times, and passenger demands (including transfers) for all stops in
h are independently and randomly sampled from historical data clusters categorized by time,
route, and boarding/alighting stop. Passenger and transfer demand generation takes into ac-
count current bus occupancy derived from real-time smart-card data. Real-time information
on current feeder line delays is incorporated to generate arrival times for transfer vehicles
within the horizon. This data is then used to define bus trips along the main line and allocate
passenger flows on the main and feeder lines, resulting in a scenario ω. Random sampling
from the historical data clusters allows the creation of diverse random scenarios using the
same inputs, providing the basis for robust decision-making in real time optimization. The
specific clustering of the data used in this study is detailed in section 5.5.1.

5.4.3 Online stochastic optimization algorithms : C and R

This section introduces two OSO algorithms, adapted from the literature [52], to address
the transfer synchronization problem. Algorithm 1 provides the general framework for these
algorithms within the dynamic environment.

Both C and R algorithms use the system state S from the dynamic environment as input
to generate a number N of scenarios. For each scenario ω, a graph Gω is constructed to
incorporate control tactics in T , a subset of all possible tactics. The offline model defined
in Section 5.3.2 solves the problem corresponding to graph Gω. From the solution we derive
a sequence of optimal tactics σ∗=(σ∗

si
)h−1

i=0 , which specifies the tactics applied at each stop
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Algorithm 1 Online Stochastic algorithm
1: function Online_Stochastic_Algorithm(S, T, N, Alg)
2: score(σ) ← 0, ∀σ ∈ T
3: repeat N times
4: ω ← Generate_scenario(S, Alg)
5: Gω ← Build_Graph(ω, T )
6: σ∗← Solve_offline_model(Gω)
7: score ← Update_Score(Gω, σ∗, Alg, score)
8: return arg max

σ∈T
score(σ)

9: end function

within the control horizon h. The OSO algorithms then evaluate the solution, focusing on the
first stop s0 in the control horizon, and update the scores of tactics in T . After considering
the scores for all scenarios, the algorithms choose the tactic with the highest score to be
applied at s0. Tactics for subsequent stops are re-evaluated during the next re-optimization,
ensuring adaptability to updated system states.

Algorithm C evaluates multiple scenarios and selects the tactic that is most frequently optimal
for s0 across all scenarios. For each scenario where a tactic σ∗

s0 is optimal for s0, its score is
incremented by one (i.e., the function Update_Score updates the score as score(σ∗

s0) +=
1). The final score of a tactic is determined by the number of scenarios for which it is optimal.
While Algorithm C returns the most frequently optimal tactic, it does not provide information
on tactics that perform similarly. Additionally, it does not evaluate how effectively a tactic
performs across all scenarios or recognize that a tactic might never be optimal yet still be
robust overall.

On the other hand, Algorithm R aims to select a tactic that performs consistently well across
all scenarios. Algorithm 2 outlines the process for updating the scores of all tactics after
evaluating each scenario. Adapted to the transfer synchronization problem, the R algorithm

Algorithm 2 R algorithm
1: function Update_Score(Gω, σ∗,R, score)
2: obj ←Get_Objective_Value(Gω,σ∗)
3: for σ ∈ T \ {σ∗

s0} do
4: σ′ ← (σ, σ∗

s1 , ..., σs∗
h−1

)
5: obj′ ←Get_Objective_Value(Gω,σ′)
6: score(σ)+ =(obj − obj′)
7: end for
8: return score
9: end function
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calculates the loss, or "regret", incurred by using sub-optimal tactics at the first stop in
the control horizon while retaining optimal tactics for subsequent stops. In this formula-
tion, the "regret" quantifies the additional travel and wait times passengers experience due
to deviations from the optimal tactic at the first stop. For a given scenario ω, the "regret"
of a tactic σ ̸= σ∗

s0 is defined as the increase in the objective function caused by replacing
the optimal sequence of tactics σ∗ with the sub-optimal sequence σ′=(σ, σ∗

s1 , ..., σ∗
sh−1

). This
restriction fixes all bus flow variables and limits passenger flows to a predefined path, sim-
plifying the objective function calculation to a straightforward computation of costs along
the used arcs in graph Gω. This approach avoids solving for all possible paths in Gω, signifi-
cantly reducing complexity. Additionally, the same underlying graph Gω is reused to compute
"regret" values for all tactics, enabling the evaluation of the performance of each tactic wi-
thout substantially increasing computation time. Algorithm R then selects the tactic with
the smallest "regret" across all scenarios, effectively penalizing poorly performing tactics that
accumulate large "regret" values and rendering them non-competitive. Consequently, tactics
returned by Algorithm R are robust, avoiding poor performance in any scenario. Additionally,
similar-performing tactics tend to have closely aligned "regret" values. To fit the framework
of Algorithm 1, which returns the argument of the maximum score, the algorithm uses the
negative of the "regret" values for evaluation.

The implementation of Algorithm R is more computationally demanding than Algorithm
C, as it calculates "regret" values for all possible tactics in each scenario, while Algorithm
C updates the score for only one tactic per scenario. However, this additional complexity
enables Algorithm R to provide a more comprehensive evaluation of tactic performance,
ensuring that the selected tactic is robust and effective across a wide range of conditions.

5.4.4 Perfect Information solution and Deterministic algorithm

This section presents two approaches using Algorithm 1 with a single scenario (N = 1), the
Perfect Information (PI) solution and Algorithm DETERMINISTIC (D), both implemented
to benchmark the performance of the proposed OSO algorithms. The PI solution applies the
offline model in a dynamic environment, where decisions on tactics are made based on the
real historical system state within the control horizon, without any uncertainty, and thus
setting a theoretical upper bound on Algorithms C and R’s performance. The single scenario
used corresponds to the true state of the system, and the optimal tactic σ∗

s0 for stop s0, as
determined by the offline model, is returned. When only the hold tactic is allowed, the offline
model is capable of solving large-scale instances in real time (computation times of less than 1
second), including scenarios with three consecutive buses on a main line with over 80 control
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stops and numerous transferring stops and feeder lines. However, when the speedup or skip-
stop tactics are permitted, the number of possible paths for each bus increases significantly.
In such cases, the offline model cannot handle instances involving many transfers and three
consecutive buses for horizons with more than 30 control stops (no solution after 15 minutes
of computation). As a result, the PI solution is used instead of the offline model to evaluate
the performance of the OSO algorithms in this study. Notably, when only the hold tactic
is considered, the performance of the PI solution with a limited horizon of 15 stops closely
matches that of the offline model with perfect information and an unlimited horizon.

Algorithm D does not model uncertainty either. It generates a single scenario ω using the
mean historical values for all unknown variables describing the system state S, representing
the average expected state of the system. The optimal tactic σ∗

s0 for stop s0, as computed
by the offline model, is returned. Algorithm D is based on a static view of the system and
provides a baseline to determine if the use of scenario generation to model uncertainty in
Algorithms C and R provides significant improvements over a deterministic approach. Addi-
tionally, Algorithm D is simpler to implement than Algorithms C and R, as it requires only
one scenario based on historical data. Consequently, its computation time is significantly
lower.

5.5 Experiments

This section describes the case study used for the numerical experiments, conducts a sensiti-
vity analysis of the OSO algorithms, and presents results from tests performed on 29 different
bus lines within a dense urban PT network.

5.5.1 Case study

The experiments are based on data provided by the STL, serving a Canadian city with a
population of 436,000. The STL’s PT network consists of 46 bus lines, many of which connect
to the Montreal subway system, and includes more than a thousand bus stops. The majority
of passengers rely on mobile applications for real-time schedule updates and estimated arrival
times. The dataset spans one month of operations and includes detailed information on bus
routes, schedules, ridership, and bus locations. This data is collected in real time from multiple
sources, including AFC or smart cards, AVL and APC systems installed on all vehicles. By
leveraging accurate smart card data and insights from previous research on individual trip
destinations [30], the dataset provides reconstructed passenger origin-destination pairs and
multi-segment trips. This rich dataset enables the use of real passenger demand and actual
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transfer flows in the experiments, ensuring high fidelity in the numerical analysis.

To ensure the dataset is suitable for scenario generation and testing, a preprocessing step is
conducted. Weekends and holidays are excluded from the dataset, and the remaining week-
days are divided into three working sets : training (80%), testing (10%) and validation (10%).
The training set is used to derive structured representations of key variables describing the
state of the PT system, including travel times, dwell times, passenger boarding and aligh-
ting counts from smart card data, transfer flows, and headway times for all lines. Data for
each variable is clustered based on the time of day, capturing distinct patterns for peak and
off-peak periods for each line and stop. Outliers are removed from these clusters to enhance
reliability. Instead of generating values randomly from statistical distributions, scenario ge-
neration samples data from real observations in the clusters. The testing set is then used to
evaluate the scenario generation process and conduct sensitivity analyses of the algorithms,
while the validation set supports numerical experiments.

5.5.2 Sensitivity analysis

This section examines the sensitivity of the OSO algorithms to variations in the control
horizon length, the weight assigned to out-of-bus waiting time for passengers, and the number
of scenarios considered during each re-optimization.

Figure 5.3 Computation times per re-optimization for different control horizon lengths,
algorithms and tactics.

Figure 5.3 illustrates the average computation time per re-optimization in the dynamic envi-
ronment for Algorithms C and R under varying control horizon lengths. These times include
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the entire re-optimization process, including updating the system state, scenario generation,
construction of a time-expanded graph for each scenario, solving the offline problem for each
scenario, updating tactic scores for each scenario, choosing an optimal tactic and applying the
optimal tactic in the dynamic environment. Each re-optimization considers 20 scenarios per
stop, and computation times scale linearly with the number of scenarios. Algorithm D and
the PI solution are excluded from the figure due to their significantly shorter computation
times, as they solve only one scenario per re-optimization.

As previously explained, the time-expanded graphs used as inputs for the arc-flow model
are generated by automatically incorporating paths for all allowed tactics. Consequently,
the inclusion of additional tactics and longer control horizons increases the complexity of
these graphs. When the underlying graphs include only the hold tactic or a combination of
hold and skip-stop tactics, computation time grows linearly with respect to the length of
the control horizon. In contrast, the inclusion of the speedup tactic causes an exponential
increase in computation time as the control horizon lengthens. When all tactics are permitted,
computation time becomes prohibitively large for real-time implementation in scenarios with
control horizons exceeding 12 stops. Nonetheless, the results show that all algorithms can
be executed within ten seconds for a control horizon of ten stops, which is sufficient for the
STL’s operational needs.

Figure 5.4 Total passenger travel times and percentage of passengers with missed transfers
for different lengths of the control horizon for Algorithm R.

Figure 5.4 illustrates the performance of Algorithm R for various control horizon lengths and
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different sets of allowed tactics. When only the hold tactic is permitted, extending the control
horizon reduces the number of missed transfers and improves total passenger travel time. A
similar trend is observed when the speedup and/or skip-stop tactics are included, though these
improvements plateau at a horizon of ten stops. For horizons of twelve stops, a slight increase
in passenger travel times is observed compared to a ten-stop horizon. This is attributed to
Algorithm R overusing the speedup and skip-stop tactics in an attempt to recover transfers at
much later stops in the scenarios. Such overuse can lead to buses arriving at stops earlier than
scheduled or before connecting buses, disrupting transfer synchronization. When the control
horizon exceeds ten stops, the tactics applied at early stops anticipate transfers further down
the horizon, which can lead to inefficiencies and overuse of certain tactics. Shorter control
horizons provide more accurate arrival time approximations, as these are based on the current
delay of vehicles and the generated travel times between stops, reducing the likelihood of over
correction.

Figure 5.5 Total passenger travel times and percentage of passengers with missed transfers
for different out-of-bus waiting time costs for Algorithm R.

Figure 5.5 illustrates passenger travel times and the percentage of passengers with missed
transfers for different out-of-bus waiting time costs using Algorithm R. The tests are conduc-
ted with a control horizon of ten stops. An improvement in both travel times and successful
transfers is observed when increasing the out-of-bus waiting time cost from one to two. In
this range, the model effectively prioritizes minimizing out-of-bus waiting times (associated
with transfer delays) over in-bus travel times, leading to better transfer synchronization and
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fewer missed transfers. However, for costs greater than two, Algorithm R begins to excessively
prioritize minimizing out-of-bus waiting times in scenarios with a high number of anticipa-
ted transfers. This results in disproportionately large "regret" values for sub-optimal tactics.
Conversely, scenarios with fewer expected transfers generate smaller "regret" values, intro-
ducing a bias in Algorithm R that overestimates transfer demand and promotes the overuse
of control tactics. As a result, excessively high out-of-bus waiting time costs degrade both
passenger travel times and the percentage of successful transfers achieved by Algorithm R.

Figure 5.6 Total passenger travel times and percentage of passengers with missed transfers
for different numbers of scenarios solved at each re-optimization with Algorithm R.

Figure 5.6 illustrates passenger travel times for varying numbers of scenarios solved during
each re-optimization with Algorithm R for control horizon of ten stops. Increasing the number
of scenarios leads to improvements in total passenger travel times and a reduction in the per-
centage of passengers with missed transfers. However, these benefits plateau between 20 and
30 scenarios, indicating diminishing returns beyond this range. It is important to note that
for a given number of scenarios, the same set of scenarios is used across different combinations
of tactics in both Algorithms C and R to ensure comparability of their performance.

Figure 5.7 presents passenger travel times when using a control horizon of ten stops and
varying numbers of scenarios solved at each re-optimization with Algorithm C. As the num-
ber of scenarios increases, total passenger travel times and the percentage of passengers with
missed transfers decrease. However, in the case where hold, skip-stop, and speedup tactics are
allowed, Algorithm C performs worse than the case without any tactics. This is because a tac-
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Figure 5.7 Total passenger travel times and percentage of passengers with missed transfers
for different numbers of scenarios solved at each re-optimization with Algorithm C.

tic may be optimal for certain scenarios but can lead to significant time losses in others. The
added complexity of coordinating all three tactics exacerbates this limitation in Algorithm
C, potentially introducing inefficiencies in transfer synchronization.

We conclude the sensitivity analysis by selecting a horizon of fifteen stops for tests restricted
to the hold tactic and a horizon of ten stops for tests involving speedup and/or skip-stop
tactics. For all tests conducted with Algorithms C and R, twenty scenarios are used. Addi-
tionally, an out-of-bus cost of two is adopted for all subsequent numerical experiments. As
shown in Figure 5.3, this combination of horizons and number of scenarios enables compu-
tation times per re-optimization that are generally under ten seconds, making it suitable
for real-time bus operations. Furthermore, this configuration yields the greatest reduction in
passenger travel time and the percentage of missed transfers across the sensitivity analyses.

5.5.3 Results

This section presents the results from experiments conducted on 29 lines, with detailed ana-
lyses focusing on two specific lines. Line 42 features high frequency, high occupancy, and
significant transfer demand. In contrast, line 33 operates with medium frequency and ave-
rage occupancy but includes multiple transfer stops, highlighting its role in enhancing network
connectivity.
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Figure 5.8 Total passenger travel times and percentage of passengers with missed transfers
for different algorithms and tactics for line 42.

Note : The figure displays fifteen boxplots, each representing the transit times of individual
passengers in minutes (left y-axis). Outliers, which account for 0.7 percent of passengers,
are not shown for clarity. The right y-axis shows the percentage of passengers who missed
their transfer, calculated for each boxplot. The first boxplot represents passenger travel

times without any tactics, representing the observed real-world performance. The next four
boxplots display passenger travel times when only the hold tactic is allowed. The following
four boxplots display the case where both the speedup and hold tactics are allowed. The

following boxplots illustrate the case where the hold and skip-stop tactics are allowed. The
final group of boxplots represents the case where all three tactics are allowed. For each

group of four boxplots, each box represents a different algorithm used to compute optimal
tactics : the first box represents Algorithm C, followed by Algorithm D, Algorithm R, and

the PI solution. The mean for each boxplot is displayed below it. A line indicating the
median and mean of the "no tactics" case is drawn across all boxplots to facilitate

comparisons across different cases.

Figure 5.8 presents detailed results from computations on three days of buses from Line
42, encompassing over 6,500 passengers and close to 2,000 transfers. The figure provides a
comparison of passenger travel times and the percentage of missed transfers for different algo-
rithms and combinations of tactics. Algorithm C exhibits the worst performance, even under
performing the "no tactics" case when the hold and skip-stop tactics are applied. This poor
performance arises from Algorithm C’s inability to consider that a tactic optimal in certain
scenarios may perform poorly in others. Consequently, the algorithm often selects tactics that
seem advantageous in specific scenarios but result in significant costs when implemented in
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the real instance. This limitation is particularly pronounced with the skip-stop tactic, which
can force boarding passengers to wait for the next bus, thereby increasing delays.

In contrast, Algorithm D consistently outperforms both the "no tactics" case and Algorithm
C, achieving significant reductions in missed transfers without negatively impacting passenger
travel times. For the hold tactic only, the slight increase in travel times due to holding buses
is offset by the significant improvement in travel times for passengers who successfully make
their transfer. Both the mean and median travel times for all passengers benefit from this
trade-off. Similar trends are observed for the speedup and skip-stop tactics, with the greatest
improvement in successful transfers occurring when all three tactics are allowed.

Algorithm R consistently delivers better results than the "no tactics" case and outperforms
both Algorithms C and D in terms of transfer synchronization. When comparing Algorithms
D and R in the hold tactic-only case, Algorithm R achieves greater improvements in the
percentage of successful transfers. However, this comes at the cost of slightly longer passenger
travel times, as Algorithm R applies the hold tactic more frequently. A similar observation is
made for the hold with speedup tactics case. The percentage of successful transfers improves
further when the hold tactic is combined with the skip-stop tactic. The skip-stop tactic proves
more effective than the speedup tactic for stops with long dwell times. Moreover, Algorithm
R’s ability to consider uncertainty allows it to deploy the skip-stop tactic more effectively,
enhancing its overall performance. Finally, when all three tactics are allowed, Algorithm R
achieves a slightly higher percentage of missed transfers compared to the case with hold and
skip-stop tactics. The added complexity of coordinating all tactics may diminish performance.
Overall, Algorithm R’s performance demonstrates the benefits of considering uncertainty by
generating random scenarios compared to the deterministic approach of Algorithm D.

The PI solution attains the lowest passenger travel times and percentage of missed trans-
fers, serving as a benchmark for assessing the performance of other algorithms. While the
performance gap between Algorithm R and the PI solution varies across different tactics, it
remains generally small, indicating that Algorithm R can effectively approximate the optimal
outcomes achieved with complete system knowledge.

Figure 5.9 presents results from computations on three days of buses from line 33, considering
around 1000 passengers who transferred close to 250 times. For a medium frequency line,
each successful transfer saves more time compared to a high frequency line. Although the
percentage of passengers with missed transfers for the "no tactics" case of line 33 is lower
than for line 42, the performance difference between Algorithms D and R is more pronounced.
Algorithm D struggles to compensate for poor decisions when only the hold tactic is allowed.
Its performance improves when the speedup and/or skip-stop tactics are enabled, but it
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Figure 5.9 Total passenger travel times and percentage of passengers with missed transfers
for different algorithms and tactics for line 33.

still falls short compared to Algorithm R. This highlights the advantage of modeling future
conditions using sampling, as done by Algorithm R. Moreover, the results indicate that the
models are particularly effective on medium- and lower-frequency lines or lines with fewer
passengers. In these cases, a small number of well-applied tactics can significantly benefit
transferring passengers while inconveniencing fewer passengers already onboard. Algorithm R
achieves the best performance when both the hold and skip-stop tactics are allowed. However,
when all three tactics are allowed, a slight degradation in results is observed due to the overuse
of tactics.

Table 5.2 Mean percentage of missed transfers and mean change in total passenger travel
time compared to the real case for 27 lines of the STL network.

Algorithm PI
Tactics Average D R Solution
Hold Passengers with missed transfers 4.21% 3.47% 1.62%

Reduction in total passenger travel time 1.53% 2.39% 4.21%
Hold& speedup Passengers with missed transfers 4.81% 3.41% 1.50%

Reduction in total passenger travel time 1.27% 2.89% 4.78%
Hold& skip-stop Passengers with missed transfers 5.02% 3.35% 1.48%

Reduction in total passenger travel time 0.50% 2.49% 4.31%
The average percentage of passengers with missed transfers for the "no tactics" case is
6.09%.
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Tests were conducted on 27 additional lines from the STL bus network, using the same me-
thodology. The results are summarized in Table 5.5.3, with detailed findings presented in
Figures B.1, B.2, and B.3 in the Appendix. Algorithm C is excluded from the analysis, as it
did not demonstrate any improvement over the "no tactics" case. Algorithm R outperforms
Algorithm D for all tactics combinations, reducing both the percentage of passengers with
missed transfers and total passenger travel time. Moreover, Algorithm R mirrors the beha-
viour of the PI solution. They both achieve a lower percentage of missed transfers for the
hold with skip-stop case compared to the hold with speedup case, at the cost of a smaller
reduction in total passenger travel time. Algorithm R’s performance is closest to that of the
PI solution in the case with hold and skip-stop tactics.

5.6 Conclusion

Synchronizing transfers is a critical aspect of PT network planning, as transfer reliability di-
rectly influences both service quality and passenger perception of the network. This research
introduces a novel approach to addressing the real-time transfer synchronization problem
employing three control tactics : hold, speedup, and skip-stop. An arc-flow formulation is
proposed to integrate combinations of all possible tactics while minimizing the number of va-
riables in the offline problem. A discrete-event dynamic environment is developed to simulate
real-time operations, enabling the evaluation of transfer synchronization strategies based on
real-time data. Two OSO algorithms, C and R, are adapted to the transfer synchronization
problem and tested within this dynamic environment using historical and real-time data. Al-
gorithm C generates multiple scenarios at each iteration and selects the tactic that is optimal
across the majority of scenarios. Algorithm R, in contrast, selects the tactic with the smal-
lest cumulative "regret" value across all scenarios. Both algorithms achieve low computation
times, making them suitable for real-time implementation. To benchmark their performance,
Algorithm D and a PI solution are also implemented. Algorithm D generates a single scenario
representing the average future state of the system during each re-optimization, while the PI
solution assumes perfect foresight, providing an upper bound on performance.

The study tested the two OSO algorithms on 29 lines from a large-scale real dataset provided
by the STL. The results were compared to the "no tactics" case, to Algorithm D and to the
PI solution. Algorithm D showed improvement in passenger travel times and the number
of successful transfers for any combination of tactics when compared to the "no tactics"
case. Algorithm C’s performance is hindered by its tactic selection process, which failed to
adequately account for the variability in scenarios. Algorithm R outperformed both Algorithm
C and Algorithm D, significantly increasing the number of successful transfers while reducing
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passenger travel times. Notably, Algorithm R’s performance closely approximated that of the
PI solution, demonstrating its potential for practical real-time applications.

The quality of scenario generation is a key factor influencing the performance of AlgorithmsC
and R, as it significantly affects the accuracy of decision-making. Future research could
investigate advanced scenario generation methods to enhance scenario quality while using a
smaller number of scenarios, thereby improving efficiency and further reducing computation
times. Additionally, this study, which primarily examines individual main lines linked to fixed
feeder lines, could be extended to explore the interactions and coordinated optimization of
multiple main lines within a PT network.
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REAL-TIME AVL AND SMART CARD DATA
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dans Public Transport.

6.1 Introduction

Public transit (PT) systems play a critical role in reducing traffic congestion and promoting
sustainable urban transport. They provide a cost-effective, environmentally friendly alter-
native to private car use, fostering more equitable access to mobility. Within this context,
transfer reliability between transit lines is critical to passenger satisfaction and overall system
effectiveness. Reliable transfers not only minimize travel times but also enhance the overall ap-
peal of PT, encouraging higher ridership and contributing to the system’s long-term viability.
In urban settings, unpredictable traffic patterns, variable passenger demand, and a myriad
of operational uncertainties often disrupt planned schedules, resulting in missed transfers,
prolonged waiting times, and diminished passenger confidence in the system. These issues
are particularly acute in multi-line transit networks, where coordinating transfers becomes
increasingly complex under stochastic operating conditions.

Transfer synchronization was initially addressed during the network planning phase, relying
on static schedules and historical data. While this provides a solid foundation, even well-
designed schedules are vulnerable to real-world variability and disruptions. Real-time syn-
chronization therefore emerges as a necessary complement, enabling dynamic adjustments
during operations. Although schedule adjustments and network redesigns can improve per-
formance, they are often resource-intensive and logistically complex. This highlights the need
for innovative, cost-efficient strategies to enhance network performance in real time. Advances
in data collection technologies, such as Automatic Fare Collection (AFC), Automatic Pas-
senger Counting (APC), and Automatic Vehicle Location (AVL) systems, generate a wealth
of real-time data, enabling dynamic predictions of vehicle and passenger movements. By le-
veraging these insights, transit agencies can implement transfer synchronization strategies
that address disruptions and improve network efficiency in real time.

Recent work has addressed real-time transfer synchronization using an offline arc-flow model
and integrating it into two online stochastic optimization (OSO) algorithms. This approach
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applied synchronization tactics — hold, skip-stop, and speedup — on a single main line at a
time while accounting for transfer impacts from all connecting feeder lines within a predefined
control horizon. Tested under stochastic conditions on 29 bus lines from the transit network
of Laval, the framework demonstrated significant improvements in both transfer reliability
and passenger travel times.

Building on this foundation, the present work extends the methodology to apply tactics across
multiple interconnected transit lines. This presents new challenges, including increased com-
putational complexity and the necessity for seamless real-time data integration. The existing
arc-flow model and the OSO framework are integrated into a network-wide simulator (NWS)
of Laval’s bus network, enabling real-time optimization in a complex urban environment. The
simulator incorporates historical vehicle movement and smart-card data to replicate real-time
stochastic conditions, providing a practical and scalable framework for evaluating real-time
synchronization tactics across an entire network.

This paper makes the following key contributions :
— it integrates the offline arc-flow model and the OSO framework into a NWS for bus

transit networks ;
— it leverages historical and real-time data to enable robust simulations under stochastic

bus operations ;
— it validates the approach using real data from a mid-size bus network, demonstra-

ting significant improvements in transfer reliability and passenger travel times across
multiple lines.

6.2 LITERATURE REVIEW

Transfer synchronization has been extensively studied in the PT literature. Early works fo-
cused on offline strategies, such as network design and timetable coordination, to improve
planned transfers. More recent studies have addressed real-time approaches, leveraging ad-
vances in data availability and computational power. [17] provide an extensive overview of
real-time transfer synchronization tactics and their applications.

6.2.1 Control tactics

This literature review examines three primary control tactics : hold, skip-stop, and speed
control. These tactics can be applied at stops called control points along transit lines. Hold,
which delays a vehicle at a stop for a predetermined duration, is widely regarded as the most
effective and straightforward to implement [14]. However, its application involves complex
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optimization challenges, with the number of variables increasing proportionally to the product
of the number of targeted stops and vehicles, often limiting studies to a single line or a small
set of stops [18]. Skip-stop reduces travel times for onboard passengers by skipping one or
more consecutive stops, but may inconvenience passengers needing to board or alight at
those stops. Lastly, speed control or speedup is a simple yet effective tactic for reducing
delays, maintaining service regularity, and improving transfer reliability. These strategies are
applied either independently [23] or in combination [19–21] to enhance transit performance.
[24] highlight that designating all stops as control points facilitates disruption management
through distributed control throughout the entire line.

6.2.2 Data integration

Before the deployment of intelligent transportation systems, such as AVL and APC, real-
time control strategies relied on decisions made by strategically positioned personnel [28].
Historically, passenger flow data — such as vehicle occupancy, at stop arrivals, and transfer
demand — were derived from empirical observations. Today, real-time insights are made pos-
sible by technologies like APC systems, smart card validations, and advanced fare collection
systems. When passenger destinations are not directly recorded, they can be inferred using
sophisticated algorithms [31]. [32] conclude that real-time demand information significantly
improves transfer synchronization, particularly in low-frequency networks. Recent studies
have further emphasized the value of real-world passenger data over historical averages or
simulations. For instance, [33] evaluated three levels of passenger information for optimizing
transfer synchronization and service regularity : no real-time data, real-time vehicle occu-
pancy, and the integration of smart card validations with real-time occupancy data. Using
the BusMezzo simulation model, they tested these scenarios on two lines with one transfer
stop and five control stops in The Hague, Netherlands. The results showed that access to
smart card data significantly improves transfer synchronization. Nevertheless, many studies
rely on the assumption that vehicle and/or passenger demand data are fully available and
accurate [34,35].

6.2.3 Dynamic, real-time and stochastic optimization

In transfer synchronization, the state of the PT network evolves dynamically, with vehicle
travel times and onboard loads updated as vehicles reach stops. Control tactics must be re-
optimized dynamically based on the latest information, while decisions must be made within
tight time frames. This dual challenge requires algorithms that combine the flexibility of
dynamic optimization with the speed of real-time optimization to address evolving network
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conditions and the urgency of operational constraints.

[36] developed a dynamic programming model combining hold and skip-stop tactics to mi-
nimize total passenger travel time, including transfer waiting time. Their model was tested
on a small artificial network with two buses and three stops. Building on this, [37] developed
a polynomial-time dynamic model applied to a network featuring a main line, three feeder
lines, and three transfer segments, using simulated travel time and passenger demand data.
Although further refined with the addition of a short-turn tactic [38], [19] argued that their
static model, solved with a commercial solver, was simpler to implement than the dynamic
programming approach.

Each update of the transit network state provides real-time data that captures current condi-
tions while also enabling predictions of future network states through techniques like sampling
and scenario generation. Effective decision-making relies on dynamically adapting to these
predictions, with uncertainty modeling playing a critical role in delivering practical and re-
liable outcomes [41]. In this context, [40] proposed a discrete-event simulation with a rolling
prediction horizon, applying hold and speed control to minimize total passenger travel time.
Their approach, tested on Haifa’s Métronit network with three lines and three transfer stops
using the BusMezzo simulator, relied on a single forecast scenario, limiting its ability to ac-
count for system variability. In contrast, [76, 77] employed two OSO algorithms generating
multiple random scenarios to represent potential future states of the public transit network.
By integrating these scenarios into a unified decision-making process, the methodology ac-
counted for variability in travel times and passenger demand.

The remainder of this paper is organized as follows. Section 6.3 outlines the methodology for
embedding the optimization model into a NWS. Section 6.4 details the data sources and their
integration into the proposed framework. Section 6.5 describes our case study and discusses
results from applying the approach to Laval’s transit network. Section 6.6 concludes with a
summary of findings and directions for future research.

6.3 Methodology

The proposed methodology builds upon an arc-flow model and an OSO framework introduced
in previous work. While the original approach focused on applying transfer synchronization
tactics to a single main line connected to multiple feeder lines, this study implements real-time
control tactics on multiple interconnected main lines.

The methodology, depicted in Figure 6.1, integrates three key components. First, an of-
fline arc-flow model integrating all control tactics for a given control horizon. Second, the
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Figure 6.1 Overview of the optimization process within the NWS (N : number of stochastic
scenarios evaluated by Algorithm R).

Algorithm REGRET (R) is implemented in real time in an OSO framework, building on
the offline model to solve multiple scenarios and support decision-making under stochastic
operating conditions. Third, the OSO framework is implemented into a NWS to test the me-
thodology’s scalability and effectiveness on the transit network of the city of Laval. Together,
these components provide a robust framework for real-time transfer synchronization aiming
to minimize passenger travel times across complex, multi-line systems.

6.3.1 Offline arc-flow model for transfer synchronization

The arc-flow model forms the backbone of the methodology, capturing the temporal and
spatial dynamics of passenger flows and bus movements. Specifically designed to minimize
passenger travel times, the model enables efficient transfers through the systematic applica-
tion of control tactics.

The model focuses on a main line and its connecting feeder lines within a defined control hori-
zon. Feeder lines are modeled as exogenous inputs with fixed arrival times at transfer points,
while main lines are subject to control tactics. The model represents the transit network as
a time-expanded graph, where nodes correspond to specific events, such as passenger and
bus arrivals/departures at stops, and arcs represent possible movements, including passenger
entering/exiting the system, waiting, or transferring. Each arc is weighted by the associated
travel or waiting time, ensuring all segments of passenger trips are explicitly modeled. This
detailed representation enables the model to precisely evaluate the effects of control tactics
on passenger travel times.

Three control tactics are automatically and systematically incorporated into the arc-flow mo-
del to improve transfer reliability and reduce disruptions for passengers. The hold tactic adds
arcs between existing nodes at stops to allow buses to wait for delayed transfer passengers,
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ensuring connections that would otherwise be missed. The skip-stop tactic introduces bypass
arcs, enabling buses to skip stops with low demand to recover schedules or enable transfers at
later points. The speedup tactic implements faster travel arcs to simulate reduced travel times
under favorable conditions, such as light traffic or operational slack, helping buses catch up
to their planned schedules or transfers.

Figure 6.2 Example of an arc-flow model graph of a small instance. Up - no tactics. Lower
left - hold only. Lower right - hold and speedup.

Figure 6.2 illustrates the graph construction process, highlighting how control tactics create
additional bus paths and introduce new transfer opportunities. Non-zero passenger counts
are displayed on the arcs for clarity, while arrival and departure nodes are slightly offset
vertically to improve readability. Bold black arcs represent the optimal path returned by the
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arc-flow model, while gray arcs depict alternative paths. Exogenous passenger flows (e.g.,
passenger arrivals or transfers) are shown on the nodes. The example includes two main line
vehicles and three stops within the control horizon. In the scenario without control tactics
(top), two transferring passengers miss the first bus at "stop 1" and must wait for the next
one. At "stop 2," two passengers alight from the main line to transfer to a feeder line. In the
case where only the hold tactic is permitted (bottom left), additional paths are introduced
to allow hold time at the first stop. However, if the bus takes this path, the transfer at
"stop 2" becomes impossible, and the optimal path excludes the hold tactic. In contrast,
when both hold and speedup tactics are allowed (bottom right), new paths account for both
strategies. This combination allows for a hold time at "stop 1" and a speedup tactic towards
"stop 2," ensuring successful transfers at both stops. The optimal path utilizes these two
tactics together.

Rather than applying the arc-flow model directly to the entire network, it is used to solve
multiple localized problems. This modular approach ensures scalability without compromising
accuracy, enabling the integration of the arc-flow model into the OSO framework and the
NWS.

6.3.2 Online stochastic optimization (OSO) framework and REGRET (R) algo-
rithm

The OSO framework is central to the proposed methodology, enabling the implementation
of the R algorithm and facilitating real-time decision-making under uncertainty. Operating
within a rolling control horizon, the framework re-optimizes decisions each time a main line
bus arrives at a stop, remaining responsive to real-time data as it becomes available.

While the offline model assumes perfect knowledge of the system and does not adapt to
changing network conditions, Algorithm R extends this foundation by dynamically applying
control tactics — hold, skip-stop, and speedup. To address uncertainty, the OSO framework
employs sampling to generate scenarios representing multiple possible realizations of future
system states by combining historical and real-time data. Each scenario is used to optimize
transfer synchronization within the control horizon through the arc-flow model, yielding an
optimal tactic. Algorithm R then quantifies the potential ’regret’ of suboptimal tactics by
evaluating their costs across all scenarios. By selecting the tactic with the lowest cumula-
tive regret, the algorithm ensures robust performance across diverse conditions, including
variability in travel times, passenger demand, and transfer bus delays. To benchmark the
performance of Algorithm R, two additional approaches are used. The DETERMINISTIC
(D) algorithm generates a single scenario based on average historical values for all relevant va-
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riables. This approach represents a simplified, static view of the system, providing a baseline
for evaluating the benefits of incorporating stochastic sampling. In contrast, the PERFECT
INFORMATION (PI) solution assumes complete knowledge of the true future state across all
stops within the control horizon. This approach enables decision-making under ideal condi-
tions, setting a theoretical upper bound on Algorithm R’s performance.

6.3.3 Network-wide simulator (NWS)

This study extends the arc-flow model and OSO algorithms from the authors’ previous work
by extending their application to a network-wide scale by integrating them into the open-
source NWS. This flexible platform enables detailed discrete-event simulations of multimodal
transportation systems.

The NWS models transportation systems by simulating events involving two key agents :
passengers and vehicles. Passenger trips are reconstructed using smart card data, ensuring
that the simulation captures real-world travel patterns. Passenger trips are defined by origins,
destinations, intermediate stops, and temporal constraints. Vehicles operate along predefined
routes consisting of past, current, and future stops, while events such as passenger boarding,
alighting, and vehicle movements are processed sequentially. This event-driven approach al-
lows for dynamic interactions between passengers and vehicles across the network and enables
a realistic evaluation of the impact of control tactics on transfer reliability and passenger tra-
vel times.

To incorporate stochasticity and enable real-time decision-making, the OSO framework is
implemented as an additional module within the NWS. This module allows for the designation
of multiple (or all) lines in the network as main lines, providing flexibility in defining the
scope of optimization. Each time a main line bus arrives at a stop, an optimization event is
triggered. The OSO framework then defines the system state within a rolling optimization
horizon and applies tactics to the current main line while considering all other lines as fixed
for that step. It generates multiple scenarios based on historical and real-time data and solves
localized arc-flow problems to determine the optimal control tactics — hold, skip-stop, and
speedup — for the relevant main line.

Once an optimal tactic is selected, the state of the simulation in the NWS is updated and
future stops, dwell times, and travel times for the optimized vehicle are adjusted accordingly.
Onboard passengers affected by a skipped stop are reassigned to alight at the nearest available
stop, with an additional walking time to their final destination. Similarly, passengers wishing
to board at a skipped stop are rerouted to the next available bus. The hold tactic modifies
passenger travel times and possibly transfer feasibility. Once the system is updated, the

https://github.com/RTOpt/multimodal-simulator
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simulation proceeds until a vehicle of any of the designated main lines arrives at a stop,
triggering a new re-optimization step.

This sequential and iterative optimization approach ensures that the methodology captures
interdependencies between lines while maintaining computational efficiency. The method
adapts dynamically to evolving network conditions, and takes into account the current po-
sitions of all vehicles and passengers. Although optimizations are applied to individual lines
and vehicles, frequent re-optimizations — potentially occurring every few seconds — allow
different lines to indirectly coordinate through successive decision updates.

The NWS, integrated with the OSO framework, offers a robust and flexible platform for
validating the proposed methodology. Its modular design and computational efficiency enable
network-wide transfer synchronization while ensuring a detailed evaluation of the effects of
control tactics under realistic stochastic conditions.

6.4 Data processing

This section details the data sources used in the study, explains their integration into the
NWS, outlines their role within the OSO framework, and specifies the inputs for the arc-flow
model. All data were provided by the Société de Transport de Laval (STL), a city of 450,000
inhabitants in Canada. Figure 6.3 illustrates the data integration.

Figure 6.3 Data pre-processing and integration in the NWS, OSO framework and arc-flow
model.
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6.4.1 Input data

This study uses multiple datasets to accurately model and evaluate transit operations within
the NWS :

— General Transit Feed Specification (GTFS) data provides static schedule information,
including planned routes, stops, and timetables. This static dataset serves as the
foundation for modeling the transit network, enabling the reconstruction of historical
operations and the evaluation of schedule deviations.

— AVL data, collected via Global Positioning System (GPS) devices installed on buses,
offers detailed information on vehicle trajectories, such as locations, speeds, and adhe-
rence to planned schedules.

— APC data records passenger boardings and alightings at each stop along a route.
— Anonymized AFC records, derived from smart-card transactions, provide precise ti-

mestamps for boardings, transfers, and inferred destinations, as determined by STL’s
proprietary algorithms.

These datasets collectively enable the reconstruction of complete passenger journeys and the
estimation of transfer demands across the network.

6.4.2 Data integration in the NWS

The NWS reconstructs historical transit operations by integrating data from AVL, APC,
AFC, and GTFS sources. Passenger interactions are modeled as trip “requests” derived from
smart-card data. Each request comprises sequential legs corresponding to the onboard seg-
ments of passenger trips, with transferring passengers having multiple legs. The NWS recons-
tructs these trips by linking passengers to the specific vehicles they boarded. Boarding and
alighting events are processed dynamically, capturing real-time interactions between passen-
gers and vehicles. To ensure high fidelity, the NWS adjusts vehicle operations using historical
AVL data, which accounts for variations in travel and dwell times, while GTFS data main-
tains alignment with planned schedules. Although APC data are not directly integrated into
the simulation, it is employed to validate reconstructed passenger flows and transfer patterns,
ensuring their accuracy.

The NWS interacts dynamically with the OSO framework, which applies control tactics
and modifies input data in real-time. After these adjustments, the NWS updates bus travel
times and reevaluates passenger trips to reflect the impact of these changes. For instance,
passengers who miss their originally scheduled bus due to delays are automatically reassigned
to the next available vehicle on the same route. Similarly, when control tactics improve
transfer synchronization, passengers may board earlier vehicles on the same route. This clear
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separation of responsibilities ensures that the NWS provides a stable and accurate foundation,
supporting the stochastic optimization processes performed in the OSO framework.

6.4.3 Data integration in the OSO framework and offline arc-flow model

When an optimization event is triggered, the OSO framework takes into account available
real-time data and generates scenarios representing potential future system states, which
are then used as inputs for the offline arc-flow model. Unlike the NWS, which replicates
historical operations based solely on input data, the OSO framework dynamically adjusts
this data through control tactics.

When generating a scenario, the OSO framework distinguishes between known and unknown
variables. Firstly, historical AVL data is clustered by time of day, such as peak and off-peak
hours, to create realistic distributions for bus travel and dwell times. Similarly, historical
smart-card data is aggregated and clustered to provide detailed information on passenger
demand, categorized by time, route, and boarding/alighting stop. Unknown variables — such
as future travel times, dwell times, passenger arrivals at stops, and transfer intentions — are
then stochastically sampled from the clustered datasets. Secondly, known variables, such
as current bus positions obtained from real-time AVL data and vehicle occupancy derived
from real-time APC and smart-card records, are directly integrated into the scenarios. These
scenarios are then provided as inputs to the offline arc-flow model, which operates under the
assumption of complete knowledge of the generated system state.

6.5 Experiments

This section evaluates the performance of the proposed methodology by assessing the im-
pact of transfer synchronization control tactics on passenger travel and transfer times. The
methodology is applied to the full STL network as well as to several sub-network configu-
rations, with the aim of testing its effectiveness across diverse operating environments. The
goal is to derive practical insights and establish clear guidelines on the conditions under
which these synchronization strategies are most effective. The evaluation is based on a case
study of weekday evening peak hours, covering a four-hour period with 425 bus trips, and
5,000 passengers. The following sections describe each network configuration and present the
results of the methodology.
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6.5.1 Test cases

Grid sub-network

A sub-network with a grid configuration was designed to evaluate the effectiveness of the
proposed method in scenarios where pairs of intersecting lines share only one or a few common
transfer stops, while each line connects with multiple others. This type of network is a classic
and widely studied configuration in public transit planning, and a predominant form in
many North American cities. Grid networks — such as those in Los Angeles and Vancouver
— minimize route overlap and allow passengers to travel between most origin - destination
pairs with a single transfer. In such settings, transfers are distributed across the network,
requiring synchronization at multiple points along the lines.

Figure 6.4 Map of lines in grid sub-network.

This instance focuses on high-frequency and some medium-frequency lines that structure the
STL network and carry significant transfer demand. It includes 2,500 passengers with five
main lines (17, 26, 42, 76, and 151) where control tactics are applied. The remaining routes
function as feeder lines. It is important to note that the transfer points between these lines
are the most demand intensive in the STL network. Figure 6.4 presents the grid sub-network
test instance.
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Radial sub-network

A radial sub-network is considered to reflect the structure of several STL bus routes conver-
ging toward the three metro stations that connect Laval to Montréal. This layout follows
the classical radial pattern found in many metropolitan transit systems, where services are
designed to direct passenger flows toward central hubs — typically downtown areas or major
interchanges. In the STL context, the metro stations serve as these focal points, making this
instance a relevant and realistic setting for evaluating synchronization strategies in radial
networks.

Figure 6.5 Map of lines in radial sub-network.

The radial sub-network, shown in Figure 6.5, includes two lines (33 and 70) forming concen-
tric loops — one smaller, one larger — both beginning and ending at metro stations. Three
additional lines (37, 39 and 65) pass through the metro stations and extend beyond these
hubs. Synchronization in this setting occurs at multiple transfer points, where the looping
lines intersect with the radial lines at several locations along their trajectories. This instance
serves a dual purpose : to evaluate the effectiveness of synchronization strategies in a highly
interconnected environment, and to assess their performance within a radial network struc-
ture. It comprises 1,000 passengers and 194 bus trips, with five main lines where control
tactics are applied. The remaining routes function as feeder lines.
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Corridor sub-network

In the current STL network, multiple lines converge toward the three previously mentioned
metro stations, forming several corridors with overlapping service and varying headways.
This layout reflects a common evolution in transit systems : while many networks originate
as radial, they often transition toward grid-like structures, with the grid becoming distorted
near central areas to maintain strong connectivity to key hubs. As observed in cities like
Portland, this results in parallel routes converging toward the core, while others complete
the grid without entering it. The corridor sub-network instance focuses on synchronizing
transfers along these overlapping lines, providing a relevant context for evaluating strategies
in hybrid networks that combine grid and radial characteristics.

Figure 6.6 Map of lines in corridor sub-network.

A distinctive feature of this instance is the demand pattern : many users board the first
available bus along a corridor and transfer as needed along shared segments or towards
feeder lines to reach their destination. This instance includes 850 passengers and 150 bus
trips, with lines 17, 27, 31, and 73 designated as main lines. Figure 6.6 presents the corridor
instance, with lines slightly offset to improve readability.

Full network

This instance serves as a baseline for evaluating the performance of our methodology, where
synchronization tactics are applied sequentially to almost all lines. The selected main lines
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Figure 6.7 All lines and transfer hubs map.

are shown in Figure 6.7. As illustrated on the map, several corridors feature overlapping lines
that share the same segments. While the overlap may obscure the number of lines, the density
of black dots — indicating transfer stops — reveals areas with frequent inter-line transfers.
Treating all lines as main lines introduces significant computational challenges. During peak
periods, bus arrivals can occur every few seconds, and each re-optimization step — depending
on the number of feeder lines, transfer stops, and passengers — can take between 0.1 and 10
seconds. As the process is executed sequentially without parallelization, total computation
times become prohibitive for real-time application. This issue did not arise in the previous
instances, which involved fewer lines and more localized synchronization scopes.

Transfer hubs

Building on the previous instance, where synchronization tactics were applied network-wide,
this instance retains the same set of main lines but restricts the application of control tac-
tics to the vicinity of selected transfer hubs. These transfer hubs account for over 25% of
all transfers in the STL network during the study period. Tactics are applied only to buses
operating within a limited number of stops from these designated transfer hubs, with no
synchronization outside them. This setup allows us to assess the trade-off between compre-
hensive, system-wide optimization and more localized interventions focused on major transfer
points. It also reflects a practical application scenario in which real-time dispatching efforts
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are geographically bounded to reduce operational and computational complexity. All lines
used in this instance, as well as in the previous one, are shown in Figure 6.7.

6.5.2 Results

This section presents the results for all test cases. Detailed analyses of passenger travel times,
transfer times, and travel time variations, as well as a comparison between single-line and
multi-line optimization, are provided for the grid sub-network instance, as it reflects the
predominant structure of the STL network. Summary results for all other test instances are
presented in Table 6.1.

Figure 6.8 Grid sub-network travel and transfer times.

Figure 6.8 shows the passenger travel and transfer times for all passengers in the grid sub-
network instance, for different control tactics and algorithms. The figure presents thirteen
boxplots illustrating passenger travel times (in minutes) on the left y-axis. The first boxplot
represents reconstructed passenger trips in the NWS based on historical data, serving as the
baseline. Subsequent boxplots are organized into groups corresponding to different optimiza-
tion algorithms and control tactics. The first group, consisting of three boxplots, compares
the performance of Algorithm D, Algorithm R, and the PI solution when only the hold tactic
is allowed. The second group evaluates the same algorithms under a combination of hold and
speedup tactics. The third group examines the impact of applying both hold and skip-stop,
while the final group assesses outcomes when all three tactics (hold, speedup, and skip-stop)
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are allowed. Each boxplot displays the mean (dashed line) and median (solid line), with these
values explicitly labeled. The figure also includes mean transfer times across all individual
transfers, illustrated on the right y-axis. These mean values are annotated above the plotted
line connecting them.

We first observe that Algorithm D, when applied to instances involving multiple synchronized
lines, substantially increases passenger travel times, despite improving mean transfer times.
This outcome is due to the compounding effect of errors made by this approach. Algorithm
D generates a single scenario representing the mean state of the network and applies the
offline arc-flow model to compute optimal tactics. However, these tactics lack robustness to
variations in passenger demand and vehicle travel times. Small delays resulting from ineffi-
cient control decisions accumulate across lines, leading to degraded overall performance. In
particular, Algorithm D tends to apply a high number of tactics to secure connections, spe-
cifically hold tactics, which introduces delays along individual lines. These delays propagate,
triggering further hold actions on connecting lines and initiating a vicious cycle with nega-
tive compounding effects. This phenomenon is most pronounced when only the hold tactic is
available. When speedup or skip-stop tactics are permitted, some delays can be mitigated.

In contrast, Algorithm R applies fewer hold or other tactics. It is more conservative in its
decisions, proposing tactics only when they are robust under uncertainty in the system state.
As a result, the tactics selected by Algorithm R generate a positive compounding effect.
Secondly, we observe that the performance of Algorithm R remains relatively stable across
different combinations of control tactics. In previous studies focusing on single-line instances,
Algorithm R’s performance varied more noticeably depending on the allowed tactic com-
binations. In the current multi-line configuration, this gap is reduced, as the flexibility of
optimizing multiple lines simultaneously allows for a more balanced distribution of tactics
across the network. This added flexibility enables the algorithm to compensate for the limita-
tions of certain tactics on one line by leveraging more effective strategies on others, resulting
in more consistent overall performance.

Finally, we note that passenger travel times under Algorithm R are improved relative to the
baseline but remain higher than those achieved by the PI solution. However, the mean transfer
times under Algorithm R are very close to those of the PI solution across all tactic configu-
rations, highlighting the effectiveness of Algorithm R in real-time transfer synchronization.
These results suggest that Algorithm R provides a strong compromise between robustness
and efficiency, delivering competitive performance while maintaining reliable connections in
a dynamic operating environment.

Figure 6.9 shows the distribution of passenger travel time variations for Algorithms D and R,
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Figure 6.9 Grid sub-network travel time variation distributions.

as well as for the PI solution, when only the hold tactic is allowed. The figure displays nine
violin plots representing the distribution of individual passenger travel time variations (in
minutes) relative to the baseline. The plots are grouped into three categories : all passengers,
passengers without transfers, and passengers with transfers. Within each group, three violins
are shown — from left to right — for Algorithm D, Algorithm R, and the PI solution.
Each plot includes mean (dashed line) and median (solid line) values, which are explicitly
annotated. A dotted vertical line indicates the interval between the 5th and 95th percentiles,
highlighting the spread of the central 90% of the data.

In the first group (all passengers), the violin plot for Algorithm R is narrow and skewed
slightly toward negative values, with a mean of –0.9 minutes and a median of exactly zero.
This reflects consistent performance with modest time savings. In contrast, Algorithm D
shows a wider, positively skewed distribution, indicating a higher frequency of extreme delays
and an overall increase in passenger travel times. Compared to both Algorithm D and the PI
solution, Algorithm R displays a more concentrated distribution, highlighting its conservative
behavior under uncertainty.

This pattern is even more pronounced for passengers without transfers. For this subgroup,
Algorithm R has minimal impact, with mean and median travel time variations of 0.1 and 0
minutes, respectively. Its highly concentrated distribution indicates that it avoids applying
risky control tactics in stable areas of the network. This conservative approach — rooted
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in the explicit modeling of uncertainty — helps preserve service quality for non-transferring
passengers. This outcome is particularly encouraging for transit operators, as it demonstrates
that real-time control can improve transfer reliability without compromising the experience
of through passengers.

For passengers with transfers, Algorithm R achieves travel time variations that closely match
those of the PI solution, despite its more cautious control policy. This confirms its ability
to synchronize transfers effectively in real time while maintaining robustness to uncertainty.
The strong alignment between Algorithm R and the PI solution in this subgroup underscores
the value of online stochastic optimization for achieving high-quality transfer synchronization
without relying on perfect foresight.

Figure 6.10 Grid sub-network travel and transfer times for single and network-wide opti-
mization

Figure 6.10 compares the performance of Algorithm R when applied to individual lines in the
grid sub-network, versus optimizing all lines jointly. As in Figure 6.8, passenger travel times
are shown on the left y-axis (in minutes), and mean transfer times on the right y-axis. Mean
and median values are annotated directly on the boxplots. For each line, three boxplots are
shown, representing travel times only for passengers who boarded that line during their trip
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— including any transfers made to complete their journey. The first boxplot corresponds to
the baseline (no control tactics), the second shows results when Algorithm R is applied to
that line in isolation, and the third reflects the performance of Algorithm R for the same
passengers when all lines in the sub-network are optimized jointly.

When a line is optimized independently, control tactics can be tailored exclusively to the
benefit of its own passengers. In contrast, joint optimization across multiple interconnected
lines may require trade-offs to ensure that control tactics provide balanced benefits across
the network. However, this integrated approach also enables the application of reinforcing
tactics across lines, creating more opportunities for improvement.

Overall, passenger mean and median travel times are slightly lower across all lines when
Algorithm R is applied network-wide, compared to when it is applied to individual lines.
However, a slight increase in mean transfer time is observed for lines 151 and 42. These lines
carry high passenger demand and involve a substantial number of transfers with other lines.
In the network-wide setting, some tactics may be adjusted to favor transfers involving other
lines, resulting in marginal trade-offs for the most interconnected lines.

Finally, Table 6.1 summarizes the results for all instances. For each test case, and for Al-
gorithm R and the PI solution, it reports the percentage changes relative to the baseline
in mean passenger travel time, median travel time, and mean transfer time. It also reports
the 5th and 95th percentile variations in passenger travel times (in minutes). For each case,
results correspond to the best-performing combination of allowed control tactics.

Across the grid, radial, and corridor sub-networks, our methodology yields the best perfor-
mance on the grid instance in terms of transfer time improvements. This setting features
transfers between main lines that are more spatially distributed, with lines intersecting only
once or at a few locations. The limited overlap between lines reduces the likelihood of negative
interactions between control tactics, and the high transfer volume combined with dispersed
transfer points provides a favorable structure for local synchronization strategies. In the ra-
dial network, greater improvements are observed in overall travel times, but the proportional
gains in transfer times are smaller. This can be attributed to the presence of loop struc-
tures, where control tactics can have delayed and cumulative effects as vehicles complete
their loops and re-encounter other lines. Despite these challenges, the results show that sub-
stantial transfer time reductions can still be achieved, highlighting the adaptability of the
proposed approaches even in networks with more complex connectivity patterns. Neverthe-
less, the performance gap between Algorithm R and the PI solution is more pronounced in
this case, reflecting the increased difficulty of maintaining optimal synchronization tactics
under such dynamic conditions.
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Table 6.1 Comparison of travel time and transfer time variations under various synchroni-
zation tactics and algorithms (H-Hold, SP-Speedup)

Sub-
network

style

Tactics
(best
perf.)

Algorithm Travel time variations (%) Mean transfer
time var. (%)

Mean Median P5 P95

Grid H, SP R -4.1 -3.7 -1.1 -6.4 -32.2
PI -8.6 -7.4 +4.5 -10.5 -32.9

Radial All R -4.8 -5.3 0.0 -4.3 -17.3
PI -11.4 -12.5 +6.5 -12.4 -18.6

Corridor H R -4.4 -3.0 +0.1 -7.5 -13.0
PI -9.2 -9.4 +10.9 -7.8 -14.8

All H R -3.3 -2.0 +0.7 -7.6 -28.6
PI -7.4 -5.0 +10.9 -11.3 -29.2

Transfer
hubs

H R -2.5 -0.5 +0.4 -6.8 -27.9
PI -6.2 -3.0 +9.6 -11.4 -28.6

In the corridor sub-network, although passenger transfer times improve, the overall variation
in travel and transfer times is less pronounced. The optimized lines in this instance share
common segments and serve overlapping demand, with passengers frequently boarding the
first available vehicle and transferring opportunistically. Travel time improvements are partly
attributable to enhanced schedule adherence and more evenly spaced vehicle arrivals along
these segments, rather than solely to the direct impact of synchronization tactics. These
findings suggest that the proposed methodology also contributes to mitigating bus bun-
ching when applied to multiple lines operating along a shared corridor. Moreover, internal
comparisons reveal that the corridor instance exhibits the largest performance gap between
single-line and network-wide optimization, with significantly greater improvements achieved
when optimizing across multiple lines.

Across all sub-network configurations, we observe a consistent pattern in the behavior of
the 5th and 95th travel time percentiles. Algorithm R has little to no impact on the 5th
percentile, indicating that passengers with the shortest travel times are generally unaffected
by the applied control tactics. In contrast, the PI solution often increases travel times for these
passengers, sometimes substantially (e.g., +10.9% in the corridor sub-network). However, the
PI solution yields consistently greater improvements for the 95th percentile, with reductions
of up to 12.4%, thus benefiting passengers experiencing the longest travel times.
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For the instance including all lines, significant improvements are achieved in both travel
and transfer times. Under Algorithm R, travel time gains primarily benefit passengers with
transfers, whereas the PI solution leads to substantial improvements for all passengers. In the
transfer hub instance — which involves the same set of passengers but restricts control tactics
to the vicinity of the STL’s main transfer hubs, accounting for more than 25% of all transfers
in the test instance — Algorithm R achieves results that are comparable, albeit slightly
inferior, to those obtained when tactics are allowed at any stop across the full network.

6.6 Discussion

The results highlight the effectiveness of the proposed methodology in enhancing transfer
synchronization within complex, multi-line transit networks. By integrating the OSO fra-
mework and the offline arc-flow model into a NWS, the approach dynamically adapts to
real-time conditions, reducing passenger travel times and improving the reliability of trans-
fers. Algorithm R consistently outperforms Algorithm D, underscoring the importance of
explicitly addressing uncertainty in real-time transfer synchronization. The modular design
of the methodology also supports its scalability to larger and more complex transit systems.

Results indicate that the methodology is particularly effective in grid network configura-
tions, while also showing strong potential in highly frequented corridors of radial systems.
Furthermore, applying the methodology to all lines operating near major transfer hubs yields
substantial benefits, suggesting that synchronization efforts could be spatially centralized.
This could help streamline dispatch operations and reduce the burden on drivers by concen-
trating tactical interventions in strategically important areas of the network.

From a practical perspective, the proposed framework can serve as a real-time decision sup-
port tool for transit agencies, contributing to improved operational efficiency and enhanced
passenger experience. The methodology relies primarily on real-time AVL data to track ve-
hicle locations across the network and to estimate feeder line arrival times at transfer stops.
In addition, accurate estimation of passenger loads onboard the main line vehicles is required
at each bus arrival to validate the generation of alighting passengers and to correctly account
for onboard waiting times when applying control tactics. This passenger load can be inferred
in near real-time by combining AFC data for boardings and APC data for alightings, both of
which are collected in real-time but typically transmitted with some delay. In contrast, full
trip inference and origin-destination reconstruction, which require more extensive processing,
remain outside the real-time scope and are employed primarily for calibration and the clus-
tering procedures supporting scenario generation. These characteristics make the proposed
methodology realistically implementable by transit agencies.
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The framework could also be extended to multimodal networks, including micromobility
and on-demand transportation services, to evaluate its effectiveness in more heterogeneous
systems. From a practical standpoint, further research could explore integration with real-
time dispatch tools to support operational decision-making in complex urban environments.
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CHAPITRE 7 DISCUSSION

Dans cette thèse, le problème de la synchronisation des correspondances en temps réel a été
abordé de manière progressive et structurée, allant de la preuve de concept à l’expérimenta-
tion à grande échelle.

7.1 Synthèse des travaux

Le chapitre 4 introduit un modèle de flot hors ligne pour la synchronisation des correspon-
dances entre une ligne principale et de nombreuses lignes secondaires. Cette approche sert de
preuve de concept pour l’application d’un modèle de flot au problème de synchronisation des
correspondances en temps-réel. Le modèle est également testé dans un environnement dyna-
mique avec information imparfaite, à l’aide d’un algorithme déterministe DETERMINISTIC
(D) fondé sur un scénario unique représentant l’état moyen du système. Cette approche
permet de capturer avec précision les effets de la synchronisation sur l’ensemble du trajet
des usagers, tout en adressant explicitement les dimensions dynamiques et temps réel du
problème.

Cette base méthodologique est étendue dans le chapitre 5, où deux algorithmes d’Optimi-
sation Stochastique En Ligne (OSEL), CONSENSUS (C) et REGRET (R), sont dérivés du
modèle initial. Ces algorithmes, spécifiquement adaptés au contexte de la synchronisation
des correspondances, sont intégrés dans un cadre de simulation à événements discrets. Ils
reposent sur la génération de scénarios multiples à partir de données historiques et en temps
réel, exploitant ainsi pleinement les sources d’information disponibles aux opérateurs. Cette
modélisation permet de représenter de manière explicite l’incertitude du système avec un
ensemble fini de prévisions, et d’évaluer, pour chaque scénario, les effets des tactiques de
contrôle avant de prendre une décision robuste.

Enfin, le chapitre 6 généralise la méthodologie à l’échelle d’un réseau complet, en l’intégrant
dans un simulateur multimodal. Cette dernière contribution permet l’optimisation conjointe
de plusieurs lignes interconnectées et l’évaluation de la performance des algorithmes dans des
configurations variées de réseaux de transport public. Elle confirme la robustesse, l’efficacité
et l’évolutivité de l’approche proposée, ouvrant ainsi la voie à des applications opérationnelles
à grande échelle.

Cette trajectoire de recherche respecte l’objectif initial formulé dans l’introduction : proposer
une méthodologie à la fois réaliste, robuste, et applicable à grande échelle.
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7.1.1 Une méthodologie réaliste et intégrée

Les algorithmes développés dans cette thèse reposent sur l’exploitation de données empiriques
issues d’un réseau de transport en exploitation réelle. Un prétraitement structuré, incluant
des opérations de nettoyage et de clustering par jour, ligne, arrêt et heure, permet de va-
loriser ces données pour générer dynamiquement des scénarios représentatifs des conditions
d’exploitation. Ces scénarios intègrent également l’état courant du système à partir de don-
nées en temps réel, telles que les positions des autobus, assurant ainsi un cadre expérimental
fidèle aux contraintes opérationnelles.

Les modèles proposés capturent l’ensemble des composantes du parcours usager — attente,
trajet à bord, correspondances, effets des tactiques de contrôle comme la marche induite —
ainsi que les interactions entre flux de passagers et circulation des véhicules. Cette représen-
tation intégrée permet d’évaluer de manière cohérente les impacts systémiques des tactiques
de synchronisation, tant sur les passagers que sur les véhicules. Les performances sont me-
surées à l’échelle du réseau à l’aide d’indicateurs globaux, notamment les temps de parcours
individuels de l’ensemble des usagers. Enfin, les approches développées permettent d’analyser
les effets de bord induits par les décisions locales dans des contextes topologiques variés.

7.1.2 Une méthodologie fiable et robuste

Les approches proposées intègrent explicitement l’incertitude inhérente aux systèmes de
transport public en contexte dynamique. Celle-ci est modélisée au sein des algorithmes
d’OSEL par la génération de scénarios multiples représentant des futurs possibles du réseau.
Cette démarche permet de produire des solutions robustes face aux variations des temps de
trajet, des flux de correspondances et de la demande en passagers.

L’algorithme R, en particulier, se distingue par des performances proches de celles de la
solution à information parfaite, bien qu’il opère sans accès aux données futures. Il permet de
réduire significativement les temps de parcours ainsi que les temps de correspondance, tout
en assurant une stabilité des résultats dans des conditions opérationnelles variées. Lorsqu’il
est déployé à l’échelle de sous-réseaux, les tactiques appliquées par R peuvent engendrer des
effets de synergie entre lignes, amplifiant leur impact mutuel. Au contraire, notre algorithme
déterministe D provoque des interférences négatives à l’échelle des sous-réseaux. Par ailleurs,
l’analyse de la distribution des temps de parcours individuels montre que R applique les
tactiques de manière plus ciblée que l’algorithme D et la solution à information parfaite.
Celles-ci affectent principalement les usagers en correspondance, limitant les perturbations
pour les autres passagers.
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Ces résultats confirment que l’algorithme R constitue une solution à la fois robuste et efficace,
capable de soutenir une prise de décision en temps réel.

7.1.3 Une méthodologie flexible et évolutive

La méthodologie développée se caractérise par une grande flexibilité d’application et une capa-
cité d’adaptation à la complexité croissante des réseaux de transport. Elle permet d’optimiser
des lignes présentant un nombre important d’arrêts et de correspondances. La génération de
scénarios est paramétrable en fonction des niveaux d’incertitude, des horizons temporels et
des besoins décisionnels propres à chaque contexte. Enfin, à l’échelle du réseau, la méthodo-
logie permet de cibler des sous-réseaux structurants ou des typologies particulières, assurant
ainsi une adaptabilité à des contextes opérationnels variés et à des réseaux de toute taille.

7.1.4 Une méthodologie ouverte et reproductible

Afin de favoriser la reproductibilité des résultats et de faciliter l’adoption des outils déve-
loppés, l’ensemble du code source associé à cette thèse est mis à disposition dans un dépôt
GitHub en accès libre. Ce dépôt inclut des modules de traitement de données, des jeux de
tests, ainsi que des tutoriels d’utilisation. L’objectif est de permettre à d’autres chercheurs,
praticiens ou partenaires industriels de reproduire l’analyse, de tester la méthodologie sur
leurs propres données, ou d’adapter les outils à leurs besoins.

Le dépôt propose une interface pour charger et prétraiter des données issues de formats
standards (notamment GTFS et fichiers Comma-Separated Values (CSV) dérivés de cartes
à puce). Les colonnes d’attributs attendues sont documentées de manière explicite et des
exemples concrets sont fournis pour faciliter la prise en main. Des modules permettent égale-
ment de générer automatiquement des instances de test à partir d’un jeu de données GTFS,
avec une flexibilité sur le choix des lignes, des périodes d’analyse, ou du sous-ensemble d’usa-
gers pris en compte (par exemple : tous les usagers ou seulement ceux affectés par certaines
lignes).

Du côté algorithmique, des outils de regroupement et de prétraitement de données historiques
sont fournis, permettant de générer des scénarios à partir de données historiques propres à
l’utilisateur, peu importe la quantité de données disponibles (par exemple : une semaine, un
mois ou même une année entière). Tous les algorithmes mentionnés dans cette thèse sont dis-
ponibles sur le dépôt et peuvent être lancés facilement. Différents outils proposent une analyse
ainsi qu’une visualisation des résultats obtenus. L’ensemble de la démarche vise à rendre la
méthodologie non seulement reproductible, mais également transférable et adaptable à une

https://github.com/LauraKolcheva/RTTransferSynchronization/tree/Laura_multi
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variété de réseaux et d’environnements opérationnels.

7.1.5 Une méthodologie efficace

Les expérimentations menées démontrent l’efficacité des méthodologies proposées selon plu-
sieurs axes. D’abord, les résultats produisent une réduction significative des temps de parcours
pour les usagers en correspondance, ainsi qu’une amélioration du taux de correspondances
réussies et des temps d’attente associés. Ces bénéfices sont obtenus sans détériorer les trajets
des usagers sans correspondance, préservant ainsi l’équité du service. Dans certains contextes,
les interventions ont également permis une meilleure adhérence aux horaires planifiés, en li-
mitant les effets de propagation des retards. En outre, les algorithmes proposés présentent
des temps de calcul compatibles avec une application en temps réel, même dans des situations
complexes impliquant de nombreuses correspondances.

7.2 Application au niveau de l’opérateur

Au-delà de la conception algorithmique, l’objectif principal de cette recherche est de proposer
une méthodologie applicable en contexte réel, en tant qu’outil d’aide à la décision pour la
STL et les opérateurs de transport collectif. Cette démarche s’accompagne d’une réflexion sur
les conditions pratiques d’intégration des tactiques de synchronisation des correspondances
en temps réel dans la gestion opérationnelle des réseaux.

Sur le plan des données, la mise en œuvre des méthodes proposées repose sur la disponibilité
de données historiques et en temps réel. Les données historiques — GTFS pour l’offre de
service, AFC pour les validations de cartes à puce, et AVL pour la localisation des véhicules
— sont prétraitées en amont et sont hors du périmètre de l’optimisation en temps réel.
L’enrichissement de ces données, selon les méthodes décrites dans les chapitres précédents,
permet de générer via les algorithmes d’OSEL des scénarios réalistes menant à des décisions
robustes sans accès à une information parfaite. Lors de chaque réoptimisation en temps réel,
seules deux informations sont nécessaires pour la génération des scénarios : (i) la charge à bord
du véhicule principal, estimée par les données issues de cartes à puce et/ou des compteurs
de passagers, et (ii) les positions des véhicules sur les lignes de correspondance, obtenues via
les données AVL en temps réel. Toutes les autres variables utilisées dans la prise de décision
sont simulées dans les scénarios.

Plusieurs enseignements clés émergent de cette recherche en ce qui concerne l’implémentation
des tactiques en contexte opérationnel. Par exemple, appliquer des tactiques de contrôle trop
en amont ne procure pas de gains significatifs, tout en augmentant la complexité computa-
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tionnelle. C’est pourquoi un horizon flottant de la bonne taille (10 à 15 arrêts dans le cas
de la STL) maximise l’efficacité. De plus, l’application de tactiques à une seule ligne s’avère
particulièrement efficace sur les lignes à basse fréquence, où chaque correspondance réussie
génère un gain de temps considérable pour les usagers concernés. Ce phénomène est encore
plus marqué lors de l’heure de pointe du soir, quand de nombreux usagers effectuent des
correspondances depuis des lignes à haute fréquence vers des lignes à plus basse fréquence
pour le dernier segment de leurs trajets. Ensuite, nos algorithmes appliquent des tactiques
à un nombre restreint d’arrêts, ce qui faciliterait leur transmission aux chauffeurs d’auto-
bus. C’est notamment le cas de l’algorithme R, dont le comportement conservateur limite les
perturbations sur l’ensemble du réseau. À l’échelle du réseau, la synchronisation des corres-
pondances en temps réel est plus bénéfique dans des structures maillées que dans des réseaux
radiaux. Toutefois, sur des corridors structurants au sein d’un réseau radial, la coordination
de quelques lignes clés peut s’avérer très efficace. Finalement, synchroniser l’ensemble des
lignes d’un réseau en temps réel est trop coûteux en temps de calcul et en coordination
humaine. En revanche, une stratégie ciblée, concentrée autour de hubs de correspondances
majeurs, permet d’atteindre des résultats similaires avec une charge opérationnelle réduite.

Enfin, il est essentiel de replacer la synchronisation en temps réel dans une perspective plus
large. Elle ne constitue pas une solution miracle, mais bien un levier d’adaptation face aux
aléas opérationnels affectant l’exécution des horaires planifiés. Elle vise à limiter les effets
négatifs des fluctuations de la demande et des temps de parcours, mais ses bénéfices restent
conditionnels à la qualité de la planification initiale. En d’autres termes, si les correspon-
dances ne sont pas synchronisées dès la conception des lignes et des horaires, les marges
d’amélioration lors des opérations en temps réel sont limitées. À l’inverse, même une pla-
nification optimale est exposée à l’incertitude inhérente aux opérations, ce qui souligne la
nécessité d’une complémentarité étroite entre planification robuste et contrôle en temps réel.

7.3 Limitations de la solution proposée et améliorations futures

Les travaux présentés dans cette thèse explorent différents compromis entre efficacité des
solutions et complexité de mise en œuvre. À travers les trois articles, nous proposons des
méthodes de plus en plus performantes pour la synchronisation des correspondances, au prix
d’une complexité croissante, tant algorithmique qu’opérationnelle.

Dans le chapitre 4, nous introduisons un premier modèle hors ligne, relativement simple
à implémenter. Ce modèle est intégré à l’algorithme D qui, bien qu’il ne prenne pas en
compte l’incertitude, modélise le caractère dynamique du problème. Les résultats obtenus
sont prometteurs, mais un écart subsiste avec la solution à information parfaite, en particulier
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dans les contextes à forte variabilité.

Le chapitre 5 propose deux algorithmes d’OSEL, dont l’implémentation est plus complexe.
Cette complexité accrue permet à l’algorithme R de générer des tactiques robustes, perfor-
mantes sur l’ensemble des scénarios considérés. Toutefois, cette robustesse s’accompagne de
temps de calcul plus élevés, limitant la taille de l’horizon temporel flottant utilisable en pra-
tique. À l’inverse, l’algorithme C, plus léger à exécuter, affiche des performances nettement
inférieures, car il néglige les conséquences d’une tactique sur les scénarios où elle n’est pas
optimale. Par ailleurs, ces deux algorithmes sont appliqués à une seule ligne principale à la
fois.

Dans le chapitre 6, la méthodologie est étendue à plusieurs lignes simultanément, à l’échelle
de sous-réseaux. Les résultats montrent que l’algorithme R conserve d’excellentes perfor-
mances qui se rapprochent de la solution à information parfaite, pour des groupes de lignes
structurantes. Cependant, les réoptimisations sont effectuées de manière séquentielle, sans pa-
rallélisation, ce qui freine l’applicabilité à l’ensemble du réseau de la STL en temps réel. Une
amélioration envisageable consisterait à paralléliser l’optimisation pour différents véhicules
ou lignes, en maintenant la cohérence globale des décisions.

Enfin, bien que les algorithmes proposés aient démontré leur efficacité, une piste de recherche
complémentaire consisterait à les comparer à des heuristiques simples, appliquées localement
à proximité des hubs de correspondance. Ces approches, moins exigeantes en calcul et en
coordination, pourraient offrir une solution plus facilement déployable pour les opérateurs.



93

CHAPITRE 8 CONCLUSION

Cette thèse a abordé le problème de la synchronisation des correspondances en temps réel en
tenant compte de l’ensemble des étapes du parcours des passagers, tout en intégrant explici-
tement l’incertitude inhérente aux réseaux de transport public. Nous avons d’abord proposé
un modèle de flot hors ligne, puis développé deux algorithmes d’Optimisation Stochastique
En Ligne capables d’en exploiter la structure dans un cadre de simulation à événements dis-
crets. L’étude montre que la prise en compte explicite de l’incertitude permet de produire des
solutions robustes et applicables. Cette approche est ensuite étendue à l’échelle de réseaux
entiers, tout en maîtrisant la complexité associée.

Les résultats obtenus confirment que la synchronisation en temps réel, lorsqu’elle est ciblée
avec précision et appuyée par des données historiques et en temps réel, constitue un levier
opérationnel concret pour améliorer la qualité de service. L’ambition de ce travail est de
fournir des algorithmes efficaces et exploitables par notre partenaire, la STL, ainsi que par
les opérateurs de transport collectif.

Enfin, cette thèse a été l’occasion pour moi de mieux comprendre les enjeux liés au transport
public, d’en apprécier la complexité, et de confirmer mon souhait de poursuivre une carrière
professionnelle dans ce domaine porteur de sens.
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ANNEXE B ANNEXES DE L’ARTICLE 2 : ONLINE STOCHASTIC
OPTIMIZATION FOR REAL-TIME TRANSFER SYNCHRONIZATION

IN PUBLIC TRANSIT NETWORKS

Figure B.1 Percentage of passengers with missed transfers, reduction in passenger travel
time and total ridership for different algorithms using the hold tactic for 27 lines in the STL
bus network.

The lines are sorted by percentage of passengers with missed transfers in the "no tactics"
case.
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Figure B.2 Percentage of passengers with missed transfers, reduction in passenger travel
time and total ridership for different algorithms using the hold and speedup tactics for 27
lines in the STL bus network.
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Figure B.3 Percentage of passengers with missed transfers, reduction in passenger travel
time and total ridership for different algorithms using the hold and skip-stop tactics for 27
lines in the STL bus network.




