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RESUME

Nous étudions dans cette thése divers problémes de chemins susceptibles d’ap-
paraitre en analyse des réseaux lorsqu’un seul critére ne suffit pas pour caractériser
adéquatement le chemin optimal entre deux sommets donnés. C’est notamment le
cas lorsque I'on doit concilier la longueur (ou coit) du chemin avec la fiabilité ou avec
les facteurs environnementaux, ou lorsque le chemin optimal doit satisfaire plusieurs
contraintes de ressource.

Ces problemes ont des applications, entre autres, en transport, en télécom-
munications et en confection d’horaires. Une analyse détaillée du probléme d’horaires
de personnel soignant est également effectuée, A titre d’application d’un probléme de
plus court chemin avec contraintes de ressource, plus particuliérement étudié.

Deux nouveaux critéres sont introduits: celui de I’étendue minimale qui consiste
a déterminer un chemin tel que la différence entre la plus grande longueur d’arc et
la plus petite soit minimum, et celui du ratio minimal ol l'on cherche & minimiser
le rapport entre ces deux longueurs d’arc. Des algorithmes polynomiaux sont pro-
posés pour ces problémes, de méme que pour les extensions bicritéres du critére de
I'étendue avec ceux, plus classiques, de la capacité ou de la longueur de chemin. Ces
problémes apparaissent parfois comme des sous-problémes lors de 1'équilibrage des
chaines de montage. C’est en particulier le cas lorsque I'on minimise le temps d’at-
tente aux postes de travail dans le pire cas, ou lorsque 1'on considére les combinaisons
éventuelles de ce critére avec le temps de cycle ou avec le nombre de postes de travail.

Les algorithmes énumérent implicitement les chemins par ordre décroissant de
I’étendue ou du ratio, de maniére i éviter les chemins dont la valeur est supérieure
ou égale 2 celle du meilleur chemin connu. La procédure d’énumération est basée sur
'observation que la solution optimale, pour le critére de I'étendue, est un chemin
efficace pour le probléme bicritére correspondant i la recherche d'un chemin pour
lequel la plus grande longueur d’arc est minimum et la plus petite est maximum.



Un nouvel algorithme, qui exploite de I'information en provenance de la source
et du puits, est également présenté, pour le probléme du plus court chemin bicritére
avec des coits non négatifs. Ce probléme se rencontre, par exemple, en transport
de matiéres dangereuses lorsque 'on minimise a la fois le coiit de transport et la

population exposée.

De nouveaux tests de dominance sont développés pour prolonger des sous-
chemins efficaces a partir de la source et du puits. Ces tests sont basés sur les ex-
tensions non dominées qui sont déja calculées et sur une approximation extérieure
de I’ensemble des extensions efficaces possibles en un sommet donné. On peut ainsi
éliminer plus rapidement des étiquettes ne pouvant donner des chemins efficaces de
la source au puits, méme si elles sont localement non dominées. En outre, une tech-
nique est proposée pour générer efficacement les chemins proprement efficaces. Cette
méthode peut également étre utilisée pour initialiser 1'algorithme.

Les deux procédures se généralisent aisément a I’énumération de toutes les
étiquettes qui sont contenues dans une fenétre définie sur les critéres. De telles bornes
peuvent servir, en pratique, & exclure les solutions efficaces comportant une trop
grande détérioration de I’'un des critéres. Des tests effectués sur des graphes aléatoires
indiquent que l'algorithme se compare favorablement a la méthode de résolution par
une seule extrémité, lorsque la taille ou la densité du graphe augmente.

Nous examinons également le probléeme de plus court chemin avec contraintes
de ressource dans un graphe acyclique. Des fenétres de ressource sont définies sur
les arcs, tandis que des bornes inférieures et supérieures sont ajoutées aux sommets
pour contrdler la mise a jour des consommations de ressource.

La formulation proposée n'implique pas un dédoublement des ressources quand
les mises & jour ne sont pas permises. L’extension des consommations de ressource
n’est pas restreinte non plus i des fonctions non-décroissantes. Il s’agit d'une générali-
sation du probléme de plus court chemin avec fenétres de ressource associées aux
sommets, ol la mise & jour des consommations ne se fait que par rapport aux seuils
inférieurs des fenétres.



Des algorithmes pseudo-polynomiaux, basés sur la programmation dynamique
et sur une approche en deux phases, sont proposés pour la nouvelle formulation.
La structure de l’algorithme en deux phases permet de résoudre efficacement les
problémes de réoptimisation, lorsque certains sommets sont supprimés ou sont fixés,
ou lorsque les coiits changent. En outre, les calculs de complexité indiquent que la
généralisation proposée n’entraine pas une augmentation de la complexité de pire
cas par rapport au cas ou l'accumulation des consommations de ressource est non-
décroissante. En fait, ces calculs montrent que la complexité donnée dans la littérature
pour ce cas particulier est surévaluée.

La nouvelle formulation du probléme de plus court chemin avec fenétres de
ressource est utilisée pour modéliser le probléme de génération d’horaires réalisables
pour une infirmiére donnée. Les sommets du graphe correspondent aux quarts de
travail et les ressources permettent de contréler les séquences d’affectations.

Le modéle obtenu tient compte de la complexité des régles de la convention
collective relatives a I'ancienneté, a la charge de travail, aux rotations et aux congés,
de maniére a produire des horaires réalistes. Il s’agit d’'un probléme pratique et com-
plexe de cheminement, nécessitant de fréquentes réoptimisations, qui peut étre traité
plus efficacement par l’algorithme en deux phases que par les autres algorithmes de
plus court chemin disponibles dans la littérature.

Un modéle de génération de colonnes en variables 0-1 est donné pour le probléme,
plus général, de la confection d’horaires pour ’ensemble du personnel soignant d’une
unité de soins. Ce modéle contient, comme probléme auxiliaire, celui de la génération
d’horaires réalisables pour une infirmiére. Le probléme maitre détermine une confi-
guration d’horaires pour satisfaire les contraintes de demande tout en minimisant le
colt salarial et en maximisant les préférences personnelles et 1'équilibre des équipes.

Ce modéle généralise les formulations proposées dans la littérature et peut étre
vu comme un schéma général pour les problemes complexes de confection d’horaires
de personnel, spécialement dans le contexte des organisations opérant en continu.
Il permet d’explorer implicitement la totalité de I'’ensemble des horaires potentiels,
contrairement a la plupart des formulations de la littérature ou I'on considére des



horaires cycliques ou prédéfinis et en nombre relativement limité. Un schéma de
branchement sur les variables du probléme auxiliaire a été développé pour résoudre

le modéle.

Les tests numériques, effectués sur des données réelles provenant de I’hépital
Royal Victoria de Montréal, confirment la capacité du modéle & prendre en compte
la plupart des multiples régles utilisées en pratique dans la construction d’horaires
d’infirmiéres. De l'avis des infirmiéres-chefs, les horaires générés par le programme
sont de qualité au moins égale a celle des horaires produits a la main.



ABSTRACT

We study in this thesis several path problems which may arise in network
analysis when a single criterion is not suitable to fully characterize an optimal path
between two given vertices. This is typically the case when a compromise must be
found between cost and reliability or between cost and environmental factors. Another
example is when the optimal path must satisfy several resource constraints.

Such path problems have potential applications in transportation, telecommu-
nications and staff scheduling, among others. We also present a detailed analysis
of the nurse scheduling problem, as a practical example of a resource constrained
shortest path problem which is more specifically studied.

Two new path problems are introduced: the minimum range problem where a
path with the smallest possible range of arc lengths is to be found, and the minimum
ratio problem where a path with the minimal ratio of its largest arc length to its
smallest one is sought for. Polynomial algorithms are proposed for these problems, as
well as for the bicriterion extensions of the minimum range criterion with those, more
classic, of the capacity or of the path length. Such problems may arise in assembly
line balancing when the idle time in the worst case is to be minimized as well as the
cycle time or the number of workstations

Basically, the algorithms enumerate candidate paths by decreasing range or
ratio order, so as to skip paths having an objective value greater or equal to the best
known value. The enumeration scheme is based on the observation that the optimal
path for the range criterion is efficient (i.e., Pareto-optimal) for the bicriterion path
problem where the largest arc length is minimized and the shortest one is maximized.

A new algorithm, which exploits information from both ends of the network,
is also presented for the bicriterion shortest path problem with non-negative arc
costs. This problem may arise, for instance, in hazardous material transportation



when designing a path-finding methodology that minimizes the total length and
population at risk along the optimal path. New dominance tests are developed to
extend efficient subpaths from both the source and the sink. The tests are based on
non-dominated extensions already computed and on an outer approximation of the
set of possible efficient extensions at a given vertex. This allows to quickly discard
labels that can cannot yield efficient paths from the source to the sink, even if they

are locally non-dominated.

A technique is also provided to generate the extreme efficient paths and may be
used to initialize the two-ended algorithm. Both procedures can readily be modified
to enumerate all the efficient labels restricted to a window defined by specified lower
and upper bounds on the criteria. Such bounds may be needed to discard efficient
solutions involving an important deterioration of one the criteria. Numerical tests
performed on random graphs indicate that the algorithm tends to outperform the
one-ended labeling algorithm, when the size or the density of the network increases.

We also examine the resource constrained shortest path problem in acyclic
graphs. Resource windows are associated with the arcs, while lower and upper thre-
shold and resetting values are given at the vertices to control the updating of the
resource usage. The proposed formulation does not involve resource duplication when
updating is not allowed at the vertices. Resource accumultaions are neither restricted
to non-decreasing functions. This is an extension of the vertex-dependent windows
formulation of the resource constrained shortest path problem, where updating is
allowed only for resource usage values that are smaller than the lower end of the

corresponding windows.

Pseudo-polynomial algorithms, based on dynamic programming and on a two-
phase approach, are presented for the problem. The specialized two-phase algorithm
is efficient for reoptimization if some vertices are removed or are fixed, or if arc
costs are modified. Moreover, complexity calculations indicate that the proposed
generalization does not increase the worst case complexity, with respect to the the
case of non-decreasing resource accumulation functions. In fact, these calculations
show that the worst case complexity given in the literature for this special case is

over-estimated.



The new resource constrained shortest path formulation is used to develop a
model for the single individual nurse scheduling problem. The vertices correspond
to the feasible shifts while resources are used to control assignment sequences. The
resulting model takes into account the complexity of the collective agreement rules
related to seniority, workload, rotations and days off, so as to generate realistic in-
dividual schedules. This is a complex constrained path problems, involving frequent
reoptimizations, which can be more efficiently handled by the two-phase algorithm
than the other shortest path algorithms available in the literature.

A 0-1 column generation model is formulated for the more general problem
of finding a configuration of schedules for the whole nursing staff of a care unit.
This model involves, as an auxiliary problem, that of generating individual feasible
schedules. The master problem finds a configuration of individual schedules to satisfy
the demand coverage constraints while minimizing salary costs and maximizing both
employee preferences and team balance.

This model generalizes further the previous formulations discussed in the li-
terature and can be viewed as a general scheme for complex personnel scheduling
problems, especially in the context of organizations which operate around the clock.
It also allows an implicit full exploration of the set of potential schedules, while most
of the other formulations in the literature consider cyclic or predefined schedules in
a relatively limited number. A specialized branching rule, on the auxiliary problem
variables, is designed to solve the problem.

Numerical tests, conducted on real data from the Royal Victoria Hospital of
Montreal, confirm the capacity of the model to take into account most of the many
rules used in practice during the scheduling process. According to the head nurses,
the quality of the schedules generated by the program are at least equivalent to that
of the schedules produced by the manual approach.
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Valeur du premier critére sur I'arc (v;, v;).



z; et T; Vecteurs correspondant respectivement aux valeurs inférieures
et supérieures de mise a jour des ressources au sommet v;.

Xij Valeur du premier critére pour un chemin v;-v;.

XE,YE%).  k-eme étiquette, par valeurs croissantes de z, dans P;; i une
ij 7] ]

itération donnée.

(X,-(J-'), Y,.g-')) Etiquette de plus petite valeur lexicographique correspondant
au plus court chemin v;-v; pour le r-éme critére (r = 1, 2).
Yij Valeur du deuxiéme critére sur I’arc (v;, v;).
Y;; Valeur du deuxiéme critére pour un chemin v;-v;.
peth Paramétres utilisés pour exprimer la complexité des algorithmes.
¥(.,-) Opérateur de mise i jour des ressources le long d'un chemin.
p. et p; Vecteurs correspondant respectivement a des bornes inférieures et
ity

supérieures calculées sur la consommation de ressources au sommet v;.



INTRODUCTION

L’un des problémes les plus répandus en analyse des réseaux est la détermination
d’'un chemin optimal entre deux sommets donnés. Les objectifs souvent considérés
sont la longueur, la durée, le coit, la capacité, la fiabilité ou le risque. Dans bien des
cas, ces problémes se raménent a la recherche d’un plus ccurt chemin ou d’un chemin
de capacité maximale entre les deux sommets. Certaines situations, par exemple en
équilibrage des chaines de montage, nécessitent cependant d'autres critéres tels que
I’étendue du chemin ou son ratio, i.e., la différence ou le rapport entre la longueur
de I’arc le plus long et celle de I'arc le plus court.

Des combinaisons bicritéres peuvent également étre requises pour modéliser
des situations réelles ou plus d'un critere doit étre simultanément considéré lors
de la recherche d’un chemin entre deux points donnés. Par exemple, le coiit et la
fiabilité sont tous les deux importants dans les réseaux de télécommunications, les
facteurs économiques et écologiques doivent étre simultanément considérés dans la
construction d'une autoroute, de méme que le profit et le risque dans les projets
d’investissement qui se rameénent & des problémes de chemin.

Dans beaucoup de ces applications, il est souvent suffisant de résoudre le pro-
bléeme du plus court chemin avec la condition supplémentaire que la valeur de chacun
des autres critéres soit contenue dans un intervalle spécifique pour chaque arc utilisé.
Ces critéres supplémentaires peuvent, dans ce cas, étre interprétés comme des res-
sources consommeées le long du chemin. Des mises a jour peuvent étre nécessaires aux
sommets, lorsque la valeur d’une ressource dévie de certains seuils fixés a 1'avance.

Par exemple, en confection d’horaires de personnel, ’employé ne peut passer des
affectations de jour a celles de nuit qu'apres avoir, entre autres, recu consécutivement
un nombre de quarts de jour respectant un minimum et un maximum prédéfinis. Une
telle rotation entre affectations de jour et de nuit nécessite souvent un réajustement
du compteur d’affectations consécutives de méme type.



Ces probléemes de chemins bicritéres ou avec contraintes de ressource apparais-
sent, soit directement ou comme problémes auxiliaires, dans de multiples applica-
tions en analyse des réseaux. Dans le cadre de cette thése, nous proposons divers
algorithmes pour les critéres de 'étendue et du ratio, ainsi que pour les extensions
bicritéres de I'étendue avec le critére du plus court chemin ou avec celui de la capacité

maximale.

Un nouvel algorithme, utilisant des informations en provenance des deux extrémités
du chemin, est également proposé pour le probléme du plus court chemin bicritére,
plus courant et plus difficile. Nous examinons, en outre, une nouvelle extension du
probléme du plus court chemin avec fenétres de ressource sur un réseau acyclique.
L’algorithme proposé pour ce probléme est particulierement bien adapté lorsque le
probléme doit étre résolu plusieurs fois de suite, aprés des modifications n’'impli-
quant pas les consommations de ressource, telles que I'interdiction ou I’imposition de
certains sommets ou arcs.

Ce dernier point est illustré par la résolution d'un modéle de programmation
linéaire généralisée pour la confection d’horaires de personnel soignant. Les variables
du probléme maitre de ce modéle correspondent 4 des horaires individuels qui sont
construits en résolvant un probléme auxiliaire de génération de colonnes. Le probléme
auxiliaire est formulé comme un probléme de plus court chemin avec fenétres de res-
source dans un réseau acyclique ol les sommets correspondent & des affectations.
Diverses ressources sont utilisées dans le modéle pour contréler les séquences d’affe-
ctations réalisables.

Nous discutons, au chapitre 1, les formulations et la littérature relatives aux
différents problémes de chemins considérés dans la thése. La problématique associée
a la confection d’horaires de personnel soignant est également présentée dans ce
chapitre a titre d'application pratique d'un probléme complexe de cheminement. Le
chapitre 2 décrit les algorithmes de chemins avec étendue ou ratio minimum, tandis
que les chapitres 3 et 4 sont respectivement consacrés a la présentation de I’algorithme
du plus court chemin bicritére et a celle de I’algorithme de plus court chemin avec
fenétres de ressource. Les détails de la modélisation et de la résolution du probléme
d’horaires sont abordés dans le chapitre 5, de méme qu’une discussion des résultats.



CHAPITRE 1

PROBLEMATIQUE ET
BIBLIOGRAPHIE

1.1 Problémes de chemins avec étendue ou ratio

minimum

Nous considérons deux nouveaux problémes de chemins dans les graphes. Le
premier consiste a3 trouver un chemin d'un sommet ¥; 3 un sommet v, tel que
I'étendue, i.e., la différence entre la longueur de I'arc le plus long et celle de l'arc
le plus court, soit la plus petite possible. Dans le deuxiéme, on recherche un chemin
pour lequel le rapport de la longueur de ’arc le plus long a celle de I’arc le plus court
soit minimum. Deux extensions bicritéres de ces problémes sont également étudiées.

1.1.1 Problémes & un critére

Soit G = (V, A) un graphe orienté avec n = |V| sommets vy, vs,..., Up, €t
m = |A| arcs. Considérons deux sommets distincts v; et v, de G et 'ensemble P des
chemins de v; a v, (ou chemins v;-v,). Nous supposons que P # O et que la longueur
(ou coiit) ¢;j, de tout arc (v;,v;) € A, est un entier positif.

Les problémes de cheminement dans les graphes ont été trés largement étudiés
(voir par exemple Gallo et al. [31], Gallo et Pallottino [30], [29], pour des revues
bibliographiques). Les objectifs les plus fréquemment considérés sont la longueur



minimale (par exemple, Dijkstra [25]), la fiabilité maximale (exemple, Frisch [28]) et
la capacité maximale (exemple, Punnen [54]). Les deux nouveaux critéres considérés

dans cette section sont présentés ci-apres:

— MINRANGE: trouver un chemin v;-v, dans G tel que la différence entre la plus
grande longueur d’arc et la plus petite soit minimum, i.e.,

min ( max _c; — Cij) (1.1)

min
PeP (viv;)EP (vi,v;)EP

— MINRATIO: trouver un chemin v;-v, dans G tel que le ratio de la plus grande
longueur d’arc sur la plus petite soit minimale, i.e.,

maX(y, v,)eP Cij
PEP mingy, ,v;)€P Cij

(1.2)

Les deux critéres expriment une préférence pour un équilibre dans la distribu-
tion des longueurs d’arcs le long du chemin optimal. L’exemple suivant, en équilibrage
des chaines de montage (voir Baybars [7] pour les définitions), constitue une appli-
cation potentielle de ces problémes. Considérons le diagramme de précédence de k
taches avec des temps d'exécution a,, s, ..., a; et supposons que l'ordre dans lequel
ces taches doivent étre exécutées a une flexibilité limitée. Notons que les sommets,
dans le diagramme de précédence, correspondent aux taches et les arcs représentent
les relations de précédence (voir la figure 1.1 pour un petit exemple).

a,

Figure 1.1 — Ezemple de diagramme de précédence



Considérons maintenant le graphe G (figure 1.2) dans lequel les arcs correspon-
dent aux taches associées & un méme poste de travail et les sommets aux ensembles
de taches déja effectuées (comme dans les réseaux PERT). La longueur d'un arc est
égale 4 la somme des durées des taches qui le définissent. Deux sommets quelconques
sont reliés par des arcs consécutifs correspondant a toutes les possibilités permises
par le diagramme de précédence. Des arcs supplémentaires existent entre chaque
paire de sommets qui sont des extrémités de sous-chemins pour lesquels le temps
total d’exécution des tiches (la longueur du sous-chemin) n’excéde pas une borne
prédéfinie sur le temps de cycle. La longueur d'un tel arc est égale a la longueur du
sous-chemin déja existant entre les sommets impliqués.

a,+ a+a,+a,

Figure 1.2 — Ezemple de graphe G = (V, A) pour une chaine de montage

Le fonctionnement de la chaine correspond 4 un chemin v;-v,, ou aucune tiche n’est
accomplie au sommet v; et toutes les tiches sont terminées au sommet v,. Les tiches
effectuées aux postes de travail le long de la chaine correspondent i celles qui sont
associées aux arcs du chemin. Le temps de cycle est égal a la plus grande longueur
d’arc sur le chemin. La minimisation de 1'étendue correspond donc & celle du temps
d’attente aux postes de travail dans le pire cas. Minimiser le ratio des longueurs
d’arcs revient 4 minimiser le pourcentage de temps d’attente aux postes de travail
dans le pire cas.



Nous n'avons trouvé aucune mention du critére de I’étendue dans la littérature.
Cependant, différents objectifs impliquant un ratio ot au moins 1'un des critéres est
linéaire, ont été étudiés, soit seuls ou dans des problémes de chemins bicritéres. Dans
ces problémes de ratio, deux valeurs différentes sont associées & chaque arc (par
exemple la longueur et le coilit ou bien le coiit et la capacité), au lieu d'une seule
comme dans MINRANGE et MINRATIO.

Dantzig et al. [16] considérent ainsi le probléme de la détermination d’un cycle
qui minimise le ratio de la somme des longueurs d’arcs sur celle des durées (de la
traversée) des arcs, alors que Tung [56] étudie la recherche d’un chemin élémentaire
correspondant a cet objectif. Un probléme bicritére impliquant cet objectif et celui
de la capacité maximum est étudié dans Martins [48]. Le ratio de la somme des coiits
des arcs (ou de leurs longueurs) sur la plus petite capacité des arcs est également
traité par ce dernier auteur dans [46]. Une étude du probléme de la détermination
d’'un chemin minimisant le ratio de la somme des coiits des arcs sur le produit de
leurs fiabilités est effectuée dans Ahuja [2].

Nous proposons, au deuxiéme chapitre de cette thése, des algorithmes pour les
problémes MINRANGE et MINRATIO. Ces algorithmes énumeérent, fondamentale-
ment, des chemins par ordre décroissant de 1’étendue ou du ratio, de maniére 3 éviter
les chemins dont la valeur est supérieure ou égale celle du meilleur chemin connu.

Un chemin efficace (dit aussi non dominé ou Paréto-optimal) pour un probléme
bicritére se définit comme un chemin P tel qu'il n'existe aucun autre chemin P’ pour
lequel I'un des critéres est meilleur sans que ’autre ne soit moins bon. Ainsi, pour
le probleme bicritere MINMAX-MAXMIN correspondant a la recherche d’un chemin
P pour lequel la plus grande longueur d’arc, é(P), est minimum et la plus petite
longueur d’arc, ¢(P), est maximum, un chemin P,y est efficace pour le probléme
MINMAX-MAXMIN s'il n’existe aucun autre chemin P € P avec &(P) < &(P,p) et
c(P) 2 c(Popt) ou avec E(P) < &(Pope) et c(P) > ¢(Pope). La procédure d’énumération,
utilisée dans les algorithmes pour les problémes MINRANGE et MINRATIO, est
basée sur 'observation que la solution optimale est un chemin efficace pour le probléme
bicritere MINMAX-MAXMIN.



Cette procédure est similaire a celle qui consiste a résoudre un probléme de
chemin 4 un critére en déterminant un sous-ensemble de chemins efficaces pour un
probléme bicritére associé. Un exemple de cette approche est utilisée dans Martins
[46] pour déterminer un chemin qui minimise le rapport colit/capacité, en utilisant
le probléme bicritéere MINSUM-MAXMIN ou l'on recherche un chemin de coit total
minimal et dont la (plus petite) capacité est maximale (voir, par exemple, Hansen[36]
ou Martins {48]). Une méthode semblable est également utilisée dans Ahuja [2] pour
trouver un chemin pour lequel le rapport coiit /fiabilité est minimal, en utilisant un al-
gorithme qui résout le probléme bicritere MINSUM-MINSUN consistant & déterminer
un chemin pour lequel le coiit et la fiabilité sont minimum.

Notons que les graphes orientés considérés dans la formulation des problémes
MINRANGE et MINRATIO contiennent, comme cas particuliers, les graphes non-
orientés (dans lesquels (v;,v;) € A implique (vj,v;) € A)). Pour ces graphes, des
algorithmes de meilleures complexités peuvent étre obtenus en exploitant un récent
résultat de Punnen [54] pour le probléme de chemin de capacité maximale. Nous
examinons dans la prochaine section quelques extensions bicritéres des problémes
MINRANGE et MINRATIO.

1.1.2 Extensions bicritéres

Il est souvent pertinent d’utiliser plus d'un critére pour déterminer le meilleur
chemin dans un graphe. Une liste de problémes de chemins bicritéres avec des analyses
de complexité et divers algorithmes spécialisés peut étre trouvée dans Hansen [36].
Une discussion sur l'utilisation de fonctions d’utilité pour résoudre les problémes de
chemins bicritéres est également présentée dans Henig [38].

Dans le but de donner le maximum de flexibilité au décideur lorsque deux
critéres sont considérés, il est nécessaire de trouver tous les chemins efficaces. 1l
pourrait cependant y avoir un nombre exponentiel de chemins v;-v, ayant la méme
valeur pour les deux critéres. On cherchera donc a déterminer plutét un ensemble
P* de chemins v;-v, efficaces non équivalents, i.e., un ensemble tel qu’aucun chemin



dans P* n’est dominé ni équivalent & un autre chemin de P* et aucun chemin dans
P* ne domine ni n’est équivalent & un autre chemin de P*.

En guise d’application, considérons de nouveau le probléme d'équilibrage de
chaine de montage discuté a la section précédente. Rappelons que le temps de cycle
est la plus grande longueur d'arc sur le chemin v;-v,, choisi. Ce temps est un parameétre
important puisqu’il détermine le taux de production et contraint I’ensemble des taches
qui pourraient étre exécutées le long de la chaine.

Ainsi, il peut étre intéressant d’étudier le probléeme bicritére MINRANGE-
MINMAX pour le graphe G du probléme d’'équilibrage de chaine de montage. Cela
revient i considérer simultanément le critére du taux de production et du temps
d’attente dans le pire cas.

On obtient un probléme plus difficile lorsque le critére de 1’étendue (ou du ratio)
est considéré en méme temps que celui de la longueur totale du chemin. Ce dernier
critére a la méme valeur pour tout les chemin dans ’exemple de la chaine de montage.
I1 correspond au temps total de traitement le long de la chaine.

Ainsi, si une valeur constante égale, par exemple, a une borne supérieure sur le
temps de cycle, est ajoutée a toutes les longueurs d’arc, alors tout chemin v;-v, aura
une longueur égale au temps total de traitement plus le produit de la constante et
du nombre d’arcs sur le chemin (i.e., le nombre de postes de travail sur la chaine).
Le probleme MINRANGE-MINSUM revient donc & considérer le critére du nombre
de postes de travail et celui du temps d’attente dans le pire cas.

Un algorithme est décrit au chapitre 2 pour ce probléeme ainsi que pour le
probléeme MINRANGE-MINMAX. La prochaine section est consacrée & l'exposé d’un
probléme bicritére plus classique, le probléeme MINSUM-MINSUM, ou I'on considére
simultanément la longueur totale du chemin pour deux critéres différents.



1.2 Le probleme de plus court chemin bicritére

1.2.1 Description du probleme

Soit de nouveau un graphe orienté G = (V, A) avec n = |V| sommets vy, v, ..., Un
et m = [A| arcs. A la différence de la section précédente, on associe, & chaque arc
(vi, v;) € A, deux valeurs non négatives (z;;, ¥:;). Les sommets v, et v, correspondent
a la source et au puits, respectivement.

Un chemin allant d’'un sommet v; & un sommet v; sera appelé chemin v;-v; et
sa valeur sera représentée par I’étiquette bicritére (Xj;, Y;;). Chaque composante de
I’étiquette est égale a la somme des valeurs correspondant au critére associé, sur tous
les arcs du chemin. L’étiquette de plus petite valeur lexicographique correspondant
au plus court chemin v;-v; pour le r-éme critére (r = 1, 2) sera notée (X‘(Jr ), Yl-g-')).

Rappelons qu’une étiquette (X;;, Yi;), associée & un chemin v;-vj, est efficace (ou
non dominée) s’il n’existe aucune étiquette (X;;, Y’), également associée & un chemin
v;-vj, telle que Xi; < X;; et ¥; < Y;; avec I'inégalité stricte dans au moins un des
deux cas. Un chemin correspondant a une étiquette efficace est aussi dit efficace, et

vice versa.

On peut remarquer que plusieurs chemins efficaces peuvent correspondre & une
méme étiquette. Etant donné un sommet v;, un chemin v,-v; ou un chemin v;-v,, dont
le prolongement ne peut donner un chemin v;-v, efficace, sera dit non prometteur.

Le probléme de plus court chemin bicritére consiste 3 déterminer un chemin
v;-v, pour lequel la valeur totale de chacun des critéres est minimale. Trés souvent,
un tel chemin n’existe pas et le probleme se rameéne a 1'énumération des chemins v;-v,
efficaces. Ce probléme est susceptible d’apparaitre dans diverses applications en ana-
lyse des réseaux, lorsqu’un seul objectif ne suffit pas pour caractériser adéquatement
le probléeme d’optimisation sous-jacent.
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1.2.2 Revue de la littérature

Le probléeme de transport de matiéres dangereuses discuté dans Chin et Cheng
[12] constitue un exemple d'application du probléme de plus court chemin bicritére.
Les deux critéres considérés par les auteurs sont respectivement la distance totale
parcourue et la population exposée a I'intérieur d'une bande de largeur fixe le long
du trajet.

Une variante du probléme consiste 3 utiliser une fonction d'utilité, qui combine
les deux critéres, pour trouver un chemin optimal. Lorsque la fonction d'utilité est
linéaire ou lexicographique, une solution existe par programmation dynamique (voir,
par exemple, Loui [44]). Une méthode de recherche linéaire unimodale et un algo-
rithme d’évaluation et de séparation progressives basé sur la génération des k-éme
plus courts chemins, sont proposés dans Henig [38] pour calculer des bornes sur la
valeur optimale d'une fonction d’utilité quasi-concave.

Notons cependant que, pour des fonctions d’utilité quelconques, le probléeme de
plus court chemin bicritére n’admet pas toujours de solution par la programmation
dynamique. On est alors généralement amené a énumeérer les chemins efficaces avant
de sélectionner la solution optimale (voir Loui [44]). En outre, une fonction d'utilité
n'est pas toujours explicitement bien définie en pratique.

Nous nous intéresserons, dans cette étude, au probléme de génération de ['en-
semble des étiquettes efficaces correspondant a des chemins v,-v,. Un tel ensemble
défini un ensemble minimal complet de chemins v;-v, efficaces, i.e., contenant exac-
tement un chemin pour chaque étiquette efficace. Ce probléeme est difficile dans le
pire cas: le nombre d’étiquettes efficaces croit exponentiellement en fonction de la
taille du réseau (Hansen [36]).

En outre, dans I'espace des étiquettes, toutes les étiquettes efficaces du probleme
de plus court chemin bicritére ne sont pas des points extrémes de l'enveloppe convexe
des étiquettes correspondant aux chemins v,-v, du graphe (voir, par exemple, White
[63]). Les étiquettes associées a ces points extrémes seront appelées étiquettes efficaces
extrémes. Ainsi, une approche paramétrique résolvant successivement des problémes
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de plus court chemins pour un objectif obtenu par combinaison linéaire des deux
critéres, ne permettra pas toujours de trouver toutes les étiquettes efficaces (voir
White [63], entre autres).

Un algorithme d’étiquetage est proposé dans Hansen [36] pour le probleme
considéré. L'auteur décrit également une méthode d’approximation permettant de
déterminer les étiquettes efficaces pour un niveau de précision donné. Cette méthode
est polynomiale en fonction de la taille du graphe et de l'inverse de l'erreur rela-
tive maximale permise sur la valeur de chaque critére pour un chemin v;-v,. Un
algorithme, basé sur une méthode de k-éme plus court chemin, est aussi décrit dans
Climaco et Martins [13] pour générer tous les chemins efficaces, méme quand il en
existe plusieurs pour une méme étiquette.

Henig [38] suggere trois méthodes pour générer I'ensemble des étiquettes effi-
caces extrémes. Une des méthodes est une procédure d’étiquetage permanent des
chemins et les deux autres impliquent la résolution successive de problémes pa-
ramétriques de plus court chemin, en vue de générer les étiquettes efficaces extrémes
par ordre croissant de 1'un des critéres.

Une approche paramétrique similaire, utilisant un argument du type simplexe
pour ajuster les paramétres, suivie de la procédure d’étiquetage de Hansen [36],
est présentée dans Mote et al. [51]. Les auteurs rapportent des résultats de calcul
indiquant qu’une telle procédure combinée est significativement plus rapide que la
méthode du k-éme plus court chemin et meilleure que la méthode d’étiquetage pour
les problémes avec une corrélation positive entre les deux critéres. Les tests ont
été effectués sur des réseaux générés aléatoirement, ayant 1000 sommets et jusqu'a
10000 arcs avec des valeurs entiéres de 1 & 200 pour chaque critére, ainsi que sur des
réseaux quadrillés contenant 400 sommets et jusqu'a 1520 arcs pour des longueurs
d’arcs entiéres de 1 & 100.

Cependant, comme indiqué dans Henig [38], les méthodes paramétriques du
type “simplexe” sont hautement sensibles & la dégénérescence de la base. Ceci se
produit lorsque I'arc entrant dans la base courante n'entraine pas de modification de
P'étiquette résultante. Plusieurs itérations sont alors nécessaires pour qu’une nouvelle
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étiquette efficace extréme puisse étre trouvée. Henig [38] propose une procédure al-
ternative qui nécessite le calcul de plus courts chemins successifs un nombre de fois
égal a deux fois le nombre de chemins efficaces extrémes.

1.2.3 Une approche par les deux extrémités

La méthode d’étiquetage a l'inconvénient d’entrainer une croissance rapide du
nombre d’étiquettes efficaces correspondant i des sous-chemins qui ne donneront pas
de chemins v;-v, efficaces. Un test de dominance est présenté dans Tung et Chew
[58] pour réduire le nombre de ces étiquettes non prometteuses. Le test utilise un
chemin fictif dont 1’étiquette est constituée par les valeurs des plus courts chemins
d’un sommet donné au sommet v,, pour chacun des critéres. L’algorithme résultant
peut étre considéré comme une méthode en deux phases pour résoudre le probléme
par les deux extrémités du réseau.

Peu de travaux existent dans la littérature sur la résolution du probléme de
plus court chemin bicritére par les deux extrémités. Une analyse critique de quelques
algorithmes utilisant une approche par les deux extrémités pour le probléme de plus
court chemin A un critére peut étre trouvée dans Dreyfus [27]. Un algorithme plus
récent dans cette catégorie est discuté dans Jeyaratnam [42].

Les techniques utilisées consistent & prolonger les sous-chemins & la fois A partir
des sommets v; et v,, de maniére & obtenir une procédure en une phase. Cependant,
comme rapporté dans Dreyfus [27], I'une des difficultés majeures d’une telle approche
symétrique est le développement de tests d’arrét et de dominance corrects et efficaces.
En outre, la complexité de pire cas de ces algorithmes est en général moins bonne
que celle de I’algorithme de Dijkstra [25] qui résout le probléme par un seul extrémité

(voir Dreyfus [27]).

Cependant, dans le cas bicritére, une approche symétrique par les deux extrémités
pourrait significativement réduire le nombre total d’étiquettes examinées, étant donné
qu’environ la moitié seulement des sommets serait considérée autant dans la phase



13

“en avant” que celle “en arriére”. Cette observation constitue I'une des motivations
pour le développement de l'algorithme proposé au chapitre 3 de cette thése pour
résoudre le probléme de plus court chemin bicritére par les deux extrémités.

L’algorithme est initialisé en déterminant, pour chaque sommet et pour chaque
critére, les étiquettes de plus petites valeurs lexicographiques correspondant aux plus
courts chemins de v; au sommet considéré et de celui-ci 3 v,. Une extension de
la procédure d’initialisation est aussi discutée. Elle implique le calcul des chemins
efficaces extrémes, non nécessairement suivant l'ordre croissant de I'un des critéres.

Cette procédure n’est pas susceptible de dégénérescence et est particuliérement
bien adaptée pour trouver les étiquettes efficaces extrémes restreintes i un rectangle
défini par une borne inférieure et une borne supérieure sur chacun des critéres. De
telles bornes peuvent étre spécifiées par le décideur dans le but de limiter la recherche
de solutions efficaces & une région donnée de l'espace des solutions. Ceci permet
d’exclure, éventuellement, les solutions correspondant 4 une trop grande détérioration
de I'un des criteres.

De nouveaux tests de dominance, plus forts que ceux de Tung et Chew [58],
et utilisant des approximations extérieures de ’ensemble des étiquettes efficaces i
un sommet donné, sont incorporés dans |'algorithme. La performance numérique de
cette approche est comparée & celle de ’algorithme d’étiquetage de Hansen [36]. Les
résultats sont discutés au chapitre 3.

Dans la prochaine section, nous décrivons un autre probléeme de plus court
chemin impliquant plus d’un critére. Contrairement au probléme bicritére, il s'agira
de minimiser un seul des critéres, les autres étant contrdlés par des fenétres définies
sur les arcs et aux sommets. Cependant, les algorithmes seront aussi basés sur le
principe d'utilisation de I'information en provenance de la source et du puits.
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1.3 Un probléme de plus court chemin avec fené-

tres de ressource

On considére, dans cette partie, le probléme de trouver un chemin de coit
(ou de longueur) minimum dans un réseau acyclique ou la traversée de chaque arc
implique la consommation d’une ou de plusieurs ressources. Un arc donné ne peut
étre utilisé que si les ressources cumulées jusqu'a l'origine de l'arc respectent des
fenétres définies par des bornes inférieures et supérieures sur cet arc.

On permet une correction ou remise a jour de la consommation des ressources
aux sommets. Ainsi, si la ressource cumulée excéde un seuil supérieur prédéfini, elle
est ramenée a une valeur supérieure de mise i jour également prédéfinie. De maniére
similaire, un seuil et une valeur de mise i jour inférieures sont définis pour chaque
ressource et pour chaque sommet.

Une description formelle du probléme est présentée i la section 1.3.1. Ce pro-
bléme se rencontre, par exemple, en confection d’horaires de personnel ot les sommets
représentent les affectations et un chemin correspond & une séquence d'affectations
sur un horizon de planification donné. Les ressources peuvent correspondre alors aux
nombres d’affectations consécutifs de jour, de soir ou de nuit. Un exemple de cette
application est fourni a la section 1.4.

Divers problémes de plus court chemin avec quelques contraintes additionnelles
ont été considérés dans la littérature par plusieurs auteurs incluant Joksch [43], Saigal
[59], Minoux [50], Handler et Zang [35], Hansen [36], Aneja, Aggarwal et Nair (3], Jaffe
[41], Martins [47], de méme que Ribeiro et Minoux [55]. Une revue bibliographique
de ces travaux peut étre trouvée dans Beasley et Christofides (8].

Les méthodes de résolution proposées par ces auteurs sont basées sur des tech-
niques telles que la programmation dynamique (exemple, {43], [59]), I'étiquetage
(exemple, [36], [47]), la relaxation lagrangienne combinée avec des algorithmes de
k-émes plus courts chemins (exemple, [35]) or ou avec une procédure d’évaluation
et de séparation progressives (exemple, [8]). Une heuristique, basée sur la relaxation
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lagrangienne et un calcul de plus courts chemins paramétriques, est également dis-
cutée dans Ribeiro et Minoux [55], pour le cas ou le chemin cherché est élémentaire
et la consommation totale de la ressource est doublement contrainte.

Ces algorithmes sont congus pour des contraintes additionnelles actives seule-
ment au sommet terminal v,. Cependant, dans le probleme de plus court chemin
que nous considérons, de telles contraintes peuvent étre présentes & n'importe quel
sommet et ne sont pas nécessairement linéaires.

Un probléme, voisin de celui considéré ici, est discuté dans Desrochers [19] (voir
aussi Desrosiers, Dumas, Solomon et Soumis [22]), ol la mise & jour n’est permise
que pour des valeurs de ressource plus petites que des seuils inférieurs prédéfinis. Les
fenétres de ressource sont associées aux sommets et coincident avec celles des seuils et
valeurs de mise a jour. Il s’agit d’'une généralisation multidimensionnelle du probléme
de plus court chemin avec fenétres de temps, discuté dans Desrosiers, Pelletier et
Soumis (23] et dans Desrosiers, Soumis et Desrochers [24], comme probléme auxiliaire
du probléme des multiples voyageurs de commerce avec fenétres de temps.

Un algorithme de programmation dynamique est également décrit dans Ioachim
et al. [40] pour le cas ou des coiits linéaires, éventuellement décroissants en fonction
de la ressource, sont appliqués aux sommets du plus plus court chemin avec fenétres
de temps. Une formulation générale de ces problémes de chemins avec contraintes
de ressource est présentée dans Desaulniers et al. [18] mais aucun algorithme n’est
décrit pour ce cas général.

La résolution du probléme des multiples voyageurs de commerce avec fenétres de
temps, nécessite de résoudre plusieurs fois le probléme auxiliaire, dans un processus de
génération de colonnes, aprés avoir modifié les coiits sur les arcs. Ainsi, un algorithme
efficace est requis pour la résolution répétitive du probléme de plus court chemin
avec contraintes. Desrochers et Soumis décrivent, pour ce probléme, un algorithme
d’étiquetage permanent et une procédure de réoptimisation primale-duale dans [20] et
[21] respectivement. Nous présentons, ci-aprés, une description formelle de la nouvelle
extension du probléme de plus court chemin avec fenétres de ressource.
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1.3.1 Formulation du probléme

On considére un réseau orienté acyclique avec n = |V| sommets, vy, vz, ..., ¥n,
en ordre topologique et m = |A| arcs, ol les sommets v, et v, sont respectifement la
source et le puits. Un ensemble R de ressources a valeurs discrétes est associé a G.

hi g Aj X
Xi X
Figure 1.3 — Notations

Deux vecteurs, h; = (By, R, - Byry) €t hi = (i, Riz, ..., hyw)), correspondant
respectivement aux seuils inférieurs et supérieurs sur l’accumulation des ressources,
sont définis & chaque sommet. Des vecteurs de mise & jour, z; = (z;;, Zip, s Zyry) €t
Z; = (ZTa, Tio, ..., Tiir]), aSsociés respectivement aux seuils inférieurs et supérieurs,
sont également donnés. Un coit c;;, un vecteur d’utilisation de ressource u;; =
(uij1, Uijas - UijiR(), BiDsi que des vecteurs de bornes inférieures et supérieures wy; =
(Wis1r Wijos - Wijiry) €8 Wij = (Wij1, Wiz, .-, Wij|R)) respectivement, sont aussi associés
a chaque arc (v;, v;) € A (voir la figure 1.3).

Un ensemble d’arcs consécutifs du sommet v; & un sommet v; sera appelé chemin
v-v;, comme dans les sections précédentes. Un tel chemin est caractérisé par un
vecteur de ressource initial zo, un vecteur de ressource courant z; = (z, Zi2, ---, Zi|R})
et un coiit ¢;. Un chemin v;-v; peut étre prolongé en utilisant un arc (v;,v;) € A,
uniquement si les contraintes de fenétres ci-aprés sont satisfaites:

Wijr < T < 'Tu.ijn reR. (1'3)
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Ainsi, pour un arc (v;,v;), les contraintes de fenétres de ressource (1.3) définissent

un intervalle de réalisabilité [w;;,, W;;»] pour chaque ressource r € R. On considére,

en outre, un opérateur de mise a jour ¥(-, -) tel que, pour tout sommet v; € V, toute
ressource r € R et pour tout vecteur de ressource z € y Al

4

Z;r s1 2z, < ’_lj.-a

@(vj’zr) =4 % sl er <z < ery

\ fjr Si Zr > hjr.

Apres la traversée de l'arc (v;,v;) € A, ¢;j et u;j, sont respectivement ajoutés
ac et & z;, pour r € R. L'opérateur de mise a jour ¥(.,-), est ensuite appliqué
a z; = i + u;jr au sommet v; pour obtenir z;, = ¥(vj, Tir + uijr), o 7 € R. La
consommation de ressources a la source est donnée par z;, = ¥(vy,z¢), © € R.
Dans la suite du texte, I'opérateur de mise a jour ¥(-, -) sera étendu i des arguments
vectoriels, i.e., étant donné un sommet v; et un vecteur de consommations de ressource
z € ZI™ le vecteur (¥(vi, 1), ¥(vi, 22), ..., ¥ (v;, 2i»|)) sera noté ¥(v;, 2).

Un chemin v;-v, est réalisable si les contraintes de fenétres de ressource (1.3)
sont satisfaites sur chacun de ses arcs. Le nouveau probléme de plus court chemin avec
fenétres de ressource se définit donc comme suit: étant donné un vecteur de ressource
initial zg, trouver un chemin v;-v, réalisable et de coiit minimal, ou montrer qu'un
tel chemin n’existe pas. Ce probléme sera noté RCSPP. Il n’est pas difficile de voir
que le probléme RCSPP contient celui du sac & dos comme cas particulier et est, par
conséquent, NP-difficile.

1.3.2 Un cas particulier

Le probléme de plus court chemin avec fenétres de ressource aux sommets
discuté dans Desrosiers, Dumas, Solomon et Soumis [22] peut étre considéré, dans
le cas des graphes acycliques, comme un cas particulier, du probléme RCSPP. En
effet, soit un graphe orienté acyclique G = (V, A) avec un ensemble de ressources
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R a valeurs discrétes et, pour chaque arc (v;,v;) € A, un coiit ¢;; et un vecteur
de consommations de ressource u;; comme précédemment. Des fenétres de ressource
[air, bir], 7 € R, sont définies a chaque sommet v; € V. Un coiit ¢; et un vecteur de
ressource z; = (i1, Ti2, ---, L4R]) sont associés a chaque chemin v;-v;.

Etant donné un vecteur de ressource initial zq, en posant £; = zg et ¢; =0, le
probléme de plus court chemin avec fenétres de ressource aux sommets peut étre défini
comme celui de trouver un chemin v;-v, de coit minimum contenant uniquement des
arcs (v;,v5) € A tels que:

ayr £ 21y < hiry, G =citGij,  Tirtuije < bjr,  Tj = max{aj,, Tituijr}, rER.
Par conséquent, en supprimant les fenétres de ressource aux sommets et en posant:

iy = Zjp = Gy, hir =T = by reR, vy €V,

Wijr = Gir,  Wijr = bjr — wije, TER, (v,v;) € 4;
on obtient une instance de RCSPP.

Il convient de remarquer que les bornes inférieures des fenétres dans le probléme
de plus court chemin avec fenétres de ressource aux sommets sont molles, i.e., un che-
min v;-v, optimal peut contenir des arcs (v;, v;) € A tels que z; +u;jr < @jr. On peut
voir aisément qu'une version simplifiée de RCSPP ot les seuils sont égaux aux valeurs
de mise a jour correspondantes, peut se transformer en une instance du probléme de
plus court chemin avec fenétres de ressource aux sommets. Il suffit, principalement,
d'introduire un sommet intermédiaire sur chaque arc et de dédoubler les ressources
impliquant des contraintes dures pour les fenétres (voir, par exemple, Gamache et al.
[32]). Ce dédoublement de ressources constitue cependant un inconvénient qui rend
cette transformation inverse peut attrayante.

Différents algorithmes sont présentés au chapitre 4 pour le probleme RCSPP,
de méme qu’une discussion de leurs complexités. En particulier, une procédure est
décrite pour les cas de réoptimisation, lorsque le probléeme de plus court chemin avec
contraintes apparait comme un probléme auxiliaire de génération de colonnes. Nous
présentons dans la prochaine section un exemple d’application nécessitant une telle



19

résolution répétitive d’'un probléme complexe de cheminement dans un réseau, qui se
rameéne au probleme RCSPP.

1.4 Le probleme d’horaires de personnel soignant

Le probleme de confection d’horaires de personnel soignant consiste a générer
une configuration d’horaires individuels, i.e, de séquences d’affectations journaliéres
sur un certain horizon de planification. La configuration d’horaires est générée de
maniere a satisfaire les spécifications de la convention collective et les quotas de
demande exprimés par I’hopital, tout en minimisant le coiit salarial et en maximisant
les préférences individuelles des infirmiéres ainsi que la qualité des soins.

Les spécifications de la convention collective sont des régles qui permettent de
définir des horaires acceptables pour chaque infirmiére individuellement, en termes
d’ancienneté, de charge de travail, de congés statutaires ou de fins de semaines, et
d’affectations consécutives, incluant les rotations entre divers types de quarts. Une
affectation est une spécification du quart de travail qu'une personne doit effectuer un
jour donné. Un quart de travail est soit de jour, du soir ou de nuit. Il est caractérisé
par une heure de début et une heure de fin qui sont fixes.

Un jour est divisé en plusieurs périodes de demande caractérisées par des heures
fixes de début et de fin. Les périodes de demande sont identiques pour tous les
jours mais ne coincident pas nécessairement avec les quarts de travail. Un quart de
travail peut éventuellement couvrir plusieurs périodes de demande. On supposera
que les périodes de demande originales sont décomposées, si nécessaire, en plusieurs
périodes plus petites, de sorte qu'un quart de travail couvre une période de demande
entiérement ou pas du tout (voir la figure 1.4). Dans la suite du texte, I’expression
“période de demande” désignera ces périodes modifiées, sauf indication contraire.
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Périodes de demande N— —2 , 3 | 4
D8 (jour) _
D12 (jour) .
E1 (soir)
e
) E (soir) .
Quarts de travail '
E2 (soir)
p—
S8 (nuit) )
) S12 (nuit) B}
Echelle de temps — —+ —— g i
7h30 15h30 19h30 23h30 7h30

Figure 1.4 — Ezemple de quarts de travail et de périodes de demande

Les quotas de demandes spécifient, pour chacune des périodes de demande
et pour chaque jour, le nombre de personnes de chaque niveau de qualification, ou
combinaison de niveaux de qualification, qui doivent étre présentes. Des spécifications
relatives aux quarts de travail peuvent également étre incluses dans I'expression des
quotas de demande.

Le coiit salarial comprend le salaire régulier du personnel permanent ainsi que
les coiits des temps supplémentaires et celui du personnel flottant. Les préférences in-
dividuelles peuvent étre exprimées en termes de requétes pour des jours de congés, des
quarts de jours par rapport a ceux de nuit, etc. La qualité des soins peut étre évaluée
par le niveau d’équilibre entre les personnes expérimentées et moins expérimentées
qui sont affectées a la méme période de demande.

Ce travail de modélisation du probléme d’horaires de personnel soignant a
été fait en collaboration avec I'Hopital Royal Victoria de Montréal. Le but visé
est de développer un systeme de confection d’horaires qui permettra de prendre en
compte les besoins et les contraintes spécifiques a I'unité considérée, sans recourir a
des horaires-types fournis par l'infirmiére-chef. Le systéme ne devra pas demander
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beaucoup de travail de mise 3 jour, étant donné que les besoins et les contraintes
varient d’un horizon & l'autre. Une explication exhaustive des multiples régles a res-
pecter et des compromis acceptables a été donnée par le personnel de 1'hdpital.

La confection manuelle des horaires est trés fastidieuse et se limite généralement
a la recherche d'une solution réalisable, avec peu d’accent sur !'optimisation, du fait
de la complexité des regles de la convention collective. La prise en compte de ces
multiples contraintes est un défi de taille pour I'automatisation de la confection des
horaires, comme ['illustre la revue de la littérature ci-apres.

1.4.1 Une bibliographie des horaires d’infirmiéres

L’approche manuelle par essais et erreurs a été abondamment étudiée dans la
littérature spécialisée en administration de la santé (voir, par exemple, la récente
revue de la littérature présentée dans Hung [39]). Une grande partie des travaux sur
I'automatisation de la confection des horaires de personnel soignant considére des
systémes sans modéles mathématiques explicites (exemple., Smith et Wiggins [60],
Anzai et Miura [4], Okada et Okada [52]), qui sont essentiellement une traduction
informatique de la logique de 'approche manuelle.

Plusieurs articles de la littérature traitent cependant de modéles cycliques, qui
sont des modéles mathématiques assez simplifiés et susceptibles de résolution exacte.
Dans ces modeéles, des séquences d’'affectations cycliques sont générées de maniére
a minimiser la taille du personnel nécessaire pour couvrir la demande, également
supposée cyclique.

Baker (5] considére, par exemple, deux jours consécutifs de congé par semaine
pour chaque personne, tandis que Burns [10] étudie le cas de dix jours de travail
sur quatorze avec congé une fin de semaine sur deux et jusqu’a six jours de travail
consécutifs. Burns et Koop [11] considérent des affectations cycliques dans un modéle
similaire, mais avec trois types de quarts de travail et des spécifications cycliques fixes
pour la répartition des jours de travail et de congé.
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Les premiers modeéles réalistes et non cycliques sont proposés dans Warner
[62] et dans Miller et al. [49]. Ces modéles sont cependant résolus de maniére heu-
ristique, essentiellement a cause de la trés grande taille de I'’ensemble des horaires
potentiels pour chaque personne. Les modeéles décrits traitent de la maximisation
des préférences individuelles et comprennent des procédures pour tenir compte des
requétes personnelles.

Certains travaux, plus récents, considérent des modéles multiobjectifs non cy-
cliques, qui sont résolus au moyen de la programmation par buts (par exemple, Oz-
karahan et Bailey [53]), de méthodes interactives de programmation multicritére
ou de la méta-heuristique taboue avec une fonction d’utilité lexicographique (par
exemple, Berrada [9]). Des fonctions de priorité et de performance sont définies pour
ces modeles multiobjectifs & partir de certaines hypothéses sur la couverture des
demandes, les objectifs de la direction et les préférences des infirmiéres.

On notera cependant que les méthodes de résolution utilisées par ces auteurs
sont plutot restrictives par rapport au nombre d’horaires possibles par personne. En
outre, 'approche interactive de programmation mathématique multicritére décrite
implique une trop grande intervention du décideur. Celui-ci doit, & chaque itération
majeure, rajuster sélectivement les préférences pour permettre la génération d’une
nouvelle solution non dominée.

1.4.2 Limitations des systéemes existants

La plupart des algorithmes exacts de la littérature considérent des situations
simplifiées (telles que des modéles cycliques) et sont, par conséquent, peu réalistes.
Par ailleurs, d’importants probléemes de réalisabilité, sources de griefs de travail,
peuvent se rencontrer dans les systémes heuristiques. La solution obtenue, dans ce
dernier cas, peut étre systématiquement sous-optimale, sans aucune indication précise
sur les améliorations encore possibles. La plupart des systemes heuristiques sont
également sensibles a ’environnement considéré et manquent ainsi de flexibilité en
cas de modification de celui-ci.
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Une observation attentive du probléme d'horaires de personnel soignant indique
que 'une des difficultés principales provient de la taille de ’ensemble des horaires
potentiels. Si D est I’ensemble des jours de I'horizon et une infirmiére peut effec-
tuer T' quarts de travail différents, alors O(T'P!) horaires doivent étre implicitement
examinée pour cette infirmiére.

Cette remarque, ainsi que la perspective de capitaliser sur les avancées en pro-
grammation mathématique et sur les récents développements des équipements infor-
matiques, motivent I’approche exacte de génération de colonnes proposée dans cette
theése. Nous présentons ci-apres un survol du modéle et une bréve revue de littérature
sur la programmation linéaire généralisée.

1.4.3 Un survol du modéle de génération de colonnes

Le modéle considéré comporte un probleme maitre qui implique un objectif
et des contraintes relatives a 1'ensemble de la configuration des horaires générés.
Le modéle comporte également un probléme auxiliaire traitant des spécifications
relatives a une infirmiére donnée. Le probléme maitre est un programme linéaire en
variables 0-1 qui détermine une configuration d’horaires pour satisfaire la demande
tout en minimisant les coiits salariaux et en maximisant les préférences.

Chaque colonne dans la matrice des contraintes du probléme correspond & un
horaire réalisable pour une infirmiére. Compte tenu de la taille de cette matrice, seul
un petit nombre de colonnes sont considérées a la fois. D’autres colonnes sont générées
au fur et 3 mesure qu’elles sont nécessaires pour améliorer la solution courante.

Cette recherche de nouvelles colonnes se fait en résolvant un probléme auxi-
liaire de plus court chemin avec fenétres de ressource. Un chemin réalisable dans
le réseau associé correspond & un horaire acceptable pour l'infirmiére considérée. La
réalisabilité dans le probléme auxiliaire est définie & partir des régles de la convention
collective, telles qu’elles s'appliquent & I'infirmiére. Cela conduit a une structure des
contraintes de ressource qui correspond au modéle présenté i la section 1.3.
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La résolution de tels programmes linéaires généralisés en variables entiéres (ou
mixtes) comporte une phase de résolution de la relaxation linéaire du probléme maitre
et une phase de recherche de solutions entiéres (ou mixtes). La génération de colonnes
en programmation linéaire a été introduite par Dantzig et Wolfe [17], tandis qu’une
premiére heuristique pour les programmes linéaires généralisés en variables entiéres
a été présentée par Gilmore et Gomory [33, 34} dans une une étude sur le probleme

de découpe.

Plusieurs auteurs ont, par la suite, combiné la méthode d’évaluation et de
séparation progressives avec la génération de colonnes pour résoudre des problémes
de grande taille dans divers domaines d’applications. Appelgren [1] et Levine [45]
sont parmi les premiers auteurs a étudier des modeles de programmation linéaire
généralisée avec fenétres de temps. La plupart des travaux de cette catégorie sont
couverts dans la récente revue bibliographique de Desrosiers et al. [22] (voir aussi
Desaulniers et al. [18]) sur les problemes de routage et de distribution.

La résolution optimale de ces problémes comporte des décisions de branche-
ments qui doivent étre compatibles avec les structures respectives de la relaxation
linéaire du probléme maitre et du probléme auxiliaire de génération de colonnes.
Lorsqu’une variable fractionnaire d’une base optimale est fixée  zéro, une précaution
particuliére doit étre prise pour éviter de regénérer une colonne lui correspondant.
Plusieurs algorithmes (par exemple, Hansen et al. [37], Desrosiers et al. [22], Van-
derbeck et Wolsey [61], Desaulniers et al. [18], voir aussi Barnhart et al. [6] pour
une revue bibliographique) exposent différentes maniéres pour obtenir une solution

entiére optimale.

Le modéele présenté dans cette these differe de ceux traités dans Desrosiers et
al. [22], par la structure des fenétres de ressource dans le probléme auxiliaire de plus
court chemin. La spécificité des regles de la convention collective se traduit par des
contraintes de mise a jour des ressources qui correspondent au modéle présenté 3 la
section 1.3. Les détails de la modélisation et de la résolution de ce probléme d’horaires

sont décrits au chapitre 5.
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CHAPITRE 2

ALGORITHMES DE CHEMINS
AVEC ETENDUE OU RATIO
MINIMUM

2.1 Problémes a un critére

Nous décrivons, ci-dessous, un algorithme, dénommé MRG, qui permet de
résoudre le probleme MINRANGE introduit 4 la section 1.1. Etant données la meil-
leure étendue connue R, et une valeur ¢, 'algorithme MRG calcule la plus grande
valeur ¢ telle qu’il existe un chemin dont aucun arc n’a une longueur plus petite que
¢ ni plus grande que ¢, en résolvant un probléeme MAXMIN. Un chemin d’étendue
minimale ayant ces caractéristiques et dont I'étendue est plus petite que Rgp, est
ensuite déterminé. Cela se fait en résolvant un probléme MINMAX par le biais
d’une procédure pouvant éventuellement se terminer avec la preuve qu’un tel chemin
n’existe pas.

La longueur ¢, de I'arc le plus long sur le chemin ainsi trouvé, est utilisée pour
changer la valeur de ¢ & (¢ — 1) + (¢ — ¢) — 1. Cette mise i jour se justifie par le fait
qu’une décroissance de ¢ entraine une plus petite valeur de ¢ et, ainsi, une étendue
Rop: plus petite sera cherchée a I'itération suivante. Le processus commence avec
une valeur de ¢ qui est une borne supérieure sur toutes les longueurs d’arcs dans le
graphe. Il est ensuite répété pour des valeurs décroissantes de € jusqu’a ce qu’aucun
nouveau chemin ne puisse plus étre trouvé.
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Algorithme MRG (MINRANGE)

a)

b)

d)

Initialisation.
Poser Rope = maX(y, v;)c4 Cij — MiN(y, v,)ea Cij + 1 et = max(y, v )e4 Cij-
(Rope est la valeur du meilleur chemin connu P,y,).

Mazimisation de la longueur d’arc minimale.
Poser G = (V, A) ou A = {(v;,v;) € Alcij < &}
Soit P(G) la restriction de P a G. Résoudre le sous-probléme:

max min c;;. 2.1
PeP(&) (v.-.u,-)ePc" (2.1)

Soit ¢ la valeur optimale de (2.1). Si P(G) = @, FIN, R est la valeur optimale
du probleme MINRANGE et P, le chemin optimal.

Minimisation de la longueur d’arc mazimale.
Poser G = (V,A) ol A = {(v;,v;) € Ale < &5 < min(E,c+ Rope — 1)}
Soit P(G) la restriction de P 4 G. Résoudre le sous-probléeme:

min max c¢; . 99
PeP(G) (vi.v;)EP i (2.2)

Soit ¢ la valeur optimale de (2.2) et P le chemin correspondant.
Si 'P(é) = @, poser ¢ = maX(y, v;)eA Cij + 1.

Mise a jour des paramétres.

Si ¢ —c < Ry poser Ry =¢E—cg, P,,,:f’.
Poser ¢ = ¢ + Rop: — 2 et retourner a ’étape b).

On peut aisément modifier I'algorithme MRG pour obtenir un algorithme pour

le probleme MINRATIO. Cependant, les deux algorithmes restent fondamentalement
les mémes. Dans l'algorithme MRT ci-dessous, R, représente le meilleur ratio connu.
La valeur de ¢ est calculée comme dans I’algorithme MRG, mais le probléme MIN-
MAX est résolu sur un sous-graphe ou aucun chemin ayant un ratio égal ou supérieur

a Rop: ne peut étre trouvé.
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La valeur de € est ensuite posée égale & [(c — 1) x Rop| — 1, exploitant ainsi le
fait qu'une diminution de & produit une plus petite valeur de ¢ et que les ratios égaux
ou supérieurs & R, peuvent également étre sautés. En effet, la solution suivante du
probléme MAXMIN sera inférieure ou égale & ¢ — 1 et la plus grande longueur d’arc
de la prochaine solution du probléeme MINMAX doit donc étre plus petite ou égale

a(c—1) x Rop.

Algorithme MRT (MINRATIO)

Appliquer 'algorithme MRG avec les modifications suivantes, dues au change-
ment de fonction objectif:

— A l'étape a) poser
_ ma-x(u,-,uj)EA Cij

- + 1.
mm(v.- ,v")GA cl]

Ropt
A D’étape c) poser
A = {(v;,v;) € Ale < ¢ij < min(E, [¢ X Ropt] — 1)}
ol [a] est le plus petit entier non inférieur a a.

— Remplacer 1'étape d) par:

Si £ < Ropt poser Ropt = £, Pope = P.

Poser ¢ = [(¢c — 1) X Rope] — 1 et retourner a I’étape b).

Les algorithmes MRG et MRT sont illustrés sur le petit exemple de la figure
2.1 et les détails de la résolution sont donnés aux tableaux 2.1 et 2.2 respective-
ment. On remarquera que (vy, vg,vs), (W1, vq, Vs, U7, Us) €t (v1,vs, Us, Vs, Us) Sont tous
des chemins efficaces pour le probléme bicritere MINMAX-MAXMIN, avec comme
vecteurs objectifs, (3,2), (5,3) et (8,6) respectivement. Cependant, les deux algo-
rithmes, MRG et MRT, sautent le chemin (v, vy, v, v7, vs). Nous justifions ci-apres
les algorithmes et donnons leur complexité.
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Figure 2.1 — Ezxemple pour les algorithmes MRG et MRT

Théoréme 2.1 L'algorithme MRG (MRT) résout le probléme MINRANGE (MIN-
RATIO) en temps O(m? logn) sur un graphe orienté et en temps O(m?) sur un
graphe non orienté.

Preuve. Examinons d’abord ’exactitude de 1’algorithme MRG. Il y au plus Ti’-’;—'—ll
valeurs possibles pour 'étendue, é — ¢, des longueurs d’arcs le long d'un chemin v;-
Un, l.e., autant que de paires d’arcs dans le graphe G. Comme indiqué a la section
1.1.1 le chemin optimal P, doit étre efficace pour le probléme bicritere MINMAX-
MAXMIN. Ainsi, on pourrait considérer toutes les O(m) valeurs possibles de ¢ et
trouver les valeurs correspondantes de ¢. Cependant, plusieurs valeurs possibles sont
implicitement prises en compte. En effet, pour une valeur donnée de ¢, on trouve, a
I’étape b), la valeur correspondante de ¢ et on détermine, & 1’étape c), la meilleure
valeur de ¢ associée a ¢. Toutes les valeurs entre ¢ et ¢ + 1 correspondent alors & des

chemins non efficaces et sont traités implicitement.

En outre, la valeur R,y du meilleur chemin connu est utilisée de deux fagons
pour éliminer d’autres chemins. D’abord, a 'étape c), on remarque qu’une amélio-
ration de R, ne peut avoir lieu que si & < ¢+ Ropt — 1 et les arcs ayant une longueur
plus grande que ¢ ne sont pas considérés dans G. Ensuite, 3 I'étape d), on observe
qu’étant donné que le meilleur chemin pour la valeur de ¢ est connu, on doit avoir
une diminution de la valeur de ¢ pour le prochain chemin a considérer. Un meilleur
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Itér.| Etape a) |Etape b) Etape c) Etape d)
1 |Pope = (-) c=6 |¢=8 Rope =2,2=6
Rope =9,2=10|P(G) # 0 |p = (v1, vs, Us, Vs, Vs) | Popt = (V1, 3, Us, Vs, Us)
2 c=3 PG)=0 c=3
P(G)#0|é=11
3 c=2 |é=3 Rpe=1¢2=1
P(G) # 0 |p = (v1,v4,s) Popt = (v1, v4, Us)
4 PG) =0
Fin

chemin ne peut étre obtenu que si ¢ < c~1+Rope—1, i.e., € < c+ Rope —2. Ainsi donc,
tous les chemins, efficaces ou non, correspondant & Ry sont évités dans la prochaine
itération. L’exactitude de 1'algorithme MRT peut étre prouvée par des arguments

similaires.

En ce qui concerne la complexité, on notera que l'étape a) est en O(m) et
I'étape d) en O(n). Les étapes cruciales sont b) et c). Chacune d’elles se raméne
2 un probléme de capacité maximale dans G avec des capacités & — ¢;; et dans G
avec des capacités c¢;; — c respectivement. Dans un graphe orienté, ce probléme peut
se résoudre par une variante de l'algorithme de Dijkstra [25]. 11 suffit, pour cela,
d’étiqueter un sommet courant v; avec la capacité minimale sur un chemin v;-v;, de
capacité maximale, passant uniquement par des sommets étiquetés et déja sélectionés,
et de sélectionner itérativement le sommet de capacité maximale.

Ainsi, les étapes b) et c) requiérent un temps O(mlogn) quand G est orienté,
tout comme les algorithmes MRG et MRT. Si G est non orienté, |’ algorithme en O(m)
de Punnen [54], qui a la meilleure complexité possible pour le probléme du chemin de
capacité maximale, peut étre utilisé et la complexité des algorithmes MRG et MRT
se réduit & O(m?). O
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Tableau 2.2 - Illustration de l'algorithme MRT

Itér.| Etape a) |Etape b) Etape c) Etape d)
1 |Pope =(-) c=6 |¢=8 Ropt=1%,2=6
¢ =6,c=10{P(G) # 0 |5 = (v1, v3, s, Vs, Us) | Popt = (V1, U3, Us, U, Us)
2 c=3 P(G)=0 t=2
P(G)#0|é=11
3 P(G)=0
Fin

Remarquons qu'il existe toujours une solution au probléeme MINRANGE ou
MINRATIO, correspondant & un chemin optimal élémentaire, i.e., ne passant pas
deux fois par le méme sommet. Ce n’est pas nécessairement le cas si l'on considére
la maximisation de I’étendue ou du ratio plutét que la minimisation.

2.2 Algorithmes bicriteres

Nous nous intéressons, dans cette section, & la résolution des extensions bi-
criteres MINRANGE-MAXMIN et MINRANGE-MINSUM discutés a la section 1.1.1.
Rappelons que le chemin optimal pour le critere MINRANGE appartient a ’ensemble
des chemins efficaces pour le probléme bicritére MINMAX-MAXMIN. Celui-ci peut
étre résolu en temps O(m? log n) dans un graphe orienté par un algorithme décrit dans
Hansen [36] et en temps O(m?) dans le cas non orienté par I'algorithme de Punnen
{54]. L'utilisation de ces algorithmes dans la procédure ci-aprés permet aisément de
résoudre les problémes bicritéres MINRANGE-MAXMIN et MINRANGE-MINMAX

ou leurs variantes avec le critére du ratio.
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Algorithme MRGMM (MINRANGE-MINMAX)

a) Chemins efficaces
Trouver un ensemble complet de chemins efficaces non équivalents dans G pour
les criteres MINMAX et MAXMIN.

b) Valeurs
Calculer les valeurs de ’étendue pour tous les chemins efficaces trouvés en a).

c) Classement et suppression
Classer tous les chemins efficaces trouvés en a) par ordre non décroissant des
valeurs de I'étendue et, en cas d’ex-aequo, de la valeur ¢ du critere MINMAX.
Supprimer les chemins dominés.

L’étape dominante dans cette procédure est a), a la fois pour les graphes orientés
et non orientés. Ainsi, le temps requis est O(m?logn) et O(m?) respectivement.
L’algorithme MRGMM est appliqué au graphe de la figure 2.2 et les détails de la
résolution sont résumés dans le tableau 2.3.

Figure 2.2 — Ezemple pour les algorithmes MRGMM et MRGMS
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Tableau 2.3 — [llustration de l’algorithme MRGMM

Etapes Chemins Critére | Critére |Etendue|Solutions
Maxmin | Minmax efficaces
(v1,v4, V3,02, U5) 2 6
a) |(v1,ve,vs3,0s) 5 7
(v1,vs, vs) 7 9
(v1, v4, v3, U2, Us) 4
b) |(v,vs,v3,s) 2
(v1,vs,vs5) 2
(v1, v2, vs, Us) 7 2 v
c) |[(v1,vs,7s5) 9 2
(v1, V4, U3, V2, Us) 6 4 v

Nous abordons maintenant la présentation d’'un algorithme, noté MRGMS,
pour résoudre le probleme bicritere MINRANGE-MINSUM, i.e., pour déterminer un
ensemble complet de chemins efficaces non équivalents pour les critéres de 1'étendue
et de la longueur. L’algorithme effectue des tests de dominance pour un ensemble de
chemins candidats . Ceux-ci sont générés en calculant itérativement des plus courts
chemins dont les longueurs d'arcs sont comprises entre des bornes inférieures ¢ et
supérieures ¢ mobiles. '

Etant donnée une valeur de €, des plus courts chemins sont calculés pour des
valeurs consécutives décroissantes de ¢ jusqu’a ce que ¢ — ¢ soit égale a I'étendue
de la solution optimale pour le critére de la longueur du chemin (qui est ’étendue
maximale pour tout chemin efficace). Ensuite, ¢ est mis a jour en le posant égal 4 la
plus grande longueur d’arc plus petite que la valeur courante de ¢, de maniére & ne
considérer qu’une seule fois les valeurs identiques de .

Différents tests d’accélération sont utilisés pour sauter certaines valeurs de c.
En particulier, une paire (c, ¢) est sautée si une autre paire (¢/, &), telle que ¢ < c et
¢ 2 ¢, a déja été examinée et a conduit & un plus court chemin dont la longueur n'est
pas plus petite que celle du chemin optimal pour le critére de 1'étendue (qui est la
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longueur maximale pour un chemin efficace). Le couple (¢, ) est également rejeté si
¢ =cet @ > ¢, et la plus grande longueur d’arc du plus court chemin correspondant
est plus petite ou égale i ¢, puisque, autrement, le méme chemin serait recalculé.

Dans I’algorithme MRGMS, ¢(c) représente la longueur du plus court chemin
calculé a I'étape f), la derniére fois qu'un intervalle ayant ¢ comme borne inférieure a
été considéré. La valeur de r(c) définit une borne supérieure sur la plus grande lon-
gueur d’arc de ce chemin. L, est la longueur du dernier plus court chemin déterminé
pour la valeur courante de ¢. La derniére valeur de ¢ pour laquelle la longueur du
plus court chemin est plus grande ou égale 4 la longueur maximale de tout chemin
efficace, est notée ¢*. La plus petite valeur de ¢ pour laquelle un plus court chemin
a été trouvé est représentée par c**.

Algorithme MRGMS (MINRANGE-MINSUM)

a) Chemin efficace de longueur minimale
Trouver un plus court chemin v;-v, dans G et poser L},p, égal a sa longueur .
Soit G le sous-graphe des plus courts chemins v;-v, dans G, trouver un chemin
P! d’étendue minimale dans G, et poser son étendue égale a Rg,,,. Garder
(P!, Ly, RY,) dans une liste £ de chemins efficaces (candidats).

b) Chemin efficace d’étendue minimale
Trouver toutes les paires de longueurs d’arcs, ¢, ¢, pour lesquels ¢ — ¢ est
I'étendue minimale R?,p, des chemins v;-v,. Pour chacune de ces paires, con-
sidérer le sous-graphe G* = (V, A°) ou A* = {(v;, v;) € Alc < ¢;j < &} et trou-
ver un plus court chemin P?, de longueur L2, dans G*. Garder (P?, L., R%,)
dans L.

c) Classement des arcs
Classer tous les arcs de G par ordre non croissant de leurs longueurs (en
départageant arbitrairement les ex-aequos). Soient ¢;, pour i = 1,2,...,m, les
longueurs d’arcs aprés classement, poser ¢(c;) = +o0, r(¢;) = ¢ ainsi que
tmtt =Cm—1,C=c," =c"=c;+1, Lopt = +00, et k =1.
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d) Mazimisation de la longueur d’arc minimale
Poser G = (V, A) ot A = {(v;,v;) € Alci; < &} et P(G) est la restriction de P
4 G. Résoudre le sous-probleme:
i 2.3
I3 e .
Soit ¢ la valeur optimale de (2.3) et j 'indice d’arc tel que
j = min{i|c; = ¢}; si P(G) = O, aller a la derniére étape.

e) Tests d’étendue et de dominance
Si&—c > R, ouc = Cmy1, faire k «— min{ijc; < cx}, poser & = cx, Lopt = +00
et retourner a d). Si ¢ > ¢*, faire j « min{i|¢; < c*}, poser Ly = €(c*), ¢ = ¢;
et répéter 1'étape courante. Si ¢ > ¢** et r(c) < G, faire j « min{i|c; < ¢;},
poser Loy = £(c), ¢ = c;j et répéter I'étape courante.

f) Minimisation de la longueur du chemin
Déterminer un plus court chemin P*, de longueur L(P*) et d’étendue R(P"*),
dans G*. Poser £(c) = L(P*). Si L(P*) < Lgpt , poser r(c) = c+ R(P*),
sinon r(¢c) = & Si L(P*) > L2, , poser ¢* =c.Si L(P*) < LZ,, garder
(P*, L(P*), R(P*)) dans L. Faire ¢" « min{c**, ¢} et j « min{i|¢; < ¢;},

puis poser Lo = ¢(c), ¢ = ¢; et retourner a e).

g) Suppression des chemins dominés
Classer les chemins P de £ par valeurs non décroissantes de R(P) et de L(P)
en cas d’ex-aequo. Si L(P) > L(P’') ou P’ est le prédécesseur de P dans la liste
ordonnée L, supprimer P. FIN: L contient un ensemble complet de chemins
efficaces non équivalents.

Théoreme 2.2 L’algorithme MRGMS détermine un ensemble complet de chemins

efficaces non équivalents pour les critéres de l’étendue et de la longueur en temps
O(m3logn).

Preuve. L'algorithme considére implicitement toutes les instances possibles du couple
formé par la longueur d’arc maximale Z et la longueur d’arc minimale ¢ sur un che-
min. Des valeurs de  sont sautées & I'étape e) seulement en cas d’ex-aequos. Pour une
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valeur fixée de &, des valeurs de ¢ sont sautées aux étapes e) et f) en cas d'ex-aequo

et également a I'étape e) dans les trois cas ci-aprés.

D’abord, si I'étendue ¢ —c est plus grande ou égale a I’étendue maximale R,},pt de
tout chemin efficace. Ensuite, si [¢, £] est contenu dans un intervalle déja considéré,
allant d’une valeur c* plus petite ou égale a ¢, a2 une valeur plus grande que &, pour
lequel la longueur du plus court chemin est supérieure ou égale 4 la longueur maximale
de tout chemin efficace. Enfin, si un plus court chemin a déji été déterminé pour les
valeurs d’arcs de ¢ a une plus grande valeur que & et la plus grande longueur d’arc
correspondant est plus petite ou égale a .

Pour chaque paire (¢, ¢) explicitement considérée, un plus court chemin est
calculé a I’étape f). Seuls ceux, parmi ces chemins, qui forment un ensemble complet
de chemins non équivalents sont retenus a ’étape g). Ainsi donc, un chemin est
déterminé pour tout vecteur efficace des valeurs des deux critéres.

Concernant la complexité, I'étape a) requiert un temps O(m logn) pour trouver
un plus court chemin P et sa longueur L},,,, en utilisant I’algorithme de Dijkstra. Le
temps pour déterminer le chemin d’étendue minimale dans le sous-graphe des plus
courts chemins v;-v,, en utilisant I'algorithme MRG, est en O(m?logn). L’étape b)
requiert un temps O(m? log n) pour trouver tous les couples (&, ¢) qui correspondent
1'étendue minimale (il pourrait y avoir O(m?2) couples, mais habituellement beaucoup
moins). Ensuite, les plus courts chemins dans le sous-graphe G* sont déterminés par
I'algorithme de Dijkstra. Cela requiert en tout un temps O(m3logn).

Le classement des arcs a l'étape c) prend un temps O(mlogm) et un temps
O(m) est requis pour l'initialisation. A 1’étape d), un temps O(m logn) est nécessaire
pour déterminer la valeur de ¢ avec une variante de l'algorithme de Dijkstra et un
temps O(m) est requis pour parcourir la liste des ¢;. L'étape est répétée au plus O(m)
fois et prend donc un temps O(m?logn) en tout. Les tests de I’étape e), incluant,
E—c> Rgpt, sont effectués en temps constant, et un temps O(m) est requis pour
parcourir la liste des ¢;. Cette étape se répéte au plus O(m?) fois, et requiert en tout
un temps O(m?).
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L'étape f) prend un temps O(m logn) pour trouver un plus court chemin v;-v,
dans G* avec l'algorithme de Dijkstra et cela peut se répéter O(m?) fois, i.e., cette
étape requiert un temps O(m3logn). Le parcours de la liste des c; prend un temps
O(m?) pour chaque valeur de ¢, et donc O(m?) en tout. La sauvegarde des chemins
requiert un temps O(m3) en tout (i.e., O(m) par chemin). Finalement, I'étape g)
requiert un temps O(m?logm) pour classer les chemins et détruire ceux qui sont
dominés. Les étapes dominantes sont donc b) et f) et la complexité de 1'algorithme
est O(m3logn). O

Il est clair qu’un algorithme plus simple, dans lequel les sous-graphes G* sont
construits pour tous les couples (¢, c) et les plus courts chemins sont déterminés
afin d’en retenir ceux qui sont non dominés, a la méme complexité de pire cas que
'algorithme MRGMS. En outre, a la lumiére du théoréme 2.3 ci-aprés, il ne semble
pas tres facile de faire mieux en termes de complexité.

On remarquera cependant que les tests d'accélération de 1’algorithme MRGMS
permettent d’avoir une procédure qui devrait étre significativement plus efficace en
pratique que l'algorithme brut qui vient détre décrit. L’algorithme MRGMS est il-
lustré sur le graphe de la figure 2.2 et les détails de la résolution sont donnés aux
tableaux 2.4 et 2.5.

Théoréme 2.3 Le probléme de chemin bicritére MINRANGE-MINSUM a O(m?)
chemins efficaces non équivalents et cette borne est atteinte.

Preuve. Il y a O(m?) paires de longueurs d’arcs dans G. Pour chacune de ces paires,
considérée comme borne sur la longueur d’arc maximale et la longueur d’arc minimale
pour un chemin v;-v,, il n'y a qu’une seule valeur pour la longueur du plus court
chemin v;-v,. Ainsi, le nombre de chemins efficaces non équivalents est O(m?).

Pour montrer que cet ordre de grandeur est correct, posons, pour tout m > 4,
p= (%] et n =m — 2p + 3, et considérons le graphe G de la figure 2.3. Il posséde
trois sommets particuliers, vy, Vpt2, Us.
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Figure 2.3 - Graphe G pour le théoréme 2.8

Des arcs, (v1,Vk41), joignent v, aux p sommets vi,; et ont pour longueurs
4p® + 2(k — 1)p pour k = 1,2, ..., p. D’autres arcs, (Vg+1, Vp+2), joignent les sommets
Vk+1 au sommet vp.o. Leurs longueurs sont 4p? — 4(k — 1)p avec k = 1,2, ..., p. Des
arcs, (Vp+2, Vp+i+2) €t (Vpii42, Un), joignent également v,y2 aux p sommets Vpti+2 €t
ces sommets a v,, avec comme longueurs [, pour | = 1,2,...,p. Le graphe G est
complété par m — 4p arcs allant de 5,42 aux sommets pendants vypy3, ---) Um—2p+2-

Montrons que tous les chemins v; — v, sont efficaces. Considérons pour cela,
P = (v1, k41, Upt2, Upti+2, Un) €t P’ = (vy, Ukr41, Upt2, Up+ti+2, Un) deux chemins dis-
tincts avec des longueurs L(P) = 8p® — 2(k — 1)p + 2l et L(P') = 8p* — 2(k' — 1)p + 2I
et des étendues R(P) =4p* +2(k —1)p —! et R(P') = 4p* + 2(k' — 1)p — ! respec-

tivement.

Sik = k' alors | # I’ et, sans perte de généralité, on supposera que ! < [’
Ainsi L(P) - L(P')=2l-2l'<0et R(P)-R(P)=-1+1I'">0.Si k# k' ,on
supposera, de nouveau sans perte de généralité, que &k < k' . Alors, on obtient
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L(P)—L(P') = -2kp+2k'p+2l—2I' > 0 puisque —p <! —1Il' <p, de méme
que R(P)— R(P')=2kp—-2k'p-1l+1 <.

Ainsi donc, aucun chemin P de v; i v, ne peut dominer un autre P’. Puisqu'il
y ap®=|2]? = O(m?) chemins v;-vy, le résultat suit. O

On peut obtenir un algorithme pour le probleme MINRATIO-MINSUM avec uz
schéma similaire a celui de l'algorithme MRGMS. Remarquons, pour terminer, que
ces algorithmes peuvent étre également utilisés lorsque 1'on cherche & maximiser la
fiabilité du chemin au lieu de minimiser sa longueur. En effet, le critére de la fiabilité
maximale se rameéne a celui de la longueur minimale en prenant comme longueur d’arc
I'opposé du logarithme de la fiabilité de I’arc. On obtient cependant un probléme
bicritére plus difficile et plus classique lorsque !'on considére simultanément le critére
de la longueur minimale et celui de la fiabilité maximale. Le chapitre suivant propose
un nouvel algorithme pour ce probléme.
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Itér. a) b) c) d) e) f)
LL,.=9 RZ,=2 lc;}=+o00,[c=7c—c < RL,|P*=P2,
1 |RL,=5 [2,=16 r(c:) =9, ¢(7)=16
PL,=(v1,v2,v5)| P2 = (v1,V3,¥s) | Lopt =+00, [j=3|c < ¢° r(7)=9
L={P,,} L=LU{PL,} [c=9, c<c" c* =7,
Q.=10, Q”=7
=10 Lopt=16
k=1 71=9,
c=6
d) e) f)
2 t—c<RL, P*=P2,, {(6), r(6)=9, ¢ =6
c<ct,e<c” ¢ =6, Lop =16, j(6)=6, c=5
3 c-c<RL, P*=PZ,, £(5)=16, r(5)=9, ¢’ =5,
c< Ql, c< c** g"__—_s, Lopt=16) j=7, §=4
4 E-—g:R},p‘, k=2,
5 |c=5|C—c¢ < Rgy, c=¢", P*=(v,v,vs), L(P*)=12, R(P*)=4,
j=6|Lope=16, j=T, c=4, ¢(4)=12, r(4)=8, L=L U {P*},
T—-c< Ry, c<c,c<c™c"=4, Lopp=12, j=9, ¢=2




Tableau 2.5 — Illustration de l'algorithme MRGMS (suite)

Itér| d) e) f)
6 €—c > Ry, k=3,
(,—7, Lopt—+w
7 |e=5[C—¢ < Rgpes €=C", Lopt =16|P* =(v1, v4, v3,v5), L(P*) =15,
j=6|j=7,¢c=4,¢—c< R, R(P*)=3, ((4)=15,r(4)=7,d** =4
c<cc=c" r(c)>¢ L=LU{P*}, Lypr=15, j=9,c =2
8 ¢ —c=Ry,, k=5,
E=6, Lo,,¢=+oo
9 |ce=2]c—¢c< R:ph P* =(v1, v4, 93,02, v5), L(P*)=16,
j=9%c<c*,ec<c* R(P*)=4, {(2)=16, r(2)=6, c" =2,
=2, Lo=16,j=10, c=1
10 c—c=RL,, k=6,
€=5, Lopt=+00

d) g)

11 P(-@):@ £={(Uhvs,vs);(01,04,03,05);(01,04,’05);(01,112, Us)} Fin
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CHAPITRE 3

UN ALGORITHME DE PLUS
COURT CHEMIN BICRITERE

3.1 Principe et terminologie

Ce chapitre est consacré a la présentation d'un algorithme qui résout, par les
deux extrémités du réseau, le probléeme du plus court chemin bicritére décrit a la
section 1.2. L’algorithme maintient, pour chaque sommet v; € V, deux ensembles,
Tii et T, correspondant respectivement aux étiquettes des chemins v-v; et v;-v,
temporairement efficaces. Les étiquettes efficaces permanentes des chemins v;-v; et
V-V, Sont gardées dans les ensembles, P,; et P;, respectivement, ol elles sont classées
lexicographiquement suivant les critére z et y, dans cet ordre.

Notons que les étiquettes de P;, et Py; constituent des extensions potentielles
pour de futures étiquettes de chemins v;-v; et v;-v, respectivement. A une itération
donnée, la k-éme étiquette, par ordre lexicographique, dans I'’ensemble des étiquettes
efficaces permanentes des chemins v;-v; sera notée (X, %) (voir la figure 3.1).

L’algorithme sélectionne I'étiquette de plus petite valeur lexicographique dans
Usiev Thi (respectivement dans | J,. ¢y Tin) en vue d’une extension éventuelle. Cela se
fait de maniére que le nombre total d’étiquettes dans | J, ., 7: reste aussi proche que
possible de celui des étiquettes dans |J,. .y Tin-

Supposons que v est le sommet terminal du chemin correspondant a 1'étiquette
courante (X, Yi;) sélectionnée dans U, ¢y Ti; et soit (X, ¥3) la derniére étiquette
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Figure 3.1 ~ Illustration de l’algorithme bicritére

sélectionnée dans ngev Tin- L'étiquette courante (X);, Yy;) devient une étiquette ef-
ficace permanente et est déplacée de Uu',ev Ti; dans Py;.

Les extensions de ( Xy, Y1) par les étiquettes déja présentes dans Py, sont alors
examinées en vue d'une insertion éventuelle dans I’ensemble 77, des étiquettes de che-
mins v;-v, temporairement efficaces. Si Xj, < X;(,f), ou X,(,f) est la plus petite valeur
de z que puisse avoir un plus court chemin v-v, pour le critére y, une approxima-
tion extérieure de I’ensemble des étiquettes efficaces permanentes des chemins v-v,
est alors construite. L'extension de ’étiquette sélectionnée (X;, Yi;) aux successeurs
de v; n’est considérée que si au moins une des étiquettes délimitant I’approximation

extérieure donne une étiquette temporairement efficace au puits.

La validité de ces tests est prouvée aux propositions 3.1 et 3.2 plus bas. Si
I'étiquette sélectionnée (X;, Yir) peut étre prolongée aux successeurs de vy, alors de
nouvelles étiquettes temporairement efficaces sont calculées aux différents succes-
seurs. Le symétrique du processus est aussi effectué pour I'étiquette sélectionnée de
U,.ev Tin- L'algorithme s'arréte si I'un des ensembles (J,, ., 71i ou U,,cy Tin est vide.
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3.2 Tests de dominance

Nous décrivons d'abord un test pour la dominance d’une nouvelle étiquette.
Soit un ensemble £ contenant uniquement des étiquettes efficaces non équivalentes
et triées par ordre croissant des valeurs de z (i.e., par ordre décroissant des valeurs
de y). I est clair qu’'une nouvelle étiquette (X, Y’), candidate a l'insertion dans L,
est dominée par rapport 2 £ ou est équivalente 3 une étiquette déja présente dans
L, si et seulement si Y* <Y, ou (X*,Y*) est 'étiquette de £ ayant la plus grande
valeur de z inférieure ou égale 3 X.

Si les étiquettes de £ sont générées par ordre lexicographique, alors (X*,Y*)
correspond a la derniéere étiquette introduite et aucune suppression d'étiquette n’est
requise avant l'insertion éventuelle de (X,Y’). Sinon, supposons que £ contient des
étiquettes temporairement efficaces et que 1'on désire utiliser (X,Y’) pour faire une
mise & jour de L. Soit (X’,Y’) 'étiquette de £ ayant la plus grande valeur de y
inférieure ou égale 3 Y. Les étiquettes (X*,Y™) et (X’,Y") délimitent le domaine des
étiquettes (dominées) devant étre effacées avant 'insertion de la nouvelle étiquette
(X,Y).

On peut noter que si les étiquettes de £ sont générées par ordre lexicographique,
alors le test de dominance pour la nouvelle étiquette (X,Y) et son insertion dans
L peuvent étre effectués en temps constant. Sinon, en utilisant un arbre balancé,
O(log|L])) opérations sont requises pour trouver les étiquettes (X*,Y*) et (X', Y"),
par une recherche dichotomique, tandis que le temps nécessaire pour supprimer les
étiquettes dominées est de O(D log|L]|), ou D est le nombre d’étiquettes & supprimer
(D < |L]).

Nous présentons maintenant deux tests additionnels pour éliminer les étiquettes
non prometteuses, i.e., dont les chemins associés ne peuvent donner des chemins v;-
v, efficaces. La proposition 3.1 traite d’un test, qui sera dit de la sentinelle, pour
déterminer si une étiquette sélectionnée peut ne pas étre prolongée aux successeurs
du sommet correspondant.
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Proposition 3.1 Soient le sommet vy correspondant a l'étiquette de plus petite va-
leur lezicographique dans |, .oy Thi et (X, V) la plus récente étiquette extraite de

U,.ev Tin pour eztension. S5i Xy 2 X,(,f), ou X,(,f) est la plus petite valeur de = d’un

plus court chemin v-v, pour le critére y, alors (Xy1, Yis) peut étre éliminée aprés
avoir ezaminé ses ertensions par les étiquettes présentes dans Pi,.

Preuve. Supposons qu'il existe une étiquette (X, Ys), associée 4 un chemin v; -
vn, telle que (X, Yir) + (X, Yin) n’a pas encore été examinée. Puisque les étiquettes
sélectionnées pour extension le sont par ordre lexicographique, alors Xz > X5 2>
X,(,f). En remarquant que (X,(,?), Y;f,z)) est la plus petite étiquette, par ordre lexicogra-
phique, correspondant a un plus court chemin pour le critére y, il s’ensuit que Y;, >
Y. Ainsi (Xis, Yir) + (X2, Y2} domine ou est équivalent  ( X1z, Yir) + (Xim, Yin).O

Dans la proposition 3.2, ci-aprés, les ensembles P;, sont supposés contenir uni-
quement les étiquettes efficaces permanentes. En outre, on considére qu’ils sont initia-
lisés avec, au moins, les étiquettes de plus petite valeur lexicographique correspondant
YD) et (X2, Y D).

m %

aux plus court chemins v;-v, pour chacun des critére, i.e., (X,-(,P,

Cette proposition définit un autre test qui permet d’éliminer une étiquette non pro-
metteuse, méme si elle est localement efficace.

Proposition 3.2 Soient (Xy;, Yis), U'étiquette de plus petite valeur lezicographique
dans U,.ev Tiis €t (X5, Yis), pour k = 1,2,...,|Pul, la k-éme étiquette connue de
Uensemble Py, correspondant. Si toutes les étiquettes (Xyz, Yi) + (XE, YiE*Y), pour
k=1,2,...,|Pwm| — 1, sont dominées par rapport & Ti, U P1n, alors alors il n'est pas

nécessaire de prolonger (X, Yis).

Preuve. Supposons, par l’absurde, qu'’il existe une étiquette (X, Yi,), correspon-
dant & un chemin v; - v,, telle que (Xiy, Yis) + (Xin, Yan) est efficace par rapport a
Tin UP1, mais n'a pas encore été examinée. Puisqu’un chemin v;-v, efficace contient
uniquement des sous-chemins efficaces, alors (Xj,, ¥in) est nécessairement efficace par
rapport a Pin.

Soit alors (X% ,Y;¥') I'étiquette courante de Py, ayant la plus grande valeur
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de z inférieure ou égale 3 Xi,. On a X% < Xy, < X&*! et, puisque P, contient
uniquement des étiquettes efficaces, Yi¥ ! < Y;, < Y. Donc, en supposant que
(X1r, Yis) + (X%, YiE'*1) est dominé par rapport & T, UPiy, il s’en suit que (Xy;, Yis) +
(X, Yin) est aussi dominé par rapport & 7i, U Py, d’ou une contradiction. O

On peut remarquer que les étiquettes (X%, Yii*!), pour k = 1,2, ..., |Pm| — 1,
définissent, avec les étiquettes de plus courts chemins lexicographiques (X;(:), Y;S,I ))
et (X,(,f), Y,—f,z)), une approximation extérieure de ’ensemble des étiquettes efficaces
(permanentes) correspondant i des chemins vrv,. En effet, étant donnée une telle
étiquette efficace, (X, Y ), distincte de (X;(,}) , Yé,l)) et de (X;‘,f), A )) qui sont sup-
posées avoir été utilisées pour initialiser Py,, les arguments dans la preuve ci-dessus
impliquent qu’il existe une étiquette (X% ,Y¥) € Py, telle que XE < Xy, et
Yi ' < Y.

Ainsi, la proposition 3.2 revient & tester la dominance, par rapport & 7i, U
Pin, pour les points extrémes d'une approximation extérieure de Py, translatée par
I'étiquette courante sélectionnée (X;, Yi;) (voir la figure 3.2). 11 est clair que plus
|Psn| augmente, meilleure sera I’approximation.

Notons également qu’'étant donnée I’étiquette courante sélectionnée (Xy;, Yis)
et le sommet correspondant v, les tests proposés par Tung et Chew, ‘dans [57]
et dans [58], pour éliminer (X, Yy;) reviennent & déterminer des approximations
extérieures de P;,, aux successeurs v; de vy, en utilisant au plus une étiquette autre
que (X},l,), Yj(,:)) et (X}:), Yj(,f)). Il s’agit en 'occurence de I'étiquette fictive dont les
valeurs de z et y correspondent aux plus courts chemins v;-v, pour les critéres z et y
respectivement, ou de I'étiquette efficace extréme de P;, correspondant a la somme

des deux critéres.

La fonction d'évaluation utilisée par ces auteurs pour sélectionner 1'étiquette a
traiter, (Xus, Y15), est la somme des deux fonctions objectifs. Cependant, 'étiquette
sélectionnée (X1, Yi;) peut étre prolongée en v;, méme si elle est dominée par une
étiquette déja trouvée en ;. De ce fait, I’algorithme proposé par ces auteurs n'utilise
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()

(X, > Y1) e Etiquette efficace v, - v
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o Etiquette dominée v, - v

o » o Etiquette sélectionnée v - v |
= Etiquette efficace translatée v - v
+ Etiquette d’approximation
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(X + X, Vit Vi)
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x.,y)

1i li

>~ X

Figure 3.2 — Approrimation extérieure pour les étiquettes v;-v, au sommet v;

pas la propriété spécifiant qu'un chemin v;,-v, efficace ne contient que des sous-
chemins efficaces (voir Hansen [36] ou Martins [47]).

De toute évidence, I’analogue de chacune des propositions 3.1 et 3.2 est vraie
pour 'étiquette, (Xj,, Y3), de plus petite valeur lexicographique dans Us,ev Tin-

3.3 Initialisation

Soit un sommet v;, le schéma d’initialisation de base de I’algorithme con-
siste & déterminer les étiquettes de plus petite valeur lexicographique, (Xﬁ ), },1(‘_1)),
X2, v?), (X8, v et (X2 ¥ correspondant aux plus courts chemins v;-v;
et v;-v,, pour chaque critére. Un plus court chemin v;-v; par ordre lexicographique,
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peut étre trouvé en utilisant une variante de I'algorithme de Dijkstra [25].

Il suffit, pour cela, d’effectuer la comparaison des étiquettes en utilisant I’ordre
lexicographique sur (X, Y) (ou sur (Y, X), pour le critére y). Les plus courts chemins
v;-v, peuvent étre déterminés d’une fagon similaire en parcourant le graphe dans le
sens contraire des arcs.

Une initialisation plus étendue peut étre effectuée en déterminant d’autres
étiquettes efficaces extrémes correspondant 3 des chemins v;-v,. De telles étiquettes
peuvent étre trouvées en utilisant une méthode de plus courts chemins paramétriques,
basée sur des combinaisons convexes des deux critéres: az;; + (1 —a)y;;, ou a € [0, 1].

On peut considérer seulement quelques valeurs de a prédéfinies, ou toutes les
valeurs nécessaires pour déterminer I’ensemble des étiquettes efficaces extrémes. Une
facon de procéder consiste 4 examiner une suite de subdivisions binaires de ’ensemble
des étiquettes efficaces extrémes.

En effet, soient (X',Y’) et (X", Y") deux étiquettes efficaces extrémes dis-
tinctes. Considérons le probleéme de ’énumeération de toutes les étiquettes efficaces
extrémes ayant des valeurs de z comprises entre X' et X”. Les deux étiquettes
induisent une combinaison convexe des deux critéres, avec pour parameétres a =
Y'-Y")/(X"-X'+Y'-Y"). '

Soit (X,Y) I'étiquette optimale du probléme de plus court chemin correspon-
dant. Selon le théoréeme 3.3 ci-dessous, (X,Y) est une étiquette efficace extréme
et deux nouveaux sous-problémes d’énumération, définis par les étiquettes efficaces
extrémes (X',Y’) et (X,Y) pour la premiére et par (X,Y) et (X", Y") pour la
seconde, doivent é&tre considérés.

Il n’est pas nécessaire d’explorer un sous-probléme donné si les deux étiquettes
qui le définissent ont la méme valeur pour P'objectif combiné ayant (X,Y’) comme
étiquette optimale. Cette exploration dichotomique de l’ensemble des étiquettes ef-
ficaces extrémes peut étre effectuée en utilisant, par exemple, une technique de re-
cherche en profondeur d'abord.
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Théoréme 3.3 Soient (X', Y’) et (X",Y") deuz étiquettes efficaces extrémes telles
que X' < X" et soit (X,Y) Uétiquette optimale du probléme de plus court chemin
paramétrique pour a = (Y'-Y") /(X" - X'+Y'-Y"). Alors (X,Y) est une étiquette
efficace extréme et X' < X < X". En outre, siaX + (1 —a)Y = aX'+ (1 — a)Y’,
aucune autre étiquette efficace extréme n’est située entre (X', Y') et (X,Y), nt entre
(X,Y) et (X", Y").

Preuve. Notons que 'hypothése X’ < X” n’implique aucune perte de généralité,
mais entraine que « €]0, 1[, puisque (X', Y’) et (X", Y") sont des étiquettes efficaces
et ainsi Y’ > Y". Par conséquent, le probléme de plus court chemin paramétrique
pour « est bien défini avec, en particulier, aX + (1 — @)Y < aX" + (1 — a)Y",
aX'+(1—-a)Y'=aX"+ (1 -a)Y"” et (X,Y) étant une étiquette efficace extréme
(voir, par exemple, White [63]).

Nous montrons maintenant que X’ < X < X"”. En effet, en supposant X < X',
on aY > Y’ par non dominance et il existe A €]0, 1{ avec X' = AX + (1 — A)X" et
Y' < AY + (1 — A\)Y", par convexité de I’ensemble des étiquettes efficaces extrémes.
De ce fait, aX'+(1-a)Y’' < adX +a(1 - A} X"+ (1—-a)(AY + (1 - A)Y") = AMaX +
(1-a))+(1-AN)(eX"+(1-a)Y") = MaX+(1-a)Y)+ (1= A)(aX'+(1 —a)Y"),
ie. M(aX'+(1-a)Y') < AMaX + (1 - a)Y).

Ainsi, X' + (1 — @)Y’ < aX + (1 — @)Y, puisque [’égalité impliquerait que
(X,Y), (X', Y') et (X", Y") sont sur la méme droite, ce qui contredirait le fait que les
trois étiquettes sont toutes des points extrémes de I’enveloppe convexe des étiquettes
efficaces, dans I'espace des étiquettes. On obtient donc une contradiction de I'opti-
malité de (X,Y’) pour le probléme de plus court chemin paramétrique associé & et
donc X' £ X. De maniére similaire, on peut montrer que X < X".

Nous discutons maintenant |'existence d’autres étiquettes efficaces entre (X', Y”)
et (X", Y"). Aucune autre étiquette efficace n’est située entre (X', Y’) et (X,Y) si
ces deux étiquettes sont égales. Supposons donc qu’elles sont distinctes et qu'il existe,
entre elles, une étiquette efficace extréme (X*,Y*) distincte de chacune d’elles. On
aalors X! < X* < XetY < Y* < Y'. Par ailleurs, il existe A €]0,1[ tel que
X*=AX"+(1-A)X et Y* < AY' + (1 — A)Y, par convexité de I'ensemble des
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étiquettes efficaces extrémes.

Par conséquent, si aX + (1 — a)Y = aX’'+ (1 — a)Y’, nous avons aX* + (1 —
a)Y* <adX'+a(l-A)X+(1-a)(AY'+(1-A)Y)=AaX'+(1-a)Y')+(1 -
MNeX+(1-a)Y)=AMaX+(1-a)Y)+(1-N)(aX+(1-a)Y) =aX+(1-a)Y,
ie.aX*+(1-a)Y* < aX +(1—-a)Y puisque I'égalité impliquerait que les étiquettes
efficaces extrémes (X', Y"), (X*,Y*) et (X,Y) sont sur la méme droite.

Ainsi, on obtient une contradiction de I'optimalité de (X,Y’) pour le probléme
de plus court chemin paramétrique associé a a. Il n’existe donc aucune autre étiquette
efficace extréme entre (X', Y') et (X,Y)siaX +(1 —a)Y =aX'+ (1 —a)Y". De
maniére similaire, aucune autre étiquette efficace extréme n’est située entre (X,Y)
et (X",Y")puisqueaX'+(1-a)Y' ' =aX"+(1-a)Y". O

Il est clair que si aucune autre étiquette efficace extréme n'est située entre
(X', Y') et (X,Y), alors les deux étiquettes sont optimales pour le nouveau probléme
de plus court chemin qu’elles définissent. Aucune autre étiquette efficace extréme
n’est optimale pour ce nouveau probléme, puisque le contraire signifierait que les
trois étiquettes efficaces extrémes sont situées sur la méme droite. De ce fait, au
plus un probléme de plus court chemin paramétrique doit étre résolu, pour sonder
le sous-probléme défini par (X', Y’) et (X,Y), dans ce cas particulier. Il en est de
méme pour (X,Y) et (X", Y").

Soit «y le nombre d’étiquettes efficaces extrémes situées entre les deux étiquettes
originales (X', Y’) et (X"”,Y"). Il suffit donc de résoudre 2y + 1 problémes de plus
court chemin paramétrique pour sonder le sous-probléme défini par (X', Y”) et (X", Y").
Remarquons que cette procédure n'implique aucune dégénérescence potentielle, comme
c’est le cas lorsqu'un argument de type simplicial est utilisé pour ajuster le paramétre
a (voir, par exemple, Henig [38] ou Mote et al. [51]).

Notons également que certaines étiquettes efficaces extrémes correspondant a
des chemins v;-v;, pour v; € V, peuvent étre générées, comme sous-produits de ces cal-
culs de plus courts chemins paramétriques. On peut ainsi obtenir, éventuellement, une
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meilleure initialisation, des ensembles P;;. Une telle initialisation peut étre également
effectuée pour les ensembles P;,, en déterminant, de maniére similaires, des plus
courts chemins paramétriques du puits a la source, par une traversée du graphe dans

le sens contraire de celui des arcs.

3.4 Enoncé de ’algorithme

Dans l'algorithme MSMS ci-apres, chaque test de dominance implique aussi
un test pour une copie déja existante de 1’étiquette candidate considérée. Pour des
raisons de simplicité, nous ne décrivons pas les pointeurs nécessaires pour reconstruire
le chemin correspondant a une étiquette efficace donnée. Un tel pointeur doit, en
principe étre spécifié chaque fois qu’'une étiquette temporaire est calculée.

Algorithme MSMS (MINSUM-MINSUM)

1. Initialisation

(a) Effectuer 'Initialisation de base ou I'Initialisation étendue.

(b) Pour v; € V — {v1,v,}, (X,Y) € Py; et (X', Y") € Py, supprimer toutes
les étiquettes de Ty, qui sont dominées par (X,Y) + (X', Y’') et ajouter
cette nouvelle étiquette a 7y, si elle est efficace par rapport a 71, et & Py,

2. E"ta.pe principale
Tant que (J,.opy Tii # @ et U, ey Tin # O : effectuer l1a Phase en avant si
| Uy;ev Thil £ {Uy,ev Tinl, sinon effectuer la Phase en arriére.

Initialisation de base

1. Plus courts chemins a¢ un critére
Déterminer les étiquettes de plus courts chemins lexicographiques (XS), Yl(,-l)),
XM, vy, (x8, v, et (X2, Y®), pour tout v; € V.

in!'%in
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2. Initialisation des ensembles d’étiquettes
Poser Xi; =0, Py = T = {(X&), ¥ ")} et, pour tout v; € V — {1}, T =@
et P = {(X;, i), X1, v}
Poser également X5, = 0, Ppp = Ton = {(Xf.}x), n(rlz))} et, pour tout v; €
V= {o ), Tin =0 et Pin = {(X}2, V), (X2, ;)

Initialisation étendue Initialisation étendue

1. Effectuer |'Initialisation de base et poser C = {(X{¥, v,!), x@ v}
2. Tant que C # 0:

(a) Retirer un élément (X', Y’, X", Y") de C;
calculer a = (Y' - Y")/(X" — X'+ Y' — Y") et ajuster les coiits des arcs
a az;; + (1- a)y;,-, pour tout (‘Ui,’l}j) € A.

(b) Pour v; € V, déterminer les étiquettes des plus courts chemins v;-v; et
ViU, et les ajouter a Py; et & P;, respectivement;

(c) soit (X,Y) I'étiquette d’un plus court chemin v;-vy,;
siaX+(1-a)Y < aX'+(1—-a)Y’, ajouter (X', Y', X, Y) et (X,Y, X", Y")
a l'ensemble C.

Phase en avant

1. Sélection d’une étiquette de chemin v;-vg
Retirer de U,,_.ev T1i une étiquette, (Xiy, Yir), de plus petite valeur lexicogra-
phique et l'insérer dans P;;.

2. Eztension de l'étiquette de chemin v,-v; sélectionnée

(a) Pour (X,Y) € Py, supprimer toutes les étiquettes de 7;, qui sont do-
minées par (Xiy, Yir) + (X, Y) et ajouter cette nouvelle étiquette & 7y, si
elle est efficace par rapport & 7;, et & Pqy.
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(b) Si X5 < X2 et au moins une étiquette (Xis, Yas) + (X%, YE+Y), pour
k =1,2,..,|P,| — 1, est efficace par rapport a 7i, et a P,, alors, pour
(vs,v;) € A: supprimer toutes les étiquettes de 71; qui sont dominées par
(X1r, Yis) + (25, ¥55) et ajouter cette nouvelle étiquette a 7y; si elle est
efficace par rapport a 7;; et & Py;.

Phase en arriére

1. Sélection d’une étiquette de chemin vy - v,
Retirer de (J,.cy Tin une étiquette, (X, Y;,), de plus petite valeur lexicogra-
phique et l'insérer dans Pj,.

2. Ertension de U'étiquette de chemin vy - v, sélectionnée

(a) Pour (X,Y) € Py supprimer toutes les étiquettes de 71, qui sont do-
minées par (X,Y) + (X, Yn) et ajouter cette nouvelle étiquette & 77, si
elle est efficace par rapport a Ti, et a Py,.

(b) Si Xy < Xg) et au moins une étiquette (Xf,, Yl';“) + (Xn, Ysn), pour
k=1,2,..,|Pyl — 1, est efficace par rapport & 71, et & Py, alors, pour
(v, v5) € A: supprimer toutes les étiquettes de 7;, qui sont dominées par
(Zi5, ¥iz) + (X, Yia) et ajouter cette nouvelle étiquette & T;, si elle est
efficace par rapport & T;, et & P;,.

3.5 Justification de ’algorithme

On peut remarquer qu'a une itération donnée, toute nouvelle étiquette en-
trant dans |J, .y Ti; (respectivement dans |J,. . 7in) est obtenue par extension de
I'étiquette de plus petite valeur lexicographique sélectionnée de J, .y 71: (respec-
tivement de {J,. .y 7in). La propriété suivante est, dés lors, immédiate, puisque les
valeurs des arcs sont non-négatives pour les deux critéres.
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Propriété 3.4 Etant donné un sommet v; € V, soient (X, Yy;) et (Xi;, YY), res-
pectivement, les étiquettes de plus petites valeurs lezicographiques sélectionnées de
Ue,ev Tis auz itérations k et k' telles que k > k', alors (Xy;, Y1) est lezicographique-
ment plus grande ou égale 6 (X1;,Y};). L'analogue est également vraie pour U, cy Tin-

A un sommet donné v; € V, les ensembles P;; et P;, sont initialisés avec des étiquettes
efficaces extrémes. La propriété ci-dessus implique que toutes les étiquettes futures,
entrant dans I'un de ces ensembles, sont générées par ordre lexicographique croissant.
Etant donné qu'un test de dominance est effectué par rapport & P;; (respectivement
Pin) avant d'introduire toute nouvelle étiquette dans (J, i 71 (respectivement dans
U,,ev Tin), la propriété ci-aprés est également triviale.

Propriété 3.5 Une étiquetie, de plus petite valeur lezicographique, sélectionnée de
Us,ev Tii ou de U"’_ ev Tin est une étiquette efficace permanente au sommet corres-

pondant.

La propriété 3.5 implique que les ensembles Py; et P;,, pour v; € V, contient uni-
quement des étiquettes efficaces permanentes & toute itération de l’algorithme. Le
résultat suivant justifie le test d’arrét de 'algorithme

Proposition 3.6 S, au début d’une itération, |J,.cy Tii = @ ou Uyev Tin = O,
alors Pi, contient toutes, et seulement, les étiquettes efficaces correspondant auz

chemins v;-v,.

Preuve Considérons le cas ol J,.y T1i = @. Commengant & v; avec 'étiquette
(0,0), toutes les étiquettes pouvant étre obtenues & partir d’une étiquette efficace
sélectionnée de U”‘,ev T1i sont examinées et introduites dans cet ensemble, & moins
que qu'elle soit dominée ou qu'une copie équivalente existe. Les étiquettes | J,,.cy 71
sont sélectionnée par ordre lexicographique (voir la propriété 3.4) jusqu'a ce qu'il
n'en reste plus.
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Ainsi, chaque étiquette efficace correspondant a un chemin v;-v, doit avoir été
calculée puisque le chemin correspondant ne contient que des sous-chemins efficaces.
L’analyse est similaire si |J, ¢y Tin est vide. Puisque toute étiquette sélectionnée est
efficace (voir la propriété 3.5), le résultat suit.O

Le théoreme suivant établit I'exactitude de l’algorithme MSMS et donne sa

complexité.

Théoréme 3.7 L'algorithme MSMS détermine l'ensemble des étiquettes efficaces
correspondant ¢ des chemins v,-v,. Si le critére T ne prend que des valeurs entiéres
non-négatives, alors l’algorithme requiert un temps O(n*D3lognD), ot D est la plus

grande valeur de z sur un arc.

Preuve. Etant donnée la propriété 3.5, l'exactitude de I'algorithme est immeédiate
par les propositions 3.1, 3.2 et 3.6. Pour la complexité, nous supposerons que l’initia-
lisation de base est utilisée. Ainsi, I'étape 1a requiert O(n2) opérations si une variante
de I'algorithme de Dijkstra est utilisée, puisque la seule modification consiste 3 utiliser
I'ordre lexicographique lors de la comparaison des étiquettes.

A I'étape 1b, on peut remarquer qu'il y a O(nD) valeurs du critére £ pour un
chemin élémentaire arrivant ou quittant un sommet donné, i.e, pour les étiquettes
de Py; ou de P;, en tout sommet v;. Par conséquent, les tests de dominance et les
insertions a cette étape prennent un temps O(n3D?lognD) en tout (voir la section
3.2). De méme, il y a O(n?D) étiquettes efficaces en tout, pour les chemins quittant
la source ou arrivant au puits, et ainsi, ’étape 2 se répéte O(n?D) fois.

Considérons maintenant la phase “en avant” et supposons que les sommets sont
contenus dans une queue de priorité selon leurs étiquettes de plus petites valeurs
lexicographiques dans les ensembles 77; correspondants. A I'étape 1, une nouvelle
étiquette peut étre sélectionnée de |J,..y 71: en O(logn) opérations et les ensembles
Pii et Ti; correspondant peuvent étre mis a jour en temps O(lognD) (voir la section
3.2). La complexité de I'étape 1 est alors O(lognD).
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Etant donné qu'il y a O(nD) étiquettes dans Pj,, les tests de dominance et
les insertions, a 1’étape 2a, nécessitent un temps O(n?D?lognD). O(nD) tests de
dominance, impliquant O(log nD) opérations chacune, sont nécessaires pour décider
si les successeurs de v; doivent étre examinés a 1'étape 2b.

Le traitement de chacun des O(n) successeurs requiert O(nD log nD) opérations,
puisque O(log nD) opérations sont nécessaires pour tester la dominance, alors que 7y
prend un temps O(nD lognD) pour étre mis & jour. Par conséquent, la complexité
de 'étape 2b est O(n?DlognD) et celle de la phase “en avant” est O(n?D? lognD),
puisque la mise 3 jour de la queue de priorité des sommets, & la fin de cette phase,
ne requiert qu'un temps O(n logn).

De maniére similaire, on peut montrer que la phase “en arriére” a la méme com-
plexité. L'étape dominante est 2a dans chacune des phases “en avant” et “en arriére”.
Puisque cette étape requiert un temps O(n2D? log n.D) & chacune des O(n2D) itérations
de I'étape principale de l'algorithme, le résultat suit.O

On peut noter qu'a chaque itération, I'algorithme examine, dans le pire cas,
toutes les étiquettes de Py, ou de Py;. Ces étiquettes caractérisent les sous-chemins
efficaces, déja calculés au sommet correspondant i I'étiquette sélectionnée. Ceci per-
met de mettre a jour I'ensemble des étiquettes temporairement efficaces de chemins
v1-Up, et d’éliminer éventuellement cértaines étiquettes (efficaces) sélectionnées qui ne
peuvent donner d’étiquettes efficaces de chemins v;-v,.

La complexité d'un algorithme similaire prolongeant les étiquettes sélectionnées
sans utiliser les étiquettes de sous-chemins efficaces déja calculées pour éliminer les
étiquettes non prometteuses est O(n*D?lognD). Cependant, un tel algorithme est
susceptible d’avoir une moins bonne performance en pratique, en particulier lorsque
la densité ou la taille du réseau augmente.
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3.6 Extension

L’algorithme proposé peut aisément étre modifié pour générer les étiquettes
situées dans un rectangle donné (i.e. défini par des bornes inférieures et supérieures
sur chacun des critéres). Une premiére modification consiste & vérifier, pendant le test
de dominance par rapport & un ensemble donné d’étiquettes efficaces permanentes
ou temporaires:(i) si la nouvelle étiquette est dans le rectangle spécifié lorsqu'’il s’agit
d’'un chemin v;-v, ou,(ii) pour tout autre chemin, si les valeurs de z et de y sont
inférieures ou égales aux bornes supérieures spécifiées sur les critéres.

Une autre modification consiste i initialiser P;, avec deux étiquettes efficaces
extrémes qui ne sont pas dans le rectangle mais sont, de préférence, le plus prés
possible des limites de celui-ci. Ces deux étiquettes doivent, bien entendu, étre en-
levées de I’ensemble P,, 2 la fin de ’'algorithme. Notons que certaines étiquettes
efficaces non extrémes pourraient ne pas étre trouvées si 'algorithme est initialisé
uniquement avec des étiquettes efficaces extrémes appartenant au rectangle. Ce ne
sera cependant pas le cas si les bornes spécifiées englobent 1'étiquette de plus petite
valeur lexicographique pour chaque critére.

Les deux étiquettes nécessaires pour initialiser 'ensemble P;, peuvent étre
déterminées en utilisant le schéma d’énumération du théoréme 3.3. Il suffit-d’ajouter
un test supplémentaire pour vérifier si au moins une des deux étiquettes définissant
tout sous-probléme d’énumération appartient au rectangle, avant de résoudre le
probléme de plus court chemin paramétrique. Un sous-probléme défini par des étiquettes
situées toutes les deux dans le rectangle peut, cependant, étre sauté, puisqu’il conduit
nécessairement a des étiquettes efficaces extrémes contenues dans le rectangle.

On résoudra donc, de préférence, uniquement les sous-problémes dont seule-
ment une des étiquettes de définition est dans le rectangle. La procédure peut générer
éventuellement d’autres étiquettes efficaces extrémes de chemins v,-v,, qui soient ad-
missibles. Elles peuvent, par conséquent, étre ajoutées & Py, avant d’exécuter la
phase principale de I'algorithme. Notons également qu’un schéma d’énumération qui
génere les étiquettes efficaces extrémes par ordre croissant de I'un des critéres (par
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exemple, dans Henig [38]) serait moins performante pour trouver les étiquettes effi-
caces extrémes les plus proches des limites du rectangle sans étre a 'intérieur.

3.7 Résultats numériques

Deux versions de l’algorithme proposé, dénommées MSMS1 et MSMS2, ont
été implantées en langage C, de méme que ’algorithme d’étiquetage de Hansen [36],
appelé MSMS0. Les versions MSMS1 et MSMS2 correspondent respectivement a
I'initialisation de base et a l'initialisation étendue. Des arbres balancés (AVL) ont été
utilisés comme structures de données pour les différents ensembles d’étiquettes.

Les algorithmes ont été testés sur des réseaux aléatoires dans lesquels tout
sommet d’indice ¢ est connecté a celui d’indice i + 1, et aléatoirement i tous les
autres, de sorte qu’aucun arc n’arrive au sommet v, (source) ni ne part du sommet v,
(puits). Les valeurs de z et de y sont générées indépendamment, de maniére aléatoire,
pour chaque arc. Ces valeurs sont comprises entre 0 et une borne supérieure variable.
Ainsi, I’arc joignant deux sommets d’indices consécutifs n’est pas nécessairement le
plus court chemin entre ces sommets, pour 1’'un ou l'autre des deux critéres.

Les caractéristiques des différents problémes testés sont regroupéeé dans les
tableaux 3.1, 3.7, 3.3 et 3.4. Les trois premiers tableaux traitent respectivement de
I'impact de la variation marginale des paramétres suivants: la densité du réseau, le
nombre de sommets et 1'étendue des critéres (i.e., la différence entre la plus grande
et la plus petite valeur du critére).

Dans chacun des trois premiers tableaux, la valeur du paramétre correspondant
augmente progressivement pour les 10 problémes considérés, tandis que les deux
autres parametres sont maintenus constants. Les tableaux montrent également le
nombre d’étiquettes efficaces extrémes et non extrémes dans chaque réseau, ainsi que
le temps CPU requis par chacun des algorithmes MSMSO0 et MSMS1.
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Tableau 3.1 — Plus courts chemins bicritéres pour réseauzr de densité croissante

Caractéristiques du réseau Temps CPU (sec.)
Nb. de| Nb.|Densité| Etendue{Nb. d’étiquet.| Nb. d’étiquet.|MSMS1| MSMS0
sommets|d’arcs des coiits effic. extr.|effic. non extr.

300f 391} 0.004] 199.738 2 0| 0.180 0.030
300| 9203| 0.103] 199.994 7 8| 1.340 2.020
300118240 0.203] 200.000 4 3| 1.8580 4.740
300126956 0.301| 199.994 5 1} 1.810 6.250
300|36005( 0.401| 200.000 9 15{ 6.070 12.050
300{45143| 0.503| 199.994 11 13| 8.390 15.940
300{53495| 0.596( 200.000 11 8| 6.220f 18.330
300{62719| 0.699( 200.000 14 13| 12.360( 23.760
300{71447| 0.797] 200.000 7 71 7.310 24.910
300|80432| 0.897| 200.000 11 13| 11.720 29.620

Le quatriéme tableau donne des statistiques pour 100 réseaux dans lesquels les
trois parametres sont tous aléatoires en méme temps. En plus des caractéristiques des
réseaux, ce tableau montre les ratios des temps CPU entre les algorithmes MSMSO0,
MSMS1 et MSMS2, de méme que ceux correspondant 3 la fraction du temps re-
quis par I'initialisation de chacune des deux versions de ’algorithme proposé. Pour
chaque indicateur considéré, le tableau donne la moyenne et 1’écart-type pour les 100
problemes générés, de méme que les valeurs minimales et maximales observées.

Les tests ont été effectués sur une station de travail Sun Ultra 2. On note une
domination presque systématique de l’algorithme proposé (MSMS1) sur celui qui
résout le probléme par une seule extrémité (MSMSQ), en particulier lorsque la densité
ou la taille du réseau augmente (tableaux 3.1 et 3.7). La tendance est cependant moins
marquée lorsque I'étendue des coiits sur les arcs varie (tableau 3.3).

Lorsque tous les trois parameétres varient aléatoirement, la version MSMS1 est,
en moyenne, 2.1 fois plus rapide que I'algorithme MSMSO et 2.8 fois plus rapide que
MSMS2. Toutefois, MSMSO0 ne prend qu'environ 83% du temps requis par MSMS2.
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Tableau 3.2 — Plus courts chemins bicritéres pour réseaux de taille croissante

Caractéristiques du réseau Temps CPU (sec.)
Nb. de| Nb.|Densité| Etendue(Nb. d’étiquet.| Nb. d’étiquet.|MSMS1| MSMS0
sommets| d’arcs des coiits effic. extr.|effic. non extr.

500 3037 0.012] 199.951 4 0j 0.570 0.410
1000{ 10866 0.011| 199.988 6 2| 1.880 2.350
1500f 24152 0.011| 199.982 6 6 5.920 6.720
2000( 41840| 0.010{ 200.000 5 4| 10.020;f 11.490
2500| 65321; 0.010| 200.000 5 13| 18.830( 19.530
3000{ 92739; 0.010{ 200.000 12 5| 26.220] 32.930
3500{126026| 0.010| 200.000 4 10| 37.470| 46.420
4000{164431| 0.010{ 200.000 11 9{ 52.490 61.830
4500(206932| 0.010| 200.000 8 10} 63.500| 83.030
5000(254962| 0.010{ 200.000 10 12| 80.870| 113.840

On remarque également un pourcentage de temps relativement élevé pour
I'étape d’initialisation durant la résolution du probléme par les deux extrémités, i.e.,
en moyenne 45% pour MSMS1 et 68% pour MSMS2. Ce ratio est particuliérement
élevé pour MSMS], puisqu’au plus deux étiquettes efficaces correspondant a des che-
mins v-v, peuvent étre trouvées durant !’initialisation de base.

Cette observation suggére cependant une grande efficacité des tests utilisés
durant les phases “en avant” et “en arriére” de l'étape principale de I’algorithme,
comparativement a la recherche de plus courts chemins paramétriques. De méme,
cela explique la moins bonne performance de MSMS2, ol toutes les étiquettes effi-
caces extrémes sont déterminées pendant l'initialisation, en résolvant plusieurs sous-
problemes de plus courts chemins paramétriques.

Considérons maintenant I'impact du nombre d’étiquettes efficaces sur la per-
formance des algorithmes étudiés. L’algorithme MSMS0 semble meilleur dans les cas
(rares) de réseaux de petite taille ou de trés faible densité, pour lesquels toutes les
étiquettes efficaces sont extrémes (premiere ligne des tableaux 3.1 et 3.7).
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Tableau 3.3 — Plus courts chemins bicritéres pour étendues de couts croissantes

Caractéristiques du réseau Temps CPU (sec.)

Nb. de| Nb.|Densité| Etendue|Nb. d'étiquet.| Nb. d’étiquet.[MSMS1{ MSMS0
sommets|d’arcs des coiits effic. extr.|effic. non extr.

2000(42082( 0.011 99.997 7 4] 8.320| 14.050

7f 10.940 12.940
10( 11.380 12.700
10.330 11.780
10.450 11.610
11.760 13.320
10.810 14.620
12.010 12.330
11.090 12.540
11.110 15.620

2000{41909| 0.010| 200.000
2000{42250; 0.011; 300.000
2000141992| 0.011| 400.000
2000{41799| 0.010{ 500.000
2000{41905| 0.010{ 600.000
2000{42070| 0.011] 700.000
2000{42044| 0.011| 800.000
2000{41772| 0.010{ 900.000
2000{42270| 0.011) 1000.000

N[N OB AID]|0O|
Njw{N|Ww|O|wv |k

Ceci peut s’expliquer par !'inefficacité relative de la recherche des plus courts
chemins paramétriques. Cependant, la méthode de résolution par les deux extrémités
semble présenter une plus grande robustesse lorsque la densité du réseau varie signi-
ficativement mais que le nombre total d’étiquettes efficaces change peu (tableau 3.1).

Ces résultats suggerent que l'algorithme proposé, dans sa version de base, a une
meilleure performance que I'algorithme d'étiquetage & partir de la source, lorsque la
taille ou la densité du graphe augmente. Le gain de vitesse reste cependant faible
(environ 2 en moyenne) mais se confirme sur une grande variété de problémes sans
aucune corrélation particuliéres entre les valeurs de z et de y. Des résultats semblables
ont également été obtenus en utilisant uniquement des valeurs entiéres pour les deux
critéres.

Notons que ces observations, faites sur des réseaux aléatoires, peuvent difficile-
ment étre extrapolées. Cependant, on peut raisonnablement s’attendre & une certaine
supériorité de ’approche par les deux extrémités pour d’autres types de problémes,
incluant les cas pratiques de grande taille.
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Tableau 3.4 — Plus courts chemins bicritéres pour réseaux aléatoires

Moyenne Eca.rt-t:y’pe Min.[ Max.
Nb. de sommets 205.63 60.63| 104 297
Nb. d’arcs 24857.55| 24857.31| 828| 83736
Densité 0.535 0.289(0.016| 0.985
Etendue des coiits 100.818|  57.462(0.476198.169
Nb. d’étiquet. effic. extr. 6.55 2.20 1 13
Nb. d’étiquet. effic. non extr. 8.10__ 4.56 0 22
MSMS0 / MSMS1 2.135]  0.731[0.333] 4.828
MSMSO0 / MSMS2 0.833 0.512(0.121] 4.382
MSMS2 / MSMS1 2.801 0.801(0.986| 5.541
Initialisation / MSMS1 0.455 0.134/0.196| 0.971
Initialisation / MSMS2 0.683 0.132{0.000{ 0.841

Cette remarque se justifie par le fait que l'algorithme proposé est aussi une
méthode d’étiquetage, mais exploite de I'information en provenance des deux extrémités,
afin de réduire le nombre total d’étiquettes temporairement efficaces qui sont pro-
longées. Les tests développés a ce effet semblent relativement efficaces, méme si la
phase d’initialisation, ou I’algorithme de Dijkstra [25] est exécuté quatre.fois, 1’est
moins.

Le probléme de plus court chemin bicritére étudié dans ce chapitre implique
la minimisation des deux critéres considérés. Dans certaines applications pratiques,
cependant, des bornes peuvent étre imposées sur la valeur de chacun des deux critéres,
afin d’éviter les solutions impliquant une trop grande détérioration de I'un d’eux (voir
la section 3.6).

Cette considération nous améne i un probléme voisin, oit I'on considére plu-
sieurs critéres mais dont un seul est minimisé et des bornes, inférieures et supérieures,
sont définies pour tous les autres, sur chaque arc du réseau. Le chapitre suivant
présente quelques algorithmes pour ce probléme.
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CHAPITRE 4

ALGORITHMES DE PLUS
COURT CHEMIN AVEC
FENETRES DE RESSOURCE

Nous étudions, dans ce chapitre, la résolution du probléeme de plus court che-
min avec fenétres de ressource, RCSPP, introduit & la section 1.3. Des algorithmes
pseudo-polynomiaux, basés sur la programmation dynamique et sur une approche en
deux phases, sont proposés pour le probleme. L’algorithme en deux phases permet
de traiter efficacement les cas de réoptimisation, lorsque certains sommets sont sup-
primés ou sont fixés, ou lorsque les cotits changent. Nous définissons ci-aprés quelques
notations additionnelles qui seront utilisées dans I’évaluation de la complexité des
différents algorithmes.

4.1 Notations supplémentaires

Les notations définies ici s’ajoutent & celles introduites & la section 1.3. Etant
donnée une ressource r, considérons, pour chaque sommet v; € V, les bornes inférieures
et supérieures suivantes sur la r-ieme composante du vecteur de ressources, z;, pour
tout chemin v,-v; réalisable:

Y., = min{hirvzirrfir} et Y, = max{,—linfin&r}-

—ir
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1l est clair, & partir de la définition de 1'opérateur de mise & jour ¥(-, -) (section 1.3.1),
que g, < Tir < Py Soient maintenant les parametres ci-apres:

p= Z wi, ou g = H(@r—g +1),
(vi,vj)EA reR

et

6= Z 0,',', ot 0,-]' = H(min{@,,w.-j,} - ma.x{g‘.r,y;j,} + 1).
(v vj)EA réER

Pour tout sommet v; € V', le parameétre ; est une limite supérieure sur le
nombre de vecteurs de consommations de ressource pour les chemins v;-v; réalisables,
tandis que ¢ est une borne supérieure sur le nombre total de vecteurs de consomma-
tions de ressource pour I’ensemble du graphe. De fagon similaire, 6;; borne le nombre
de vecteurs de consommations de ressource pour les chemins v;-v; réalisables qui pas-
sent par un arc (v;,v;) donné et @ est une limite sur le nombre total de ces vecteurs
pour tout le graphe. On peut remarquer que 8 < ¢, puisque 6;; < y;, pour tout arc

(vi,v;) € A. On a également § < Z H(ﬂl’,-,-, — W;;r + 1), de maniére similaire.
(vi,v;)EA rER

Supposons que les vecteurs de consommations de ressource 4 un sommet donné
v; € V sont disposés par un ordre lexicographique dans une structure d’arbre ou
il correspondent aux feuilles. Les niveaux de l’arbre correspondent aux différentes
ressources dans I’ensemble R. Un noeud du r-iéme niveau a au plus O(g;, — p,.+1)
enfants et peut, par conséquent, tenir dans un tableau unidimensionnel de taille
O(p;r — ¢, +1). La position d’une valeur z;- quelconque est alors donnée par z; —
@, + 1. Ainsi, un fils donné de ce noeud peut étre localisé en temps constant, et par
conséquent la feuille correspondant a un vecteur de ressource z; = (Zi, Zi2, ..., Zi|r|)
peut étre localisée en O(|{R|) opérations.

D’une maniére similaire, la position lexicographique du vecteur de ressource
d'un chemin v;-v; pouvant étre prolongé par un arc (v;,v;) € A donné, peut étre
trouvée en temps O(|R|). La taille d’'un noeud dans I'arbre correspondant est de
ordre de O(min{%;,, Wijr} — max{p_,w;;.} +1).
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4.2 TUne approche par le graphe des états

Une premiére méthode de résolution consiste a générer explicitement le graphe
Gg = (S, E) de tous les états possibles des sous-chemins réalisables en provenance
de la source, et a exécuter ensuite un algorithme classique de plus court chemin
sur ce graphe élargi. Etant donné v; € V, un sommet s; € S peut étre associé a
chaque vecteur de ressource z; correspondant & un chemin v;-v;. L'ensemble de tous
les sommets s; € S, qui sont associés & un sommet v; € V donné, sera noté S;. L’arc
(si, s;) est dans E si et seulement si w;; < z; < Wy; et ; = ¥(vj, ; +u;5), ol z; et z;
sont les vecteurs de consommations de ressource associés a s; et s; respectivement.

L'ensemble de tous les arcs (s;, s;) € E, associés a un arc (v;,v;) € A donné,
sera noté E;;. Le coit sur I'arc (s;, s;) est égal a c;;. Un sommet supplémentaire s,
(puits) est ajouté a S, et des arcs (Sp,Sn+1), POUr s, € S,, sont ajoutés & E. Le
graphe résultant Gg est un graphe orienté qui peut étre généré par la récurrence
ci-apres, suivant un ordre croissant de l'indice de v; ol 7y est le vecteur de ressource
initial.

S = {s1: 71 =¥(v1,z0)},
S; = {sj:z; = ¥(vj,T; + uij), w;; <z S Wy, si € Si, (v,v5) € A},
E;; = {(Si,Sj) ;= ‘Il(vj,:z:,- +u.-,-), W;; <z W5, 5 € Si, 85 € Sj},
Enn+1 = {(sm 3n+1) 18p € Sn}

La longueur du chemin optimal est alors donnée par la récurrence suivante, par indice
croissant de s;, tandis que la complexité de I’ensemble du processus est donnée par
le théoréme 4.1.

ca =0, ¢ = mm{c, + Gy : (8,',3_1') € E}

Théoréme 4.1 L’approche par le graphe des états résout RCSPP en temps O(p|R|).

Preuve. Le graphe Gg peut étre généré en temps O(p|R|) si, pour chaque v; € V,
les éléments s; de S; sont disposés par ordre lexicographique des vecteurs de ressource
z; associés. En effet, pour tout v; € V, S; contient au plus O(yp;) éléments (voir la
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section 4.1) et S; peut étre déterminé en temps O(|R|). Soit un arc (v;,v;) € A tel
que S; est connu. Chaque arc (s;, s;) € E;; est déterminé en sélectionnant un élément
s; € S; puis en testant si le vecteur z; associé satisfait w;; < z; < w;;, avant de
calculer, si nécessaire, z; = ¥(v;, T; + u;;). Ceci peut se faire en O(|R|) opérations,
en traitant les éléments de S; consécutivement. L’insertion de s; dans S; requiert
O(|R|) opérations pour vérifier si une copie existe déja (voir la section 4.1).

Par conséquent chaque arc (v;, v;) € A peut étre examiné en O(p;|R|) opérations
et les arcs (sn, sn+1) € E sont crées en temps O(¢p,). La complexité pour la génération
de Gg est donc en O(yp|R|) si les sommets v; sont considérés dans 1'ordre croissant
de leurs indices.

En outre, étant donné un arc (v;, v;) € A, chaque sommet s; € S; est connecté
a, au plus, un sommet s; € Sj, puisque ¥(v;, z; + u;;) est unique et z; pourrait ne
pas satisfaire w;; < z; < W;;. 1 y a donc O(yp) arcs dans E, dont chacun peut &tre
examiné en temps constant, durant la récurrence qui donne le chemin optimal. Ceci
permet de calculer les valeurs de c; et de déterminer un pointeur sur le prédécesseur
de s; le long du chemin optimal, i.e., sur s; tel que ¢; = ¢; + cij- La complexité de
I'approche par le graphe des états est, par conséquent, celle de la génération de Gg.
O

4.3 Une approche de programmation dynamique

Soient zg le vecteur de ressource initial et, pour chaque sommet v; € V, 'en-
semble F; de toutes les paires formées par les longueurs de chemin v;-v; réalisables
et les vecteurs de consommations de ressource associés. Considérons la récurrence
suivante, par indice croissant des v;:

Fi = {(21,0): z, = ¥(v1,z0)},
Fi = {(zj,¢) : ¢j =min{c; + ¢i5 : wy; < i < Ty, T3 = U(vj, i + uyj),

(zi,¢:) € F;, (vi,v5) € A}}.

La longueur du chemin optimal est alors donnée par: min{c, : (zn,¢s) € Fn}.
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Notons qu'étant donné un sommet v;, I’espace mémoire occupé par l'ensemble
F; peut étre libéré si tous les ensembles F; tels que (v;,v;) € A sont déterminés. Le
résultat suivant donne la complexité de la méthode.

Théoréme 4.2 L’approche de la programmation dynamique détermine le chemin
optimal pour RCSPP en temps O(p|R]).

Preuve. Les sommets sont considérés par ordre croissant des indices. L’exactitude de
cette récurrence “en avant” de programmation dynamique vient du fait que chaque
paire (z;,c;) € F; correspond a un plus court chemin v;-v; réalisable. Tous les vec-
teurs de ressource pouvant étre obtenus a partir des sommets v; tels que (v;, v;) € A
sont considérés lors du calcul de z;. Par conséquent, une seule valeur de c; est associée
a chaque vecteur z; et F; contient au plus y; paires (z;, c;).

Etant donnés (vi,v;) € A et (zi,6) € F, vérifier si w;; < z; < Wy; et calculer
r; = Y(v;,z; + ug;) et ¢; = c; + ¢ requiert O(|R|) opérations. Vérifier si (zj,c;)
doit remplacer la paire (z;, c}) courante de F; dont la valeur ¢} est minimale pour
le méme vecteur r; requiert O(|R|) opérations si les éléments de F; sont classés par
ordre lexicographique des vecteurs de ressource associés (voir la section 4.1). Ainsi,
le calcul des ensembles F; nécessite O(p|R|) opérations en tout si les éléments de
F;, pour v; € V, sont examinés consécutivement. Finalement, la sélection du chemin
optimal se fait en temps O(p,).0

On remarque qu’'a un sommet donné v; € V', 'ensemble F; peut contenir plu-
sieurs paires (Z;,c;) ne satisfaisant, sur aucun arc (v;,v;) € A, les contraintes de
fenétres de ressource (1.3). On pourrait donc envisager une récurrence en “en arriére”
dans le but d’éviter la détermination de ces paires, et ainsi réduire le temps de cal-
cul. Cependant, certaines difficultés techniques surgissent, du fait notamment des
opérations de mise 2 jour. En effet, étant donné un vecteur de ressource z; au sommet
v; et un arc (v;,v;) € A, plusieurs vecteurs de ressource z; correspondant a différents
chemins v;-v; réalisables peuvent étre solutions de I'équation z; = ¥(v;, z; +u;;). S'il
n’y avait pas de mise a jour, seul le calcul de z; = z; — u;; serait nécessaire.
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Notons également que le facteur ¢ dans la complexité de la récurrence de pro-
grammation dynamique et de celle utilisant le graphe des états, implique une charge
de calcul considérable. Ceci est particuliéerement vrai lorsque le probléme de plus
court chemin avec fenétres de ressource doit étre résolu de maniére répétitive, pour
différentes valeurs de coiits sur les arcs mais avec les mémes consommations de res-
source. Cette situation se rencontre notamment lorsque le probléme apparait comme
probléme auxiliaire durant un processus de génération de colonnes. Nous introdui-
sons, a la section prochaine, une procédure en deux phases utilisant une récurrence
“en arriére” et nécessitant moins de calculs dans de tels cas de réoptimisation.

4.4 Un algorithme en deux phases

4.4.1 Bornes sur les consommations de ressource

Nous décrivons d’abord une procédure pour calculer de meilleures valeurs pour
les bornes inférieures et supérieures, @i et @;,, sur la consommation de la ressource
r pour les chemins v;-v; réalisables. Considérons, pour chaque sommet v; € V et
chaque ressource r € R, la récurrence “en avant”, i.e., par ordre croissant des indices
de v;, suivante:

-(p-lr = min{ﬁlrrg_lryflr}v 51,- = max{ﬁll'v Elra_z.u}, (41)
9, = min{g‘.jr : (v, v;) € A}, P, = max{g;;, : (v,v;) € A}, (4.2)
ou:
[ min{Z;,, max{yp_,w;; } +tijr} st h; < max{p_,w;} + wije < Ry,
Pejr = 9 (4.3)
(| min{h;,, Z;.,Tj-} sinon,
( max{z;,, min{P;,, Wijr} + wije} si h; < min{@;,, Wije} + uije < by,
Pijr = J (4.4)
\ max{E,—,,'f,-,,gj,} sinon.

Les équations (4.1) doivent &tre remplacées par g, = %y, = ¥(v1, Tor) si RCSPP est
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résolu pour un seul vecteur initial zo. La proposition 4.4.1 donne une propriété des

parameétres ainsi calculés.

Proposition 4.4.1 Soient un chemin v,-v; réalisable et z; son vecteur de consom-
mations de ressource au sommet v;, alors P, < zj < Pj,, pour v € R. En plus,
les bornes ®;. et Pj,, pour T € R et v; € V, peuvent étre calculées en O(|R|m)

opérations.

Preuve. La premiére partie de la propriété sera prouvée par récurrence. Soit zq le
vecteur de ressource initial du chemin. Puisque, pour tout » € R, z;, = ¥(vy, Z¢r),
on a, par définition de ¥(-,-): z,, = zo, si by, < Tor < Ry, €t Ty, = Z,, OU Ti, = Ty,
sinon. Par conséquent #,, < Tir < Py

Soit maintenant (v;, v;) le dernier arc du chemin et supposons, par récurrence,
que @ < Tir < Py Puisque le chemin v,-v; est réalisable, nous avons également

Wijr < Tip < Wij, et, par suite, ma.x{_c&_,_,%j,.} < z; < min{@,,,W;;r}- En outre,
puisque z;, = ¥(v;, Tir + uij;), NOUS AVONS: Tjr = Tir + Ujjr Si hj, < i + uijr < hye

et zj, = z;, ou zj = Tj, sinon. On en déduit donc:

- si h;, < max{y_,w;,} + wjr < hj alors max{yp,, W} + Uije < Tjr i Tir +
uijr < hjr, €t T, = T;, sinon; donc Pijr < zjy; :

- Si la condition kj, < max{y_,w;;,} + uijr < hjr n’est pas respectée, alors

Tjr = L, Si Ty + e < hjri .&jr < zjr Sl Ejr < Zir + ugjr < hyr, €t T4 =Tjp si

hjr < Ti + uijr; par conséquent Piir < Tjr;

- Si h;, < min{@;,, Wijr} + wijr < hjr alors zj, < min{P,,, Bijr} + wijr if bj, <
Tir + Uijr, et Tj, =z, sinon; d'olt z;, < P;jp;
- Si la condition hj, < min{®,,, Wijr} + uijr < hj n'est pas vérifiée, alors z; =

Zj, Sl Tir + vijr < By, Tjr < hye si Ry <z + uge < Ry, €6 zH = TG si

hjr < Zir + uijr; par conséquent z;, < P;j,-

. Ainsi, #;r S Tir < Biee En ce qui concerne la complexité, étant donné r € R, le calcul
de o, et de ®,,, requiert un temps constant, de méme que le calcul de Piir et de ;;,.,
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pour chaque arc (v;, v;) € A si g, et P, sont connus. Les valeurs ;. et ¥j, peuvent
étre calculées en un temps proportionnei au nombre d’ arcs (v;,v;) € A. Donc, la
récurrence requiert un temps O(|R|m) en tout si les sommets v; € V sont considérés
dans I’ordre croissant de leurs indices, puisque, pour chacun de ces sommets v;, seuls
les arcs (v;,vj) € A ont besoin d’étre examinés. O

4.4.2 Caractérisation des consommations de ressource

L'algorithme utilise, dans la phase 1, une récurrence “en arriére” pour ca-
ractériser la consommation de ressource des sous-chemins dont le prolongement peut
donner un chemin v;-v, réalisable. Ceci se fait en calculant, pour chaque arc (v;,v;) €
A, un ensemble Uj;, par ordre décroissant des indices des sommets v; (voir la figure
4.1):

O

Usj;

Ui Uj
. : @
Figure 4.1 — Calcul des étiquettes de chemins v;-v, réalisables.

U':J = {.'Bi € Z‘Rl : ma‘x{ﬂrr ngr} S Tir .<_ min{@n Tu—ijr}y TeE R1

¥(vj, T; + uij) € Uj si vj # vn, }.

Ui

U v

(vi,v;)EA

Nous montrons maintenant que U;; contient effectivement les vecteurs de ressource
‘ des chemins v;-v; dont le prolongement, par 'arc arc (v;,v;), peut donner un chemin
v1-v, réalisable.
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Proposition 4.4.2 Soit un arc (v;,v;) € A. Un chemin v,-v; réalisable, avec un
vecteur de ressource T; en v;, peut donner un chemin v,-v, réalisable et passant par

Uarc (v;, v;) si et seulement si z; € Uj;.

Preuve. Considérons la partie “si”, i.e. la conditions suffisante. Par construction,
z; € U;; implique w;;, < i < Wi, r € R. En plus, ¥(vj,z; + ui;) € Uj, si
Vj # Up. On en déduit un chemin v,-v; réalisable dont le vecteur de consommation
de ressource, z; = ¥(v;, T; + ui;), est dans Uj si v; # v,. Il s’en suit donc qu'il existe
un sommet vx € V tel que (vj,vx) € A et z, € Uj. Puisque le réseau est acyclique
et le nombre d’arcs est fini, le résultat suit.

Pour la condition nécessaire, supposons (v;,v,) est le dernier arc du chemin
v1-v, réalisable résultant. Alors, pour r € R, w;,, < =iy < Win, et, puisque le
sous-chemin v,-v; extrait est aussi réalisable, nous avons, par la proposition 4.4.1,
9, < Tir < P D'ou z; € Ui, et z; € U;. En plus, considérons un arc quelconque
(vi,v;) du chemin v-vy, tel que v; # v, et supposons, par récurrence, que z; € U;.
Puisque les sous-chemins v;-v; et v;-v; extraits sont aussi réalisables, nous avons,
pour r € R, w;;, < Tir < W;jr €t ¢, < Tir < P, par la proposition 4.4.1, de méme
que z; = ¥(vj, T; + u5). Donc z; € Uy;. O

Notons qu’étant donné un sommet v; la mémoire allouée pour U; peut étre
libérée dés que tous les arcs arrivant a v; sont examinés. On peut aussi remarquer
que pour un arc (v;,v;) € A donné, ce ne sont pas tous les vecteurs dans Ui; qui
correspondent effectivement & des chemins v;-v;.

Pour chaque sommet v; nous décrivons un processus pour sélectionner, dans
tous les ensembles U;; associés a v;, les vecteurs correspondant aux chemins v;-v, qui
passent par v;. L’ensemble de ces vecteurs sera noté D;. Pour chaque vecteur z; € D;,
'ensemble R(z;) des vecteurs de consommations de ressource z; (aux prédécesseurs
v; de v;) desquels z; peut étre obtenu, est aussi déterminé durant le calcul des D;.
Puisque les éléments de U;; sont visités séquentiellement, il n’est pas nécessaire de
les disposer par ordre lexicographique.
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La figure 4.2 illustre le calcul des ensembles D; et R(z;), pour tout z; € D;.
Ce calcul se fait par la récurrence suivante, par indice croissant des v;:

Figure 4.2 — Calcul des étiquettes de chemins v,-v;-v, réalisables.

Dl = Ulr
Dj = {IL'J' 1z = ‘I’(‘Uj, z; + u,-,-), I; € U'.’j N Di, (‘U.‘,'Uj) S A},
R(l‘j) = {Z'i Iy = ‘I’(’Uj,l‘,' + u;,-), T; € U,'j N D;, ('U,',‘Uj) € A}, VIJ' € DJ-.

Nous avons le résultat suivant.

Proposition 4.4.3 Etant donné un arc (vi,v;) € A, il eriste un chemin v,-v,
réalisable passant par (v;,v;), avec, pour vecteurs de consommations de ressource,
T; en v; et T; en v;, si et seulement si z; € D; et z; € R(z;).

Preuve. Pour la partie “si”, soient deux vecteurs z; et z; tels que z; € D; et
z; € R(z;). Il est clair que z; € Uj; et, par conséquent, un chemin v;-v; réalisable
ayant comme vecteur de consommations de ressource z;, s’il en existe, peut étre
prolongé en un chemin v,-v, réalisable. En outre, z; € D; et il existe donc un sommet
vk tel que (vg, v;) € A et 2, € R(z;), ce qui implique que z; € Dy et 7 € Uy;. Puisque
le graphe est acyclique, il s’en suit qu’on peut en déduire un chemin v,-v; réalisable,
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¥(vj, zg) € Dy et ¥(vj,zq) € Uye. D'oll le résultat.

Pour voir que la condition est également nécessaire, considérons le premier arc
(v1,v¢) d’un chemin v,-v, réalisable passant par I'arc (v;, v;) et ayant pour vecteurs
de ressource z; en v; et z; en v;. Soient également zq, z, et z,, respectivement le
vecteur de ressource initial, et les vecteurs de ressource (mis a jour) en v, et en v,.
Nous avons z; = ¥(v;, z¢) et £, = ¥(vy, 1 +u1e). Puisque le chemin est réalisable, on
a également z; € Uy, et, par suite, ; € D,. Supposons maintenant, par récurrence,
que z; € D;. Le chemin étant réalisable, nous avons, z; = ¥(vj;, z; + ui;) et z; € U;;.
Par conséquent, z; € D; et z; € R(z;).0

La complexité du processus complet de caractérisation des consommations de
ressource est donnée ci-apres.

Proposition 4.4.4 Le calcul de R(z;), pour tous lesz; € D; et v; € V\{v1}, peut se
faire en temps O(8 |R|). En outre, le nombre total de vecteurs dans tous les ensembles
R(z;) dans le graphe est borné par 6.

Preuve. Nous montrons d’abord que les ensembles U;; peuvent étre déterminés en
temps O(6 |R|). En effet, le calcul des bornes PP, pourT € Rand v; € V, requiert
O(|R| m) opérations (voir la proposition 4.4.1). Etant donné un arc (v;,v;) € 4, il y
a au plus 6;; vecteurs z; tels que max{_ce..r, w;ir} £ T < min{P;,, Tijr}, pour 7 € R,
ainsi |U;;| < 6;;. Pour chacun de ces z;, le calcul de ¥(v;, z; + u;;) requiert un temps
O(|R|), de méme que la vérification de ¥(vj,z; + u;;) € Uj, si une représentation
lexicographique de U; est utilisée. La méme complexité est nécessaire pour insérer
z; dans U;; et dans U; par ordre lexicographique. Puisque, pour chaque sommet v;
(considéré par ordre décroissant des indices) seuls les arcs (v;,v;) € A sont examinés,
la complexité du calcul des ensembles U;; est O(@ |R]).

Considérons maintenant la récurrence “en avant”, pour la détermination des
ensembles D; et R(z;), en supposant que U; et, pour chaque arc (v;,v;) € A, l'en-
semble U;; est disponible, de méme que ¥(v;, z; + u;;), pour tout sommet z; € U;; (il
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a été calculé lors de la détermination de U;;). Dy peut donc étre déterminé en temps
constant.

Etant donné un arc (v;, v;) € A, chacun des O(6;;) vecteurs z; € U;; est examiné
en vue d’introduire le vecteur z; = ¥(vj, T; + u;;j) correspondant dans D; et z; dans
R(z;) si nécessaire. Vérifier si chacun de ces vecteurs z; est dans D; peut se faire en
temps O(|R|) si les éléments de D; sont disposés en ordre lexicographique. La méme
complexité est requise pour introduire z; dans D;. Un lien de z; & z; peut ensuite
étre créé (i.e. z; est introduit dans R(z;)) en temps constant. Si z; existe déja dans
Dj, un lien est créé entre la copie existante et le vecteur z; au sommet v;.

Ainsi, la récurrence “en avant” requiert un temps O(€ |R|) en tout, tandis qu’an
plus &;; liens sont créés lorsque chaque arc (v;,v;) € A est examiné. Le résultat est
dés lors immédiat. O

4.4.3 Recherche d’un chemin optimal

La phase 2 de l'algorithme est illustrée a la figure 4.3 et correspond i la
récurrence ci-aprés, suivant l'ordre croissant de I'indice des v; € V\{v,}, ou z; est
posé égal & ¥(vy, )

Figure 4.3 — Calcul du chemin optimal
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c(zy) = 0 si z; €D;. Sinon FIN.
c(z}) = +oo pourtout zj € Di\{z:}.
c(z;) = c(zi)+cioj et  p(z;) =wvi., pourtout z; € Dy, v; € V\{n},

ou v;. esttel que: z;. = argmin{c(z;)+ ¢ : Ti € R(z;)}-

Le chemin optimal peut se reconstruire en utilisant le pointeur:
p(z;), tel que: z, = argmin{c(z,) : , € D,}.

Le prochain résultat donne la complexité de la phase 2.

Proposition 4.4.5 La récurrence “en avant”, de la phase 2, donne un chemin op-
timal en temps O(6) st les ensembles D, et R(x;), pour z; € D;,v; € V\{1}, sont
disponibles.

Preuve. L’exactitude de la récurrence est basée sur le fait que le graphe est acyclique,
de méme que sur la proposition 4.4.3. Commengant par la source, les sommets sont
traités dans 1’ordre topologique.

Si ¥(v1,z0) ¢ D, alors la proposition 4.4.3 implique qu'aucun chemin v;-v,
réalisable n’existe et la récurrence s’arréte. Sinon, a tout sommet v; € V\{v:}, un
plus court chemin v;-v; (s’il en existe) dont le prolongement peut donner un chemin
réalisable au puits (i.e., avec un vecteur de ressource z;, au sommet v;, qui soit dans
D;) est déterminé pour chaque vecteur de ressource z; pouvant étre obtenu d'un
prédécesseur quelconque v; de v;.

Ces chemins sont les seuls qui seront considérés pour de futures extensions a
partir de v;. La proposition 4.4.3 implique que tous les chemins v;-v, réalisables,
qui utilisent un arc quelconque (v;, v;) € A, sont considérés lorsque le sommet v; est
traité. Par conséquent la récurrence donne un chemin optimal.

Le calcul de ¢(z;) requiert un temps O(|R|) puisque c’est la complexité pour
calculer ¥(vy, zo) et pour vérifier si z; € D,. O(8) opérations sont nécessaires pour
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calculer ¢(z}), pour z; € Di\{z}, puisque Dy = U1 = Uy, v,)ca U1 €t (U] < 64
pour tout arc (v,,v;) € A (voir la preuve de la proposition 4.4.4).

Soit maintenant un sommet v; € V\{v,} et un vecteur z; € Dj, la valeur c(z;)
et le pointeur p(z;) sont déterminés en examinant les vecteurs qui sont dans R(z;).
Chaque vecteur z; € R(z;) est traité en temps constant puisqu’un lien a été établi de
z; (en v;) & z; (au sommet correspondant v;, voir la preuve de la proposition 4.4.4).

La complexité globale pour trouver c(z;) et p(z;) pour tous les z; dans le graphe
est donc de O(6), d’aprés la proposition 4.4.4, si les ensembles D; sont considérés
dans 'ordre croissant de leurs indices. O

Nous donnons a présent la description de l'algorithme.

Algorithme en deux phases

Phase 1

1. Calculer ®;, e Pj., pour r € R et v; € V par ordre croissant des indices
des sommets, en utilisant les équations (4.1) et (4.2). Poser U; = @ pour
v; € V\{vn} et U;; =0 pour (v;,v;) € A, ainsiquei=n—1.

2. Tant que ¢ > 1:

(a) pour v; € V tel que (v;,v;) € A, introduire dans U; et dans Uj;, par
ordre lexicographique, chaque z; € Z'®! tel que max{yp. , w;} < Tir <

min{@;., Tijr}, pour r € R, si v; = v, ou si ¥(v;,z; + u;;) € Uj;

(b) faire i « i — 1 et retourner a 2.
3. Poser Dy = U; et D; = @, pour v; € V\{v}, ainsi que j = 2.
4. Tant que j < n:

(a) pour v; € V tel que (v;,v;) € A et pour chaque z; € U;; tel que z; € D;:

i. poser z; = W(vj, T; + u;5);
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ii. introduire r; dans D;, en utilisant I’ordre lexicographique, si une copie
n’existe pas déja;
iii. introduire z; dans R(z;) en créant un lien de z; (en v;) & z; (en v;);

(b) faire j « j +1.

Phase 2

1. Calculer z, = ¥(v, z9). Si z; ¢ D, FIN. Sinon, poser ¢(z,) =0 et ¢(z}) = +oo
pour zj € Dy\{z,}, ainsi que j = 2.

2. Tant que j < n:

(a) pour chaque r; € D;: parcourir R(z;) pour déterminer v;- tel que
z;- € argmin{c(z;) + ¢;j : z; € R(z;)},
puis poser ¢(z;) = c(zi-) + ;o5 et p(z;) = vie;

(b) faire j « j + 1.

3. Sélectionner z;, et p(z}) tels que z;, € argmin{c(z,) : z, € D, }.

4.4.4 Réoptimisation

Supposons que certains sommets sont enlevés du graphe et 'on doit, de nou-
veau, déterminer un chemin optimal sur le graphe résiduel. Soit V' I’ensemble des
sommets restants et posons a +oo, le coiit sur chaque arc (v;,v;) € A quittant un
sommet v; € V\V’, i.e., un sommet ne faisant plus partie du graphe. La procédure
de la phase 2 ci-dessus donne toujours un chemin optimal (en moins de temps que
sur le graphe initial) si V' est remplacé par V’ dans la récurrence.

D’une maniére similaire, la procédure de la phase 2 permet de trouver un che-
min optimal (s’il en existe) qui soit contraint de passer par un arc donné si le coiit
sur cet arc est négatif mais de valeur absolue M suffisamment grande. Par exemple
M, peut étre égal a 2n fois la plus grande valeur absolue des coiits sur les arc. I1
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est clair que s’il n’existe pas de chemin réalisable passant par l'arc spécifié, alors le
chemin trouvé ne contiendra pas cet arc. Ceci peut étre vérifié en O(n) opérations
aprés avoir effectué la récurrence de la phase 2.

Le résultat suivant est donc immeédiat, 3 partir des proposition 4.4.4 et 4.4.5.

Théoréme 4.3 Une premiére résolution de RCSPP requiert O(8|R|) opérations.
Toute résolution subséquente nécessite un temps O(8), si le vecteur de ressource
initial o ou les coiits sur les arcs sont modifiés ou si certains sommets ou arcs
sont interdits ou fizés pour le chemin optimal.

Rappelons que le parameétre ¢, dans la complexité des phases 1 et 2, est inférieur
ou égal au parameétre p dans la complexité de l'algorithme de programmation dy-
namique. En outre, puisque la proposition 4.4.3 garantie que seuls les sous-chemins
pouvant étre prolongés en chemins v;-v, réalisables sont considérés durant la phase 2,
la charge de calcul de la phase 2 sera, en pratique, nettement plus faible que celle de
la phase 1 (voir la section 4.5).

Une fois la phase 1 effectuée, seule la phase 2 est nécessaire en cas de réoptimi-
sation. Ceci confére un avantage potentiel i I'approche en deux phases par rapport
a la programmation dynamique si le probleme de plus court chemin avec fenétres de
ressource doit étre résolu de maniére répétitive.

Par ailleurs, en examinant le comportement de pire cas de l'algorithme en
deux phases, on constate que la complexité de 1'algorithme d’étiquetage permanent
présenté dans Desrochers et Soumis [20] et dans Desrosiers et al. [22] est sur-évaluée
(voir la section 1.3.2).

En effet, les auteurs donnent une complexité de O(D?) o D = 3 . (b —
a;y + 1) pour le probléeme de plus court chemin avec fenétres de temps, alors que,
d'aprés la section 4.1 (et la section 4.4.1), nous avons 8 < (n — 1)D < D?. Puisque
’algorithme d’étiquetage permanent ne retient que les vecteurs de ressources non
dominés & chaque sommet, le nombre d’étiquettes & considérer est nécessairement
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borné par f. La différence 6 et D? est particuliérement importante quand les fenétres
de ressource sont relativement large, ou quand les mises & jour des consommations
de ressource ne sont pas permises, puisque, dans ce cas, la formulation discutée dans
Desrochers et Soumis [20] et dans Desrosiers et al. [22] implique un dédoublement de
ressource.

4.4.5 Exemple

Nous présentons ci-aprés une illustration des phases 1 et 2 de I'agorithme en
utilisant le graphe de la figure 4.4.

By=(L1) Xp=(1,1) hy =(53) X,4=(43)
by = (LD x,=(11) hy =(3.3) X 4= (42)
4
W24=(3,4)

w24=(0,1)

hy=(02)
h; =(0.0)

—x[ = (0,0)
x,=(0.0)

hy=21) %=1 Wis = (5.4)
hy =(2.1) x3=(21) was=(1,1)

hs=(53) Xs=(4.3)
hs =(L1) xs=(21)

Figure 4.4 — lllustration de l'algorithme en deuz phases
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Phase 1

Etape (1):

(1 (77 V3 Vg4 Vs Vg
(¢j1s —‘ﬁjZ) (Ov 2) (11 1) (21 1) (4! 3) (3' 2) (81 7)
(gpe,) (0,0 (L1 @1) (3.2) (G2 0.1

U1=U2=U3=U4=U5=0,
U =U13=Uss =U34=Uss =Usg=Us6 =0, i=5.

Etape (2):
Itération ¢ U; Uij, for (vi,v;) €A
1 5  {(3,2)} Use = {(3,2)}
2 4 {(3, 3), (4, 3)} Use = {(3, 3),(4,3)}
3 3 {(2v 1)} U35 = {(2s 1)}: U34 = {(21 1)}
4 2 0 U24 = @
S 1 {(0,0),(0, 1)1(0!2)} U2=0, Uz = {(01 0)’(01 1)1 (0»2)}

Etape (3):
D1 = {(0, 0), (0, 1), (0, 2)}, Dz = D3 = D4 = D5 = Ds = 0, ] = 2.
Etape (4):
Itér. j D; R(z;), for z; € D;
0 -
{(2,1)} R(2,1) = {((0,0), 1), ((0,1), ), ((0,2), 1)}
{(4,3)} R(4,3) = {((2,1), us)}

{(3,2)} R(3,2) = {((2,1), v5)}
{(4,2),(5,3)} R(42)={((3,2),vs)}, R(5,3) = {((4:3),va)}-

U W N -
D UL W N



Phase 2

Initialisation (Etape (1)):
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Ty = (0, 0), I = \I’(‘Ul, (0, 0)) = (0’ O) c Dl~
e(z1) =0, ¢(0,1) = +00, ¢(0,2) = +o0; j=2.

Etape (2):
Itération J c(z;)
1 2 -
2 3 c(2,1) =2
3 4 c(4,3) =3
4 5 c(3,2) =3
5 6 c(4,2)=4

p(z;) c(z;) p(z;)
p(2v 1) =" - -
p(41 3) =13 - -
p(3v 2) =13 - -

p(4, 2) = Us 6(5, 3) = 3/2 p(5, 3) = V4

Etape (3): chemin optimal: Py, = {(v1,v3); (vs, vs); (vs, v6)}, colit = 3/2.

Dans cet exemple, seuls les chemins, dont le vecteur de ressource initial mis a

jour (¥(vy,z0)) a une valeur de 0 pour la premiére ressource et de 0, 1 eu 2 pour

la seconde, peuvent donner des chemins réalisables au puits. En plus, un tel chemin

ne peut visiter le sommet vy, puisque D, = 0. On peut également remarquer que

le chemin {(v1,vs); (vs, vs); (vs,vs)} est aussi réalisable alors que P, ne sera plus

réalisable si les contraintes de mise a jour ne sont pas actives au sommet vy.

De telles contraintes de mise a jour sont d'une grande importance dans certaines

applications des plus courts chemins avec contraintes de ressource. C’est en particulier

le cas en confection d’horaires de personnel ou certaines variables du probléme doivent

étre mises & jour aprés des jours de congé (voir le chapitre 5). Nous discutons dans

la prochaine section quelques variantes de la structure des fenétres de ressource,

susceptibles d’étre rencontrées en pratique.
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4.4.6 Quelques extensions
Fenétres de ressource multiples

Considérons une situation ou, pour une ressource r et un arc (v;, v;) donnés, il y
a plusieurs intervalles de réalisabilité [w,;,, w;;.] avec la condition que les contraintes
de fenétres de ressource (1.3) doivent étre satisfaites pour au moins I'un d’entre eux,
sur tout chemin réalisable passant par (v;, v;). Ceci est illustré, dans I'application aux
horaires d’infirmiéres, discutée au chapitre 5, par la ressource utilisée pour traiter les
rotations entre les affectations de jour, du soir et de nuit.

Les algorithmes présentés dans ce chapitre s’appliquent encore, moyennant
quelques modifications mineures. Soit W;;, I’ensemble de toutes les paires (y;_,-j,,ﬁijr)
associées a l'arc (v;,v;), pour une ressource r donnée. La plus petite valeur de Wijr
et la plus grande valeur de w;;, sur l'arc (v;, v;) doivent étre considérées, respective-
ment, comme w;;, et W;;, lors du calcul de Py de @;;,. Les conditions (w;;,, W;;.) €
Wijr, 7 € R, doivent aussi étre introduites dans les différentes récurrences, chaque
fois que w;;, < z;r < W;jr est impliquée, i.e., le calcul doit étre répété pour chaque
fenétre défini sur 'arc.

Mise A jour dépendant des arcs

Une autre extension du probleme consiste a associer les valeurs de seuils et de
mise & jour des ressources aux arcs plutét qu’aux sommets. Cela revient a définir
hij,, -Eij,., Z;;r, €t Ty pour chaque arc (v, vj) € A et chaque ressource r € R. Ces
valeurs remplacent k., hjr, Z;., et T;, dans le calcul de z; = ¥(vj,z; + u;;), si un
chemin v;-v; de vecteur de consommation de ressource z; est prolongé en utilisant

l'arc (v, v;) € A.

Les seules modifications aux récurrences “en avant”, discutées précédemment,
consistent & remplacer p, = min{h,,,z,,,Z1, }, 1, = max{hi,, Z;,, T1r} et 71 =
U (v, zo) par ¢, = min{w,;, : (v1,v;) € A}, By, = max{Wyr : (v1,v;) € Al et 2y =
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ro respectivement, et i éliminer le test ¥(vy, o) € Uy, 1a ol c'était nécessaire. La

récurrence “en arriére” de la section 4.4.2 reste inchangée.

Coiits dépendant des consommations de resources

Considérons le cas ou le coit ¢;; sur I'arc (v;,v;) est une fonction du vecteur
de ressource z; au sommet v;. Par exemple, supposons que si I'arc (v;,v;) est utilisé,
alors la mise a jour en v; implique un coiit supplémentaire. Un autre exemple consiste
a appliquer une pénalité si la consommation de ressource résultant au sommet v;
s'écarte d’une valeur-cible, avant ou aprés mise & jour. Une discussion sur ce type de
problémes peut étre trouvée dans Ioachim et al. [40] et dans Desaulniers et al. [18].

Les phases 1 et 2 restent toujours valides. Il est clair que la phase 1 ne re-
quiert aucune modification, puisqu’aucun calcul de coit n'y est fait. La phase 2 reste
également inchangée puisque tous les prédécesseurs du sommet v; sont traités avant
v; et le calcul de z;- = argmin{c(z;) + ¢;; : z; € R(z;)} est effectué en examinant
séquentiellement les arcs. Connaissant z;, il suffit de calculer le coiit approprié pour
chaque z; € R(z;) individuellement et d’en retenir le minimum.

En plus, I'algorithme reste valide si la fonction de coit c(z;) + ¢;; est remplacée
par n’'importe quelle fonction f;;(zi, c(z;)) non décroissante par rapport a c(z;). La
complexité de la phase 2 augmentera cependant d'un facteur égal & la complexité
de 'évaluation de f;;. Nous présentons dans la section suivantes quelques résultats
numériques sur le gain en temps de calcul que permet ’algorithme en deux phases.

4.5 Tests numériques

Considérons, pour fins d’illustration, le probléme de la génération d’un horaire
individuel pour une personne. La personne peut effectuer chaque jour un type de
quart de travail, parmi plusieurs, & moins qu’elle ne soit en congé. Les quarts difféerent
par leurs durées et les périodes couvertes (jour, soir, nuit).
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Il s’agit de trouver une séquence de quarts de travail et de congés, qui minimise
le coiit salarial tout en satisfaisant différentes contraintes de la convention collective.
Les contraintes considérées concernent la charge de travail, les congés statutaires ou
de fin de semaines, la rotation entre les quarts de jour, du soir ou de nuit (en termes
du nombre d’affectations consécutives de chaque type) et le pourcentage global des
quarts de jour, du soir ou de nuit. Ce probléeme peut se formuler comme celui de plus
court chemin discuté dans ce chapitre, ou les sommets correspondent aux quarts de
travail et les ressources sont définies de maniére a tenir compte des contraintes de la
conventions collective. Les détails de la modélisation seront discutés au chapitre 5.

L’algorithme a été testé sur des données en provenance du Centre des Naissances
de I’Hopital Royal Victoria de Montréal. Jusqu’'a sept ressources sont considérées
dans les tests. Les trois premiéres ressources permettent de contrdler respectivement
la charge de travail, les fins de semaines et les affectations consécutives en cas de
rotation. Les trois ressources suivantes servent a suivre les pourcentages de quarts de
chaque type et la derniére ressource est utilisée lorsqu’un certain nombre de jours,
dans une liste de candidats connus, doivent étre accordés comme congés.

Tableau 4.1 — Fenétres d’étendues minimales et mazimales

Ressources Seuils de mise & jour|{Val. de mise & jour|{Bornes de réalisab.
Min Max{ Min Max| Min Max
Charges de travail [|[ 0, 0] [2,20])) [0,0] [ 2, 20](i[ O, O] [ 2, 18]
Fins de semaines | 1, 1] (-1, -1, -1} [-1,-10j[ 1, 1) [-1,1]
Rotation [1,3] [0,9 [1,3] [0, 9 0, 0] [0, 9]
Ratio de jours [0, 0] [0,28]| [O,0] [0, 28]||[ 0, 0] [0, 6]
Ratio de nuits [0, 0] [0, 28] [0,0] [0, 28] 0, 0] [0, 11]
Ratio de soirs-nuitsf|| 0, 0] [0, 28]) [0,0] [0, 28]|[ 0, 0] [0, 15
Congés statut. [0, 0] [o,1]§ [0,0] [0, 1]l 0, 0] [0, 1]
Le tableau 4.1 donne les fenétres de plus petite et de plus grande étendues pour
. chaque ressource. L’horizon considéré est de quatre semaines (28 jours) et la personne

peut recevoir 5 quarts différents. Certains jours de congé sont connus a priori et ne
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sont pas considérés dans le graphe. Les nombres de sommets et d’arcs sont donnés au
tableau 4.2. Notons qu'il s’agit d’un multigraphe (certains sommets sont directement
connectés par plus d'un arc), ce qui explique le nombre relativement élevé d’arcs.

Tableau 4.2 — Performances des phases 1 et 2 en fonction du nombre de ressources

Réseau Ressources Temps CPU (sec.) Vecteurs de ressource
Nb. de| Nb.|} 1| 2| 3| 4( 5] 6| 7| Phasel| Phase2 Total| Nb.de| % de
sommets|d’arcs JL restants. [restants.
134| 8808{+[+{ -| -| -| -| -|| 0.460] o0.010] 52862 768] 1.453
134| 8808(f+|+|+{ -| -| -| -{{ 1.360 0.010|| 145251 1240 0.854
134 8808||+|+|+|+|+]| -| -[|104.690 0.180((12252159| 18252| 0.149
134| 8808[[+|+|+|+]| -|+] -]|134.880 0.260(|15674263| 24215 0.154
134} 8808([+|+|+|+| -|+|+]| 76.950 0.090|| 7812785 9617| 0.123

Tableau 4.3 — Performances des phases 1 et 2 en fonction de la taille du réseau

Réseau Ressources |[Temps CPU (sec.)|| Vecteurs de ressource
Nb. de| Nb.| 1} 2| 3|4|5|6|7||Phasel Phase2|| Total| Nb. de % de
sommets| d’arcs restants. [restants.
134| 8808|+|+[+|-[-[-[-[ 1.360 0.010( 145251 1240 0.854
274 21592|+|+|+]|-|-1-|-| 3.490 0.020) 371992 2791 0.750
554| 47240|+|+|+|-{-[-]-) 7.810 0.060) 826074 5893 0.713
1114| 98536+ (+|+|-|-|-|-| 16.440 0.130(11734238| 12097 0.698
2234201128+ |+{+{-{-|-|-| 33.970 0.250"3550566 24505 0.690

Les tests ont été effectués sur une station de travail Sun Ultra 2, en variant, de
2 4 6, le nombre de ressources simultanément actives. Cela correspond aux situations
rencontrées en pratique. Les tableaux 4.2 et 4.3 donnent les temps de calcul pour
les phases 1 et 2. On y trouve également le nombre total de vecteurs de ressource
examinés, de méme que le nombre et le pourcentage des vecteurs restant aprés la
phase 1. Les ressources, de 1 a 7, correspondent respectivement i la charge de travail,
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aux fins de semaines, aux rotations, aux ratios de quarts de jour, de nuit et de soir-
nuit, ainsi qu'aux congés statutaires. Un signe + indique une ressource active et
un — le contraire. Le tableau 4.2 donne les résultats pour un horizon d’un mois
en considérant les sept ressources. Dans le tableau 4.3, seules les trois premieéres
ressources sont prises en compte, pour un horizon dont la longueur est le double de
celle de la ligne précédente.

Ces résultats suggerent que, sur les problémes relativement difficiles, moins de
1% des vecteurs de ressource sont associés i des chemins réalisables. Cela correspond
a un gain considérable de temps de calcul en cas de réoptimisation. L’efficacité de la
méthode élimine pratiquement la nécessité d’une heuristique lorsque ce probléme est
incorporé dans un processus de génération de colonnes. Ce cas peut notamment se
présenter lorsque les horaires générés doivent satisfaire les contraintes de demandes
impliquant plusieurs employés simultanément. Le chapitre suivant est consacré a la
modélisation et a la résolution pratique de ce probléme plus général.
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CHAPITRE 5

APPLICATION AUX HORAIRES
DE PERSONNEL SOIGNANT

Nous montrons dans ce chapitre que la formulation du probléme de plus court
chemin avec fenétres de ressource discutée au chapitre précédent permet de modéliser
aisément le probleme d’horaires de personnel soignant décrit a la section 1.4. La
section 5.1, ci-apres, est consacrée au probléeme de la confection d'horaires réalisables
pour une personne. Un modele est présenté a la section 5.2 pour regrouper les horaires
individuels afin d’obtenir une configuration réalisable par rapport aux quotas de
présences. Le reste du chapitre traite d’une procédure d’énumération implicite qui
permet d’améliorer d’'une maniere itérative la configuration obtenue.

5.1 Génération d’horaires individuels

La réalisabilité d’un horaire individuel est définie a4 partir des contraintes de
la convention collective s’appliquant & la personne concernée. Les contraintes con-
sidérées correspondent aux principales régles utilisées par les infirmiéres-chefs a ’hopital
Royal Victoria de Montréal lors de la confection des horaires.

I s’agit des regles relatives 3 la charge de travail, aux congés de fins de semaines,
a la rotation entre les affectations de jour, du soir et de nuit, aux pourcentages respe-
ctifs de ces différents types d’affectations et enfin aux congés statutaires. Le modéle
est formulé de sorte qu’un horaire individuel corresponde a un chemin réalisable de
la source au puits, dans un graphe ayant la structure décrite a la section 1.3.
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5.1.1 Sommets et arcs

Soit un graphe orienté acyclique, G = (V, A), avec n = |V| sommets vy, v2, ..., Un
et m = |A] arcs. Un sommet v; correspond & une affectation au quart de travail t; le
jour d;. Les sommets sont supposés ordonnés dans le temps, avec v, et v, représentant
la source et le puits respectivement.

Alinsi, t; et d; se référent a la derniere affectation regue par 'infirmiére au cours
de I'horizon précédent, alors que £, et d, sont des affectations fictives. Les sommets
correspondant a des congés déja accordés ou & des quarts de travail inacceptables
pour la personne considérée, sont éliminés du graphe.

Un arc (v;,v;) est dans A si, selon les régles de la convention collective, I'in-
firmiére peut recevoir le quart ¢; le jour d; puis le quart ¢; le jour d;, tout en ayant
un repos ou un congé durant tout le temps compris entre ces deux affectations. No-
tons que si d; = d; + 1 alors l'infirmiére n'a pas de congé, i.e., les affectations sont
consécutives, sinon, elle est en congé durant les jours d; + 1 4 d; — 1.

Le nombre de jours de congé dans ce dernier cas doit, cependant, étre égal ou
supérieur au nombre minimum de jours de congé que la personne peut recevoir aprés
une suite d'affectations consécutives se terminant par un quart ¢;. Cette borne peut
dépendre des quarts de travail ¢; et ¢;, ainsi que des jours d; et d;.

Nous nous référerons au probléme de plus court chemin avec fenétres de res-
source RCSPP, introduit a la section 1.3 pour caractériser les séquences d’affectations
admissibles, en accord avec les régles de la convention collective considérées. Les res-
sources de I'ensemble R, associé au graphe G = (V, A), permettent de controler
adéquatement les caractéristiques de [’horaire comme, par exemple, la charge de tra-
vail, les fins de semaines travaillées et les rotations.

Les seuils et les valeurs de mise & jour sont utilisés pour réajuster, entre autres,
les compteurs d’affectations consécutives de méme type, par exemple aprés un congé.
Le vecteur de ressource initial zo permet d’initialiser le chemin avec de ’information
relative a P’horaire requ par l'infirmiére au cours de I’horizon précédent.
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Le coiit et le vecteur de ressource associés a un sous-chemin donné, caractérisent
la séquence d’affectations regues jusque li. Les fenétres de ressource, sur un arc (v;, v;)
quelconque, sont satisfaites uniquement si ’affectation associée a v; peut s’ajouter a

celles regues jusqu’en v;.

Dans le but de contrdler convenablement la séquence des congés de fins de
semaines, les arcs arrivant 4 un sommet représentant un samedi ou un dimanche en
provenance de la source ou d'un sommet qui ne correspond pas a un jour de fin de
semaine sont dédoublés. C'est également le cas pour les arcs permettant de sauter
au moins une fin de semaine complete.

La premiére occurrence de chacun de ces arcs dédoublés est utilisée pour les fins
de semaines consécutives ou la personne travaille, tandis que ’autre copie correspond
a des congés consécutifs de fins de semaines complétes. Un exemple est décrit a la
section suivante en méme temps que la ressource R, utilisée pour contréler les fins
de semaines consécutives.

Les valeurs de ressource sur les arcs quittant la source dépendent, entre autres,
du quart de travail que l'infirmiere a recu le dernier jour qu’elle a travaillé au cours de
I'horizon précédent. Ainsi, plus d’un arc (v, v;) pourraient étre nécessaires pour un
sommet v; donné, afin d’assurer une jonction correcte entre deux horizons consécutifs.
C’est en particulier le cas si d; est le premier jour de I’horizon courant et des rotations
entre affectations de jour, du soir et de nuit sont quelques fois permises sans congé.

Un dédoublement d’arc est alors nécessaire. La premiére occurrence d’un tel
arc est utilisée lorsque les quarts de travail associés aux deux bouts de l'arc sont de
méme type, alors que la deuxiéme copie correspond au cas ou les types de quarts
sont différents. Un exemple est présenté a la section suivante en méme temps que la
ressource R3 permettant de contrdler les rotations.
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5.1.2 Définition des ressources

Nous exposons ci-aprés les détails de la modélisation des principales regles de la
convention collective qui sont considérées. Les ressources utilisées correspondent res-
pectivement au nombre d’heures de travail cumulées, au nombre de fins de semaines
consécutives, au nombre de quarts de travail consécutifs de méme type, au nombre
total de quarts de travail de méme type et au nombre de jours de congés statutaires

dans I'horaire.

En un sommet v;, les seuils de mise a jour, h,. et hir, définissent I'intervalle
[Bsr, hir] des valeurs de la ressource r pour lequelles une (ré-)initialisation n’est pas
nécessaire. Les valeurs de mise & jour, z;, et Z;., sont utilisées pour (ré-)initialiser la
ressource r si v; est choisi mais que la valeur courante de r n’est pas dans [h;,, hi].
Notons que les valeurs de h;, et h; sont respectivement égales a celles de z;, et T;,
pour la charge de travail, les rotations et les congés statutaires, mais pas toujours
pour les fins de semaines et les pourcentages de quarts de jour, du soir ou de nuit.

Lorsque les affectations correspondant 4 deux sommets v; et v; sont chosies
sans congé, la fenétre [w,;,, Wi;,], sur 'arc (v;, v;), définit les valeurs de la ressource
r qui sont acceptables au sommet v;, aprés (ré-)initialisation. La valeur de r varie

alors de la quantité u;;, avant une éventuelle ré-initialisation en v;.

Ressource R;: charge de travail

Une spécification typique de la charge de travail est que la personne doit travail-
ler au moins R; unités de temps (par exemple, des heures) et au plus }_2'1 unités pour
le bloc de deux semaines (prédéfini) contenant un sommet v; donné. En pratique,
R = E pour le personnel permanent, s'il n'y a pas de vacance ou de congé statu-
taire. La ressource R; est utilisée pour compter le nombre total d’heures cumulées
durant chaque bloc de deux semaines. La durée du quart ¢; associé & un sommet v;
sera notée R;(t;), avec R,(t;) = O si v; est la source ou le puits.
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Si le sommet v; correspond & la source, au puits ou au dernier jour d’un bloc de
deux semaines, on a [k;;, k] = [0, 0] et z;; = E; = 0. Sinon, [k, ka] = [Ri(t:), Ryl

et I =~ Rl(t,'), fi]_ = E

Soit un arc (v;, v;). Nous présentons d’abord le cas ol v; correspond a la source
ou au dernier jour d’un bloc de deux semaines. Si v; est le puits alors [w;;;, Wijn) =
[0, 0] et u;;; = 0. Sinon, supposons que v; correspond au dernier jour d’un bloc de

deux semaines. On a alors u;;; = —ﬁ{. Si v; est dans le méme bloc de deux semaines
que v;, on a [wg;,, Wij1] = [R] — Ru(t;), R} — R(t;)], sinon wy;; =0 ou wy;; = 4o
selon que R} < Ry(t;) ou non, et W;;; = 0 ou W;;; = —oo selon que ?1 > Ry(t;) ou

non. Supposons que v; ne correspond ni au puits ni au dernier jour d’'un bloc de deux
semaines. On a alors u;j; = R, (¢;). Si v; est dans le méme bloc de deux semaines que

v, on a [y, Wi} = [Ru(t:), By — Ri(t;)), sinon [wyjy, W] = [0, 0]-

Considérons maintenant le cas ol v; n'est ni la source ni le dernier jour d’un

- . - — - _l‘
bloc de deux semaines. Si v; est le puits alors [w;;;, Wi1] = (R}, R,] et w1 = 0.
Sinon, supposons que v; est le dernier jour d’un bloc de deux semaines. On a alors

Uijp = —ﬁ'{. Si vj est dans le méme bloc de deux semaines que v;, alors [w;;;, Wi =
[B] — Ri(t;), By — R(t;)], sinon wy; = R ou wy;, = +oo selon que R] < Ry(t;)
ou nom, et W;j; = }_2'1 ou Wi;; = —oo selon que ?1 > R,(t;) ou non. Supposons

que v; n’est ni le puits ni le dernier jour d’'un bloc de deux semaines. On a alors
=i . i . -

uij1 = —R,—1. Si v; est dans le méme bloc de deux semaines que ;, on a [w;;;, Wij1] =

[Ri(t:), B] — Ru(t;)], sinon [wy;, Wijn] = [B, R

Ressource R,: congés de fins de semaines

Cette ressource est utilisée pour compter les fins de semaines consécutives,
de manieére a s’assurer que l’infirmiére travaille un certain nombre de fins de se-
maines consécutives, puis est en congé durant un nombre donné de fins de semaines
consécutives. Les valeurs positives de R, correspondent aux fins de semaines ou l'in-
firmiére travaille et les valeurs négatives aux congés. Les bornes sur le nombre de fins
de semaines consécutives ol la personne peut travailler sont R, et R,. Les valeurs

”, . e
correspondantes pour les congés de fins de semaines sont R; et R,.
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Il est nécessaire d’effectuer des mises & jour lors d’une transition d’une suite de
congés de fins de semaines consécutives 4 une suite de fins de semaines ot la personne
travaille, ou vice versa. Pour cela, les arcs arrivant & un sommet de fin de semaine,
en provenance de la source ou d’'un sommet qui ne correspond pas a un jour de fin
de semaine, sont dédoublés. Il en est de méme pour les arcs qui permettent de sauter
une fin de semaine entiére. Des consommations de ressource différentes sont associées

a chaque copie d'un arc dédoublé.

Par exemple, considérons une infirmiére qui a un congé durant une fin de se-
maine compléte donnée. La ressource R, doit varier de —1 si elle était également en
congé la fin de semaine précédente. Sinon, la valeur de la de ressource R; est stricte-
ment positive avant le congé et sa variation doit étre telle qu'une remise & jour & —1
soit requise aprés aprés avoir choisie I'arc liant les deux sommets impliqués. Ainsi,
deux copies de I'arc doivent étre disponibles, pour permettre chacune des deux va-

riations.

Soit un sommet v; donné. Si v; correspond 4 un jour de fin de semaine, on a
T o) — . T 5 B -
[]_liz, hgz] = [1, Rg] et L =ZTjp = 1. Sinon [ﬁiz, h,‘z] = [—-R«z, Rz] et L, =Z;p = -1.
Notons que la valeur de cette ressource au puits est reportée a la source pour ’horizon
suivant, afin d’assurer une continuité dans 1’attribution des congés de fins de semaines.

Considérons un arc dédoublé (v;,v;). Si v; est un sommet de fins de semaine
on a [wj,, W) = [0, Rz — 1] et u;j2 = 1 sur la premiéres occurrence de (v;, v;) et
[Wijer Wijo] = [~R,, —RS)] et uij» = 0 sur la seconde copie. Sinon, v; implique un
congé de fin de semaine entiére. On a alors [w,,, Wijz] = [R;, Ro] et uijp = Ry + 1
pour la premiéres occurrence de (v;,v;) et [w;;p, Wije] = [-R, +1,0] et ug;p = —1
pour la seconde copie.

Soit un arc non dédoublé (v;,v;). Si aucun des deux sommets ne correspond
a un jour de fin de semaine, on a [w,;;, Wija] = [-R,, Ry| et uija = 0. Si v; et v;
correspondent a des fins de semaines différentes, (w;;5, Wij2] = [1, Rz —1] et uyz = 1.
Pour tous les autres cas, on a [w;, Wijs] = [1, Ra] et ui2 = 0.
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Ressource Rj3: rotations

La rotation consiste a se déplacer entre les quarts de jour, du soir et de nuit. La
rotation peut, dans le cas général, étre permise avec ou sans congé. Le nombre d’affec-
tations consécutives que l'infirmiére doit recevoir avant une rotation est généralement
limité par une borne inférieure et une borne supérieure pour les différents types de
quarts. Nous utiliserons RY et Rf, RE et Ef, ainsi que RY et E;v pour représenter
ces limites inférieures et supérieures pour les affectations de jour. du soir et de nuit
respectivement. La ressource R; est utilisée pour compter le nombre d’affectations

consécutives correspondant au méme type de quart de travail.

Les intervalles [0, R ], [Rs +1, Rs +Re]et (B +Rs +1, By + By + Bo|
correspondent aux valeurs de R3 pour les quarts de jour, du soir et de nuit, respecti-
vement. La ressource Rj; doit étre remise a jour aprés un congé ou une rotation. On
alhy, Fus] = [0, Ry +Rs + Ry |, £i3 =0 et i3 = Ry + R, + R, pour la source et
le puits, et [hy, his) = [L, B:), Z; = 1 et Tia = B; pour un sommet correspondant
a un quart de jour. Pour les sommets associés a4 des quarts du soir ou de nuit, ces
valeurs sont égales aux bornes correspondantes pour la ressource Rj.

Supposons que I'infirmiére regoit un quart de jour, le premier jour de I'horizon.
La ressource R3 aura une croissance unitaire si l'infirmiére avait également recu un
quart de jour, le dernier jour de I’horizon précédent. Si elle avait plutét regu un quart
de nuit, alors la valeur de R3 doit étre posée a 1, i.e., R3; doit décroitre d’'une quantité
égale a sa valeur courante moins 1. Par conséquent, un dédoublement d’arcs est
nécessaire entre la source et les sommets correspondant au premier jour de I'horizon,
si la rotation est permise sans congé (comme mentionné a la section 5.1.1).

La fenétre de la ressource Rj3 est [0, ﬁf — 1] sur la premiére occurrence de
Parc (vy,v;) tel que d; est le premier jour de 1’horizon et ¢; est un quart de jour; et
—=D E w0 HE —=D —=E N B0  HE K HN . .
[Ry + Ry, R; + R;] U[R; + R; + Ry, Ry + R; + R; | pour la seconde copie. Si
t; est plutét un quart du soir, la fenétre est [0, 0] U [Rf +1, Ef + Ef — 1] pour la
premiére occurrence de l'arc et [RS, P:f] U [ﬁf + I—Zf + RY, Eso + ﬁf + R;v] pour la

deuxiéme.
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Si le sommet v; correspond a un quart de nuit du premier jour de I’horizon, la
fenétre est [0, OJU [ﬁf + Ef +1, ﬁf + Ef + Rj,v ~ 1] pour la premiére occurrence de
Parc (vy, ;) et [R?, Ry)U[RL + RE, RY + Ry ] pour la deuxiéme. L'union de cette
derniére fenétre et de [0, 0] U [ﬁf + Rf + RY, ﬁf + ﬁf + E;V] donne la fenétre pour

chacun des arcs restants qui partent de la source.

Pour de tels arcs ou la fenétre de la ressource R; est la réunion de plusieurs
intervalles disjoints, la plus petite et la plus grande valeurs acceptables sont respec-
tivement considérés comme w;;; et W;;3. Si la rotation n’est pas permise sans congg,
alors les secondes copie des arcs seront supprimées.

Les arcs (v;, vn) tels que d; est le dernier jour dans I'horizon, ont pour fenétre
1, Ef] si t; est un quart de jour. Soit un arc (v;,v;) tel que d; n’est pas le dernier
jour dans I'horizon. Lorsque ¢; est un quart de jour, la fenétre est [1, ﬁf —1] si d; et
d; sont des jours consécutifs et ¢; est aussi un quart de jour, et [R3, 'Rf] sinon.

Si t; est plutét un quart du soir, la fenétre est [Rf +1, 72-5 + Ef — 1] si d; et d;
sont des jours consécutifs et ¢; est aussi un quart du soir; et [R; +RE, RY +R.| sinon.
Enfin, si ¢; est un quart de nuit, nous avons [R; +Rs +1, Ry + &, + Ry —1] si d; et d;
sont des jours consécutifs et ¢; est un quart de nuit, et [B; + R, +RY, Re +Re +R) |

sinon.

La consommation de la ressource R sur un arc (v;, v;) donné, est 1 si d; et d;
sont des jours consécutifs et ¢; et ¢; sont des quart de méme type, par exemple si ¢;
et ¢; sont tous les deux des quarts de jours. La consommation est égale & zéro sur les

arcs (v;, vn), Oou d; est le dernier jour de I’horizon.

Tous les autres arcs (v;, v;) correspondent 2 des congés et impliquent une remise
a jour de la ressource cumulée. La consommation sur chacun de ces arcs est égale
a Zj3 — Wij3, ol z;3 est la valeur de mise 4 jour au sommet v; et W;;3 est la borne
supérieure de la fenétre de la ressource sur (v;, v;), telle que donnée précédemment.
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Ressources R, Rs et Rs: ratios des quarts de travail

Les contraintes de la convention collective spécifient les régles pour la proportion
des quarts de jour, du soir ou de nuit, dans I’ensemble des affectations regues durant
I'horizon. Les ressources Ry, Rs et Rg sont utilisées pour compter les affectations
de jour, du soir et de nuit respectivement. Cependant, si un seul des trois ratios est
requis, une seule des deux ressources restantes est utilisée pour compter les quarts
de travail qui ne correspondent pas au ratio demandé.

Par exemple, si le ratio de jour est suffisant pour satisfaire la contrainte, alors
R4 servira a compter les quarts de jour et une seule des ressources Rs et Rg sera active
et servira & compter a la fois les quarts du soir et de nuit. Nous donnons ci-apreés les
limites, aux sommets et sur les arcs, pour la ressource R4. Les valeurs pour les deux

autres ressources sont similaires.

Soient R, et Ry la plus petite et la plus grande valeurs acceptables du ratio des
quarts de jour par rapport au nombre total d’'affectations dans I'horaire retenu. Le
plus petit et le plus grand nombres d’affectations que la personne peut recevoir durant
I’horizon sont notés R, et R, respectivement. Considérons un sommet v; donné. Si
v; est la source, on a [hy, hi) = [0, 0] et ;4 = Tig = 0. Si v; est le puits, on a
[hi, i) = [0, Rs), Z,4 = O et Tig = R,. Dans tous les autres cas, by =z = 1siy;
correspond & un quart de jour, sinon h; = z,4 = 0. Si v; est différent de la source et
du puits, on a ki = min{d;, R4R,} et Tiq = R4R, + 1.

Considérons maintenant la consommation u;j4 et la fenétre [w,,, W;;4] pour
un arc (v;,v;) donné. Si v; correspond & un quart de jour, on a les valeurs u4 = 1
et W;j4 = min{d;, B4R, — 1}, sinon uijg = 0 et Wiy = min{d;, R4R,}. Si v; est
différent du puits et de la source, on a w,;, = 1 lorsque v; correspond a un quart de
jour et w,;, = 0 sinon. Pour la source et le puits, on a respectivement, w;;, = 0 et

Wiy = RyR,.

Il faut noter cependant que cette structure de la ressource R4 permet seule-
ment de trouver les valeurs comprises entre le nombre minimal et le nombre maximal
d’affectations de jour, pour lesquelles il peut exister un ratio satisfaisant les limites
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imposées. Certaines combinaisons entre les valeurs de Ry et celles de la ressource qui
compte les autres affectations peuvent donc ne pas satisfaire les limites de ratios im-
posées. Par exemple, un chemin dont la consommation pour cette derniére ressource
est égale a la limite inférieure mais dont la valeur de R4 est le maximum permis

pourrait ne pas étre réalisable.

Pour tenir compte de cette particularité, un test supplémentaire sera intro-
duit dans la phase 1 de l'algorithme en deux phases (voir section 4.4), lors de la
caractérisation des consommations de ressource (étape 2a de l'algorithme). Le test
consistera & ne garder, dans les ensembles U;, associés aux arcs arrivant au puits,
que les vecteurs de ressource z; qui satisfont les limites de ratios imposées.

Ressource R;: congés statutaires

Supposons qu’'au moins R, et au plus R; jours de congés doivent étre accordés
a l'infirmiére a partir d’une liste D de jours candidats (par exemple, le 25 décembre
et/ou le 1°" janvier). La ressource R; représente le nombre de ces jours de congés

statutaires le long du chemin.

Etant donné un sommet v;. On a h, = z;; = R; si le jour d;, correspondant 2
v;, est ultérieur au dernier jour admissible de la liste D. Sinon, h; = z;,, = 0 pour
tous les autres sommets. Si d; est antérieur au premier jour de D, on a hiy =Ty = 0.

Sinon, LAy, = z,4 = Ry

Pour tout arc (v;, v;) € A, la consommation u;;7 de la ressource Ry est égale au
nombre de jour de congé entre d; et d; qui appartiennent & D, et Wy = Ry — 7.
Si d; est ultérieur au dernier jour de D, on a w;; = R; — wjj7, sinon, w,;, = 0.
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5.1.3 Coiits sur les arcs

Les coiits sur les arcs sont définis de sorte que le coiit total d'un chemin soit
une combinaison linéaire des différents facteurs contribuant a la qualité de I’horaire.
Le coiit d’un arc (v;, v;) implique en particulier les préférences de l'infirmiére, sa
rémunération pour une affectation au quart £; le jour d;, ainsi que la préférence (du
décideur) de donner cette affectation a une personne de ce niveau de qualification.

Diverses pénalités peuvent étre ajoutées au coiit de certains arcs indésirables
tels que ceux qui impliquent une rotation sans congé. Le calcul détaillé des coiits sur
les arcs tient également compte de la contribution de I'horaire dans la satisfaction
des quotas de demande, i.e., sa contribution a la configuration compléte des horaires

de tout le personnel soignant.

Le probléme de la génération d'une configuration optimale d’horaires pour tout
le personnel est abordé a section 5.2 et est formulé comme un programme linéaire en
variables 0-1, ot les colonnes de la matrice des contraintes correspondent aux horaires
individuels réalisables. Ce probléme sera appelé probléme maitre. Le coiit sur chaque
arc est défini de telle maniére que le coiit total d’'un chemin corresponde au coiit
réduit de la colonne associée. Ainsi, la recherche d’une variable de coiit réduit négatif
pour un pivot de ['algorithme du simplexe, lors de la résolution du probléme maitre,
revient & déterminer un chemin de coiit réduit négatif.

Pour garder une structure de probléme de plus court chemin, pour le probléme
auxiliaire de génération d’'horaires individuels, les coefficients utilisés dans la com-
binaison linéaire définissant le coiit sur un arc, sont négatifs pour les préférences et
positifs pour les salaires. L’interaction avec les autres horaires de la configuration
se traduit par la présence de multiplicateurs duaux de signe variable. Du fait de la
présence de ces variables duales, le calcul détaillé des coiits sur les arcs sera présenté
a la section 5.2.3, aprés avoir discuté la formulation du probléeme maitre.

Notons que la présence des contraintes de ressource utilisées pour modéliser
les contraintes de la convention collective rend particuliérement ardue la résolution



du probléme auxiliaire d’horaires individuels. En effet, I’opérateur, ¥(-,-), d’accu-
mulation des consommations de ressource n’est pas nécessairement une fonction non
décroissante pour une ressource donnée, le long du chemin. En outre, les fenétres de
ressource sur les arcs définissent des bornes rigides devant étre absolument satisfaites.

L'algorithme en deux phases discuté au chapitre 4 permet cependant de résoudre
efficacement ce probléme complexe de cheminement. Une fois la phase 1 effectuée,
seule la phase 2 est nécessaire pour toutes les résolutions subséquentes du probleme
auxiliaire. Par ailleurs, au lieu de déterminer seulement le chemin de coiit réduit
minimal, on peut retenir, a la fin de la phase 2, tous les chemins réalisables de cotit

réduit négatif (s’il en existe) qui arrivent au puits v,.

A notre connaissance, aucun autre algorithme spécialisé, dans la littérature,
ne peut étre utilisé comme une boite noire pour ce probléme. On peut, néanmoins,
envisager une généralisation de I’algorithme d’'étiquetage permanent présenté dans
Desrosiers et al. [22] pour le probléme de plus court chemin avec fenétres de ressource
aux sommets. Cependant, cette approche implique un dédoublement des ressources
pour satisfaire les deux bornes des fenétres. En outre, les tests de dominance utilisés
dans cet algorithme ne s’appliquent pas dans le cas présent.

5.2 Génération d’horaires de groupe

Nous discutons ici un modéle de génération de colonnes en variables 0-1 pour le
probléme, plus général, de la recherche d’une configuration optimale d'horaires pour
I’ensemble du personnel soignant d’une unité de soins. Ce modele contient, comme
probléme auxiliaire, celui de la génération d’horaires réalisables pour une infirmiére
donnée. Le probleme maitre sélectionne les horaires individuels pour satisfaire les
contraintes de demande tout en minimisant le coit salarial et en maximisant les
préférences personnelles et 1’équilibre des équipes.
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5.2.1 Formulation de base

Dans la formulation de base du probléme maitre, on minimise, pour le person-
nel permanent, une somme pondérée, comprenant les rémunérations salariales, les
préférences individuelles et I’équilibre entre les personnes expérimentées et celle qui
le sont moins, sous les contraintes de satisfaction des quotas de demande. Des poids
positifs sont associés aux salaires tandis que les préférences et 1'équilibre des équipes
ont des poids négatifs.

Nous supposons que le salaire et la préférence de chaque infirmiére pour chaque
affectation potentielle, sont connus a priori. Les valeurs de préférence peuvent étre
obtenues, en pratique, en utilisant un systéme de points-quotas équitablement dis-
tribués aux infirmiéres, comme dans Warner [62]. Les infirmiéres peuvent, également,
indiquer des préférences globales, telles que “seulement des quarts de jours durant la
semaine x”, a partir desquelles des valeurs de préférence spécifiques seront déduites
pour chaque affectation potentielle.

Le salaire et le niveau de préférence d’une infirmiére pour un horaire donné sont
ensuite calculés en additionnant (éventuellement aprés une normalisation), respec-
tivement, ses rémunérations et ses préférences pour les affectations contenues dans
I'horaire. La préférence de !'infirmiére pour chaque affectation et pondérée par son
ancienneté. Ces calculs sont effectués durant la résolution du probléme auxiliaire.

Soient fi, et gis, respectivement, le niveau de préférence de I'infirmiére k& pour
I'’horaire potentiel s et sa rémunération si on lui attribue cet horaire. L’ensemble des
jours de I'horizon est noté D et T désigne le nombre de quarts de travail. Chaque
horaire potentiel s peut s’exprimer comme un vecteur de T x |D| composantes @y

telles que:

. 1 si ’horaire s implique une affectation au quart ¢ le jour d
std = .
0 sinon.

On définit également les coefficients suivants:
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0 sinon,

{ 1 si l'infirmiére £ a le niveau de qualification ¢

o = 1 si le quart ¢ couvre la période de demande p
® 0 sinon.

Les coefficients oy, sont utiles pour lier les horaires aux contraintes de demande,
puisqu’un horaire est défini comme une séquence de quarts de travail et les quotas
sont donnés par périodes de demande. Une illustration des quarts de travail par
rapport aux périodes de demande, est donnée a la figure 1.4 (section 1.4). Soient

également les variables de décision suivantes:

{ 1 si 'infirmiére & regoit 1'horaire s
Yrs = .
0 sinon.

Si K est le nombre d’infirmiéres et S le nombre total d’horaires individuels potentiels,
alors le nombre d'infirmiéres de niveau de qualification £ qui ont regu le quart ¢ a la

période p le jour d est donné par

K S
Z Z atpbklastdyk.1~

k=1 s=1
Le nombre d’infirmiéres dont le niveau de qualification fait partie d'un ensemble £

donné et qui sont affectées & un quart de travail appartenant i I'ensemble 7, a la

période p le jour d, est:

K S
Z Z Z Z atpbklastdyks-

telL teT k=1 s=L

La proportion de personnes expérimentées, parmi les infirmiéres qui sont af-
fectées i la méme période un jour donné, est un facteur important lors de la confection
d’horaires de personnel soignant. Par exemple, I'infirmiére-chef peut préférer affecter
une infirmiére-bacheliére, une stagiaire et deux auxiliaires a une certaine période pour
un jour donné, plutét que deux infirmiéres-bacheliéres et deux auxiliaires, méme si
les deux équipes sont acceptables.
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Afin de tenir compte de ce type de spécification, on définit eﬁd, la préférence
d’affecter une infirmiére de niveau de qualification ¢ a la période p le jour d. Si L est
le nombre de niveaux de qualification, une fonction globale d’équilibre des équipes

est donnée par:
T

K s L
Z Z Z Z Z Z el 0epbreGarayis.

k=1 s=1 deD peP (=1 t=1

La fonction objectif du probléme maitre correspond alors a la somme pondérée

suivante, sur tout l'ensemble des horaires potentiels:

K S L T
Z Z(gks - fka - Z Z Z Z e:datpbklastd)yks- (51)
k=1 s=1 deD peP t=1 t=1
Les contraintes de partitionnement,
s
Yuwe=1 k=12_.K, (5.2)
s=1

sont nécessaires pour assurer que chaque infirmiére recoit exactement un horaire.

Plusieurs quotas de demande peuvent étre spécifiés pour une période p et un
jour d donnés. Par exemple, le quota d’infirmiéres-bacheliéres devant recevoir des
quarts de 8 heures peut étre différent de celui de stagiaires et d’auxiliaires devant
effectuer des quarts de 12 heures ou de 8 heures, etc...

Ainsi, & chaque quota de demande pour une paire (p,d) peut comprendre un
sous-ensemble £ de niveaux de qualification et un sous-ensemble 7 de quarts de
travail. Soit Q(p,d) 'ensemble de toutes les paires (£, T) associées & (p,d), et qc1
le quota pour chacune de ces paires (£, 7). Les contraintes de demande peuvent se

formuler comme suit:
( - )

K S
Z Z Zzatpbuaauy&s 2> dcT, (L, T) € Qp,d), (5.3)

teL teT k=1 s=1
peEP,deD
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Les signes <, =, and > représentent respectivement une satisfaction maximale,

exacte ou minimale de la demande, tandis que P et D correspondent respectivement
a I'ensemble des périodes de demande journaliéres et a celui des jours de I'horizon.

Les contraintes d’intégralité suivantes:
s € {0,1}, k=12,..,K, s=1,2,..,85, (5.4)

sont finalement requises pour assurer que chaque infirmiére regoit entiérement un
horaire donné ou pas du tout.

La formulation de base du probleme maitre consiste donc &2 minimiser la fonc-
tion objectif (5.1), sous les contraintes (5.2) 4(5.4). Ce modéle permet de résoudre le
probléme d’horaires pour le personnel permanent. En cas d'insuffisance de celui-ci,
le modéle peut étre légérement modifié pour inclure le personnel non permanent.

5.2.2 Le personnel flottant

Lorsqu’il y a trop ou trop peu d’infirmiéres permanentes pour satisfaire les
quotas, le programme mathématique correspondant au probléme maitre peut ne pas
avoir de solution. Dans ce cas, on peut éviter la non-réalisabilité en ajoutant des
variables de déficit y;, et en retranchant des variables de surplus y7+, non négatives,
aux membres de gauche des contraintes de demandes (5.3).

Un coiit positif de trés grande valeur absolue est associé a chaque variable
ainsi introduite. Ces coits ne sont cependant pas nécessairement les mémes pour les
variables y,+ et y,r.

Ces variables représentent respectivement le déficit et le surplus d’infirmiéres
pour chaque niveau de qualification et de quart de travail, chaque période et chaque
jour de I'horizon. En résolvant le modéle modifié, on peut donc obtenir une estimation
du temps supplémentaire requis ou du besoin en personnel flottant (si les y/.+ ne sont
pas tous nuls), ou bien de la réduction de charge de travail pouvant étre fait tout en
satisfaisant les quotas (si les y7+ ne sont pas tous nuls).
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Les priorités d’affectations sont telles que la charge de travail réguliére du per-
sonnel permanent & temps plein ou & temps partiel doit étre considérée en premier
lieu. Ensuite, on prend en compte le temps supplémentaire pour les infirmieres per-
manentes & temps partiel, dans la limite d’une charge & temps plein. Finalement on
considére les infirmiéres de 1’équipe flottante basée a 'unité de soin.

Par conséquent, si des variables y, et yz+ non nulles sont obtenues, on aug-
mentera d’abord ia charge de travail maximale des infirmiéres permanentes a temps
partiel désireuses de faire du temps supplémentaire. Ensuite, si nécessaire, le person-
nel flottant basé a l'unité est introduite, en tenant compte de I'ancienneté dans les
priorités.

Notons que dans une formulation matricielle du probléme maitre, une colonne
Ags, a 0 sur ses K premieres lignes sauf sur la ligne k, qui contient un 1. Chaque
ligne d’indice (£, T, p, d) a une valeur égale A:

Z Z atpbklaatd -

el teT

Chaque colonne A, correspond i un horaire réalisable pour une infirmiére
k et doit donc satisfaire les contraintes de la convention collective, telles qu’elles
s'appliquent 3 cette infirmiére. Ces contraintes additionnelles sont prises en compte
dans la structure du probléme auxiliaire (voir la section 5.1).

Etant donné une solution courante du probléme maitre, la recherche d’un nouvel
horaire doit tenir compte du niveau de satisfaction actuelle des quotas. Ceci peut se
faire en incorporant les multiplicateurs duaux, associés a la solution courante, dans
le calcul des coiits sur les arcs dans le probléme auxiliaire.
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5.2.3 Calcul des coiits sur les arcs

Soient A le vecteur de variables duales associées a la solution optimale d’une
relaxation linéaire du probléme maitre, et Wy, le poids total de la variable y, dans la
fonction objectif du probléme maitre. Le coit réduit de la colonne A, peut s'écrire
Wi = Wi, — A -Ag, . Le poids Wi, comprend le salaire gi, et le niveau de préférence
fxs de I'infirmiére, de méme qu’un troisieme terme correspondant a la préférence (du
décideur) pour son niveau de qualification:

L T
Wie =Gk = fra — 3 D D D elapbrrtoa.

deD peP (=1 t=1

Les cotits sur les arcs sont déduits en développant I'expression de Wy, et en la posant
égale au coiit 3, ¢4 Cijz; du chemin associé 4 la colonne Ay,, ol ¢;; est le coit
sur I'arc (v;,v;) et z; est égale & 1 si 'arc (v;, v;) est sur le chemin et 0 sinon.

Le salaire de l'infirmiére k£ comprend un salaire de base g? et une rémunération
supplémentaire gi pour l'affectation au quart ¢; le jour d;. Le calcul de fi, implique
un ajustement selon une mesure, <, de I'ancienneté de l'infirmiére k, ainsi qu’une
réduction par une quantité f? proportionnelle au niveau de préférence de son ho-
raire pour ’horizon précédent. Ceci permet d’incorporer une certaine équité dans la
génération des horaires d’un horizon a I'autre. Soit f,{ , la préférence de I'infirmiére k&
pour le quart de travail £; le jour d;, on a:

9% = gi+ Y glz
(viv;)€A
feo = ). mfimp - R
(vi,vj)EA
Soit un sommet vjs tel que dj = d et t; = ¢, alors, étant donné un horaire s, on a:
Gua= Y Zij. (5.5)
(viwjr)eA
Par conséquent, le terme correspondant i la préférence pour le niveau de qualification
de l'infirmiére peut se récrire:

L
> XY el bz -

(vi,vj)EA PEP t=1
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Considérons maintenant C, I’ensemble des quadruplets (p, d, £, T) représentant
les contraintes de demande (5.3) du probléme maitre. Soient ,\,‘,:dT la variable duale
associée a un certain élément de C et )\, la variable duale correspondant a la k-éme

contrainte (5.2), alors:

AAgs = A + Z Z Z atpbkla,,d/\g.

(p.d,C,T)EC LEL tET
En utilisant (5.5) et en introduisant le paramétre

jl siteTetd =d

 _
bra | O sinon,

on obtient:

tid;
ATA]“ = ’\k + Z Z Z agjpbk(ﬂ—;-dj AngZij.
(vi,v;)EA (pd,L,T)EC L

Finalement, en posant le coiit réduit W,, égal a la longueur du chemin associé
a Ag,, on a les longueurs d’arcs:

- pour les arcs (v, v;) quittant la source:
cj = fR+op—M+gl—nmfl

L
- Z Z e:d,- o, pbre — Z Z aljpbklﬂ‘tfigj /\ﬂ- ,

pEP (=1 (p.d.L,T)EC LEL

— pour tous les autres arcs (v;, v;):

L
= G wi =3 D ey onabic

pEP t=1

t;d;
- Z D aupbeelis A -

(pd.LTEC LEC
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5.3 Résolution du probleme maitre

5.3.1 L’arbre de branchement

On utilisera un schéma d’énumération implicite combiné avec la méthode de
génération de colonnes pour résoudre le probléme maitre. Il s’agit d’un probléme de
grande taille: le nombre de variables est égal a celui d’horaires individuels potentiels
(i.e, au nombre de chemins dans le réseau) multiplié par le nombre d’employés.

Une abondante littérature existe sur l'utilisation de la génération de colonnes
pour résoudre les programmes linéaires de grande taille en variables entiéres ou mixtes
(voir, par exemple, Barnhart et al. [6], Hansen et al. [37] ou Vanderbeck et Wolsey
[61]). Si une méthode d’énumération implicite est utilisée pour résoudre le probléme,
il essentiel de définir des sous-problémes dont la structure soit compatible avec celles
du probléeme maitre et du probléeme auxiliaire.

Le sous-probléme, & un noeud donné de !'arbre d’énumération, comprend le
probléme maitre initial et une série de contraintes de branchement. La relaxation
continue de ce sous-probléeme est résolue par génération de colonnes. En d’autres
termes, cette relaxation est résolue a I'optimalité, par la méthode du simplexe, pour
seulement un sous ensemble de colonnes (horaires potentiels), afin d’obtenir des va-
riables duales qui sont ensuite introduites dans le probléme auxiliaire pour générer
de nouvelles colonnes de couts réduits négatifs, incluant, de préférence, celle de coiit
réduit minimal. S’il n’existe pas de colonne de cott réduit négatif, la solution courante
est optimale pour la relaxation continue du sous-probléme.

De nouvelles branches (i.e. sous-problémes) sont créées si la solution est réali-
sable mais fractionnaire et de plus petite valeur que la meilleure solution entiére
connue. Si par contre la solution est entiére, elle peut étre utilisée pour mettre a jour
la meilleure solution entiére connue. Un nouveau noeud est ensuite sélectionné et le
processus recommence, jusqu'a ce que l'arbre soit entiérement exploré.
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5.3.2 La régle de branchement

Le branchement peut se faire sur les variables du probléme maitre ou sur celles
du probléme auxiliaire, mais en pratique, il est souvent plus efficace de brancher
sur les variables du probléme auxiliaire (voir, par exemple, Barnhart et al. [6] ou
Desrosiers et al. [22]). Le schéma de branchement considéré ici consiste a forcer ou a
éviter sélectivement certaines affectations pour certaines infirmiéres, en fixant ou en
interdisant certains sommets dans les problémes auxiliaires appropriés.

Tous les arcs (i.e., variables du probléme auxiliaire), arrivant ou quittant les
sommets spécifiés par les contraintes de branchement actives pour le sous-probléme
courant, sont par conséquent imposés ou éliminés par cette régle de branchement.
Ainsi, plusieurs horaires potentiels (ou variables du probléme maitre), contenant les
affectations spécifiées, sont affectés par chacune des deux décisions de branchement
a un noeud donné.

La configuration optimale d’horaires pour l’ensemble du personnel est ainsi
construite en fixant progressivement les affectations dans les horaires individuels. On
peut remarquer que le nombre de variables de branchement, i.e. le nombre total de
sommets, est O(KT|D|), puisqu'il y a T quarts de travail et |D| jours, et donc au
plus T'|D| sommets dans le graphe de la k-2me infirmiére. Ce nombre est relativement
limité, en comparaison avec les O(KTIP!) horaires potentiels qu’il faudrait considérer
pour un branchement sur les variables du probléme maitre.

Le sommet sur lequel le branchement doit s’effectuer, peut étre choisi en exami-
nant les affectations dans les horaires correspondant aux variables fractionnaires de
la solution optimale de la relaxation linéaire du sous-probléme courant. En effet, soit
Yk, 'ensemble des variables fractionnaires (i.e., horaires) y, associées a I'infirmiére
k. Considérons '’ensemble Vi des affectations (i.e., sommets) que l'infirmiére & regoit
dans au moins un de ses horaires correspondant 4 une variable fractionnaire, i.e.,
Vi = {vj € Gk : ay;q;s = 1, ks € Yi}, ol G est le graphe associé a I'infirmiére k.
Définissons le poids d'un sommet de Gy comme la somme des valeurs des variables
Yrs € Yi dans lesquelles apparait I’affectation correspondant au sommet.
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1l est clair que le poids d’un sommet appartient & I'intervalle ]0, 1], du fait des
contraintes de partitionnement (5.2) dans le probleme maitre. Une régle de branche-
ment possible consiste & choisir le sommet v*, dont le poids est le plus proche de 0.5
et différent de 'unité, tel que donné ci-apres.

Théoréme 5.1 Si, d@ chaque itération, le branchement s’effectue sur un sommet

v = arymi"{,zyg.en Qt,d;sYks — O.SI : Zy,,.ev,, ad;s¥ke ¥ 1, v; € Vi, k=1,2,.., K},
alors l'arbre d’énumération implicite sera exploré en un nombre fini d’étapes.

Preuve. On montre d’abord que le sommet v* ne peut étre impliqué dans aucune
des contraintes de branchement associées au sous-probléme courant. Supposons, par
I’absurde, que v* a déja été sélectionné dans un sous-probléme dont descend le sous-
probléme courant. Alors, soit 1’affectation correspondant a v* n’apparait dans aucun
des horaires fractionnaires que la solution optimale courante attribue a !'infrmiére k*
associée a v*, soit |'affectation apparait dans tous ces horaires (le branchement est
binaire).

En d’autres termes, le poids Zy&.en G¢- 4~ sYks €St égal 3 0 ou & 1. Dans le premier
cas, v* n’appartient pas & Vi. et donc ne peut étre sélectionné par la régle énoncée.
Dans le deuxiéme cas, la condition then Gt;d;sYks 7 1 est violée et v* ne peut, non
plus, étre candidat au branchement a partir du sous-probléme courant.

Ainsi donc, on ne peut regénérer une contrainte de branchement déja active dans
le sous-probléme courant, ni le complémentaire de cette contrainte. On ne peut non
plus générer une solution violant une contrainte de branchement active pour le sous-
probléme courant, puisque les chemins sont déterminés dans le probléme auxiliaire
en évitant les sommets interdits et en incluant obligatoirement les sommets fixés.
Comme le nombre de sommets dans le graphe associé & chaque infirmiére est fini, le
résultat suit.O

Notons que cette régle de branchement implique trés peu de modifications du
probléme auxiliaire de plus court chemin avec fenétres de ressource. Si un sommet
donné est imposé par une contrainte de branchement, alors —M, ol M est une
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valeur suffisamment grande, est ajouté au coiit des arcs quittant ce sommet. Une
valeur possible pour M est 2n fois la plus grande valeur absolue des coiits sur les arcs
du graphe initial, ou n est le nombre de sommets.

Si le sommet est plutét interdit, les coits sur les arcs correspondants sont
remplacés par +00. Le probleme auxiliaire sera ensuite résolu pour trouver un che-
min dont le coit est inférieur 3 —M fois le nombre de sommets imposés. Ceci peut
se faire en utilisant le méme algorithme qu’avant le branchement (i.e. la phase 2
de I'algorithme en deux phases) et en ne traitant que les sommets non interdits.
Nous discutons, dans la prochaine section, une implantation de cette procédure de

résolution.

5.4 Implantation

5.4.1 Meéthodologie
Traitement du probleme maitre

En pratique, il est généralement difficile de trouver une solution réalisable pour
le probléeme d’horaires d’infirmiéres, & cause de la nature conflictuelle des contraintes
devant étre considérées et de la taille du probléme. L'implantation effectuée privilégie
donc une recherche rapide de solutions réalisables entiéres, afin de pouvoir arréter,
éventuellement, la résolution sans avoir nécessairement obtenu une solution optimale.
La solution de la relaxation continue du probléme permet cependant de calculer
le saut d’intégralité, ce qui fournit une borne sur les améliorations éventuellement
possibles.

Une technique de recherche en profondeur d’abord est donc utilisée pour explo-
rer I’arbre de branchement, puisque cette méthode permet de trouver plus rapidement
une solution réalisable entiére et requiert moins de mémoire qu'une recherche par le
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meilleur d’abord. En outre, une recherche de solutions entiéres réalisables se fait du-
rant le processus de génération de colonnes, lors de la résolution de la relaxation

continue d’un sous-probléme de branchement.

En effet, la solution optimale de la restriction de ce probléme a un sous-ensemble
de colonnes, i.e. la solution du probléme résolu entre deux appels du probleme auxi-
liaire, peut étre entiére. Elle peut donc éventuellement servir & mettre a jour la liste
des solutions entiéres retenues ou méme la meilleure solution entiére connue.

Notons que ['utilisation de la méthode de la génération de colonnes permet de
sélectionner les infirmiéres pour qui de nouveaux horaires seront générés lors d'un
I'appel du probleme auxiliaire. Cependant, cette option n’a pas été implantée. Dans
tous les tests présentés ici, la liste des infirmiéres est parcourue d’une maniére cyclique
jusqu’a ce qu’au moins une colonne de coiit réduit négatif soit trouvée.

En général, plusieurs de ces colonnes sont générées lorsque le probléme auxiliaire
est résolu pour une infirmiére donnée. Toutes ces colonnes sont introduites dans
le probléeme maitre si cela est possible sans toucher & la base optimale courante.
L’implantation prend également en compte des variables de déficit et de surplus,
avec des pénalités élevées, pour éviter la non-réalisabilité tout en minimisant les
violations de quotas.

Un probléme rencontré en pratique avec la méthode de la génération de colonnes
est la dégénérescence de la base optimale de la relaxation linéaire du probléme maitre
restreint 3 un sous-ensemble de colonnes. Dans ce cas, I'introduction de nouvelles
colonnes de coiits réduits négatifs ne se traduit pas toujours par ’amélioration de la
fonction objectif. Une méthode de stabilisation est décrite dans Du Merle et al. [26]
pour ce probléme.

Un traitement sommaire du probléme a été implanté dans le cadre de cette
thése. Il consiste & brancher lorsqu’aprés un certain nombre d’appels du probléme
auxiliaire, la valeur de la solution reste pratiquement inchangée. Aprés un certain
nombre, fixé a priori, de ces branchements éventuellement sous-optimaux, la solution
obtenue est considérée, comme optimale pour le sous-probléme correspondant.
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Une facon alternative de trouver rapidement une configuration d’horaires serait
de développer une heuristique pour arrondir la solution de la relaxation linéaire du
probléme maitre initial. Cette approche, qui est susceptible de donner des solutions
non réalisables par rapport aux contraintes de demande, pourrait étre considérée
lorsque les surplus et/ou les déficits de quotas ne sont pas critiques.

Traitement du probléme auxiliaire

Dans le but de réduire ’espace mémoire requis par les différentes instances du
probléme auxiliaire, les infirmiéres devant recevoir sensiblement les mémes horaires,
sont regroupées de maniére a former un profil-type auquel est associé un seul graphe.
Ces profils sont tels que la structure des ressources utilisées comprend, comme cas
particulier, les spécifications relatives & chaque personne impliquée. Cela permet de
réduire le nombre de phases 1 de 'algorithme.

Les particularités individuelles sont prises en compte durant la phase 2. A la
fin de cette derniére, les chemins dont les vecteurs de ressource ne satisfont pas
les spécifications propres a la personne, considérée sont rejetés ou des pénalités
supplémentaires leur sont appliquées selon leur déviation.

L’implantation permet ainsi d’accepter éventuellement (comme c’est le cas en
pratique) des solutions avec de légéres déviations par rapport aux spécifications des
contraintes de la convention collective. Les particularités (i.e. déviations acceptables)
relatives au traitement des congés de fins de semaines sont prises en compte d’'une
fagon similaire. De telles situations apparaissent, par exemple, lorsque !’infirmiére
regoit un certain nombre de jours de vacance et/ou de congé statutaire pendant
la semaine précédant ou suivant une fin de semaine donnée, tout en travaillant,
éventuellement, les autres jours.

Un autre artifice utilisé dans l'implantation consiste & prendre, comme unité
pour la ressource correspondant 3 la charge de travail, le plus grand diviseur commun
des durées de quarts de travail. Cela permet de réduire le nombre de valeurs possibles
pour cette ressource et donc le nombre total de vecteurs de ressource a examiner.
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5.4.2 Description des données

Les tests on été effectués sur des données en provenance du Centre des Nais-
sances de ’'Hépital Royal Victoria de Montréal. L'horizon considéré est de 28 jours
(4 semaines) pour un effectif de 54 infirmieres, comprenant le personnel permanent
et le personnel flottant basé a 'unité. Douze niveaux de qualifications et sept quarts
de travail sont considérés.

Les facteurs considérés dans la génération des horaires individuels concernent
la charge de travail, les fins de semaines, les rotations, les ratios de quarts de jour
ou du soir (pour les personnes recevant uniquement des affectations du soir et de
nuit). Un total de 27 profils d'infirmiéres (i.e. de graphes différents pour le probléme
auxiliaire) a été utilisé. Le tableau 5.1 donne des statistiques (moyenne, écart-type
et valeurs extrémes) sur le nombre de sommets, le nombre d’arcs et le nombre de
ressources pour ces profils.

Tableau 5.1 — Statistiques du prétraitement des profils

Moyenne|Ecart-type| Min | Max
Temps CPU (sec)} 18.300 | 24.575 |0.020(91.960
Nb. de sommets | 50.259 | 24.062 15 | 114
Nb. d’arcs 1776.037| 1973.677 | 155 | 9469
Nb. de ressources| 4.593 0.888 2 5

Les quotas sont spécifiés pour quatre périodes par jour et donnent le nombre
total de personnes devant étre présentes pour chaque période et pour chaque jour
de I'horizon, sans distinction de quarts de travail ou de qualification. Quelques con-
traintes supplémentaires de demande sont cependant spécifiées pour quelques jours,
afin d’assurer la présence d'un certain nombre de personnes avec des qualifications
définies. Le programme maitre initial contient, typiquement, environ 150 contraintes.

Dans les tests effectués, seuls les préférences sont prises en compte dans la fonc-
tion objectif, i.e. un poids nul est accordé au coiit salarial. Les valeurs de préférences
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individuelles pour des affectations spécifiques varient entre 0 et 5. Une personne
peut recevoir entre 4 et 19 affectations par horaire, selon les regles de la convention

collective qui s’appliquent a elle.

Des pénalités de 10° et de 10* sont respectivement associées aux variables de
surplus et de déficit des quotas de présences. Des pénalités de 10 3 100 fois plus
élevées sont utilisées pour les violations des contraintes de ressource spécifiques a
chaque individu, puisque de tels écarts sont moins tolérés en pratique.

Les fenétres de ressource d’étendues minimales et maximales sont données aux
tableaux 5.2 et 5.3 pour les graphes (profils) correspondant respectivement aux temps
de calcul minimal et maximal. Les spécifications minimales et maximales pour les ra-
tios de quarts de travail de jour (ou du soir) sont respectivement de 0.4 et 0.6 par
rapport au nombre total d'affectations dans I'horaire individuel considéré.

Tableau 5.2 — Etendues des fenétres pour le profil de plus petite taille

Ressources Seuils de mise & jour|Val. de mise & jour[Bornes de réalisab.

Min Max|| Min Max|| Min Max
Charges de travail||[ 0, 0] [ 2, 12]{i[ 0, 0] [2, 12]||[ 0, 0] [ 2, 10]
Rotation [1, 4] [0, 4]l 1, 4] [0, 4| 4, 4] [0, 4]

Tableau 5.3 — Etendues des fenétres pour le profil de plus grande taille

Ressources Seuils de mise & jour "Va.l. de mise 3 jour(|Bornes de réalisab.

Min Max| Min Max|| Min Max
Charges de travail |[[ 0, 0] [2,20]f [0,0] [ 2, 20]j[[ 0, O] [ 2, 18]
Fins de semaines || 1, 1] [-Laf[-1,-1] [-1,-1)f[1 1 [-1, 1]
Rotation [1,3] [0, 9]] [1,3] [0, 9]([ 0, 0] [0, 9]
Ratio de jours [0, 0] [0,28]l [0,01] [o,28][0,0] [0, 11]
Ratio de soirs-nuits||[ 0, 0] [0,28]] [0,0]] [o,28]]f0,0] [0, 11]
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5.4.3 Analyse des surplus et déficits d’affectations

Les tableaux 5.4 et 5.5 donnent les surplus et les déficits des quotas et des con-
sommations de ressource pour quelques solutions obtenues. Il s’agit respectivement
d’une solution de la relaxation linéaire du probléme maitre, des quatre meilleures
solutions entiéres obtenues aprés 1 heure 22 minutes de calcul et de la solution ma-
nuelle obtenue par l'infirmiére-chef. Ces déviations sont calculées sur tout I’horizon

et pour I'ensemble du personnel.

Tableau 5.4 — Surplus des quotas et des ressources

Relax. Sol.
lin. |Sol.1|S0l.2{S0l.3|Sol.4|man.
Quotas 40 40 | 40 | 40 | 40 | 52
Charg. de trav. (heures)| 0 00|00 ]| O
Congés de fins de sem. 4 8 715 7T 1
Affect. consécutives 0 0 0 0 0 0
Ratios de jours (somme)| 0 0 0 00 ]34
Ratios de soirs (somme)| 0 0 0 0| 0 0
Tableau 5.5 — Déficits des quotas et des ressources
Relax. Sol.

lin. |Sol.1{Sol.2|Sol.3{Sol.4|man.
0 0 0|0 |11
0 0 0|0 0
0 0 00 0
90 | 95 [ 98 | 92 | 80
0 0 0| 0 |137
0 0 0| 0 |0.26

Quotas
Charg. de trav. (heures)

Congés de fins de sem.

Affect. consécutives

Ratios de jours (somme)

O|OC|®|OjO|O

Ratios de soirs (somme)
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La solution optimale (fractionnaire) de la relaxation linéaire indique un surplus
de 40 et un déficit de O présences pour ’ensemble du personnel durant 1'horizon. Cela
signifie que, compte tenu des contraintes de la convention collective, de la taille du
personnel et des poids accordés aux préférences exprimées et aux violations de quotas,
il est impossible d’éliminer tous les surplus d’affectations. Les mémes violations de
quotas sont observées pour les (meilleures) solutions entiéres obtenues aprés 1 heure
22 minutes de calcul. Ces écarts restent cependant moins élevées que les valeurs
obtenues a la main.

On note un surplus de congés de fins de semaines pour toutes les solutions obte-
nues. Ces congés supplémentaires ne constituent pas nécessairement un inconvénient.
Les pénalités relatives aux surplus de fins de semaines ont donc été réduites d’un
facteur de 10 par rapport a celles correspondant aux déficits. Ces derniers sont diffi-
cilement tolérés en pratique, 3 moins d’étre explicitement demandés.

Les déficits par rapport aux nombres minima d’affectations consécutives avant
congé (ou avant rotation) sont cependant élevés. Dans la plupart des cas, ces nombres
représentent des quarts de travail isolés, i.e. précédés et suivis immédiatement d’au
moins un jour de congé. On peut éliminer ces déficits, si nécessaire, en fixant le
nombre minimal d’affectations consécutives & 2 au moins.

La somme totale (sur l’ensemble du personnel) des différences entre les ratios
de quarts de travail et les limites spécifiées, est nulle, contrairement i ce que donne
la solution manuelle.

5.4.4 Analyse des performances techniques du modéle

Le programme a été codé en langage C. Les fonctions de la bibliothéque du
logiciel commercial CPLEX sont utilisées pour la résolution et la mise & jour de la
relaxation linéaire du probléme maitre restreint & un sous-ensemble de colonnes. Ces
fonctions sont appelées plusieurs fois 3 chaque noeud de branchement. Aucun autre
logiciel ou bibliothéque de fonctions n’a été utilisé.
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Les tests ont été faits sur une station de travail Sun Ultra 2 et ont nécessité
environ 95 mégaoctets d’espace mémoire en tout. L'essentiel de cet espace mémoire
a été nécessaire durant la phase 1 de I'algorithme de plus court chemin, exécutée au
début de la résolution du probléme, en vue de caractériser les horaires admissibles.

Le tableau 5.6 donne les caractéristiques techniques des solutions obtenues (saut
de dualité, temps de calcul et nombre de noeuds de branchement). On remarque que
toutes les solutions entiéres présentées sont obtenues a2 un méme noeud de branche-
ment. Cela signifie que certaines solutions du probléme résolu entre deux appels du
probleme auxiliaire sont entiéres, pcur le sous-probléme associé a ce noeud. Ces solu-
tions entiéres presqu’optimales (saut de dualité d’environ 0.01%) ont été obtenues en
1 heure 22 minutes de calcul environ et apres seulement 125 noeuds de branchement.

Tableau 5.6 - Caractéristiques techniques des solutions

Relax.
lin. |Sol.1{Sol.2{Sol.3|Sol.4
Saut dual. (%) 0.00 {0.01{0.01/0.01}0.01
Temps CPU (sec) 612 |4872|4869|4874|4869
Nb. noeuds de branch.| 0 125 { 125 | 125 | 125

Deux autres solutions ayant pratiquement les mémes caractéristiques ont été
obtenues au méme noeud. Nous avons laissé fonctionner le programme pendant envi-
ron 45 minutes supplémentaires mais aucune nouvelle solution entiére n'a été trouvée.
L’exploration de I'arbre de branchement a ensuite été interrompue du fait de la qua-
lité des solutions obtenues et du caractére plutot subjectif des préférences considérées
dans la fonction objectif.

Nous pensons que les temps de calcul obtenus peuvent étre encore améliorés,
par un meilleur traitement de la dégénérescence de la relaxation linéaire des sous-
problémes de branchement. Dans I'implantation décrite ici, un branchement est effe-
ctué si, aprés avoir parcouru la liste des infirmiéres, les colonnes (horaires) de coiits
réduits négatifs générées ne permettent pas une amélioration de I'objectif de 0.01%
au noeud initial et de 1% & tous les autres noeuds.
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Si la méme situation se reproduit & un noeud issu d’un tel branchement, la
meilleure solution obtenue 3 ce noeud est considérée comme optimale pour la relaxa-
tion linéaire du sous-probléme correspondant. Un meilleur contrdle des paramétres
relatifs & ce traitement de la dégénérescence pourrait réduire le temps de calcul.

Tableau 5.7 — Statistiques des sous-problémes

Moyenne|Ecart-type| Min | Max
Temps CPU (sec)| 38.235 | 15.927 [15.250{116.200
Nb. de PM 64.945 | 29.570 21 196
Nb. de PA 83.749 | 33.928 31 222
Nb. de colonnes | 971.066 | 479.365 | 293 | 4548

Le tableau 5.7 donne des statistiques sur les sous-problémes de branchement.
En moyenne, la résolution de la relaxation linéaire d’un tel sous-probléme requiert
un temps de calcul de 38.235 secondes, environ 65 résolutions du probléme maitre
(PM) restreint a un sous-ensemble de colonnes et 84 appels du probléme auxiliaire
(PA) qui générent environ 971 colonnes.

Tableau 5.8 — Temps de calcul du probléme maiire et du probléme auziliaire

Moyenne|Ecart-type| Min | Max
PM: temps CPU (sec)| 0.025 0.037 ]0.000(0.530
PA: temps CPU (sec) | 0.374 0.622 |0.000(2.940
Nb. de colonnes 12.614 | 24.202 0 {122

Le tableau 5.8 permet une comparaison des temps de calcul requis par la
résolution de la relaxation linéaire du probléme maitre restreint (par CPLEX) et
la phase 2 de 'algorithme proposé. Rappelons que ce dernier a été légerement mo-
difié pour tenir compte du fait que certains chemins réalisables, pour un profil donné,
peuvent s’écarter légérement des spécifications propres a une personne particuliére.



Le programme linéaire (PM) est résolu, a l'aide du logiciel CPLEX, en 0.025
secondes, en moyenne, tandis que la résolution du probléme auxiliaire (PA) requiert
0.374 secondes. Chaque résolution du probléme auxiliaire produit, en moyenne, en-
viron 13 colonnes de coiits réduits négatifs.

On peut noter que les temps correspondant a la phase 2 sont relativement plus
élevés que ceux observés au chapitre 4 (tableau 4.2). Cela s’explique par les modifica-
tions requises par l'utilisation d’un méme graphe (profil) pour plusieurs infirmiéres.
Ces temps restent cependant nettement plus faibles que ceux de la phase 1 (tableau
5.1), qui requiert en moyenne 18.300 secondes.

5.4.5 Quelques commentaires

Le modéle de programmation linéaire généralisé en variable 0-1 développé dans
ce chapitre permet de prendre en compte la plupart des contraintes rencontrées en
pratique, dans la confection d’horaires de personnel soignant. En particulier, toutes
les contraintes identifiées lors des discussions & I'Hopital Royal Victoria (voir la
référence [15]) ont été modélisées et testées numériquement.

L’approche utilisée permet une exploration implicite compléte de I’ensemble des
horaires potentiels. Un avantage majeur de cette méthode par rapport 3 une approche
heuristique est sa flexibilité d’une unité de soin & l’'autre. Trés peu d’ajustements
seront nécessaires lors de ces changements d’environnement.

A notre connaissance, ce travail constitue la premiére tentative de résolution
exacte d’'un modele réaliste et flexible pour le probléme d’horaires de personnel soi-
gnant. Le modéle peut étre utilisé, moyennant quelques modifications mineures, pour
la plupart des problémes d’horaires de personnel dans les organisations opérant en

continu.

Une attention particuliere est cependant requise lors de la définition des fenétres
de ressource et des valeurs de mise A jour, dans le probléme auxiliaire. I faut, en
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effet, tenir compte du fait que la complexité de I’algorithme de plus court chemin
avec fenétres de ressource est trés sensible a la largeur des fenétres.

Un systéeme automatisé, basé sur le modéle proposé requiert des données sta-
tiques et dynamiques. Les données statiques sont relatives aux contraintes de de-
mande et de la convention collective, aux caractéristiques des quarts de travail ainsi
qu’aux informations individuelles de base nécessaires a la confection d’'horaires perso-
nalisés. Trés peu de données dynamiques seront requises pour chaque horizon. Elles
serviront notamment a spécifier les requétes et les préférences. Si ces derniéres ne
sont pas données le systéme peut étre automatiquement initialisé avec des valeurs
par défaut prédéfinies.

Puisqu'’un tel systéme ne génére que des solutions réalisables (s'il en existe),
sur la base d’une minimisation des coiits et/ou d'une maximisation des préférences,
trés peu d’ajustements seront nécessaires, par la suite, de la part de I'infirmiére-chef.
Notons que si le systéme ne trouve pas de solution réalisable en résolvant la relaxation
linéaire, cela signifie qu'une telle solution n’existe pas pour les contraintes spécifiées.

Cette méthode requiert cependant des ressources importantes en espace mémoire
et en temps de calcul (quelques heures pour trouver des solutions utilisables en
pratique, aprés éventuellement quelques modifications mineures). L’espace mémoire
nécessaire peut étre réduite par uné définition appropriée des profils d'infirmiéres,
par exemple, en utilisant une heuristique pour évaluer préalablement divers regrou-
pements des infirmiéres. Les temps de calcul élevés ne constituent pas un inconvénient
majeur, étant donné que 1’horizon considéré est de 28 jours pour les tests effectués
(6 semaines en pratique).

Notons enfin que |'utilisation du systéme ne résultera pas nécessairement en
une réduction du personnel. Sa capacité 3 prendre en compte la plupart des con-
traintes rencontrées en pratique et de générer éventuellement plusieurs (bonnes) so-
lutions réalisables aura cependant un impact positif direct sur la qualité des soins. Le
temps passé par l'infirmiére-chef & confectionner les horaires en sera considérablement
réduit.
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CONCLUSION

Nous avons étudié dans cette thése différents problemes de cheminement impli-
quant deux objectifs ou des contraintes de ressources. I1 s’agit, spécifiquement, des
probléemes de chemins avec étendue ou ratio minimum, du probléme de plus court
chemin bicritére et du probléme de plus court chemin avec fenétres de ressources. Une
anaiyse détaillée du probléme d’horaires de personnel soignant a également été faite
4 titre d’application du probléme de plus court chemin avec fenétres de ressource. Ce
travail a permis d’apporter diverses contributions a la formulation et a la résolution

des problémes considérés.

Des algorithmes polynomiaux ont été notamment développés pour de nou-
veaux problemes de chemins avec étendue ou ratio minimum pouvant apparaitre,
par exemple, comme sous-problémes en équilibrage des chaines de montage lorsqu’on
s'intéresse a la minimisation du nombre de postes de travail et/ou du temps d’at-
tente dans le pire cas. En particulier, une procédure a été donnée pour déterminer
tous les chemins efficaces du probléme bicritére de plus court chemin avec étendue
minimale. Ce probléme bicritére, qui n’avait jamais été étudié auparavant, considere
la minimisation de la longueur totale du chemin et la différence entre la plus grande
longueur d’arc et la plus petite.

Un nouvel algorithme d’étiquetage a également été proposé pour résoudre le
probléme de plus court chemin bicritére (a colits non négatifs) par les deux extrémités
du réseau. Ce probléme se rencontre, par exemple, en transport de matiéres dange-
reuses si I’on minimise a la fois le coit de transport et la population exposée.

L'algorithme se compare favorablement a la méthode de résolution par une
seule extrémité, lorsque la taille ou la densité du graphe augmente. La procédure
peut aisément étre modifiée pour traiter les cas ou des bornes sont imposées sur la
valeur de chacun des deux critéres, afin d’éviter les solutions impliquant une trop
grande détérioration de I'un d’eux.
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Une nouvelle formulation, plus générale, du probléme de plus court chemin
avec fenétres de ressources, a été proposée, de méme que divers algorithmes pseudo-
polynomiaux, dont une procédure spécialisée, en deux phases. Cette derniére ne
nécessite pas un dédoublement des ressources lorsqu’aucune déviation n’est permise
par rapport aux bornes des fenétres inférieures. L'extension des consommations de
ressource n’est pas restreinte non plus & des fonctions non-décroissantes.

Cette généralisation ne détériore cependant pas la complexité de I'algorithme.
Les calculs effectués indiquent en outre que la borne donnée dans la littérature pour
la résolution du probléme de plus court chemin avec fenétres de temps aux sommets
est sur-évaluée. La structure en deux phases de 1’algorithme proposée convient parti-
culiérement a la réoptimisation, aprés une modification des coits sur les arcs, comme
c’est le cas lorsque le probléme apparait dans un processus de génération de colonnes.

D’un point de vue plus appliqué, une formulation de plus court chemin avec
fenétres de ressource a été proposée et testée avec succés, pour le probléme de
génération d’horaires réalisables pour une infirmiére donnée. II s’agit d’un probléme
pratique et complexe de cheminement, nécessitant de fréquentes réoptimisations, qui
peut étre traité plus efficacement par l'algorithme en deux phases que par les autres
algorithmes de plus court chemin disponibles dans la littérature. Le modéle proposé
est réaliste et capable de tenir compte de la plupart des régles de la convention
collective, utilisées en pratique pour construire des horaires personalisés.

Un modéle de programmation linéaire généralisée, en variables 0-1, a été développé,
pour le probléme, plus général, de la confection d’horaires pour ’ensemble du per-
sonnel soignant d’une unité. Le modéle est susceptible de résolution exacte par une
procédure d’énumération implicite combinée a la génération de colonnes.

Ce dernier modeéle contient, comme probléme auxiliaire, celui de la génération
d’horaires réalisables pour une infirmiére donnée. I1 permet également une explora-
tion compléte de 'ensemble des horaires potentiels, contrairement a la plupart des
formulations de la littérature ou 'on considére des horaires cycliques ou prédéfinis et
en nombre relativement limité. Une régle de branchement spécialisée a été proposée

pour la résolution du probléme et sa convergence prouvée.
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Un prototype du modéle a été implanté en langage C, en utilisant les fonctions
de la bibliothéque de l'optimiseur commercial CPLEX pour résoudre et mettre a
jour les sous-problémes linéaires. Le prototype a été testé avec satisfaction, sur des
données réelles en provenance de I’Hépital Royal Victoria de Montréal. De I’avis des
infirmiéres-chefs, les horaires générés par le programme sont de qualité au moins égale
a celle des horaires produits a la main.

Des profils-types d’infirmiéres ont été définis afin de réduire 1’espace mémoire
requis, en regroupant les personnes devant recevoir sensiblement les mémes types
d’horaires. Cependant, une implantation plus efficace peut étre obtenue en utilisant
une heuristique pour trouver les profils-types. Un meilleur compromis pourrait ainsi
étre trouvé entre la réduction de la mémoire requise et I’augmentation du temps de
calcul, due a 'utilisation d’'un méme réseau pour plusieurs infirmiéres.

Par ailleurs, une heuristique peut également étre développée pour arrondir la
solution de la relaxation continue du probléeme maitre, étant donnée qu’en pratique
de petites déviations sont acceptées par rapport aux quotas. Une telle heuristique
sera notamment utile si la solution de la relaxation linéaire contient des déficits ou
des surplus par rapport aux quotas.
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