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RESUME 

Nous étudions dans cette thèse divers problèmes de chemins susceptibles d 'ap  

paraître en analyse des réseaux lorsqu'un seul critère ne suffit pas pour caractériser 

adéquatement le chemh optimal entre deux sommets donnés. C'est notamment le 
cas lorsque l'on doit conciiier la longueur (ou coût) du chemin avec la fiabilité ou avec 

les facteurs environnementaux, ou lorsque le chemin optimal doit satisfaire plusieurs 

contraintes de ressource. 

Ces problèmes ont des applications, entre autres, en transport, en télécom- 
munications et en confection d'horaires. Une analyse détaillée du problème d'horaires 
de personnel soignant est également effectuée, à titre d'application d'un problème de 

plus court chemin avec contraintes de ressource, plus particulièrement étudié. 

Deux nouveaux critères sont introduits: celui de l'étendue minimale qui consiste 

à déterminer un chemin tel que la dinérence entre la plus grande longueur d'arc et 
la plus petite soit minimum, et celui du ratio minimal où l'on cherche à minimiser 
le rapport entre ces deux longueurs d'arc. Des algorithmes polynomiaux sont pro- 

posés pour ces problèmes, de même que pour les extensions bicritères du critère de 
l'étendue avec ceux, plus classiques, de la capacité ou de la longueur de chemin. Ces 

problèmes apparaissent parfois comme des sous-problèmes lors de l'équilibrage des 

chaines de montage. C'est en particulier le cas lorsque l'on minimise le temps d'at- 

tente aux postes de travail dans le pire cas, ou lorsque l'on considère les combinaisons 
éventuelles de ce critère avec le temps de cycle ou avec le nombre de postes de travail. 

Les algorithmes énumèrent implicitement les chemins par ordre décroissant de 

l'étendue ou du ratio, de manière à éviter les chemins dont la valeur est supérieure 

ou égale à celle du meilleur chemin connu. La procédure d'énumération est basée sur 
l'observation que la solution optimale, pour le critère de l'étendue, est un chemin 
efficace pour le problème bicritère correspondant à la recherche d'un chemin pour 
lequel la plus grande longueur d'arc est rninimum et la plus petite est maximum. 



Un nouvel algorithme, qui exploite de l'information en provenance de la source 
et du puits, est également présenté, pour le problème du plus court chemin bicritère 

avec des coiits non négatif&. Ce problème se rencontre, par exemple, en transport 

de matières dangereuses lorsque l'on minimise A la fois le coût de transport et la 
population exposée. 

De nouveaux tests de dominance sont développés pour prolonger des sous- 

chemins efficaces à partir de la source et du puits. Ces tests sont basés sur les ex- 

tensions non dominées qui sont déjà calculées et sur une approximation extérieure 

de l'ensemble des extensions efficaces possibles en un sommet donné. On peut ainsi 

éliminer plus rapidement des étiquettes ne pouvant donner des chemins efficaces de 

la source au puits, même si elles sont localement non dominées. En outre, une tech- 

nique est proposée pour générer efficacement les chemins proprement efficaces. Cette 

méthode peut également être utilisée pour initialiser l'algorithme. 

Les deux procédures se généralisent aisément à l'énumération de toutes les 
étiquettes qui sont contenues dans une fenêtre définie sur les critères. De telles bornes 

peuvent servir, en pratique, à exclure les solutions efficaces comportant une trop 

grande détérioration de l'un des critères. Des tests effectués sur des graphes aléatoires 

indiquent que l'algorithme se compare favorablement à la méthode de résolution par 

une seule extrémité, lorsque la taille ou la densité du graphe augmente. 

Nous examinons également le problème de plus court chemin avec contraintes 
de ressource dans un graphe acyclique. Des fenêtres de ressource sont définies sur 

les arcs, tandis que des bornes inférieures et supérieures sont ajoutées aux sommets 

pour contrôler la mise à jour des consommations de ressource. 

La formulation proposée n'implique pas un dédoublement des ressources quand 
les mises à jour ne sont pas permises. L'extension des consommations de ressource 

n'est pas restreinte non plus à des fonctions non-décroissantes. Il s'agit d'une générali- 
sation du problème de plus court chemin avec fenêtres de ressource associées aux 
sommets, oh la mise à jour des consommations ne se fait que par rapport aux seuils 
inférieurs des fenêtres. 



Des algorithmes pseudo-polynomiaux, basés sur la programmation dynamique 
et sur une approche en deux phases, sont proposés pour la nouvelle formulation. 

La structure de l'algorithme en deux phases permet de résoudre efficacement les 

problèmes de réoptimisation, lorsque certains sommets sont supprimés ou sont fixés, 

ou lorsque les coûts changent. En outre, les calculs de complexité indiquent que la 

généralisation proposée n'entraîne pas une augmentation de la complexité de pire 

cas par rapport au cas où l'accumulation des consommations de ressource est non- 

décroissante. En fait, ces calculs montrent que la complexité donnée dans la littérature 

pour ce cas particulier est surévaluée. 

La nouvelle formulation du problème de plus court chemin avec fenêtres de 

ressource est utilisée pour modéliser le problème de génération d'horaires réalisables 
pour une infirmière donnée. Les sommets du graphe correspondent aux quarts de 

travail et les ressources permettent de contrôler les séquences d'affectations. 

Le modèle obtenu tient compte de la complexité des règles de la convention 
collective relatives à l'ancienneté, à la charge de travail, aux rotations et aux congés, 

de manière à produire des horaires réalistes. Il s'agit d'un problème pratique et com- 

plexe de cheminement, nécessitant de fréquentes réoptimisations, qui peut être traité 

plus efficacement par l'algorithme en deux phases que par les autres algorithmes de 

plus court chemin disponibles dans la littérature. 

Un modèle de génération de colonnes en variables 0-1 est donné pour le problème, 

plus général, de la confection d'horaires pour l'ensemble du personnel soignant d'une 

unité de soins. Ce modèle contient, comme problème auxiliaire, celui de la génération 
d'horaires réalisables pour une infirmière. Le problème maître détermine une con& 

guration d'horaires pour satisfaire les contraintes de demande tout en minimisant le 

coût salarial et en maximisant les préférences personnelles et l'équilibre des équipes. 

Ce modèle généralise les formulations proposées dans la littérature et peut être 
vu comme un schéma général pour les problèmes complexes de confection d'horaires 

de personnel, spéciaiement dans le contexte des organisations opérant en continu. 

Il permet d'explorer implicitement la totalité de l'ensemble des horaires potentiels, 

contrairement à la plupart des formulations de la littérature où l'on considère des 



horaires cycliques ou prédéfinis et en nombre relativement limité. Un schéma de 

branchement sur les variables du problème auxiliaire a été développé pour résoudre 

le modèle. 

Les tests numériques, effectués sur des données réelles provenant de l'hôpital 

Royal Victoria de Montréal, confirment la capacité du modèle à prendre en compte 

la plupart des multiples règles utilisées en pratique dans la construction d'horaires 

d'infirmières. De l'avis des hfu-mières-chefs, les horaires générés par le programme 

sont de qualité au moins égale à celle des horaires produits à la main. 



ABSTRACT 

We study in this thesis several path problems which may arise in network 

analysis when a single criterion is not suitable to M y  characterize an optimal path 

between two gi-izn vertices. This is typically the case when a compromise must be 

found between cost and reliability or between cost and environmental factors. Another 

example is when the optimal path must satisfy several resource constraints. 

Such path problems have potential applications in transportation, telecommu- 

nications and staff scheduling, among others. We also present a detailed analysis 
of the nurse scheduling problem, as a practical example of a resource constrained 

shortest path problem which is more specifically studied. 

Two new path problems are introduced: the minimum range problem where a 

path with the srnailest possible range of arc lengths is to be found, and the minimum 

ratio problem where a path with the minimal ratio of its largest arc length to its 

smailest one is sought for. Polynomial algorithms are proposed for these problems, as 

well as for the bicriterion extensions of the minimum range criterion with those, more 

classic, of the capaciw or of the path length. Such problerns may arise in assembly 

line balancing when the idle time in the worst case is to be minimized as well as the 

cycle time or the number of workstations 

Basically, .the algorithms enumerate candidate paths by decreasing range or 

ratio order, so as to skip paths having an objective value greater or equal to the best 

known value. The enurneration scheme is based on the observation that the optimal 

path for the range criterion is efficient (i-e., Pareto-optimal) for the bicriterion path 

problem where the largest arc length is rninimized and the shortest one is maximized. 

A new algorithm, which exploits information fkom both ends of the network, 

is also presented for the bicriterion shortest path problem with non-negative arc 

costs. This problem may arise, for instance, in hazardous material transportation 



when designing a path-finding methodology that minimizes the total length and 

population at risk dong the optimal path. New dominance tests are developed to 

extend efficient subpaths from both the source and the sink. The tests are based on 

non-dominated extensions already computed and on an outer approximation of the 

set of possible efficient extensions at a given vertex. This dows  to quickly discard 

labels that c m  cannot yield efficient paths fiom the source to the sink, even if they 

are locdy non-dominated. 

A technique is also provided to generate the extreme efficient paths and rnay be 

used to initialize the two-ended aigorithm. Both procedures can readily be modified 
to enumerate all the efficient labels restricted to a window defined by specified lower 

and upper bounds on the criteria. Such bounds may be needed to discard efficient 

solutions involving an important deterioration of one the criteria. Numerical tests 

perfonned on random graphs indicate that the algorithm tends to outperform the 

one-ended labeling algorithm, when the size or the density of the network increases. 

We also examine the resource constrained shortest path problem in acyclic 

graphs. Resource windows are associated with the arcs, while lower and upper thre- 

shold and resetting values are given at the vertices to control the updating of the 

resource usage. The proposed formulation does not involve resource duplication when 

updating is not allowed at the vertices. Resource accumultaions are neither restricted 

to non-decreasing functions. This is an extension of the vertex-dependent windows 

formulation of the resource constrained shortest path problem, where updating is 
allowed only for resource usage values that are smaller than the lower end of the 

corresponding windows. 

Pseud~polynornid algorithms, based on dynamic programming and on a two- 
phase approach, are presented for the problem. The specialized two-phase algorithm 

is efficient for reoptimization if some vertices are removed or are fixed, or if arc 

costs are modSed. Moreover, complexïty calculations indicate that the proposed 
generaüzation does not increase the worst case complexiw, with respect to the the 

case of non-decreasing resource accumulation functions. In fact, these calculations 
show that the worst case cornplexit- given in the literature for this special case is 

over-estimated. 



The new resource constrained shortest path formulation is used to develop a 

model for the single individual nurse scheduling problem. The vertices correspond 

to the feasible shifts while resources are used to control assignment sequences. The 

resulting model takes into account the complexity of the collective agreement rules 
related to seniority, workload, rotations and days on, so as to generate realistic in- 

dividual schedules. This is a complex constrained path problems, involving fiequent 

reoptimizations, which can be more efficiently handled by the twephase algorithm 

than the other shortest path algorithms a d a b l e  in the literature. 

A û-1 column generation model is fomulated for the more general problem 

of h d i n g  a configuration of schedules for the whole nursing sta f f  of a care unit. 

This model involves, as an auxiliary problem, that of generating individual feasible 

schedules. The master problem fin& a configuration of individual schedules to satisfy 

the demand coverage constraints while minimizing salary costs and rna>o'unizing both 

employee preferences and team balance. 

This model generalizes further the previous formulations discussed in the li- 

terature and can be viewed as a general scheme for complex personnel scheduling 

problems, especially in the context of organizations which operate around the dock. 

It also allows an implicit full exploration of the set of potential schedules, while most 

of the other formulations in the literature consider cyclic or predefined schedules in 

a relatively limited number. A specialized branching d e ,  on the auxiliary problem 

variables, is designed to solve the problem. 

Numerical tests, conducted on real data fiom the Royal Victoria Hospital of 

Montreal, confirm the capacity of the model to take into account most of the many 
rules used in practice during the scheduiing process. According to the head nurses, 

the quality of the schedules generated by the program are at  Ieast equivalent to that 

of the schedules produced by the manual approach. 
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INTRODUCTION 

L'un des problèmes les plus répandus en analyse des réseaux est la détermination 

d'un chemin optimal entre deux sommets donnés. Les objectifs souvent considérés 
sont la longueur, la durée, le coût, la capacité, la fiabilité ou le risque. Dans bien des 
cas, ces problèmes se ramènent à la recherche d'un plus coïrt chemin ou d'un chemin 
de capacité maximale entre les deux sommets. Certaines situations, par exemple en 

équilibrage des chaînes de montage, nécessitent cependant d'autres critères tels que 

l'étendue du chemin ou son ratio, Le., la différence ou le rapport entre la longueur 
de l'arc le plus long et celle de l'arc le plus court. 

Des combinaisons bicritères peuvent également être requises pour modéliser 
des situations réelles où plus d'un critère doit être simultanément considéré lors 

de la recherche d'un chemin entre deux points donnés. Par exemple, le coût et la 

fiabilité sont tous les deux importants dans les réseaux de télécommunications, les 

facteurs économiques et écologiques doivent être simultanément considérés dans la 

construction d'une autoroute, de même que le profit et le risque dans les projets 

d'investissement qui se ramènent à des problèmes de chemin. 

Dans beaucoup de ces applications, il est souvent sufbant de résoudre le pro- 
blème du plus court chemin avec la condition supplémentaire que la valeur de chacun 

des autres critères soit contenue dans un intervalle spécifique pour chaque arc utilisé. 

Ces critères supplémentaires peuvent, dans ce cas, être interprétés comme des res- 

sources consommées le long du chemin. Des mises à jour peuvent être nécessaires a u  

sommets, lorsque la valeur d'une ressource dévie de certains seuils fixés à l'avance. 

Par exemple, en confection d'horaires de personnel, l'employé ne peut passer des 

affectations de jour à ceiles de nuit qu'après avoir, entre autres, reçu consécutivement 

un nombre de quarts de jour respectant un minimum et un maximum prédéfinis. Une 

telle rotation entre affectations de jour et de nuit nécessite souvent un réajustement 

du compteur d'affectations consécutives de même type. 



Ces problèmes de chemins bicritères ou avec contraintes de ressource apparais- 

sent, soit directement ou comme problèmes auxiliaires, dam de multiples applica- 
tions en analyse des réseaux. Dans le cadre de cette thèse, nous proposons divers 

algorithmes pour les critères de l'étendue et du ratio, ainsi que pour les extensions 
bicritères de l'étendue avec le critère du plus court chemin ou avec celui de la capacité 

maximale. 

Un nouvel algorithme, utilisant des informations en provenance des deux extrémités 

du chemin, est également proposé pour le problème du plus court chemin bicritère, 

plus courant et plus difficile. Nous examinons, en outre, une nouvelle extension du 

problème du plus court chemin avec fenêtres de ressource sur un réseau acyclique. 

L'algorithme proposé pour ce problème est particulièrement bien adapté lorsque le 

problème doit être résolu plusieurs fois de suite, après des modifications n'impli- 

quant pas les consommations de ressource, telles que l'interdiction ou l'imposition de 

certains sommets ou arcs. 

Ce dernier point est illustré par la résolution d'un modèle de programmation 

linéaire généralisée pour la confection d'horaires de personnel soignant. Les Mnables 

du problème maître de ce modèle correspondent à des horaires individuels qui sont 

construits en résolvant un problème auxiliaire de génération de colonnes. Le problème 

a d a i r e  est formulé comme un problème de plus court chemin avec fenêtres de res- 

source dans un réseau acyclique OU les sommets correspondent à des &ctations. 

Diverses ressources sont utilisées dans le modèle pour contrôler les séquences d 'de-  

ct ations réalisables. 

Nous discutons, au chapitre 1, les formulations et la littérature relatives aux 

différents problèmes de chemins considérés dans la thèse. La problématique associée 

à la confection. d'horaires de personnel soignant est également présentée dans ce 

chapitre à titre d'application pratique d'un problème complexe de cheminement. Le 

chapitre 2 décrit les algorithmes de chemins avec étendue ou ratio minimum, tandis 

que les chapitres 3 et 4 sont respectivement consacrés à la présentation de l'algorithme 

du plus court chemin bicritère et à celle de l'algorithme de plus court chemin avec 

fenêtres de ressource. Les détails de la modélisation et de la résolution du problème 

d'horaires sont abordés dans le chapitre 5, de même qu'une discussion des résultats. 



CHAPITRE 1 

PROBLËMATIQUE ET 
BIBLIOGRAPHIE 

1.1 Problèmes de chemins avec étendue ou ratio 

minimum 

Nous considérons deux nouveaux problèmes de chemins dans les graphes. Le 

premier consiste à trouver un chemin d'un sommet vl à un sommet v,, tel que 

l'étendue, i-e., la différence entre la longueur de l'arc le plus long et ceile de l'arc 

le plus court, soit la plus petite possible. Dans le deuxième, on recherche un chemin 

pour lequel le rapport de la longueur de l'arc le plus long à celle de l'arc le plus court 

soit minimum. Deux extensions bicritères de ces problèmes sont également étudiées. 

1.1.1 Problèmes à un critère 

Soit G = (V, A) un graphe orienté avec n = IV1 sommets V I ,  q ,  ..., v,,, et 

m = IAl arcs. Considérons deux sommets distincts V I  et v, de G et l'ensemble P des 

chemins de ul à vn (ou chemins v1-vn). Nous supposons que P # 0 et que la longueur 

(ou coût) cij, de tout arc (vil v,) E A, est un entier positif. 

Les problèmes de cheminement dans les graphes ont été très largement étudiés 

(voir par exemple Gallo et al. [31], Gailo et Pdott ino [30], [29], pour des revues 
bibliographiques). Les objectifs les fréquemment considérés sont la longueur 



minimaie (par exemple, Dijkstra [25]), la fiabilité maximale (exemple, F'risch [28]) et 
la capacité maximale (exemple, Punnen [54]). Les deux nouveaux critères considérés 

dans cette section sont présentés ci-après: 

- M I N W G E :  trouver un chemin VI-v, dans G tel que la différence entre la plus 

grande longueur d'arc et la plus petite soit minimum, i.e., 

- MINRATIO: trouver un chemin VI-v, dans G tel que le ratio de la plus grande 

longueur d'arc sur la plus petite soit minimale, Le., 

Les deux critères expriment une préférence pour un équilibre dans la distribu- 

tion des longueurs d'arcs le long du chemin optimal. L'exemple suivant ,  en équilibrage 

des chaînes de montage (voir Baybars [7] pour les définitions), constitue une appli- 

cation potentielle de ces problèmes. Considérons le diagramme de précédence de k 
tâches avec des temps d'exécution ai, az, ..., ak et supposons que I'ordre dans lequel 

ces tâches doivent être exécutées a une flexibilité limitée. Notons que les sommets, 

dans le diagramme de précédence, correspondent aux tâches et les arcs représentent 
les relations de précédence (voir la figure 1.1 pour un petit exemple). 

Figure 1.1 - Exemple de diagramme de précédence 



Considérons maintenant le graphe G (figure 1.2) dans lequel les arcs correspon- 
dent aux tâches associées à un même poste de travail et les sommets aux ensembles 
de tâches déjà effectuées (comme dans les réseaux PERT). La longueur d'un arc est 

égale à la somme des durées des tâches qui le définissent. Deux sommets quelconques 

sont reliés par des arcs consécutifs correspondant à toutes les possibilités permises 

par le diagramme de précédence- Des arcs supplémentaires existent entre chaque 

paire de sommets qui sont des extrémités de sowchemins pour lesquels le temps 
total d'exécution des tâches (la longueur du sous-chemin) n'excède pas une borne 
prédéfinie sur le temps de cycle. La longueur d'un tel arc est égale à la longueur du 
sous-chemin déjà existant entre les sommets impliqués. 

Figure 1.2 - Ezemple de graphe G = (K A) pour une chaine de montage 

Le fonctionnement de la chaîne correspond à un chemin VI-v,,, où aucune tâche n'est 
accomplie au sommet vl et toutes les tâches sont terminées au sommet v,,. Les tâches 

effectuées aux postes de travail le long de la chaîne correspondent à celles qui sont 
associées aux arcs du chemin. Le temps de cycle est égal à la plus grande longueur 

d'arc sur le chemin. La minimisation de l'étendue correspond donc à celle du temps 

d'attente aux postes de travail dans le pire cas. Minimiser le ratio des longueurs 

d'arcs revient à minimiser le pourcentage de temps d'attente aux postes de travail 

dans le pire cas. 



Nous n'avons trouvé aucune mention du critère de l'étendue dans la littérature. 

Cependant, différents objectifs impliquant un ratio où au moins l'un des critères est 
linéaire, ont été étudiés, soit seuls ou dans des problèmes de chemins bicritères. Dans 

ces problèmes de ratio, deux valeurs différentes sont associées à chaque arc (par 
exemple la longueur et le coût ou bien le coût et la capacité), au lieu d'une seule 

comme dans MLNRANGE et MINRATIO. 

Dantzig et al. [16] considèrent ainsi le problème de la détermination d'un cycle 

qui minimide le ratio de la somme des longueurs d'arcs sur celle des durées (de la 

traversée) des arcs, alors que Tung [56] étudie la recherche d'un chemin élémentaire 

correspondant à cet objectif. Un problème bicritère impliquant cet objectif et celui 
de la capacité maximum est étudié dans Martins [48]. Le ratio de la somme des coûts 

des arcs (ou de leurs longueurs) sur la plus petite capacité des arcs est également 

traité par ce dernier auteur dans [461. Une étude du problème de la détermination 

d'un chemin minimisant le ratio de la somme des coûts des arcs sur le produit de 

leurs fiabilités est effectuée dans Ahuja (21. 

Nous proposons, au deuxième chapitre de cette thèse, des algoritha: pour les 
problèmes MINRANGE et MINRATIO. Ces algorithmes énumèrent, fondamentale- 

ment, des chemins par ordre décroissant de l'étendue ou du ratio, de manière à éviter 

les chemins dont la valeur est supérieure ou égale celie du meilleur chemin connu. 

Un chemin efficace (dit aussi non dominé ou Paréto-optimal) pour un problème 

bicritère se définit comme un chemin P tel qu'il n'existe aucun autre chemin P pour 

lequel I'un des critères est meilleur sans que l'autre ne soit moins bon. Ainsi, pour 

le problème bicritère MINMAX-MAXMIN correspondant à la recherche d'un chemin 

P pour lequel la plus grande longueur d'arc, P(P), est minimum et la plus petite 

longueur d'arc, c(P),  est rnatimum, un chemin Pe est efficace pour le problème 

MINMAX-MAXMIN s'il n'existe aucun autre chemin P E P avec C(P) < C(PWt) et 

c(P)  2 c(Pqt) ou avec C(P) C(Pqt) et c(P)  > c(P-). La procédure d'énumération, - 
utilisée dans les algorithmes pour les problèmes MINRANGE et MINRATIO, est 

basée sur l'observation que la solution optimale est un chemin efficace pour le problème 
bicrit ère MINMAX-MAXMIN. 



Cette procédure est similaire à celle qui consiste à résoudre un problème de 

chemin à un critère en déterminant un sous-ensemble de chemins efficaces pour un 

problème bicritère associé. Un exemple de cette approche est utilisée dans Martins 
[46] pour déterminer un chemin qui minimise le rapport coût/capacité, en utilisant 

le problème bicritère MINSUM-MAXMIN où l'on recherche un chemin de coût total 

minimal et dont la (plus petite) capacité est maximale (voir, par exemple, Hansen[36] 
ou Martins 1481). Une méthode semblable est également utilisée dans Ahuja [2] pour 

trouver un chemin pour lequel le rapport coût/fiabilité est minimal, en utilisant un al- 

gorithme qui résout le problème bicritère MINSUM-MINSUN consistant à déterminer 

un chemin pour lequel le coût et la fiabilité sont minimum. 

Notons que les graphes orientés considérés dans la formulation des problèmes 

MINRANGE et MINRATIO contiennent, comme cas particuliers, les graphes non- 

orientés (dans lesquels (vij %) E A implique (vjl vi) E A)). Pour ces graphes, des 

algorithmes de meilleures complexités peuvent titre obtenus en exploitant un récent 

résultat de Punnen [54] pour le problème de chemin de capacité maximale. Nous 

examinons dans la prochaine section quelques extensions bicritères des problèmes 

MINRANGE et MINRATIO. 

1.1.2 Extensions bicritères 

Il est souvent pertinent d'utiliser plus d'un critère pour déterminer le meilleur 
chemin dans un graphe. Une liste de problèmes de chemins bicritères avec des analyses 

de complexité et divers algorithmes spécialisés peut être trouvée dans Hansen [36]. 
Une discussion sur l'utilisation de fonctions d'utilité pour résoudre les problèmes de 
chemins bicritères est égaiement présentée dans Henig [38]. 

Dans le but de donner le maiamurn de flexibilité au décideur lorsque deux 

critères sont considérés, il est nécessaire de trouver tous les chemins efficaces. Il 
pourrait cependant y avoir un nombre exponentiel de chemins VI-v,, ayant la même 

valeur pour les deux critères. On cherchera donc à déterminer plutôt un ensemble 
P* de chemins VI-v,, efficaces non équivalents, i.e., un ensemble tel qu'aucun chemin 



dans P* n'est dominé ni équivalent à un autre chemin de P* et aucun chemin dans 
P* ne domine ni n'est équivalent à un autre chemin de P*. 

En guise d'application, considérons de nouveau le problème d'équilibrage de 

chaîne de montage discuté à la section précédente. Rappelons que le temps de cycle 

est la plus grande longueur d'arc sur le chemin VI-v, choisi. Ce temps est un paramètre 
important puisqu'il détermine le taux de production et contraint l'ensemble des tâches 
qui pourraient être exécutées le long de la chaîne. 

Ainsi, il peut être intéressant d'étudier le problème bicritère MINRANGE 
MINMAX pour le graphe G du problème d'équilibrage de chaîne de montage. Cela 

revient à considérer simultanément le critère du taux de production et du temps 

d'attente dans Le pire cas. 

On obtient un problème plus =cile lorsque le critère de l'étendue (ou du ratio) 
est considéré en même temps que celui de la longueur totaie du chemin. Ce dernier 
critère a la même valeur pour tout les chemin dans l'exemple de la chaîne de montage. 
Il correspond au temps total de traitement le long de la chaîne. 

Ainsi, si une valeur constante égale, par exemple, à une borne supérieure sur le 
temps de cycle, est ajoutée à toutes les longueurs d'arc, alors tout chemin VI-v, aura 

une longueur égale au temps total de traitement plus le produit de la coiistante et 

du nombre d'arcs sur le chemin (Le., le nombre de postes de travaii sur la chaîne). 
Le problème MINRANGEMINSUM revient donc à considérer le critère du nombre 

de postes de travail et celui du temps d'attente dans le pire cas. 

Un algorithme est décrit au chapitre 2 pour ce problème ainsi que pour le 

problème MINRANGEMINMAX. La prochaine section est consacrée à l'exposé d'un 
problème bicritère plus classique, le problème MINSUM-MINSUM, oh l'on considère 

simultanément la longueur totale du chemin pour deux critères différents. 



1.2 Le problème de plus court chemin bicritère 

1.2.1 Description du problème 

Soit de nouveau un graphe orienté G = (V, A) avec n = 1 VI sommets vl , v2, .. . , v, 
et m = IA( arcs. A la différence de la section précédente, on associe, à chaque arc 

(vi, vj) E A, deux valeurs non négatives (2,' y,). Les sommets VI et un correspondent 

à la source et au puits, respectivement. 

Un chemin allant d'un sommet vi à un sommet vj sera appelé chemin vi-vj et 

sa valeur sera représentée par l'étiquette bicntère ( X v ,  Xj). Chaque composante de 

l'étiquette est égale à la somme des valeurs correspondant au critère associé, sur tous 

les arcs du chemin. L'étiquette de plus petite valeur lexicographique correspondant 

au plus court chemin ~ i - v j  pour le t-ème critère (r  = 1'2) sera notée (x!'), KY)). 

Rappelons qu'une étiquette (X,, x,), associée h un chemin vi-vj, est efficace (ou 

non dominée) s'il n'existe aucune étiquette (Xi,, y,), également associée à un chemin 

vi-v,, telle que X:, 5 X, et vj 5 II avec l'inégalité stricte dans au moins un des 

deux cas. Un chemin correspondant à une étiquette efficace est aussi dit efficace, et 

vice versa. 

On peut remarquer que plusieurs chemins efficaces peuvent correspondre à une 

même étiquette. Étant donné un sommet vi, un chemin vl-vi ou un chemin vi-v,, dont 

le prolongement ne peut donner un chemin VI-un efficace, sera dit non prometteur. 

Le problème de plus court chemin bicritère consiste à déterminer un chemin 

vl-vn pour lequel la valeur totale de chacun des critères est minimale. 'Itès souvent, 

un tel chemin n'enste pas et le problème se ramène à l'énumération des chemins vl-vn 

efficaces. Ce problème est susceptible d'apparaître dans diverses applications en ana- 

lyse des réseaux, lorsqu'un seul objectif ne suffit pas pour caractériser adéquatement 

le problème d'optimisation sous-jacent. 



1.2.2 Revue de la littérature 

Le problème de transport de matières dangereuses discuté dans Chin et Cheng 

[12] constitue un exemple d'application du problème de plus court chemin bicritère. 

Les deux critères considérés par les auteurs sont respectivement la distance totale 

parcourue et la population exposée à l'intérieur d'une bande de largeur fixe le long 

du trajet. 

Une variante du problème consiste à utiliser une fonction d'utilité, qui combine 

les deux critères, pour trouver un chemin optimal. Lorsque la fonction d'utilité est 

linéaire ou lexicographique, une solution existe par programmation dynamique (voir, 

par exemple, Loui 1441). Une méthode de recherche linéaire unimodale et un algo- 
rithme d'évaluation et de séparation progressives basé sur la génération des k-&me 
plus courts chemins, sont proposés dans Henig (381 pour calculer des bornes sur la 
valeur optimale d'une fonction d'utilité quasi-concave. 

Notons cependant que, pour des fonctions d'utilité quelconques, le problème de 

plus court chemin bicritère n'admet pas toujours de solution par la programmation 

dynamique. On est alors généralement amené à énumérer les chemins efficaces avant 

de sélectionner la solution optimale (voir Loui [44]). En outre, une fonction d'utilité 

n'est pas toujours explicitement bien définie en pratique. 

Nous nous intéresserons, dans cette étude, au problème de génération de l'en- 

semble des étiquettes efficaces correspondant à des chemins v i - ~ , .  Un tel ensemble 

défini un ensemble minimal complet de chemins VI-v, efficaces, i.e., contenant exac- 

tement un chemin pour chaque étiquette efficace. Ce problème est M c i l e  dans le 

pire cas: le nombre d'étiquettes efficaces croît exponentiellement en fonction de la 
taille du réseau (Hansen [36]). 

En outre, dans l'espace des étiquettes, toutes les étiquettes efficaces du problème 

de plus court chemin bicritère ne sont pas des points extrêmes de l'enveloppe convexe 

des étiquettes correspondant aux chemins q-v, du graphe (voir, par exemple, White 

[63]). Les étiquettes associées à ces points extrêmes seront appelées étiquettes efficaces 

extrêmes. Ainsi, une approche paramétrique résolvant successivement des problèmes 



de plus court chemins pour un objectif obtenu par combinaison linéaire des deux 

critères, ne permettra pas toujours de trouver toutes les étiquettes efficaces (voir 
White [63], entre autres). 

Un algorithme d'étiquetage est proposé dans Hansen (361 pour le problème 

considéré. L'auteur décrit également une méthode d'approximation permettant de 
déterminer les étiquettes efficaces pour un niveau de précision donné. Cette méthode 

est polynomiale en fonction de la taille du graphe et de l'inverse de l'erreur rela- 

tive maximale permise sur la valeur de chaque critère pour un chemin VI-v,,. Un 

algorithme, basé sur une méthode de k-ème plus court chemin, est aussi décrit dans 

Climaco et Martins [13] pour générer tous les chemins efficaces, même quand il en 

existe plusieurs pour une même étiquette. 

Henig 1381 suggère trois méthodes pour générer l'ensemble des étiquettes effi- 

caces extrêmes. Une des méthodes est une procédure d'étiquetage permanent des 

chemins et les deux autres impliquent la résolution successive de problèmes pa- 

ramétriques de plus court chemin, en vue de générer les étiquettes efficaces extrêmes 

par ordre croissant de l'un des critères. 

Une approche paramétrique similaire, utilisant un argument du type simplexe 

pour ajuster les paramètres, suivie de la procédure d'étiquetage de Hansen [36], 

est présentée dans Mote et al. [51]. Les auteurs rapportent des résultats' de calcul 

indiquant qu'une telie procédure combinée est significativement plus rapide que la 

méthode du k-ème plus court chemin et meilleure que la méthode d'étiquetage pour 

les problèmes avec une corrélation positive entre les deux critères. Les tests ont 

été effectués sur des réseaux générés aléatoirement, ayant 1000 sommets et jusqu'à 

10000 arcs avec des valeurs entières de 1 à 200 pour chaque critère, ainsi que sur des 

réseaux quadrillés contenant 400 sommets et jusqu'à 1520 arcs pour des longueurs 

d'arcs entières de 1 à 100. 

Cependant, comme indiqué dans Henig [38], les méthodes paramétriques du 

type "simplexe" sont hautement sensibles à la dégénérescence de la base. Ceci se 

produit lorsque l'arc entrant dans la base courante n'entraîne pas de modification de 

l'étiquette résultante. Plusieurs itérations sont alors nécessaires pour qu'une nouvelle 



étiquette efficace extrême puisse être trouvée. Henig [38] propose une procédure al- 
ternative qui nécessite le calcul de plus courts chemins successifs un nombre de fois 
égal à deux fois le nombre de chemins efficaces extrêmes. 

1.2.3 Une approche par les deux extrémités 

La méthode d'étiquetage a l'inconvénient d'entraîner une croissance rapide du 
nombre d'étiquettes efficaces correspondant à des souschemins qui ne donneront pas 

de chemins q-v ,  efficaces. Un test de dominance est présenté dans Tung et Chew 
(581 pour réduire le nombre de ces étiquettes non prometteuses. Le test utilise un 

chemin fictif dont l'étiquette est constituée par les valeurs des plus courts chemins 

d'un sommet donné au sommet v,, pour chacun des critères. L'algorithme résultant 

peut être considéré comme une méthode en deux phases pour résoudre le problème 
par les deux extrémités du réseau. 

Peu de travaux existent dans la littérature sur la résolution du problème de 

plus court chemin bicritère par les deux extrémités. Une analyse critique de quelques 
algorithmes utilisant une approche par les deux extrémités pour le problème de plus 

court chemin à un critère peut être trouvée dans Dreyfus [27]. Un algorithme plus 

récent dans cette catégorie est discuté daas Jeyaratnam (421. 

Les techniques utilisées consistent à prolonger les sous-chemins à la fois à partir 

des sommets v l  et v,, de manière à obtenir une procédure en une phase. Cependant, 
comme rapporté dans Dreyfus [27], l'une des difncultés majeures d'une telle approche 

symétrique est le développement de tests d'arrêt et de dominance corrects et efficaces. 

En outre, la complexité de pire cas de ces algorithmes est en général moins bonne 

que celle de l'algorithme de Dijkstra [25] qui résout le problème par un seul extrémité 

(voir Dreyfus [27] ) . 

Cependant, dans le cas bicritère, une approche symétrique par les deux extrémités 
pourrait significativement réduire le nombre total d'étiquettes examinées, étant donné 

qu'environ la moitié seulement des sommets serait considérée autant dans la phase 



"en avant" que celle "en h è r e " .  Cette obsenmtion constitue l'une des motivations 

pour le développement de l'algorithme proposé au chapitre 3 de cette thèse pour 

résoudre le problème de plus court chemin bicritère par les deux extrémités. 

L'algorithme est initialisé en déterminant, pour chaque sommet et pour chaque 

critère, les étiquettes de plus petites valeurs lexicographiques correspondant aux plus 

courts chemins de V I  au sommet considéré et de celui-ci à v,. Une extension de 

la procédure d'initialisation est aussi discutée. Elle implique le calcul des chemins 
efficaces extrêmes, non nécessairement suivant l'ordre croissant de l'un des critères. 

Cette procédure n'est pas susceptible de dégénérescence et est particulièrement 

bien adaptée pour trouver les étiquettes efficaces extrêmes restreintes à un rectangle 

défini par une borne inférieure et une borne supérieure sur chacun des critères. De 
telles bornes peuvent être spécifiées par le décideur dans le but de limiter la recherche 

de solutions efficaces à une région donnée de l'espace des solutions. Ceci permet 

d'exclure, éventuellement, les solutions correspondant à une trop grande détérioration 

de l'un des critères. 

De nouveaux tests de dominance, plus forts que ceux de Tung et Chew (581, 

et utilisant des approximations extérieures de l'ensemble des étiquettes efficaces à 

un sommet donné, sont incorporés dans l'algorithme. La performance numérique de 

cette approche est comparée à celle de l'algorithme d'étiquetage de c ans en [36]. Les 
résultats sont discutés au chapitre 3. 

Dans la prochaine section, nous décrivons un autre problème de plus court 

chemin impliquant plus d'un critère. Contrairement au problème bicritère, il s'agira 

de minimiser un seul des critères, les autres étant contrôlés par des fenêtres définies 

sur les arcs et aux sommets. Cependant, les algorithmes seront aussi basés sur le 

principe d'utilisation de l'information en provenance de la source et du puits. 



1.3 Un problème de plus court chemin avec fenê- 

tres de ressource 

On considère, dans cette partie, le problème de trouver un chemin de coût 

(ou de longueur) minimum dans un réseau acyclique où la traversée de chaque arc 

implique la consommation d'une ou de plusieurs ressources. Un arc donné ne peut 

être utilisé que si les ressources cumulées jusqu'à l'origine de l'arc respectent des 

fenêtres déhies par des bornes inférieures et supérieures sur cet arc. 

On permet une correction ou remise à jour de la consommation des ressources 

aux sommets. Ainsi, si la ressource cumulée excède un seuil supérieur prédéfini, elle 

est ramenée à une valeur supérieure de mise à jour également prédéfinie. De manière 

similaire, un seuil et une valeur de mise à jour inférieures sont définis pour chaque 
ressource et pour chaque sommet. 

Une description formelle du problème est présentée a la section 1.3.1. Ce pro- 

blème se rencontre, par exemple, en confection d'horaires de personnel où les sommets 

représentent les affectations et un chemin correspond à une séquence d'affectations 

sur un horizon de planification donné. Les ressources peuvent correspondre alors aux 

nombres d'affectations consécutifs de jour, de soir ou de nuit. Un exemple de cette 

application est fourni à la section 1.4. 

Divers problèmes de plus court chemin avec quelques contraintes additionnelles 

ont été considérés dans la littérature par plusieurs auteurs incluant Joksch [43], Saigal 
[59], Minoux [50], Handler et Zang [35], Hansen [36], Anej a, Aggarwd et Nair [3], Jaffe 

[41], Martins [47], de même que Ribeiro et Minoux [55]. Une revue bibliographique 

de ces travaux peut être trouvée dans Beasley et Christofides [8]. 

Les méthodes de résolution proposées par ces auteurs sont basées sur des tedi- 

niques telles que la programmation dynamique (exemple, [43], [59]), l'étiquetage 

(exemple, [36], [47]), la relaxation lagragienne combinée avec des algorithmes de 

k-èmes plus courts chemins (exemple, [35]) or ou avec une procédure d'évaluation 

et de séparation progressives (exemple, (81). Une heuristique, basée sur la relaxation 



lagrangienne et un calcul de plus courts chemins paramétriques, est également dis- 

cutée dans Ribeiro et Minoux [55], pour le cas où le chemin cherché est élémentaire 
et la consommation totale de la ressource est doublement contrainte. 

Ces algorithmes sont conçus pour des contraintes additionnelles actives seule- 

ment au sommet terminal v,. Cependant, dans le problème de plus court chemin 
que nous considérons, de telles contraintes peuvent être présentes à n'importe quel 
sommet et ne sont pas nécessairement linéaires. 

Un problème, voisin de celui considéré ici, est discuté dans Desrochers [19] (voir 
aussi Desrosiers, Dumas, Solomon et Soumis [22]), où la mise à jour n'est permise 

que pour des valeurs de ressource plus petites que des seuils inférieurs prédé*. Les 

fenêtres de ressource sont associées aux sommets et coïncident avec celles des seuils et 
valeurs de mise à jour. Il s'agit d'une généralisation multidimensionnelle du problème 
de plus court chemin avec fenêtres de temps, discuté dans Desrosiers, Pelletier et 

Soumis (231 et dans Desrosiers, Soumis et Desrochers [24], comme problème a d a i r e  
du problème des multiples voyageurs de commerce avec fenêtres de temps. 

Un algorithme de programmation dynamique est également décrit dans Ioadiim 
et al. [40] pour le cas où des coûts linéaires, éventuellement décroissants en fonction 

de la ressource, sont appliqués aux sommets du plus plus court chemin avec fenêtres 

de temps. Une formulation générale de ces problèmes de chemins avec contraintes 

de ressource est présentée dans Desaulniers et al. [18] mais aucun algorithme n'est 
décrit pour ce cas général. 

La résolution du problème des multiples voyageurs de commerce avec fenêtres de 

temps, nécessite de résoudre plusieurs fois le problème auxiliaire, dans un processus de 

génération de colonnes, après avoir modifié les coûts sur les arcs. Ainsi, un algorithme 

efficace est requis pour la résolution répétitive du problème de plus court chemin 

avec contraintes. Desrochers et Soumis décrivent, pour ce problème, un algorithme 
d'étiquetage permanent et une procédure de réoptimisation primale-duale dans [20] et 

[21] respectivement. Nous présentons, ci-après, une description formelle de la nouvelle 

extension du problème de plus court chemin avec fenêtres de ressource. 



1.3.1 Formulation du problème 

On considère un réseau orienté acyclique avec n = 1 VI sommets, VI, 112, ..., Un, 

en ordre topologique et rn = IAl arcs, où les sommets vl et v, sont 

source et le puits. Un ensemble 7Z de ressources à valeurs discrètes 

Figure 1.3 - Notatzons 

- - - - 
Deux vecteurs, & = (h l ,  hi2, .. . ,blRI) et hi = (hil, hi*, ..., hilRl), correspondant 

respectivement aux seuils idérieurs et supérieurs sur l'accumulation des ressources, 

sont définis à chaque sommet. Des vecteurs de mise à jour, 3 = (-il, s2, ..., -ilal) et 

4 = (Fil, q2, . . . , T ~ ~ ~ ~ ) ~  associés respectivement aux seuils inférieurs et supérieurs, 

sont également donnés. Un coût ci,, un vecteur d'utilisation de ressource ui, = 
(uvl, u ~ z ,  .. ., uijlRl), ainsi que des vecteurs de bornes inférieures et supérieures -, = 

- - (aji, x j 2 ,  ..., ~ j l n l )  et wu = (aijl, Zij2, ..., wiilRl) respectivement, sont aussi associés 

à chaque arc (vi, vj) E A (voir la figure 1.3). 

Un ensemble d'arcs consécutifk du sommet vl à un sommet vi sera appelé chemin 

vl-vi, comme dans les sections précédentes. Un tel chemin est caractérisé par un 
vecteur de ressource initial zo, un vecteur de ressource courant Xi = (xil, xi*, ..., x i l ~ ~ )  

et un coût q. Un chemin VI-V~ peut être prolongé en utilisant un arc (vil vj) E A, 
uniquement si les contraintes de fenêtres ci-après sont satisfaites : 



Ainsi, pour un arc (vi, v,), les contraintes de fenêtres de ressource (1.3) déh i sen t  

un intervalle de réalisabilité [Q,, Q,] pour chaque ressource r E R. On considère, 

en outre, un opérateur de mise à jour 4(-, 0 )  tel que, pour tout sommet vj E V, toute 

ressource r E 7Z et pour tout vecteur de ressource r E 2IRi: 

Après la traversée de l'arc (vi,vj) E A, c, et uijr sont respectivement ajoutés 

à q et à sir, pour r E 'R. L'opérateur de mise à jour !P(-, -), est ensuite appliqué 

à Z, = X, + uijr au sommet vj POU obtenir Xjr = !P(vj, xir + u,), où T E R. La 
consommation de ressources à la source est donnée par 11, = !D ( q ,  x,), r E R. 
Dans la suite du texte, l'opérateur de mise à jour %(a, 0 )  sera étendu à des arguments 

vectoriels, i.e., étant donné un sommet vi et un vecteur de consommations de ressource 

2 E zlal,  le vecteur (*(vit 4, q ( v i t  z2),  ..., q(vi, zlal)) sera noté @(vil t). 

Un chemin VI-v, est réaiisable si les contraintes de fenêtres de ressource (1.3) 

sont satisfaites sur chacun de ses arcs. Le nouveau problème de plus court chemin avec 

fenêtres de ressource se définit donc comme suit: étant donné un vecteur de ressource 

initial xo, trouver un chemin vl-v, réalisable et de coût minimal, ou montrer qu'un 

tel chemin n'existe pas. Ce problème sera noté RCSPP. Il n'est pas difficile de voir 

que le problème RCSPP contient celui du sac a dos comme cas particulier et est, par 

conséquent, NP-Wcile. 

1.3.2 Un cas particulier 

Le problème de plus court chemin avec fenêtres de ressource aux sommets 

discuté dans Desrosiers, Dumas, Solomon et Soumis [22] peut être considéré, dans 

le cas des graphes acycliques, comme un cas particulier, du problème RCSPP. En 
effet, soit un graphe orienté acyclique G = (V, A) avec un ensemble de ressources 



'R à valeurs discrètes et, pour chaque arc (vit vj) E A, un coût c, et un vecteur 
de consommations de ressource u, comme précédemment. Des fenêtres de ressource 
[air, bâr], r E R, sont définies à chaque sommet vi E V. Un coût q et un vecteur de 
ressource Xi = (xil, XQ,  - .-, z ~ ~ ~ ~ )  Sont associés à chaque chemin Vl-Vi. 

Étant donné un vecteur de ressource initial y, en posant XI = q et cl = O, le 
problème de plus court chemin avec fenêtres de ressource aux sommets peut être défini 

comme celui de trouver un chemin VI-v,, de coût minimum contenant uniquement des 
arcs (vi, v j )  E A tek que: 

air I xîr 5 h r  8 ~j = ci+%, ++uijr 5 bjr, xjr = max{ajr, x++uijr), T E R. 

Par conséquent, en supprimant les fenêtres de ressource aux sommets et en posant: 

on obtient une instance de RCSPP. 

Il convient de remarquer que les bornes inférieures des fenêtres dans le problème 
de plus court chemin avec fenêtres de ressource aux sommets sont molles, i.e., un che- 
min VI-v, optimal peut contenir des =CS (vi, v j )  E A tels que xir +uijr < aj,. On peut 
voir aisément qu'une version simplifiée de RCSPP où les seuils sont égaux aux valeurs 
de mise à jour correspondantes, peut se transformer en une instance du problème de 
plus court chemin avec fenêtres de ressource aux sommets. Il suffit, principalement, 
d'introduire un sommet intermédiaire sur chaque arc et de dédoubler les ressources 

impliquant des contraintes dures pour les fenêtres (voir, par exemple, Gamache et al. 

[32]). Ce dédoublement de ressources constitue cependant un inconvénient qui rend 

cette transformation inverse peut attrayante. 

Dinérents algorithmes sont présentés au chapitre 4 pour le problème RCSPP, 
de même qu'une discussion de leurs complexités. En particulier, une procédure est 

décrite pour les cas de réoptimisation, lorsque le problème de plus court chemin avec 

contraintes apparaît comme un problème auxiliaire de génération de colonnes. Nous 
présentons dans la prochaine section un exemple d'application nécessitant une telle 



résolution répétitive d'un problème complexe de cheminement dans un réseau, qui se 
ramène au problème RCSPP. 

1.4 Le problème d'horaires de personnel soignant 

Le problème de confection d'horaires de personnel soignant consiste à générer 
une configuration d'horaires individuels, i.e, de séquences d'affectations journalières 
sur un certain horizon de planification. La configuration d'horaires est générée de 

manière à satisfaire les spécifications de la convention collective et les quotas de 

demande exprimés par l'hôpital, tout en minimisant le coût salarial et en maximisant 
les préférences individuelles des infirmières ainsi que la qualité des soins. 

Les spécifications de la convention collective sont des règles qui permettent de 
définir des horaires acceptables pour chaque infirmière individuellement, en termes 
d'ancienneté, de charge de travail, de congés statutaires ou de fins de semaines, et 
d'affectations consécutives, incluant les rotations entre divers types de quarts. Une 
affectation est une spécification du quart de travail qu'une personne doit effectuer un 
jour donné. Un quart de t r a d  est soit de jour, du soir ou de nuit. Il est caractérisé 

par une heure de début et une heure de fin qui sont fixes. 

Un jour est divisé en plusieurs périodes de demande caractérisées par des heures 
fixes de début et de fin. Les périodes de demande sont identiques pour tous les 
jours mais ne coïncident pas nécessairement avec les quarts de travail. Un quart de 

t r a d  peut éventuellement couvrir plusieurs périodes de demande. On supposera 

que les périodes de demande originales sont décomposées, si nécessaire, en plusieurs 

périodes plus petites, de sorte qu'un quart de travail couvre une période de demande 

entièrement ou pas du tout (voir la figure 1.4). Dans la suite du texte, l'expression 
"période de demande" désignera ces périodes modifiées, sauf indication contraire. 



Périodes de demande 

Quarts de travail \ 
I I 

Dl2 (jour) I 

El (soir) 
+-----I 

Échelle de temps 

I E (soir) I 

E2 (soir) - 
I SS (nuit) I 

I S 12 (nuit) 4 

Figure 1.4 - Ezemple de qvarts de travail et de périodes de demande 

Les quotas de demandes spécifient, pour chacune des périodes de demande 

et pour chaque jour, le nombre de personnes de chaque niveau de qualification, ou 
combinaison de niveaux de qualification, qui doivent être présentes. Des spécifications 

relatives aux quarts de travail peuvent également être incluses dans l'expression des 

quotas de demande. 

Le coût sdaxial comprend le salaire réguher du personnel permanent ainsi que 

les coûts des temps supplémentaires et celui du personnel flottant. Les préférences in- 
dividuelles peuvent être exprimées en termes de requêtes pour des jours de congés, des 

quarts de jours par rapport à ceux de nuit, etc. La qualité des soins peut être évaluée 

par le niveau d'équilibre entre les personnes expérimentées et moins expérimentées 

qui sont affectées à la même période de demande. 

Ce travail de modélisation du problème d'horaires de personnel soignant a 

été fait en collaboration avec l'Hôpital Royal Victoria de Montréal. Le but visé 

est de développer un système de confection d'horaires qui permettra de prendre en 
compte les besoins et les contraintes spécifiques à l'unité considérée, sans recourir à 

des horaires-types fournis par l'infirmière-chef. Le système ne devra pas demander 



beaucoup de t r a d  de mise à jour, étant donné que les besoins et les contraintes 
varient d'un horizon à l'autre. Une explication exhaustive des multiples règles à res- 

pecter et des compromis acceptables a été donnée par le personnel de l'hôpital. 

La confection manuelle des horaires est très fastidieuse et se limite généralement 

à la recherche d'une solution réalisable, avec peu d'accent sur l'optimisation, du fait 

de la complexité des règles de la convention collective. La prise en compte de ces 

multiples contraintes est un défi de taille pour l'automatisation de la confection des 
horaires, comme l'illustre la revue de la littérature ci-après. 

1.4.1 Une bibliographie des horaires d'infirmières 

L'approche mamelle par essais et erreurs a été abondamment étudiée dans la 

littérature spécialisée en administration de la santé (voir, par exemple, la récente 

revue de la littérature présentée dans Hung [39]). Une grande partie des travaux sur 

l'automatisation de la confection des horaires de personnel soignant considère des 

systèmes sans modèles mathématiques explicites (exemple., Smith et Wiggins [60], 

Anzai et Miura [4], Okada et Okada [52]), qui sont essentiellement une traduction 

informatique de la logique de l'approche manuelle. 

Plusieurs articles de la littérature traitent cependant de modèles cycliques, qui 

sont des modèles mat hématiques assez simplifiés et susceptibles de résolution exacte. 

Dans ces modèles, des séquences d'anectations cycliques sont générées de manière 

à minimiser la taille du personnel nécessaire pour couvrir la demande, également 

supposée cyclique. 

Baker [5] considère, par exemple, deux jours consécutih de congé par semaine 

pour chaque personne, tandis que Bums [IO] étudie le cas de dix jours de travail 

sur quatorze avec congé une fin de semaine sur deux et jusqu'à six jours de travail 

consécutifs. Burns et Koop [Il] considèrent des affectations cycliques dans un modèle 

similaire, mais avec trois types de quarts de travail et des spécifications cycliques fixes 

pour la répartition des jours de travail et de congé. 



Les premiers modèles réalistes et non cycliques sont proposés dans Warner 

[62] et dans Miller et  al. [49]. Ces modèles sont cependant résolus de manière heu- 
ristique, essentiellement à cause de la très grande taille de l'ensemble des horaires 

potentiels pour chaque personne. Les modèles décrits traitent de la maximisation 

des préférences individuelles et comprennent des procédures pour tenir compte des 
requêtes persomeUes. 

Certains travaux, plus récents, considèrent des modèles multiobjectifs non cy- 

cliques, qui sont résolus au moyen de la programmation par buts (par exemple, Oz- 
karahan et Bailey [53]), de méthodes interactives de programmation multicritère 

ou de la méta-heuristique taboue avec une fonction d'utilité lexicographique (par 
exemple, Berrada [9]). Des fonctions de priorité et de performance sont définies pour 

ces modèles multiobjectifs à partir de certaines hypothèses sur la couverture des 

demandes, les objectifs de la direction et les préférences des W è r e s .  

On notera cependant que les méthodes de résolution utilisées par ces auteurs 
sont plutôt restrictives par rapport au nombre d'horaires possibles par personne. En 

outre, l'approche interactive de programmation mathématique multicritère décrite 

implique une trop grande intervention du décideur. Celui-ci doit, à chaque itération 
majeure, rajuster sélectivement les préférences pour permettre la génération d'une 

nouvelle solution non dominée. 

1.4.2 Limitations des systèmes existants 

La plupart des algorithmes exacts de la littérature considèrent des situations 

simplifiées (telles que des modèles cycliques) et sont, par conséquent, peu réalistes. 

Par ailleurs, d'importants problèmes de réalisabilité, sources de griefk de travail, 

peuvent se rencontrer dans les systèmes heuristiques. La solution obtenue, dans ce 

dernier cas, peut être systématiquement sowoptimale, sans aucune indication précise 
sur les améliorations encore possibles. La plupart des systèmes heuristiques sont 

également sensibles à l'environnement considéré et manquent ainsi de flexibilité en 
cas de modification de celui-ci. 



Une observation attentive du problème d'horaires de personnel soignant indique 

que l'une des difEcultés principales provient de la taille de l'ensemble des horaires 
potentiels. Si D est l'ensemble des jours de l'horizon et une infirmière peut effec- 

tuer T quarts de travail différents, alors O (TIDI) horaires doivent être implicitement 
examinée pour cette infirmière. 

Cette remarque, ainsi que la perspective de capitaliser sur les avancées en pro- 
grammation mathématique et sur les récents développements des équipements infor- 
matiques, motivent l'approche exacte de génération de colonnes proposée dans cette 

thèse. Nous présentons ci-après un s w o l  du modèle et une brève revue de Littérature 
sur la programmation héaire généralisée. 

1.4.3 Un survol du modèle de génération de colonnes 

Le modèle considéré comporte un problème maître qui implique un objectif 
et des contraintes relatives à l'ensemble de la configuration des horaires générés. 
Le modèle comporte également un problème auxiliaire traitant des spécifications 

relatives à une infirmière donnée. Le problème maître est un programme linéaire en 
variables 0-1 qui détermine une configuration d'horaires pour satisfaire la demande 
tout en minimisant les coûts salariaux et en maximisant les préférences. 

Chaque colonne dans la matrice des contraintes du problème correspond à un 
horaire réalisable pour une W è r e .  Compte tenu de la taille de cette matrice, seul 
un petit nombre de colonnes sont considérées à la fois. D'autres colonnes sont générées 

au hir et à mesure qu'elles sont nécessaires pour améliorer la solution courante. 

Cette recherche de nouvelles colonnes se fait en résolvant un problème aui -  

liaire de plus court chemin avec fenêtres de ressource. Un chemin réalisable dans 

le réseau associé correspond à un horaire acceptable pour l'infirmière considérée. La 

réalisabilité dans le problème a d a i r e  est définie à partir des règles de la convention 

collective, telles qu'eues s'appliquent B l'infirmière. Cela conduit à une structure des 

contraintes de ressource qui correspond au modèle présenté à la section 1.3. 



La résolution de tels programmes linéaires généralisés en Mnables entières (ou 

mixtes) comporte une phase de résolution de la relaxation linéaire du problème maître 
et une phase de recherche de solutions entières (ou mixtes). La génération de colonnes 

en programmation linéaire a été introduite par Dantzig et Wolfe [17], tandis qu'une 
première heuristique pour les programmes linéaires généralisés en variables entières 

a été présentée par Gilmore et Gomory (33, 341 dans une une étude sur le problème 

de découpe. 

Plusieurs auteurs ont, par la suite, combiné la méthode d'évaluation et de 

séparation progressives avec la génération de colonnes pour résoudre des problèmes 

de grande taille dans durers domaines d'applications. Appelgren !1] et Levine [45] 

sont parmi les premiers auteurs à étudier des modèles de programmation linéaire 

généralisée avec fenêtres de temps. La plupart des travaux de cette catégorie sont 

couverts dans la récente revue bibliographique de Desrosiers et al. [22] (voir aussi 

Desaulniers et al. [18]) sur les problèmes de routage et de distribution. 

La résolution optimale de ces problèmes comporte des décisions de branche- 

ments qui doivent être compatibles avec les structures respectives de la relaxation 

linéaire du problème maître et du problème auxiliaire de génération de colonnes. 
Lorsqu'une variable fractionnaire d'une base optimale est fixée à zéro, une précaution 
particulière doit être prise pour éviter de regénérer une colonne lui correspondant. 

Plusieurs algorithmes (par exemple, Hansen et al. (371, Desrosiers et al. (221, Van- 
derbeck et Wolsey [61], Desaulniers et al. [Ml, voir aussi Barnhart et ai. [6] pour 

une revue bibliographique) exposent différentes manières pour obtenir une solution 

entière optimale. 

Le modèle présenté dans cette thèse M e r e  de ceux traités dans Desrosiers et 

al. [22], par la structure des fenêtres de ressource dans le problème auxiliaire de plus 
court chemin. La spécificité des règles de la convention collective se traduit par des 

contraintes de mise à jour des ressources qui correspondent au modèle présenté à la 

section 1.3. Les détails de la modélisation et de la résolution de ce problème d'horaires 

sont décrits au chapitre 5. 



CHAPITRE 2 

ALGORITHMES DE CHEMINS 
AVEC ÉTENDUE OU RATIO 
MINIMUM 

2.1 Problèmes à un critère 

Nous décrivons, ci-dessous, un algorithme, dénommé MRG, qui permet de 
résoudre le problème MINRANGE introduit à la section 1.1. Étant données la meil- 

leure étendue connue Gt et une valeur E, L'algorithme MRG calcule la plus grande 

valeur g telle qu'il existe un chemin dont aucun arc n'a une longueur plus petite que 

c ni plus grande que i?, en résolvant un problème MAXMIN. Un chemin d'étendue - 
minimale ayant ces caractéristiques et dont l'étendue est plus petite que Gt, est 

ensuite déterminé. Cela se fait en résolvant un problème MINMAX par le biais 

d'une procédure pouvant éventuellement se terminer avec la preuve qu'un tel chemin 
n'existe pas. 

La longueur C, de l'arc le plus long sur le chemin ainsi trouvé, est utilisée pour 

changer la valeur de E à (c - 1) + (E  - c) - 1. Cette mise à jour se justifie par le fait 

qu'une décroissance de i? entraîne une plus petite valeur de c et, ainsi, une étendue 

Gt plus petite sera cherchée à l'itération suivante. Le processus commence avec 

une valeur de 3 qui est une borne supérieure sur toutes les longueurs d'arcs dans le 

graphe. Il est ensuite répété pour des valeurs décroissantes de è jusqu'à ce qu'aucun 

nouveau chemin ne puisse plus être trouvé. 



Aigorithe MRG (MINRANGE) 

b) MazimLFotzon de la longueur d'are minimale. 

Poser G = (V, A) OÙ A = { ( v ~ ,  v j )  E A(% 5 c). 
Soit P(G) la restriction de P à G. Résoudre le sous-problème: 

max min cij .  
p€P(C) (vi nuj)€ P 

Soit c la valeur optimale de (2.1). Si P(G)  = 0, FIN, & est la valeur optimale 
du problème MINRANGE et Pw le chemin optimal. 

c )  Minimisation de la longueur d'arc mazimale. 

Poser G = (V, A) OÙ A = ((vil vj) E Ale 5 5 min@, c + - 1)). 
Soit P(G) la restriction de P à e. Résoudre le sous-problème: 

Soit E la valeur optimale de (2.2) et le chemin correspondant. - 
Si P(G) = 0, poser £ = m a x ( u ~ , v j ) ~ ~  c, + 1. 

d )  Mise à jour des paramètres. 
- 

Si E - c < & poser & = E - c, Pm = P. 
Poser E = c + 4, - 2 et retourner à l'étape b). 

On peut aisément modifier l'algorithme MRG pour obtenir un algorithme pour 

le problème MINRATIO. Cependant, les deux algorithmes restent fondamentalement 

les mêmes. Dans l'algorithme MRT ci-dessous, & représente le meilleur ratio connu. 

La valeur de c est calculée comme dans l'algorithme MRG, mais le problème MIN- 
MAX est résolu sur un sous-graphe où aucun chemin ayant un ratio égal ou supérieur 

à Gt ne peut être trouvé. 



La valeur de e est ensuite posée égale à [(g - 1) x Gtl - 1, exploitant ainsi le 
fait qu'une diminution de E produit une plus petite valeur de g et que les ratios égaux 

ou supérieurs à Gt peuvent également être sautés. En effet, la solution suivante du 
problème MAXMIN sera inférieure ou égale à c - 1 et la plus grande longueur d'arc 

de la prochaine solution du problème MINMAX doit donc être plus petite ou égale 

à (c- 1) X Ilqlt. 

Algorithme MRT (MINRATIO) 

Appliquer l'algorithme MRG avec les modifications suivantes, dues au change- 

ment de fonction objectif: 

- A l'étape a) poser 
~ = ( V ~ , V ~ ) E A  Gj 

ElOpt = + 1. 
 min(^,.",)^^ % 

A l'étape c) poser 

où [a] est le plus petit entier non inférieur à a. 

- Remplacer l'étape d) par: . 

Si -$ - < poser Gt = p, P ,  = 4. 
Poser C = [(c - 1) x &] - 1 et retourner à l'étape b). 

Les algorithmes MRG et MRT sont illustrés sur le petit exemple de la figure 
2.1 et les détails de la résolution sont donnés aux tableaux 2.1 et 2.2 respective 

ment. On remarquera que (vl , u4, va), (vl, v4, vg , VI, va) et (vl , U r ,  us, ve , va) sont tous 
des chemins efficaces pour le problème bicritère MINMAX-MAXMIN, avec comme 

vecteurs objectifs, (3,2), (5,3) et (8,6) respectivement. Cependant, les deux algo- 

rithmes, MRG et MRT, sautent le chemin (ul , 14, ve, UT , va). Nous justifions ci-après 

les algorithmes et donnons leur complexité. 



Figure 2.1 - Exemple pour les algorithmes MRG et MRT 

Théorème 2.1 L'algorithme MRG (MRT) résout le problème MINRANGE (MIN- 
RATIO) en temps 0(rn2 logn) sur un gmphe orienté et en temps 0 ( m 2 )  sur un 
gmphe non onenté. 

m(m-1) Preuve. Examinons d'abord l'exactitude de l'algorithme MRG. Il y au plus 
valeurs possibles pour I'étendue, C - c, des longueurs d'arcs le long d'un chemin V I -  

un, i.e., autant que de paires d'arcs dans le graphe G. Comme indiqué à la section 

1.1.1 le chemin optimal Pm doit être efficace pour le problème bicritère W M A X -  
MAXMIN. Ainsi, on pourrait considérer toutes les O(m) valeurs possibles de C et 

trouver les valeurs correspondantes de g. Cependant, plusieurs valeurs possibles sont 
implicitement prises en compte. En effet, pour une valeur donnée de C, on trouve, à 

l'étape b), la valeur correspondante de c et on détermine, a l'étape c), la meilleure 
valeur de C associée à c. Toutes les valeurs entre Ç et ë + 1 correspondent alors à des 
chemins non efficaces et sont traités implicitement. 

En outre, la valeur Ropt du meilleur chemin connu est utilisée de deux façons 
pour éliminer d'autres chemins. D'abord, à l'étape c), on remarque qu'une amélio- 

ration de Gt ne peut avoir lieu que si ë 5 c + Gt - i et les arcs ayant une longueur 

plus grande que C ne sont pas considérés dans G. Ensuite, à l'étape d), on observe 
qu'étant donné que le meilleur chemin pour la valeur de c est connu, on doit avoir 
une diminution de la valeur de - c pour le prochain chemin à considérer. Un meilleur 



Tableau 2.1 - nlr*9tmtzon de l'algorithme MRG 

Itér. 1 Étape a) 1 Étape b) 1 Étape c) Étape d) I 

chemin ne peut être obtenu que si i? 5 c- 1 +& - 1, Le., E 5 g + G t  - 2. Ainsi donc, 

tous les chemins, efficaces ou non, correspondant à & sont évités dans la prochaine 

itération. L'exactitude de l'algorithme MRT peut être prouvée par des arguments 
similaires. 

1 

2 

3 

4 

En ce qui concerne la complexité, on notera que l'étape a) est en O(m)  et 

l'étape d) en O(n). Les étapes cruciales sont b) et c). Chacune d'eues se ramène 

à un problème de capacité mairimale dans G avec des capacités E - c, et dans G 
avec des capacités c, - c respectivement. Dans un graphe orienté, ce problème peut 

se résoudre par une variante de l'algorithme de Dijkstra [25]. II suffit, pour cela, 

d'étiqueter un sommet courant vi avec la capacité minimale sur un chemin VI-q, de 

capacité maximale, passant uniquement par des sommets étiquetés et déjà sélectionés, 

et de sélectionner itérativement le sommet de capacité maximale. 

Ainsi, les étapes b) et c) requièrent un temps O(m logn) quand G est orienté, 

tout comme les algorithmes MRG et MRT. Si G est non orienté, 1' algorithme en O(m) 
de Punnen [54], qui a la meilleure complexité possible pour le problème du chemin de 

capacité maximale, peut être utilisé et la complexité des algorithmes MRG et MRT 
se réduit à 0(m2). O 

Popt=(-) 

= 9, c =  10 

I 

- c = 6  

p(G) # 0 
- c = 3  

P(G) # 0 
- c = 2  

WC) # 0 
P(C) = 0 

I Fin 

ë = 8  

p = (v~iv3,v5iv6~v8) 
P(G) = 0 

E = 11 

ë = 3  

fi = (VI) v4, va) 

i 

% p t = 2 ,  Z = 6  

PO# = ( v I , v ~ , v s , v ~ ,  218) 
c = 3  

R q t = l , E = l  

 pop^ = (VI, v4i v8) 

I I 



Tableau 2.2 - lllustmtion de I 'algorithme MRT 

Remarquons qu'il existe toujours une solution au problème MINRANGE ou 

MINRATIO, correspondant à un chemin optimal élémentaire, i.e., ne passant pas 

deux fois par le même sommet. Ce n'est pas nécessairement le cas si l'on considère 

la maximisation de l'étendue ou du ratio plutôt que la minimisation. 

2.2 Algorithmes bicritères 

Nous nous intéressons, dans cette section, à la résolution des extensions bi- 

critères MINRANGEMAXMIN et MINRANGEMINSUM discutés à la section 1.1.1. 

Rappelons que le chemin optimal pour le critère MINRANGE appartient à l'ensemble 

des chemins efficaces pour le problème bicritère MINMAX-MAXMIN. Celui-ci peut 

être résolu en temps 0(m2 log n) dans un graphe orienté par un algorithme décrit dans 

Hansen 1361 et en temps 0(n2) dans le cas non orienté par l'algorithme de Punnen 

[54]. L'utilisation de ces algorithmes dans la procédure ci-après permet aisément de 

résoudre les problèmes bicritères MINRANGEMPXMIN et MINRANGEMINMAX 
ou leurs variantes avec le critère du ratio. 



Algorithme MRGMM (MINRANGEMINMAX) 

a) Chemins eficaces 
Tkouver un ensemble complet de chemins efficaces non équivalents dans G pour 

les critères MINMAX et MAXMIN. 

b) Valeurs 
Calculer les valeurs de l'étendue pour tous les chemins efficaces trouvés en a). 

c) Classement et suppression 

Classer tous les chemins efficaces trouvés en a) par ordre non décroissant des 

valeurs de l'étendue et, en cas d'ex-aequo, de la valeur E du critère MINMAX. 
Supprimer les chemins dominés. 

L'étape dominante dans cette procédure est a), à la fois pour les graphes orientés 

et non orientés. Ainsi, le temps requis est 0(m2 logn) et 0(m2) respectivement. 

L'algorithme MRGMM est appliqué au graphe de la figure 2.2 et les détails de la 

résolution sont résumés dans le tableau 2.3. 

Figure 2.2 - Exemple pour les algorithmes MRGMM et MRGMS 



Tableau 2.3 - nlwtmtion de I'algwithme MRGMM 

Solutions 

efficaces 
Critère 
lMiamax 

Nous abordons maintenant la présentation d'un algorithme, noté MRGMS, 
pour résoudre le problème bicritère MINRANGEMINSUM, Le., pour déterminer un 
ensemble complet de chemins efficaces non équivalents pour les critères de l'étendue 

et de la longueur. L'algorithme effectue des tests de dominance pour un ensemble de 

chemins candidats . Ceux-ci sont générés en calculant itérativement des plus courts 

chemins dont les longueurs d'arcs sont comprises entre des bornes inférieures c et 

supérieures Ç mobiles. 

Étendue 

Étant donnée une valeur de ç, des plus courts chemins sont calculés pour des 

valeurs consécutives décroissantes de c jusqu'à ce que ë - soit égale à l'étendue 

de la solution optimale pour le critère de la longueur du chemin (qui est l'étendue 

maximale pour tout chemin efficace). Ensuite, P est mis à jour en le posant égal à la 

plus grande longueur d'arc plus petite que la valeur courante de i?, de manière à ne 
considérer qu'une seule fois les valeurs identiques de C. 

Ditférents tests d'accélération sont utilisés pour sauter certaines valeun de g. 

En particulier, une paire (c, ë) est sautée si une autre paire (&, 2)' telle que < c et 
C 2 E, a déjà été examinée et a conduit à un plus court chemin dont la longueur n'est 
pas plus petite que celle du chemin optimal pour le critère de l'étendue (qui est la 



longueur maximale pour un chemin efficace). Le couple (c, ë) est également rejeté si 

d = et 3 2 é, et la pius grande longueur d'arc du plus court chemin correspondant - 
est plus petite ou égale à ë, puisque, autrement, le même chemin serait recalculé. 

Dans l'algorithme MRGMS, t(c) représente la longueur du plus court chemin 
calculé à l'étape f) ,  la dernière fois qu'un i n t e d e  ayant c comme borne inférieure a 

été considéré. La valeur de r(c) définit une borne supérieure sur la plus grande lon- 

gueur d'arc de ce chemin. Lwt est la longueur du dernier plus court chemin déterminé 

pour la valeur courante de C. La dernière valeur de c pour laquelle la longueur du 

plus court c h e h  est plus grande ou égale à la longueur maximale de tout chemin 
efficace, est notée c. La plus petite valeur de c pour laquelle un plus court chemin 
a été trouvé est représentée par c*. 

Algorithme MRGMS (MINRANGEMINSUM) 

a) Chemin eficace de longuevr minimale 
Trouver un plus court chemin q-vn dans G et poser L& égal à sa longueur . 
Soit G le sous-graphe des plus courts chemins vl-vn dans G, trouver un chemin 
P1 d'étendue minimale dans G, et poser son étendue égale à Rbt. Garder 

(Pl ,  LL, Rkt)  dans une liste L de chemins efficaces (candidats). . 

b) Chemin eficace d'étendue minimale 
Trouver toutes les paires de longueurs d'arcs, E, c, pour lesquels t? - c est 

l'étendue minimale R&, des chemins q-vn. Pour chacune de ces paires, con- 

sidérer le sous-graphe Co = (V, A*) où A' = ((vi, vj) € A(c 5 c, 5 E) et trou- 

ver un plus court chemin p2, de longueur LL, dans G'. Garder (PZ, L&, RLt) 
dans L. 

c) Classement des arcs 

Classer tous les arcs de G par ordre non croissant de leurs longueurs (en 
départageant arbitrairement les ex-aequos). Soient ci, pour i = 1,2, . . . , m, les 

longueurs d'arcs après classement, poser t(cJ = +oo, T ( G )  = CI ainsi que 

%+I = C, - 1, C = cl, c* =c** - - cl + 1, Lm = +a, et k = 1. 



d) Mm*misafion de la longueur d'arc minimale 
Poser G = (V, A) où A = ( (v i ,  v j )  E Ale, 5 E )  et P(G) est la restriction de P 
à b. Résoudre le sousproblème: 

Soit g la valeur optimale de (2.3) et j l'indice d'arc tel que 

j = min{ilq = - c); si P(G) = 0, aller à la dernière étape. 

e )  Tests d'étendue et de dominance 
Si E-c 2 R& ouc = h+l, faire k t min{i(y < y), poser E = c k ,  Lm = +w 

et retourner à d). Si c 2 c, faire j t min{ilq < c*), poser Lm = e(c8), c = Cj  

et répéter l'étape courante. Si c 2 c* et r(g) 5 E7 faire j t min{ilq < ci), 
poser Lw = [(c), c = cj et répéter l'étape courante. 

f )  Minimisation de la longueur du chemin 
Déterminer un plus court chemin P*, de longueur L(Po) et d'étendue R(P*), 
dans Go. Poser t(c) = L(P0). Si L(P8) < Lwt , poser r(g) = c + R(PW) 
sinon T(C)  = E- Si L(P*) 2 LLt , poser = - c . Si L(P*) < LL, , garder 
(P*, L(P*), R(Pm))  dans L. F'aire c" t min{-*, c) et j t min{il~ < c j ) ?  

puis poser Lw = !(g), c = c, et retourner à e). 

g )  Suppression des chemins dominés 

Classer les chemins P de L: p& valeurs non décroissantes de R(P) et de L(P) 
en cas d'ex-aequo. Si L(P)  2 L(P1) où Pt est le prédécesseur de P dans la liste 

ordonnée f, supprimer P. FIN: C. contient un ensemble complet de chemins 
efficaces non équivalents. 

Théorème 2.2 L'algorithme MRGMS détermine un ensemble complet de chemins 

eficaces non équivalents pour les critères de l'étendue et de lu longueur en temps 
0(m3 log n) .  

Preuve. L'algorithme considère implicitement toutes les instances possibles du couple 

formé par la longueur d'arc maximale c et la longueur d'arc minimale sur un die- 

min. Des valeurs de E sont sautées & l'étape e) seulement en cas d'ex-aequos. Pour une 



valeur fixée de E, des valeurs de c sont sautées aux étapes e) et f )  en cas d'ex-aequo 

et également à l'étape e) dans les trois cas ci-après. 

D'abord, si l'étendue E-c est plus grande ou égale à l'étendue maximale Rkt de 
tout chemin efficace. Ensuite, si [g, Z] est contenu dans un intervalle déjà considéré, 

allant d'une valeur c* plus petite ou égale à c, à une valeur plus grande que E, pour 
lequel la longueur du plus court chemin est supérieure ou égale à la longueur maximale 
de tout chemin efficace. Enfin, si un plus court chemin a déjà été déterminé pour les 
valeurs d'arcs de c à une plus grande valeur que i? et la plus grande longueur d'arc 

correspondant est plus petite ou égale à C. 

Pour chaque paire ( E ,  e) explicitement considérée, un plus court chemin est 
calculé à l'étape f). Seuls ceux, parmi ces chemins, qui forment un ensemble complet 
de chemins non équivalents sont retenus à l'étape g). Ainsi donc, un chemin est 

déterminé pour tout vecteur efficace des valeurs des deux critères. 

Concernant la complexité, l'étape a) requiert un temps O(m log n) pour trouver 
un plus court chemin P et sa longueur L& en utilisant l'algorithme de Dijkstra. Le 
temps pour déterminer le chemin d'étendue minimale dans le sous-graphe des plus 

courts chemins 31-un, en utilisant l'algorithme MRG, est en 0 ( m 2  logn). L'étape b) 
requiert un temps 0(m2 log n) pour trouver tous les couples (C, c) qui correspondent à 

l'étendue minimale (il pourrait y avoir 0(m2) couples, mais habituellement beaucoup 

moins). Ensuite, les plus courts chemins dans le sous-graphe G* sont déterminés par 

l'algorithme de Dijkstra. Cela requiert en tout un temps 0 ( m 3  logn). 

Le classement des arcs à l'étape c) prend un temps O(m log m )  et un temps 
O(m) est requis pour I'initialisation. À l'étape d) , un temps O (n log n) est nécessaire 
pour déterminer la valeur de c avec une variante de l'algorithme de Dijkstra et un 

temps O(m) est requis pour parcourir la liste des ci. L'étape est répétée au plus O(m) 
fois et prend donc un temps 0(m2 logn) en tout. Les tests de l'étape e), incluant, 

6 - c 2 Rbt, sont effectués en temps constant, et un temps O(m) est requis pour 
parcourir la liste des 4. Cette étape se répète au plus 0(m2) fois, et requiert en tout 

un temps 0(m3) .  



L'étape f )  prend un temps O(m log n)  pour trouver un plus court chemin VI-v, 

dans G' avec l'algorithme de Dijkstra et cela peut se répéter 0(m2) fois, Le., cette 
étape requiert un temps 0(m3 logn). Le parcours de la liste des 4 prend un temps 

0(m2) pour chaque valeur de E, et donc 0 ( m 3 )  en tout. La sauvegarde des chemins 

requiert un temps 0(m3) en tout (i.e., O(m) par chemin). Finalement, l'étape g) 

requiert un temps 0(m2 logn)  pour classer les chemins et détruire ceux qui sont 

dominés. Les étapes dominantes sont donc b) et f )  et la complexité de I'algorithme 

est 0(m310gn).  O 

Il est clair qu'un dgorithme plus simple, dans lequel les sous-graphes G* sont 
construits pour tous les couples ( E ,  c) et les plus courts chemins sont déterminés 

afin d'en retenir ceux qui sont non dominés, a la même complexité de pire cas que 

l'algorithme MRGMS. En outre, à la lumière du théorème 2.3 ci-après, il ne semble 

pas très facile de faire mieux en termes de complexité. 

On remarquera cependant que les tests d'accélération de l'algorithme MRGMS 
permettent d'avoir une procédure qui devrait être significativement plus efficace en 

pratique que l'algorithme brut qui vient dêtre décrit. L'algorithme MRGMS est il- 

lustré sur te graphe de La figure 2.2 et les détails de la résolution sont donnés aux 

tableaux 2.4 et 2.5. 

ThéorBrne 2.3 Le problème de chemin btcritère MINRANGE-MINSUM a 0 ( r n 2 )  
chemins eficaces non équivalents et cette borne est atteinte. 

Preuve. Il y a 0(m2) paires de longueurs d'arcs dans G. Pour chacune de ces paires, 

considérée comme borne sur la longueur d'arc maximale et la longueur d'arc minimale 

pour un chemin VI-v,,, il n'y a qu'une seule valeur pour la longueur du plus court 
chemin a-un.  Ainsi, le nombre de chemins efficaces non équivalents est 0(m2). 

Pour montrer que cet ordre de grandeur est correct, posons, pour tout m 2 4, 

p = 171 et n = m - 2p  + 3, et considérons le graphe G de la figure 2.3. Il possède 

trois sommets particuliers, V I ,  v*z, v,,. 



Figure 2.3 - Gmphe G pour le théorème 2.3 

Des arcs, (v l ,  v & + ~ ) ,  joignent vl aux p sommets V L + ~  et ont pour longueurs 
4~~ + 2(k - l ) p  pour k = 1,2, . .. , p. D'autres arcs, (vr+1, vpC2), joignent les sommets 

V ~ + I  au sommet v ~ z .  Leurs longueurs sont 4$ - 4(k - i ) p  avec k = 1,2, ..-, p. Des 

arcs, ( v ~ + ~ ,  vp+l+?) et (vpC1+2, un), joignent également vw2 aux p sommets et 

ces sommets à un, avec comme longueurs 1, pour 1 = 1,2, .. ., p. Le graphe G est 

complété par m - 4p arcs ailant de vzw2 aux sommets pendants V 2 p ~ 3 ,  -. ., vm-2*2. 

Montrons que tous les chemins vl - vn sont efficaces. Considérons pour cela, 

P = ( V I ,  ~ + l ,  vp+2, vp~1+2, un) et Pt = ( V I ,  vp+l, u ~ a ,  v ~ c P + ~ ,  un) deux chemins dis- 
tincts avec des longueurs L(P) = 8p2 - 2(k - 1)p + 21 et L(P1) = 8p2 - 2(kf  - l ) p  + 21' 
et des étendues R(P) = 4p2 + 2(k - l ) p  - 1 et R(P1) = 4p2 + 2(kf - 1)p - 1' respec- 

tivement. 

Si k = k f  alors 1 # 1' et,  sans perte de généralité, on supposera que 1 < 1'. 

Ainsi L(P) - L(Pt) = 21 - 21' < O et R ( P )  - R(Pt)  = -1 + 1' > O. Si k # k' , on 

supposera, de nouveau sans perte de généralité, que k < k f  . Alors, on obtient 



L(P) - L(P1) = -2kp + 2k1p + 21 - 21' > O puisque -p  < 1 - 1' < p , de même 
que R(P) - R(P') = 2kp - 2k1p - 1 + 1' < 0. 

Ainsi donc, aucun chemin P de V I  à v,, ne peut dominer un autre Pl. Puisqu'il 
m 2 y a p2 = L T ]  = O(mZ) chemins VI-v,, le résultat suit. O 

On peut obtenir un algorithme pour le problème MINRATIO-WSUM avec -a 

schéma similaire à celui de l'algorithme MRGMS. Remarquons, pour terminer, que 
ces algorithmes peuvent être également utilisés lorsque l'on cherche à manmiser la 

fiabilité du chemin au lieu de minimiser sa longueur. En effet, le critère de la fiabilité 
maximale se ramène à celui de la longueur minimale en prenant comme longueur d'arc 
l'opposé du logarithme de la fiabilité de l'arc. On obtient cependant un problème 

bicritère plus difficile et plus classique lorsque l'on considère simultanément le critère 
de la longueur minimale et celui de la fiabilité maximale. Le chapitre suivarît propose 
un nouvel algorithme pour ce problème. 



Tableau 2.4 - l ï l~ tmt ion  de l'algorithme MRGMS 

P * = ( v ~ , v * , v ~ ) ,  L(Pa)=12, R(Pm)=4,  

t(4)=12, r(4)=8, L=L u {P*), 
f*=4,  Lm=12, j =9 ,  c = 2  



Itél 
- 

6 

- 
7 

- 

8 

9 

10 

11 

Tableau 2.5 - Illustration de l'algorithme MRGMS (suite) 



CHAPITRE 3 

UN ALGORITHME DE PLUS 
COURT CHEMIN BICRITÈRE 

3.1 Principe et terminologie 

Ce chapitre est consacré à la présentation d'un algorithme qui résout, par les 

deux extrémités du réseau, le problème du plus court chemin bicritère décrit à la 

section 1.2. L'algorithme maintient, pour chaque sommet Vi E V, deux ensembles, 
7& et T,,, correspondant respectivement aux étiquettes des chemins VI-v, et vi-vn 

temporairement efficaces. Les étiquettes efficaces permanent es des chemins vl-vi et 

v,-v,, sont gardées dans les ensembles, Pli et Pin respectivement, où elles sont classées 

lexicographiquement suivant les critère x et y, dans cet ordre. 

Notons que les étiquettes de Pin et Pli constituent des extensions potentielles 
pour de futures étiquettes de chemins vl-vi et vi-vn respectivement. A une itération 

donnée, la k-ème étiquette, par ordre lexicographique, dans l'ensemble des étiquettes 
efficaces permanentes des chemins vi-vj sera notée (x&, 5:) (voir la figure 3.1). 

L'dgorithrne sélectionne l'étiquette de plus petite valeur lexicographique dans 

U,,, xi (respectivement dans Uui,, 7;R) en vue d'une extension éventuelle. Cela se 

fait de manière que le nombre total d'étiquettes dans UuiEV xi reste aussi proche que 

possible de celui des étiquettes dans U,., 7;,. 

Supposons que y est le sommet terminal du chemin correspondant à l'étiquette 

courante (Xir, KT) sélectionnée dans UUiEY xi et soit (X*, Yp) la dernière étiquette 



Figure 3.1 - I l l ~ s t d o n  de l'algorithme bzcritère 

sélectionnée dam U,,, 7;,. L'étiquette courante (Xlr, &) devient une étiquette ef- 
ficace permanente et est déplacée de U,., Zi dans PIF 

Les extensions de (Xnl YI*) par les étiquettes déjà présentes dans Pr,, sont alors 

examinées en vue d'une insertion éventuelle dans l'ensemble 5, des étiquettes de che  

mins VI-v,, temporairement efficaces. Si Xi, < x;:), où ~ f n Z )  est la plus petite valeur 
de x que puisse avoir un plus court chemin wvn pour le critère y, une approxima- 

tion extérieure de l'ensemble des étiquettes efficaces permanentes des cherpins w u ,  

est alors construite. L'extension de l'étiquette sélectionnée (Xlr, Yli) aux successeurs 

de n'est considérée que si au moins une des étiquettes délimitant l'approximation 

extérieure donne une étiquette temporairement efficace au puits. 

La validité de ces tests est prouvée aux propositions 3.1 et 3.2 plus bas. Si 

l'étiquette sélectionnée (Xlr, Ylr) peut être prolongée aux successeurs de sl dors de 
nouvelles étiquettes temporairement efficaces sont calculées aux dinérents succes- 

seurs. Le symétrique du processus est aussi effectué pour l'étiquette sélectionnée de 
U,,, 7;, . L'algorithme s'arrête si l'un des ensembles U,., 7;i ou UViEv Tn est vide. 



3.2 Tests de dominance 

Nous décrivons d'abord un test pour la dominance d'une nouvelle étiquette. 

Soit un ensemble L: contenant uniquement des étiquettes efficaces non équivalentes 

et triées par ordre croissant des valeurs de x (Le., par ordre décroissant des valeurs 

de y). Il est clair qu'une nouvelle étiquette (X, Y), candidate à l'insertion dans t, 
est dominée par rapport à L ou est équivalente à une étiquette déjà présente dans 

L, si et seulement si Y* 5 Y, où (X*, Y'j est l'étiquette de L ayant la plus grande 

valeur de x inférieure ou égale à X. 

Si les étiquettes de L sont générées par ordre lexicographique, alors (X', Y') 
correspond à la dernière étiquette introduite et aucune suppression d'étiquette n'est 

requise avant l'insertion éventuelle de (X, Y). Sinon, supposons que L contient des 

étiquettes temporairement efficaces et que l'on désire utiliser (X, Y) pour faire une 

mise à jour de L. Soit (Xt,Y') l'étiquette de L ayant la plus grande valeur de y 

inférieure ou égale à Y. Les étiquettes (X*, Y*) et (XI, Y') délimitent le domaine des 

étiquettes (dominées) devant être effacées avant l'insertion de la nouvelle étiquette 

(X, Y). 

On peut noter que si les étiquettes de & sont générées par ordre lexicographique, 

alors le test de dominance pour la nouvelle étiquette (X, Y) et son insertion dans 

L peuvent être effectués en temps constant. Sinon, en utilisant un arbre balancé, 

O (log 1 L 1)) opérations sont requises pour trouver les étiquettes (X* , Y ) et (X' , Y'), 
par une recherche dichotomique, tandis que le temps nécessaire pour supprimer les 

étiquettes dominées est de O(D log (L 1 ) , où D est le nombre d'étiquettes à supprimer 

(D < 14). 

Nous présentons maintenant deux tests additionnels pour éliminer les étiquettes 

non prometteuses, i.e., dont les chemins associés ne peuvent donner des chemins VI-  

v, efficaces. La proposition 3.1 traite d'un test, qui sera dit de la sentinelle, pour 

déterminer si une étiquette sélectionnée peut ne pas être prolongée aux successeurs 
du sommet correspondant. 



Proposition 3.1 Soient le sommet q wmpondant à l'étiquette de plus petite va- 
leur lezicogmphique dans UQEV xi et (Xm, Ym) la plus récente étiquette d r o i t e  de 
Uviov xn pour eztension. Si Xp 2 x!,?, od est la plus petite valeur de z d 'un 

plus court chemin R-V, pour le critère y,  alors (Xlr, Yir) peut être éliminée après 
avoir ezaminé ses eztensions par les étiquettes présentes dam Pi,. 

Preuve. Supposons qu'il existe une étiquette (Xxn, Kn), associée à un chemin q - 
v,,, telle que (KT, Yli) + (Xm, Kn) n'a pas encore été examinée. Puisque les étiquettes 

sélectionnées pour extension le sont par ordre lexicographique, alors Xrn 2 XE 2 
(2) (2) xi,?. En remarquant que (X, , Y, ) est la plus petite étiquette, par ordre lexicogra- 

phique, correspondant à un plus court chemin pour le critère y, il s'ensuit que Yt, 2 
k;:). Ainsi (XIE, Ki) + (XE', Y&?) domine ou est équivalent à (XII, Kr) + (Xfn, IFn). O 

Dans la proposition 3.2, ci-après, les ensembles Pin sont supposés contenir uni- 

quement les étiquettes efficaces permanentes. En outre, on considère qu'ils sont initia- 

lisés avec, au moins, les étiquettes de plus petite valeur lexicographique correspondant 
(1) (1) (2) (2) aux plus court chemins vi-vn pour chacun des critère, Le., (Xin , Y, ) et (Xin , Y,, ). 

Cette proposition définit un autre test qui permet d'éliminer une étiquette non pro- 

metteuse, même si elle est localement efficace. 

Proposition 3.2 Soient (XII, Ki), l'étiquette de plvs petite valeur lexicogmphique 

dans Uviav7;i, et (Xk,K:), pour k = 1,2, ..., /Pz,,(, la k-ème étiquette connue de 

l'ensemble PTn correspondant. Si  toutes les étiquettes (Xia Ki) + (X& &:+'), pour 

k = 1,2, . . ., (ph 1 - 1, sont dominées par rapport Ù 7in U pin, dors alors il n'est pas 
nécessaire de prolonger (Xlr, Yir). 

Preuve. Supposons, par l'absurde, qu'il existe une étiquette (XI,, &), correspon- 

dant à un chemin % - v,,, telle que (&, Kr) + (Xrn, Yn) est efficace par rapport à 

Zn u PIn mais n'a pas encore été examinée. Puisqu'un chemin VI-v, efficace contient 

uniquement des sous-chemins efficaces, alors (Xi,,, k;,) est nécessairement efficace par 

rapport à PTn. 

Soit alors (XE, k;:) l'étiquette courante de Px,, ayant la plus grande valeur 



de x inférieure ou égale à Xin. On a XE 5 Xin 5 xgc' et, puisque Pm contient 

uniquement des étiquettes efficaces, k;:" 5 Y, 5 Ky. Donc, en supposant que 

(Xu, Kr) +(XE, ~ f + ' )  est dominé par rapport à Zn U P l n  il s'en suit que (Xir, Kr) + 
(Xm, K,,) est aussi dominé par rapport à Zn U Pl,, d'où une contradiction. O 

On peut remarquer que les étiquettes (X;, k;n+'), pour k = 1'2, ..., IP&I - 1, 
(1) (1) définissent, avec les étiquettes de plus courts chemins lexicographiques (Xin , I, ) 

(2) (2)  et (X, , Y, ), une approximation extérieure de l'ensemble des étiquettes efficaces 
(permanentes) correspondant à des chemins wvn. En effet, étant donnée une telle 

(1) (1) (2) (2) étiquette efficace, (X,, &), distincte de (X, , Yn ) et de (X, , Y, ) qui sont s u p  
posées avoir été utilisées pour initialiser Pm, les arguments dans la preuve ci-dessus 

impliquent qu'il existe une étiquette (XE, I;: ) E Pi,, telle que XK 5 Xin et 

Ainsi, la proposition 3.2 revient à tester la dominance, par rapport à 7;, U 

Plnt pour les points extrêmes d'une approximation extérieure de PIn translatée par 

l'étiquette courante sélectionnée (Xlr, Yir) (voir la figure 3.2). Il est clair que plus 
lPr, 1 augmente, meilleure sera l'approximation. 

Notons également qu'étant donnée l'étiquette courante sélectionnée (Xi,, YI,) 
et le sommet correspondant 4, les tests proposés par Tûng et Chew, 'dans [57] 
et dans [58], pour éliminer (Xlrj Kr) reviennent à déterminer des approximations 
extérieures de Pjn, aux successeurs vj de y, en utilisant au plus une étiquette autre 

(1) (1)  que (Xj, '5, ) et (x::), kfn)). II s'agit en l'occurence de l'étiquette fictive dont les 
valeurs de x et y correspondent aux plus courts chemins vj-vn pour les critères x et y 

respectivement, ou de l'étiquette efficace extrême de Pjn correspondant à la somme 

des deux critères. 

La fonction d'évaluation utilisée par ces auteurs pour sélectionner l'étiquette à 

traiter, (Xli, Kr), est la somme des deux fonctions objectits. Cependant, l'étiquette 
sélectionnée (Xi*, Kr) peut être prolongée en v j )  même si elle est dominée par une 
étiquette déjà trouvée en 4. De ce fait, l'algorithme proposé par ces auteurs n'utilise 



Étiquette efficace v, - v ,  

Étiquette dominée v, - v, 

Étiquette sélectionnée v ,- v 

Étiquette efficace translatée v - v 
Étiquette d' approximation 

Figure 3.2 - Approximation ezférieure pour les étiquettes vi-vn au sommet ui 

pas la propriété spécifiant qu'un chemin vl-un efficace ne contient que des sous- 

chemins efficaces (voir Hansen [36] ou Martins [47]). 

De toute évidence, l'analogue de chacune des propositions 3.1 et 3.2 est vraie 
pour l'étiquette, (X,, Y,), de plus petite valeur lexicographique dans U,., Zn. 

3.3 Init ialisat ion 

Soit un sommet vi, le schéma d'initialisation de base de l'algorithme con- 
(1) (1) siste à dgteterminer les étiquettes de plus petite valeur lexicographique, (Xli , Y,i ) , 

(2) (2) (1) ( 1 )  (2) (2) ( X i  , qi ), (X, , qn ) et (X, , qn ) correspondant aux plus courts chemins ul-vi 

et vi-vn, pour chaque critère. Un plus coud chemin q-vi par ordre lexicographique, 



peut être trouvé en utilisant une variante de l'algorithme de Dijkstra [25]. 

Il suait, pour cela, d'effectuer la comparaison des étiquettes en utilisant l'ordre 
lexicographique sur (X, Y) (ou sur (Y, X), pour le critère y). Les plus courts chemins 
vi-v, peuvent être déterminés d'une façon similaire en parcourant le graphe dans le 

sens contraire des arcs. 

Une initialisation plus étendue peut être effectuée en déterminant d'autres 

étiquettes efficaces extrêmes correspondant à des chemins VI-v, . De telles étiquettes 
peuvent être trouvées en utilisant une méthode de plus courts chemins paramétriques, 

basée sur des combinaisons convexes des deux critères: ax,  + (1 - a)yo, où a E [O- 11. 

On peut considérer seulement quelques valeurs de a prédéfinies, ou toutes les 

valeurs nécessaires pour déterminer l'ensemble des étiquettes efficaces extrêmes. Une 

façon de procéder consiste à examiner une suite de subdivisions binaires de l'ensemble 
des étiquettes efficaces extrêmes. 

En effet, soient (X', Y') et (X", Y") deux étiquettes efficaces extrêmes dis- 

tinctes. Considérons le problème de l'énumération de toutes les étiquettes efficaces 

extrêmes ayant des valeurs de x comprises entre X' et X". Les deux étiquettes 

induisent une combinaison convexe des deux critères, avec pour paramètres cr = 

(Y' - Y")/(X" - X' + Y' - Y"). 

Soit ( X ,  Y) l'étiquette optimale du problème de plus court chemin correspon- 

dant. Selon le théorème 3.3 ci-dessous, (X, Y) est une étiquette efficace extrême 

et deux nouveaux sous-problèmes d'énumération, définis par les étiquettes efficaces 

extrêmes (X', Y') et (X, Y) pour la première et par (X, Y) et (X", Y") pour la 

seconde, doivent être considérés. 

Il n'est pas nécessaire d'explorer un sous-problème donné si les deux étiquettes 

qui le définissent ont la même valeur pour l'objectif combiné ayant (X, Y) comme 

étiquette optimale. Cette exploration dichotomique de l'ensemble des étiquettes ef- 

ficaces extrêmes peut être effectuée en utilisant, par exemple, une tedinique de re- 

cherche en profondeur d'abord. 



Théorème 3.3 Soient (X', Y') et (XI', Y") deuz étiquettes eficuces eztrêmes telles 
que X' < X" et soit (X, Y )  l'étiquette optimale du problème de plus court chemin 
partamétrique pour a = (Y' - Y") / (XIt - X' + Y' - Y"). Alors (X, Y) est une étiquette 

eficace extrême et X' 5 X 5 X". En outre, si aX + (1 - a)Y = aX' + (1 - a)Y', 
aucune autre étiquette eficace extrême n'est située entze (XI, Y') et (X, Y ) ,  ni entre 
( X ,  Y) et (X", Y"). 

Preuve. Notons que l'hypothèse X' < X" n'implique aucune perte de généralité, 

mais entraine que cr ~ ] 0 , 1 [ ,  puisque (X' , Y') et (X" , Y") sont des étiquettes efficaces 

et ainsi Y' > Y". Par conséquent, le problème de plus court chemin paramétrique 

pour a est bien d é f i  avec, en particulier, crX + (1 - a)Y 5 aX" + (1 - a)Y", 
crX' + (1 - a)Yt = CYX" + (1 - a)Y" et (X, Y) étant une étiquette efficace extrême 
(voir. par exemple, White [63]). 

Nous montrons maintenant que X' < X 5 X". En effet, en supposant X < XI, 
on a Y > Y' par non dominance et il existe X €10, 1[ avec X' = AX + (1 - A)X" et 
Y' 5 AY + (1 - A)Y", par convexité de l'ensemble des étiquettes efficaces extrêmes. 

De ce fait, crXf + (1 - a)Y1 5 aXX + a(1- A)X" +- (1 - a)(XY + (1 - X)Y") = X(aX + 
(1 - a)Y)  + (1 - X)(aX1' + (1 - cr)Y1') = X(aX+ (1 - c r ) Y )  + (1 - A)(crX1+ (1 - a)Yf), 
i-e. A(aXt + (1 - a)Yt)  5 X(aX + (1 - a)Y). 

Ainsi, crXt + (1 - &)Y' < aX + (1 - a)Y, puisque I'égalité impliquerait que 

(X, Y), (X', Y') et (X", Y") sont sur la même droite, ce qui contredirait le fait que les 
trois étiquettes sont toutes des points extrêmes de l'enveloppe convexe des étiquettes 

efficaces, dans l'espace des étiquettes. On obtient donc une contradiction de I'opti- 

malité de (X, Y) pour le problème de plus court chemin paramétrique associé à a et 

donc X' 5 X. De manière similaire, on peut montrer que X 5 X". 

Nous discutons maintenant l'existence d'autres étiquettes efficaces entre (X', Y') 
et (X", Y"). Aucune autre étiquette efficace n'est située entre (X', Y') et (X, Y) si 
ces deux étiquettes sont égales. Supposons donc qu'elles sont distinctes et qu'a &te, 

entre elles, une étiquette efficace extrême (X* , Y*) distincte de chacune d'elles. On 
a dors X' < X* < X et Y < Y* < Y'. Par ailleurs, il existe €]0,1[ tel que 

X* = AX' + (1 - X)X et Y* 5 AYt + (1 - X)Y, par convexité de l'ensemble des 



étiquettes efficaces extrêmes. 

Par conséquent, si û.X + (1 - a)Y = aX' + (1 - a)Yt, nous avons crX8 + (1 - 
a)Y8 5 aAX' + a(1-  X)X + (1 - a)(XYt + (1 - X)Y) = A(aX1 + (1 - cr)Yt) + (1 - 
A)(aX + (1 - a)Y)  = X(aX + (1 - &)Y) + (1 - X)(aX + (1 - a)Y) = crX + (1 - a)Y,  
Le. aX8 + (1 - a) Y* < a X  + (1 - a) Y puisque l'égalité impliquerait que les étiquettes 
efficaces extrêmes (XI, Y'), (X*, Y*) et (X, Y) sont sur la même droite. 

Ainsi, on obtient une contradiction de I'optimalité de (X, Y) pour le problème 

de plus court chemin paramétrique associé à a. Il n'existe donc aucune autre étiquette 

efficace extrême entre (XI, Y') et (X, Y) si aX + (1 - a ) Y  = aX' + (1 - cr)Yt. De 

manière similaire, aucune autre étiquette efficace extrême n'est située entre (X, Y) 
et (X", Y") puisque aX' + (1 - a)Yt  = aX1' + (1 - a)Yn. O 

II est clair que si aucune autre étiquette efficace extrême n'est située entre 

(XI, Y') et (X, Y), alors les deux étiquettes sont optimales pour le nouveau problème 

de plus court chemin qu'elles définissent. Aucune autre étiquette efficace extrême 
n'est optimale pour ce nouveau problème, puisque le contraire signifierait que les 
trois étiquettes efficaces extrêmes sont situées sur la même droite. De ce fait, au 

plus un problème de plus court chemin paramétrique doit être résolu, pour sonder 

le sous-problème défini par (Xt, Y') et (X, Y), dans ce cas particulier. Ilsen est de 
même pour (X, Y) et (X", Y"). 

Soit 7 le nombre d'étiquettes efficaces extrêmes situées entre les deux étiquettes 

originales (X', Y') et (X", Y"). Il suff i t  donc de résoudre 27 + 1 problèmes de plus 

court chemin paramétrique pour sonder le sous-problème défini par (X', Y') et (X", Y"). 
Remarquons que cette procédure n'implique aucune dégénérescence potentielle, comme 

c'est le cas lonqu'un argument de type simplicial est utilisé pour ajuster Le paramètre 

a (voir, par exemple, Henig [38] ou Mote et al. 1.511). 

Notons également que certaines étiquettes efficaces extrêmes correspondant à 

des chemins VI-vi, pour ui E V, peuvent être générées, comme sous-produits de ces cal- 

culs de plus courts chemins paramétriques On peut ainsi obtenir, éventuellement, une 



medeure initialisation, des ensembles Ri. Une telle initialisation peut être également 

effectuée pour les ensembles Pin, en déterminant, de manière similaires, des plus 
courts chemins paramétriques du puits à la source, par une traversée du graphe dans 

le sens contraire de celui des arcs. 

3.4 Énoncé de l'algorithme 

Dans l'algorithme MSMS ci-après, chaque test de dominance implique aussi 

un test pour une copie déjà &tante de l'étiquette candidate considérée. Pour des 

raisons de simplicité, nous ne décrivons pas les pointeurs nécessaires pour r e c o n s t ~ r e  

le chemin correspondant à une étiquette efficace donnée. Un tel pointeur doit, en 

principe être spécifié chaque fois qu'une étiquette temporaire est calculée. 

Algorithme MSMS (MINSUM-MINSUM) 

(a) Effectuer 1'Initialisation de base ou 1 'Initiabation étendue. 

(b) Pour vi E V - {vl, v,), (X, Y) E Pli et (X', Y') E Pin, s u p p b e r  toutes 

les étiquettes de Zn qui sont dominées par (X, Y) + (XI, Y') et ajouter 

cette nouvelle étiquette à 7;, si elle est efficace par rapport à Zn et à Pl,. 

2 .  Étape pràncipclle 

Tant que UuiEV Ti # 0 et U,., z,, # 0 : effectuer la Phase en avant si 

1 UV,EV xi ( 5 ( UViEV sinon effectuer la Phase en arrihe. 

Init ialisation de base 



Initialisation étendue Initiabation étendue 

(1) (11 (2) (2) 1. Effectuer l'kiitialisation de base et poser C = {(X,, , Y,, , Xln , Y,, ) ). 

2. Tant que C # 0: 

(a) Retirer un élément (X', Y', X", Y") de C; 
calculer cr = (Y' - Y " ) / ( X M  - X' + Y' - Y") et ajuster les coûts des arcs 

à a X , j  + (1 - a)y,, POU tout (vit v j )  E A. 

(b) Pour vi E V, déterminer les étiquettes des plus courts chemins vl-vi et 

vi-v, et les ajouter à Pli et à P, respectivement; 

(c) soit (X, Y) l'étiquette d'un plus court chemin VI-v,; 

si aXf (1-a )Y < aXt+(l-cr)Yt, ajouter (XI, Yt, X, Y) et (X, Y, X", Y") 
à l'ensemble C. 

Phase en avant 

1.  Sélection d'une étiquette de chemin vl-% 

Retirer de UoiEv Ti une étiquette, (XIE, YII), de plus petite valeur lexicogra- 

phique et l'insérer dans Pl,. 

2 .  Eztension de Maquette de chemin V I  -% sélectionnée 

(a) Pour (X, Y) E Pr,, supprimer toutes les étiquettes de 7;, qui sont do- 

minées par (XI,, Ylr) + (X, Y) et ajouter cette nouvelle étiquette à Zn si 
elle est efficace par rapport à 7;. et à Rn. 



k y k + l  (b) Si XE < x!:) et au moins une étiquette (XI*, Kr)  + (X,, , ), pour 

k = 1,2, ..., 1 PEn 1 - 1, est efficace par rapport à Zn et à Pl,, alors, pour 

(s, vj) E A: supprimer toutes les étiquettes de Tj qui sont dominées par 

(Xlr, Ylr) + (xfj, w )  et ajouter cette nouvelle étiquette à Ej  si elle est 
efficace par rapport à 7;i et à Plj. 

Phase en arrière 

1. Sélection d'une étiquette de chemin vf - vn 

Retirer de UV,,, xn une étiquette, (XE, Y*), de plus petite valeur lexicogra- 

phique et l'insérer dans Pm. 

2.  Eztension de l'étiquette de chemin VJ - v, sélectionnée 

(a) Pour (X, Y) E Pli, supprimer toutes les étiquettes de 7;, qui sont do- 

minées par (X, Y) + (X*, YB) et ajouter cette nouvelle étiquette à 7;, si 

elle est efficace par rapport à 7;, et à Pl,. 

(b) Si XII < X: et au moins une étiquette (x&, Y&+') + (X,, Y,), pour 
k = 1,2, ..., IPlf( - 1, est efficace par rapport à Zn et à Pl,, alors, pour 

(vil vJ) E A: supprimer toutes les étiquettes de 7;n qui sont dominées par 

(xiJ, yu) + (X,, Y,) et ajouter cette nouvelle étiquette à 7, si elle est 

efficace par rapport à 7, et à Pin. 

3.5 Justification de l'algorithme 

On peut remarquer qu'à une itération dom&, toute nouvelle étiquette en- 

trant dans U,,, xi (respectivement dans U,,, Tn) est obtenue par extension de 

l'étiquette de plus petite valeur lexicographique sélectionnée de U,,, xi (respec- 

tivement de UviEV Zn). La propriété suivante est, dès lors, immédiate, puisque les 

valeurs des arcs sont non-négatives pour les deux critères. 



Propriété 3.4 Étant donné un sommet vi E V ,  soient (Xi i ,  xi) et (Xi i ,  G), ses- 
pectiuement, les étiquettes de plus petites valeurs lezico~phaques sélectionnées de 
U,,, xi uux itémtions k et K telles que k > k', alors (X l i l  hi) est lezifogmphique- 
ment plus gmnde ou égale d (X;, Y;,). L 'analogue est également vraie pour U,., T,,. 

A un sommet d o ~ é  Vi  E V, les ensembles Pli et Pin sont initialisés avec des étiquettes 
efficaces extrêmes. La propriété ci-dessus implique que toutes les étiquettes futures, 

entrant dans l'un de ces ensembles, sont générées par ordre lexicographique croissant. 
Étant donné qu'un test de dominance est effectué par rapport à Pli (respectivement 

Pin) avant d'introduire toute nouvelle étiquette dans U,,, 5, (respectivement dans 

UV, E, Tn) la propriété ci-après est également triviale. 

Propriété 3.5 Une étiquette, de plus petite valeur lexiwgruphique, sélectionnée de 

UviEv xi OU de U,,, Tn est une étiquette eficace pemanente au sommet wms- 
pondant. 

La propriété 3.5 implique que les ensembles Pli et Pin, pour vi E VI contient uni- 

quement des étiquettes efficaces permanentes à toute itération de l'algorithme. Le 
résultat suivant justifie le test d'arrêt de l'algorithme 

Proposition 3.6 Si, au début d'une itération, UviEV Ti = 0 OU UYiev x,, = 0, 
dors Pl,  contient toutes, et seulement, les étiquettes eficaces correspondant auz 

chemins vl -un. 

Preuve Considérons le cas où UviEY 7;; = 0. Commençant à vl avec l'étiquette 

(0, O), toutes les étiquettes pouvant être obtenues à partir d'une étiquette efficace 

sélectionnée de U,,, xi sont examinées et introduites dans cet ensemble, à moins 

que qu'elle soit dominée ou qu'une copie équivalente existe. Les étiquettes UViEv xi 
sont sélectionnée par ordre lexicographique (voir la propriété 3.4) jusqu'à ce qu'il 

n'en reste plus. 



Ainsi, chaque étiquette efficace correspondant à un chemin VI-v, doit avoir été 
calculée puisque le chemin correspondant ne contient que des sous-chemins efficaces. 

L'analyse est similaire si UWEV Zn est vide. Puisque toute étiquette sélectionnée est 
efficace (voir la propriété 3.5)' le résultat suit .O 

Le théorème suivant établit l'exactitude de l'algorithme MSMS et donne sa 
complexité. 

Théorème 3.7 L 'algoriMme MSMS détermine l'ensemble des étiquettes eficaces 

comspondant à des chemins VI-vn. Si le critère x ne ptend que des valeurs entières 
non-négatives, alors 1 'algorithme q u i e r t  un temps 0(n4 D3 log nD) , où D est la plus 

grande valeur de x sur un arc. 

Preuve. Étant donnée la propriété 3.5, l'exactitude de l'algorithme est immédiate 

par les propositions 3.1, 3.2 et 3.6. Pour la complexité, nous supposerons que l'initia- 
lisation de base est utilisée. Ainsi, I'étape la requiert 0 (n2) opérations si une variante 

de L'algorithme de Dijkstra est utilisée, puisque la seule modification consiste à utiliser 

l'ordre lexicographique lors de la comparaison des étiquettes. 

A l'étape lb, on peut remarquer qu'il y a O(nD) valeurs du critère x pour un 
chemin élémentaire arrivant ou quittant un sommet donné, Le, pour les étiquettes 

de Pli ou de 'P, en tout sommet vi. Par conséquent, les tests de dominance et les 
insertions à cette étape prennent un temps 0(n3 D2 log nD) en tout (voir la section 

3.2). De même, il y a 0(n2 D) étiquettes efficaces en tout, pour les chemins quittant 

la source ou arrivant au puits, et ainsi, l'étape 2 se répète 0(n2D)  fois. 

Considérons maintenant la phase "en avant" et supposons que les sommets sont 

contenus dans une queue de priorité selon leurs étiquettes de plus petites valeurs 

lexicographiques dans les ensembles xi correspondants. A l'étape 1, une nouvelle 

étiquette peut être sélectionnée de UtriEY Ti en O(1og n) opérations et les ensembles 

Pli et xi correspondant peuvent être mis à jour en temps O(1og nD) (voir la section 

3.2). La complexité de l'étape 1 est dors O(1ognD). 



Étant donné qu'il y a O(nD) étiquettes dans Pfn, les tests de dominance et 

les insertions, à l'étape 2a, nécessitent un temps 0 (n2  D2 log nD) . O(n D) tests de 
dominance, impliquant O(1og nD) opérations chacune, sont nécessaires pour décider 

si les successeurs de % doivent être examinés à l'étape 2b. 

Le traitement de chacun des O (n) successeurs requiert O (n D log nD) opérations, 

puisque O(1og nD) opérations sont nécessaires pour tester la dominance, alors que Xj 
prend UR temps O(nD lognD) pour être mis à jour. Par conséquent, la complexité 

de l'étape 2b est 0(n2D log nD)  et celle de la phase "en avant" est 0(n2 D2 log nD), 
puisque la mise à jour de la queue de priorité des sommets, à la iin de cette phase, 

ne requiert qu'un temps O (n log n) . 

De manière similaire, on peut montrer que la phase "en arrière" a la même corn- 

plexité. L'étape dominante est 2a dans chacune des phases "en avant" et "en arrière". 

Puisque cette étape requiert un temps 0(n2D2 lognD) à chacune des 0(n2D) itérations 

de l'étape principale de l'algorithme, le résultat suit.U 

On peut noter qu'à chaque itération, l'algorithme examine, dans le pire cas, 
toutes les étiquettes de Pr* ou de Pli. Ces étiquettes caractérisent les sous-chemins 
efficaces, déjà calculés au sommet correspondant à l'étiquette sélectionnée. Ceci per- 

met de mettre à jour l'ensemble des étiquettes temporairement efficaces de chemins 

q-un et d'éliminer éventuellement certaines étiquettes (efficaces) sélectionnées qui ne 

peuvent donner d'étiquettes efncaces de chemins q-un. 

La complexité d'un algorithme similaire prolongeant les étiquettes sélectionnées 

sans utiliser les étiquettes de sous-chemins efficaces déjà calculées pour éliminer les 

étiquettes non prometteuses est 0(n4D2 lognD). Cependant, un tel algorithme est 

susceptible d'avoir une moins bonne pedormance en pratique, en particulier lorsque 

la densité ou la taille du réseau augmente. 



3.6 Extension 

L'algorithme proposé peut aisément être modifié pour générer les étiquettes 

situées dans un rectangle donné (Le. défini par des bornes inférieures et supérieures 
sur chacun des critères). Une première modification consiste à vérifier, pendant le test 

de dominance par rapport à un ensemble donné d'étiquettes efficaces permanentes 

ou temporaires:(i) si la nouvelle étiquette est dans le rectangle spécifié lorsqu'il s'agit 

d'un chemin VI-v, ou,@) pour tout autre chemin, si les valeurs de x et de y sont 

inférieures ou égales aux bornes supérieures spécifiées sur les critères. 

Une autre modification consiste à initialiser Pl, avec deux étiquettes efficaces 

extrêmes qui ne sont pas dans le rectangle mais sont, de préférence, le plus près 

possible des limites de celui-ci. Ces deux étiquettes doivent, bien entendu, être en- 

levées de l'ensemble Pl, à la fin de llalgorithme. Notons que certaines étiquettes 

efficaces non extrêmes pourraient ne pas être trouvées si l'algorithme est initialisé 

uniquement avec des étiquettes efficaces extrêmes appartenant au rectangle. Ce ne 

sera cependant pas le cas si les bornes spécifiées englobent l'étiquette de plus petite 
valeur lexicographique pour chaque critère. 

Les deux étiquettes nécessaires pour initialiser l'ensemble Pl, peuvent être 

déterminées en utilisant le schéma d'énumération du théorème 3.3. Il suffit #d'ajouter 

un test suppiémentaire pour vérifier si au moins une des deux étiquettes définissant 

tout sous-problème d'énumération appartient au rectangle, avant de résoudre le 

problème de plus court chemin paramétrique. Un sous-problème défini par des étiquettes 

situées toutes les deux dans le rectangle peut, cependant, être sauté, puisqulil conduit 

nécessairement à des étiquettes efficaces extrêmes contenues dans le rectangle. 

On résoudra donc, de préférence, uniquement les sous-problèmes dont seule- 

ment une des étiquettes de définition est dans le rectangle. La procédure peut générer 

éventuellement d'autres étiquettes efficaces extrêmes de chemins VI-v,, qui soient ad- 

missibles. Elles peuvent, par conséquent, être ajoutées à Pl, avant d'exécuter la 

phase principale de l'algorithme. Notons également qu'un schéma d'énumération qui 

génère les étiquettes efficaces extrêmes par ordre croissant de l'un des critères (par 



exemple, dans Henig [38]) serait moins performante pour trouver les étiquettes effi- 
caces extrêmes les plus proches des limites du rectangle sans être à l'intérieur. 

Résultats numériques 

Deux versions de l'algorithme proposé, dénommées MSMSl et MSMSZ, ont 
été implantées en langage C, de même que l'algorithme d'étiquetage de Hansen [36], 
appelé MSMSO. Les versions MSMSl et MSMSZ correspondent respectivement à 

l'initialisation de base et à l'initialisation étendue. Des arbres balancés (AVL) ont été 
utilisés comme structures de données pour les différents ensembles d'étiquettes. 

Les algorithmes ont été testés sur des réseaux aléatoires dans lesquels tout 
sommet d'indice i est connecté à celui d'indice i + 1, et aléatoirement à tous les 

autres, de sorte qu'aucun arc n'arrive au sommet V I  (source) ni ne part du sommet v, 

(puits). Les valeurs de x et de y sont générées indépendamment, de manière aléatoire, 
pour chaque arc. Ces valeurs sont comprises entre O et une borne supérieure variable. 

Ainsi, l'arc joignant deux sommets d'indices consécutifs n'est pas nécessairement le 
plus court chemin entre ces sommets, pour l'un ou l'autre des deux critères. 

Les caractéristiques des différents problèmes testés sont regroupées dans les 

tableaux 3.1, 3.7, 3.3 et 3.4. Les trois premiers tableaux traitent respectivement de 
l'impact de la variation marginale des paramètres suivants: la densité du réseau, le 

nombre de sommets et l'étendue des critères (Le., la différence entre la plus grande 
et la plus petite valeur du critère). 

Dans chacun des trois premiers tableaux, la valeur du paramètre correspondant 

augmente progressivement pour les 10 problèmes considérés, tandis que les deux 

autres paramètres sont maintenus constants. Les tableaux montrent également le 

nombre d'étiquettes efficaces extrêmes et non extrêmes dans chaque réseau, ainsi que 
le temps CPU requis par chacun des algorithmes MSMSO et MSMSI. 



Tableau 3.1 - Plus courts chemins bzcritères pouz réseuuz de densité croissante 

Nb. de F 1 sommets 

Caractéristiques du réseau l ~ e m ~ s  CPU (sec.) 

Le quatrième tableau donne des statistiques pour 100 réseaux dans lesquels les 

trois paramètres sont tous aléatoires en même temps. En plus des caractéristiques des 

réseaux, ce tableau montre les ratios des temps CPU entre les algorithmes MSMSO, 

MSMSl et MSMS2, de même que ceux correspondant à la fraction du temps re- 

quis par l'initialisation de chacune des deux versions de l'algorithme proposé. Pour 
chaque indicateur considéré, le tableau donne la moyenne et l'écart-type pour les 100 
problèmes générés, de même que les valeurs minimales et maximales observées. 

Les tests ont été effectués sur une station de travail Sun Ultra 2. On note une 

domination presque systématique de l'algorithme proposé (MSMSl) sur celui qui 

résout le problème par une seule extrémité (MSMSO), en particulier lorsque la densité 

ou la taille du réseau augmente (tableaux 3.1 et 3.7). La tendance est cependant moins 

marquée lorsque l'étendue des coûts sur les arcs varie (tableau 3.3). 

Nb. 
d'arcs 

Lorsque tous les trois paramètres Mnent aléatoirement, la version MSMSl est, 

en moyenne, 2.1 fois plus rapide que l'algorithme MSMSO et 2.8 fois plus rapide que 

MSMS2. Toutefois, MSMSO ne prend qu'environ 83% du temps requis par MSMS2. 

- 

Densité MSMS1 MSMSO Étendue 

des coûts 

Nb. d'étiquet. 

effic. extr. 

Nb. d'étiquet. 

effic. non extr. 



Tableau 3.2 - Plus courts chemins bicrit &ses pour réseauz de tail le croissante 

1 Caractéristiques du réseau l ~ e m p  CPU (sec.) 1 

On remarque également un pourcentage de temps relativement élevé pour 

l'étape d'initialisation durant la résolution du problème par les deux extrémités, Le., 

en moyenne 45% pour MSMSl et 68% pour MSMSP. Ce ratio est particulièrement 

élevé pour MSMS1, puisqu'au plus deux étiquettes efficaces correspondant a des che- 

mins VI-v, peuvent être trouvées durant l'initialisation de base. 

1 

Cette observation suggère cependant une grande efficacité des tests utilisés 

durant les phases "en avant" et 'Len arrière" de l'étape principale de l'algorithme, 

comparativement à la recherche de plus courts chemins paramétriques. De même, 

cela explique la moins bonne performance de MSMS2, où toutes les étiquettes effi- 

caces extrêmes sont déterminées pendant I'initiaiisation, en résolvant plusieurs sous- 

problèmes de plus courts chemins paramétriques. 

Considérons maintenant l'impact du nombre d'étiquettes efficaces sur la per- 

formance des algorithmes étudiés. L'algorithme MSMSO semble meilleur dans les cas 

(rares) de réseaux de petite taille ou de très faible densité, pour lesquels toutes les 
étiquettes efncaces sont extrêmes (première ligne des tableaux 3.1 et 3.7). 

Nb. d'étiquet. 

effic.extr.effic.nonextr. 
Nb. de 

sommets 

Densité Nb. 
d'arcs 

MSMSl MSMSO Étendue 

descoûts 

Nb. d'étiquet. 



Tableau 3.3 - Plus courts chemins bacritères pour étendues de coûts croissantes 

sommets d'arcs 1 Nb- del Nb. 

Caractéristiques du réseau l ~ e r n ~ s  CPU (sec.) 

Ceci peut s'expliquer par l'inefficacité relative de la recherche des plus courts 
chemins paramétriques. Cependant, la méthode de résolution par les deux extrémités 
semble présenter une plus grande robustesse lorsque la densité du réseau varie signi- 
ficativernent mais que le nombre total d'étiquettes efficaces change peu (tableau 3.1). 

Densité Étendue Nb. d'étiquet. 
des coûts effic. extr. I l 

Ces résultats suggèrent que l'algorithme proposé, dans sa version de base, a une 
meilleure performance que l'algorithme d'étiquetage à partir de la source, lorsque la 
taille ou la densité du graphe augmente. Le gain de vitesse reste cependant faible 
(environ 2 en moyenne) mais se confirme sur Une grande variété de problèmes sans 
aucune corrélation particulières entre les valeurs de x et de y. Des résultats semblables 
ont également été obtenus en utilisant uniquement des valeurs entières pour les deux 
critères. 

Nb. d'étiquet. MSMSl MSMSO 

effic. non extr. I l 

Notons que ces observations, faites sur des réseaux aléatoires , peuvent difficile- 

ment être extrapolées. Cependant, on peut raisonnablement s'attendre & une certaine 
supériorité de l'approche par les deux extrémités pour d'autres types de problèmes, 
incluant les cas pratiques de grande taille. 



Tableau 3.4 - Plw courts chemins 6zcritèl.e~ pour réseaux aléatoires 

1 ~ o ~ e n n e l  Écart-type 1 Min. 1 Max. 1 
 IN^. de sommets 1 205.631 60.631 1041 2971 

1 ~ b .  d'arcs 1 24857.551 24857.31 1 8281 83736 1 

1 Nb. d'étiquet. effic. non extr. 1 8.10 1 4.561 01 221 

Densité 
Étendue des coûts 

Nb. d'étiquet. effic. extr. 

IMSMSO / MSMSl 1 2.1351 0.731 10.3331 4.8281 

0.535 

100.818 
6.55 

Cette remarque se justifie par le fait que l'algorithme proposé est aussi une 

méthode d'étiquetage, mais exploite de l'information en provenance des deux extrémités, 
afin de réduire le nombre total d'étiquettes temporairement efficaces qui sont pro- 

longées. Les tests développés à ce effet semblent relativement efficaces, même si la 
phase d'initialisation, où l'algorithme de Dijkstra [25] est exécuté quatre.fois, l'est 

moins. 

MSMS2 / MSMSl 

Initialisation / MSMSi 

Le problème de plus court chemin bicritère étudié dans ce chapitre implique 

la minimination des deux critères considérés. Dans certaines applications pratiques, 

cependant, des bornes peuvent être imposées sur la valeur de chacun des deux critères, 

a i in  d'éviter les solutions impliquant une trop grande détérioration de l'un d'eux (voir 

la section 3.6). 

0.289 
57.462 

2.20 

Cette considération nous amène à un problème voisin, où l'on considère plu- 

sieurs critères mais dont un seul est minimisé et des bornes, inférieures et supérieures, 

sont définies pour tous les autres, sur chaque arc du réseau. Le chapitre suivant 

présente quelques algorithmes pour ce problème. 

2.801 

0.455 

0.016 

0.476 
1 

0.985 
198.169 

13 

0.801 

O. 134 

0.9861 5.541 

O. 1961 0.971 



CHAPITRE 4 

ALGORITHMES DE PLUS 
COURT CHEMIN AVEC 
FENETRES DE RESSOURCE 

Nous étudions, dans ce chapitre, la résolution du problème de plus court che- 

min avec fenêtres de ressource, RCSPP, introduit à la section 1.3. Des algorithmes 

pseudo-polynomiaux, basés sur la programmation dynamique et sur une approche en 

deux phases, sont proposés pour le problème. L'algorithme en deux phases permet 

de traiter efficacement les cas de réoptimisation, lorsque certains sommets sont sup- 

primés ou sont fixés, ou lorsque les coûts changent. Nous définissons ci-après quelques 

notations additionnelles qui seront utilisées dans l'évaluation de la complexité des 

dinérents algorithmes. 

4.1 Notations supplément aires 

Les notations définies ici s'ajoutent à celles introduites à la section 1.3. Étant 

donnée une ressource r, considérons, pour chaque sommet vi E V, les bornes inférieures 

et supérieures suivantes sur la r-ième composante du vecteur de ressources, xi, pour 

tout chemin vl-vj réalisable: 



Il est clair, à partir de la définition de l'opérateur de mise à jour iI '(-, 0 )  (section 1.3. l), 

que IP, 5 xir 5 p,. Soient maintenant les paramètres ci-après: 

Pour tout sommet Vi  E V, le paramètre pi est une limite supérieure sur le 

nombre de vecteurs de consommations de ressource pour les chemins vi-vi réalisables, 
tandis que p est une borne supérieure sur le nombre total de vecteurs de consomma- 
tions de ressource pour l'ensemble du graphe. De façon similaire, &, borne le nombre 
de vecteurs de consommations de ressource pour les chemins vl-vj réalisables qui pas- 

sent par un arc (v;, v j )  donné et 9 est une limite sur le nombre total de ces vecteurs 
pour tout le graphe. On peut remarquer que 8 5 p, puisque 9, 5 <pi, pour tout arc 

(v;, vj) E A. On a également 8 < C n ( w i j r  - xi, + l), de manière similaire. 
(v, ,v,)EA rER  

Supposons que les vecteurs de consommations de ressource à un sommet donné 

vi E V sont disposés par un ordre lexicographique dans une structure d'arbre où 
il conespondent aux feuilles. Les niveaux de l'arbre correspondent aux différentes 

ressources dans l'ensemble R. Un noeud du r-ième niveau a au plus O(pi, - + 1) 
enfants et peut, par conséquent, tenir dans un tableau unidimensionnel de taille 

- sr + 1). La position d'une valeur xir quelconque est alors donnée par x, - 
p. + 1. Ainsi, un fils donné de ce noeud peut être localisé en temps constant, et par 
-Ir 

conséquent la feuilie correspondant à un vecteur de ressource xi = (xil, zi2, ..., xilXI) 

peut être localisée en O(IR() opérations. 

D'une manière similaire, la position lexicographique du vecteur de ressource 

d'un chemin Ul-Vi pouvant être prolongé par un =C (vi, vj) E A donné, peut être 
trouvée en temps O(I7ZI). La taille d'un noeud dans l'arbre correspondant est de 

l'ordre de O(min{vir, Eijr) -  ma^{-,^, ajr) + 1). 



4.2 Une approche par le graphe des états 

Une première méthode de résolution consiste à générer explicitement le graphe 

GE = (S, E) de tous les états possibles des sous-chemins réalisables en provenance 
de la source, et à exécuter ensuite un algorithme classique de plus court chemin 

sur ce graphe élargi. Étant donné s E V, un sommet si E S peut être associé à 

chaque vecteur de ressource xi correspondant à un chemin vl-vi- L'ensemble de tous 
les sommets Si E S, qui sont associés à un sommet vi E V donné, sera noté Si. L'arc 
(si, sj) est dans E si et seulement si 9 5 xi 5 Zij et X, = I(vj ,  xi + uij), où xi et zj 

sont les vecteurs de consommations de ressource associés à si et sj respectivement. 

L'ensemble de tous les arcs (si, s j )  E E ,  associés à arc (vi, vj) E A donné, 
sera noté Eij. Le coût sur l'arc (si, si) est égal à ~j . Un sommet supplémentaire sn+1 

(puits) est ajouté à S, et des arcs (s,,~,,~), pour Sn E Sn, sont ajoutés à E. Le 
graphe résultant GE est un graphe orienté qui peut être généré par la récurrence 
ci-après, suivant un ordre croissant de l'indice de vj où xo est le vecteur de ressource 
initial. 

La longueur du chemin optimal est alors donnée par la récurrence suivante, par indice 

croissant de sj, tandis que la complexité de l'ensemble du processus est donnée par 

le théorème 4.1. 

cl =O, ~ j = m i ~ { c i + % :  (si,sj) E E). 

Théoréme 4.1 L'approche par le graphe des états résout RCSPP en temps O((p1721). 

Preuve. Le graphe GE peut être généré en temps O(cpl72l) si, pour chaque vi E V, 
les éléments q de Si sont disposés par ordre lexicographique des vecteurs de ressource 
xi associés. En effet, pour tout vi E V, Si contient au plus O(pi) éléments (voir la 



section 4.1) et SI peut être déterminé en temps O(17ZI). Soit un arc (vi,vj) E A tel 
que Si est connu. Chaque arc (si, si) E E, est déterminé en sélectionnant un élément 

si E Si puis en testant si le vecteur zi associé satisfait 3, 5 x* 5 &, avant de 
calculer, si nécessaire, x, = 8(vj, zi + uij).  Ceci peut se faire en O(lRl) opérations, 
en traitant les éléments de Si consécutivement. L'insertion de s j  dans S, requiert 
O(l7Zl) opérations pour vérifier si une copie existe déjà (voir la section 4.1). 

Par conséquent chaque arc (vi, vj) E A peut être examiné en O((oi l'RI) opérations 
et les arcs (s,, s,+I) E E sont crées en temps O(%). La complexité pour la génération 
de GE est donc en O((plRl) si les sommets vj sont considérés dans l'ordre croissant 
de leurs indices. 

En outre, étant donné un arc (vi, vj) E A, chaque sommet si E Si est connecté 

à, au plus, un sommet s, E Si, puisque g(vj, xi + w) est unique et xi pourrait ne 
pas satisfaire -, 5 x, 5 mi,- Il y a donc O(p) arcs dans E, dont chacun peut être 
examiné en temps constant, durant la récurrence qui donne le chemin optimal. Ceci 
permet de calculer les valeurs de c, et de déterminer un pointeur sur le prédécesseur 
de sj le long du chemin optimal, i.e., sur si tel que cj = q + qj. La complexité de 

l'approche par le graphe des états est, par conséquent, celle de la génération de GE. 
0 

4.3 Une approche de programmation dynamique 

Soient xo le vecteur de ressource initial et, pour chaque sommet vj E V, l'en- 
semble F, de toutes les paires formées par les longueurs de chemin vl-vj réalisables 

et les vecteurs de consommations de ressource associés. Considérons la récurrence 

suivante, par indice croissant des vj : 

FI = {(XI, 0) : 21 = @(VI, xo)}, 

Fj = {(xj,cj) : cj =min{q+% : W . -  5 X i  5 Fij, X j  = Q(vj,xi ++ij), -1 

(xi, ~ i )  E Fi ,  (41 vj) E A)) -  

La longueur du chemin optimal est alors donnée par: min{% : (x., G) E &). 



Notons qu'étant donné un sommet vi, l'espace mémoire occupé par l'ensemble 

F, peut être libéré si tous les ensembles Fj tels que (vil vj) E A sont déterminés. Le 
résultat suivant donne la complexité de la méthode. 

ThéorBrne 4.2 L'approche de la pm~tamrnatzon dynamique détermine le chemin 
optimal pour RCSPP en temps O(pI7ZI). 

Preuve. Les sommets sont considérés par ordre croissant des indices. L'exactitude de 

cette récurrence "en avant" de programmation dynamique vient du fait que chaque 

paire (xi, c j )  E Fi correspond à un pliis court chemin vl-vj réalisable. TOUS les vec- 

teurs de ressource pouvant être obtenus à partir des sommets vi tels que (vi, v,) E A 
sont considérés lors du calcul de xj. Par conséquent, une seule valeur de c, est associée 

à chaque vecteur xj et Fj contient au plus pj paires (xj, cj). 

Étant donnés (vil vj) E A et (xi, Q) E 4, véde r  si W+ Xi  5 Zij et calcder 

Zj = I(u,,  X i  + u,) et C, = + Cij requiert O(lal)  opérations. Vérifier si (xj, ci) 

doit remplacer la paire (xj, 4) courante de F, dont la valeur c; est minimale pour 

le même vecteur xj  requiert O(l7Zl) opérations si les éléments de Fj sont classés par 
ordre lexicographique des vecteurs de ressource associés (voir la section 4.1). Ainsi, 

le calcul des ensembles Fj nécessite O(v(7Zl) opérations en tout si les éléments de 

Fi, pour vj E V, sont examinés consécutivement. Finalement, la sélection du chemin 

optimal se fait en temps O(cp,).O 

On remarque qu'à un sommet donné vi E V, l'ensemble Fi peut contenir plu- 

sieurs paires (xi, &) ne satisfaisant, sur aucun arc (vi ,  v,) E A, les contraintes de 

fenêtres de ressource (1.3). On pourrait donc envisager une récurrence en "en arrière" 

dans le but d'éviter la détermination de ces paires, et ainsi réduire le temps de cal- 

cul. Cependant, certaines difiicultés techniques surgissent, du fait notamment des 

opérations de mise à jour. En effet, étant donné un vecteur de ressource x j  au sommet 

v j  et un arc (vil v j )  E A, plusieurs vecteurs de ressource t i  correspondant à différents 

chemins VI-vi réalisables peuvent être solutions de l'équation x j  = iE(vj, xi + wj)- S'il 
n'y avait pas de mise à jour, seul le calcul de xi = x, - ui, serait nécessaire. 



Notons également que le facteur <p dans la complexité de la récurrence de pro- 
gammation dynamique et de celle utilisant le graphe des états, implique une charge 
de calcul considérable. Ceci est particulièrement vrai lorsque le problème de plus 
court chemin avec fenêtres de ressource doit être résolu de manière répétitive, pour 
différentes valeurs de coûts sur les arcs mais avec les mêmes consommations de res- 
source. Cette situation se rencontre notamment lorsque le problème apparait comme 
problème auxiliaire durant un processus de génération de colonnes. Nous introdui- 
sons, à la section prochaine, une procédure en deux phases utilisant une récurrence 
"en mière" et nécessitant moins de calculs dans de tels cas de réoptimisation. 

4.4 Un algorithme en deux phases 

4.4.1 Bornes sur  les consommations de ressource 

Nous décrivons d'abord une procédure pour calculer de meilleures valeurs pour 
les bornes inférieures et supérieures, p.  et pjr, sur la consommation de la ressource 

-Ir 
r pour les chemins vl-vj réalisables. Considérons, pour chaque sommet vj E V et 

chaque ressource r E 'R, la récurrence "en avant", i.e., par ordre croissant des indices 

de vj, suivante: 

Les équations (4.1) doivent être remplacées par = Flr = !P(vl, x*) si RCSPP est 



résolu pour un seul vecteur initial xo. La proposition 4.4.1 donne une propriété des 
paramètres ainsi calculés. 

Proposition 4.4.1 Soient un chemin v1-vj réalisable et x, son vecteur de wnsom- 

mations de .ressource au sommet vj, alors p.  5 x,, 5 pjr, pour r E 73. En p h ,  
-1, 

les bornes p.  et pjr, pour r E 7Z ei vj E V ,  peuvent être calculées en O(17EI m) 
-1'- 

opérations. 

Preuve. La première partie de la propriété sera prouvée par récurrence. Soit xo le 
vecteur de ressource initial du chemin. Puisque, pour tout r E R, x l ,  = @(vl ,  xh) ,  

- - on a, par définition de * ( m l  -): xl,  = x e  si hl, 5 ze 5 hl,, e t  X I ,  = g,, ou x t  = X I ,  

sinon. Par conséquent q 5 Xlr 5 pl,. -Ir 

Soit maintenant (vil v,) le dernier arc du chemin et supposons, par récurrence, 
que -ir 5 2, 5 pi,. Puisque le chemin vl-vj est réalisable, nous avons également 

- Si la condition bjr 5 rnin{pir, a i j r )  + Uijr 5 hjr n'est pas vérifiée, alors 
- 

gjr si xir + uijr < bjr, xjr 5 hjr si Sjr 5 xir + +ijr 5 hjr ,  et xjr = 
- 
hjr < xir + UV,; par conséquent xjr 5 pijr.  

Ainsi, 9.  5 xjr i, pjr. En ce qui conceme la complexité, étant donné r E R, le calcul 
-P 

de <p et de FI,, requiert un temps constant, de même que le calcul de G, et de pi,,, -lr 



pour chaque arc (vi, vj) E A si sr et ip, sont connus. Les valeurs <p. et pjr peuvent 
-Y 

être calculées en un temps proportionnei au nombre d' arcs (vi, v,) E A. Donc, la 
récurrence requiert un temps O(l7Zl m) en tout si les sommets vj E V sont considérés 

dans L'ordre croissant de leurs indices, puisque, pour chacun de ces sommets vj, seuls 
les arcs (vil v,) E A ont besoin d'être examinés. O 

4.4.2 Caractérisation des consommations de ressource 

L'algorithme utilise, dans la phase 1, une récurrence "en arrière" pour ca- 

ractériser la consommation de ressource des souschemins dont le prolongement peut 
donner un chemin VI-v, réalisable. Ceci se fait en calculant, pour chaque arc (vi, v,) E 

A, un ensemble U,, par ordre décroissant des indices des sommets vi (voir la figure 

4-11 : 

Figure 4.1 - Calcul des étiquettes de chemins vi-vn réalisables. 

Nous montrons maintenant que U .  contient effectivement les vecteurs de ressource 

des chemins vl-vi dont le prolongement, par I'arc arc (vi, vj), peut donner un chemin 

VI-v,, réalisable. 



Proposition 4.4.2 Soit un an: (vi, vj) E A. Un chemin VI-vi réalisable, avec un 

vecteur de ressource xi en vi, peut donner un chemin VI-v,, réalisable et passant par 

l'arc (vil vj) si et seulement si xj E UV. 

Preuve. Considérons la partie "si", i.e. la conditions suflkante. Par constmction, 

X; E Uij implique %,, 5 X, 5 mi,,' r E 'R. En p h ,  *(v,, Xi + u,) E vil si 
v, # v,. On en déduit un chemin vl-vj réalisable dont le vecteur de consommation 

de ressource, zj = *(vil + u,), est dans Crj si vj # v,. Il s'en suit donc qu'il existe 

un sommet v k  E V tel que (u,, vk) E A et z k  E Ujr. Puisque le réseau est acyclique 

et le nombre d'arcs est hi, le résultat suit. 

Pour la condition nécessaire, supposons ( ~ j ,  vn) est le dernier arc du chemin 

VI-v,, réalisable résultant. Alors, pour r E R, -i,, < xir 5 SU,, et, puisque le 
sous-chemin VI-vi extrait est aussi réalisable, nous avons, par la proposition 4.4.1, 

p 5 xir < pir. D'où xi E Win et xi E Ui. En plus, considérons un arc quelconque -ir 

(vi1vj) du chemin vl-vn, tel que v j  # V, et S U ~ ~ O S O ~ S ,  par récurrence, que xj  E Uj. 

Puisque les sous-chemins VI-vi et vl-vj extraits sont aussi réalisables, nous avons, 
- 

pour r E R, sir 5 Xir 5 wu, et 1 ~ ,  xir 5 ?&, par la proposition 4.4.1, de même 

que x j  = 8(vjj  xi + u,). Donc xi E Uij- 

Notons qu'étant donné un sommet vj la mémoire douée  pour Uj peut être 

libérée dès que tous les arcs arrivant à vj sont examinés. On peut aussi remarquer 

que pour un uc (vi1vj) E A d ~ ~ é ,  ce ne sont pas tous les vecteurs dans Uij qui 

correspondent effectivement à des chemins vl-vi. 

Pour chaque sommet v, nous décrivons un processus pour sélectionner, dans 

tous les ensembles Uij associés à vj, les vecteurs correspondant aux chemins VI-v, qui 

passent par vj. L'ensemble de ces vecteurs sera noté Dj. Pour chaque vecteur x, çj D, , 
l'ensemble R(s) des vecteurs de consommations de ressource xi (aux prédécesseurs 

vi de v j )  desquels x j  peut être obtenu, est aussi déterminé durant le calcul des Di. 

Puisque les éléments de Uij sont visités séquentiellement, il n'est pas nécessaire de 

les disposer par ordre lexicographique. 



La figure 4.2 illustre le d c u l  des ensembles Dj et R(x,),  pour tout X ,  E Di- 
Ce calcul se fait par la récurrence suivante, par indice croissant des vj: 

Figure 4.2 - Calcul des étiquettes de chemins vl -vi-un réalisables. 

Nous avons le résultat suivant. 

Proposition 4.4.3 Étant donné un arc (ui, v j )  E A, à1 -te un chemin vl-vn 
réalisable passant par (vi, v j ) ,  avec, pour vecteurs de consommations de ressource, 
zi en vi et xj en V j ,  si et seulement si X,  E Di et xi E R(x j ) -  

Preuve. Pour la partie "si", soient deux vecteurs xi et x, tels que x, çi Dj et 
xi ci R (x j ) .  Il est clair que zi E UV et, par conséquent, un chemin vl-vi réalisable 
ayant comme vecteur de consommations de ressource xi, s'il en existe, peut être 
prolongé en un chemin vi-un réalisable. En outre, xi E Di et il existe donc un sommet 
vk tel que (v,, vi)  E A et xk E R(xi),  ce qui implique que x k  € Ek et x k  E Clki. Puisque 
le graphe est acyclique, il s'en suit qu'on peut en deduire un chemin vl-vi réalisable, 



ayant comme premier arc ( q ,  ut) et comme vecteur de ressource initial xo, tels que 

%(vj, x0) E Dl et *(Vj, xo) E Uic. D'où le résultat. 

Pour voir que la condition est également nécessaire, considérons le premier arc 

(ul, ut) d'un chemin VI-v, réalisable passant par l'arc (vil uj) et ayant pour vecteurs 
de ressource x, en vi et x j  en uj- Soient également xo, XI et sc, respectivement le 

vecteur de ressource initial, et les vecteurs de ressource (mis à jour) en vl et en Ur. 

Nous avons zl = $(vj, xo) et xc = @(vt,  XI+ ult). Puisque le chemin est réalisable, on 
a également 21 E Uic et, par suite, xl E Dl. Supposons maintenant, par récurrence, 

que si E Di. Le chemin étant réalisable, nous W O ~ ~ S ,  zj = P(vj, X, + uij) et xi E Uij .  
Par conséquent, x j  E Dj et xi E R(xj).O 

La complexité du processus complet de caractérisation des consommations de 
ressource est donnée ci-après. 

Proposition 4.4.4 Le u r l ~ d  de R(xj), pour tous les x j  E Dj et U, E V\{q), peut se 
fu27-e en temps 0 ( 8  IR[). En outre, le nombre total de vecteurs dans tous les ensembles 

R(x,) dam le graphe est borné par B. 

Preuve. Nous montrons d'abord que les ensembles Uij peuvent être déterminés en 
temps O(@ l'RI). En effet, le calcul des bornes lo,,, pir , pour r E X and vi E V ,  requiert 

O(IRI rn) opérations (voir la proposition 4.4.1). Étant donné un arc (vi, uj) E A, il y 

a au plus vecteurs x, tels que max{lo,,, wiir) 5 xir min{pir, Q,), pour t E R, 
ainsi IUv 1 5 8,. Pour chacun de ces xi, le calcul de 9(vj, Y + uij) requiert UR temps 
0((7EI), de même que la vérification de *(vit x; + uij) E Uj, si une représentation 

lexicographique de Uj est utilisée. La même complaïté est nécessaire pour insérer 

xi dans U .  et dans Ui par ordre lexicographique. Puisque, pour chaque sommet vi 
(considéré par ordre décroissant des indices) seuls les arcs (vi ,  vj) E A sont examinés, 

la complexité du calcul des ensembles U, est O(@ IR(). 

Considérons maintenant la récurrence "en avant", pour la détermination des 

ensembles Dj et R(x,), en supposant que Ui et, pour chaque arc (vil v,) E A, l'en- 
semble Uij est disponible, de même que !?l(vj, xi + u,), p o u  tout sommet X; E Uij (il 



a été calculé lors de la détermination de U i i )  Di peut donc être déterminé en temps 

constant. 

Étant donné un arc (vi ,  v j )  E A, chacun des vecteurs ~i E Ujj est examiné 

en vue d'introduire le vecteur zj = *(vil xi + ui j )  correspondant dans Dj et xi dans 

R(x j )  si nécessaire. Vérifier si chacun de ces vecteurs xi est dans Di peut se faire en 

temps O(J'R1) si les éléments de Di sont disposés en ordre lexicographique. La même 

complexité est requise pour introduire xj dans Dj.  Un Lien de x j  à xi peut ensuite 

être créé (i-e. xi est introduit dans R(xj)) en temps constant. Si x, existe déjà dans 

Dj, un lien est créé entre la copie d a n t e  et le vecteur xi au sommet vi. 

Ainsi, la récurrence "en avant" requiert un temps O(8 l7Zl) en tout, tandis qu'au 

plus 8, liens sont créés lorsque chaque an: (vil v j )  E A est examiné. Le résultat est 

dès lors immédiat. O 

4.4.3 Recherche d'un chemin optimal 

La phase 2 de Ilalgorithme est illustrée à la figure 4.3 et correspond à la 
récurrence ci-après, suivant l'ordre croissant de l'indice des vj E V\{vl), où XI est 

posé égal à fP(vl, xo)  : 

Figure 4.3 - Calcul du chemin optimal 



c(xl) = O si xl E Dl. Sinon FIN. 

c(z;) = +m pour tout 2; E D1\{q). 

c(zj) = c ( x ~ - ) + c ~ - ~  et p(xj)=vi-, pourtout xj E Dj, vj E V\{vl}, 

OÙ est tel que : X i -  = aigm.h{c(zi) + C+ : Xi E R(x,) ) .  

Le chemin optimal peut se reconstruire en utilisant le pointeur: 

p(x;), tel que : X: = argmin{c(x,) : Zn E 4). 

Le prochain résultat donne la complexité de la phase 2. 

Proposition 4.4.5 La récurrence "en avantn, de la phase 2, donne un chemin op- 

timal en temps O(@) si les ensembles Di et R (x j ) ,  pour xj  ci E,, v, E V\{vi), sont 
disponibles. 

Preuve. L'exactitude de la récurrence est basée sur le fait que le graphe est acyclique, 

de même que sur la proposition 4.4.3. Commençant par la source, les sommets sont 

traités dans l'ordre topologique. 

Si !P(vl, xo) 4 Dl dors la proposition 4.4.3 implique qu'aucun chemin vl-vn 
réalisable n'existe et la récurrence s'arrête. Sinon, à tout sommet vj E V\{vl), ~n 

plus court chemin vi-vj (s'il en existe) dont le prolongement peut donner un chemin 

réalisable au puits (i.e., avec un vecteur de ressource xj;-, au sommet v j ,  qui soit dans 
Di) est déterminé pour chaque vecteur de ressource x j  pouvant être obtenu d'un 

prédécesseur quelconque vi de v j -  

Ces chemins sont les seuls qui seront considérés pour de futures extensions à 

partir de uj. La proposition 4.4.3 implique que tous les chemins vl-v,, réalisables, 

qui utilisent un arc quelconque (vil v,) E A, sont considérés lorsque le sommet vj est 

traité. Par conséquent la récurrence donne un chemin optimal. 

Le calcul de c(xl) requiert un temps O(lR1) puisque c'est la complexité pour 

calculer *(vl ,  xo) et pour vérifier si x i  E Di. O(8) opérations sont nécessaires pour 



Soit maintenant un sommet v, E V\{vi) et un vecteur x, E Dj ,  la valeur c ( x j )  

et le pointeur p(xj) sont déterminés en examinant les vecteurs qui sont dans R(x,). 

Chaque vecteur xi E R(zi) est traité en temps constant puisqu'un lien a été établi de 

X j  (en vj) à xi (au sommet correspondant vi, voir la preuve de la proposition 4.4.4). 

La complexité globale pour trouver c(x,)  et p ( z j )  pour tous les xj dans le graphe 
est donc de O(@), d'après la proposition 4.4.4, si les ensembles Di sont considérés 
dans l'ordre croissant de leurs indices. O 

Nous donnons à présent la description de l'algorithme. 

Algorithme en deux phases 

Phase 1 

1. Calculer 9. et pjj,, pour T E R et vj E V par ordre croissant des indices 
-3+ 

des sommets, en utilisant les équations (4.1) et (4.2). Poser U, = 0 pour 

V j  E V\(V,) et = 0 POU (vil Vj) E A, ainsi que i = n - 1. 
2. Tant que il 1: 

(a) pour vj E V tel que (vi, v j )  E A, introduire d m  Ui et dans Uij9 par 

ordre lexicographique, chaque xi E 2'lrl tel que m a x ( c ,  %,) 5 xi, 5 
~ I l { ~ i r l ~ i j r ) ,  POU1 r E 72, Si V j  = Vn OU si *(vil Xi + uij) E Uj; 

(b) faire i t i - 1 et retourner à 2. 

3. Poser Dl = Ul et Dj = 0, POU vj E V\{vl), ahsi que j = 2. 

4. Tant que j 5 n:  

(a) pour vi E V tel que (vi, v j )  E A et POU chaque xi E U, tel que Xi E Di : 

i. poser X j  = @(Vj1 xi + u,); 



ii. introduire xj dans Di, en utilisant l'ordre lexicographique, si une copie 

n'existe pas déjà; 

üi. introduire q dans R ( z j )  en créant un lien de x, (en vj)  à xi (en v i )  ; 

(b) faira j c j + 1. 

Phase 2 

1. Calculer XI = @(vl ,  xo) .  Si 21 $ Dl FIN. Sinon, poser c(zl) = O et ~(2;) = +oo 

pour xi E Dl\(xl), ainsi que j = 2. 

2. Tant que j 5 n :  

(a)  pour chaque xj E Di : parcourir R(xj)  pour déterminer vi- tel que 

xi- E argmin{c(xi) + : X ,  E R(xj ) ) ,  
puis poser c(x,)  = c(xi- ) + ci- j et P(x,)  = vi- ; 

(b) faire j t j + 1. 

3. Sélectionner x i  et p(x:) tels que xi E argmin{c(x,) : x,  E D,,}. 

4.4.4 Réoptimisation . 

Supposons que certains sommets sont enlevés du gaphe et l'on doit, de nou- 

veau, déterminer un chemin optimal sur le gaphe  résiduel. Soit V' l'ensemble des 

sommets restants et posons à +m, le coût sur chaque arc (vi, v j )  E A quittant un 

sommet vi E V\V', Le., un sommet ne faisant plus partie du graphe. La procédure 
de la phase 2 ci-dessus donne toujours un chemin optimal (en moins de temps que 

sur le graphe initial) si V est remplacé par Y' dans la récurrence. 

D'une manière similaire, la procédure de la phase 2 permet de trouver un che- 

min optimal (s'il en existe) qui soit contraint de passer par un arc donné si le coût 

sur cet arc est négatif mais de valeur absolue M sufiamment grande. Par exemple 
M, peut être égal à 2n fois la plus grande valeur absolue des coûts sur les arc. Il 



est clair que s'il n'existe pas de chemin réalisable passant par l'arc spécifié, alors le 
chemin trouvé ne contiendra pas cet arc. Ceci peut être vérifié en O(n) opérations 
après avoir effectué la récurrence de la phase 2. 

Le résultat suivant est donc immédiat, à partir des proposition 4.4.4 et 4.4.5. 

Théorème 4.3 Une première résolution de RCSPP requiert O(@ 1721) opémitioris. 
Toute résolution subséquente nécessite un temps O($), si  le vecteur de ressource 
initial ou les coûts sur les arcs sont modifiés ou si cwtains sommets ou arcs 

sont interdits ou f iés  pour le chemin optimd. 

Rappelons que le paramètre 8, dans la complexité des phases 1 et 2, est inférieur 
ou égal au paramètre ip dans la complexité de l'algorithme de programmation dy- 

namique. En outre, puisque la proposition 4.4.3 garantie que seuls les sous-chemins 
pouvant ëtre prolongés en chemins VI-v, réalisables sont considérés durant la phase 2, 

la charge de calcul de la phase 2 sera, en pratique, nettement plus faible que celle de 

la phase 1 (voir la section 4.5). 

Une fois la phase 1 effectuée, seule la phase 2 est nécessaire en cas de réoptimi- 

sation. Ceci confere un avantage potentiel à l'approche en deux phases par rapport 

à la programmation dynamique si le problème de plus court chemin avec fenêtres de 
ressource doit être résolu de manière répétitive. 

Par ailleurs, en examinant le comportement de pire cas de l'algorithme en 

deux phases, on constate que la complexité de l'algorithme d'étiquetage permanent 

présenté dans Desrochers et Soumis [20] et dans Desrosiers et al. [22] est sur-évaluée 

(voir la section 1.3.2). 

En effet, les auteurs donnent une complexité de O(D*) où D = C,,,(bil - 
ail + 1) pour le problème de plus court chemin avec fenêtres de temps, alors que, 

d'après la section 4.1 (et la section 4.4.l), nous avons 9 5 (n - 1) D < D2. Puisque 

l'algorithme d'étiquetage permanent ne retient que les vecteurs de ressources non 

dominés à chaque sommet, le nombre d'étiquettes à considérer est nécessairement 



borné par 0. La difFérence 6 et D2 est particulièrement importante quand les fenêtres 
de ressource sont relativement large, ou quand les mises à jour des consommations 
de ressource ne sont pas permises, puisque, dans ce cas, la formulation discutée dans 
Desrochers et Soumis [20] et dans Desrosiers et al. [22] implique un dédoublement de 
ressource. 

4.4.5 Exemple 

Nous présentons ci-après une illustration des phases 1 et 2 de I'agorithme en 
utilisant le graphe de la figure 4.4. 

Figure 4.4 - Illustmtzon de 1 'algorithme en deuz phases 



Phase 1 

Étape (2): 

Itération i 

1 5 

2 4 

3 3 
4 2 

5 1 

Étape (3): 

Di = {(O, O), (0, l ) ,  ( O ,  2)), 4 = D3 = D4 = D5 = D6 = 0, j = 2. 

Itér. j R(xj) ,  for t j  E Di 



Phase 2 

Itération 

Étape (3): chemin optimal: Pm* = {(vl, v3); (v3, 74); (v4, v6)), coîit = 312. 

Dans cet exemple, seuls les chemins, dont le vecteur de ressource initial mis à 

jour (B(vl, xo)) a une valeur de O pour la première ressource et de O, 1 ou 2 pour 
la seconde, peuvent donner des chemins réalisables au puits. En plus, un tel chemin 

ne peut visiter le sommet v*, puisque 4 = 0. On peut également remarquer que 
le chemin ((vl, v3); (v3, us); (v5, va)) est aussi réalisable alors que Pm ne sera plus 
réalisable si les contraintes de mise à jour ne sont pas actives au sommet vd. 

De telles contraintes de mise à jour sont d'une grande importance dans certaines 

applications des plus courts chemins avec contraintes de ressource. C'est en particulier 

le cas en confection d'horaires de personnel où certaines *ables du problème doivent 

être mises à jour après des jours de congé (voir le chapitre 5). Nous discutons dans 
la prochaine section quelques variantes de la stmcture des fenêtres de ressource, 
susceptibles d'être rencontrées en pratique. 



4.4.6 Quelques extensions 

Fenêtres de ressource multiples 

Considérons une situation où, pour une ressource r et un arc (vi, v j )  donnés, il y 

a plusieurs intervalles de réahabilité [ a j r ,  ajr] avec la condition que les contraintes 

de fenêtres de ressource (1.3) doivent être satisfaites pour au moins l'un d'entre eux, 
sur tout chemin réalisable passant par (vi, vj). Ceci est illustré, dans I'application aux 

horaires d'idrmières, discutée au chapitre 5, par la ressource utilisée pour traiter les 
rotations entre les affectations de jour, du soir et de nuit. 

Les algorithmes présentés dans ce chapitre s'appliquent encore, moyennant 

quelques modifications mineures. Soit Wijr l'ensemble de toutes les paires (24,,, wjr) 
associées à l'arc (vi, vj), pour une ressource t donnée. La plus petite valeur de % 
et la plus grande valeur de Gu, sur l'arc (vit v,) doivent être considérées, respective- 

ment, comme %j, et lors du calcul de p.. et de Pijr. Les conditions (xj,, Yijr) E 
43'- 

Wi jr, r E R, doivent aussi être introduites dans les dinérentes récurrences, chaque 
fois que wijr 5 Xir 5 q, est impliquée, Le., le calcul doit être répété pour chaque 
fenêtre défini sur l'arc. 

Mise B jour d6penda.t des arcs 

Une autre extension du problème consiste à associer les valeurs de seuils et de 

mise à jour des ressources a u  arcs plutôt qu'aux sommets. Cela revient à définir - 
kj r ,  hijrl 3jr, et zijr POU chaque arc (v;, vj) E A et chaque ressource T E R. Ces - 
valeurs remplacent hjr, hjrp gjr, et Fjr d m  le calcul de X ,  = B(vj, X; + ui,), si un 

chemin VI-v; de vecteur de consommation de ressource xi est prolongé en utilisant 

l'arc (Vit v j )  E A. 

Les sedes modifications aux récurrences "en avant", discutées précédemment, 

consistent à remplacer -1+ p = min(hlr, gl,, q,), ip,r = max{hl,, zIr) et XI = 
*(VI, 20) par glr = min{xljr : (VI, vj) E A), pl, = ma~{lÜ~~,  : (q , yj) € A)  et 21 = 



xo respectivement, et à éliminer le test q ( u l ,  xO) E Ul, là où c'était nécessaire. La 
récurrence "en arrière" de la section 4.4.2 reste inchangée. 

Coûts dépendant des consommations de resources 

Considérons le cas où le coût c, sur l'arc (vi, vj) est une fonction du vecteur 
de ressource x, o.i sommet vie Par exemple, supposons que si l'arc (v,, vj) est utilisé, 

alors la mise à jour en vi implique un coût supplémentaire. Un autre exemple consiste 

à appliquer une pénalité si la consommation de ressource résultant au sommet vj 
s'écarte d'une valeur-cible, avant ou après mise à jour. Une discussion sur ce type de 

problèmes peut être trouvée dans Ioachim et al. [40] et dans Desaulniers et al. [Ml. 

Les phases 1 et 2 restent toujours valides. Il est clair que la phase 1 ne re- 
quiert aucune modification, puisqu'aucun calcul de coût n'y est fait. La phase 2 reste 
également inchangée puisque tous les prédécesseurs du sommet vj sont traités avant 
vj et le calcul de xi- = ar-{c(xi) + c, : x, E R(x,)) est effectué en examinant 
séquentiellement les arcs. Connaissant xj, il suffit de calculer le coût approprié pour 
chaque xi E R(xj) individuellement et d'en retenir le minimum. 

En plus, l'algorithme reste valide si la fonction de coût c(xi) + c, est remplacée 
par n'importe quelle fonction fv (xi, c(x,)) non décroissante par rapport à c(x,). La 

complexité de la phase 2 augmentera cependant d'un facteur égal à la complexité 

de l'évaluation de fi,. Nous présentons dans la section suivantes quelques résultats 
numériques sur le gain en temps de calcul que permet l'algorithme en deux phases. 

4.5 Tests numériques 

Considérons, pour fins d'illustration, le problème de la génération d'un horaire 

individuel pour une personne. La personne peut effectuer chaque jour un type de 

quart de travail, parmi plusieurs, à moins qu'elle ne soit en congé. Les quarts dinérent 
par leurs durées et les périodes couvertes (jour, soir, nuit). 



Il s'agit de trouver une séquence de quarts de travail et de congés, qui minimise 

le coût salarial tout en satisfaisant différentes contraintes de la convention collective. 
Les contraintes considérées concernent la charge de travail, les congés statutaires ou 
de fin de semaines, la rotation entre les quarts de jour, du soir ou de nuit (en termes 
du nombre d'affectations consécutives de chaque type) et le pourcentage global des 
quarts de jour, du soir ou de nuit. Ce problème peut se formuler comme celui de plus 
court chemin discuté dans ce chapitre, où les sommets correspondent aux quarts de 

t r a d  et les ressources sont définies de manière à tenir compte des contraintes de la 
conventions collective. Les détails de la modélisation seront discutés au chapitre 5. 

L'algorithme a été testé sur des données en provenance du Centre des Naissances 
de l'Hôpital Royal Victoria de Montréal. Jusqu'à sept ressources sont considérées 
dans les tests. Les trois premières ressources permettent de contrôler respectivement 
la charge de travail, les fins de semaines et les affectations consécutives en cas de 

rotation. Les trois ressources suivantes servent à suivre les pourcentages de quarts de 

chaque type et la dernière ressource est utilisée lorsqu'un certain nombre de jours, 

dans une liste de candidats connus, doivent être accordés comme congés. 

Tableau 4.1 - Fenêtres d 'étendaes minamales et maximales 

Ressources Seuils de mise. à jour 

Charges de travaii [O, O] 
Fins de semaines [ 1, 11 [ -1, 11 

Rotation ,[ 1 7  31 

Ratio de jours [ o,o] 

Ratio de nuits [ 09 01 [ 0, 281 

Ratio de soirs-nuits1 [ O, O] [ 0, 281 

val. de mise à jourll~ornes de réalisab.1 

Le tableau 4.1 donne les fenêtres de plus petite et de plus grande étendues pour 

chaque ressource. L'horizon considéré est de quatre semaines (28 jours) et la personne 
peut recevoir 5 quarts différents. Certains jours de congé sont connus a priori et ne 



sont pas considérés dans le graphe. Les nombres de sommets et d'arcs sont donnés au 
tableau 4.2. Notons qu'il s'agit d'un multigraphe (certains sommets sont directement 

connectés par plus d'un arc), ce qui explique le nombre relativement élevé d'arcs. 

Tableau 4.2 - Perfomunces des phases 1 et 2 en fonction du nombre de ressources 

1 Réseau I I  Ressources I I ~ e m ~ s  CPU (sec.) 11 Vecteurs de ressource 1 

Tableau 4.3 - Performances des phases 1 et 2 en fonction de lu taille du réseau 

Nb.de 
sommets 

134 

134 

134 

134 

134 

Les tests ont été effectués sur une station de t r a d  Sun Ultra 2, en variant, de 

2 à 6, le nombre de ressources simultanément actives. Cela correspond aux situations 

rencontrées en pratique. Les tableaux 4.2 et 4.3 donnent les temps de calcul pour 

les phases 1 et 2. On y trouve également le nombre total de vecteurs de ressource 

examinés, de même que le nombre et le pourcentage des vecteurs restant après la 

phase 1. Les ressources, de 1 à 7, correspondent respectivement à la charge de travail, 

Nb. 

d'arcs 

8808 

8808 

8808 

8808 

8808 

Réseau 

+ 

+ 
+ 
+ 

Nb. de 

sommets 

134 

274 

554 

1114 

L 2234 

Nb. 

d'arcs 

8808 

21592 

47240 

98536 

201128 

Ressources 

1 2  

+ 
+ + +  

+ 
+ 
+ 

- 

1 

+ 
+ 
+ 
+ 
+ 

- 

+ 
+ 
+ 

2 

+ 
+ 
+ 
+ 
+ 

Temps CPU (sec.) 

3 4  

- 
- 

+ 
+ 
+ 

3 

+ 
+ 
+ 
+ 
+ 

Phasel 

1.360 

3.490 

7.810 

16.440 

33.970 

Vecteurs de ressource 
Phase2 

0.010 

0.020 

0.060 

0.130 

0.250 

Total 

145251 

371992 

826074 

1734238 

3550566 

5 

- 
- 
+ 
- 
- 

4 

- 
- 
- 
- 
- 

Nb. de 

restants. 

1240 

2791 

5893 

12097 

24505 

6 

- 
- 
- 

5 

- 
- 
- 
- 
- 

% de 
restants. 

0.854 

0.750 

0.713 

0.698 

0.690 

7 

- 
- 
- 

6 

- 
- 
- 
- 
- 

7 

- 
- 
- 
- 
- 

- 

Phasel 

0.460 

1.360 

104.690 

+ 
+ 

134.880 

76.950 

- 
+ 

Phase2 

0.010 

0.010 

0.180 

0.260 

0.090 

Total 

52862 

145251 

12252159 

15674263 

7812785 

Nb.de 
restants. 

768 

1240 

18252 

% d e  
restants. 

1.453 

0.854 

0.149 

24215 

9617 

0.154 

0.123 



aux fins de semaines, aux rotations, aux ratios de quarts de jour, de nuit et de soir- 

nuit, ainsi qu'aux congés statutaires. Un signe + indique une ressource active et 
un - le contraire. Le tableau 4.2 donne les résultats pour un horizon d'un mois 

en considérant les sept ressources. Dans le tableau 4.3, seules les trois premières 

ressources sont prises en compte, pour un horizon dont la longueur est le double de 

celle de la ligne précédente. 

Ces résultats suggèrent que, sur les problèmes relativement difficiles, moins de 
1% des vecteurs de ressource sont associés à des chemins réalisables. Cela correspond 

à un g a i .  considérable de temps de calcd en cas de réoptimisation. L'efficacité de la 

méthode élimine pratiquement la nécessité d'une heuristique lorsque ce problème est 

incorporé dans un processus de génération de colonnes. Ce cas peut notamment se 

piésenter lorsque les horaires générés doivent satisfaire les contraintes de demandes 

impliquant plusieurs employés simultanément. Le chapitre suivant est consacré à la 

modélisation et à la résolution pratique de ce problème plus général. 



CHAPITRE 5 

APPLICATION AUX HORAIRES 
DE PERSONNEL SOIGNANT 

Nous montrons dans ce chapitre que la formulation du problème de plus court 

chemin avec fenêtres de ressource discutée au chapitre précédent permet de modéliser 

aisément le problème d'horaires de personnel soignant décrit à la section 1.4. La 

section 5.1, ci-après, est consacrée au problème de la confection d'horaires réalisables 

pour une personne. Un modèle est présenté à la section 5.2 pour regrouper les horaires 

individuels afin d'obtenir une configuration réalisable par rapport aux quotas de 

présences. Le reste du chapitre traite d'une procédure d'énumération implicite qui 

permet d'améliorer d'une manière itérative la configuration obtenue. 

5.1 Génération d'horaires individuels 

La réalisabilité d'un horaire individuel est définie à partir des contraintes de 

la convention collective s'appliquant à la personne concernée. Les contraintes con- 

sidérées correspondent aux principales règles utilisées par les infirmièreschefb à l'hôpital 

Royal Victoria de Montréal lors de la confection des horaires. 

Il s'agit des règles relatives B la charge de travail, aux congés de fins de semaines, 

à la rotation entre les afZectations de jour, du soir et de nuit, aux pourcentages respe- 

ctifs de ces différents types d'affectations et enfin aux congés statutaires. Le modèle 

est formulé de sorte qu'un horaire individuel corresponde à un chemin réalisable de 

la source au puits, dans un graphe ayant la structure décrite à la section 1.3. 



5.1.1 Sommets et arcs 

Soit un graphe orienté acyclique, G = (V, A), avec n = 1 VI sommets V I ,  vz, . . . , v, 

et m = IAl arcs. Un sommet vi correspond à une affectation au quart de travail ti le 
jour 4. Les sommets sont supposés ordonnés dans le temps, avec v l  et v, représentant 
la source et le puits respectivement- 

Ainsi, tl et dl se réferent à la dernière affectation reçue par l'infirmière au cours 

de l'horizon précédent, alors que t,, et d, sont des affectations fictives. Les sommets 
correspondant à des congés déjà accordés ou à des quarts de travail inacceptables 
pour la personne considérée, sont éliminés du graphe. 

Un arc (viY vj) est dans A si, selon les règles de la convention collective, l'in- 
firmière peut recevoir le quart ti le jour & puis le quart t ,  le jour d j ,  tout en ayant 

un repos ou un congé durant tout le temps compris entre ces deux dectations. No- 
tons que si d j  = d, + l alors l'infirmière n'a pas de congé, Le., les affectations sont 
consécutives, sinon, elle est en congé durant les jours 4 + 1 à dj  - 1. 

Le nombre de jours de congé dans ce dernier cas doit, cependant, être égal ou 
supérieur au nombre minimum de jours de congé que la personne peut recevoir après 
une suite d'affectations consécutives se terminant par un quart ti. Cette borne peut 

dépendre des quarts de travail ti et t,, ainsi que des jours di et d j .  

Nous nous référerons au problème de plus court chemin avec fenêtres de res- 
source RCSPP, introduit à la section 1.3 pour caractériser les séquences d'affectations 

admissibles, en accord avec les règles de la convention collective considérées. Les res- 

sources de l'ensemble R, associé au graphe G = (V, A), permettent de contrôler 

adéquatement les caractéristiques de l'horaire comme, par exemple, la charge de tra- 

d, les fins de semaines travaillées et les rotations. 

Les seuils et les valeurs de mise à jour sont utilisés pour réajuster, entre autres, 

les compteurs d'affectations consécutives de même type, par exemple après un congé. 

Le vecteur de ressource initial xo permet d'initialiser le chemin avec de l'information 
relative à l'horaire reçu par l'infirmière au cours de l'horizon précédent. 



Le coût et le vecteur de ressource associés à un sous-chemin donné, caractérisent 

la séquence d'affectations reçues jusque là. Les fenêtres de ressource, sur un arc (vi9 v j )  

quelconque, sont satisfaites uniquement si l'affectation associée à vj peut s'ajouter à 

celles reçues jusqu'en vi. 

Dans le but de contrôler convenablement la séquence des congés de fins de 

semaines, les arcs arrivant à un sommet représentant un samedi ou un dimanche en 

provenance de la source ou d'un sommet qui ne correspond pas à un jour de fin de 
semaine sont dédoublés. C'est également le cas pour les arcs permettant de sauter 

au moins une fin de semaine complète. 

La première occurrence de chacun de ces arcs dédoublés est utilisée pour les fins 
de semaines consécutives où la personne travaille, tandis que l'autre copie correspond 

à des congés consécutifs de fins de semaines complètes. Un exemple est décrit à la 

section suivante en même temps que la ressource Rz utilisée pour contrôler les fins 

de semaines consécutives. 

Les valeurs de ressource sur les arcs quittant la source dépendent, entre autres, 

du quart de t r a d  que l'infirmière a reçu le dernier jour qu'elle a travaiilé au cours de 
l'horizon précédent. Ainsi, plus d'un arc (vl, v,) pourraient être nécessaires pour un 

sommet vj donné, afin d'assurer une jonction correcte entre deux horizons consécutifs. 

C'est en particulier le cas si dj est le premier jour de l'horizon courant et des rotations 

entre affectations de jour, du soir et de nuit sont quelques fois permises sans congé. 

Un dédoublement d'arc est alors nécessaire. La première occurrence d'un tel 

arc est utilisée lorsque les quarts de travail associés aux deux bouts de l'arc sont de 

même type, alors que la deuxième copie correspond au cas où les types de quarts 

sont différents. Un exemple est présenté à la section suivante en même temps que la 

ressource Rg permettant de contrôler les rotations. 



5.1.2 Définition des ressources 

Nous exposons ci-après les détails de la modélisation des principales règles de la 

convention collective qui sont considérées. Les ressources utilisées correspondent res- 

pectivement au nombre d'heures de travail cumulées, au nombre de fins de semaines 

consécutives, au nombre de quarts de travail consécutifs de même type, au nombre 

total de quarts de travail de même type et au nombre de jours de congés statutaires 
dans l'horaire. 

En un sommet vil les seuils de mise à jour, kr et Kir) définissent I'intenmlle 

[h,,, Kr] des valeurs de la ressource r pour lequelles une (ré-)initialkation n'est pas 

nécessaire. Les valeurs de mise à jour, sr et Z*, sont utilisées pour (ré-)initialiser la 

ressource r si vi est choisi mais que la valeur courante de r n'est pas dans [&,, Kr]- 
Notons que les valeurs de kr et Kr sont respectivement égales à celles de -, et Zir 

pour la charge de travail, les rotations et les congés statutaires, mais pas toujours 

pour les fins de semaines et les pourcentages de quarts de jour, du soir ou de nuit. 

Lorsque les atfectations correspondant à deux sommets vi et vj sont chosies 
sans congé, la fenêtre [xjr9 WJijr], sur l'arc (vi, v,), définit les valeurs de la ressource 

r qui sont acceptables au sommet vi, après (ré-)initialisation. La valeur de r varie 

alors de la quantité uijr avant une éventuelle ré-initialkation en vie 

Ressource RI: charge de travail 

Une spécification typique de la charge de travail est que la personne doit travail- 

ler au moins & unités de temps (par exemple, des heures) et au plus unités pour 

le bloc de deux semaines (prédéfi) contenant un sommet vi donné. En pratique, 

$ = R', pour le personnel permanent, s'il n'y a pas de Mcance ou de congé statu- 

taire. La ressource RI est utilisée pour compter le nombre total d'heures cumulées 

durant chaque bloc de deux semaines. La durée du quart ti associé à un sommet vi 

sera notée Rl(ti), avec Rl(ti) = O si vi est la source ou le puits. 



Si le sommet v, correspond à la source, au puits ou au dernier jour d'un bloc de - - - 
deux semaines, on a [hl,  hl] = [O, O] et %l = zil = O. Sinon, [ h l ,  hil] = [Rl(ti), R;] 

1 
et si = Ri(ti), Ki = RI. 

Soit un arc (vis vj)- NOUS présentons d'abord le cas où vi correspond à la source 

ou au dernier jour d'un bloc de deux semaines. Si vj est le puits alors [ajl, vijl] = 

[O, O] et uvl = O. Sinon, supposons que v, correspond au dernier jour d'un bloc de 

deux semaines. On a alors uijl = -R. Si vj est dans le même bloc de deux semaines 
- 

que vil on a [ ~ l ,  wiji] = [& - Rl(tj), - Rl(tj)], sinon %jl = O OU zjl = +CC 

selon que & 5 Ri( t j )  OU non, et Zijl = O OU Eijl = -, selon que 3 R t ( t j )  OU 

non. Supposons que vj ne correspond ni au puits ni au dernier jour d'un bloc de deux 

semaines. On a alors u,l = Rl(tj). Si vj est dans le même bloc de deux semaines que 
- 

vil on a [ a j l ,  wiji] = [Rl(ti), - Rl(tj)], sinon [xjl> 

Considérons maintenant le cas où vi n'est ni la source ni fe dernier jour d'un 

bloc de deux semaines. Si vj est le puits alors [ x j l ,  = [&, q] et uijl = 0. 
Sinon, supposons que U j  est le dernier jour d'un bloc de deux semaines. On a alors 

- u,l = -$. Si vj est dans le même bloc de deux semaines que ui, dors [ w l ,  wijl] = 

[& - R1(tj), $ - Rl(tj)], sinon wijl = & OU zjl- = +OO selon que & 5 Rl(tj) 
i 

OU non, et wijl = RI OU Wul = -00 selon que > Rl(tj) ou non. Supposons 
que v, n'est ni le puits ni le dernier jour d'un bloc de deux semaines. On a alors 

-.i - 
uijl = -RI-1. Si vj est dans le même bloc de deux semaines que vi, on a [tu&, wijl] = 

- 
[Rt(ti), R: - Rl(tj)], sinon [Niil, wiji] = [&y R;]- 

Ressource R2: congés de fins de semaines 

Cette ressource est utilisée pour compter les fins de semaines consécutives, 

de manière à s'assurer que l'infirmière travaille un certain nombre de fins de se- 

maines consécutives, puis est en congé durant un nombre donné de fins de semaines 

consécutives. Les valeurs positives de R2 correspondent aux fins de semaines où l'in- 

firmière t r a d e  et les valeurs négatives aux congés. Les bornes sur le nombre de fins 
de semaines consécutives où la personne peut travailler sont R, et R2. Les valeurs 
correspondantes pour les congés de fins de semaines sont & et Ri. 



Il est nécessaire d'effectuer des mises à jour lors d'une transition d'une suite de 

congés de fins de semaines consécutives à une suite de fins de semaines où la personne 

t r a W e ,  ou vice versa. Pour cela, les arcs arrivant à un sommet de fin de semaine, 

en provenance de la source ou d'un sommet qui ne correspond pas à un jour de fin 

de semaine, sont dédoublés. Il en est de même pour les arcs qui permettent de sauter 

une fin de semaine entière. Des consommations de ressource différentes sont associées 

à chaque copie d'un arc dédoublé. 

Par exemple, considérons une infirmière qui a un congé durant une h de se- 

maine complète donnée. La ressource R2 doit varier de -1 si elle était égaiement en 
congé la fin de semaine précédente. Sinon, la valeur de la de ressource R2 est stricte- 

ment positive avant le congé et sa variation doit être telle qu'une remise à jour à -1 

soit requise après après avoir choisie l'arc liant les deux sommets impliqués. Ainsi, 

deux copies de l'arc doivent être disponibles, pour permettre chacune des deux va- 

riations. 

Soit un sommet vi donné. Si vi correspond à un jour de fin de semaine. on a - - - - [k2' hi2] = [l, R2] et 5 2  = Zi2 = 1. Sinon [hi2, hi2] = [-$! R2] et &2 = xi2 = -1. 

Notons que la MLeur de cette ressource au puits est reportée à la source pour l'horizon 

suivant, afin d'assurer une continuité dans l'attribution des congés de fins de semaines. 

Considérons un arc dédoublé (vil vj). Si v, est un sommet de fins dé semaine 
- 

on a [aj2> wij2] = [O, R2 - l] et uij2 = 1 sur la premières occurrence de (vil vj) et 
- * 

[ ~ 2 ,  wij2] = [-R2, -&] et uij2 = O sur la seconde copie. Sinon. vj implique un 
- 

congé de £in de semaine entière. On a alors [xj2' G ~ ~ ~ ]  = [B2, R2] et = Rz + 1 
- -J pour la premières occurrence de (vil vj) et [ a j2 ,  wij2] = [-4 + 1, O] et ~ i j 2  = - 1 

pour la seconde copie. 

Soit un arc non dédoublé (v,, v j )  Si aucun des deux sommets ne correspond 
-I - 

à un jour de fin de semaine, on a [xj2' GTij2] = [-4, R2] et uij2 = O. Si vi et V, 
- 

conespondent à des fins de semaines différentes, [xjz, wij2] = [l, R2 - 11 et ~ i j 2  = 1. 
- - 

Pour tous les autres cas, on a [xjzI wij2] = [l, R2] et uij2 = O. 



Ressource R3: rotations 

La rotation consiste à se déplacer entre les quarts de jour, du soir et de nuit. La 

rotation peut, dans le cas général, être permise avec ou sans congé. Le nombre d'affec- 

tations consécutives que l'infirmière doit recevoir avant une rotation est généralement 

limité par une borne inférieure et une borne supérieure pour les différents types de 
- - 

quarts. Nous utiliserons aD et R:, &* et R:, ainsi que aN et R: pour représenter 

ces limites inférieures et supérieures pour les affectations de jour. du soir et de nuit 

respectivement. La ressource R3 est utilisée pour compter Ie nombre d'affectations 

consécutives correspondant au même type de quart de travail. 

correspondent aux valeurs de R3 pour les quarts de jour, du soir et de nuit, respecti- 

vement. La ressource R3 doit être remise à jour après un congé ou une rotation. On 
-D -E -N -D -E -N 

a [br Lj = [O, R3 + R3 + R3It s3 = O  et Zi3 = R3 + R3 + R3 pour lasource et - -D -D 
le puits, et [b3, hi3] = [l. R3 I r  a3 = 1 et T,3 = Rt pour un sommet correspondant 

à un quart de jour. Pour les sommets associés à des quarts du soir ou de nuit. ces 

valeurs sont égales aux bornes correspondantes pour la ressource R1 

Supposons que l'infirmière reçoit un quart de jour, le premier jour de l'horizon. 

La ressource R3 aura une croissance unitaire si l'infirmière avait également reçu un 

quart de jour, le dernier jour de l'horizon précédent. Si elle avait plutôt r e p  un quart 

de nuit, alors la valeur de R3 doit être posée à 1, Le., R3 doit décroître d'une quantité 

égale à sa valeur courante moins 1. Par conséquent, un dédoublement d'arcs est 

nécessaire entre la source et les sommets correspondant au premier jour de l'horizon, 

si la rotation est permise sans congé (comme mentionné à la section 5.1.1). 

La fenêtre de la ressource R3 est [O, R: - 11 sur la première occurrence de 

l'arc (q, vi) tel que di est le premier jour de l'horizon et ti est un quart de jour; et 
-D -E -D -E -iv [R: + g, R3 + R3 ] U [ R ~  + R: + &N, R3 + R3 + R3 ] pour la seconde copie. Si 

ti est plutôt un quart du soir, la fenêtre est [O, O] u [R: + 1, R: + R: - l] pour la 
-D -E -N 

première occurrence de l'arc et ~ j > ]  U [z: + R: + &N, R, + R3 + R, ] pour la 
deuxième. 



Si le sommet vi correspond à un quart de nuit du premier jour de l'horizon, la 
-D -E -D -E -N 

fenêtre est [O, O] u [R, + R, + 1, R3 + R3 + R3 - 11 pour la première occurrence de 
-D -E 

l'arc (vl , vi) et [@, R:] U [R: + aE, R3 + R3 ] pour la deuxième. L'union de cet te 
-D -E -D -E -Iv 

dernière fenêtre et de [O, O] u [R, +R,  +g, R3 + R3 + R3 ] donne la fenêtre pour 

chacun des arcs restants qui partent de la source. 

Pour de tels arcs où la fenêtre de la ressource R3 est la réunion de piusieurs 

intervalles disjoints, la plus petite et la plus grande valeurs acceptables sont respec- 

tivement considérés comme $, et WijWij3 Si la rotation n'est pas permise sans congé, 

dors les secondes copie des arcs seront supprimées. 

Les arcs (vil un) tels que d, est le dernier jour dans l'horizon, ont pour fenêtre 

[l, R:] si ti est un quart de jour. Soit un arc (vil vj) tel que 4 n'est pas le dernier 

jour dans l'horizon. Lorsque ti est un quart de jour, la fenêtre est [1, R: - 11 si di et 
-D d j  sont des jours consécutifs et t ,  est aussi un quart de jour, et [aD, R, ] sinon. 

-D -E Si ti est plutôt UII quart du soir, la fenêtre est [R: + 1, R, + R, - 11 si d, et dj  
-D -E sont des jours consécutifs et tj est aussi un quart du soir; et [z: +&E, R3 + R3 ] sinon. 

-D -E -D -E -N Enfin, si ti est un quart de nuit, nous avons [R3 + R3 + 1, R3 + R3 i R3 - 11 si di et di 
-D -E -D -E -N sont des jours consécutifs et t ,  est un quart de nuit, et [R, + R, +g, R3 +RI + R3 ] 

sinon. 

La consommation de la ressource R3 sur un arc (vi, vj) donné, est 1 si d, et d, 

sont des jours consécutifs et ti et t, sont des quart de même type, par exemple si ti 

et t, sont tous les deux des quarts de jours. La consommation est égale à zéro sur les 

arcs (vi, v,) , où di est le dernier jour de l'horizon. 

Tous les autres arcs (vil vj) correspondent à des congés et impliquent une remise 

à jour de la ressource cumulée. La consommation sur chacun de ces arcs est égale 
- à 33 - W i j 3 ,  où gj3 est la valeur de mise à jour au sommet vj et Gij3 est la borne 

supérieure de la fenêtre de la ressource sur (vil v j ) ,  telle que donnée précédemment. 



Ressources 4, Rs et &: ratios des quarts de travail 

Les contraintes de la convention collective spécifient les règles pour la proportion 

des quarts de jour, du soir ou de nuit, dans l'ensemble des affectations reçues durant 

I'horizon. Les ressources &, R5 et & sont utilisées pour compter les affectations 

de jour, du soir et de nuit respectivement. Cependant, si un seul des trois ratios est 

requis, une seule des deux ressources restantes est utilisée pour compter les quarts 

de travail qui ne correspondent pas au ratio demandé. 

Par exemple, si le ratio de jour est suf5sant pour satisfaire la contrainte, dors 

& servira à compter les quarts de jour et une seule des ressources R5 et & sera active 

et servira à compter à la fois les quarts du soir et de nuit. Nous donnons ci-après les 

limites, aux sommets et sur les arcs, pour la ressource &. Les valeurs pour les deux 

autres ressources sont similaires. 

Soient 4, et la plus petite et la plus grande valeurs acceptables du ratio des 

quarts de jour par rapport au nombre total d'affectations dans l'horaire retenu. Le 

plus petit et le plus grand nombres d'affectations que la personne peut recevoir durant 

l'horizon sont notés R, et % respectivement. Considérons un sommet vi donné. Si 
- 

vi est la source, on a [h4,  b4] = [O, O] et s4 = Ei4 = O. Si v; est le puits, on a - - [h4, K4] = [O,  Ra], 34 = O et z*4 = Ra. Dans tous les autres cas, hi4 = sl( = 1 si v; 

correspond à un quart de jour, sinon hi4 = 2, = O. Si ui est différent de la source et -- -- 
du puits, on a hi4 = min{&, &Ra) et zi4 = &Ra + 1. 

- Considérons maintenant la consommation u i j d  et la fenêtre [-ii4, wij4]  pour 

un arc (vi, v,) donné. Si v, correspond à un quart de jour, on a les valeurs u;,4 = 1 -- -- 
et Eij4 = min{&, R4R, - l), sinon uq4 = O et gij4 = min(&, &Ra). Si vi est 

différent du puits et de la source, on a ~4, = 1 lorsque v; conespond à un quart de 

jour et xj, = O sinon. Pour la source et le puits, on a respectivement, xj4 = O et 

II faut noter cependant que cette structure de la ressource & permet seule- 

ment de trouver les valeurs comprises entre le nombre minimal et le nombre maximal 
d'affectations de jour, p o u  lesquelles il peut exister un ratio satisfaisant les limites 



imposées. Certaines combinaisons entre les valeurs de & et celles de la ressource qui 

compte les autres affectations peuvent donc ne pas satisfaire les limites de ratios im- 

posées. Par exemple, un chemin dont la consommation pour cette dernière ressource 

est égale à la limite inférieure mais dont la valeur de & est le maximum permis 

pourrait ne pas être réalisable. 

Pour tenir compte de cette particularité, un test supplémentaire sera intro- 

duit dans la phase 1 de l'algorithme en deux phases (voir section 4.4), lors de la 

caractérisation des consommations de ressource (étape 2a de l'algorithme). Le test 

consistera à ne garder, dans les ensembles Uin associés aux arcs arrivant aü puits, 
que les vecteurs de ressource xi qui satisfont les limites de ratios imposées. 

Ressource Ri: congés statutaires 

Supposons qu'au moins B7 et au plus R7 jours de congés doivent être accordés 

à l'infirmière à partir d'une liste D de jours candidats (par exemple, le 25 décembre 

et/ou le 1" janvier). La ressource R7 représente le nombre de ces jours de congés 

statutaires le long du chemin. 

Etant donné un sommet vi- On a S, = 5, = & si le jour d i ,  correspondant à 

vit est ultérieur au dernier jour admissible de la liste D. Sinon, Si, = 3, = O pour 

tous les autres sommets. Si 4 est antérieur au premier jour de D, on a hi, = 5, = 0. - 
Sinon, Lk4 = = R7. 

Pour tout arc (vil vj) E A, la consommation u , ~  de la ressource RT est égale au - 
nombre de jour de congé entre di et d j  qui appartiennent à D, et Gr = R7 - i l i j7 -  

Si di est ultérieur au dernier jour de D, on a xj, = & - Uiji, sinon, zj4 = 0. 



5.1.3 Coûts sur les arcs 

Les coûts sur les arcs sont définis de sorte que le coût total d'un chemin soit 

une combinaison linéaire des dinérents facteurs contribuant à la qualité de l'horaire. 

Le coût d'un arc (vi, vj) implique en particulier les préférences de l'infirmière, sa 

rémunération pour une afkctation au quart t j  le jour di, ainsi que la préférence (du 
décideur) de donner cette affectation à une personne de ce niveau de qualification. 

Diverses pénalités peuvent être ajoutées au coût de certains arcs indésirables 

tels que ceux qui impliquent une rotation sans congé. Le calcul détaillé des coûts sur 

les arcs tient également compte de la contribution de l'horaire dans la satisfaction 

des quotas de demande, i.e., sa contribution à la configuration complète des horaires 

de tout le personnel soignant. 

Le problème de la génération d'une configuration optimale d'horaires pour tout 

le personnel est abordé à section 5.2 et est formulé comme un programme linéaire en 
variables 0-1, où les colonnes de la matrice des contraintes correspondent aux horaires 

individuels réalisables. Ce problème sera appelé problème maître. Le coût sur chaque 
arc est défini de telle manière que le coût total d'un chemin corresponde au coût 

réduit de la colonne associée. Ainsi, la recherche d'une Mnable de coût réduit négatif 

pour un pivot de l'algorithme du simplexe, lors de la résolution du problème maître, 
revient à déterminer un chemin de coût réduit négatif. 

Pour garder une structure de problème de plus court chemin, pour le problème 

auxiliaire de génération d'horaires individuels, les coefficients utilisés dans la com- 

binaison linéaire définissant le coût sur un arc, sont négatifs pour les préférences et 

positifs pour les salaires. L'interaction avec les autres horaires de la configuration 

se traduit par la présence de multiplicateurs duaux de signe variable. Du fait de la 

présence de ces variables duales, le calcul détaillé des coûts sur les arcs sera présenté 

à la section 5.2.3, après avoir discuté la formulation du problème maître. 

Notons que la présence des contraintes de ressource utilisées pour modéliser 

les contraintes de la convention collective rend particulièrement ardue la résolution 



du problème auxiliaire d'horaires individuels. En effet, l'opérateur, Q( ., . ) . d'accu- 

mulation des consommations de ressource n'est pas nécessairement une fonction non 

décroissante pour une ressource donnée, le long du chemin. En outre, les fenêtres de 

ressource sur les arcs définissent des bornes rigides devant être absolument satisfaites. 

L'algorithme en deux phases discuté au chapitre 4 permet cependant de résoudre 
efficacement ce problème complexe de cheminement. Une fois la phase 1 effectuée, 

seule la phase 2 est nécessaire pour toutes les résolutions subséquentes du problème 

auxiliaire. Par ailleurs, au lieu de déterminer seulement le chemin de coût réduit 

minimal, on peut retenir, à la fin de la phase 2, tous les chemins réalisables de coût 
réduit négatif (s'il en existe) qui anivent au puits un. 

A notre connaissance, aucun autre algorithme spécialisé, dans la lit térature, 

ne peut être utilisé comme une boite noire pour ce problème. On peut, néanmoins, 

envisager une généralisation de l'algorithme d'étiquetage permanent présenté dans 

Desrosiers et al. [22] pour le problème de plus court chemin avec fenêtres de ressource 

aux sommets. Cependant, cette approche implique un dédoublement des ressources 

pour satisfaire les deux bornes des fenêtres. En outre, les tests de dominance utilisés 

dans cet algorithme ne s'appliquent pas dans le cas présent. 

5.2 Génération d'horaires de groupe 

Nous discutons ici un modèle de génération de colonnes en variables 0-1 pour le 

problème, plus général, de la recherche d'une configuration optimale d'horaires pour 

l'ensemble du personnel soignant d'une unité de soins. Ce modèle contient, comme 

problème a d a i r e ,  celui de la génération d'horaires réalisables pour une infirmière 

donnée. Le problème maître sélectionne les horaires individuels pour satisfaire les 

contraintes de demande tout en minimisant le coût saiarid et en maximisant les 

préférences personnelles et l'équilibre des équipes. 



5.2.1 Formulation de base 

Dans la formulation de base du problème maître, on minimise, pour le person- 

nel permanent, une somme pondérée, comprenant les rémunérations salariales, les 

préférences individuelles et l'équilibre entre les personnes expérimentées et celle qui 

le sont moins, sous les contraintes de satisfaction des quotas de demande. Des poids 

positifs sont associés aux salaires tandis que les préférences et l'équilibre des équipes 

ont des poids négatifs. 

Nous supposons que le salaire et La préférence de chaque infirmière pour chaque 

affectation potentielle, sont connus a priori. Les valeurs de préférence peuvent être 

obtenues, en pratique, en utilisant un système de points-quotas équitablement dis- 

tribués aux infirmières, comme dans Warner [62]. Les i h i è r e s  peuvent, également, 

indiquer des préférences globales, telles que "seulement des quarts de jours durant la 

semaine x" , à partir desquelles des valeurs de préférence spécifiques seront déduites 

pour chaque dectation potentielle. 

Le salaire et le niveau de préférence d'une infirmière pour un horaire donné sont 

ensuite calculés en additionnant (éventuellement après une normalisation), respec- 

tivement, ses rémunérations et ses préférences pour les affectations contenues dans 

l'horaire. La préférence de l'infirmière pour chaque aifectation et pondérée par son 

ancienneté. Ces calculs sont effectués durant la résolution du problème auxiliaire. 

Soient fk, et gks, respectivement, le niveau de préférence de l'infirmière k pour 

l'horaire potentiel s et sa rémunération si on lui attribue cet horaire. L'ensemble des 

jours de l'horizon est noté 2) et T désigne le nombre de quarts de travail. Chaque 

horaire potentiel s peut s'exprimer comme un vecteur de T x ID1 composantes aStd 

telles que: 

1 si l'horaire s implique une affectation au quart t le jour d 
asid = 

O sinon. 

On définit également les coefficients suivants: 



1 si l'infirmière k a le niveau de qualification l 
bkf  = 

O sinon, 

1 si le quart t couvre la période de demande p 
Qtp = 

O sinon. 

Les coefficients a,, sont utiles pour lier les horaires aux contraintes de demande, 

puisqu'un horaire est défini comme une séquence de quarts de travail et les quotas 

sont donnés par périodes de demande. Une illustration des quarts de travail par 

rapport aux périodes de demande, est donnée à la figure 1.4 (section 1.4). Soient 

également les variables de décision suivantes: 

f 1 si l'infirmière k recoit l'horaire s 

= 1 O sinon. 

Si K est le nombre d'infirmières et S le nombre total d'horaires individuels potentiels, 

alors le nombre d ' idmières de niveau de qualification t? qui ont reçu le quart t à la 

période p le jour d est donné par 

Le nombre d'infirmières dont le niveau de qualification fait partie d'un ensemble L 
donné et qui sont affectées à un quart de travail appartenant à l'ensemble 7, à la 

période p le jour d, est: 

La proportion de personnes expérimentées, parmi les infirmières qui sont af- 

fectées à la même période un jour donné, est un facteur important lors de la confection 

d'horaires de personnel soignant. Par exemple, l'infirmière-chef peut préférer affecter 

une infirmière-bachelière, une stagiaire et deux auxiliaires à une certaine période pour 

un jour donné, plutôt que deux infirmières-bachelières et deux auxiliaires, même si 

les deux équipes sont acceptables. 



Afm de tenir compte de ce type de spécification, on définit e L )  la préférence 

d'affecter une infirmière de niveau de qualification 4! à la période p le jour d. Si L est 

le nombre de niveaux de qualification, une fonction globale d'équilibre des équipes 

est donnée par: 
K S L T 

La fonction objectif du problème maître correspond alors à la somme pondérée 

suivante, sur tout l'ensemble des horaires potentiels: 

Les contraintes de partitionnement, 

sont nécessaires pour assurer que chaque infirmière reçoit exactement un horaire. 

Plusieurs quotas de demande peuvent être spécifiés pour une période p et un 

jour d donnés. Par exemple, le quota d'infirmières-bachelières devant recevoir des 

quarts de 8 heures peut être différent de celui de stagiaires et  d'auxiliaires devant 

effectuer des quarts de 12 heures ou de 8 heures, etc ... 

Ainsi, à chaque quota de demande pour une paire (p, d )  peut comprendre un 

sous-ensemble L de niveaux de qualification et un sous-ensemble 7 de quarts de 

travail. Soit &@, d) l'ensemble de toutes les paires (L, 7) associées à (p, d), et q ~ r  

le quota pour chacune de ces paires (L, 7). Les contraintes de demande peuvent se 

formuler comme suit: 



Les signes 5, =, and 2 représentent respectivement une satisfaction maximale, 
exacte ou minimale de la demande, tandis que P et V correspondent respectivement 
à l'ensemble des périodes de demande journalières et à celui des j o m  de l'horizon. 

Les contraintes d'intégralité suivantes: 

sont finalement requises pour assurer que chaque infirmière reçoit entièrement un 
horaire donné ou pas du tout. 

La formulation de base du problème maître consiste donc à minimiser la fonc- 

tion objectif (5.1), sous les contraintes (5.2) à(5.4). Ce modèle permet de résoudre le 
problème d'horaires pour le personnel permanent. En cas d'insuffisance de celui-ci, 
le modèle peut être légèrement modifié pour inclure le personnel non permanent. 

5.2.2 Le personnel flottant 

Lonqu'il y a trop ou trop peu d'infirmières permanentes pour satisfaire les 
quotas, le programme mathématique correspondant au problème maître peut ne pas 

avoir de solution. Dans ce cas, on peut éviter la non-réalisabilité en ajoutant des 

variables de déficit y iT  et en retranchant des variables de surplus y:?, non négatives, 

aux membres de gauche des contraintes de demandes (5.3). 

Un coût positif de très grande valeur absolue est associé à chaque variable 
ainsi introduite. Ces coûts ne sont cependant pas nécessairement les mêmes pour les 

variables y;,- et y&. 

Ces variables représentent respectivement le déficit et le surplus d'infirmières 

pour chaque niveau de qualification et de quart de travail, chaque période et chaque 
jour de l'horizon. En résolvant le modèle modifié, on peut donc obtenir une estimation 

du temps supplémentaire requis ou du besoin en personnel flottant (si les y'=- ne sont 
pas tous nuls), ou bien de la réduction de charge de travail pouvant être fait tout en 
satisfaisant les quotas (si les y& ne sont pas tous nuls). 



Les priorités d'affectations sont telles que la charge de travail régulière du per- 

sonnel permanent à temps plein ou à temps partiel doit être considérée en premier 

lieu. Ensuite, on prend en compte le temps supplémentaire pour les Srmières per- 

manentes à temps partiel, dans la limite d'une charge à temps plein. Finalement on 

considère les infinnières de l'équipe flottante basée à l'unité de soin. 

Par conséquent, si des variables fLT et y'& non nulles sont obtenues, on aug- 

mentera d'abord ia charge de travail maximale des infirmières permanentes à temps 

partiel désireuses de faire du temps supplémentaire. Ensuite, si nécessaire, le person- 

nel flottant basé à l'unité est introduite, en tenant compte de l'ancienneté dans les 

priorités. 

Notons que dans une formulation matricielle du problème maître, une colonne 
Ar,, a O sur ses K premières lignes sauf sur la ligne k, qui contient un 1. Chaque 

ligne d'indice (L, 7, p, c i )  a une valeur égale à: 

Chaque colonne AL, correspond à un horaire réalisable pour une infirmière 

k et doit donc satisfaire les contraintes de la convention collective, telles qu'elles 

s'appliquent à cette infirmière. Ces contraintes additionnelles sont prises en compte 

dans la structure du problème a d a i r e  (voir la section 5.1). 

Étant donné une solution courante du problème maître, la recherche d'un nouvel 

horaire doit tenir compte du niveau de satisfaction actuelle des quotas. Ceci peut se 

faire en incorporant les multiplicateurs duaux, associés à la solution courante, dans 

le calcul des coûts sur les arcs dans le problème a d a i r e .  



5.2.3 Calcul des coûts sur les arcs 

Soient X le vecteur de variables duales associées à la solution optimale d'une 

relaxation Linéaire du problème maître, et Wks le poids total de la variable y&, dans la 

fonction objectif du problème maître. Le coût réduit de la colonne Al, peut s'écrire 
- 
W k s  = Wks - X AL,.  Le poids Wks comprend le salaire gk, et le niveau de préférence 
fks de l'infirmière, de même qu'un troisième terme correspondant à la préférence (du 

décideur) pour son niveau de qualification: 

Les coûts sur les arcs sont déduits en développant l'expression de Wrs et en la posant 

égale au coût &,,,q),, qjzij du chemin associé à la colonne Ar., oii c, est le coût 

sur l'arc (vi, v j )  et zij est égale à 1 si l'arc (vil v j )  est sur le chemin et O sinon. 

Le salaire de l'infirmière k comprend un salaire de base g: et une rémunération 

supplémentaire 6, pour l'affectation au quart t j  le jour di. Le calcul de fk ,  implique 

un ajustement selon une mesure, r k ,  de l'ancienneté de l'infirmière k, ainsi qu'une 

réduction par une quantité ft proportionnelle au niveau de préférence de son h e  
raire pour l'horizon précédent. Ceci permet d'incorporer une certaine équité dans la 

génération des horaires d'un horizon à l'autre. Soit fi, la préférence de l'iqfirmière k 

pour le quart de travaii t j  le jour 

gks  = 

Soit un sommet vjl tel que dit = d et t , ~  = t, alors, étant donné un horaire s, on a: 

Par conséquent, le terme correspondant à la préférence pour le niveau de qualification 

de l'infirmière peut se récrire: 



Considérons maintenant Cl l'ensemble des quadruplets (p ,  dl L, 7) représentant 
les contraintes de demande (5.3) du problème maitre. Soient A~ la variable duale 
associée à un certain élément de C et Ar la variable duale correspondant à la k-ème 
contrainte (U), alors: 

En utilisant (5.5) et en introduisant le paramètre 

( 1 s i t € T e t d t = d  
O sinon, 

on obtient: 

Finalement, en posant le coût réduit Wka égal à la longueur du chemin associé 
à Akai on a les longueurs d'arcs: 

- pour les arcs ( V I ,  v j )  quittant la source: 

- pour tous les autres arcs (vi ,  v j ) :  



5.3 Résolution du problème maître 

5.3.1 L'arbre de branchement 

On utilisera un schéma d'énumération implicite combiné avec la méthode de 

génération de colonnes pour résoudre le problème maître. Il s'agit d'un problème de 

gande taille: le nombre de variables est égal à celui d'horaires individuels potentiels 

(i.e, au nombre de chemins dans le réseau) multiplié par le nombre d'employés. 

Une abondante littérature existe sur l'utilisation de la génération de colonnes 

pour résoudre les programmes linéaires de grande taille en variables entières ou mixtes 

(voir, par exemple, Barnhart et al. [6], Hansen et d [37] ou Vanderbeck et Wolsey 
[6l]). Si une méthode d'énumération implicite est utilisée pour résoudre le problème, 

il essentiel de définir des sous-problèmes dont la structure soit compatible avec celles 

du problème maitre et du problème auxiliaire. 

Le sous-problème, à un noeud donné de l'arbre d'énumération, comprend le 

problème maitre initia1 et une série de contraintes de branchement. La relaxation 

continue de ce sous-problème est résolue par génération de colonnes. En d'autres 

ternes, cette relaxation est résolue à I'optimaüté, par la méthode du simplexe, pour 

seulement un sous ensemble de colonnes (horaires potentiels), afin d'obtenir des va- 

riables dudes qui sont ensuite introduites dans le problème auxiliaire pour générer 

de nouvelles colonnes de coûts réduits négatifs, incluant, de préférence, celle de coût 

réduit minimal. S'il n'existe pas de colonne de coût réduit négatif, la solution courante 

est optimale pour la relaxation continue du sowproblème. 

De nouveUes branches (i.e. sous-problèmes) sont créées si la solution est réali- 
sable mais fractionnaire et de plus petite valeur que la meilleure solution entière 

connue. Si par contre la solution est entière, elle peut être utilisée pour mettre à jour 

la meilleure solution entière connue. Un nouveau noeud est ensuite sélectionné et Ie 

processus recommence, jusqdà ce que l'arbre soit entièrement exploré. 



5.3.2 La règle de branchement 

Le branchement peut se faire sur les variables du problème maitre ou sur celles 

du problème auxiliaire, mais en pratique, il est souvent plus efficace de brancher 

sur les variables du problème audiaire (voir, par exemple, Barnhart et al. [6] ou 
Desrosiers et al. [221). Le schéma de branchement considéré ici consiste à forcer ou à 

éviter sélectivement certaines affectations pour certaines infirmières, en fixant ou en 
interdisant certains sommets dans les problèmes a d a i r e s  appropriés. 

Tous les arcs (i.e., variables du problème a d a i r e ) ,  amvant ou quittant les 

sommets spécifiés par les contraintes de branchement actives pour le sous-problème 
courant, sont par conséquent imposés ou éliminés par cette règle de branchement. 
Ainsi, plusieurs horaires potentiels (ou variables du problème maître), contenant les 

affectations spécifiées, sont affectés par chacune des deux décisions de branchement 
à un noeud donné. 

La configuration optimale d'horaires pour l'ensemble du personnel est ainsi 

construite en fixant progressivement les af'Fectations dans les horaires individuels. On 
peut remarquer que le nombre de variables de branchement, i-e. le nombre total de 

sommets, est O(KTIDI), puisqu'il y a T quarts de travail et [DI jours, et donc au 

plus TIVI sommets dans le graphe de la k-ème infirmière. Ce nombre est relativement 
limité, en comparaison avec les O(KTI=~) horaires potentiels qu'il faudrait considérer 
pour un branchement sur les variables du problème maître. 

Le sommet sur lequel le branchement doit s'effectuer, peut être choisi en exami- 

nant les affectations dans les horaires correspondant aux variables fractionnaires de 

la solution optimale de la relaxation linéaire du sous-problème courant. En effet, soit 

Yk, l'ensemble des variables fractionnaires (i.e., horaires) yk, associées à l'infirmière 

k. Considérons l'ensemble Vk des affectations (i.e., sommets) que l'infirmière k reçoit 
dans au moins un de ses horaires correspondant à une variable hactionnaire, Le., 

9 = {vj  E Gk : at,d,, = 1, yk8 E &), où Gk est le graphe associé à l'infirmière k. 
Déhissons le poids d'un sommet de Gk comme la somme des valeurs des variables 

yk. E Yk dans lesquelles apparaît l'affectation correspondant au sommet. 



Il est clair que le poids d'un sommet appartient à l'intervalle ]O, 11, du fait des 
contraintes de partitionnement (5.2) dans le problème maître. Une règle de branche- 
ment possible consiste à choisir le sommet v* ,  dont le poids est le plus proche de 0.5 
et différent de l'unité, tel que donné ci-après. 

Théorème 5.1 Si, à chaque itémtzon, le bmnchement s'effectue sur un sommet 

V* = a r g m i n { l ~ , , ~ ~  at,d,.~*~ - 0.51 : Egk,,ykabd,8~ka + 1, vj E &, k = ~ 2 ,  ---,KI, 
alors l'arbre d'énumé~ation implicite sem exploré en un nombre fini d'étapes. 

Preuve. On montre d'abord que le sommet v* ne peut être impliqué dans aucune 

des contraintes de branchement associées au sous-problème courant. Supposons, par 

l'absurde, que v* a déjà été sélectionné dans un sous-problème dont descend le sous- 
problème courant. Alors, soit l'affectation correspondant à va n'apparaît dans aucun 
des horaires fractionnaires que la solution optimde courante attribue à i'infrmière ka 
associée à va, soit l'affectation apparaît dans tous ces horaires (le branchement est 
binaire). 

En d'autres termes, le poids x,,,,k î+doiyk. est égal à O ou à 1. Dans le premier 
cas, v* n'appartient pas à Vke et donc ne peut être sélectionné par la règle énoncée. 

Dans le deuxième cas, la condition x,,,,. at,+yka # 1 est violée et v* ne peut, non 

plus, être candidat au branchement à partir du sous-problème courant. 

Ainsi donc, on ne peut regénérer une contrainte de branchement déjà active dans 

le sous-problème courant, ni le complémentaire de cette contrainte. On ne peut non 

plus générer une solution violant une contrainte de branchement active pour le sous- 

problème courant, puisque les chemins sont déterminés dans le problème auxiliaire 

en évitant les sommets interdits et en incluant obligatoirement les sommets fixés. 

Comme le nombre de sommets dans le graphe associé à chaque infirmière est hi, le 
résultat suit.U 

Notons que cette règle de branchement implique très peu de modifications du 

problème auxiliaire de plus court chemin avec fenêtres de ressource. Si un sommet 

donné est imposé par une contrainte de branchement, alors -M, où M est une 



valeur suffisamment grande, est ajouté au coût des arcs quittant ce sommet. Une 

valeur possible pour M est 2n fois la plus grande valeur absolue des coûts sur les arcs 
du graphe initial, où n est le nombre de sommets. 

Si le sommet est plutôt interdit, les coûts sur les arcs correspondants sont 

remplacés par +m. Le problème auxiliaire sera ensuite résolu pour trouver un che- 

min dont le coût est inférieur à -M fois le nombre de sommets imposés. Ceci peut 

se faire en utilisant le même algorithme qu'avant le branchement (i-e. la phase 2 
de l'algorithme en deux phases) et en ne traitant que les sommets non interdits. 

Nous discutons, dans la prochaine section, une implantation de cette procédure de 
résolution. 

5.4 Implantation 

5.4.1 Méthodologie 

maitement du problème maître 

En pratique, il est généralement daci le  de trouver une solution réalisable pour 

le problème d'horaires d'infirmières, à cause de la nature c o ~ c t u e l l e  des contraintes 

devant être considérées et de la taille du problème. L'implantation effectuée privilégie 

donc une recherche rapide de solutions réalisables entières, afin de pouvoir arrêter, 

éventuellement, la résolution sans avoir nécessairement obtenu une solution optimale. 

La solution de la relaxation continue du problème permet cependant de calculer 

le saut d'intégralité, ce qui fournit une borne sur les améliorations éventuellement 

possibles. 

Une technique de recherche en profondeur d'abord est donc utilisée pour expl* 

rer l'arbre de branchement, puisque cette méthode permet de trouver plus rapidement 

une solution réalisable entière et requiert moins de mémoire qu'une recherche par le 



meilleur d'abord. En outre, une recherche de solutions entières réalisables se fait du- 
rant le processus de génération de colonnes, lors de la résolution de la relaxation 

continue d'un sous-problème de branchement. 

En effet, la solution optimale de la restriction de ce problème à un sous-ensemble 

de colonnes, i.e. la solution du problème résolu entre deux appels du problème auxi- 
liaire, peut être entière. Elle peut donc éventuellement servir à mettre à jour la liste 
des sohtions entières retenues ou même la meilleure solution entière connue. 

Notons que i'utilisation de la méthode de la génération de colonnes permet de 
sélectionner les infinnières pour qui de nouveaux horaires seront générés lors d'un 

l'appel du problème a d a i r e .  Cependant, cette option n'a pas été implantée. Dans 
tous les tests présentés ici, la liste des infirmières est parcourue d'une manière @que 
jusqu'à ce qu'au moins une colonne de coût réduit négatif soit trouvée. 

En général, plusieurs de ces colonnes sont générées lorsque le problème auxiliaire 
est résolu pour une infirmière donnée. Toutes ces colonnes sont introduites dans 

le problème maître si cela est possible sans toucher à la base optimale courante. 
L'implantation prend également en compte des variables de déficit et de surplus, 
avec des pénalités élevées, pour éviter la non-réahabilité tout en minimisant les 

violations de quotas. 

Un problème rencontré en pratique avec la méthode de la génération de colonnes 
est la dégénérescence de la base optimale de la relaxation linéaire du problème maître 

restreint à un sous-ensemble de colonnes. Dans ce cas, I'introduction de nouvelles 

colonnes de coûts réduits négatifs ne se traduit pas toujours par l'amélioration de la 

fonction objectif. Une méthode de stabilisation est décrite dans Du Merle et al. [26] 

pour ce problème. 

Un traitement sommaire du problème a été implanté dans le cadre de cette 

thèse. Il consiste à brancher lorsqu'après un certain nombre d'appels du problème 

awriliaire, la valeur de la solution reste pratiquement inchangée. Après un certain 

nombre, fixé a priori, de ces branchements éventuellement sous-optimaux, la solution 
obtenue est considérée, comme optimale pour le sous-problème correspondant. 



Une façon alternative de trouver rapidement une configuration d'horaires serait 
de développer une heuristique pour arrondir la solution de la relaxation linéaire du 
problème maître initial. Cette approche, qui est susceptible de donner des solutions 
non réalisables par rapport aux contraintes de demande, pourrait être considérée 
lorsque les surplus et/ou les déficits de quotas ne sont pas critiques. 

Traitement du problème auxiliaire 

Dans le but de réduire l'espace mémoire requis par les différentes instances du 

problème aiiloliaire, les infirmières devant recevoir sensiblement les mêmes horaires, 

sont regroupées de manière à former un profil-type auquel est associé un seul graphe. 

Ces profils sont tels que la structure des ressources utilisées comprend, comme cas 

particulier, les spécifications relatives à chaque personne impliquée. Cela permet de 
réduire le nombre de phases 1 de l'algorithme. 

Les particularités individuelles sont prises en compte durant la phase 2. A la 
£in de cette dernière, les chemins dont les vecteurs de ressource ne satisfont pas 

les spécifications propres à la personne, considérée sont rejetés ou des pénalités 

supplémentaires leur sont appliquées selon leur déviation. 

L'implantation permet ainsi d'accepter éventuellement (comme c'est le cas en 
pratique) des solutions avec de légères déviations par rapport aux spécifications des 
contraintes de la convention collective. Les particularités (i.e. déviations acceptables) 

relatives au traitement des congés de fins de semaines sont prises en compte d'une 

façon similaire. De telles situations apparaissent, par exemple, lorsque l'infirmière 

reçoit un certain nombre de jours de vacance et/ou de congé statutaire pendant 

la semaine précédant ou suivant une fUn de semaine donnée, tout en travaillant, 

éventuellement, les autres jours. 

Un autre artifice utilisé dans l'implantation consiste a prendre, comme unité 

pour la ressource correspondant à la charge de travail, le plus grand diviseur commun 

des durées de quarts de travail. Cela permet de réduire le nombre de valeurs possibles 

pour cette ressource et donc le nombre total de vecteurs de ressource à examiner. 



5 A.2 Description des données 

Les tests on été effectués sur des données en provenance du Centre des Nais- 
sances de l'Hôpital Royal Victoria de Montréal. L'horizon considéré est de 28 jours 

(4 semaines) pour un effectif de 54 infirmières, comprenant le personnel permanent 
et le personnel flottant basé à l'unité. Douze niveaux de qualifications et sept quarts 
de travail sont considérés. 

Les facteurs cîrisidérés dans la génération des horaires individuels concernent 
la charge de travail, les fins de semaines, les rotations, les ratios de quarts de jour 

ou du soir (pour les personnes recevant uniquement des affectations du soir et de 
nuit). Un total de 27 profils d'infirmières (i.e. de graphes différents pour le problème 
audiaire) a été utilisé. Le tableau 5.1 donne des statistiques (moyenne, écart-type 

et valeurs extrêmes) sur le nombre de sommets, le nombre d'arcs et le nombre de 
ressources pour ces profils. 

Tableau 5.1 - Statistiques du prétraitement des profüs 

1 ~ b .  d'arcs 11776.0371 1973.677 1 155 1 9469 1 

Temps CPU (sec) 

Nb. de sommets 

 IN^. de ressources 1 4.593 1 0.888 1 2 1 5 1 

Les quotas sont spécifiés pour quatre périodes par jour et donnent le nombre 

total de personnes devant être présentes pour chaque période et pour chaque jour 

de l'horizon, sans distinction de quarts de travail ou de qualification. Quelques con- 

traintes supplémentaires de demande sont cependant spécifiées pour quelques jours, 

afin d'assurer la présence d'un certain nombre de personnes avec des qualincations 

définies. Le programme maître initial contient, typiquement, environ 150 contraintes. 

Moyenne 

18.300 

50.259 

Dans les tests effectués, seuls les préférences sont prises en compte dans la fonc- 

tion objectif, i.e. un poids nul est accordé au coût salarial. Les valeurs de préférences 

Écart-type 

24.575 

24.062 

Min 

0.020 

15 

Max 
91.960 

114 



individuelles pour des afEkctations spécifiques varient entre O et 5. Une personne 

peut recevoir entre 4 et 19 affectations par horaire, selon les règles de la convention 
collective qui s'appliquent à elle. 

Des pénalités de los et de 104 sont respectivement associées aux variables de 

surplus et de déficit des quotas de présences. Des pénalités de 10 à 100 fois plus 

élevées sont utilisées pour les violations des contraintes de ressource spécifiques à 
chaque individu, puisque de tels écarts sont moins tolérés en pratique. 

Les fenêtres de ressource d'étendues minimales et maximales sont données aux 
tableaux 5.2 et 5.3 pour les graphes (profils) correspondant respectivement aux temps 

de calcul minimal et maximal. Les spécifications minimales et maximales pour les ra- 

tios de quarts de t r a d  de jour (ou du soir) sont respectivement de 0.4 et 0.6 par 

rapport au nombre total d'affectations dans l'horaire individuel considéré. 

Tableau 5.2 - Étendues des fenêtres pour le profil de plus petite taille 

Tableau 5.3 - Étendues des fenêtres pour le profil de plus gmnde taille 

Ressources 

Charges de travail 

Rotation 

Seuils de mise à jour Val. de mise à jour 

Min Max Min 

Bornes de réalisab. 

7 Max 

[ 0, O] 

-[ 11 41 

[ 0, O] 

[ 4, 41 

[ 2, 101 

' [O, 41 

[ 2, 121 [ 0, O] 

[ 0, 41, 

[ 2, 121 

[ 1,41 [ O 1  41 



5.4.3 Analyse des surplus et déficits d'affectations 

Les tableaux 5.4 et 5.5 donnent les surplus et les déficits des quotas et des con- 

sommations de ressource pour quelques solutions obtenues. Il s'agit respectivement 

d'une solution de la relaxation linéaire du problème maître, des quatre meilleures 
solutions entières obtenues après 1 heure 22 minutes de calcul et de la solution ma- 

nuelle obtenue par l'infirmière-chef. Ces déviations sont calculées sur tout l'horizon 

et pour l'ensemble du personnel. 

Tableau 5.4 - Surplus des quotos et des ressources 

/congés de fins de sem. 4 1 8 1 7 1 5 1 7 1 1 1 I  

Quotas 

Charg. de trav. (heures) 

Tableau 5.5 - Déficzts des quotas et des nssourees 

1~elax.l 1 1 1 1 Sol. 

lin. Sol.1 So1.2 So1.3 Soi.4 man. 

40 

O 
40 

-- -- 

Charg. de trav. (heures) 

Congés de fins de sem. 

Affect. consécutives 

40 

92 
- 

Ratios de jours (somme) 

Ratios de soirs (somme) 

80 

O 
O 

40 

O 0 0 0 0  

- 

O 
O 
8 

O 

O 

- - 

95 

-- 

90 

- O 
O 

40 

O 0 0 0 0  

O 0 0 0 0  

98 

1-37 

0.26 

-- 

O 
O 

52 

-- 

O 
O 



La solution optimale (fiactionnaire) de la relaxation linéaire indique un surplus 
de 40 et un déficit de O présences pour l'ensemble du personnel durant l'horizon. Cela 

si&e que, compte tenu des contraintes de la convention collective, de la taille du 

personnel et des poids accordés aux préférences exprimées et aux violations de quotas, 
il est impossible d'éliminer tous les surplus d'affectations. Les mêmes violations de 

quotas sont observées pour les (meilleures) solutions entières obtenues après 1 heure 
22 minutes de calcul. Ces écarts restent cependant moins élevées que les valeurs 

obtenues à la main. 

On note un surplus de congés de fins de semaines pour toutes les solutions ob t e  
nues. Ces congés supplémentaires ne constituent pas nécessairement un inconvénient. 

Les pénalités relatives aux surplus de fins de semaines ont donc été réduites d'un 

facteur de 10 par rapport à celles correspondant aux déficits. Ces derniers sont diffi- 
cilement tolérés en pratique, à moins d'être explicitement demandés. 

Les déficits par rapport aux nombres minima d'affectations consécutives avant 

congé (ou avant rotation) sont cependant élevés. Dans la plupart des cas, ces nombres 
représentent des quarts de travail isolés, i.e. précédés et suivis immédiatement d'au 

moins un jour de congé. On peut éliminer ces déficits, si nécessaire, en fixant le 
nombre minimal d'affectations consécutives à 2 au moins. 

La somme totale (sur l'ensemble du personnel) des différences entre'les ratios 
de quarts de travail et les limites spécifiées, est nulle, contrairement à ce que donne 

la solution manuelle. 

5.4.4 Analyse des performances techniques du modèle 

Le programme a été codé en langage C. Les fonctions de la bibliothèque du 

logiciel commercial CPLEX sont utilisées pour la résolution et la mise à jour de la 

relaxation linéaire du problème maître restreint à un sous-ensemble de colonnes. Ces 
fonctions sont appelées plusieurs fois à chaque noeud de branchement. Aucun autre 
logiciel ou bibliothèque de fonctions n'a été utilisé. 



Les tests ont été faits sur une station de travail Sun Ultra 2 et ont nécessité 

environ 95 mégaoctets d'espace mémoire en tout. L'essentiel de cet espace mémoire 

a été nécessaire durant la phase 1 de l'algorithme de plus court chemin, exécutée au 

début de la résolution du problème, en vue de caractériser les horaires admissibles. 

Le tableau 5.6 donne les caractéristiques techniques des solutions obtenues (saut 

de dualité, temps de calcul et nombre de noeuds de branchement). On remarque que 

toutes les solutions entières présentées sont obtenues à un même noeud de branche- 

ment. Cela signifie que certaines solutions du problème résolu entre deux appels du 

problème auxiliaire sont entières, po*a le sousproblème associé à ce noeud. Ces solu- 
tions entières presqu'optimales (saut de dualité d'environ 0.01%) ont été obtenues en 

1 heure 22 minutes de calcul environ et après seulement 125 noeuds de branchement. 

Tableau 5.6 - Caractéristiques techniques des solutions 

Deux autres solutions ayant pratiquement les mêmes caractéristiques ont été 

obtenues au même noeud. Nous avons laissé fonctionner le programme pendant envi- 

ron 45 minutes supplémentaires mais aucune nouvelle solution entière n'a été trouvée. 

L'exploration de l'arbre de branchement a ensuite été interrompue du fait de la qua- 

lité des solutions obtenues et du caractère plutôt subjectif des préférences considérées 

dans la fonction objectif. 

Saut dual. (9%) 
Temps CPU (sec) 

Nb. noeuds de branch. 

Nous pensons que les temps de calcul obtenus peuvent être encore améliorés, 

par un meilleur traitement de la dégénérescence de la relaxation linéaire des sous- 

problèmes de branchement. Dans l'implantation décrite ici, un branchement est effe- 

ctué si, après avoir parcouru la liste des infirmières, les colonnes (horaires) de coûts 

réduits négatifs générées ne permettent pas une amélioration de l'objectif de 0.01% 

au noeud initial et de 1% à tous les autres noeuds. 

0.00 

612 

O 

0.01 

4872 

125 

0.01 

4869 

125 

0.01 

4874 

125 

0.01 

4869 

125 



Si la même situation se reproduit B un noeud issu d'un tel branchement, la 

meilleure solution obtenue à ce noeud est considérée comme optimale pour la relaxa- 

tion linéaire du sous-problème correspondant. Un meilleur contrôle des paramètres 

relatifs à ce traitement de la dégénérescence pourrait réduire le temps de calcul. 

Tableau 5.7 - Statistiques des sous-problèmes 

I ~ o ~ e n n e l É c a r t - t ~ ~ e  Min 1 Max 1 

 IN^. de colonnes (971.066 1 479.365 1 293 1 4548 1 

rGPs CPU (sec) 

Nb. de PM 

Le tableau 5.7 donne des statistiques sur les sous-problèmes de branchement. 

En moyenne, la résolution de la relaxation linéaire d'un tel sous-problème requiert 

un temps de calcul de 38.235 secondes, environ 65 résolutions du problème maître 

(PM) restreint à un sous-ensemble de colonnes et 84 appels du problème a d a i r e  

(PA) qui génèrent environ 971 colonnes. 

Tableau 5.8 - Temps de colcul du problème maître et du problème auxiliaire 

38.235 

64.945 

[ ~ b .  de colonnes 1 12.614 1 24.202 1 O 1 122 1 

15.927 

29.570 

PM: temps CPU (sec) 

PA: temps CPU (sec) 

Le tableau 5.8 permet une comparaison des temps de calcul requis par la 

résolution de la relaxation linéaire du problème maître restreint (par CPLEX) et 

la phase 2 de l'algorithme proposé. Rappelons que ce dernier a été légèrement mo- 
difié pour tenir compte du fait que certains chemins réalisables, pour un profd donné, 

peuvent s'écarter légèrement des spécifications propres à une personne particulière. 

21 

Moyenne 

0.025 

0.374 

15.250fi6.200 

196 

Écart-type 

0.037 

0.622 

Min 
0.000 

0.000 

Max 
0.530 

2.940 



Le programme linéaire (PM) est résolu, à l'aide du logiciel CPLEX, en 0.025 

secondes, en moyenne, tandis que la résolution du problème auxiliaire (PA) requiert 
0.374 secondes. Chaque résolution du problème a d a i r e  produit, en moyenne, en- 
viron 13 colonnes de coûts réduits négatifs. 

On peut noter que les temps correspondant à la phase 2 sont relativement plus 
élevés que ceux observés au chapitre 4 (tableau 4.2). Cela s'explique par les modifica- 
tions requises par l'utilisation d'un même graphe (profil) pour plusieurs infîrmières. 
Ces temps restent cependant nettement plus faibles que ceux de la phase 1 (tableau 
5.1) , qui requiert en moyenne 18.300 secondes. 

5.4.5 Quelques commentaires 

Le modèle de programmation linéaire généralisé en variable 0-1 développé dans 
ce chapitre permet de prendre en compte la plupart des contraintes rencontrées en 
pratique, dans la confection d'horaires de personnel soignant. En particulier, toutes 
les contraintes identifiées lors des discussions à l'Hôpital Royal Victoria (voir la 

référence [15]) ont été modélisées et testées numériquement. 

L'approche utilisée permet une exploration implicite complète de l'ensemble des 

horaires potentiels. Un avantage majeur de cette méthode par rapport à une approche 
heuristique est sa flexibilité d'une unité de soin à l'autre. Très peu d'ajustements 
seront nécessaires lors de ces changements d'environnement. 

A notre connaissance, ce travail constitue la première tentative de résolution 

exacte d'un modèle réaliste et flexible pour le problème d'horaires de personnel soi- 
gnant. Le modèle peut être utilisé, moyennant quelques modifications mineures, pour 

la plupart des problèmes d'horaires de personnel dans les organisations opérant en 
continu. 

Une attention particulière est cependant requise lors de la définition des fenêtres 

de ressource et des valeurs de mise à jour, dans le problème a d a i r e .  Il faut, en 



effet, tenir compte du fait que la complexité de l'algorithme de plus court chemin 
avec fenêtres de ressource est très sensible à la largeur des fenêtres. 

Un système automatisé, basé sur le modèle proposé requiert des données sta- 
tiques et dynamiques. Les données statiques sont relatives aux contraintes de de- 

mande et de la convention collective, aux caractéristiques des quarts de travail ainsi 
qu'aux informations individuelles de base nécessaires à la confection d'horaires perso- 
nalisés- n é s  peu de données dynamiques seront requises pour chaque horizon. Elles 
serviront notamment à spécifier les requêtes et les préférences. Si ces dernières ne 

sont pas données le système peut être automatiquement initialisé avec des valeurs 
par défaut prédéfinies. 

Puisqu'un tel système ne génère que des solutions réalisables (s'il en existe), 
sur la base d'une minimisation des coûts et/ou d'une maximisation des préférences, 
très peu d'ajustements seront nécessaires, par la suite, de la part de l'infirmière-chef. 

Notons que si le système ne trouve pas de solution réalisable en résolvant la relaxation 

linéaire, cela signifie qu'une telle solution n'existe pas pour les contraintes spécifiées. 

Cette méthode requiert cependant des ressources importantes en espace mémoire 
et en temps de calcul (quelques heures pour trouver des solutions utilisables en 
pratique, après éventuellement quelques modifications mineures). L'espace mémoire 
nécessaire peut être réàuite par une définition appropriée des profils dli&mières, 

par exemple, en utilisant une heuristique pour évaluer préalablement divers regrou- 

pements des infirmières. Les temps de calcul élevés ne constituent pas un inconvénient 

majeur, étant d o ~ é  que l'horizon considéré est de 28 jours pour les tests effectués 
(6 semaines en pratique). 

Notons enfin que l'utilisation du système ne résultera pas nécessairement en 

une réduction du personnel. Sa capacité à prendre en compte la plupart des con- 

traintes rencontrées en pratique et de générer éventuellement plusieurs (bonnes) se 

lutions réalisables aura cependant un impact positif direct sur la qualité des soins. Le 
temps passé par l'infirmière-chef à confectionner les horaires en sera considérablement 
réduit. 



CONCLUSION 

Nous avons étudié dans cette thèse dinérents problèmes de cheminement impli- 

quant deux objectifs ou des contraintes de ressources. Il s'agit, spécifiquement, des 

problèmes de chemins avec étendue ou ratio minimum, du problème de plus court 

chemin bicritère et du problème de plus court chemin avec fenêtres de ressources. Une 
anaiyse détaillée du problème d'horaires de personnel soignant a égaiement été faite 

à titre d'application du problème de plus court chemin avec fenêtres de ressource. Ce 

travail a permis d'apporter diverses contributions à la formulation et à la résolution 

des problèmes considérés. 

Des algorithmes polynomiaux ont été notamment développés pour de nou- 

veaux problèmes de chemins avec étendue ou ratio minimum pouvant apparaître, 

par exemple, comme sous-problèmes en équilibrage des chaînes de montage lorsqu'on 

s'intéresse à la minimisation du nombre de postes de travail et/ou du temps d'at- 

tente dans le pire cas. En particulier, une procédure a été donnée pour déterminer 

tous les chemins efficaces du problème bicritère de plus court chemin avec étendue 

minimale. Ce problème bicritère, qui n'avait jamais été étudié auparavant, considère 

la minimisation de la longueur totale du chemin et la différence entre la plus grande 

longueur d'arc et la plus petite. 

Un nouvel algorithme d'étiquetage a également été proposé pour résoudre le 

problème de plus court chemin bicritère (à coûts non négatifk) par les deux extrémités 

du réseau. Ce problème se rencontre, par exemple, en transport de matières dange- 
reuses si l'on minimise à la fois le coût de transport et la population exposée. 

L'algorithme se compare favorablement à la méthode de résolution par une 

seule extrémité, lorsque la taille ou la densité du graphe augmente. La procédure 

peut aisément être modifiée pour traiter les cas oii des bornes sont imposées sur la 

valeur de chacun des deux critères, afm d'éviter les solutions impliquant une trop 

grande détérioration de l'un d ' e n .  



Une nouvelle formulation, plus générale, du problème de plus court chemin 

avec fenêtres de ressources, a été proposée, de même que divers algorithmes pseudo- 

polynomiaux, dont une procédure spécialisée, en deux phases. Cette dernière ne 

nécessite pas un dédoublement des ressources lorsqu'aucune déviation n'est permise 
par rapport aux bornes des fenêtres inférieures. L'extension des consommations de 

ressource n'est pas restreinte non plus à des fonctions non-décroissantes. 

Cet te généralisation ne détériore cependant pas la complexité de l'algorithme. 

Les calculs effectués indiquent en outre que la borne donnée dans la littérature pour 

la résolution du problème de plus court chemin avec fenêtres de temps aux sommets 

est sur-évaluée. La structure en deux phases de l'algorithme proposée convient parti- 

culièrement à la réoptimisation, après une modification des coûts sur les arcs, comme 

c'est le cas lorsque le problème apparait dans un processus de génération de colonnes. 

D'un point de vue plus appliqué, une formulation de plus court chemin avec 

fenêtres de ressource a été proposée et testée avec succès, pour le problème de 

génération d'horaires réalisables pour une infirmière donnée. Il s'agit d'un problème 

pratique et complexe de cheminement, nécessitant de fréquentes réoptimisations, qui 

peut être traité plus efficacement par l'algorithme en deux phases que par les autres 

algorithmes de plus court chemin disponibles dans la littérature. Le modèle proposé 

est réaliste et capable de tenir compte de la plupart des règles de la convention 

collective, utilisées en pratique pour construire des horaires personalisés. 

Un modèle de programmation linéaire généralisée, en variables 0-1, a été développé, 

pour le problème, plus général, de la confection d'horaires pour l'ensemble du per- 

sonnel soignant d'une unité. Le modèle est susceptible de résolution exacte par une 

procédure d'énumération implicite combinée à la génération de colonnes. 

Ce dernier modèle contient, comme problème a d a i r e ,  celui de la génération 

d'horaires réalisables pour une infirmière donnée. Il permet également une explora- 

tion complète de l'ensemble des horaires potentiels, contrairement à la plupart des 

formulations de la littérature où l'on considère des horaires cycliques ou prédéfinis et 

en nombre relativement limité. Une règle de branchement spécialisée a été proposée 

pour la résolution du problème et sa convergence prouvée. 



Un prototype du modèle a été implanté en langage C, en utilisant les fonctions 

de la bibliothèque de I'optimiseur commercial CPLEX pour résoudre et mettre à 

jour les sousproblèmes linéaires. Le prototype a été testé avec satisfaction, sur des 

données réelles en provenance de l'Hôpital Royal Victoria de Montréal. De l'avis des 

infirmières-chefk, les horaires générés par le programme sont de qualité au moins égale 

à celle des horaires produits à la main. 

Des profils-types d'infirmières ont été définis afin de réduire l'espace mémoire 

requis, en regroupant les personnes devant recevoir sensiblement les mêmes types 

d'horaires. Cependant, une implantation plus efficace peut être obtenue en utilisant 

une heuristique pour trouver les profils-types. Un meilleur compromis pourrait ainsi 

être trouvé entre la réduction de la mémoire requise et l'augmentation du temps de 

calcul, due à l'utilisation d'un même réseau pour plusieurs infirmières. 

Par ailleurs, une heuristique peut également être développée pour arrondir la 

solution de la relaxation continue du problème maître, étant donnée qu'en pratique 

de petites déviations sont acceptées par rapport aux quotas. Une telle heuristique 

sera notamment utile si la solution de la relaxation linéaire contient des déficits ou 

des surplus par rapport aux quotas. 
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