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RÉSUMÉ

La migration vers les réseaux sans fil de cinquième génération (5G) et au-delà impose une
contrainte énergétique inédite aux stations de base, en particulier pour le précodage à très
grand nombre d’antennes (MIMO massif ou mMIMO) dont la charge de calcul croît fortement
avec le nombre d’antennes. Ce mémoire propose des précodages fondés sur l’apprentissage
profond qui maximisent le rendement énergétique tout en conservant une excellente efficacité
spectrale.

La première partie démontre qu’une compression de modèles spécifiques au site grâce à un
entraînement avec quantification en précision mixte combiné à la recherche d’architectures
neuronales (NAS) réduit l’énergie de calcul jusqu’à 35 fois par rapport au précodage de réfé-
rence à erreur quadratique moyenne pondérée (WMMSE) pour un débit identique. Le pro-
cessus s’appuie sur un modèle de consommation d’énergie calibré au matériel qui intègre les
opérations multiplication-accumulation et les accès mémoire sur puce, révélant des compro-
mis de Pareto sur un jeu de canaux simulés par lancer de rayons, incluant des environnements
urbains en visée directe et indirecte.

La seconde partie introduit BitAdapt, une méthode entièrement dérivable d’apprentissage
de la précision qui évite la recherche combinatoire des résolutions de quantification. Chaque
couche possède une résolution apprise couplée à la méthode de quantification apprise LSQ,
tandis que le modèle d’énergie est intégré directement dans la fonction de coût. L’optimisa-
tion conjointe des poids, des pas de quantification et des résolutions place chaque couche au
point de compromis optimal entre précision et énergie, générant des configurations en préci-
sion mixte adaptées aux conditions de canal propres à chaque cellule. Appliqué à un réseau
convolutif léger comme à un réseau plus profond de type Transformer, BitAdapt réduit d’un
ordre de grandeur l’énergie d’inférence par rapport à une quantification uniforme sur 8-bit,
tout en égalant, voire dépassant, le débit total multi-utilisateur obtenu avec WMMSE.

Ces contributions ouvrent la voie à des précodages neuronaux sobres en énergie pour les
stations de base mMIMO, conciliant la flexibilité de l’apprentissage profond et les contraintes
de puissance strictes des futures infrastructures sans fil.
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ABSTRACT

The push toward 5G-and-beyond wireless networks is placing unprecedented pressure on base
station energy budgets, particularly for massive Multiple-Input Multiple-Output (mMIMO)
precoding, where computational cost scales steeply with antenna count. This thesis addresses
that challenge by optimizing deep-learning-based precoders to maximize energy efficiency
while maintaining state-of-the-art spectral efficiency.

The first part of this work demonstrates that careful site-specific compression of a convo-
lutional precoder combining Mixed-Precision Quantization-Aware training with Neural Ar-
chitecture Search can cut computational energy by up to 35× relative to a Weighted Min-
imum Mean-Square Error (WMMSE) baseline at equal sum rate. The search is guided by
a hardware-calibrated cost model that accounts for both multiply-accumulate operations
and on-chip memory accesses, revealing Pareto-optimal trade-offs over a ray-traced data set
spanning both line-of-sight and non-line-of-sight urban deployments.

Building on these results, the second part introduces BitAdapt, a fully differentiable preci-
sion learning framework that eliminates the need for an outer combinatorial bit-width search.
BitAdapt treats each layer’s bit-width as a learnable parameter, couples it with a Learned
Step Size Quantization (LSQ) scheme, and embeds the same analytic energy surrogate di-
rectly into the training objective. By jointly optimizing network weights, quantizer step sizes,
and bit-widths, BitAdapt drives every layer to operate at the knee of its accuracy–energy
curve, yielding mixed-precision configurations tailored to each cell’s channel conditions. Ap-
plied to both a lightweight convolutional precoder and a deeper Transformer model-based
precoder, BitAdapt delivers an order-of-magnitude reduction in inference energy relative to a
uniform 8-bit baseline while preserving and in some cases exceeding the sum-rate performance
achieved by WMMSE.

Taken together, these contributions establish a principled, hardware-aware pathway for de-
ploying ultra-efficient neural precoders in mMIMO base stations, effectively bridging the
gap between deep learning’s adaptability and the strict power constraints of next-generation
wireless infrastructure.
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CHAPTER 1 INTRODUCTION

1.1 Context

Over the past decade, mobile communication has transformed nearly every facet of modern
life from streaming high-definition video to enabling intelligent transportation and remote
healthcare. This rapid growth in connected devices and bandwidth-intensive applications
has driven an exponential surge in mobile data traffic. To meet this insatiable demand,
the wireless community has pursued ambitious advances embodied in fifth-generation (5G)
networks and the emerging vision of sixth-generation (6G) systems. These new generations
promise not only unprecedented data rates but also ultra-reliable low-latency communication
and the capacity to connect massive numbers of devices.

Yet, alongside these capabilities comes a pressing challenge: Energy Efficiency (EE). As mo-
bile networks grow denser and data rates increase, energy consumption has become a critical
bottleneck, both economically and environmentally. Recent estimates indicate that base sta-
tions alone account for up to 70% of the total energy consumption in cellular networks [3].
Within each Base Station (BS), significant power is consumed by the baseband processing
unit (BBU), particularly in the physical layer tasks of channel estimation, beamforming, and
precoding [4].

One of the most powerful technologies driving improvements in spectral efficiency and EE is
Massive Multiple-Input Multiple-Output (mMIMO). By deploying large antenna arrays at
BS, mMIMO enables simultaneous service to multiple users over the same time-frequency
resources, dramatically boosting capacity and link reliability [5]. However, these gains come
at a cost: the computational complexity of mMIMO signal processing, especially in downlink
precoding, scales rapidly with the number of antennas and users. For instance, practical
deployments featuring 64 antennas serving dozens of users require the base station to compute
precoding matrices within tight millisecond-level deadlines. This imposes a significant burden
on processing hardware and substantially contributes to energy consumption and system
latency [6].

Traditional optimization-based precoding methods such as Zero Forcing (ZF) and Weighted
Minimum Mean-Square Error (WMMSE) deliver excellent performance but rely on compu-
tationally intensive matrix operations, including large matrix inversions. These procedures
often prove impractical for real-time deployment under stringent energy and latency con-
straints [7]. This reality has sparked interest in exploring alternative solutions that can
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maintain precoding performance while reducing computational demands.

In recent years, Deep Learning (DL) has emerged as a promising tool in wireless communi-
cation, capable of approximating complex, high-dimensional functions that traditional algo-
rithms struggle to handle. Specifically, Deep Neural Networks (DNNs) can be trained to learn
the relationship between Channel State Information (CSI) and optimal precoding matrices,
offering the potential for rapid, one-shot inference instead of iterative optimization [8]. This
aligns well with the shift toward hardware accelerators such as GPUs, FPGAs, and custom
ASICs in modern BS, where efficient inference is increasingly feasible.

However, deploying DNNs for precoding introduces new challenges. State-of-the-art net-
works can involve millions of parameters and require billions of arithmetic operations per
inference [9], undermining the gains from eliminating iterative algorithms. Moreover, differ-
ent neural network architectures exhibit varied trade-offs in latency, power consumption, and
hardware compatibility. Consequently, there is a crucial need for a systematic, hardware-
aware design of compact and efficient neural networks suitable for real-time wireless applica-
tions.

A key technique for reducing the computational footprint of DNNs is quantization, which in-
volves representing network weights and activations using lower bit-widths (e.g., 8-bit, 4-bit,
or even binary). While quantization offers significant gains in energy and memory efficiency, it
often comes at the cost of reduced model accuracy [10]. Approaches like Quantization-Aware
Training (QAT) help mitigate this trade-off by integrating quantization into the training
process, allowing the model to adapt to the reduced precision. Additionally, Mixed-Precision
Quantization (MPQ) strategies assign different bit-widths to different layers, improving over-
all efficiency while preserving critical model performance [11]. Yet determining optimal pre-
cision allocation remains a complex optimization problem.

Recent innovations such as BitPruning [12] further advance this field by enabling differen-
tiable, gradient-based optimization of bit-widths, jointly learning network parameters and
precision levels under energy constraints. In parallel, the variability of wireless environments
imposes another challenge: a network trained on generic data may fail to generalize to real
deployment scenarios. Site-specific adaptation leveraging ray-traced channel models to cap-
ture realistic propagation effects has thus emerged as a crucial step for ensuring robust,
deployable solutions [13].
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1.2 Specific Objectives

This thesis aims to bridge the gap between the theoretical promise of DL-based precoding
and its practical realization in next-generation wireless networks. The overarching objective
is to develop an energy-efficient DL framework for downlink precoding in mMIMO systems,
capable of delivering high performance within the strict computational and power budgets
of real-world BS.

1.3 Thesis Outline

This thesis is structured into five chapters, each building toward a green, deployment-ready
DL framework for mMIMO precoding:

• Chapter 1 – Introduction
Presents the context, motivation, and research objectives, emphasizing the need for
low-complexity, energy-aware precoding in next-generation wireless networks.

• Chapter 2 – Background and Literature Review
Surveys on mMIMO signal processing, DL in wireless communications, EE metrics,
quantization techniques, and Neural Architecture Search (NAS), laying the groundwork
for the proposed approach.

• Chapter 3 – Compression of Site-Specific Deep Neural Networks for mMIMO
Precoding (Based on our published paper [14])
Presents a QAT-MPQ, NAS-guided compression pipeline and benchmarks its EE against
classical precoders such as ZF and WMMSE.

• Chapter 4 – BitAdapt: An Energy-Aware Precision Learning Framework
Details the BitAdapt algorithm for differentiable bit-width optimization. including
its energy model, training protocol, and architecture-specific implementation for Con-
volutional Neural Network (CNN) and Transformer precoders. Provides an exten-
sive experimental evaluation across multiple ray-traced deployment sites, analyzing
energy–throughput trade-offs, hyper-parameter sensitivity, and layer-wise precision al-
location.

• Chapter 5 – Conclusion and Future Work
Summarizes the key findings, discusses current limitations, and outlines directions for
extending the framework to emerging 6G scenarios and hardware platforms.
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Key Contributions
The main contributions of this thesis are summarized as follows:

• Developing QAT techniques based on Learned Step Size Quantization (LSQ) to preserve
precoding performance under reduced numerical precision.

• Employing MPQ strategies, guided by NAS, to optimize per-layer bit-widths for low
energy inference.

• Integrating BitPruning for differentiable, end-to-end optimization of bit allocations
under hardware-aware energy constraints.

• Proposing an analytic energy model that captures both computational and memory
costs of neural precoding, expressed in (bit/s/Hz/ µJ).

• Incorporating site-specific training using ray-traced channel data to enhance the gen-
eralization and deployment readiness of the neural precoder.

Through these contributions, this thesis seeks to deliver not only theoretical insights but also
practical pathways toward realizing efficient, high-performance neural precoding solutions for
future wireless communication systems.
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

2.1 Introduction to mMIMO

mMIMO systems represent a revolutionary advancement in wireless communication, enabling
high Spectral Efficiency (SE), EE, and reliability through the deployment of large-scale an-
tenna arrays. Introduced as an evolution of traditional MIMO, which appeared in the 1970s
to enhance capacity and robustness by exploiting multipath propagation, mMIMO extends
the concept by scaling the number of antennas at the BS to the order of tens or hundreds [15].
This scaling unlocks new performance boundaries by simultaneously serving multiple users
using the same time-frequency resources.

The core principle of mMIMO lies in the exploitation of spatial multiplexing, array gain, and
diversity gain. Spatial multiplexing allows parallel transmission of multiple data streams, im-
proving throughput. Array gain enhances received signal strength through coherent beam-
forming. Diversity gain combats fading by leveraging multiple independent signal paths.
These capabilities significantly improve SE, coverage, and user experience.

In mMIMO systems, signals are spatially separated using beamforming techniques. Beam-
forming adjusts the phase and amplitude of signals across antennas, allowing the formation of
narrow, directional beams that target specific users. This helps mitigate inter-user interfer-
ence and increases Signal-To-Interference-Noise Ratio (SINR). Figure 2.1 illustrates a typical
downlink operation where an M-antenna BS transmits distinct data streams to K users.

Let d ∈ CK×1 denote the user data vector, and W ∈ CNt×K the precoding matrix. The BS
generates the transmit signal

s = Wd . (2.1)

The received signal is then
y = Hs + n , (2.2)

where H ∈ CK×M denotes the downlink channel matrix, whose k-th row hH
k captures the

propagation paths from all M transmit antennas to user k, and n is an additive white
Gaussian noise vector. Precoding is a signal processing technique applied at the transmitter
that maps the user data streams to spatially distributed antenna signals, based on CSI. The
goal is to optimize transmission in terms of power efficiency, SINR, and user fairness. Classic
linear precoding schemes include:

1. ZF: completely removes inter-user interference by setting WZF = HH
(
HHH

)−1
, at the
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Figure 2.1 Downlink mMIMO System Model [2].

cost of possible noise amplification if H is ill-conditioned;

2. Maximum-Ratio Transmission (MRT): maximises the received power in each user di-
rection by setting wk ∝ hH

k , thereby enhancing array gain but leaving residual inter-user
interference untouched;

3. WMMSE: iteratively minimizes a weighted mean-square error or equivalently maxi-
mizes a weighted Sum-Rate (SR) yielding near-optimal SINR performance at the ex-
pense of higher online complexity due to its alternating-optimization updates [16].

Non-linear schemes [17] offer still higher spectral efficiency but demand prohibitively complex
hardware for large-scale arrays, motivating the recent turn toward data-driven, DL alterna-
tives reviewed in the sequel.

ZF excels at canceling inter-user interference but suffers from noise-boosting whenever the
channel Gram matrix HHH is ill-conditioned [18], whereas MRT is power-efficient yet obliv-
ious to cross-talk interference; WMMSE closes most of the performance gap to the capacity
limit, though at a heavy computational price because its alternating updates must run every
coherence block. In the canonical multi-user mMIMO setting, a BS with M antennas serves
K single-antenna terminals simultaneously (M ≫ K is typical). The composite downlink
channel is

H =


hH

1...
hH

K

 ∈ CK×M , (2.3)

and the precoder must manage the mutual interference among these K user channels. By con-
trast, single-user (point-to-point) MIMO involves just one terminal equipped with multiple
antennas; there multi-user interference disappears and eigen-beamforming suffices.
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A widely studied design objective for the MU case is to minimize the total transmit power
while guaranteeing a target SINR=Γk for every user:

minimize
{wk}K

k=1

K∑
k=1

∥∥∥wk

∥∥∥2

2
(2.4)

subject to

∣∣∣hH
k wk

∣∣∣2∑
j ̸=k

∣∣∣hH
k wj

∣∣∣2 + σ2
n

≥ Γk, k = 1, . . . , K.

Problem (2.4) can be cast as a second-order cone program and solved by convex optimization,
or approximated efficiently by the iterative WMMSE algorithm [16] highlighting the classical
trade-off between optimality and online complexity that motivates the DL approaches, which
are reviewed next.

Beyond their celebrated SE gains, mMIMO arrays unlock a host of additional advantages
across diverse wireless scenarios. In Millimeter Wave (mm-Wave) bands, where free-space
path loss is severe, the pencil beams afforded by hundreds of antennas provide the array
gain required to sustain gigabit links. For the Internet-Of-Things (IOT), an M -element
array can spatially multiplex thousands of ultra-low-power devices while maintaining sub-
milliwatt per-terminal transmit power, thereby pushing network–wide EE to new heights [19].
In ultra-reliable low-latency communications (URLLC) [20] and edge-computing slices, the
same spatial degrees of freedom translate into diversity gains and the ability to serve many
latency-sensitive tasks concurrently. Large arrays are equally attractive for wireless back-
haul: narrowly steered beams form high-capacity, interference-limited links between BS with-
out expensive fibre deployment.

Crucially, all of these benefits hinge on accurate CSI at the transmitter, which is typically
acquired via uplink training and channel reciprocity in time-division duplex (TDD) systems,
so that the precoding/beamforming vectors can be matched to the instantaneous propagation
environment. While advanced linear precoders such as ZF and WMMSE can, in principle,
deliver near-optimal performance. Their matrix inversions or iterative updates scale poorly
with the antenna count M and user count K. This computational burden has sparked interest
in data-driven alternatives.

Recent work shows that DNNs can learn a direct mapping from CSI to high-quality precod-
ing matrices, thereby bypassing the need to solve an optimization problem for every new
channel realization. For example, Elbir and Papazafeiropoulos proposed a deep CNN–based
hybrid precoder for multi-user mm-Wave mMIMO that outperforms conventional optimiza-
tion while cutting run-time by orders of magnitude [21]. Huang et al. demonstrated a related
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approach that matches, and sometimes exceeds, the SE of classic algorithms at a fraction
of their latency [22]. These studies confirm that neural networks can approximate optimal
beamforming strategies, adapt on the fly to the channel fluctuations, and exhibit robustness
to CSI imperfections when such impairments are included during training.

Motivated by these successes, this thesis adopts the premise that DL can enable real-time
precoding even for very large arrays. We extend the DL-based paradigm by tackling two
practical obstacles: EE and deployability on hardware-constrained BS accelerators. The re-
mainder of this chapter reviews the necessary background in DL for wireless, and introduces
the energy-consumption models relevant to mMIMO, and surveys model compression tech-
niques, quantization, pruning, and NAS that will later be fused into our BitAdapt framework.

2.2 DNN in Wireless Communications

DL is a branch of Machine Learning (ML) that employs multi-layer Artificial Neural Net-
works (ANNs) to automatically learn representations of data. Each layer of a DNN performs
a linear transformation (weighted sums) followed by a nonlinear activation, enabling the
network to model complex, high-dimensional relationships. During training, typically via
stochastic gradient descent and back-propagation, the network’s millions of weight parame-
ters are adjusted to minimize a loss function measuring the discrepancy between predictions
and ground truth. Thanks to the composition of many nonlinear layers, DNNs can approx-
imate extremely complex functions, which has led to breakthroughs in image recognition,
Natural Language Processing (NLP), and game playing.

The success of DNNs in those domains has spurred their application to wireless communi-
cation problems, which often involve complicated, stochastic mappings. Unlike traditional
signal processing algorithms that rely on hand-crafted models and assumptions (Gaussian
noise, linear channels, convex optimization, etc.), a DL approach can, in principle, learn the
system’s behavior directly from data. This data-driven paradigm is attractive when the true
model is highly complex or partially unknown.

In the wireless physical layer, researchers have demonstrated DNN-based solutions for channel
estimation, detection, resource allocation, and precoding. For example, a neural network can
learn to estimate CSI from pilot signals even when standard linear estimators falter due
to non-idealities or sparse pilots, essentially learning to interpolate or extrapolate CSI in a
manner that adapts to the propagation environment. In the context of mMIMO precoding, a
DNN can be trained to map an input CSI matrix H (or its compressed representation) to an
output precoding matrix W that maximizes a performance metric such as SR or fairness. This
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bypasses solving an optimization problem anew for each H; once trained, the DNN produces
an approximate solution in a single forward pass. The key advantage is speed: inference can
be executed in microseconds on specialized hardware, whereas solving a convex optimization
(e.g., WMMSE) or inverting large matrices for ZF may be orders of magnitude slower
as M, K grow. Such speed is crucial for real-time adaptation in fast-fading channels or low-
latency applications. Moreover, DNNs may uncover analytically elusive precoding strategies,
especially in non-linear or non-convex formulations. Recent studies confirm this shift in
practice, with Transformer architectures increasingly applied to CSI feedback and channel
estimation in mMIMO, while deep-unfolded WMMSE networks show that hybrid model-
based/data-driven designs remain competitive [23, 24]. This aligns with survey evidence on
the maturing role of deep learning in precoding and feedback [25].

Early explorations of DL in wireless have shown promising gains. Deep networks have been
used to cancel interference and to perform hybrid analog or digital beamforming in mmWave
systems, achieving performance close to ideal algorithms under challenging hardware con-
straints [26]. Convolutional and recurrent architectures exploit spatial and temporal channel
correlations. A CNN can extract spatial features from an antenna array’s CSI, whereas an
Recurrent Neural Networks (RNN) or Long Short-Term Memory (LSTM) captures temporal
evolution for prediction or tracking. A study by Chen et al. [27] applied DL for mm-Wave
interference cancellation and demonstrated improved signal quality compared with tradi-
tional nulling techniques, particularly under hardware imperfections. Likewise, recent work
shows that with sufficient training data across diverse scenarios, a single DNN can gener-
alize across deployment conditions (e.g. different cell layouts or mobility patterns), whereas
model-based schemes require re-derivation or re-calibration for each case [28]. Building on
this trend, [29] introduced a Swin Transformer-based network that significantly improves
CSI feedback efficiency in massive MIMO, while [30] proposed SemCSINet, a semantic-aware
CSI compression method that embeds CQI information, thereby improving robustness under
noisy and low-SNR conditions.

In parallel, model-inspired approaches combine optimization with deep architectures. No-
tably, [31] developed a deep graph unfolding framework for MU-MIMO beamforming that
bridges classical WMMSE optimization with graph neural networks, achieving both efficiency
and scalability. These advances highlight the rapid evolution of DNN-based methods from
black-box estimators toward architectures that integrate domain knowledge while addressing
robustness and efficiency.

Despite these advantages, deploying DNNs in wireless systems raises practical challenges. A
typical deep model may contain millions of parameters and demand billions of arithmetic op-
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erations per inference. Implementing such networks on power and cost-constrained hardware
(BS processors, mobile devices, or edge units) is non-trivial. The computational load can
overwhelm Digital Signal Processing (DSP) or Field-Programmable Gate Array (FPGA) re-
sources if not optimized, and the memory footprint for weights and activations often exceeds
on-chip capacity, forcing energy-expensive off-chip accesses. Furthermore, the black-box na-
ture of DNNs means performance can degrade under conditions poorly represented in the
training set, raising concerns about reliability and robustness in mission-critical links.

These issues motivate research into efficient DL for communications networks that are not
only accurate but also compact, fast, and energy-efficient. Techniques such as network prun-
ing, weight quantization, Knowledge Distillation (KD), and NAS are essential to bridge the
gap between modern DNN capabilities and the strict real-time requirements of wireless sys-
tems. In this thesis, we focus on quantization and compact network design for a DL-based
precoding system. By compressing the neural precoder model and tailoring its architec-
ture, we aim to realize the benefits of DL (high SE and adaptability) within the power and
hardware constraints of practical mMIMO BSs or edge devices.

2.3 Energy Efficiency in Massive MIMO Systems

In evaluating any new wireless processing technique (such as a DL-based precoding algo-
rithm), it is crucial to consider its energy profile. We distinguish between two related metrics:
the absolute energy consumption of the system and its EE, defined as the useful throughput
achieved per unit of energy consumed. Next, we define these terms more formally and discuss
their significance in mMIMO systems.

Energy Consumption. Energy consumption refers to the total electrical energy required
for the system to perform its functions, for example, computing a precoding matrix or running
a neural network inference, typically measured in joules per operation or per time interval.
In a digital system, energy consumption has two primary components:

1. Computation energy (Ecomp): the energy spent on arithmetic and logical operations
(such as the Multiply-Accumulate (MAC) operations in matrix multiplications).

2. Data-movement energy (Edata): the energy used to transport data between different
parts of the system, especially across memory hierarchies (registers, caches, main mem-
ory) and processing units.

In modern processors, moving data can be far more energy-costly than performing arithmetic.
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We can express the total energy for an operation as

Etotal = Ecomp + Edata , (2.5)

with
Edata =

∑
ℓ

Aℓ Eaccess,ℓ , (2.6)

and where Aℓ is the number of accesses to a given memory level ℓ, and Eaccess,ℓ is the energy
per access at that level.

On-chip versus off-chip memory. Accessing on-chip Static Random Access Memory
(SRAM) or cache typically costs only a few PicoJoule (pJ) per 32-bit word, whereas an off-
chip Dynamic Random Access Memory (DRAM) access can cost two orders of magnitude
more (500–1000 pJ per 32-bit word) [32]. Results from an empirical study are shown in
Table 2.1.

Table 2.1 Typical energy cost of a 32-bit operation or memory access in a 45 nm CMOS
process, adapted from Horowitz [1].

Operation / Access Energy [pJ] Relative cost

32-bit MAC 3–5 1×
32-bit SRAM 5–20 ∼ 3×
32-bit DRAM ∼800 ∼ 200×

Consequently, data movement often dominates the energy budget: in many DNN or baseband
workloads, 75–90% of the total energy is attributed to memory traffic [33].

Energy Efficiency. In wireless communications, EE is usually defined as the ratio of
achieved throughput to the energy consumed. For an mMIMO system, a common EE metric
is the sum SE per Joule of energy, measured in (bits/s)/W or, equivalently, bits/Joule. If Rsum

denotes the sum rate (in bits/s) of all users and Pcons denotes the total power consumption
of the system, the energy efficiency is given by

EE = Rsum

Pcons

[
bits J−1

]
. (2.7)

Higher EE means the system delivers more throughput for each joule of energy expended.
Importantly, maximizing EE is not the same as minimizing energy consumption or maxi-
mizing throughput alone; it is about finding an optimal trade-off. A system operating at
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extremely low power might achieve low throughput and thus only mediocre EE, while one
with huge throughput but astronomical power usage could also exhibit poor EE. The sweet
spot is often at an intermediate operating point.

These insights collectively highlight a converging theme in the field: achieving high EE in
DL-based mMIMO systems requires a joint consideration of both algorithmic and hardware
aspects. In the context of this thesis, the proposed DL-based precoding framework adheres to
these principles by prioritizing on-chip data reuse, employing model compression techniques
such as pruning and quantization to ensure that neural network weights fit within SRAM,
and embracing algorithm–hardware co-design methodologies. These design strategies are
fundamental to ensuring that the developed solutions meet the stringent energy constraints
of practical wireless communication systems. In the subsequent sections, we delve deeper into
two specific techniques: neural network quantization and NAS, which are pivotal in shaping
DNNs capable of delivering high performance while operating within realistic energy budgets
for mMIMO precoding applications.

mMIMO systems have revolutionized modern wireless communications by delivering substan-
tial spectral and spatial multiplexing gains through large-scale antenna arrays. However, the
significant infrastructure required—comprising hundreds of Radio Frequency (RF) chains,
power amplifiers, and baseband processing units—translates into substantial energy con-
sumption. The result is a pressing need for EE, and critical for both BS operation and
edge-device deployment.

Early analytical models by Björnson et al. [34, 35] decomposed system power into static
(circuit and cooling) and dynamic (transmission and baseband) components. Their rigorous
analysis of ZF precoding revealed that EE peaks in intermediate operational regimes, even
advocating increased per-antenna transmit power as antenna count grows. These studies
decisively demonstrated that maximum SE does not equate to maximum EE.

Meanwhile, hardware-level strategies such as antenna selection [36] and hybrid analog-digital
architectures [37] targeted static power reduction. By disabling underutilized RF chains or
leveraging analog beamforming to reduce digital hardware, researchers achieved meaning-
ful EE improvements while incurring minimal performance penalties. Yet these methods
often restrict beamforming flexibility, hindering performance in dynamic propagation envi-
ronments.

On the algorithmic side, processing energy became a limiting factor. Although ZF and
regularized ZF remain popular for their ability to suppress interference efficiently, their com-
putational cost scales poorly with antenna count due to matrix inversions [38]. More complex
methods like WMMSE enhance throughput but impose steep energy and latency costs, an
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unsuitable trade-off for real-time mMIMO systems.

Quantization and low-resolution hardware have since been explored to temper dynamic power
demands. For instance, reduced-bit Dynamic Algorithm Configurations (DACs) and quan-
tized feedback schemes can substantially decelerate power consumption. However, increased
quantization noise introduces performance degradation, complicating deployment unless care-
fully compensated.

With the advent of DL, data-driven precoders emerged to reduce computation time and
energy cost by approximating optimal beamforming maps. CNN and autoencoder-based
precoders such as those proposed by Elbir and Papazafeiropoulos [21] demonstrated near
WMMSE performance with reduced inference complexity. While promising, these models
typically require significant on-chip memory for parameters and intermediate activations,
inflating energy consumption, especially when transfers to off-chip DRAM occur.

In response, techniques from the DNN compression literature, such as pruning, quantization,
and architecture search, have been applied, producing lightweight DL-based precoders. Nagel
et al. [39] showed that aggressively quantized models maintain high performance while reduc-
ing computational energy. Similarly, hybrid DL–analytical frameworks incorporate domain
knowledge (e.g., ZF structure embedded within a neural net), achieving performance gains
with reduced parameter counts.

A critical realization from DNN accelerator research underscores the importance of mem-
ory access: off-chip DRAM transfers are an order of magnitude more energy-intensive than
on-chip SRAM access, which in turn is significantly more expensive than pure MAC oper-
ations. In seminal work, Han et al. introduced the EIE accelerator for compressed DNNs,
demonstrating that fitting a model entirely in SRAM leads to 120× energy savings over
DRAM-based designs by exploiting weight sparsity and quantization [40]. EIE’s architec-
ture shows the profound impact of minimizing off-chip data movement, a principle directly
applicable to DL-powered mMIMO precoders.

Further innovations such as EDEN [41] push this concept by leveraging approximate DRAM
with lower voltage operation. Paired with retraining techniques to compensate for reduced
precision, EDEN achieves up to 37% DRAM energy reductions with minimal accuracy loss,
offering a new dimension for energy-efficient inference.

Together, these works underscore a converging trend: energy-efficient mMIMO design de-
mands a holistic treatment of both computation and memory. While prior methods focusing
on hardware or signal processing deliver isolated benefits, the integration of DL with careful
memory optimization, particularly strategies to confine model inference within on-chip mem-
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ory, emerges as a powerful paradigm. The field is gravitating toward systems that minimize
costly memory transfers, employ model compression techniques, and align signal processing
with hardware-aware design, all to achieve optimal EE in real-world deployments.

2.4 Quantization Methods for Neural Networks

As introduced earlier, quantization is a model compression technique that reduces the pre-
cision of numbers used to represent neural network parameters and computations. The goal
of quantization is to replace Floating-Point Single Precision (FP32) with lower-bit integer
(or fixed-point) operations, thereby reducing memory usage, speeding up computation (es-
pecially on hardware like DSPs or integer-arithmetic accelerators), and most pertinently,
lowering energy consumption. Quantization can be applied to network weights, activations,
gradients, or all of the above.

2.4.1 Quantization Fundamentals

Let R ⊂ R be the original set of values to be quantized, and r ∈ R. Quantization maps r to
a lower-precision value r̂ ∈ R̂ ⊂ Z using a set of quantization parameters including a scaling
factor S, a zero-point offset Z, and a clipping range [α, β]. The general form of uniform
quantization is:

r̂ = Qu(r, S, Z, B) =
⌊

clip(r, α, β)
S

− Z

⌉
, (2.8)

where the scale and zero-point are given by:

S = β − α

2B − 1 , Z = −α

S
. (2.9)

The corresponding dequantization function is:

r̃ = Du(r̂, S, Z) = (r̂ + Z) · S . (2.10)

The quantization error eq = r̃ − r arises from rounding and clipping.

2.4.2 Uniform and Non-Uniform Quantization

The clipping bounds α and β are typically chosen to cover a high percentage of the values of r

(e.g., α = min(r), β = max(r), or some percentile-based range). Any r outside [α, β] will be
saturated to the nearest bound, introducing clipping error. Reducing this range can improve
the effective resolution for in-range values at the cost of more frequent clipping of outliers.
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If the distribution of r is roughly uniform or not too heavy-tailed, uniform quantization
works well. However, if r has a highly skewed distribution (for example, activations in ReLU
networks can have many small values and a few large ones), non-uniform quantization may be
beneficial. One common non-uniform scheme is a logarithmic or power-of-two quantization
where levels are spaced geometrically. For instance, a simple base-2 logarithmic quantizer
might map a real r to

r̂ = Qnu(r, B) = clip
(
⌊log2(|r|)⌉ , 0, 2B−1

)
, (2.11)

followed by the corresponding dequantization:

r̃ =

0 if r̂ = 0

2r̂ otherwise.
(2.12)

2.4.3 Clipping and Rounding

Clipping narrows the input domain [min(R), max(R)] to a target range [α, β], which is then
quantized. It reduces rounding errors but can introduce clipping error for outlier values. The
clip function is defined as

clip(r, α, β) =


α if r < α ,

r if α ≤ r ≤ β ,

β if r > β ,

ensuring r lies in [α, β]. After clipping, rounding is applied to map the scaled value (r/S −Z)
to the nearest integer (which becomes r̂). While standard “round-to-nearest” is used widely,
advanced strategies exist to minimize the impact of rounding on model accuracy. One such
approach is Hessian-aware rounding [39], which uses second-order information (the Hessian
of the loss function L concerning weights) to decide how to round each weight. Intuitively,
if a weight is in a “flat” region of the loss surface, a larger rounding error can be tolerated;
but if the loss is highly sensitive to that weight (steep curvature), rounding it might cause
a big drop in accuracy. The Hessian-aware scheme attempts to minimize the expected loss
increase due to rounding

E[L(w + ∆w) − L(w)] ≈ 1
2∆wT H(w)∆w (2.13)
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and chooses rounding offsets ∆w that keep this quantity small. In practice, such methods
may be implemented by formulating rounding as an optimization problem over a small set of
choices. Another consideration is whether to use symmetric quantization (where zero in real
domain maps to zero in quantized domain, i.e. α = −β and Z = 0) or asymmetric quantiza-
tion (allowing α ̸= −β and a non-zero Z). Symmetric quantization is simpler and often used
for network weights, which have symmetric distributions around 0. Asymmetric quantization
is common for activations which are non-negative (like Rectified Linear Unit (ReLU) out-
puts): by setting Z such that it represents the real value 0, we effectively use the full range
of quantized values to cover [0, β] rather than wasting half the codes on negative values that
activations never take. The granularity at which quantization parameters (S, Z) are chosen
also matters. We can quantize an entire tensor with one scale (layer-wise quantization), or use
a separate scale per output channel, per group of channels, or even per weight (fine-grained
channel-wise or group-wise quantization). Finer granularity can improve accuracy because
it adapts to local statistics of weights/activations (e.g., each convolutional filter may have
different variance and range, so giving each its own S is beneficial). However, it also increases
the overhead of storing scale factors and might complicate efficient hardware implementa-
tion. To evaluate quantization effects without deploying actual low-precision hardware, one
often uses quantization simulation (sometimes called fake quantization). During simulation,
each operation in the computational graph is emulated in FP32 but with inserted quantize-
dequantize steps to mimic the finite precision. For example, one can take an activation tensor
x in a forward pass and compute

r̃ = Gu(r, S, Z, B) = Du(Qu(r, S, Z, B), S, Z) . (2.14)

This technique helps assess quantization impact on accuracy without deploying the quantized
model, and enables selection of optimal per-layer quantization parameters.

Post-Training Quantization (PTQ) PTQ is the most straightforward quantization ap-
proach, as it simply quantizes a pre-trained model’s parameters after training, with no ad-
ditional model retraining. In PTQ, the weights (and usually the activations) of a neural
network are statically converted from FP32 to a lower-bit fixed-point format (such as 8-bit
integers). The appeal of PTQ lies in its simplicity; it’s fast to implement and doesn’t require
any further training data or compute cycles. However, the accuracy of a model can drop
sharply under aggressive PTQ, say when using only 2–4 bits for all layers. Uniformly apply-
ing a very low precision to every layer tends to hurt the most sensitive layers (typically those
like the first convolution or final classification layer), resulting in notable performance degra-
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dation in many cases [42]. Recent techniques (e.g., bias correction or weight equalization [43])
can mitigate some of these issues, allowing slightly better accuracy without retraining. Even
so, PTQ is generally best suited for models that are naturally robust to quantization or in
scenarios where a modest loss in accuracy is acceptable.

2.4.4 Quantization-Aware Training (QAT)

QAT embeds quantization operations directly into the training pipeline. During each forward
pass, fake quantization simulates low-bit arithmetic. Backpropagation uses the Straight
Through Estimator (STE)) to approximate the gradients:

∂q(x)
∂x

≈ 1

Quantizers are attached to weights, biases, and activations. QAT requires labeled data and
multiple epochs of fine-tuning. While computationally demanding, it offers superior accuracy
retention, especially at extreme quantization levels (e.g., INT4, INT2).

Learned Step Size Quantization (LSQ). LSQ can be seen as an extension of QAT
where the quantizer itself has trainable parameters. In LSQ, the step size (the scaling factor
that determines the quantization levels) is not fixed ahead of time; instead, its value is
learned via backpropagation along with the network weights [44]. Practically, LSQ inserts a
small number of new parameters representing step sizes for different layers or tensors, and
uses the STE technique to approximate gradients through the rounding operation (which
is non-differentiable). By learning optimal step sizes, LSQ often achieves better accuracy
at extremely low bit-widths because it can finely adjust the quantization resolution where
needed. This approach is particularly useful when it’s unclear how to manually choose
the best quantization intervals, for instance, when balancing accuracy vs. EE on different
hardware platforms. LSQ has proven effective and has been adopted in both research contexts
and in hardware-aware neural network design.

2.4.5 Mixed-Precision Quantization (MPQ)

MPQ assigns different bit-widths to different layers, channels, or tensor components. This
reflects that not all parts of a network are equally sensitive to quantization. Sensitive layers
use higher precision (e.g., 8 bits), while robust ones are quantized more aggressively (e.g., 2
or 4 bits).
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Let each layer l use bit-width Bl, then

r̂l = Q(rl, Sl, Zl, Bl) .

Finding optimal assignments is a combinatorial challenge. Search strategies include:

• Exhaustive search (feasible for small networks),

• Gradient-based methods like Differentiable Quantization (DQ) [45],

• Sensitivity-based methods like HAWQ [46],

• Reinforcement Learning (RL) approaches.

MPQ can also be applied channel-wise or kernel-wise. While it provides better trade-offs, the
benefits are hardware-dependent, requiring hardware-aware search and deployment strategies.

2.4.6 BitPruning Quantization

Recent advances in neural network compression have increasingly focused on bit-level prun-
ing strategies to enable energy-efficient deployment of deep learning models in resource-
constrained environments. Traditional approaches, such as weight pruning and structured
pruning, aimed at removing individual weights or entire filters to reduce model size and
computation. While effective, these methods often lacked the fine granularity required for
real hardware efficiency. To address this, researchers began exploring bit-level optimization,
where the precision of each weight or activation is reduced based on its relative contribution
to model performance. This shift gave rise to quantization-aware pruning techniques that
jointly learn parameter values and their optimal bitwidths during training.

Among these, BitPruning [12] emerged as a pivotal approach by treating bitwidths as differ-
entiable, learnable variables. This allows each layer or even individual parameters to adopt a
precision level that balances accuracy and efficiency. Extensions of BitPruning have further
enhanced its hardware compatibility. For instance, Sekikawa and Yashima [47] reformulated
dot products into bit-shift and addition operations, eliminating multiplications and reducing
energy cost. Parallel works such as LQ-Nets [48] and PACT [49] focused on learning quantiza-
tion levels and clipping thresholds, while Soft Filter Pruning [50] maintained differentiability
in pruning masks to allow gradient-based updates. Moreover, hardware-aware strategies have
gained traction, including RL-based frameworks [51], ultra-low precision arithmetic [52], and
memory-efficient architectures like BitS-Net [53]. Collectively, these efforts highlight a grow-
ing trend: the convergence of pruning and quantization into unified, learnable frameworks
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that offer both compression and EE, paving the way for deployable Artificial Intelligence (AI)
in communication systems, edge devices, and emerging memory technologies.

Summary and Open Challenges

Despite substantial progress, several limitations remain. Uniform-precision schemes ignore
the heterogeneous sensitivity of layers; MPQ improves flexibility but suffers from a combi-
natorial search space; LSQ learns step sizes yet typically assumes fixed per-layer bit widths;
and BitPruning offers fine-grained control at the cost of training and deployment complexity.
Moreover, many methods abstract away deployment constraints, energy and memory costs,
latency/throughput targets, and, critically, the availability of hardware support for variable
precision, which are central in mMIMO precoding.

These gaps motivate frameworks that are not only precision-aware but also hardware-,
deployment-, and energy-aware. Accordingly, the next subsection (Section 2.4.7) examines
hardware support for variable bit-width, surveying accelerator and FPGA platforms that
enable per-layer mixed-precision execution and clarifying the feasibility assumptions under-
pinning our energy-aware regularization.

2.4.7 Hardware Support for Variable Bit-Width

The practicality of mixed-precision quantization ultimately hinges on the capabilities of the
target hardware. While commodity GPUs and DSPs typically operate at a fixed arithmetic
width (e.g., FP16 or INT8), two classes of platforms increasingly support per-layer precision
variation at compile time or even runtime.

The first type are the reconfigurable processing elements (PEs) that can be found in cus-
tom DL accelerators. These designs allow the multiply–accumulate (MAC) datapath to be
spatially partitioned, enabling dynamic subword parallelism. A single PE can, for example,
issue one INT16 MAC per cycle, or equivalently two INT8 or four INT4 MACs in parallel,
depending on the layer’s assigned precision [54,55]. Such flexible-width arrays map naturally
to layer-heterogeneous bit-width schedules required by mixed-precision quantization.

A second implementation approach supporting mixed precision models is an FPGA-based
pipelined implementation. Here, each network layer is realized as a dedicated streaming stage
whose arithmetic precision is tailored to that layer’s sensitivity (e.g., INT8 in early layers,
INT4 in mid blocks, INT2 in late layers). Although this specialization can be resource-
intensive, heavy quantization substantially reduces logic and DSP utilization, making per-
layer precision practical in many cases [?,56]. Pipeline specialization has been demonstrated



20

across quantized CNN/RNN accelerators, preserving accuracy while improving energy effi-
ciency.

In summary, while per-layer adjustable precision is not yet universal, reconfigurable MAC
arrays in custom ASICs and multi-precision pipelines on FPGAs make it increasingly realis-
tic. Consequently, evaluations of mixed precision (and related methods such as BitPruning)
should differentiate algorithmic potential from deployment feasibility and consider platforms
that explicitly expose variable bit-width execution.

2.5 Neural Architecture Search (NAS)

NAS is an emerging paradigm in DL that aims to automate the design of neural network
architectures by optimizing their structure for a specific task or hardware constraint. NAS
techniques are particularly valuable for applications requiring custom performance trade-
offs, such as edge inference, where accuracy, latency, and energy efficiency must be carefully
balanced. In the context of wireless communication systems such as mMIMO precoding, NAS
offers the potential to discover architectures that are well-adapted to deployment-specific
requirements.

Early NAS approaches relied heavily on RL or evolutionary algorithms to explore architec-
ture spaces [57]. These methods produced high-performing models but were prohibitively
expensive computationally, often requiring thousands of GPU-days. To reduce the search
cost, differentiable NAS (DARTS) was introduced [45], which relaxes the discrete architec-
ture search into a continuous optimization problem using gradient descent. While DARTS
significantly accelerates search time, it often suffers from performance collapse due to insta-
bility during the architecture weight optimization process.

More recent NAS frameworks have shifted toward hardware-aware NAS [58], where search ob-
jectives explicitly account for resource constraints such as latency, memory access, or energy
consumption. These methods optimize a multi-objective loss function involving both accu-
racy and hardware cost models. ProxylessNAS [59] further improves this idea by eliminating
the need for proxy tasks and directly searching for efficient architectures on the target device.
Despite their effectiveness, these approaches rely on accurate profiling of the hardware and
can be sensitive to variations in the deployment platform.

NAS has also been extended to support quantization-aware and mixed-precision training.
Recent works jointly search over both architectural and quantization design spaces [46].
These hybrid methods discover models that are optimized in both structure and numerical
precision, significantly improving energy efficiency. However, such joint searches increase
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the dimensionality of the search space, making the optimization problem more complex and
sensitive to initialization and regularization.

In wireless communication applications, NAS remains relatively underexplored. A few studies
have proposed customized search spaces tailored to physical-layer tasks sensing and modu-
lation recognition [60]. These domain-specific NAS approaches reduce search time by con-
straining architectural choices and leveraging knowledge about signal processing pipelines.
Nonetheless, most existing NAS methods are designed for general-purpose vision or language
tasks, and their adaptation to communication systems requires careful redesign of search
objectives, datasets, and performance metrics.

Overall, NAS presents a promising tool for designing efficient DL models tailored to specific
hardware and system constraints. However, challenges remain in improving the scalability
of search algorithms, integrating energy and latency models accurately, and adapting NAS
frameworks to domain-specific use cases such as wireless communication and mMIMO sys-
tems.

2.6 Site-Specific Optimization of Deep Learning Models

In real-world wireless communication systems, the performance of DL-based models, particu-
larly for tasks such as channel estimation, beamforming, and precoding, can vary substantially
across different deployment environments. Factors such as user mobility, building geometry,
material reflections, and signal blockage result in site-dependent propagation characteristics
that affect CSI. Despite these known variations, most existing DL models are trained under
generalized or averaged conditions, limiting their adaptability and robustness in site-specific
scenarios. Throughout this thesis, “site-specific” refers to the training/evaluation setup—we
train a separate model for each deployment scene rather than a restriction of the compres-
sion method itself, which is general and site-agnostic. Traditional approaches to site-specific
optimization involve retraining models for each environment using locally collected data [61].

In site-specific optimization for wireless PHY tasks (channel estimation, beamforming, pre-
coding), performance can vary markedly across deployments because propagation depends on
user mobility, geometry, materials, and blockage, which shape the observed CSI. A common
strategy in the literature is to retrain models with locally collected data for each environ-
ment [61]. While effective, per-site retraining introduces costs in data acquisition, curation,
and lifecycle management, and can increase computational and memory overhead when many
specialized models must be maintained. Recent studies therefore analyze the accuracy ef-
ficiency trade-off between site-specific tailoring and model sharing, including generalization
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across heterogeneous deployment conditions.

To study these trade-offs under controlled, reproducible settings, many works employ ray-
tracing–generated datasets as benchmarks to emulate site-specific conditions (e.g., Deep-
MIMO [62]). Such synthetic datasets capture spatial channel structure and geometry and are
well-suited for supervised learning and ablations; however, they serve as proxies rather than
substitutes for field measurements and may not reflect all hardware or traffic non-idealities.
As a middle ground between per-site retraining and fully shared models, the literature also
explores lightweight adaptation, where a pre-trained model is fine-tuned with a small num-
ber of target-site samples [63], as well as meta-/few-shot approaches aimed at improving
portability across diverse environments [64].

For instance, the DeepMIMO dataset [62] provides a flexible framework for generating spatially-
aware channel data using real-world 3D maps and ray-tracing engines. These synthetic
datasets allow DL models to learn location-dependent CSI patterns and spatial channel cor-
relations.

An alternative to full retraining is model adaptation, where a pre-trained generic model is
fine-tuned or adapted using a small number of samples from the target site [63]. Meta-
learning and few-shot learning techniques have been explored in this context to improve
model generalization across diverse environments [64]. These methods reduce the need for
large-scale retraining while maintaining high performance in new locations. However, their
effectiveness depends on the similarity between training and deployment environments, and
the availability of representative samples from the new site.

Some recent works have incorporated site-specific optimization into architectural design via
model compression and quantization. These studies exploit spatial channel sparsity or hard-
ware heterogeneity present in different deployment scenarios [65]. Techniques like pruning,
QAT, and NAS have been employed to discover models that are not only energy-efficient
but also site-tuned, either by adapting model capacity to site conditions or by embedding
location-specific channel features into the model itself.

Despite these advances, challenges remain in efficiently adapting DL models to site-specific
characteristics without incurring excessive overhead. Existing methods typically rely on full
or partial retraining, which may not scale well in distributed or low-latency applications.
Furthermore, the integration of site-specific constraints with other objectives such as energy
efficiency, latency, or hardware awareness is still underexplored, especially in the context of
real-time systems like mMIMO precoding.

These limitations highlight the need for DL frameworks that can generalize across sites while
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offering mechanisms for lightweight, scalable adaptation. Future research in this area will
likely focus on combining environmental modeling with compression-aware learning strategies
to improve the practicality and efficiency of site-specific DL deployments in wireless systems.
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3.1 Abstract

The deployment of deep learning (DL) models for precoding in massive multiple-input multiple-
output (mMIMO) systems is often constrained by high computational demands and en-
ergy consumption. In this paper, we investigate the compute energy efficiency of mMIMO
precoders using DL-based approaches, comparing them to conventional methods such as
zero forcing and weighted minimum mean square error (WMMSE). Our energy consump-
tion model accounts for both memory access and calculation energy within DL accelerators.
We propose a framework that incorporates mixed-precision quantization-aware training and
neural architecture search to reduce energy usage without compromising accuracy. Using a
ray-tracing dataset covering various base station sites, we analyze how site-specific conditions
affect the energy efficiency of compressed models. Our results show that deep neural network
compression generates precoders with up to 35 times higher energy efficiency than WMMSE
at equal performance, depending on the scenario and the desired rate. These results estab-
lish a foundation and a benchmark for the development of energy-efficient DL-based mMIMO
precoders.

3.2 Introduction

The deployment of DL models in mMIMO systems has shown great potential to advance
wireless communication, particularly to optimize beamforming strategies. DNNs can dy-
namically adjust the beamforming to achieve better performance than traditional methods.
However, the large size and overparameterization of these networks present challenges for
practical deployment, especially on resource-constrained edge devices where memory, energy
consumption, and processing latency are critically limited.



25

Designing energy-efficient communication systems is critical for the realization of mMIMO
systems. However, finding a precoding solution that maximizes energy efficiency under low-
resolution quantizer constraints remains a significant challenge [66]. Quantized CNNs are a
popular choice for reducing hardware complexity. In CNNs, quantization can be applied to
inputs, weights, and activations [67]. Typically, weights and activations are represented using
32-bit or 64-bit floating-point formats, but they can be quantized to lower-precision fixed-
point representations, such as 2-bit or even 1-bit precision, to further reduce computational
and memory requirements. Lowering the precision leads to a smaller model size; however, it
can also reduce accuracy, so choosing the number of precision bits is a non-trivial task.

These constraints hinder the direct application of DNNs in real-world mMIMO systems. The
celebrated WMMSE algorithm proposed in [7] is based on the equivalence between the SINR
and mean square error, which is then solved using the block coordinate descent method. The
WMMSE algorithm provides state-of-the-art performance and is widely used as a benchmark
in the literature. However, existing iterative algorithms like WMMSE face challenges due to
their computational complexity, which grows rapidly with the number of antennas and the
network size. This increase in complexity leads to higher latency, making such algorithms
less suitable for real-time applications or large-scale systems where rapid decision-making is
critical.

To address these resource limitations, quantization techniques have emerged as an effective
solution. Quantization reduces the complexity of neural networks by lowering the bit-width
of model weights and activations, which decreases memory usage and energy consumption.
Common approaches such as PTQ and QAT apply uniform precision across the entire net-
work to optimize performance on resource-constrained platforms [68, 69]. However, these
methods often fail to account for the varying sensitivity of different network layers to quanti-
zation, leading to inefficiencies and potential performance loss when aggressive quantization
is applied uniformly.

In contrast, MPQ provides a more flexible approach by allowing different layers to use vary-
ing bit-widths, enabling a better balance between accuracy and energy efficiency [70]. By
leveraging search algorithms such as Exhaustive Search, mixed-precision quantization can
optimize bit-width allocation for specific layers, leading to significant reductions in energy
consumption while maintaining high performance. This approach is particularly advanta-
geous for complex models like DNNs, which are widely used in energy-efficient tasks such as
real-time signal processing in mMIMO systems.

This paper proposes a mixed-precision quantization framework, augmented with Neural Ar-
chitecture Search (NAS) [71], to optimize energy consumption in DL models used for mMIMO
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beamforming. Our approach employs a streamlined neural architecture with a single CNN
layer followed by three fully connected layers, designed to balance computational complexity
and SINR performance. Additionally, by adapting our quantization strategy to site-specific
conditions using ray-tracing datasets, we further enhance the model’s energy efficiency with-
out sacrificing accuracy or SINR performance.

In this paper, we address the challenge of enhancing energy efficiency in DL-based beam-
forming for mMIMO systems. We propose a mixed-precision quantization-aware framework
that significantly reduces energy consumption compared to standard deep learning methods
while maintaining competitive sum rate performance. This approach achieves results compa-
rable to traditional techniques such as ZF and WMMSE, with a strong emphasis on energy
efficiency. Additionally, we introduce site-specific model compression, a scalable method de-
signed to adapt to unique site conditions. By leveraging site-specific ray-tracing datasets, this
approach enables adaptive quantization that accounts for environmental factors, enhancing
energy efficiency without compromising accuracy. This work establishes a solid foundation
for advancing energy-efficient deep learning-based beamforming, offering a compelling alter-
native to conventional methods like ZF and WMMSE, particularly in scenarios where energy
consumption is a critical concern.

3.3 System model

This work considers a multi-user mMIMO system where a BS with NT transmit antennas
serves NU single-antenna users simultaneously. Let xu represent the transmitted symbol for
each user. The received signal at the uth user can be represented as

yu = h†
u

∑
∀u

wuxu + η , (3.1)

in which hu ∈ CNT×1 is the wireless channel vector between the BS and uth user; the
term η ∼ CN (0, σ2) denotes complex symmetric Gaussian noise with zero mean and a
variance of σ2; the downlink transmit Fully Digital Precoder (FDP) vector is denoted as
W = [w1, . . . , wu, . . . , wNU ] ∈ CNT×NU . The corresponding SINR for user u is formulated as

SINR(wu) =

∣∣∣h†
uwu

∣∣∣2∑
j ̸=u

∣∣∣h†
uwj

∣∣∣2 + σ2
. (3.2)

The goal is to find such a precoding W that maximizes the throughput under the maximal
transmit power Pmax constraint. Thus, the downlink sum rate maximization problem can be
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formulated as

max
W

R(W) , (3.3)

s.t.
∑
∀u

w†
uwu ≤ Pmax , (3.4)

where for a precoding matrix W, the sum rate is

R(W) =
∑
∀u

log2

(
1 + SINR(wu)

)
. (3.5)

3.3.1 Problem Definition

Beamforming is crucial in wireless communication, particularly at mmWave frequencies,
where directional signal transmission is essential due to the limitations of omnidirectional
antennas. DNNs have shown promise in maximizing the sum rate, but despite their en-
hanced performance, DNNs come with high computational complexity and substantial en-
ergy requirements, posing challenges for deployment on resource-limited devices like edge
platforms.

To tackle the complexities and energy demands associated with DNN-based precoders in
mMIMO systems, we focus on developing a method that preserves the high throughput of
DNNs while making them suitable for resource-constrained environments. This requires over-
coming inefficiencies caused by uniformly applied quantization, which overlooks the varying
sensitivity of different network layers to precision reduction.

In this work, we introduce a novel framework that combines mixed-precision quantization-
aware training with NAS. Our method is designed to significantly lower the energy con-
sumption of DNNs in precoder design while sustaining high throughput for site-specific BSs.
Extensive experiments validate that our approach achieves superior energy efficiency com-
pared to existing DL-based and conventional beamforming techniques.

3.4 Methodology

3.4.1 Model Architecture and NAS

The proposed DNN architecture for digital beamforming, illustrated in Figure 3.1, is specif-
ically designed to address the demands of mMIMO systems. The architecture gets the real
and imaginary parts of the channel state information through two separate channels as input
and predicts the precoding matrix. The network comprises a single convolutional layer with
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Figure 3.1 DNN architecture template.

the kernel size of 3 for feature extraction, followed by three Fully Connected Layers (FCLs)
to map the extracted features into the real and imaginary components of the digital precoder.
To enhance model generalization and stability, the architecture incorporates ReLU activa-
tion functions, 5% dropout to mitigate overfitting, and batch normalization to accelerate
convergence and improve robustness during training.

The design of a CNN-based architecture draws inspiration from [72] and [63], which showcase
its effectiveness in hybrid beamforming applications. To balance complexity and performance,
preliminary experiments led to a base DNN template featuring one convolutional layer and
three FCLs. Opting for a single convolutional layer stems from observations that additional
layers offer diminishing improvements in sum rate performance while significantly increasing
computational demands. Similarly, three FCLs were selected, as fewer layers compromise
performance and additional ones inflate complexity without proportional gains. The size
of each layer is configurable via NAS. The energy consumption of our design, assuming 64
output channels for CNNs and 1024 neurons for FCLs, increases by approximately 19% when
adding a convolutional layer and by 5% when adding an FCL.

Our approach optimizes quantization by exploring a search space of bit-width configura-
tions for the weights across the layers of the DNNs. We vary the precision levels for each
layer—[CONV, FCL1, FCL2, FCL3]—with multiple bit-width choices, allowing for a large
number of possible permutations. Additionally, we consider different model architectures by
varying the output channel size Cout of the convolutional layer and the size DFCL of FCLs.
This results in a comprehensive search space combining quantization and architectural con-
figurations. We use exhaustive search to explore all possible combinations, ensuring that
optimal configurations are identified without overlooking any potential solutions. The small
model size and fast training times make this exhaustive search feasible. Ultimately, this
method helps to balance energy efficiency and sum rate performance, which is essential for
energy-constrained mMIMO systems where optimizing both performance and resource usage
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is critical.

3.4.2 Quantization Methods

This study examines several quantization techniques to enhance energy efficiency and main-
tain performance in DNNs for mMIMO systems. The main objective is to minimize energy
consumption and memory demands while preserving an acceptable sum rate. We explore
QAT using the LSQ method [44] and MPQ through an exhaustive search. These quanti-
zation methods are then combined with NAS to find an optimal balance between energy
efficiency and performance.

PTQ

In preliminary experiments, we also considered PTQ as a simple way to reduce model com-
plexity. This method applies fixed-point quantization to a pre-trained floating-point (FP32)
model without requiring retraining. However, in our PTQ experiments, sum rate perfor-
mance was highly degraded at low resolutions (4 bits or less), and therefore we focus in this
paper on the QAT approach to investigate the best possible model compression.

QAT

To address the limitations of PTQ, QAT fine-tunes a pre-trained model within quantiza-
tion constraints, enabling the network to adapt to lower precision with minimal performance
loss. We use LSQ [44], which dynamically adjusts quantization step sizes during training.
Unlike static step quantization, LSQ optimizes these step sizes to mitigate quantization
error, especially in low-bit scenarios. This is achieved through the Straight Through Esti-
mator [73], which supports gradient-based optimization for non-differentiable quantization
functions. The adaptive nature of LSQ provides significant gains in both sum rate and energy
efficiency under low-bit quantization constraints.

MPQ with NAS

MPQ assigns different bit-widths to each network layer, offering a flexible trade-off between
energy efficiency and accuracy. We employ exhaustive search to evaluate quantization combi-
nations [2, 4, 8, and 16 bits] across four layers, calculated as 44 = 256. and various model archi-
tectures by varying Cout ∈ {8, 16, 32, 64} and DFCL ∈ {512, 1024} across the CNN and FCLs
(see Fig. 3.1) to minimize energy consumption while preserving sum rate performance [74].
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3.4.3 Training Method

All models are trained using a self-supervised approach [63], with sum-rate maximization
as the objective function. This method ensures that the model learns to predict effective
precoding vectors directly, without the need for labeled data. The loss function is defined as

L = −R(W) , (3.6)

and models are trained with a fixed learning rate of 10−3 and a batch size of 1000. Addi-
tionally, we average the results from four training runs with distinct initialization seeds to
control for variations in the training process.

3.4.4 Energy Model for Quantized Neural Networks

In order to evaluate and compare the energy consumption of a DNN solution, we consider a
simple but realistic model of the energy consumed to compute the DNN output. We base our
model on the one proposed in [75], which considers the energy required for memory accesses
and computations, while taking into account the impact of the bit width of model weights
and activations.

The energy consumption of the DNN is thus decomposed into three components: computation
energy (EC), weight transfer energy (EW ), and activation transfer energy (EA). The total
energy consumption is then given by

EDNN = EC + EW + EA . (3.7)

The computation energy is based on counting the number of MAC operations required for the
linear portion of each layer and the number of biasing, batch normalization, and activation
function computations. To simplify the model, all these operations are attributed an energy
EMAC. The computation energy EC is thus given by

EC = EMAC · (Nc + 3 · Na) , (3.8)

where Nc is the total number of MAC operations required by the model, Na is the total
number of activations, and the factor 3 arises since one biasing, one normalization, and one
activation must be computed for each activation output.

For consistency with the baseline energy model that will be presented next, we model EMAC
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in terms of the bit width Q as

EMAC = α ·
(

Q

16

)β

, (3.9)

while choosing α = 0.86 and β = 1.9 to fit the energy measurements reported in [1].

The energy associated with transferring weights, EW , is expressed as

EW = EM · Nw + EL · Nc√
p

, (3.10)

where Nw is the total number of weights, EM and EL represent the energy costs of accessing
the main on-chip memory and local buffers, respectively, and p is the number of parallel
execution units. We use EM = 2EL = 2EMAC and p = 64

(
Q
16

)
. It is assumed that the entire

DNN model fits on-chip and no accesses to external memory are needed.

Finally, the energy for transferring activations, EA, is given by

EA = 2 · EM · Na + EL · Nc√
p

. (3.11)

3.4.5 Energy Model for Baseline Methods

We compare the energy consumption of the proposed quantized DNN models to conventional
algorithms, specifically the WMMSE and ZF methods. The WMMSE algorithm, known for
its high computational complexity due to iterative processing and matrix inversions, consumes
significantly more energy than the ZF approach. Since these energy models act as a baseline,
we adopt a conservative (lower bound) approach by accounting only for the multiplications
when estimating compute energy. For memory energy estimation, we consider only the local
buffer accesses for the operands. The total number of real multiplications required for I

iterations of WMMSE is given by

Nc = I

(
8
3N3

TNU + 4N2
TNU + 4NT(4N2

U + 2NU)

+ 4N2
U + 56

3 NU

)
, (3.12)

while the required number of real multiplications for ZF is

Nc = 8N2
UNT + 8

3N3
U . (3.13)
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The energy model for WMMSE and ZF can then be expressed as

EB = EMAC · Nc + EL · Nc√
p

. (3.14)

3.5 Numerical Results

3.5.1 Dataset Definition

A custom dataset was generated to accurately reflect the channel characteristics pertinent
to beamforming in mMIMO systems. MATLAB’s Ray-Tracing toolbox simulated both Line-
Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) conditions. The simulations positioned a BS
within the Montreal region, utilizing environmental data from OpenStreetMap [76] for real-
ism. The base station employed a uniform planar array antenna with 8x8 elements, spaced
at half-wavelength, operating at a frequency of 2 GHz. The transmitter was set at a height
of 20 m and powered at 20 W, assuming a system loss of 10 dB. Users were placed in circular
patterns around the base station at distances ranging from 50 to 350 m and at 10-degree
intervals. This configuration captured a wide variety of deployment scenarios and channel
conditions. The ray-tracing simulations considered up to 10 reflections but excluded diffrac-
tion effects, focusing on signal reflections from buildings and terrain to emulate multipath
propagation in urban environments accurately.

3.5.2 Energy Consumption Examples

We first present some examples of the energy consumed by the different approaches, as per
the model presented in Sections 3.4.4 and 3.4.5. We consider the “UdeM-NLOS” scenario. In
Table 3.1, we report the energy for the “default” variants of the method, that is, for WMMSE,
we set the stopping criterion to 10−5 to have near-optimal performance, and for the DNN, we
use Cout = 64 and DFCL = 1024 with the maximum weight resolution of 16 bits. We see that
the DNN consumes significantly less than WMMSE at the cost of a slight degradation in sum
rate (on this scenario). ZF, on the other hand, is much less complex, but does not provide
competitive performance in NLOS conditions, or at low Signal-To-Noise Ratio (SNR). As
a result, ZF is unlikely to be a favored solution in practice, since it results in significant
under-utilization of the BS resources.

Next, to illustrate the impact of quantization, Table 3.2 lists the energy consumption of
the DNN for various uniform bit-width configurations, for the same Cout and DFCL as in
Table 3.1. We see that lowering the weight resolution leads to substantial energy savings but
at the cost of a moderate decrease in performance.
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Table 3.1 Energy Comparison of the Default Variants on “UdeM-NLOS”
(NT = 64, NU = 4, SNR = 15 dB)

Method Energy (µJ) Sum Rate (bit/s/Hz)

WMMSE (I = 92.8) 296 19.2
Default DNN 54.5 18.9 ± 0.007
Zero-Forcing (ZF) 0.008 15.3

Table 3.2 DNN Energy Consumption with Uniform Quantization
for Cout = 64, DFCL = 1024 on “UdeM-NLOS”
(NT = 64, NU = 4, SNR = 15 dB)

Quantization Configs Energy (µJ) Sum Rate (bit/s/Hz)

[16, 16, 16, 16] 54.5 18.9 ± 0.007
[8, 8, 8, 8] 17.5 18.6 ± 0.012
[4, 4, 4, 4] 7.4 17.8 ± 0.014
[2, 2, 2, 2] 4.6 17.1 ± 0.032

3.5.3 NAS Results

Figure 3.2 highlights the trade-offs between computational energy efficiency (bits/s/Hz/µJ)
and sum rate (bits/s/Hz) across diverse DNN configurations generated as described in Sec-
tion 3.4, on the “UdeM-LOS” scenario. Each curve shows the Pareto front corresponding
to a particular architecture configuration, while each point in this curve uses a different
quantization configuration.

A few trends can be mentioned among the Pareto-optimal results for each architecture.
Firstly, the first layer, CONV, is often kept at high precision, particularly in smaller models, to
maintain performance while reducing energy consumption. Interestingly, no Pareto-optimal
model uses uniform quantization across all layers. Moreover, even models that achieve the
highest sum rates do not employ more than two layers at the highest precision. These results
emphasize the importance of efficiently distributing bit precision across layers to optimize
energy consumption.

The configuration yielding the highest energy efficiency is (Cout = 8, DF CL = 512) with quan-
tization [2, 8, 8, 8], achieving 26.2 bits/s/Hz/µJ at a moderate sum rate of 28.5 bits/s/Hz. On
the other hand, the configuration achieving the highest sum rate is (Cout = 64, DF CL = 1024)
with quantization [16, 16, 4, 8], which reaches 31.3 bits/s/Hz but does not use full precision,
making it more interesting from an energy efficiency perspective. An alternative worth men-
tioning is the model with the second-best sum rate of 31.1 bits/s/Hz, achieved with an archi-
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Figure 3.2 Trade-off between energy efficiency and sum rate for CNNs with varying Cout,
DFCL, and MPQ bit widths, on the “UdeM-LOS” scenario (NT = 64, NU = 4, average
SNR = 29 dB). All the model configurations that were evaluated are shown, while the curves
provide the Pareto front associated with each architecture configuration.

tecture of (Cout = 64, DF CL = 1024) and quantization [16, 2, 2, 2], which uses nearly 5× less
energy than the highest sum-rate model. We do observe compute energy efficiency decreasing
rapidly near the highest sum-rate, but of course this could simply mean that switching to a
larger and/or different DNN architecture would be preferable at that point.

To further illustrate the importance of NAS and model compression in finding efficient DNN
precoders, Figure 3.2 includes horizontal and vertical arrows that quantify the impact on
performance of the design choices. The horizontal arrow measures the difference in sum rate
between the worst and best configurations at equal energy efficiency, revealing a 20% improve-
ment through optimal model selection. Similarly, the vertical arrow shows the difference in
energy efficiency at an equal sum rate, demonstrating a 14.5× gain.

3.5.4 Impact of Deployment Environment and Energy Efficiency Comparison

Figure 3.3 compares energy efficiency (bits/s/Hz/µJ) and sum-rate (bits/s/Hz) across two
contrasting deployment scenarios: UdeM-NLOS, characterized by challenging multipath con-
ditions, and Okapark-LOS, offering clear LOS signal propagation. These two scenarios high-
light the adaptability and effectiveness of the proposed quantized models. For the DNN
precoders, each curve shows the Pareto-optimal configurations across the entire search space,
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Figure 3.3 Comparison of energy efficiency (bits/s/Hz/µJ) and sum rate (bits/s/Hz)
across two environments: UdeM-NLOS (average SNR = 15 dB) and Okapark-LOS (average
SNR = 28 dB). The proposed method achieves a superior balance of energy efficiency and
sum rate performance compared to WMMSE. Results are derived for models with varying
(Cout) and (DF CL).

whereas for WMMSE, the trade-off between sum-rate and energy efficiency is varied by ad-
justing the stopping criterion.

In the UdeM-NLOS environment, sum rates are constrained between 15 and 20 bits/s/Hz due
to severe signal attenuation and multipath effects. Despite these limitations, the quantized
models achieve significant energy savings, with improvements of up to 35× in energy efficiency
compared to the WMMSE baseline, all while maintaining competitive sum rates.

In contrast, the Okapark-LOS environment, which benefits from clear signal paths, supports
higher sum rates ranging from about 30 to 40 bits/s/Hz. Depending on the desired sum-
rate, the DNN precoders can provide improvements in energy efficiency ranging from 6.1×
to 1.2×. However, with the DNN architecture template and training method considered in
this paper, the DNN precoder is unable to achieve the highest sum-rate that can be provided
by WMMSE.

These results emphasize the adaptability of the quantized models across diverse deployment
environments, and their ability to achieve the same performance with less compute energy.
Interestingly, the energy gains provided by DNNs appear to be larger in more difficult (low
SNR, non line-of-sight) environments.
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3.6 Conclusion

We proposed a novel framework for finding efficient compressed DNN models for mMIMO
precoding. By using quantization-aware training with LSQ and MPQ, while also searching
through different DNN architecture sizes, we find DNN models with significantly lower en-
ergy consumption at equal performance. A variety of Pareto-optimal models were generated,
showing the ability of DNN solutions to provide different tradeoffs between energy consump-
tion and performance. Compared to WMMSE, the obtained DNN models achieve superior
energy efficiency across diverse deployment scenarios. This work demonstrates the promise of
DNN solutions to obtain high-performance mMIMO precoders with much improved energy
efficiency.
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CHAPTER 4 BITADAPT: AN ENERGY-AWARE PRECISION
LEARNING FRAMEWORK

4.1 Background & Motivation

DNNs applied to wireless communications tasks such as mMIMO precoding must meet strin-
gent requirements on both prediction accuracy and implementation efficiency. Our prior
work in Chapter 3 demonstrated that MPQ combined with NAS can yield compact neural
precoders that preserve sum-rate performance while reducing computational cost. However,
such search-based methods suffer from several critical drawbacks.

First, the search complexity grows combinatorially: exploring B bit choices across L layers
requires O(BL) evaluations, making it infeasible for deeper networks. For example, a Trans-
former model with 4 layers and multiple linear projections can exhibit on the order of 108

candidate bit configurations. Second, the resulting precision allocation is rigid: any change
in wireless environment, target sum-rate, or hardware constraints would demand a new dis-
crete search. Third, such methods offer no gradient signal to guide the learning process, as
bit-widths are treated as discrete variables. This prevents leveraging modern optimization
techniques such as backpropagation, leading to longer search times and less efficient solutions.
Finally, exhaustive methods lack interpretability and adaptability. They do not reveal which
layers are most sensitive to quantization, nor do they permit real-time adjustment in response
to changing hardware or channel conditions. These limitations strongly motivate the need
for a more flexible and scalable alternative. BitAdapt addresses this challenge by introduc-
ing an end-to-end differentiable framework that jointly learns network weights, quantization
parameters, and layerwise bit-widths. This approach enables fine-grained control over the
energy–performance trade-off, and supports generalization across deployment domains.

In this chapter, we introduce BitAdapt, a gradient-based, deployment-agnostic precision-
learning framework that we apply per site to obtain models adapted to each environment that
retain the core insight of BitPruning [12], namely that energy can be reduced by pruning bits
instead of weights, so the network’s topology and information flow remain intact. BitAdapt
departs from the original method in two ways. First, it embeds the LSQ method [44],
allowing each layer to learn its quantizer step size ∆l concurrently with the weights, which
removes the need for post-training calibration. Second, it augments the training loss with a
differentiable, hardware-calibrated energy term that continually nudges bitwidths toward the
accuracy–energy Pareto frontier. These modifications let BitAdapt co-optimize weights, step
sizes, and bitwidths within a single training loop, eliminating the separate discrete search
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phase required by the original BitPruning workflow.

By integrating QAT with LSQ, bit selection, and an energy-aware regularization term, our
approach enables a network to co-optimize accuracy and EE in a single training pass. Cru-
cially, BitAdapt does not rely on manually tuning each layer’s precision or on exhaustive
discrete searches; instead, the network learns to allocate bits where they most benefit perfor-
mance. As before, we adopt a site-specific design strategy: each model is trained on channel
data from a specific deployment site, so that the learned precision configuration is tailored
to that environment. While BitAdapt removes the need for a brute-force bitwidth search, it
can also be combined with NAS for architectural optimization. For example, one could use
NAS to select a network architecture per site (as in Chapter 3) and then apply BitAdapt to
fine-tune the layer precisions within that architecture.

Our method builds on LSQ for differentiable quantization. LSQ introduces a trainable quan-
tizer step size ∆ per layer, allowing the network to adapt the quantization resolution to
the weights’ distribution. We further employ the Gumbel-Softmax trick to relax discrete
bit choices into a continuous optimization problem: each layer’s bitwidth is drawn from a
categorical distribution over {1, 2, . . . , 16} bits, parameterized by learnable logits.

During training, the network samples a bitwidth for each layer, quantizes weights with that
precision, and backpropagates gradients to update both the weights, the step sizes, and the
bitwidth logits. As training progresses, the Gumbel temperature is annealed so that each
layer’s bitwidth distribution converges to a one-hot choice. In effect, the network learns both
how many bits and what quantization step size each layer requires to meet the accuracy
target with minimal energy cost.

4.2 Differentiable Bitwidth Optimization

BitAdapt jointly optimizes (i) the network weights W , (ii) the LSQ {∆l}, and (iii) the integer
bit-widths {bl} of every layer in a single end-to-end training loop. We begin with the core
quantization mechanism.
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4.2.1 Learnable Quantizer via LSQ

For each layer l, let W l denote its real-valued weight tensor. LSQ introduces a trainable step
size ∆l so that the quantized weights Ŵ l are

Ŵ l =
[
clip

(
round(W l/∆l), q−

l , q+
l

)]
∆l, (4.1)

q−
l = −2 bl−1, q+

l = 2 bl−1 − 1.

The function round(·) maps to the nearest integer, while clip(x, a, b) = min
(
max(x, a), b

)
en-

sures the integer code falls inside [q−
l , q+

l ]. Hence, with bl signed bits the quantizer represents
the symmetric range

[
−2 bl−1, 2 bl−1 − 1

]
with level spacing ∆l.

During each forward pass, we sample an integer bit-width bl ∈ {2, . . . , 8} from a Gum-
bel–Softmax distribution, compute q−

l , q+
l , and quantize W l via (4.1). Step sizes ∆l and the

full-precision weights remain in floating-point memory and are updated by back-propagation.

Because round and clip are non-differentiable, we adopt the STE, propagating gradients as
if both operations were the identity. LSQ further rescales the gradient of ∆l by multiplying
it with gl for numerical stability. This scaling factor is defined as

gl = 1√
Nl q+

l

,

where Nl = |W l| is the number of parameters in layer l. This scaling follows Esser et
al. [44] and has proved crucial for convergence when learning both step size and bit-width
simultaneously.

4.3 Energy-Aware Regularization

The LSQ mechanism alone discovers low precision solutions, but it lacks any explicit aware-
ness of hardware cost. To steer the bit allocation towards energy savings, we add a differen-
tiable penalty based on an energy model. For each layer l, the dynamic energy consumed by
a given bit-width bl is modeled as

El(bl) = nl
MAC EMAC

(
bl
)

+ nl
mem Emem

(
bl
)
, (4.2)

where nl
MAC and nl

mem are the MAC and memory-access counts dictated by the layer shape.
Following measurements from a 45 nm CMOS technology reported by Horowitz [1], the ele-



40

mentary energy constants are set to

EMAC(b) ≈ 0.86
(

b
16

)1.9
pJ, Emem(b) ≈ 0.43 b pJ .

We note that El(bl) is approximately quadratic in bl for compute and linear in bl for memory,
which agrees with standard architectures for these circuits.

We embed (4.2) into the training objective:

Ltotal = Ltask + λ
∑

l

El
(
bl
)
, (4.3)

where Ltask is the negative sum-rate achieved by the mMIMO precoder and λ balances
accuracy against energy. During gradient descent, each layer reduces its bit-width whenever
a drop in El(bl) outweighs the rise in Ltask. Conversely, precision is preserved where it is
critical for performance. Sweeping λ therefore traces an accuracy–energy Pareto frontier
without manual bit tuning.

The procedure is architecture-agnostic: in both our CNN and Transformer model precoders,
BitAdapt learns site-specific mixed-precision maps that match local channel statistics, yet
requires no human intervention. Separate models are trained for every measurement site
(as in Chapter 3), ensuring each BitAdapt solution is fully specialized to its deployment
environment.

4.4 Training Protocol

The goal of training is to co-optimize three distinct yet tightly interacting sets of variables:
network weights W , LSQ step sizes {∆l} and per-layer bit-widths {bl} under a single objective
that trades SE against hardware energy. To clarify how these elements evolve in concert,
this section proceeds chronologically from data ingestion to the final export step, pausing to
explain the design choices that proved essential for stable optimization.

4.4.1 Stage 1: Data Preparation and Normalization

Each experiment is strictly site-specific: a model trained for one deployment cell is never
reused in another location. The raw dataset, described in Section 3.5.1, comprises complex-
valued channel matrices H ∈ CNU×NT , generated using MATLAB’s Ray-Tracing toolbox
under diverse LOS and NLOS conditions. Each matrix is split into its real and imaginary
components and concatenated along the antenna dimension to form real-valued inputs of size
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2NT per user.

To reduce the dynamic range of input magnitudes caused by path loss and fading, we apply
ℓ2 normalization across the dataset, ensuring that all channel vectors have comparable scale.
While the energy model does not depend on activation values, this normalization step stabi-
lizes the training process by preventing the LSQ quantizer from collapsing to ineffective step
sizes early in training, a failure mode observed when operating on unnormalized inputs.

After normalization, the dataset is shuffled and partitioned into training, validation, and
test splits with an 80/10/10 ratio. These partitions remain fixed across all experiments to
enable fair comparisons. A mini-batch size of 1000 is used consistently, providing stable batch
normalization statistics and accurate per-batch energy estimates.

4.4.2 Stage 2: Deterministic Bit-width Selection

Unlike earlier work that samples bit-widths from a categorical distribution, BitAdapt assigns
each layer a single real-valued precision parameter b̃ l ∈ R, initialized to 8. At run time, we
convert it to an integer bit-width via a saturating round-and-clip operation

bl = clip
(
round(b̃ l), 1, 16

)
, where clip(x, 1, 16) = min{max{x, 1}, 16}.

The clipping step guarantees bl ∈{1, . . . , 16} even if b̃ l drifts outside that range during opti-
mization. Using bl, we set q±

l = ±(2 bl−1 − 1) and quantize the weight tensor W l with (4.1).
Both the rounding and clipping are handled with the STE, so gradients pass unimpeded to
b̃ l. In practice this deterministic, bounded parameterization improves training stability, elim-
inates the need for categorical sampling, and lets BitAdapt learn precisions on a continuous
scale while enforcing valid bit-widths at inference time. In practice, this choice delivers three
advantages:

1. Stable energy signals. Each forward pass executes with a well-defined precision map,
which in turn produces a deterministic analytic energy number. The optimizer therefore
sees smooth rather than noisy gradients of the energy term.

2. Fast convergence. In pilot studies, the deterministic scheme achieved the same final rate
energy trade-off 20–25 % faster than its stochastic counterpart because the optimizer
never “wasted” iterations exploring sub-optimal bit configurations.
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4.4.3 Stage 3: Loss Formulation and Gradient Flow

The composite loss used for training corresponds exactly to the formulation in Equation (4.3),
where Ltask is instantiated as the negative sum-rate achieved by the precoder output, and
El(bl) denotes the calibrated energy surrogate introduced in Section 4.3. The coefficient λ is
fixed to 10−2 for all deployment sites and both neural architectures. extensive sweeps showed
that this single setting captures the knee of the Pareto curve, where large energy savings
can be achieved for only a marginal rate loss. Gradients are taken concerning weights, step
sizes, and continuous bit-width variables. The round and clip operations adopt the STE,
while LSQ rescales ∂L/∂∆l by gl = 1/

√
Nlq

+
l as recommended in [44]. We clip the global

gradient norm to ∥g∥2 ≤ 1.0 to avoid occasional precision “collapses” in early epochs that
would otherwise thrust several layers directly from 8-bit to 1-bit in a single update step.

4.4.4 Stage 4: Optimizer Configuration and Epoch Schedule

The shallow convolutional precoder is optimized with Adam (base learning-rate 1 × 10−3,
weight decay 1 × 10−5), whereas the deeper Transformer model uses AdamW (base learning-
rate 1×10−4, weight decay 1×10−3). Both architectures share an auxiliary parameter group
comprising all b̃ l values; that group uses Adam/AdamW but with a larger dedicated Learning
Rate (LR) of 5 × 10−4 so that precision parameters adapt slightly faster than weights or step
sizes. A constant rate over 200 epochs consistently delivered the best SR-EE trade-off and
the most predictable training curve.

4.4.5 Stage 5: Validation and Checkpointing

At the end of every epoch, we evaluate the network on the fixed 10 % validation split, record
the sum-rate Rval, the analytic network energy Eval, and their ratio EEval = Rval/Eval. Be-
cause energy is computed deterministically, EEval traces a smooth, monotone curve and
typically plateaus long before the final epoch. Nevertheless, the optimizer always completes
the full 200 epochs. When training ends, we scan the saved logs, identify the epoch whose
checkpoint maximises EEval, and export only that model for downstream analysis. The run
length is fixed in advance and identical across all experiments.

4.4.6 Stage 6: Deployment and Hardware Export

After training, each continuous precision is rounded once more:

bl
deploy = round

(
b̃ l
)
,
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and stored as an unsigned integer in the model header. The corresponding LSQ step size ∆l

is fixed to its final floating-point value and subsequently quantized to a 16-bit fixed-point rep-
resentation that matches the target accelerator’s format. All normalization layers, together
with the final softmax normalization in the transformer, remain in FP32 because their energy
footprint is three orders of magnitude smaller than that of convolutions, attention projections,
or fully connected layers. The export script therefore produces a deterministic, hardware-
ready MPQ network whose bit-width map is (i) energy-aware, (ii) fully differentiable during
training, and (iii) tailored to the local channel statistics of a single physical deployment site.

4.5 Architecture–Specific Details

BitAdapt treats “number of bits” as just another learnable parameter, so in principle it works
for any quantizable layer. In our evaluation, we apply it to two precoders chosen to span
the design space one shallow, convolutional network aimed at low-footprint edge devices, and
one deeper Transformer that pushes sum-rate performance by modelling long-range channel
structure. In both cases, every weight tensor owns its precision variable; the associated
activations are quantized with the same bit-width, so the data-path width remains uniform
in hardware.

4.5.1 CNN Precoder

The convolutional model starts with a single 3×3 layer (Cin=2, Cout=64) followed by three
fully connected stages of width {1024, 512, NTNU}. Four real-valued precision scalars b̃ l, one
per layer, are learned jointly with the weights and LSQ step sizes. During optimization, the
energy term is evaluated with layer-wise MAC and memory counts (as detailed in Chapter 3)
but no extra hyper-parameters are introduced. BitAdapt consistently converges to a pattern
in which the first convolution and the largest hidden layer keep 6–8 bits, while the penultimate
and output layers drop to 3–4 bits. This allocation minimizes energy at an identical sum-rate
because errors are injected early in the pipeline propagation, whereas late-stage errors are
largely absorbed by the final power-normalization step.

4.5.2 Transformer Precoder

Our second architecture is based on a foundation Transformer model introduced in [77]. At
a high level, the model processes the NU × NT channel matrix H by dividing it into NU

input tokens, where each token corresponds to the CSI vector of a single user. Additionally,
a dedicated context token is included to encode the users’ rate targets {R⋆

u}. This complete
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sequence of tokens is then passed through a Transformer encoder.

The encoder consists of a multi-head self-attention (MHSA) module with a model dimension
of d = 128 and h = 4 attention heads. This is followed by a two-layer feed-forward network
based on the SwiGLU activation function, featuring a hidden width of dhid = 2048. Each
Transformer block therefore contains six trainable weight matrices: WQ, WK , WV , and WO

for the attention mechanism, along with Wup and Wdown for the feed-forward layers. A full
stack of four Transformer blocks results in a total of 24 trainable tensors.

In line with the method proposed in [77], we branch the shared feature extractor into two
lightweight output heads. The first head predicts the complex-valued precoding matrix Ŵ,
while the second estimates an energy-control tuple (Ω̂, γ̂), which determines the set of active
antennas and the overall scaling of the transmit power.

Integration with BitAdapt Each weight matrix in the Transformer architecture is as-
signed its own precision variable bl and LSQ step size ∆l, following the same procedure
used in the CNN-based design. During training, BitAdapt is exposed to the full analytical
MAC count of the attention–feed-forward stack, encompassing the query, key, value, and
output projections, as well as both passes through the feed-forward network. Importantly,
no Transformer-specific heuristics are enforced, allowing the optimizer to autonomously de-
termine the most effective bit allocation across the architecture.

A consistent pattern emerges across different deployment sites. The projections for queries,
keys, and values in the first Transformer block tend to stabilize around 7 to 8 bits, preserving
the dynamic range necessary for accurate softmax computation. In contrast, attention layers
deeper in the stack typically drop to lower precisions around 3 to 5 bits without incurring
noticeable degradation in rate performance. The large matrices within the feed-forward
networks generally settle between 4 and 6 bits, reflecting a balance between their substantial
contribution to MAC energy and their influence on SE.

4.6 Numerical Results

This section provides an overview of the experimental framework used throughout this numer-
ical study. We consider two wireless propagation scenarios, deliberately selected to represent
distinct propagation conditions:

• Ericsson Site: This scenario models a typical urban macro-cell environment charac-
terized by rich scattering and mixed LOS/NLOS propagation, representative of densely
built-up metropolitan areas.
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• Sainte-Catherine Site: This scenario corresponds to an urban micro-cell with shorter
link distances and stronger blockage variability, exhibiting mixed LOS/NLOS propa-
gation with more limited scattering.

For each of these scenarios, we train Transformer model-based DL models across six dis-
tinct architectures (footprints). These architectures systematically span from the smallest
configuration (Tiny: 2 Transformer blocks, 2 attention heads, and approximately 0.2 M
parameters) to the largest tested model (Extra-Large: 8 Transformer blocks, 8 attention
heads, and roughly 18.6 M parameters). This comprehensive range is intended to rigorously
investigate the trade-offs between model complexity, sum-rate, and EE.

All Transformer models are optimized according to a unified energy–accuracy loss function
given by eq. (4.3). As a classical baseline, we employ the WMMSE precoder, computed
with a stopping criterion tolerance of 10−5. Performance evaluation across all scenarios and
architectures employs three primary metrics: EE, SR, and bit precision.

4.6.1 Influence of EE-SR Trade-off Coefficient (Hyperparameter Exploration)

To analyze the influence of the energy-accuracy trade-off coefficient, γ, we systematically var-
ied its value over four orders of magnitude during BitAdapt training at the Sainte-Catherine
site. Figure 4.1 shows 3D renders of the two deployment sites used to generate our ray-traced
datasets and to evaluate BitAdapt: (a) the Ericsson industrial campus and (b) the Sainte-
Catherine downtown area in Montréal. Specifically, we considered γ values ranging from
10−3 to 102, as illustrated in Figure 4.2. Each experiment utilized identical data partitions,
optimizer configurations, and initial model parameters, ensuring that observed performance
variations were solely attributable to changes in the weighting of the energy component within
the loss function.

(a) Ericsson Site (b) Sainte-Catherine Site

Figure 4.1 3D renders of the two deployment sites used for dataset generation and evaluation.
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Figure 4.2 Impact of the energy-accuracy trade-off coefficient (γ) on BitAdapt training per-
formance for the Sainte-Catherine site. The maroon curve (left axis) represents the downlink
sum-rate (bit/s/Hz), while the blue curve (right axis) indicates EE (bit/s/Hz/µJ), computed
via the analytic model detailed in Chapter 4. Each marker denotes the performance obtained
from independent training runs corresponding to the indicated value of γ.

Figure 4.2 presents two critical performance metrics as functions of γ: the downlink sum-rate
(maroon curve, left y-axis) and the corresponding EE (blue curve, right y-axis). The EE met-
ric (in bits/s/Hz/µJ) was calculated using the analytical energy model detailed in Chapter 3.
The horizontal axis employs a logarithmic scale to clearly demonstrate performance trends
across different magnitudes of γ.

At smaller values of γ (10−3 and 10−2), the loss function predominantly emphasizes the accu-
racy component (SR). Consequently, BitAdapt maintains relatively high bit-width precision
across all layers, resulting in higher overall energy consumption and correspondingly low EE.
As γ increases to the intermediate range (10−2 to 1), BitAdapt begins reducing precision
selectively in layers less sensitive to quantization errors. This precision adjustment markedly
decreases energy consumption, significantly improving EE without causing substantial dete-
rioration in sum-rate performance, which remains almost constant throughout this interval.

However, further increasing γ (up to 102) overly emphasizes energy minimization, forcing
most layers toward their lowest permissible precision. While this aggressively quantized
configuration maximizes EE, it noticeably reduces the sum-rate performance, making such
extreme settings viable only in contexts with stringent power constraints where EE critically
outweighs spectral efficiency objectives.
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The analysis identifies a practical and optimal knee region in the trade-off curve. Moderate
γ values, particularly around 10−2, effectively balance significant EE improvements with
minimal sum-rate loss. Consequently, for subsequent experiments, we adopt γ = 10−2,
a value representing an optimal trade-off that achieves substantial energy savings without
significantly impacting spectral efficiency.

4.6.2 EE-SR Trade-offs NAS

Figure 4.3 illustrates how model capacity, adaptive precision, and the loss trade-off coef-
ficient λ jointly shape the EE–SR landscape. Larger Transformer backbones reach higher
downlink sum-rates, as seen in Figure 4.3b, but they also consume markedly more inference
energy, 4.3c. Because energy grows faster than the rate benefit, Figure 4.3a shows a consistent
drop in energy efficiency (bits/s/Hz/µJ) as model size increases, mirroring the cross-model
Pareto trends reported earlier in Figure 3.2.

The evolution of the curves also reveals BitAdapt’s two-phase quantization strategy. During
the first few epochs, the scheduler slashes bit-widths in layers that tolerate coarse precision,
producing an abrupt energy drop and a steep vertical jump in EE. Once a low-energy baseline
is established, training enters a refinement stage in which precision is selectively restored for
performance-critical layers, nudging the trajectories rightwards until further bit-width gains
become energetically unjustified.

Adjusting the coefficient λ tilts this balance: higher values stop the trajectories sooner,
favoring efficiency over rate, whereas lower values extend them toward higher rates at reduced
EE, a pattern that echoes the sweep observed in Figure 4.2. Altogether, the figure underscores
that BitAdapt’s learned layer-wise precision allocation is pivotal for navigating the EE–SR
Pareto frontier; smaller models keep early layers nearly full-precision to guard accuracy,
while larger ones aggressively quantize non-critical layers and reserve their bit budget where
it yields the greatest sum-rate benefit.

4.6.3 Layer-wise Precision Allocation (Detailed Mechanism Analysis)

Figure 4.4 dissects the weight bit-widths learnt by BitAdapt on the Sainte-Catherine cell
under two extreme operating targets: (i) maximum sum-rate (violet bars) and (ii) maximum
EE (green bars). The dashed vertical line at 16 bits marks the full-precision bit-widths
baseline.

A clear pattern emerges. The high-SR model sustains medium precisions (∼9–13 bits) across
attention and feed-forward stacks, escalating to ∼15 bits in the penultimate block that feeds
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Figure 4.3 BitAdapt training on the Sainte-Catherine site for Transformer precoders of three
sizes. Panel (a) traces the EE–SR trade-off, (b) shows SR convergence, and (c) tracks in-
ference energy over 200 epochs. All runs share the same loss weight λ; observed gaps arise
solely from model size and BitAdapt’s adaptive-precision scheduling.
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Figure 4.4 Layer-wise bit-widths selected by BitAdapt on Sainte-Catherine for two objectives:
violet for high sum-rate, and green for high EE. The dashed line marks 16-bit precision.
BitAdapt aggressively reduces most internal layers to 1–2 bits in the energy-focused setting,
while retaining higher precision (9–15 bits) in output layers, yielding a > 9× efficiency gain
at only ≈ 8.7% SR loss.

the output projection. This broad dynamic range underpins the best observed throughput
(R = 24.65 bit/s/Hz) at the expense of low EE (EE = 9.0 bit/s/Hz/µJ).

Conversely, the high-EE configuration drives almost all early and intermediate layers to
the minimum allowed resolution (1–2 bits). Only the final three layers, where quantization
noise most directly impairs the radiated waveform, retain elevated precisions of ∼9–15 bits.
This “bit funnel” cuts analytic energy dramatically, lifting EE to 83.99 bit/s/Hz/µJ a > 9 ×
improvement while sacrificing just 8.7% of the peak sum-rate.

Practical Insights BitAdapt automatically channels precision to layers that most influ-
ence the end-to-end objective, obviating manual sensitivity studies. Moreover, substantial
energy savings are achievable even in large Transformer precoders provided that adequate
precision is reserved for the final projection stages. Notably, these precision maps arise within
a single differentiable training loop, without any discrete search over bit patterns, reinforcing
BitAdapt’s deployment practicality.
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Figure 4.5 EE–SR Pareto fronts at the Ericsson (left) and Sainte-Catherine (right) sites for
WMMSE (⋆), full-precision Transformers (♦), CNN + BitAdapt (▲), and Transformer +
BitAdapt (•). Colored markers denote model sizes from Tiny to Large. Transformer +
BitAdapt consistently yields the best trade-off, with up to 29.9× and 26.7× energy efficiency
gains over WMMSE.

4.6.4 Site-Specific EE-SR Trade-offs (Comparative Analysis)

Figure 4.5 illustrates the EE–SR Pareto frontiers for four precoding strategies across two
deployment sites: Ericsson (left) and Sainte-Catherine (right). The evaluated methods in-
clude (⋆) classical WMMSE, (♦) full-precision Transformers, (▲) CNN-based BitAdapt, and
(•) Transformer-based BitAdapt. Each neural architecture is evaluated under five increasing
complexities, ranging from Tiny to Large.

For the CNN architecture, model scaling is governed by the number of output channels
Cout ∈ {16, 32, 64} and fully connected layer widths DFCL ∈ {512, 1024}, with the result-
ing models compressed using BitAdapt to produce the (▲) CNN+BitAdapt Pareto front.
The (♦) Transformer configuration reflects uncompressed full-precision inference, while the
(•) Transformer+BitAdapt curve corresponds to NAS-guided, per-layer MPQ models opti-
mized for joint energy and throughput performance.

The WMMSE baseline is computed by systematically varying the convergence tolerance of
the iterative solver. Fewer inner iterations reduce computational cost but also degrade sum-
rate, thereby sweeping out a continuous EE–SR trade-off. All energy figures follow the
calibrated cost model detailed in Chapter 3.4.5. For completeness, we also evaluated the
classical ZF precoder. On the Sainte-Catherine site, ZF attains only SR = 13.23 bit/s/Hz
with EE = 1653.75 bit/s/Hz/µJ, while at Ericsson it reaches SR = 32.48 bit/s/Hz with
EE = 4060.01 bit/s/Hz/µJ. These values confirm the well-known behavior of ZF: it can
provide reasonable throughput in favorable line-of-sight conditions but degrades rapidly under
practical, interference-limited or correlated channels. The ZF results are not included in
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Figure 4.5 in order to zoom-in on the methods achieving high sum rate.

The results reveal several critical insights. First, BitAdapt consistently enables steep energy
gains over classical methods: at the Ericsson site, the Tiny Transformer model delivers a
29.9× improvement in energy efficiency compared to WMMSE at similar sum-rate levels,
while at Sainte-Catherine, the Tiny CNN variant achieves a 26.7× gain. These margins
validate the effectiveness of adaptive precision allocation in reducing energy consumption
without degrading throughput.

Second, all Transformer and CNN variants exhibit clean, monotonic Pareto frontiers, re-
flecting well-structured scaling behavior. As model size increases, both sum-rate and energy
consumption rise accordingly. BitAdapt captures this trade-off effectively, allowing models
to operate near their energy-optimal point through fine-grained, layer-wise bit-width control.

Third, among all configurations, Transformer+BitAdapt forms the upper bound of perfor-
mance, consistently dominating other baselines. In several instances, these mixed-precision
models even outperform their full-precision counterparts, highlighting the synergistic effect
of NAS-guided architecture design and precision-aware quantization.

Finally, the method generalizes robustly across deployment sites. Despite differing propaga-
tion conditions, BitAdapt maintains strong performance at both locations without requiring
site-specific retraining, underscoring its adaptability and practicality.

In summary, BitAdapt advances the state of the art in energy-efficient precoding by push-
ing the EE–SR Pareto frontier across architectures and environments. Its combination of
adaptive quantization, energy awareness, and architectural flexibility makes it a compelling
solution for scalable, real-world deployment in next-generation mMIMO systems.

4.7 Summary of Key Findings

Building on the six Transformer-based architectures evaluated across the Ericsson (urban
macro-cell) and Sainte-Catherine (open micro-cell) measurement sites, spanning model foot-
prints from Tiny (0.2 M parameters) to Extra-Large (18.6 M parameters), this chapter
distills the principal insights gained from our EE–SR study of BitAdapt.

BitAdapt achieves up to 26 × higher EE compared to classical WMMSE solutions at com-
parable sum-rate levels and consistently outperforms fixed-precision baselines. The trade-off
between energy and accuracy is tunable via a scalar hyperparameter (γ), with an optimal
“knee” region that enables substantial energy savings without degrading throughput. Differ-
entiable bit-width learning allows each Transformer layer to autonomously allocate precision
based on sensitivity, resulting in efficient “bit funnel” configurations that prioritize critical
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layers. Furthermore, BitAdapt generalizes across deployment sites with differing channel
statistics, enabling zero-shot deployment without the need for retraining or architecture re-
design.

4.8 Conclusion

Leveraging the empirical evidence detailed in Section 4.6, this chapter has established that
BitAdapt transforms Transformer model precoders into truly deployment-ready engines for
mMIMO systems. By embedding LSQ-based quantization, continuous bit-width variables
and a calibrated energy surrogate directly into the training loss, BitAdapt learns in a single
back propagation loop the optimal combination of weights, step sizes, and per-layer precisions.
The outcome is decisive: inference energy drops by up to an order of magnitude relative
to a uniform 8-bit baseline and by as much as 26.1 × when compared with the classical
WMMSE precoder, yet the network sustains virtually the same sum-rate. These gains arise
from the framework’s ability to funnel precision towards the few layers that govern SE, while
aggressively quantizing the rest, and to repeat this process afresh for every deployment site so
that the final bit map is always matched to local channel statistics and hardware constraints.
In short, BitAdapt closes the gap between DL precoding theory and the power budgets of
real BS hardware.
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CHAPTER 5 CONCLUSION

5.1 Summary of Works

This thesis explored the design and deployment of energy-efficient, site-specific deep neural
networks for massive MIMO precoding. The work was structured in two main parts. In
the first part, we introduced a mixed-precision quantization framework based on exhaustive
search and Neural Architecture Search (NAS), enabling performance-optimized compres-
sion tailored to varying channel environments. This approach demonstrated strong energy-
performance trade-offs but suffered from scalability limitations and reliance on discrete search
mechanisms.

To address these limitations, the second part of the thesis proposed a BitAdapt framework,
a differentiable approach for layer-wise precision optimization. By combining Quantization-
Aware Training (QAT), Learned Step Size Quantization (LSQ), and an energy-aware regular-
ization term, our method learns bitwidths as part of the training process. The approach was
validated across both CNN and Transformer-based architectures, achieving strong Pareto effi-
ciency without the need for costly search procedures. The BitPruning framework successfully
eliminated unnecessary bits while preserving full network connectivity, yielding significant
improvements in energy efficiency with minimal loss in sum-rate performance.

5.2 Limitations

While BitAdapt demonstrates strong results across two real-world sites, further validation
across additional channel conditions and hardware energy models (e.g., FPGA or ASIC-
specific estimations) would strengthen its applicability. Additionally, extending BitAdapt
to jointly optimize phase resolution in hybrid beamforming or to support dynamic power
budgets in real-time scheduling scenarios offers promising directions for future research.

Overall, BitAdapt represents a significant step toward practical, energy-aware, and intelligent
precoding in future wireless communication systems.

5.3 Future Research

Future work can proceed along several complementary directions. A priority is hardware in
the loop training in which real power monitors replace analytic surrogates, thereby closing the
modelling gap for particular FPGA or ASIC fabrics. Another important direction is to assess
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robustness under imperfect CSI, where noisy channel estimates or other impairments may
degrade performance. BitAdapt could be fine-tuned directly on noisy CSI during training to
ensure that compressed models remain reliable under practical conditions. A third avenue
is a full network mixed-precision design in which activation tensors are quantized alongside
weights, possibly with layer or even channel-wise precision to avoid accuracy loss. Joint
analog–digital co-design, where BitAdapt learns both digital bit-widths and quantized RF
phase-shifter settings, could further reduce overall power consumption. Online adaptive
precision that tracks instantaneous traffic load, channel quality, or battery state, as well as
extensions to coordinated multi-point and cell-free scenarios, also offer promising returns.
Finally, coupling the optimization with meta-learning may improve robustness when the
deployment environment or hardware platform deviates from training conditions.

By addressing these challenges, future research can transform the principles demonstrated in
this thesis into deployable solutions for sustainable, high-performance wireless infrastructure.
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