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RESUME

Cette these, constituée de quatre articles, vise a développer de nouvelles variantes
de la methode des eléements de frontiere (MEFT) en élasticité linéaire bidimemsion-
nelle (2-D). Ces variantes sont nommeées génériquement méthode des contours de
frontiére (MCF) et méthode des contours de frontiére hypersinguliére (MCFH). Un
développement ultérieur de la MCF 2-D est réalisé tandis qu'une théorie générale
de la MCFH 2-D est introduite dans la bibliographie pour la premiere fois. Les
applications de ces méthodes a |’analyse des contraintes et a 'optimisation de forme
sont les objectifs principaux de cette étude. Plusieurs exemples numériques ayant
des solutions analytiques connues sont résolus afin d’illustrer les avantages de ces

méthodes dans ces types d’applications.

La MEFT est une méthode polyvalente qui utilise [ ‘€quation intégrale de frontiére
(EIF) (voir une dérivation de cette équation a la section 4.1 du chapitre IV) pour
solutionner des problemes aux limites. L’idée centrale des nouvelles méthodes (MCF
et MCFH) consistent 2 employer des fonctions d’interpolation spéciales du champ de
déplacement et de contrainte. Ces fonctions sont celles de domaine et satisfont les
équations d’équilibre et constitutives. Par conséquent, la divergence de |'expression
vectorielle sousintégrale de I’EIF et celle de !'€quation intégrale de frontiere hyper-
singuliere (EIFH) (voir une dérivation de cette équation a la section .8 du chapitre
IV) sont nulles et alors, la dimension des intégrales usuelles dans ces équations peut
étre réduite par un. En d’autres mots. des intégrales de surface pour des problemes
tridimensionnels (3-D) et celles curvilignes pour des problemes 2-D peuvent étre
transformeées respectivement en des intégrales curvilignes et I'évaluation de fonc-

tions analytiques aux noeuds de frontiere.

Cette réduction en dimension offerte par la MCF et la MCFH, et le fait que
ces méthodes utilisent des fonctions d’interpolation spéciales, permettent a ces deux
méthodes d’étre trés compétitives avec la méthode des €léments finis (MEF) et la
MEFT dans certains domaines d’application de la mécanique appliquée. Due a ces

caractéristiques, et en particilier a I’absence des intégrations numériques dans la
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MCF et la MCFH pour des cas 2-D. les résultats numeériques de |’analyse des con-
traintes sont trés précis en général. Cela est montré via les exemples numeériques

présentés dans les articles.

Les sensibilités de design sont des coefficients requis pour solutionner numériquement
un probleme d’optimisation. C’est pourquoi la précision de ces quantités joue un
role important en optimisation de forme. Comme dans ['analyse des contraintes, la
précision des résultats numériques de I'analyse des sensibilités peut étre bien assurée
par la MCF. Cet avantage et le fait que la MCF ne requiert que des maillages aux
rives (comme dans la MEFT) lui permettent de devenir une méthode tres appropriée

en optimisation de forme.

Les avantages mentionnés plus haut offerts par la MCF et la MCFH sont re-
marquables. Ils sont bien demontrés a travers les articles et en particulier. via les
résultats numériques des exemples illustrés. La recherche menée dans cette these
vise a introduire au monde du calcul numérique et de la mécanique appliquée, la
MCF et la MCFH en linéaire élasticité 2-D ainsi qu'un nouveau succes dans la

solution numérique des problemes d'optimisation de forme.
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ABSTRACT

This dissertation. based on four papers, is involved with novel variants of the
conventional boundary element method (BEM), called the boundary contour method
(BCM) and hypersingular boundary contour method (HBCM), for two-dimensional
(2-D) linear elasticity. A further development of the 2-D BCM is carried out whereas
a general theory of the 2-D HBCM is introduced to the literature for the first time.
Applications of these methods to stress analysis and structural shape optimization
are the main objectives of this study. Several numerical examples having known
analytical solutions are solved in order to show the advantages of both methods in

these kinds of applications.

The BEM is a general purpose approach which starts from the boundary integral
equation (BIE) (see a derivation of this equation in section 4.1 of chapter V) in order
to solve a given boundary value problem. The key idea of the new methods consists
of using special displacement and stress shape functions in the domain of a body
that satisfy the equilibrium and constitutive equations. As a result. the integrand
vectors of the BIE and regularized hypersingular boundary integral equation (HBIE)
(see a derivation of this equation in section 4.8 of chapter IV) are divergent-free,
and thus the dimension of the usual integrals in the above equations can be reduced
by one. In other words, surface integrals for three-dimensional (3-D) problems and
line integrals in 2-D cases can be converted respectively into line integrals and the

evaluation of analytical functions at boundary nodes.

This reduction in dimensionality offered by the BCM and HBCM. as well as the
fact that these methods use special shape functions, are expected to make them
competitive with the finite element method (FEM) and the BEM for some applica-
tions in computational mechanics. Due to these above features and especially, the
absence of numerical integrations in the BCM and HBCM for 2-D problems. numer-
ical results obtained for stress analysis are very accurate as it can be seen from the

numerical examples presented in the papers.

Design sensitivities are coefficients required for numerically solving an optimiza-



tion problem. Hence, the accuracy of these quantities plays a crucial role in shape
optimization. As for stress analysis. the accuracy of numerical results for design
sensitivity analysis can be well ensured by the BCM. This advantage and the fact
that, as for the BEM. the BCM only needs boundary meshing, as opposed to domain
meshing required by the FEM, make the BCM a very attractive method in shape

optimal design.

The aforementioned advantages offered by the BCM and HBCM are remarkable.
They are clearly shown through the papers and especially. from numerical results
of the illustrative examples. The research presented in this dissertation aims to
introduce the BCM and HBCM for 2-D linear elasticity, as well as a new successful
approach for numerically solving shape optimization problems, into the world of

computational and applied mechanics.



CONDENSE EN FRANCAIS

Depuis plus d’une trentaine d’années, la MEF est considérée comme un outil tres
performant et une technique bien établie dans le calcul numérique en mécanique. Le
maillage requis par cette méthode consiste a discrétiser le domaine a analyser en un
nombre fini de sous domaines (éléments) (voir Figure 1.1) sur lesquels sont effectuées
des intégrations de domaine (intégrales doubles et triples pour des problemes 2-D
et 3-D. respectivement). Bien qu'il n’y ait pas de difficultés importantes pour les
maillages 2-D. on est d’accord en général que le maillage 3-D des objets complexes
demeure un grand défi pour la MEF. C’est pourquoi des efforts considérables sont
déployés en vue de proposer de nouvelles méthodes numeériques dans lesquelles la

tache de maillage peut étre simplifiée par rapport a la MEF.

Récemment. la MEFr est apparue comme une méthode alternative de la MEF
en meécanique (e.g. Banerjee et Butterfield, 1981; Brebbia et al., 1984; Hall. 1994:
Mukherjee. 1982). La MEFr réduit la dimension d’analyse d'un probleme par un.
c.a.d. qu’elle génere des équations d'intégrales curvilignes unidimensionnelles (1-D)
pour des problemes 2-D et des équations d’intégrales de surface 2-D dans des cas
3-D. Par conséquent. la MEFr discrétise la frontiere seulement (voir Figure 1.2). La
création des maillages devient alors beaucoup plus simple et moins coiiteuse que
celle dans la MEF. Cet avantage, ainsi que le fait que la MEFTr produit souvent
des réponses physiques aux rives (déplacements, tractions, contraintes) plus précises
que celles données par la MEF, permettent & la MEFr de devenir une méthode tres

prometteuse dans le domaine du calcul numérique en mécanique.

Comme mentionné précédemment, la MEFr conventionnelle en €lasticité linéaire
exige I'évaluation numérique des intégrales curvilignes pour des problemes 2-D et
des intégrales de surface dans des cas 3-D (voir, par exemple, Hall, 1994). Il y a
quelques années, Nagarajan, Lutz et Mukherjee ont proposé la MCF qui atteint une
réduction plus loin de la dimension d’analyse. En fait, ces auteurs ont employés des
fonctions d’interpolation spéciales du champ de déplacement et de contrainte pour

que la divergence de |'expression vectorielle sousintégrale de I'EIF soit nulle. La
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propriété de divergence nulle permet, pour des problemes 3-D, d’utiliser la formule
de Stokes afin de transformer des intégrales de surface sur les éléments de frontiére en
des intégrales curvilignes sur les contours bornant ces éléments. Pour des problemes
2-D, une transformation similaire, employant l'idée de I'indépendance de I'intégrale
curviligne du chemin d’intégration, élimine completement I'intégration numeérique.
Alors, la MCF réduit la dimension d’analyse des problemes par deux: la méthode
n'exige que l'évaluation numérique des intégrales curvilignes 1-D pour des problémes
3-D et tout simplement, I'évaluation de fonctions analytiques (appelées fonctions
potentielles) aux extrémités des éléments de frontiere dans les cas 2-D. Cette idée

est aussi valable pour d’autres problemes linéaires tels que la théorie potentielle.

Cette these est reliée a un développement ultérieur de la MCF et une étude
compléte de la MCFH en élasticité linéaire 2-D. Il s’agit également de 1'application
de ces méthodes a I'analyse des contraintes et particulierement, de I'optimisation de

forme par la MCF.

La plupart des concepteurs employent des processus itératifs pour améliorer leur
design jusqu'a ce que des critéres donnés soient rencontrés. Le processus tradition-
nel de conception est basé sur une technique appelée “essai et erreur” avec laquelle,
les ingénieurs utilisent ['expérience et I'intuition pour modifier leur design vers la
“meilleure” solution. L’avantage principal de cette méthode heuristique est que
la connaissance des ingénieurs peut étre employée directement dans leur design.
Jusqu’a présent cette approche a dominé le processus de conception. Néanmoins.
plus les probléemes de conception sont complexes, plus leur améloration devient dif-
ficile, et donc plus on a besoin d’un nouvel outil permettant de guider ’amélioration
du design ou d’optimiser le processus de conception. Par ailleurs, ['intérét actuel en
optimisation de forme est aussi extrémement motivé par le besoin d'une conception
trés compétitive au niveau des coiuts partout dans le secteur industriel y compris
I'aérospatiale, I'automobile, la marine, I'industrie des génératrices, la conception des
machines et autres domaines d’ingénierie. Il faut noter que le terme “optimisation de
forme” utilisé dans ce travail implique la conception optimale de la forme d’un objet

tandis que le terme “optimisation de structures” signifie |'optimisation d’ossatures.
p gn P
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Un processus de conception optimale est un outil qui utilise des techniques
d’optimisation mathématique afin de répondre au défi mentionné précédemment.
Ici, le probleme de conception est transformé en un modele mathématique de telle
maniére qu'une technique d’optimisation puisse étre appliquée pour améliorer le

modele vers la solution optimale de fagon automatique ou semi-automatique.

La théorie fondamentale des approches d’optimisation est apparue aux 17° et
18¢ siecles. Cependant. 'optimisation de nature purement mathématique ne peut
pas étre appliquée a la plupart des problemes en pratique car ces problemes sont
impossibles a résoudre analytiquement. C'est pour cette raison que des méthodes
numeériques ont été développées. Avec le développement de la MEF, Schmith (1960)
fut 'un des premiers 3 mettre sur pied une classe de techniques d’optimisation
de structures. Puis, l'introduction des méthodes de programmation mathématique
couplée avec la MEF est devenu un événement marquant la mise au monde d’un outil
ayant le plus de succes dans la solution des problemes d’optimisation de structures
en pratique. Dans le cadre de 'optimisation de forme utilisant la MEF. une des
premieres approches a été présentée par Zienkiewics et Campbell (1973) dans laquelle
des noeuds de frontiere ont été choisis comme les variables de design et la solution

optimale numérique est obtenue par la programmation linéaire séquentielle.

Malgré le succes de la MEF dans P'optimisation de structures ou le maillage des
structures est simple car elles sont modélisées par des éléments 1-D tels que des
barres ou des poutres, il reste encore un désavantage important. Le re-maillage,
durant le processus d’optimisation ou la forme de l'objet change avec les itérations
successives de conception, est trés cotiteux, en particulier dans des cas 3-D. Aussi,
ce re-maillage provoque souvent des distorsions des éléments prés de la frontiere a

optimiser.

Grace a I'avantage de maillage offert par la MEFT, depuis les années 80, plusieurs
chercheurs ont contribué des efforts considérables afin de développer des techniques
efficaces pour 'optimisation de forme utilisant la MEFT et des succés remarquables
ont été atteints. La plupart de ces contributions sont concentrées sur le calcul des

sensibilités de design qui sont des coefficients requis par les méthodes de program-
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mation mathématique. L’efficacité (précision et vitesse) du calcul des sensibilités

joue un role décisif dans la réussite de 'optimisation de forme.

La MCF possede le méme avantage de maillage que la MEFr conventionnelle.
D’ailleurs. comme mentionné plus haut, la premiere offre une réduction additionnelle
de la dimension d’analvse. Par conséquent, la MCF s’avere tres prometteuse dans le
domaine d’analyse des contraintes ainsi que d’optimisation de forme des structures

mécaniques. Cette idée a motivé I'étude présentée par cette these.

La these est associée aux quatre articles suivants:

1. The boundary contour method for two-dimensional linear elasticity with quadratic

boundary elements.

o

The hypersingular boundary contour method for two-dimensional linear elas-

ticity.

3. A boundary contour formulation for design sensitivity analysis in two-dimensional

linear elasticity.

4. Stresses. stress sensitivities and shape optimization in two-dimensional linear

elasticity by the boundary contour method.

Ces articles sont inclus en Annexes. Comme l'indique leur titre. les deux pre-
miers articles introduisent la MCF et la MCFH avec I'application a 'analyse des
contraintes. Le troisieme emploie la MCF pour développer une analyse des sensi-
bilités de design nécessaires a |'optimisation de forme. Finalement, la premiere partie
du dernier article présente de nouvelles formules concernant le calcul des contraintes
et leurs sensibilités de design tandis que la deuxiéme partie s’attaque a I’application

de la MCF a l'optimisation de forme.

Bien que ce soit une these par articles, il existe un lien raisonnable entre les
quatre articles utilisés. Le premier article présente un développement ultérieur
de la MCF dans I’analyse des contraintes en élasticité linéaire 2-D. Dans ce tra-

vail, une implémentation numérique avec des éléments quadratiques est effectuée en
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vue d’améliorer la précision des résultats numeériques obtenus par I'utilisation des
éléments linéaires comme elle a été faite dans I'étude précédente (voir Nagarajan
et al., 1994). En dehors de I'analyse primaire ou les quantités physiques aux rives
telles que des déplacements, des tractions et des contraintes sont calculées, cet article
adresse également |'analyse ultérieure ou on évalue des contraintes a I'intérieur du do-
maine. En étape ultérieure, une propriété remarquable a été découverte: |’'expression
formulée pour calculer des contraintes a l'intérieur du domaine peut aussi étre em-
ployée pour évaluer des contraintes a la frontiere (sauf aux noeuds d’extrémité) sans
avoir recours a aucun moyen particulier pour traiter des singularités comme dans la

MEFr conventionnelle.

I1 faut noter que les valeurs numeériques des contraintes, données par la MCF'. aux
extrémités des éléments sont discontinues méme si. a ces endroits, les contraintes
sont continues d’une maniere physique. Bien que ce soit un désavantage mineur, la
modélisation aux coins d’'un domaine 2-D devient triviale dans ce cas. Ces discon-
tinuités numeériques a travers des éléments de frontiere peuvent étre bien ameéliorées
en utilisant la MCFH présentée dans le deuxiéme article, pourvu qu’il n’y ait aucune
discontinuité de contrainte dans le probleme a traiter. La différence entre la MCF et
la MCFH est que. au point de départ, la premiére utilise 'EIF tandis que la derniere
emploie une équation intégrale de frontiere hypersinguliere déja régularisée. Donc.
pour des problemes 2-D, chaque méthode est caractérisée par ses propres fonctions
potentielles. Comme dans le premier article, les deux analyses primaire et ultérieure
sont adressées et implémentées avec des éléments quadratiques dans I'article sur la
MCFH 2-D. Via les exemples numériques dans ces articles, on s’apergoit que les
deux méthodes peuvent produire des résultats numeériques de grande précision, en
particulier ceux en étape ultérieure. Finalement, comme dans la MEFr convention-
nelle, en dehors de I'application a I’analyse des contraintes, la MCFH peut aussi étre

développée pour solutionner des problémes en mécanique de la rupture.

Avec les avantages sur le maillage a la frontiere, sur la précision des résultats
obtenus et sur le temps de calcul, la MCF est évidemment une méthode numérique
tres appropriée a 'optimisation de forme. Ce type d’application requiert I'étude

d’analyse des sensibilités de design employant la MCF et cette étude est le sujet
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du troisieme article. Dans ce travail, afin d’obtenir des coefficients de sensibilité
de design (sensibilités de déplacement, de traction et de contrainte), les équations
de la MCF sont différenciées analytiquement par rapport aux variables de design.
[ci, on traite les équations de la MCF des analyses primaire et uitérieure, donc cet
article adresse non seulement les coefficients de sensibilité aux rives mais aussi ceux
a l'intérieur du domaine. Encore une fois, la MCF produit des résultats numériques
précis pour les exemples traités et surtout. cette précision est uniforme. La précision
des coefficients de sensibilité obtenus est cruciale parce qu’elle détermine le succes
de la solution des problémes d’optimisation de forme. Finalement. cette étude mon-
tre deux avantages additionnels de la MCF par rapport a la MEFr conventionnelle:
(a) da a l'utilisation des fonctions d’interpolation globales, apres avoir résolu les
équations primaires. la récupération des sensibilités de contrainte aux noeuds est
tres simple et (b) il n'est pas requis d’employer de traitements particuliers pour
régulariser des singularités dans le calcul des sensibilités de déplacement et de con-

trainte en étape ultérieure.

Il y a deux approches pour évaluer les contraintes et leurs sensibilités en étape
ultérieure. La premiere approche utilise les fonctions potentielles de ]la MCF comme
présentée dans les premier et troisieme articles tandis que la deuxieme approche
emploie les fonctions potentielles de la MCFH comme présentée dans la premiere
partie du quatrieme article. Bien que les deux approches produisent les mémes
résultats numeériques pour un probleme donné. le temps de calcul requis par la
deuxieme approche est inférieur car sa formulation est plus simple que celle de la

premiere approche.

Avec les réussites mentionnées précédemment de la MCF 2-D en analyse des con-
traintes et des sensibilités, il est approprié d’appliquer cette méthode a 'optimisation
de forme. Ce type d’application est effectué dans la deuxieme partie du quatrieme
article. En fait, deux exemples bien connus sont solutionnés en employant |’analyse
des sensibilités de design par la MCF developpée dans le troisieme article. Les
résultats sont comparés avec ceux obtenus par des chercheurs qui ont utilisé la
MEFT. Finalement, ces résultats sont excellents ce qui justifie I'avantage de la MCF

par rapport aux autres méthodes numériques en optimisation de forme.
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Tout comme le deuxiéme article sur la MCFH 2-D, les troisieme et quatriéme ar-
ticles présentent les premieres contributions a la bibliographie en ce qui concerne un
développement de |’analyse des sensibilités employant la MCF 2-D et une applica-
tion de cette méthode a I’'optimisation de forme. Pour conclure, on peut dire que la
MCF présente des avantages potentiels par rapport a d’autres méthodes numériques
dans le domaine d’optimisation de forme. Par conséquent, I’étude menée dans cette

these devrait motiver de futures recherches sur ce type d’application en 3-D.
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CHAPTER I
INTRODUCTION

Over the last three decades, the FEM has been considered to be a powerful tool
and a well-established numerical technique in computational mechanics. The mesh-
ing required by this method involves discretizing the total domain into a finite num-
ber of subdomains (elements) (see Figure 1.1) on which domain integrations (2-D
and 3-D integrals for 2-D and 3-D problems, respectively) are performed. Although
there are no serious difficulties for 2-D meshing, it is generally recognized that 3-D
mesh generation of a complex body remains a big challenge for the FEM. Therefore,
considerable effort has been devoted in proposing numerical analysis methods in

which the meshing task can be simplified.

SN
S
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Figure 1.1: FEM meshing of a connecting rod.

Recently, the BEM has been widely acknowledged as an alternative numerical
method for engineering analysis (e.g. Banerjee and Butterfield, 1981; Brebbia et al.,
1984; Hall, 1994; Mukherjee, 1982). The BEM reduces the dimensionality of analysis
problems by one, i.e. it generates one-dimensional (1-D) line integral equations for
2-D problems and 2-D surface integral equations in 3-D cases. As a consequence,
the BEM discretizes the boundary only (see Figure 1.2), so the mesh generation
becomes much more straightforward and inexpensive compared to the FEM. This
advantage, as well as the fact that the BEM usually provides boundary physical

responses (displacements, tractions, stresses) more precisely than the FEM, makes
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Figure 1.2: BEM meshing of a connecting rod.

the BEM a very attractive numerical method in computational mechanics.

As mentioned above, the conventional BEM for linear elasticity requires the
numerical evaluation of line integrals for 2-D problems and surface integrals for 3-
D ones (see, for example, Hall, 1994). By observing that the integrand vector of
the usual linear elasticity BEM equation without body forces is divergence free, a
few years ago, Nagarajan, Lutz and Mukherjee proposed a novel approach, termed
generically the boundary contour method (BCM), that achieves a further reduction
in dimension. The divergence free property allows, for 3-D problems, the use of
Stokes’ theorem to transform surface integrals on the usual boundary elements into
line integrals on the bounding contours of these elements. For 2-D problems, a sim-
ilar transformation, using the simple idea of path-independent integrals, eliminates
numerical integration altogether. The above transformations are quite general and
apply to boundary elements of arbitrary shape. Thus, the BCM reduces the dimen-
sionality of analysis problems by two: the method only requires numerical evaluation
of 1-D line integrals for 3-D problems and simply the evaluation of functions (called
potential functions) at endpoint nodes on the boundary of a body for 2-D cases.

The above idea also works for other linear problems such as potential theory.

The present dissertation deals with a further development of the BCM and a
full study of its variant, called the hypersingular BCM, for 2-D linear elasticity.
Application of these novel methods in stress analysis and in particular, application
of the BCM in shape optimization are also included. It should be noted that the

term shape optimization used in this work refers to the optimal design of the shape



boundary of structural components.

Most engineering designers use iterative processes to improve their design until
it meets some given criteria. The traditional design process is based on the so
called “trial and error” technique, in which design engineers use their experience and
intuition to modify the design process towards the goal. The main advantage of this
heuristic based design method is that the designers’ knowledge can be used directly
in their design, and up to now this approach still dominates the design process.
But as design problems become more complex, design improvement becomes more
difficult and hence, the need for new tools to guide the design improvement, or
to optimize the design process, becomes greater. Furthermore, current interest in
structural shape optimization is also largely motivated by demands for more cost-
competitive design throughout the industrial sector including aerospace, automotive,

marine, power generation, machine design and other engineering areas.

An optimal design process is a tool which uses mathematical optimization tech-
niques to meet the aforementioned challenge. Here, the design problem is trans-
formed into a mathematical model so that an optimization technique can be applied
to improve the model towards the optimum solution in a full- or semi-automated

manner.

The basic theory for optimization approaches was set forth long ago (17** and
18t centuries). However, pure mathematical optimization can rarely be applied
in practical design because most design problems cannot be solved analytically.
Therefore, numerical methods have been developed for this purpose. Over the last
three decades, the FEM has been considered to be a powerful tool for structural
analysis. With the development of the FEM, a class of techniques for structural
optimization problems was pioneered by Schmith (1960). Then, the introduction
of the mathematical programming methods coupled with the FEM was a milestone
in solving pratical structural optimization problems, which proved to be the most
successful tool for optimum structural design. In the context of shape optimiza-
tion using the FEM, one of the first approaches was presented by Zienkiewics and

Campbell (1973), in which boundary nodes are chosen as the design variables and



the numerical optimization solution is obtained by sequential linear programming.

Despite the success of the FEM in structural optimization where the meshing
of structures is straightforward since they are modeled by 1-D elements such as
bars or beams, there still remains one main shortcoming. The remeshing during
the optimization process, where the shape of the body changes during successive
design iterations, is very expensive, especially in 3-D cases. This remeshing also

often causes element distortion near the design boundary.

Due to the meshing advantage of the BEM, from the 1980s several researchers
have contributed considerable efforts to develop efficient techniques for shape opti-

mization using the BEM and remarkable successes have been achieved.

Besides having the same advantage in mesh generation as in the conventional
BEM, as mentioned above, the BCM offers a further reduction in dimension of
analysis problems. Therefore, the generation of the BCM promises a new successful
approach for stress analysis as well as for optimal shape design and the above idea

has motivated the study presented in this dissertation.

The dissertation is associated with the four following papers:

1. The boundary contour method for two-dimensional linear elasticity with quadratic

boundary elements.

[CV]

. The hypersingular boundary contour method for two-dimensional linear elas-

ticity.

3. A boundary contour formulation for design sensitivity analysis in two-dimensional

linear elasticity.

4. Stresses, stress sensitivities and shape optimization in two-dimensional linear

elasticity by the boundary contour method.

which are enclosed in the Appendices. As described by the titles, the first two papers
present the BCM and HBCM with their application in stress analysis for 2-D linear
elasticity, whereas the last two papers deal with an application of the 2-D BCM in

shape optimization.
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CHAPTER 11
LITERATURE REVIEW

2.1 The BCM for linear elasticity

The BCM has been presented in the literature for 2-D (see Nagarajan et al., 1994)
and for 3-D (see Nagarajan et al., 1996 and Mukherjee et al., 1997) linear elasticity
problems. In the 2-D paper, however, only the primary BCM analysis, i.e. the de-
termination of boundary tractions and displacements (see Figure 2.1), is addressed.
Also, the idea of rigid body modes, to regularize Cauchy singular integrals, is not
employed in the Nagarajan et al. papers in an explicit manner. In addition, the
numerical implementation carried out with linear boundary elements is not quite ac-
curate enough for engineering analysis, and especially, for design sensitivity analysis
which is required for shape optimization.

u
2

u _ displacement vector
T _ traction vector

X p _ load vector

G _ internal point

H _ non endpoint node

& endpoint node

Figure 2.1: 2-D elastic body.

The above shortcomings led to the need for a further development for the 2-D



BCM in linear elasticity. This study is the topic of the first paper presented in
Appendix L. In this paper, a numerical implementation is set up with quadratic
boundary elements and the rigid body motion technique is employed in an explicit
manner. Also, the secondary BCM analysis, namely the calculation of stresses both
at internal points and non-endpoint nodes on the boundary (see Figure 2.1), as well

as the primary BCM analysis, are addressed in this work.

2.2 Regularized hypersingular boundary integral equations
and the hypersingular BCM

Regularized HBIEs have several important applications in engineering, such as, in
computation of boundary stresses (e.g. Guiggiani et al., 1992), in wave scattering
by thin screens (e.g. Krishnasamy et al., 1990), in fracture mechanics (e.g. Gray et
al., 1990; Lutz et al., 1992; Paulino, 1995; Gray and Paulino. 1997-a), in obtaining
symmetric Galerkin boundary element formulations (e.g. Gray et al., 1995; Bonnet,
1995-a; Gray and Paulino, 1997-b), and in adaptative analysis (e.g. Paulino et al.,
1996; Menon, 1996 and Menon et al., 1997).

Again, since the integrand vector of the regularized HBIE under consideration
is divergent-free, these equations can be converted into a boundary contour version,
here called the hypersingular boundary contour method (HBCM), in order to achieve
a reduction in dimensionality as in the BCM. The first study on the HBCM has been
pioneered by Mukherjee and Mukherjee (1997-a and -b). In their work, a general
theory for converting a regularized HBIE into the HBCM for 3-D linear elasticity is
presented. These papers, however, do not contain any general numerical examples

in order to show the validity of the HBCM in such cases.

With the purpose of completing the HBCM for linear elasticity, an investigation
of the method for 2-D problems is the topic of the second paper enclosed in Appendix
[I. This is a full study because, as in the first paper on the usual BCM, both primary

and secondary analyses as well as general numerical examples are presented.



2.3 Design sensitivity analysis using the BEM

Most shape optimization problems use gradient based mathematical programming
algorithms where design sensitivity coefficients (DSCs), which are defined as the
rates of change of physical quantities with respect to changes in the design variables,
are required for the determination of the optimum shape of a body. Therefore, the
evaluation of design sensitivities has become an important research topic for the
last two decades. In practice, the success of mathematical programming methods
for solving shape optimization problems often depends on the way the design sensi-
tivities are computed, i.e. the approach, its accuracy and efficiency. In the context
of the FEM as well as the BEM, there are three methods for design sensitivity calcu-
lation, namely. the finite difference approach (FDA), the adjoint structure approach
(ASA) and the direct differentiation approach (DDA).

Before the research leading to this dissertation, no paper had been published on
the topic of design sensitivity analysis using the BCM. However. since the BCM is
a variant of the conventional BEM, it is useful to review the literature on design

sensitivity analysis using the BEM.

In elastostatics using the BEM, the FDA has been presented by Wu (1986), and
Kane and Prasad (1993) for 2-D and 3-D problems; the ASA has been introduced
by Choi and Kwak (1988), and Aithal and Saigal (1990) for 2-D problems, by Lee
(1996) for axisymmetric analysis, by Zhao (1993) for 3-D solids; and the DDA has
been given by Barone and Yang (1988), Kane and Saigal (1988), and Zhang and
Mukherjee (1991) and Mellings and Aliabadi (1995) for 2-D problems, by Saigal
et al. (1989), Rice and Mukherjee (1990), and also Lee (1996) for axisymmetric
problems, by Aithal et al. (1991), Kane et al. (1992) and Bonnet (1995-b) for 3-D
bodies, and by Mukherjee and Chandra (1989, 1991) for 2-D non linear problems.

In most of the above papers, the authors limited their illustration at the design
sensitivity analysis on the boundary nodes of the body. Since the BIE is associated
with boundary displacements and tractions, but not boundary stresses, it follows
that a stress recovery process had to be developed in the above papers in order to

compute boundary stress sensitivities. This stress recovery process is not simple



because the shape functions are described in a local curvilinear coordinate system
whereas the displacement-strain relationship and Hooke’s law are described in the
global Cartesian coordinate system. By using a 2-D linear elastic BIE formulated in
terms of tangential gradient of displacements (“derivative BIE™), the stress recovery
presented by Zhang and Mukherjee (1991) seems to be easier but since this BIE
formulation is associated with the tangential gradient of displacements, it does not

provide displacements directly and thus, their sensitivities.

Conceptually, the FDA is the simplest method for the determination of DSCs.
Typically, the current design is analyzed and the response quantities are evaluated.
Then the design variables are perturbed in succession. For each perturbation, the
design responses are reevaluated, and the DSCs are obtained by the finite difference
formula which is the ratio of the differences of design responses and the corresponding
perturbation intervals. The main drawback of the FDA is its sensitivity to the choice
of perturbation intervals: truncation errors can be substantial if the perturbation
magnitude is too large and round-off errors (condition errors) can be significant
if this magnitude is too small. In addition, this method is very computer time
consuming due to the requirement of forming new BEM system matrices. That’s
why even though Wu (1986) was able to show convergence of the numerical results
considered in his work using the FDA, the effect of selecting perturbation step sizes

on convergence in more general applications is still in question.

The DDA uses analytical methods instead of the finite difference formula to
yield exact expressions for the sensitivities. Studies on the subject using the DDA
originated with the work of Kane and Saigal (1988), and Barone and Yang (1988).
A difficulty with the DDA lies in the singular feature of the governing BIE. Kane
and Saigal (1988) generated the desired sensitivities by differentiating the resulting
BEM system matrix analytically. In these formulations, the source point must be
placed outside the region to avoid singular integrations. But, as noted by Barone and
Yang (1988), besides being somewhat arbitrary, this strategic adjustment appears
to introduce unwarranted complications. Barone and Yang (1988) carried out the
opposite process to the one employed by Kane and Saigal (1988) by differentiating

the BIE to obtain the sensitivities analytically before numerical implementation.



Here, the rigid body motion technique is used to treat singular integral terms in
the calculation of displacement sensitivities, but the integration of strongly singular
kernels is required for computing stress sensitivities by a direct formulation. Besides
an easier stress recovery process discussed so far, the derivative BIE formulation used
by Zhang and Mukherjee (1991) is only involved in a weakly singular feature, thus
its differentiated kernels are completely regular for 2-D design sensitivity problems.
With the same effort to avoid strongly singular integrals involved in the design
sensitivity analysis, Bonnet (1995) applied the material derivative concept to the

regularized displacement boundary integral equation.

The DDA is advantageous for optimal shape problems with few design variables
and a large number of constraints because the differentiation is taken with respect to
one design variable at a time, so the computing time depends mainly on the number

of design variables, not the number of constraints.

The ASA is an exact approach for evaluating DSCs and does not involve finite
differences. In this method, an adjoint system must be prescribed in addition to
the physical system. One auxiliary system is defined for each constraint, rather
than for each design variable. Hence, for problems with many design variables and
fewer constraints, the ASA is more suitable. However, as noted by Barone and Yang
(1988), although the ASA is conceptually a straightforward technique, major com-
putational difficulties are involved in evaluating displacement and stress sensitivities
at discrete points. This is because the adjoint solutions for these two cases corre-
spond to a concentrated force and moment, respectively, and these solutions using
the BEM give rise to unbounded integrals. This problem was circumvented by Choi
and Kwak (1988) for stress sensitivity analysis by representing the von Mises stress
over an element (or over an area) in an average value using an averaging charac-
teristic function m,. Therefore, only an averaged stress sensitivity for the element
is obtained and the procedure still does not provide the sensitivity informations at

discrete nodal points.

An improved formulation using the ASA has been presented by Aithal and Sai-
gal (1990) in which the adjoint problem is established starting from the elasticity



10

equations of equilibrium and then, the BEM is employed to solve both the primitive
and the adjoint problems. Here, stress sensitivities are determined by the implicit
differentiation of the boundary stress recovery expression and thus, this procedure

enables the stress sensitivity calculation at discrete points.

Based on the above review, it can be seen that the topic of shape design sensi-
tivity analysis plays a crucial role in the numerical optimization techniques. In the
context of the BEM, the DDA is a preferred method because of the consistency due
to its analytical nature and since it facilitates the design sensitivity calculation at
any discrete point. Therefore, a study on design sensitivities using the DDA and by
the BCM for 2-D linear elasticity is obviously necessary for the application of this
method in shape optimization. Details of the work are presented in the third paper

shown in Appendix III.

2.4 Shape optimization using the BEM

Theories for shape optimization using the BEM can be found in Zhao (1991) or
Chandra and Mukherjee (1997).

The application of the BEM in optimal shape design started from the 1980s.
One of the earliest studies was published by Barone and Caulk (1982) in which the
position, the size and the surface temperature of circular holes inside a 2-D heat

conductor are optimized.

Choi and Kwak (1988) applied the ASA for computing DSCs in their shape
optimization work where an algorithm for optimum structural design without line

search is employed and the design shape is represented by cubic splines.

The use of the generalized reduced gradient method in BEM shape optimization
has been developed by Sandgren and Wu (1988) in which substructuring is employed
to isolate the portion of the structure undergoing geometric change. B-spline curves
and surfaces whose control points are chosen as the design variables are introduced
to describe the shape in 2-D and 3-D design problems. Design sensitivity coefficients
are computed using the FDA. The optimal shape design of a hook is selected as an
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application example in which the nominal stress needs to be minimized. But as
mentioned by the authors, additional time savings could be achieved by applying an
analytical approach for sensitivity informations (such as the DDA) instead of the
FDA used in this work.

A modular approach for shape optimization used in the finite element context
was adapted to the BEM by Yang (1990) to optimize an infinite plate with an
elliptical hole and an fillet problem. In this study, the feasible direction algorithm is
employed as the optimization technique. The displacement sensitivity formulation
given by Barone and Yang (1988) and a stress sensitivity formulation obtained by
differentiating the shape function in each boundary element, are used. Despite the
simplicity of this stress sensitivity calculation, the errors in such computation can

be substantial due to the approximate nature of the shape functions.

By using a formulation for design sensitivity analysis presented by Kane and
Saigal (1988), the same authors (Saigal and Kane, 1990) have proposed a model for
optimizing structural components such as a rod to half-space attachment or a slotted
ring in an aircraft gas turbine engine. Here, the mesh generation and remeshing are
done using a parametric and auxiliary geometry concept. The above informations
are then coupled with the general purpose numerical optimization code ADS to solve

the given problems.

Optimal shape design of solids undergoing small-strain. small rotation and elasto-
viscoplastic deformation was investigated by Wei et al. (1994). In this work, shape
optimization is performed by coupling the standard BIE and the DDA sensitivity
analyses with an optimizer using sequential quadratic programming. The approach
is then applied to shape optimization of cutouts in plates undergoing purely elastic

and elasto-viscoplastic deformation.

Yamazaki et al. (1994) determined optimum shapes of minimum weight sub-
jected to stress constraints and a connecting rod in which the design sensitivity
calculation is based on the DDA of the discrete BIE.

Tafreshi and Fenner (1995) have presented a general purpose computer program,

named STRESOPT, for optimal shape design of 2-D structures in order to smooth
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stress peaks, i.e. to reduce stress concentration effects. In this work, the design
sensitivity analysis is carried out by using both the FDA and DDA for discretized
BEM formulations. The numerical optimization technique used in the program is
the extended penalty function approach, together with the golden section method
for the one-dimensional search. The shape is represented by hermitian cubic splines
so that complex geometries can be described by a small number of design variables.
The optimum shape design of fillets and holes in plates as well as bars were shown

as illustrative examples.

Recently, it can be seen that papers on the topic of shape optimization by the
BEM have not presented new important contributions in this field. They usually
tackle the application of known formulations for design sensitivities to new problems

or the numerical implementation of known theories into a new optimization package.

The above studies have shown encouraging successes for optimal shape design
by the BEM. Hence, a new success of the BCM in this kind of application is very
challenging. In order to meet this challenge, shape optimization by the BCM must
demonstrate its performance and efficiency in resulting accuracy as well as in com-
putational time. This demonstration is one of the topics of the fourth paper enclosed

in Appendix [V.
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CHAPTER III
PAPER SYNTHESIS

Even though this is a dissertation composed from papers, there is a reasonable
link between the four papers used. The first paper presents a further development
of the BCM for stress analysis in 2-D linear elasticity. In this work, a numerical
implementation with quadratic boundary elements as opposed to linear ones in the
previous study (see Nagarajan et al., 1994) is performed for the purpose of increasing
the accuracy of numerical results. Besides the usual primary analysis where bound-
ary physical quantities of a body such as displacements, tractions and stresses are
calculated, the post-processing analysis is also addressed for computing stresses in-
side the body under consideration. In the post-processing stage, a remarkable issue
is realized: the boundary contour formulation for computing the stress at an internal
point can also be employed to evaluate stresses at regular points on the boundary
except at endpoint nodes. This can be achieved without any special singularity

treatment as must be done in the conventional BEM.

It should be mentioned that since traction nodes are not placed at the endpoints
of boundary elements (see Figure 1 in Appendix I), traction continuities can not be
numerically enforced at endpoint nodes where tractions are physically continuous.
As a result, stresses across boundary elements provided by the BCM are numeri-
cally discontinuous even if they are physically continuous there. Although thisis a
minor drawback, it makes the corner modeling trivial because one does not have to
mode] each corner (corners are always endpoint nodes) with two traction nodes as in
the conventional BEM. The numerical discontinuities across boundary elements in
problems without stress jumps on the boundary can be much improved by using the
HBCM presented in the second paper. The difference between the BCM and HBCM
is that, for the primary analysis, the former uses the BIE whereas the latter uses a
regularized HBIE as the starting point. Hence, for 2-D problems, each method is
characterized by its own potential functions. As in the first paper, both the primary

and post-processing analyses are addressed and implemented with quadratic domain
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shape functions in the 2-D HBCM paper. Via the numerical examples in the above
papers, it is shown that both methods can provide highly accurate results and es-
pecially those given from the post-processing stage. Finally, as in the conventional
BEM, besides the application in stress analysis, the HBCM can also be extended to

solve fracture mechanics problems. However, this has not been done yet.

With the advantages in boundary meshing, accuracy and computational times,
the BCM is obviously an appropriate numerical method for shape optimization.
This kind of application requires the evaluation of DSCs. Therefore, a study on
shape design sensitivity analysis using the BCM is necessary and this is the subject
of the third paper. In this work, in order to obtain DSCs (sensitivities of displace-
ments, tractions and stresses), the BCM equations are analytically differentiated
with respect to the design variables. Here, the BCM equations of both the pri-
mary and post-processing analyses are treated, therefore not only the DSCs on the
boundary but also those inside the body under consideration are addressed. Once
again, the BCM provides high and uniform precisions for numerical results of DSCs
on the boundary as well as within the domain for the illustrative examples. The
accuracy of the obtained DSCs is very crucial because it decides the success in using
gradient based mathematical programming algorithm to solve optimal shape design
problems. Through this study, two more advantages of the BCM over the BEM
are derived: (a) due to the use of global displacement and stress shape functions,
the recovery of boundary stress sensitivities after solving the primary equations is
straightforward, and (b) no special singularity treatment has to be carried out for

computing displacement and stress sensitivities in the post-processing stage.

There are two approaches for evaluating stresses and stress sensitivities by the
BCM as post-processing steps. The first approach starts from the BCM version
of the standard BIE written for the displacement at an internal point whereas the
second approach starts directly from this equation. As a result, the first approach
uses the BCM potential functions as shown in the first and third papers while the
second approach uses the HBCM potential functions as presented in the first part of
the fourth paper. Since both approaches start from the same equation (BIE), they

provide the same numerical results for a given problem. However, computational
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times required by the second approach are less because its formulation is simpler

than that in the first approach.

With the above achievement of the 2-D BCM in stress and design sensitivity
analyses, an application of this method in shape optimization is obviously appropri-
ate. This kind of application is carried out in the second part of the fourth paper.
Here. the development and execution of a shape optimization algorithm with DCSs
calculated from the BCM is contributed into the literature for the first time. In fact,
the BCM and design sensitivity codes are coupled with the successive (sequential)
quadratic programming algorithm (here, the C function “f_min_con_nonlin” from
the commercial IMSL library is employed) to solve shape optimization problems.
Two well-known examples in optimal shape design are solved using the design sensi-
tivity analysis by the BCM developed in the third paper. The results are compared
with those obtained by researchers using the BEM. These results are excellent and

this confirms great potential advantages of the BCM in shape optimization.
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CHAPTER IV
MATHEMATICAL DETAILS SUPPLEMENTING THE
PAPERS

This chapter provides further mathematical details needed for comprehending
the four papers presented in the Appendices. Therefore, the reading of these papers

before referring to this chapter is recommended.

Regarding the referencing of equations, it is noted that the referencing prefixed
by a roman number is referred to equations in the paper indicated by this roman

number. For example, (I11.12) means Eq. (12) in the third paper.

4.1 Derivation of the BIE (Eq. (I.1))

4.1.1 Review of basic equations in linear elasticity

o Differential equations of equilibrium without body forces

80',‘)

8:::1»

=0 or O'ij'j=0 (41)

where o;;, z, are the stress tensor and coordinate vector. For 2-D problems,

t=1,2and j = 1,2. The comma denotes partial derivative.

® Compatibility equations

(uij + ;i) (4.2)

E,‘j

[SV

where ¢;;, u; are the strain tensor and displacement vector.
e Hooke’s law (constitutive relationships)
Oi; = Abijerk + 2p€;; (4.3)

where A and p are Lamé constants of the material, and §;; is the Kronecker

delta (=1 for i = 7 and = 0 for ¢ # j).
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e The Navier-Cauchy equations

By substituting (4.3) and (4.2) into (4.1), the results are the equilibrium equa-

tions in terms of displacements or the Navier-Cauchy equations:
1
(——1 — Qu) ujji tuig; =0 (4.4)

where v is Poisson’s ratio.

4.1.2 Kelvin solution

A particular solution of the Navier-Cauchy equations (4.4), called Kelvin solution,
is obtained when a unit point load is applied at a point P (source point) in the
direction of the unit vector e, producing displacements and stresses at any point @

in the domain (field points), given by:

: (Q) = Us(P. Q)ex(P) } (4.5)

ij (@) = Zijk( P, Q)ex(P)

u
o
In (4.5), Ui and ;i are called Kelvin kernel tensors and their expressions are
given by (I-2).
4.1.3 Symmetry of the elasticity tensor
Hooke's law (4.3) can be applied to a second stress o°r,-j and strain g{j, ie.
Oij= Abi; €xr +2p € (4.6)
Multiplying Eq. (4.3) by 2:; yields
oi &,-,J: Abijeii Ui +2pei; Ui (4.7)
and Eq. (4.6) by u;, yields

Gij ui; = Mij € uj; + 2u &; u; (4.8)
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Subtracting Eqs. (4.7) and (4.8) gives the following expression which describes

the symmetry of the elasticity tensor

gi; &,-J' - 3',']' Uij; = 0 (49)

4.1.4 Boundary integral formulation

Equilibrium equations (4.1) for both stress states give

0’,']"_7' =g','j'j= 0 (410)
Thus, it follows from Eqs. (4.9) and (4.10) that
(0’,']' ':l,' —3’,']' u")j -——0 (4.11)

First, expression (4.11) is integrated over the whole domain B and then trans-

formed to the following boundary integral using Gauss’ divergence theorem

4 o
ij Ui —Oju;)e; -dS = 4.12
/aB(aJu O'Ju)e_, 0 (4.12)

oB

Ce

Figure 4.1: Exclusion of the singular point P in the elastic domain.

Substituting the Kelvin solution (4.5) into (4.12) leads to
['/GBUC. (UijUik - E,-jku.-) e; - dS € = 0 (4.13)

where the singular point P is excluded by a small circle C,. In Eq. (4.13), the unit

base vectors e, are constant and can have any value. Hence,

/aBUc (oijUik — Zijkui)e;-dS =0 (4.14)
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By the exclusion of the singular point P using a small circle C, of radius e, it

can be shown that

lim [/C oiUne; -dS] =0

e—0

lim [-/C S,-J-ku,-ej . dS] = uk(P)

e—0

(4.15)

Use of Eqs. (4.14) and (4.15) gives the BIE for an internal source point P
uk(P) = /38 (Uikoii(Q) — ijrui(Q)] ej - dS (4.16)

A limiting process must be taken for Eq. (4.16), as an internal source point P

approaches the boundary 9B, to produce the following general BIE

cx(PYulP) = [ [Ua05(@) — Sueui(Q)le; - dS (4.17)

where the corner tensor ¢;x = %égk if the boundary is locally smooth at P. Otherwise,
cik can be computed in closed form for 2-D problems, but direct evaluation of ¢ in
3-D cases is difficult. Fortunately, explicit calculations of this value can be avoided

by using the rigid body motion technique as shown in the first paper.

4.2 Proofof Vo -F =0 (Eq. (I.4))
By denoting

Fr = [Ui( P, Q)0i;(Q) — Zijk( P, Q)ui(Q)]e; = Fije, (4.18)
the divergence of Fy at a field point Q is written as

Vo - Fi = Fij; = 0ijUik,; — Tijeui; + 045, Ui — Lijejui (4.19)

Let us determine each term in the right hand side of Eq. (4.19). Due to the

symmetry of the elasticity tensor (4.9), we have

0i;Uik,; — Sijrui; = 0 (4.20)
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Since body forces b; are absent in the BCM, the equilibrium equations for linear

elastostatics in this case are

Tijj + b,‘ = 0y, = 0 (4-21)

Finally, knowing that %,;x is the point load at the source point P, so at every

field point ) which does not coincide with P, one gets

Yijk; =0 (4.22)

Substitution of (4.20), (4.21) and (4.22) into (4.19) yields
Vo-Fr=0 (4.23)

everywhere except at the source point P.

Equation (4.23) shows the existence of a function ®; such that

8%, 0%
_— — — ‘)
Fe= 5 e~ 5 (4.24)

because (4.24) ensures the identity (4.23).

4.3 Matrix [T(x,y)] (Eq. (1.22))

In Eq. (I.19), one has

1z y 000 2 y® kzy kazy
[Tu(z.y)] = Y (4.25)
0 001 z y kyzy kizy =z y
where k) = —2(1 — 2v), k2 = —4(1 — v) and v is the Poisson’s ratio.

By using Egs. (I.18) and (I.21), the traction vector can be written in matrix

form as

{ m }=[T,(x,y)1 {8) (4.26)

T2
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0 ksny puny, 0 pny AIny  kg(niz — nay)

0 Ang Uy 0 uni ksnz ksng:c-k4n1y

[T.,-(.’L', y)] = [

(4.27)
ks(niz — nay) —kynyy — ksnaz  kenyy — kynaox

—kqnox — ksnyy  ks(nay — naz)  k4(ney — nyz)

In Eq. (4.27), k3 = A +2u, ky = 4u(l — v), ks = —4pv, ke = —4u(2 — v) and A

and pu are Lamé constants of the material.

Therefore, in Eq. (1.22), the matrix [T(‘}(:z:, y)] for element (¢) is given by

[ [Tz, y)]
[Tz, y)]
[T 9)] = | [T9(z,y)] (4.28)
[Tz, y)]

i [T£21+1)(1.’y)] -

4.4 Matrix [B;] (Eq. (1.26))
Substituting (1.24) into (I.19) yields

u 1 £ 9000 & 72 kién kén
{ ‘ } = [ SO B{BY (429)
Uus 00 0 1 & n kn kibn € n

By comparing the matrix in (4.29) with (4.25) and letting [B;] {8} = {3}, one
gets Eq. (1.25). The matrix [B;], giving the relationship between the vectors of the
artificial variables {8} and {[;’} in the global (z,y) and a (¢,7n) coordinate system



centered at the source point P(z;,y;), respectively, is easily found as

(1 z; 5, 00 0 22 vk kays |

01 000 0 2 0 ky ky

0 0 1 00 O 0 2y; kiz;  kaz;

0 0 0 1 z; y; kozjy, kizjy;, 3 y?

0 0 0 0 1 0 kyy; kiy; 2z; 0

Bil=10 0 000 1 kg:r; klx; 0 2; (4:39)

0 0 0 0 0 O 1 0 0 0

0 060 0 0 0 O 0 1 0 0

0 0 000 O 0 0 1 0

| 0 0 0 0 0 O 0 0 0 l

4.5 Displacement field [u;(Q) — u;(P)] (Eq. (I.12))

In a (£,n) coordinate system centered at a source point P, the displacement shape

functions are described by Eq. (1.25), i.e.

{UI(Q)}=5‘1{1}+B2{£}+Bs{n}+l§4{0}-{—,@5{0}

u2(Q) 0 0 0 1 £

. . 2 . 2 -~ 1k R k

+56{0}+.37{ ‘ }+ﬂs{ " }+69{ ‘f"}mm{ f”} (4.31)
1 ki kién ¢ 7

where it can be seen from the matrix in (4.30) that Bh =8y for h="7,...,10.

Since the coordinates of P are (0,0), one gets

u(P) | _ a2 ) 1 a0 | O 19
L oo {1) o

where (¢) is the element (if P is placed at a midpoint node) or either of the elements

(if P is placed at a endpoint node) containing P.

Finally, for element (¢)

(9
u1(Q) — ui(P) _ao)l s ) € } 20 ) 7 ‘(t){ 0
{Uz(Q)—uz(P)} ' {0}”32 o f TR o TR



23

in which N . R
O =408 if h=14

BY = g if k=T7,...,10 (4.34)
B,(f) = B,(f) otherwise

4.6 Determination of the potential functions ¢, (Eq. (1.12))

In a (£.7) coordinate system, the displacement shape functions described by Eq.

(I.25) can also be written as

(9 (¢)
{ ui(§,n) } _ IZOB’(I:){ (€, n) } (4.35)
u2(€,7) h=1 )
Hence, by applying Hooke’s law (I.17) to (4.35), stress shape functions are found
as
(0 0
on(§,n) 0 (€, 7m)
onl&n) (= LA Ta(Em) (4.36)
o12(§,7) "= T121(€, 1)

Use of (4.35) and (4.36) in the integrand (4.18) of the BIE on an non-singular

element ({) gives

Z ,6}; [Utkauh Ea ) - —‘t]kuth(é 7’)] €; (437)

h=1

Expression (4.24) in this case takes the following form

Fr —Zﬂ“’ e e (438)
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Identification of (4.37) and (4.38) leads to the following system of equations that

enables the determination of the potential functions ¢.

83¢z = Uugan(§,n) — Tax@in(€, 1)
a; (4.39)
-3?: = ~UuTi2n(&,n) + Li2kTin (€, 1)

It should be noted that since

() ()
uy(Q) — ui(P) (z){ T1n(€, 1) }
B (4.40)
{ u2(Q) — u2(P) } Z @2n(€,1)

by comparing (4.40) with (4.35), the expressions of the forms (4.37) and (4.38) for
Gy can easily be derived from the last equations by replacing 3,(1 with 6(() Thus

F. and G have the same potential functions ¢..

For example, system (4.39) incaseof k=1 and h =7 (i.e. z=7) is
07 _
7¢' = Ungu&,n) + Unoar(&,n) — Linwr(§, 1) — Lan@ar(€, 1)
a;’ (4.41)
P —U116127(&, 1) — Ua1@227(€,n) + Lia1mi7(€, 1) + LaarUar(€, )
where the expressions for the Kelvin kernel tensors are given by Eq. (I.2) and,
- 2
{w(e,n) } _ { ¢ } (442)
u27(€,7m) k2€n
o . l—-—v
_117(5 1) ~ 2F &( 9) s3)
gar(&n) ¢ = 15, Sw—2) -
T127(€,7) n(v —1)
Finally, the solution of system (4.41) is
¢7(€,7m) = & (5= 4u)§ — (8% — 14v + 6) In(r) (4.44)
’ 47(1 — v) 72

The above method for determining ¢, is general and thus, can also be employed
to derive other potential functions required by a boundary contour version for 2-D

problems.



4.7 Plane stress problems

The formulas for the Kelvin kernel tensors (1.2), for Hooke’s law (I.17) and thus,
for the derived potential functions ¢., are built for a plane strain state. However,
these formulas can also be employed to solve plane stress problems provided that

the appropriate material data are used.

In fact, by observing the relationship between the constitutive law of plane strain
and plane stress states, for plane stress problems, one only needs to substitute v by
7 =v/(1+v)and E by F = E(1 —7?) in the appropriate formulas presented in all

of the four papers.

4.8 Derivation of the regularized HBIE (Eq. (11.28))

Taking the partial derivative of Eq. (4.16) (written for an internal source point P)
with respect to P yields

ueMm(P) = [as Wik m(P,Q)oij(Q) — Eijem( P, Q)ui(Q)] e, - dS (4.43)

By using the identity r ,, = —r s (see (I-2)) where , denotes partial derivative

with respect to a field point @, Eq. (4.45) becomes
uem(P) = — /z;a [Uikom(P, Q)oi;(@) — Zijim (P, Q)ui(Q)] e; - dS (4.46)

Now, modes are used in order to regularize (4.46).

First. use of the fcllowing linear mode

ui(Q) = uia(P) [2.(Q) — z.(P)] (4.47)

gives
u;,;(Q) = ui;(P) (4.48)

and thus, the following constant stress field (see Egs. (4.2) and (4.3))

‘ 0i;(Q) = 0i;(P) (4.49)
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By applying the fields (4.47) and (4.49) to Eq. (4.46), one gets

ugm(P) = —/63 {Uikm (P, @)0i;(P) = Zijkm (P, Q)uis( P) [z:(Q) — z,(P)]} &; - dS
(4.50)

Next, using a rigid body mode u;(Q) = u;(P) in Eq. (4.46) immediately gives

0 = ui(P) /as Sikm(P,Q)e; - dS (4.51)

Subtracting (4.46) from (4.50) yields

0 = [ {Usm(P.Q)[0:(Q) = (P
—Ziikm (P, Q) [ui(Q) — uis(P) [z5(Q) — z5(P)]]} €; - dS (4.52)

Use of (4.51) in (4.52) leads to the following regularized expression at an internal

source point
0= /35 {Uik.m(PsQ) [O'ij(Q) - Uij(P)] — Ziem(P, Q) [u,(Q) - ufl‘)]}ej -dS (4.53)

where uf»[‘) = ui(P) + uis(P) [z:(Q) — z,(P)]

Finally, by taking a limiting process of (4.33) as an internal source point ap-
proaches the boundary 9B, one gets the regularized HBIE under consideration.
4.9 Displacement field [5;(Q) — u{"] (Eq. (I1.28))

The displacement field used in the regularized HBIE (II.28) is
u(Q) = u” = ui(Q) = ui P) — i P) [2:(Q) — z4(P)] (4.54)

where s = 1,2; z; = z and z, = y. In a (£, 7n) coordinate system, by using (I.24)

Eq. (4.54) becomes

u(Q) — uf® = ul(Q) — uil P) — wii(P)E — ui2(P)y (4.55)

e For the HBCM primary analysis (Eq. (11.39))
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The displacement gradient field u;,(Q) can easily be found from (4.31) as

{UH(Q)} Bz{l}+35{ }+ﬂ7{ }-i-l‘}s{ 0 }
uz.l(Q) 0 kl"l
- k1 .
+ﬁ9{ 25” } ﬂlo{ 7 } (4.56)
u2.2(Q) 0 kat ki€
N Bg{ ki€ } ﬂm{ } (4.5T)
0 2n

In the primary analysis, the source points are only placed at endpoint nodes on

the boundary. Hence, in Eq. (4.55), u; s(P) at a source point P can be determined
from the displacement gradient field u; ,(Q) of either of the elements (¢) containing

this source point. Since the coordinates of P are (0,0), we have

u1(P) — /) 1 @) 0 8
L} = ool wso
waP) | _ s )} ) ) 0

{uz_z(P)} _ & {0 }ws {1} (4.59)

Finally. for element (¢), use of (4.58), (4.59) and (4.33) in (4.55) leads to
(0
ur(Q) — ul” _ oan) 1 - ) & G o) 0
{zMQ) ne R I R B +4 0 + A 1
fefoelt)onl 2
4 n k267
. 2 kién - k2l
+ﬁ”{ ! }+6m{ ‘ }+‘”{ }4m
O3 e o Ay T jeso

310 =80 _ g9 i h=1,...,6

where

o (4.61)
Ao = g if h=7,...,10



e For the HBCM post-processing analysis (Eq. (I1.51))

As mentioned in the second paper, only source points in the domain B~ need to
be considered in the post-processing stage. Since these source points do not lie at
endpoint nodes as in the primary analysis, u;(P) and u;,(P) in (4.55) can not be
calculated from the displacement field (4.31) and displacement gradient field (4.56),
(4.57) in which B,(,q (h=1,2,...,10) for all boundary elements (¢) are known from
the primary analysis.

Use of Eq. (4.31) in (4.55) also gives expression (4.60), but now the coefficients
B,(f) for h =1,...,6 are given by

50 =80 —wm(P); B =5 —wa(P); B =850 —wa(P) } (4.62)
389 = B —uy(P) ;. B = Bl —uan(P); B = B — ugs(P) '

The post-processing analysis consists of solving systems of equations with the un-
knowns u,(P) and u; ,( P) in (4.62). This enables the determination of displacements

and stresses in the domain B*.

4.10 Determination of the potential functions )\, (Eq.
(11.42))

By anology with (4.35) and (4.36), the displacement field (4.60) and its stress field

can be written in a (£,7) coordinate system as

w0 — o0 1Y 0o (3 @
{ () :L)} _ SR { m(fﬂ?)} (1.63)
h=1

us(Q) — ul an(€,7)
on(@) — on(P) 10 onn(é,n) “
022(Q) — 022 P) = S BOL Fanltin) (4.64)
712(Q) — 012( P) = Fi2(£, 1)

Substitution of (4.63) and (4.64) into the integrand (II.32) of the regularized
HBIE yields

10
Jem = Y B Uik mTiin(€, 1) — SijemTin(€,7)] €; (4.65)
h=1
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Expression (I1.38) in this case takes the following form
9 o [0 Ay
Jem =D /31(:” [—nel - '-'—ez] (4.66)

It is noted that by using (4.35) and (4.36), the integrand vector (IV.30) on a

non-singular element (£) is written as
10
Him = Y., B3 [Wikm@in(€,7) = SijemTin (€, 1) €; (4.67)
h=1
Hence the potential functions associated with Jm and Hi, are the same and

they are called A,,.

Equations (4.65) and (4.66) lead to the following system of equations that enables

the determination of A,

0w

50 = UikmTi1a(€, 1) — Tirkm@in(€, 1)
0
o (4.68)
—— = Uik mTi2n(€, 1) + Sizk mTin (€, 1)
o€
For example, system (4.68) incaseof k =1, m =2 and h =4 (i.e. w =24) 1s
aA
312)4 = Un1.20114(€, 1) + U2120214(€, 1) — i 2®a(€, 1) — Sa11,2%24(€, 1)
o . _ _ _
8524 = —U11206124(&, 1) — U21,20224(€, 1) + T121.2T14(€. 1) + Ta21.2%24(€, 1)

(4.69)

where the expressions for the gradients of the Kelvin kernel tensors are given by Eq.

(I1.29) and,
T14(€,7) } _ { 0 } (4.70)
%24(&,m) 1 .

Ell‘i(f! 7’) 0
Gaa(€in) ¢ = 0 (4.71)
G124(€, 1) 0

Finally, the solution of system (4.69) is

2 2
‘ Aa(&,n) = 4_7r(1_fl_:)_1_3 (% +1- 2”) (4.72)
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4.11 DSCs and the concept of material derivative

Let us begin with the quantitative definition of DSCs. The initial design configu-
ration having b as the design variable under consideration is analysed to obtain a
physical response F'(b). Then the configuration is perturbed with a step size b and
the analysis of this new problem yields F'(b+ 6b). The DSC is thus defined as

F(b+ 6b) — F(b)
55

DSC = lim (4.73)
56—0
The FDA approximatively evaluates the DSCs by calculating the ratio in the
right hand side of (4.73) with a small value of §b instead of taking the limit, i.e.

DSC =~ F(”‘Sgi‘ Fo) (4.74)

The DDA uses the definition of derivative to evaluate the limit in (4.73), so

conceptually, this is an exact approach

dF -
DSC = 7 (4.75)

However, it should be noted that the concept of material derivative has to be

employed here because of the following reasoning.

It can be seen that the physical response F' (von Mises stress, for example) is
a function of not only the design variable b, but also the coordinates of the point
where F' is evaluated, i.e. F = F(b,z,y) in 2-D problems. In considering the
partial derivative 8F/db, this (Eulerian) derivative measures the change in F at a

fixed spatial point (z,y) in the body, and is often referred to as local derivative

OF _dF
ab db (z.y)=constant

The (Lagrangian) derivative that measures the change in F at a fized material
point needs to take account also the change in (z,y) of this material point as b
changes. This derivative is called the material derivative or the total derivative of

F and is denoted as F'= dF /db.
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Typically, the material derivative is more physically interesting than the partial

derivative. For example, if we change the shape of a hole boundary to relieve stress

concentration at that boundary, we would like the DSC of the stress at the boundary

rather than at a point with fixed coordinates because sometimes this fixed point is

out of the material domain due to the shape design modification!

The total derivative of F'(b, z,y) with respect to b is given by the total derivative

rule as

p_dF _ OF OFdz O0Fdy
T db ~ 8b ' 9z db ' By db
= Fo+F,T+F,¥

Or, in tensor notation
F=Fy+vF;

where the quantities vy =% and v, =V are components of the design velocity field.
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CHAPTER V
SUMMARY

Two novel methods of the same boundary contour family, namely the BCM and
HBCM for 2-D linear elasticity, along with their successful application in stress

analysis and shape optimization, are presented in this dissertation.
e Original contributions
The original contributions of this study can be summarized as follows:

- A further development of the BCM has been carried out in which the numer-
ical implementation with quadratic boundary elements and post-processing

analysis are introduced to 2-D problems.
- A new and full development of the HBCM in 2-D linear elasticity.
- A new and full development of design sensitivity analysis using the 2-D BCM.

- A successful development of a C program that couples a 2-D BCM code, its
design sensitivity code and a SQP function of the commercial IMSL library
in order to solve shape optimization problems in 2-D linear elasticity. The
fourth paper dealing with this development is in fact the first contribution to

the literature for the topic of shape optimization using the BCM.

While this research was being conducted, there have been investigations of the
HBCM and design sensitivity analysis by the BCM in 3-D cases. However, for
the time being, only some preliminary (non general) results for special cases have
been obtained from the above investigations as opposed to complete validation with
general results presented through this study. Therefore, this study can serve as an
excellent reference for a successful implementation of the HBCM and BCM design

sensitivity analysis for 3-D linear elasticity in a near future.
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o Discussions

As shown from this study, the 2-D BCM and HBCM exhibit the following re-

markable advantages:

- Simplicity in meshing (only boundary meshing as opposed to domain meshing
required by the FEM).

- The methods do not require any numerical integration. In other words, the
line integrals in these methods are evaluated analytically by using the potential
functions. This advantage, as well as the fact that the BCM and HBCM
use shape functions satisfying the Navier-Cauchy equations and Hooke’s law,
may explain why numerical results obtained from these methods are generally

better than those from the BEM.

- Unlike the conventional BEM, special treatments for singularity are completely
avoided in stress analysis as well as in design sensitivity analysis by the BCM.
Hence, the computation of DSCs using the BCM is much more effective than
that using the BEM.

These advantages confirm that the BCM is very attractive and suitable for opti-
mal shape design. Besides the aforementioned major advantages offered by the BCM
and HBCM in 2-D linear elasticity, these methods still have some shortcomings as

follows:

- Stresses are nurmerically discontinuous across boundary elements due to the
configuration of BCM boundary elements. However, the stress discontinuities
are very slight where stresses are physically continuous. On the other hand,

this configuration makes the corner modeling straightforward.

- Due to the nature of the HBIE used, stress discontinuities across boundary
elements can be much improved by the HBCM. However, this method requires
finer meshes than the BCM and it is expected that higher order elements such

as cubic would overcome this meshing drawback.
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- As the conventional BEM, the BCM and HBCM system matrices are not sym-
metric. Furthermore, the primary system of equations is, in general, overde-
termined. Although this does not raise any problem in solving the system
because there are effective rectangular solvers (such as those based on the
least-squares or singular value decompositions and generalized inverses algo-
rithms), the programming for a BCM or HBCM code requires more effort by
the fact that the column dimension of the system matrices depends upon the

type of problems to be analyzed.

It should be recalled that the BEM can solve a wide range of engineering prob-
lems such as steady state potential flows, elastodynamics and wave propagation,
thermoelasticity and consolidation, plate-bending, anisotropic and viscoelastic ma-
terials, elastoplasticity and viscoplasticity, etc. The BEM has also been applied to
bimaterial and nonhomogeneous problems, but these applications are not as efficient

as in the context of the FEM.

As a variant of the BEM, in principle, the BCM is applicable to the above prob-
lems providing that the BIE integrands in such cases are divergent-free. However,
the method is not recommended for nonlinear problems such as elastoplasticity or
viscoplasticity, because the advantage of a further reduction in dimensionality with
respect to the BEM could be lost in these cases. Also, body forces, that can be mod-
eled as a particular integral in the BEM, can also be treated in the same manner in
the BCM.

Finally, this study shows that the BCM has great potential advantages over other
numerical methods in shape optimization. Therefore, the present work certainly

motivates future research on this kind of application in 3-D cases.
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APPENDIX I

The boundary contour method for two-dimensional linear
elasticity with quadratic boundary elements.
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Abstract

This paper presents a further development of the Boundary Contour Method (BCM)
for two-dimensional linear elasticity. The new developments are : (a) explicit use
of the rigid body motion solution to regularize the BCM and avoid computation
of the corner tensor, (b) quadratic boundary elements compared to linear elements
in previous work and (c) evaluation of stresses both inside and on the boundary of
a body. This method allows boundary stress computations at regular points (i.e.
at points where the boundary is locally smooth) inside boundary elements without
the need of any special algorithms for the numerical evaluation of hypersingular
integrals. Numerical solutions for illustrative examples are compared with analytical

ones. The numerical results are uniformly accurate.

1 Introduction

1.1 Previous work

The conventional Boundary Element Method (BEM) for linear elasticity requires
the numerical evaluation of line integrals for two-dimensional (2-D) problems and
surface integrals for three-dimensional (3-D) ones (see, for example, Hall, 1994;
Mukherjee, 1982). By observing that the integrand vector of the usual linear elas-
ticity BEM equation without body forces is divergence free, Nagarajan et al. (1994)
have proposed a novel approach, called the BCM, that achieves a further reduction
in dimension. The divergence free property allows, for 3-D problems, the use of
Stokes’ theorem to transform surface integrals on the usual boundary elements into
line integrals on the bounding contours of these elements. For 2-D problems, a sim-
ilar transformation, using the simple idea of path-independent integrals, eliminates
numerical integration altogether. The above transformations are quite general and
apply to boundary elements of arbitrary shapes. Thus, the BCM requires only nu-
merical evaluation of line integrals for 3-D problems and simply the evaluation of

functions (called potential functions) at points on the boundary of a body for 2-D
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cases. The above idea also works for other linear problems such as potential theory.

The BCM has been presented in the literature for 2-D (see Nagarajan et al.,
1994) and for 3-D (see Nagarajan et al., 1996) linear elasticity problems. In both
these papers, however, only the “first” BCM problem, i.e. the determination of
boundary tractions and displacements, has been addressed. Also, the idea of rigid
body modes. to regularize Cauchy singular intergrals, was not employed in the above

papers in an explicit manner.

1.2 Paper Outline

This paper presents a BCM formulation and numerical implementation for 2-D
problems in linear elasticity. Quadratic boundary elements are used. The idea
of rigid body modes is employed at the outset to regularize the Cauchy singular
integrand. Also, the “second” BCM problem, namely the calculation of stresses
both inside and on the body boundary, as well as the “first” BCM problem, are

addressed in this paper.

Numerical results are presented for several illustrative examples including the
Lamé and Kirsch problems. The numerical results are uniformly accurate. An in-
teresting observation is that the BCM approach allows one to calculate boundary
stresses, at regular points that are not at the ends of boundary elements, directly,
without the need of any special algorithm for the numerical evaluation of hypersin-

gular integrals.

1.3 2-D BCM basic formulations

The idea of dimensional reduction starts from the standard Boundary Integral Equa-
tion (BIE) without body forces (see Rizzo, 1967)

cx(Pu(P) = [ [Us(P.Q)au(Q) - Tur(P,QJui(Q)le; - dS (1)

where c;x is the corner tensor, P, @, u; and o;; are source point, field point, displace-

ment vector and stress tensor respectively, U, and Z;;; are the Kelvin kernel tensors,
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and e; are global Cartesian unit vectors. In 2-D problems, B is the boundary of a

body B, and dS is an infinitesimal boundary length vector.

Here are the expressions for the Kelvin kernel tensors for plane strain problems

. -1
Uy = m[(3 — 4v)i In(r) — 7 i1 4] )

-1
47?(1 _' —_y)r[2rvir'j7'_k + (1 - 21/)(6,‘k7"j + 6]1.1"‘- _ 6ijr,k)]

Lijk =

where g = G is the shear modulus, v is the Poisson’s ratio, é;; is the Kronecker

delta (=1fort=jand =0fori#j),and r = \/(J:Q —zp)? + (yg — yp)>

Let Fr = [Uik(P,Q)O'gj(Q) — Sijk( P, Q)u;(Q)]e,-, so Eq. (1) has the form

cu(Pyu(P) = [ Fi-ds (3)

If we take the divergence of F; at a field point Q, as shown in related work by

Nagarajan et al. (1994), this vector is divergence free, i.e.
Vo-Fr=0 (4)

everywhere except at the source point P.

Equation (4) shows the existence of a function @, such that

The boundary is now discretized into n elements, thus

F..da5=3% ["°F,.ds 6
5B k —[_ZI‘/EH k ()

Equation (5) may now be substituted into Eq. (6) to obtain
Eg E
/ Fo-dS= [ (Lke, - Le,)-nds (7)
Eg I

where dS = ndS with n the unit outward normal vector to dB.

Since (see a similar proof on page 179 of Timoshenko et al., 1970)

n=—-—-se; — ——ey (8)
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equation (7) becomes

Ea _ [Ba 0%:dy  O0®xdz . _ [(Fm . _
]En Fo-ds= [ (G5 + 5 dS)dS_/s,, d®, = ®(Ep) — ®c(En) (9)

which means that there is no need for any numerical integration for 2-D linear

elasticity.

Finally, the 2-D BCM discretized equation corresponding to Eq. (1) is written

as follows

cu(PYui(P) = S8 (En) — 80 (En)] (10)

=1

2 Formulations using the rigid body motion technique

2.1 General formulation

Consider an arbitrary rigid body translation where u;(Q) = u;( P) = constant. Thus,

0ij(Q) = 0. Use of this rigid body motion solution in Eq. (1) gives
) . — _ . . i
cr(Pu(P) = = [ Syu(P,QJui(Ple, - dS (11)
Subtracting Eq. (11) from Eq. (1) yields a new BEM equation

/aB{Ufk(P,Q)Uij(Q) — Ziie( P, Q)ui(Q) — ui(P)|}e, -dS =0 (12)

Thus, the corner tensor ¢;; is now eliminated from the BEM equation. Its eval-
uation is avoided and this is the first advantage of using the rigid body motion
technique.

As mentioned above, Fy = [Ui(P, Q)0i;(Q) — Tiji( P, Q)u:(Q)]e; is divergence
free. The extra term I;;x( P, Q)ui(P)e; is also divergence free (except at the source
point P) since the divergence is taken with respect to the field point Q. Thus, for

this purpose, u;(P) can be treated as a constant.

Therefore, the new integrand vector of Eq. (12)

G = {Ui(P, Q)o:i;(Q) — Tiji(P, Q)[wi( Q) — wi( P)]}e; (13)
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also has the property
Vo-Ge=0 (14)

everywhere except at the source point P.

2.2 2-D BCM formulation

The 2-D BCM discretized equation corresponding to Eq. (12) is obtained in a
manner analogous to the process that led to Eq. (9) from Eq. (6). The result is

S WO Ee) - UO(Eq)] = 0 (15)

=1

3 2-D boundary contour analysis with quadratic boundary

elements

3.1 Shape functions

G contains the unknown fields u; and o;;. In order for the property (14) to be valid
in general. the displacement shape functions u; must satisfy, a priori, the Navier-
Cauchy equations, i.e. the equilibrium equations in terms of displacements

1

VZu
+ 1 -2

V(V-u)=0 (16)

and the stress shape functions o;; must be derived from those of u; using Hooke's
law,
oij = Abijuik + plui; + uj,) (17)
where A and p are Lamé constants of the material.
The determination of quadratic shape functions that satisfy Eq. (16) was ad-
dressed in Nagarajan's Ph.D. dissertation (1994). There are a total of 12 linearly

independent quadratic (vector) shape functions. The equilibrium constraint elimi-

nates two of them, leaving 10. The displacement components are written as arbitrary
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linear combinations of these 10 functions as follows,
1 T 0 0 0
“ = 5 + B2 + 3 Y + B4 + Bs + G6
{19} 0 0 0 1 I y
z? 2 kix koz
+ Br +6s0 ¥ Vagd TV i YL (1)
kozy kvzy z? y?

where k; = —2(1 — 2v) and k; = —4(1 — v).
In matrix form,

{ “ } = [Tu(z,)|{8} (19)

Uz

where

{BY=(5 B2 ... ﬂm)T (20)

L1 w2

T

& Traction node

® Displacement node

Figure 1: Quadratic boundary element.

These 10 artificial variables require quadratic elements with 10 physical variables.
The configuration of a chosen quadratic boundary element is shown in Fig. 1. Each
element is divided into 4 equal segments by 2 traction and 3 displacement nodes.
Thus, it has 10 physical variables and the way they are numbered globally on the
element (¢) is also shown in the figure. It should be noted that the BCM equations

are enforced at the displacement nodes only.

The tractions on the boundary are given by the following relation

Ti = oin; = [Mjjurk + pluij + ujq)ln; (21)
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By using the Eqgs. (18) and (21), the physical variables {p} on the element (¢)

can be described as

_ T
{pm} - <u(l2l—1) ugzt-n Tl(zz-l) Tz(zt 1) ugzt) ugzz) Tl(zt) T2(2¢) u£2l+l) u(221+1)>
= [T(z,y)}{B"} (22)
Therefore,
{89} = [Tz, y)] 7 {p'?} (23)

An important issue here is the invertibility of [T'?(z,y)]. As mentioned by
Nagarajan (1994), the chosen quadratic element whose configuration is shown in

Fig. 1 ensures this invertibility.

A new coordinate system (£,7) centered at each source point is introduced at
this stage. This is done in order to make the shape function variables conform to
those of the kernels U and £;jx (which are functions of £ and 7 only). The £ and

n axes are parallel to the global z and y axes, thus

§=1z(Q)— z(P)
n=y(Q)—y(P)

So, if this new coordinate system is centered at the source point j, by substituting

(24)

(24) into Eq. (19) the displacement shape functions can be rewritten as

[\]
ot
—

{ “ } = [Tu(&, A} (

uz
where,
. N s \T
{By=(B1 B2 ... Bo) =IB;){B} (26)
in which [B;] is a transformation matrix that depends only on the coordinates of

the source point j.

If (k) is the element containing the source point at its first or middle displacement
node, with this new coordinate system u;(P) = .{h) and uz(P) = ‘ih). So, for the

element (¢), we have

{ u(Q) — ui(P)

= [T, (¢, 3(0) 97
uz(Q)_uz(P)} (Tu(&,mI{A} (21)



where the columns of [T,(£,7)] are the ten shape functions
1 £ n 0 0 0
oJ' Lo Lo Lt le) \n]
SHEMEE) -
ka6 kién & n’

A 2 alh)y A(0) A8 AL SR A0 58 50 58 A0 HO\T
{819 = (181" - M 81 57 (8 - BN 67 B0 B0 B0 B8 BRD) (20)

and

Expression (27) for [u;(Q) — u;(P)] is used in Eq. (13).

3.2 Potential functions

By substituting the 10 displacement shape functions from (28) and their correspond-
ing stress shape functions (using Eq. (17)) into Eq. (13), we obtain 20 sub-vectors

gk (10 corresponding to £ = 1 and 10 corresponding to k = 2). For example, g;,
1
is obtained from G; with u(Q) — u(P) = { 0 } and o;; = 0. Equation (5) in this

case takes the form

_ 3¢i+m(k—1)(€,7))e _ 0diti04-1)(&5 1)
Bki 877 1 86

where k =1,2and:=1,2,...,10.

e; (30)

Equation (30) is solved to give 10 potential functions (@, . ... #0) corresponding

to k£ = 1 and 10 more (¢11,. .., @2) corresponding to k = 2.

These potential functions are listed in the Appendix. They are numbered ac-
cording to the order of shape functions in Eq. (28) with, as mentioned above, the

first ten for £ = 1 and the next ten for ¥ = 2. Thus, for example, @, corresponds to

1 0
{ o } with £ = | and ¢4 corresponds to { | } with £ = 2.
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3.3 Discretized equations

Now, with the potential functions already derived, the BCM discretized equations

are developed as follows.

For the source point j (source points are only placed at the ends and mid-point,

i.e. displacement nodes, of each boundary element, see Fig. 1)

n n 10 .
YU En) - ¥ (Ea)l =23 ¢k B9 =0 (31)
=1 (=1 =1
where,
{E = (€2, Ne2) — @i(€ar 1) } (32)
&% = ir10(€e2, Ne2) — divr0{éar, ne1)

It should be noted that the potential functions #:(&,7n), ¢4(£€,1), ¢11{(&,n), and
#14(&, n) corresponding to constant shape functions are singular when a field point
@ — the source point P, i.e. when (£,7) — (0,0). But in this case ux(Q) — ux(P) =
O(r), and Egs. (27) lead to

300 _ 130 _ 3lhhy _
1= (8 - B 1—0} (33)

B =(8"-B3M =0
so the evaluation of these potential functions can be avoided, i.e. expression (31)
is now completely regular. This is the second advantage of the approach using the
rigid body motion technique.

A further development of expression (31) leads to

n 10
S ¢t B
=1 i=1
5 410

2

=1 i=1

= SRUOHFO} = SEU(B,]{5)

= SIRNBTE )

= SMU9)(p%) = {0) (34)

{=1
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The last system of equations (34) is now condensed to reflect the continuity of

displacements across elements. This results in the following relation
(MP]{p} = {0} (35)

where {p} are degrees of freedom (DOF') on the whole boundary 9B.

With 2n source points corresponding to 2n displacement nodes on the boundary
0B. one gets 2n relations of the form (35) which are now combined into the final

BCM linear system of equations
[M]{p} = {0} (36)

Finally, the system of equations (36) needs to be reordered in accordance with

the boundary conditions to form
[A]{X} = [Bl{Y} (37)

where { X'} and {Y'} contain, respectively, the unknown and known (from the bound-
ary conditions) quantities. Let [B]{Y} = {Z}, so {Z} is a known vector and (37)

can be rewritten as

[A{X} = {Z} (38)

The global system (38) is generally overdetermined ([A] is a rectangular matrix)
but always consistent as discussed in earlier papers (see, for example, Nagarajan et

al.. 1994).

After the solution of the global equation system (38) is obtained, one can easily
derive the artificial variables {#(9} from Eq. (23). At this stage, the remaining
physical variables (displacements, tractions, stresses) at any point on the boundary
can be easily calculated from (18) and the corresponding relations for stresses and

tractions in terms of their shape functions.
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4 Stresses

4.1 Internal stresses

The internal stresses are also evaluated using Eq. (17). To this end, the first step is

to determine the displacement gradient tensor u; ; tnside the body B.

4.1.1 Displacement gradient tensor

There are two approaches to evaluate u;;. The first one starts from the standard
BIE (1) written for the displacement at an internal point p. This expression is first
differentiated with respect to a source point. The new integrand is still divergence
free and allows one to derive appropriate potential functions. In other words, here
one first differentiates the BEM equations and then converts the resulting surface
integrals to line integrals for 3-D problems, or line integrals to function evaluations
for 2-D problems. This idea has been mentioned in earlier work (see Nagarajan et

al., 1994 and 1996) but no numerical examples are given in these papers.

The second approach follows the opposite process, i.e. we first convert the BIE
to the corresponding BCM version and then differentiate it. This technique has
been proposed by Mukherjee (1995) for 3-D problems and is also used in this work,
because of its simplicity in 2-D problems as we will see later. Since the BCM version
is available at this stage, the starting point is the BCM Eq. (10) at an internal point.
For 2-D problems this equation can be written as (see Egs. (10), (15) and (34))

n

{ur(p)} = Y _[@P9[B,}{5} (39)

=1
where [B,) is the transformation matrix corresponding to the internal source point

p where stresses are computed.

Now the displacement gradient tensor is (M is a source point index for the

coordinate system (z,y), i.e. , = 8/3z(p) and 2 = 3/3y(p))

{une(@)} = 3 (P By) ar + [879] 0B, {89} (40)

=1
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Using expresion (24) we derive the relationship [®(P9] o = —[®(9)] , (where u is
[Q(Pl)] =

a field point index for the coordinate system (£,n)). In other words,

5 9z(p)
—a—f[d)("')], and similarly for y and 5. Finally,

(wea(p)} = S (@PB,)ar = (80,5, (8} (41)

4.1.2 Gradients of potential functions

At this stage, we know {819} from the solution of Eqs. (38) and (23). Thus, in order
to calculate displacement gradient tensor (41), one needs the evaluation of [B,] s
and [®("9) ,. There is no problem with [B,] . The evaluation of [®(P9] , is also

: . : . : . 0¢; 09,
straightforward because it contains the gradients of potential functions B ?3?
which do not need to be calculated from the known potential functions because it

can be seen from (30) that

0biri0(k-1) _
Y —Gki2
% (42)
a¢i+m(k—1)
— - = kil
on

where gii; and gk are the first and second components of g, respectively.

Hence, this method for evaluating the stresses inside a body is simple and easy

for numerical implementation.

4.2 Stresses at regular points on the boundary

One simple way to compute boundary stresses is to use the quantities {39} on
each boundary element (¢), together with the appropriate stress shape functions.
However, another approach is to take the limit of Eq. (41) as an internal point p —
a boundary point P. This approach is developed below for the case where P is a
regular point on 0B (i.e. @B is locally smooth at P) and does not lie at an end of

a boundary element.



Figure 2: Internal source point approaching the boundary.

It can be shown that the potential functions that must be treated carefully during
this limit process are ¢, and ¢4 (see the Appendix). These functions are related to
the first vector shape function with £ = 1 and the fourth with & = 2, according to
the ordering in Egs. (28).

Fig. 2 shows an internal source point p approaching a boundary point P on
E\E,. P is a regular point on dB and does not coincide with either of the end
points E; or E; of the boundary element. The potential functions ¢, and ¢4 are

associated with the integral (see Eq. (2))

E.
/ P gS = / ’ ﬁds = 10 (43)
E; r El

As p — P, the angle 8 suffers a jump discontinuity from 0 to = as @ crosses P,

p+
=0 =x (44)
so that (see the formula for ¢, in the Appendix and note that tan 8 = 5/¢)
[6:1]f2 = 42((‘1— = [f]El = 0.5 (45)
Similarly,
[$ra]pZ = (46)

Thus, for the singular case P € 9B,
E;
® - dS = [B1(E2) = (P + [01(PT) — (B + 05 (41)



E,
/E f24-dS = [$1a(E2) — 61a(PF)] + [614(P7) = 61a(E1)] + 0.5 (48)

The effect of Eqs. (47) and (48) on (41) as p — P can be assessed by observing
Eqgs. (26) and (27) and noting that u;(P) = A{h); uy(P) = BM. (Note that 3, is
associated with ¢; and S is associated with ¢;4 and that these are the only poten-
tial functions with jump discontinuities.) These jump terms change the constant
multiplying u ar on the left hand side of Eq. (41) from 1 to 0.5. The displacement
gradient equation now becomes

0.5{urar(P)} = 3 _([27][Bp].u — (@79 u[Br]){8Y)} (49)
=1
where one must now use expressions for the integrals in Eqs. (47) and (48) without

the constant 0.5 terms, i.e. their Cauchy Principal Values (CPV)

E,
/E fi1-dS = 61(Ez) — ¢n(Ey) — 0.5 (50)

E;
/E fru - dS = 1a(Ez) — dr1a(Er) — 0.5 (51)

Note that Eqs. (47) and (48) have been used to get the above expressions.

The fact that Eq. (49) holds for a regular boundary point P (provided that P
does not lie on one of the end nodes), is quite remarkable. In the conventional BEM,
the equations corresponding to (39) and (49) are strongly singular and hypersingular,
respectively, and need to be regularized before the appropriate surface integrals can
be evaluated. The above formulae are used to calculate stresses at regular boundary

points in all of the following numerical examples.

5 Numerical examples

Four examples are illustrated in this section. All of them use the same material
data as follows : Young’s modulus £ = 2.5 (in consistent units) and Poisson’s ratio
v = 0.3. In all these examples, boundary stresses are calculated from Eqs. (49) and
(17).
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5.1 Displacement field problems

Yi

of---
»

0

Figure 3: Circular body with imposed displacement fields.

Consider a circular body of unit radius centered at the point (2,2) in the global
(z,y) coordinate system as shown in Fig. 3. Two displacement fields which are the
exact solutions of the elasticity Navier-Cauchy equations (16) have been imposed at

the displacement nodes on the boundary.

5.1.1 Planar field

" T
1= 72 2
z°t+y (52)
2 4+ y?

This is the field used in the linear 2-D BCM paper (see Nagarajan et al., 1994).
The same problem is chosen here in order to compare the performance of quadratic

elements against the linear ones.

5.1.2 Cubic field
— 3_3 2
u =y yz (53)
u; = —z° + 3zy?

The idea here is to test the accuracy of 2-D BCM code with quadratic displace-

ment shape functions for a problem with a cubic global displacement field.

The circular boundary is discretized by 10 quadratic elements spaced at equal

increments. Tractions on traction nodes have been derived by solving the “first”



58

T . L r _— —

. analytical solution

95F o 10 quadratic elements

04} + 20 linear elements

0.3

02

0.1

0.05 r ——— . T T r T T
o y )
© o o —. b
-0.05 Ox b
— analytical solution
© -01f .
o 10 quadratic elements Oxy

Figure 5: Stress components along the line AB (see Fig. 3) for the planar displace-

. ment field.
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Figure 7: Stress components along the line AB (see Fig. 3) for the cubic displace-

ment field.
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BCM problem. Stresses on the segment AB, where B is a regular boundary point,
have been calculated next. These numerical results show very good agreement with

the exact analytical solution as illustrated in Figs. 4, 5, 6 and 7.

Also, it can be seen on Fig. 4 that with the same boundary discretization, i.e. 10
quadratic elements versus 20 linear elements, quadratic elements show better results

as expected.

5.2 Lamé’s problem

Figure 8: Modeling of Lamé’s problem.

The third example involves the well-known Lamé’s problem in which a hollow cylin-
der is subjected to uniform pressure on the inner surface. Let a and b denote the
inner and outer radii of the cylinder, and p; the uniform internal pressure. The
stress components o, in the radial direction and oy in the circumferential direction

at a point (r,8) are given by Timoshenko and Goodier (1970)

azpi b?
= g 1)
& 2 (54)

w=poalta

b —
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Figure 9: The traction component r, on the edge AB (see Fig. 8) for Lamé’s

problem.

© ost __ analytical solution iy

o BCM with quadratic elements

. Figure 10: Stress components along the line IJ (see Fig. 8) for Lamé’s problem.
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The zy stress components can be expressed in terms of &, and oy by the following

relations (see Timoshenko and Goodier, 1970)

or = 0, cos® 8 + ggsin’d
o, = 0, sin’ 8 + gy cos? & (55)

Ozy = (0r — gg)sinf cos b

Due to the symmetry of the problem, only a quarter of the structure is modeled as
shown in Fig. 8. A total of 16 quadratic elements are used for the numerical results
(4 elements are spaced at equal increments on each edge AB, BC, CD and DA).
The traction 7, on the edge AB is shown in Fig. 9 and the stresses calculated along
the line segment [J. where [ and J are regular boundary points, are shown in Fig.
10. Observe that agreement between the analytical solutions and the corresponding

BCM results are excellent, especially those in Fig. 10.

5.3 Kirsch’s problem

o
By
[}
o
]
o
0

NIRRT

Figure 11: Modeling of Kirsch’s problem.

The last example deals with Kirsch’s problem. Fig. 11 displays a quarter symmetry
model of a square plate with a central circular hole subjected to a unit uniaxial

tensile load. The boundary contour analysis model was made up of 26 quadratic
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Figure 12: The traction component 7, on the edge DE (see Fig. 11) for Kirsch’s

problem.
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. Figure 13: Stress components along the line GH (see Fig. 11) for Kirsch’s problem.
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elements. Due to stress concentration at the corners A and F, the mesh in this zone
needs to be densified : the density of elements on AB and DFE is nonuniform, with

short elements being placed near the point A and E.

In polar coordinates, the stress component o, in the radial direction, the stress
component oy in the circumferential direction and the shearing stress component
T4, at a point (r.8) in an infinite plate with a circular hole are given by Timoshenko
and Goodier (1970)

S S : p
0‘,——5(1—;5')-*'5(1+—TT—-;.2—)COS..
2 S 4 =
gy = g(l + (:—2) - 51+ 1a—)c05219 ¢ (56)
S 3a®  2a?
Tfa_-§(1_74—+-7)51n"9 J

For the cross section of the plate along the y axis (§ = x/2). tractions in the

z-direction along the edge DE can be found from Egs. (36)

S a*  3a* -
TI=—09=—-3-(?+;2-+—T_4— (57)

As seen in Fig. 12, results from the “first” BCM problem are in good agreement
with the analytical solution. For the “second” BCM problem, polar coordinates are
used to compute stresses on the line GH (see Fig. 11), and again, Fig. 13 reveals
that the accuracy of internal and boundary stresses at regular points (G and H).

calculated by the BCM, is excellent.

6 Conclusions

A further development for the BCM for 2-D linear elasticity is presented in this
paper. An implementation is carried out with quadratic boundary elements and the
idea of rigid body modes is used in explicit fashion. This approach does not require
any numerical integration at all for 2-D problems, even with curved boundary ele-
ments. Also. corner modeling is trivial since only (continuous) displacement degrees

of freedom are used at corners.
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A remarkable feature of the BCM approach is that stresses at regular boundary
points, inside boundary elements, are directly obtained from Eqs. (49) and (17),
without the need for regularization of hypersingular integrals as must be done for
the conventional BEM (see, for example, Guiggiani et al., 1992; Toh and Mukherjee,
1994 or Chien et al., 1991). In other words, Eq. (49) is already regularized by the

use of Stokes' theorem!

Numerical results for illustrative problems are shown to be uniformly accurate.
In particular, stress components at internal and boundary points, for the “second”
BCM problem, match almost perfectly (within plotting accuracy) with the analytical

solutions.

While the central issue in the present paper is not regularization of hypersingu-
lar boundary integral equations (HBIEs), it is useful to briefly discuss an ongoing
controversy regarding numerical implementation of HBIEs. To be specific, consider
a regular point P (where the boundary is locally smooth) on the bounding sur-
face of a (2-D or 3-D) body, that lies on an interelement boundary. Also, let the
displacement gradient field Vu (and therefore the stress) be continuous at P. Of
course, in this case it is obvious that the boundary data (tangential derivatives of
the displacement as well as the traction) are also continuous at P. (Please note that
if the traction vector is prescribed at P and is discontinuous, so will, in general, be
the displacement gradient and stress there). Other issues such as points on edges or
corners are of obvious technological importance, but these are not discussed here in

the interest of brevity.

There is general agreement that an HBIE has a unique limiting value at P. At
issue are the smoothness requirements of shape functions of the boundary displace-
ment for collocating an HBIE at a point such as P. Martin and Rizzo (1996), in
a recent paper, claim that while the previously proved sufficiency requirement of
C' shape functions can be somewhat relaxed, C%* shape functions are certainly
not permissible. Cruse and Richardson (1996), on the other hand, claim that C%=
shape functions for u are sufficient in this case, provided that one specifically de-

velops a scheme that allows the numerical solution for the stress to be multi-valued
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at P. Further, these authors claim that logarithmically singular terms (see for ex-
ample, Martin and Rizzo, 1996), at a point such as P, arise as a consequence of not
incorporating the continuity constraint on the Vu field at P prior to developing the

BEM representation.
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APPENDIX

POTENTIAL FUNCTIONS

n(€,n) = k [ (1 — v})arctan ( ) + EZ]
13 T
2= +4—(1-v)3 —-4v)in(r) 75?
¢2(§,m) = kn[ (1= 2) _r_z]
_ 2
ba(6.n) = ke [(3_9_4"2 ln(r)—f——1+_u]
7?
o4(é,m) = k {(1 - 2v)In(r) + r_2]
_ 2
osten) = ke[ air) -
, o, ﬁ v[(3 — 4v)In(r) — 1]
o6(§.n) = kn{rz - T-2) }
or(&,n) = kén [(5 4V)§—(8V — 14v + 6) In(r )]
da(€.n) = kEn [Qv(i" — 4v)ln(r) + (1 — 4v>£2 = 1]
oo(&,n) = k {(3 — 4v) [V€2 +(1— 1/)172] In(r) + (1 — 4u)f: + (4% — 3v + 1)€2
2
-3 —-4v)(1 - u);}
bol€n) = k {(3 —40) [@ = v)r? = (1 = )€ In(r) + (5 - 4v) [—2 — v — (1 ,,)7”
oulé,n) = —a4(n,§) ¢12(§,n) = —9e(n,§)
$13(é,n) = —os(n.€) 614(&,m) = —é1(n,§)
¢15(67 17) = _¢3(n1£) ¢16(€ ) —¢2(n7€)
o7(&,n) = —dwo(n,€) ?18(¢, 1) = —da(n, €)
$e(€,m) = —¢s(n,§) $20(§,m) = ~d7(n, §)
where,
4w(l —v) L or=gan
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Summary

This paper presents a novel method called the Hypersingular Boundary Contour
Method (HBCM) for two-dimensional (2-D) linear elastostatics. This new method
can be considered to be a variant of the standard Boundary Element Method (BEM)
and the Boundary Contour Method (BCM) because: (a) a regularized form of the
hypersingular boundary integral equation (HBIE) is employed as the starting point,
and (b) the above regularized form is then converted to 2 boundary contour version
based on the divergence free property of its integrand. Therefore, as in the 2-D BCM,
numerical integrations are totally eliminated in the 2-D HBCM. Furthermore, the
regularized HBIE can be collocated at any boundary point on a body where stresses
are physically continuous. A full theoretical development for this new method is
addressed in the present work. Selected examples are also included and the numerical

results obtained are uniformly accurate.

1 Introduction

The conventional Boundary Element Method (BEM) for linear elasticity requires the
numerical evaluation of line integrals for two-dimensional (2-D) problems and surface
integrals for three-dimensional (3-D) ones (see, e.g., Mukherjee [14]). By observing
that the integrand vector of the Boundary Integral Equation (BIE) without body
forces is divergence free, Nagarajan et al. [16], [L7] have pioneered a novel approach,
called the BCM, that achieves a further reduction in dimension. The divergence free
property allows, for 3-D problems, the use of Stokes’ theorem to transform surface
integrals on the usual boundary elements into line integrals on the bounding contours
of these elements. For 2-D problems, a similar transformation eliminates numerical
integration altogether. The above transformations are quite general and apply to
boundary elements of arbitrary shape. Thus, the BCM reduces the dimensionality of
analysis problems by two: the method only requires numerical evaluation of 1-D line
integrals for 3-D problems and simply the evaluation of functions (called potential

functions) at points on the boundary of a body for 2-D cases.
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The BCM for 2-D linear elastostatics has been presented in the literature by
Nagarajan et al. [16] and by Phan et al. {20]. A numerical implementation with
linear boundary elements is carried out in the former paper whereas a full develop-
ment with quadratic boundary elements is performed in the latter one. Also, design
sensitivity analysis by the BCM for 2-D linear elasticity has been carried out by
Phan et al. [21]. For 3-D elasticity problems, the BCM with quadratic boundary
elements is the subject of Nagarajan et al. {17} and Mukherjee et al. [15].

Regularized HBIEs have various important applications such as in computation
of boundary stresses (e.g. Guiggiani et al. {7]), in wave scattering (e.g. Krishnasamy
et al. [8]), in fracture mechanics (e.g. Gray et al. [3]; Lutz et al. [10]; Paulino [18];
Gray and Paulino [5]), in obtaining symmetric Galerkin boundary element formu-
lations (e.g. Gray et al. [4]; Bonnet [1]; Gray and Paulino [6]), and in adaptative
analysis (e.g. Paulino et al. [19]; Menon [12] and Menon et al. [13]).

Again, since the integrand vector of the regularized HBIE under consideration is
divergence free, this equation can be converted into a boundary contour version in
order to achieve a reduction in dimensionality as in the standard BCM. This work
presents the general theory regarding the conversion of the regularized HBIE into
a hypersingular boundary contour equation for 2-D linear elasticity. A numerical
implementation with quadratic domain shape functions is also performed for both

the primary analysis and post-processing.

The rest of this paper is outlined as follows. First, the BCM for 2-D linear elas-
ticity is briefly recalled. This is followed by an irtroduction to a regularized HBIE,
its conversion into a 2-D hypersingular boundary contour version and numerical im-
plementation. Three numerical examples are then solved. Finally, some concluding

remarks complete the paper.

2 2-D BCM formulations

The information presented in this section is summarized from Phan et al. [20] where

more details can be found.
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2.1 Basic formulation

The idea of dimensional reduction starts from the standard Boundary Integral Equa-
tion (BIE) without body forces (see Rizzo [23]),

cik(P)ui(P) = ]a Ua(P.Q)i5(Q) — Zie(P, Qi Q)] e; - dS (1)

where ¢ is the corner tensor, P, @, u; and o;; are the source point, field point,
displacement vector and stress tensor respectively, Ui and L, ¢ are the Kelvin kernel
tensors (Rizzo [23]), and e; are global Cartesian unit vectors. In 2-D problems, 8

is the boundary of a body B, and dS is an infinitesimal boundary length vector.

Let
Fi = [Ui(P, Q)0i;(Q) — Zijk( P, Q)ui( Q)] e; (2)

By discretizing the boundary 9B into n elements. the BIE (1) becomes
n El?
w(PYui(P) = F-dS:/F'dS 3
wlPluP)= [ Fe-dS=3 [ “F. 3)
where E, and E,; are the endpoint nodes of element (¢).

Since the divergence of F, at a field point Q is zero (see Nagarajan et al. [16]),
le.

Vo -Fi=0 (4)

everywhere except at the source point P, so for non-singular elements (elements

that do not contain the source point P), functions ®; can be found by solving the

following identity that satisfies Eq. (4)

a0 0P, =
Fe= —a'yiel - -a—;'ez (3)
Hence, for a non-singular element (¢), substitution of (5) into (3) yields:

E

L Fe-dS = 80 (Ee) - 0} (En) (6)
(39

In view of the above identity, @, are called global potential functions. A numer-

. ical implementation of Eq. (6) does not require any numerical integration!
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It is noted that the evaluation of boundary integrals on singular elements (ele-
ments containing the source point P) can be avoided by using the rigid body motion
technique as it is often performed in the standard BEM. A formulation using this

technique explicitly is addressed in the next section.

2.2 Formulation using the rigid body motion technique

[n order to regularize the Cauchy singular integrals in the BIE (1), a rigid body

motion solution is applied to this equation to produce a new equation
[ {U&(P.Q)o(Q) ~ S P.Q) [w(Q) — u P} e;-dS =0 (1)

As a result, it can be seen that potentially singular integrals in (7) only need to

be evaluated on non-singular boundary elements.

Let the new (regularized) integrand vector
Gi = {Ui(P, Q)o:;(Q) — Zije( P, @)[ud Q) — wi( P)l}e; (8)

The vector Gy, is still divergence free (everywhere except at P). With a procedure

anologous to that described in the previous section, one gets:
E
[ %Gy dS = W (Ea) - V() 9)
48

where ¥, is determined by solving the following identity

Gi= —te; — ——e, (10)
y

2.3 Implementation with quadratic boundary elements

G contains the unknown fields u; and o;;. In order for the divergence free property
of Fy and G, to hold, the displacement shape functions u; must satisfy, a priori, the
Navier-Cauchy equations:

1
1-2»

Viu + V(V-u)=0 (11)



b |
(4]

and the stress shape functions o;; must be derived from those of u; using Hooke’s

law,

oij = Mijurk + pluij + uj;) (12)

where A and u are Lamé constants of the material, é;; is the Kronecker delta (=1

for : = j and =0 for : # 7).

Quadratic domain shape functions that ensure the divergence free property of

Fi and G, are given by

{ul } = .Bl{ : }+ﬂ2{z }+63{ y }+54{0 }+Bs{ 0 }+ﬁs{ 0}
Uz 0 0 0 l z y
2 2 k k
+I37{ ’ }'i'ﬂs{ y }+ﬁ9{ lzy}'f'ﬁw{ 2Iy} (13)
kozy kizy r? y?

where k; = —2(1 — 2v), k; = —4(1 — v) and v is the Poisson’s ratio.

Equation (13) can also be written for element (¢) as
(6 4]
10 =
{ u; } _ ZIBI(:){ ilh(l'-,y) } (14)
U2 h=1 Uzh(l‘, y)

{9} = [Tz, y)}{8")} (1)

where {39} = (5{1) é‘) - ﬂ%))’r.

The configuration of a chosen quadratic boundary element is shown in Fig. 1.

or in matrix form,

The relationship between the physical variable vector {p“}} and the artificial vari-

able vector {[5‘(‘)} of boundary element (¢) is

¢ 2U-1)  (2£~1) (20-1) (20=1) (28) (20) _(26) _(28) (2¢+1 2041\ T
(PO} = (w0 N AT D) 43030100 (a0 a1 )

= [TO(z,y){8} (16)

where {39} = (8{? ... B{0)T.
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(-0

(2I-1)

8 Traction node

e Displacement node

Figure 1: Quadratic boundary element (¢).

A new coordinate system (&£,7n) centered at each source point is introduced.

Equations (14) and (15) become respectively,

(0 0 Zn(E2) )
{ Uy } _ ZBLC){ UilS, M } (17)
h=1

Uz ﬁZh(ea 7?)

{«} = [T, )]{5“) (18)
In Eq. (18),
{89} = (B{’) ‘{é))T = [B,]{8'"} (19)

where 3\ = 8l for b = 7,...,10, and [B,] is a matrix depending only on the
coordinates of the source point j (since it arises from a coordinate transformation

from the global system (z,y) to a system (£, n) centered at j).

Since the coordinates of a source point P are always (0,0), the displacement field

used in Eq. (7) can easily be found from Eq. (17) as

(¢) (¢)
{ u(Q) — ui(P) } _ ié}(f){ wa(€,n) } (20)

UQ(Q) - UQ(P) h=1 u2h(£7 7])

in which, with (g) the element containing the source point, i.e., the singular element,
50— O B0 it h=14
B = g if h=17,...,10 (21)

B,(f) = B’(‘l) otherwise
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It can be seen that the displacement shape vectors in Eqgs. (14) and (20) are the
same. Thus, by substituting each of these ten displacement shape vectors and its

corresponding stress shape vector (using (12)) into Egs. (2) and (8), one obtains
Fin = Gin = [Ui@ijn(€,7) — ZinTin(€, 1)) €; (22)

Equations (5) and (10) in this case take the following form
0¢. 3¢

Fin = G = €1

A T
where z: = h +10(k—-1); h=1,2,...,10 and £ = 1,2.

Equation (23) implies that the BIE (1) and its regularized form (7) have the

same potential functions @,.

For a given value of h, the solution of (23) using (22) yields two potential
functions ¢. associated with & = 1,2. The 20 resulting potential functions (for
h =1,...,10:k = 1,2) are listed in the Appendix of Phan et al. [20]. It can be
observed from this Appendix that only half of these 20 potential functions need to

be determined.

By using these potential functions, Eqs. (6) and (9) become respectively

En 10 .

L7 Fu-dS = 3 B0 (8 Ea) - 6-(En) (24)
a h=1
Epn 10 _ ¢

/E Gi-dS =Y B9 (¢.(En) - ¢-(En)) (25)
& h=1

As shown in Phan et al. [20], a development of (25) for all boundary elements

leads to the following final BCM system of equations

[A{X} = [BI{Y} (26)

Or,
[A{X} = {Z} (27)

In eqns (26) and (27), [A] and [B] are the BCM matrices which are associated
with the potential functions ¢,; {X} and {Y'} contain, respectively, the unknown
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and known (from boundary conditions) physical quantities. Thus, {Z} is a known

vector. Finally, system (27) can easily be solved to find the unknowns {X}.

3 A regularized hypersingular boundary integral equation

The starting point of the HBCM is the following regularized form of the HBIE (see,
e.g.. Krishnasamy et al. [9], Lutz et al. [10] and Cruse and Richardson {2]):

/ NAUam(P.Q)[05(Q) = 5:i(P)] = Zijem(P. Q) [4:(Q) — u”] } e, -dS =0 (28)

where, for plane strain problems, the gradients with respect to a field point ( ) of
the Kelvin kernel tensors are given by

-1 )
(3 —4v)bikrm — bimT ke — bmicT i + 27 i T k]

Y Al = o

% ir(l —v)r?

(=6ikbjm — 6ikbim + 8:;6kem) + 2(1 — 20)(8ikT ;T + 66T iTm — 6i7 4T m)]

(8rir ;T kT m — 2(8imT jT & + ST iT ke + Skmr it ;) + (1 — 20)

/

(29)
where i,j,k,m = 1,2 for 2-D problems, §;; is the Kronecker delta, and r is the

Euclidean distance between a field point @ and a source point P.

In Eq. (28),
ul? = w(P) + uiy(P) [2,(Q) — z,4(P)] (30

which yields
ul) = uim(P) (31)

In others words, the linear displacement field uEL) gives the stress field o;( P).
Therefore, the stress field o;;(@) — o;(P) is obtained from the displacement field
ui (@) —uf-[‘). Based on this remark, a similarity in structure can be observed between
the regularized HBIE (28) and the regularized BIE (7).

According to Cruse and Richardson [2], Eq. (28) is valid at any boundary point,
including corners, provided that the stress tensor is continuous there. The singular
gradients of the kernels are regularized in this case because the quantities inside

the square brackets in Eq. (28) are (O(r) and O(r?), respectively, as Q — P.
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Therefore, the regularized HBIE (28) can be collocated at any boundary point P,
including corners, provided that the stress is continuous at that point. Collocation
of the boundary contour version of Eq. (28) at corners is successfully carried out in

some of the numerical examples presented later in this paper.

4 2-D HBCM formulations

Let the integrand vector of Eq. (28) be Jim, i.e.
Jim = [Uikm(P. Q) [0:5(Q) — 035(P)] = Siium(P.Q) [ @) — uf"]] &5 (32)

The divergence free property of (2) is valid for any pair (u;,o;;) which satisfies
the Navier-Cauchy equations (11) and Hooke's law (12). Let such a pair be called
admissible. Then, since the pair (u,»(Q) - u,(-[‘),a,-j(Q) - O'ij(P)) is also admissible,
by analogy with Fy, the following vectors:

Ki = [Ua(P,Q)[0:(Q) = 0:5(P)] - Sie(P. Q) [u(@) = u{"]] &, (33)

L = [Vt (P, Q) [05(Q) — 03i(P)] — Sijam(P.Q) [w:(Q) — u™]] e, (39)

are divergence free, i.e. Vg - K = Vg -Iip = 0, (everywhere except at the source
point P).

Therefore.

Vo Jim ==V -Jepy=-Vo -Liar =0 (35)
everywhere except at P. Here, as usual, the gradients of the kernel tensors with
respect to a field point are converted to those with respect to a source point by a
sign change.

By discretizing the boundary 9B into n elements, the regularized HBIE (28)

becomes
" Ep
fan"’“'dsz,;/s,, T - dS = 0 (36)
Due to (35), for a boundary element (¢), the boundary contour version of the
2-D HBCM can be written as

5 em - dS = A (Eg) - AY (E 37
En km * = km( tz)— Irm( o) ( )
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where A, is defined by the equation

OAem OAim
Jim = =5 =€1 = oz

dy

e (38)

5 Numerical implementation for the 2-D HBCM

As in the BCM, a new coordinate system (£,n) centered at each source point is

employed at this stage. Here, source points are only placed at the endpoint nodes.

Quadratic shape functions used in Eq. (28) can be obtained easily from Eq. (17)

(0
{ u(Q) —ui” } _ 300 { Tua(£,) } (39)
h=1

uz(Q) — ul” Ton(€,7)

where,

30 = GO 30 i h=1,...6 } o0

89 = gi" f R=7,...,10

5.1 Potential functions

The 2-D HBCM potential functions can be determined by using the same procedure
for obtaining the potential functions ¢, described in section 2.3. In other words,
each of the ten displacement shape vectors in (39) (see also Eq. (13)), together with
its corresponding stress shape vector (obtained from (12)) are employed in Eq. (32)

to result in
Jimh = [UiemTija(€n) — Sijembin(€,7)] €5 (41)

Equation (38) in this case has the following form

O\, dAy,
Jimn = Wel - a—f'ez (42)

where w = A+ 10(k-1)+20(m~-1); h=1,2,...,10; k=1,2and m = 1,2.

For a given value of &, the solution of (42) using (41) yields four potential func-
tions A, (corresponding to k = 1,2 and m = 1,2). The 40 resulting potential
functions (for A = 1,...,10) are listed in the Appendix. Once again, it can be seen

that only half of them need to be determined.
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By using these potential functions, Eq. (37) becomes
Fa = 300
L7 G - dS = 3 B Dl Bs) = Au(Bar) (43)
a h=1

For singular elements (¢) = (¢) (see (40)), one has

qu 10
7 Tem - d8 = 3 B Pul Eua) = Al Br)) (44)
q1 h=7

i.e., the singular potential functions A, only need to be evaluated on non-singular

elements.

5.2 Primary system of equations

For the source point j, the right hand sides of Egs. (43) and (44) can be developed

into the following matrix forms:
/:1" Jim -dS = [Aue)] {Bm} = [A(m] (B,] {ﬁm}
= [A(ﬂ)] [B;] [T“)]'l (P9} = [M(ﬂ)] {p(e)} (45)
where (¢) = (q) for singular elements.

Hence,
n En n )
/aBka.dszg/;“ ka.dS=§[M(ﬂ)] {p(t)}=o (46)

The last system of equations (46) is now condensed to reflect displacement con-

tinuity across elements. The result is:

[MP] {p} = {0} (47)
where {p} is the vector with physical variables on the whole boundary 8B.

With n source points corresponding to n endpoint nodes on the boundary 9B,
one gets n relations (47) which are now combined into the following linear system

of equations

[M]{p} = {0} (48)
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Finally, system (48) needs to be reordered in accordance with the boundary
conditions to build the primary HBCM system of equations. The resulting system
of equations has the same form as Eq. (27). As in the BCM, the HBCM primary

system is generally overdetermined but always consistent.

5.3 Post-processing for displacements and stresses

After the solution of the HBCM primary system is obtained, one can easily derive
{3} from (16) and (19). The post-processing stage involves using the known {39}

to compute displacements and stresses at any point P in the domain B.

The set of points B* contains the interior as well as the boundary 9B of a body,
except the nodes at the ends of boundary elements. At a regular boundary point,

0B is locally smooth. A corner is always an end point.

Displacements on the entire domain B can be calculated from the boundary

contour version of the standard BIE (see (1) and (24)) as follows

n 10

cikwi( P) = ;;a,aﬂ [6:(Ee) = 6=(E0r) — ko] (49)

However, since the endpoint displacements are already known from the primary
HBCM analysis described in the previous section, only the displacements on B~
need to be calculated from (49). For this calculation, c;x = 0.56; for regular points
on the boundary 8B and ¢;x = 6, for points inside the body B. Also, kg = 0.5 if P
is a regular point on B and z =1 or 14 (see [20]). At regular boundary points on

OB with other values of z, as well as at points inside the body, ks = 0.

Stresses on B can be evaluated from the boundary contour version of the regual-
rized HBIE (see (28) and (43)) as

n 10

S5 B Mul(Ba) = Au(Ea) + ka] = 0 (50)

=1 h=1
where ky = 0.5 if P is a regular point on 8B and w = 2,16,23 or 35 (see [20] and
the Appendix of this paper). Again, at regular boundary points on 8B with other

values of w, as well as at points inside the body, £\ = 0.
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In Eq. (50), it can be shown that

, . A AL 3 3
O =30 _uy(P); B8O =80 —uma(P); B =B — uwia(P) (51)
. A 5 5L 3 3

(0 =8 —ua(P); B =B —uaa(P); B = B — waa(P)

where u;(P), u2(P) and B,(f), h=1,2,...,6 are known from the primary solution or
from (49). Now u; 1(P), up2(P),uz1(P) and u,2(P) are four unknowns which can
be found by solving the system (50) of four equations (corresponding to £ = 1,2
and m = 1,2).

It should be pointed out that values of k) are not required at endpoint nodes on
OB because it is particularly easy to find the stresses at these nodes. By comparing
B,(,l) (h = 2,3,5,6) between (51) and (40), it can be seen that the displacement
gradients at endpoint nodes are exactly the values of A7, A7, 319 and B{?, where

q is either of the elements containing the endpoint node P under consideration.

Once the displacement gradients are found, Hooke’s law (12) is employed to

compute the stresses.

6 Numerical examples

Three examples are presented in this section. All of them use the following material

data: Young's modulus £ = 2.5 (in consistent units) and Poisson’s ratio » = 0.3.

6.1 Displacement field problem

Consider an elliptical body as shown in Fig. 2. The following displacement field,
which is an exact solution of the elasticity Navier-Cauchy equations (11), is imposed

at the displacement nodes on the boundary.

uy = y* — 3yz? }

5 ) (52)
u; = —z° + 3zy

The circular boundary is discretized by 16 quadratic elements spaced at equal

increments. Tractions on the boundary and stresses along the line AB are obtained
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Figure 2: Elliptical body with imposed displacement fields.

from the primary analysis and from post-processing respectively. The numerical re-
sults are compared against analytical solutions as shown in Figs. 3 and 4. Excellent

agreement between the solutions is achieved in both figures.

g T

__ analytical solution

o HBCM with quadratic elements

3 4 5 6

0

o
s

Figure 3: Traction components for the cubic displacement field.
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Figure 4: Stress components along AB (see Fig. 2) for the cubic displacement field.
6.2 Lamé’s problem

Consider a thick hollow cylinder subjected to uniform pressures p; and p, on the
inner and outer surfaces, respectively. Let a and b be the inner and outer radii of

the cylinder.

Due to symmetry of the problem, only a quarter of the structure is modeled
as shown in Fig. 5. A total of 80 quadratic elements is required to discretize
the boundary: 18 and 8 elements of equal size are placed on arcs BC and DA,
respectively; 27 elements of unequal size are placed on each of the edges AB and

C D, with shorter elements being used near B and C.

The analytical expressions in polar coordinates (r,f), for the stress fields of

Lamé’s problem, are given by Timoshenko and Goodier [24],

% (p, — pi) | pia® = pob?
a’b* (p p)+pa D (53)

ore =% (b2 — a?) 72 b2 — g2

in which the expressions for o, and oy correspond to the upper and lower signs,

respectively.
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T2 on the edge AB (see Fig. 5) for Lamé’s
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Figure 7: Stresses along IJ (see Fig. 3) for Lamé’s problem.

Numerical results for 7, = —o along AB are obtained from the HBCM primary
analysis. These results are compared with the analytical solution in Fig. 6 where a
very good correlation is observed. Numerical results for the stress components along
the segment [.J are computed from the post-processing stage and these results are

in excelent agreement with the analytical solution as seen in Fig. 7.

6.2 Kirsch’s problem

The third example deals with Kirsch’s problem. Fig. 8 displays a quarter symmetry
model of a square plate with a central circular hole subjected to a unit uniaxial
tensile load. The boundary contour analysis model is made up of 78 quadratic
elements. Due to stress concentration at the corners A and £, the mesh around this
zone needs to be densified : the density of elements on AB and DFE is nonuniform,

with short elements being placed near the points A and E.

In polar coordinates, the stress component o, in the radial direction, the stress

component o, in the circumferential direction and the shearing stress component
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Figure 8: Modeling of Kirsch’s problem.

Tr9, at a point (r,0) in an infinite plate with a circular hole are given by Timoshenko
and Goodier [24],

S a® S 3a*  4a? )
=2n_-% 2 a4 9
o, = 2(1 7'2) + 2(1+ o = ) cos 20
S 2 S 3a* .
aa=3(1+fr‘-5) _ 3(1+ri4)cos,20 ? (54)
S 3a* 2a?
Tr9=—;(1—r—i'+%)sin29

For the cross section of the plate along the y axis (§ = 7 /2), tractions in the

z-direction along the edge DE can be found from Eqs. (54) as

S a?  3a*
T1=—0'9=—3(2+r—2+?;) (

(W1}
(&1}
A

Numerical results from the primary and post-processing stages are compared
with the analytical solutions in Figs. 9 and 10. Here, polar coordinates are used

to evaluate the stresses along the line GH. Once again, very good agreement is

achieved.
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Figure 10: Stresses along GH (see Fig. 8) for Kirsch’s problem.
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7 Conclusions

A formulation and numerical implementation of the HBCM for 2-D linear elasticity
is presented by this work. The method is based on a regularized HBIE which can be
collocated at any boundary point where the stress is continuous. A numerical imple-
mentation with quadratic domain shape functions is carried out. Potential functions
are required for obtaining integrals (without numerical integration) in the regular-
ized HBIE. These functions, used in both the primary and post-processing stages,
are determined and included in this paper. From three examples in the present
work, it is noted that the HBCM can provide accurate numerical results, especially
those for post-processing stress analysis. It should be pointed out that numerical en-
forcement of stress continuity at endpoint nodes, with sufficient accuracy, is crucial
for the regularization of Eq. (28). In order to achieve this, and consequently obtain
accurate numerical results, the meshes used for the HBCM need, in general, to be
finer than those used for the BCM. It is expected that higher order elements such

as cubic would offer the required accuracy without the need of these fine meshes.

There is an ongoing debate in the literature regarding smoothness requirements
of shape functions of the boundary displacement for collocating a regularized HBIE
(such as Eq. (28)) at a boundary point where the stress is continuous. Martin
and Rizzo [11], in a recent paper, claim that while the previously proved sufficiency
requirement of C!** shape functions can be somewhat relaxed, C®® shape func-
tions are certainly not permissible. Cruse and Richardson [2], on the other hand,
claim that C%* shape functions for u are sufficient in this case, provided that one
specifically develops a scheme that allows the numerical solution for the stress to be
multi-valued at the boundary collocation point. It is very interesting to note that
the HBCM formulation presented in this paper uses domain shape functions that
are C'* (see Eq. (13)). Thus, numerical collocation of the regularized HBCM (46),
at boundary points where the stress is continuous, is mathematically sound. This
fact is supported by the excellent numerical results, including at end points and
corners, for the Lamé and Kirsch problems presented in Figs. 6, 7, 9 and 10 in this

paper.
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APPENDIX

POTENTIAL FUNCTIONS
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APPENDIX III

A boundary contour formulation for design sensitivity
analysis in two-dimensional linear elasticity.
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Abstract

A formulation for computing first-order shape design sensitivities in two-dimensional
(2-D) linear elastostatics by the boundary contour method (BCM), along with a
numerical implementation using quadratic boundary elements, is presented in this
paper. Here, the direct differentiation approach is analytically applied to the ap-
propriate boundary contour equations in order to derive the sensitivities of all the
physical quantities (displacements, tractions and stresses) on the boundary as well
as those for displacements and stresses inside the body under consideration. The
nonsingular formulation of the BCM is used for computing the boundary displace-
ments, and boundary stresses at “off contour” regular points. A regular boundary
point is a point on the boundary where it is locally smooth; an off contour point
lies inside a boundary element. Their corresponding sensitivities are obtained in a
straightforward manner from the resulting regular sensitivity formulation. Also, the
stress sensitivities at the boundary nodes can be recovered easily from the global
displacement shape functions described in a Cartesian coordinate system. Finally,
through three numerical examples for which analytical solutions exist, it is shown
that the BCM can provide remarkably accurate numerical resuits for shape sensi-

tivities.
1. INTRODUCTION

The conventional Boundary Element Method (BEM) for linear elasticity requires
the numerical evaluation of line integrals for two-dimensional (2-D) problems and
surface integrals for three-dimensional (3-D) ones (see, for example, Mukherjee, 1982
or Banerjee, 1994). By observing that the integrand vector of this Boundary Integral
Equation (BIE) without body forces is divergence free, Nagarajan et al. (1994,
1996) have proposed a novel approach, called the BCM, that achieves a further
reduction in dimension. The divergence free property allows, for 3-D problems,
the use of Stokes’ theorem to transform surface integrals on the usual boundary
elements into line integrals on the bounding contours of these elements. For 2-D

problems, a similar transformation eliminates numerical integration altogether. The
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above transformations are quite general and apply to boundary elements of arbitrary
shape. Thus, the BCM requires only numerical evaluation of line integrals for 3-
D problems and simply the evaluation of functions (called potential functions) at

points on the boundary of a body for 2-D cases.

The BCM is a young method and further developments of this approach are
under way. A hypersingular BCM (HBCM) formulation for linear elasticity has
been proposed recently (Mukherjee and Mukherjee, 1997-a,-b; Phan et al., 1997-b).
This formulation can possibly be extended to solve fracture mechanics problems. It
is pointed out in Nagarajan et al. (1994) that the divergence free property of the
BEM intergrand holds true for other linear problems besides potential therory and
linear elasticity. Thus, in principle, it is possible to derive BCM formulations for
other linear problems such as plate bending, transient heat conduction with uniform
initial temperature, and thermoelasticity; although such formulations have not been
derived yet. Finally, body forces that can be modeled as particular integrals in the
usual BEM (see, for exemple, Banerjee, 1994) can also be modeled in the same way
by the BCM. Thus, at least in principle, the BCM is a fairly general approach for
linear problems. The method, however, is not recommended for nonlinear problems,
since the primary advantage of a further reduction in dimension, compared to the

usual BEM, would, in general, be lost in these cases.

Most shape optimization problems employ mathematical programming methods
where design sensitivity coefficients (DSCs), which are defined as the rates of change
of physical response quantities with respect to changes in the design variables, are

required for determination of the optimum shape of a body.

Unlike the well-known finite element method (FEM), the BEM requires only
discretization on the boundary of a body. This characteristic provides significant
advantages in its use in shape optimal design where mesh generation needs to be
redone after each iterative step of the optimization process. Therefore, several re-
searchers have used the BEM to develop eflicient approaches for computing design
sensitivities. The reader is referred to a special issue of Engineering Analysis with

Boundary Elements (Bui and Bonnet, 1995) for a recent discussion of sensitivity



100

analysis with the BEM. As in the context of the FEM, there are three methods (e.g.
Haug et al., 1986 or Sokolowski and Zolesio, 1992), namely, the finite difference ap-
proach (FDA), the adjoint structure approach (ASA) and the direct differentiation
approach (DDA).

Besides having the same advantage in mesh generation as for the conventional
BEM, the BCM offers a further reduction in dimension, and especially, a nonsingular
formulation for computing boundary displacements and boundary stresses at regular
points inside a boundary element (see Phan et al., 1997-a). Moreover, the stresses
at boundary nodes can be recovered easily and exactly from the global displacement
shape functions expressed in Cartesian coordinates. These advantages of the BCM

are expected to make it very competitive in optimal shape design.

To that purpose, this paper presents a formulation for computing first-order
design sensitivities based on a full development of the BCM for 2-D linear elastic-
ity with quadratic boundary elements which has been introduced by Phan et al.
(1997-a). In this paper, we develop a formulation for design sensitivities by direct
differentiation of the BCM equations, i.e. by using the DDA. In the context of
the BEM for elastostatics, the DDA has been used by Barone and Yang (1988),
Kane and Saigal (1988), Zhang and Mukherjee (1991), and Mellings and Aliabadi
(1995) for 2-D problems, by Saigal et al. (1989), and Rice and Mukherjee (1990)
for axisymmetric problems, by Aithal et al. (1991), Kane et al. (1992), and Bonnet
(1995) for 3-D bodies, and by Mukherjee and Chandra (1991), and Chandra and
Mukherjee (1997) for 2-D nonlinear problems.

The DDA may be applied either before or after discretization of the initial BIE.
The two processes are expected to lead to the same equations. Kane and Saigal
(1988) generated the desired DSCs by differentiating the resulting BEM system ma-
trix analytically. In these formulations, the authors have placed the source points
outside the region to avoid singular integrations. Barone and Yang (1988) carried
out the opposite process by differentiating the BIE to obtain the DSCs analytically
before numerical integration. Here, the rigid body motion technique has been em-

ployed to treat singular integral terms in the calculation of displacement sensitivities,
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but the integration of strongly singular kernels is required in a direct formula used
in computing stress sensitivities. Zhang and Mukherjee (1991) overcame this diffi-
culty related to the singular feature of the governing BIE by using a 2-D elastic BIE
formulated in terms of tangential gradient of displacements where the sensitivity
of boundary stresses is recovered from the corresponding tractions and tangential
gradients of displacements and their sensitivities. In order to avoid strongly singular
integrals involved in design sensitivity analysis, Bonnet (1995) applied the material

derivative concept to the regularized displacement boundary integral equation.

It can be seen from the above papers that most authors limit their calculations

to design sensitivities on the boundary of a body.

The formulation described in this work includes the DSCs of all diplacements and
stresses throughout the domain of interest, i.e., on the boundary as well as inside
the body. DSCs are obtained from completely regularized equations. There is no
need to evaluate any singular integrals as in the BEM work of Barone and Yang
(1988). In fact, for 2-D linear elasticity, the BCM does not require the numerical

evaluation of any integral at all!

Three examples, including Lamé , Kirsch and a plate with an elliptical cutout.
are solved and compared against analytical solutions. The numerical results are very

accurate for these illustrative examples.
2. 2-D BCM FORMULATIONS

The information presented in this section is summarized from Phan et al. (1997-a)

where more details can be found.

2.1. Basic formulation

The idea of dimensional reduction starts from the standard BIE without body forces
(see Rizzo, 1967)

cx(Pr(P) = [ [Ua(P.Q)5(@) — Tn(P,Qui@)e;-dS (1)
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where c;; is the corner tensor, P, @, u; and o;; are the source point, field point,
displacement vector and stress tensor respectively, Ui and E,;¢ are the Kelvin kernel
tensors (Rizzo, 1967), and e; are global Cartesian unit vectors. In 2-D problems,

0B is the boundary of a body B, and dS is an infinitesimal boundary length vector.

Let Fy = [Ui(P, Q)oij(@) — Zije(P. Q)ui(Q)] e;. Since the divergence of Fy at

a field point Q is zero (see Nagarajan et al., 1994), i.e.
Vo-Fr=0 (2)

everywhere except at the source point P, so after discretizing the boundary 9B into

n elements, the BIE (1) can be converted to the following BCM version

n

c(Pyui( P) = Y [0 (Er) — 8 (En)] (3)
=1
Here. £, and Ey; are the endpoint nodes of element (¢), and ®; are called the
main potential functions that are determined by solving the following identity that
satisfies eqn (2)
a9 ad
Fk = __.f._el — ‘——k'e'z (4)

dy Oz

A numerical implementation of eqn (3) does not require any numerical integra-

tion.

2.2. Formulation using the rigid body motion technique

In order to regularize Cauchy singular integrals in eqn (1), a rigid body motion

solution is applied to this equation to produce a new equation
|, UsP.Q)o5(Q) = T P.Q) [(Q) ~ wi( Pl e;-dS =0 (3)

Since the new integrand vector Gy = {Ui(P,Q)0i;(Q) — Zijs( P, Q)[uwi(Q) —
u;(P)]}e; is still divergence free (everywhere except at P), eqn (5) can be converted
to the following corresponding BCM version

i [\I’;:)(Elg) -— lIIg)(En )] =0 (6)

=1
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where ¥, is determined by solving the following identity

2.3. Implementation with quadratic boundary elements

Quadratic shape functions that ensure the divergence free property of F; and Gy

are given by

e P S S B St B e Y
U2 0 0 0 1 I y
2 2
+ﬂ7{ i }+ﬂs{ Y }+ﬂ9{ k"’y}wm{kﬂy} (8)
kozy kyzy z? y?

where k; = —2(1 — 2v), k2 = —4(1 — v) and v is the Poisson’s ratio.
In matrix form, for element (¢)
{u9} = [TO(z,y)]{8Y) (9)

where {5(()} — (,B](_[) gl) . {6))7’

w2

(21-1)

a Traction node

@ Displacement node

Figure 1: Quadratic boundary element.

The configuration of a chosen quadratic boundary element is shown in Fig. 1.
The relationship between the physical variable vector {pm(x, y)} and the artificial

variable vector {ﬁ(‘)} of boundary element (¢) are

2-1) (2t-1) _(20-1) (2¢-1) (20) (20 (20 (2¢) (2¢+1) (2e+1)\T
(F0) = (WD 0 1N ) 2000 20 20 o) o

= [TY(z,y){B8Y} (10)
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A new coordinate system (£,7) centered at each source point is introduced.

Equation (9) becomes

{u9} = [T nHA) (11)

In eqn (11),
{89} = [B;1{87} (12)
where [B,] is a matrix depending only on the coordinates of the source point j (since
it arises from a coordinate transformation from the global system (z,y) to a system

(€,7m) centerd at j).

3. DESIGN SENSITIVITY ANALYSIS

3.1. Notation

If the boundary 9B of a 2-D body B is discretized into n boundary elements, then
there are n endpoint nodes. Corners are always endpoint nodes. For convenience,

let us define

e The boundary 9B~ as the set of points belonging to the boundary 9B except

the n endpoint nodes. In other words,
{The whole boundary dB} = {The boundary dB"} U{r endpoint nodes}

e The domain B~ as the set of points belonging to the body B except these n

endpoint nodes, i.e.

{The whole domain B} = {The domain B~} U{n endpoint nodes}

3.2. Boundary displacement sensitivities at displacement nodes and trac-

tion sensitivities at traction nodes

As seen in the earlier work by Phan et al. (1997-a) the numerical implementation

of eqn (6) leads to
{i [‘I,il)(En) _ ‘IIS:)(EZI)]} = i [M(jl)] {p(()} = {0} (]_3)
=1

=1
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where
[M(jl)] = [\p(ﬂ)] [B,] [T(l)]—l (14)
in which [lIIUl)] is the matrix associated with the main potential functions ¥, and

is evaluated in the coordinate system (&, 7).

The DSCs under consideration can be found by differentiating eqn (13) with
respect to a design variable b, which is a typical component of a shape design vector
b. We have

g([MIm] (50} + [369) {p(z)}) e 5

where (-) denotes the total derivative with respect to b, i.e. ()= d( )/db and

generally,

()=0)s+ul); (16)

It is noted here that in order to avoid any ambiguities that might result from the
use of the above notation for the total derivative of a long expresion, the alternative

notation { )* is used in such cases.

In eqn (16), the quantities v; = dz,;/db are the components of the design velocity

field. For 2-D cases, z; = z and z, = y, thus eqn (16) can be expanded to

()=)s+()eZ+()y ¥ (17)

This total derivative is totally analogous to the concept of the material derivative

(often taken with respect to time) in continuum mechanics.

It can be proved that [W“”]:[‘DU')] ([(DU‘)] is the matrix associated with the

main potential functions ®;), therefore eqn (14) leads to
[M?ﬂ)]=[¢('jz)] (8,1 [T9) ™ + [909] (8] [19] ™" + [w09] (B;) [[T(n]“]' (18)

in which
[Bjl=[B;], % (zj,y;) + [Bj], ¥ (=), 9;) (19)

[lr]™] == e [ fre]” e
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[r0]= 730,

e 4Tl Ry +Thee £ +T0, 3] (21)
(Tg(,? are the components of matrix [T(’)], n, and n, are the components of the

outward normal vector to dB), and the components of matrix [‘D‘j’)] are given by
(let z: = h +10(k —1) where h =1,...,10)

be = @, (Earne)— 8. (Earna)
= a"”(g;?”“) z (ze2, Ye2)— T (25, ;)
+ %(%’:”—"9-)- -E-l (Ze2r yi2)— ¥ (Ij»yj):
_ Mé?_'"_) Z (za,90)-  (z;,1,)]
- -ai-(fain"”—‘) ii‘ (zar ya)— ¥ (Ij’yj): (22)

The potential functions ¢é. are listed in the Appendix of the paper by Phan et
al. (1997-a) and the determination of their gradients d¢./0€ and d¢./37n are also
addressed in that paper. It should be noted that 8¢./9¢ and d¢./0n are sin-
gular when Q(z.y,) — P(z;,y;), i.e. when ({,7) — (0,0). But in this case
[i’ (Ze.ye)— T (zj,yj)] = [y (ze, ye)— (:r:,,y,)] ~ O(r), thus, unlike [CI)(’"], the

matrix [@Ul)] is completely regular.

The advantage of the equality [lIl("')] [‘b(’"] lies in the fact that the evaluation

of [@‘J”] is more convenient than that of [‘I‘(J’)] and the expression (22) can be
reused in the computation of DSCs in the domain B~, as discussed later in this
paper.

Displacement continuity across elements is now applied to system (15) which

results in the new system of equations

(M) {p} + [M9)] (p}= {0} (23)

where {p} and { 1.)} are the degrees of freedom (DOF) and their sensitivities, respec-
tively, on the whole boundary 9B.
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With 2n source points corresponding to 2n displacement nodes on the boundary
0B in the numerical implementation using quadratic boundary elements, one gets 2n

relations of the form (23) which are now combined into the following linear system
[M] {p} + [M] {p}= {0} (24)

System (24) needs to be split in accordance with the boundary conditions to
vield
[A] {X}+ (B] (Y} + (4] {X} +[B] {V'}= {0} (25)
where { X} and {Y'} contain, respectively, the unknown and known (from boundary
conditions) physical quantities. It is noted that, at this stage, {X} is known from
the solution of the BCM system [A]{X} = {Z}, where {Z} = [B]{Y'}. Furthermore,
it is assumed that the boundary conditions are kept fixed during the change of the
design variables, so that {I‘/}= {0}. By shifting the known terms to the right hand

side, eqn (25) becomes
[A] {X}=— [B] {Y}~ [4] {X} (26)

or,

(4] {X}= {W} (27)

This final linear system is very similar to the BCM system [A]{X} = {Z}. The
matrix (A] is identical in both equations. Also, it is generally overdetermined but
always consistent and therefore, the rectangular system solving algorithm used to

solve the usual BCM equations, can be reused here.

3.3. Displacement sensitivities in the domain B~

The displacement in the domain B® is evaluated from eqn (3) which can now be

written as (see Phan et al., 1997-a)

n

7 {ue(b, P)} = {):M"(Eu) - @2"(&)}} = [¢®9] (Bl {89} (28)
=1

=1
where v = 0.5 if the source point P (where displacements are to be computed) is on
the boundary 0B™ and ¥ = 1 if P is inside the body B.
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Thus, displacement sensitivities in the domain B* can be found by differentiating

eqn (28) with respect to a design variable 6. That means

¥ {ur (b, P)}" =

Zn: {[q,(.m)] [Bp] {ﬁ(t)} + [q;(Pt)] [B.P] {ﬂ(z)} + [(I,(Pt)] (Be] {ﬂfz)}} (29)

=1

in which [ép] and [@(P‘)] are computed by using eqns (19) and (22) respectively,
and since {ﬁ(')} = [Tm]—l {p(‘)} (see (10)), one gets

{gfz)}= [[T“’]-l]. {p0} + [T(q]-l {p('q} (30)

where [[T(’)] -l] is determined by eqn (20) and {pm} is known at this stage after

the solution of (27) because {p(')} is derived from {1-)} which is formed from {;(}
with {¥}= {0}.

3.4. Stress sensitivity recovery at boundary traction and endpoint nodes

Stresses can be calculated using Hooke’s law,

oi; = Abijurs + pluij + uj) (31)
where A and p are Lamé constants of the material, é;; is the Kronecker delta (= 1
for : = 7 and =0 for ¢ # j).

The stress sensitivities are determined by taking the total derivative of eqn (31)

with respect to a design variable b to yield
0= Abij(ukk)” + 1 [(wij)” + (u)7] (32)

In order to evaluate (recover) the stress sensitivities at traction nodes where
the traction sensitivities are available after the solution of eqn (27), their displace-
ment gradient tensor used in (31) needs to be computed first. It starts from the

displacement shape functions (9) whose displacement gradient tensor is given by

{9} =1,y {8} (33)
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where m is a field point index for the coordinate system (z,y), t.e. ; = d/0z and

2= a/ay.

Finally, the sensitivity of the displacement gradient tensor required by eqn (32)
is derived from eqn (33)

{{ u)} } “ TO(z y)] ] {5(z)}+ [T.f')(fsy)]‘m {ﬂfe}} (34)

in which {B(‘)} is evaluated using eqn (30).

The above approach is equivalent to the stress recovery procedure in the usual
BEM (see, for example, Kane and Saigal, 1988), but more straighforward, since the
global displacement shape functions (9) are employed in the BCM.

For computing stress sensitivities at endpoint nodes, the problem is much easier if
the starting point is the displacement expression (11). In this case, the displacement

adients at an endpoint node are, simply:
gr ply
0 (0 (0 (¢ A0 A0 A0 AONT -
(uid ui il w)” = (B3 B3 A0 ") (35)

where (£) is the element containing this endpoint node so that its coordinates are
(&,n7) = (0.0). Therefore, the sensitivity of the displacement gradients required by
eqn (32) 1s

() () (D) ) =0 B0 B BT ()

in which the components on the right hand side of eqn (36) are derived from the

sensitivity of eqn (12), i.e. from
{39}=15;] (89} +(B)] {89} (37)

The above procedure from eqn (32) to eqn (34) is simple and it can be used to
compute the stress sensitivities on the whole boundary dB. Stress sensitivities in
the domain B* can be computed by using the direct formulation addressed in the

following section.
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3.5. Stress sensitivities in the domain B*

This kind of sensitivity is also computed using eqn (32). To this end, the first step
is to determine the displacement gradient tensor u;; on the body B* by taking the
partial derivative of eqn (28) with respect to a source point P (see Phan et al.,
1997-a) to yield

v {uem(b,P)} = Zn: ([q,(Pe)] [Bp|.ar — [(I,(Pt)] ) [BP]) {ﬂ(z)} (38)
t=1 '

where M is a source point index for the coordinate system (z,y), i.e. ; = 3/9z(P)
and , = d/dy(P), and p is a field point index for the coordinate system (£, 7), i.e
in this case ; = 3/03€ and , = d/dn.

Then, the sensitivity of the displacement gradient tensor is derived from (38) to

give

v {uep(b, P)} i ([@(-Pz)] [Bplm + [Q(Pl)] [[BP]'M]- — [[Q(P‘)]'“]-[BP]

=1

- [e%9] (8 ){ﬂ“’}+2([°“’"} (Belas - [07] 1B6]) {89} (39)

In eqn (39),
2 32(B
2 [szl z (zp,yp) + 75— 9 (Bel P] Y(zpyp) f M =1
[[B | ]. or dz0y (40)
Plpml =
' 9%B 0%[Bp] =
el s )+ TG pye) if M =2

and the components of matrix [[‘D(P‘)] ] are given by
"

(Okin)” = (P2u(le2sme2))” — (D:u(€arsnr))” (41)
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in which

2
( @%{’_‘l[i‘ (Ilyyl)_ 5" (IPv yP)]+

2 - -
a éazé(.gly;nl)[y (l‘l-,yl)- y (IP,yP)] lf M=1

(‘.b:.u (f[v’?l))‘ = 9 (42)

2
G¢=(ene) ¢5§§;"')[i (e 9e)— T (2P yp)]+
2
\ 6 ¢za(1f;’ Th)[:{’ (‘rla yl)_ 5 (‘rP’yP)] l‘f Iw = 2

It can be seen from eqn (41) that in order to calculate “‘D(P ’)] ] , one needs
-

2 2
to evaluate the second-order gradient of the potential functions ¢., i.e. ___3625; , ——%::
and —82¢:

nd > £

Three points need to be mentioned with regard to the evaluation of displacement

and stress sensitivities on the boundary 9B".

e As demonstrated in the work by Phan et al. (1997-a), unlike the conventional
BEM, eqns (28) and (38) are completely regular when they are used to calcu-
late displacements and stresses on the boundary dB*. This advantage allows
one to derive formulae for the corresponding DSCs directly, as presented above.
In the usual BEM, a similar procedure for computing the stress sensitivities
on the boundary was presented by Barone and Yang (1988), but the formula
involves strongly singular integrals. An approximate formula was introduced

in the above work in order to overcome the difficulty.

e When the source point P lies on the boundary dB*, the evaluation of matrix
[(P(P 2)] has to be carried out carefully by using the approach addressed in the
earlier work by Phan et al. (1997-a).

e The matrix [<I>(P ')] is singular when the source point P (where the DSCs are
to be computed) approaches an endpoint node. Thus, eqns (29) and (39) are
. only used for calculating DSCs in the domain B* where endpoint nodes are
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excluded. However, the displacement and stress sensitivities at endpoint nodes

can be obtained from the equations in sections 3.2 and 3.4, respectively.
4. NUMERICAL EXAMPLES
Three examples are illustrated in this section. The same material data for all these

examples are as follows: Young’s modulus £ = 2.5 (in consistent units) and Poisson'’s

ratio v = 0.3.

4.1. Lamé’s problem

b=20

Figure 2: Modeling of Lamé’s problem.

Consider a thick cylinder subjected to uniform pressure p; on the inner surface. Let
a and b be the inner and outer radii of the cylinder where a is chosen as the design

variable.

The analytical expressions in polar coordinates (r,#), for the displacement and

stress fields of Lamé’s problem, are available from Timoshenko and Goodier (1970).
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In the case of a plane stress state

2,,. b2
u,-=E(‘£—%a—2)[(1—V)T+(1+V)7J

a?p; b2

in which, the expressions for o, and oy correspond to the upper and lower signs

(43)

respectively.

By assuming that the geometry changes linearly with the changes of the design
variable a, one gets 7 = (b —r)/(b — a) (Chandra and Mukherjee, 1997). So, the
analytical sensitivity fields are found by taking the total derivative of eqn (43) with

respect to the design variable a (using eqn (16) written in polar coordinates) to give

. 2 ; 2h% b2 3
ity = E(;faz) [bz-az {(1 —t/)r+(1+u)?}
- B2
+‘a—(bb_—;l{1-—l/—(l+ll)r—2}:| r (44)
- 2ab’p; [rPx b a(b-r)
Tr1e= r2(6? - a?) {bz —a? + r(b— a)} )

Because of the symmetry of the problem, only a quarter of the structure needs
to be modeled as shown in Fig. 2. The mesh consists of equal numbers of quadratic
boundary elements on each segment of the boundary. Also, all the elements on a
given segment are of equal length. In general, a finer mesh ensures better conver-
gence of numerical results, and especially, in the calculation of displacement sensitiv-
ities. Figures 3-6 display numerical results obtained by using a total of 60 quadratic
elements. Excellent agreement with the analytical solutions is seen. Figures 3 and
4 show numerical results for the DSCs on the boundary AB (see Fig. 2), in which,
the approach presented in section 3.4 is employed to recover the stress sensitivities
in Fig. 4. Finally, the formulas in section 3.3 and 3.5 are used to compute the
displacement sensitivities (Fig. 5) and the stress sensitivities (Fig. 6) on the line

segment IJ (see Fig. 2) (domain B~), respectively.
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Figure 3: Displacement sensitivity on the edge AB (see Fig. 2).
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Figure 4: Stress sensitivities on the edge AB (see Fig. 2).
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Figure 5: Displacement sensitivities along the line IJ (see Fig. 2).
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Figure 6: Stress sensitivities along the line IJ (see Fig. 2).
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4.2. Kirsch’s problem

D u=5=0 C

40

=316

Figure 7: Modeling of Kirsch’s problem.

The second example deals with Kirsch’s problem. Figure 7 shows a quarter symme-
try model of a square plate with a central circular hole of radius a subjected to a
unit uniaxial tensile load S. The stress components in polar coordinates (r,§) are
given by Timoshenko and Goodier (1970) as
oy = S(l—f-) + §-(1+§§—‘-{a—2)c0520 \
2 ri

r2

S 3at
5 (1 + 1‘—4) cos 260

PannY
N
o

S’

Here, a is chosen as the design variable. The total derivative of eqn (45) is
obtained using the same approach as in the previous example to yield the stress

sensitivity fields where, with the same linear assumption as in Lamé’s problem, the
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Figure 9: Stress sensitivity g2 on the edge DE (see Fig. 7).
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Figure 10: Sensitivity of the von Mises stress along the line GH (see Fig. T).

geometric sensitivities are given by

l—7

e
Il

of r<li
l—a (46)
0 if r>1

-
r

The boundary contour analysis model is made up of 34 quadratic elements: 10
elements on the edges AB and DE, 4 elements on the edges BC and CD, and 6
elements on the arc EA (see Fig. 7). Due to stress concentrations at the corners
A and FE, the mesh in this zone needs to be refined: the density of elements on AB

and DE'is nonuniform, with short elements being placed near the points 4 and E.

The numerical results for the stress sensitivities on the boundary DE, computed
from the approach presented in section 3.4, are shown in Figs 8 and 9. For the stress
sensitivities in the domain B~ (along the line segment GH, see Fig. T), a state of

plane stress is employed to analytically compute the sensitivity of the von Mises
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stress. The von Mises stress and its sensitivity are:

OvM = \/U'fl +0%2 +30'¥2 — 011022

(2011 — G22) 011 +(2022 — 011) T22 +6012 012 (47)

20v M

ovm=

Analytical and numerical results for this quantity are presented in Fig. 10. This
time, the formulas in sections 3.3 and 3.5 are used. Reasonably good agreements
with the analytical solutions are observed, even though the analytical solutions

exhibit some rapid changes along the lines DE and GH in Fig. 7.

4.3. Infinite plate with an elliptical hole

tl=0 t2=S2
‘
0 A A S A O
r———b
ul=0 ‘
=4 = I~ t=S§
r;; 12—0 i 1
- I =0
Y |
_L__E —
N
a X'A U2=0 T!=0 B
T =1=0 1=30

Figure 11: Modeling of a plate with an elliptical hole.

Infinite plates with elliptical holes, subjected to uniform biaxial tensions S; and S,
are studied in this example. Because of symmetry, only a quarter of a plate needs
to be modeled as shown in Fig. 11. Let a and b be, respectively, the semi-major

and semi-minor axes of the hole. Two cases are considered here:
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a) $1=0,52=1,a=2and b =1 in which a is chosen as the design variable.
The same data as in the work of Zhang and Mukherjee (1991) (where the derivative
BEM was employed) are used here for the purpose of comparison. Graded meshes
with 11 elements each are used on each of the sides AB and DE (due to the stress
concentration at A), uniform discretizations (with 4 elements each) are used on
each of the sides BC and CD, and 10 elements are placed at equal increments of the

eccentric angle ¢ on the elliptical arc EA.

The focus here is on the tangential (“skin”) stress o, on the hole boundary since
it is often used as a control parameter in shape design. The analytical solution for

0s, and its sensitivity for this case, are presented by Barone and Yang (1988).

Numerical and analytical solutions are compared in Figs 12 and 13. It is quite re-
markable that the results given from the BCM are seen to have excellent agreement
with the exact solution on the entire elliptical hole boundary. Furthermore, Fig. 13
also shows that the present formulation yields better results than those obtained
from the BEM by Zhang and Mukherjee (1991). Only very slight numerical oscilla-
tions are seen in this figure even though fewer quadratic elements (especially only
a half of elements on the elliptical boundary) are employed in this BCM study, as
opposed to the previous BEM research. In this work there are 11 elements on each
of the segments AB and DE and 10 on E A, compared to 12, 14 and 20 respectively,
in the BEM work of Zhang and Mukhejee (1991).

b) S51=1,5,=0.75 for 8= b/a =0.5,0.75 and 1, respectively. The mesh is the
same as in the previous case, except that 12 elements each are used on each of the

sides AB and DE, and 20 elements are spaced around the arc EA.

The analytical solutions for the stress sentitivities at the points A and E are

given by Barone and Yang (1988)

- 1.5
a 09 (A) = —ﬁ' (48)
a 5'1)_ (E) =2

Table 1 shows the analytical values of these quantities together with the nu-
merical results obtained by this work (BCM) as well as by the BEM (Chandra and
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Figure 13: “Skin” stress sensitivity o, on the arc EA (see Fig. 11).
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Mukherjee, 1997). It should be noted that in the BCM, numerical results for stresses
(and thus, stress sensitivities) are discontinuous at endpoint nodes. Although this
is a minor drawback, it makes the modeling of corners trivial. At endpoint nodes
on which the stresses from the analytical solution are continuous, the discontinuity
magnitudes produced by the BCM are minor. Hence, it is reasonable to use the
average values as final outputs. This kind of output is shown in the Table 1 as the
numerical results from the BCM. Again, these results are in excellent agreement with
the anlytical ones, and the performance of the BCM in design sensitivity analysis

appears to be much superior to the BEM in this exemple.

Table 1: Stress sensitivities at A and E (Fig. 11) for different values of .

a gy (A) aoy (E)
3 Analytical BCM BEM | Analytical BCM BEM
0.5 -6 —-5.996 —6.158 2 1.992 2.247
0.75 —2.667 —-2.662 —2.983 2 1.992  2.339
-1.5 —1.506 —1.828 2 1.994 2.540

5. CONCLUSIONS

A formulation for design sensitivity analysis by the BCM for 2-D linear elasticity is
presented in this paper. An implementation is carried out with quadratic boundary

elements.

The present formulation deals with the calculation of DSCs throughout the do-
main of interest, i.e. on the boundary 9B as well as inside the body B. Since global
displacement and stress shape functions are used in the BCM, the nodal stress sen-
sitivities can be recovered in a straightforward manner from these functions and
from the results obtained after solving the system (27). For evaluating displacement
and stress sensitivities in the domain B*, direct formulas are developed from the
corresponding nonsingular expressions for displacements and stresses in this domain

given in Phan et al. (1997-a).



123

It is quite remarkable that the accuracy of numerical results for illustrative prob-
lems is seen to be very high. It is felt that the primary reason for this is the complete
absence of numerical integration in the BCM for 2-D problems. Another possible
reason is that the global displacement shape functions satisfy, a priori, the Navier-
Cauchy equilibrium equations (Phan et al., 1997-a). Accuracy and efficiency in
design sensitivity analyses are crucial since they lead to faster convergence of itera-

tive procedures in shape optimization.

The DDA developed in this work is advantageous for optimal shape design prob-
lems with few design variables and a large number of constraints. For problems
involving many design variables and fewer constraints, the ASA is more suitable.

The ASA, based on the BCM., is an important subject for future research.
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APPENDIX IV

Stresses, stress sensitivities and shape optimization in
two-dimensional linear elasticity by the boundary contour
method.
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SUMMARY

This paper presents new formulations for computing stresses as well as their sen-
sitivities in two-dimensional (2-D) linear elasticity by the boundary contour method
(BCM). The formulations are established directly from the boundary contour version
of the hypersingular boundary intergral equation (HBIE) which can provide accurate
numerical results and is very efficient with regard to numerical implementation as
well as computational time. The design sensitivity coefficients (DSCs) computed
from the above formulations or from the primary analysis of the BCM (as done ear-
lier in Reference 1) can then be coupled with a mathematical programming method
such as the Successive Quadratic Programming (SQP) algorithm in order to solve
shape optimization problems. Numerical examples are presented to demonstrate
the validity of the new formulations for calculation of stresses and their sensitivities.
Also, shape optimization examples using the BCM are presented here for the first

time.

KEY WORDS: boundary contour method; boundary element method; stress anal-

ysis; design sensitivity analysis; shape optimization

1. INTRODUCTION

1.1. The boundary contour method

The conventional boundary element method (BEM) for linear elasticity requires the
numerical evaluation of line integrals for two-dimensional (2-D) problems and surface
integrals for three-dimensional (3-D) ones (see, e.g., Reference 2). By observing that
the integrand vector of the boundary integral equations (BIE) without body forces
is divergence free, Nagarajan et al.3* have proposed a novel approach, called the
BCM, that achieves a further reduction in dimension. The divergence free property
allows, for 3-D problems, the use of Stokes’ theorem to transform surface integrals

on the usual boundary elements into line integrals on the bounding contours of
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these elements. For 2-D problems, a similar transformation eliminates numerical
integration altogether. The above transformations are quite general and apply to
boundary elements of arbitrary shape. Thus, the BCM reduces the dimensionality of
analysis problems by two: the method requires only numerical evaluation of 1-D line
integrals for 3-D problems and simply the evaluation of functions (called potential

functions) at points on the boundary of a body for 2-D cases.

For 3-D elasticity problems, the BCM with quadratic boundary elements has
been presented in the literature by Nagarajan et al.* and by Mukherjee et al.® The
BCM for 2-D linear elasticity is the subject of Nagarajan et al.®> and Phan et al® A
numerical implementation with linear boundary elements is carried out in the former
paper whereas a full development with quadratic boundary element implementation
is performed in the latter one. In Reference 6, stresses inside a body and at non-
endpoint nodes on its boundary are computed from the boundary contour version
of the standard BIE. The advantage of this approach is that it does not require the
determination of potential functions because these functions can be derived directly
from the Kelvin kernel tensors. The above approach is then employed in Reference

1 to develop a design sensitivity formulation by the BCM.

1.2. Hypersingular formulations for stress and stress sensitivity analysis

The present work also deals with boundary contour formulations for calculation of
stresses and their sensitivities by the BCM in 2-D linear elasticity (as in References 6
and 1), but the starting point is a gradient form of the standard BIE which is called
the HBIE because this equation is hypersingular if it is collocated at any point on
the boundary. Although the potential functions have to be derived for this purpose,
it can be seen that the formulations and thus, their numerical implementations, are
simpler than those addressed in References 6 and 1. Once these potential functions

are published through this paper, they are ready for users.

There are three approaches for design sensitivity analysis (see, e.g., Reference 7),
namely, the finite difference approach (FDA), the adjoint structure approach (ASA)

and the direct differentiation approach (DDA). In this paper, stress sensitivities are



130

obtained by direct differentiation of the hypersingular formulation aformentioned,
i.e. by using the DDA. In the context of the BEM for elastostatics, the DDA has
been used by several researchers for 2-D,3~!? axisymmetric,!"'? 3-D¥3-15 and 2-D

nonlinear problems.!¢-18

[t is noted that stresses and stress sensitivities, formulated in this study, are
those in the domain B* (the whole body except the endpoint nodes on its boundary
elements). The computations of physical quantities (displacements and stresses), as
well as their sensitivities at endpoint nodes, have been addressed before in References

6 and 1.

1.3. Shape optimization using the BCM

Shape optimization refers to the optimal design of the shape of structural compo-
nents and is of great importance in current mechanical engineering design. Most
shape optimization problems employ gradient based mathematical programming
methods in which DSCs, which are defined as the rates of change of physical re-
sponse quantities with respect to changes in the design variables, are required for

determination of the optimum shape of a body.

Unlike the well-known finite element method (FEM), the BEM only requires dis-
cretization on the boundary of a body. Hence, mesh generation and remeshing pro-
cedures, required at each new iterative step in a numerical optimization procedure,
are much more straightforward and inexpensive than in the FEM. Furthermore,
the BEM often provides accurate boundary physical responses (displacements, trac-
tions, stresses). This explains why several researchers have used the BEM to develop
efficient approaches for computing DSCs required in solving optimal shape design

problems.

Research papers in shape optimization using the BEM have been published by,
for example, Choi and Kwak,!® Sandgren and Wu,?® Yang,?! Saigal and Kane,?? Wei

et al.,'® Yamazaki et al.?® and Tafreshi and Fenner.?

Besides having the same advantage in mesh generation as for the conventional
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BEM, the BCM offers a further reduction in dimension, and especially, a nonsingular
formulation for computing boundary stresses at regular points inside a boundary
element. One of these formulations for stress evaluation has been addressed in
Reference 6 and a second one is presented in this paper. Moreover, the stresses at
boundary nodes can be recovered easily and exactly from the global displacement
shape functions expressed in Cartesian coordinates. These advantages of the BCM

are expected to make it very competitive in optimal shape design.

In this paper, a mathematical programming method called the SQP algorithm?®
(available as an IMSL library subroutine) is employed to solve practical shape op-
timization problems. The BCM and design sensitivity codes are coupled with the
IMSL library subroutine to solve these problems. In order to demonstrate the perfor-
mance of the BCM in 2-D optimal shape design, the above strategy is used to solve
two shape optimization problems and the numerical results are compared against
those obtained from the BEM. The DSCs required by these examples are those at
boundary nodes of a body. Therefore, it is most convenient to calculate them from
the primary BCM sensitivity algorithm presented before in Reference 1. This has

been done in this work.
2. 2-D BCM FORMULATIONS

The information presented in this section is summarized from Reference 6 where

more details can be found.

2.1. Basic formulation

The idea of dimensional reduction starts from the standard Boundary Integral

Equation?® (BIE) without body forces
cik(Pui(P) = /;B [Ui( P, @)oi;(Q) — Tiji( P, Q)ui(Q)] e; - dS (1)

where c; is the corner tensor, P, @, u; and o;; are the source point, field point,

displacement vector and stress tensor respectively, Uix and I, are the Kelvin kernel
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6

tensors,?® and e; are global Cartesian unit vectors. In 2-D problems, @B is the

boundary of a body B, and dS is an infinitesimal boundary length vector.
Let
Fi = [Ui(P,Q)0i;(Q) — Ziji( P, Q)ui( Q)] e; (2)
By discretizing the boundary 3B into n elements, the BIE (1) becomes
n Eea
cu(PruiP)= [ Fi-dS=3 [“Fi-ds=0 (3)
3B t=17’Ea
where £y and Eyp are the endpoint nodes of element (¢).
Since the divergence of Fy at a field point Q is zero,? i.e.
Vo -Fr=0 (4)

everywhere except at the source point P, so for non-singular elements (elements
that do not contain the source point P), functions ®; can be found by solving the

following identity that satisfies equation (4)

0%, 09,
Fr=—e — — 5
k By €1 oz €2 (5)
Hence, for a non-singular element (¢), substitution of (5) into (3) yields:
Fa _ 50 (0
A Fi-dS =0, (Ep)— @, (En) (6)
21

In view of the above identity, ®, are called global potential functions. A numer-

ical implementation of equation (6) does not require any numerical integration!

[t is noted that the evaluation of boundary integrals on singular elements (ele-
ments containing the source point P) can be avoided by using the rigid body motion
technique as it is often performed in the standard BEM. A formulation using this

technique explicitly is addressed in the next section.

2.2. Formulation using the rigid body motion technique

In order to regularize the Cauchy singular integrals in the BIE (1), a rigid body

motion solution is applied to this equation to produce a new equation

[, (Wa(P.Q)ois(@) — Sii(P,Q) (@) ~ wi(P)l} ;- dS =0 (1)
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As a result, it can be seen that potentially singular integrals in (7) only need to

be evaluated on non-singular boundary elements.

Let the new (regularized) integrand vector
Gy = {Ui(P, Q)0:;(Q) — Zije(P, Q)[ui Q) — ui( P)]}e; (8)

The vector Gy, is still divergence free (everywhere except at P). With a procedure

anologous to that described in the previous section, one gets:

Ea (0 0
/E G- dS = WO (Eg) — U0(En) (9)
&1
where WU, is determined by solving the following identity
ov ov
Gk = a—ykel - -a—;eg (10)

2.3. Implementation with quadratic boundary elements

Gy contains the unknown fields u; and o;;. In order for the divergence free property
of F+ and G to hold, the displacement shape functions u; must satisfy, a priori, the

Navier-Cauchy equations:

Viu + V(V-u)=0 (11)

1 -2y
and the stress shape functions o;; must be derived from those of u; using Hooke's
law.

oij = Mijjupe + pui; + uj;) (12)

where A and p are Lamé constants of the material, é;; is the Kronecker delta (= 1
for : = 7 and = 0 for z # 7).

Quadratic shape functions that ensure the divergence free property of F; and

Gy are given by

YRR R PSR H ST St B R
uz 0 0 0 1 x Y
z? y? kizy kazy
+ﬂ7{ kazy }+ﬁs{ kizy }+ﬂ9{ 22 }+510{ .2 } (13)
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where k; = —-2(1 — 2v), k; = —4(1 — v) and v is the Poisson’s ratio.

Equation (13) can also be written for element (¢) as
(6 (0
10 =
{ - } = Zﬂ,‘f’{ T y) } (14)
uz h=1 u2n(,y)

{9} = [Tz, )|{BY) (15)

where {89} = (81 85" ... Big)T-

or in matrix form,

w2

(21-1)

® Traction node

e Displacement node

Figure 1: Quadratic boundary element (£).

The configuration of a chosen quadratic boundary element is shown in Figure
1. The relationship between the physical variable vector {p[’)} and the artificial
variable vector {ﬂm} of boundary element (¢) is

¢ 2-1) _(20=1) _(2t~1) _(2¢=1) _(20) (2£) _(20) _(2¢) (2¢+1) (2¢+1)\7T
I e !

{p 1

= [TYW(z,y)]{B} (16)

¢ ¢
where {8} = (81" ... Bi)T.
A new coordinate system (£,7) centered at each source point is introduced.

Equations (14) and (15) become respectively,

) o _ )
{ u; } _ Zél(xl){ u1n(§,m) } (17)
k=1

U2 E21‘4.(61 T])

{u0} = [T, )] {59} (18)
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In equation (18),
{89} = (A7 ... BL)T = (B;]{8Y) (19)

where 3 = B,(f) for h = 7,...,10, and [B,] is 2 matrix depending only on the
coordinates of the source point j (since it arises from a coordinate transformation

from the global system (z,y) to a system (£, 7) centered at j).

Since the coordinates of a source point P are always (0, 0), the displacement field

used in equation (7) can easily be found from equation (17) as

0 o _ (0
{ (@) — v (P) } _ ZB,(:){ win(€,7) } (20)

uz(Q) — uz(P) k=1 Tan(€,7)

in which, with (q) the element containing the source point, i.e., the singular elemnent,

BO =0 _ g9 if p=14

510 = glo if h=7.....10 (21)
Bl = g otherwise

[t can be seen that the displacement shape vectors in equations (14) and (20)
are the same. Thus, by substituting each of these ten displacement shape vectors
and its corresponding stress shape vector (using (12)) into equations (2) and (8),

one obtains
Fin = Gin = [UiTijn(€,n) — Zix@in(€,7)] € (22)

Equations (5) and (10) in this case take the following form
d¢- 0¢:

Fio = Gpp = —e; —

I E3
where 2z =h + 10(k—-1); A =1,2,...,10 and k = 1,2.

€2 (23)

Equation (23) implies that the BIE (1) and its regularized form (7) have the

same potential functions ¢,.

For a given value of h, the solution of (23) using (22) yields two potential

functions ¢. associated with & = 1,2. The 20 resulting potential functions (for
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h=1,...,10;k = 1,2) are listed in the Appendix of Reference 6. It can be ob-
served from this Appendix that only half of these 20 potential functions need to be

determined.

By using these potential functions, equations (6) and (9) become respectively

a 10
*" By a8 = 3 810 [6:(Ba) — 62(Ea)] (24)
a h=1
Ea = 500
g Gi-dS =) 6, [¢:(Ee) — ¢:(En)) (25)
a h=1

As shown in Reference 6, a development of (25) for all boundary elements leads

to the following final BCM system of equations

[A{X} = [B]{Y'} (26)

Or,
[A[{X} ={Z} (27)

In equations (26) and (27), [A] and [B] are the BCM matrices which are as-
sociated with the potential functions ¢.; {X} and {Y'} contain, respectively, the
unknown and known (from boundary conditions) physical quantities. Thus, {Z} is

a known vector. Finally, system (27) can easily be solved to find the unknowns {X}.

3. STRESSES IN B-

3.1. Hypersingular boundary contour formulation

A method for computing stresses in B®, starting from the HBIE, is presented here.

This derivation is new and is different from that in Reference 6.

Stresses can be calculated using Hooke's law (12). To this end, the displacement
gradient tensor used in (12) needs to be computed from the gradient form of the

BIE (1) with respect to a source point P, i.e. from the following HBIE:

Toen = = [ Wiem(PQ)5(Q) ~ Sijum(P.Qui(Q)le; a5 (28)
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in which, the derivatives of the Kelvin kernels with respect to a source point P
(( ).m) have been converted to those with respect to a field point @ (( ).m) by a
sign change (M = m = 1,2 in 2-D cases); and v = 0.5 if the source point P (where
stresses are to be computed) is on the boundary dB* and v = 1 if P is inside the
body B.

In a (£,7) coordinate system centered at the source point P, the expressions for

the gradients of Kelvin kernel tensors for plane strain problems are

-1 ‘
87'.#(1 _ l/)r [(3 - 4V)6£k7"m - 5in7',k - ‘5nkr,:’ + Qr‘ir'mr.k]

Sotm = =
% 47(l — v)r?

Uik.m =

[ST'gT.jT"krvm - 2(6, TiTk + 61'“7",'7";: -+ (5;;,17",'7"_]') + (1 —_ 21/) r

(=6ik0jn — ikbin + 6:j0kn) + 2(1 — 20)(bikt ;7. m + 8jk7 iTom — Oi;T kT )] )
(29)
where y = G is the shear modulus, §;; is the Kronecker delta and r = /€2 + n?.

It is noted that the integrand vector of equation (28)
Him = [Uikm(P,Q)0ij(Q) — Zijem (P, Q)ui(Q)] &; (30)

is divergence free (everywhere except at P). This is true because the divergence is
taken with respect to a field point @ whereas Hy,, is, initially, the gradient of F

(which is itself divergence free®) with respect to a source point P .

Therefore, equation (28) can now be converted into the following BCM version
yurnm == (AL (En) — AL (En)] (31)
=1
where the global potential functions A, are determined by solving the identity

Oem _ Ohiom

Hi, = e B¢ e (32)

3.2. Numerical implementation

As usual, each of the ten displacement shape vectors in (17) (see also equation (13))

and its corresponding stress shape vector (using (12)) are employed in equation (30)
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to give
Hinn = [ng,ma'_,'jh(g, 7]) - Eijk.mﬁih(§7 77)] €; (33)

Equation (32) in this case takes the following form

oA, A\,
Himn = 377—61 - 8_§e2 (34)

where w=h+ 10(k - 1) +20(m -1); A =1,2,...,10; k=1,2 and m = 1,2.

For a given value of &, the solution of (34) using (33) yields four potential func-
tions A, (corresponding to £ = 1,2 and m = 1,2). The 40 resulting potential
functions (for A = 1,...,10) are listed in the Appendix where only half of them

need to be determined.

With the origin of the coordinate system (&,7n) is centered at P, a numerical

implementation of (31) leads to

n 10 .
yues =3 3 MDA (35)

{=1 h=1

where A2 = A, (a1, n01) = Aw (€20 ne2) — Ky, with ky = 0.5 if P is a regular point on
OB and w = 2,16,23 or 35 (see Reference 6 and the Appendix of this paper). At
regular boundary points on @B with other values of w, as well as at points inside
the body, £\ = 0.

In matrix form,
n

7{uear} = 3 [AP9] (B {89} (36)

=1
where [A{;?)] is the matrix associated with the potential functions A, and it is noted

that {3("} is known at this stage from the solution of the primary problem (27).

4. SENSITIVITY ANALYSIS

4.1. DSCs for the primary BCM problem

This section recapitulates results from Reference 1 where further details are avail-
able.
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The DSCs under consideration can be found by differentiating equation (26) with
respect to a design variable b, which is a typical component of a shape design vector

b. The result is,

[A} {X}+ [B] {V} + [A] {X} +[B] {¥}= {0} (37)

where ( ) denotes the total derivative with respect to b, i.e. ()= d( )/db and

generally,

()=0)p+wvil ) (38)

[t is noted here that in order to avoid any ambiguities that might result from the
use of the above notation for the total derivative of a long expresion, the alternative

notation ( )" is used in such cases.

In equation (38), the quantities v; = dz;/db are the components of the design
velocity field. For 2-D cases, z; = z and z; = y, thus equation (38) can be expanded

to

had -

OD=)s+ )z +()p ¥ (39)

This total derivative is totally analogous to the concept of the material derivative

(often taken with respect to time) in continuum mechanics.

In equation (37), {X} is known at this stage from the solution of the BCM
system (27). Furthermore, it is assumed that the boundary conditions are kept
fixed during the change of the design variables, so that {Y'}= {0}. By shifting the

known terms to the right hand side, equation (37) becomes
(Al {X}= - [B]{Y'}- (4] {X} (40)

or,

[A] {X}= (W} (41)

This final linear system is very similar to the BCM system (27). The matrix
[A] is identical in both equations. Also, it is generally overdetermined but always
consistent and therefore, the rectangular system solving algorithm used to solve the

usual BCM equations (27), can be reused here.
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4.2. Stress sensitivities in B-

This section presents a new method for calculating stress sensitivities in B=. The

starting point here is equation (36) in section 3.2.

The stress sensitivities can be determined from Hooke’s law (12) as
Gij= Abij(ue k)™ + o [(wi )" + (10)7] (42)

The sensitivity of the displacement gradient tensor required in equation (42) is

derived from (36) to give

7{ukm(b, P)}" = i{[A(;")] [Bp] {69} + [Awe)] (B {ﬂm}

=1

+ [A®9][Be] {B“’}} (43)
The new terms in equation (43) are computed as follows,

® The components of the matrix {A‘P ”] are given by

(PO . .
A =tw (Cas1a)— Aw (€2, 1e2) (44)

where,

Aw (Eesme) = Q—‘%ﬁ:—’@ [5' (e, y¢)— = (IvaP)]

3’\_'"(651;’"‘) [17 (Te,ye)— ¥ ($P,yP)] (45)

Although 91, /0¢ and 0A,/0n are singular when Q(z.y/) — P(zp,yp).
1.e. when (£,7) — (0,0), but at the same time [i‘ (Te,ye)— T (.’Ep,yp)] =

[1; (e, ye)— y (xp,yp)] ~ (O(r), therefore, unlike [A(P‘)], the matrix [A(P‘)] is
completely regular.

o The sensitivity of [Bp] is

[Brl= [Brl, £ (zp,yp) + [Brl, ¥ (zp,up) (46)
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e By taking the sensitivity of equation (16), we have

{5&)}: [[T“’]'T {p9} + [T(l)]-l {p('e)} (47)
where,

[l == [re] ™ [ fre]” (4

Although equation (45) requires the partial derivatives of the potential function
Aw, it Is interesting to note that these derivatives do not need to be determined from
Aw- In fact, it can be seen from equation (34) that these partial derivatives are the
components of the integrand Hypsp, and these components can be found from (33)

as

a/\w(aég’ T’l) = —-U,‘k'ma'-x?h(fi 1’) + SiZk,mEih(f’ n)
N (49)
____W(aé;:’ T’l) = Uik,mailh(gv 7]) - E"lk'ma‘.h(g’ n)

in which, @, is the :** component of the A** displacement shape vector in (17), and

Ti1h, Oi2n are the stress components determined from %;, by Hooke's law (12).

Finally, it can be observed that the process of evaluation of equation (36) and
its sensitivity form (43) is simpler than use of the equivalent ones (equations (38)
and (39) in Reference 1).

5. SHAPE OPTIMIZATION

5.1. Formulation of an optimal design problem

An optimal shape design problem can be stated as a minimization problem under

certain constraints whose general form can be formulated as follows

Minimize  f(b) (50)
Subject to  gi(b) >0 t=1,..., N (51)
hi(b) =0 7j=1,...,N; (52)

b < by < b k=1,...,N (53)
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in which, b = (bl,bg,...,bN)T are the design variables, f(b) is called the objec-
tive function, and g;(b) and £;(b) are called inequality and equality constraints,

respectively.

The fact that the optimization problem is stated as a minimization is not re-
strictive since it is always possible to maximize an objective function by minimizing

its negative value.

The design variables b could be shape or sizing parameters that define a part or

the whole boundary of a body.

The objective function could be:

e The weight of a 3-D body or the area of a 2-D domain. This is the most typical

objective function in optimal shape design.

e The maximum effective stress over a region B. where a stress concentration
occurs. The effective stress can be principal, von Mises or Tresca stresses at a
point in the region B.. Such objective functions are often employed in stress

concentration problems.

® The variance of the stresses over a boundarv dB,., which can be stated math-
ematically as
|
b) = —/ -7? 54
fby =7 [ [o(5)~ o] ds (54)
where 7 is the mean value of o which could be effective or tangential stresses on

the boundary 9B, of length L. Minimization of this kind of objective function

requires the effective stress to be as uniform as possible on the boundary 9B..

The constraints (51) and (52) describe all the restrictions associated with the
optimal problem under consideration. In shape optimization, the usual constraints

are

e Effective stress in the body should not exceed the allowable stress.

® Displacements at given positions should be less than prescribed values.
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e Stiffness or stability constraints in buckling problems.
e Frequency constraints in vibration problems.

e Technological or manufacturing constraints.

Expression (53) contains side constraints and is used to limit the region of search
for the optimization problem. Here b, and b denote lower and upper bounds,
respectively, of the design variable b;. The side constraints are introduced to prevent
unreasonable or meaningless solutions. For example, the sizing dimensions of a

structure must always be positive.

5.2. Shape modeling

An important issue in shape optimization is how to model the design boundary under
given conditions while the number of design variables are kept as low as possible. In
general, some nodes (called control nodes) on the part of boundary to be optimized
are chosen as design variables. Then, fitting interpolations such as B-spline,? cubic

spline,'®?* using these control nodes, are employed to represent the design boundary.

In special cases. a boundary can be modelled by the following parametrized

equations!®
T = a(cos @ + € cos 36) .
(53)
y = a(Bsinf — ecos 38)
where the parameters a, € and 3 control, respectively, the size, shape and aspect
ratio of the boundary. Thus, they can be chosen as design variables. By using
appropriate values for these parameters, a variety of smooth curves such as circles,

ellipses or rectangles with rounded corners can be generated.

Both aformentioned approaches are employed in the optimization examples of
this work. The cubic spline fitting is used in the example of a fillet problem whereas

the parametrized equations (55) are applied in the example of a plate with cutout.
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5.3. Mathematical programming methods

In general, both objective function and constraints in shape optimization problems
are nonlinear functions of the design variables and cannot be expressed analytically
(in closed form). Therefore, numerical approaches such as mathematical program-
ming methods must be employed to solve the optimal problem (50) - (53). The
most common methods in the context of optimal shape design are successive linear

programming (SLP) and successive quadratic programming (SQP) methods.

SLP is the most popular and simplest approach which approximates the objective
function and the constraints of problem (50) - (53) by their first order Taylor series
expansions about the design vector b obtained from the previous iterative step. The
new linearized problem can then be solved easily by using the well-known simplex

method or other standard optimization algorithms.

Due to the linearization of the SLP method, moving limits must be imposed
here to prevent high errors of this approximation. Otherwise the problem may
have unbounded or oscillatory solutions. If the moving limits can guarantee a good
approximation for the linearized problem, its solution will be closer to the optimal
one than that of the previous step. In general, the moving limits should be shrunk
when the design solution approaches the optimum since the linear approximation
needs to be more accurate at that time. The way to choose and the requirement to

adjust moving limits are the main drawbacks of the SLP method.

In the SQP method, the optimization problem is approximated by expanding
the objective function in a second order Taylor series about the current values of

the design variables, and the contraints, in a first order Taylor series as follows,

Minimize (b)) + V7 f(b™){Ab} +  {Ab} [H]{Ab)

Subject to g;(b{™)) 4+ VTg;(b(™){Ab} > 0 i=1,...,N,
e (56)

hi(b™) + VT h;(bi™){Ab} = 0 i=l..., Ny

b — 6™ < Ab < b — 6™ k=1,....N
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where m denotes the previous optimization step, {Ab} = (Aby, Ab,,..., Aby)T are
the changes in the design variables, [H], V f(b(™)) and Vg(b{™)) are, respectively,

the Hessian matrix, the gradients of the objective function and its contraints.

The SQP method is usually considered a powerful method in various optimization
problems thanks to the use of quadratic programming that leads to faster conver-
gence than the SLP and more accurate final solutions. This method is used in this

paper to solve optimization examples.

Since Taylor series are employed in the SLP and SQP methods, it can be seen
that DSCs are required by these methods in order to form the gradients of the

objective functions and the contraints.

5.4. Shape optimization program

The C function “f_min_con_nonlin” from the IMSL library is coupled with the
2-D BCM analysis and sensitivity programs to solve shape optimization examples
of this paper. The function is based on the FORTRAN subroutine NLPQL de-
veloped in Reference 25 where theoretical details of the algorithm are presented.
“f_min_con_nonlin” uses the SQP method to solve the general nonlinear optimization
problem (56) in which the Hessian is replaced by a positive definite approximation.

Thus, the evaluation of second order DSCs for the objective function is avoided.
6. NUMERICAL EXAMPLES

Four examples are studied in this section. For the first three examples, the following
material data are used: Young’'s modulus £ = 2.5 (in consistent units) and Poisson’s
ratio v = 0.3. The first example is concerned with stress analysis in a narrow
cantilever and the second with stress sensitivity analysis in a hollow cylinder (Lamé’s
problem). In these two examples, stresses and their sensitivities are computed by
the new approach (sections 3 and 4.2). The last two examples deal with shape
optimization. In these cases, stress sensitivites at boundary nodes are obtained
from the primary BCM design sensitivity analysis developed in Reference 1 and

summarized in section 4.1.
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6.1. Bending of a narrow cantilever - stress analysis

Yi
D J C =l
] ' ‘/p
c=05 /] E
] / ' l >X
/ E |
A i’ ‘
Xq I B
B =4

Figure 2: Modeling of the narrow cantilever problem:.

Consider a cantilever of narrow rectangular cross section as shown in Figure 2.
The structure is subjected to a distributed shearing force p along its free end and
the resultant load is equal to P. The stresses in section IJ are computed using
the formulas presented in section 3. The cantilever boundary is discretized by 18
quadratic elements: four and five elements are equally spaced along each of the
vertical and horizontal edges, respectively. Due to the narrow rectangular cross
section of the cantilever compared with its depth 2c, this example can be considered

to be in a state of plane stress.

By virtue of Saint-Venant’s principle, the following elementary solution can rep-
resent the stress distribution for cross sections at a considerable distance from the
ends?”

Pl —z)y ‘

oy = 0 4 (57)

Pira_ o
Ory = —37 (c -y ) J
where I = 2¢3/3 is the moment of inertia of the cross section of the cantilever,

P = 2pc is the resultant end load.

The above analytical solution for the stresses in section IJ with z = zo = {/2
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Figure 3: Stress components along the line [J (see Figure 2).

and the BCM numerical results are plotted in Figure 3 where good agreement is

observed.

6.2. Lamé’s problem - stress sensitivity analysis

The second example deals with the calculation of stress sensitivities for Lamé’s
problem. Consider a thick cylinder subjected to uniform pressures p; and p, on the
inner and outer surfaces, respectively. Let a and b be the inner and outer radii of

the cylinder where a is chosen as the design variable.

The analytical expressions in polar coordinates (r,8), for the stress fields of

Lamé’s problem, are given by?’

212 . 2 o R2
a b (po pl) pla pob (58)

Orfg =% (B2 — a?) 12 B2 — a2

in which, the expressions for o, and oy correspond to the upper and lower signs,

respectively.

By assuming that the geometry changes linearly with changes of the design
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Figure 5: Stress sensitivities along the line IJ (see Figure 4).
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variable a, it is easy to get
- b —-Tr
r=

(59)

b—a
Therefore, the analytical sensitivity fields are found by taking the total derivative
of equation (38) with respect to the design variable a (using equation (38) written
in polar coordinates) to give

- 2ab? (p; — po) [r (r* F %) £ a(b~7)(b+ a)]

o= 60
Ire (2~ a?)7 3 (60)

Due to symmetry, only a quarter of the structure needs to be modeled as shown
in Figure 4. The mesh consists of equal numbers of quadratic boundary elements
on each segment of the boundary. Also, all the elements on a given segment are
of equal length. This example is solved by using a total of 20 quadratic elements.
The formulas in section 4.2 are used to compute the stress sensitivities (Figure 3)
on the line segment IJ (see Figure 4). Excellent agreement is achieved between the

analytical and numerical solutions.

6.3. Shape optimization of a plate with cutout

A square plate with a central cutout, subjected to uniform biaxial tensile loads, is
shown in Figure 6. Because of symmetry, only a quarter of the plate is considered.
The model is set up with 42 quadratic elements, 10 at equal eccentric angles on E'A,
4 at equal distance along each of BC' and CD, and 12 at unequal distance along
each of AB and DE. Due to stress concentration at A and E, the mesh density is

increased from B to A and from D to E.

The objective here is to design the cutout shape EA so that the variance of
tangential stress o, on this cutout is minimized. Therefore, the objective function
has the form of equation (54) with, o = o,. Based on this equation, the sensitivity

of the objective function, required by the SQP algorithm, is given by!®

f= —%f-*-%LE(U,—F,) (&, —%,) ds + %LE(J,—E,f ds)  (61)
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Figure 6: Modeling of the plate with cutout.

in which, - i
. e )
L=[ dS: L=
[ as: L= [ )
— 1 (E
Oy = Z A U,dS \ (6'7)

- z_ 1 E. 1 E -
a,———za,+L/A c:',dS+-[—1/’l os (dS) J

In this example, the design cutout is modeled using equation (55) with € = 0,
i.e.,
r =acosf
(63)
= afsinf
where 6, a and a3 = b are, respectively, eccentric angle, semi-major and semi-minor
axes of the cutout. Here, § is chosen as the design variable. The constraint imposed

in this case is

0.3<B<1 (64)
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Hence,

dS = ay/sin? 6 + B? cos? 0d6
af3cos? 8 " (65)
\/sin2 0 + B%cos? 8

(dS)=

A linear assumption is used to determine the geometry changes (design velocity

field) of the cutout.

It has been proved?® that the analytical solution for this kind of problem is

Table 1 displays the history of the iterative optimization process for this problem.
The final solution 8 = 0.7501 is obtained after 6 steps, using a CPU time of 36.78 s
on an IBM RS/6000. This result is very close to the analytical solution and more
accurate than that obtained from the BEM by Wei et al.? (8 = 0.756 obtained after
3 steps. with a CPU time of 29.78 s on an IBM 3090 supercomputer).

Table 1: History of iterative optimization process for the plate with cutout

problem.
Number of iterations 3 = b/a f
1 1.0000 0.126108
2 0.8307 0.015546
3 0.7942  0.004843
4 0.7712  0.001140
3 0.7485  0.000007
6 0.7501  0.000001

6.4. Shape optimization of a fillet

The last example involves optimizing the shape of a fillet in a tension bar whose area
is selected as the objective function. An optimal shape is sought that minimizes the

area without causing yielding anywhere in the bar. The result will be compared
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Figure 7: Modeling of the fillet problem.

against those obtained in Reference 21 where shape design sensitivity analysis has
been used with the BEM.

Because of symmetry, only the upper half of the bar is modeled as displayed
in Figure 7. Young’s modulus, Poisson’s ratio and allowable von Mises stress are
E =3.107 psi, v = 0.3 and [ova] = 150 psi, respectively. The design boundary DE
is to be varied while points D and F are fixed. A total of 13 quadratic elements is
meshed on the boundary: 3 elements on the edge AB, 1 on BC. 2 on CD, 4 on the
fillet DE,2 on EF and 1 on FA. This mesh is densified around D which is a point
of stress concentration. The ordinates y,, y» and y; of three endpoint nodes inside

the fillet DE (control nodes) are chosen as the design variables.

The first task is to model the design boundary DE based on the coordinates
of the 5 endpoint nodes on this boundary. A cubic spline interpolation is used to
build the design curve ypg(y1,y2,y3, ). In this case, the objective function can be
evaluated via the area bound by DE, two vertical lines through D and E, and the
z axis as follows:

D

f(ylv Y2, .7/3) = yDE(yl’ y29y3vx)dx (67)

TE
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The constraints associated with the above objective function are described as

[ovm] — ovmi(y1,y2,93) 20 1<i<8 (68)
4.5<y; < T7.61 (69)
4.5 <y, < 6.23 (70)
4.5 <y3<5.19 (71)

where oy asi(y1,y2) are the von Mises stresses at nodes : on DE, and the last two
expressions are the side constraints that force the design boundary DFE to lie within
the triangle EGD.

The von Mises stress and its sensitivity are:

OvM = \/0’%1 + 0'%2 <+ 30%2 — 011022

5oaye (201 = 9m) Su1 +(200 = 0u1) G2 +6912 Gz

QUVM

Figure 8: Optimal shape of the fillet.

The SQP (function “f_min_con_nonlin” from the IMSL library) is again em-
ployed to solve this problem. The final converged solution is reached with a CPU
time of 40.4 s on an IBM RS/6000. The optimal shape of the fillet is shown in
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Figure 8. The area of the structure is reduced from the initial value of 145.125 in?
with stress violation around point D to the final value of 134.64 in? without yielding
on the boundary. This result is in good agreement with that obtained in Reference
21 (134.29 in?) where the CPU time was not shown. However, it is useful to point
out that only three design variables and 13 quadratic boundary elements are used
here as opposed to five design variables and 15 quadratic elements employed in the

work of Yang.?!
7. CONCLUSIONS AND DISCUSSION

This paper contains two primary contributions.

The first is the development of new formulations, based on the HBIE, for comput-
ing stresses and their sensitivities in 2-D linear elastic solid bodies. This approach
is valid at all points inside and on the boundary of a body, except at the ends of
boundary elements. The formulations are shown to be very efficient with respect to
ease of numerical implementation and computational effort. Results for two numer-
ical examples are seen to be uniformly accurate. It is felt that the primary reason
for this is that numerical integration is completely avoided in the 2-D BCM. Only

function evaluations are necessary.

The second contribution is the development and execution of a shape optimiza-
tion algorithm with DSCs calculated from the BCM. Again, the optimal solutions
are obtained very efficiently and accurately, demonstrating that the BCM has great

potential for engineering design problems.
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