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Cet te  thèse, constituée de quatre articles, vise à développer de nouvelles variantes 

de la méthode des éléments de frontière (MEFr) en élasticité linéaire bidimemsion- 

nelle (2-D). Ces variantes sont nommées génériquement méthode des contours de 

frontière ( M C F )  et méthode des contours de  frontière hypersingulière (MCFH). Un 

développement ultérieur de la MCF 2-D est réalisé tandis qu'une théorie générale 

de la MCFH 2-D est introduite dans la bibliographie pour la première fois. Les 

applications de ces méthodes à l'analyse des contraintes e t  à I'opt imisation de forme 

sont les objectifs principaux de  cette étude. Plusieurs exemples numériques ayant 

des solutions analytiques connues sont résolus afin d'illustrer les avantages de ces 

méthodes dans ces types d'applications. 

La MEFr est une méthode polyvalente qui utilise 1 'équation intégrale de frontière 

( E I F )  (voir une dérivation de cette équation à la section 4.1 du chapitre IV) pour 

solutionner des problèmes aux limites. L'idée centrale des nouvelles méthodes (MCF 

et MCFH) consistent à employer des fonctions d'interpolation spéciales du champ de 

déplacement et de contrainte. Ces fonctions sont celles de domaine et satisfont les 

équations d'équilibre et constitutives. Par conséquent, la divergence de l'expression 

vectorielle sousintégrale de I'EIF et celle de 1 *équation intégrale de  Irontière hyper-  

singulière ( E I F H )  (voir une dérivation de cette équation à la section 4.8 d u  chapitre 

IV) sont nulles et alors, la dimension des intégrales usuelles dans ces équations peut 

être réduite par un. En d'autres mots. des intégrales de surface pour des problèmes 

tridimensionnels (3-D) e t  celles curvilignes pour des problèmes 2-D peuvent être 

transformées respectivement en des intégrales curvilignes et l'évaluation de fonc- 

t ions analytiques aux noeuds de  front ière. 

Cette réduction en dimension offerte par la MCF et la MCFH. et le fait que 

ces méthodes utilisent des fonctions d'interpolation spécialesl permettent à ces deux 

méthodes d'être très compétitives avec la méthode des éléments finis ( M E F )  et la 

MEFr dans certains domaines d'application de la mécanique appliquée. Due à ces 

caractéristiques, et en particilier à l'absence des intégrations numériques dans la 



MCF et  la MCFH pour des cas 2-D. les résultats numériques de l'analyse des con- 

traintes sont très précis en général. Cela est montré via les exemples numériques 

présentés dans les articles. 

Les sensibilités de design sont des coefficients requis pour solutionner numériquement 

un problème d'optimisation. C'est pourquoi la précision de ces quantités joue un 

rôle important en optimisation de forme. Comme dans I'analyse des contraintes, la 

précision des résultats numériques de l'analyse des sensibilités peut être bien assurée 

par la MCF. Cet avantage et le fait que la MCF ne requiert que des maillages aux 

rives (comme dans la MEFr) lui permettent de devenir une méthode très appropriée 

en optimisation de forme. 

Les avantages mentionnés plus haut offerts par la MCF et la MCFH sont re- 

marquables. Ils sont bien demontrés à travers les articles et en particulier. via les 

résultats numériques des exemples illustrés. La recherche menée dans cette thèse 

vise a introduire au monde du calcul numérique et de la mécanique appliquée. la 

MCF et la MCFH en linéaire élasticité 2-D ainsi qu'un nouveau succès dans la 

solution numérique des problèmes d'optimisation de forme. 



ABSTRACT 

This dissertation. based on four papers, is involved with novel variants of the 

conventional boundary element method ( B E M ) ,  called the boundary contour method 

( B C M )  and hypersingular boundary contour method (HBCLI), for two-dimensionai 

(2-D) linear elast icity. A furt her developrnent of the 2-D BCM is carried out whereas 

a general theory of the 2-D HBCM is introduced to the literature for the first time. 

Applications of t hese methods to stress analysis and structural shape optimization 

are the main objectives of this study. Several numerical examples having known 

analytical solutions are solved in order to  show the advantages of both methods in 

t hese kinds of applications. 

The  BEM is a general purpose approach which starts from the boundary integral 

equation ( B I E )  (see a derivation of t his equation in section 4.1 of chapter IV) in order 

to solve a given boundary value problem. The key idea of the new methods consists 

of using special dispiacement and stress shape functions in the domain of a body 

that satisfy the equilibrium and constitutive equations. As a result. the integrand 

vectors of the BIE and regularized hypersingufar boundary integral equation ( H B I E )  

(see a derivation of this equation in section 4.S of chapter IV) are divergent-free. 

and thus the dimension of the usual integrals in the above equat ions can be reduced 

by one. In other words. surface integrals for three-dimensional (3-D)  problems and 

line integrals in 2-D cases can be converted respectively into line integrals and the 

evaluat ion of analyt ical funct ions at boundary nodes. 

This reduction in dimensionality offered by the BCM and HBCM. as well as the 

lact that these methods use special shape functions, are expected to make them 

competitive with the finite element method (FEM) and the BEM for some applica- 

tions in computational mechanics. Due to these above features and e~pecia l ly~ the 

absence of numerical integrations in the BCM and HBCM for 2-D problems. numer- 

ical results obtained for stress analysis are very accurate as it can be seen from the 

numerical examples presented in the papers. 

Design sensitivities are coefficients required for numerically solving an optimiza- 



tion problem. Hence, the accuracy of these quant ities plays a crucial role in shape 

optimization. As for stress analysis. the accuracy of numerical results for design 

sensitivity analysis can be well ensured by the BCM. This advantage and the fact 

that. as for the BEM. the BCM only needs boundary meshing, as opposed to domain 

meshing required by the FEM, make the %CM a very attractive method in shape 

optimal design. 

The aforementioned advantages of€ered by the BCM and HBCM are remarkable. 

They are clearly shown through the papers and especially. from numerical results 

of the illustrative examples. The research presented in this dissertation aims to 

introduce the BCM and HBCM for 2-D linear elasticity. as well as a new successful 

approach for numerically solving shape optimization problems, into the world of 

cornputational and applied mechanics. 



Depuis plus d'une trentaine d'années, la MEF est considérée comme un outil très 

performant et  une technique bien établie dans le calcul numérique en mécanique. Le 

maillage requis par cette méthode consiste à discrétiser le domaine à analyser en un 

nombre fini de sous domaines (éléments) (voir Figure 1.1) sur lesquels sont effectuées 

des intégrations de domaine (intégrales doubles et  triples pour des problèmes 2-D 

et 3-D. respectivement). Bien qu'il n'y ait pas de difficultés importantes pour les 

maillages 2-D. on est d'accord en général que le maillage 3-D des objets complexes 

demeure un grand défi pour la MEF. C'est pourquoi des efforts considérables sont 

déployés en vue de proposer de nouvelles méthodes numériques dans lesquelles la 

tâche de maillage peut être simplifiée par rapport à la MEF. 

Récemment. la MEFr est apparue comme une méthode alternative de la MEF 

en mécanique (e-g. Banerjee et Butterfield, 1981; Brebbia et al., 1984; Hall. 1994: 

Mukherjee. 1989). La MEFr réduit la dimension d'analyse d'un problème par un. 

c.à.d. qu'elle génère des équations d'intégrales curvilignes unidimensionnelles ( 1-D) 

pour des problèmes 2-D et des équations d'intégrales de surface 2-D dans des cas 

3-D. Par conséquent. la MEFr discrétise la frontière seulement (voir Figure 1.2). La 

création des maillages devient alors beaucoup plus simple et moins coûteuse que 

celle dans la MEF. Cet avantage, ainsi que le fait que la MEFr produit souvent 

des réponses physiques aux rives (déplacements. tractions, contraintes) plus précises 

que celles données par la MEF. permettent à la MEFr de devenir une méthode très 

prometteuse dans le domaine du calcul numérique en mécanique. 

Comme mentionné précédemment, la MEFr conventionnelle en élasticité linéaire 

exige l'évaluation numérique des intégrales curvilignes pour des problèmes 2-D et  

des intégrales de  surface dans des cas 3-D (voir, par exemple, Hall, 1994). Il y a 

quelques années, Nagarajan, Lutz et Mukherjee ont proposé la MCF qui atteint une 

réduction plus loin de la dimension d'analyse. En fait, ces auteurs ont employés des 

fonctions d'interpolation spéciales du champ de déplacement et de contrainte pour 

que la divergence de l'expression vectorielle sousintégrale de I'EIF soit nulle. La 



propriété de divergence nulle permet, pour des problèmes 3-D, d'utiliser la formule 

de Stokes afin de transformer des intégrales de surface sur les éléments d e  frontière en 

des intégrales curvilignes sur les contours bornant ces éléments. Pour des problèmes 

2-D, une transformation similaire, employant l'idée de l'indépendance de  l'intégrale 

curviligne du chemin d'intégration, élimine complètement l'intégration numérique. 

Alors, la MCF réduit la dimension d'analyse des problèmes par deux: la méthode 

n'exige que l'évaluation numérique des intégrales curvilignes 1-D pour des problèmes 

3-D et tout simplement, l'évaluation de fonctions analytiques (appelées fonctions 

potentielles) aux extrémités des éléments de frontière dans les cas 2-D. Cette idée 

est aussi valable pour d'autres problèmes linéaires tels que la théorie potentielle. 

Cette thèse est reliée à un développement ultérieur de la MCF e t  une étude 

complète de  la MCFH en élasticité linéaire 2-D. Il s'agit également d e  l'application 

de ces méthodes à l'analyse des contraintes et particulièrement, de l'optimisation de 

forme par la MCF. 

L a  plupart des concepteurs employent des processus itératifs pour améliorer Leur 

design jusqu'à ce que des critères donnés soient rencontrés. Le processus tradition- 

nel de  conception est basé sur une technique appelée "essai et erreur" avec laquelle. 

les ingénieurs utilisent I'expérience et l'intuition pour modifier leur design vers la 

*meilleurew solution. L'avantage principal de cette méthode heuristique est que 

la connaissance des ingénieurs peut être employée directement dans leur design. 

Jusqu'à présent cette approche a dominé le processus de conception. Néanmoins. 

plus les problèmes de conception sont complexes, plus leur améloration devient dif- 

ficile, et donc plus on a besoin d'un nouvel outil permettant de guider l'amélioration 

du design ou d'optimiser le processus de conception. Par ailleurs, I'intérêt actuei en 

optimisation de forme est aussi extrêmement motivé par le besoin d'une concept ion 

très compétitive au niveau des coûts partout dans le secteur industriel y compris 

l'aérospatiale. l'automobile, la marine, l'industrie des génératrices, la conception des 

machines et autres domaines d'ingénierie. Il faut noter que le terme "optimisation de 

forme" utilisé dans ce travail implique la conception optimale de la forme d'un objet 

tandis que le terme "optimisation de structuresw signifie l'optimisation d'ossatures. 



xii 

Un processus de conception optimale est un outil qui utilise des techniques 

d'optimisation mat hématique afin de répondre au défi mentionné précédemment. 

Ici. le problème de conception est transformé en un modèle mathématique de telle 

manière qu'une technique d'optimisation puisse être appliquée pour améliorer le 

modèle vers la solut ion optimale de  façon automatique ou semi-automatique. 

La théorie fondamentale des approches d'optimisation est apparue aux 17' et  

18' siècles. Cependant. l'optimisation de nature purement mat hématique ne peut 

pas être appliquée à la plupart des problèmes en pratique car ces problèmes sont 

impossibles a résoudre analytiquement. C'est pour cette raison que des méthodes 

numériques ont été développées. Avec le développement de la MEF, Schmith (1960) 

fut l'un des premiers à mettre sur pied une classe de techniques d'optimisation 

de structures. Puis, l'introduction des méthodes de programmation mathématique 

couplée avec la MEF est devenu un événement marquant la mise au monde d'un outil 

ayant le plus de succès dans la solution des problèmes d'optimisation de structures 

en pratique. Dans le cadre de I'optimisation de forme utilisant la MEF. une des 

premières approches a été présentée par Zienkiewics et  Campbell ( 1973) dans laquelle 

des noeuds de frontière ont été choisis comme les variables de  design e t  ia solution 

optimale numérique est obtenue par la programmat ion linéaire séquentielle. 

Malgré le succès de la MEF dans I'optimisation de structures où le maillage des 

structures est simple car elles sont modélisées par des éléments 1-D tels que des 

barres ou des poutres, il reste encore un désavantage important. Le re-maillage. 

durant le processus d'optimisation où la forme de l'objet change avec les itérations 

successives de conception, est très cofiteux, en particulier dans des cas 3-D. Aussi, 

ce re-maillage provoque souvent des distorsions des éléments près de la frontière à 

optimiser. 

Grâce à l'avantage de maillage offert par la MEFr, depuis les années 80, plusieurs 

chercheurs ont contribué des efforts considérables afin de développer des techniques 

efficaces pour l'optimisation de forme utilisant la MEFr et des succès remarquables 

ont été atteints. La plupart de ces contributions sont concentrées sur le calcul des 

sensibilités de design qui sont des coefficients requis par les méthodes de  program- 



mation mathématique. L'efficacité (précision et vitesse) du calcul des sensibilités 

joue un r d e  décisif dans la réussite de I'optimisation de forme. 

La MCF possède le même avantage de maillage que la MEFr conventionnelle. 

D'ailleurs. comme mentionné plus haut, la première offre une réduction additionnelle 

de la dimension d'analyse. Par conséquent. la MCF s'avère très prometteuse dans le 

domaine d'analyse des contraintes ainsi que d'optimisation de forme des structures 

mécaniques. Cette idée a motivé l'étude présentée par cette thèse. 

La thèse est associée aux quatre articles suivants: 

1. The boundary contour met hod for two-dimeosional linear elasticity wit h quadratic 

boundary elements. 

2. The hypersingular boundary contour method for two-dimensional linear elas- 

t ici tu. 

3. .4 boundary contour formulation for design sensitivity analysis in two-dimensional 

linear elas tici ty. 

4. Stresses. stress sensitivities and shape optimization in two-dimensional linear 

elasticity by the boundary contour method. 

Ces articles sont inclus en Annexes. Comme l'indique leur titre. les deux pre- 

miers articles introduisent la MCF et la MCFH avec l'application à l'analyse des 

contraintes. Le  troisième emploie la MCF pour développer une analyse des sensi- 

bilités de design nécessaires à l'optimisation de forme. Finalement. la première partie 

du dernier art i d e  présente de nouvelles formules concernant le calcul des contraintes 

et leurs sensibilités de design tandis que la deuxième partie s'attaque à l'application 

de la MCF à l'optimisation de forme. 

Bien que ce soit une thèse par articles, il existe un lien raisonnable entre les 

quatre articles utilisés. Le premier article présente un développement ultérieur 

de la MCF dans l'analyse des contraintes en élasticité linéaire 2-D. Dans ce tra- 

vail, une implémentation numérique avec des éléments quadratiques est effectuée en 
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vue d'améliorer la précision des résultats numériques obtenus par l'utilisation des 

éléments linéaires comme elle a été faite dans l'étude précédente (voir Nagarajan 

e t  al., 1994). En dehors de l'analyse primaire où les quantités physiques aux ives  

telles que des déplacements, des tractions et des contraintes sont calculées, cet article 

adresse également l'analyse ultérieure où on évalue des contraintes a I'intérieur du do- 

maine. En étape ultérieure, une propriété remarquable a été découverte: l?expression 

formulée pour calculer des contraintes A I'intérieur du domaine peut aussi être em- 

ployée pour évaluer des contraintes à la frontière (sauf aux noeuds d'extrémité) sans 

avoir recours à aucun moyen particulier pour traiter des singularités comme dans la 

M EFr conventionnelle. 

Il faut noter que les valeurs numériques des contraintes, données par la MCF. aux 

extrémités des déments sont discontinues même si. à ces endroits. les contraintes 

sont continues d'une manière physique. Bien que ce soit un désavantage mineur. la 

modélisation aux coins d'un domaine 2-D devient triviale dans ce cas. Ces discon- 

t inui tés numériques à travers des éléments de frontière peuvent être bien améliorées 

en utilisant la MCFH présentée dans le deuxième article. pourvu quY n'y ait aucune 

discontinuité de contrainte dans le problème à traiter. La différence entre la MCF et 

la MCFH est que. au point de départ, la première utilise I'EIF tandis que la dernière 

emploie une équation intégrale de frontière hypersingulière déjà régularisée. Donc. 

pour des problèmes ZD, chaque méthode est caractérisée par ses propres fonctions 

potentielles. Comme dans le premier article, les deux analyses primaire et ultérieure 

sont adressées et implémentées avec des éléments quadratiques dans l'article sur la 

MCFH 2-D. Via les exemples numériques dars  ces articles, on s'aperçoit que les 

deux méthodes peuvent produire des résultats numériques de grande précision. en 

particulier ceux en étape ultérieure. Finalement, comme dans la MEFr convention- 

nelle, en dehors de l'application à l'analyse des contraintes, la MCFH peut aussi être 

développée pour solutionner des problèmes en mécanique de la rupture. 

Avec les avantages sur le maillage à la frontière, sur la précision des résultats 

obtenus et sur le temps de calcul, la MCF est évidemment une méthode numérique 

très appropriée à l'optimisation de forme. Ce type d'application requiert l'étude 

d'analyse des sensibilités de design employant la MCF et cette étude est le sujet 



du troisième article. Dans ce travail, afin d'obtenir des coefficients de sensibilité 

de design (sensibilités de déplacement. de tract ion et de contrainte), les équations 

de la MCF sont différenciées analytiquement par rapport aux variables de design. 

Ici, on traite les équations de la MCF des analyses primaire et ultérieure, donc cet 

article adresse non seulement les coefficients de sensibilité aux rives mais aussi ceux 

a l'intérieur du domaine. Encore une fois. la MCF produit des résultats numériques 

précis pour les exemples traités et surtout. cette précision est uniforme. La précision 

des coefficients de sensibilité obtenus est cruciale parce qu'elle détermine le succès 

de la solution des problèmes d'optimisation de forme. Finalement. cette étude mon- 

tre deux avantages additionnels de la MCF par rapport à la MEFr conventionnelle: 

(a)  dû à l'utilisation des fonctions d'interpolation globales. après avoir résolu les 

équations primaires. la récupération des sensibilités de contrainte aux noeuds est 

très simple et ( b )  i l  n'est pas requis d'employer de traitements particuliers pour 

régulariser des singularités dans le calcul des sensibilités de déplacement et de con- 

trainte en étape ultérieure. 

11 y a deux approches pour évaluer les contraintes et leurs sensibilités en étape 

ultérieure. La première approche utilise les fonctions potentielles de la MCF comme 

présentée dans les premier et troisième articles tandis que la deuxième approche 

emploie les fonctions potentielles de la MCFH comme présentée dans la première 

partie du quatrième article. Bien que les deux approches produisent les mêmes 

résultats numériques pour un problème donné. le temps de calcul requis par la 

deuxième approche est inférieur car sa formulation est plus simple que celle de la 

première approche. 

Avec les réussites mentionnées précédemment de la MCF 2-D en analyse des con- 

traintes et des sensibilités, il est approprié d'appliquer cette méthode à l'optimisation 

de forme. Ce type d'application est effectué dans la deuxième partie du quatrième 

article. En fait. deux exemples bien connus sont solutionnés en  employant l'analyse 

des sensibilités de design par la MCF developpée dans le troisième article. Les 

résultats sont comparés avec ceux obtenus par des chercheurs qui ont utilisé la 

MEFr. Finalement, ces résultats sont excellents ce qui justifie l'avantage de la MCF 

par rapport aux autres méthodes numériques en optimisation de forme. 



Tout comme le deuxième article sur la MC FH 2- D' les troisième et quatrième ar- 

ticles présentent les premières contributions à la bibliographie en ce qui concerne un 

développement de l'analyse des sensibilités employant la MCF 2-D et une applica- 

tion de cette méthode à l'optimisation de forme. Pour conclure, on peut dire que la 

MCF présente des avantages potentiels par rapport à d'autres méthodes numériques 

dans le domaine d'optimisation de forme. Par conséquent, l'étude menée dans cette 

thèse devrait motiver de futures recherches sur ce type d'application en 3-D. 
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CHAPTER I 

INTRODUCTION 

Over the last three decades, the FEhl has b e n  considered to be a powerful tool 

and a well-established numerical technique in computationd mechanics. The mesh- 

ing required by this method involves discretizing the total domain into a finite num- 

ber of subdomains (elements) (see Figure 1.1) on which domain integrations (2-D 

and 3-D integrds for 2-D and 3-D problems, respectively) are performed. Although 

there are no serious difficulties for 2-D meshing, it is generally recognized that 3-D 

mesh generation of a compiex body remains a big challenge for the FEM. Therefore, 

considerable effort has been devoted in proposing numerical analysis methods in 

which the meshing task can be simplified. 

Figure 1.1: FEM meshing of a connecting rod. 

Recently, the BEM has been widely acknowledged as an alternative numerical 

method for engineering andysis (e-g. Banerjee and Butterfield, 1981; Brebbia et al., 

1984; Hall, 1994; Mukherjee, 1982). The BEM reduces the dimensionality of analysis 

problems by one. i.e. it generates one-dimensional (1-D) line integral equations for 

2-D problems and 2-D surface integral equations in 3-D cases. As a consequence, 

the BEM discretizes the boundary only (see Figure 1 4 ,  so the mesh generation 

becornes much more straightforward and inexpensive compared to the FEM. This 

advantage, as well as the fact that the BEM usudly provides boundary physical 

responses (displacements, tractions, stresses) more precisely t han the FEM, makes 



Figure 1.2: BEM meshing of a connecting rod. 

the BEM a very attractive numerical method in computational mechanics. 

As mentioned above, the conventionai BEM for linear elasticity requires the 

numerical evaluation of line integrals for 2-D problems and surface integrals for 3- 

D ones (see. for example, Hall, 1994). By observing that the integrand vector of 

the usual linear elasticity BEM equation without body forces is divergence free, a 

few years ago, Nagarajan, Lutz and Mukherjee proposed a novel approach, termed 

generically the boundary contour method (BCM), t hat achieves a furt her reduct ion 

in dimension. The divergence free property allows, for 3-D problems, the use of 

Stokes' theorem to transforrn surface integrals on the usual boundary elements into 

line integrals on the bounding contours of these elements. For 2-D problems, a sim- 

ilar transformation, using the simple idea of path-independent integrais, eliminates 

numericd integration altoget her. The above transformations are qui te general and 

apply to boundary elements of arbitrary shape. Thus, the BCM reduces the dimen- 

sionality of analysis problems by two: the method oniy requires numerical evaluat ion 

of 1-D line integrals for 3-D problems and simply the evaluation of functions (called 

potential functioos) at endpoint nodes on the boundary of a body for 2-D cases. 

The above idea also works for other linear problems such as potential theory. 

The present dissertation deals with a further development of the BCM and a 

full study of its variant, called the hypersingular BCM, for 2-D Iinear elasticity. 

Application of these novel methods in stress andysis and in particular, application 

of the BCM in shape optimization are also included. It should be noted that the 

term shape optimization used in this work refers to the optimal design of the shape 



boundary of structural components. 

Most engineering designers use iterative processes to improve their design until 

it meets some given criteria. The traditional design process is based on the so 

called "trial and error" technique, in which design engineers use their experience and 

intuition to modify the design process towards the goal. The main advantage of this 

heuristic based design method is that the designers7 knowledge can be used directly 

in their design, and up to now this approach still dominates the design process. 

But as design problems become more complex, design irnprovement becomes more 

difficult and hence, the need for new tools to guide the design irnprovement, or 

to optimize the design process, becomes greater. Furt hermore, current interest in 

structural shape optimization is also largely motivated by demands for more cost- 

competit ive design throughout the industriai sector including aerospace, automot ive, 

marine, power generation, machine design and other engineering areas. 

An optimal design process is a tool which uses mathematical optimization tech- 

niques to meet the aforementioned challenge. Here, the design problern is trans- 

formed into a mathematical model so that an optimization technique can be applied 

to improve the model towards the optimum solution in a full- or semi-automated 

manner. 

The basic theory for optimization approaches was set forth long ago (17 '~  and 

1gCh centuries). However, pure mathematical optimization can rarely be applied 

in practical design because rnost design problems cannot be solved analytically. 

Therefore. numerical methods have been deveioped for this purpose. Over the last 

three decades, the FEM bas been considered to be a powerful tool for structural 

analpis. With the development of the FEM, a class of techniques for structural 

optimization problems was pioneered by Schmith (1960). Then, the introduction 

of the mathematical programming methods coupled with the FEM was a milestone 

in solving pratical structural optimization problems, which proved to be the most 

successful tool for optimum structural design. In the context of shape optimiza- 

tion using the FEM, one of the first approaches was presented by Zienkiewics and 

Campbell (1973), in which boundary nodes axe chosen as the design variables and 



the numericai opt imizat ion solution is obtained by sequent i d  linear programming. 

Despite the success of the FEM in structural optimization where the meshing 

of structures is straightforward since they are modeled by 1-D elements such as 

bars or beams, there still remains one main shortcoming. The remeshing dunng 

the optimization process, where the shape of the body changes during successive 

design iterations, is very expensive, especially in 3-D cases. This remeshing also 

often causes element distortion near the design boundary. 

Due to the meshing advantage of the BEM, from the 1980s several researchers 

have contributed considerable efforts to develop efficient techniques for shape opti- 

mization using the BEM and remadsable successes have been achieved. 

Besides having the same advantage in mesh generation as in the conventional 

BEM, as mentioned above, the BCM offers a further reduction in dimension of 

analysis problems. Sherefore, the generation of the BCM promises a new successful 

approach for stress analysis as well as for optimal shape design and the above idea 

has motivated the study presented in this dissertation. 

The dissertation is associated with the four following papers: 

1 .  The boundary contour method for t wo-dimensional linear elast ici ty wi t h quadrat ic 

boundary elements. 

2. The hypersingular boundary contour method for two-dimensional linear elas- 

ticity. 

3. A boundary contour formulation for design sensitivity analysis in two-dimensional 

linear elasticity. 

4. Stresses, stress sensi tivit ies and shape optimization in t wo-dimensional linear 

elasticity by the boundary contour method. 

which are enclosed in the Appendices. As described by the Mes, the first two papers 

present the BCM and HBCM with their application in stress analysis for 2-D linear 

elasticity, whereas the last two papers deal with an application of the 2-D BCM in 

shape optimization. 



CHAPTER II 

LITERATURE REVIE W 

2.1 The BCM for linear elasticity 

The BCM has been presented in the literature for 2-D (see Nagarajan et al., 1994) 

and for 3-D (see Nagarajan et al., 1996 and Mukherjee et al., 1997) linear elasticity 

problems. In the 2-D paper, however, only the pnmary BCM analysis, i.e. the de- 

termination of boundary tractions and displacements (see Figure 2 4 ,  is addressed. 

Also, the idea of rigid body modes, to regulaxize Cauchy singular integrals, is not 

employed in the Nagarajan et al. papers in an explicit manner. In addition, the 

numencal implementation cmied out with linear boundary elements is not quite ac- 

curate enough for engineering andysis, and especially, for design sensitivity analysis 

which is required for shape optimization. 

U3 L. 

P 
i 

= 1 

u - displacement vector 

z - traction vector 

x p - load vector 

1 G - intemal point 

H - non endpoint node 

L endpoint node 

O x1 

Figure 2.1: 2-D elastic body. 

The above shortcomings led to the need for a further development for the 2-D 



BCM in linear elasticity. This study is the topic of the first paper presented in 

Appendix 1. In this paper, a numerical implementation is set up with quadratic 

boundary elements and the rigid body motion technique is employed in an explicit 

manner. Also, the secondary BCM analysis, narnely the calculat ion of stresses both 

a t  intemal points and non-endpoint nodes on the boundary (see Figure 2 4 ,  as well 

as the primary BCM analysis, are addressed in this work. 

2.2 Regularized hypersingular boundary integral equat ions 

and the hypersingular BCM 

Regularized HBIEs have several important applications in engineering, such as, in 

computation of boundary stresses (e.g. Guiggiani et al., 1992), in wave scattering 

by thin screens (e-g. Krishnasamy et ai., 1990), in fracture mechanics (e.g. Gray et  

al., 1990; Lutz et al., 1992; Paulino, 1995; Gray and Paulino. 1997-a), in obtaining 

symmetric Galerkin boundary element formulations (e.g. Gray et al., 1995; Bonnet, 

1995-a; Gray and Paulino, 1997-b), and in adaptative analysis (e.g. Paulino et al., 

1996; Menon, 1996 and Menon et al., 1997). 

Again, since the integrand vector of the regularized HBIE under consideration 

is divergent-free, these equations can be converted into a boundary contour version, 

here called the hypersingular boundary contour method (HBCM), in order to achieve 

a reduction in dimensionaiity as in the BCM. The first study on the HBCM has been 

pioneered by Mukherjee and Mukherjee (1997-a and -b). In their work, a general 

theory for converting a regularized HBIE into the HBCM for 3-D linear elasticity is 

presented. These papers, however, do not contain any general numerical examples 

in order to show the validity of the HBCM in such cases. 

With the purpose of completing the HBCM for linear elasticity, an investigation 

of the method for 3-D problems is the topic of the second paper enclosed in Appendix 

II. This is a full study because, as in the first paper on the usual BCM, both primary 

and secondary analyses as well as general numerical examples are presented. 



2.3 Design sensitivity analysis using the BEM 

Most shape optimizat ion problems use gradient based mat hematical programming 

algorithms w here design sensi tivity coefficients ( DSCs), w hich are defined as the 

rates of change of physicai quantities with respect to changes in the design variables, 

are required for the determination of the optimum shape of a body. Therefore, the 

evaluation of design sensitivities has becorne an important research topic for the 

last two decades. In practice, the success of mathematical programming methods 

for solving shape optirnization problems often depends on the way the design sensi- 

tivities are computed, Le. the approach, its accuracy and efficiency. In the context 

of the FEM as well as the BEM, there are three methods for design sensitivity calcu- 

lation. namely. the finite difference approach (FDA), the adjoint structure approach 

(ASA)  and the direct differentiation approach (DDA). 

Before the research leading to this dissertation, no paper had been published on 

the topic of design sensitivity analysis using the BCM. However. since the BCM is 

a variant of the conventionai BEM, it is useful to review the literature on design 

sensitivity analysis using the BEM. 

In elastostatics using the BEM, the FDA has been presented by Wu (1986), and 

Kane and Prasad (1993) for 2-D and 3-D problems; the ASA has been introduced 

by Choi and Kwak (1988), and Aithal and Saigal (1990) for 2-D problems, by Lee 

(1996) for axisymmetric analysis, by Zhao (1993) for 3-D solids; and the DDA has 

been given by Barone and Yang (1988), Kane and Saigal (198S), and Zhang and 

Mukherjee (1991) and Mellings and Aliabadi (1995) for 2-D problems, by Saigal 

et al. (1989), Rice and Mukherjee (1990), and aIso Lee (1996) for axisymmetric 

problerns. by Aithal et al. (1991), Kane et al. (1992) and Bonnet (1995-b) for 3-D 

bodies? and by Mukherjee and Chandra (1989, 1991) for 2-D non linear problems. 

In most of the above papers, the authon limited their illustration at the design 

sensitivity analysis on the boundary nodes of the body. Since the BIE is associated 

with boundary displacements and tractions, but not boundary stresses, it follows 

that a stress recovery process had to be developed in the above papers in order to 

compute boundary stress sensitivities. This stress recovery process is not simple 



because the shape functions are described in a local curvilinear coordinate system 

w hereas the displacement-st rain relationship and Hooke's law are descri bed in the 

global Cartesian coordinate system. By using a 2-D linear elastic BIE formulated in 

terms of tangential gradient of displacements ( Uderivative BIE" ). the stress recovery 

presented by Zhang and Mukherjee (1991) seems to be easier but since this BIE 

forrnulat ion is associated wit h the tangential gradient of displacements, i t does not 

provide displacements directly and thus, their sensitivities. 

Conceptually, the FDA is the simplest method for the determination of DSCs. 

Typically, the current design is analyzed and the response quanti ties are evaluated. 

Then the design variables are perturbed in succession. For each perturbation, the 

design responses are reevaluated, and the DSCs are obtained by the finite difference 

formula which is the ratio of the differences of design responses and the corresponding 

perturbation intervals. The main drawback of the FDA is its sensitivity to the choice 

of perturbation intervals: truncation errors can be substantial if the perturbation 

magnitude is too large and round-off errors (condition errors) can be significant 

if this magnitude is too small. In addition, this rnethod is very cornputer time 

consurning due to the requirement of forming new BEM system matrices. That's 

why even though Wu ( 1986) was able to show convergence of the numerical results 

considered in his work using the FDA, the effect of selecting perturbation step sizes 

on  convergence in more general applications is still in question. 

The DD.4 uses analytical methods instead of the finite difference formula to 

yield exact expressions for the sensitivities. Studies on the subject using the DD.4 

originated with the vrork of Kane and Saigal (1988), and Barone and Yang (1988). 

.4 difficulty with the DDA lies in the singular feature of the governing BIE. Kane 

and Saigal ( 1988) generated the desired sensitivities by differentiating the resulting 

BEM system matnx analytically. In these formulations, the source point must be 

placed outside the region to avoid singular integrations. But, as noted by Barone and 

Yang (198S), besides being somewhat arbitrary, this strategic adjustment appears 

to introduce unwarranted complications. Barone and Yang (1988) c m i e d  out the 

opposite process to the one employed by Kane and Saigal (1988) by differentiating 

the BIE to obtain the sensit ivi ties analyt ically before numerical implementation. 



Here, the rigid body motion technique is used to treat singular integral terms in 

the calculation of displacement sensitivit ies, but the integration of strongly singular 

kernels is required for computing stress sensitivities by a direct formulation. Besides 

an easier stress recovery process discussed so fax, the derivative BIE formulation used 

by Zhang and Mukherjee (1991) is only involved in a weakly singular feature: thus 

its differentiated kernels axe completely regular for 2-D design sensit ivity problems. 

With the same effort to  avoid strongly singular integrals involved in the design 

seositivity analysis, Bonnet (1995) applied the material derivative concept to  the 

regularized displacement boundary integral equation. 

The DDA is advantageous for optimal shape problems with few design variables 

and a large number of constraints because the differentiation is taken wit h respect to 

one design variable a t  a time, so the computing time depends rnainly on the  number 

of design variables, not the number of constraints. 

The ASA is an exact approach for evaluating DSCs and does not involve finite 

differences. In this method, an adjoint system must be prescribed in addition to 

the physical system. One auxiliary system is defined for each constraint, rather 

than for each design variable. Hence, for problems with many design variables and 

fewer constraints, the AS.4 is more suitable. However, as noted by Barone and Yang 

(1988), although the ASA is conceptually a straightforward technique, major corn- 

putational difficulties are involved in evaluating displacement and stress sensitivities 

at discrete points. This is because the adjoint solutions for these two cases corre- 

spond to a concentrated force and moment, respectively, and these solutions using 

the BEM give rise to unbounded integrals. This problem was circumvented by Choi 

and Kwak ( 1988) for stress sensitivity analysis by representing the von Mises stress 

over an elernent (or over an area) in an average value using an averaging charac- 

teristic function m,. Therefore, only an averaged stress sensi tivi ty for the  element 

is obtained and the procedure still does not provide the sensitivity informations a t  

discrete nodal points. 

An improved formulation using the ASA bas been presented by Aithal and Sai- 

gal (1990) in which the adjoint problem is established starting from the elasticity 



equations of equilibrium and then, the BEM is employed to solve both the primitive 

and the adjoint problems. Here, stress sensitivities are determined by the implicit 

differentiation of the boundary stress recovery expression and thus, this procedure 

enables the stress sensi t ivi ty calculation at  discrete points. 

Based on the above review, it c m  be seen that the topic of shape design sensi- 

tivity analysis plays a crucial role in the numerical optimization techniques. In the 

context of the BEM, the DDA is a preferred method because of the consistency due 

to its analyt ical nature and since it facilitates the design sensitivity calculation at 

any discrete point. Therefore, a study on design sensitivities using the DDA and by 

the BCM for 3-D linear elasticity is obviously necessary for the application of this 

method in shape optimization. Details of the work are presented in the third paper 

shown in Appendix III. 

2.4 Shape optimization using the BEM 

Theories for shape optimization using the BEM c m  be found in Zhao (1991) or 

Chandra and Mukherjee ( 1997). 

The application of the BEM in optimal shape design started from the 1980's. 

One of the earliest studies was published by Barone and Caulk ( 1982) in which the 

position, the size and the surface temperature of circular holes inside a 2-D heat 

conductor are optimized. 

Choi and Kwak (1988) applied the ASA for computing DSCs in their shape 

optimization work where an algorithm for optimum structural design without line 

search is employed and the design shape is represented by cubic splines. 

The use of the generalized reduced gradient method in BEM shape optimization 

has been developed by Sandgren and Wu (1988) in which substructuring is employed 

to isolate the portion of the structure undergoing geometric change. B-spline curves 

and surfaces whose control points are chosen as the design variables are introduced 

to describe the shape in 2-D and 3-D design problems. Design sensitivity coefficients 

are computed using the FDA. The optimal shape design of a hook is selected as an 



application exarnple in which the nominal stress needs to be minimized. But as 

mentioned by the authors, addi tional time savings could be achieved by applying an 

analytical approach for sensitivity informations (such as the DDA) instead of the 

FDA used in this work. 

A modular approach for shape optimization used in the finite element context 

was adapted to the BEM by Yang (1990) to optimize an infinite plate with an 

elliptical hole and an fillet problem. In this study, the feasible direction dgorithm is 

employed as the optimizat ion technique. The displacement sensi t ivi ty formulation 

given by Barone and Yang (1988) and a stress sensitivity formulation obtained by 

differentiating the shape function in each boundary element? are used. Despite the 

sirnplicity of this stress sensitivity calculation, the errors in such computation can 

be substantial due to the approximate nature of the shape functions. 

By using a formulation for design sensitivity analysis presented by Kane and 

Saigal (1988), the same authors (Saigal and Kane, 1990) have proposed a mode1 for 

optimizing structural components such as a rod to half-space at tachment or a slot ted 

ring in an aircraft gas turbine engine. Here, the mesh generat ion and remeshing are 

done using a parametric and auxiliary geometry concept. The above informations 

are then coupled with the general purpose numerical optimization code ADS to solve 

the given problems. 

Optimal shape design of solids undergoing smdl-strain. small rotation and elasto- 

viscoplastic deformation was investigated by Wei et al. (1994). In this work, shape 

optimization is performed by coupling the standard BIE and the DDA sensitivity 

analyses with an optimizer using sequential quadratic programming. The approach 

is t hen applied to shape optimization of cutouts in plates undergoing purely elastic 

and elasto-viscoplastic deformation. 

Yamazaki et al. (1994) determined optimum shapes of minimum weight sub- 

jected to stress constraints and a connecting rod in which the design sensitivity 

calculation is based on the DDA of the discrete BIE. 

Tafreshi and Fenner (1995) have presented a general purpose cornputer program, 

named STRESOPT, for optimal shape design of 2-D structures in order to smooth 



stress peaks, i.e. to reduce stress concentration effects. In this work, the design 

sensitivity andysis is carried out by using both the FDA and DDA for discretized 

BEM formulations. The numerical optimization technique used in the program is 

the extended penalty function approach, together with the golden section method 

for the one-dimensional search. The shape is represented Dy herrnitian cubic splines 

so that complex geometries can be described by a small number of design variables. 

The optimum shape design of fillets and holes in plates as well as bars were shown 

as illustrative examples. 

Recently, it c m  be seen tbat papen on the topic of shape optimization by the 

BEM have not presented new important contributions in this field. They usudly 

t ackle the application of known formulations for design sensi t i vi ties t O new pro blems 

or the numerical implementation of known theones into a new optimization package. 

The above studies have shown encouraging successes for optimal shape design 

by the BEM. Hence, a new success of the BCM in this kind of application is very 

challenging. In order to meet this challenge, shape optimization by the BCM must 

demonstrate its performance and efficiency in resulting accuracy as well as in com- 

putational time. This demonstration is one of the topics of the fourth paper enclosed 

in Appendix IV. 



CHAPTER III 

PAPER SYNTHESIS 

Even though this is a dissertation composed from papers, there is a reasonable 

link between the four papers used. The first paper presents a further development 

of the BCM for stress analysis in 2-D linear elasticity. In this work, a numericd 

implementation with quadratic boundary elements as opposed to linear ones in the 

previous study (see Nagarajan et al., 1994) is performed for the  purpose of increasing 

the accuracy of numencal results. Besides the usual primary analysis where bound- 

ary physicd quantities of a body such as displacements, tractions and stresses are 

calculated, the post-processing analysis is also addressed for computing stresses in- 

side the body under consideration. In the post-processing stage, a remarkable issue 

is realized: the boundary contour formulation for computing the stress a t  an interna1 

point con also be employed to evaluate stresses at regular points on the boundary 

except a t  endpoint nodes. This can be achieved without any special singularity 

treatment as must be done in the conventional BEM. 

It should be mentioned that since traction nodes are not placed at  the endpoints 

of boundary elements (see Figure 1 in Appendix I ) ,  traction continuities can not be 

numerically enforced a t  endpoint nodes where tractions are physically continuous. 

As a result. stresses across boundary elements provided by the BCM are numeri- 

cally discontinuous even if they are physically continuous t here. Although this is a 

minor drawback, it makes the corner modeling trivial because one does not have to 

mode1 each corner (corners are dways endpoint nodes) with two traction nodes as in 

the convent ional B EM. The numerical discontinui t ies across boundary elernents in 

problems without stress jumps on the boundary can be much improved by using the 

HBCM presented in the second paper. The difference between the BCM and HBCM 

is that, for the primary analysis, the former uses the BIE whereas the latter uses a 

regularized HBIE as the starting point. Hence, for 2-D problems, each method is 

characterized by its own potential functions. As in the first paper, both the prirnary 

and post-processing analyses are addressed and implemented with quadratic domain 



shape functions in the 2-D HBCM paper. Via the numerical examples in the above 

papers, it is shown that both methods can provide highly accurate results and es- 

pecially t hose giwn from the post-processing stage. Finally, as in the conventional 

BEM, besides the application in stress analysis, the HBCM can also be extended to 

solve fracture mechanics problems. However, this has not been done yet. 

With the advantages in boundary meshing, accuracy and computational times, 

the BCM is obviously an appropriate numerical method for shape optimization. 

This kind of application requires the evaluation of DSCs. Therefore, a study on 

shape design sensitivity analysis using the BCM is necessary and this is the subject 

of the third paper. In this work, in order to obtain DSCs (sensitivities of displace- 

ments, tractions and stresses), the BCM equations are analytically differentiated 

with respect to  the design variables. Here, the BCM equations of both the pri- 

mary and post-processing analyses are treated, therefore not only the DSCs on the 

boundary but also those inside the body under consideration are addressed. Once 

again, the BCM provides high and uniform precisions for nurnerical results of DSCs 

on the boundary as well as within the domain for the illustrative examples. The 

accuracy of the obtained DSCs is very crucial because it decides the success in using 

gradient based mathematical programming algorithm to solve optimal shape design 

problems. Through this study, two more advantages of the BCM over the BEM 

are derived: (a )  due to the use of global displacernent and stress shape functions, 

the recovery of boundary stress sensitivities after solving the primary equations is 

straightforward, and (b) no special singularity treatrnent has to be carried out for 

comput ing displacement and stress sensitivities in the post-processing stage. 

T here are two approaches for evaluating stresses and stress sensit ivit ies by the 

BCM as  post-processing steps. The first approach starts from the BCM version 

of the standard BIE written for the displacement at an interna1 point whereas the 

second approach starts directly from this equation. As a result, the first approach 

uses the BCM potential functions as shown in the first and third papers while the 

second approach uses the HBCM potential functions as presented in the first part of 

the fourth paper. Since both approaches start from the same equation (BIE), they 

provide the same numerical results for a given problem. However, computational 



times required by the second approach are less because its formulation is sirnpler 

than that in the first approach. 

With the above achievement of the 2-D %CM in stress and design sensitivity 

analyses, an application of this method in shape optimization is obviously appropri- 

ate. This kind of application is carried out in the second part of the fourth paper. 

Here. the development and execution of a shape optimization algorithm with DCSs 

calculated from the BCM is contributed into the literature for the first time. In fact, 

the BCM and design sensitivity codes are coupled with the successive (sequential) 

quadratic programming algorithm (here, the C function "f -min-con-noniin" from 

the commercial IMSL library is employed) to solve shape opt imizat ion problems. 

Two well-known examples in optimal shape design are solved using the design sensi- 

tivity analysis by the BCM developed in the third paper. The results are cornpared 

with those obtained by researchers using the BEM. These results are excellent and 

this confirms great potential advantages of the BCM in shape optimization. 



CHAPTER IV 

MATHEMATICAL DETAILS SUPPLEMENTING THE 

PAPERS 

This chapter provides further mathematical details needed for comprehending 

the four papers presented in the Appendices. Therefore. the reading of these papers 

before refe~ing to this chapter is recommended. 

Regarding the referencing of equations, it is noted that the referencing prefixed 

by a roman number is referred to equations in the paper indicated by this roman 

number. For example, (111.12) means Eq. (12) in the third paper. 

4.1 Derivation of the BIE (Eq. (1.1)) 

4.1.1 Review of basic equations in linear elasticity 

Differential equations of equilibrium without body forces 

where aij, x, are the stress tensor and coordinate vector. For 9-D problems, 

i = 1,- and j = 1: 2. The comma denotes partial derivative. 

Compatibility equations 

where e i j ,  ui are the strain tensor and displacement vector. 

0 Hooke's law (constitutive relationships) 

where X and p are Lamé constants of the material, and bij is the Kronecker 

delta (s 1 for i = j and O for i # j). 



0 The Navier-Cauchy equations 

By substituting (4.3) and (4.2) into (4.1), the results are the equilibrium equa- 

tions in terms of displacements or the Navier-Cauchy equations: 

where v is Poisson's ratio. 

4.1.2 Kelvin solution 

A paxticular solut ion of the Navier-Cauchy equations ( 4 4 ,  called Kelvin solut ion, 

is obtained when a unit point load is applied at  a point P (source point) in the 

direction of the  unit vector eb, producing displacements and stresses at  any point Q 

in the domain (field points), given by: 

In (4.5), uik and xi jk  are called Kelvin kernel tensors and their expressions are 

given by (1-9). 

4.1.3 Symmetry of the elasticity tensor 

Hooke's law (4.3) can be applied to a second stress aij and strain & j :  i.e. 

O O 
;..= t I Ahij ekk +2p c i j  (4.6 

Multiplying Eq. (4.3) by G i j  yields 

0 O 
a.. 13 u i j =  Xhijcii U j j  +2/rc, ui j  

and Eq. (4.6) by ui,j yields 



Subtracting Eqs. (4.7) and (4.8) gives the following expression which describes 

the symmetry of the elasticity tensor 

O 
O i j  Ui , j  - sij Uij = O 

4.1.4 Boundary integral formulation 

Equilibrium equations (4.1 ) for both stress states give 

Thus. it follows from Eqs. (4.9) and (4.10) that 

First, expression (4.11) is integrated over the whole domain B and then trans- 

forrned to the following boundary integral using Gauss' divergence theorem 

Figure 4.1: Exclusion of the singular point P in the elastic domain. 

Substituting the Kelvin solution (4.5) into (4.12) leads to 

where the singular point P is excluded by a smdl  circle Cc. In Eq. (4.13), the unit 

base vectors e k  are constant and can have any value. Hence, 



By the exclusion of the singular point P using a small circle Cc of radius e9 it 

can be shown that 

Use of Eqs. (4.14) and (4.15) gives the BIE for an internal source point P 

A limiting process must be taken for Eq. (4.16), as an internal source point P 

approaches the boundary aB, to produce the following general BIE 

where the corner tensor yk = 3bik if the boundary is locally smooth a t  P. Otherwise. 

cik can be computed in closed form for 2-D problems, but direct evaluation of sk in 

3-D cases is difficult. Fortunately, explicit calculations of this value can be avoided 

by using the rigid body motion technique as shown in the first paper. 

4.2 Proof of VQ Fk = O (Eq. (1.4)) 

By denoting 

the divergence of Fk at  a field point Q is written as 

Let us determine each term in the right hand side of Eq. (4.19). Due to the 

symmetry of the elasticity tensor (4.9), we have 



Since body forces bi are absent in the BCM, the equilibrium equations for linear 

elastostatics in this case are 

Finally, knowing that Cijk  is the point load at the source point P, so at every 

field point Q which does not coincide with P, one gets 

Substitution of (4.20), (4.21) and (4.22) into (4.19) yields 

everywhere except at the source point P. 

Equation (4.23) shows the existence of a function c P k  such that 

because (4.24) ensures the identity (4.23). 

4.3 Matrix [T(x, y)] (Eq. (1.22)) 

In Eq. (I.19), one has 

where kl = -2(1 - 2 4 ,  k2 = -4(1 - v )  and v is the Poisson's ratio. 

By using Eqs. (1.18) and (L21), the traction vector can be written in matrix 

form as 



In Eq. (4.%'7), k3 = X + 2p, k4 = 4p(1 - v ) ,  k5 = - 4 p 4  k6 = -4p(2 - v )  and X 

and p are Lamé constants of the material. 

Therefore. in Eq. (I.22), the matnx [T(')(z, y)] for element (8) is given by 

4.4 Matrix [Bj] (Eq. (1.26)) 

Substituting (1.24) into (1.19) yields 

By cornparing the matrix in (4.29) with (4.25) and letting [Bj]  { P }  = {&}, one 

gets Eq. (1.25). The matrix [Bj], giving the relationship between the vectors of the 

artificial variables { B }  and {j} in the global (s, y)  and a (C, r ) )  coordinate system 



centered at  the source point P ( x j ,  y,), respect ively, is easily found as 

4.5 Displacement field [ui(Q) - ui(P)] (Eq. (1.12)) 

In a ((, q )  coordinate system centered at a source point P, the displacement shape 

functions are described by Eq. (I.25), i.e. 

- where it can be seen from the rnatrix in (4.30) that = ph for h = 1 , .  . . , 10. 

Since the coordinates of P are (O.O), one gets 

where (q) is the element (if P is placed at a midpoint node) or either of the elements 

(if P is placed a t  a endpoint node) containing P. 

Finally, for element ( I )  



in which 

4.6 Determination of the potential functions 4, (Eq. (1.12)) 

In a ( & T I )  coordinate system, the displacement shape functions descnbed by Eq. 

(1.25) can also be wntten as  

Hence, by applying Hooke's law (1.17) to (4.35), stress shape functions are found 

Use of (4.35) and (4.36) in the integrand (4.18) of the BIE on an non-singular 

element (C)  gives 

Expression (4.24) in this case takes the following form 



Identification of (4.37) and (4.38) leads to the following system of equations that 

enables the determination of the potential functions 9, 

It should be noted that since 

by comparing (4.40) with (4.35), the expressions of the forms (4.37) and (4.38) for 

Gk can easily be derived frorn the last equations by replacing with Br). Thus 

Fk and Gk have the same potential functions 4,. 

For example, system (4.39) in case of k = 1 and h = 7 (i.e. z = 7) is 

where the expressions for the Kelvin kernel tensors are given by Eq. (1.2) and. 

Finally, the solution of system (4.41) is 

The  above method for determining 4. is general and thus, can also be employed 

to derive other potential functions required by a boundary contour version for 2-D 

problems. 



4.7 Plane stress problems 

The formulas for the Kelvin kernel tensors (L2), for Hooke's Iaw (1.17) and thus, 

for the derived potential functions &, are built for a plane strain state. However, 

these formulas c m  also be employed to solve plane stress problems provided that 

the appropriate material data are used. 

In fact , by observing the relationship between the constitutive law of plane strain 

and plane stress states, for plane stress problems, one only needs to substitute v by 

ü = uf (1  + V )  and E by Ë = E(l - û2) in the appropriate formulas presented in al1 

of the four papers. 

4.8 Derivation of the regularized HBIE (Eq. (11.28)) 

Taking the partial derivative of Eq. (4.16) (written for an interna1 source point P) 

with respect to P yields 

By using the identity r,, = -r,bf (see (1-2)) where ,, denotes partial derivative 

with respect to a field point Q, Eq. (4.45) becomes 

Now, modes are used in order to regularize (4.46). 

First. use of the fcllowing linear mode 

gi ves 

ui,j(Q) = ui.j(p) 

and thus, the following constant stress field (see Eqs. (4.2) and (4.3)) 



By applying the fields (4.47) and (4.19) to Eq. (4.46), one gets 

Next, using a ngid body mode u i ( Q )  = u i (P )  in Eq. (4.46) immediately gives 

Subtracting (4.46) h m  (4.50) yields 

Use of (4.51) in (4.52) leads to the following regularized expression at an internal 

source point 

where ulL) = u i ( P )  + u; , , (P)  [ z S ( Q )  - 2 , ( P ) ]  

Finally, by taking a limiting process of (4.53) as an internal source point ap- 

proaches the boundary aB, one gets the regularized HBIE under consideration. 

4.9 Displacement field [ui(Q) - dL)] (Eq. (11.28)) 

The displacement field used in the regularized HBIE (11.28) is 

where s = 1,2; x l  x and x2 = y. In a (c, r ) )  coordinate system, by using (1.24) 

Eq. (4.54) becomes 

For the HBCM primary analysis (Eq. (11.39)) 



The displacement gradient field ui , , (Q)  can easily be found from (4.31) as 

In the primary analysis, the source points are ooly placed at endpoint nodes on 

the boundary. Hence, in Eq. (4.55), u,, ,(P) at a source point P can be determined 

from the displacement gradient field ui,,(Q) of either of the elements (q) containing 

this source point. Since the coordinates of P are (0, O ) .  we have 

Finally. for element (0, use of (4.58), (4.59) and (4.33) in (4.55) leads to 

( L )  
Q I  (LI ) = d l < i { U }  + j ! , ) { ~ ] + 8 : ' 1 { ~ ]  
u2(Q) - 212 

where 



For the HBCM post-processing analysis (Eq. (11.51)) 

As mentioned in the second paper, only source points in the domain B* need to 

be considered in the post-processing stage. Since these source points do not lie at 

endpoint nodes as in the primary analysis, u i ( P )  and u i , = ( P )  in (4.55) can not be 

calculated from the displacement field (4.31) and displacement gradient field (4 .56) ,  

( 4 . 3 )  in which brIi) ( h  = 1,2, . . . ,IO) for al1 boundary elements (0 are known from 

the primary analysis. 

Use of Eq. (4 .31)  in (4 .55)  also gives expression (4.60), but now the coefficients 

Dy) for h = 1, ..., 6 aregiven by 

The post-processing analysis consists of solving systems of equations with the un- 

knowns u i ( P )  and u i V s ( P )  in (4 .62) .  This enables the determination of displacements 

and stresses in the domain Ba. 

4.10 Determination of the potential functions A, (Eg. 

(11.42)) 

By anology with (4 .35)  and (4.36), the displacement field (4 .60)  and its stress field 

can be written in a (c, 7) coordinate system as 

Substitution of (4 .63)  and (4.64) into the integrand (11.32) of the regularized 

HBIE yields 
1 O 

Jh = Bho [ u i > t . r n ~ i ~ h ( t t  7) - zijk,m%(t, T ] ) ]  ej (4 .65)  
h=l 



Expression (11.38) in this case takes the following form 

It is noted that by using (4.35) and (4.36), the integrand vector (IV.30) on a 

non-singular element ( t )  is wntten as 

Hence the potentid functions associated with Jh and Hh are the same and 

they are cdled A,. 

Equations (4.65) and (4.66) lead to the following system of equations that enables 

the determination of A, 
al, - = u i k , m z i l h ( [ ,  7) - Cilk,rn2i<h((> q )  
as 

For example, system (4.68) in case of k = 1, m = 2 and h = 4 (i.e. w = 24) is 

(4.69) 

where the expressions for the gradients of the Kelvin kernel tensors are given by Eq. 

(11.29) and, 

Finally, the solution of system (4.69) is 



4.11 DSCs and the concept of material derivative 

Let us begin with the quantitative definition of DSCs. The initial design configu- 

ration having b as the design variable under consideration is analysed to obtain a 

physical response F(b) .  Then the configuration is perturbed with a step size 6b and 

the andysis of this new problem yields F ( 6  + 66). The DSC is thus defined as 

F ( b  + 66) - F(b)  
DSC = lim 

66-0 66 

The FDA approximatively evaluates the DSCs by calculating the ratio in the 

right hand side of (4.73) with a small value of 6b instead of taking the limit, Le. 

F ( b  + 66)  - F(6)  
DSC = 

db 

The DDA uses the definition of derivative to evaluate the limit in (4.73), so 

conceptually, this is an exact approach 

dF 
DSC = - 

db 

However. it should be noted that  the concept of material derivative has to be 

employed here because of the following reasoning. 

It can be seen that the physical response F (von Mises stress, for example) is 

a function of not only the design variable 6, but also the coordinates of the point 

where F is evaluated, i.e. F = F(6,  x, y )  in 2-D problems. In considering the 

partial derivative aF/db ,  this (Eulerian) derivative measures the change in F at a 

fixed spatial point (z, y )  in the body, and is often referred to as local derivative 
6 F  dFI 

The (Lagrangian) derivative that  measures the change in F at a Jzed n a t e r i a l  

point needs to take account also the change in (x, y )  of this material point as b 

changes. This derivative is called the material derivative or the total derivative of 

F and is denoted as F= dF/db.  



Typically, the m a t e d  derivative is more physicdly interesting than the partial 

derivative. For example, if we change the shape of a hole boundary to relieve stress 

concentration at that bouodary, we would like the DSC of the stress a t  the boundary 

rather than at a point with fixed coordinates because sometirnes this fixed point is 

out of the material domain due to  the shape design modification! 

The total derivative of F(b,  x, y) with respect to  b is given by the total derivative 

Or, in tensor notation 
* 

F= F,b + viFi 

I 

where the quanti ties vl =; and v 2  =y are components of the design velocity field. 



CHAPTER V 

SUMMARY 

Two novel methods of the same boundaly contour farnily, narnely the BCM and 

HBCM for 2-D linear elasticity, along with their successful application in stress 

analysis and shape optimization, are presented in this dissertation. 

a Original contributions 

The original contributions of this st udy can be summarized as follows: 

- A further development of the BCM has been carried out in which the numer- 

ical implementation wit h quadratic boundary elements and post-processing 

analysis are introduced to 2-D problems. 

- A new and full development of the HBCM in 2-D linear elasticity. 

- .4 new and full development of design sensitivity analysis using the 2-D BCM. 

- A successful development of a C program that couples a 2-D BCM code, its 

design sensitivity code and a SQP function of the commercial IMSL library 

in order to solve shape optimization problems in 2-D linear elasticity. The 

fourth paper deding with this development is in fact the first contribution to 

the literature for the topic of shape optimization using the BCM. 

While this research was being conducted, there have been investigations of the 

HBCM and design sensitivity analysis by the BCM in 3-D cases. However, for 

the time being, only some preliminary (non general) results for special cases have 

been obtained from the above investigations as opposed to complete validation with 

general results presented through this study. Therefore, this study can serve as an 

excellent reference for a successful implementation of the HBCM and BCM design 

sensitivity analysis for 3-D linear elasticity in a near future. 



0 Discussions 

As shown from this study, the 2-D BCM and HBCM exhibit the following re- 

markable advantages: 

- Simplicity in meshing (only boundary meshing as opposed to domain meshing 

required by the FEM). 

- The methods do not require any numerical integration. In other words, the 

line integrals in these methods are evaluated analytically by using the potential 

functions. This advantage, as well as the fact that the BCM and HBCM 

use shape functions satisfying the Navier-Cauchy equations and Hooh's law, 

may explain why numencal results obtained from these methods are generally 

better than those from the BEM. 

- Unlike the conventional BEM, special treatments for singularity are completely 

avoided in stress analysis as well as in design sensitivity analysis by the BCM. 

Hence, the computation of DSCs using the BCM is much more effective than 

that using the BEM. 

These advantages confirm that the BCM is very attractive and suitable for opti- 

mal shape design. Besides the aforementioned major advantages offered by the BCM 

and HBCM in 2-D linear elasticity, these methods still have some shortcomings as 

follows: 

- Stresses are numerically discontinuous across boundary elements due to  the 

configuration of BCM boundary elements. However, the stress discont inuities 

are very slight where stresses are physically continuous. On the other hand, 

this configuration makes the corner modeling straightforward. 

- Due to the nature of the HBIE used, stress discontinuities across boundary 

elements can be much improved by the HBCM. However, this method requires 

finer meshes than the BCM and it is expected that higher order elements such 

as cubic would overcome this meshing drawback. 



- As the conventional BEM, the BCM and HBCM system matrices are not sym- 

metnc. Furthemore, the p r i m q  system of equations is, in general, overde- 

termined. Although this does not raise any problern in solving the system 

because there are effective rectangular solvea (such as those based on the 

least-squares or singular value decompositions and generalized inverses algo- 

rithms), the progamming for a BCM or HBCM code requires more effort by 

the fact t hat the column dimension of the systern matrices depends upon the 

type of problems to be analyzed. 

It should be recalled that the BEM c m  solve a wide range of engineering prob- 

lems such as steady state potential flows, elastodynamics and wave propagation, 

themoelasticity and consolidation, plate-bending, anisotropic and viscoelastic ma- 

terids, elastoplasticity and viscoplasticity, etc. The BEM has also been applied to 

bimaterial and nonhomogeneous problems, but these applications are not as efficient 

as in the context of the FEM. 

As a variant of the BEM, in principle, the BCM is applicable to the above prob- 

lems providing that the BIE integrands in such cases are divergent-free. However, 

the method is not recommended for nonlinear problerns such as elastoplasticity or 

viscoplasticity, because the advantage of a further reduction in dimensionality with 

respect to the BEM could be lost in t hese cases. Also, body forces, that can be mod- 

eled as a particular integral in the BEM, can also be treated in the sarne rnanner in 

the BCM. 

Finally. this study shows that the BCM has great potential advantages over other 

numerical rnethods in shape optimization. Therefore, the present work certainly 

motivates future research on this kind of application in 3-D cases. 
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The boundary contour method for two-dimensional linear 
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Abstract 

This paper presents a further development of the Boundary Contour Method (BCM) 

for two-dimensional linear elasticity. The new developments are : (a )  explicit use 

of the rigid body motion solution t o  regularize the BCM and avoid cornputation 

of the corner tensor, (b) quadratic boundary elements compared to linear elements 

in previous work and ( c )  evaluation of stresses both inside and on the boundary of 

a body. This method allows boundary stress computations at regular points (Le. 

at points where the boundary is locdly smooth) inside boundary elements without 

the need of any special algorithms for the numerical evaluation of hypersingular 

integrals. Numerical solutions for illustrative examples axe compared wit h analytical 

ones. The numerical results are uniformly accurate. 

1 Introduction 

1 .  Previous work 

The conventional Boundary Element Method ( BEM) for linear elastici ty requires 

the numerical evaluation of line integrals for two-dimensional (2-D) problems and 

surface integrals for three-dimensional (3-D) ones (see, for example' Hall, 1994; 

Mukherjee, 1982). By observing that the integrand vector of the mua1 linear elas- 

ticity BEM equation without body forces is divergence free, Nagarajan et al. (1994) 

have proposed a novel approach, called the BCM, that achieves a further reduction 

in dimension. The divergence free property allows, for 3-D problems, the use of 

Stokes' theorem to transform surface integrals on the usual boundary elements into 

line integrals on the bounding contours of these elements. For 2-D problems, a sim- 

ilar transformation, using the simple idea of path-independent integrals, eliminates 

numerical integration altogether. The above transformations are quite general and 

apply to boundary elements of arbitrary sbapes. Thus, the BCM requires only nu- 

merical evaluation of line integrals for 3-D problems and simply the evaluation of 

functions (called potential functions) a t  points on the boundary of a body for 2-D 



cases. The above idea also works for other linear problems such as potential theory. 

The BCM has been presented in the literature for 2-D (see Nagarajan et al., 

1994) and for 3-D (see Nagarajan et al., 1996) linear elasticity problems. In both 

these papers, however, only the &firstn BCM problem, i.e. the determination of 

boundary tractions and displacements, has b e n  addressed. Also, the idea of rigid 

body modes. to regularize Cauchy singular intergrals, was not employed in the above 

papers in an explicit manner. 

1.2 Paper Outline 

This paper presents a BCM formulation and numerical impiementation for 2-D 

problems in linear elasticity. Quadratic boundary elements are used. The idea 

of rigid body modes is employed at the outset to regularize the Cauchy singular 

integrand. Also, the "second" BCM problem, namely the calculation of stresses 

both inside and on the body boundaxy, as  well as the "first" BCM problern. axe 

addressed in this paper. 

Numerical results are presented for severai illustrative exarnples including the 

Lamé and Kirsch problems. The numericai results are uniformly accurate. An in- 

teresting observation is that the BCM approach dlows one to calculate boundary 

stresses, a t  regular points that are not at the ends of boundary elements, directly, 

without the need of any special algorithm for the numerical evaluation of hypersin- 

gular integrals. 

1.3 2-D BCM basic formulations 

The idea of dimensional reduction st arts from the standard Boundary Integral Equa- 

tion (BIE) without body forces (see Rizzo, 1967) 

where cii, is the corner tensor, P, Q, ui and cij are source point, field point, displace- 

ment vector and stress tensor respectively, Uik and Cijk are the Kelvin kernel tensors, 



and e, are global Cartesian unit vectors. In 2-D problems, d B  is the boundary of a 

body B, and dS is an infinitesimal boundary length vector. 

Here are the expressions for the Kelvin kernel tensors for plane strain problems 

where p = G is the shear modulus, v is the Poisson's ratio, bij is the Kronecker 

delta (r 1 for i = j and r O for i # j ) ,  and r = ,/(xQ - x p ) 2  + (yp - yp)*. 

Let Fk = [Uik(P, Q)oij(Q) - Sijk(P, Q)ui(Q)]ej, so Eq. (1) has the form 

~ k ( P ) u i ( P )  = J I B  ~k dS (3)  

If we take the divergence of FI. at a field point Q, as shown in related work by 

Nagarajan et al. (1994), this vector is divergence free, i-e. 

everywhere except at the source point P. 

Equation (4 )  shows the existence of a function Q k  such that 

The boundary is now discretized into n elements, thus 

Equation (5) rnay now be substituted into Eq. ( 6 )  to obtain 

where dS = ndS with n the unit outward normal vector to d B .  

Since (see a similar proof on page 179 of Timoshenko et al., 1970) 



equation (7) becomes 

which means that there is no need for any numericd integration for 2-D linear 

elasticity. 

Finally, the 2-D BCM discretized equation corresponding to Eq. ( 1) is written 

as follows 

2 Formulations using the rigid body motion technique 

2.1 General formulation 

Consider an arbitrary ngid body translation where u i ( Q )  = ui( P) = constant. Thus, 

ai j (Q)  = O. Use of this rigid body motion solution in Eq. ( 1 ) gives 

Subtracting Eq. (11) from Eq. (1) yields a new BEM equation 

Thus, the corner tensor Q is now eliminated from the BEM equation. Its eval- 

uation is avoided and this is the  first advantage of using the rigid body motion 

technique. 

As mentioned above, Fk = [Uik(P, Q)a,(Q) - Ci j r (P ,  Q)ui(Q)]ej is divergence 

free. The extra term CGk(P,  &)ui(P)ej  is also divergence free (except at the source 

point P) since the divergence is taken with respect to the field point Q. Thus, for 

this purpose, u i (P)  can be treated as a constant. 

Therefore, the new integrand vector of Eq. (12) 



also has the property 

V Q - G k = O  

everywhere except at  the source point P. 

2.2 2-D BCM formulation 

The 3-D BCM discretized equation corresponding to Eq. (12) is obtained in a 

manner analogous to the process that led to Eq. (9) from Eq. (6). The result is 

3 2-D boundary contour analysis with quadratic boundary 

elements 

3.1 Shape functions 

Gi contains the unknown fields ui and ci,. In order for the property (14) to be valid 

in general. the displacement shape functions ui must satisfy, a priori, the Navier- 

Cauchy equations, i.e. the equili brium equations in terms of displacements 

and the stress shape functions must be derived from those of u, using Hooke's 

Iaw , 
uij = =bijukk + ~ ( u i ,  + uj,i) ( 17) 

where X and p are Lamé constants of the material. 

The determination of quadratic shape functions that satisfy Eq. (16) was ad- 

dressed in Nagarajan's PkD.  dissertation (1994). There are a total of 12 linearly 

independent quadratic ( vector) shape funct ions. The equili brium constraint elirni- 

nates two of t hem, leaving 10. The displacement components are written as arbi trary 



linear combinations of these 10 functions as follows, 

where k1 = -%(1 - 2 4  and k2 = -4(1 - u ) .  

In matrix form, 

where 

Traction node 

Displacement node 

Figure 1: Quadrat ic boundary element . 

These 10 artificid variables require quadratic elements with 10 physical variables. 

The configuration of a chosen quadratic boundary element is shown in Fig. 1. Each 

elernent is divided into 4 equd segments by 2 traction and 3 displacement nodes. 

Thus, it has 10 physical variables and the way they are nurnbered globally on the 

element ( l )  is also shown in the figure. It should be noted that the BCM equations 

are enforced at  the displacement nodes only. 

The tractions on the boundary are given by the following relation 



By using the Eqs. (18) and (21), the physicai variables {P} on the element ( t )  
can be described as 

(21-1) (2t-1) (21-1) (21-1) ( 24  (2t)  (21) (24) (2C+l) (24+1) 
IP(OI = (u1 ~2 71 ~2 1 u2 r1 72 U I  ~2 )= 

= [T(')(x, y)] {P} (22) 

T herefore, 

{@(')} = [ ~ ( " ( z ,  y)]-1 tp(')}  

An important issue here is the invertibility of [T(')(x, y)]. As rnentioned by 

Nagarajm (1994), the chosen quadratic element whose configuration is shown in 

Fig. 1 ensures t his inverti bility. 

.4 new coordinate system ((J) centered at each source point is introduced at  

this stage. This is done in order to make the shape function variables conform to 

those of the kernels Liik and Eijr  (which are functions of [ and 7 only). The ( and 

q axes are parallel to the global x and y axes, thus 

So, if this new coordinate system is centered at the source point j, by substituting 

(24) into Eq. (19) the displacement shape functions can be rewritten as 

w here, 

in which [B,] is a transformation rnatnx that depends only on the coordinates of 

the source point j. 

If (h )  is the element cootaining the source point at its fint or middle displacernent 

node, with this 

element ( l ) .  we 

new coordinate systern ui (P)  = Bih) and u2 (P)  = pih'. SO, for the 

have 



where the columns of [Tu(c, q ) ]  are the ten shape functions 

and 

Expression (27) for [ u i ( Q )  - u i ( P ) ]  is used in Eq. (13) .  

3.2 Potential functions 

By substitut ing the 10 displacement shape functions from (28) and t heir correspoad- 

ing stress shape functions (using Eq. (17)) into Eq. (13).  we obtain 20 sub-vectors 

gki (10 corresponding to k = 1 and 10 corresponding to k = 2). For example, gl.1 

is obtained irom Gi with u(Q) - u(P) - and oij = O. Equation (5 )  in this 

case takes the form 

where k = 1.2 and i = 1,2  ,... , I O .  

Equation (30 )  is solved to give 10 potential functions ( b i ,  . . . . bto) corresponding 

to k = 1 and 10 more . . , 420) corresponding to k = 2. 

These potential functions are Iisted in the Appendix. They are numbered ac- 

cording to the order of shape functions in Eq. (28) with, as mentioned above, the 

first ten for k = 1 and the next ten for k = 2. Thus, for example, dl corresponds to 

with k = 1 and corresponds to { y } ~ i t h  k = 2. 



3.3 Discret ized equations 

Now, with the potentiai functions already derived, the BCM discretized equations 

are developed as  follows. 

For the source point j (source points are only placed at the ends and mid-point, 

i.e. displacement nodes, of each boundary element, see Fig. 1) 

w here, 

It should be noted that the potential functions #1((, t)), &(t, q), @ll(c, q), and 

#14(& q )  corresponding to constant shape functions are singular when a field point 

Q + the source point P, i.e. when ((, r ] )  + (O, O).  But in this case uk(Q)  - Q ( P )  = 

O(r ) ,  and Eqs. (27) lead to 

so the evaluation of these potential functions can be avoided, Le. expression (31) 

is now completely regular. This is the second advantage of the approach using the 

rigid body motion technique. 

A further development of expression (31 ) leads to 



The last system of equations (34) is now condensed to reflect the continuity of 

displacements across elements. This results in the following relation 

where {p} are degrees of freedom (DOF) on the whole boundary aB. 

With 272 source points corresponding to 2n displacement nodes on the boundary 

M. one gets 372 relations of the form (35) which are now combined into the final 

BCM linear system of equations 

Finally, the system of equations (36) needs to be reordered in accordance with 

the boundary conditions to form 

where {X} and {Y} contain, respectively, the unknown and known (from the bound- 

ary conditions) quantities. Let [B]{E'} = {Z}, so {Z} is a known vector and (37) 

can be rewritten as 

The global system (38) is generally overdetermined ( [ A ]  is a rectangular matrix) 

but always consistent as discussed in earlier papers ( s e ,  for example, Nagarajan et 

al.. 1994). 

After the solution of the global equation system (38) is obtained, one can easily 

derive the artificial variables {P( ' ) }  from Eq. (23). At this stage, the rernaining 

physical variables (displacements, tractions, stresses) at any point on the boundary 

can be easily caiculated from (18) and the corresponding relations for stresses and 

tractions in terms of their shape functions. 



4 Stresses 

4.1 Interna1 stresses 

The intemal stresses are also evaluated using Eq. ( 17). To this end, the first step is 

to determine the displacernent gradient tensor u i ,  inside the body B. 

4.1.1 Displacement gradient tensor 

There are two approaches to evaluate ui, j .  The first one starts frorn the standard 

BIE (1) written for the displacernent a t  an internal point p. This expression is first 

differentiated with respect to a source point. The new integrand is still divergence 

free and ailows one to derive appropriate potential functions. In other words, here 

one first differentiates the BEM equations and then converts the resulting surface 

integrals to line integrals for 3-D problems, or line integrals to function evaluations 

for 2-D problems. This idea has been mentioned in earlier work (see Nagarajan e t  

al., 1994 and 1996) but no numerical examples are given in these papers. 

The second approach follows the opposite process, i.e. we first convert the BIE 

to t h e  corresponding BCM version and then differentiate it. This technique has 

been proposed by Mukherjee (1995) for 3-D problems and is also used in this work. 

because of its simplicity in 2-D problems as we will see later. Since the BCM version 

is available at  this stage, the starting point is the BCM Eq. (10) at  an internal point. 

For 2-D problems this equation can be written as (see Eqs. (IO), (15) and (34)) 

where [BPI is the transformation matrix corresponding to the internal source point 

p where stresses are computed. 

Now the displacement gradient tensor is (M is a source point index for the 

coordinote system ( x ,  y), i.e. ,1 a / & ( p )  and ,2 (p)) 



Using expresion (24) we derive the relationship [ $ ( P ' ) ] , ~  = (where p is 
d 

a field point index for the coordinate systern (t, 7)). In other words, - [<P(P')]  = 
WP) 

d 
--[@(P')], and sirnilady for y and 7. Finally, 

% 

4.1.2 Gradients of potential functions 

At this stage. we know {P( ' ) }  from the solution of Eqs. (38) and (23). Thus, in order 

to calculate displacement gradient tensor (41), one needs the evaluation of [B,],M 

and [ @ ( J " ) ]  ,,. There is no problem with [B,],J,~ The evaluation of [<P(P')],, is also 
a i  d4i straightforward because it contains the gradients of potential functions -; - 
& as 

which do not need to be calculated £rom the known potential functions because it 

can be seen from (30) that 

where g k i l  and g k i l  are the first and second components of g k i ,  respectively. 

Hence, this method for evaluating the stresses inside a body is simple and easy 

for numerical irnplement ation. 

4.2 Stresses at regular points on the boundary 

One simple way to compute boundary stresses is to use the quantities {p( ' ) }  on 

each boundary element ( l ) ,  together with the appropriate stress shape functions. 

However, another approach is to take the limit of Eq. (41) as an intemal point p + 

a boundary point P. This approach is developed below for the case where P is a 

regular point on aB (i.e. d B  is locally smooth at P) and does not lie at an end of 

a boundary element. 



Figure 2: Interna1 source point approaching the boundary. 

It can be shown that the potential functions that must be treated carefully during 

this limit process are qjl and t#14 (see the Appendix). These functions are related to 

the first vector shape function with k = 1 and the fourth with k = 2, according to 

the  ordering in Eqs. (28). 

Fig. 2 shows an intemal source point p approaching a boundary point P on 

El E2. P is a regular point on d B  and does not coincide with either of the end 

points El or E2 of the boundary element. 

associated with the integral (see Eq. (2))  

The potential functions dl and d14 are 

As p -, P, the angle 9 suffers a jump discontinuity from O to x as Q crosses P, 

Le. 

so that (see the formüla for in the Appendix and note that tan B = 



The effect of Eqs. (47) and ( 4 8 )  on (41) as p -t P can be assessed by observing 

Eqs. (26) and (27) and noting that u i ( P )  = f i { h )  ; u 2 ( P )  = &). (Note that $1 is 

associated with di and fi4 is associated with gl4 and that these are the only poten- 

tial funct ions with jump discont inui ties. ) These jump terms change the constant 

multiplying u k , ~  on the left hand side of Eq. (41) from 1 to 0.5. The displacement 

gradient equation now becomes 

where one rnust now use expressions for the integrals in Eqs. (47) and ( 4 8 )  wzthout 

the constant 0.5 terms, i.e. their Cauchy Principal Values (CPV) 

Note that Eqs. (47) and (48) have been used to get the above expressions. 

The fact that Eq. (49) holds for a regular boundary point P (provided that P 

does not lie on one of the end nodes), is quite remarkable. In the conventional BEM, 

the equations corresponding to (39) and (49) are strongly singular and hypersingular. 

respectively. and need to be regularized before the appropriate surface integrals can 

be evaluated. The above formulae are used to calculate stresses at regular boundary 

points in al1 of the foliowing numerical examples. 

5 Numerical examples 

Four examples are illustrated in this section. Al1 of them use the same material 

data as follows : Young's modulus E = 2.5 (in consistent units) and Poisson's ratio 

v = 0.3. In al1 these exarnples, boundary stresses are calculated from Eqs. (49) and 

(17)- 



5.1 Displacement field problems 

Figure 3: Circular body with imposed displacement fields. 

Consider a circular body of unit radius centered at the point (2.2) in the global 

(x, y )  coordinate system as shown in Fig. 3. Two displacement fields which are the 

exact solutions of the elasticity Navier-Cauchy equations ( 16) have been imposed at 

t h e  displacement nodes on the boundary. 

5.1.1 Planar field 

This is the  field used in the linear 2-D BCM paper (see Nagarajan et al.. 1994). 

The same problem is chosen here in order to compare the performance of quadratic 

elements against the linear ones. 

5.1.2 Cubic field 

The idea here is to test the accuracy of 2-D BCM code with quadratic displace- 

ment shape functions for a problem with a cubic global displacement field. 

The circular boundary is discretized by 10 quadratic elements spaced at equal 

increments. Tractions on traction nodes have been denved by solving the "firstn 



Figure 4: Traction components r, and r, for the planar displacement field. 

- analytical solution 

O 10 quadratic elements 

Figure 5: Stress components along the line A B  (see Fig. 3) for the planar displace- 

ment field. 



Figure 6: Traction components T, and r, for the cubic displacement field. 

- analytical solution 
O 10 quadratic elements 

Figure 7: Stress components dong the line AB (see Fig. 3) for the cubic displace- 

ment field. 



BCM problern. Stresses on the segment AB,  where B is a regular boundary point, 

have been cdculated next. These numerical results show very good agreement with 

the exact andytical solution as illustrated in Figs. 4. 5, 6 and 7. 

Also. it can be seen on Fig. 4 that with the same boundary discretization, i.e. 10 

quadrat ic elements versus 10 linear elements. quadratic elements show bet ter results 

as expected. 

5.2 Lamé's problem 

Figure 8: Modeling of Lamé's problem. 

r he third example involves the well-known Lamé's problem in which a hollow cylin- 

der is suhjected to uniform pressure on the inner surface. Let a and b denote the 

inner and outer radii of the cylinder, and p; the uniform interna1 pressure. The 

stress components 4, in the radial direction and in the circumferential direction 

a t  a point ( r ,  O )  are given by Timoshenko and Goodier (1970) 



lratic elements 4 

Figure 9: The traction component Ty on the edge -48 (see Fig. 8) for Lamé's 

problem. 

0 0.51 - analytical solution 

1 o BCM with quadratic elernents % 

Figure 10: Stress components along the line I J  (see Fig. 8) for Lamé's problem. 



The xy stress components can be expressed in terms of or and ue by the following 

relations (see Timoshenko and Goodier, 1970) 

Due to the symmetryof the problern, only a quarter of the structure is modeled as 

shown in Fig. Y. A total of 16 quadratic elements are used for the numencal results 

(4  elements are spaced at equal increments on each edge AB. BC. CD and DA). 

The traction r, on the edge AB is shown in Fig. 9 and the stresses calculated along 

the line segment IJ. where I and J are regular boundary points. are shown in Fig. 

10. Observe t hat agreement between the analytical solutions and the  corresponding 

BCM results are excellent, especially those in Fig. 10. 

5.3 Kirsch's problem 

Figure 11: Modeling of Kirsch's problem. 

The last example deals with Kirsch's problem. Fig. 11 displays a quarter symmetry 

model of a square plate with a central circular hole subjected to a unit uniaxial 

tensile load. The boundary contour malysis model was made up of 26 quadratic 



Figure 12: The traction component r, on the edge DE (see Fig. I l )  for Kirsch's 

problem. 
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Figure 13: Stress components dong the line GH (see Fig. 11) for Kirsch's problem. 
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elements. Due to stress concentration a t  the corners A and E, the mesh in this zone 

needs to be densified : the density of elements on AB and DE is nonuniform, with 

short elements being placed near the point A and E. 

In polar coordinates, the stress component ur in the radial direction, the stress 

component 00 in the circumferent i d  direction and the shearing stress component 

r,e, a t  a point (r. 8)  in an infinite plate with a circular hole are given by Timoshenko 

and Goodier ( 1970) 

S a2 S 3 a V a 2  
Ur = -(1 - -) + T(l  + - - 

r* 
-) cos 28 

2 - r4 r2 1 

For the cross section of the plate along the y axis (8  = n/2).  tractions in the 

x-direction along the edge DE can be found from Eqs. (56) 

-4s seen in Fig. 12, results from the "first" BCM problem are in good agreement 

with the analytical solution. For the "second" BCM problem. polar coordinates are 

used to compute stresses on the line GH (see Fig. I l ) .  and again. Fig. 13 reveals 

that the accuracy of internai and boundary stresses a t  regular points (G and H). 

calculated by the BCM, is excellent. 

6 Conclusions 

A further deveiopment for the BCM for 2-D linear elasticity is presented in this 

paper. An implementation is carried out with quadratic boundary elements and the 

idea of rigid body modes is used in explicit fashion. This approach does not require 

any numerical integration a t  dl for 2-D problems, even with curved boundary ele- 

ments. Also. corner modeling is tnvial since only (continuous) displacement degrees 

of freedom are used at corners. 



A remarkable feature of the BCM approach is that  stresses at regular boundary 

points, inside boundary elements, are directly obtained from Eqs. (49) and (17), 

without the need for regularization of hypersingular integrals as must be done for 

the conventional BEM ( s e ,  for example, Guiggiani e t  al., 1992; Toh and Mukherjee, 

1994 or Chien et al., 1991). In other words, Eq. (49) is already regularized by the 

use of Stokes' theorem! 

Numerical results for illustrative problems are shown to be uniformly accurate. 

In particular. stress components a t  interna1 and boundary points, for the "second" 

BCM problem, match almost perfectly (within plotting accuracy) with the analytical 

solut ions. 

While the central issue in the present paper is not regularization of hypersingu- 

lar boundary integral equations (HBIEs), it is useful to  briefly discuss an ongoing 

controversy regarding numericd implementation of HBIEs. To be specific, consider 

a regular point P (where the boundary is locally smooth) on the bounding sur- 

face of a (2-D or 3-D) body, that lies on an interelement boundary. Also, let the 

displacement gradient field Vu (and therefore the stress) be continuous at P. Of 

course, in this case it  is obvious that the boundary data  (tangential derivatives of 

the displacement as well as the traction) are also continuous at P. (Please note that 

if the traction vector is prescribed at P and is discontinuous, so will, in general, be 

the displacement gradient and stress there). Other issues such as points on edges or 

corners are of obvious technological importance, but these are not discussed here in 

the interest of brevity. 

There is general agreement that an HBIE has a unique lirniting value at P. .4t 

issue are the smoothness requirements of shape junctions of the boundary displace- 

ment for collocating an HBIE a t  a point such as P. Martin and Rizzo (1996), in 

a recent paper, claim that while the previously proved suficiency requirement of 

C'ta shape functions can be somewhat relaxed, Co@ shape functions are certainly 

not permissible. Cruse and Richardson (1996), on the  other hand, claim that Co@ 

shape functions for u are suflcient in this case, provided that one specifically de- 

velops a scheme that  allows the numerical solution for the  stress to be multi-valued 



at  P. Further, these authors clairn that logarithmically singular terms (see for ex- 

ample, Martin and Rizzo, 1996), at a point such as P, arise as a consequence of not 

incorporating the continuity constraint on the Vu field at P prior to developing the 

BEM represent ation. 
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APPENDUC 

POTENTIAL FUNCTIONS 

b2 - SV + 4 - ( 1  - v)(3 - 1 ~ )  in(r )  $1 
(1 - Yu) r2 

m4(F, q )  = k [ ( 1  - 2u) ln(r) + -1 
r2 

where, 
1 

& r2 = <2 + f12 
4 ~ ( 1  - V )  
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Summary 

This paper presents a novel method called the Hypersingular Boundary Contour 

Met hod (HBCM) for two-dimensional (2-D) linear elastostat ics. This new met hod 

can be considered to be a variant of the standard Boundary Element Method (BEM) 

and the Boundary Contour Method (BCM) because: (a) a regularized form of the 

hypersingular boundary integral equation (HBIE) is employed as the starting point, 

and (b) the above regularized f o m  is then converted to a boundary contour version 

based on the divergence free property of its integrand. Therefore, as in the  3-D BCM, 

numerical integrations are totally eliminated in the 2-D HBCM. Furt hermore, the 

regularized HBIE can be collocated a t  any boundary point on a body where stresses 

are physically continuous. A full theoretical developrnent for this new method is 

addressed in the present work. Selected examples are also included and the nurnerical 

results obtained are uniforrnly accurate. 

1 Introduction 

The conventional Boundary Element Method (BEM) for linear elasticity requires the 

numerical evaluation of line integrals for two-dimensional(9-D) problems and surface 

integals for t hree-dimensional (3-D) ones (see, e-g., Mukherjee (141 ). By observing 

that the integrand vector of the Boundary Integral Equation (BIE) without body 

forces is divergence free, Nagarajan et al. [16], [l'il have pioneered a novel approach. 

called the BCM, that achieves a further reduction in dimension. The divergence free 

property allows, for 3-D problems, the use of Stokes' theorem to transform surface 

integrals on the usual boundary elements into line integrals on the bounding contours 

of these elements. For 2-D problems, a similar transformation eliminates numerical 

integrat ion altoget her. The above transformations are quite general and apply to 

boundary elements of arbitrary shape. Thus, the BCM reduces the dimensionaiity of 

analysis problems by two: the method only requires numerical evaluation of 1-D line 

integrals for 3-D problems and simply the evaluation of functions (called potential 

functions) at points on the boundary of a body for 2-D cases. 



The BCM for 2-D linear elastostatics 

Nagarajan et al. [16] and by Phan et  al. 

linear boundary elements is carried out in 

ment with quadratic boundary elements is 

has been presented in the literature by 

[20]. A numerical implementat ion wit h 

the former paper whereas a full develop- 

performed in the latter one. Also, design 

sensitivity analysis by the BCM for 2-D linear elasticity has been carried out by 

Phan et al. [21]. For 3-D elasticity problems, the BCM with quadratic boundary 

elernents is the subject of Nagarajan et al. [17] and hlukherjee et al. [15]. 

Regularized HBIEs have various important applications such as in computation 

of boundary stresses (e.g. Guiggiani et al. [Tl), in wave scattering (e-g. Krishnasamy 

et al. [8]), in fracture rnechanics (e.g. Gray et al. [3]; Lutz et al. [IO]; Paulino [la]; 

Gray and Paulino [5]), in obtaining syrnmetric Galerkin boundary element formu- 

lations (e-g. Gray et al. 141; Bonnet [l]; Gray and Paulino [6]). and in adaptative 

analysis (e-g. Paulino et al. [19]; Menon [12] and Menon et al. [13]). 

Again, since the integrand vector of the regulazized HBIE under consideration is 

divergence free, this equation can be converted into a boundary contour version in 

order to achieve a reduction in dimensionaiity as in the standard BCM. This work 

presents the general theory regarding the conversion of the regularized HBIE into 

a hypersingular boundary contour equation for 2-D linear elasticity. A numerical 

irnplementation with quadratic domain shape lunctions is also performed for both 

the primary analysis and post-processing. 

The rest of this paper is outlined as follows. First, the BCM for 2-D linear elas- 

ticity is briefly recalled. This is followed by an introduction to a regularized HBIE, 

its conversion into a 2-D hypersingular boundary contour version and numerical im- 

plementation. Three numerical examples are then solved. Finally, some concluding 

remarks cornplete the paper. 

2 2-D BCM formulations 

The information presented in this section is summarized from Phan et al. [20] where 

more details c m  be found. 



2.1 Basic formulation 

The idea of dimensional reduction starts from the standard Boundary Integral Equa- 

tion (BIE) wit hout body forces (see Rizzo [231), 

where C ~ L  is the corner tensor, Pl Q, u; and aij are the source point, field point, 

displacement vector and stress tensor respectively, Uik and C i j k  are the Kelvin kernel 

tensors (Rizzo [23]), and ej are global Cartesian unit vectocs. In 2-D problems, dB 

is the boundary of a body B,  and dS is an infinitesimol boundary length vector. 

By discretizing the boundary dB into n elements. the BIE (1) becomes 

where Etl and En are the endpoint nodes of elernent ( P ) .  

Since the  divergence of Fk at a field point Q is zero (see Nagarajan et al. [16]), 

everywhere except at the source point P, so for non-singular elements (elements 

that do not contain the source point P), functions Gk can be found by solving the 

following identity that satisfies Eq. (4) 

Hence, for a non-singular element (t), substitution of (5) into (3) yields: 

In view of the above identity, ak are called global potential functions. A numer- 

icd implementation of Eq. (6) does not require any numerical integration! 



It is noted that the evaluation of boundary integrals on singular elernents (ele- 

ments containing the source point P) c m  be avoided by using the rigid body motion 

technique as it is often performed in the standard BEM. A formulation using this 

technique explici tly is addressed in the next section. 

2.2 Formulation using the rigid body motion technique 

In order to regulaxize the Cauchy singular integrals in the BIE (l) ,  a rigid body 

motion solution is applied to this equation to produce a new equation 

As a result. it can be seen that potentially singular integrals in (7) only need to 

be evaluated on non-singular boundary elements. 

Let the new (regularized) integrand vector 

The vector Gk is still divergence free (everywhere except at P). With a procedure 

anologous to t hat descri bed in the previous section, one gets: 

where Ok is deterrnined by solving the following identity 

2.3 Implementat ion wit h quadratic boundary elements 

Gk contains the unknown fields ui and oij. In order for the divergence free property 

of Fk and Gk to hold, the displacement shape functions ui must satisfy, a priori, the 

Navier-Cauchy equations: 



and the stress shape functions ci, must be derived from those of uj using Hooke's 

law , 

g i j  = h 6 i j u k , k  + p(ui,j + uj,i)  ( 12) 

where A and p are Lamé constants of the  materiai, bij is the Kronecker delta ( G  1 

for i = j and = O  for i # j ) .  

Quadratic domain shape functions that ensure the divergence free property of 

F k  and Gk are given by 

where kl = 4 1  - 2 4 ,  k2 = -4(1 - v )  and Y is the Poisson's ratio. 

Equation (13) can also be written for element (!) as 

or in matrix form, 

{u(") = [T~~)(z, y)]{4(0} 

(0 T where = (#) . . &)  . 

The configuration of a chosen quadratic boundary element is shown in Fig. 1. 

The relationship between the  physical variable vector { p ( e ) )  and the artificial vari- 

able vector {p(')) of boundary elenent ( P )  is 



a Traction node 

Figure 1: Quadratic boundary element (€). 

A new coordinate system ( & q )  centered at each source point is introduced. 

Equat ions ( 14) and ( 15) become respect ively, 

In Eq. (LS), 

where Br) = ,Lfh') for h = 7.. . . ,IO, and [B,] is a rnatrix depending only on the 

coordinates of the source point j (since it arises from a coordinate transformation 

from the global system (x, y )  to a system (t, 7) centered at j). 

Since the coordinates of a source point P are always (O, O), the displacement field 

used in Eq. (7) can easiiy be found from Eq. (17) as 

in which, wit h (q) the element containhg the source point, Le., the singular element, 



It can be seen that the displacement shape vectors in Eqs. (14) and (20) are the 

same. Thus, by substituting each of these ten displacement shape vectors and its 

corresponding stress shape vector (using (12)) into Eqs. (2) and (a), one obtains 

Equations (5) and (10) in this case take the following form 

where : = h + 10(k - 1); h = 1,2,. . . ,10 and k = 1,2. 

Equation (23) implies that the BIE (1) and its regularized form (7) have the 

sarne potential functions 6,. 

For a given value of h, the solution of (23) using (22) yields two potential 

functions & associated with k = 1,2. The 20 resulting potential functions (for 

h = 1, ..., 10: k = 1,2) are listed in the Appendix of Phan et al. [-O]. It can be 

observed from this Appendix that only half of these 20 potential functions need to  

be determined. 

By using these potential functions, Eqs. (6) and (9) become respectively 

-4s shown in Phan et al. [20], a development of (25) for al1 boundary elements 

leads to the following final BCM systern of equations 

In eqns (26) and (27), [A] and [BI are the BCM matrices which are associated 

with the potential functions 4,; {X} and {Y} contain, respectively, the unknown 



and known (from boundary conditions) physical quantities. Thus. { Z )  is a known 

vector. Finally, system (27) c m  easily be solved to find the unknowns {X). 

3 A regularized hypersingular boundary integral equation 

The starting point of the HBCM is the following regularized form of the HBIE ( s e ,  

e.g.. Krishnasamy et al. [9], Lutz et al. [IO] and Cruse and Richardson [2]): 

where, for plane strain problems, the gradients with respect to a field point ( ),m of 

the Kelvin kemel tensors are given by 

where i. j, k. m = 1,2 for 3-D problems, hi, is the Kronecker delta? and r is the 

Euclidean distance between a field point Q and a source point P. 

In Eq. (B), 

which yields 

In others words, the linear displacernent field uiL) gives the stress field oij (P). 

Therefore, the stress field uij(Q) - u i j ( P )  is obtained from the displacement field 

ui(Q) -=IL). Based on this remark, a sirnilarity in structure can be observed between 

the regularized HBIE (28) and the regularized BIE (7). 

According to Cruse and Richardson [2], Eq. (28) is valid at any boundary point, 

including corners, provided t hat the stress tensor is continuous t here. The singular 

gradients of the kernels are regulaxized in this case because the quantities inside 

the square brackets in Eq. (28) are (O(r)  and 0 ( r 2 ) ,  respectively, as Q + P. 



Therefore, the regularized HBIE (28) can be collocated at any boundary point P,  

including corners, provided that the stress is continuous a t  t hat point. Collocation 

of the boundary contour version of Eq. (28) at corners is successfulIy carried out in 

some of the numerical examples presented later in this paper. 

4 2-D HBCM formulations 

Let the integrand vector of Eq. (28) be .Th, i.e. 

Jmi = [ ~ i k , r n  (P ,  Q) [aij(&) - gij(P)] - Cijk,rn(P: Q )  [ u i ( ~ )  - utL)]] ej (32) 

The divergence free property of (2) is valid for any pair (ui, gi j )  which satisfies 

the Navier-Cauchy equations (11) and Hooke's Iaw (12). Let such a pair be cdled 

admissible. Then. çince the pair (U~(Q) - utL), aij(Q) - oij( P)) is also admissible, 

by analogy with Fk the following vectors: 

are divergence free, i.e. VQ - Kk = Vq 1 1 . ~  = O, (everywhere except at the source 

point P). 

T herefore. 

everywhere except at P. Here, as usuai, the gradients of the  kernel tensors with 

respect to a field point are converted to those with respect to a source point by a 

sign change. 

By discretizing the boundary aB into n elements, the regularized HBIE (28) 

becomes 

Due to (35), for a boundary element ( l ) ,  the boundary contour version of the 

3-D HBCM can be written as 



where Ah is defined by the equation 

5 Numerical implementation for the 2-D HBCM 

As in the BCM, a new coordinate system ( < J )  centered at  each source point is 

employed at  this stage. Here, source points are only placed at  the endpoint nodes. 

Quadratic shape functions used in Eq. (28) c m  be obtained easily from Eq. (17) 

where, 

5.1 Potentid functions 

The 2-D HBCM potential functions can be determined by using the same procedure 

for obtaining the potentiai functions 4, described in section 2.3. In other words, 

each of the ten displacement shape vectors in (39) (see also Eq. (13)) ,  together with 

its corresponding stress shape vector (obtained from (12)) are employed in Eq. (32) 

to resuit in 

Jkmh = [ u i k , r n a i i h ( t t  i l )  - C i j k . m Ü i h ( ( r  q ) ]  ej (41) 

Equation (38) in this case has the following form 

where w = h + iO(k - 1) + 20(m - 1); h = 1,2,. . . ,10; k = 1,2 and m = 1,2. 

For a given value of hl  the solution of (42) using (41) yields four potential func- 

tions A, (corresponding to k = 1 ,2  and m = 1,2).  The 40 resulting potential 

functions (for h = 1, . . . ,10) are listed in the Appendix. Once again, it can be seen 

that only half of them need to be determined. 



By using t hese potential functions, Eq. (37) becomes 

For singular elements ( t )  = (q) ( s e  (40)), one has 

i.e., the singular potential functions A, only need to be evaluated on non-singular 

element S. 

5.2 Prirnary system of equations 

For the source point j, the right hand sides of Eqs. (43) and (44) can be developed 

into the following matrix forms: 

where ( I )  = (q )  for singular elements. 

Hence, 

The last system of equations (46) is now condensed to reflect displacement con- 

tinuity across elernents. The resu1t is: 

where {p} is the vector with physical variables on the whole boundary aB. 

With n source points corresponding to n endpoint nodes on the boundary aB, 

one gets n relations (47) which are now combined into the following linear system 

of equations 

[MIIPI = (0) (48) 



Finally, system (48) needs to be reordered in accordance with the boundary 

conditions to  build the primary HBCM system of equations. The resulting system 

of equations has the same form as  Eq. (27). As in the BCM, the HBCM primary 

system is generally overdetermined but always consistent. 

5.3 Post-processing for displacements and stresses 

After the solution of the HBCM pnmary system is obtained, one con easily derive 

{$')} from ( 16) and ( 19). The pst-processing stage involves using the known {a(')} 
to compute displacements and stresses at any point P in the domain B. 

The set of points B* contains the interior as well as the boundary aB of a body, 

except the nodes a t  the ends of boundary elements. At a regular boundary point, 

aB is locally smooth. A corner is always an end point. 

Displacements on the entire domain B can be calculated from the boundary 

contour version of the standard BIE (see ( 1) and (24)) as follows 

However, since the endpoint displacements are already known from the primary 

HBCM analysis described in the previous section, only the displacements on BU 
need to be calculated from (49). For this calculation, ~k = 0.56ik for regular points 

on the boundary OB and cik = hii for points inside the body B. Also, k4 = 0.5 if P 

is a regular point on aB and z = 1 or 14 (see [20]). At regular boundary points on 

aB with other values of 2, as well as at points inside the body, kd = 0. 

Stresses on B can be evaluated from the boundary contour version of the regual- 

rized HBIE (see (28) and (43)) as 

where k,! = 0.5 if P is a regular point on aB and w = 2,16,23 or 35 (see [20] and 

the Appendix of this paper). Again, at regular boundary points on d B  with other 

values of zu, as well as at points inside the body, kx = 0. 



In E q .  @O), it can be shown that 

where ui ( P ) ,  u 2 ( P )  and by), h = 1,2,. . . ,6  are known from the primary solution or 

from (49). Now u l V l ( P ) ,  u ~ , ~ ( P ) , u ~ , ~ ( P )  and u ~ , ~ ( P )  are four unknowns which can 

be found by solving the system (50) of four equations (corresponding to k = 1'2 

and m = 1'2). 

It should be pointed out that values of kA are not required at  endpoint nodes on 

aB because it is particularly easy to find the stresses at these nodes. By comparing 

Br' ( h  = 2,3 ,5 ,6)  between (51) and (40). it can be seen that the displacement 

gradients at endpoint nodes are exactly the values of @), pp), ,@) and @), where 

q is either of the elements containing the endpoint node P under consideration. 

Once the displacement gradients are found, Hooke's law (12) is employed to 

compute the stresses. 

6 Numerical examples 

Three examples are presented in t his section. Al1 of t hem use the following material 

data: Young's modulus E = 2.5 (in consistent units) and Poisson's ratio v = 0.3. 

6.1 Displacement field problem 

Consider a n  elliptical body as shown in Fig. 2. The following displacement field, 

which is an exact solution of the elasticity Navier-Cauchy equations ( I l ) ,  is imposed 

at the displacernent nodes on the boundary. 

The circular boundaxy is discretized by 16 quadratic elements spaced at equal 

increments. Tractions on the boundary and stresses dong the line AB are obtained 



Figure 2: Ellipticd body with imposed displacement fields. 

from the primary analysis and from post-processing respect ively. The numerical re- 

sults are compared against analytical solutions as shown in Figs. 3 and 4. Excellent 

agreement between the solutions is achieved in both figures. 

Figure 3: Traction components for the cubic displacement field. 
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Figure 4: Stress components along AB (see Fig. 2) for the cubic displacement field. 

6.2 Lamé's problem 

Consider a thick hollow cylinder subjected to uniform pressures p, and p, on the 

inner and outer surfaces, respectively. Let a and b be the inner and outer radii of 

the cylinder. 

Due to symrnetry of the problem, only a quarter of the structure is modeled 

as shown in Fig. 5. A total of 80 quadratic elements is required to discretize 

the boundary: 18 and 8 elements of equd size are placed on arcs BC and DA, 

respectively; 27 elements of unequal size are placed on each of the edges A B  and 

CD, with shorter elements being used near B and C. 

The analytical expressions in polar coordinates ( r ,  O), for the stress fields of 

Lamé's problem, are given by Timoshenko and Goodier [24], 

in which the expressions for or and oe correspond to the upper and lower signs, 

respect ively. 



Figure 5:  Modeling of Lamé's problem. 

Figure 6: The traction component r2 on the edge AB (see Fig. 5) for Lamé's 

problem. 



analytical solution 

HBCM with quadratic elements 

Figure 7: Stresses along I J  (see Fig. 5) for Lamé's problem. 

Numerical results for rz = -cd dong AB are obtained from the HBCM primary 

analysis. These results are compared with the analytical solution in Fig. 6 where a 

very good correlation is observed. Xumerical results for the stress components dong 

the segment I J are computed from the post-processing stage and these results are 

in excelent agreement with the analytical solution as seen in Fig. 7. 

6.2 Kirsch's problem 

The third example deals with Kirsch's problem. Fig. 8 displays a quarter syrnmetry 

model of a square plate with a central circular hole subjected to a unit uniaxial 

tensile load. The boundary contour analysis model is made up of 78 quadratic 

elements. Due to stress concentration at the corners A and E, the mesh around this 

zone needs to be densified : the density of elements on A B  and DE is nonuniforrn, 

with short elements being placed near the points A and E. 

In polar coordinates, the stress component in the radial direction, the stress 

component 06 in the circumferential direction and the shearing stress component 



Figure 8: Modeling of Kirsch's problem. 

T ~ B ,  at a point ( r ,  O )  in an infinite plate with a circular hole are given by Sirnoshenko 

and Goodier (241, 

S a2 S 3a4 4a2 
or = -(l - -) + ? ( l +  - - 

9 CL r2 - r4 -) r* cos Y 1 
S a2  S 3a4 

ae = -)(1+ -p) - ?(l + -)cos 28 
CI Y r4 

S 3 a 9 a 2  
rr0 = - - ( 1 -  - + -) sin 28 

2 r f  r* 

For the cross section of the plate along the y axis (0 = n/2), tractions in the 

x-direction along the edge DE can be iound from Eqs. (54) as 

Numerical results from the primary and post-processing stages are compared 

with the analytical solutions in Figs. 9 and 10. Here, polar coordinates are used 

to evaiuate the stresses dong the line GH. Once again, very good agreement is 

ac hieved. 



- analytical solution 
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Figure 9: The traction component TI on the edge DE (see Fig. 8) for Kirsch's 

pro b lem. 

Figure 10: Stresses along GH (see Fig. 8) for Kirsch's problem. 



7 Conclusions 

A formulation and numerical implementation of the HBCM for 2-D Iinear elasticity 

is presented by this work. The method is based on a regularized HBIE which can be 

collocated at any boundary point where the stress is continuous. A numerical imple- 

mentat ion with quadrat ic domain shape functions is carried out . Potential funct ions 

are required for obtaining integrals (without numerical integration) in the regular- 

ized HBIE. These functions, used in both the primary and post-processing stages, 

are determined and included in this paper. From three examples in the present 

work, it is noted that the HBCM can provide accurate numerical results, especially 

those for post-processing stress analysis. It should be pointed out that numerical en- 

forcement of stress continuity at endpoint nodes, wi th  sufficient accuracy, is crucial 

for the regularization of Eq. (28). In order to achieve this, and consequently obtain 

accurate numerical results. the meshes used for the HBCM need, in general, to  be 

finer than those used for the BCM. It is expected that higher order elements such 

as cubic would offer the required accuracy without the need of these fine meshes. 

There is an ongoing debate in the literature regarding smoothness requirements 

of shape functions of the boundary displacement for collocating a regularized HBIE 

(such as Eq. (28)) at a boundary point where the stress is continuous. Martin 

and Rizzo [I 11, in a recent paper, daim that while the previously proved suficiency 

requirement of CL*" shape functions can be somewhat relaxed, Co*" shape func- 

tions are certainly not permissible. Cruse and Richardson [2], on the other band, 

clairn that Co*" shape functions for u are suficient in this case, provided that one 

specifically develops a scheme that dlows the numerical solution for the stress to be 

multi-valued at the  boundary collocation point. It is very interesting to  note that 

the HBCM formulation presented in this paper uses dornain shape functions that 

are Cm (see Eq. (13)). Thus, numerical collocation of the regularized HBCM (46), 

at  boundary points where the stress is continuous, is mathematically sound. This 

fact is supported by the excellent numerical results, including at end points and 

corners, for the Lamé and Kirsch problems presented in Figs. 6, 7, 9 and 10 in this 

paper. 
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APPENDIX III 

A boundary contour formulation for design sensit ivity 
analysis in two-dimensional linear elast icity. 
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Abstract 

A formulation for comput ing first-order shape design sensi tivi t ies in two-dimensional 

(2-D) linear elastostatics by the boundary contour method (BCM), along with a 

numerical implementation using quadratic boundary elements, is presented in this 

paper. Here, the direct differentiation approach is analytically applied to the ap- 

propriate boundary contour equations in order to derive the sensitivities of al1 the 

physical quantities (displacements, tractions and stresses) on the boundary as well 

as those for displacements and stresses inside the body under consideration. The 

nonsingular formulation of the BCM is used for computing the boundary displace- 

ments, and boundary stresses at 'off contour" regular points. A regular boundary 

point is a point on the boundary where it is locally smooth; an off contour point 

lies inside a boundary element . Their corresponding sensitivities are obtained in a 

straightforward manner from the resulting regular sensitivi ty formulation. Also, the 

stress sensitivities at the boundary nodes can be recovered easily from the global 

displacement shape functions described in a Cartesian coordinate system. Finally, 

t hrough three numerical examples for which analytical solutions exist, it is shown 

that the BCM can provide remarkably accurate numerical results for shape sensi- 

tivities. 

1. INTRODUCTION 

The conventional Boundary Element Method (BEM) for linear elasticity requires 

the numerical evaluation of line integrals for two-dimensional (2-D) problems and 

surface integrals for three-dimensional(3-D) ones ( s e ,  for example, Mukherjee, 1982 

or Banerjee, 1994). By observing that the integrand vector of this Boundary Integral 

Equation (BIE) without body forces is divergence free, Nagarajan et al. (1994, 

1996) have proposed a novel approach, called the BCM, that achieves a further 

reduction in dimension. The divergence free property allows, for 3-D problems, 

the use of Stokes' theorem to transform surface integrals on the usual boundary 

elements into line integrals on the bounding contours of these elements. For 2-D 

problems, a similar transformation eliminates numerical integrat ion altoget her. The 



above transformations are quite general and apply to boundary elements of arbitrary 

shape. Thus, the BCM requires only numerical evaluation of line integals for 3- 

D problems and simply the evaluation of functions (called potential functions) at  

points on the boundary of a body for 2-D cases. 

The BCM is a young method and further developments of this approach are 

under w a .  .4 hypersingular BCM (HBCM) formulation for linear elasticity has 

been proposed recently (Mukherjee and Mukherjee, 1997-a,-b; Phan et al., 1997-b). 

This formulation can possibly be extended to solve fracture mechanics problems. It 

is pointed out in Nagarajan et al. (1994) that the divergence free property of the 

BEM intergrand holds true for other linear problems besides potential therory and 

linear elasticity. Thus, in principle, it is possible to derive BCM formulations for 

other linear problems such as plate bending, transient heat conduct ion with uniform 

initial temperature, and thermoelasticity; although such formulations have not been 

derived yet. Finally, body forces that can be modeled as particular integrds in the 

usual BEM ( s e ,  for exemple, Banerjee, 1994) can also be modeled in the same way 

by the BCM. Thus, at  least in principle, the BCM is a fairly general approach for 

linear problems. The met hod, however, is not recommended for nonlinear problems, 

since the primary advantage of a further reduction in dimension, compared to the 

usual BEM, would, in general, be lost in these cases. 

Most shape optimization problems employ mathematical programming methods 

where design sensitivity coefficients (DSCs), which are defined as the rates of change 

of physical response quantities with respect to changes in the design variables, are 

required for determination of the optimum shape of a body. 

Unlike the well-known finite element method (FEM), the BEM requires only 

discretization on the boundary of a body. This characteristic provides significant 

advantages in its use in shape optimal design where mesh generation needs to be 

redone after each iterative step of the optimization process. Therefore, several re- 

searchers have used the BEM to develop efficient approaches for computing design 

sensitivities. The reader is referred to a specid issue of Engineering Analysis with 

Boundary Elements (Bui and Bonnet, 1995) for a recent discussion of sensitivity 



analysis with the BEM. As in the context of the FEM, there are three methods (e.g. 

Haug et al., 1986 or Sokolowski and Zolesio, 1992), namely, the finite difference ap- 

proach (FDA) ,  the adjoint structure approach (ASA) and the direct differentiation 

approach (DDA). 

Besides having the sarne advantage in mesh generation as  for the conventional 

BEM, the BCM offers a further reduction in dimension, and especially, a nonsingular 

formulation for computing boundary displacement s and boundary stresses at regular 

points inside a boundary element (see Phan et al., 1997-a). Moreover, the stresses 

at boundary nodes can be recovered easily and exactly from the global displacement 

shape functions expressed in Cartesian coordinates. These advantages of the BCM 

are expected t o  make it very competitive in optimal shape design. 

To that purpose, this paper presents a formulation for computing first-order 

design sensitivities based on a full development of the BCM for 2-D linear elastic- 

ity with quadratic boundary elements which has been introduced by Phan et al. 

(1991-a). In t bis paper, we develop a formulation for design sensitivities by direct 

differentiation of the BCM equations, i.e. by using the DDA. In the context of 

the  BEM for elastostatics, the DDA has been used by Barone and Yang (1988), 

Kane and Saigal (1988), Zhang and Mukherjee (1991), and Mellings and Aliabadi 

(1995) for 2-D problems, by Saigal et al. (1989), and Rice and Mukherjee (1990) 

for axisymmetric problems, by Aithal et al. (1991), Kane et al. (1992), and Bonnet 

(1995) for 3-D bodies, and by Mukherjee and Chandra (1991). and Chandra and 

Mukherjee (1997) for 2-D nonlinear problems. 

The DDA may be applied either before or after discretization of the initial BIE. 

The two processes are expected to iead to the same equations. Kane and Saigal 

( 1988) generated the desired DSCs by differentiating the resulting BEM system ma- 

trix analytically. In these formulations, the authors have placed the source points 

outside the region to avoid singular integrations. Barone and Yang (1988) carried 

out the opposite process by differentiating the BIE to obtain the DSCs analytically 

before numerical integration. Here, the rigid body motion technique has been em- 

ployed to treat singular integrai terms in the calculation of displacement sensitivities, 



but the integration of strongly singular kernels is required in a direct formula used 

in computing stress sensitivities. Zhang and Mukherjee (1991) overcame this diffi- 

culty related to the singular feature of the governing BIE by using a 2-D elastic BIE 

formulated in terms of tangent i d  gradient of displacement s where the sensitivi ty 

of boundary stresses is recovered from the corresponding tract ions and tangent i d  

gradients of displacements and t heir sensit ivit ies. In order to avoid strongly singular 

integrals involved in design sensitivity analysis, Bonnet (1995) applied the material 

derivative concept to the regularized displacement boundary integral equation. 

It can be seen from the above papers that most authors limit t heir calculations 

to design sensitivities on the boundary of a body. 

The formulation described in this work includes the DSCs of al1 diplacements and 

stresses throughout the domain of interest, i.e., on the boundary as well as inside 

the body. DSCs are obtained from completely regulaxized equations. There is no 

need to evaluate any singular integrals as in the BEM work of Barone and Yang 

(1988). In iact, for 2-D linear elasticity. the  BCM does not require the numerical 

evaluation of any integral at all! 

Three examples. including Lamé , Kirsch and a plate with an elliptical cutout. 

are solved and compared against analytical solutions. The numerical results are very 

accurate for t hese illustrat ive examples. 

2. 2-D BCM FORMULATIONS 

The information presented in this section is sumrnarized from Phan et al. (1997-a) 

where more details can be found. 

2.1. Basic formulation 

The idea of dimensional reduction starts from the standard BIE without body forces 

(see Rizzo, 1967) 



where cik is the corner tensor, P l  Q, ui and cij are the source point, field point, 

dis placement vector and stress tensor respect ively, uik and Zi jk are the Kelvin kernel 

tenson (Rizzo, 1967), and ej are global Cartesian unit vectors. In 2-D problems, 

aB is the boundary of a body B, and dS is an infinitesimal boundary length vector. 

Let Fk = [[fi,( P, Q)o,(Q) - Cijk(P. Q)ui(Q)] ej. Since the divergence of Fi at  

a field point Q is zero (see Nagarajan et aL, 1994), Le. 

everywhere except at the source point Pl  so after discretizing the boundary aB into 

n elements, the BIE (1) can be converted to the following BCM version 

Here. Ecl and Et2 are the 

main potentiai functions that 

satisfies eqn (2) 

endpoint nodes of element ( l ) ,  and ak are called the 

are determined by solving the following ident ity t hat 

A numerical implementation of eqn (3) does not require any numerical integra- 

tion. 

2.2. Formulation using the rigid body motion technique 

In order to regularize Cauchy singular integrds in eqn (1), a rigid body motion 

solution is applied to this equation to produce a new equation 

f 

Since the new integrand vector Gç = {U;k(P1 &)O,(&) - Cijk(P,Q)[~i(Q) - 
ui(P)])ej is still divergence free (everywhere except at  P), eqn (5) can be converted 

to  the following corresponding BCM version 



where Qt is determined by solving the following identity 

2.3. Implementation with quadratic boundary elements 

Quadratic shape functions that ensure the divergence free property of Ft and Gk 

are given by 

where kl = 4 ( 1  - 224, k2 = -4(1 - v )  and v is the Poisson's ratio. 

In matrix forrn, for element (!) 

Displacement node 

Figure 1 : Quadrat ic boundary element. 

The configuration of a chosen quadratic boundary elernent is shown in Fig. 1. 

The relat ionship between the physical variable vector {p(') (s, y ) ) and the artificial 

variable vector {P( ' ) )  of boundary elernent ( l )  are 



A new coordinate system (CJ) centered at each source point is introduced. 

Equation (9) becomes 

{d')) = [T'Ut)(t, s ) ] { p ( " }  (11) 

In eqn ( I l ) .  

{ ~ ( ' ) }  = [ B ~ ]  {P"'} 

where [Bj] is a matrix depending only on the coordinates of the source point j (since 

it arises from a coordinate transformation from the global system (z, y)  to a system 

(C, 7) centerd at j). 

3. DESIGN SENSITMTY ANALYSIS 

3.1. Notation 

If the boundary 8 B  of a 2-D body B is discretized into n boundary elements. then 

there are n endpoint nodes. Corners are always endpoint nodes. For convenience, 

let us define 

0 The boundary t3Bn as the set of points belonging to the boundary except 

the n endpoint nodes. In other words, 

{The whole boundary âB} = {The boundary al?'} U{n endpoint nodes} 

a The domain B* as the set of points belonging to the body B except these n 

endpoint nodes, i.e. 

{The whole domain B} {The domain B*) U{n  endpoint nodes} 

3.2. Boundary displacement sensitivities at displacement nodes and trac- 

tion sensitivities at traction nodes 

-4s seen in the earlier work by Phan et al. (1997-a) the numerical implementation 

of eqn (6) leads to 



in which [y.(;')] is the matrix associated with the main potential functions Qi and 

is evaluated in the coordinate system (<, 7). 

The DSCs under consideration can be found by differentiating eqn (13) with 

respect to a design variable 6, which is a typical component of a shape design vector 

b, We have 
n /  = 

I I 

where ( ) denotes the total derivative with respect to b, i.e. ( )= d( ) / d b  and 

generally, 

It is noted here that in order to avoid any ambiguities that rnight result frorn the 

use of the above notation for the total derivative of a Long expresion, the alternative 

notation ( )' is used in such cases. 

In eqn (16). the quantities vi = d x i / d b  are the components of the design velocity 

field. For 2-D cases. X I  E x and 22 E y, thus eqn (16) can be expanded to 

This total derivative is totally analogous to the concept of the material derivative 

(often taken with respect to time) in continuum mechanics. 

It can be proved that [ill(jt)]=[8(j')] ([a('')] is the matrix associated with the 

main potential functions Q1), therefore eqn ( 14) Ieads to 



(T::) are the components of matnx [T(')], n, and n, are the cornponents of the 
' 

outward normal vector to d B ) ,  and the components of matrix [@(je)] are given by 

(let z = h + 1O(k - 1) where h = 1,. . . ,IO) 

- 

The potential functions dz are listed in the Appendix of the paper by Phan et  

al. (1997-a) and the determination of their gradients a&/d( and &b,/aq are also 

addressed in that paper. It should be noted that at$,/& and i3&/a~ are sin- 

gular when Q(xt,yt) -* P(zj ,yj) ,  i-e. when (<, 7) + (0.0). But in this case 

[; (ZC. 9 ~ ) -  ; (xj7 y j ) ]  = [Y (ZC, Y<)- (z,, O ( r ) ;  thus. unlilie [@(")] the 
' 

rnatrix [WC)] is cornpletely regular. 
I I 

The advantage of the equality [@jt)] = [@je)] lies in the fact that the evaluation 
' œ 

of [9(jt)] is more convenient than that of [~ ( j ' ) ]  and the expression (22) can be 

reused in the computation of DSCs in the domain B', as discussed later in this 

paper . 

Displacement continuity across elements is now applied to system (15) which 

results in the new system of equations 

[M(')] {p} + [M(J)] {;}= {O} 

I 

where {p} and {p} are the degrees of freedom (DOF) and their sensitivities, respec- 

tively, on the whole boundary aB. 



With 272 source points corresponding to 272 displacement nodes on the boundary 

aB in the numerical irnplementation using quadratic boundary elements, one gets 272 

relations of the f o m  (23) which are now combined into the following linear system 

System (24) needs to be split in accordance with the boundary conditions to 

y ield 

[il {XI+ 61 { Y }  + [Al t-tI +[BI { Y } =  {O} 
where {X} and {Y} contain, respectively, the unknown and known (from boundary 

conditions) physical quantities. It is noted that, at this stage, {X) is known from 

the solution of the BCM system [A]{X} = {Z}, where {Z} = [B]{Y). Furthermore, 

it is assumed that the boundary conditions are kept fixed during the change of the 
w 

design variables, so that {Y}= {O). By shifting the known terms to the right hand 

side, eqn (25) becomes 

[A] {X}= - [BI { Y ) -  [il {X} 

or, 

This final linear system is very similar to the BCM systern [ A ]  {X} = {Z}. The 

matrix [A] is identical in both equations. Also, it is generally overdetermined but 

always consistent and therefore, the rectangular system solving aigorit hm used to 

solve the usual BCM equations, can be reused here. 

3.3. Displacement sensitivities in the domain B' 

The displacement in the domain B' is evaluated from eqn (3) which can oow be 

written as (see Phan et al., 1997-a) 

where y = 0.5 if the source point P (where displacements are to be computed) is on 

the boundary aBa ami y = 1 if P is inside the body B. 



Thus, displacement sensitivities in the domain B' can be found by different iating 

eqn (28) with respect to a design variable b. That means 

7 { ~ k  (b, m* = 

' 

in which [&] and are cornputed by using eqns (19) and (22) respectively, 

and since {/?(')) = [T(')]-' {JI('))  (see (IO)), one gets 

where [[T(')] -'] ' is determined by eqo (20) and { p i e ) }  is known at this stage after 
* 

the solution of (27) because { p ( ' ) )  is derived from { G }  which is forrned frorn {.ri} 
* 

with {Y)= {O}. 

3.4. Stress sensitivity recovery at boundary traction and endpoint nodes 

Stresses can be calculated using Hooke's law, 

where X and p are Lamé constants of the material, bij is the Kronecker delta (= 1 

for i = j and = O for i # j). 

The stress sensitivities are determined by taking the totai derivative of eqn (31) 

with respect to a design variable 6 to yield 

In order to evaluate (recover) the stress sensitivities a t  traction nodes where 

the traction sensitivities are available after the solution of eqn (2?), their displace- 

ment gradient tensor used in (31) needs to be computed first. It starts from the 

displacement shape functions (9) whose displacement gradient tensor is given by 



where m is a field point index for the coordinate system (z, y),  i.e. = a/& and 

Finally, the sensitivity 

is derived from eqn (33) 

of the displacement gradient tensor required by eqn (32) 

in which {P( ' ) )  is evaluated using eqn (30). 

The above approach is equivalent to the stress recovery procedure in the usuai 

BEM (see, for example, Kane and Saigal, 1988), but more straighforward, since the 

global displacement shape functions (9) are employed in the BCM. 

For computing stress sensitivi ties at endpoint nodes, the problern is much easier if 

the starting point is the displacement expression (1 1). In this case, the displacement 

gradients at an endpoint node are, simply: 

where ( e )  is the element containing this endpoint node so that its coordinates are 

( ,  ) = 0 O ) .  Therefore, the sensitivity of the displacement gradients required by 

eqn (32) is 

in which the components on the right hand side of eqn (36) are derived from the 

sensitivity of eqn (12), i.e. from 

The above procedure from eqn (32) to eqn (34) is simple and it can be used to 

compute the stress sensitivities on the whole boundary aB. Stress sensitivities in 

the domain B* can be computed by using the direct formulation addressed in the 

following section. 



3.5. Stress sensitivities in the domain B' 

This kind of sensitivity is dso computed using eqn (32). To this end, the first step 

is to determine the displacement gradient tensor u i j  on the body B* by taking the 

partial derivative of eqn (28) with respect to a source point P (see Phan et al., 

1997-a) to yield 

n 

( ~ ~ , ~ ( b .  P ) }  = [ B P ~  - ['pl) {B")}  
C= 1 

where 1M is a source point index for the  coordinate system (x, y), i.e. ,1 r a/ax(P) 

and ,2 = B/By(P), and p is a field point index for the coordinate system (c, q ) ,  i.e. 

in this case ,1 = a/i3( and ,2 = {)/av. 
Shen, the sensitivity of the displacement gradient tensor is derived from (38) to  



in which 

It can be seen from eqn (41) that in order to calculate [[O(P')] ,A *, one needs 
- 

a2dr a2#= to evaluate the second-order gradient of the potential functions #;, i.e. - - 
a p  ' ar)* 

Three points need to  be mentioned with regard to the evaluation of displacernent 

and stress sensitivities on the boundary 8Bœ. 

0 As demonstrated in the  work by Phan et al. (1997-a), unlike the conventional 

BEM, eqns (28) and (38) are completely regular when they are used to calcu- 

late displacements and stresses on the boundary aB*. This advantage allows 

one to derive fomulae for the corresponding DSCs directly, as presented above. 

In the usual BEM, a similar procedure for computing the stress sensitivities 

on the boundary was presented by Barone and Yang (1988). but the formula 

involves strongly singular integrais. An approximate formula was introduced 

in the above work in order to overcome the difficulty. 

0 When the source point P lies on the boundary aB*, the evaluation of matrix 

has to be carried out carefully by using the approach addressed in the 

earlier work by Phan et al. (1997-a). 

The rnatrix is singular when the source point P (where the DSCs are 

to be computed) approaches an endpoint node. Thus, eqns (29) and (39) are 

only used for calculating DSCs in the domain B* where endpoint nodes are 



excluded. However, the displacement and stress sensitivities a t  endpoint nodes 

cm be obtained from the equations in sections 3.2 and 3.4, respectively. 

4. NUMERICAL EXAMPLES 

Three examples are illustrated in this section. The same material data for al1 these 

examples are as follows: Young's modulus E = 2.5 (in consistent units) and Poisson's 

ratio u = 0.3. 

4.1. Lamé's problem 

Figure 2: Modeling of Lamé's problem. 

Consider a thick cylinder subjected to uniform pressure pi on the inner surface. Let 

a and b be the inner and outer radii of the cylinder where a is chosen as the design 

variable. 

The analytical expressions in polar coordinates (r, O ) ,  for the displacement and 

stress fields of Lamé's problem, are available from Timoshenko and Goodier (1970). 



In the case of a plane stress state 

in which, the expressions for or and 00 correspond to the upper and lower signs 

respectively. 

By assuming that the geometry changes linearly wi th the changes of the design 

variable a, one gets = ( b  - r)/(b - a )  (Chandra m d  Mukherjee, 1997). So, the 

analytical sensitivity fields are found by taking the total derivative of eqn (43) with 

respect to the design variable a (using eqn (16) written in polar coordinates) to give 

+ b - a  

Because of the symrnetry of the problem, only a quarter of the structure needs 

to be modeled as shown in Fig. 2. The mesh consists of equal numbers of quadratic 

boundary elements on each segment of the boundary. &O, al1 the elements on a 

given segment are of equal length. In generd. a finer mesh ensures better conver- 

gence of numerical results, and especially, in the calculat ion of displacement sensit iv- 

ities. Figures 3-6 display numerical results obtained by using a total of 60 quadratic 

elements. Excellent agreement with the analytical solutions is seen. Figures 3 and 

4 show numerical results for the DSCs on the boundary AB (see Fig. 2), in which, 

the approach presented in section 3.4 is employed to recover the stress sensitivities 

in Fig. 4. Findly, the formulas in section 3.3 and 3.5 are used to compute t h e  

displacement sensitivities (Fig. 5) and the stress sensitivities (Fig. 6) on the line 

segment IJ (see Fig. 2) (domain B.), respectively. 



1 .48 - 

1.46 - 
, anaIytical sofuüon 

1.44 - O BCM with quadratic elements 
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Figure 3: Displacernent sensitivity on the edge AB (see Fig. 2 ) .  

, analytical solution 1 
O BCM with quadratic elements 

Figure 4: Stress sensitivities on the edge A B  (see Fig. 2).  



- anafytical solution 

O 8CM with quadratic elements 

Figure 5: Displacement sensitivities dong the line 1 J ( s e  Fig. 2). 

, analytical solution 

O BCM with quadratic elements 

Figure 6: Stress sensitivities dong the line I J (see Fig. 2). 



4.2. Kirsch's problem 

Figure 7: Modeling of Kirsch's problem. 

The second example deals with Kirsch's problem. Figure 7 shows a quarter symme- 

try mode1 of a square plate with a central circular hole of radius a subjected to a 

unit uniaxial tensile load S. The stress components in polar coordinates (r.8) are 

given by Timoshenko and Goodier ( 1970) as 

3a4 
cos 28 

r r* 

r2 I 
3 a V a Z  --+-) r4 r2 sin 26 

Here, a is chosen as the design variable. The total derivative of eqn (45) is 

obtained using the same approach as in the previous example to yield the stress 

sensitivity fields where, with the same linear assumption as in Lamé's problem, the 



- analyücal solution 

O BCM with quadratic elements 

Figure 8: Stress sensitivity on the edge DE (see Fig. 7). 

Figure 9: Stress sensitivity on the edge DE (see Fig. 7). 



- anaiytical solution 

O BCM with quadratic elements 

Figure 10: Sensitivity of the von Mises stress along the line CH (see Fig. 7).  

geometric sensitivities are given by 

The boundary contour analysis mode1 is made up of 34 quadratic elements: 10 

elements on the edges A B  and DE, 4 elernents on the edges BC and CD, and 6 

elements on the arc E A  (see Pig. 7). Due to stress concentrations at the corners 

A and E, the mesh in this zone needs to be refined: the density of elements on AB 

and DE is nonuniform. with short elements being placed near the points A and E. 

The numerical results for the stress sensitivities on the boundary DE, computed 

from the approach presented in section 3.4, are shown in Figs 8 and 9. For the stress 

sensitivities in the domain BR (dong the line segment GH, see Fig. 7), a state of 

plane stress is employed to analytically compute the sensitivity of the von Mises 



stress. The von Mises stress and its sensitivity are: 

Analytical and numerical results for this quontity are presented in Fig. 10. This 

time, the formulas in sections 3.3 and 3.5 are used. Reasonably good agreements 

with the analyticd solutions are observed, even t hough the analytical solutions 

exhibit some rapid changes along the lines D E  and GH in Fig. 7. 

4.3. Infinite plate with an elliptical hole 

Figure 11: Modeling of a plate with an elliptical hole. 

Infinite plates with elliptical holes, subjected to uniforrn biaxial tensions S1 and Sa, 

are studied in this exarnple. Because of symmetry, only a quarter of a plate needs 

to be modeled as shown in Fig. 11. Let a and b be, respectively, the semi-major 

and semi-minor axes of the hole. Two cases are considered here: 



a) SI = O, Sz = 1, a = 2 and 6 = 1 in which a is chosen as the design variable. 

The same data as in the work of Zhang and Mukherjee (1991) (where the derivative 

BEM was employed) are used here for the purpose of comparison. Graded meshes 

with 1 I elements each are used on each of the sides AB and DE (due to the stress 

concentration at  A) ,  uniform discretizations (with 4 elements each) are used on 

each of the sides BC and CD, and 10 elements are placed at equal increments of the 

eccentric angle 4 on the elliptical arc EA. 

The focus here is on the tangential (uskin") stress O, on the hole boundary since 

it is often used as a control parameter in shape design. The analytical solution for 

a,, and its sensitivity for this case, are presented by Barone and Yang (1986). 

Numerical and analytical solutions are compared in Figs 12 and 13. It is quite re- 

markable that the results given from the BCM are seen to have excellent agreement 

with the exact solution on the entire elliptical hole boundary. Furthermore, Fig. 13 

d s o  shows t hat the present formulation yields better results t han t hose obtnined 

from the BEM by Zhang and Mukherjee (1991). Only very slight numerical oscilla- 

tions are seen in this figure even though fewer quadratic elements (especially only 

a half of elements on the eliiptical boundary) are employed in this BCM study, as 

opposed to t he  previous BEM research. In this work there are 11 elements on each 

of the segments AB and DE and 10 on EAI compared to 12, 14 and 20 respectively, 

in the BEM work of Zhang and ~Mukhejee (1991). 

b) Si = 1, S2 = 0.75 for B = b l a  = O.5,0.75 and 1,  respectively. The mesh is the 

same as in the previous case, except that 12 elements each are used on each of the 

sides AB and DE, and 20 elements are spaced around the arc E.4. 

The analytical solutions for the  stress sentitivities at  the points A and E are 

given by Barone and Yang (1988) 

( A )  - j 
PZ 

a ( E )  = 2 

Table 1 shows the analytical values of these quantities together with the nu- 

mericd results obtained by this work (BCM) as well as by the BEM (Chandra and 
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- analytical solution 

\ o BCM with quadratic elernents 

Figure 12: "Skin" stress a, on the arc EA (see Fig. 11). 

- analytical solution 

, BEM with 20 quadratic elements 

(Zhang and Mukhe jee, 1 991 ) 

O BCM with 10 quadratic elernents 

Figure 13: "Skinn stress sensitivity 9, on the arc EA (see Fig. 11). 



Mukherjee, 1997). It should be noted that in the BCM, numerical results for stresses 

(and t hus, stress sensitivit ies) are discontinuoiis at endpoint nodes. Although this 

is a minor drawback, it makes the modeling of corners trivial. At endpoint nodes 

on which the stresses from the analytical solution are continuous, the discontinuity 

magnitudes produced by the BCM are minor. Hence. it is reasonable to use the 

average values as final outputs. This kind of output is shown in the Table 1 as the 

numerical results from the BCM. Again, these results are in excellent agreement with 

the anlytical ones, and the performance of the BCM in design sensitivity analysis 

appears to be much superior to the BEM in this exemple. 

Table 1: Stress sensitivities a t  A and E (Fig. 11) for different values of P. 

5 .  CONCLUSIONS 

,8 Analytical BCM BEM 

0.5 -6 -5.996 -6.158 

A formulation for design sensitivity analysis by the BCM for 2-D linear elasticity is 

presented in this paper. An implementation is carried out with quadratic boundary 

element S. 

Analytical BCM BEM 

3 1.992 3247 

The present formulation deals with the calculation of DSCs throughout the do- 

main of interest, i-e. on the boundary aB as well as inside the body B. Since global 

displacement and stress shape functions are used in the BCM, the nodal stress sen- 

sitivities can be recovered in a straightforward manner from these functions and 

from the result s obtained after solving the system (27). For evaluating displacement 

and stress sensitivities in the domain B*, direct formulas are developed from the 

corresponding nonsingular expressions for displacements and stresses in this domain 

given in Phan et al. (1997-a). 



It is quite remarkable that the accuracy of numerical results for illustrative prob- 

lems is seen to be very high. It is felt that the primary reason for this is the complete 

absence of numerical integration in the BCM for 2-D problems. Anot her possible 

reason is that the global displacement shape functions satisfy, a priori, the Navier- 

Cauchy equilibrium equations (Phan et ai., 1997-a). Accuracy and efficiency in 

design sensitivity analyses are crucial since they lead to  faster convergence of itera- 

tive procedures in shape optimization. 

The DDA developed in this work is advantageous for optimal shape design prob- 

lems with few design variables and a large number of constraints. For problems 

involving many design variables and fewer constraints, the ASA is more suitable. 

The ASA, based on the BCM, is an important subject for future research. 
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APPENDIX IV 

Stresses, stress sensitivities and shape opt imizat ion in 
two-dimensional linear elasticity by the boundary contour 

method. 
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SUMMARY 

This paper presents new formulations for comput ing stresses as well as t heir sen- 

sitivities in two-dimensional (2-D) linear elasticity by the boundary contour method 

( B C M ) .  The formulations are established directly from the boundary contour version 

of the hypersingdar boundary intergral equation ( H B I E )  which can provide accurate 

numerical results and is very efficient with regard to numerical implementation as 

well as computationai time. The design sensitivity coeficients (DSCs) computed 

from the above formulations or from the primâry analysis of the BCM (as done ear- 

lier in Reference 1)  can then be coupled with a mathematical prograrnming method 

such as the Successive Quadratic Programming (SQP) algonthm in order to solve 

shape optirnizat ion problems. Numerical examples are presented to demonstrate 

the validi ty of the new formulations for calculation of stresses and t heir sensitivities. 

Also, shape optimization examples using the BCM are presented here for the first 

t ime. 

KEY WORDS: boundary contour method; boundary element method; stress anal- 

ysis; design sensi tivity analysis; shape optimization 

1. INTRODUCTION 

1.1. The boundary contour method 

The conventional bovndary element rnethod ( B E M )  for linear elasticity requires the 

numerical evaluation of line integrals for two-dimensional(2-D) problems and surface 

integrals for t hree-dimensional(3- D) ones (see, e.g., Reference 2). By O bserving t hat 

the integrand vector of the boundary integral equations ( B I E )  without body forces 

is divergence free, Nagarajan et a1.34 have proposed a novel approach, cailed the 

BCM, that achieves a further reduction in dimension. The divergence free property 

allows, for 3-D problems, the use of Stokes' theorem to transform surface integrals 

on the usual boundary elements into line integrais on the bounding contours of 



t hese elements. For 2- D problems, a similar transformation eliminates numericd 

integration altoget her. The above transformations are qui t e  generd and apply to 

boundary elernents of arbitrary shape. Thus, the BCM reduces the dimensionality of 

analysis problems by two: the method requires only numerical evaluation of 1-D line 

integrals for 3-D problems and simply the evaluation of functions (called potentiai 

functions) at  points on the boundary of a body for 2-D cases. 

For 3-D elasticity problerns, the BCM with quadratic boundary elements has 

been presented in the literature by Nagarajan et a l 4  and by Mukherjee et al.= The 

BCM for 2-D linear elasticity is the subject of Nagarajan e t  ale3 and Phan et al.' A 

numericai implementation with linear boundary elements is carried out in the former 

paper whereas a full development with quadratic boundary element irnplementation 

is performed in the latter one. In Reference 6, stresses inside a body and a t  non- 

endpoint nodes on its boundory are cornputed from the boundary contour version 

of the standard BIE. The advantage of this approach is that it does not require the 

determination of potential functions because t hese functions can be derived direct ly 

from the Kelvin kernel tensors. The above approach is then employed in Reference 

1 to develop a design sensitivity formulation by the BCM. 

1.2. Hypersingular formulations for stress and stress sensitivity analysis 

The present work also deals with boundary contour formulations for calculation of 

stresses and their sensitivities by the BCM in 2-D linear elasticity (as in References 6 

and 1 ), but the starting point is a gradient form of the standard BIE which is called 

the HBIE because this equation is hypersingular if it is collocated at any point on 

the boundary. Although the potential functions have to be derived for this purpose, 

it can be seen that the formulations and thus, their numerical implementations, are 

simpler than those addressed in References 6 and 1. Once these potentiai functions 

are published through this paper, they are ready for users. 

There are t hree approaches for design sensi tivity analysis ( s e ,  e.g., Reference 7) , 
namely, the finite dinerence approach ( F D A ) ,  the adjoint structure approach ( A S A )  

and the direct differentiation approach ( D D A ) .  In t his paper. stress sensi tivities are 



ob tained by direct differentiat ion of the hypersin y l a r  formulation aforment ioned, 

i.e. by using the DDA. In the context of the BEM for elastostatics, the DDA has 

been used by several researchers for 2-D,'-l0 axi~yrnmetric,'~*~* 3- Dl3-'' and 2-D 

nonlinear p r o b l e r n ~ . ~ ~ - ' ~  

I t  is noted that stresses and stress sensitivities, formulated in this study, are 

those in the domain B' (the whole body except the endpoint nodes on its boundary 

elements). The computations of physical quantities (displacements and stresses), as 

well as their sensitivities at endpoint nodes, have been addressed before in References 

6 and 1. 

1.3. Shape optimization using the BCM 

Shape optimization refers to the optimal design of the shape of structural compo- 

nents and is of great importance in current mechanical engineering design. Most 

shape opt imization problems employ gradient based mathematical programming 

methods in which DSCs, which are defined as the rates of change of physical re- 

sponse quantities with respect to changes in the design variables, are required for 

determination of the optimum shape of a body. 

Unlike the well-known finite element method ( F E M ) ,  the B E M  only requires dis- 

cretization on the boundary of a body. Hence, mesh generation and remeshing pro- 

cedures, required at each new iterative step in a numerical optimization procedure, 

are much more straightforward and inexpensive than in the FEM. Furthemore, 

the BEM often provides accurate bounduy physical responses (displacements, trac- 

tions, stresses). This explains why several researchers have used the BEM to develop 

efficient approaches for computing DSCs required in solving optimal shape design 

problems. 

Research papers in shape optimization using the BEM have been published by, 

for example, Choi and Kwak,lg Sandgren and Yang,*l Saigal and Wei 

et al.,'' Yamazaki et al? and Tafreshi and 

Besides having the same advantage in mesh generation as for the conventional 



BEM, the BCM offers a further reduction in dimension, and especially, a nonsingular 

formulation f ~ r  computing boundary stresses a t  regular points inside a boundary 

element. One of these formulations for stress evaluation has been addressed in 

Reference 6 and a second one is presented in this paper. Moreover, the stresses at 

boundary nodes can be recovered easily and exactly from the global displacement 

shape functions expressed in Cartesian coordinates. These advantages of the BCM 

are expected to make it very cornpetitive in optimal shape design. 

In t his paper, a mat hematical programrning method called the SQP algorit 

(available as an IMSL library subroutine) is employed to solve practical shape op- 

timization problems. The BCM and design sensitivity codes are coupled with the 

IMSL library subroutine to solve these problems. In order to  demonstrate the perfor- 

mance of the BCM in 2-D optimal shape design, the above strategy is used to  solve 

two shape optimization problems and the numerical results are compared against 

those obtained from the BEM. The DSCs required by these exarnples are those a t  

boundary nodes of a body. Therefore, it is most convenient to calculate them from 

the primary BCM sensitivity algorithm presented before in Reference 1. This has 

been done in this work. 

2. 2-D BCM FORMULATIONS 

The information presented in this section is summarized from Reference 6 where 

more details can be found. 

2.1. Basic formulation 

The idea of dimensional reduction starts from the standard Boundary Integral 

EquationZ6 ( BIE) wit hout body forces 

where ~k is the corner tensor, P, Q, ui and g i j  are the source point, field point, 

displacement vector and stress tensor respectively, uik and Cijk  are the Kelvin kernel 



tensors,16 and ej are global Cartesian unit vectors. In 2-D problems, aB is the  

boundary of a body B, and dS is an infinitesimal boundary length vector. 

By discretizing the boundary 8B into n elements, the BIE (1) becomes 

where Et* and En are the endpoint nodes of element (0. 

Since the divergence of Fk at a field point Q is zero: Le. 

everywhere except a t  the source .point P ,  so for non-singular elements (elements 

that do not contain the source point P), functions Or can be found by solving the 

following identi ty t hat satisfies equation (4)  

Hence, for a non-singular element (C), substitution of (5)  into (3)  yields: 
- 

In view of the above identity, cPk are called global potential functions. A numer- 

ical implementation of equation ( 6 )  does not require any numerical integration! 

It is noted that the  evaluation of boundary integrals on singular elements (ele- 

ments containing the  source point P )  can be avoided by using the ngid body motion 

technique as it is often performed in the standard BEM. A formulation using this 

technique explicitly is addressed in the next section. 

2.2. Formulation using the rigid body motion technique 

In order to regulaxize the Cauchy singdar integrals in the BIE [l), a rigid body 

motion solution is applied to this equation to produce a new equation 



As a result, it can be seen that potentially singular integrals in (1) only need to 

be eval uated on non-singular boundary elements. 

Let the new (regularized) integand vector 

The vector Gk is still divergence free (everywhere except at P). Wit h a procedure 

anologous to that described in the previous section, one gets: 

where V k  is deterrnined by solving the following identity 

2.3. Implementation with quadratic boundary elernents 

Gk contains the  unknown fields ui and aij. In order for the divergence free property 

of Fk and Gk to hold, the displacement shape functions ui must satisfy, a priori. the 

Navier- Cauchy equations: 

and the stress shape functions o,, rnust be derived from those of ui using Hooke's 

law . 
oij = X & p k l l i . k  + ~ ( ~ i j  f uj,i) ( 13) 

where X and p are Lamé constants of the material, &j is the Kronecker delta (= 1 

for i = j and = O  for i # j). 

Quadratic shape functions that ensure the divergence free property of Fk and 

Gk are given by 



where kl = -2(1 - 2u) ,  k2 = -4(1 - u )  and v is the Poisson's ratio. 

Equation (13) c m  also be written for element ( e )  as 

i Traction node 

a Displacement node 

Figure 1 : Quadratic boundary element (P). 

The configuration of a chosen quadratic boundary element is shown in Figure 

1. The relationship between the physical va,riable vector { p ( ' ) )  and the artificial 

variable vector {@(')) of boundaxy element ( e )  is 

(O T where {/3(')} = (#' . . . Plo ) . 

A new coordinate system ([J) centered at  each source point is introduced. 

Equations (14) and (15) become respectively, 



In equation (18), 

where jh(' = @:) for 

- ( O  T {)"'} = (Bi" . . . a,, ) = [B,] {pl} ( 19) 

h = 7,. . . ,10, and [Bj]  is a matrix depending only on the 

coordinates of the source point j (since it a i ses  from a coordinate transformation 

from the global system (z, y )  to a system ( & p )  centered at j ) .  

Since the coordinates of a source point P are always (O, O), the displacernent field 

used in equation (7) can easily be found from equation (17) as 

in which, with (q)  the element containing the source point, i.e.. the singular element, 

j f ' = j f ) - j p )  if h = l , 4  

p = @y) if h = 7, .... 10 

j y )  = j j f)  ot herwise 

It can be seen that the displacement shape vectors in equations (14) and (20) 

are the same. Thus, by substituting each of these ten displacement shape vectors 

and its corresponding stress shape vector (using (12)) into equations (2)  and (8), 

one obtains 

F k h  = G k h  = [ I l i k b i j h ( ( r  I )  - x i j k z i h ( ( t  v)] e j  Ld 37)  

Equations (5) and (10) in this case take the following form 

where = h + 10(k - 1); h = 1 ,2 , .  . . ,10 and k = 1,2. 

Equation (23) implies that the BIE (1) and its regularized form (7) have the 

same potential functions +.. 
For a given value of h, the solution of (23) using (22) yields two potentid 

functions #= associated with k = 1,2. The 20 resulting potential functions (for 



h = 1,. . . ,IO; k = 1,2) are listed in the Appendix of Reference 6. It can be ob- 

served from this Appendix that only half of these 20 potential functions need to be 

determined. 

By using these potentid functions, equations (6) and (9) become respectively 

As shown in 

to the following 

Reference 6, a development of (25) for a11 boundary elements leads 

final BCM system of equations 

In equations 

[AI{W = (27) 

(26) and (27), [A] and [BI are the BCM matrices which are as- 

sociated with the potential functions &; {X) and {Y) contain. respectively, the 

unknown and known (from boundary conditions) physical quantities. Thus, {Z} is 

a known vector. Finally, system (27) can easily be solved to find the unknowns {.Y}. 

3. STRESSES IN B* 

3.1. Hypersingular boundary contour formulation 

A method for computing stresses in B*, starting from the HBIE, is presented hem. 

This derivation is new and is different from that in Reference 6 .  

Stresses can be calculated using Hooke's law (12). To this end, the displacement 

gradient tensor used in (12) needs to be computed from the gradient form of the 

BIE (1) with respect to  a source point P, i.e. from the following HBIE: 



in which, the derivatives of the Kelvin kernels with respect to a source point P 

( (  have been converted to those with respect to a field point Q (( ),,) by a 

sign change (hl = rn = 1,- in 2-D cases); and 7 = 0.5 if the source point P (where 

stresses are to be computed) is on the boundary aB* and y = 1 if P is inside the 

body B. 

In a (c, 7) coordinate system centered at the source point P. the expressions for 

the gradients of Kelvin kernel tensors for plane strain problems are 

(29) 

where p = G is the shear modulus, is the Kronecker delta and r = d m .  

It is noted that the integrand vector of equation (28) 

is divergence free (everywhere except at P). This is true because the divergence is 

taken with respect to a field point Q whereas Hm, is, initially, the gradient of Fk 

(which is itself divergence free3) with respect to a source point P . 

Therefore, equation (28) can now be converted into the following BCM version 

where the global potential functions ilm, are determined by solving the identity 

3.2. Numerical implernentation 

As usual, each of the ten displacement shape vectors in (17) (see also equation (13)) 

and its corresponding stress shape vector (using (12)) are employed in equation (30) 



Equation (32) in this case takes the following form 

where w = h + 10(k - 1) + 20(m - 1); h = 1 3 . .  . ,IO; k = 1,2 and m = 1,2. 

For a given value of h, the solution of (34) using (33) yields four potential func- 

tions A, (corresponding to k = 1,2 and m = 1,2). The 40 resulting potential 

functions (for h = 1,. . . ,IO) are listed in the Appendix where only half of them 

need to be determined. 

With the origin of the coordinate system ([,O) is centered at  P, a numerical 

implementation of (31 ) leads to 

where A r  = p i )  - Aiy(&, T l n )  - k,, , with k,, = 0.5 if P is a regular point on 

ûB and w = 2,16,23 or 35 (see Reference 6 and the Appendix of this paper). At 

regular boundary points on aB with other values of ut, as well as a t  points inside 

the body, k,! = 0. 

In matrix form. 

where [AM')] is the rnatrix associated with the potentiol functions A, and it is noted 

that {B( ' ) }  is known at this stage from the solution of the primary problem (27). 

4. SENSITMTY ANALYSIS 

4.1. DSCs for the primary BCM problem 

This section recapitulates results from Reference 1 where further details are avail- 

able. 



The DSCs under consideration can be found by differentiating equation (26) with 

respect to a design variable b, which is a typical component of a shape design vector 

b. The result is, 

I t 

where ( ) denotes the total derivative with respect to 6, i.e. ( )= d( )Id6 and 

It is noted here that in order to avoid any ambiguities that might result from the 

use of the above notation for the total derivative of a long expresion, the alternative 

notation ( )*  is used in such cases. 

In equation (38), the quantities vi = dxi/db are the components of the design 

velocity field. For 2-D cases. X I  G x and xz = y, thus equation (38) can be expanded 

to 

( )= ( 1.6 + ( l.r 2 +( ),y (39) 

This total derivative is totally analogous to the concept of the material derivative 

(often taken with respect to tirne) in continuum mechanics. 

In equation (37),  {X} is known at this stage from the solution of the BCM 

system (27). Furtherrnore, it is assurned that the boundary conditions are kept 
I 

fixed dunng the change of the design variables, so that {Y)= {O}. By shifting the 

known terms to the right hand side, equation (37) becomes 

[A] {X}= - [BI { Y } -  [il { X }  

This final linear system is very similar to the BCM system (27). The matrix 

[A]  is identical in both equations. Also, it is generdly overdetermined but always 

consistent and therefore, the rectangular system solving algorithm used to solve the 

usual BCM equations (27), c m  be reused here. 



4.2. Stress sensitivities in B* 

This section presents a new method for cdculating stress sensitivities in B'. The 

starting point here is equation (36) in section 3.2. 

The stress sensitivities c m  be determined from Hooke's law ( 12) as 

The sensitivity of the displacement gradient tensor required in equation (42) is 

derived from (36) to give 

The new terms in equation (43) are computed 

where, 

as follows, 

The cornponents of the rnatrix [A('')] are giwn by 

[C (xt, y()- S. (xp, Yp)] - O('), therefore, unlike the rnatrix [A('pc)] is 

completely regular. 

a The sensitivity of [Bp] is 



0 By taking the sensitivity of equation (16), we have 

w here, 

Although equation (45) requires the partial derivatives of the potential function 

A . ,  it is interesting to note that these derivatives do not need to be determined from 

A,. In fact? it c m  be seen from equation (34) that these partial derivatives are the 

components of the integrand HkMh,  and these components can be found from (33) 

in which, ü i h  is the ith component of the hth displacement shape vector in (1 7), and 
- 
o i i h ,  Q;*h are the stress cornponents determined from Eih by Hooke's iaw (12). 

Finally, it can be observed that the process of evaluation of equation (36) and 

its sensitivity form (43) is simpler than use of the equivalent ones (equations (38) 

and (39) in Reference 1). 

5. SHAPE OPTLlMIZATION 

5.1. Formulation of an optimal design problem 

A n  optimal shape design problern can be stated as a minimization problem under 

certain constraints whose generd form can be formulated as follows 

Minimize f (b) (50) 

Subject to gi(b) 2 O i = i , . . . ,N ,  (51) 

hj(b) = O j = 1, ..., NA (52) 

b: 5 bk 5 61 k = 1, ..., N (53) 



in which, b = ( b l ,  b2, . . . , bN)' are the design variables, f (b) is called the objec- 

tive function, and g i ( b )  and h,(b) are called inequality and equality constraints, 

respect ively. 

The fact that the optimization problem is stated as a rninirnization is not re- 

strictive since it is always possible to  rnaxirnize an objective function by minimizing 

its negat ive value. 

The  design variables b could be shape or sizing parameters that define a part or 

the whole boundary of a body. 

The objective function could be: 

O The weight of a 3-D body or the area of a 2-D domain. This is the most typical 

objective function in optimal shape design. 

a The maximum effective stress over a region Bc where a stress concentration 

occurs. The effective stress can be principal, von Mises or Tresca stresses a t  a 

point in the region Bc. Such objective functions are often employed in stress 

concent ration problems. 

The variance of the stresses over a boundary dB,, which can be stated math- 

ematicallv as 

where o is the mean value of rr which could be effective or tangential stresses on 

the boundary 8Bc of length L. Minimization of this kind of objective function 

requires the effective stress to  be as uniform as possible on the boundary dB,. 

The constraints (51) and (52) describe al1 the restrictions associated with the 

optimal problem under consideration. In shape optimization, the usual constraints 

are 

Effective stress in the body should not exceed the allowable stress. 

Displacements at given positions should be less thon prescribed values. 



e Stiffness or stability constraints in buckling problems. 

0 Frequency constraints in vibration problems. 

Technological or manufact uring cons traints. 

Expression (53) contains side constraints and is used to limit the region of search 

for the optirnization problem. Here 6; and 6; denote lower and upper bounds, 

respectively, of the design variable bk. The side constraints are introduced to prevent 

unreasonable or meaningless solutions. For example. the sizing dimensions of a 

structure must always be positive. 

5.2. Shape modeling 

.4n important issue in shape optimization is how to mode1 the design boundary under 

given conditions while the number of design variables are kept as low as possible. In 

general, some nodes (called control nodes) on the part of boundary to be optimized 

are chosen as design variables. Then. fitting interpolations such as B - ~ ~ l i n e . ~ '  cubic 

 plin ne.'^-^^ using these control nodes, are employed to represent the design boundary. 

In special cases. a boundary can be modelled by the following parametrized 

e q u a t i o n ~ ~ ~  

x = a(cos0 + ecos38) 

y = a ( p  sin O - c cos 36) 

where the parameters a, c and B control, respectively, the size, shape and aspect 

ratio of the boundary. Thus, they can be chosen as design variables. By using 

appropriate values for these parameters, a va.riety of smooth curves such as circles, 

ellipses or rectangles with rounded corners can be generated. 

Bot h aformentioned approaches are employed in the optimizat ion examples of 

this work. The cubic spline fitting is used in the example of a fillet problern whereas 

the parametrized equations (55) are applied in the example of a plate with cutout. 



5.3. Mathematical programming methods 

In general, both objective function and constraints in shape optimization problems 

are nonlinear functions of the design variables and cannot be expressed analytically 

(in closed form). Therefore, numerical approaches such as mathematical program- 

rning methods must be employed to  solve the optimal problem (50) - (53). The 

most common methods in the  context of optimal shape design are successive iinear 

programming ( S L P )  and successive quadratic programming ( S Q P )  methods. 

SLP is the most popular and simplest approach which approximates the  objective 

function and the constraints of problem (50) - (-53) by their first order Taylor series 

expansions about the design vector b obtained frorn the previous iterative step. The 

new linearized problem can then be solved easily by using the well-known simplex 

method or ot her standard optimization algorithms. 

Due to the linearization of the SLP method, moving limits must be imposed 

here to prevent high errors of this approximation. Otherwise the problem may 

have unbounded or osciliatory solutions. If the moving limits can guarantee a good 

approximation for the linearized problem, its solution will be closer to the optimal 

one than that of the previous step. In general, the moving limits should be shrunk 

when the design solution approaches the optimum since the linear approximation 

needs to be more accurate at that time. The way to choose and the requirement to 

adjust moving limits are the main drawbacks of the SLP method. 

In the SQP method, the optimization problem is approximated by expanding 

the objective function in a second order Taylor series about the current values of 

the design variables, and the contraints, in a fint order Taylor series as follows, 

Subject to gi(b(m)) + ~ ~ ~ ~ ( b ( ~ ) ) { ~ b )  2 O 



where rn denotes the previous optimization step, {Ab} = (Abi, Ab2, . . . . ~ b n r ) ~  are 

the changes in the design variables, [ H l ,  v f(b(")) and ~ g ( b ( ~ ) )  are, respectively, 

the Hessian matrix, the gradients of the objective function and its contraints. 

The SQP method is usually considered a powerful method in various optimization 

problems thanks to the use of quadratic programming that leads to faster conver- 

gence than the SLP and more accurate final solutions. This method is used in this 

paper to solve op t imization examples. 

Since Taylor series are employed in the SLP and SQP methods, it can be seen 

that DSCs are required by these methods in order to form the gradients of the 

objective functions and the contraints. 

5.4. Shape optimization program 

The C function "f -min-con-noniin" from the IMSL library is coupled with the 

2- D BCM analysis and sensi tivi ty programs to solve shape opt imizat ion examples 

of this paper. The function is based on the FORTRAN subroutine NLPQL de- 

veloped in Reference 25 where theoretical details of the algorithm are presented. 

"fmin-connonlin" uses the SQP rnethod to solve the general nonlinear optimization 

problem (56) in which the Hessian is replaced by a positive definite approximation. 

Thus, the evaluation of second order DSCs for the objective function is âvoided. 

6. NUMERICAL EXAMPLES 

Four examples are studied in this section. For the first three examples, the following 

material data are used: Young's modulus E = 2.5 (in consistent units) and Poisson's 

ratio v = 0.3. The first example is concerned with stress analysis in a narrow 

cantilever and the second with stress sensitivity analysis in a hollow cylinder (Lamé's 

problem). In these two examples, stresses and their sensitivities are cornputed by 

the new approach (sections 3 and 4.2). The last two examples deal with shape 

optimization. In these cases, stress sensitivites at boundary nodes are obtained 

from the primary BCM design sensitivity analysis developed in Reference 1 and 

summarized in section 4.1. 



6.1. Bending of a narrow cantilever - stress andysis 

' t 

Figure 2: Modeling of the narrow cantilever problern. 

Consider a cantilever of narrow rectangular cross section as shown in Figure 2. 

The structure is subjected to a distributed shearing force p along its free end and 

the resultant load is equal to P. The stresses in section IJ are computed using 

the formulas presented in section 3. The cantilever boundary is discretized by 18 

quadratic elements: four and five elements are equally spaced along each of the 

vertical and horizont al edges, respectively. Due to the narrow rectangular cross 

section of the cantilever compared with its depth 2c, this example can be considered 

to be in a state of plane stress. 

By virtue of Saint-Venant's principle. the following elementary solution can rep- 

resent the stress distribution for cross sections at a considerable distance from the 

where I = 2c3/3 is the moment of inertia of the cross section of the cantilever, 

P = 2pc is the resultant end load. 

The above analytical solution for the stresses in section IJ with x = xo = 112 



analytical solution 

b 

Figure 3: Stress components along the line IJ (see Figure 2).  

and the %CM numerical results are plotted in Figure 3 where good agreement is 

observed. 

6.2. Lamé's problem - stress sensitivity analysis 

The  second exarnple deals wit h the calculation of stress sensitivi t ies for Lamé's 

problem. Consider a thick cylinder subjected to uniform pressures pi and p, on the 

inner and outer surfaces, respectively. Let a and b be the inner and outer radii of 

the  cylinder where a is chosen as the design variable. 

The analytical expressions in polar coordinates (r, O ) ,  for the stress fields of 

Lamé's problem, are given by2' 

in which, the expressions for a, and 00 correspond to the upper and lower signs, 

respectively. 

By assuming that the geometry changes linearly with changes of the design 



Figure 4: Modeling of Lamé's problem. 

- analflical solution 

O BCM with quadratic elements 

-0.121 I 1 I 1 

O 2 4 6 8 1 O 12 14 

Y 

Figure 5: Stress sensitivities dong the line I J (see Figure 4). 



vaxiable a, it is easy to  get . b - r  
r= - 

6 - a  

Therefore, the andytical sensitivity fields are found by taking the  total denvative 

of equation (-58) with respect to the design variable a (using equation (38) wntten 

in polar coordinates) to give 

2ab2 ( p i  - p.) [r (r2 F b 2 )  f a(b - r ) ( b  + a ) ]  
g r / e  = 

(62 - a ~ ) ~  I j  

Due to symmetry, only a quarter of the structure needs to be modeled as shown 

in Figure 4. The mesh consists of equal numbers of quadratic boundary elements 

on each segment of the boundary. Also, al1 the elements on a given segment are 

of equal length. This example is solved by using a total of 20 quadratic elements. 

The formulas in section 4.2 are used to cornpute the stress sensitivities (Figure 5 )  

on the line segment I J  (see Figure 4). Excellent agreement is achieved between the 

analyt icaI and numerical solutions. 

6.3. Shape optimization of a plate with cutout 

.4 square plate with a central cutout, subjected to uniform biaxial tensile loads, is 

shown in Figure 6. Because of syrnmetry, only a quarter of the plate is considered. 

The mode1 is set up with 42 quadratic elements, 10 at  equal eccentric angles on EA. 

1 at  equal distance along each of BC and CD, and 1% at unequal distance along 

each of AB and DE. Due to stress concentration at A and E ,  the mesh density is 

increased from B to A and from D to E. 

The objective here is to design the cutout shape E A  so that the variance of 

tangential stress a, on this cutout is minimized. Therefore, the objective function 

has the form of equation (54) with, a gs. Based on this equation, the sensitivity 

of the objective function, required by the SQP algorithm, is @en by18 



I = 

Figure 6: Modeling of the plate with cutout. 

in which. 

In this example, the design cutout is modeled using equation (55) with c = 0, 

I .es, 

x = a cos 0 

y = aBsin8 

where O ,  a and ap  = b are, respectively, eccentric angle, semi-major and semi-minor 

axes of the cutout. Here, p is chosen os the design variable. The constraint imposed 

in this case is 



Hence, 

A linear assumption is used to determine the geometry changes (design velocity 

field) of the cutout. 

It  has been proved2' t hat the analytical solution for this kind of problem is 

6 s* p z - = - -  - 0.75 
a Sl 

(66) 

Table 1 displays the history of the iterative opt imization process for t his problem. 

The final solution 13 = 0.7501 is obtained after 6 steps, using a CPU time of 36.78 s 

on an IBM RS/6000. This result is very close to the  analytical solution and more 

accurate than that obtained from the BEM by Wei et al.28 (,6 = 0.756 obtained after 

5 steps. with a CPU time of 29.78 s on an IBM 3090 supercornputer). 

Table 1: History of iterative optimization process for the plate with cutout 

pro blem. 

Number of iterations ,û = bla f 

6.4. Shape optimization of a fillet 

The last example involves optimizing the shape of a fillet in a tension bar whose area 

is selected as the objective function. An optimal shape is sought that minimizes the 

area without causing yielding anywhere in the bar. The result will be compared 



Figure 7: Modeling of the fillet problem. 

against those obtained in Reference 21 where shape design sensi tivi ty analysis has 

been used with the BEM. 

Because of symmetry, oniy the upper half of the bar is rnodeled as displayed 

in Figure 7. Young's modulus, Poisson's ratio and allowable von Mises stress are 

E = 3.10: psi, u = 0.3 and [uvM] = 150 psi, respectively. The design boundary DE 

is to be varied while points D and E are fixed. A total of 13 quadratic elements is 

meshed on the boundary: 3 elements on the edge AB. 1 on BC. 2 on CD, 4 on the 

fillet DE, 2 on EF and 1 on F A .  This mesh is densified around D which is a point 

of stress concentration. The ordinates y,, y2 and y3 of three endpoint nodes inside 

the fillet DE (control nodes) are chosen as the design variables. 

The first task is to mode1 the design boundary DE based on the coordinates 

of the 5 endpoint nodes on this boundary. A cubic spline interpolation is used to 

build the design curve g D E ( y i ,  y ~ ,  3/3, x). In this case, the objective function can be 

evaluated via the area bound by DE, two vertical lines through D and E, and the 

x axis as follows: 



The constraints associated with the above objective function are descri bed as 

where avnli(yl, y2) are the von Mises stresses at nodes i on DE. and the last two 

expressions are the side constraints that force the design boundary DE to lie within 

the triangle EGD. 

The von Mises stress and its sensitivity are: 

Figure 8: Optimal shape of the fillet. 

The SQP (function "f-min-con-nonlin" from the IMSL library) is again em- 

ployed to solve this problem. The find converged solution is reached with a CPU 
time of 40.4 s on an IBM RS/6000. The optimal shape of the fillet is shown in 



Figure 8. The area of the structure is reduced from the initial value of 145.125 in2 

with stress violation around point D to the final value of 134.64 in2 without yielding 

on the boundary. This result is in good agreement with that obtained in Reference 

21 (134.29 in2) where the CPU tirne was not shown. However, it is useful to point 

out that only three design variables and 13 quadratic boundary elements are used 

here as opposed to five design variables and 15 quadratic elements employed in the 

work of Yang.21 

7. CONCLUSIONS AND DISCUSSION 

This paper contains two primary contributions. 

The first is the development of new formulations, based on the HB1E. for comput- 

ing stresses and their sensitivities in 2-D linear elastic solid bodies. This approach 

is valid at al1 points inside and on the boundary of a body, except at the ends of 

boundary elements. The formulations are shown to be very efficient with respect to 

ease of numerical implementation and computational effort. Results for two numer- 

ical examples are seen to be uniformly accurate. It is felt that the primary reason 

for this is that numerical integration is completely avoided in the 2-D BCM. Only 

function evaluations are necessary. 

The second contribution is the development and execution of a shape optimiza- 

tion algorit hm with DSCs calculated from the BCM. Again: the optimal solutions 

are obtained very efficiently and accurately, demonstrating that the BCM has great 

potential for engineering design problems. 
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