
Titre:
Title:

Implémentation évolutive à faible complexité de circuits de
multiplication par matrices constantes

Auteur:
Author:

Aymen-Alaeddine Zeghaida

Date: 2025

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Zeghaida, A.-A. (2025). Implémentation évolutive à faible complexité de circuits
de multiplication par matrices constantes [Mémoire de maîtrise, Polytechnique
Montréal]. PolyPublie. https://publications.polymtl.ca/68207/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/68207/

Directeurs de
recherche:

Advisors:
Jean Pierre David, & J. M. Pierre Langlois

Programme:
Program:

Génie électrique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/68207/
https://publications.polymtl.ca/68207/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Implémentation évolutive à faible complexité de circuits de multiplication par
matrices constantes

AYMEN-ALAEDDINE ZEGHAIDA
Département de génie éléctrique

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées
Génie éléctrique

Août 2025

© Aymen-Alaeddine Zeghaida, 2025.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

Implémentation évolutive à faible complexité de circuits de multiplication par
matrices constantes

présenté par Aymen-Alaeddine ZEGHAIDA
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

François LEDUC-PRIMEAU, président
Jean Pierre DAVID, membre et directeur de recherche
Pierre LANGLOIS, membre et codirecteur de recherche
Tarek OULD-BACHIR, membre

iii

DÉDICACE

Ce mémoire est dédié à ma famille et à tous ceux qui ont rendu ce parcours possible.
À quiconque choisit de poursuivre le savoir avec curiosité, même dans l’adversité.

"Per aspera, ad astra. . . "

iv

REMERCIEMENTS

Je tiens à exprimer ma profonde gratitude à mon directeur de recherche, Prof. Jean-Pierre
David, pour sa confiance, sa rigueur et la générosité avec laquelle il a partagé son savoir.
Son expertise, sa clarté conceptuelle et sa capacité à transformer des problèmes complexes
en idées maîtrisables ont profondément marqué mon approche. Sous sa direction, j’ai appris
à définir des objectifs précis, à développer des solutions par itérations, et à progresser sans
craindre l’imperfection. Il rappelait souvent que «le mieux est l’ennemi du bien» - un principe
simple, mais déterminant, qui m’a permis de débloquer bien des étapes. Son encadrement a
été une véritable école, intellectuelle autant que personnelle.

Je remercie également Prof. Pierre Langlois, mon codirecteur, pour son exigence méthodolo-
gique et sa grande disponibilité. Ses commentaires détaillés et ses conseils avisés ont contribué
de manière décisive à la qualité de ce travail. À travers son engagement et sa rigueur, il m’a
poussé à affiner mes idées, à structurer mes démarches et à maintenir un haut niveau d’exi-
gence. Je le remercie, avec Monsieur David, pour le soutien financier apporté au projet.

Je remercie tout particulièrement Dinesh pour son aide généreuse dans l’implémentation de
l’algorithme et ses retours pertinents, qui m’ont permis d’améliorer efficacement mon travail.

Ce parcours aurait été bien plus difficile sans la présence de mes collègues de laboratoire
et amis. À mes camarades de laboratoire Loïc et Fahimeh, pour leur camaraderie dans le
quotidien du laboratoire. À Charles, Yunjo, Karou et Mariem, avec qui je partage beaucoup
de moment agréables. Leur bonne humeur m’a permis de garder le cap.

Je suis profondément reconnaissant envers ma famille : à ma mère Saida, pour son courage,
sa patience et ses sacrifices silencieux - j’espère t’avoir rendu un peu de ta fierté ; à ma sœur
Hind, pour sa présence et son soutien émotionnel indéfectible, toujours capable d’alléger mes
journées et d’apporter de la bonne humeur, même dans les moments les plus difficiles ; à
mon frère Imad, dont les conseils avisés et l’esprit aventurier restent pour moi une source
d’inspiration. Je lui souhaite un avenir à la hauteur de ses rêves.

À la mémoire de mon cher père, Mohammed Salah, qui vivra à jamais dans mon cœur. Son
souvenir m’accompagne à chaque étape.

v

RÉSUMÉ

La multiplication d’une matrice constante par un vecteur constitue une opération de base
dans de nombreuses applications embarquées et en temps réel, qui reposent sur l’accélération
matérielle, notamment en traitement du signal numérique, en intelligence artificielle embar-
quée et en commande en temps réel.

Sur FPGA, les approches classiques s’appuient sur des multiplieurs généralistes, coûteux en
ressources logiques et peu efficaces sur le plan énergétique. Ce surcoût devient particulière-
ment contraignant dans les scénarios de calcul en périphérie, où les contraintes de surface,
de puissance et de latence sont strictement encadrées.

Cette recherche propose un algorithme évolutif à faible complexité, conçu pour éviter l’usage
de multiplieurs matériels en exploitant l’arithmétique binaire fondée sur les décalages et
les additions, ainsi que la réutilisation de résultats intermédiaires. La méthode repose sur
une factorisation récursive des sous-expressions communes entre les lignes de la matrice, ce
qui permet de réduire le nombre total d’additions et de produire un graphe de calcul de
profondeur minimale.

Trois implémentations cibles sur circuit logique programmable sont évaluées à partir de cet
algorithme : une version purement combinatoire, une version segmentée en étapes (pipeline),
et une version segmentée et regroupée. Les résultats expérimentaux obtenus sur les circuits
Xilinx Zynq-7000 montrent des gains substantiels en termes de LUT pour des matrices allant
de 5× 5 à 100× 100, avec des largeurs de mots de 6 à 16 bits.

Comparée aux approches exactes issues de la littérature, l’approche proposée permet d’op-
timiser des matrices constantes de dimensions allant jusqu’à 100 × 100, soit un ordre de
grandeur supérieur aux matrices traitées par les méthodes exactes, généralement limitées à
de petites tailles en raison de leur complexité exponentielle.

Comparée aux architectures de référence reposant sur des multiplieurs, la version combina-
toire permet une réduction allant jusqu’à 5,7× de l’utilisation des LUT et une diminution
moyenne de la latence de 2,8×. La version segmentée atteint des fréquences d’horloge allant
jusqu’à 301 MHz tout en divisant par deux le nombre de niveaux logiques, tandis que l’ar-
chitecture segmentée et regroupée réduit la latence totale de 26,7 % à 50 %, au prix d’une
baisse modérée entre 17 % et 30 % de la fréquence maximale.

Une étude de cas sur une couche de réseau de neurones quantifié vient valider l’approche
dans un contexte d’application réel. Dans ce cadre, l’intégration du facteur d’échelle directe-

vi

ment dans les poids matriciels transfert une partie du coût computationnel vers une phase
de prétraitement effectuée en amont avant l’addition des biais, ce qui entraîne aussi un élar-
gissement des opérandes. Néanmoins, une approximation du facteur d’échelle par une valeur
à virgule fixe permet de réduire cette surcharge. Lorsque nous appliquons notre algorithme a
la matrice constante intégrant le facteur d’échelle, les gains sont comparables à ceux observés
sur les matrices synthétiques de dimensions comprises entre 5× 5 et 100× 100.

Dans l’ensemble, la méthode proposée rend possible une implémentation efficace de multipli-
cations constantes sur circuit logique programmable, adaptée aux systèmes à faible consom-
mation et à haut débit.

vii

ABSTRACT

Constant matrix–vector multiplication is a core operation in many embedded and real-time
applications that rely on hardware acceleration, particularly in digital signal processing,
embedded artificial intelligence, and control systems.

On FPGA, traditional methods depend on general-purpose multipliers, which are costly in
logic resources and energy-inefficient. This overhead becomes especially problematic in edge
computing scenarios, where constraints on area, power, and latency are tightly bounded.

This work introduces a scalable, low-complexity algorithm designed to avoid hardware mul-
tipliers by leveraging binary arithmetic based on shifts and additions, along with the reuse
of intermediate results. The method relies on a recursive factorization of common subexpres-
sions across matrix rows, effectively reducing the total number of additions and generating
a computation graph with minimal depth.

Based on this algorithm, three FPGA-targeted hardware implementations are proposed: a
purely combinational architecture, a pipelined architecture, and a pipeline-aggregated vari-
ant. These designs were evaluated on Xilinx Zynq-7000 devices, showing significant savings
in logic utilization for matrices ranging from 5× 5 to 100× 100 and operand widths between
6 and 16 bits.

Compared to exact methods from the literature, which are typically limited to small matrices
due to exponential complexity, the proposed approach successfully optimizes constant matri-
ces up to 100×100, extending scalability by an order of magnitude. When compared against
multiplier-based reference architectures, the combinational design achieves up to 5.7× reduc-
tion in LUT usage and an average latency decrease of 2.8×. The pipelined version reaches
clock frequencies up to 301 MHz while halving logic depth, and the pipeline-aggregated ar-
chitecture further reduces total latency by 26.7% to 50%, with a moderate frequency drop of
17% to 30%.

To validate the approach in a real-world scenario, a case study was conducted on a quantized
neural network layer. In this context, integrating the scaling factor directly into the matrix
weights shifts part of the computational cost to a preprocessing stage performed prior to
the addition of biases, which increases operand widths. Nevertheless, approximating the
scaling factor with a fixed-point value reduces this overhead. When we apply our algorithm
to the constant matrix incorporating the scaling factor, we observe gains comparable to those
obtained on synthetic matrices ranging from 5× 5 to 100× 100.

viii

Overall, the empirical results suggest that the proposed method can enable efficient im-
plementation of constant multiplications on FPGA devices, making it suitable for high-
throughput and low-power embedded systems.

ix

TABLE DES MATIÈRES

DÉDICACE . iii

REMERCIEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE DES MATIÈRES . ix

LISTE DES TABLEAUX . xii

LISTE DES FIGURES . xiii

LISTE DES SIGLES ET ABRÉVIATIONS . xiv

LISTE DES ANNEXES . xv

CHAPITRE 1 INTRODUCTION . 1
1.1 Contexte . 1

1.1.1 Applications émergentes énergivores 1
1.1.2 Algorithmes de multiplication . 3
1.1.3 Architecture des FPGA modernes . 4
1.1.4 Avantages énergétiques d’une approche sans multiplieurs 5

1.2 Description du problème . 6
1.3 Objectifs de recherche . 6
1.4 Contributions . 7
1.5 Plan du mémoire . 8

CHAPITRE 2 REVUE DE LITTÉRATURE . 9
2.1 Optimisation de la multiplication par plusieurs constantes 9

2.1.1 Algorithmes de recodage . 11
2.1.2 Algorithmes basés sur le partage des sous-expressions communes . . . 12
2.1.3 Algorithmes basés sur les graphes . 13
2.1.4 Autres méthodes . 14

x

2.2 Généralisation du problème de la multiplication par plusieurs constantes en
matrice constante . 15

2.3 Avancées dans les architectures et algorithmes de multiplication efficace de
matrices . 16
2.3.1 Approches exactes . 16
2.3.2 Approches approximatives . 17

2.4 Multiplieurs efficaces sur systèmes reconfigurables FPGA 18
2.5 Conclusion . 20

CHAPITRE 3 ALGORITHME MULTIPLIEUR OPTIMISÉ 21
3.1 Multiplication par somme de décalages binaires 21
3.2 Description détaillée de l’algorithme proposé 21

3.2.1 Initialisation des matrices binaires . 22
3.2.2 Réduction des colonnes . 23
3.2.3 Calcul du résultat . 23

3.3 Exemple illustratif . 23
3.4 Implémentation Python . 26
3.5 Implémentations SystemVerilog . 28

3.5.1 Architecture combinatoire . 28
3.5.2 Architecture en arbre d’additionneurs pipeliné 32
3.5.3 Agrégation des étages de pipeline . 36
3.5.4 Conclusion . 38

CHAPITRE 4 EXPÉRIENCES ET RÉSULTATS 39
4.1 Introduction . 39
4.2 Cas génériques . 39

4.2.1 Algorithme de multiplication binaire standard 39
4.2.2 Algorithme de multiplication par décalage 40
4.2.3 Description de la plateforme de test FPGA 40
4.2.4 Configuration expérimentale . 41
4.2.5 Analyse des performances . 41

4.3 Cas d’étude . 47

CHAPITRE 5 DISCUSSION . 52

CHAPITRE 6 CONCLUSION . 56
6.1 Synthèse des travaux . 56

xi

6.2 Limitations de la solution proposée . 57
6.3 Perspectives et pistes de recherche futures 58

RÉFÉRENCES . 59

ANNEXES . 64

xii

LISTE DES TABLEAUX

Tableau 1.1 Coût énergétique d’opérations arithmétiques (d’après [1]). 5
Tableau 3.1 Illustration de l’algorithme proposé. Étape 1 : Élimination des colonnes

contenant le plus grand nombre de ’1’ (ce qui correspond aux puissances
de 2 les plus répandues) . 25

Tableau 3.2 Étape 2 : Passage aux prochaines colonnes contenant le plus de ’1’ . . 25
Tableau 3.3 Étape 3 : Cette opération continue pour les colonnes suivantes 25
Tableau 3.4 Étape 4 : Les dernières colonnes contiennent les résultats finaux Y1, Y2

et Y3. Par souci de clarté, nous montrons uniquement la dernière étape,
sans les ’1’ simplifie . 26

Tableau 4.1 Consommation de LUT post-synthèse (kLUT) 42
Tableau 4.2 Délai de propagation maximum sur le chemin critique post-synthèse

pour les modules combinatoires (ns) 44
Tableau 4.3 Pire marge négative (Worst Negative Slack, WNS) pour les versions

pipelinées (ns) . 46
Tableau 4.4 Consommation de ressources post-synthèse pour les modules approximé

et couche linéaire (32x19) . 50

xiii

LISTE DES FIGURES

Figure 2.1 Filtre FIR, forme transposée . 9
Figure 2.2 A gauche, 45x calculée en tant que ((x − 4x) − 16x) + 64x requiert

3 additionneurs. A droite, calcul optimal : 45x calculée en tant que
(8(4x + x) + (4x + x)), qui est une représentation optimale, ne requiert
que 2 additionneurs. 10

Figure 3.1 Graphe des opérations avec addition 24
Figure 3.2 Graphe d’un multiplieur combinatoire (basé sur l’exemple initial 3.4) 29
Figure 3.3 Graphe de dépendances d’un multiplieur pipeliné (basé sur l’exemple

3.4) . 34
Figure 3.4 Graphe d’un multiplieur pipeliné (basé sur l’exemple 3.4) 35
Figure 3.5 Agrégation des étages d’additionneurs. 36
Figure 4.1 Architecture du réseau de neurones utilisée dans [2] 48
Figure 5.1 Consommation de LUT à travers les largeurs de bits pour quatre tailles

de matrices (5×5, 10×10, 50×50, 100×100) comparant les implémenta-
tions de référence (Shift&Add, MatVecMult), combinatoire, pipelinée
et pipelinée-agrégée. 53

xiv

LISTE DES SIGLES ET ABRÉVIATIONS

ALAP As Late As Possible (Aussi tard que possible)
BFS Breadth-first search (Parcours en largeur)
BRAM Block Random Access Memory (Bloc Mémoire)
CMM Constant-Matrix Multiplication (Multiplication par matrice constante)
CSD Canonic-Signed Digit (Chiffres canoniques signés)
CSE Common Sub Expressions (Sous-expressions communes)
DAG Directed Acyclic Graph (Graphe orienté acyclique)
DNN Deep Neural Network (Réseau de neurones profond)
DFS Depth-first search (Parcours en profondeur)
FF Flip-Flop (Bascule)
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit (Processeurs graphiques)
HND Hidden Nonzero Digits (bits non nuls cachés)
ILP Integer Linear Programming (Programmation linéaire en nombres en-

tiers)
IoT Internet Of Things (Internet des Objets)
LSB Least Significant Bit(Bit de poids faible)
LUT Look-Up Table (Table de correspondance)
MCM Multiple-Constants Multiplication (Multiplication par plusieurs

constantes)
MSB Most Signifcant Bit (Bit de poids fort)
RPAG Reduced Pipelined Adder Graph (Graphe additionneurs pipeliné ré-

duit)
RTL Register-Transfer Level (niveau de transfert de registre)
SCM Single Constant Multiplication (Multiplication par une constante)
SOP Sum Of Products (Somme de produits)

xv

LISTE DES ANNEXES

Annexe A Module combinatoire SystemVerilog généré 64
Annexe B Fonction cycleCount() pour le calcul des cycles 65
Annexe C Module SystemVerilog pipeliné . 66
Annexe D Module SystemVerilog pipeliné agrégé 70
Annexe E Ordonnancement des calculs sur un ensemble de nœuds représentant

les opérations du graphe de dépendances pour l’architecture pipeliné . 73
Annexe F Ordonnancement des calculs pour l’architecture pipeliné agrégé . . . 74
Annexe G Module MatMulVec . 75
Annexe H Module Shift&Add . 76

1

CHAPITRE 1 INTRODUCTION

Dans un monde numérique en constante évolution, l’opération fondamentale de multiplication
se trouve au cœur des technologies qui façonnent notre quotidien. Des applications grand
public aux infrastructures critiques, cette opération mathématique élémentaire sous-tend le
fonctionnement de systèmes toujours plus complexes. L’omniprésence des calculs intensifs
dans notre société soulève cependant d’importantes préoccupations environnementales et
énergétiques, alors que les centres de données et les infrastructures numériques consomment
une part croissante des ressources mondiales.

1.1 Contexte

L’essor fulgurant de l’intelligence artificielle ces dernières années a mis en lumière l’impor-
tance critique des opérations mathématiques fondamentales, particulièrement les multipli-
cations matricielles, qui reposent à leur tour sur de simples multiplications et additions.
Ces opérations constituent la pierre angulaire de nombreuses applications contemporaines,
des réseaux de neurones profonds qui consomment d’énormes ressources en effectuant des
multiplications tenseur par tenseur, à la cryptographie (notamment les cryptomonnaies), en
passant par le traitement de signal et d’image.

1.1.1 Applications émergentes énergivores

L’Internet des Objets (IoT) représente l’un des domaines où cette optimisation est cruciale.
Les appareils IoT, caractérisés par leurs ressources limitées en énergie et en capacité de cal-
cul, nécessitent des multiplications ultra-efficaces pour le traitement de données en périphérie
(edge computing) [3]. Les capteurs intelligents déployés pour la surveillance environnementale
doivent effectuer localement des opérations de filtrage et d’analyse qui reposent fondamen-
talement sur des multiplications [4]. De même, les dispositifs médicaux portables analysant
en temps réel les signaux physiologiques et les systèmes de maison intelligente intégrant des
algorithmes de reconnaissance vocale ou gestuelle bénéficieraient tous d’une consommation
énergétique réduite pour ces opérations fondamentales [5].

Les véhicules autonomes constituent un autre domaine d’application critique où l’efficacité
des multiplications est déterminante. Ces systèmes sophistiqués requièrent des calculs en
temps réel pour la perception environnementale (traitement d’images et de signaux LIDAR),
la cartographie dynamique et la prise de décision intelligente. Ces opérations s’appuient

2

principalement sur des multiplications matricielles, souvent avec des contraintes énergétiques
strictes pour prolonger l’autonomie des batteries [6,7]. Une amélioration de l’efficacité de ces
opérations se traduirait directement par une extension de l’autonomie et une réduction des
coûts opérationnels des flottes de véhicules autonomes [8].

La réalité augmentée et virtuelle sur appareils mobiles représente également un cas d’usage
exigeant, nécessitant d’intenses calculs de traitement d’image, de reconnaissance d’objets et
de rendu 3D avec une puissance limitée [9]. Les drones et la robotique mobile, dont l’adoption
s’accélère dans des secteurs comme l’agriculture, la logistique et la sécurité, doivent maximi-
ser l’efficacité des calculs pour la navigation et le contrôle tout en préservant la durée de vie
de leur batterie [10, 11]. Dans tous ces contextes, des algorithmes de multiplication optimi-
sés peuvent significativement améliorer les performances tout en réduisant la consommation
énergétique, favorisant ainsi l’adoption plus large de ces technologies [12].

La multiplication par constantes, en particulier, représente une opération récurrente dans
diverses applications telles que les filtres numériques et les couches de réseaux neuronaux, dont
les circuits électriques sont aujourd’hui parmi les plus grands consommateurs d’opérations
de multiplication.

Selon un rapport récent du Laboratoire National Lawrence Berkeley [13], les centres de don-
nées ont consommé environ 4,4% de l’électricité totale aux États-Unis en 2023, avec une
projection atteignant entre 6,7% et 12% d’ici 2028. Plus précisément, leur consommation
électrique est passée de 58 TWh en 2014 à 176 TWh en 2023, avec une estimation d’aug-
mentation entre 325 et 580 TWh d’ici 2028 [13]. À l’échelle mondiale, les centres de données
représentent actuellement 1,5% de la consommation électrique totale, un chiffre qui pourrait
atteindre 3% d’ici la fin de la décennie [14], ce qui équivaut à la consommation actuelle du
Japon. Cette croissance exponentielle s’accompagne d’une augmentation préoccupante des
émissions de dioxyde de carbone, qui pourraient plus que doubler entre 2022 et 2030 [14].

Au-delà des préoccupations environnementales, l’impact économique de l’optimisation des
multiplications est considérable. L’infrastructure numérique mondiale représente un investis-
sement colossal, avec un marché des centres de données évalué à plus de 347.6 milliards de
dollars en 2024 [15]. La consommation énergétique constitue jusqu’à 70% des coûts opération-
nels de ces infrastructures [16], créant une pression financière significative sur les entreprises
technologiques.

L’optimisation des multiplications présente aussi des enjeux particuliers dans le domaine des
filtres numériques, dont la complexité est principalement déterminée par le nombre d’opé-
rations de multiplication. La recherche s’est donc concentrée sur la minimisation de la com-
plexité des blocs multiplieurs qui calculent les multiplications par coefficients constants re-

3

quises dans ces filtres. Bien que la complexité de ces blocs soit considérablement réduite
grâce à des techniques efficaces, telles que la décomposition des multiplications en opérations
d’additions et de décalage et le partage des sous-expressions communes, des améliorations
substantielles restent possibles.

Face à ces défis environnementaux et économiques majeurs, l’optimisation des opérations ma-
thématiques fondamentales, comme la multiplication, revêt une importance capitale. L’évo-
lution des algorithmes de multiplication a marqué des jalons significatifs dans l’histoire de
l’informatique.

1.1.2 Algorithmes de multiplication

L’algorithme de Karatsuba en 1962 fut le premier à dépasser l’efficacité asymptotique de la
méthode quadratique enseignée a l’école en décomposant les grands nombres en plus petits
nombres pour réduire le nombre de multiplications. De l’algorithme de Schönhage–Strassen
en 1971 [17], a l’amélioration de Coppersmith-Winograd en 1990 [18], la quête d’efficacité
dans les multiplications continue de stimuler l’innovation. L’algorithme de Karatsuba réduit
la multiplication de deux nombres de n chiffres à trois multiplications de nombres de n/2
chiffres, illustrant l’importance fondamentale de la réutilisation et de la décomposition pour
l’optimisation des calculs.

Depuis les années 1990, l’optimisation des multiplieurs à coefficients constants a suscité un
intérêt croissant, notamment dans les domaines du traitement du signal numérique (DSP) et
des systèmes embarqués. L’objectif principal était de réduire la complexité matérielle et la
consommation énergétique en évitant les multiplieurs coûteux.

En 2006, Kinane, Muresan et O’Connor ont proposé une méthode d’optimisation matérielle
pour la multiplication par matrices constantes en utilisant des algorithmes génétiques. Cette
approche visait à concevoir des implémentations sans-multiplieurs (multiplierless) efficaces
en termes de surface et de consommation d’énergie, en explorant un vaste espace de solutions
même pour des problèmes de petite taille [19].

En 2007, Hosangadi et al. ont introduit des méthodes algébriques pour optimiser les mul-
tiplications constantes dans les systèmes linéaires. Leur approche consistait à éliminer les
sous-expressions communes en utilisant des techniques de synthèse logique multi-niveaux,
telles que le "rectangle covering" et le "fast extract" (FX), adaptées à l’optimisation des ex-
pressions arithmétiques linéaires [20].

Les travaux de Hosangadi et al. ont été suivis par plusieurs contributions significatives dans
le domaine des multiplications par constantes. En 2007, Voronenko et Püschel ont proposé

4

un algorithme d’optimisation complet pour les multiplications par constantes multiples, amé-
liorant considérablement les méthodes précédentes en réduisant le coût des implémentations
matérielles pour des ensembles de constantes arbitraires [21].

1.1.3 Architecture des FPGA modernes

L’efficacité énergétique constitue un paramètre critique dans la conception des systèmes de
calcul modernes. Une analyse comparative des architectures matérielles disponibles permet
d’identifier les solutions optimales pour l’implémentation d’algorithmes de multiplication
matricielle, particulièrement dans le contexte des multiplications par constantes.

Les plateformes matérielles diffèrent grandement en termes de parallélisme, de flexibilité et
d’efficacité énergétique [22]. Les processeurs graphiques (GPU) offrent un parallélisme massif
avec des milliers de cœurs flottants optimisés pour les opérations de matrice génériques, mais
ils s’appuient sur des circuits de multiplication coûteux en énergie pour chaque opération
(notamment en FP32) [23]. Ils ne sont pas spécialement conçus pour exploiter des cas où les
coefficients sont fixes, car chaque multiplication est traitée comme une opération générale.
L’architecture des GPU est optimisée pour l’exécution simultanée d’opérations identiques sur
des ensembles de données différents. Cette configuration, bien qu’adaptée aux calculs tenso-
riels génériques, présente des limitations inhérentes pour les multiplications par constantes. Le
modèle d’exécution SIMD (Single Instruction Multiple Data) des GPU contraint l’utilisation
d’unités de calcul identiques pour toutes les opérations, empêchant ainsi les optimisations
spécifiques nécessaires pour exploiter les propriétés des coefficients constants. En revanche,
les CPU et les ASIC embarqués disposent de registres, d’unités d’addition et de décalage
rapides (barrel shifters). Un coefficient constant peut alors souvent être implémenté par une
suite d’additions et de décalages dans le code assembleur, sans faire appel à une multipli-
cation matérielle dédiée. Cette approche « logicielle » profite du jeu d’instructions et des
optimisations du compilateur pour coder par exemple « multiplier par 5 » comme « décaler
à gauche de 2 bits puis ajouter » plus efficacement. Ainsi, sur CPU/ASIC, la liste d’addi-
tions partagées peut être directement traduite en instructions élémentaires. Par contraste,
les GPU utilisent généralement leur pipeline fixe de multiplication flottante, ce qui les rend
moins adaptés.

Les FPGA (Field-Programmable Gate Array, ou circuits logiques programmables) constituent
un compromis particulier : ils combinent une reprogrammabilité fine du matériel avec une
exécution directe en dur (câblée) des calculs [22]. En pratique, on peut y « câbler » les
additions intermédiaires partagées pour exploiter pleinement le concept sans multiplieurs.
Les FPGA permettent de réaliser des traitements personnalisés (pipeline, mémoire locale)

5

pour chaque application, obtenant ainsi souvent une latence inférieure et une bien meilleure
efficacité énergétique qu’un CPU ou un GPU généraliste pour des tâches spécifiques [22].
Leur nature reconfigurable les rend particulièrement adaptés aux algorithmes sur-mesure
comme une multiplication matricielle à coefficients constants optimisée. De plus, les FPGA
intègrent de larges interfaces d’entrée/sortie, facilitant leur usage dans les systèmes embarqués
et l’IoT [22].

1.1.4 Avantages énergétiques d’une approche sans multiplieurs

L’intérêt majeur de remplacer les multiplications par des additions réside dans l’économie
d’énergie. Horowitz [1] fournit des ordres de grandeur : en technologie 45 nm, une multipli-
cation FP32 consomme environ 3,7 pJ contre seulement 0,1 pJ pour une addition de deux
entiers 32 bits. Autrement dit, une multiplication FP32 coûte environ 37 fois plus d’éner-
gie qu’une addition entière 32 bits. Le tableau ci-dessous résume ces coûts pour différentes
précisions :

Opération Entier 8 bits Entier 32 bits FP 16 bits FP 32 bits
Addition 0,03 pJ 0,1 pJ 0,4 pJ 0,9 pJ
Multiplication 0,2 pJ 3,1 pJ 1,1 pJ 3,7 pJ

Tableau 1.1 Coût énergétique d’opérations arithmétiques (d’après [1]).

Ces écarts renforcent le principe de conception sans multiplieur : chaque opération remplacée
par une addition économe réduit significativement la consommation globale. Sur un CPU ou
ASIC embarqué, la suite d’additions partagées peut être implémentée sous forme d’instruc-
tions (par exemple en assembleur), ce qui évite l’appel à l’unité multiplicative. Toutefois, sur
FPGA l’avantage est encore plus marqué car on peut « câbler » ces additions directement
dans la logique reprogrammable. Cela évite d’activer les DSP (plus énergivores) et permet
de répartir les calculs simples sur de nombreuses LUT/LE à faible coût par opération. En
pratique, concevoir l’algorithme de multiplication matricielle à coefficient constant sans mul-
tiplieurs dédiés offre une meilleure efficacité énergétique et une grande flexibilité de mise en
œuvre (les coefficients fixes sont incarnés dans la structure du circuit).

Dans les domaines d’application avec des contraintes spécifiques (IoT, systèmes embarqués,
traitement en bord de réseau), la combinaison de ressources limitées (énergie, surface sili-
cium) et de forts besoins de calcul rend ce genre d’optimisation particulièrement pertinente.
Les FPGA sont justement privilégiés dans ces contextes pour leur efficacité énergétique et
leur adaptabilité. Leur latence réduite et leur consommation inférieure aux CPU/GPU les

6

rendent adaptés aux capteurs, objets connectés ou applications en périphérie où chaque mi-
crojoule compte. Par exemple, un FPGA peut être directement relié à des capteurs externes
grâce à ses interfaces variées, et exécuter localement la multiplication matricielle optimisée
en économisant jusqu’à 95% d’énergie par rapport à une solution classique utilisant des mul-
tiplications flottantes. De fait, dans ces écosystèmes, la valeur de développer un algorithme
multiplierless se traduit par des gains importants en autonomie et en performance globale.

1.2 Description du problème

Dans le contexte des réseaux de neurones profonds, les opérations de multiplication sont
particulièrement intensives, notamment lors des calculs matriciels qui constituent l’essentiel
du traitement. Ces opérations représentent non seulement un défi en termes de performance
mais également une source majeure de consommation énergétique. Les architectures maté-
rielles actuelles, bien qu’optimisées, atteignent leurs limites face à l’accroissement de la taille
et de la complexité des modèles.

Un défi supplémentaire provient de la nécessité d’équilibrer précision et efficacité. Les re-
présentations à haute précision (virgule flottante 32 bits) offrent une excellente fidélité de
calcul mais consomment jusqu’à 18,5 fois plus d’énergie et 27,3 fois plus de surface que les
implémentations à virgule fixe 8 bits [24]. Cependant, les représentations avec peu de bits
requièrent des stratégies d’approximation judicieuses pour maintenir la précision des résul-
tats. L’approximation des entrées en valeurs de puissances de 2, permettant de remplacer les
multiplications par de simples décalages, représente une piste prometteuse mais qui doit être
explorée avec rigueur.

Le problème principal réside dans l’implémentation efficace des multiplications par constantes
multiples (Multiple Constant Matrix Multiplications), où un même vecteur d’entrée doit être
multiplié par plusieurs constantes différentes. Les approches conventionnelles, utilisant des
multiplieurs dédiés, s’avèrent souvent coûteuses en ressources matérielles et en énergie. La
littérature sur ce sujet a considérablement évolué entre 1991 et 2007, avec des avancées signifi-
catives dans l’optimisation de ces opérations, mais des limitations persistent, particulièrement
pour les matrices de grande taille.

1.3 Objectifs de recherche

Ce mémoire vise à développer et évaluer un nouvel algorithme pour les multiplications ma-
tricielles par constantes qui réduit significativement l’utilisation des ressources matérielles
(tables de correspondance et bascules) et la consommation énergétique. Les objectifs spéci-

7

fiques de cette recherche sont :

1. Caractériser un algorithme permettant d’effectuer des opérations de multiplication sans
recourir à des multiplieurs dédiés et augmenter la réutilisation des résultats intermé-
diaires, des sous-expressions communes et des termes de multiplication.

2. Proposer et comparer différentes implémentations matérielles de l’algorithme et en faire
l’étude.

3. Évaluer l’évolutivité de l’algorithme proposé en fonction de la taille des matrices, a l’aide
d’implémentations matérielle sur FPGA, permettant ainsi de démontrer concrètement
les gains en termes de ressources utilisées et de consommation énergétique dans un
contexte d’application réel.

4. Valider l’approche dans un contexte réel en implémentant une couche provenant d’un
modèle de réseau neuronal quantifié issu de la littérature.

5. Explorer l’impact de l’approximation a virgule fixe du facteur d’échelle dans le but de
remplacer la multiplication a virgule flottante par de l’arithmétique entière.

1.4 Contributions

Les principales contributions de ce travail de recherche sont :

1. Publication d’une communication scientifique à la conférence IEEE Midwest Symposium
on Circuits and Systems (MWSCAS) 2024 [25]. Il est à noter que l’implémentation
Python de l’algorithme 2 a été réalisée par Dinesh Daultani.

2. Générer et caractériser trois implémentations FPGA distinctes de l’algorithme proposé :
une version combinatoire et deux versions pipelinées, chacune présentant des compromis
spécifiques en termes de latence, débit et utilisation des ressources.

3. Une méthodologie d’approximation pour les réseaux de neurones basée sur une repré-
sentation à virgule fixe, optimisant davantage l’efficacité des calculs tout en maintenant
une précision acceptable.

4. Une analyse comparative détaillée des performances de l’algorithme proposé par rap-
port aux méthodes existantes, en termes d’utilisation des ressources matérielles, de
consommation énergétique et de scalabilité.

5. Une étude de cas appliquée démontrant l’efficacité de l’approche dans le contexte d’un
réseau neuronal réel.

8

1.5 Plan du mémoire

La structure de ce mémoire est organisée en six chapitres.

1. Le chapitre 2 est consacré à une revue de la littérature, dans laquelle sont explorées les
approches existantes pour l’optimisation de la multiplication par plusieurs constantes,
les différentes catégories d’algorithmes, ainsi que les architectures matérielles adaptées.

2. Le chapitre 3 détaille l’algorithme multiplieur proposé, en commençant par l’optimi-
sation des opérations binaires, suivi d’une description complète de l’algorithme, d’un
exemple illustratif, puis de ses implémentations en Python et SystemVerilog, incluant
les versions combinatoires et pipelinées.

3. Le chapitre 4 présente les expériences réalisées sur du matériel reconfigurable et les
résultats obtenus. D’abord une évaluation sur des cas génériques avec une analyse de
performances sur FPGA, puis une étude de cas appliquée à un réseau de neurones,
incluant une extension de cette méthode avec approximation des poids.

4. Ensuite, une brève discussion est donnée dans le chapitre 5.
5. La fin du mémoire synthétise les contributions et met en évidence les limites de l’ap-

proche en ouvrant sur des perspectives d’amélioration.

9

CHAPITRE 2 REVUE DE LITTÉRATURE

2.1 Optimisation de la multiplication par plusieurs constantes

Le problème de la multiplication par plusieurs constantes (Multiple Constants Multiplication,
MCM) a largement été exploré dans le domaine des systèmes linéaires tels que les filtres
numériques, depuis au moins trois décennies [26].

La résolution de ce problème est particulièrement pertinente pour l’implémentation matérielle
des filtres numériques à réponse impulsionnelle finie (Fig. 2.1) [26] [27], mais aussi pour les
transformations linéaires de signaux telles que la transformée de Fourier discrète (DFT) ou
la transformée en cosinus discrète (DCT), qui reposent sur des produits matrice-vecteur avec
une matrice fixe [21].

En pratique, la réponse impulsionnelle d’un filtre FIR est un tableau de constantes, qui est
convolué avec le signal d’entrée pour produire un signal transformé en sortie (Fig. 2.1). Le
résultat implique alors une somme de produits (sum of products, SOP), telle que l’équation
2.1.

Figure 2.1 Filtre FIR, forme transposée

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bNx[n−N] =
N∑

i=0
bix[n− i] (2.1)

Les blocs multiplieurs capables de réaliser cette opération sont des circuits complexes qui
nécessitent de grandes surfaces de silicium dans les puces, consomment beaucoup d’énergie
et entraînent de longs délais. En revanche, les multiplications par des constantes peuvent
être réalisées avec un ensemble réduit d’opérations arithmétiques : additions, soustractions
et décalages binaires.

10

Cette implémentation à faible complexité a deux avantages principaux [28] : (i) Elle est moins
coûteuse en termes de ressources matérielles qu’un multiplieur général, tel que le DSP48
qu’on retrouve couramment dans les circuits reconfigurables de Xilinx. (ii) Les constantes à
multiplier dans l’opération MCM sont déterminées à l’avance par les algorithmes DSP. Par
conséquent, la flexibilité d’un multiplieur général complet n’est pas requise pour la mise en
œuvre de cette opération. Ces opérations d’addition, soustraction et décalage sont organisées
dans un graphe orienté acyclique où chaque nœud correspond à un additionneur/soustracteur,
et le poids de l’arête représente un décalage de bits. Trouver le nombre minimal de nœuds
dans ce graphe donne le nombre minimal d’additionneurs pour réaliser cette multiplication.
C’est ce que l’on appelle le problème MCM. Dans le problème d’optimisation MCM, on
suppose que les coefficients sont connus et déjà quantifiés dans une représentation en virgule
fixe (ou entière).

Dans l’exemple de Fig 2.2, la multiplication 45x peut être calculé à l’aide de 3 additionneurs.
Cependant, la solution optimale ne nécessite que 2 additionneurs.

Figure 2.2 A gauche, 45x calculée en tant que ((x−4x)−16x)+64x requiert 3 additionneurs.
A droite, calcul optimal : 45x calculée en tant que (8(4x + x) + (4x + x)), qui est une
représentation optimale, ne requiert que 2 additionneurs.

Soit t ∈ N une constante codée sur b bits et x l’entrée. La décomposition classique de la
multiplication x · t en opérations d’additions et de décalages consiste à traduire chaque bit
à 1 de t en un décalage de x et à additionner les termes ainsi décalés. Si k désigne le poids
de Hamming de t (nombre de bits à 1), le coût en additions est proportionnel à k (plus
précisément k − 1 si l’on chaîne les additions).

Par une autre approche, il est possible d’exploiter le complément par rapport à la constante
« tout à 1 », avec cb = 2b − 1.

11

On écrit alors (éq. 2.2) :

x · t = x · cb − x · (cb − t) = (x≪ b)− x︸ ︷︷ ︸
x·cb

−
∑
i∈Z

(x≪ i), (2.2)

où Z indexe les bits à 0 de t et ≪ note un décalage gauche. Cette forme remplace des
additions par des soustractions et fait intervenir le nombre de zéros de t (soit b − k). En
choisissant, pour chaque t, la meilleure des deux décompositions (par 1 ou par 0), le coût
devient

#adds/subs = min{k, b− k} + O(1),

d’où un cas moyen (pour un t uniforme sur b) de b/2 + O(1) [21].

Plusieurs travaux ont abordé la meilleure façon de combiner ces opérateurs (addition, sous-
traction et décalage) pour minimiser le coût et la latence, en s’appuyant généralement sur
des algorithmes réutilisant de sous-expressions communes, des algorithmes de recodage, des
algorithmes basées sur les graphes, et des algorithmes hybrides [21].

2.1.1 Algorithmes de recodage

Dans cette catégorie, on retrouve notamment les algorithmes tels que la décomposition binaire
et la représentation en chiffres canoniques signés (Canonic Signed Digit, CSD), qui utilisent
un système de numération ternaire pour réduire le nombre de bits non nuls.

Algorithm 1 Conversion d’un nombre binaire en représentation CSD
Parcourir le nombre binaire de droite à gauche (MSB ← LSB).
Rechercher une séquence de bits égale à 0111.
Remplacer chaque occurrence de 0111 par 1001̄.
Répéter l’opération jusqu’à la du nombre.

Le principe de la conversion en format CSD consiste à gérer une liste de constantes à optimiser
et à trouver un « motif » qui apparaît plusieurs fois dans l’ensemble des constantes. Un motif
est une séquence de chiffres dans l’ensemble {−1, 0, 1}. Le nombre de bits non nuls dans le
motif est appelé son poids. Le format CSD conduit à une implémentation plus efficace de la
multiplication en réduisant le nombre de bits non nuls.

Exemple : Soit 93 = (01011101)2.
On identifie la séquence 0111 qui correspond à une suite de bits à 1 suivie d’un 0.
Cette séquence est remplacée par sa représentation CSD : 1001̄.

12

01011101→ 011001̄01 (remplacement de la première séquence 0111)

→ 101̄001̄01 (nouveau remplacement si applicable)

Ce qui correspond à :

27 − 25 − 22 + 20 = 128− 32− 4 + 1 = 93.

Comparé à la décomposition classique vue précédemment, la représentation CSD nécessite
moins d’additionneurs, car le cas moyen s’améliore à b/3+O(1) (le coût matériel est similaire
pour les additionneurs et les soustracteurs, tous les deux étant appelés additionneurs). En
moyenne, ce format utilise 33 % de bits non nuls en moins que la représentation binaire.

Bien que la méthode CSD donne généralement de meilleures performances en termes d’effi-
cacité opérationnelle, car elle permet l’utilisation de chiffres négatifs, elle ne garantit pas que
la solution trouvée soit la plus optimale.

La performance des algorithmes de recodage dépend fortement de la représentation numérique
utilisée, ce qui conduit à des résultats sous-optimaux dans certains scénarios. [21].

2.1.2 Algorithmes basés sur le partage des sous-expressions communes

L’algorithme CSD peut être utilisé pour identifier les opportunités de partage de calculs
intermédiaires. La méthode qui consiste à rechercher et éliminer les bits communs à plusieurs
constantes, est connue sous le nom de l’élimination des sous-expressions communes (CSE).
L’idée des travaux [29] et [30] est d’implémenter un ensemble de multiplications constantes
sous forme d’un ensemble d’opérations d’additions et de décalages et d’optimiser celles-ci en
fonction des sous-expressions communes.

Ainsi des économies sont obtenues en distribuant les résultats intermédiaires à tous les coef-
ficients qui en dépendent, et en maximisant leurs réutilisation. [29], [27]. Cependant, l’élimi-
nation de sous-expressions communes ne peut pas fournir toutes les opportunités de partage
possibles en raison de sa dépendance à la représentation des nombres [21] et de l’effet des
bits non nuls cachés [31].

Les bits non nuls cachés (Hidden Nonzero Digits - HND) représentent un phénomène où
certains motifs de bits sont "cachés" lors de l’addition de deux nombres en représentation
signée. Faust et Chang [31] ont identifié quatre types principaux : (i) la collision de chiffres, qui
survient lorsque deux chiffres de même signe coïncident à la même position lors de l’addition,
formant un seul chiffre retenu à la position supérieure, ce qui rend la position originale

13

"cachée" ; (ii) l’élimination de chiffres (chiffres de signes opposés qui s’annulent) ; (iii) la
réduction de chiffres contigus, où les chiffres contigus forment un motif réduit de chiffre signé
±1. Dans ce cas, des séquences telles que 11 ou 11 peuvent être réduites en 01 ou 01̄ ; (iv) la
réduction binaire vers CSD (un motif CSD peut être ajouté à un autre motif pour résulter
en une réduction binaire vers CSD, comme dans 101 + 010 = 111 = 1001̄).

Ces transformations apparaissent dès qu’il existe au moins un degré de liberté (DOF) dans
l’arbre d’addition (autrement dit, dès qu’il est possible de réarranger les opérations sans
changer la valeur finale). Le nombre de possibilités de partage cachées augmente exponen-
tiellement avec le nombre de DOF du coefficient, défini comme :

DOF (C) = 2⌈log2 S(C)⌉ − S(C) (2.3)

où S(C) est le nombre de chiffres non-nuls du coefficient C.

Les algorithmes CSE, qui se basent uniquement sur la recherche de motifs récurrents dans une
représentation donnée, omettent des solutions potentiellement optimales car ces opportunités
de partage sont masquées par les transformations des bits non-nuls cachés. Cette limitation
fondamentale des approches CSE a motivé le développement d’algorithmes basés sur les
graphes de dépendance (GD), qui recodent les constantes ou se dispensent de représentation
explicite.

2.1.3 Algorithmes basés sur les graphes

La représentation en graphe peut être utilisée pour réduire davantage la complexité maté-
rielle. Cette représentation sous forme de graphe a été introduite pour la première fois par
Bull et Horrocks dans [26]. Dans cette représentation, chaque sommet du graphe représente
un additionneur avec deux entrées et chaque arête représente une multiplication par une
puissance de 2, qui peut être implémentée sous forme de décalage binaire.

Ce sont des méthodes ascendante (bottom-up) qui construisent itérativement le graphe re-
présentant le bloc multiplieur. La construction du graphe est guidée par une heuristique qui
détermine le prochain sommet à ajouter au graphe d’additionneurs. Ces algorithmes ne sont
pas limités à une représentation particulière des coefficients ni à une topologie de graphe pré-
définie (comme c’est le cas des algorithmes basés sur les chiffres). Ils produisent généralement
des solutions avec le plus faible nombre d’opérations. Des exemples d’algorithmes basés sur
les graphes incluent ceux de Bull et Horrocks [26], RAG-n [27], et [21].

14

2.1.4 Autres méthodes

En plus des algorithmes de recodage, des techniques de partage des sous-expressions et des
approches basées sur les graphes, d’autres méthodes ont été explorées pour améliorer l’im-
plémentation matérielle des multiplications par constantes.

Les travaux de Kumm et al. [32] ont introduit l’utilisation des additionneurs à trois opérandes
(a + b + c, pris en charge nativement via LUT6 par les FPGA modernes) pour réduire
le nombre total d’opérations nécessaires dans les multiplications par constantes multiples
(MCM). Ce type d’additionneur ne fait pas appel à une arithmétique en base trois ni à des
chiffres -1,0,1. Dans cette approche, la topologie d’addition autorise la sommation de trois
termes en une seule étape logique, ce qui diminue la profondeur du graphe d’additionneurs
et donc la latence. Les résultats montrent une réduction de 27 % du nombre d’opérations
enregistrées par rapport aux circuits optimaux utilisant des additionneurs binaires à deux
entrées, ce qui entraîne une diminution de 15,7 % des tranches sur les FPGA Xilinx et de
10,5 % des ALM (Adaptive Logic Module) sur les FPGA Altera. De plus, le nombre d’étages
de pipeline est réduit, diminuant ainsi la latence globale du système. Bien que la fréquence
maximale baisse légèrement (26 % sur Xilinx), les circuits restent très rapides, atteignant plus
de 370 MHz sur Virtex 6 et 450 MHz sur Stratix IV. Cette approche optimise l’utilisation des
ressources logiques tout en conservant des performances élevées, ce qui en fait une solution
idéale pour des applications de traitement du signal numérique nécessitant des calculs rapides
et efficaces.

Cependant, cette approche présente certaines limites : aucune méthode optimale pour ré-
soudre le problème MCM avec des additionneurs à trois opérandes n’a été trouvée à ce jour.
De plus, l’ajout d’une troisième entrée complexifie la logique combinatoire, allongeant ainsi
le chemin critique et pouvant réduire la vitesse des circuits. Par exemple, des expérimenta-
tions sur FPGA montrent une réduction de la fréquence d’horloge allant jusqu’à 26 % sur les
FPGA Xilinx.

En revanche, pour le cas spécifique de la multiplication par une constante unique (Single
Constant Multiplication, SCM), des méthodes optimales utilisant des additionneurs à trois
opérandes existent. Dans leurs travaux ultérieurs, Kumm et al. [33] ont démontré qu’il est
possible de minimiser de manière optimale le nombre d’opérations pour le problème SCM
grâce à une exploration exhaustive des motifs d’additionneurs. Ces résultats ne s’appliquent
cependant qu’au cas SCM et ne permettent pas de généraliser l’approche aux scénarios MCM,
car l’espace de recherche est suffisamment petit [33].

Enfin, un autre facteur à considérer est la consommation accrue des ressources de routage :

15

bien que les additionneurs à trois opérandes utilisent la même quantité de slices ou d’ALM
que les additionneurs à deux entrées, ils nécessitent davantage de connexions locales. Dans
des conceptions plus grandes, cela peut saturer les ressources de routage disponibles, rendant
certaines slices inutilisables malgré leur disponibilité logique.

2.2 Généralisation du problème de la multiplication par plusieurs constantes en
matrice constante

L’opération de multiplication par une matrice constante (Constant Matrix Multiplication,
CMM) d’une matrice M ×N est une multiplication matrice-vecteur, où chaque sortie corres-
pond au produit scalaire entre une ligne de la matrice de coefficients et le vecteur d’entrée,
comme décrit dans l’équation 2.4.


c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N

...
cM,1 cM,2 · · · cM,N




x1

x2
...

xN

 =


y1

y2
...

yM

 (2.4)

Le problème de la multiplication par une matrice constante (CMM) peut être vu comme une
généralisation du problème de la multiplication par plusieurs constantes (Multiple Constant
Multiplication, MCM). Dans le problème MCM, une seule entrée est multipliée par plusieurs
constantes connues. Dans le cas de CMM, plusieurs entrées sont multipliées par une matrice
constante, et chaque sortie peut impliquer des combinaisons communes de produits partiels
provenant de ces multiplications.

Plus précisément, chaque sortie du produit scalaire entre une ligne de la matrice C et le
vecteur d’entrée X est calculée par une somme de produits (Sum of Products, SOP), comme
illustré dans l’équation 2.5. Ainsi, la multiplication matrice-vecteur implique M produits
scalaires, soit M sommes de produits. Chaque produit dans ces SOP correspond à une multi-
plication d’une entrée par un coefficient constant, ce qui constitue un sous-problème de type
MCM.

16

y1 = c1,1x1 + c1,2x2 + · · ·+ c1,NxN (2.5a)

y2 = c2,1x1 + c2,2x2 + · · ·+ c2,NxN (2.5b)
...

yM = cM,1x1 + cM,2x2 + · · ·+ cM,NxN (2.5c)

Par conséquent, on peut voir le problème CMM comme étant constitué de M problèmes MCM
interdépendants. La multiplication matrice-vecteur devient alors une suite de M sommes
de produits, chaque produit pouvant être optimisé via des techniques MCM. Cela permet
d’exploiter la redondance entre les produits partiels pour réduire la complexité matérielle
globale.

2.3 Avancées dans les architectures et algorithmes de multiplication efficace de
matrices

2.3.1 Approches exactes

Depuis que Dempster et MacLeod [27] ont étendu leur algorithme d’optimisation MCM pour
résoudre un problème CMM généralisé, plusieurs auteurs ont à leur tour proposé des méthodes
d’optimisation pour le problème CMM. Certaines de ces approches reposent sur une recherche
exhaustive de l’espace des solutions.

Par exemple, Kumm et al. [34] ont proposé une approche heuristique qui utilise une re-
cherche en profondeur (DFS) inspirée de l’algorithme du graphe d’addition pipeliné réduit
(RPAG) [35] pour trouver le graphe de profondeur minimale en additions. Ils utilisent la pro-
grammation linéaire en nombres entiers (ILP, integer linear programming) pour obtenir des
solutions optimales pour les multiplications constantes. Leurs résultats indiquent que l’ILP
peut fournir des configurations optimales avec une réduction de l’utilisation des ressources
d’environ 50 % par rapport aux méthodes traditionnelles. Les auteurs ont démontré que leur
approche basée sur l’ILP pouvait résoudre des instances du problème CMM avec des ma-
trices de taille 8× 8 dans un délai raisonnable, montrant le potentiel pour une multiplication
matricielle haute performance dans les implémentations matérielles.

Kinane et al. [36] [37] ont considéré toutes les permutations des représentations en chiffres
signés des constantes pour construire les sous-termes de sommes de produits (SOP). Les
résultats sont ensuite sélectionnés et recombinés par un algorithme génétique pour trouver la

17

meilleure SOP combinée globale (en termes de nombre d’additions). L’espace des solutions
est vaste malgré les efforts de réduction de complexité, et peut donc ne pas convenir pour de
grandes matrices.

Aksoy et al. [38] [39] ont proposé deux algorithmes distincts pour fournir des solutions exactes
au problème MCM : un algorithme de recherche en largeur exacte (BFS) et un algorithme de
recherche en profondeur exacte (DFS). L’algorithme BFS explore systématiquement toutes
les combinaisons possibles d’opérations en construisant un arbre de recherche exhaustif. Cette
méthode garantit une solution optimale en explorant de manière exhaustive l’ensemble de
l’espace des solutions. Dans leurs expériences, Aksoy et al. ont rapporté que l’algorithme BFS
a atteint des solutions optimales avec une réduction moyenne de 45 % du nombre d’opérations
par rapport aux méthodes heuristiques existantes.

L’algorithme DFS, quant à lui, repose sur les limites établies par les algorithmes approxi-
matifs pour rechercher des solutions minimales. Il élague efficacement l’espace de recherche
en évitant les chemins qui ne sont pas susceptibles de mener à une solution minimale. Les
auteurs ont noté que l’algorithme DFS améliorait l’efficacité computationnelle par rapport à
l’approche BFS, le rendant plus pratique pour des matrices plus grandes. L’algorithme DFS
a réussi à trouver des solutions avec une réduction allant jusqu’à 35 % des opérations pour
des matrices de taille 8 × 8, démontrant son efficacité pour équilibrer précision et demande
computationnelle.

2.3.2 Approches approximatives

En contraste avec les méthodes exactes, les approches approximatives sacrifient souvent la
précision pour une efficacité améliorée et une utilisation réduite des ressources. Aksoy et
al. [28] ont exploré diverses techniques d’approximation, en se concentrant sur la réduction
du nombre d’opérations nécessaires pour le MCM. Leur algorithme approximatif basé sur
les graphes cherche à trouver rapidement une solution proche du minimum en sélectionnant
stratégiquement des constantes intermédiaires qui peuvent synthétiser le plus grand nombre
de constantes cibles à chaque itération. Cet algorithme utilise une approche heuristique pour
réduire considérablement l’espace de recherche, accélérant ainsi le processus de calcul. Ce-
pendant, il ne garantit pas que la solution minimale sera trouvée, car il peut converger vers
un minimum local.

Les auteurs ont rapporté que cet algorithme pouvait atteindre des solutions à 10 % de l’opti-
mal dans 80 % des cas testés, tout en réduisant le temps de calcul jusqu’à 70 %. Ce compromis
entre précision et efficacité est particulièrement intéressant dans les applications où la vitesse
est critique.

18

Lehnert et al. [40] ont proposé une méthode novatrice pour réduire les besoins en ressources
matérielles en décomposant les matrices de poids en sous-matrices creuses contenant des
puissances de deux. Leurs résultats expérimentaux ont indiqué que cette approche pouvait
diminuer significativement l’utilisation des ressources. Spécifiquement, ils ont atteint une
réduction du nombre de multiplications nécessaires dans leur mise en œuvre FPGA par un
facteur de 2× à 6×, démontrant le compromis entre efficacité des ressources et précision. Bien
que cette méthode traite efficacement certaines inefficacités computationnelles, elle n’assure
pas l’évolutivité ni la précision pour les opérations impliquant de grandes matrices denses.

Une autre contribution notable aux méthodes approximatives est le schéma de quantification
Additive Powers-of-Two (APoT) proposé par [41]. Cette méthode permet une discrétisation
non uniforme efficace des poids dans les réseaux neuronaux, réalisant une réduction signifi-
cative de la complexité computationnelle. Li et al. ont rapporté que la quantification APoT
peut réduire le nombre de multiplications jusqu’à 50 % tout en maintenant un niveau élevé
de précision des résultats. Cette approche est particulièrement bénéfique dans les scénarios
où les ressources matérielles sont limitées, car elle permet l’implémentation de modèles d’ap-
prentissage profond sur des dispositifs contraints en ressources.

Bien que ces approches traitent certaines inefficacités computationnelles des CMM, elles
n’assurent pas l’évolutivité ni la précision pour les opérations impliquant de grandes matrices
denses.

2.4 Multiplieurs efficaces sur systèmes reconfigurables FPGA

Les FPGA actuels emploient des tables de correspondance (Look-Up Tables, LUT SRAM),
des bascules (Flip-Flop, FF), des blocs DSP et de la mémoire embarquée (Block RAM,
BRAM), interconnectés par un réseau programmable.

1. Éléments logiques de base (LE ou BLE) : ils combinent typiquement une LUT
à 6 entrées suivie d’un bascule (flip-flop) [42]. Par exemple, une architecture Xilinx
Zynq-7000 regroupe deux tranches (slices) par CLB : chaque slice contient quatre LUT
6-entrées et huit bascules. Ces LUT peuvent être fractionnées : une LUT6 peut agir
comme deux LUT5 indépendantes si utile. Elles offrent aussi des modes spéciaux :
on peut configurer une LUT comme petite mémoire (RAM distribuée) de 64 bits,
ou comme registre à décalage (SRL32). Les FPGA incluent également des chaînes de
retenue rapide (carry chains) entre LUT pour accélérer les additions.

2. Blocs DSP : ce sont des blocs ASIC spécialisés intégrés qui implémentent des mul-
tiplications et additions à faible coût temporel. Par exemple, un bloc DSP peut effec-

19

tuer en dur deux multiplications 18×18 bits ou une multiplication 27×27 bits, avec
des additions avant/après, et gérer des formats fixes et flottants (par ex. 32 bits, 16
bits, float16) [43, 44]. Les DSP sont très efficaces pour les opérations MAC (multiply-
accumulate), mais ils sont coûteux en silicium et consomment plus d’énergie qu’un
simple additionneur LUT. Dans une approche sans multiplieur, on préfère utiliser la
logique programmable (LUT) pour éviter cette dépense énergétique.

3. Blocs mémoire (BRAM) : ce sont de grandes mémoires SRAM internes (typique-
ment 18–36 Kbits), accessibles en simple ou double port. Elles stockent les données et
coefficients intermédiaires. Par exemple, chaque bloc BRAM de 20 Kbits (Xilinx) est
double port, avec des options d’organisation de largeur différentes (ex. 1024 × 20 bits,
2048 × 10 bits) [43]. On stocke souvent les matrices de grande taille dans ces BRAM.

4. Réseau d’interconnexion programmable : il relie les différents blocs (LUT, DSP,
BRAM, E/S) via des multiplexeurs programmables contrôlés par SRAM. Ces multi-
plexeurs 2 :1 permettent de diriger chaque fil de connexion vers divers chemins. Ils
représentent en général plus de 50 % de la surface d’un FPGA [22]. Ce réseau flexible
autorise la création de liaisons logiques arbitraires, mais il impose de bien dimensionner
les ressources pour éviter les goulots d’étranglement. Dans l’approche sans multiplieurs,
les interconnexions sont utilisées pour connecter toutes les additions et partages de
sommes intermédiaires nécessaires à l’algorithme.

L’implémentation de multiplieurs optimisés sur du matériel reconfigurable est devenue un
point central dans la quête d’une multiplication matricielle efficace. Les avancées récentes
ont démontré que les FPGA peuvent améliorer significativement les performances des multi-
plieurs matrice-vecteur grâce à leurs capacités de traitement parallèle et leurs architectures
personnalisables. Kumm et al. [32] ont mis en évidence le potentiel des additionneurs ternaires
dans les applications MCM, démontrant leur capacité à réduire l’utilisation des ressources
tout en maintenant un haut débit. Leur implémentation FPGA a atteint une augmentation
de débit de 30 % par rapport aux additionneurs binaires traditionnels, ce qui en fait un choix
convaincant pour les applications haute performance.

Lehnert et al. [40] ont en outre souligné les avantages des implémentations FPGA pour la
multiplication matrice-vecteur, notant que leur architecture proposée convient à une large
gamme d’applications, au-delà des réseaux neuronaux artificiels. La flexibilité des FPGA
permet l’adaptation des circuits de multiplication pour répondre aux demandes spécifiques
de diverses tâches computationnelles, améliorant ainsi l’efficacité globale. Leurs résultats
expérimentaux ont montré que ce type d’implémentation pouvait atteindre une accélération
de 2,5 fois par rapport aux processeurs DSP conventionnels, démontrant l’efficacité de leur

20

approche dans des scénarios pratiques.

2.5 Conclusion

Les progrès dans les architectures et les algorithmes de multiplication matricielle efficaces
révèlent un riche paysage de recherche axé sur l’optimisation des méthodes exactes et ap-
proximatives. Les approches exactes fournissent des solutions rigoureuses qui garantissent
l’optimalité mais peuvent avoir des difficultés avec l’evolutivité sur les grandes matrices. L’al-
gorithme BFS, par exemple, a atteint des solutions optimales avec une réduction moyenne de
45 % du nombre d’opérations, tandis que l’algorithme DFS a démontré une réduction allant
jusqu’à 35 % des opérations pour des matrices de taille 8 × 8. À l’inverse, les méthodes ap-
proximatives offrent des voies prometteuses pour améliorer l’efficacité, bien que cela se fasse
au détriment de la précision, comme le démontrent les résultats de [40] et [41]. L’algorithme
approximatif basé sur les graphes a rapporté des solutions à 10 % de l’optimal dans 80 % des
cas testés, tout en réduisant le temps de calcul jusqu’à 70 %.

L’état de l’art des multiplieurs optimisés sur du matériel reconfigurable, en particulier les
FPGA, souligne l’importance de la flexibilité et de l’adaptabilité pour atteindre une mul-
tiplication matricielle haute performance. Les mises en œuvre utilisant des additionneurs
ternaires ont démontré une augmentation de débit de 30 %, tandis que Lehnert et al. [40]
ont atteint une accélération de 2,5 fois par rapport aux processeurs DSP conventionnels. Ces
avancées mettent en évidence le potentiel des FPGA pour améliorer les performances des
multiplieurs matrice-vecteur grâce à leurs capacités de traitement parallèle.

Alors que les applications continuent d’exiger des matrices plus grandes et plus complexes,
l’exploration continue des méthodes exactes et approximatives sera cruciale pour développer
des solutions évolutives qui répondent aux besoins des environnements informatiques mo-
dernes. À la lumière de ces progrès, nous avons développé un nouvel algorithme spécialement
conçu pour les multiplications matricielles à coefficients constants qui vise à améliorer la
scalabilité sans sacrifier la précision. Cet algorithme tire parti des connaissances acquises
à partir des méthodes exactes et approximatives, et vise a minimiser l’utilisation des res-
sources FPGA en réduisant le nombre de cellules logiques nécessaires pour effectuer des
multiplications par matrice constante (CMM), tout en exploitant les redondances dans les
sous-expressions communes à plusieurs produits et sorties.

21

CHAPITRE 3 ALGORITHME MULTIPLIEUR OPTIMISÉ

3.1 Multiplication par somme de décalages binaires

L’approche proposée repose sur l’idée de la multiplication par sommation de produits partiels.
Soit X, une variable de N bits, et C une constante de M bits. X et C peuvent être exprimés
sous le format suivant :

X =
N−1∑
i=0

xi2i, C =
M−1∑
j=0

cj2j (3.1)

Le produit P = X×C peut être calculé en accumulant leurs produits partiels. Cela implique
de multiplier les bits de la variable et de la constante et de les décaler ensuite vers la gauche
d’un nombre approprié de positions :

P =
M−1∑
j=0

Xcj2j (3.2)

Ce principe est la base de l’algorithme proposé. La constante C étant connue à l’avance, les
ci nuls peuvent être ignorés, et la multiplication se réduit à quelques opérations de décalage
et d’addition. Par exemple, multiplier une variable X par 193 peut être vu comme la somme
de trois versions décalées de X :

193X = 128X + 64X + X (3.3)

Un avantage évident se présente lorsqu’on considère l’implémentation matérielle des multipli-
cations constantes, car les opérations de décalage fixes sont computationnellement gratuites
[26]. Tirer profit des décalages de bits sans coût en remplaçant les multiplications des puis-
sances de deux par une simple opération de décalage offre donc des économies de ressources
significatives.

3.2 Description détaillée de l’algorithme proposé

L’algorithme proposé est décrit ci-dessous (Algorithme 2). Il s’inscrit dans la famille des
méthodes basées sur les graphes d’additionneurs (cf. 2.1.4). À l’instar de RAG-n et dérivés,
il recherche et réutilise des sous-expressions pour partager des additions entre sorties. La

22

spécificité ici tient au traitement matriciel global : on maximise la réutilisation à travers les
colonnes (constantes) et les lignes (sorties), alors que les MCM classiques ciblent un seul vec-
teur d’entrées ou un seul bloc de constantes. Une description détaillée de son fonctionnement
est mentionné plus bas (cf. 3.2.1).

Algorithm 2 Multiplieur optimisé par matrice constante
Input: Matrice constante W (taille M x N) avec poids codés sur B bits, vecteur d’entrées d’acti-

vation variable X (taille N)
Output: Liste des opérations sur un tableau de variables MEM, et vecteur résultat Y (taille M)
1: binW ← binarizeMatrix(W, B) ▷ Binarisation de la matrice
2: Initialiser MEM avec les valeurs décalées de X

3: maxCount ← max
j

(
M−1∑
i=0

binW [i, j]
)

▷ Trouver le nombre maximal de 1 par colonne

4: col← B ×N
5: while maxCount >= 1 do ▷ Itération par colonne
6: for j = 0 à col(binW) do
7: Trouver la colonne k telle que

M−1∑
i=0

binW [i, j] ·
M−1∑
i=0

binW [i, k] = maxCount ▷ Trouver les colonnes similaires

8: if k trouvé then
9: binW [:, col] = binW [:, j] · binW [:, k]

10: Effacer les 1 correspondants dans les colonnes j et k
11: MEM[col++] ← MEM[j] + MEM[k]
12: end if
13: end for
14: maxCount-- ;
15: end while
16: Étant donné qu’il ne reste qu’un seul 1 à la position pk pour la ligne k,

Yk = MEM[pk]
17: return Y

3.2.1 Initialisation des matrices binaires

Tout d’abord, nous construisons une matrice de poids binaire binW (ligne 1) en utilisant
la fonction binarizeMatrix(W, B), basée sur les compléments à deux de W . Cette forme
binaire est essentielle pour réaliser des opérations bit à bit dans les étapes ultérieures. Un
tableau MEM est également initialisé avec les valeurs décalées des variables (ligne 2). Pendant
l’exécution de l’algorithme, MEM et binW seront étendus vers la droite afin de stocker les
sous-expressions communes et leurs contributions aux sorties. Chaque colonne subséquente
ajoutée à ce tableau correspond à un nouveau nœud nz contenant la somme de deux nœuds
précédemment calculés nz = nx + ny, où x, y < z.

23

3.2.2 Réduction des colonnes

Pendant la réduction, maxCount représente le nombre maximum de correspondances poten-
tielles entre n’importe quelle paire de colonnes. Sa valeur initiale est le nombre maximum
de bits "1" dans toutes les colonnes de binW (ligne 3). L’algorithme effectue un balayage
itératif de binW pour identifier les colonnes ayant le nombre maximum commun. Ceci est
réalisé en calculant le produit scalaire entre toutes les paires de colonnes (ligne 7). Lorsque le
nombre de "1" communs atteint maxCount, une nouvelle colonne est ajoutée à binW (ligne
11) contenant les 1 communs, tandis que les "1" correspondants dans les colonnes originales
sont effacés (ligne 10). Lorsqu’il n’y a plus de paires de colonnes avec des correspondances
maxCount, le maxCount est décrémenté, et le processus se poursuit jusqu’à ce que binW

devienne une matrice avec un seul "1" par ligne.

3.2.3 Calcul du résultat

Pour chaque ligne de binW , désormais réduite à un seul ’1’ par ligne, la valeur correspondante
dans MEM est attribuée à Y (ligne 16). Chaque résultat peut donc être vu comme le sommet
d’un graphe de calcul comportant des additions et des décalages partagés (voir figure 3.1).

Les nœuds (sauf les nœuds feuilles) contiennent l’identifiant du nœud (node ID), qui corres-
pond aussi à l’indice de la colonne dans laquelle il apparaît dans le tableau 3.1. Ils contiennent
également l’opération (seulement +) ainsi que le cycle de départ. Dans ce graphe, "@1" si-
gnifie que ce nœud est créé au cycle 1. Les nœuds feuilles contiennent uniquement le node
ID.

3.3 Exemple illustratif

Pour illustrer les mécanismes par lesquels l’algorithme proposé optimise une multiplication
matrice-vecteur, considérons l’exemple suivant où W représente une matrice constante non
signée sur 4 bits et X un vecteur de variables. Cet exemple servira de reference pour le reste
de cette section.

W =


5 4 9
1 3 1
3 7 11

 , X =


X1

X2

X3

 (3.4)

Le résultat Y du produit matrice-vecteur est exprimé sous la forme :

24

12
+
@1

11

3

13
+
@1

8

5

14
+
@1

7

6

15
+
@2

16
+
@1

10

2

17
+
@3

18
+
@3

1

19
+
@2

20
+
@4

Figure 3.1 Graphe des opérations avec addition

Y =


Y1

Y2

Y3

 = WX =


5 4 9
1 3 1
3 7 11



X1

X2

X3

 (3.5)

L’algorithme proposé repose sur une matrice binaire illustrée dans le tableau 3.1 où les trois
premières colonnes sont construites à partir de la forme binaire sur 4 bits de W (les zéros sont
omis par souci de clarté). Ainsi, chaque sous-colonne représente la variable associée (X1, X2

ou X3) multipliée par une puissance de 2. Chaque ligne représente un résultat de sortie (Y1, Y2

ou Y3). Les "1" dans les lignes marquent les contributions des variables d’entrée aux résultats
de sortie. Par exemple, dans la première ligne : Y1 = 4X1 + X1 + 4X2 + 8X3 + X3.

Pour réutiliser les produits partiels communs entre les lignes, l’algorithme proposé recherche
les paires de colonnes présentant le nombre maximal de "1" aux mêmes positions. Dans notre
exemple, lors de la première itération, ces deux colonnes sont (1)X1 et (1)X3, ce qui signifie
que le sous-produit (1)X1 + (1)X3 est commun aux trois sorties.

L’algorithme substitue alors l’addition X1 +X3 par un nouveau nœud (colonne) n4 = X1 +X3

(Table 3.2), remplaçant ces deux produits partiels dans les lignes du vecteur résultat. La

25

Tableau 3.1 Illustration de l’algorithme proposé. Étape 1 : Élimination des colonnes conte-
nant le plus grand nombre de ’1’ (ce qui correspond aux puissances de 2 les plus répandues)

X1 X2 X3 n4
8 4 2 1 8 4 2 1 8 4 2 1

Y1 1 �1 1 1 �1 1
Y2 �1 1 1 �1 1
Y3 1 �1 1 1 1 1 1 �1 1

colonne de la nouvelle variable n4 est ajoutée à droite de la matrice binaire, et les 1 communs
dans les colonnes sources (1)X1 et (1)X3 sont déplacés vers la nouvelle colonne. Désormais,
l’addition X1 + X3 ne doit être calculée qu’une seule fois au lieu de trois.

Tableau 3.2 Étape 2 : Passage aux prochaines colonnes contenant le plus de ’1’

X1 X2 X3 n4 n5 n6 n7
8 4 2 1 8 4 2 1 8 4 2 1

Y1 1 �1 �1 �1 �1 �1 1 1
Y2 �1 �1 �1 �1 1 1
Y3 1 �1 �1 �1 �1 �1 1 �1 �1 1 1 1

L’algorithme passe ensuite aux produits partiels les plus communs suivants. Dans le tableau
3.3, il s’agit de (4)X2 et (8)X3 qui apparaissent dans deux lignes. Une nouvelle colonne avec
la variable n5 = 4X2 + 8X3 est ajoutée à droite de la matrice binaire. Le processus est répété
pour n6, n7, puis Y1, Y2 et Y3.

Tableau 3.3 Étape 3 : Cette opération continue pour les colonnes suivantes

X1 X2 X3 n4 n5 n6 n7 n8 n9
8 4 2 1 8 4 2 1 8 4 2 1

Y1 1 �1 �1 �1 �1 �1 �1 1
Y2 �1 �1 �1 �1 1 1
Y3 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 1 1

L’avant dernière étape dans le tableau 3.3 consiste à remplacer, à travers les lignes, les
puissances de 2 qui apparaissent plus d’une fois sur pour la meme variable Yi jusquà’ce
qu’aucune autre addition de produits partiels ne peut être remplacée.

26

Tableau 3.4 Étape 4 : Les dernières colonnes contiennent les résultats finaux Y1, Y2 et Y3.
Par souci de clarté, nous montrons uniquement la dernière étape, sans les ’1’ simplifie

X1 X2 X3 n4 n5 n6 n7 n8 n9 n10 n11 n12
8 4 2 1 8 4 2 1 8 4 2 1

Y1 �1 �1 1
Y2 �1 �1 1
Y3 �1 �1 1

La dernière étape dans le tableau 3.4 consiste à remplacer, à travers les lignes, les puissances
de 2 qui apparaissent plus d’une fois pour la même variable Yi, jusqu’à ce qu’aucune autre
addition de produits partiels ne puisse être remplacée. Ainsi, notre tableau réduit ne contient
à la fin que des colonnes avec un seul ’1’. La liste des substitutions est retenue en mémoire.
Les équations en gras montrent les résultats finaux Y1, Y2 et Y3.

n4 = X1 + X3 (3.6)

n5 = 4X2 + 8X3 (3.7)

n6 = 2X2 + X2 (3.8)

n7 = n4 + n5 (3.9)

n8 = 2X1 + 2X3 (3.10)

n9 = n6 + n7 (3.11)

n10 = 4X1 + n7 (3.12)

n11 = n4 + n6 (3.13)

n12 = n8 + n9 (3.14)

Y1 = n10 (3.15)

Y2 = n11 (3.16)

Y3 = n12 (3.17)

3.4 Implémentation Python

Cette implémentation a été réalisée en Python par Dinesh Daultani dans le cadre d’un stage
de recherche et constitue sa contribution à l’article [25]. Cette implémentation génère en
sortie une liste d’opérations d’addition, qui sera nommée par la suite OperationsArray. Elle
est nommée ainsi car le premier indice de chaque ligne correspond à l’indice d’un bit dans la

27

matrice de poids initiale.

OperationsArray est un tableau bidimensionnel qui contient des informations pour chaque
ligne de la matrice, ainsi que des opérations à effectuer sur ces éléments. Il encode plus par-
ticulièrement la séquence d’opérations nécessaires pour calculer le vecteur de sortie. Chaque
ligne du tableau contient :

— La première colonne représente l’indice du bit dans la mémoire (ou la première opérande
d’une addition lorsque l’opération est +).

— La deuxième colonne contient l’indice de l’entrée (ou de la valeur à opérer), ou la
deuxième opérande d’une addition lorsque l’opération est +.

— La troisième colonne indique la largeur en bits de l’élément si le parametre est ’«’, ou
l’indice de la nouvelle colonne (Node ID) où stocker le résultat de l’addition lorsque
l’opération est +.

— La quatrième colonne spécifie l’opération à réaliser (par exemple, décalage à gauche «,
décalage à droite », addition +, ou = lorsqu’il s’agit de la sortie finale).

1 OperationsArray =
2 [[3, 3, 4, ’parameters ’],
3 [0, 0, 3, ’<<’],
4 [1, 0, 2, ’<<’],
5 [2, 0, 1, ’<<’],
6 [3, 0, 0, ’<<’],
7 [4, 1, 3, ’<<’],
8 [5, 1, 2, ’<<’],
9 [6, 1, 1, ’<<’],

10 [7, 1, 0, ’<<’],
11 [8, 2, 3, ’<<’],
12 [9, 2, 2, ’<<’],
13 [10, 2, 1, ’<<’],
14 [11, 2, 0, ’<<’],
15 [3, 11, 12, ’+’],
16 [5, 8, 13, ’+’],
17 [6, 7, 14, ’+’],
18 [12, 13, 15, ’+’],
19 [2, 10, 16, ’+’],
20 [14, 15, 17, ’+’],
21 [1, 15, 18, ’+’],
22 [12, 14, 19, ’+’],

28

23 [16, 17, 20, ’+’],
24 [0, 18, -1, ’=’],
25 [1, 19, -1, ’=’],
26 [2, 20, -1, ’=’]]

Extrait de code 3.1 Tableau d’operations OperationsArray basé sur l’exemple précedent sous
forme de liste Python

La sortie d’exécution 3.1 encode, dans un format explicite, toutes les opérations nécessaires
pour réaliser la multiplication et calculer le résultat. Ce format est décodé selon la colonne
"parameters" (4e élément de chaque ligne) de chaque élément de OperationsArray. Les lignes
colorées reflètent les colonnes des tableaux précédents (tableaux 3.1, 3.2 et 3.3).

La phase de test consiste à créer une matrice aléatoire et à effectuer une multiplication
matrice-vecteur avec plusieurs vecteurs d’entrée générés de manière aléatoire. Ces vecteurs
d’entrée sont multipliés avec la matrice de poids définie par OperationsArray. Les matrices
de test sont générées en définissant des tailles de matrices spécifiques (par exemple, 5×5)
et des largeurs de bits. La matrice de poids est créée avec des valeurs entières aléatoires
dans une plage définie par la largeur de bits spécifiée. Pour chaque cas de test, le tableau
OperationsArray est généré, puis la multiplication optimisée est effectuée en utilisant une
fonction décodant cette liste. La sortie attendue est ensuite comparée au résultat de la mul-
tiplication matrice-vecteur afin de garantir la justesse de l’algorithme.

Le tableau OperationsArray décrit à l’étape 4 (voir 3.4) constitue une modélisation du
graphe computationnel. Celui-ci est implémenté en logiciel sous la forme d’une liste d’adja-
cences, où le poids de chaque sommet (nœud) représente l’indice (Node ID) d’une colonne
dans le tableau. Chaque nœud (à l’exception des nœuds feuilles de l’arbre) correspond à
une opération d’addition (+). Cette formalisation offre la possibilité de générer, de manière
systématique, des modules multiplieurs en SystemVerilog pour différentes configurations de
matrices/vecteurs.

3.5 Implémentations SystemVerilog

3.5.1 Architecture combinatoire

La création d’un module multiplieur en SystemVerilog peut désormais être réalisée grâce
à la liste des opérations OperationsArray, qui contient toutes les informations nécessaires
(additions et paires d’opérandes) pour permettre une implémentation matérielle combinatoire
du circuit. Le diagramme ci-dessous (Fig. 3.2) en est un exemple. Ce circuit réalisé par le

29

script est une première implémentation purement combinatoire sans registres du multiplieur.

Figure 3.2 Graphe d’un multiplieur combinatoire (basé sur l’exemple initial 3.4)

Un générateur de modules en SystemVerilog a été développé pour traduire automatique-
ment la structure de données OperationsArray en une description RTL (voir algorithme 3).
Ce script convertit les opérations définies dans l’implémentation de référence en Python
en un ensemble d’assignations combinatoires, reflétant fidèlement la sémantique de la liste
OperationsArray.

Le script prend en paramètre cette structure, la largeur des coefficients (par défaut fixée à
6 bits), ainsi que le nom du module. En sortie, il produit un fichier SystemVerilog capable
d’exécuter la séquence d’opérations spécifiée. Les entrées et sorties sont les suivantes :

Entrées :

— OperationsArray.
— input_bitwidth (optionnel) : La largeur en bits des vecteurs d’entrée (par défaut à 6

bits).
— filename (optionnel) : Un suffixe pour nommer le fichier généré.

Sorties :

30

Algorithm 3 Script de génération de module SystemVerilog pour multiplication matricielle
1: procedure GenerateSystemVerilogModule(OperationsArray, input_bitwidth,

filename)
2: /* Calcul des paramètres du module */
3: rows, cols, weight_bitwidth← OperationsArray[0][0 : 3]
4: output_bitwidth← weight_bitwidth + input_bitwidth + ⌈log2(cols− 1)⌉
5: mem_size← max{row[2] | row ∈ OperationsArray}
6: added_statements← ""
7: /*Décodage de la liste d’opérations */
8: for row in OperationsArray[1 :] do
9: if row[2] ̸= −1 then

10: if row[3] = "«" then
11: added_statements← added_statements+
12: "assign MEM[row[0]] = input_vector[row[1]] « row[2] ;"
13: else if row[3] = "-«" then
14: added_statements← added_statements+
15: "assign MEM[row[0]] = -(input_vector[row[1]] « row[2]) ;"
16: else if row[3] = "+" then
17: added_statements← added_statements+
18: "assign MEM[row[2]] = MEM[row[0]] + MEM[row[1]] ;"
19: else
20: added_statements← added_statements+
21: "assign output_vector[row[0]] = MEM[row[1]] ;"
22: end if
23: end if
24: end for
25: /*Déclarations de l’en-tête du module*/
26: Specialiser le gabarit en remplacant les parametres du module par leurs valeurs

rows, cols, weight_bitwidth, mem_size, input_bitwidths, output_bitwidths
27: /*Écriture du fichier */
28: Création du fichier avec les signaux déclaré
29: end procedure

— Un fichier SystemVerilog qui contient un module optimisé pour effectuer des multipli-
cations matricielles. Le fichier est sauvegardé et porte un nom basé sur les dimensions
de la matrice et d’autres paramètres.

— La largeur des poids (weight_bitwidth), extraite de l’élément de OperationsArray.

Le module ainsi généré peut ensuite être synthétisé pour produire une netlist, c’est-à-dire la
liste des interconnexions d’un circuit implémentable sur FPGA, à partir de laquelle on peut
estimer le coût en ressources logiques et les performances en termes de débit. Une explication
détaillée des étapes effectuées par le script est présentée ci-dessous :

31

(a) Extraction des paramètres : L’algorithme commence par extraire les dimensions
de la matrice et la largeur en bits des poids depuis la première ligne de OperationsArray :

— rows1 et cols1 sont respectivement le nombre de lignes et de colonnes de la matrice
(extraits des deux premières valeurs de la première ligne).

— weight_bitwidth est la largeur en bits des poids (troisième valeur de la première ligne).

Ensuite, l’algorithme calcule la largeur en bits de la sortie (output_bitwidth). Cette va-
leur est égale à la somme de la largeur des poids (weight_bitwidth), de la largeur des
entrées (input_bitwidth) et d’une valeur supplémentaire, calculée en fonction du nombre
de colonnes de la matrice (cols1), représentant l’indexation binaire de la matrice.

(b) Calcul de la taille du tableau de signaux : Le nombre de signaux nécessaires
(mem_size) est déterminé en prenant la valeur maximale de la troisième colonne de chaque
ligne dans OperationsArray. Cette valeur représente le plus grand indice utilisé pour sto-
cker un résultat intermédiaire. Ces résultats ne sont pas conservés dans une mémoire au
sens logiciel du terme, mais sont directement véhiculés par des signaux (wire) dans une im-
plémentation SystemVerilog purement combinatoire. Ainsi, mem_size correspond au nombre
total de lignes de signal requis pour représenter l’ensemble des calculs intermédiaires dans le
circuit.

(c) Création des assignations pour les opérations : L’algorithme parcourt les lignes
de OperationsArray (à partir de la deuxième ligne) et génère des assignations SystemVerilog
en fonction des opérations spécifiées dans la quatrième colonne :

— Opérations de décalage à gauche («) : si l’opération est un décalage à gauche,
l’algorithme crée une assignation Verilog pour appliquer ce décalage aux valeurs des
entrées et les stocker dans la mémoire (MEM).

— Opérations de décalage à gauche et inversion de signe (-«) : si l’opération est
un décalage à gauche négatif, l’algorithme effectue d’abord le décalage, puis applique
un signe négatif à la valeur avant de l’assigner à la mémoire. Cette opération est réservé
aux bits de poids fort, pour une représentation en complément a deux.

— Opérations d’addition (+) : si l’opération est une addition, l’algorithme additionne
les valeurs de mémoire aux indices spécifiés et assigne le résultat à un nouvel emplace-
ment dans la mémoire.

Si une ligne contient "-1" dans la troisième colonne, le nœud est assigné à output_vector,
la sortie finale.

32

(d) Création du module SystemVerilog : Une fois que toutes les assignations sont
générées, l’algorithme crée un module SystemVerilog en ajoutant les déclarations nécessaires :

— Il définit les paramètres du module, tels que le nombre de lignes ROWS, le nombre
de colonnes COLS, la taille de la mémoire MEM_SIZE, la largeur input_bit_width des
entrées et la largeur de la sortie output_bit_width.

— Il déclare les vecteurs d’entrée et de sortie, en précisant leur largeur en bits.
— Les assignations précédemment générées sont ajoutées au corps du module.

(e) Écriture du module SystemVerilog : Le code SystemVerilog généré est écrit dans
un fichier avec l’extension .sv. La trace pour l’exemple précédent se trouve dans l’annexe A.

Bien que directe, l’architecture purement combinatoire s’avère rapidement impraticable pour
des matrices de grande taille en raison de sa latence intrinsèquement élevée. Le calcul du
produit scalaire implique de multiples additions de valeurs décalées, ce qui génère un chemin
critique qui croît avec la taille de la matrice et la précision des coefficients. Cela limite sévère-
ment la fréquence d’horloge maximale. Cette croissance de la latence, combinée aux ressources
limitées du FPGA, souligne la nécessité d’une approche capable de respecter des contraintes
temporelles plus rigoureuses. Pour contourner ces limites, une conception pipelinée a été
élaborée.

3.5.2 Architecture en arbre d’additionneurs pipeliné

L’idée fondamentale du pipeline consiste à décomposer le calcul en étapes plus petites et
séquentielles, chacune effectuant une portion du travail, en alternant entre additionneurs
et registres. En insérant des registres entre ces étapes, nous garantissons que les résultats
intermédiaires sont stockés et disponibles dans les cycles d’horloge suivants, permettant à
l’architecture de traiter de nouvelles entrées en continu. Cette approche réduit drastiquement
le chemin critique et permet à la conception de traiter des dimensions matricielles plus
importantes sans compromettre la fréquence d’horloge.

En décomposant le calcul en étapes, en insérant des registres et en gérant soigneusement la
durée de vie des résultats, nous avons créé une architecture matérielle qui équilibre le débit,
l’utilisation des ressources et les performances temporelles.

La méthodologie décrite ici, tout en combinant l’analyse des dépendances, le suivi des cycles
et la génération automatisée de code SystemVerilog, fournit un cadre robuste pour concevoir
des accélérateurs FPGA évolutifs.

Ce qui suit est une explication détaillée de la manière dont nous avons imposé le pipeli-

33

nage dans Vivado, contrôlé le cycle de vie des résultats intermédiaires et généré du code
SystemVerilog optimisé pour implémenter la multiplication matrice-vecteur :

(a) Comptage des cycles et gestion de la durée de vie : Pour implémenter le
pipelinage, la structure du tableau OperationsArray est étendue afin de mémoriser le premier
et le dernier cycle pendant lesquels un résultat est valide. Ce suivi des cycles est essentiel
pour contrôler à quel moment les résultats sont stockés dans les registres et quand ils peuvent
être supprimés. La fonction cycleCount (Annexe B) augmente le tableau d’indices avec des
informations de cycle. Pour chaque opération, elle détermine quand le résultat sera disponible
et pendant combien de cycles d’horloge il doit être conservé :

1. Opérations de décalage : Elles sont immédiates, donc elles commencent et se ter-
minent au cycle 0.

2. Additions : Le résultat devient disponible un cycle après le dernier des premiers cycles
des opérandes. Le dernier cycle est défini comme la dernière étape où le résultat est
utilisé.

3. Sorties finales : Le résultat de la dernière addition dans la chaîne est transmis au
vecteur de sortie.

En suivant soigneusement les premiers et derniers cycles, nous éliminons l’utilisation inutile
de registres. Les valeurs qui ne sont plus nécessaires ne sont pas reportées. Le nouveau format
du tableau OperationsArray est le suivant (extrait de code 3.2).

1 [[3, 3, 4, ’parameters ’, ’FirstCycle ’, ’LastCycle ’],
2 [0, 0, 3, ’<<’, 0, -1],
3 [1, 0, 2, ’<<’, 0, 2],
4 [2, 0, 1, ’<<’, 0, 0],
5 [3, 0, 0, ’<<’, 0, 0],
6 [4, 1, 3, ’<<’, 0, -1],
7 [5, 1, 2, ’<<’, 0, 0],
8 [6, 1, 1, ’<<’, 0, 0],
9 [7, 1, 0, ’<<’, 0, 0],

10 [8, 2, 3, ’<<’, 0, 0],
11 [9, 2, 2, ’<<’, 0, -1],
12 [10, 2, 1, ’<<’, 0, 0],
13 [11, 2, 0, ’<<’, 0, 0],
14 [12, 11, 3, ’+’, 1, 1],
15 [13, 8, 5, ’+’, 1, 1],
16 [14, 7, 6, ’+’, 1, 2],
17 [15, 13, 12, ’+’, 2, 2],
18 [16, 10, 2, ’+’, 1, 3],
19 [17, 15, 14, ’+’, 3, 3],

34

20 [18, 15, 1, ’+’, 3, 4],
21 [19, 14, 12, ’+’, 2, 4],
22 [20, 17, 16, ’+’, 4, 4],
23 [0, 18, -1, ’=’, 4, 4],
24 [1, 19, -1, ’=’, 4, 4],
25 [2, 20, -1, ’=’, 4, 4]]

Extrait de code 3.2 Tableau d’opérations OperationsArray augmenté par les cycles

La figure 3.3 illustre le graphe de dépendances orienté des opérations d’additions extraites du
flot de calcul planifié sur un pipeline matériel basé sur l’exemple 3.4. Chaque nœud représente
une opération +, annotée avec ses cycles d’activation (FirstCycle, LastCycle), et les arêtes
encodent les contraintes de précédence. Les sommets sont regroupés par cycle d’exécution
et ordonnés localement pour réduire les croisements d’arêtes et améliorer la lisibilité du
graphe. L’espacement vertical est proportionnel à la profondeur des dépendances, ce qui
rend visible les chemin critique et la structure de l’arbre de réduction. La séparation verticale
indique le cycle de création du nœud (qui représente le timing de l’opération). Un exemple
de l’ordonnancement des opérations se trouve en annexe (Annexe E).

12
+11

3

13
+

8

5

14
+

7

6

15
+

16
+

10

2

17
+

18
+

1

19
+

20
+

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Figure 3.3 Graphe de dépendances d’un multiplieur pipeliné (basé sur l’exemple 3.4)

35

(b) Génération du module SystemVerilog basée sur les étages de pipeline : Une
fois les informations de cycle ajoutées, le tableau d’indices OperationsArray augmenté est
traduit en code SystemVerilog. Le calcul est divisé en étapes, chacune correspondant à un
cycle d’horloge. La fonction regroupe les opérations par leur cycle de départ, génère les opé-
rations arithmétiques requises et insère des registres pour stocker les résultats intermédiaires.

Pour chaque étape :

— Les nouveaux résultats intermédiaires sont calculés et stockés
— Les valeurs encore vivantes sont propagées
— Les déclarations de registres et les réinitialisations sont gérées
— Les sorties sont assignées une fois le calcul terminé

Le code SystemVerilog généré reflète la structure pipelinée (Annexe C) : chaque étape termine
son opération en un cycle, avec des résultats intermédiaires transmis à l’étape suivante via
des registres. Le résultat final apparaît à la sortie après la dernière étape, et de nouvelles
entrées peuvent commencer à être traitées immédiatement, maximisant ainsi le débit. Le
module final suit l’architecture illustrée à la figure 3.4.

Figure 3.4 Graphe d’un multiplieur pipeliné (basé sur l’exemple 3.4)

Cette conception pipelinée améliore significativement l’évolutivité. Le délai n’est plus contraint
par la taille de la matrice, car chaque étape a une complexité limitée. Des matrices plus

36

grandes se traduisent simplement par un plus grand nombre d’étapes, sans allonger le chemin
critique. Cette structure permet donc de gérer des matrices de grande taille sans compro-
mettre les performances, ce qui la rend bien adaptée aux applications en temps réel ou à haut
débit.

En revanche, cette amélioration des performances temporelles s’accompagne généralement
d’une augmentation de l’utilisation des registres, notamment pour stocker les résultats in-
termédiaires entre chaque étage de pipeline. Toutefois, en suivant soigneusement les durées
de vie des signaux et en supprimant les résultats devenus inutiles, il est possible d’agréger
certains de ces étages et de limiter la croissance des ressources nécessaires. Cela est parti-
culièrement important dans les implémentations sur FPGA, où les ressources logiques et les
registres sont limités.

3.5.3 Agrégation des étages de pipeline

Les architectures pipelinées divisent le traitement en étapes successives, synchronisées par
des registres. Lorsqu’il est possible d’effectuer plus d’une addition avant le prochain front
d’horloge, il peut être bénéfique d’ajouter un additionneur supplémentaire par étage, afin de
réduire le nombre de registres nécessaires en fonction de la fréquence utilisée (voir Fig. 3.5).

Figure 3.5 Agrégation des étages d’additionneurs.

37

À l’instar de l’approche précédente, la méthode suivante repose sur une segmentation partielle
du calcul du résultat. Cette optimisation de la méthode pipelinée repose sur l’agrégation
d’étages d’additionneurs alternés.

Pour une fréquence de 100 MHz, il est possible d’atteindre plus d’un additionneur par étage
de pipeline, ce qui permet de réduire le nombre d’étages de registres requis pour calculer le
résultat final.

Cette méthode peut être interprétée comme une forme de contraction d’arbre de dépendances,
où les cycles impairs (contenant les opérations d’addition) sont fusionnés dans les cycles pairs
qui leur succèdent. Cette stratégie, inspirée de l’algorithme de contraction d’arbres rake and
compress.

Chaque niveau du graphe de dépendances est associé à un cycle d’horloge. Les opérations
réalisées aux cycles impairs sont fusionnées dans les cycles pairs suivants, ce qui entraîne :

— la suppression des cycles impairs, qui sont absorbés dans les cycles pairs suivants ;
— la simplification du graphe, par réduction du nombre total d’étapes ;
— la substitution directe (inline) d’expressions intermédiaires dans l’occurrence suivante

(par exemple, remplacer 17 dans 20 = 17 + 16 par sa définition 17 = 15 + 14) ;
— la propagation de copies (par réassignation) des signaux utiles pour les maintenir en

vie jusqu’à leur dernière utilisation ;
— la mémorisation locale des résultats intermédiaires pour éviter leur recalcul.

Cette agrégation partielle réduit la latence totale et le coût en registres sans compromettre
la fréquence cible, tant que les expressions résultantes respectent les contraintes temporelles
de propagation combinatoire. Par exemple, une opération comme (a + b) + c initialement
réalisée sur deux cycles (avec un registre entre les deux additions) peut être réécrite en un
seul cycle en substituant directement a + b dans le second additionneur, à condition que
le chemin critique reste dans les limites imposées par la fréquence. Un exemple de ce type
d’ordonnancement est fournit dans l’Annexe F.

En pratique, cette logique suit une planification ALAP (As Late As Possible), où chaque
signal est retardée jusqu’au cycle immédiatement précédant son utilisation, minimisant ainsi
le nombre de cycles actifs tout en assurant la disponibilité des résultats. Cette transformation
bottom-up ne s’effectue pas de manière récursive mais uniquement un niveau au-dessus à
chaque étape, évitant la propagation incontrôlée des expressions.

Le dernier étage impair, une fois fusionné, devient la couche de sortie (Output) dans le circuit
généré. Les nœuds de cette couche sont directement assignés à la sortie, sans passer par des
registres supplémentaires. Le module est présenté en annexe (Annexe D).

38

Cette agrégation ne vise pas à réduire nécessairement l’utilisation des tables de correspon-
dance, mais à optimiser la profondeur logique et à raccourcir le chemin critique. Elle permet
donc un meilleur ordonnancement et une génération de code synthétisable respectant les
contraintes temporelles, sans augmenter inutilement l’utilisation des registres.

3.5.4 Conclusion

Ce chapitre a présenté un algorithme original de multiplication par matrice à coefficients
constants, conçu pour une implémentation efficace sur FPGA sans multiplieurs DSP dédiés.
Cet algorithme simplifie le flot de données grâce à deux mécanismes : (i) une construction
progressive de produits partiels à partir de la représentation binaire des coefficients, et (ii)
la factorisation et la réutilisation systématique des sous-expressions communes, permettant
une simplification des produits partiels et du flot de données.

L’implémentation en Python permet de générer le graphe computationnel et d’en extraire la
séquence d’additions équivalente à la multiplication. L’ensemble du flot de conception a été
automatisé. Cette séquence est ensuite transcrite en modules SystemVerilog synthétisables,
structurés de manière à s’adapter à des tailles de matrices arbitraires.

À partir d’une même représentation intermédiaire du graphe de calcul (dans un format si-
milaire à une liste d’adjacence), trois architectures distinctes sont générées : une version
purement combinatoire, une version pipelinée, et une version pipelinée avec agrégation des
étages impairs du pipeline. Dans les variantes pipelinées, le flot de conception inclut une
gestion explicite des signaux internes, fondée sur le suivi des cycles, afin de déterminer les
durées de vie et les alignements temporels des opérandes. Le processus de développement
s’appuie sur une implémentation initiale en Python, utilisée comme référence pour valider les
transformations successives jusqu’à la génération de modules synthétisables en SystemVerilog.

Les trois variantes architecturales générées à partir de l’algorithme proposé présentent des
compromis distincts en termes de latence, de consommation de ressources et de débit. Pour en
évaluer concrètement les performances et la robustesse face à la variation des paramètres de
taille et de précision, une série d’expériences a été menée sur FPGA à partir de configurations
représentatives. Le chapitre suivant est consacré à détaille cette évaluation, en commençant
par des cas génériques, puis en examinant une application réaliste inspirée d’un réseau de
neurones quantifié.

39

CHAPITRE 4 EXPÉRIENCES ET RÉSULTATS

4.1 Introduction

L’évaluation des performances d’un multiplieur repose sur l’analyse de plusieurs paramètres
architecturaux, tels que la latence, l’utilisation des ressources logiques, la consommation
énergétique et la précision des calculs. Dans cette section, une exploration des différentes
architectures de multiplieurs est présentée. On examine d’abord des cas génériques qui ser-
viront de base de comparaison, avant de s’intéresser à un cas pratique d’une couche linéaire
issue d’un modèle de la littérature. Une étude est aussi portée sur une variante dans laquelle
l’application des poids est approximé par une réduction de précision. Dans ce dernier cas de
figure, la représentation du facteur d’échelle est limitée aux neuf bits les plus significatifs, ce
qui permet de diminuer davantage l’empreinte matérielle.

4.2 Cas génériques

Dans cette section, on présente deux architectures multiplieurs qui serviront de référence afin
de comparaison pour les trois modules présentée au chapitre 3.

4.2.1 Algorithme de multiplication binaire standard

La première implémentation de référence pour la multiplication matrice-vecteur (MatVec-
Mult) est détaillée dans l’Algorithme 4. Il s’agit d’une implémentation directe de la définition
mathématique de la multiplication matrice-vecteur, où chaque élément du vecteur de sortie
OutputV ector[i] résulte de la multiplication des éléments du vecteur d’entrée par ceux de la
ligne correspondante de la matrice, suivie de la sommation des produits.

Algorithm 4 Algorithme MatVecMult
Input: Matrice W (size ROWS x COLS),

InputVector (length COLS)
Output: OutputVector

1: for i = 0 to ROWS - 1 do
2: for j = 0 to COLS - 1 do
3: OutputVector [i]+ = InputVector [j]×W [i][j]
4: end for
5: end for

En SystemVerilog, cette référence implémente la multiplication d’un vecteur d’entrée par

40

une matrice entière W de dimensions ROWS×COLS en utilisant l’opérateur de multiplication
standard (*) de Verilog et permet à l’outil de synthèse de Vivado d’optimiser l’opération. Un
extrait de l’exemple est fourni en annexe (Annexe G).

4.2.2 Algorithme de multiplication par décalage

Le second algorithme de références réalise la multiplication matricielle en utilisant des dé-
calages de bits et des additions. Elle est notamment décrite par Parhami [45]. L’algorithme
shift&add décale à gauche un facteur InputV ector[j] d’un nombre de positions correspon-
dant aux bits de valeur ’1’ du multiplicateur W [i][j] et additionne les produits partiels. Cette
approche est décrite dans l’algorithme 5 et sont implémentation dans l’annexe H.

Algorithm 5 Algorithme Shift&Add
Input: Matrice constante W (Taille ROWS x COLS),

InputVector (longueur COLS)
Output: OutputVector

1: for i = 0 to ROWS - 1 do
2: for j = 0 to COLS - 1 do
3: Initialiser P ← 0
4: for k = 0 to (nombre de bitsW [i][j]) do
5: if W [i][j][k] = 1 then
6: P += InputV ector[j]≪ k
7: end if
8: end for
9: P[i][j]← P

10: end for
11: OutputVector [i] =

COLS−1∑
j=0

P[i][j]
12: end for

4.2.3 Description de la plateforme de test FPGA

Toutes les architectures ont été décrites et synthétisées pour un SoC Zynq-7000, dont la
logique programmable est équivalente à celle d’un FPGA Xilinx Artix-7, en utilisant la stra-
tégie de synthèse area_optimized_high. La version du synthétiseur Vivado utilisée est la
2023.2.1. La puce FPGA ciblée est la xc7z020clg400-1. L’inférence automatique des blocs
DSP a été désactivée afin de garantir que toutes les conceptions soient implémentées exclu-
sivement à l’aide de LUT et d’additionneurs câblés en chaîne de retenue. Cette contrainte
assure une comparaison équitable des résultats. Les modules synchrones (variantes pipelinés)
ont été synthétisés pour une fréquence cible de 100 MHz.

41

4.2.4 Configuration expérimentale

La vérification fonctionnelle des modules a été effectuée à l’aide d’une suite de tests appliquée
à un ensemble de matrices servant de prédicteurs linéaires pour un réseau de neurones profond
(DNN). Un prédicteur linéaire est une fonction affine, définie comme une combinaison linéaire
pondérée des variables d’entrée. Sa forme mathématique est la suivante :

f(i) = W0 + W1xi1 + · · ·+ Wpxip (4.1)

où xik désigne la valeur de la k-ième variable du vecteur d’entrée associée à l’exemple i, et
W0, W1, . . . , Wp sont les coefficients du modèle. En supposant que W soit une matrice de
poids représentés en virgule fixe, le calcul d’une fonction de pré-activation pour une couche
de DNN peut être simulé par la multiplication de cette matrice avec des vecteurs d’entrée
aléatoires. Cette opération modélise de manière fidèle le comportement arithmétique de la
phase d’inférence dans un environnement quantifié.

La configuration finale est composée des matrices de tailles 5×5, 10×10, 50×50, 100×100,
et de coefficients matriciels représentés sous forme d’entiers aléatoires avec des largeurs de
bits de 6, 8, 10, 12 et 16 bits. Les largeurs de mot inférieures à 6 bits n’apportent pas d’écarts
significatifs en termes de consommation de ressources, tandis que des largeurs supérieures à
16 bits sont rarement justifiées en pratique, étant donné que des recherches existantes ont
montré que de nombreux modèles, y compris MobileNet, BERT et ResNet, peuvent être
quantifiés avec des poids de 8 bits tout en maintenant une précision à moins de 1% par
rapport à leur version en virgule flottante [46] [47] [48]. Ces configurations couvrent ainsi
l’essentiel des cas d’usage courants pour des modèles modernes déployés sur des plateformes
à ressources contraintes.

4.2.5 Analyse des performances

Les résultats obtenus à partir des rapports de synthèse générés par l’outil Vivado sont présen-
tés ci-dessous. On prête une attention particulière à la surface utilisée, notamment en termes
d’éléments FPGA : tables de correspondance, bascules et bloc mémoire, et aux délais sur le
chemin critique pour chaque modèle, afin d’en calculer la latence.

a) Performances matérielles :

Le tableau 4.1 présente la consommation des ressources LUT post-synthèse des nouvelles
architectures proposées (Combinatoire, Pipeliné et Pipeliné Agrégé), comparées aux implé-
mentations de référence Shift&Add et MatVecMult, en fonction des configurations de matrices

42

et des différentes largeurs de bits (6, 8, 10, 12, 16 bits).

Tableau 4.1 Consommation de LUT post-synthèse (kLUT)

Taille matrice Algorithme Largeur opérandes (bits)
6 8 10 12 16

5× 5

Shift & Add 1,2 1,9 3,1 4,6 7,6
MatVecMult 0,5 1,0 1,2 2,3 3,9

Proposé - Combinatoire 0,3 0,5 0,8 1,0 1,7
Proposé - Pipeliné 0,5 0,7 1,0 1,4 3,0

Proposé - Pipeliné Agrégé 0,4 0,6 0,9 1,3 1,9

10× 10

Shift & Add 5,5 8,5 13,2 19,5 31,8
MatVecMult 2,2 3,7 5,9 9,6 15,5

Proposé - Combinatoire 1,5 2,3 3,0 4,2 6,9
Proposé - Pipeliné 2,1 3,4 5,0 7,2 11,1

Proposé - Pipeliné Agrégé 1,5 2,4 3,6 4,6 7,6

50× 50

Shift & Add 144,4 218,4 338,5 497,5 801,7
MatVecMult 57,7 100,1 154,8 250,0 402,2

Proposé - Combinatoire 32,3 50,0 71,0 93,9 150,0
Proposé - Pipeliné 44,9 70,9 101,7 135,9 218,5

Proposé - Pipeliné Agrégé 35,4 56,0 80,4 107,9 171,9

100× 100

Shift & Add 591,5 887,0 1367,2 2012,7 3228,5
MatVecMult 208,8 333,0 483,5 834,1 1414,3

Proposé - Combinatoire 122,6 186,2 262,5 350,9 565,7
Proposé - Pipeliné 171,2 265,3 378,5 507,4 819,5

Proposé - Pipeliné Agrégé 139,1 215,2 306,7 412,0 666,9

Une analyse approfondie révèle que l’approche combinatoire obtient systématiquement les
meilleures performances en termes d’économie de ressources LUT, particulièrement pour les
grandes tailles de matrices et les largeurs de bits élevées. Par exemple, pour une matrice de
taille 100×100 à 16 bits, l’approche combinatoire ne consomme que 565,7 kLUT, soit environ
5,7×moins que la méthode Shift&Add (3228,5 kLUT) et 2,5×moins que la méthode MatVec-
Mult (1414,3 kLUT). Cette réduction significative s’explique par la capacité de l’algorithme
combinatoire à exploiter pleinement la réutilisation des sous-expressions communes, limitant
ainsi la duplication des circuits de calcul. De manière générale, la consommation moyenne de
LUT pour l’algorithme combinatoire, à travers toutes les configurations étudiées, est d’en-
viron 72% inférieure à celle de l’approche Shift&Add et d’environ 52% inférieure à celle de
MatVecMult. Cette efficacité matérielle notable provient de l’élimination directe des multi-
plieurs explicites et de la gestion optimisée des expressions intermédiaires par la synthèse de
Vivado, qui simplifie et réduit significativement la logique combinatoire.

La version pipelinée montre, quant à elle, une consommation légèrement plus élevée en res-
sources LUT comparativement à la version combinatoire (en moyenne environ 35% plus élevée

43

sur toutes les tailles), principalement due à l’ajout de registres intermédiaires (FF) pour seg-
menter les calculs en plusieurs étapes. Cette segmentation permet de réduire drastiquement
les chemins critiques, augmentant ainsi la fréquence d’opération maximale du circuit, au prix
d’une augmentation de la complexité matérielle. L’architecture pipelinée agrégée offre un
compromis judicieux entre les deux implémentations, combinant une segmentation partielle
des calculs avec une réutilisation accrue des expressions communes. Cette approche permet
de récupérer environ 18% des ressources LUT utilisées par la version purement pipelinée,
au prix d’une réduction de la fréquence maximale de 42,4% en moyenne(Tableau 4.3). Par
exemple, pour une matrice 50 × 50 à 16 bits, la version pipelinée agrégée consomme 171,9
kLUT contre 218,5 kLUT pour la version entièrement pipelinée, soit une économie notable
de 21%.

Les différences fondamentales entre les architectures asynchrones (combinatoires) et syn-
chrones (pipelinées) résident dans la gestion du temps et des mémoires intermédiaires. Les
versions combinatoires réalisent tous les calculs en un seul cycle d’horloge sans stockage in-
termédiaire explicite, ce qui conduit à une logique dense et à des chemins critiques longs. À
l’inverse, les architectures pipelinées divisent le traitement en étapes successives synchroni-
sées par des registres, permettant ainsi de réduire significativement la longueur des chemins
critiques. Cette insertion de registres réduit la complexité combinatoire immédiate, mais
introduit une augmentation de la consommation en ressources séquentielles.

L’impact de ces éléments de mémoire intermédiaires est notable. Leur utilisation conduit
à une augmentation des ressources matérielles mais améliore considérablement les perfor-
mances temporelles du circuit, rendant les architectures pipelinées adaptées aux applications
nécessitant des fréquences élevées et un débit important. Le compromis réalisé ici concerne
l’augmentation modérée des ressources LUT en échange d’une fréquence opérationnelle bien
supérieure.

Cette segmentation du calcul modifie l’organisation des opérations logiques : certaines d’entre
elles, qui pouvaient être agrégées et optimisées dans une même LUT en mode combinatoire,
doivent être séparées lorsqu’elles sont pipelinées. De plus, certains résultats utilisés dans le
traitement des étages en aval nécessitent la recopie des signaux vers l’étage suivant, ce qui
accroît légèrement l’utilisation des ressources LUT et FF. Cette approche permet néanmoins
d’atteindre des fréquences d’opération plus élevées. Les implémentations proposées offrent
ainsi chacune des compromis spécifiques adaptés à des scénarios d’applications variés, où
la sélection dépend directement des priorités entre la fréquence d’opération, la complexité
matérielle et la consommation énergétique.

L’implémentation combinatoire de l’algorithme proposé nécessite entre 3,67× et 5,73× moins

44

de LUT que le multiplicateur Shift&Add (8 bits pour une matrice 10 × 10 et 12 bits pour
une matrice 100× 100, respectivement) et entre 1,49× et 2,68× moins de LUT que le multi-
plicateur MatVecMult (6 bits pour une matrice 10× 10 et 16 bits pour une matrice 50× 50,
respectivement). Cette efficacité s’étend aux matrices plus grandes, l’algorithme optimisé
réduisant de manière substantielle le nombre de LUT. Notamment, une matrice de taille
100× 100 avec des données sur 16 bits nécessite 566 kLUT, contre 1 414 et 3 228 kLUT pour
les approches MatVecMult et Shift&Add, respectivement. Ces résultats mettent en évidence
les économies en LUT de l’algorithme proposé pour des largeurs de bits de plus en plus
grandes.

b) Comparaison de latence :

Les versions combinatoires (dites « asynchrones », sans horloge dans le module) sont évaluées
par le délai du chemin critique post-synthèse. Dans ce cas, Vivado n’effectue pas une analyse
temporelle classique basée sur un lancement et une capture d’horloge, mais mesure unique-
ment le délai physique le plus long traversant la logique et le routage. On parle ainsi de délai
de propagation maximal, qui correspond à la traversée d’un signal depuis une entrée jusqu’à
une sortie sans contrainte temporelle imposée. Les résultats relatifs aux délais de propagation
sur le chemin critique montrent des variations significatives en fonction des algorithmes et
des configurations de matrices.

Tableau 4.2 Délai de propagation maximum sur le chemin critique post-synthèse pour les
modules combinatoires (ns)

Taille matrice Algorithm Largeur opérandes (bits)
6 8 10 12 16

5× 5
Shift & Add 13,5 14,6 16,0 16,5 17,6
MatVecMult 14,4 14,3 16,7 17,0 17,9
Combinatoire 15,0 15,4 18,0 17,7 23,3

10× 10
Shift & Add 14,7 15,4 16,7 17,3 18,2
MatVecMult 20,3 20,7 22,8 23,4 24,5

Proposé - combinatoire 17,9 19,7 19,5 23,5 21,5

50× 50
Shift & Add 18,9 19,9 21,5 21,7 23,1
MatVecMult 68,5 69,3 71,8 71,9 73,4

Proposé - combinatoire 21,6 23,2 24,5 25,2 26,2

100× 100
Shift & Add 19,6 20,6 21,9 22,4 23,5
MatVecMult 126,8 127,9 130,4 130,7 22,7

Proposé - combinatoire 23,2 24,3 25,4 26,0 28,7

Les délais de propagation mesurés dans le tableau 4.2 révèlent que l’algorithme Shift&Add
présente de manière générale des performances de propagation supérieures, avec des délais

45

plus courts. Par exemple, pour une matrice de taille 5×5, les délais mesurés varient de 13,5 ns
à 17,6 ns pour des largeurs de bits de 6 à 16 bits. Cela montre une augmentation progressive
des délais en fonction de la largeur de bits, bien que cette augmentation reste modérée.

L’analyse révèle également que les délais de propagation augmentent proportionnellement
avec la taille de la matrice et la largeur des bits. Pour des matrices de petite taille comme
5× 5, les délais sont relativement faibles et présentent des écarts réduits entre les différentes
largeurs de bits. Cependant, à mesure que la taille de la matrice augmente, les délais de
propagation deviennent plus sensibles à la largeur des bits. Pour les matrices plus grandes,
comme 50× 50 et 100× 100, l’écart entre les algorithmes se creuse davantage. Par exemple,
pour une matrice 100× 100 à 16 bits, l’algorithme Shift&Add maintient un délai de 23,5 ns,
tandis que MatVecMult atteint des délais beaucoup plus élevés, jusqu’à 130,7 ns.

L’algorithme combinatoire, bien que performant en termes de consommation de ressources,
montre des délais de propagation relativement plus élevés. La performance de l’algorithme
proposé est similaire à celle de l’approche Shift&Add, avec un léger surcoût en termes de délai.
Ce surcoût est principalement dû à la conception de l’algorithme, qui impose la réutilisation
de sous-expressions communes, ce qui entraîne un nombre plus élevé de niveaux sur le chemin
critique. Cependant, malgré cet ajout, l’impact sur le délai global reste relativement faible.
Par exemple, bien que l’algorithme Shift&Add affiche des délais plus courts dans certaines
configurations, l’algorithme proposé parvient à maintenir des performances compétitives,
même pour des matrices plus grandes et des largeurs de bits plus élevées, où les niveaux
supplémentaires sur le chemin critique n’entraînent pas une dégradation significative des
performances. Ainsi, l’algorithme proposé trouve un bon compromis entre la réduction de la
consommation des ressources et le maintien de délais de propagation faibles.

Pour déterminer la fréquence maximale, le chemin critique (Délaichemin critique) découle directe-
ment du WNS mesuré et de la période d’horloge fixée à 10 ns (tableau 4.3), selon l’équation :

Délaichemin critique = Tclk −WNS

Par d’exemple, pour une matrice 5 × 5 avec des opérandes de 16 bits, la version proposée
pipelinée possède un WNS de 6,227 ns, conduisant à un délai critique de :

10− 6,227 = 3,773 ns

et donc une fréquence maximale d’environ :

1
3,773 × 1000 ≈ 265,1 MHz

46

En comparaison, la version pipelinée agrégée avec le même paramétrage affiche un WNS
de 5,453 ns, soit un délai critique légèrement supérieur de 4,547 ns, correspondant à une
fréquence maximale inférieure d’environ 219,9 MHz.

Pour valider la fréquence maximale atteignable et s’assurer qu’elle n’est pas due à des approxi-
mations de l’outil de synthèse, une nouvelle synthèse pour chaque configuration a été réalisée
avec une contrainte resserrée autour de Tclk ≈ 1/fmax jusqu’à obtenir un WNS presque nul.
Cette vérification a confirmé que la fréquence mesurée est cohérente avec les performances
attendues.

L’analyse du tableau révèle un compromis clair entre la fréquence maximale atteignable par
chaque architecture pipelinée et la latence globale des calculs.

Tableau 4.3 Pire marge négative (Worst Negative Slack, WNS) pour les versions pipelinées
(ns)

Taille matrice Algorithme Largeur opérandes (bits)
6 8 10 12 16

5× 5 Proposé - Pipeliné 6,689 6,681 6,568 6,456 6,227
Proposé - Pipeliné Agrégé 5,365 5,206 5,539 5,648 5,453

10× 10 Proposé - Pipeliné 6,685 6,564 6,441 6,311 6,110
Proposé - Pipeliné Agrégé 5,139 4,955 4,851 4,944 4,673

50× 50 Proposé - Pipeliné 6,178 6,052 5,933 5,815 5,573
Proposé - Pipeliné Agrégé 4,572 4,423 4,328 4,194 3,880

100× 100 Proposé - Pipeliné 6,171 6,046 5,921 5,803 5,563
Proposé - Pipeliné Agrégé 4,471 4,059 4,064 3,823 3,581

Les résultats montrent que la version pipelinée standard présente systématiquement des
valeurs WNS supérieures à celles de la version pipelinée agrégée. Pour les matrices de petite
taille (5× 5 et 10× 10), les valeurs WNS de la version standard oscillent entre 6,2 et 6,7 ns,
tandis que la version agrégée affiche des valeurs comprises entre 4,7 et 5,6 ns.

Cette différence s’explique par la densité combinatoire accrue dans la version agrégée.
En regroupant plusieurs opérations arithmétiques dans un même étage de pipeline, la version
agrégée augmente la complexité du chemin critique local, réduisant ainsi la marge temporelle
disponible (WNS plus faible).

La diminution de la fréquence d’horloge maximale lors du passge de la version pipelinée (264,6
MHz en moyenne) à celle agrégée (186,9 MHz en moyenne) illustre clairement l’impact du
regroupement combinatoire des opérations au sein de chaque étage du pipeline. Cependant,
le nombre d’étages nécessaires pour compléter une opération étant divisé par deux dans
la version agrégée, la latence totale maximale s’en trouve réduite de manière notable. Par

47

exemple, en supposant que la version pipelinée simple requiert huit cycles pour compléter
une opération complète, la latence serait alors 30,184 ns. La version agrégée n’exigerait alors
que quatre cycles avec un délai critique plus long par cycle, aboutissant à une latence globale
de 18,188 ns. La latence globale est donc ici réduite d’environ 39,7 %, illustrant l’avantage
majeur de l’approche pipelinée agrégée.

Ce constat s’observe systématiquement pour toutes les tailles de matrices et largeurs d’opé-
randes. Ainsi, pour une matrice 100× 100 avec des opérandes de 16 bits, la version agrégée
présente une baisse de fréquence d’environ 30,9 % par rapport à la version pipelinée stan-
dard. Malgré cette diminution, la latence globale reste favorable à la version agrégée, avec
une réduction proche de moitié du nombre de cycles nécessaires.

Les meilleurs gains observés sur l’ensemble des configurations testées indiquent une réduction
de la latence globale comprise entre 26,7 % et 50 %, selon la taille de la matrice et la largeur
des opérandes. Le gain minimal est obtenu pour la configuration 10× 10 avec opérandes de
6 bits, tandis que le gain maximal est observé pour le cas 5× 5 avec 12 bits.

En contrepartie, la fréquence maximale atteignable est réduite de 23 % à 31,7 % dans les
configurations testées. Le plus faible recul en fréquence s’observe pour une matrice 5×5 avec
des opérandes de 10 bits, tandis que la perte maximale est constatée pour le cas 10× 10 avec
opérandes de 6 bits.

Par conséquent, la conception pipeline agrégée démontre sa pertinence dans des contextes
où la réduction de la latence globale importe davantage que la fréquence d’horloge maximale
isolée.

4.3 Cas d’étude

Bien que la réalisation d’un réseau complet avec cette architecture soit possible, la démons-
tration à l’aide d’une seule couche est suffisante pour illustrer la génération de multiplieurs
adaptés à la réalisation de modèles plus complexes. Cette étude de cas examine la couche
finale d’un modèle issu des travaux de Jeziorek et al. [2], dont les poids ont été fournis par
les auteurs. Le choix de ce modèle particulier est justifié par une collaboration initialement
planifiée avec les auteurs de l’article cité. Bien que cette collaboration n’ait pas abouti aux
résultats escomptés, les travaux préliminaires ont été exploités et sont présentés dans cette
section à des fins d’analyse comparative et de validation des méthodes proposées. Le modèle
étudié implémente un système de détection événementielle pour une plateforme SoC FPGA.
Il s’agit d’un réseau de neurones convolutifs comprenant notamment des couches linéaires qui
traitent les nœuds du graphe de manière pipelinée (Fig 4.1). Cette architecture est particu-

48

lièrement adaptée au traitement de données événementielles en temps réel, où les contraintes
de performance sont significatives.

Figure 4.1 Architecture du réseau de neurones utilisée dans [2]

Le traitement effectué dans les couches linéaires repose sur une séquence d’opérations arith-
métiques combinant multiplication, addition, mise à l’échelle et recentrage. Cette opération
peut être formellement résumée par l’équation suivante, qui constitue le cœur fonctionnel du
module :

ŷ = ((W · α + β) · S) + Z (4.2)

où W désigne la matrice constante de poids entiers signés, α le vecteur d’entrée, β le vecteur
de biais, S un facteur de mise à l’échelle constant, et Z le point zéro de quantification.

Au lieu de multiplier par un facteur d’échelle en virgule flottante, on multiplie par un entier,
puis on effectue un décalage binaire :

S ≈ M

232

où S désigne le facteur d’échelle en FP32, et M (pour Multiplier) désigne le multiplicateur
entier non signé sur 24 bits. L’opération de décalage à droite de 32 bits implémente une
division par 232, transformant le résultat entier mis à l’échelle dans la plage appropriée.

Après avoir distribué le facteur d’échelle dans l’équation 4.2, on peut faire apparaître expli-

49

citement les termes W ·M et β ·M (équation 4.3) :

⇒ ŷ = [(W ·M) · α + (β ·M)]≫ 32 + Z (4.3)

Le décalage ≫ 32 est appliqué à l’intérieur du module ; comme il s’agit d’un recâblage, cela
n’ajoute aucun pas de cycles supplémentaires. La constante M = 11 639 801 représente une
valeur d’environ 0,002710102 lorsqu’elle est interprétée dans un format à point fixe :

0,002710102 ≈ 11 639 801× 2−32 (4.4)

Les nouveaux termes W ·M et β ·M peuvent être pré-calculés en logiciel avant la synthèse
du module, ce qui permet de concevoir un multiplieur intégrant directement cette opération,
au prix toutefois d’une augmentation de la magnitude des poids. Cette amplification peut
entraîner un accroissement de la logique utilisée, et donc une hausse du coût matériel.

Nous évaluons trois variantes d’implémentations sur une partie de l’équation 4.3 avec notre
générateur de multiplieurs :

1. Multiplication directe (W · α) : la matrice de poids W , codée sur 9 bits signés, est
utilisée sans transformation. Le multiplieur réalise uniquement le produit entre W et le
vecteur α. Cette approche isole la multiplication des activations, ce qui réduit la com-
plexité arithmétique au sein du multiplieur mais nécessite une logique supplémentaire
pour intégrer les opérations de mise à l’échelle, de décalage et d’ajustement par Z en
aval en dehors du module.

2. Poids pré-multipliés par M : la matrice W est multipliée par le facteur d’échelle
entier M en logiciel, produisant une matrice constante W · M intégrée directement
dans le module. Cette fusion permet de supprimer, au niveau matériel, l’opération de
redimensionnement, en déléguant ce coût au prétraitement. L’algorithme réalise alors
(W · M) · α, suivi du décalage ≫ 32 et de l’ajout de Z. L’opération principale est
ainsi simplifiée dans le flot matériel, mais au prix d’une augmentation significative de
la taille des opérandes, car les produits intermédiaires avec M = 11 639 801 produisent
des coefficients codés sur 32 bits.

3. Poids approximés (W · Mapprox) : l’approximation est appliquée uniquement au
facteur M . On extrait ses 9 bits de poids fort et on met les bits restants à zéro, ce qui
donne un Mapprox plus simple à manipuler. Ce facteur est ensuite utilisé pour recalculer
W ·Mapprox en logiciel. Le multiplieur exécute alors l’opération (W ·Mapprox) · α≫ 32.
Bien que les poids approximés soit toujours représenté sur 32 bits, le nombre effectif

50

de termes non nuls à additionner diminue, puisque les 15 bits de poids faibles sont
systématiquement nuls. Cette méthode réduit la complexité arithmétique interne, tout
en maintenant un encodage compatible avec la variante précédente.

Les performances post-synthèse de ces trois stratégies sont résumées dans le tableau 4.4.

Architecture W (9bit) W ·M (32bit) W ·Mapprox (32bit)
LUT FF LUT FF LUT FF

Shift&Add 73 489 – 260 317 – 262 823 –
MatMulVec 26 576 – 108 456 – 44 797 –

Proposé - Combinatoire 12 747 – 75 067 – 31 361 –
Proposé - Pipeliné 20 459 34 653 116 339 201 814 53 093 102 091

Proposé - Pipeliné Agrégé 16 437 18 582 90 707 106 240 42 616 52 604

Tableau 4.4 Consommation de ressources post-synthèse pour les modules approximé et
couche linéaire (32x19)

D’après les résultats relevés, la multiplication directe (W) affiche la plus faible empreinte ma-
térielle, mais requiert un traitement supplémentaire externe du facteur d’échelle, augmentant
ainsi potentiellement la complexité globale du système.

Le tableau 4.4 révèle aussi une tendance claire : dès qu’on fusionne le facteur d’échelle avec
les poids, la largeur des opérandes grimpe à 32 bits et la surface logique explose. Le passage
de poids codés sur 9 bits à des coefficients sur 32 bits induit une complexité arithmétique
nettement plus élevée. Dans la version pipelinée, cette stratégie consomme 116 kLUT et 201
kFF, soit respectivement ×5,7 et ×5,8 plus que la version directe. Cette tendance est observée
à tous les niveaux, même dans le cas combinatoire, où la version W ·M utilise près de six
fois plus de ressources que la multiplication directe (W · α).

Les deux versions pré-multipliées engendrent une consommation accrue des ressources FPGA,
particulièrement pour les versions pipelinées : ×5,7 en LUT et ×5,8 en FF pour la version
pipelinée ; ×5,5 en LUT et ×5,7 en FF pour la version pipelinée agrégée). L’utilisation de
W ·Mapprox permet de retrouver un compromis efficace entre coût logique et intégration fonc-
tionnelle, divisant par plus la moitié le nombre de LUT et de FF. Ces gains se confirment
dans la version agrégée, qui atteint une réduction de ×2,1 en LUT et ×2 en FF. Dans le cas
de l’architecture Shift&Add, le simple passage de W à (W ·M) fait bondir l’empreinte de
73 kLUT à plus de 260 k LUT, soit un facteur ×3,5. L’approximation de M n’apporte en
revanche aucun bénéfice particulier, car le synthétiseur est forcé de générer une chaîne d’ad-
ditions en série tout aussi profonde, et ne peut pas simplifier certains décalages ou additions
entre colonnes.

51

Afin de consolider l’analyse précédente sur les cas génériques, l’ensemble des résultats montre
que les multiplieurs proposés réduisent significativement la consommation logique par rapport
aux architectures de référence. Pour la multiplication directe (W), les gains sont substan-
tiels : la version combinatoire proposée consomme ×5,8 moins de LUT que Shift&Add (12
vs 73 kLUT) et ×2,1 moins que MatMulVec (12 vs 26 kLUT). Les versions pipelinées, bien
qu’utilisant davantage de ressources que la version combinatoire, restent compétitives avec
respectivement 20 kLUT et 16 kLUT pour les versions pipelinée et pipelinée agrégée. Même
avec l’intégration du facteur d’échelle dans le flot de calcul (W ·M), les algorithmes pro-
posés maintiennent leur avantage : la version combinatoire utilise ×3,5 moins de LUT que
Shift&Add (75 vs 260 kLUT) et ×1,4 moins que MatMulVec (75 vs 108 kLUT), tandis que
les versions pipelinées conservent des gains significatifs de ×2,2 à ×2,9 face à Shift&Add. Ces
gains se confirment également avec l’approximation (W ·Mapprox), où l’écart face à Shift&Add
atteint un facteur ×8,4 pour la version combinatoire (31 vs 262 kLUT), démontrant la ro-
bustesse de l’approche proposée sur l’ensemble des configurations testées.

En résumé, l’intégration directe de M alourdit considérablement les modules, mais permet de
simplifier le flot en aval. À l’opposé, la multiplication directe conserve une logique compacte
mais impose une charge de traitement reportée. L’approche approximative constitue un équi-
libre entre coût logique et intégration fonctionnelle, avec des gains visibles sur l’ensemble des
architectures à l’exception module Shift&Add.

52

CHAPITRE 5 DISCUSSION

L’analyse des résultats a permis d’identifier clairement les avantages spécifiques de chaque
variante de l’architecture proposée. Notamment, l’approche combinatoire s’avère particuliè-
rement efficace en termes de surface, atteignant des réductions jusqu’à 3,5× à 5,7× inférieure
à l’approche Shift&Add. Cependant, cette approche présente des limites claires en termes
de latence, due à la croissance rapide du chemin critique à mesure que la complexité de la
matrice augmente, ce qui limite sa fréquence d’opération maximale. Ces résultats suggèrent
que l’architecture combinatoire est particulièrement adaptée aux scénarios où l’espace est
fortement contraint et où la fréquence d’opération élevée n’est pas une priorité absolue, tels
que les dispositifs embarqués à faible consommation, des capteurs autonomes fonctionnant
sur batterie ou encore les applications IoT (Internet des Objets) nécessitant une minimisation
extrême des ressources matérielles pour prolonger l’autonomie énergétique.

L’architecture pipelinée, en revanche, offre une performance nettement supérieure en termes
de fréquence d’opération, en permettant une réduction drastique du chemin critique grâce à
l’insertion de registres entre les étapes de calcul intermédiaires. Cependant, cette amélioration
de la fréquence d’opération se fait au coût d’une augmentation d’environ 50% à 60% des
ressources LUT utilisées, comparativement à l’approche combinatoire. Cette pénalité est
particulièrement marquée pour les matrices de grande taille et les largeurs de bits importantes,
comme le montre la figure 5.1, ce qui limite l’efficacité spatiale de l’approche purement
pipelinée.

Face à cette limitation, l’architecture pipeline agrégée se présente comme un compromis très
avantageux, puisqu’elle récupère typiquement entre 5 et 25% des LUT nécessaires par rap-
port à l’architecture purement pipelinée, tout en maintenant des performances en fréquence
très proches. Au-delà de l’équilibre entre ressources et performance, cette approche présente
également des compromis intéressants en termes de consommation énergétique et de com-
plexité de conception. En effet, l’architecture agrégée, en réduisant le nombre de registres
intermédiaires et les étages logiques nécessaires, diminue potentiellement la consommation
énergétique liée au basculement fréquent des registres. De plus, la simplification relative de
la gestion des ressources FPGA contribue à réduire la complexité globale de la conception
matérielle, facilitant ainsi l’intégration et la mise en œuvre pratique. Ce compromis est parti-
culièrement utile dans les scénarios applicatifs où une fréquence modérée, une consommation
énergétique maîtrisée et une complexité de conception raisonnable sont des critères essentiels.

En parallèle, cette structure pipelinée agrégée permet une réduction directe de la latence

53

6 8 10 12 16

Largeur (bits)

0

1

2

3

4

5

6

7

8

LU
T

(×
10

00
)

5x5

6 8 10 12 16

Largeur (bits)

0

5

10

15

20

25

30

10x10

6 8 10 12 16

Largeur (bits)

0

100

200

300

400

500

600

700

800

50x50

6 8 10 12 16

Largeur (bits)

0

500

1000

1500

2000

2500

3000

100x100

Shift&Add MatMulVec Combinatoire Pipelinée Pipelinée-agrégée

Figure 5.1 Consommation de LUT à travers les largeurs de bits pour quatre tailles
de matrices (5×5, 10×10, 50×50, 100×100) comparant les implémentations de référence
(Shift&Add, MatVecMult), combinatoire, pipelinée et pipelinée-agrégée.

globale, malgré une légère hausse du délai de cycle. Les gains mesurés vont de 26,7 % à
50 % selon la taille de la matrice et la largeur des opérandes. Ce bénéfice provient d’un
regroupement des opérations arithmétiques sur moins d’étapes, ce qui permet de réduire le
nombre total de cycles nécessaires pour compléter le calcul. Même si la fréquence maximale
chute de 23 % à 31,7 %, la diminution du nombre de cycles compense cette perte. Par exemple,
une opération nécessitant huit cycles à 4,1 ns dans un pipeline classique peut être exécutée
en quatre cycles à 6 ns dans la version agrégée, ramenant la latence globale de 32,8 ns à
24 ns. Cette amélioration rend l’architecture particulièrement adaptée aux systèmes orientés
débit, où la minimisation du temps d’exécution global prime sur l’optimisation locale du
cycle d’horloge.

Un point particulièrement notable mis en évidence par nos résultats concerne la tendance
observée dans les délais de propagation sur le chemin critique (Tableau 4.2). Cette tendance
semble perturbée dans le cas de l’approche MatVecMult pour la configuration de matrice
100×100 et largeur de bits 16. Cette rupture de tendance peut s’expliquer par la nature
particulière des coefficients constants utilisés lors des tests. En effet, certaines constantes

54

peuvent engendrer des structures combinatoires nettement plus complexes lors de la synthèse
par Vivado, entraînant une augmentation non linéaire des délais de propagation, phénomène
également observé dans la littérature, notamment par Aksoy et al. [28] et Kumm et al. [34]
, qui mettent en évidence l’augmentation significative de la complexité combinatoire lors
de l’implémentation matérielle des multiplications impliquant des constantes complexes ou
particulièrement denses en termes de bits non nuls.

Un autre aspect important discuté dans cette étude concerne la comparaison directe avec
les solutions optimales issues de la littérature. Bien que notre approche montre clairement
son intérêt dans les scénarios de matrices grandes (par exemple 50×50 ou 100×100), une
comparaison directe avec des solutions optimales déjà présentes dans la littérature est difficile
à établir. En effet, les solutions optimales disponibles reposent souvent sur des recherches
exhaustives adaptées uniquement aux petites tailles de matrices, typiquement entre 3×3 et
10×10. Kumm et Zipf [34] on par exemple on collecte un ensemble de 8 matrices provenant
de la littérature allant de 3×3 a 11×16.

Notre algorithme en revanche est spécifiquement conçu pour être évolutif, permettant de gérer
efficacement des tailles nettement supérieures. Cet aspect évolutif s’avère particulièrement
pertinent dans des applications réelles exigeantes en termes de calcul, telles que les réseaux
neuronaux profonds, les systèmes embarqués de traitement d’images en temps réel ou encore
les applications de cryptographie qui nécessitent fréquemment des multiplications matricielles
à grande échelle. Par conséquent, les comparaisons directes avec ces travaux optimaux restent
délicates, et notre contribution réside plutôt dans la capacité à traiter efficacement et à grande
échelle des problèmes pratiques qui demeurent hors de portée pour ces solutions optimales
exactes, ouvrant ainsi de nouvelles perspectives d’applications industrielles et technologiques.

Enfin, l’estimation précise de la consommation énergétique sur FPGA demeure un défi tech-
nique. Les outils comme Vivado reposent souvent sur des approximations statistiques, utili-
sant par défaut un taux de commutation arbitraire (typiquement de 12,5 %). Cette valeur,
rarement représentative des activités réelles, affecte directement la précision des estimations,
puisque la puissance dynamique dépend du taux de commutation selon la relation :

Pdynamic = αCV 2f

où α désigne le taux de commutation moyen, C la capacité commutée, V la tension, et f

la fréquence. En l’absence de profils d’activité détaillés, les estimations restent souvent in-
adéquates, limitant les comparaisons fiables entre architectures. Des méthodes alternatives,
telles que la simulation détaillée par analyse temporelle des commutations de signaux spéci-
fiques ou l’emploi de modèles énergétiques basés sur des mesures expérimentales effectuées sur

55

des prototypes physiques, pourraient améliorer significativement la précision des estimations.
Ainsi, les évaluations énergétiques présentées ici restent qualitatives, reposant sur l’hypothèse
raisonnable que la consommation énergétique est proportionnelle au nombre de LUT utili-
sées, mais des études futures pourraient explorer ces méthodes avancées afin d’obtenir des
estimations énergétiques plus fiables et réalistes.

En synthèse, notre étude met en lumière les avantages distinctifs et les limitations inhérentes
de chaque variante architecturale proposée, et souligne clairement les scénarios applicatifs
dans lesquels chacune des variantes peut être préférentiellement exploitée. Cette analyse ap-
profondie et détaillée permet d’établir solidement les fondements pour l’application pratique
et l’exploitation efficace de l’algorithme proposé dans des contextes réels à forte contrainte
de ressources matérielles.

56

CHAPITRE 6 CONCLUSION

6.1 Synthèse des travaux

Ce mémoire présente un algorithme optimisé de multiplication par matrice constante des-
tiné aux implémentations FPGA. Il offre une plus grande réutilisation des résultats partiels,
permettant ainsi de traiter des problèmes de taille supérieure d’au moins un ordre de gran-
deur que ceux précédemment abordés dans la littérature. Cette approche permet de réaliser
d’importantes économies en ressources matérielles, principalement en termes de LUT, com-
parativement aux approches traditionnelles comme Shift&Add et MatVecMult. L’algorithme
exploite la réutilisation itérative des sous-expressions communes pour minimiser le nombre
d’additions nécessaires, réduisant ainsi considérablement la complexité combinatoire du cir-
cuit final. L’analyse comparative approfondie menée sur des matrices de tailles variées (5×5
à 100×100) a clairement démontré l’intérêt de notre méthode, particulièrement dans les
contextes où les contraintes matérielles sont strictes.

Les expériences menées ont porté sur plusieurs tailles de matrices (de 5×5 à 100×100) et
des largeurs de bits variées (de 6 à 16 bits). Trois variantes architecturales distinctes ont
été analysées en profondeur : une architecture combinatoire, une architecture pipelinée et
une architecture pipelinée agrégée. L’architecture combinatoire s’est distinguée par sa faible
consommation en ressources, ce qui en fait une solution idéale pour les systèmes embarqués et
les dispositifs IoT où l’économie d’énergie est primordiale. À l’opposé, l’architecture pipelinée
a démontré des performances élevées en fréquence, la rendant particulièrement adaptée aux
applications exigeantes en débit. L’approche pipeline agrégée a permis d’établir un compromis
équilibré entre consommation de ressources et performances temporelles, récupérant de 5 à
25% des ressources utilisées par l’architecture purement pipelinée.

Au-delà des gains en surface, nos résultats montrent également une amélioration notable de la
latence d’exécution pour l’architecture pipelinée agrégée. En regroupant les opérations arith-
métiques sur un nombre réduit d’étapes, cette variante permet une réduction de la latence
globale comprise entre 26,7 % et 50 %, selon les dimensions de la matrice et la largeur des
opérandes. Bien que cette optimisation s’accompagne d’une baisse modérée de la fréquence
maximale (de l’ordre de 23 % à 31,7 %), l’économie en nombre de cycles compense largement
ce recul, ce qui renforce la pertinence de cette architecture dans les scénarios où le débit
d’exécution prime sur la vitesse d’horloge individuelle.

Ces résultats démontrent clairement que notre solution offre des économies substantielles

57

de LUT allant jusqu’à un facteur de 5,7× par rapport aux approches classiques telles que
Shift&Add, tout en maintenant des performances temporelles compétitives.

La réduction significative des ressources LUT rend l’algorithme proposé viable pour le dé-
ploiement de réseaux de neurones dans des applications à ressources limitées telles que les
appareils connectés (IoT), les téléphones intelligents et la conduite autonome.

Ce travail de recherche a également abouti à une publication dans une conférence internatio-
nale, dont la présentation a été réalisée en août 2024, témoignant ainsi de l’intérêt et de la
pertinence scientifique de nos résultats.

6.2 Limitations de la solution proposée

Bien que les résultats obtenus soient prometteurs, plusieurs limitations de cette recherche
doivent être soulignées et examinées attentivement pour orienter les travaux futurs.

Tout d’abord, la sensibilité aux coefficients constants des matrices utilisées constitue une
limite notable. Cette variabilité des délais de propagation liée aux constantes employées
suggère la nécessité de méthodes robustes permettant d’évaluer systématiquement les per-
formances temporelles pour une grand ensemble de coefficients constants. Des études futures
pourraient, par exemple, explorer des techniques statistiques avancées ou des méthodes de
validation approfondies pour mieux anticiper ces variations.

Ensuite, bien que la réutilisation des sous-expressions diminue efficacement le nombre d’opé-
rations nécessaires, elle introduit souvent une profondeur logique supplémentaire. Cette com-
plexité combinatoire accrue peut constituer un frein dans les applications extrêmement exi-
geantes en fréquence. Pour pallier cette limitation, des approches hybrides ou des stratégies
avancées de pipelinage pourraient être explorées afin de mieux gérer la profondeur logique
sans compromettre significativement l’efficacité des ressources.

Par ailleurs, l’approche combinatoire pure ne supporte pas intrinsèquement le pipeline, li-
mitant ainsi son application directe à des scénarios à haut débit. Bien que partiellement
résolue par la variante pipelinée agrégée, une analyse plus poussée pourrait conduire à des
architectures plus adaptées capables de basculer intelligemment entre différentes stratégies
en fonction des contraintes opérationnelles en temps réel.

Enfin, l’estimation précise de la consommation énergétique sur FPGA demeure un enjeu
majeur. Les outils de simulation actuels reposent principalement sur des modèles simplifiés
ne capturant pas complètement les dynamiques fines de commutation. La mise en place de
méthodes avancées telles que la simulation basée sur des mesures physiques réelles ou des
modèles énergétiques détaillés pourrait offrir une estimation plus fidèle et permettre une

58

optimisation énergétique plus poussée.

6.3 Perspectives et pistes de recherche futures

Dans la continuité de ces travaux, plusieurs axes d’exploration et défis restent à aborder.

Au vu des résultats obtenus et des limitations identifiées, les recherches futures devront
se concentrer sur une analyse comparative approfondie avec les architectures concurrentes
existantes.

Un autre piste de recherche concerne le développement d’architectures adaptatives hybrides
capables de choisir dynamiquement l’approche optimale (combinatoire ou pipelinée) selon les
besoins spécifiques de performance et les contraintes opérationnelles. De telles architectures
pourraient optimiser dynamiquement les compromis entre efficacité matérielle, performance
temporelle et consommation énergétique.

L’optimisation préalable des coefficients des matrices pourrait également constituer une voie
fructueuse. En étudiant en détail l’impact spécifique des propriétés mathématiques des coeffi-
cients sur la performance temporelle, il serait possible d’élaborer des techniques de prétraite-
ment optimisées pour améliorer davantage les résultats obtenus lors de la synthèse matérielle.

Par ailleurs, étendre l’algorithme à une précision numérique supérieure (par exemple 32 bits
ou davantage) pourrait répondre aux besoins croissants de certaines applications scientifiques
et industrielles nécessitant une précision numérique élevée.

Enfin, une analyse approfondie sur des FPGA de dernière génération comme les Xilinx UltraS-
cale+ ou Versal pourrait être effectuée pour mieux comprendre comment les avancées tech-
nologiques récentes pourraient influencer les performances obtenues, notamment en termes
d’efficacité énergétique et d’utilisation des ressources matérielles.

En résumé, les résultats présentés mettent en évidence le potentiel d’une réduction signifi-
cative du nombre de LUT et d’une meilleure efficacité dans le traitement de grands jeux de
données et de matrices, suggérant une application prometteuse dans l’implémentation de ré-
seaux de neurones profonds sur FPGA. Bien que les résultats actuels soient encourageants, le
travail d’affinage de notre approche et son optimisation pour des applications plus étendues
reste à poursuivre.

59

RÉFÉRENCES

[1] M. Horowitz, “1.1 Computing’s energy problem (and what we can do about it),”
dans 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), févr. 2014, p. 10–14, iSSN : 2376-8606. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/6757323

[2] K. Jeziorek, P. Wzorek, K. Blachut, A. Pinna et T. Kryjak, “Embedded Graph
Convolutional Networks for Real-Time Event Data Processing on SoC FPGAs,” juin
2024. [En ligne]. Disponible : http://arxiv.org/abs/2406.07318

[3] A. Rassau et al., “Extrem-edge : A flexible edge computing architecture,” Sustainable
Computing : Informatics and Systems, vol. 35, 2022.

[4] J. Zhang et al., “Energy-aware resource allocation for iot edge computing,” Future In-
ternet, vol. 17, no. 1, 2023.

[5] M. Ali et al., “A survey of smart healthcare monitoring systems using iot,” IEEE Access,
vol. 7, 2019.

[6] M. Tavakkoli et al., “Energy optimization for connected and autonomous vehicles,”
Energy, vol. 295, 2024.

[7] K. Liu et K. Kockelman, “Energy and emissions implications of autonomous vehicles,”
University of Texas at Austin, Rapport technique, 2019.

[8] R. Elrofai et al., “Cost-effective planning for autonomous vehicle fleets,” Transportation
Research Part C, vol. 134, 2021.

[9] T. Nguyen et al., “Power consumption analysis of microsoft hololens 2,” Energies, vol. 17,
no. 3, 2024.

[10] D. S. Dsouza et al., “Energy management in multirotor drones : A review,” arXiv preprint
arXiv :2501.03102, 2025.

[11] H. Zhao et al., “Multi-agent reinforcement learning for energy efficiency in uav networks,”
Sensors, vol. 24, no. 20, 2024.

[12] A. Barros et al., “Optimized matrix multiplication for edge devices : A survey,” IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 1, 2023.

[13] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey, E. Masanet,
N. Horner, I. Azevedo et W. Lintner, “United States Data Center Energy Usage Report,”
Lawrence Berkeley National Laboratory, Berkeley, California, Rapport technique LBNL–
2001637, déc. 2024. [En ligne]. Disponible : http://www.osti.gov/servlets/purl/1372902/

https://ieeexplore.ieee.org/document/6757323
http://arxiv.org/abs/2406.07318
http://www.osti.gov/servlets/purl/1372902/

60

[14] International Energy Agency, “Energy and AI,” International Energy Agency, Rapport
technique, avr. 2025. [En ligne]. Disponible : https://www.iea.org/reports/energy-and-ai

[15] Fortune Business Insights, “Data Center Market Size, Share & Trends | Growth Report
[2032],” Fortune Business Insights, Rapport technique FBI109851, mars 2025. [En ligne].
Disponible : https://www.fortunebusinessinsights.com/data-center-market-109851

[16] Timothy R. Comerford et 2015, “Power Requirements, Energy Costs,
and Incentives for Data Centers,” Biggins Lacy Shapiro & Co.,
nov. 2015. [En ligne]. Disponible : https://blsstrategies.com/insights-press/
power-requirements-energy-costs-and-incentives-for-data-centers

[17] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13,
no. 4, p. 354–356, août 1969. [En ligne]. Disponible : https://doi.org/10.1007/
BF02165411

[18] D. Coppersmith et S. Winograd, “Matrix multiplication via arithmetic progressions,”
Journal of Symbolic Computation, vol. 9, no. 3, p. 251–280, mars 1990. [En ligne].
Disponible : https://www.sciencedirect.com/science/article/pii/S0747717108800132

[19] A. Kinane, V. Muresan et N. E. O’Connor, “Optimisation of constant matrix multiplica-
tion operation hardware using a genetic algorithm,” dans Applications of Evolutionary
Computing, ser. Lecture Notes in Computer Science, vol. 3907. Springer, 2006, p.
296–307.

[20] A. Hosangadi, F. Fallah et R. Kastner, “Algebraic methods for optimizing constant
multiplications in linear systems,” Journal of Signal Processing Systems, vol. 49, no. 1,
p. 31–50, 2007.

[21] Y. Voronenko et M. Püschel, “Multiplierless multiple constant multiplication,” ACM
Transactions on Algorithms, vol. 3, no. 2, p. 11, mai 2007. [En ligne]. Disponible :
https://dl.acm.org/doi/10.1145/1240233.1240234

[22] A. Boutros, A. Arora et V. Betz, “Field-programmable gate array architecture
for deep learning : Survey & future directions,” 2024. [En ligne]. Disponible :
https://arxiv.org/abs/2404.10076

[23] H. Luo et W. Sun, “Addition is all you need for energy-efficient language models,”
2024. [En ligne]. Disponible : https://arxiv.org/abs/2410.00907

[24] D. S, A. V et A. N. J. Raj, “A review on hardware accelerators for convolutional
neural network-based inference engines : Strategies for performance and energy-
efficiency enhancement,” Microprocessors and Microsystems, vol. 113, p. 105146,
mars 2025. [En ligne]. Disponible : https://www.sciencedirect.com/science/article/pii/
S0141933125000146

https://www.iea.org/reports/energy-and-ai
https://www.fortunebusinessinsights.com/data-center-market-109851
https://blsstrategies.com/insights-press/power-requirements-energy-costs-and-incentives-for-data-centers
https://blsstrategies.com/insights-press/power-requirements-energy-costs-and-incentives-for-data-centers
https://doi.org/10.1007/BF02165411
https://doi.org/10.1007/BF02165411
https://www.sciencedirect.com/science/article/pii/S0747717108800132
https://dl.acm.org/doi/10.1145/1240233.1240234
https://arxiv.org/abs/2404.10076
https://arxiv.org/abs/2410.00907
https://www.sciencedirect.com/science/article/pii/S0141933125000146
https://www.sciencedirect.com/science/article/pii/S0141933125000146

61

[25] A.-A. Zeghaida, D. Daultani, J. P. Langlois et J. P. David, “Scalable Low-Complexity
Implementation of Constant Matrix Multiplication Circuits,” dans 2024 IEEE 67th
International Midwest Symposium on Circuits and Systems (MWSCAS), août 2024, p.
357–361. [En ligne]. Disponible : https://ieeexplore.ieee.org/document/10658880/

[26] D. Bull et D. Horrocks, “Primitive operator digital filters,” IEE Proceedings G Circuits,
Devices and Systems, 1991.

[27] A. Dempster et M. Macleod, “Use of minimum-adder multiplier blocks in FIR digi-
tal filters,” IEEE Transactions on Circuits and Systems II : Analog and Digital Signal
Processing, 1995.

[28] L. Aksoy, E. O. Güneş et P. Flores, “Search algorithms for the multiple
constant multiplications problem : Exact and approximate,” Microprocessors and
Microsystems, vol. 34, no. 5, p. 151–162, août 2010. [En ligne]. Disponible :
https://www.sciencedirect.com/science/article/pii/S0141933109000775

[29] R. Hartley, “Subexpression sharing in filters using canonic signed digit multipliers,”
IEEE Transactions on Circuits and Systems II : Analog and Digital Signal Processing,
1996.

[30] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde et D. Durackova, “A new algorithm
for elimination of common subexpressions,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 18, no. 1, p. 58–68, janv. 1999. [En
ligne]. Disponible : http://ieeexplore.ieee.org/document/739059/

[31] M. Faust et C.-H. Chang, “Minimal Logic Depth adder tree optimization for
Multiple Constant Multiplication,” dans Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, mai 2010, p. 457–460. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/5537658/?arnumber=5537658

[32] M. Kumm, M. Hardieck, J. Willkomm, P. Zipf et U. Meyer-Baese, “Multiple constant
multiplication with ternary adders,” 2013 23rd International Conference on Field
programmable Logic and Applications, p. 1–8, sept. 2013. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6645543/

[33] M. Kumm, O. Gustafsson, M. Garrido et P. Zipf, “Optimal Single Constant
Multiplication Using Ternary Adders,” IEEE Transactions on Circuits and Systems
II : Express Briefs, vol. 65, no. 7, p. 928–932, juill. 2018. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/7752883/?arnumber=7752883

[34] M. Kumm, M. Hardieck et P. Zipf, “Optimization of Constant Matrix Multiplication
with Low Power and High Throughput,” IEEE Transactions on Computers, 2017.

https://ieeexplore.ieee.org/document/10658880/
https://www.sciencedirect.com/science/article/pii/S0141933109000775
http://ieeexplore.ieee.org/document/739059/
https://ieeexplore.ieee.org/document/5537658/?arnumber=5537658
http://ieeexplore.ieee.org/document/6645543/
https://ieeexplore.ieee.org/document/7752883/?arnumber=7752883

62

[35] M. Kumm, P. Zipf, M. Faust et C.-H. Chang, “Pipelined adder graph optimization
for high speed multiple constant multiplication,” Proceedings of the IEEE International
Symposium on Circuits and Systems, 2012.

[36] A. Kinane, V. Muresan et N. O’Connor, “Towards an optimised VLSI design algorithm
for the constant matrix multiplication problem,” dans 2006 IEEE International
Symposium on Circuits and Systems (ISCAS), mai 2006, p. 4 pp.–. [En ligne].
Disponible : https://ieeexplore.ieee.org/document/1693782

[37] A. Kinane, V. Muresan et N. O’Connor, “Optimisation of constant matrix multiplication
operation hardware using a genetic algorithm,” dans Proceedings of the International
Conference on Applications of Evolutionary Computing. Berlin, Heidelberg : Springer-
Verlag, 2006.

[38] L. Aksoy, P. Flores et J. Monteiro, “A novel method for the approximation of multiplier-
less constant matrix vector multiplication,” dans Proceedings of the IEEE International
Conference on Embedded and Ubiquitous Computing, 2015.

[39] L. Aksoy, E. O. Gunes et P. Flores, “An Exact Breadth-First Search Algorithm
for the Multiple Constant Multiplications Problem,” dans 2008 NORCHIP.
Tallin, Estonia : IEEE, nov. 2008, p. 41–46. [En ligne]. Disponible : http:
//ieeexplore.ieee.org/document/4738280/

[40] A. Lehnert, P. Holzinger, S. Pfenning, R. Müller et M. Reichenbach, “Most Resource
Efficient Matrix Vector Multiplication on FPGAs,” IEEE Access, vol. 11, p. 3881–3898,
2023.

[41] Y. Li, X. Dong et W. Wang, “Additive Powers-of-Two Quantization : An Efficient
Non-uniform Discretization for Neural Networks,” févr. 2020. [En ligne]. Disponible :
http://arxiv.org/abs/1909.13144

[42] Xilinx Inc., 7 Series FPGAs Configurable Logic Block User Guide, sept. 2016, version
1.8. [En ligne]. Disponible : https://docs.xilinx.com/r/en-US/ug474_7Series_CLB

[43] A. Arora, A. Boutros, D. Rauch, A. Rajen, A. Borda, S. A. Damghani, S. Mehta,
S. Kate, P. Patel, K. B. Kent, V. Betz et L. K. John, “Koios : A deep learning
benchmark suite for fpga architecture and cad research,” 2021 31st International
Conference on Field-Programmable Logic and Applications (FPL), p. 355–362, 2021.
[En ligne]. Disponible : https://api.semanticscholar.org/CorpusID:235422278

[44] Xilinx Inc., 7 Series DSP48E1 Slice User Guide, mars 2018, version 1.10. [En ligne].
Disponible : https://docs.xilinx.com/r/en-US/ug479_7Series_DSP48E1

[45] B. Parhami, Computer Arithmetic : Algorithms and Hardware Designs, 2e éd. New
York : Oxford University Press, 2010.

https://ieeexplore.ieee.org/document/1693782
http://ieeexplore.ieee.org/document/4738280/
http://ieeexplore.ieee.org/document/4738280/
http://arxiv.org/abs/1909.13144
https://docs.xilinx.com/r/en-US/ug474_7Series_CLB
https://api.semanticscholar.org/CorpusID:235422278
https://docs.xilinx.com/r/en-US/ug479_7Series_DSP48E1

63

[46] H. Wu, P. Judd, X. Zhang, M. Isaev et P. Micikevicius, “Integer quantization for deep
learning inference : Principles and empirical evaluation,” ArXiv, vol. abs/2004.09602,
2020.

[47] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney et K. Keutzer, “A survey
of quantization methods for efficient neural network inference,” 2021. [En ligne].
Disponible : https://arxiv.org/abs/2103.13630

[48] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy et D. S. Modha, “Learned Step
Size Quantization,” mai 2020. [En ligne]. Disponible : http://arxiv.org/abs/1902.08153

https://arxiv.org/abs/2103.13630
http://arxiv.org/abs/1902.08153

64

ANNEXE A MODULE COMBINATOIRE SYSTEMVERILOG GÉNÉRÉ

1 module combinatorial_3x3_4_20 #(
2 parameter ROWS = 3,
3 parameter COLS = 3,
4 parameter MEM_SIZE = 20,
5 parameter input_bit_width = 4,
6 parameter output_bit_width = 9
7)(
8 input wire [input_bit_width -1:0] input_vector [0: COLS -1],
9 output wire [output_bit_width -1:0] output_vector [0: ROWS -1]

10);
11

12 wire [output_bit_width -1:0] MEM [0: MEM_SIZE];
13

14 assign MEM [0] = input_vector [0] << 3;
15 assign MEM [1] = input_vector [0] << 2;
16 assign MEM [2] = input_vector [0] << 1;
17 assign MEM [3] = input_vector [0] << 0;
18 assign MEM [4] = input_vector [1] << 3;
19 assign MEM [5] = input_vector [1] << 2;
20 assign MEM [6] = input_vector [1] << 1;
21 assign MEM [7] = input_vector [1] << 0;
22 assign MEM [8] = input_vector [2] << 3;
23 assign MEM [9] = input_vector [2] << 2;
24 assign MEM [10] = input_vector [2] << 1;
25 assign MEM [11] = input_vector [2] << 0;
26 assign MEM [12] = MEM [3] + MEM [11];
27 assign MEM [13] = MEM [5] + MEM [8];
28 assign MEM [14] = MEM [6] + MEM [7];
29 assign MEM [15] = MEM [12] + MEM [13];
30 assign MEM [16] = MEM [2] + MEM [10];
31 assign MEM [17] = MEM [14] + MEM [15];
32 assign MEM [18] = MEM [1] + MEM [15];
33 assign MEM [19] = MEM [12] + MEM [14];
34 assign MEM [20] = MEM [16] + MEM [17];
35 assign output_vector [0] = MEM [18];
36 assign output_vector [1] = MEM [19];
37 assign output_vector [2] = MEM [20];
38

39 endmodule

65

ANNEXE B FONCTION CYCLECOUNT() POUR LE CALCUL DES
CYCLES

1 def cycleCount (operationsArray):
2 result = []
3 max_cycle = 0
4 for entry in operationsArray [1:]:
5 element = entry.copy ()
6 op_type = entry [3]
7 first_cycle = 0
8 last_cycle = 0
9

10 if op_type in (’<<’, ’-<<’):
11 first_cycle = 0
12 last_cycle = -1
13

14 elif op_type == ’+’:
15 left_op = entry [0]
16 right_op = entry [1]
17 first_cycle = max(result [left_op][4] , result [right_op][4]) + 1
18 last_cycle = 0
19 max_cycle = max(max_cycle , first_cycle)
20 result [left_op][5] = max(first_cycle - 1, result [left_op][5])
21 result [right_op][5] = max(first_cycle - 1, result [right_op

↪→][5])
22

23 elif op_type == ’=’:
24 source_op = entry [1]
25 first_cycle = max_cycle
26 last_cycle = max_cycle
27 result [source_op][5] = max(max_cycle , result [source_op][5])
28

29 else:
30 print (f"{ op_type } is not a valid operation ")
31 element . append (first_cycle)
32 element . append (last_cycle)
33 result . append (element)
34 # Add header row. It contains the parameters (weights , bitwdith , etc ...)

↪→ required by the funciton that writes the verilog code
35 result . insert (0, operationsArray [0] + [’FirstCycle ’, ’LastCycle ’])
36 return result

66

ANNEXE C MODULE SYSTEMVERILOG PIPELINÉ

1 module pipelined_3x3_4_11 #(
2 parameter ROWS = 3,
3 parameter COLS = 3,
4 parameter MEM_SIZE = 11,
5 parameter input_bit_width = 4,
6 parameter output_bit_width = 9
7)(
8 input wire clk ,
9 input wire reset ,

10 input wire [input_bit_width -1:0] input_vector [0: COLS -1],
11 output wire [output_bit_width -1:0] output_vector [0: ROWS -1]
12);
13

14 // Pipeline registers declaration
15 reg [output_bit_width -1:0] stage_0_0 ;
16 reg [output_bit_width -1:0] stage_0_1 ;
17 reg [output_bit_width -1:0] stage_0_10 ;
18 reg [output_bit_width -1:0] stage_0_11 ;
19 reg [output_bit_width -1:0] stage_0_2 ;
20 reg [output_bit_width -1:0] stage_0_3 ;
21 reg [output_bit_width -1:0] stage_0_4 ;
22 reg [output_bit_width -1:0] stage_0_5 ;
23 reg [output_bit_width -1:0] stage_0_6 ;
24 reg [output_bit_width -1:0] stage_0_7 ;
25 reg [output_bit_width -1:0] stage_0_8 ;
26 reg [output_bit_width -1:0] stage_0_9 ;
27 reg [output_bit_width -1:0] stage_1_1 ;
28 reg [output_bit_width -1:0] stage_1_12 ;
29 reg [output_bit_width -1:0] stage_1_13 ;
30 reg [output_bit_width -1:0] stage_1_14 ;
31 reg [output_bit_width -1:0] stage_1_16 ;
32 reg [output_bit_width -1:0] stage_2_1 ;
33 reg [output_bit_width -1:0] stage_2_14 ;
34 reg [output_bit_width -1:0] stage_2_15 ;
35 reg [output_bit_width -1:0] stage_2_16 ;
36 reg [output_bit_width -1:0] stage_2_19 ;
37 reg [output_bit_width -1:0] stage_3_16 ;
38 reg [output_bit_width -1:0] stage_3_17 ;
39 reg [output_bit_width -1:0] stage_3_18 ;

67

40 reg [output_bit_width -1:0] stage_3_19 ;
41 reg [output_bit_width -1:0] stage_4_18 ;
42 reg [output_bit_width -1:0] stage_4_19 ;
43 reg [output_bit_width -1:0] stage_4_20 ;
44

45 wire [output_bit_width -1:0] MEM [0:11];
46

47 // MEM initialization
48 assign MEM [0] = input_vector [0] << 3;
49 assign MEM [1] = input_vector [0] << 2;
50 assign MEM [2] = input_vector [0] << 1;
51 assign MEM [3] = input_vector [0] << 0;
52 assign MEM [4] = input_vector [1] << 3;
53 assign MEM [5] = input_vector [1] << 2;
54 assign MEM [6] = input_vector [1] << 1;
55 assign MEM [7] = input_vector [1] << 0;
56 assign MEM [8] = input_vector [2] << 3;
57 assign MEM [9] = input_vector [2] << 2;
58 assign MEM [10] = input_vector [2] << 1;
59 assign MEM [11] = input_vector [2] << 0;
60

61 always @(posedge clk) begin
62 if (reset) begin
63 // Reset the pipeline registers
64 stage_0_0 <= 0;
65 stage_0_1 <= 0;
66 stage_0_10 <= 0;
67 stage_0_11 <= 0;
68 stage_0_2 <= 0;
69 stage_0_3 <= 0;
70 stage_0_4 <= 0;
71 stage_0_5 <= 0;
72 stage_0_6 <= 0;
73 stage_0_7 <= 0;
74 stage_0_8 <= 0;
75 stage_0_9 <= 0;
76 stage_1_1 <= 0;
77 stage_1_12 <= 0;
78 stage_1_13 <= 0;
79 stage_1_14 <= 0;
80 stage_1_16 <= 0;
81 stage_2_1 <= 0;
82 stage_2_14 <= 0;

68

83 stage_2_15 <= 0;
84 stage_2_16 <= 0;
85 stage_2_19 <= 0;
86 stage_3_16 <= 0;
87 stage_3_17 <= 0;
88 stage_3_18 <= 0;
89 stage_3_19 <= 0;
90 stage_4_18 <= 0;
91 stage_4_19 <= 0;
92 stage_4_20 <= 0;
93 end else begin
94 // Stage 0
95 stage_0_0 <= MEM [0];
96 stage_0_1 <= MEM [1];
97 stage_0_2 <= MEM [2];
98 stage_0_3 <= MEM [3];
99 stage_0_4 <= MEM [4];

100 stage_0_5 <= MEM [5];
101 stage_0_6 <= MEM [6];
102 stage_0_7 <= MEM [7];
103 stage_0_8 <= MEM [8];
104 stage_0_9 <= MEM [9];
105 stage_0_10 <= MEM [10];
106 stage_0_11 <= MEM [11];
107

108 // Stage 1
109 stage_1_12 <= stage_0_11 + stage_0_3 ;
110 stage_1_13 <= stage_0_8 + stage_0_5 ;
111 stage_1_14 <= stage_0_7 + stage_0_6 ;
112 stage_1_16 <= stage_0_10 + stage_0_2 ;
113 // Reassigning old values
114 stage_1_1 <= stage_0_1 ;
115

116 // Stage 2
117 stage_2_15 <= stage_1_13 + stage_1_12 ;
118 stage_2_19 <= stage_1_14 + stage_1_12 ;
119 // Reassigning old values
120 stage_2_1 <= stage_1_1 ;
121 stage_2_14 <= stage_1_14 ;
122 stage_2_16 <= stage_1_16 ;
123

124 // Stage 3
125 stage_3_17 <= stage_2_15 + stage_2_14 ;

69

126 stage_3_18 <= stage_2_15 + stage_2_1 ;
127 // Reassigning old values
128 stage_3_16 <= stage_2_16 ;
129 stage_3_19 <= stage_2_19 ;
130

131 // Stage 4
132 stage_4_20 <= stage_3_17 + stage_3_16 ;
133 // Reassigning old values
134 stage_4_18 <= stage_3_18 ;
135 stage_4_19 <= stage_3_19 ;
136 end
137 end
138

139 assign output_vector [0] = stage_4_18 ;
140 assign output_vector [1] = stage_4_19 ;
141 assign output_vector [2] = stage_4_20 ;
142

143 endmodule

70

ANNEXE D MODULE SYSTEMVERILOG PIPELINÉ AGRÉGÉ

1 module pipelined_aggregated_3x3_4_11 #(
2 parameter ROWS = 3,
3 parameter COLS = 3,
4 parameter MEM_SIZE = 11,
5 parameter input_bit_width = 4,
6 parameter output_bit_width = 9
7)(
8 input wire clk ,
9 input wire reset ,

10 input wire [input_bit_width -1:0] input_vector [0: COLS -1],
11 output wire [output_bit_width -1:0] output_vector [0: ROWS -1]
12);
13 // Pipeline registers declaration
14 reg [output_bit_width -1:0] stage_0_0 ;
15 reg [output_bit_width -1:0] stage_0_1 ;
16 reg [output_bit_width -1:0] stage_0_10 ;
17 reg [output_bit_width -1:0] stage_0_11 ;
18 reg [output_bit_width -1:0] stage_0_2 ;
19 reg [output_bit_width -1:0] stage_0_3 ;
20 reg [output_bit_width -1:0] stage_0_4 ;
21 reg [output_bit_width -1:0] stage_0_5 ;
22 reg [output_bit_width -1:0] stage_0_6 ;
23 reg [output_bit_width -1:0] stage_0_7 ;
24 reg [output_bit_width -1:0] stage_0_8 ;
25 reg [output_bit_width -1:0] stage_0_9 ;
26 reg [output_bit_width -1:0] stage_1_1 ;
27 reg [output_bit_width -1:0] stage_1_14 ;
28 reg [output_bit_width -1:0] stage_1_15 ;
29 reg [output_bit_width -1:0] stage_1_16 ;
30 reg [output_bit_width -1:0] stage_1_19 ;
31 reg [output_bit_width -1:0] stage_2_18 ;
32 reg [output_bit_width -1:0] stage_2_19 ;
33 reg [output_bit_width -1:0] stage_2_20 ;
34

35 wire [output_bit_width -1:0] MEM [0:11];
36

37 // MEM initialization
38 assign MEM [0] = input_vector [0] << 3;
39 assign MEM [1] = input_vector [0] << 2;

71

40 assign MEM [2] = input_vector [0] << 1;
41 assign MEM [3] = input_vector [0] << 0;
42 assign MEM [4] = input_vector [1] << 3;
43 assign MEM [5] = input_vector [1] << 2;
44 assign MEM [6] = input_vector [1] << 1;
45 assign MEM [7] = input_vector [1] << 0;
46 assign MEM [8] = input_vector [2] << 3;
47 assign MEM [9] = input_vector [2] << 2;
48 assign MEM [10] = input_vector [2] << 1;
49 assign MEM [11] = input_vector [2] << 0;
50

51 always @(posedge clk) begin
52 if (reset) begin
53 // Reset the pipeline registers
54 stage_0_0 <= 0;
55 stage_0_1 <= 0;
56 stage_0_10 <= 0;
57 stage_0_11 <= 0;
58 stage_0_2 <= 0;
59 stage_0_3 <= 0;
60 stage_0_4 <= 0;
61 stage_0_5 <= 0;
62 stage_0_6 <= 0;
63 stage_0_7 <= 0;
64 stage_0_8 <= 0;
65 stage_0_9 <= 0;
66 stage_1_1 <= 0;
67 stage_1_14 <= 0;
68 stage_1_15 <= 0;
69 stage_1_16 <= 0;
70 stage_1_19 <= 0;
71 stage_2_18 <= 0;
72 stage_2_19 <= 0;
73 stage_2_20 <= 0;
74

75 end else begin
76 // Stage 0
77 stage_0_0 <= MEM [0];
78 stage_0_1 <= MEM [1];
79 stage_0_2 <= MEM [2];
80 stage_0_3 <= MEM [3];
81 stage_0_4 <= MEM [4];
82 stage_0_5 <= MEM [5];

72

83 stage_0_6 <= MEM [6];
84 stage_0_7 <= MEM [7];
85 stage_0_8 <= MEM [8];
86 stage_0_9 <= MEM [9];
87 stage_0_10 <= MEM [10];
88 stage_0_11 <= MEM [11];
89

90 // Stage 1
91 stage_1_15 <= (stage_0_8 + stage_0_5) + (stage_0_11 +

↪→ stage_0_3);
92 stage_1_19 <= (stage_0_7 + stage_0_6) + (stage_0_11 +

↪→ stage_0_3);
93 // Reassigning old values
94 stage_1_1 <= (stage_0_1);
95 stage_1_14 <= (stage_0_7 + stage_0_6);
96 stage_1_16 <= (stage_0_10 + stage_0_2);
97

98 // Stage 2
99 stage_2_20 <= (stage_1_15 + stage_1_14) + (stage_1_16);

100 // Reassigning old values
101 stage_2_18 <= (stage_1_15 + stage_1_1);
102 stage_2_19 <= (stage_1_19);
103 end
104 end
105 assign output_vector [0] = stage_4_18 ;
106 assign output_vector [1] = stage_4_19 ;
107 assign output_vector [2] = stage_4_20 ;
108

109 endmodule

73

ANNEXE E ORDONNANCEMENT DES CALCULS SUR UN ENSEMBLE
DE NŒUDS REPRÉSENTANT LES OPÉRATIONS DU GRAPHE DE

DÉPENDANCES POUR L’ARCHITECTURE PIPELINÉ

Chaque ligne représente un nœud. Les nœuds du cycle 0 correspondent aux feuilles du graphe.
Les opérations <= sur une même opérande (comme à la ligne 12) représentent une réaffectation
servant à maintenir en vie le signal, en le transférant du registre de l’étage précédent vers le
registre de cycle de l’opérande de gauche.

1 cycle 0:
2 1 <= 1
3 2 <= 2
4 3 <= 3
5 5 <= 5
6 6 <= 6
7 7 <= 7
8 8 <= 8
9 10 <= 10

10 11 <= 11
11 cycle 1:
12 1 <= 1
13 12 <= 11 + 3
14 13 <= 8 + 5
15 14 <= 7 + 6
16 16 <= 10 + 2
17 cycle 2:
18 1 <= 1
19 14 <= 14
20 15 <= 13 + 12
21 16 <= 16
22 19 <= 14 + 12
23 cycle 3:
24 16 <= 16
25 17 <= 15 + 14
26 18 <= 15 + 1
27 19 <= 19
28 cycle 4:
29 18 <= 18
30 19 <= 19
31 20 <= 17 + 16

74

ANNEXE F ORDONNANCEMENT DES CALCULS POUR
L’ARCHITECTURE PIPELINÉ AGRÉGÉ

1 cycle 0:
2 1 <= 1
3 2 <= 2
4 3 <= 3
5 5 <= 5
6 6 <= 6
7 7 <= 7
8 8 <= 8
9 10 <= 10

10 11 <= 11
11

12 cycle 1:
13 1 <= 1
14 14 <= 7 + 6
15 15 <= (8 + 5) + (11 + 3)
16 16 <= 10 + 2
17 19 <= (7 + 6) + (11 + 3)
18

19 cycle 2:
20 18 <= 15 + 1
21 19 <= 19
22 20 <= (15 + 14) + 16

75

ANNEXE G MODULE MATMULVEC

1 module MATMULVEC_3x3_4 #(
2 parameter ROWS = 3,
3 parameter COLS = 3,
4 parameter input_bit_width = 4,
5 parameter output_bit_width = 9
6)(
7 input wire [input_bit_width -1:0] input_vector [0: COLS -1],
8 output wire [output_bit_width -1:0] output_vector [0: ROWS -1]
9);

10

11 // Matrix A
12 wire [3:0] matrix [0: ROWS -1][0: COLS -1];
13 assign matrix [0][0] = 5;
14 assign matrix [0][1] = 4;
15 assign matrix [0][2] = 9;
16 assign matrix [1][0] = 1;
17 assign matrix [1][1] = 3;
18 assign matrix [1][2] = 1;
19 assign matrix [2][0] = 3;
20 assign matrix [2][1] = 7;
21 assign matrix [2][2] = 11;
22

23 // Intermediate mults
24 wire [8:0] P_0_0 = matrix [0][0] * input_vector [0];
25 wire [8:0] P_0_1 = matrix [0][1] * input_vector [1];
26 wire [8:0] P_0_2 = matrix [0][2] * input_vector [2];
27 wire [8:0] P_1_0 = matrix [1][0] * input_vector [0];
28 wire [8:0] P_1_1 = matrix [1][1] * input_vector [1];
29 wire [8:0] P_1_2 = matrix [1][2] * input_vector [2];
30 wire [8:0] P_2_0 = matrix [2][0] * input_vector [0];
31 wire [8:0] P_2_1 = matrix [2][1] * input_vector [1];
32 wire [8:0] P_2_2 = matrix [2][2] * input_vector [2];
33

34 assign output_vector [0] = P_0_0 + P_0_1 + P_0_2;
35 assign output_vector [1] = P_1_0 + P_1_1 + P_1_2;
36 assign output_vector [2] = P_2_0 + P_2_1 + P_2_2;
37

38 endmodule

76

ANNEXE H MODULE SHIFT&ADD

1 module shift_add_3x3_4 #(
2 parameter ROWS = 3,
3 parameter COLS = 3,
4 parameter input_bit_width = 4,
5 parameter output_bit_width = 9
6)(
7 input wire [input_bit_width -1:0] input_vector [0: COLS -1],
8 output wire [output_bit_width -1:0] output_vector [0: ROWS -1]
9);

10

11 // Matrix A
12 wire [3:0] matrix [0: ROWS -1][0: COLS -1];
13

14 assign matrix [0][0] = 5;
15 assign matrix [0][1] = 4;
16 assign matrix [0][2] = 9;
17 assign matrix [1][0] = 1;
18 assign matrix [1][1] = 3;
19 assign matrix [1][2] = 1;
20 assign matrix [2][0] = 3;
21 assign matrix [2][1] = 7;
22 assign matrix [2][2] = 11;
23

24 // intermediate variables
25 wire [8:0] P_0_0;
26 wire [8:0] P_0_1;
27 wire [8:0] P_0_2;
28 wire [8:0] P_1_0;
29 wire [8:0] P_1_1;
30 wire [8:0] P_1_2;
31 wire [8:0] P_2_0;
32 wire [8:0] P_2_1;
33 wire [8:0] P_2_2;
34

35 // Shift_add modules
36 shift_add #(4 ,4 ,9) mult_0_0 (. input(input_vector [0]) , . coefficient (

↪→ matrix [0][0]) , .P(P_0_0));
37 shift_add #(4 ,4 ,9) mult_0_1 (. input(input_vector [1]) , . coefficient (

↪→ matrix [0][1]) , .P(P_0_1));

77

38 shift_add #(4 ,4 ,9) mult_0_2 (. input(input_vector [2]) , . coefficient (
↪→ matrix [0][2]) , .P(P_0_2));

39 assign output_vector [0] = P_0_0 + P_0_1 + P_0_2;
40 shift_add #(4 ,4 ,9) mult_1_0 (. input(input_vector [0]) , . coefficient (

↪→ matrix [1][0]) , .P(P_1_0));
41 shift_add #(4 ,4 ,9) mult_1_1 (. input(input_vector [1]) , . coefficient (

↪→ matrix [1][1]) , .P(P_1_1));
42 shift_add #(4 ,4 ,9) mult_1_2 (. input(input_vector [2]) , . coefficient (

↪→ matrix [1][2]) , .P(P_1_2));
43 assign output_vector [1] = P_1_0 + P_1_1 + P_1_2;
44 shift_add #(4 ,4 ,9) mult_2_0 (. input(input_vector [0]) , . coefficient (

↪→ matrix [2][0]) , .P(P_2_0));
45 shift_add #(4 ,4 ,9) mult_2_1 (. input(input_vector [1]) , . coefficient (

↪→ matrix [2][1]) , .P(P_2_1));
46 shift_add #(4 ,4 ,9) mult_2_2 (. input(input_vector [2]) , . coefficient (

↪→ matrix [2][2]) , .P(P_2_2));
47 assign output_vector [2] = P_2_0 + P_2_1 + P_2_2;
48

49 endmodule

	DÉDICACE
	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES SIGLES ET ABRÉVIATIONS
	LISTE DES ANNEXES
	1 INTRODUCTION
	1.1 Contexte
	1.1.1 Applications émergentes énergivores
	1.1.2 Algorithmes de multiplication
	1.1.3 Architecture des FPGA modernes
	1.1.4 Avantages énergétiques d’une approche sans multiplieurs

	1.2 Description du problème
	1.3 Objectifs de recherche
	1.4 Contributions
	1.5 Plan du mémoire

	2 REVUE DE LITTÉRATURE
	2.1 Optimisation de la multiplication par plusieurs constantes
	2.1.1 Algorithmes de recodage
	2.1.2 Algorithmes basés sur le partage des sous-expressions communes
	2.1.3 Algorithmes basés sur les graphes
	2.1.4 Autres méthodes

	2.2 Généralisation du problème de la multiplication par plusieurs constantes en matrice constante
	2.3 Avancées dans les architectures et algorithmes de multiplication efficace de matrices
	2.3.1 Approches exactes
	2.3.2 Approches approximatives

	2.4 Multiplieurs efficaces sur systèmes reconfigurables FPGA
	2.5 Conclusion

	3 ALGORITHME MULTIPLIEUR OPTIMISÉ
	3.1 Multiplication par somme de décalages binaires
	3.2 Description détaillée de l'algorithme proposé
	3.2.1 Initialisation des matrices binaires
	3.2.2 Réduction des colonnes
	3.2.3 Calcul du résultat

	3.3 Exemple illustratif
	3.4 Implémentation Python
	3.5 Implémentations SystemVerilog
	3.5.1 Architecture combinatoire
	3.5.2 Architecture en arbre d'additionneurs pipeliné
	3.5.3 Agrégation des étages de pipeline
	3.5.4 Conclusion

	4 EXPÉRIENCES ET RÉSULTATS
	4.1 Introduction
	4.2 Cas génériques
	4.2.1 Algorithme de multiplication binaire standard
	4.2.2 Algorithme de multiplication par décalage
	4.2.3 Description de la plateforme de test FPGA
	4.2.4 Configuration expérimentale
	4.2.5 Analyse des performances

	4.3 Cas d'étude

	5 DISCUSSION
	6 CONCLUSION
	6.1 Synthèse des travaux
	6.2 Limitations de la solution proposée
	6.3 Perspectives et pistes de recherche futures

	RÉFÉRENCES
	ANNEXES

