
Titre:
Title:

Exact and Heuristic Algorithms for Large-Scale Dial-a-Ride
Problems: A Study of Practical and Electric Variants

Auteur:
Author:

Mohammad Karimi

Date: 2025

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Karimi, M. (2025). Exact and Heuristic Algorithms for Large-Scale Dial-a-Ride
Problems: A Study of Practical and Electric Variants [Ph.D. thesis, Polytechnique
Montréal]. PolyPublie. https://publications.polymtl.ca/68172/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/68172/

Directeurs de
recherche:

Advisors:
Michel Gendreau, & Guy Desaulniers

Programme:
Program:

Doctorat en génie industriel

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/68172/
https://publications.polymtl.ca/68172/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Exact and Heuristic Algorithms for Large-Scale Dial-a-Ride Problems: A Study
of Practical and Electric Variants

MOHAMMAD KARIMI
Département de mathématiques et de génie industriel

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor
Génie industriel

Août 2025

© Mohammad Karimi, 2025.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée :

Exact and Heuristic Algorithms for Large-Scale Dial-a-Ride Problems: A Study
of Practical and Electric Variants

présentée par Mohammad KARIMI
en vue de l’obtention du diplôme de Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

Antoine LEGRAIN, président
Michel GENDREAU, membre et directeur de recherche
Guy DESAULNIERS, membre et codirecteur de recherche
Jorge MENDOZA, membre
Jakob PUCHINGER, membre externe

iii

DEDICATION

À mon amour,
présence silencieuse dans chaque battement de mon cœur,

lumière douce dans l’ombre de mes doutes,
et souffle fidèle au creux de mon âme. . .

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Professor Michel Gendreau, my thesis supervi-
sor, for his insightful guidance, thoughtful advice, and continuous encouragement throughout
my doctoral studies. His expertise in operations research and his strategic perspective have
played a key role in shaping this work. I am especially thankful for his support in both the
academic and professional aspects of my journey.

I am equally grateful to Professor Guy Desaulniers, my co-supervisor, for his invaluable
contributions, rigorous feedback, and unwavering availability throughout the research process.
His deep knowledge of mathematical optimization and his precise approach to problem-
solving have greatly enriched the quality of this thesis.

I would also like to sincerely thank Professor Antoine Legrain, who has accepted the position
of president of my thesis jury, and Professors Jorge Mendoza and Jakob Puchinger, who have
kindly agreed to serve as jury members. I am honored by their participation and look forward
to their feedback and insights.

I gratefully acknowledge the collaboration and support of GIRO Inc., whose involvement
provided not only access to real-world data and industrial challenges, but also the opportunity
to ensure that the research outcomes are practically relevant and applicable. Their trust and
partnership have been instrumental to the success of this work.

Lastly, I wish to express my heartfelt gratitude to my wife, whose love, patience, and constant
encouragement have been the foundation of my strength throughout this doctoral journey.
Her support has made everything possible.

v

RÉSUMÉ

Cette thèse porte sur le problème de transport à la demande avec réservation préalable, plus
connu sous le nom de Dial-a-Ride Problem (DARP), qui constitue une classe fondamentale
de problèmes de tournées de véhicules. Le DARP trouve son application dans les systèmes
de transport à la demande, tels que les services de transport adapté, le transport médical
et les plateformes de covoiturage. Il s’agit d’organiser des itinéraires de véhicules afin de
satisfaire un ensemble de demandes de transport, tout en respectant diverses contraintes
opérationnelles telles que les fenêtres temporelles, les temps de trajet maximaux des passagers
et les limites de capacité des véhicules. Dans les applications réelles, la complexité du DARP
est exacerbée par des contraintes pratiques, la taille des instances à traiter, et l’émergence
de nouvelles exigences liées à l’introduction des véhicules électriques. L’objectif principal
de cette recherche est de concevoir des algorithmes d’optimisation performants capables de
résoudre ces variantes réalistes et de très grande taille du DARP, en alliant rigueur dans la
modélisation et efficacité en termes de temps de calcul.

La première contribution de la thèse s’intéresse à une version pratique du DARP, incluant des
passagers hétérogènes (utilisateurs ambulants ou en fauteuil roulant), une flotte de véhicules
diversifiée, et des règles contractuelles spécifiques. Cette version tient compte de contraintes
avancées telles que la durée maximale des tournées, les pauses obligatoires selon les contrats,
les budgets limités par contrat, ainsi que la compatibilité entre les passagers et les véhicules.
Le problème est modélisé sous forme d’un programme linéaire en nombres entiers de type par-
titionnement d’ensemble, comportant un nombre exponentiel de variables. Pour le résoudre,
nous avons développé un algorithme exact de type branch-price-and-cut, combinant généra-
tion de colonnes, séparation de coupes et exploration d’un arbre de recherche. Un algorithme
d’étiquetage sur mesure a été conçu pour résoudre efficacement les sous-problèmes de généra-
tion de colonnes, tout en assurant la faisabilité des tournées générées. Les expérimentations
réalisées sur des données réelles fournies par GIRO Inc., entreprise montréalaise spécialisée
dans les logiciels de planification de transport public, montrent l’efficacité de notre approche.
L’algorithme a permis de résoudre de manière optimale des instances comportant jusqu’à
849 demandes et plus de 70 véhicules hétérogènes répartis sur cinq contrats distincts, ce qui
constitue, à notre connaissance, la plus grande instance de DARP jamais résolue de façon
optimale dans la littérature. Ces résultats ont également permis d’évaluer les performances
de l’algorithme heuristique utilisé par notre partenaire industriel.

La deuxième contribution traite du défi posé par les instances de très grande taille, pour

vi

lesquelles les méthodes exactes ne sont plus applicables en pratique. Pour cela, nous pro-
posons un algorithme de type Variable Neighborhood Search (VNS) conçu pour traiter les
contraintes opérationnelles du DARP tout en limitant l’augmentation des temps de calcul en
fonction de la taille des instances. L’algorithme repose sur une phase de génération de solu-
tion initiale hybride combinant des heuristiques de construction et une procédure basée sur la
programmation linéaire. Il intègre également des composantes exactes en programmation en
nombres entiers mixtes pour améliorer la recherche locale et la transition entre les voisinages.
Différentes structures de voisinage (échange, chaîne, voisinages guidés par la programmation
entière) sont utilisées afin d’équilibrer diversification et intensification. L’algorithme est testé
sur un grand ensemble d’instances inspirées de cas réels, comportant entre 2 932 et 10 527
demandes, et des flottes allant jusqu’à 563 véhicules. Les résultats expérimentaux montrent
que l’approche proposée génère systématiquement des solutions de haute qualité en moins
d’une heure de calcul, surpassant les heuristiques classiques tout en produisant des solu-
tions proches de l’optimal pour les cas de taille moyenne. Une analyse de sensibilité sur les
composantes heuristiques est également présentée, apportant des recommandations concrètes
pour la configuration de l’algorithme en contexte opérationnel.

La troisième contribution s’inscrit dans le contexte de la transition énergétique, en adaptant
le DARP aux flottes de véhicules électriques, donnant lieu au Electric Dial-a-Ride Problem
(E-DARP). Cette variante tient compte des contraintes énergétiques propres aux véhicules
électriques, notamment leur autonomie limitée et la nécessité de recharge. Le problème est
enrichi par plusieurs éléments réalistes qui ont souvent été omis dans la littérature : (1) une
fonction de recharge concave et linéaire par morceaux reflétant le ralentissement du taux
de recharge, (2) des contraintes de capacité aux stations de recharge, (3) une tarification
dynamique de l’électricité selon l’heure, (4) la coexistence de différents types de bornes (rapi-
des/lentes), et (5) la possibilité de recharges partielles selon les besoins énergétiques. Ces
considérations rendent le E-DARP plus complexe que son équivalent thermique, car elles né-
cessitent une synchronisation fine entre la planification des tournées et la gestion énergétique.

Pour résoudre ce problème, nous étendons le cadre du VNS développé précédemment en y
intégrant une stratégie d’insertion de stations de recharge, des structures de voisinage sensi-
bles aux contraintes énergétiques, et un modèle d’optimisation pour planifier les recharges.
L’algorithme est évalué sur des instances de grande taille issues de données réelles et de
travaux précédents, allant jusqu’à 10 000 demandes. Les résultats montrent que notre méth-
ode permet non seulement de produire des solutions de qualité, mais aussi d’assurer la fais-
abilité énergétique en tenant compte de la diversité des véhicules et des infrastructures.
L’approche gère efficacement les défis opérationnels liés à la congestion aux stations, à la
minimisation des coûts énergétiques, et au respect des exigences de qualité de service, dé-

vii

montrant ainsi son potentiel pour une mise en œuvre concrète dans les systèmes de transport
durable.

En résumé, cette thèse apporte trois contributions majeures à l’état de l’art en planification
de tournées de véhicules dans des contextes complexes. Elle propose (1) des modèles réal-
istes intégrant l’hétérogénéité des usagers et des véhicules, les contraintes contractuelles et
énergétiques ; (2) des algorithmes performants et évolutifs combinant exactitude et efficacité
heuristique ; (3) des validations expérimentales rigoureuses démontrant l’applicabilité des
méthodes développées à des cas industriels de très grande échelle. Ces travaux ouvrent des
perspectives concrètes pour les agences de transport, les fournisseurs de solutions logicielles et
les collectivités souhaitant améliorer l’efficacité, la durabilité et la réactivité de leurs services
de transport à la demande.

viii

ABSTRACT

This dissertation focuses on the Dial-a-Ride Problem (DARP), a fundamental class of vehicle
routing problems that arises in demand-responsive transportation systems such as paratransit
services, medical transport, and ride-sharing platforms. The DARP involves planning vehicle
routes to fulfill transportation requests defined by pickup and delivery locations, subject to a
variety of operational constraints including time windows, maximum ride times, and vehicle
capacity limits. In real-world applications, the complexity of DARP increases significantly
due to practical constraints, large-scale challenges, and emerging requirements related to
electric vehicle operations. The overarching objective of this research is to develop high-
performance optimization algorithms capable of addressing these complex and large-scale
DARP variants with practical realism and computational scalability.

The first contribution of the dissertation addresses a practical DARP variant characterized
by heterogeneous passengers (ambulant and wheelchair users), a diverse vehicle fleet, and
contract-based operating rules. This version includes advanced constraints such as route
duration limits, mandatory break patterns, budget restrictions per contract, and vehicle-
resource compatibility. The problem is modeled as a set-partitioning integer linear program
with an exponential number of variables. To solve it, we develop an exact branch-price-
and-cut algorithm that integrates a column generation framework with branch-and-bound
and cutting plane strategies. A dedicated labeling algorithm is designed to solve the pricing
subproblem efficiently, ensuring route feasibility with respect to all constraints. Extensive
computational experiments on real-world instances provided by GIRO Inc., a transportation
software company based in Montreal, demonstrate the effectiveness of the proposed method.
The algorithm successfully solves to optimality instances involving up to 849 transportation
requests and more than 70 heterogeneous vehicles operating under five distinct contracts.
This represents the largest DARP instance reported in the literature to be solved exactly
using an exact approach. These results also enabled a critical assessment of the heuristic used
by the industrial partner, thereby offering valuable feedback for operational improvement.

The second contribution targets the challenge of solving very large-scale instances of DARP,
which are beyond the practical reach of exact methods due to computational limitations. We
propose a variable neighborhood search (VNS) algorithm tailored for high scalability and op-
erational realism. The algorithm incorporates a hybrid initial solution generation mechanism,
combining constructive heuristics with a linear programming-based procedure. Furthermore,
the VNS framework is enhanced with mixed-integer programming-based components that are

ix

applied selectively to refine local search and neighborhood transitions. A variety of shaking
strategies, including Swap, Chain, and IP-based neighborhoods, are integrated to balance
intensification and diversification. The algorithm is validated on a diverse set of large- and
very large-scale real-world-inspired instances, ranging from 2,932 to 10,527 transportation
requests, with vehicle fleets of up to 563 units. Results indicate that the proposed method
consistently generates high-quality solutions within practical time limits—often under one
hour—while outperforming traditional heuristics and providing near-optimal solutions for
medium-sized instances. The study also includes a sensitivity analysis of different heuristic
components, offering guidance on algorithm configuration for operational planners.

The third contribution addresses the transition to electric vehicle fleets, introducing the
electric dial-a-ride problem (E-DARP). In this setting, electric vehicles must service trans-
portation requests while adhering to energy-related constraints, including limited battery
capacity and recharging requirements. The problem is modeled to reflect several realistic
and overlooked features, including: (1) a concave piecewise linear charging function repre-
senting the decreasing rate of charge over time, (2) station capacity constraints limiting the
number of vehicles that can charge simultaneously, (3) time-dependent electricity pricing
that influences charging decisions, (4) multiple charger types (e.g., fast and slow), and (5)
the ability to partially charge based on route planning and energy needs. These elements
make the E-DARP significantly more complex than its fuel-based counterpart, as it requires
careful synchronization of routing and energy management decisions.

To solve the E-DARP, we extend the VNS framework introduced in the second contribution
by embedding a charging station insertion mechanism, adaptive energy-aware neighborhood
structures, and an optimization model for optimizing charging plans. The algorithm is tested
on large-scale instances derived from real-world and benchmark datasets, including instances
with up to 10,000 transportation requests. Results show that the proposed approach not
only yields competitive routing solutions but also ensures energy feasibility across diverse
vehicle types and station configurations. The method handles operational challenges such
as avoiding congestion at charging stations, minimizing energy costs, and satisfying service
quality constraints, demonstrating strong potential for supporting the practical deployment
of electric mobility systems.

Overall, this dissertation makes three principal contributions to the state of the art in vehicle
routing and transportation planning. First, it advances the modeling of DARP by inte-
grating heterogeneous, contract-based, and energy-related constraints. Second, it introduces
scalable and effective algorithmic frameworks that bridge the gap between exact methods
and heuristics for solving very large and realistic instances. Third, it provides empirical ev-

x

idence, through rigorous computational experiments, of the applicability of these methods
to real-world systems. The findings of this research have practical implications for software
vendors, transit agencies, and urban planners seeking to improve the efficiency, sustainability,
and responsiveness of on-demand transportation services.

xi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . viii

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

LIST OF SYMBOLS AND ACRONYMS . xvii

LIST OF APPENDICES . xviii

CHAPTER 1 INTRODUCTION . 1
1.1 Context and Basic Concepts . 1
1.2 Elements of the Problem . 3
1.3 Research Objectives . 6

CHAPTER 2 LITERATURE REVIEW . 8
2.1 Dial-a-Ride Problem . 8
2.2 Large-scale Routing Problem . 13
2.3 Electric Dial-a-Ride Problem (E-DARP) . 16

CHAPTER 3 THESIS ORGANIZATION . 21

CHAPTER 4 ARTICLE 1: AN EXACT BRANCH-AND-PRICE-AND-CUT ALGO-
RITHM FOR A PRACTICAL AND LARGE-SCALE DIAL-A-RIDE PROBLEM 23

4.1 Introduction . 23
4.2 Literature review . 24
4.3 Problem definition . 26
4.4 Mathematical model . 29
4.5 The proposed BPC algorithm . 29
4.5.1 Labeling algorithm . 30
4.5.2 Valid inequalities . 37
4.5.3 Branching strategy . 39

xii

4.6 Computational results . 39
4.6.1 Instance description . 39
4.6.2 Linear relaxation results . 41
4.6.3 Integer solution results . 42
4.7 Conclusion . 45

CHAPTER 5 ARTICLE 2: A VARIABLE NEIGHBORHOOD SEARCH ALGO-
RITHM FOR A VERY LARGE-SCALE PRACTICAL DIAL-A-RIDE PROBLEM 48

5.1 Introduction . 48
5.2 Literature review . 49
5.3 Problem definition . 51
5.4 The proposed algorithm . 54
5.4.1 Generating the initial solution . 56
5.4.2 Neighborhood classes . 58
5.4.3 Local search . 61
5.4.4 Break insertion . 62
5.4.5 Acceptance criterion . 62
5.5 Computational results . 62
5.5.1 Instance description . 63
5.5.2 Result of very large-scale instances . 64
5.5.3 Result of medium-size instances . 69
5.6 Conclusion . 69

CHAPTER 6 ARTICLE 3: A VARIABLE NEIGHBORHOOD SEARCH ALGO-
RITHM FOR THE ELECTRIC DIAL-A-RIDE PROBLEM WITH REALISTIC
CHARGING CONSTRAINTS . 72

6.1 Introduction . 72
6.2 Literature review . 73
6.3 Problem definition . 75
6.4 The proposed algorithm . 76
6.4.1 Generating the initial solution . 77
6.4.2 Neighborhood classes . 78
6.4.3 Local search . 82
6.4.4 Charging station insertion . 82
6.4.5 Acceptance criterion . 88
6.5 Computational results . 88
6.5.1 Instance description . 89

xiii

6.5.2 Base Case - linear charging function . 89
6.5.3 Case 2 - concave piecewise linear charging function 92
6.5.4 Case 3 - multiple charging infrastructure types 93
6.5.5 Case 4 - time-of-use electricity pricing . 95
6.5.6 Case 5 - charging station capacity . 96
6.6 Conclusion . 100

CHAPTER 7 GENERAL DISCUSSION . 101

CHAPTER 8 CONCLUSION . 103

REFERENCES . 105

APPENDICES . 116

xiv

LIST OF TABLES

Table 2.1 Summary of large-scale routing problem studies 16
Table 2.2 Overview of recent contributions to the E-DARP 20
Table 4.1 Instance specifications . 41
Table 4.2 Contract specifications . 41
Table 4.3 Vehicle specifications . 42
Table 4.4 Break pattern specifications and maximum route durations 42
Table 4.5 Linear relaxation results . 45
Table 4.6 Integer solution results . 46
Table 5.1 Instance specidfications . 64
Table 5.2 Contract specifications . 64
Table 5.3 Vehicle specifications . 65
Table 5.4 Break pattern specifications and maximum route durations 65
Table 5.5 Performance of initial solution generation methods 67
Table 5.6 Overall performance of the shakers sequence for solving Instance S3 . 67
Table 5.7 Performance of the proposed algorithm with different initial solution

generation methods . 68
Table 5.8 The impact of removing family shakers on algorithm performance for

solving Instance S3 . 70
Table 5.9 Comparative results on medium-sized instances 70
Table 6.1 Results on Cordeau instances with γ = 0.1 90
Table 6.2 Results on Cordeau instances with γ = 0.4 90
Table 6.3 Results on Cordeau instances with γ = 0.7 91
Table 6.4 Results on Limmer large instances with γ = 0.7 91
Table 6.5 Results on Limmer large instances with concave piecewise linear charg-

ing function (γ = 0.7) . 92
Table 6.6 Results on Dong et al. large and very large instances with concave

piecewise linear charging function (γ = 0.4) 93
Table 6.7 Results on Limmer large instances for Case 3 (γ = 0.7) 94
Table 6.8 Results on Dong et al. large and very large instances for Case 3 (γ = 0.4) 95
Table 6.9 Influence of TOU electricity pricing policy on costs - Limmer Instances

(γ = 0.7) . 96
Table 6.10 Comparison of the proposed algorithm with Dong et al. [1] under TOU-

based electricity pricing (γ = 0.4) . 98

xv

Table 6.11 Results on Limmer large instances for Case 5 (γ = 0.7) 99
Table 6.12 Results on Dong et al. large and very large instances for Case 5 (γ = 0.4) 99

xvi

LIST OF FIGURES

Figure 1.1 A feasible route in the E-DARP . 6
Figure 4.1 Distribution of the requests’ start times 43
Figure 4.2 Pickup and delivery locations of the requests 44
Figure 4.3 Total cost and cost per contract for both solutions 46
Figure 4.4 Number of vehicles used per contract in both solutions 47
Figure 4.5 Number of requests covered by contract in both solutions 47
Figure 5.1 Example of a route with breaks . 54
Figure 6.1 The concave piecewise linear charging functions 77
Figure 6.2 The nearest charging station time window 84
Figure 6.3 The components of the insertion model with concave piecewise linear

charging functions . 87
Figure 6.4 Charging process for linear and two types of concave piecewise linear

charging functions . 94
Figure 6.5 TOU electricity pricing policy . 97

xvii

LIST OF SYMBOLS AND ACRONYMS

BB Branch-and-bound
BC Branch-and-cut
BP Branch-and-price
BPC Branch-price-and-cut
CG Column Generation
DARP Dial-a-Ride Problem
E-ADARP Electric Autonomous Dial-a-Ride Problem
E-DARP Electric Dial-a-Ride Problem
ESPPRC Elementary Shortest Path Problem with Resource Constraints
EV Electric Vehicle
GA Genetic Algorithm
LNS Large Neighborhood Search
MIP Mixed-Integer Programming
PDP Pickup and Delivery Problem
PDPTW Pickup and Delivery Problem with Time Windows
RCI Rounded Capacity Inequality
RMP Restricted Master Problem
SoC State-of-Charge
SP Subproblem
SRI Subset Row Inequality
TOU Time-of-Use
TS Tabu Search
VNS Variable Neighborhood Search
VRP Vehicle Routing Problem
VRPSPD Vehicle Routing Problem with Simultaneous Pickup and Delivery
VRPMPD Vehicle Routing Problem with Mixed Pickup and Delivery

xviii

LIST OF APPENDICES

Appendix A Heterogeneous Dial-a-Ride Formulation 116

1

CHAPTER 1 INTRODUCTION

1.1 Context and Basic Concepts

The dial-a-ride problem (DARP) is a prominent class of vehicle routing problems that focuses
on the efficient planning of transportation services for passengers with individual pickup and
delivery requests. Formally introduced by Wilson et al. [2], the DARP is defined on a
directed graph where each transportation request involves moving one or more passengers
from a designated pickup location to a corresponding delivery location within a specific time
window [3]. The central objective is to assign requests to a fleet of vehicles and construct
their routes in a way that minimizes total operational costs—often measured in terms of total
distance, total duration, or a combination of both—while respecting a variety of service and
operational constraints.

At its core, the DARP generalizes the pickup and delivery problem with time windows
(PDPTW) by incorporating user-centric service considerations that are especially relevant
in mobility-focused applications [4]. The DARP is widely implemented in services such as
paratransit transportation for elderly and disabled individuals, non-emergency medical trans-
port, employee shuttle operations, and emerging mobility-on-demand systems [5–7]. These
applications require a high level of service reliability and user satisfaction, which are often
evaluated through performance indicators such as punctuality and adherence to maximum
allowable ride durations. Consequently, the DARP not only emphasizes cost minimization
but also the delivery of equitable and high-quality service.

Among the most common constraints found in DARP formulations are time windows, prece-
dence, ride time limits, vehicle capacity, and route duration. Time window constraints require
that each pair of pickup and delivery occurs within a predefined service interval, representing
the earliest and latest permissible start times. Precedence constraints ensure that for any
given request, the pickup must occur before the delivery on the same vehicle route. The
ride time limit stipulates that the total duration a passenger spends in the vehicle must not
exceed a specified maximum, thereby preserving comfort and limiting detours [8]. Capac-
ity constraints reflect the limited seating or resource availability of each vehicle, meaning
the total number of onboard passengers or occupied resources must never exceed the vehi-
cle’s capabilities at any point during the route. Finally, route duration constraints impose a
maximum allowable operating time for each vehicle, often aligned with labor or contractual
regulations in full-day scheduling contexts.

2

Despite its conceptual simplicity, the DARP is computationally hard to solve. Even sim-
plified versions fall into the NP-hard class, as shown by Savelsbergh & Sol [9]. The diffi-
culty increases significantly with the addition of realistic features such as user and vehicle
heterogeneity, time-dependent travel times, dynamic request arrivals, or resource-based ve-
hicle compatibility. As a result, exact algorithms (e.g., branch-and-price, branch-and-cut,
and branch-and-price-and-cut) are effective only for small- to medium-sized instances, while
heuristics and metaheuristics (e.g., tabu search, variable neighborhood search, and large
neighborhood search) are typically employed for large-scale applications.

Over the years, numerous variants of the DARP have been proposed to reflect operational
needs. One such variant is the multi-depot DARP [10], where vehicles can start and end
their routes at different depots. Another is the dynamic DARP [11], where requests arrive in
real time and must be accommodated dynamically as operations unfold. The heterogeneous
DARP models passenger and vehicle differences with compatibility constraints limiting which
vehicles can serve users [12, 13]. In time-dependent DARP, travel times vary depending on
the time of day due to congestion or traffic conditions, affecting both route planning and
feasibility [14].

The emergence of the electric dial-a-ride problem (E-DARP) represents a major evolution
in the modeling of demand-responsive transportation systems [15]. In the E-DARP, vehicles
are electric and have limited battery capacity. They consume energy as they travel and may
require recharging at designated stations during the planning horizon. Unlike traditional
fuel-based vehicles, electric vehicles (EVs) exhibit nonlinear charging behavior: charging
tends to be faster when the state-of-charge of the battery is low and gradually slows down as
it approaches full capacity. Consequently, recharging operations are more accurately mod-
eled using concave piecewise linear charging functions. Moreover, charging station capacity
constraints—reflecting a limited number of available charging ports—and partial recharging
strategies are important to reduce service interruptions and improve system efficiency. Some
advanced models also account for time-of-use electricity pricing, where the cost of charging
varies throughout the day.

However, despite these practical considerations, many of these features—particularly station
capacity limitations, nonlinear charging dynamics, and heterogeneous charging infrastruc-
ture—remain largely overlooked in the current E-DARP literature. This gap motivates the
development of more realistic models and solution approaches capable of addressing the op-
erational complexities inherent to electric mobility systems.

In summary, the DARP stands at the intersection of theoretical complexity and practical
impact. Its rich structure and adaptability to real-world constraints make it a central problem

3

in transportation science. The evolution from basic formulations to highly realistic and
large-scale models—including electrification, heterogeneous user needs, and contractual fleet
structures—demands advanced and scalable algorithmic solutions. The remainder of this
dissertation is dedicated to addressing these challenges through the development of exact
and heuristic methods tailored to the demands of modern DARP applications.

1.2 Elements of the Problem

The practical DARP addressed in this dissertation is motivated by a real-world case study
provided by GIRO Inc., a Montreal-based company specializing in advanced software for
public and on-demand transportation systems. The problem setting reflects the operational
realities faced by transportation agencies that must deliver paratransit services to a large
number of users with varying mobility needs. These services must be planned within a
rigid regulatory framework and under a multitude of cost, resource, and quality-of-service
constraints. Unlike idealized or academic DARP formulations, the problem investigated here
integrates a broad spectrum of real-world features that significantly increase the modeling
complexity and computational demands. This section describes these elements in detail.

A central characteristic of the problem is the contractual structure that governs vehicle op-
erations. The transportation agency operates according to several contracts, each associated
with a specific provider, type of vehicle, and set of operational rules. For instance, one con-
tract may involve small ambulant-accessible minivans, while another provides larger vehicles
equipped to handle multiple wheelchairs. Each contract specifies a maximum number of
available vehicles, a budget cap, and a cost structure based on time, distance, and usage.
Furthermore, different contracts impose distinct break regulations, such as requiring manda-
tory rest periods if a route exceeds a certain threshold or limiting the total time a vehicle
may be in service per day. These elements reflect labor laws, health and safety regulations,
and economic agreements between agencies and transportation providers. Consequently,
the planning process must not only satisfy operational constraints but also optimize within
contract-specific limitations and cost structures.

Another key dimension of complexity arises from user heterogeneity. Passengers differ in
their mobility profiles—some are ambulant and can be transported in regular seats, while
others require a wheelchair and a dedicated securement space. A passenger’s profile affects
not only the capacity consumed onboard the vehicle but also the service duration, accessi-
bility requirements, and vehicle compatibility. For example, not all vehicles are equipped to
transport wheelchair users, and not all pickup locations are accessible by every type of vehi-
cle. To account for this, the model incorporates a multi-resource capacity framework, where

4

vehicles are defined by their capacity in terms of both seats and wheelchair spaces. Each
request thus involves consuming a vector of resources that must be respected throughout the
route. These compatibility and capacity constraints are crucial for generating feasible and
legally compliant schedules, especially in high-volume, high-heterogeneity instances.

In this context, a vehicle route is modeled as a full-day block of activities, beginning with
a departure from a depot (pull-out), followed by a sequence of pickups and drop-offs, and
ending with a return to the depot (pull-in). The route may include deadhead segments,
during which the vehicle travels without passengers, as well as scheduled breaks. These
breaks are dictated by the specific contract associated with the vehicle and must occur after
certain durations of work. Importantly, a break may only be scheduled when the vehicle is
empty (i.e., all passengers have been dropped off), which introduces further synchronization
constraints between operational rules and routing feasibility.

To capture the operational efficiency and contractual penalties, the cost of a route is computed
using a detailed multi-component cost structure. This includes fixed penalties for the number
of route blocks (segments between empty states), variable costs based on time and distance
traveled, and optional charges for deadhead travel or vehicle pull-outs and pull-ins. For
example, routes with multiple blocks are penalized to encourage vehicle productivity by
minimizing idle times. On the other hand, travel time with onboard passengers is weighted
more heavily than deadhead travel to reflect its direct contribution to service delivery. The
cost functions are also contract-dependent: the same vehicle performing the same route under
two different contracts may yield different total costs due to distinct pricing models. This
cost model is both highly detailed and non-uniform.

The scale of the problem further distinguishes it from traditional DARP studies. While
most academic benchmarks focus on medium-sized instances, the practical datasets consid-
ered in this work include up to more than 10,000 transportation requests and more than 560
vehicles distributed across multiple contracts. Each request consists of a pickup and deliv-
ery pair with a tightly constrained time window and a maximum allowable ride time. The
combination of massive request volumes, high heterogeneity, and strict feasibility require-
ments results in an exceptionally large and complex solution space. Classical optimization
approaches—particularly those relying on explicit enumeration of feasible schedules or com-
plete static graph formulations—become rapidly intractable at this scale.

An additional layer of complexity arises in the EV variant of the problem, commonly referred
to as the E-DARP. In this extension, all vehicles are electric and operate under finite battery
capacity. Each segment of a route depletes the vehicle’s battery according to its distance and
payload. To ensure feasibility, routes may include recharging activities at designated charging

5

stations. Unlike classical refueling, battery charging is governed by concave piecewise lin-
ear functions, which reflect the nonlinear behavior of real-world charging systems—vehicles
charge faster at low state-of-charge and progressively slower as they approach full capacity.
Furthermore, partial charging is often optimal, especially when energy is needed quickly or
when station capacity is limited.

Figure 1.1 provides an illustrative example of a feasible route in the E-DARP, highlighting
how vehicle load, energy consumption, and partial recharging are managed over time to satisfy
operational constraints. The route includes a sequence of pickup and delivery locations, each
associated with a time window, where “+x” denotes the pickup node for request x and “–x” its
corresponding delivery node, and the travel time between nodes is shown along the arcs. The
vehicle begins its tour from the depot with a fully charged battery and zero load. Throughout
the route, the vehicle performs passenger pickups and deliveries, respecting both time window
constraints and capacity limitations. The service time at each pickup and delivery node is
assumed to be 1 minute, representing the time required for boarding or alighting. The lower
section of the figure displays the vehicle’s load, state-of-charge (SoC), and the start of service
time at each node. For instance, the start of service at node “+2” occurs at time 30, and
at its corresponding delivery node “–2” at time 69, resulting in a ride time of 39 minutes
for request 2. Energy consumption is governed by a constant discharging rate of 0.055 kWh
per kilometer, while recharging is permitted at designated charging stations at a rate of 0.11
kWh per minute. The figure illustrates a case where partial recharging is utilized during
the route: the vehicle stops at a charging station (CS) after servicing node “–3”, recharging
for 30 minutes to replenish its battery sufficiently and continue serving requests. The route
concludes at the depot with a SoC exactly at the minimum required threshold, set to 40%
of the total battery capacity. This example highlights the importance of jointly considering
routing, time scheduling, passenger constraints, and battery management—including partial
recharging strategies—for the operational feasibility of electric mobility services in dial-a-ride
systems.

In addition, charging operations must also respect time-of-use electricity pricing, where the
cost of charging varies throughout the day. This introduces a trade-off between timing,
duration, and cost of energy replenishment. Additionally, charging station capacities are
finite: at any given time, only a limited number of vehicles can charge at each station. The
routing algorithm must therefore synchronize vehicle arrivals and charging durations across
the entire fleet while avoiding congestion at charging sites. These constraints require the
integration of energy-aware scheduling and charging station insertion logic into the routing
framework.

6

Figure 1.1 A feasible route in the E-DARP

Overall, the problem investigated in this dissertation combines a high-fidelity representation
of dial-a-ride operations, including contractual and regulatory constraints, with the compu-
tational demands of large-scale optimization and the modeling of realistic electric mobility
systems. Solving this problem requires algorithms that are both structurally aware and com-
putationally scalable, capable of navigating large search spaces while accounting for feasibility
and cost at a fine level of detail. To address these needs, this research proposes a combination
of exact and heuristic methods tailored to different scales and variants of the problem. The
next section outlines the research objectives and methodological strategies employed in the
remainder of this dissertation.

1.3 Research Objectives

The overarching objective of this dissertation is to develop and evaluate advanced optimiza-
tion approaches for solving large-scale and realistic variants of the DARP, including those
involving electric vehicles. The research is motivated by real-world operational challenges,
particularly those faced by demand-responsive transportation systems operating under con-
tractual, resource, and environmental constraints. Emphasis is placed on scalability, solution
quality, and practical applicability. Three core research objectives guide the development of
this work. First, the dissertation aims to address the limitations of existing exact methods by
proposing a branch-and-price-and-cut (BPC) framework capable of solving the largest known
practical instances of the DARP to proven optimality. This objective focuses on capturing key
operational features such as user and vehicle heterogeneity, contract-based constraints, and
time- and resource-related limitations, thereby aligning model assumptions with real-world
practice.

Second, the research seeks to develop a solution approach suitable for very large-scale in-
stances of the DARP. This objective involves the design of an algorithmic framework that
maintains computational efficiency while accommodating the complexity of large transporta-
tion networks and service requirements. It emphasizes the ability to generate high-quality

7

solutions in reasonable computational times, making it suitable for practical planning appli-
cations.

Third, the dissertation extends the scope of DARP to electric vehicle-based transportation
systems. The research objective here is to incorporate realistic features of electric mobility,
such as battery dynamics, recharging constraints, infrastructure limitations, and energy cost
variability, into the problem formulation and solution methodology. Of particular importance
is the ability to handle very large-scale instances of the E-DARP, involving thousands of
requests and diverse charging configurations. The goal is to provide decision support tools
that are not only energy-aware and environmentally responsible but also scalable enough to
address the operational realities of future electric fleet deployments.

Together, these objectives contribute to the development of robust and flexible optimization
tools that bridge the gap between theoretical modeling and the operational needs of modern
mobility systems. The approaches proposed in this dissertation are intended not only to
advance the academic literature on DARP and electric vehicle routing but also to inform
the design and implementation of decision support systems in real-world transport planning
environments.

8

CHAPTER 2 LITERATURE REVIEW

This dissertation focuses on the resolution of realistic and large-scale DARP, including its elec-
tric vehicle variant (E-DARP). Section 2.1 presents the state-of-the-art in solution methods
for DARP. Section 2.2 discusses algorithmic strategies developed for very large-scale routing
problems, with a focus on scalability. Finally, Section 2.3 reviews the recent literature on the
E-DARP, highlighting modeling advancements and optimization methods tailored to energy
constraints and electric vehicle operations.

2.1 Dial-a-Ride Problem

The DARP addresses the challenge of assigning a set of user-defined transportation requests
to a fleet of vehicles while generating efficient and feasible vehicle routes. It lies at the
intersection of combinatorial optimization and transportation logistics and serves as a funda-
mental framework for modeling shared mobility systems such as paratransit services, medical
transport, and emerging mobility-on-demand applications [3]. The most commonly pursued
objective in DARP studies is the minimization of the service provider’s operational costs,
which can encompass total travel time, distance traveled, vehicle utilization, and driver
working hours [16]. Alongside these, customer-centric objectives such as minimizing pas-
senger ride time, waiting time, and deviations from desired pickup and delivery windows
are also frequently addressed [17–19]. Although less prominent, environmental sustainability
considerations, particularly related to vehicle emissions, have been explored in a subset of
studies [20].

In addition to these general goals, various problem-specific objectives have been investi-
gated. These include maximizing vehicle occupancy rates to improve system efficiency [21],
enhancing the profitability of transportation operators [22], reducing operational burden on
staff and drivers [23], and increasing the overall reliability and robustness of the transport
service [24]. Such objectives underscore the multifaceted nature of the DARP, where both
economic efficiency and service quality must be balanced. Furthermore, recent works have
begun to incorporate social and regulatory concerns, such as equitable service provision to
mobility-impaired individuals, compliance with labor laws regarding driver working hours
and breaks [13], and the integration of DARP systems with other mobility platforms in the
context of Mobility-as-a-Service.

While a large number of DARPs in the literature focus on a single goal, others take into

9

account multiple goals and require the decision-maker to choose the best answer among them.
In the case of research that has considered several objective functions, it can be divided into
three categories based on the method used to manage these objectives. The first type is to
treat the multiple objectives as a weighted sum of different measures [6,25–27]. This method,
however, is ineffective in situations when the relative relevance of each objective is uncertain
or unquantifiable. In addition, the solutions are quite sensitive to the goal weights.

The second type considers goal functions hierarchically and in order of importance, where a
higher-level goal must be optimized first and a lower-level goal further optimized if possible
[28, 29]. This approach applies to problems where one goal is significantly more important
than the others, but the relative importance of different measures cannot be demonstrated
by one unit. The purpose of the third type is to obtain the Pareto frontier for the problem.
The Pareto frontier contains solutions that are not dominated by any other solution in terms
of relevant criteria. In addition, a complete set of non-dominated solutions can be created
for the decision maker to select the appropriate program for the final implementation [16,30].
The Pareto solution approach gives the decision maker a complete picture of all possible
optimal solutions, which is especially desirable when there is no confidence in the relative
importance of each criterion.

Before surveying the solution algorithms proposed to solve the DARP and its many variants,
it is important to highlight the range of problem features that have been considered in the
literature. Algorithmically-focused studies, such as those by Parragh et al. [31, 32], Chas-
saing et al. [33], and Ritzinger et al. [11], typically examine a classical setting that assumes a
homogeneous fleet of capacitated vehicles, strict pickup and delivery time windows, bounded
route duration, and ride time limits for passengers. However, many practical applications
have motivated the exploration of more complex and realistic problem characteristics. These
include the presence of heterogeneous passengers and vehicle fleets [10,12], the allowance for
passenger transfers between vehicles [34–36], the integration of fixed-route and scheduled pub-
lic transportation into the user journey [37–39], the inclusion of additional human resources
such as attendants or medical staff [13, 23, 40], and driver scheduling requirements [19, 41].
Moreover, the recent emergence of electric vehicle routing has led to new DARP variants
that account for battery capacities, charging constraints, and the positioning of charging
infrastructure [15,42,43].

Based on the time of decision making (static or dynamic) and nature of information (deter-
ministic or stochastic), the DARP can be classified into four categories: static-deterministic,
static-stochastic, dynamic-deterministic, and dynamic-stochastic. Most of the articles con-
sider static and deterministic DARPs, for which the decision maker has perfect information

10

concerning all current and future operations from the beginning of planning. Among these
articles are the typical configurations of a homogeneous fleet of vehicles, time windows, max-
imum passenger ride time, maximum route length, and vehicle capacity. This setting is
especially popular among articles that focus on algorithmic development [11,31–33]. Except
for studies focusing on algorithmic advances, most of the remaining articles focus on mod-
eling issues related to new problem characteristics motivated by new DARP applications or
actual needs in practice.

Compared to the other three categories, the number of studies in the static-stochastic cate-
gory (the decision maker must determine all decisions at the beginning based on imperfect
and uncertain information) seems relatively insufficient. The stochastic user arrival is con-
sidered, while the number of user requests follows a Poisson process [44]. A specific user
requests services with a certain probability [45], or the arrival time of users to enter pickup
points is stochastic [46]. The common goal of this research is to optimize the expectation of
the objective function in anticipation of events [45,46] or to examine the performance of the
system in a static and stochastic environment [44].

Experimental research on dynamic and deterministic DARPs is usually characterized by the
presentation of a simulation or other dynamic model in which decisions made in response to
new information are returned to the model to influence the future evolution of the system [47].
In this version of DARPs, at any time from the beginning of planning onwards, the decision
maker has perfect information concerning all current and future operations except for the
appearance of new users and cancellations of users. Most research models in this category
consider new user requests as events that begin the re-planning process [48,49]. The purpose
of this type of DARP is to determine how a new request will be accepted, or to make pricing
decisions for new user requests [50–52]. Most of the research in this category is limited to new
user requests for dynamic environments; however, in fact, there may be other types of events
that may cause the transportation plan to be reconsidered, such as a vehicle breakdown
and an unexpected rest break. Liang et al. [53] proposed a non-linear integer programming
model to study the DARP with automated vehicles (taxis) under dynamic travel times,
which is defined as a function of traffic flow. During the trip service, there is a possibility of
disruption that leads to change, modification, or even cancellation of the service by users. To
manage these disruptions, a recovery management framework has been proposed by Paquay
et al. [54] to take care of as many patients as possible in a real-time environment. Recently, a
bi-objective (transportation cost and user inconvenience) mathematical optimization model
for a real-world application of the heterogeneous dynamic DARP with no request rejection
has been developed by Souza et al. [55] with in-advance and urgent transportation requests.

11

In the category of dynamic-stochastic DARPs, various types of uncertainties are considered,
such as future user requests [28, 56], random travel times [29, 56], and desired dropped-off
times [57]. Stochastic information can be used to predict scenarios that may occur in the
future for optimal control [58, 59]. Using random information about unknown future events
to make decisions in response to recently realized events (also known as the non-myopic
approach [60]), solutions are expected to be of higher quality than solutions generated by
myopic methods [50–52].

To solve these increasingly complex problem settings, a wide variety of algorithms (exact,
heuristic/metaheuristic, and hybrid) have been developed. Among exact algorithms, branch-
and-bound (BB) frameworks remain foundational. The first branch-and-cut (BC) method for
DARP was introduced by Cordeau [61], who also proposed several families of valid inequali-
ties derived from those used in the traveling salesman problem and classical vehicle routing
problems. Later studies extended this work by introducing additional classes of cuts tailored
to problem-specific features, including constraints related to trip count and rest breaks [41],
symmetry breaking, and driver scheduling consistency (Braekers and Kovacs, 2016), as well
as extensions to electric and autonomous vehicle variants [15]. Passenger-transfer versions
of DARP have been solved using BC methods enhanced by combinatorial Benders cuts that
ensure feasibility across transfer points [34]. More recent efforts have introduced compact
formulations that handle pairing, precedence, and capacity constraints implicitly. For in-
stance, Rist and Forbes [62] proposed a flow-based model defined over route fragments (i.e.,
sequences of pickups and deliveries starting and ending with an empty vehicle), Gaul et
al. [63] developed a node-based event network formulation where each vertex encodes the
vehicle’s onboard passenger list at each event, while Schulz and Pfeiffer [64] presented BC
algorithm for DARP with incompatible customer types.

Branch-and-price (BP) algorithms address DARP by decomposing the problem into a mas-
ter problem—responsible for route selection—and a pricing subproblem that generates new
feasible routes. The pricing subproblem is typically modeled as an elementary shortest path
problem with resource constraints and solved using labeling algorithms or dynamic program-
ming [21]. To improve computational performance, heuristic pricing solvers may be employed
first, with exact algorithms invoked only as needed [22]. A notable development in this line is
the introduction of branch-price-and-cut (BPC) algorithms, which merge BP with the use of
valid inequalities to tighten relaxations. Qu and Bard [65] demonstrated the benefit of subset-
row inequalities in reducing BB nodes and improving convergence. Similarly, Gschwind and
Irnich [18] incorporated synchronization constraints and adapted known cuts for their BPC
framework. In the context of multi-trip DARPs, Luo et al. [19] proposed a two-phase algo-
rithm. The first phase builds a trip-based model by enumerating a pool of non-dominated

12

trips using a label-setting algorithm; the second phase applies BPC combined with infeasible
path cuts and Benders cuts to ensure global route feasibility. Recently, a BCP algorithm
to solve an equitable variant of the DARP, namely equity-aware DARP, a bi-objective op-
timization problem that simultaneously minimizes the total routing cost and maximizes the
equity-of-travel outcomes for individual passengers [66]. Despite the significant progress, it is
noteworthy that most exact methods remain limited to small- and medium-scale instances.
As of recent studies, the largest DARP instances solved to proven optimality include no more
than 100 transportation requests [63].

To address larger-scale and more complex DARPs, researchers have turned to heuristic and
metaheuristic methods, which provide high-quality solutions within reasonable computational
times, especially when exact methods become intractable. Metaheuristics such as tabu search
(TS), variable neighborhood search (VNS), large neighborhood search (LNS), genetic algo-
rithms (GA), and hybrid frameworks have been widely used. Cordeau and Laporte [17] were
among the first to apply TS to the DARP, introducing memory structures and diversification
strategies to escape local optima. Their framework has inspired a generation of TS-based
methods with modifications in neighborhood operators, penalty mechanisms, and search in-
tensification procedures. The use of this algorithm in other studies (e.g., [27,67,68]) further
supports its applicability and effectiveness.

VNS-based algorithms have been particularly influential due to their adaptability and perfor-
mance across different DARP variants. These methods systematically explore an increasing
set of neighborhood structures and have been applied to both single- and multi-objective prob-
lems [16,29]. Recent studies have introduced evolutionary VNS, which employs a population-
based approach and incorporates genetic operators to enhance solution diversity [42]. Simi-
larly, LNS algorithms, which alternate between destruction and repair phases, have demon-
strated success in balancing intensification and diversification [69, 70]. Adaptive versions
of LNS have been integrated with learning mechanisms to dynamically adjust removal and
insertion strategies [14, 35, 71]. GA has also proven effective in solving DARPs, especially
when integrated with local search components. Examples include cluster-first, route-second
methods that use GA for clustering and heuristics for routing [26,72].

In addition to these methods, hybrid algorithms that use the capabilities of multiple algo-
rithms have been very popular. This combination can be a hybrid of two or more (meta-)
heuristics, a hybrid of metaheuristic and mathematical model approaches, and a hybrid of
metaheuristic and constraint programming. One of the most common hybrid algorithms is a
combination of population-based algorithms (e.g., GA) to better explore the solution space
and trajectory-based algorithms (e.g., TS, VNS, and LNS) for proper exploitation. For ex-

13

ample, a hybrid GA algorithm with two crossover operators and four mutation operators
was proposed for solving the heterogeneous DARP by Masmoudi et al. [73]. This hybrid
algorithm applied local search with five well-known operators from the routing literature to
the newly generated offspring in GA. Similarly, a simulated annealing method is presented as
a trajectory-based algorithm embedded within a bee algorithm as a population-based one for
solving the heterogeneous DARP with multiple depots [74]. Another way to create hybrids is
to use a local search method in a metaheuristic algorithm, for example, the ruin-and-recreate
method has been applied in the GRASP algorithm [24]. Belhaiza [75] combined an adaptive
LNS algorithm with a GA structure to solve DARP with time windows. Souza et al. [55]
proposed a two-phase heuristic algorithm for solving dynamic DARP. In the first phase, a
general VNS algorithm and a randomized variable neighborhood descent method are com-
bined to solve the static part of the problem, and a simple insertion heuristic is used for the
dynamic part of the problem.

In summary, the literature on the DARP encompasses a wide range of exact and heuristic
methods, each tailored to specific problem variants and scales. Exact algorithms have proven
effective for small to medium-sized instances, offering optimal solutions under tightly defined
constraints. However, numerous heuristic and metaheuristic algorithms have been developed
to efficiently generate high-quality solutions within reasonable computation times.

2.2 Large-scale Routing Problem

The computational intractability of exact methods in solving large-scale routing problems
has become increasingly apparent, especially in the context of the DARP, where the pres-
ence of time windows, precedence constraints, and multi-capacity vehicles results in a highly
complex combinatorial structure [18]. This challenge has led to a growing interest in heuris-
tic and metaheuristic approaches that offer more scalable and time-efficient solutions [11,
14, 33, 35, 40, 69, 76]. While these techniques have significantly improved the tractability of
small- and medium-sized DARP instances, their extension to large-scale scenarios remains
relatively underexplored. This is particularly critical given the real-world emergence of high-
demand, on-demand transportation services in urban settings, where instances frequently
involve thousands—or even hundreds of thousands—of user requests.

Early efforts to bridge this scalability gap include the work of Xiang et al. [77], who proposed
a heuristic framework based on local search, enhanced by diversification and intensification
strategies. Their solution approach, tested on instances with up to 2,000 requests, was
among the first to demonstrate the feasibility of heuristic methods for managing the com-
putational burden of large DARP instances while still achieving acceptable solution quality

14

within reasonable time limits. This contribution marked an important milestone in moving
beyond exact optimization paradigms for realistic applications. Subsequent advances have
focused on improving the scalability of metaheuristics through distributed computing and
problem decomposition. Muelas et al. [78], building upon their earlier work [79], introduced
a distributed VNS algorithm. Their approach partitions the request space into manageable
subsets and then applies route combination techniques to coordinate the global solution.
This methodology was evaluated on a large-scale case study based in San Francisco, involv-
ing up to 16,000 requests. Their results not only highlighted the computational efficiency
of distributed search but also emphasized the value of spatial partitioning in mitigating the
dimensionality curse often associated with real-world DARP instances.

More recently, Liu et al. [80] explored large-scale homogeneous DARP under a new oper-
ational paradigm: shared autonomous vehicle systems. They proposed a greedy insertion
heuristic augmented with a filtering mechanism for decision acceleration and introduced a
network-driven route encoding framework. The strength of their method lies in its capacity
to handle extremely large instances, ranging from 10,000 to 300,000 requests across networks
with up to 15,000 nodes. Their work showcases the integration of network analysis, algorith-
mic design, and modern transportation systems to address the rising demand for scalable
on-demand mobility services.

Insights from the broader vehicle routing problem (VRP) literature have further enriched the
toolkit available for large-scale DARP. VRP, as a more general class of routing problems, has
seen extensive efforts in scaling algorithms to industrial-size instances. For example, Kytöjoki
et al. [81] developed a VNS-based algorithm that combines several insertion heuristics to
construct high-quality initial solutions, which are then refined using variable neighborhood
descent. Their method solved instances with up to 20,000 customers in under an hour,
demonstrating that careful hybridization of local search techniques can yield effective large-
scale solvers. Similarly, Qi et al. [82] proposed a two-phase strategy for VRP with time
windows. The cluster-first, route-second approach utilizes k-medoid clustering and GA to
achieve spatial and temporal decomposition, enabling more tractable subproblem resolutions.
These clustering strategies laid the groundwork for numerous later studies attempting to
break down problem size before optimization. More recently, Arnold et al. [83] presented a
scalable local search heuristic that can handle capacitated VRP instances with up to 30,000
customers. Their algorithm uses sequential search strategies and powerful pruning techniques
to reduce the effective search space. This combination allows for efficient exploration while
maintaining high solution quality, thereby offering practical relevance to large-scale logistics
operations.

15

In the same manner, Accorsi and Vigo [84] developed the FILO algorithm, a hybrid iterated
local search enriched with simulated annealing acceptance rules and acceleration techniques.
FILO achieved high-quality results on benchmark instances of considerable size (up to 30,000
customers), with run times restricted to around 150 minutes. Their work illustrates the bal-
ance between solution quality and computational efficiency in solving massive-scale problems.

Recent studies have begun leveraging machine learning to enhance large-scale VRP method-
ologies. Zhang et al. [85] introduced a two-stage learning-based method comprising a clus-
tering and routing phase. The clustering phase relies on graph convolutional networks and
attention mechanisms to maintain pickup-delivery integrity while classifying requests for dif-
ferent vehicles. The routing phase then uses a trained deep learning model to generate
feasible tours. Remarkably, their model, initially trained on small-scale instances, demon-
strated strong generalization capabilities when applied to much larger instances, showcasing
the potential of transfer learning in combinatorial optimization. Furthering the application of
adaptive learning in routing, Máximo et al. [86] proposed AILS-II, an adaptive iterated local
search framework. The algorithm operates in two phases, each incorporating perturbation
and local search but differing in how reference solutions are selected—either via acceptance
criteria or from an elite solution set. AILS-II outperformed state-of-the-art benchmarks on
both small and large VRP instances, reaching up to 30,000 vertices and yielding superior
solution quality and stability. Cavaliere et al. [87] address two practical variants of the
VRP: the VRP with simultaneous pickup and delivery (VRPSPD) and the VRP with mixed
pickup and delivery (VRPMPD). They introduced FSPD, a specialized extension of the FILO
framework, designed to efficiently solve these variants. The algorithm demonstrates strong
competitiveness with existing state-of-the-art methods while maintaining linear scalability
in computational time, even on newly proposed large-scale benchmark instances with up to
30,000 customers. Accorsi and Vigo [88] extend their earlier work [84] by introducing a new
dataset with significantly larger instance sizes (ranging from 20,000 to 1,000,000) to chal-
lenge current algorithmic capabilities. They present FILO2, an improved version of their
FILO algorithm, which incorporates enhanced acceleration and pruning strategies. Tested
on extremely large-scale instances, FILO2 delivers high-quality solutions efficiently, demon-
strating superior scalability. While the instances exceed typical real-world applications, they
serve as valuable benchmarks for advancing research on scalable routing algorithms.

Table 2.1 summarizes key studies on large-scale routing problems, outlining the problem type,
algorithmic approach, largest problem size addressed, and corresponding computation time.
The table highlights a trend toward increasing scalability through advanced heuristics, hybrid
methods, and learning-based techniques, with different problem sizes and varying solution
times depending on the algorithm used.

16

Table 2.1 Summary of large-scale routing problem studies

Reference Problem Type Algorithm Largest Problem Size Time (min)
Xiang et al. [77] DARP Local search strategies 2,000 requests 360
Muelas et al. [78] DARP Distributed VNS 16,000 requests 180

Kytöjoki et al. [81] VRP VNS 20,000 customers 144
Qi et al. [82] VRP Hybrid clustering and GA 1,000 customers 2

Arnold et al. [83] VRP Local search strategies 30,000 customers 600
Accorsi & Vigo [84] VRP FILO 30,000 customers 150

Zhang et al. [85] VRP Learning-based method 1,000 customers 15
Liu et al. [80] DARP Hybrid greedy insertion 300,000 requests 313

Máximo et al. [86] VRP Adaptive iterated local search 30,000 customers 1160
Cavaliere et al. [87] VRPSPD / VRPMPD FSPD 30,000 customers 28
Accorsi & Vigo [88] VRP FILO2 1,000,000 customers 167

Although significant progress has been made in the routing problem literature, relatively few
studies have directly tackled the unique challenges associated with very large-scale and prac-
tical DARP instances. The complexity of such problems, characterized by high-dimensional
search spaces and computationally expensive constraints, necessitates the development of
advanced algorithms capable of balancing solution quality and computational efficiency.

2.3 Electric Dial-a-Ride Problem (E-DARP)

The growing adoption of EVs in transportation systems has prompted the need to revisit
classical vehicle routing problems by incorporating energy-related constraints. One of the
well-studied extensions in this context is the electric pickup and delivery problem with time
windows (EPDPTW), which emerges when conventional vehicles are replaced with EVs in
the traditional PDPTW. The EPDPTW introduces additional layers of complexity due to
factors such as limited driving range, the need for recharging, and time-dependent energy
consumption, all while maintaining service time constraints and precedence requirements
between pickup and delivery locations.

Several studies have addressed the EPDPTW by proposing both exact and heuristic ap-
proaches tailored to the unique characteristics of electric fleets. Grandinetti et al. [89] formu-
lated the EPDPTW as a multi-objective optimization problem, aiming to minimize the total
travel distance, the cost associated with EV usage, and penalties incurred from service delays.
Goeke [90] presented a compact model for the EPDPTW that incorporates a partial recharg-
ing policy and proposed a granular tabu search algorithm. Their approach effectively handles
partial charging while allowing limited violations of time window constraints to enhance flexi-
bility. In a stochastic setting, Soysal et al. [91] introduced a chance-constrained mixed-integer
nonlinear programming model, considering the uncertainty in battery depletion. They also

17

developed a linear approximation method to ensure computational tractability while preserv-
ing solution quality. Liu et al. [92] studied the electric PDPTW under demand uncertainty
using a two-stage adaptive robust optimization model. Routing and timing decisions are fixed
in advance, while loading/unloading quantities adapt to actual demands. To solve the model
efficiently, they developed a two-phase decomposition method combining a branch-and-price-
and-cut algorithm and dynamic programming. Their results highlight the robustness of the
proposed approach and the influence of battery consumption rates on routing performance.
Agrali and Lee [93] introduced a variant of the EPDPTW that allows transfers between ve-
hicles at recharging facilities, relaxing the traditional single-vehicle-per-request constraint.
The model also incorporates multi-depots, time windows, and EV-specific constraints. A
hybrid heuristic combining simulated annealing and LNS was proposed to solve the problem
efficiently, achieving optimal solutions significantly faster than CPLEX on small instances.
Recently, Zhou et al. [94] addressed the EPDPTW by incorporating queue scheduling for
vehicles at shared locations. A MIP model and an adaptive hybrid neighborhood search
algorithm were proposed. The approach proved effective, finding new best solutions and
highlighting the importance of considering queue delays in EV logistics.

These advancements have significantly contributed to the broader understanding of how
electrification affects routing and scheduling in logistics systems. However, the focus in
EPDPTW remains largely on freight delivery, with limited attention to more passenger-
centric applications. This has led to increased interest in the E-DARP, an extension of
the DARP that accounts for electric vehicle constraints. The E-DARP incorporates the
complexities associated with EV operations, including limited battery capacity, the need
for recharging, and the impact of energy consumption on routing decisions. Over the last
decade, a growing body of research has been dedicated to modeling and solving the E-DARP,
proposing a range of exact and heuristic algorithms to address its unique challenges.

Masmoudi et al. [42] introduced the E-DARP in the context of non-emergency healthcare
transportation. Their model integrates heterogeneous electric vehicles that provide various
medical transport resources under capacity constraints. A key feature of their formulation
is the use of battery swapping stations with fixed swap times, while travel-based energy
consumption varies by arc. To solve the problem, they developed three versions of a hybrid
evolutionary VNS algorithm embedded in a genetic framework. Their study stands out for
adapting standard DARP benchmark datasets and generating a new set of artificial instances
specifically designed for electric vehicle operations.

Building on the foundational structure of DARP, Bongiovanni et al. [15] proposed the elec-
tric autonomous DARP (E-ADARP), which considers electric autonomous vehicles operating

18

from multiple starting and ending depots. A novel constraint introduced in their model is
the requirement for each vehicle to maintain a minimum SoC upon return, enabling more
realistic modeling of battery usage. Moreover, they imposed access limitations on recharg-
ing stations—only empty vehicles may use them, and partial recharging is permitted. They
developed both three-index and two-index mixed-integer programming (MIP) models and
employed a BC algorithm with problem-specific valid inequalities. Their experimental val-
idation included both benchmark-based and real-world ridesharing datasets, such as data
derived from Uber Technologies Inc.

In a subsequent study, Bongiovanni et al. [95] addressed the dynamic nature of electric
autonomous ridesharing and extended the static E-ADARP to its online variant. They pro-
posed a two-phase machine learning-based LNS. The first phase comprises a greedy insertion
heuristic for assigning real-time requests, and the second phase uses a metaheuristic based
on destroy-repair strategies, where the choice of operators is guided by a machine learning
model trained offline on over 1.5 million solved subinstances. This marks one of the first
significant applications of supervised learning to guide neighborhood search in E-DARP.

Su et al. [96] introduced a novel fragment-based path representation for the E-ADARP,
where path fragments are abstracted into arcs, enabling the construction of a sparse graph
that retains all feasible original paths. This method allows optimality in minimizing excess
user ride time while significantly improving computational efficiency. Their approach is
implemented in a column generation framework, where a restricted master problem and
pricing subproblems are solved iteratively. A tailored labeling algorithm, using resource
extension functions and strong dominance rules, ensures the feasibility of partial recharging
and guarantees optimal label extension for each path.

A complementary strategy was proposed by Limmer [97], who developed a bilevel LNS frame-
work. In the outer level, charging sessions are inserted into vehicle routes, and in the inner
level, pickup and delivery decisions are optimized. Their framework was tested on several
instance sets, including extensions of the well-known benchmarks, and large-scale instances
with up to 260 vehicles and 5200 requests. This study is notable for tackling large-scale
instances while explicitly modeling the interaction between routing and charging strategies.

Addressing a different setting, Molenbruch et al. [43] studied the E-DARP on a fixed circuit,
motivated by the operation of autonomous electric shuttles. This problem assumes a circular
network where shuttles follow a fixed route and may stop flexibly for pickups and drop-offs.
The objective is to minimize passenger excess time and total laps completed by the fleet,
considering recharging needs between laps. They proposed a lap-based MIP formulation
and developed specialized algorithms for subproblems, which were integrated into an LNS

19

metaheuristic. Their tests included both synthetic networks and a real-world case from
Renmark, Australia.

Su et al. [98] advanced their previous work by introducing a deterministic annealing algo-
rithm for E-ADARP. Their algorithm efficiently minimizes excess ride time using a linear-time
route evaluation method and a fragment-based path representation. This study emphasizes
exact evaluation under partial recharging and demonstrates the practical applicability of their
method in dynamic scheduling environments. A notable recent contribution by Bresich et
al. [99] developed an LNS heuristic that uses battery-restricted fragments for route represen-
tation and cost computation. Their method includes two charging-handling strategies: one
that separates route, charging, and scheduling operations; and a second, integrated approach
with dynamic charging stop insertion. Their approach achieved or improved best-known
solutions for benchmark instances, demonstrating its high performance and flexibility.

Su et al. [100] proposed a BP algorithm leveraging a refined labeling approach for the path-
based formulation of E-ADARP. Key innovations include a graph abstraction method that
preserves feasible paths while reducing graph size, strong dominance rules, and feasibility
checks with constant time complexity. Their method solved test instances to proven opti-
mality, setting a new benchmark for exact solution methods in this field. A different modeling
approach was introduced by Stallhofer & Parragh [101], who proposed an event-based MILP
model for E-ADARP. To enhance the formulation, they introduced valid cuts and compared
the performance of the new model against the BC algorithm of Bongiovanni et al. [15] and
the column generation method of Su et al. [96]. Their findings highlight the potential of
event-based modeling in capturing detailed temporal and energy-related constraints more
precisely.

More recently, Dong et al. [1] explored the integration of E-DARP with time-of-use elec-
tricity pricing and ridesharing. Their model incorporates partial charging, time-dependent
charging costs, and user ride time penalties. They formulated the problem as a MIP and pro-
posed a customized adaptive LNS algorithm that combines a dynamic programming module
for charging optimization and a fast feasibility-checking procedure. Their tests on adapted
DARP benchmarks and real-world datasets from electric taxi operations in Shenzhen demon-
strate the model’s practical relevance and flexibility in modern smart grid environments.

Table 2.2 provides a summary of these studies on the E-DARP, capturing problem and
algorithmic strategies. As observed, while early works focused on small to medium-sized in-
stances, more recent efforts address larger networks. This table also highlights the diversity of
solution methodologies and indicates a growing effort to tackle the computational challenges
posed by large-scale, realistic E-DARP instances.

20

Table 2.2 Overview of recent contributions to the E-DARP

Largest instance size
Reference Problem Type of algorithm Vehicles Requests

Masmoudi et al. [42] Static E-DARP Heuristic 17 100
Bongiovanni et al. [15] Static E-ADARP Exact 5 50
Bongiovanni et al. [95] Dynamic E-ADARP Hybrid heuristic 5 60

Su et al. [96] Static E-ADARP Exact 5 50
Limmer [97] Static E-ADARP Heuristic 260 5,200

Molenbruch et al. [43] Static E-DARP on a fixed circuit Heuristic 8 300
Su et al. [98] Static E-ADARP Heuristic 8 96

Bresich et al. [99] Static E-ADARP Heuristic 8 96
Su et al. [100] Static E-ADARP Exact 8 96

Stallhofer & Parragh [101] Static E-ADARP Exact 8 96
Dong et al. [1] Static E-DARP Heuristic 900 10,000

Despite notable advancements in research on the E-DARP, many existing studies rely on sim-
plifying assumptions that limit their real-world applicability. A common assumption is that
all vehicles are equipped with homogeneous battery capacities and begin operations with fully
charged batteries. Additionally, most models consider only a single type of charging infras-
tructure, often excluding the diversity of technologies such as fast or slow charging stations.
This uniform treatment of infrastructure overlooks the operational flexibility and limitations
associated with different charging technologies. Charging behavior is typically modeled using
linear functions, which fail to capture the inherently nonlinear and state-dependent nature
of battery charging processes. Moreover, operational constraints at charging stations—such
as limited capacity, simultaneous charging restrictions, and potential queueing delays—are
rarely incorporated into existing formulations. These constraints can significantly influence
the feasibility and efficiency of routing plans, particularly in dense urban settings with lim-
ited infrastructure availability. The lack of attention to these realistic elements constrains
the practical deployment of many proposed solutions.

21

CHAPTER 3 THESIS ORGANIZATION

As discussed in Chapter 2, a key gap in the existing literature lies in the limited availability
of optimization methods that can handle (i) the modeling realism required by operational
DARP settings, (ii) the computational demands of large and very large-scale instances, and
(iii) the emerging challenges associated with the integration of EV fleets. Most prior stud-
ies either focus on simplified problem variants or employ algorithms that do not scale to
real-world dimensions, especially for exact algorithms. Furthermore, features such as con-
tractual cost structures, energy dynamics, and charging infrastructure constraints remain
largely underexplored in large-scale DARP models.

To address this gap, this dissertation is organized into three core articles, each targeting a
specific aspect of the problem. The order of these articles reflects a deliberate methodologi-
cal progression: from exact approaches for medium-sized, high-fidelity problems to scalable
heuristic methods for very large-scale and energy-constrained environments. This evolution
mirrors the research trajectory followed during the doctoral project and highlights how each
article builds upon the findings of the previous one.

The first article, presented in Chapter 4, focuses on the development of an exact BPC al-
gorithm for solving DARP instances that reflect real operational conditions. The model
includes multiple advanced features: heterogeneous users and vehicles, multi-resource capac-
ity, contract-specific routing constraints and budget, time windows, maximum ride times, and
break regulations. The proposed algorithm is capable of solving realistic small- to medium-
scale instances (the largest DARP instance reported to be optimized in the literature) to
proven optimality, as motivated by a real-world case study from GIRO Inc. Chapter 4 serves
as the foundation of the dissertation by establishing a robust and flexible modeling frame-
work and by demonstrating the value of exact methods in generating optimal solutions under
realistic constraints.

Recognizing the computational limitations of exact methods when applied to large-scale
instances, the second article (Chapter 5) shifts focus to heuristic approaches. It intro-
duces a VNS algorithm tailored to address the complexity and size of real-world DARP
datasets—comprising thousands of requests and hundreds of vehicles—well beyond the reach
of exact methods. The algorithm incorporates a linear relaxation-based initialization method
and a structured neighborhood design to efficiently explore large solution spaces. Chapter 5
builds directly upon the model and constraints introduced in Chapter 4, adapting them to a
heuristic context and ensuring that high-quality solutions can be obtained within acceptable

22

computational times. In addition, the optimal solutions obtained with the exact algorithm of
Chapter 4 allow us to assess the quality of the solutions produced by the heuristic of Chapter
5 on medium-sized instances.

The third article, shown in Chapter 6, extends the VNS framework to address the E-DARP,
a novel and increasingly relevant variant of the classical DARP. Chapter 6 introduces energy
constraints related to battery consumption, concave piecewise linear charging dynamics, time-
of-use electricity pricing, and charging station capacities, aspects largely overlooked in prior
studies. The heuristic is adapted to ensure feasibility under these new dimensions, while
maintaining efficiency in large-scale contexts. Building on the scalable approach of Chapter 5,
this contribution integrates environmental and infrastructure considerations into the planning
model, making it applicable to future electric mobility systems.

The three articles are interlinked by a shared goal of improving decision-making in demand-
responsive transportation systems under increasing operational complexity. Chapter 4 pro-
vides the modeling and optimization foundation; Chapter 5 introduces algorithmic scala-
bility for large-scale deployment; and Chapter 6 adds the layer of electrification, respond-
ing to sustainability concerns and real-world charging constraints. This progression allows
the dissertation to evolve from theoretical rigor to practical applicability, while maintaining
methodological coherence across chapters.

In summary, this dissertation presents a unified and structured response to the limitations
identified in the literature. It contributes novel models and solution methods that are both op-
erationally grounded and computationally efficient, enabling the planning of next-generation
dial-a-ride services that are responsive to user needs, scalable in size, and compatible with
electric vehicle technologies.

23

CHAPTER 4 ARTICLE 1: AN EXACT BRANCH-AND-PRICE-AND-CUT
ALGORITHM FOR A PRACTICAL AND LARGE-SCALE DIAL-A-RIDE

PROBLEM

Authors: Mohammad Karimi, Fanny Camiat, Guy Desaulniers, Michel Gendreau

Note: Published in Journal of the Operational Research Society 76(6), 1125-1139, 2025
(Published online: 10 Oct 2024).

4.1 Introduction

In recent decades, the dial-a-ride problem (DARP) has gained significant attention, primarily
driven by its application in real-world contexts like dial-a-ride, on-demand mobility, and
paratransit services. The DARP builds upon the pickup and delivery problem (PDP, see
[9]), which involves the transportation of freight with the same vehicle responsible for both
pickup and drop-off and, more precisely, on the PDP with time windows (PDPTW, see
[4, 102]), where each location has a particular interval of time for service initiation. While
the PDPTW primarily concentrates on the transportation of goods, the DARP specifically
examines passenger transportation and incorporates additional service-related requirements
such as maximum ride-time constraints [8], in addition to common PDPTW constraints
(e.g., pairing, precedence, capacity, and time window constraints). One of the main DARP
applications arises from the patient transportation services provided by hospitals and other
medical institutions [5–7], where the objective is to efficiently schedule a fleet of ambulances
for the transportation of elderly individuals or patients between their homes and hospitals.

Various real-world features arising from different applications have been considered in the
DARP. In this paper, we consider practical features that have not yet been studied in the
literature and that arise from a real-world case proposed to us by our industrial partner
GIRO Inc. Assume that several sets of vehicles are available according to different contracts,
and define a route as a vehicle journey starting and ending at the depot and corresponding
to the work done by a vehicle over a whole day. Each route may be subject to a maximum
duration and a choice of break patterns dictated by the vehicle’s contract. In addition to
the limited number of vehicles available per contract, the budget allocated to each contract
is limited, according to a specific cost structure. We model this practical version of the
DARP as an integer linear program with an exponential number of variables and develop
an exact branch-price-and-cut (BPC) algorithm to solve it. To tackle the column generation

24

subproblems, we devise an ad hoc labeling algorithm that can handle all feasibility rules of the
vehicle routes. The proposed algorithm successfully optimizes a set of real-world instances,
including the largest case with 849 requests and over 70 available vehicles managed under
5 different contracts. To our knowledge, this is the largest DARP instance ever solved to
optimality in the literature. Solving this instance also allows to assess the performance of
the heuristic commercialized by GIRO.

The remainder of this paper is organized as follows. We review the studies related to the
DARP in Section 4.2. Section 4.3 provides a detailed description of the DARP of interest. In
Section 4.4, we model this problem as an integer program with a large number of variables.
Then, in Section 4.5, we describe the proposed BPC algorithm, including the labeling algo-
rithm, valid inequalities, and branching strategies. Section 4.6 introduces the data adopted
in the case study and presents our computational results. Finally, conclusions are drawn in
Section 4.7.

4.2 Literature review

Before surveying the solution algorithms proposed to solve the DARP and its many variants,
we briefly list problem features that have been tackled in the literature. Papers focussing
on algorithmic developments like [11,31–33] often consider a problem setting that includes a
homogeneous fleet of capacitated vehicles, pickup and delivery time windows, maximum route
length, and maximum passenger ride time. Several DARP applications and practical needs
have motivated the consideration of other problem characteristics: heterogeneous passengers
and vehicles [10,12,13,65], passenger transfer between vehicles [34–36,103], use of a fixed route
and scheduled public transport service during the user’s journey [37–39], need for additional
manpower [13,23,40], driver scheduling rules [19,41], and electric vehicles [15,42,43], among
others.

There exist various algorithms for solving the DARP variants. Most of the exact ones rely on
branch-and-bound (BB). To our knowledge, Cordeau [61] proposed the first branch-and-cut
(BC) algorithm for the DARP and introduced several families of valid inequalities, derived
from well-known ones for the traveling salesman problem and the vehicle routing problem.
Ropke et al. [104] introduced three new classes of valid inequalities and adopted some pre-
viously identified cuts. Other valid inequalities were derived for specific problem charac-
teristics, such as trip number, lunch breaks [41], symmetry breaking, driver stability [105],
and autonomous electric vehicles [15]. Cortés et al. [34] developed a BC method to solve
the DARP with possible passenger transfers between vehicles, where combinatorial Benders
cuts are generated to guarantee feasibility of the routes and users’ journeys. More recently,

25

BC algorithms based on new problem formulations that implicitly handle vehicle capacity
as well as pickup-and-delivery pairing and precedence constraints were designed: Rist &
Forbes [62] proposed a formulation based on flow variables associated with route fragments
(i.e., sequences of pickups and deliveries starting and ending with an empty vehicle) whereas
Gaul et al. [63] introduced two formulations defined on a network with vertices representing
each an event (pickup or delivery) together with a list of onboard requests.

Branch-and-price (BP) algorithms rely on a decomposition of the problem into a master
problem that coordinates the selection of the routes to cover all requests and a pricing
subproblem that generates new vehicle routes to consider. The linear relaxations in the
BB search tree are then solved by a column generation (CG) algorithm, which alternates
between solving a restricted version of the master problem and the pricing subproblem. For
the DARP, the subproblem is usually formulated as an elementary shortest path problem
with resource constraints and solved by dynamic programming [21]. In [22], the authors
developed three heuristics for solving the pricing subproblem that are invoked before calling
an exact labeling algorithm if necessary. To take advantage of both BP and BC methods, Qu
& Bard [65] proposed a BPC algorithm that applies subset-row inequalities. They showed
the benefits of these cuts on reducing the number of BB nodes and on the overall solution
time. Considering intra-route synchronization constraints in their problem, Gschwind &
Irnich [18] developed a BPC algorithm that adopts several classes of known inequalities. In
a multi-trip version of the DARP, Luo et al. [19] introduced a two-phase algorithm relying
on a strong trip-based model. This model is built in the first phase by enumerating a set of
non-dominated trips via a label-setting algorithm. Then, it model solved by a BPC algorithm
that generates infeasible path cuts and Benders cuts to ensure route feasibility. From this
review of the exact algorithms, we observe that the largest DARP instances reported to be
solved to optimality have 100 requests [63].

In the existing literature, different heuristics have been conceived to solve various DARP
variants, such as tabu search [17], large neighborhood search [35, 69, 76], evolutionary local
search [33], and hybrid algorithms [11, 14, 40]. Interested readers may refer to [106] for a
comprehensive review of DARP.

Heuristics are, typically, developed to solve large-sized instances in relatively fast computa-
tional time. On the other hand, exact algorithms with the ability to reach an optimal solution
are mostly used to solve small-sized instances. This paper presents a BPC algorithm capable
of solving large-sized DARP instances, ranging from 300 to 849 requests, in less than 8 hours.
This DARP instances are real-world ones that include several features that are new or have
not been addressed together.

26

4.3 Problem definition

The DARP variant that we consider in this paper has the following characteristics. The trans-
portation requests are heterogeneous, i.e., a passenger might be ambulant or in a wheelchair.
Both passenger types require a seat, while the latter also need a space to transport their
wheelchair. The passenger type affects the request service time. Each request has a time
window at the pickup and drop-off point and a maximum ride time. Vehicles are available
according to different contracts. The number of vehicles in each contract and the total cost
that can be spent for each contract (defined as the contract budget) is limited. Each contract
provides a vehicle type with specific capacities and a cost structure. As mentioned above,
a route is defined as a sequence of activities, including a pull-out from the depot, pickups,
drop-offs, breaks, and a pull-in into the depot. A block is a part of a route between two
consecutive locations where the vehicle is empty. Thus, a route can contain one or several
blocks. For some contracts, routes must not exceed a maximum duration and breaks must
be considered according to different break patterns. The break pattern to apply depends on
the route duration and indicates the number of breaks to assign and the admissible duration
between the breaks or the route start/end. Each contract has its own cost structure. Because
there are different vehicle types, the travel times and distances may vary from one vehicle to
another, impacting the cost structure.

Let us provide a formal description of this practical DARP. The problem is defined on a
directed graph G = (V,A), where V is the set of vertices and A the set of arcs. Vertex
set V is partitioned into two copies of the depot (0 and 2n + 1), the set of pickup vertices
P = {1, . . . , n}, and the set of delivery vertices D = {n+1, . . . , 2n}. Each pickup vertex i ∈ P

defines a request to transport passengers (typically, one but sometimes several) from i to the
delivery vertex n + i. These passengers may demand one of two different transportation
modes (ambulant or wheelchair). When a passenger boards a vehicle, it consumes some
resources (a seat and possibly a folded wheelchair space). Let M = {St,Wc} denote the set
of these two resources and let qm

i be the amount of resources m associated with a vertex i

(qm
i ≥ 0 if i ∈ P , qm

n+i = −qm
i ≤ 0 if n + i ∈ D, and qm

i = 0 otherwise). Without loss of
generality, the set of requests is represented by the set of pickup vertices P . Each request
i ∈ P must be executed without exceeding a maximum ride time denoted Li. Furthermore,
there is a time window [ei, ui] associated with each vertex i ∈ V that restricts the service
start time at this vertex (or corresponds to the planning horizon if i = 0 or 2n+ 1).

The use of vehicles is defined by a set of contracts K. A contract k ∈ K stipulates a number of
available identical vehicles nk, a total budget Fk for operating these vehicles, a cost structure
and some operational rules. In particular, contract k specifies a vehicle capacity Qm

k for each

27

resource m ∈ M and a service time sk
i at each pickup and delivery vertex i ∈ P ∪ D. The

travel time between two vertices i, j ∈ V is also contract-dependent (it depends on the vehicle
speed) and denoted tkij. Similarly, the arc travel cost depends on the contract but also on
other conditions to be described below. We assume that the travel times and costs satisfy
the triangle inequality.

Arc set A can be restricted to the arcs that may be part of a feasible route. In fact, to
represent the possible routes for contract k ∈ K, we rather introduce a graph Gk = (V k, Ak).
Set V k ⊆ V excludes all pickup and delivery vertices that cannot be serviced by a vehicle in
contract k, for example, if it has no capacity for a wheelchair. Denoting by P k = P ∩V k and
Dk = D ∩ V k the sets of pickup and delivery vertices serviceable by contract k, arc set Ak is
given by

Ak = {(0, i) | i ∈ P k} ∪ {(n+ i, 2n+ 1) | n+ i ∈ Dk} ∪

{(i, j) | i ∈ Dk, j ∈ P k, ei + sk
i + tkij ≤ uj, i ̸= j − n} ∪

{(i, j) | i, j ∈ P k, ei + sk
i + tkij ≤ uj, q

m
i + qm

j ≤ Qm
k ,∀m ∈ M} ∪

{(i, j) | i, j ∈ Dk, ei + sk
i + tkij ≤ uj,−qm

i − qm
j ≤ Qm

k ,∀m ∈ M} ∪

{(i, j) | i ∈ P k, j ∈ Dk, ei + sk
i + tkij ≤ uj, q

m
i − qm

j ≤ Qm
k , i ̸= j − n,∀m ∈ M} ∪

{(i, j) | i ∈ P k, j ∈ Dk, ei + sk
i + tkij ≤ uj, q

m
i ≤ Qm

k , i = j − n,∀m ∈ M}.

The time condition in the last four subsets excludes all arcs that cannot be traversed without
violating the time window at vertex i or j, whereas the load condition in the last three
subsets ensure that vehicle capacity is not exceeded by the passengers picked up or delivered
at vertices i and j. The arcs in the first and second subsets are called the pull-out and pull-in
arcs, respectively.

A route for a contract k ∈ K is represented by a path from 0 to 2n+ 1 in Gk together with
a schedule for each visited vertex. It is feasible if it respects the pairing, precedence and
maximum ride time constraints for each serviced request (i.e., if a pickup vertex i ∈ P is
visited, then its corresponding delivery vertex n + i must also be visited afterwards but no
later than Li minutes after the service start time at i), the time window at each visited vertex,
vehicle capacity for each available resource, and, possibly, a maximum route duration and
break requirements. The break requirements are expressed through different break patterns
that depend on the route duration. A break pattern ℓ is associated with a maximum route
duration Tmax,ℓ and indicates a number of breaks nℓ to assign (up to 3 in our case) and the
duration dℓ

b of each break b = 1, . . . , nℓ. These breaks thus divide the route in nℓ +1 segments
and the duration of segment g = 1, . . . , nℓ + 1 must fall in the interval [∆min,ℓ

g ,∆max,ℓ
g]. It

28

should be mentioned, a break can only take place when there are no onboard passengers. We
assume that this break takes place after unloading the last passenger.

As it is the case in practice, we also assume that the maximum time elapsed between two
locations is always less than the minimum of the ∆min,ℓ

g values, implying that at most one
break can be scheduled along an arc and none on the pull-out or pull-in arc of a route.

The cost of a route ck
r depends on the contract k ∈ K and is governed by two binary

parameters, namely, wP ull
k and wDh

k that specify whether or not the pull-ins/outs incur costs
and the deadheads between the blocks incur costs, respectively. It is defined by:

ck
r = γBlkmBlk

r + γDur(ηP ax
r + ηBrk

r + wP ull
k ηP ull

r + wDh
k ηDh

r)

+ γDst(χP ax
r + wP ull

k χP ull
r + wDh

k χDh
r), (4.1)

where mBlk
r is the number of blocks in r; ηg

r is the total travel duration in r with at least
one passenger onboard if g = Pax, of the mandatory breaks if g = Brk, of the pull-ins/outs
if g = Pull, and of the deadheads between the blocks if g = Dh; similarly, χg

r is the total
distance counterpart for g = Pax, Pull,Dh; and γg, g = Blk,Dur,Dst, are the unit costs
per block, time, and distance, respectively. Penalizing the number of blocks helps avoid
periods for which the vehicle is empty, thus, increasing the productive time of the vehicles.
With this term and by managing travel costs and time effectively, more passengers can be
accommodated within each block and avoid only direct trips between the pick-up and drop-
off points of each request while adhering to time window and maximum ride time limits for
each request.

Given this route cost that depends on the contract k and other conditions, we define the
following cost ck

ij for an arc (i, j) ∈ Ak:

ck
ij =



γBlk + wP ull
k (γDurηP ull

ij + γDstχP ull
ij) if i = 0

wP ull
k (γDurηP ull

ij + γDstχP ull
ij) if j = 2n+ 1

γBlk + γDurηBrk
ij + wDh

k (γDurηDh
ij + γDstχDh

ij) if (i, j) is a deadhead

with a break

γBlk + wDh
k (γDurηDh

ij + γDstχDh
ij) if (i, j) is a deadhead

without a break

γDurηP ax
ij + γDstχP ax

ij if (i, j) is traversed with

onboard passengers,

(4.2)

where the arc parameters ηg
ij and χg

ij, g = Pax, Pull,Dh, are the counterparts of the route

29

parameters ηg
r and χg

r . The last three cases cannot be determined a priori, but rather dy-
namically when building routes in the labeling algorithm of Section 4.5.1.

4.4 Mathematical model

The DARP defined in the previous section can be formulated as an integer program with a
very large number of variables using the following additional notation. Let Rk denote the set
of feasible routes for the vehicles available according to contract k ∈ K. Although there may
be multiple feasible schedules for each route, we assume that it is always associated with a
least cost one. For each route r ∈ Rk, let ck

r be its cost as defined by (5.1) and, for each
request i ∈ P , let ari be a binary parameter indicating whether or not request i is serviced
by route r. Finally, let yk

r be a binary variable equal to 1 if and only if route r ∈ Rk, k ∈ K,
is used in the solution.

The proposed integer programming formulation for the DARP is as follows:

min
∑
k∈K

∑
r∈Rk

ck
ry

k
r (4.3)

s.t.
∑
k∈K

∑
r∈Rk

ariy
k
r = 1, ∀i ∈ P (4.4)

∑
r∈Rk

yk
r ≤ nk, ∀k ∈ K (4.5)

∑
r∈Rk

ck
ry

k
r ≤ Fk, ∀k ∈ K (4.6)

yk
r ∈ {0, 1}, ∀k ∈ K, r ∈ Rk. (4.7)

Objective function (4.3) minimizes the total routing costs. Constraints (4.4) ensure that
each request is covered by exactly one route. Constraints (4.5) and (4.6) impose vehicle
availability and budget restriction for each contract, respectively. Finally, constraints (4.7)
restrict the domain of the decision variables. Because this model contains a huge number of
variables in practice (one per feasible route), we devise a BPC algorithm for solving it, which
is presented next.

4.5 The proposed BPC algorithm

A BPC algorithm [107, 108] is a branch-and-bound algorithm where the linear relaxations
are solved by column generation (CG) and cutting planes are added to strengthen the linear
relaxations. CG is an iterative process that solves the linear relaxation of (4.3)–(4.7), which
is called the master problem and is altered in the search tree by the applicable cutting planes

30

and branching decisions. At each CG iteration, the master problem restricted to a subset of
its columns (variables) is first solved to compute a pair of optimal primal and dual solutions.
To determine if this primal solution can be extended to an optimal solution for the whole
master problem by setting the unknown variables to zero, one or several pricing problems are
solved. In our case, there is one pricing problem per contract, namely, an elementary shortest
path problem with resource constraints (ESPPRC) that is solved by a labeling algorithm.
The goal of this pricing problem is to identify new columns with a negative reduced cost
with respect to the current dual solution. If no such variables can be found for any of the
pricing problems, then the CG process stops with an optimal primal solution. Otherwise,
the negative reduced cost columns found are added to the restricted master problem to start
a new iteration.

Below, we describe the labeling algorithm used to solve the pricing problems (Section 4.5.1),
before presenting the cuts considered (Section 4.5.2) and our branching strategy (Section 4.5.3).

4.5.1 Labeling algorithm

As mentioned above, the pricing problem for contract k ∈ K aims at finding negative re-
duced cost columns (feasible vehicle routes) for contract k. The reduced cost c̄k

r of a column
associated with a route r ∈ Rk is given by:

c̄k
r = ck

r(1 − βk) −
∑
i∈P

ariπi − σk =
∑

(i,j)∈r

c̄k
ij, (4.8)

where πi, i ∈ P , σk, and βk denote the dual variables associated with constraints (4.4)–(4.6),
respectively, and the adjusted arc costs c̄k

ij are given by:

c̄k
ij =


ck

ij(1 − βk) − πj − σk if i = 0 and j ∈ P k

ck
ij(1 − βk) − πj if i ̸= 0 and j ∈ P k

ck
ij(1 − βk) otherwise.

(4.9)

Recall that the arc costs ck
ij are not all known a priori (see Section 4.3) and, thus, the adjusted

arc costs c̄k
ij also.

The pricing problem is formulated as an ESPPRC on the graph Gk using the adjusted arc
costs and enforcing route feasibility through resource constraints [108, 109]. To solve it, we
propose a labeling algorithm. In such an algorithm, a partial path originating from the source
vertex 0 is represented by a vector of attributes called a label, where each component indicates
the value of a resource (including the reduced cost) at the end of the partial path. Starting

31

from an initial label at vertex 0, the algorithm generates partial paths by extending this label
forwardly in graph Gk, checking the resource constraints after each extension to guarantee
path feasibility. To avoid enumerating all feasible paths, a dominance rule is used to compare
the partial paths ending at the same vertex. The negative reduced cost paths reaching the
sink vertex 2n+ 1 become candidates to be added to the restricted master problem.

We describe the proposed labeling algorithm in steps, starting with a basic version that does
not consider the maximum ride time constraints, the break requirements, and the maxi-
mum route duration. The handling of these features is discussed in Subsections 4.5.1, 4.5.1,
and 4.5.1, respectively.

In the basic version, a label lp = (lrCost
p , [lload(m)

p]m∈M , l
time
p , lopen

p , lunRch
p) representing a partial

path p ending at vertex i ∈ V k is defined by the following attributes:

lrCost
p : Reduced cost;

lload(m)
p : Load for resource m ∈ M at vertex i;

ltime
p : Earliest start of service time at vertex i;

lopen
p : Subset of open requests at vertex i, i.e., requests for which their pickup vertex has

been visited but not their delivery vertex;

lunRch
p : Subset of vertices that cannot be reached anymore because they have already been

visited or because their time window cannot be met.

The labeling algorithm starts with an initial label representing the partial path p0 containing
only the source vertex 0: lp0 = (0, [0]m∈M , e0, ∅, ∅). This label is then recursively extended
through graph Gk. The extension of a label lp representing a path ending at vertex i ∈ V k

through an arc (i, j) ∈ Ak is considered only if j ̸∈ lunRch
p and (j ̸= 2n + 1 or lopen

p = ∅). It
yields a new label lp′ representing the path obtained by appending (i, j) to p. This label is
computed using the following resource extension functions.

32

lrCost
p′ = lrCost

p + c̄k
ij (4.10)

ltime
p′ = max{ltime

p + sk
i + tkij, ej} (4.11)

l
load(m)
p′ = lload(m)

p + qm
j , ∀m ∈ M (4.12)

lopen
p′ =


lopen
p ∪ {j} if j ∈ P k

lopen
p \ {j − n} if j ∈ Dk

lopen
p otherwise

(4.13)

lunRch
p′ = lunRch

i ∪ {j} ∪ {h ∈ V k | ltime
p′ + sk

j + tkj,h > uh}. (4.14)

In (4.10), the adjusted arc cost c̄k
ij is defined by (4.9) where the arc cost ck

ij is determined
according to (5.2). In this formula, arc (i, j) is identified as a deadhead if and only if
i, j ∈ P k ∪ Dk and lopen

p = ∅. Label lp′ resulting from this extension is deemed feasible if
l
load(m)
p′ ≤ Qm

k for all m ∈ M and o + n ̸∈ lunRch
p′ for all o ∈ lopen

p′ . Otherwise, lp′ is infeasible
and rejected.

The dominance rule applied for the complete problem version is presented in Subsection 4.5.1
after presenting the handling of the additional problem features.

Maximum passenger ride time

To consider the maximum ride time constraints, we should add to a label lp a new resource
(a function) for each open request o ∈ lopen

p :

llDT (o)
p (t): latest possible delivery time of request o as a function of the start of service time

t at the end vertex of p.

Gschwind & Irnich [18] proved that, instead of computing the entire function llDT (o)
p (t), it is

sufficient to keep track of its value at only two typically distinct times, namely, at ltime
p and

at the time when llDT (o)
p (t) becomes constant that we denote lcstT (o)

p . Thus, following their
proposal, only the following three new pieces of information for each open request o must
be stored in a label lp: lcstT (o)

p , llDT t(o)
p = llDT (o)

p (ltime
p), and llDT c(o)

p = llDT (o)
p (lcstT (o)

p). When
extending a path p with an arc (i, j) ∈ Ak to yield a path p′, these label components are
computed as follows:

33

l
cstT (o)
p′ =

 min{τ j
p , uj+n − sk

j − Lj} if o = j,

max{ltime
p′ ,min{τ j

p , l
cstT (o)
p + sk

i + tkij}} otherwise
∀o ∈ lopen

p′ (4.15)

l
lDT t(o)
p′ =

 min{ltime
p′ + sk

j + Lj, uj+n} if o = j,
llDT t(o)
p + min{ltime

p′ − sk
i − tkij, l

cstT (o)
p } − ltime

p otherwise

∀o ∈ lopen
p′ (4.16)

l
lDT c(o)
p′ =

 l
cstT (o)
p′ + sk

j + Lj if o = j,
llDT c(o)
p − max{0, lcstT (o)

p + sk
i + tkij − τ j

p } otherwise

∀o ∈ lopen
p′ (4.17)

where

τ j
p =

 uj if j ∈ P

min{uj, l
lDT c(j−n)
p } if j ∈ D

(4.18)

is the latest feasible start of service time at vertex j when reached from path p. This extension
is feasible only if ltime

p′ ≤ llDT c(o)
p for all o ∈ lopen

p . For further details, see [18].

Break requirements

Recall from the problem definition in Section 4.3 that breaks must be inserted in the routes of
the vehicles governed by certain contracts. Those breaks must respect one of the admissible
break patterns for this contract. Such a pattern ℓ specifies the number nℓ of breaks to insert,
the duration dℓ

b of each break b = 1, . . . , nℓ, and the minimum and maximum durations
∆min,ℓ

g and ∆max,ℓ
g of the segments g = 1, . . . , nℓ + 1 induced by the breaks. To handle

the break patterns, we replicate the subproblem associated with a contract subject to break
requirements for each admissible break pattern. Next, we describe how the labeling algorithm
is adapted to generate routes respecting a given break pattern. Note that, in this section, we
assume that the start time of a route is fixed to the latest time that a vehicle can leave the
depot vertex 0 to arrive exactly at the time window lower bound ej of its first visited vertex
j ∈ P . In the next section, we will discuss how to relax this assumption.

Let us consider the subproblem associated with a contract k ∈ K and a break pattern ℓ

that requires nℓ breaks. To enforce this break pattern, we extend the definition of a label
lp, associated with a partial path p ending at vertex i ∈ V k, to include the following two
resources:

34

lsgm
p : the segment number at vertex i (an integer in {1, . . . , nℓ + 1});

ldurS
p : the duration of the current segment lsgm

p .

In the initial label lp0 at vertex 0, these two components are set to lsgm
p0 = 1 and ldurS

p0 = 0.
Then, we can consider two possible extensions of a label lp along an arc (i, j) ∈ Ak. The first
extension does not include a break along this arc and yields a label lp′ whose components are
computed using the extension functions (4.10)–(4.17) and the following ones:

lsgm
p′ = lsgm

p (4.19)

ldurS
p′ =


tkij if i = 0

ldurS
p + ltime

p′ − ltime
p otherwise.

(4.20)

Beside the conditions for discarding a label previously presented, label lp′ is also discarded if
ldurS
p′ > ∆max,ℓ

lsgm

p′
or (j = 2n+ 1 and (lsgm

p′ ̸= nℓ + 1 or ldurS
p′ < ∆min,ℓ

lsgm

p′
)).

The second extension of label lp along an arc (i, j) ∈ Ak includes a break along this arc,
namely, the break lsgm

p of pattern ℓ. Assuming that the break would start at time ltime
p + sk

i ,
this extension is considered only if i ̸= 0, j ̸= 2n + 1, lsgm

p ≤ nℓ, lopen
p = ∅ and ∆min,ℓ

lsgm
p

≤
ldurS
p +sk

i ≤ ∆max,ℓ
lsgm
p

. It yields a label lp′′ that is computed using the extension functions (4.10),
(4.12)–(4.17), and the following ones:

lsgm
p′′ = lsgm

p + 1 (4.21)

ltime
p′′ = max{ltime

p + sk
i + tkij + dℓ

lsgm
p
, ej} (4.22)

ldurS
p′′ = ltime

p′′ − (ltime
p + sk

i + dℓ
lsgm
p

). (4.23)

Notice that, for this case, the extension of the reduced cost component in (4.10) uses, in the
adjusted reduced cost c̄k

ij, the arc cost ck
ij for an arc containing a break as defined in (5.2).

Because lopen
p = ∅ and we have assumed that a break cannot take place on a pull-in/out arc

of a route (see Section 4.3), label lp′′ is discarded only if ltime
p′′ > uj.

Maximum route duration

As suggested in [13, 22], to impose the maximum route duration Tmax,ℓ associated with a
given break pattern ℓ, we add the following two resources to every label lp (representing a
path p):

lwait
p : the cumulated waiting time before the opening of a time window along path p;

35

lfwSl
p : the forward slack time, i.e., by how much time the start at vertex 0 can be delayed

while maintaining time feasibility along path p.

In the initial label p0 at vertex 0, these components are set to lwait
p0 = 0 and lfwSl

p0 = u0 − e0.
Let us consider the two possible extensions (without and with a break) of a label lp along
an arc (i, j) ∈ Ak for a contract k ∈ K and a break pattern ℓ with nℓ breaks (only the first
extension is applicable for a contract without break requirements). The extension without
a break yields a label lp′ whose components are computed using the extension functions
(4.10)–(4.17), (4.19)–(4.20) and

lwait
p′ = lwait

p + max{0, ej − (ltime
p + sk

i + tkij)} (4.24)

lfwSl
p′ = min{lfwSl

p , lwait
p + uj − (ltime

p + sk
i + tkij)}. (4.25)

The extension with a break produces a label lp′′ which is computed using the extension
functions (4.10), (4.12)–(4.17), (4.21)–(4.23) and

lwait
p′′ = ωij

p + max{0, ej − (ltime
p + sk

i + tkij + dℓ
lsgm
p

)} (4.26)

lfwSl
p′′ = min{lfwSl

p , ωij
p + uj − (ltime

p + sk
i + tkij + dℓ

lsgm
p

)}, (4.27)

where
ωij

p = min{lwait
p , ldurS

p + sk
i − ∆min,ℓ

lsgm
p

} (4.28)

specifies the maximum cumulated waiting time before the break that can be used to decrease
route duration (by delaying the route start time) without violating the minimum segment
duration before the break.

Each resulting label lρ, ρ = p′, p′′, is discarded because of the maximum route duration
constraint if ltime

ρ +sk
j + tkj,2n+1 +d(lsgm

ρ)−e0 − lfwSl
ρ > Tmax,ℓ, where the sum of the remaining

break durations is d(lsgm
ρ) = ∑nℓ

b=lsgm
ρ

dℓ
b if lsgm

ρ ≤ nℓ and 0 otherwise.

Dominance rule

For the whole problem, we apply the following dominance rule that compares two labels lp1

and lp2 associated with paths ending at the same vertex. Label lp1 dominates label lp2 if the

36

following conditions hold:

lrCost
p1 ≤ lrCost

p2 (4.29)

ltime
p1 ≤ ltime

p2 (4.30)

lopen
p1 = lopen

p2 (4.31)

lunRch
p1 ⊆ lunRch

p2 (4.32)

llDT t(o)
p1 + (ltime

p2 − ltime
p1) ≥ llDT t(o)

p2 , ∀o ∈ lopen
p1 (4.33)

llDT c(o)
p1 ≥ llDT c(o)

p2 , ∀o ∈ lopen
p1 (4.34)

lsgm
p1 = lsgm

p2 (4.35)

ldurS
p1 ≤ ldurS

p2 (4.36)

min{ldurS
p1 ,∆min,ℓ

lsgm
p1

} ≥ min{ldurS
p2 ,∆min,ℓ

lsgm
p2

} (4.37)

lwait
p1 ≥ lwait

p2 (4.38)

lfwSl
p1 ≥ lfwSl

p2 . (4.39)

The above conditions ensure that, for every feasible extension of label lp2 , there exists at least
one feasible extension for label lp1 that yields a better or equal reduced cost. Most of them
were proposed in previous works (see references above). We only discuss the break-related
conditions (4.35)–(4.37), and the open request condition (4.31). The break-related conditions
as well as the maximum route duration conditions (4.38)-(4.39) are necessary only when
the contract associated with the subproblem imposes break requirements. Condition (4.35)
restricts dominance between labels that have the same number of breaks already scheduled.
Condition (4.36), together with condition (4.38), ensures that label lp1 will meet the maximum
duration of the current segment if it can be met by label lp2 . Furthermore, condition (4.37)
guarantees that label lp1 is in a better position than label lp2 to respect the minimum duration
of the current segment. As in the early BPC algorithms for pickup-and-delivery problems,
we use an equality in condition (4.31) as opposed to the relaxed condition (4.40) discussed
below. This very restrictive condition is necessary because of the segment minimum duration
constraint. Indeed, it might become advantageous to perform additional deliveries to respect
this constraint.

On the other hand, when no break requirements are enforced in a subproblem, condi-
tion (4.31) is replaced by

lopen
p1 ⊆ lopen

p2 (4.40)

37

to improve dominance under the assumption that the so-called delivery triangle inequality
holds for the adjusted arc costs. This is accomplished by transferring for every delivery vertex
n + i ∈ Dk a sufficiently large constant from the adjusted reduced cost of all arcs leaving
n+ i to all arcs leaving pickup vertex i (for details [4]). Given that not all adjusted arc costs
c̄k

ij are determined a priori, we use worst-case costs to compute the constant to use for each
delivery vertex.

Any dominated label can be discarded, except when multiple labels dominate each other. In
this case, one of them must be kept.

Heuristic labeling

Given that the ESPPRC is N P-hard in the strong sense [110], it is well-known that the exact
labeling algorithm described above can be very time-consuming for large-sized networks.
To alleviate this, heuristics can be used to generate columns before resorting to an exact
labeling algorithm if needed. As proposed by several other authors [108], we apply two
heuristic versions of the proposed labeling algorithm that eliminate a larger number of labels
through a relaxed dominance rule. In the first heuristic, to determine if a label lp′ can be
discarded based on a comparison with a label lp, we only consider the conditions (4.29)–
(4.30) and (4.40) on the reduced cost, time, and open request resources. In the second, we
use the conditions (4.29)–(4.39), except that we replace condition (4.31) by (4.40), including
the break-related conditions only for the appropriate subproblems. The rest of both heuristic
labeling algorithms, namely, label extensions and feasibility checks, remains unchanged.

Considering that there are several subproblems to solve at each CG iteration, the first labeling
heuristic is first used for each subproblem. When it fails to find negative reduced cost columns
for all subproblems, the second labeling heuristic is called for each subproblem. Finally, if
this algorithm also fails to find promising columns, the exact labeling algorithm is invoked to
ensure that the subproblems are solved to optimality. Note that the second labeling algorithm
is, in fact, exact for the subproblems without break requirements and, therefore, there is no
need to solve them again a third time.

4.5.2 Valid inequalities

To strengthen the linear relaxations encountered in the search tree, violated valid inequalities
are added. We apply two families of valid inequalities, namely, rounded capacity inequalities
(RCIs) and subset row inequalities (SRIs), as described next. The RCIs, which have been
used for several vehicle routing problems [108] including the PDPTW [104], are defined as

38

follows. Let U ⊂ P ∪ D be a subset of vertices and ξm(U) a lower bound on the number of
vehicles needed to service all vertices in U with a demand for resource m ∈ M . The RCI
associated with U and resource m is:

∑
k∈K

∑
r∈Rk

∑
(i,j)∈δ+(U)

arijy
k
r ≥ ξm(U) (4.41)

where arij is a binary parameter equal to 1 if route r ∈ Rk traverses arc (i, j) ∈ Ak and 0
otherwise; δ+(U) is the subset of arcs in Ak that enters subset U ;

ξm(U) = max
{

1,
⌈∑

i∈P (U) qm
i

Qm

⌉
,

⌈
−

∑
i∈D(U) qm

i

Qm

⌉}
; Qm is the maximum vehicle capacity for

resourcem over all contracts; P (U) = {i ∈ P | i /∈ U, n+i ∈ U} denotes the set of predecessors
of U and D(U) = {n+ i ∈ D | i ∈ U, n+ i /∈ U} the set of successors of U . The numerator of
the second fraction of ξm(U) is a lower bound on the load of the vehicles entering U , and that
of its last fraction is a lower bound on the load of the vehicles leaving U . For the separation
of the RCIs, the heuristic separation procedure of [4] is used. It starts from a set U = {i}
with a single vertex i that is enlarged iteratively by adding one pickup or delivery vertex at a
time. This vertex is chosen so as to maximize a parameterized objective function that seeks
to find a violated RCI. This greedy procedure is repeated several times for each resource,
possible initial vertex i, and randomly chosen objective function weights. All violated RCIs
are added to the current linear relaxation and yield new dual variables that are handled in
the adjusted arc costs of the subproblems e.g., [108].

When no violated RCIs can be found, we search for violated SRIs that are defined as follows.
For a subset of requests U ⊆ P and an integer λ (1 < λ ≤ |U |), the SRI with respect to U
and λ is: ∑

k∈K

∑
r∈Rk

⌊
1
λ

∑
i∈U

ari

⌋
yk

r ≤
⌊

|U |
λ

⌋
. (4.42)

Introduced first for the vehicle routing problem with time windows by Jepsen et al. [111], the
SRIs are rank-1 Chvátal-Gomory inequalities valid for the general set-partitioning polytope.
As suggested by several authors, we consider only the SRIs defined for λ = 2 and |U | = 3,
which impose that at most one route covering more than one request in U be selected. The
separation of the SRIs is done by pure enumeration and all cuts found are added to the
current master problem. Handling their dual variables is non trivial and requires additional
label components (for details, see [108,111]).

39

4.5.3 Branching strategy

The proposed BPC algorithm adopts two types of branching decisions in a hierarchical struc-
ture. Both decision types are applied without changes to the problem structure: Linear
constraints are added to the master problem accordingly and the associated dual variables
are incorporated in the adjusted arc reduced costs.

Let
(
ŷk

r

)
k∈K,r∈Rk

denote the master problem solution obtained at a node of the search tree
that cannot be pruned. Then, if the total number of vehicles used ν̂ = ∑

k∈K

∑
r∈Rk

ŷk
r is

fractional, we branch on this entity and impose ∑
k∈K

∑
r∈Rk

yk
r ≤ ⌊ν̂⌋ on one branch and∑

k∈K

∑
r∈Rk

yk
r ≥ ⌈ν̂⌉ on the other.

Otherwise, if the total number of vehicles used is integer, we rather branch, as proposed
in [18], on the outflow of a vertex set U ⊂ P ∪ D such that |U | = 2. The outflow of
U can be expressed as ∑

k∈K

∑
r∈Rk

∑
i∈U

∑
j∈V \U arij ŷ

k
r and falls in the interval [1, 2). We

select the set U that has an outflow closest to 1.5. The two branches are created by adding∑
k∈K

∑
r∈Rk

∑
i∈U

∑
j∈V \U arijy

k
r = 1 and ∑

k∈K

∑
r∈Rk

∑
i∈U

∑
j∈V \U arijy

k
r = 2. This type of

branching is equivalent to branching on the edge flow, i.e., if U = i, j, then the first decision
imposes of a flow of 1 on the edge linking i and j (i.e., pair of arcs (i, j) and (j, i) if they
both exist) and the second imposes a flow of 0 on that edge. With this branching strategy,
the delivery triangle inequality can be met by modifying the adjusted arc costs.

4.6 Computational results

The proposed BPC algorithm was coded in Java and the restricted master problems were
solved using version 12.4 of the linear programming solver CPLEX. The computational ex-
periments were performed on a laptop with 2 CPU cores (clocked at 2.0 GHz) and 2 GB of
RAM.

In this section, we present the computational results obtained for real-life instances provided
by our industrial partner GIRO. Subsection 4.6.1 describes the test instances, Subsection 4.6.2
presents linear relaxation results, while Subsection 4.6.3 reports the integer solution results
and discusses some characteristics of the computed solutions.

4.6.1 Instance description

Table 4.1 presents the test specifications of real-world problems used to evaluate the per-
formance of the proposed algorithm, including the number of requests, the total number
of vehicles, the number of contracts, and the types of vehicles. The details related to the

40

largest instance (S11) are presented to clarify the various aspects of the problem. In this
test instance, there are 849 requests to service and two vehicle types (Taxi and Omnibus)
that are governed by 5 contracts. The contract, vehicle, and break pattern specifications are
provided in Tables 5.2, 5.3, and 5.4, respectively. Four of the five contracts are for Omnibus
vehicles, the other involves Taxi vehicles. Only two contracts impose break requirements,
while deadhead and pull-in/out costs are incurred for three contracts and a single contract,
respectively.

From Table 5.3, we observe that the Taxi vehicles have a slightly higher average speed than
the Omnibus vehicles, yielding faster traveling times. The service time for a request is
computed as the sum of a fixed setup time and a loading/unloading time for each passenger
in the request. The latter depends on the passenger type (ambulant or wheelchair). Note
that, when a vehicle serves several requests together at the same location, a single setup time
is needed. This is taken into account in the labeling algorithm by adjusting dynamically the
service times of these requests, except the first one. The capacity of an Omnibus vehicle is
much larger than that of a Taxi vehicle.

Table 5.4 indicates the characteristics of the break patterns for contracts 2 and 3, as well
as the corresponding maximum route duration. There are four possible break patterns for
contract 2 and three for contract 3. In each break pattern ℓ, the duration of each of its
nℓ breaks is the same and the duration of each route segment must fall within the same
interval [∆min,ℓ,∆max,ℓ]. Notice that the maximum route duration Tmax,ℓ is not constraining
for pattern 1 for both contracts, but the wait and fwSl components of the labels are required
to find a feasible schedule respecting the minimum and maximum segment durations.

In this case study, the 849 requests involve 649 ambulant and 209 wheelchair passengers.
Thus, some requests have more than one passenger and can combine the two types. The
average width of the time windows is 20 minutes for the pickups and 50 minutes for the
deliveries. To determine the maximum ride time Li of each request i ∈ P , we first divide the
requests into three categories: short distance, medium distance, and long distance. Then, Li

is equal to its direct travel time multiplied by a factor 2, 1.8, or 1.35 if i is a short, medium,
or long-distance request, respectively.

The distribution of the requests’ start times and their pick-up and drop-off locations are
illustrated in Figures 4.1 and 4.2, respectively. We observe that the requests are spread
throughout the day, with a larger number of requests starting between 10am and 9pm.
Given that the number of pickup and drop-off locations is much less than the number of
requests, we deduce that several requests have the same origin or the same destination, but
not necessarily the same time window. Each test problem incorporates real-world details

41

Table 4.1 Instance specifications

Instance Requests Vehicles Contracts Types of vehicle
S1 300 25 9 3
S2 330 27 9 3
S3 350 29 9 3
S4 400 33 9 3
S5 500 42 9 3
S6 550 48 9 3
S7 600 52 9 3
S8 700 58 9 3
S9 800 62 9 3
S10 820 65 9 3
S11 849 81 5 2

Table 4.2 Contract specifications

Contract k Vehicle type nk Breaks wDh
k wP ull

k Fk ($)
1 Omnibus 25 No 0 0 5,000
2 Omnibus 20 Yes 1 0 10,000
3 Omnibus 20 Yes 1 1 10,000
4 Taxi 6 No 0 0 10,000
5 Omnibus 10 No 1 0 5,000

that contribute to the overall complexity and realism of the problem.

4.6.2 Linear relaxation results

We first present linear relaxation results that allow to compare the performance of the CG
algorithm with and without using the first labeling heuristic for solving the subproblems
(see Section 4.5.1). These results are reported in Table 4.5. For each algorithm variant,
it indicates the total CPU time required to solve only the linear relaxation (before adding
cuts) as well as the total number of CG iterations (Total) and the number of iterations
in which columns were generated using the first labeling heuristic (FirstLH), the second
labeling heuristic (SecondLH), and the exact labeling heuristic (ExactL). From these results,
we observe that using the first heuristic labeling leads to a significant average time reduction
of 55% (e.g., 1059 seconds versus 2579 seconds for S11). In fact, this heuristic, which takes
less time, succeeds in generating columns in 95% of iterations on average (e.g., 132 iterations
out of 140 in S11). We can also notice that the exact labeling algorithm is called only in the

42

Table 4.3 Vehicle specifications

Setup time (Un)loading time (min) Capacity
Vehicle Speed (km/h) (min) Ambulant Wheelchair Seats Wheelchairs
Omnibus 30 1 1 1 15 10
Taxi 33 1 1 2 6 3

Table 4.4 Break pattern specifications and maximum route durations

Contract k Pattern ℓ nℓ δℓ (min) ∆min,ℓ (min) ∆max,ℓ (min) Tmax,ℓ

2 1 1 15 60 120 300
2 2 15 90 180 420
3 1 45 120 240 420
4 3 15 90 240 840

3 1 1 15 60 120 300
2 2 15 90 180 420
3 3 15 90 240 840

last CG iteration and, thus, cannot generate negative reduced cost columns. It means that
the second labeling heuristic, with a relaxed dominance condition on the open requests, does
not seem to be very imprecise. In fact, throughout the whole search tree, the exact labeling
algorithm was never called more than twice per node.

Adding cuts at the root node increases the total CPU time for both algorithms, reducing
the speed by 51.8% (e.g., 1237 seconds and 2833 seconds for S11). When the first labeling
heuristic was applied, a total of 361 RCIs and 59 SRIs were generated at the root node for
S11.

4.6.3 Integer solution results

Table 4.6 presents the results obtained by the complete BPC algorithm (with the first labeling
heuristic). In order, it specifies the total CPU time in minutes, the time spent solving the
restricted master problems (RMP), the time spent solving the subproblems (SP), the number
of nodes explored in the branch-and-bound (BB) search tree, the total number of RCIs and
SRIs generated in the whole search tree, and the root node integrality gap in percentage (i.e.,
the relative difference between the optimal value and the lower bound achieved at the root
node after adding cuts). These results demonstrate that our BPC algorithm can optimally
solve large-scale practical DARP instances with more than 300 requests. As shown, the

43

Figure 4.1 Distribution of the requests’ start times

average time to solve these instances is 305 minutes, and the largest problem (S11), which
involves 849 requests, achieved the optimal solution in 486 minutes (8 hours and 6 minutes).
This computational time is almost evenly split between the restricted master problem and
the subproblems. About S11, the number of branching nodes explored (1400) is quite large
and ensues from a relatively large root node gap of 11%. The cuts added at the root node
were not sufficient to yield a smaller gap (the integrality gap before adding cuts was 12.3%).
Nevertheless, cuts were often generated in the search tree, especially RCIs, and were surely
helpful to reduce its size.

To the best of our knowledge, these instances are by far the largest DARP instances reported
to be solved to optimality in the literature. It is difficult to say what makes it possible to
solve these large instances optimally in less than 8 hours. Some features like not considering
costs for pull-in/out and deadhead trips for some contracts may simplify the complexity of
this instance. On the other hand, we observe in the computed solution of S11 that the
average number of requests per vehicle used is 17.2 and that up to 13 (resp. 6) requests
can be simultaneously onboard an Omnibus (resp. Taxi) vehicle, showing that it is not a
trivial instance and that the proposed state-of-the-art BPC algorithm is efficient to deal with
complex practical features.

The largest instance (S11) was also solved by the heuristic algorithm commercialized by
GIRO, a local-search-based metaheuristic that we cannot describe for confidentiality reasons.
This heuristic took less than 5 minutes to compute its solution. Figures 4.3 to 4.5 provide
information for comparing the solutions computed by this heuristic and the proposed BPC

44

Figure 4.2 Pickup and delivery locations of the requests

algorithm. Figure 4.3 reports the total cost and the cost per contract for both solutions.
Observe first that, in both solutions, contract 3 is not used at all. This can be explained
by the fact that using vehicles from this contract is more expensive than from others (pull-
in/out and deadhead trips have to be paid) and the number of available vehicles from the
other contracts is sufficient to cover all requests. Observe also that the GIRO heuristic
computes a solution with a cost that is only 0.39% larger than the optimal value. This figure
also highlight that the budget allocated for each contract (see Table 5.2) is constraining only
for contract 1 that is the most flexible (without breaks and maximum route duration) and
the least costly (no costs for deadhead and pull-in/out trips).

Figure 4.4 shows that a total of 43 Omnibus and 6 Taxi vehicles are used in the BPC optimal
solution whereas the GIRO solution requires one more Omnibus vehicle and the same number
of Taxi vehicles. Finally, Figure 4.5 indicates that, between both solutions, the number of
requests per contract is relatively stable for contracts 4 and 5, but varies for contracts 1
and 2. In fact, less requests are serviced by contract 2 in the optimal solution, allowing to
save one vehicle. Looking only at the BPC optimal solution, we compute average numbers
of requests per used vehicle equal to 18.4, 8.1, 30.0, and 23.8 for contracts 1, 2, 4, and 5,
respectively. The vehicles of contract 2 are, thus, underused compared to the others, as they
are the costlier. The others cannot be further exploited because of either their allocated

45

Table 4.5 Linear relaxation results

With first labeling heuristic Without first labeling heuristic
CPU time Number of CG iterations CPU time Number of CG iterations

Instance (sec) Total FirstLH SecondLH ExactL (sec) Total SecondLH ExactL
S1 298 97 93 3 0 672 80 79 0
S2 346 102 98 3 0 764 83 82 0
S3 349 96 91 4 0 765 78 77 0
S4 467 108 102 5 0 1036 93 92 0
S5 628 115 108 6 0 1364 97 96 0
S6 653 111 104 6 0 1370 88 87 0
S7 711 113 107 5 0 1510 90 89 0
S8 893 124 118 5 0 1995 102 101 0
S9 978 122 116 5 0 2284 101 100 0
S10 1010 132 124 7 0 2403 108 107 0
S11 1059 140 132 7 0 2579 121 120 0

budget (contract 1) or their availability (contracts 4 and 5).

4.7 Conclusion

In this paper, we have investigated a practical DARP variant with heterogeneous customers
and vehicles as well as other practical considerations (break requirements, maximum route
duration, contract-based cost structure). To solve it, we have developed a state-of-the-art
exact BPC algorithm. The algorithm was tested on real-world instances with 300 to 849
requests and a fleet of 25 to more than 70 vehicles. The largest instance reached the optimal
solution in 8 hours and 6 minutes. To our knowledge, this DARP instance is by far the
largest one reported to be solved in the literature. It was helpful, among others, to assess the
quality of the solution produced by the heuristic of our industrial partner. For future studies,
we aim at developing a matheuristic, possibly embedding a heuristic BPC component, for
tackling much larger DARP instances (with 10,000 requests or more) faced by GIRO.

46

Table 4.6 Integer solution results

CPU time (min) Number Number of cuts Root node
Insrance Total RMP SP of nodes RCI SRI gap (%)

S1 134 62 72 534 343 120 4.3
S2 160 74 87 560 400 152 4.5
S3 178 83 96 576 371 163 4.6
S4 237 110 128 740 699 257 5.9
S5 259 119 140 796 687 312 6.3
S6 336 156 181 986 1063 419 7.8
S7 318 147 172 966 1041 398 7.6
S8 391 181 210 1154 1462 509 9.1
S9 416 193 224 1132 1428 554 8.9
S10 435 206 229 1196 1705 617 9.5
S11 486 232 255 1400 2531 1013 11.0

Figure 4.3 Total cost and cost per contract for both solutions

47

Figure 4.4 Number of vehicles used per contract in both solutions

Figure 4.5 Number of requests covered by contract in both solutions

48

CHAPTER 5 ARTICLE 2: A VARIABLE NEIGHBORHOOD SEARCH
ALGORITHM FOR A VERY LARGE-SCALE PRACTICAL DIAL-A-RIDE

PROBLEM

Authors: Mohammad Karimi, Guy Desaulniers, Michel Gendreau

Note: Submitted the Computers & Operations Research on June 9, 2025

5.1 Introduction

The rapid growth of urban areas and the increasing complexity of transportation systems
demand more efficient and scalable solutions to manage passenger mobility. The dial-a-ride
problem (DARP) constitutes a critical optimization challenge that involves designing vehi-
cle routes to serve a set of transportation requests, adhering to time windows and capacity
constraints [4, 102]. This problem is especially relevant in scenarios like paratransit ser-
vices, ride-sharing platforms, and on-demand public transportation [5–7]. The time window
constraints, passenger heterogeneity (e.g., ambulant versus wheelchair passengers), and fleet
diversity make the DARP a highly challenging problem to solve, especially for very large-scale
instances.

The DARP encompasses a wide range of real-world characteristics that arise from various
applications. In this paper, we address practical features based on a real-world case provided
by our industrial partner, GIRO Inc., a Montreal-based software company. In this case, a
route represents a vehicle’s trip, which begins and ends at a depot, reflecting the work per-
formed by the vehicle over a full day. Each route is constrained by a maximum allowable
duration and specific break patterns dictated by vehicle contracts. Additionally, the num-
ber of vehicles available is limited, and each contract operates under a budget based on a
detailed cost structure. Managing these constraints becomes particularly challenging in very
large-scale instances. To address these challenges, we propose a method based on variable
neighborhood search (VNS), enhanced with mixed-integer programming techniques for initial
solution generation, neighborhood exploration, and local search. The algorithm was tested
on very large-scale real-world instances, ranging from 2,932 to 10,527 requests, with vehicle
fleets ranging from 198 to 563 vehicles. In addition, the proposed algorithm was evaluated
on medium-sized problem instances comprising between 300 and 849 requests. Our method
consistently produced effective solutions within short computation times.

The remainder of this paper is organized as follows. Section 5.2 reviews the related litera-

49

ture on the DARP and large-scale routing problems. In Section 5.3, we present a detailed
description of the specific DARP variant under consideration. Then, Section 5.4 outlines the
proposed algorithm in depth. Section 5.5 introduces the data used in the case study and
presents our computational results. Finally, Section 5.6 concludes the paper with a summary
of our findings.

5.2 Literature review

The DARP is a specific variant of vehicle routing problems (VRP) with pickups and deliveries,
where a fleet of vehicles transports passengers between pickup and delivery points. The liter-
ature has examined a broad range of problem characteristics. Foundational studies typically
considered simplified settings with a homogeneous fleet of capacitated vehicles, pickup and de-
livery time windows, limits on passenger ride times, and restrictions on route duration [17,61].
Building on these basics, some works have extended the problem to incorporate features moti-
vated by practical applications, such as heterogeneous passengers and vehicles [12,74,112,113],
passenger transfers [35,36], integration with public transport services [38,47], requirements for
additional manpower [23], and driver scheduling constraints [19,41]. These extensions reflect
the complexity of real-world systems and have significantly shaped algorithmic developments
in the field.

Given the high computational complexity of exact methods [18], particularly for large-scale
instances, various heuristic and metaheuristic approaches have been developed to provide
more efficient solutions [11, 14, 33, 35, 40, 69, 76]. While significant progress has been made
in solving small- to medium-sized DARP instances, few efforts have dealt with large-scale
instances very common in large cities or highly-populated regions. Of the few studies that
have addressed large-scale instances of DARP, Xiang et al. [77] introduced a heuristic frame-
work incorporating local search, diversification, and intensification strategies. Their approach
was tested on instances with up to 2,000 requests, yielding solutions in acceptable computa-
tional times, demonstrating the potential of organized search methods to handle large-sized
problems efficiently.

Muelas et al. [78] presented a distributed VNS algorithm based on Muelas et al. [79]. By
partitioning the request space and integrating route combinations, their method addressed
instances with up to 16,000 requests, as tested in the city of San Francisco. The distributed
nature of their approach, along with effective route partitioning, allowed for the resolution
of high-dimensional problems in computationally feasible time frames. Their results repre-
sent a significant step forward in addressing the scalability of DARP solutions in real-world
scenarios. Recently, Liu et al. [80] investigated the use of shared autonomous vehicles to

50

provide dial-a-ride services in urban and rural settings, focusing on large-scale homogeneous
DARP. They proposed a greedy insertion heuristic, enhanced by a filtering system to ac-
celerate decision-making, and an innovative network-driven route encoding. Their approach
was tested on instances ranging from 10,000 to 300,000 requests across networks with 1,000
to 15,000 nodes, demonstrating its scalability and efficiency in managing large-scale DARP
instances.

Parallel developments in the VRP have also sought to extend solution methodologies to
large-scale instances. Kytöjoki et al. [81] proposed a VNS-based approach for solving very
large-scale VRP instances. Their method, which combines various insertion heuristics to
construct initial solutions and subsequently improves them through a variable neighborhood
descent, demonstrated the capability to solve instances with up to 20,000 customers within an
hour. This work underscores the efficacy of hybridized heuristic strategies in tackling large-
scale problems and serves as an important reference for scalable DARP solutions. Further
contributions to the VRP literature include the work of Arnold et al. [83], who developed
a local search heuristic capable of solving capacitated VRP instances with up to 30,000
customers. By leveraging pruning techniques and sequential search strategies, their algorithm
produced high-quality solutions in a reasonable time. Similarly, Accorsi & Vigo [84] advanced
the field with the FILO algorithm, a hybrid iterated local search that combines acceleration
techniques with a simulated annealing-based acceptance criterion. Their method exhibited a
strong ability to navigate large search spaces, yielding competitive results on very large VRP
instances within 150 minutes. Recently, Máximo et al. [86] presented an enhanced solution
method for the capacitated VRP by developing an adaptive iterated local search algorithm
in two search phases, both incorporating perturbation and local search, but differing in how
reference solutions are selected. In the first phase, the reference solution is chosen using an
acceptance criterion, while in the second phase, it is selected from an elite set of the best
solutions found. This algorithm, termed AILS-II, outperforms existing methods on smaller
instances and proves particularly effective on large-scale problems with up to 30,000 vertices,
achieving superior solution quality.

Despite these advances in the VRP and DARP literature, few works have explicitly addressed
the unique challenges posed by very large-scale practical DARP instances. The complexity of
such problems, characterized by high-dimensional search spaces and computationally expen-
sive constraints, necessitates the development of advanced algorithms capable of balancing
solution quality and computational efficiency. Our proposed VNS algorithm contributes to
this ongoing research by introducing a novel approach specifically designed to solve very
large-scale practical DARP instances. Building upon existing VNS frameworks, we incorpo-
rate probabilistic neighborhood selection mechanisms and enhanced shaking procedures to

51

improve solution diversity and quality. These innovations are tailored to the demands of large
urban transportation networks, where the ability to generate high-quality solutions within
limited computational time is critical. By addressing the gap in scalable DARP solutions, our
work aims to push the boundaries of what is computationally feasible in solving large-scale
transportation problems.

5.3 Problem definition

In this paper, we tackle the variant of the DARP introduced in our previous work [114], which
explicitly models heterogeneous transportation requests: passengers may be ambulant or in
a wheelchair. Both passenger types require a seat, but wheelchair passengers additionally
require space for their wheelchairs. This distinction also impacts the service time required for
each request. Moreover, each transportation request is subject to time window constraints
at both the pickup and drop-off locations, along with a maximum allowable ride time for
passengers. The available vehicles operate under different contractual agreements, with each
contract specifying the number of vehicles, a cost structure, and a maximum budget for each
contract. These contracts define specific vehicle types with varying capacities. A vehicle’s
route is defined as a sequence of activities, including departing from the depot (pull-out), per-
forming pickups and drop-offs, taking mandatory breaks, and returning to the depot (pull-in).
The route can be segmented into one or more blocks, where a block represents a part of the
route between two consecutive stops where the vehicle is empty. Contracts impose additional
constraints, such as maximum route duration and mandatory break patterns. These break
patterns depend on the route’s total duration and specify the number of breaks required, as
well as the permissible intervals between breaks or between the start and end of the route.
Different vehicle types also introduce variability in travel times and distances, which in turn
affects the cost structure and overall scheduling. Given these characteristics, the DARP vari-
ant presented in this paper introduces significant operational challenges, particularly when
dealing with large-scale instances, heterogeneous passenger types, and complex contract-
specific constraints. Addressing these challenges efficiently is key to producing practical and
cost-effective solutions.

This practical DARP is defined on a directed graph G = (V,A), where V is the set of
vertices and A is the set of arcs. The vertex set V consists of two depots (denoted as
vertices 0 and 2n+ 1), a set of pickup vertices P = {1, . . . , n}, and a set of delivery vertices
D = {n + 1, . . . , 2n}. Each pickup vertex i ∈ P corresponds to a request to transport
one or more passengers from pickup location i to the corresponding delivery location n + i.
These passengers may require one of two transportation modes: ambulant or wheelchair.

52

When a passenger boards a vehicle, they consume resources. Let M = {St,Wc} represent
the set of resources, where St denotes the number of seats and Wc denotes space for a
wheelchair. For each vertex i, let qm

i represent the quantity of resource m ∈ M consumed at
that vertex. Specifically, qm

i ≥ 0 if i ∈ P (pickup vertices) and qm
n+i = −qm

i ≤ 0 if n+ i ∈ D

(delivery vertices), with qm
i = 0 at any other vertex. In addition, each request i ∈ P must be

completed within a maximum allowable ride time Li and each vertex i ∈ V has an associated
time window [ei, ui], where ei is the earliest time and ui is the latest time that service can
begin at vertex i. The extremities of these time windows for the depots (vertices 0 and 2n+1)
represent the overall planning horizon.

The use of vehicles in this problem is governed by a set of contracts K. Each contract
k ∈ K specifies a fleet of nk identical vehicles, a total operating budget Fk, a cost structure,
and a set of operational rules. Contract k defines a vehicle’s capacity Qm

k for each resource
m ∈ M , and the service time sk

i at each pickup and delivery vertex i ∈ P ∪ D. The travel
time between any two vertices i, j ∈ V also depends on the contract, based on the vehicle’s
speed, and is denoted by tkij. Likewise, the cost of traveling between two vertices depends
on both the contract and other conditions, which will be further described. We assume that
all travel times and costs satisfy the triangle inequality, ensuring that direct travel between
two locations is never more expensive or time-consuming than traveling via an intermediate
point.

A route for a contract k ∈ K is defined as a path from the starting depot 0 to the ending depot
2n+ 1, accompanied by a schedule that specifies the service times at each visited vertex. A
route is feasible if it satisfies several key constraints. First, the route must respect the pairing
and precedence of requests: if a pickup vertex i ∈ P is visited, the corresponding delivery
vertex n+ i must also be visited afterward, but no later than Li minutes after the service at i
begins. Additionally, each service at a vertex must occur within its designated time window.
The route must also always comply with vehicle capacity limits for the available resources.
For certain contracts, routes may be subject to maximum duration constraints and must
account for required breaks, defined by specific break patterns. A break pattern ℓ depends
on the total route duration and specifies the maximum route duration Tmax,ℓ, the number
of breaks nℓ (up to three in this case), and the duration dℓ

b of each break b = 1, . . . , nℓ. The
breaks divide the route into nℓ + 1 segments, where the duration of each segment must fall
within a given range [∆min,ℓ

g ,∆max,ℓ
g]. Importantly, breaks can only take place when there are

no passengers onboard, typically occurring after the last passenger has been dropped off. It is
also assumed that the travel time between any two locations is always less than the minimum
segment duration ∆min,ℓ

g , ensuring that at most one break can be scheduled along any arc in
the route. Breaks are not allowed on the pull-out or pull-in arcs of a route, maintaining the

53

continuity of the vehicle’s operation throughout the day.

An illustrative example of such a route is shown in Figure 5.1. This route features a break
pattern with three breaks, dividing the route into four segments. Each segment contains one
or more service blocks, composed of consecutive pickups and drop-offs, and their durations
satisfy the prescribed interval constraints [∆min

g ,∆max
g]. The three breaks, each of fixed

duration db, contribute to the total route time, which must remain below the maximum
allowable duration Tmax. Breaks are scheduled only after all passengers of the corresponding
segment have been dropped off, thereby ensuring feasibility with respect to operational rules.
This example highlights how both the segmentation and the overall route duration are jointly
constrained by the break pattern.

The cost of a route ck
r depends on the contract k ∈ K and is influenced by two binary

parameters: wP ull
k and wDh

k . These parameters indicate whether pull-ins/outs and deadheads
(empty vehicle travel between blocks) incur costs. Specifically, wP ull

k determines if the pull-
in and pull-out movements are costed, while wDh

k governs whether deadhead trips between
blocks are charged. In addition, the number of blocks in a route is equal to the number of
deadheads plus one (pull-out). The total cost of the route is then calculated based on these
conditions, reflecting the contract’s cost structure for vehicle operations. It is defined by:

ck
r = γBlkmBlk

r + γDur(ηP ax
r + ηBrk

r + wP ull
k ηP ull

r + wDh
k ηDh

r)

+ γDst(χP ax
r + wP ull

k χP ull
r + wDh

k χDh
r), (5.1)

In this cost structure, mBlk
r represents the number of blocks in route r, while ηg

r denotes
the total travel duration for various components of the route including the travel time with
passengers onboard when g = Pax, the duration of mandatory breaks when g = Brk, the
pull-in and pull-out times when g = Pull, and the deadhead times between blocks when
g = Dh. Similarly, χg

r corresponds to the total distance for these components: the distance
traveled with passengers (Pax), the pull-in/pull-out segments (Pull), and the deadhead
segments (Dh). The unit costs for each component are given by γg , where g = Blk for the
cost per block, g = Dur for the cost per time unit, and g = Dst for the cost per distance
unit. Penalizing the number of blocks in a route encourages the avoidance of empty travel
periods, thus increasing the proportion of time that the vehicles carry passengers. Even if
they may slightly increase the traveling costs, such routes are often preferred by the para-
transit societies according to our industrial partner because they are more attractive to the
contractors. Note also that the weight of this term in the objective function is small compared
to the other terms, so its influence on route design remains limited.

54

Figure 5.1 Example of a route with breaks

Given this route cost that depends on the contract k and other conditions, we define the
following cost ck

ij:

ck
ij =



γBlk + wP ull
k (γDurηP ull

ij + γDstχP ull
ij) if i = 0

wP ull
k (γDurηP ull

ij + γDstχP ull
ij) if j = 2n+ 1

γBlk + γDurηBrk
ij + wDh

k (γDurηDh
ij + γDstχDh

ij) if (i, j) is a deadhead

with a break

γBlk + wDh
k (γDurηDh

ij + γDstχDh
ij) if (i, j) is a deadhead

without a break

γDurηP ax
ij + γDstχP ax

ij if (i, j) is traversed with

onboard passengers,

(5.2)

where the arc parameters ηg
ij and χg

ij, g = Pax, Pull,Dh, are the counterparts of the route
parameters ηg

r and χg
r . The last three cases cannot be determined a priori, but rather dy-

namically when building routes.

5.4 The proposed algorithm

The practical DARP is addressed using a VNS heuristic. The core idea behind this algorithm
is to start with an initial solution, denoted as sinit. This initial solution serves as the first
incumbent solution and current solution s. The heuristic uses a sequence of neighborhood

55

classes (or shaker methods) indexed by k. In each iteration, a neighborhood class is applied
to create a solution s′ within the neighborhood denoted by Nk(s). Next, if the solution is
promising (Section 5.4.3), a local search algorithm is employed on s′, leading to an improved
solution s′′. If s′′ is better than the current incumbent s, it replaces s. On the other hand, if
s′′ does not improve upon s, the incumbent remains unchanged, and an acceptance criterion
is used. This iterative process is repeated until a predetermined stopping criterion is met,
ensuring the search thoroughly explores multiple neighborhoods for good solutions. The
general framework of our VNS heuristic is given in Algorithm 1.

Algorithm 1 VNS heuristic
1: // initial solution
2: Generate sinit;
3: Set s := sinit; Set k := 1; Set sbest := s;
4: repeat
5: // shaking
6: Compute s′ in neighborhood Nk(s);
7: // local search
8: if s′ is a promising solution then
9: Apply local search to s′ yielding s′′;

10: else
11: Set s′′ := s′;
12: end if
13: if s′′ is better than s then
14: Set s := s′′; Set k := 1;
15: if s′′ better than sbest then
16: Set sbest := s′′;
17: end if
18: else
19: Set k := k + 1;
20: if acceptance criteria are satisfied then
21: Set s := s′′;
22: end if
23: end if
24: until some stopping criterion is met
25: return sbest;

The following subsections describe the methods used in our VNS algorithm. Section 5.4.1
explains the approach for generating the initial solution. Section 5.4.2 outlines the neigh-
borhood searches employed to explore the solution space. Finally, Section 5.4.3 presents the
local search technique to refine the generated solutions.

56

5.4.1 Generating the initial solution

In the literature, various methods have been proposed for generating an initial solution,
particularly in high-dimensional problems like the practical DARP. Starting with a feasible
solution is critical, as it provides a solid foundation for subsequent improvements during the
optimization process. We propose three different methods for generating an initial solution,
each of which is described in detail below.

Greedy-by-route heuristic

This method requires a pre-processing step to identify neighboring requests for each request.
A neighboring request is defined as one that can be directly accessed after serving the current
request within a specified time interval. In this implementation, requests that are accessible
within one hour after a given request are considered neighbors and are sorted by travel
duration from the end location of the first request to the start location of the second one.
The method begins by sorting all requests based on their pickup times. The first request
from the sorted list is selected and assigned to a vehicle that is compatible with the request
in terms of time and capacity. Next, a neighboring request is chosen from the identified list
of neighbors and inserted at the end of the vehicle’s current route. This process continues,
adding neighbors sequentially until the route is no longer feasible due to capacity, time, or
other constraints. If a request cannot be inserted at the end of the route, alternative positions
are considered using the best insertion method [115]. If a request cannot be feasibly inserted
in the current route, even after applying the best insertion method, the algorithm attempts
to insert it into another existing route. If no feasible insertion is found in any existing route, a
new route is initiated for that request. This ensures that all requests are eventually assigned
to routes. Once the route is constructed and feasible, all requests included in the route are
removed from the request list. The algorithm then selects the next request from the sorted
list, assigns it to a compatible vehicle, and repeats the process until all requests are assigned
to routes. In this method, the routes primarily follow a sequence of servicing individual
requests (pickup and drop-off), making it less likely for a vehicle to handle multiple requests
simultaneously, unlike the next two methods.

Sliding window heuristic

First, all requests are sorted based on their pickup times. The day is then divided into
hourly periods. The requests within the first period are inserted into routes using the best
insertion method. If a request cannot be inserted into existing routes, a new route is started

57

to accommodate it, ensuring that all requests are eventually assigned. Once all requests
from the first period have been assigned to routes, a limited version of the VNS algorithm
is applied to improve the current routes’ quality. “Limited” VNS refers to the use of only
small-size neighborhoods (specifically, chain and swap shakers of sizes 1 and 2) which allows
for local route improvement while keeping the search effort bounded. After optimizing the
routes for the first period, the requests from the next period are inserted into the same routes,
continuing the process. The algorithm iterates in this manner—optimizing routes after each
period—until all requests are assigned to feasible routes for the entire day.

LP-based heuristic

As shown in Algorithm 2, the approach begins by dividing the day into discrete hourly pe-
riods, ensuring the problem is tackled incrementally across manageable time intervals. For
each period starting with the earliest, a DARP model is formulated based on [12] (see Ap-
pendix A), incorporating the requests specific to that period along with the fleet of available
vehicles. This arc-flow model involves the binary variables xij indicating the vehicle flow on
each arc (i, j). To mitigate the computational burden, the linear relaxation of the model is
first solved. The binary variables that take non-zero values in the relaxation are retained,
while their costs are adjusted using the formula: c′′

ij = c′
ij

x̄ij
, where x̄ij represents the relaxed

variable values, c′′
ij and c′

ij are the new and current costs, respectively. This cost-adjusted
linear relaxation model is then resolved iteratively, refining the variable selection over several
cycles. After a predetermined number of iterations (MaxIteration), any binary variables
that consistently remain inactive (i.e., zero) are fixed, effectively pruning the solution space.
The reduced model, now significantly smaller, is subsequently solved as an integer program
within a specified time limit, leveraging the remaining active variables for optimization. This
process is repeated for each subsequent period, taking into account the status of vehicles
already in service and the availability of additional vehicles, ensuring that each period is
handled in sequence while managing the computational complexity effectively.

58

Algorithm 2 LP-based heuristic for initial solution generation
1: Divide the length of the day into periods;
2: Set per := 1;
3: repeat
4: Set iteration := 1;
5: Set c′

ij := cij;
6: Set c′′

ij := cij;
7: Formulate a DARP model for requests and vehicles in period per
8: Set ActiveV ariables := ∅;
9: repeat

10: Solve linear relaxation of the model with cost coefficients c′
ij;

11: Set ActiveV ariables := ActiveV ariables ∪ {(i, j) : x̄ij > 0};
12: Set c′′

ij := c′
ij

x̄ij
for (i, j) ∈ {(i, j) : x̄ij > 0};

13: Set c′
ij := c′′

ij;
14: Set iteration := iteration+ 1;
15: until iteration ≤ MaxIteration
16: Fix inactive variables ((i, j) /∈ ActiveV ariables) to zero;
17: Solve integer programming model with ActiveV ariables in a limited time;
18: Set per := per + 1;
19: until per ≤ TotalPeriods
20: return initial solution;

5.4.2 Neighborhood classes

Five different neighborhood classes (or shakers) are used in the algorithm, with an IP-based
neighborhood search method specifically designed for this problem. Most of these shakers
can be parameterized by a size value, which controls the maximum number of requests or
routes that can be modified during each application. The details of these shakers are provided
below.

Swap neighborhood (S): This shaker, proposed in [31], performs an exchange of requests
between two different routes. Initially, two distinct routes are selected using a roulette wheel
selection procedure (Section 5.4.2), ensuring a probabilistic and diverse choice. For each
chosen route, a sequence of requests to be swapped is then randomly determined. This
involves selecting both the starting vertex of the sequence and its length, with the maximum
allowable length defining the size of the neighborhood. Importantly, for every request within
the selected sequence, the corresponding origin or destination vertex must also be included
in the swap, even if it lies outside the chosen sequence. Once the sequences are defined, all
requests in the respective sequences are removed from their current routes. These requests are
then reinserted, one by one, into the alternate route, ensuring that feasibility is maintained

59

throughout the process.

Chain neighborhood (C): The second neighborhood class, also defined in [31], employs the
ejection chain idea. Initially, a sequence of vertices is randomly chosen, similar to the swap
neighborhood, and moved from one route to a second route. The selection of the second
route follows a probabilistic approach using the roulette wheel mechanism of Section 5.4.2,
ensuring diverse and dynamic choices. A random sequence length l is then selected, with l

representing the maximum sequence length allowed by the shaker size. Next, from the second
route, a sequence of length l is selected, again using the roulette wheel procedure, and moved
to a third, randomly chosen route. This step is repeated until the maximum number of
sequence moves, defined by the shaker’s size, has been reached. This size determines both
the maximum number of sequences that can be moved and the maximum length of the
sequences selected.

IP-based neighborhood: The shaker starts by selecting two different routes using the roulette
wheel selection procedure. Afterward, based on the hourly division of the day, the period
with the highest number of requests shared between the two routes is identified. Importantly,
each route must have at least one request during the selected period. Once the time period
is determined, a DARP model, as shown in Appendix A, is built for the two routes, where
only the requests within the selected period remain flexible, while the rest of the routes
outside this period are fixed. The objective is to find the optimal reassignment of requests
between the two routes for the given period. Requests are included based on their pickup
times. If a delivery from a previous period occurs in the current period, it is fixed, but
if a request is picked up during the selected period and delivered in the next, it remains
part of the model. This DARP model is then solved using a mixed-integer programming
solver, optimizing the configuration of the requests between the two routes for that period
while maintaining overall feasibility. For our tests, the neighborhood size (i.e., the number
of requests that remain flexible in the IP model) does not exceed eight requests, which keeps
the resulting IP subproblems computationally tractable.

All natural sequences combinations neighborhood (Z): This neighborhood class leverages the
concept of natural sequences, initially developed for the zero-split neighborhood [31]. A
natural sequence consists of a set of vertices such that the vehicle load returns to zero at the
end of the sequence. In this shaker, introduced in [79], each natural sequence is treated as a
single unit, and all possible swaps between pairs of natural sequences across different routes
are evaluated. For example, if two routes, i and j, contain each two natural sequences, the
evaluation of the pair (i, j) involves computing the possible swap values for all four potential
combinations of these sequences. This ensures a comprehensive exploration of swapping

60

possibilities between routes. This neighborhood class does not have a size parameter, as
it always performs the same set of operations, focusing on full natural sequence swaps to
explore the solution space efficiently.

Exchange-vehicle (E): In this shaker, the vehicles assigned to a pair of routes are swapped.
The selected vehicles come from different contracts, ensuring that the change in the cost
structure is taken into account when evaluating potential improvements in the solution. By
swapping vehicles between routes with varying contractual terms, the shaker captures the
impact of operational cost differences, which can lead to a more cost-effective and optimized
solution overall. This approach adds a layer of complexity and realism by addressing con-
tractual heterogeneity in vehicle assignments.

The described shakers may be applied in various orders and with different neighborhood
sizes, allowing for flexibility in their implementation. However, in adherence to the guiding
principles of the VNS algorithm, it is advisable to apply the shakers that introduce fewer
perturbations at the outset. This approach reflects the fundamental strategy of VNS, where
smaller, less disruptive changes are explored initially to retain promising solution features,
followed by larger perturbations that progressively diversify the search. By following this
hierarchical sequence, the search process remains both efficient and focused, improving the
chances of identifying high-quality solutions without unnecessary computational overhead.

Roulette wheel route selection

To guide the application of shakers, a roulette wheel selection method was combined with
the route stability idea [13]. In this approach, each route is assigned a stability counter,
which tracks the number of iterations the route has remained unmodified. Routes with
higher stability counters are prioritized for shaking, as they may be stuck in local optima.
To implement this, the stability counters are used to determine the probability of selecting
a route for modification. Specifically, the stability counters are summed to calculate a total
stability score, and each route’s probability of being selected is proportional to its stability
counter relative to the total score. This way, routes that have not been modified for longer
periods have a greater chance of being selected, but all routes still maintain some probability
of being chosen, ensuring diversity in the search process. The roulette wheel selection works
by generating a random number between zero and the total stability score. The algorithm
then iterates through the routes, accumulating their stability counters until the random
number falls within the range corresponding to a particular route. This route is then selected
for a shaker application. After applying a shaker, the stability counter of the chosen route is
reset to zero, while the counters of all other routes are incremented, reflecting their continued

61

stability. This dynamic system ensures that routes that remain unmodified over multiple
iterations become more likely to be selected, while still allowing occasional selection of less
stable routes. This method provides a balanced way to prioritize the exploration of stable
routes while maintaining some level of probabilistic selection to avoid local optima.

5.4.3 Local search

While the previous neighborhood classes emphasize inter-route modifications, the local search
methods focus on intra-route optimization by greedily improving the sequence of vertices
within each route. Given the time-consuming nature of local search, it is not applied after
every shaking step. Instead, it is reserved for promising solutions — those that have the
potential to yield new incumbent solutions. After several experiments, a solution s′ is con-
sidered promising if its cost does not exceed by more than 1% the cost of the current solution
s. There are various local search algorithms tailored to DARP, each offering unique strategies
for optimizing routes. These approaches are detailed below and aim to refine routes by im-
proving timing, minimizing travel distance, and better utilizing vehicle capacity, ultimately
seeking to enhance overall solution quality efficiently.

IP-based method

In this local search algorithm, the DARP model is constructed and solved for a single route,
focusing on the requests within a specific period. Based on extensive testing, the most effec-
tive approach for selecting the period is to choose the interval with the highest number of
requests and include its two adjacent periods. This method ensures that a more comprehen-
sive set of requests is considered, allowing for better optimization across neighboring time
slots and improving the overall routing efficiency.

Route adjustment method

This local search method, based on [31], is systematically applied to each route as follows:
initially, both the first pickup vertex and its corresponding delivery vertex are removed from
the route. Subsequently, the pickup vertex is reinserted at the earliest feasible position that
complies with the designated time window constraints. Following this, the delivery vertex
is inserted at the first available position that respects the timing of the newly positioned
pickup vertex. If this insertion results in an improvement in the cost, the local search process
advances to the next pickup vertex within the route. Conversely, if no improvement is noted,
the delivery vertex is placed at the subsequent available position. This iterative approach

62

continues until either an improvement is achieved or all potential insertion positions for
the delivery vertex have been exhausted. In scenarios where no improvements are found
throughout this procedure, the pickup vertex retains its original position, and the algorithm
proceeds to the next pickup vertex in the route. Once the optimization process for a particular
route is completed, the same algorithm is applied to the subsequent route.

5.4.4 Break insertion

In the process of generating the initial solution for contracts that necessitate breaks, potential
break locations are determined based on the break configuration and the route’s duration.
This involves analyzing the route structure and identifying optimal positions for the insertion
of breaks, ensuring compliance with operational constraints. When modifications to the route
are made—such as the removal or insertion of requests—the necessity for re-evaluating the
break configuration is assessed in relation to the updated route duration. If the adjustments
do not warrant a change in the break configuration, the original break locations remain
unchanged. Conversely, if a change is necessary, the best potential locations for the break
are evaluated to identify the most suitable position for insertion. It is crucial to note that
if the insertion of a break leads to the inability to construct a feasible route, the proposed
solution will be deemed infeasible and subsequently rejected.

5.4.5 Acceptance criterion

For deciding whether the incumbent solution should move to the new solution s′′ or not, the
algorithm applies an acceptance criterion governed by a simulated annealing approach [79].
A worse solution is accepted with a probability of exp

(
−∆E

T

)
, where ∆E is the difference in

the objective value between the current and new solutions, and T represents the temperature
parameter. The temperature, T , is linearly decreased based on the initial temperature and
the cooling rate.

5.5 Computational results

The proposed algorithm was coded in Java and used version 12.4 of the mixed-integer pro-
gramming solver CPLEX. The computational experiments were performed on a laptop with
8 CPU cores (clocked at 3.2 GHz) and 16 GB of RAM. This section presents the compu-
tational results obtained for real-life instances provided by our industrial partner GIRO.
Subsection 5.5.1 describes the test instances, while Subsections 5.5.2 and 5.5.3 present re-
sults and discuss some characteristics of the computed solutions for very large-scale and

63

medium-sized instances, respectively.

5.5.1 Instance description

In Table 5.1, we summarize the key specifications of the real-world test instances used to eval-
uate the proposed algorithm’s performance, including the number of requests, total vehicles,
contracts, and vehicle types. The first three instances (S1-S3) are derived from real-world
data provided by our industrial partner, GIRO, representing Canadian cities. To ensure a
thorough evaluation, two additional instances (S4 and S5) were created from the largest real
instance, S3. This allows us to assess the algorithm’s performance across a range of problem
sizes and complexities.

Instance S3, the largest of the real-world cases, comprises 10,527 requests and three vehicle
types: Sedan, AT, and Friendly. These vehicles are managed under 9 distinct contracts.
The specifications for contracts, vehicles, and break patterns are detailed in Tables 5.2, 5.3,
and 5.4, respectively. Of the nine contracts, four use AT vehicles, three involve Friendly
vehicles, and two utilize Sedan vehicles. Notably, three contracts do not impose break re-
quirements, while three contracts account for deadhead and pull-in/out costs. The vehicle
specifications in Table 5.3 reveal that Sedan and AT vehicles have slightly higher average
speeds compared to Friendly vehicles, resulting in faster travel times. The service time for
each request is calculated as the sum of a fixed setup time and a loading/unloading time,
both depending on whether the passenger is ambulant or uses a wheelchair. When serving
multiple requests at the same location, only a single setup time is required. In terms of
capacity, AT vehicles offer a lower wheelchair capacity compared to the other two types.

Table 5.4 outlines the break patterns across contracts and provides the corresponding maxi-
mum route durations. For contracts 7 and 9, three break patterns are available, while other
contracts requiring breaks have a single pattern. Each break pattern ℓ includes a specific
number of breaks, nℓ, and mandates that the duration of each segment within the route falls
between [∆min,ℓ,∆max,ℓ], ensuring compliance with operational regulations.

In the case study of instance S3, the 10,527 requests include 10,605 ambulant passengers and
1,926 wheelchair passengers, highlighting that some requests consist of multiple passengers,
possibly combining both types. The average width of the time windows is 30 minutes for
pickups and 55 minutes for deliveries, providing flexibility in scheduling.

To calculate the maximum ride time Li for each request i ∈ P , requests are classified into
three categories based on distance: short, medium, and long distance. The maximum ride
time Li is then determined by multiplying the direct travel time by a factor of 1.75 for short-

64

Table 5.1 Instance specidfications

Instance Requests Vehicles Contracts Types of vehicle
S1 2932 198 8 3
S2 7753 517 9 3
S3 10527 563 9 3
S4 5200 300 9 3
S5 5327 320 9 3

Table 5.2 Contract specifications

Contract k Vehicle type nk Breaks wDh
k wP ull

k Fk ($)
1 Sedan 36 No 0 0 7,000
2 AT 69 Yes 0 0 6,000
3 Sedan 49 No 0 0 7,000
4 AT 69 Yes 0 0 6,000
5 AT 67 Yes 0 0 6,000
6 AT 58 Yes 0 0 6,000
7 Friendly 165 Yes 1 1 10,000
8 Friendly 7 No 1 1 10,000
9 Friendly 43 Yes 1 1 10,000

distance, 1.7 for medium-distance, and 1.65 for long-distance requests. This categorization
ensures that the travel constraints are tailored to the nature of the request, optimizing the
routing process while maintaining service quality. The data also reveal that the number of
unique pick-up and drop-off locations is significantly smaller than the number of requests,
indicating that many requests share the same origin or destination, though they do not
necessarily share the same time window. This clustering of locations, combined with the
varying time windows, adds to the complexity and realism of each test problem, ensuring
that the challenges encountered reflect real-world operational scenarios.

5.5.2 Result of very large-scale instances

To assess the performance of the proposed algorithm and its components, we present the
results of various implementations and configurations. The following sections provide a de-
tailed analysis of each part of the algorithm, along with tests involving different combinations
of these components. This comprehensive evaluation aims to highlight each element’s contri-
bution and the algorithm’s overall effectiveness under various configurations and real-world
scenarios.

First, the performance of various initial solution generation methods is presented in Table

65

Table 5.3 Vehicle specifications

Setup time (min) (Un)loading time (min) Capacity
Vehicle Speed (km/h) Ambulant Wheelchair Ambulant Wheelchair Seats Wheelchairs
Sedan 33 1 1.5 1 1.5 2 2
AT 33 1 1.5 1 2 2 1
Friendly 30 1 1.5 1 2 2 2

Table 5.4 Break pattern specifications and maximum route durations

Contract k Pattern ℓ nℓ δℓ (min) ∆min,ℓ (min) ∆max,ℓ (min) Tmax,ℓ

2 1 2 20 180 360 1080
4 1 2 20 120 360 1080
5 1 2 20 180 300 900
6 1 2 20 180 300 900
7 1 1 20 120 300 600

2 2 15 120 300 800
3 2 20 120 300 900

9 1 1 20 120 300 600
2 2 15 120 300 800
3 2 20 120 300 900

5.5, where three distinct approaches—greedy-by-route, sliding window, and LP-based heuris-
tics—are compared across several test instances. The results demonstrate that the LP-based
method consistently yields superior initial solutions with the lowest costs for all instances,
reflecting its effectiveness in providing higher-quality starting points for further optimization.
While the LP-based approach requires more computational time than the greedy-by-route
method, it outperforms the latter significantly in terms of solution quality. Notably, the LP-
based method also exhibits a shorter computational time than the sliding window method
for most instances, further highlighting its efficiency. Despite being the fastest, the greedy-
by-route method produces the highest initial costs, indicating that its speed comes at the
expense of solution quality. The sliding window method offers a middle ground, with costs
lower than greedy-by-route but higher than LP-based, while also requiring the longest com-
putational time. Overall, these results suggest that the LP-based method provides the most
favorable balance between solution quality and computational effort, particularly for larger
problem instances where solution quality is paramount.

It should be noted that to further enhance the initial solution, a simple assignment model
was applied to allocate the generated routes to vehicles, accounting for the limitation on the
number of available vehicles in each contract. This approach was particularly relevant due
to the presence of different cost structures associated with various contracts. The assign-

66

ment model has been tested on the greedy-by-route and sliding window methods, where it
successfully optimized the assignment of routes to vehicles, leading to an improvement of
approximately 3% in the initial solution.

To determine an effective sequence of neighborhood classes, we implemented a VNS algorithm
that included all the shakers outlined in Section 5.4.2, with varying neighborhood sizes from
1 to 5 for swap and chain neighborhood classes. The performance metrics for each shaker are
presented in Table 5.6 using the LP-based heuristic for generating the initial solution. These
metrics include the number of calls, the number of improvements made, total improvements,
the average improvement per call, the total time spent on each shaker, and the rate of im-
provement per second. This analysis allows us to rank the shakers based on their efficiency
and contribution to solution improvements, aiding in prioritizing the most effective shakers
within the VNS framework. It should be noted that swap and chain neighborhoods of sizes 3
to 5 were tested during preliminary experiments, but consistently yielded negligible improve-
ments relative to their computational effort. For this reason, they were excluded from the
final neighborhood sequence and are not considered in Table 5.6. The analysis shows that
the chain neighborhood shaker with size 1 (C-1) was called the most frequently, with 4,635
calls, yielding a total improvement of 455,546, though its rate of improvement per second
(1,511) was not the largest. In contrast, the swap neighborhood shaker with size 1 (S-1)
demonstrated a much higher improvement rate per second (9,920), though it was called far
fewer times (802 calls). The IP-Based shaker produced the largest average improvement per
call (5,012) and the greatest total improvement (1,007,412), but at the cost of significantly
more time (653.3 seconds).

The VNS algorithm was configured to solve the problem by applying two termination con-
ditions: (1) a maximum of 200 consecutive iterations without improvement, and (2) the
temperature in the acceptance condition reaching a predefined threshold. The first condition
ensures that the search process is halted when the solution quality no longer improves af-
ter a significant number of repetitions, preventing the algorithm from spending unnecessary
time on stagnant areas of the search space. The second condition, related to the acceptance
criterion, leverages a temperature-based mechanism often found in simulated annealing-like
procedures. As the temperature decreases throughout the algorithm, it becomes increasingly
difficult to accept worse solutions, encouraging the algorithm to converge toward an optimal
or near-optimal solution. These combined termination conditions help balance the explo-
ration and exploitation phases of the search, ensuring both thoroughness and efficiency in
the solution process.

The final performance of the algorithm using the mentioned sequence of shakers, based on

67

Table 5.5 Performance of initial solution generation methods

Greedy-by-route Sliding window LP-based
Instance Initial Cost Time (min) Initial Cost Time (min) Initial Cost Time (min)

S1 8,358,104 4.2 8,034,477 10.7 7,808,718 7.9
S2 18,250,140 11.1 17,923,474 28.4 17,205,279 20.6
S3 10,001,434 21.4 9,568,422 54.6 9,051,033 36.1
S4 4,587,502 7.5 4,506,903 18.7 4,304,552 14.0
S5 5,012,846 7.6 4,849,895 19.4 4,635,143 14.2

Table 5.6 Overall performance of the shakers sequence for solving Instance S3

Shaker – Neighborhood size #calls #Imp. Total Imp. Average Imp. Time (sec) Imp. per sec
C-1 4635 182 455,546 2503 301.4 1511
S-1 802 188 409,652 2179 41.3 9920
C-2 1250 167 283,733 1699 96.1 2954
S-2 555 118 193,166 1637 29.8 6480
IP-Based 551 201 1,007,412 5012 653.3 1542
Z 2293 119 291,224 2447 162.6 1791
E 364 21 48,384 2304 29.5 1642

different initial solution methods, is shown in Table 5.7. For each instance, we conducted 15
independent runs of the algorithm to account for its random components. The table reports
the best solution value, the average deviation from the best (AvgD), and the worst deviation
from the best (WorstD) across the 15 runs, as well as the computing time in minutes. The
results show that the proposed algorithm, when generating the initial solution with LP-based
method, consistently achieves the lowest final costs across all cases, although this requires
more computing time compared to when greedy-by-route method is used. On the other
hand, with the greedy-by-route heuristic, the algorithm is slightly faster in most cases but
yields higher costs, representing a clear trade-off between speed and solution quality. The
sliding window heuristic offers a middle ground, delivering final costs and computing times
that fall between the other two approaches. Importantly, the variability across runs is small
(the worst deviations remain below 0.5% in all cases) indicating that the algorithm provides
stable and robust performance. This comparison underscores the significance of selecting an
appropriate initial solution method, depending on the trade-off between computational time
and the quality of the final solution. LP-based heuristics are likely preferable when solution
quality is the main priority, while the greedy-by-route approach may be more suitable in
scenarios where faster results are needed.

Regarding local searches, both the route adjustment and IP-based methods exhibited sim-

68

Table 5.7 Performance of the proposed algorithm with different initial solution generation
methods

Greedy-by-route Sliding window LP-based
Best AvgD WorseD Time Best AvgD WorseD Time Best AvgD WorseD Time

Instance (%) (%) (min) (%) (%) (min) (%) (%) (min)
S1 7,423,796 0.17 0.40 15.2 7,435,731 0.19 0.41 19.8 7,409,878 0.17 0.39 17.9
S2 15,380,049 0.20 0.38 33.5 15,398,348 0.21 0.40 44.1 15,342,872 0.18 0.30 38.9
S3 6,049,034 0.22 0.32 58.3 6,060,114 0.22 0.34 75.9 6,039,101 0.16 0.24 61.9
S4 2,743,667 0.20 0.27 22.4 2,748,187 0.22 0.29 29.0 2,735,246 0.18 0.25 26.5
S5 3,052,998 0.16 0.31 22.8 3,061,038 0.17 0.33 30.2 3,037,664 0.12 0.31 26.9

ilar performance, each contributing to approximately a 10% total improvement in the final
solution. Notably, there was no significant difference between the two methods in terms of
execution time. This consistency in both solution quality and computational efficiency indi-
cates that either approach could be effective depending on the specific requirements of the
problem, with minimal variation in performance.

To evaluate the effect of each shaker family within the presented sequence, we conducted a
set of 10 experimental runs on instance S3, each time removing a specific shaker family to
observe its impact on the algorithm’s performance. By excluding one family of shakers at
a time, we aim to understand how each family contributes to the overall solution and how
they interact and complement one another within the sequence.

The results presented in Table 5.8 illustrate the critical role that each family of shakers plays
in the performance of the proposed algorithm. The values indicate the amount of improve-
ment achieved by each shaker during the algorithm’s execution, reflecting their contribution
to enhancing the solution quality. The gap shown in Table 5.8 represents the percentage
difference between the solution obtained by removing each shaker family and the solution
from the full version of the algorithm, where all shakers are included. The total time of
the algorithm for each of these scenarios is also presented in the last row of the table. The
removal of any family shaker led to a deterioration in the final solution quality, with the ex-
tent of the impact varying across the different shakers. Notably, the removal of the IP-based
shaker had the most significant effect, resulting in a 12.4% increase in the gap from the full
version solution, underscoring its importance in guiding the search process. Similarly, the
exclusion of the chain (C) and swap (S) shakers led to substantial increases in the gap, at
7.4% and 6.2% respectively, indicating that these neighborhoods play a vital role in exploring
the solution space effectively. The removal of the natural shaker (Z) also had a noticeable
impact, with a 4.1% gap, reflecting its contribution to improving the solution. On the other
hand, the removal of the exchange-vehicle (E) shaker, while still leading to a gap, resulted
in a relatively modest increase of only 0.7%, suggesting that its role, while important, is less

69

central than the other shakers. The total runtime analysis shows that removing the IP-based
shaker had the most significant effect, reducing the total time to 52.9 minutes, but at the
cost of obtaining a worse solution, highlighting its critical role in improving solution quality.
Similarly, while the removal of other shakers generally led to a reduction in runtime, except
for the swap (S) shaker, which increased the total time to 62.7 minutes, these reductions came
at the expense of solution quality, emphasizing the importance of retaining all shakers for
achieving better results. These findings emphasize the complementary nature of the shakers
and demonstrate that the algorithm’s full potential is realized when all of these neighborhood
structures are incorporated. Each shaker contributes to the overall efficiency of the search,
and their combined use ensures the generation of higher-quality solutions.

5.5.3 Result of medium-size instances

The performance of the proposed algorithm on medium-sized problem instances (with the
number of requests ranging between 300 and 849, and the number of vehicles varying from 25
to 81) is evaluated in comparison with the exact branch-price-and-cut (B&P&C) algorithm
by Karimi et al. [114]. As shown in Table 5.9, the proposed algorithm demonstrates a
remarkable balance between solution quality and computational efficiency. The gap between
the solutions obtained by the proposed algorithm and the optimal solutions found by the
B&P&C method is consistently below 0.5%, with an average gap of only 0.26%. Despite
this small gap, the proposed algorithm significantly outperforms the B&P&C method in
terms of computational time, with run times reduced by several orders of magnitude. For
example, in Instance P11, the proposed algorithm achieved a solution with a 0.14% gap to
the optimal value in just 10.7 minutes, whereas the B&P&C method required 486 minutes
to find the optimal solution. This substantial reduction in computational time highlights the
effectiveness of the proposed heuristic in delivering near-optimal solutions in a fraction of the
time.

5.6 Conclusion

In this paper, we introduced a VNS algorithm for solving very large-scale practical instances
of the DARP. By integrating advanced initial solution heuristics, including an LP-based
method, and enhancing the algorithm with mixed-integer programming techniques, we were
able to significantly improve the quality of solutions while maintaining competitive com-
putational times. The proposed algorithm demonstrated its robustness through extensive
testing on real-world instances, including very large problems with 10,527 requests. The al-
gorithm consistently produced high-quality solutions in less than an hour for very large-scale

70

Table 5.8 The impact of removing family shakers on algorithm performance for solving In-
stance S3

Shaker – Neighborhood size Full version Without C Without S Without IP-based Without Z Without E
C-1 455,546 - 535,133 507,231 458,437 456,781
S-1 409,652 502,301 - 422,495 414,908 410,368
C-2 283,733 - 338,389 317,907 289,534 284,874
S-2 193,166 244,140 - 219,981 200,665 192,140
IP-Based 1,007,412 1,043,276 1,044,137 - 1,027,887 1,002,721
Z 291,224 404,931 344,890 424,468 - 300,343
E 48,384 50,293 50,517 49,721 49,086 -
Gap with full version - 7.4% 6.2% 12.4% 4.1% 0.7%
Total time (min) 61.9 56.8 62.7 52.9 59.5 61.3

Table 5.9 Comparative results on medium-sized instances

Proposed VNS Gap with B&P&C Proposed VNS
Instance #Requests #Vehicles solution optimal Time (min) Time (min)

P1 300 25 84,606 0.00% 134 2.4
P2 330 27 107,516 0.00% 160 2.9
P3 350 29 136,012 0.22% 178 3.9
P4 400 33 150,932 0.00% 237 4.4
P5 500 42 229,948 0.43% 259 5.2
P6 550 48 285,098 0.50% 336 6.4
P7 600 52 372,413 0.47% 318 7.2
P8 700 58 442,992 0.39% 391 8.1
P9 800 62 524,081 0.48% 416 9.0
P10 820 65 639,022 0.22% 435 9.9
P11 849 81 1,743,820 0.14% 486 10.7

instances, demonstrating its effectiveness and efficiency in handling complex real-world sce-
narios. In addition, the results for medium-sized instances clearly indicate the efficiency of
the proposed approach, achieving near-optimal solutions in a fraction of the time required by
exact methods such as branch-price-and-cut algorithms. Furthermore, the analysis of various
initial solution strategies and shaker sequences revealed important insights into the trade-offs
between solution quality and computational time, offering practical guidance for the selection
of appropriate strategies in real-world applications. Overall, the proposed VNS algorithm
provides a valuable and scalable solution for DARP, making it a suitable tool for large-scale
transportation systems. Future work may explore additional enhancements, such as adap-
tive mechanisms for dynamically adjusting the neighborhood search process or incorporating
machine learning techniques to further improve computational efficiency and solution quality
in even more complex settings.

71

Acknowledgements

We thank the personnel of GIRO Inc. for fruitful discussions and for providing real-world
datasets. We gratefully acknowledge the financial support of the Natural Sciences and Engi-
neering Research Council of Canada under the Discovery grants 2023-03791 and 2020-06903.

72

CHAPTER 6 ARTICLE 3: A VARIABLE NEIGHBORHOOD SEARCH
ALGORITHM FOR THE ELECTRIC DIAL-A-RIDE PROBLEM WITH

REALISTIC CHARGING CONSTRAINTS

Authors: Mohammad Karimi, Guy Desaulniers, Michel Gendreau

Note: Submitted to Transportation Research Part B: Methodological on June 11, 2025

6.1 Introduction

The dial-a-ride problem (DARP) is a well-known combinatorial optimization problem that
involves designing efficient transportation schedules for passengers with specific pickup and
drop-off demands [4]. It has widespread applications in paratransit services, elderly and
disabled transportation, and ride-sharing systems [5–7]. In recent years, the increasing em-
phasis on sustainability and environmental concerns has led to the emergence of the electric
dial-a-ride problem (E-DARP), where fleets of electric vehicles (EVs) are used instead of
conventional fuel-based vehicles to reduce carbon emissions and operational costs [116,117].
While using EVs contributes to sustainability goals, it introduces additional operational com-
plexities, including limited battery capacity, the need for recharging at specific locations, and
non-linear charging behaviors [118]. These factors, along with constraints related to charg-
ing station availability and scheduling, introduce additional complexities that significantly
increase the difficulty of solving the problem, particularly for large-scale instances. More-
over, balancing service quality with battery management constraints necessitates sophisti-
cated optimization techniques that can efficiently handle large solution spaces. Addressing
these challenges is crucial for the practical deployment of electric on-demand transportation
services in urban and suburban areas, where demand is high, and operational efficiency is
paramount.

In this paper, we address the E-DARP by integrating several novel features to better reflect
real-world conditions. Key innovations include a concave piecewise linear charging function
that models the diminishing charging rate of electric vehicles as they approach full battery ca-
pacity, as well as the consideration of charging station capacity, which has not been explored
in the E-DARP literature before. This assumption reflects real-world scenarios where compa-
nies either operate dedicated charging stations or reserve limited capacity at selected public
stations. These features ensure that vehicles avoid delays due to overcrowding at charging
stations while optimizing energy consumption and minimizing charging time. In addition,

73

this problem accounts for different types of charging infrastructure (e.g., fast and slow charg-
ers), time-dependent charging pricing strategies, and partial charging policies, improving
routing efficiency. To solve this problem, we propose a variable neighborhood search (VNS)
algorithm that incorporates novel neighborhood structures, adaptive search strategies, and
a new model for charging station insertion. The proposed heuristic is tested on benchmark
instances involving up to 900 vehicles and 10,000 requests, demonstrating its effectiveness in
large-scale, real-world scenarios by balancing operational constraints with passenger service
quality.

The remainder of this paper is organized as follows. Section 6.2 reviews the related literature
on the E-DARP, and Section 6.3 presents a detailed description of E-DARP. Then, Section
6.4 outlines the proposed algorithm in depth. Section 6.5 introduces the data used and
presents our computational results on different aspects of the problem. Finally, Section 6.6
concludes the paper with a summary of our findings.

6.2 Literature review

Research on the E-DARP has advanced significantly in recent years, with studies investi-
gating diverse modeling frameworks, exact and heuristic solution methods, and real-world
applications. A key focus has been on extending the classical DARP to account for the
unique challenges posed by EVs—particularly battery limitations, energy consumption, and
recharging strategies—while still addressing traditional constraints such as vehicle capacity,
time windows, and maximum ride durations. Masmoudi et al. [42] introduced E-DARP in
the context of non-emergency healthcare transportation, incorporating multiple types of EVs
with resource constraints and a battery-swapping technique to simplify recharging opera-
tions. They proposed an evolutionary VNS algorithm capable of handling problem instances
involving up to 3 vehicles and 18 requests. Bongiovanni et al. [15] extended the problem
by introducing the electric autonomous dial-a-ride problem (E-ADARP), incorporating au-
tonomous EVs, multiple depots, and state-of-charge constraints. They formulated the prob-
lem using mixed-integer programming models and solved it using a branch-and-cut (B&C)
algorithm with problem-specific valid inequalities. The largest instance that their B&C al-
gorithm can solve to optimality includes 5 vehicles and 40 requests. Later, Bongiovanni et
al. [95] investigated a dynamic version of E-ADARP and introduced a machine learning-based
large neighborhood search heuristic, where machine learning techniques were used to guide
the selection of destroy-repair operators, significantly improving computational efficiency. Su
et al. [98] presented a deterministic annealing local search approach to solve the E-ADARP
that yields near-optimal solutions within practical computational times. They also develop

74

a larger benchmark instance set and report results for instances involving up to 8 vehicles
and 96 requests.

Su et al. [96] proposed a fragment-based path representation combined with a column genera-
tion approach, transforming feasible route fragments (i.e., sequences of pickups and deliveries
starting and ending with an empty vehicle) into arcs to construct a compressed graph while
enforcing partial recharging constraints to minimize excess ride time. They provided new
lower bounds for instances with up to 8 vehicles and 96 requests. Limmer [97] introduced
a bilevel large neighborhood search in which the outer level optimized charging station in-
sertion while the inner level handled request assignments, demonstrating its effectiveness
on large-scale instances with up to 5,200 requests and 260 vehicles. Molenbruch et al. [43]
studied a fixed-circuit version of E-DARP, optimizing shuttle schedules and recharging while
developing polynomial-time algorithms to solve subproblems efficiently. Bresich et al. [99]
introduced a large neighborhood search heuristic leveraging battery-restricted fragments for
efficient route representation, achieving new best-known solutions for several benchmark in-
stances. Su et al. [100] proposed a labeling algorithm based on fragment-based abstraction,
integrating it into a branch-and-price framework. Stallhofer & Parragh [101] presented a
mixed-integer linear programming model for E-ADARP, utilizing an event-based graph to
implicitly enforce key constraints and strengthen the model with both existing and new
valid inequalities. Recently, Dong et al. [1] explored the E-DARP with time-of-use electric-
ity pricing and proposed a mixed-integer programming model, along with an adaptive large
neighborhood search heuristic, to optimize routing and charging strategies. Their model and
algorithm were validated with computational experiments on benchmark and real-world cases
with up to 10,000 requests and 900 vehicles.

Despite significant progress in the literature, existing studies often assume homogeneous bat-
tery capacities with fully charged vehicles at the start of planning and typically consider
only a single type of charging infrastructure. Moreover, most works apply linear charging
functions and overlook operational constraints such as charging station capacities. To bridge
these gaps, our study considers a more realistic and comprehensive problem that incorpo-
rates multiple types of charging infrastructure (e.g., fast and slow chargers), time-dependent
charging pricing, and a partial charging policy. Most notably, we introduce a concave piece-
wise linear charging function to capture realistic charging dynamics better, and we are also
the first to explicitly model charging station capacity constraints within the E-DARP. These
contributions enhance the model’s applicability to real-world electric mobility systems. To
solve this problem, we propose a VNS algorithm tailored for large-scale E-DARP instances.
The algorithm integrates novel neighborhood structures, adaptive search strategies, and a
new model for charging station insertion, alongside efficient heuristics designed to improve

75

both solution quality and computational performance. By incorporating more realistic oper-
ational constraints, such as station capacity and non-linear charging behavior, the proposed
approach offers a robust and scalable solution framework for real-world electric dial-a-ride
systems.

6.3 Problem definition

The E-DARP extends the classical DARP by integrating the operational constraints specific
to EVs. In this setting, a set of transportation requests—each defined by a pickup and delivery
location, associated time windows, and service requirements—must be fulfilled by a fleet of
capacitated EVs. The objective is to design cost-efficient routes that service all requests
while satisfying operational constraints related to vehicle capacities, maximum user ride
times, and time window compliance. Unlike conventional DARP formulations, the E-DARP
introduces additional complexity by incorporating battery constraints. Each vehicle operates
with a finite battery capacity, and energy consumption is typically modeled as a function of
traveled distance. To ensure route feasibility, recharging operations at designated charging
stations may be required, which introduces further temporal and routing considerations.

The E-DARP is defined on a complete directed graph G = (V,A), where V represents
the set of vertices and A is the set of arcs. The vertex set V is partitioned into five subsets:
V = P∪D∪S∪O∪F , where P = {1, . . . , n} and D = {n+1, . . . , 2n} denote the sets of pickup
and drop-off nodes, respectively, associated with a set of requests N = {(i, i + n) | i ∈ P}.
The set S represents charging stations, while O and F are the sets of origin and destination
depots, respectively. Each request i ∈ N is associated with a maximum ride time Li. A time
window [ei, li] is specified for each node i ∈ P ∪D∪O∪F , where ei and li denote the earliest
and latest possible start times for service at node i. Each node i ∈ V also has a service
duration si and an associated load qi, where qi > 0 for pickup nodes i ∈ P , qi+n = −qi for
the corresponding drop-off nodes i+ n ∈ D, and qi = 0 for all other nodes i ∈ S ∪O ∪ F .

Travel times ti,j are defined for all arcs (i, j) ∈ A, and battery consumption βi,j is determined
using an energy consumption model based on travel time. The fleet of EVs is homogeneous in
terms of capacity Q and battery capacity C (expressed in kWh) for each vehicle k ∈ K, and
may have varying initial battery levels Bk. Due to their limited battery capacities, EVs may
need to recharge at charging stations during their routes. Charging operations can occur at
any charging station i ∈ S, where partial recharging is allowed (i.e., recharge can stop at any
time, not only when the battery is fully charged). Each charging station features:

• Charging function: A concave piecewise linear charging function Fi with a set P

76

of segments, where P = {1, . . . , p}, which maps the state-of-charge (SoC) level upon
arrival bi and the charging duration ∆i to the SoC level upon departure. In this
function, each piece p ∈ P begins at a battery level ϕp−1 and ends at ϕp, where 0 =
ϕ0 < ϕ1 < · · · < ϕp = C and the recharging rate θp (energy charged per timestep) for
each piece p ∈ P is given by θ1 > θ2 > · · · > θp > 0 (Figure 6.1).

• Charger availability: The number of available chargers Ri at each station i limits
the maximum number of vehicles that can be charging simultaneously during any time
period t ∈ T .

• Time-dependent charging costs: Charging costs vary by time period t, denoted by
ci,t, reflecting dynamic electricity prices throughout the day.

A feasible solution to the E-DARP must satisfy several critical constraints. First, each
customer must be served exactly once by a single vehicle, and this service must adhere to
vehicle load limitations, customer-specific time windows, and maximum ride times. Second,
every vehicle route must be energy-feasible, meaning that the battery level of an EV must
remain within the allowable range [0, C] throughout the entire route. Third, the charging
infrastructure must be respected: at any given period t, the number of vehicles charging
at a particular station i cannot exceed the station’s capacity Ri. In addition, the battery
level of each vehicle upon arrival at its destination depot must be greater than or equal to a
predefined minimum SoC. The objective function is defined as a weighted sum of the total
travel time of all vehicles and the excess ride time of users, allowing direct quantification
of user inconvenience. Including excess ride time in the objective can help improve service
quality by reducing delays without incurring additional operational costs.

6.4 The proposed algorithm

The E-DARP is tackled through a VNS heuristic designed to explore the solution space
effectively and efficiently. The procedure initiates with a feasible solution, denoted as sinit,
which serves as both the incumbent and current solution s. The algorithm then systematically
explores a predefined sequence of neighborhood classes, Nk(s), to generate a neighboring
solution s′. If s′ satisfies the conditions for further exploration (as detailed in Section 6.4.3),
a local search procedure is applied to refine it, yielding an enhanced solution s′′. Should s′′

outperform the current incumbent, it replaces s as the new best-known solution. Otherwise,
the incumbent remains unchanged, and an acceptance mechanism is employed to determine
whether to continue from s′′. This iterative process continues until a predefined stopping

77

Figure 6.1 The concave piecewise linear charging functions

criterion is met, ensuring the algorithm explores diverse regions of the solution space. The
overall framework of the proposed VNS heuristic is outlined in Algorithm 3, which embodies
both diversification through shaking and intensification via local improvement.

The following subsections describe the methods used in our VNS algorithm. Section 6.4.1
explains the approach for generating the initial solution. Section 6.4.2 outlines the neigh-
borhood searches employed to explore the solution space. Finally, Section 6.4.3 presents the
local search technique to refine the generated solutions.

6.4.1 Generating the initial solution

In the literature, various methods have been proposed for generating initial solutions, rec-
ognizing that a high-quality starting point is critical for the efficiency and effectiveness of
metaheuristic frameworks. To this end, we propose an LP-based heuristic for constructing
an initial feasible solution, as outlined in Algorithm 4. The method discretizes the planning
horizon into hourly intervals, allowing the problem to be addressed incrementally over man-
ageable sub-periods. At the beginning of each period, starting from the earliest, a DARP
model inspired by the arc-flow formulation of Cordeau [61] is constructed using the set of
available vehicles and active requests (requests whose pickup node time window intersects
the period), ensuring that only relevant requests are considered for service within that time
frame. This model includes binary decision variables xij indicating the presence of vehi-
cle flow along arc (i, j). To reduce computational complexity, the linear relaxation of the
model is first solved. The resulting fractional values x̄ij are then used to guide a variable
cost adjustment using the transformation c′′

ij = c′
ij

x̄ij
, where c′

ij and c′′
ij are the original and

adjusted costs, respectively. The adjusted model is re-solved iteratively over a fixed number

78

Algorithm 3 VNS heuristic
1: // initial solution
2: Generate sinit;
3: Set s := sinit; Set k := 1; Set sbest := s;
4: repeat
5: // shaking
6: Compute s′ in neighborhood Nk(s);
7: // local search
8: if s′ is a promising solution then
9: Apply local search to s′ yielding s′′;

10: else
11: Set s′′ := s′;
12: end if
13: if s′′ is better than s then
14: Set s := s′′; Set k := 1;
15: if s′′ better than sbest then
16: Set sbest := s′′;
17: end if
18: else
19: Set k := k + 1;
20: if acceptance criteria are satisfied then
21: Set s := s′′;
22: end if
23: end if
24: until some stopping criterion is met
25: return sbest;

of iterations, denoted by MaxIteration, allowing for progressive refinement in arc selection.
Binary variables that consistently remain inactive (i.e., with zero values) across these itera-
tions are fixed to zero, effectively reducing the model’s size. The resulting reduced model is
then solved as an integer program within a specified time limit, yielding an optimized sub-
solution for the given time period. This process is repeated sequentially for all subsequent
periods, with each iteration updating the state of the fleet based on previous assignments.
This time-segmented approach enables the generation of a computationally tractable and
practically effective initial solution that balances problem scale and solution quality.

6.4.2 Neighborhood classes

The proposed algorithm employs four distinct neighborhood classes (or shakers), each de-
signed to explore different regions of the solution space. These neighborhood structures
are tailored to the specific characteristics of the E-DARP, and one of them incorporates an

79

Algorithm 4 LP-based heuristic for initial solution generation
1: Divide the length of the day into periods;
2: Set per := 1;
3: repeat
4: Set iteration := 1;
5: Set c′

ij := cij;
6: Set c′′

ij := cij;
7: Formulate a DARP model for active requests and vehicles in period per
8: Set ActiveV ariables := ∅;
9: repeat

10: Solve linear relaxation of the model with cost coefficients c′
ij;

11: Set ActiveV ariables := ActiveV ariables ∪ {(i, j) : x̄ij > 0};
12: Set c′′

ij := c′
ij

x̄ij
for (i, j) such that x̄ij > 0};

13: Set c′
ij := c′′

ij;
14: Set iteration := iteration+ 1;
15: until iteration ≤ MaxIteration
16: Fix inactive variables ((i, j) /∈ ActiveV ariables) to zero;
17: Solve the restricted integer program in a limited time;
18: Set per := per + 1;
19: until per ≤ TotalPeriods
20: return initial solution;

integer programming (IP)-based neighborhood search method to refine promising solutions
further. Most of the shaker methods are parameterized by a size parameter, which governs
the maximum number of requests or routes that may be altered. These neighborhood classes
are described as follows.

Swap Neighborhood (S): The Swap shaker, initially introduced by Parragh et al. [31], facili-
tates the exchange of requests between two distinct routes. The procedure begins by selecting
two different routes using a roulette wheel selection strategy (as described in Section 6.4.2),
which ensures a probabilistically diverse sampling of candidate routes. For each selected
route, a subsequence of requests is randomly identified, determined by both the starting po-
sition and a random length constrained by a predefined maximum size parameter. To preserve
route feasibility, the entire request—including both origin and destination vertices—must be
included in the swap, even if part of it lies outside the selected subsequence. Once the se-
quences are identified, all requests within the respective segments are removed from their
current routes. Subsequently, these requests are reinserted into the opposing route, one by
one, with feasibility checks enforced throughout the insertion process.

Chain Neighborhood (C): The Chain shaker, also introduced by Parragh et al. [31], is inspired
by the ejection chain mechanism and facilitates a cascading reassignment of request sequences

80

across multiple routes. The process begins with the random selection of a sequence of vertices
from a given route, similar to the approach used in the Swap neighborhood. This sequence
is then transferred to a second route, which is probabilistically chosen using the roulette
wheel selection method outlined in Section 6.4.2, thereby encouraging diversification in route
selection. A random sequence length l is drawn, constrained by the maximum shaker size,
which defines the length of the request sequence to be moved. Subsequently, a sequence of
length l is selected from the second route—again using the roulette wheel—and transferred
to a third, randomly chosen route. This process continues iteratively, with each new route
receiving a sequence from the previous one, until the maximum number of allowed sequence
transfers (defined by the shaker size) is reached. The shaker size thereby governs both the
number of sequence movements and their respective lengths, facilitating a rich and structured
exploration of the solution space.

IP-based Neighborhood: This shaker employs an optimization approach within a limited
subset of the solution space. It begins by selecting two distinct routes using the roulette wheel
selection mechanism. Based on the division of the planning horizon into hourly intervals, the
algorithm identifies the time period with the highest number of shared requests between
the two selected routes. To ensure meaningful re-optimization, each route must contain at
least one request within the chosen time window. Once the period is determined, a DARP
subproblem is formulated over the two routes, restricting flexibility to only those requests
whose pickup times fall within the selected period. All other parts of the routes are held
fixed. Importantly, if a delivery occurs in the current period but the corresponding pickup
took place in a previous period, the request is considered fixed. Conversely, requests picked
up during the selected period—even if their delivery occurs in a subsequent period—remain
part of the model. The resulting subproblem is modeled as a mixed-integer program, and
a MIP solver is applied to determine the optimal reassignment of requests between the two
routes for the selected period. This shaker thus enables highly targeted improvements by
leveraging the precision of exact optimization while containing computational complexity
through time- and route-based restriction of the decision space.

All Natural Sequences Combinations Neighborhood (Z): This neighborhood class builds on
the concept of natural sequences, originally introduced within the context of the zero-split
neighborhood by Parragh et al. [31]. A natural sequence is defined as a contiguous set of
vertices along a route for which the cumulative vehicle load returns to zero at the end of the
sequence, thus forming a self-contained segment of service. In this shaker, proposed by Muelas
et al. [79], each natural sequence is treated as a single unit, and all possible pairwise swaps
of natural sequences between different routes are systematically evaluated. For instance, if
two routes, i and j, each contain two natural sequences, the algorithm examines all four

81

possible swap combinations between these sequences. This exhaustive evaluation ensures
a thorough exploration of the swap space between route pairs. Unlike other neighborhood
classes, this shaker does not rely on a size parameter, as it consistently evaluates the complete
set of feasible natural sequence swaps. Its primary objective is to enhance solution quality by
leveraging structurally significant subcomponents of routes, thereby facilitating meaningful
reassignments across the fleet.

The described neighborhood classes can be applied in varying sequences and with differing
neighborhood sizes, thereby offering considerable flexibility in the algorithm’s implementa-
tion. Nevertheless, in accordance with the foundational principles of the VNS framework, it
is recommended to begin the search process with shakers that induce minimal perturbations
to the incumbent solution. This strategy is rooted in the core philosophy of VNS, which
advocates for a systematic exploration that initially emphasizes small, incremental modifi-
cations to preserve promising structural attributes of the current solution. As the search
progresses, increasingly disruptive neighborhoods are introduced to escape local optima and
promote broader diversification. Adopting such a hierarchical application of neighborhood
classes ensures a balanced trade-off between intensification and diversification, thereby en-
hancing the overall search efficiency and the likelihood of attaining high-quality solutions
with reduced computational expense.

Roulette wheel route selection

To effectively guide the application of neighborhood classes, we employ a roulette wheel se-
lection strategy in conjunction with the concept of route stability introduced by Parragh et
al. [13]. In this framework, each route is associated with a stability counter that records the
number of consecutive iterations during which the route has remained unmodified. Routes
with higher stability values are considered more likely to be trapped in local optima and
are thus prioritized for perturbation. The selection mechanism is probabilistic: the stabil-
ity counters are summed to obtain a total stability score, and each route’s probability of
being selected is proportional to its individual stability counter relative to this total. Conse-
quently, routes that have not undergone modifications for extended periods are more likely
to be chosen for neighborhood perturbation, while ensuring that all routes retain a non-zero
probability of selection, thereby preserving the diversity of the search. The roulette wheel
procedure operates by generating a random number between zero and the total stability
score. The algorithm sequentially accumulates the stability counters of the routes until the
cumulative value surpasses the generated random number, at which point the corresponding
route is selected. Upon application of a shaker to the selected route, its stability counter is

82

reset to zero, while the stability counters of all other routes are incremented. This adaptive
mechanism dynamically balances the focus on potentially stagnant routes with exploratory
diversification, enhancing the overall effectiveness of the search in escaping local optima and
improving solution quality.

6.4.3 Local search

In contrast to previous neighborhood classes that primarily focus on inter-route modifica-
tions, local search methods concentrate on intra-route optimization by greedily enhancing the
sequence of vertices within individual routes. Given the computationally expensive nature
of local search, it is not applied after every shaking step. Rather, it is reserved for promising
solutions—those that exhibit potential for generating new incumbent solutions. Based on
empirical results, a solution (s′) is deemed promising if its cost does not exceed the current
solution (s) by more than 1%. Various local search algorithms have been developed for the
DARP, each employing distinct strategies for route optimization. In this work, we propose
an IP-based method to refine routes by optimizing timing, reducing travel distance, and
maximizing vehicle capacity utilization, with the goal of enhancing overall solution quality
efficiently. The local search algorithm constructs and solves the DARP model for a single
route, focusing on requests within a specific time interval. Extensive experimentation reveals
that the most effective approach for selecting the time interval is to choose the one-hour pe-
riod with the highest request count, along with its two adjacent periods. This method ensures
the inclusion of a broader set of requests, facilitating better optimization across neighboring
time slots and thereby improving overall routing efficiency.

6.4.4 Charging station insertion

To ensure the feasibility of electric vehicle routes with respect to energy constraints, a dedi-
cated charging station insertion procedure is proposed, shown in Algorithm 5. This method
begins with a feasible route that satisfies all operational constraints but excludes charging
considerations. The primary objective is to evaluate battery consumption along the route,
identify points where the energy level becomes critical and when there is no onboard request,
and determine optimal locations and durations for charging. The process involves simulating
SoC throughout the route, locating feasible charging stations within proximity to critical
points, and solving a linear relaxation model to guide the insertion of charging stops. The
resulting route is then updated to reflect the added charging activities, ensuring both energy
feasibility and service constraints are maintained. For potential charging stations, the time
window is determined according to the dispatch time of neighboring nodes, such that the

83

lower limit is equal to the dispatch time of the previous node (Di) plus the service time at
this node (si) and the travel time between this node and the charging station (ti,v). The up-
per limit is equal to the dispatch time of the next node (Di+1) minus the travel time between
this node and the charging station (tv,i+1), shown in Figure 6.2. It should be noted that
if this time window is not feasible, this location will be eliminated for potential charging.
This charging station insertion procedure is applied to each route immediately after it is
constructed or improved during the solution process, to ensure energy feasibility before any
cost evaluation or solution acceptance.

To determine the optimal amount of energy to be charged at candidate stations, two versions
of the insertion model are considered based on the characteristics of the charging process. In
the first version, a constant charging rate is assumed, resulting in a linear relationship between
charging time and energy gained. This simplification allows for a straightforward linear
programming formulation. In contrast, the second version incorporates a concave piecewise
linear charging function, which more accurately reflects real-world charging behavior where
the rate of energy transfer decreases as the battery approaches full capacity. This version
introduces additional complexity to the model but enables more realistic and efficient charging
schedules. Both formulations are solved as linear relaxations to support the efficient selection
of charging stations under time and energy constraints. A detailed explanation of each
insertion model is provided in the remainder of this section.

Prior studies on the routing problem have proposed dynamic programming (DP) procedures
for the insertion of charging stations, particularly under concave piecewise linear charging
functions, which optimally determine both the location and amount of energy charged, con-
sidering diminishing returns of longer charging durations. Notable examples include the
work of Kullman et al. [119] and Dong et al. [1], where DP exploits the problem’s sequential
decision structure and concavity to efficiently explore feasible SoC transitions. In contrast,
the method proposed in this study is an approximate insertion approach that solves a linear
optimization model to determine feasible charging locations and durations.

Insertion model with constant charging rate

Considering the set ∇ of potential charging stations along the route, which are indexed from
1 to |∇|, the insertion model under a linear (constant-rate) charging function α is formulated
as follows:

84

Figure 6.2 The nearest charging station time window

Algorithm 5 Charging station insertion method
1: Set r∗ := r
2: Compute energy consumption over r
3: Identify potential insertion points for charging
4: for each insertion point do
5: Identify nearby feasible charging stations
6: Compute available charging time windows based on travel and service constraints
7: end for
8: Solve insertion model over candidate stations
9: if model is feasible then

10: Select stations with positive charging times
11: Insert selected charging stations into route r∗

12: Update route timing, time windows, and battery levels
13: return updated route r∗

14: else
15: return route is infeasible
16: end if

min
∑
v∈∇

Tv (6.1)

s.t. Bnew
v = Bv + αTv, ∀v ∈ ∇ (6.2)

Bv+1 = Bnew
v − βv,v+1, ∀v ∈ ∇ (6.3)

Bnew
v ≤ C, ∀v ∈ ∇ (6.4)

Bnew
v ≥ βv,v+1 + ε, ∀v ∈ ∇ (6.5)

0 ≤ Tv ≤ Lv − Ev ∀v ∈ ∇ (6.6)

B1 = C − βdepot,1. (6.7)

85

where:

• Tv: time spent charging at station v,

• Bv: battery level before charging at station v,

• Bnew
v : battery level after charging at station v,

• βv,v+1: energy required to reach the next station,

• α: charging rate (energy per unit time),

• C: vehicle battery capacity,

• ε: positive value to ensure feasibility (or minimum battery level at destination depot),

• Ev, Lv: earliest and latest time bounds for charging at station v.

This model minimizes the total time spent at charging stations (6.1). Equation (6.2) cal-
culates the post-charging battery level based on the available charging, charging rate, and
the stop duration at the charging station. Constraint (6.3) determines the battery level at
each station based on the previous station’s battery level and charge level, and the battery
consumption between these two stations. Constraint (6.4) limits the battery level at each
station to the vehicle battery capacity, and constraint (6.5) ensures that the battery level
at each station is sufficient to reach the next charging station (or the end of the route).
Constraint (6.6) determines the amount of time that can be spent charging at each station,
given the time window of that station. Constraint (6.7) initializes the battery level at the
first visited node by subtracting the energy consumption required to travel from the depot to
the first potential charging station, ensuring that the route’s energy feasibility is accurately
modeled. It should be noted that the current energy consumption model overestimates the
battery usage when a charging station v ∈ ∇ is considered as a potential insertion point,
because the detour energy to and from the station is included in βv,v+1 regardless of whether
the station is actually visited.

Insertion model with concave piecewise linear charging function

Similar to the previous model, assuming the set ∇ represents the potential charging stations
along the route, the insertion model based on the concave piecewise linear charging function
is formulated as follows.

86

min
∑
v∈∇

Tv (6.8)

s.t. tv =
∑
ρ∈P

max (min(Bv, ϕρ) − ϕρ−1, 0)
θρ

∀v ∈ ∇ (6.9)

T new
v = tv + Tv ∀v ∈ ∇ (6.10)

Bnew
v =

∑
ρ∈P

max (min(T new
v , ψρ) − ψρ−1, 0) θρ ∀v ∈ ∇ (6.11)

Bv+1 = Bnew
v − βv,v+1 ∀v ∈ ∇ (6.12)

Bnew
v ≤ C ∀v ∈ ∇ (6.13)

Bnew
v ≥ βv,v+1 + ε ∀v ∈ ∇ (6.14)

0 ≤ Tv ≤ Lv − Ev ∀v ∈ ∇ (6.15)

B1 = C − βdepot,1 (6.16)

where tv is the time corresponding to the battery level before charging at point v, and T new
v

is the time after considering charging time. In addition, ψρ denotes the time breakpoints
according to the piecewise linear charging function.

Equation (6.9) determines the time corresponding to the battery level before charging based
on each piece of the charging function. Equation (6.10) updates the time level by adding
the time spent at the charging station to the time level before charging. Equation (6.11)
calculates the new battery level based on charging time. Other constraints are similar to the
previous model. The components of the model are shown in Figure 6.3.

To handle the proposed model’s nonlinear nature in Equations (6.9) and (6.11), which involves
a concave charging function, we reformulate the model using the following constraints.

Equation (6.9) linearization:

87

Figure 6.3 The components of the insertion model with concave piecewise linear charging
functions

zρv ≤ Bv ∀ρ ∈ P ,∀v ∈ ∇ (6.17)

zρv ≤ ϕρ ∀ρ ∈ P ,∀v ∈ ∇ (6.18)

zρv ≥ Bv −M(1 − δρv) ∀ρ ∈ P ,∀v ∈ ∇ (6.19)

zρv ≥ φρ −Mδρv ∀ρ ∈ P ,∀v ∈ ∇ (6.20)

wρv ≥ zρv − ϕρ−1 ∀ρ ∈ P ,∀v ∈ ∇ (6.21)

wρv ≥ 0 ∀ρ ∈ P ,∀v ∈ ∇ (6.22)

tv =
∑
ρ∈P

wρv

θρ

∀v ∈ ∇ (6.23)

Equation (6.11) linearization:

aρv ≤ T new
v ∀ρ ∈ P ,∀v ∈ ∇ (6.24)

aρv ≤ ψρ ∀ρ ∈ P ,∀v ∈ ∇ (6.25)

aρv ≥ T new
v −M(1 − ξρv) ∀ρ ∈ P ,∀v ∈ ∇ (6.26)

aρv ≥ ψρ −Mξρv ∀ρ ∈ P ,∀v ∈ ∇ (6.27)

rρv ≥ aρv − ψρ−1 ∀ρ ∈ P ,∀v ∈ ∇ (6.28)

rρv ≥ 0 ∀ρ ∈ P ,∀v ∈ ∇ (6.29)

Bnew
v =

∑
ρ∈P

rρvθρ ∀v ∈ ∇ (6.30)

88

where zρv, wρv, aρv, rρv ≥ 0 and δρv, ξρv ∈ {0, 1}. Constraints (6.17)–(6.23) linearize max
(min(Bv, ϕρ) − ϕρ−1, 0) using auxiliary variables zρv and wρv, while constraints (6.24)–(6.30)
similarly linearize max(min(T new

v , ψρ) − ψρ−1, 0). Binary variables δρv and ξρv ensure cor-
rect selection in the ‘min‘ function, and M is a sufficiently large constant to activate or
deactivate constraints conditionally. This linear reformulation allows the insertion model to
handle concave charging behavior using mixed-integer programming. It maintains the real-
ism of diminishing charging efficiency while remaining solvable with standard mixed integer
programming solvers.

6.4.5 Acceptance criterion

In order to determine whether the incumbent solution should become the new solution
(s′′), the algorithm employs an acceptance criterion inspired by simulated annealing [79].
Specifically, a solution with a worse objective value is accepted with a probability given by
exp

(
−∆E

T

)
, where ∆E denotes the difference in the objective function values between the

current and new solutions, and T represents the temperature parameter. The temperature
parameter T is gradually decreased over time according to a linear schedule, which is deter-
mined by the initial temperature and the specified cooling rate. This mechanism facilitates
exploration of the solution space while progressively reducing the likelihood of accepting
inferior solutions.

6.5 Computational results

The proposed algorithm was coded in Java and uses version 12.4 of the mixed-integer pro-
gramming solver CPLEX. The computational experiments were performed on a laptop with
8 CPU cores (clocked at 3.2 GHz) and 16 GB of RAM. To evaluate the performance of the
proposed algorithm and analyze the influence of various problem features, five different cases
are considered. These cases are designed to isolate and assess the impact of the charging pro-
cess, objective function, and infrastructure capacity. The base case assumes a linear charging
process and aims to minimize both travel and ride times. Subsequent cases incorporate more
realistic and complex elements such as concave piecewise linear charging functions, different
types of charging infrastructure (e.g., fast and slow chargers), station capacity constraints,
and the inclusion of time-dependent cost objectives. A summary of the characteristics of
instances is provided in Subsection 6.5.1, followed by dedicated subsections that present the
detailed results and discussion for each scenario.

89

6.5.1 Instance description

To assess the performance of the proposed VNS heuristic, extensive computational experi-
ments are conducted on multiple sets of benchmark instances. The first three sets are based
on instances used in Limmer [97]. The first set consists of extended versions of 14 problem
instances originally introduced by Cordeau & Laporte [3], featuring up to 5 vehicles and 50
requests. Each vehicle can carry up to three passengers, with each request corresponding to
a single passenger. The maximum allowable ride time is set to 30 minutes, and the service
duration at both pick-up and drop-off locations is fixed at 3 minutes. The second set includes
five large-scale instances with up to 260 vehicles and 5200 requests, generated using the same
principles as the previous sets. In the second set, energy-related parameters are incorpo-
rated to simulate EV operations. Vehicles consume and recharge 0.055 kWh of energy per
minute of travel and charging, respectively, with a maximum battery capacity of 14.85 kWh.
The objective function combines travel time and excess ride time with corresponding weights
of w1 = 0.75 and w2 = 0.25. Additionally, three levels of minimum final battery SoC are
considered: γ ∈ {0.1, 0.4, 0.7}.

To further validate the scalability and effectiveness of the proposed approach, a third set of
large and very large instances introduced by Dong et al. [1] is also tested. This set includes
12 instances with problem sizes ranging from 100 vehicles and 1000 requests to 900 vehicles
and 10000 requests. In these instances, each request may include 1 to 4 passengers, with
a fixed 1-minute service time at pick-up and drop-off points. The vehicles have a charging
rate of 0.11 kWh per minute and a discharging rate of 0.055 kWh per kilometer, with a
maximum battery capacity of 11 kWh and a passenger capacity limit of 4. The minimum
final battery SoC required is set to 0.4 (γ = 0.4). The instances follow the naming convention
letter-number of vehicles-number of requests, where a lowercase letter is used for
labeling the instance, followed by the number of vehicles and the number of transportation
requests.

6.5.2 Base Case - linear charging function

In the first case, the charging process is modeled using a linear charging rate, and the objective
is to minimize the total travel time and excess user ride time. This setting is consistent
with several previous studies in the literature and serves as a baseline for comparison. By
adopting this simplified yet widely used formulation, we aim to evaluate the performance of
our proposed VNS heuristic under conditions that closely align with established benchmarks.
The results obtained for this base case enable a direct comparison with existing methods and
provide insight into the algorithm’s effectiveness in scenarios without additional complexities,

90

such as nonlinear charging behavior or infrastructure constraints. The performance of the
proposed algorithm is compared with state-of-the-art methods, including the branch-and-cut
algorithm by Bongiovanni et al. [15], the deterministic annealing heuristic by Su et al. [98],
and the bilevel large neighborhood search by Limmer [97], shown in Tables 6.1 to 6.4. The
bold objective function values are the best solution obtained in this comparison. It should
be noted that the presented results correspond to the best solution (i.e., minimum cost)
obtained across five independent runs, conducted to account for the random components of
the proposed algorithm.

Table 6.1 Results on Cordeau instances with γ = 0.1

Ins. Bongiovanni et al. (2019) Su et al. (2023) Limmer (2023) Proposed VNS
Obj Time (min) Obj Time (min) Obj Time (min) Obj Time (min)

a2-16 237.38 0.02 237.38 0.65 238.20 5.00 237.38 0.80
a2-20 279.08 0.07 279.08 1.23 281.00 5.00 279.08 0.99
a2-24 346.21 0.15 346.21 2.68 346.21 5.00 346.21 1.21
a3-18 236.82 0.08 236.82 0.42 238.73 5.00 236.82 1.07
a3-24 274.80 0.23 274.80 0.97 275.18 5.00 274.80 1.30
a3-30 413.27 1.70 413.27 0.90 414.88 5.00 413.27 1.43
a3-36 481.17 1.78 481.17 2.54 483.86 5.00 481.17 2.69
a4-16 222.49 0.06 222.49 0.32 222.49 5.00 222.49 0.69
a4-24 310.84 0.52 310.84 0.49 311.48 5.00 310.84 1.51
a4-32 393.96 10.20 393.96 0.87 394.66 5.00 393.96 1.67
a4-40 453.84 8.62 453.84 1.53 456.93 5.00 453.84 2.22
a4-48 554.54 120.00 555.93 2.36 557.24 5.00 554.54 3.08
a5-40 414.51 19.03 414.80 1.08 415.62 5.00 414.51 3.23
a5-50 559.17 120.00 561.41 2.29 560.07 5.00 559.17 4.21

Table 6.2 Results on Cordeau instances with γ = 0.4

Ins. Bongiovanni et al. (2019) Su et al. (2023) Limmer (2023) Proposed VNS
Obj Time (min) Obj Time (min) Obj Time (min) Obj Time (min)

a2-16 237.38 0.03 237.38 0.88 238.20 5.00 237.38 0.85
a2-20 280.70 0.83 280.70 2.35 282.90 5.00 280.70 1.04
a2-24 348.04 0.42 347.04 3.85 347.04 5.00 348.04 1.33
a3-18 236.82 0.07 236.82 0.44 238.73 5.00 236.82 1.12
a3-24 274.80 0.28 274.80 1.13 275.58 5.00 274.80 1.43
a3-30 413.37 1.65 413.34 1.48 415.51 5.00 413.37 1.63
a3-36 484.14 5.11 483.06 2.63 485.98 5.00 483.06 2.77
a4-16 222.49 0.09 222.49 0.32 222.49 5.00 222.49 0.73
a4-24 311.03 0.66 311.03 0.53 311.48 5.00 311.03 1.57
a4-32 394.26 11.36 394.26 1.05 394.96 5.00 394.26 1.72
a4-40 453.84 6.96 453.84 1.94 457.01 5.00 453.84 2.26
a4-48 554.60 120.00 558.11 2.96 557.56 5.00 554.60 3.19
a5-40 414.51 20.35 416.25 1.21 415.63 5.00 414.51 3.46
a5-50 560.50 120.00 567.54 2.71 560.41 5.00 559.51 4.61

91

Table 6.3 Results on Cordeau instances with γ = 0.7

Ins. Bongiovanni et al. (2019) Su et al. (2023) Limmer (2023) Proposed VNS
Obj Time (min) Obj Time (min) Obj Time (min) Obj Time (min)

a2-16 240.66 0.09 240.66 1.60 242.83 5.00 240.66 0.91
a2-20 NA 120.00 293.27 2.88 NA 5.00 293.27 1.05
a2-24 358.21 16.02 353.18 3.44 356.99 5.00 353.18 1.39
a3-18 240.58 0.80 240.58 0.97 242.49 5.00 240.58 1.19
a3-24 277.72 2.54 275.97 2.06 277.52 5.00 275.97 1.59
a3-30 NA 120.00 424.93 1.30 432.27 5.00 424.93 1.76
a3-36 494.04 120.00 494.04 2.09 496.75 5.00 494.04 3.01
a4-16 223.13 1.12 223.13 0.52 223.13 5.00 223.13 0.74
a4-24 318.21 30.58 316.65 0.90 319.37 5.00 316.65 1.67
a4-32 430.07 120.00 397.87 1.19 401.97 5.00 397.87 1.91
a4-40 NA 120.00 479.02 1.91 471.72 5.00 467.72 2.31
a4-48 NA 120.00 582.22 2.74 579.71 5.00 575.62 3.25
a5-40 447.63 120.00 424.26 1.63 420.20 5.00 418.75 3.48
a5-50 NA 120.00 603.24 2.64 593.71 5.00 589.61 4.56

Table 6.4 Results on Limmer large instances with γ = 0.7

Ins. Limmer (2023) Proposed VNS (Comp) Proposed VNS (15 min t.l)
Obj Time (min) Obj Time (min) Gap (%) Obj Gap (%)

a180-3600 29,177.96 15.00 27,530.74 16.25 -5.65 28,072.12 -3.79
a200-4000 32,013.56 15.00 30,118.41 20.14 -5.92 31,135.36 -2.74
a220-4400 35,259.06 15.00 32,920.57 23.53 -6.63 34,742.76 -1.46
a240-4800 38,270.98 15.00 35,682.44 27.04 -6.76 38,118.58 -0.40
a260-5200 41,472.11 15.00 38,969.93 29.99 -6.03 41,454.19 -0.04
Average 15.00 23.39 -6.20 -1.69

92

As shown in the results, the proposed algorithm either matches or improves upon the best-
known solutions from the literature in most instances. This performance is particularly
notable in large-scale instances (Table 6.4), where the algorithm achieved a gap of 6.20%
under the complete time limit and 1.69% within a 15-minute time limit when compared to
the results reported by Limmer [97].

6.5.3 Case 2 - concave piecewise linear charging function

In the second case, we evaluate the performance of the proposed algorithm when electric
vehicles are charged using a concave piecewise linear charging function. Unlike the first case,
where a constant charging rate is assumed, this approach reflects a more realistic charging
behavior in which the rate of energy transfer decreases as the battery becomes fuller. Notably,
this is the first time in the literature that such a charging function is considered within this
context. It is important to highlight that the objective function remains unchanged across
both cases, focusing on the minimization of total travel time and ride time. This comparison
allows us to assess the algorithm’s effectiveness under different charging dynamics.

In the concave piecewise linear charging function, 80% of the battery capacity is charged
at a constant rate, similar to the linear function mode (0.055 kWh of energy per minute).
However, the remaining 20% is charged in two successive linear stages, each with a reduced
charging speed, resulting in a concave overall profile [118]. The total time required to achieve
a full charge under the concave piecewise linear function is longer than that of the fully
linear model. This adjustment in the charging function provides valuable insight into the
algorithm’s robustness when exposed to more realistic and complex energy replenishment
constraints. The results of the proposed algorithm on the large-scale instances from Limmer
[97] and Dong et al. [1], under Case 2, are presented in Tables 6.5 and 6.6, respectively.

Table 6.5 Results on Limmer large instances with concave piecewise linear charging function
(γ = 0.7)

Ins. Linear charging Concave piecewise linear charging
Obj Time (min) Obj Time (min)

a180-3600 27,530.74 16.25 28,168.05 17.11
a200-4000 30,118.41 20.14 30,791.76 22.25
a220-4400 32,920.57 23.53 33,815.90 26.39
a240-4800 35,682.44 27.04 36,896.59 29.84
a260-5200 38,969.93 29.99 40,183.71 34.21

An analysis of the results reveals that the use of a concave piecewise linear charging function,
as introduced in Case 2, leads to an average increase of 2.8% and 3.3% in the objective
function value compared to the base case with a constant charging rate for Limmer and

93

Table 6.6 Results on Dong et al. large and very large instances with concave piecewise linear
charging function (γ = 0.4)

Ins. Linear charging Concave piecewise linear charging
Obj Time (min) Obj Time (min)

s100-1000-1 5,529.01 11.91 5,690.81 12.52
s100-1000-2 5,408.37 10.72 5,570.30 10.87
s100-1000-3 5,722.13 11.55 5,927.99 12.07
s150-1500-1 7,788.22 16.07 8,004.30 17.04
s150-1500-2 7,853.97 14.58 8,139.36 14.98
s150-1500-3 7,762.76 15.89 8,034.68 16.45
s200-2000-1 10,354.22 18.76 10,710.39 18.94
s200-2000-2 10,217.30 17.49 10,531.01 17.64
s200-2000-3 10,039.47 19.22 10,358.29 19.68
s900-10000-1 82,681.15 94.84 85,708.43 98.34
s900-10000-2 82,042.72 97.22 85,081.85 99.13
s900-10000-3 82,798.34 88.54 85,255.31 94.04

Dong et al. instances, respectively. This increase is primarily attributed to the longer
charging times required under the concave profile, particularly during the final stages of
battery replenishment. Despite this added complexity, the proposed algorithm maintained a
comparable computational time across both cases, demonstrating its robustness and efficiency
in handling more realistic charging dynamics without compromising performance. These
findings underscore the importance of incorporating practical energy consumption behaviors
into model formulations while preserving computational tractability.

6.5.4 Case 3 - multiple charging infrastructure types

In the third case, the charging process remains a concave piecewise linear function, similar
to Case 2. However, a key extension is introduced: the presence of two types of charging
infrastructure—fast and slow chargers. This setting reflects a more realistic urban mobility
scenario, where electric vehicles may have access to heterogeneous charging options. The slow
charger follows the same concave piecewise linear charging profile used in Case 2, whereas the
fast charger is designed to significantly reduce the total charging time, even compared to the
constant-rate linear charging model, as illustrated in Figure 6.4. This distinction enables the
evaluation of the algorithm’s performance under diverse charging conditions and its ability
to leverage infrastructure heterogeneity to enhance routing and charging decisions.

To accurately account for the presence of multiple charger types, the insertion model in this
case must be updated to reflect the specific characteristics of each charging infrastructure. In
particular, the model must identify the type of charger—fast or slow—used at each station, as
this directly influences the associated charging time and energy replenishment profile. Each

94

Figure 6.4 Charging process for linear and two types of concave piecewise linear charging
functions

charging station is equipped with only one type of charger, and the station index is required
to determine the applicable charging function.

In the Limmer large instances, three charging stations are considered, among which two are
equipped with slow chargers and one with a fast charger. In Dong et al. instances, the
problem setup includes four charging stations, among which two are assumed to be equipped
with fast chargers. The integration of a fast-charging station introduces the potential to
reduce total charging time for vehicles routed through this facility. Compared to Case 2,
this added flexibility enables more efficient energy replenishment, allowing certain vehicles
to return to service more quickly and potentially increasing overall request coverage. By
strategically routing vehicles to the fast-charging station when beneficial, the algorithm can
exploit infrastructure heterogeneity to improve operational efficiency. The results of the
proposed algorithm for Case 3 are reported in Tables 6.7 and 6.8.

Table 6.7 Results on Limmer large instances for Case 3 (γ = 0.7)

Ins. Case 2 Case 3
Obj Time (min) Obj Time (min)

a180-3600 28,168.05 17.11 27,362.44 17.93
a200-4000 30,791.76 22.25 29,827.98 23.38
a220-4400 33,815.90 26.39 32,703.36 27.75
a240-4800 36,896.59 29.84 36,007.38 30.91
a260-5200 40,183.71 34.21 38,893.81 35.51

95

Table 6.8 Results on Dong et al. large and very large instances for Case 3 (γ = 0.4)

Ins. Case 2 Case 3
Obj Time (min) Obj Time (min)

s100-1000-1 5,690.81 12.52 5,501.36 12.74
s100-1000-2 5,570.30 10.87 5,373.39 11.29
s100-1000-3 5,927.99 12.07 5,711.77 12.67
s150-1500-1 8,004.30 17.04 7,754.06 17.91
s150-1500-2 8,139.36 14.98 7,891.02 15.29
s150-1500-3 8,034.68 16.45 7,740.15 17.16
s200-2000-1 10,710.39 18.94 10,358.84 19.17
s200-2000-2 10,531.01 17.64 10,164.22 17.92
s200-2000-3 10,358.29 19.68 10,021.86 20.04
s900-10000-1 85,708.43 98.34 82,643.18 99.42
s900-10000-2 85,081.85 99.13 82,059.47 99.81
s900-10000-3 85,255.31 94.04 82,485.51 95.62

As expected, the introduction of fast chargers had a notable impact on solution quality. The
number of visits to the charging station equipped with the fast charger increased significantly,
by an average of 18% across all large instances, indicating that the algorithm effectively prior-
itized the use of more efficient charging infrastructure. This strategic adjustment contributed
to a meaningful reduction in the overall objective function value, with improvements exceed-
ing 2.8% for the Limmer instances and 3.4% for the Dong et al. instances when compared
to Case 2. These results highlight the operational benefits of incorporating heterogeneous
charging infrastructure into the problem setting and underscore the responsiveness of the
proposed algorithm to such enhancements.

6.5.5 Case 4 - time-of-use electricity pricing

In the fourth case, the objective function is expanded to include charging-related costs, pro-
viding a more realistic representation of electric vehicle operations. Two cost structures are
considered. In the first scenario, a constant cost rate is applied throughout the planning
horizon, with 1$ per minute for travel and waiting time (as in the base case) and an addi-
tional 0.9$ per minute as a fixed charging cost. In the second scenario, a time-of-use (TOU)
electricity pricing scheme is introduced to reflect realistic charging costs based on temporal
electricity tariffs in Canada. Under this structure, charging costs vary across three time
periods—off-peak, mid-peak, and on-peak—as illustrated in Figure 6.5. In this case, similar
to the previous two cases, the charging process is modeled using a concave piecewise linear
charging function, and a single type of charger—a slow charger—is assumed throughout the
network. This formulation allows for the assessment of the algorithm’s responsiveness to tem-
poral cost variations and its ability to exploit lower-cost charging windows while maintaining

96

service quality.

The proposed algorithm was applied to each of the two cost structures described above for
the Limmer large-size instances, and the corresponding results are presented in Table 6.9.
As observed, incorporating a fixed charging cost throughout the planning horizon leads to
higher total operating costs. In contrast, the TOU electricity pricing scheme enables the
algorithm to schedule charging activities more cost-effectively by leveraging off-peak periods.
Consequently, this dynamic pricing approach results in a notable reduction in charging costs
(10.24% on average) and contributes to a decrease in the total objective value by an average of
2.3% across the tested instances. This highlights the importance of accounting for temporal
variations in electricity prices when planning charging strategies in EV routing problems.

Table 6.9 Influence of TOU electricity pricing policy on costs - Limmer Instances (γ = 0.7)

Ins. Constant Rate TOU electricity pricing policy Gap (%)
Travel and ride time cost Charging cost Total cost Travel and ride time cost Charging cost Total cost

a180-3600 40,574.28 22,761.97 63,336.25 41,324.49 20,334.68 61,659.17 -2.65
a200-4000 44,357.90 24,613.88 68,971.78 45,237.43 22,044.40 67,281.84 -2.45
a220-4400 48,514.84 26,814.66 75,329.50 49,590.50 24,110.60 73,701.10 -2.16
a240-4800 53,080.28 29,397.21 82,477.49 54,285.05 26,453.39 80,738.44 -2.11
a260-5200 57,911.91 32,228.53 90,140.44 59,229.57 28,998.64 88,228.21 -2.12

To enable a fair comparison with the results reported by Dong et al. [1], the TOU electricity
pricing for their benchmark instances was adapted based on Shenzhen’s current electricity
pricing policy. It is important to highlight that, in Dong et al. [1], the charging process
was modeled using a linear function. Accordingly, to ensure consistency in this comparative
analysis, the same linear charging function was adopted when implementing the proposed
algorithm on these instances (Table 6.10). This alignment allows for isolating the effect of
incorporating TOU-based charging costs in the objective function while maintaining com-
patibility with the assumptions made in the original benchmark study.

As shown in Table 6.10, the proposed algorithm outperforms the approach of Dong et al. [1]
in solving large and very large instances. Specifically, it achieves improved objective function
values with an average gap of -1.52%, while also significantly reducing the computational ef-
fort, with an average solution time reduction of approximately 85%. These results highlight
the efficiency and effectiveness of the proposed approach, particularly in handling computa-
tionally demanding real-world instances.

6.5.6 Case 5 - charging station capacity

In the literature on the E-DARP, most studies focus on optimizing vehicle routes and schedul-
ing while ensuring sufficient battery levels through strategically placed charging stations.

97

Figure 6.5 TOU electricity pricing policy

However, a critical yet often overlooked factor is the limited capacity of charging stations,
which significantly impacts real-world feasibility. Ignoring this constraint can lead to unreal-
istic solutions where multiple vehicles are scheduled to charge at the same station simultane-
ously, exceeding its available chargers. This can cause severe delays, forcing vehicles to wait
for charging availability or deviate from their planned routes to find alternative stations, ul-
timately increasing total operational costs and service delays. Incorporating charging station
capacity constraints ensures that solutions remain practical and implementable, leading to
more efficient fleet operations and reducing congestion at high-demand locations. Addressing
this issue is particularly important in large-scale E-DARP instances, where multiple vehicles
rely on shared charging infrastructure, making capacity-aware scheduling a crucial element
for real-world applicability.

The problem of optimally assigning charging stations to vehicles while considering station
capacity constraints can be formulated as a large-scale mixed-integer linear programming
(MILP) model. In this formulation, binary decision variables would determine whether a
vehicle charges at a given station and at what time, while continuous variables would capture
charging durations and battery levels. Constraints would ensure that (1) vehicles charge
within their available time windows, (2) charging stations do not exceed their capacity at
any given time, and (3) vehicles complete their routes with sufficient battery levels. However,
solving this MILP directly for large instances would be computationally intractable due to
the exponential number of possible charging assignments and time conflicts.

To overcome the computational complexity of incorporating charging station capacity con-

98

Table 6.10 Comparison of the proposed algorithm with Dong et al. [1] under TOU-based
electricity pricing (γ = 0.4)

Ins. Dong et al. (2025) Proposed VNS
Best Obj Time (min) Obj Time (min) Gap(%)

s100-1000-1 7,655.50 66.08 7,607.65 12.15 -0.63
s100-1000-2 7,480.48 39.00 7,441.66 11.09 -0.52
s100-1000-3 7,932.00 59.80 7,873.38 12.02 -0.74
s150-1500-1 10,845.49 141.22 10,716.21 16.23 -1.19
s150-1500-2 10,952.56 114.33 10,806.68 14.97 -1.33
s150-1500-3 10,849.73 152.78 10,681.18 16.41 -1.55
s200-2000-1 14,513.15 384.55 14,246.91 19.23 -1.83
s200-2000-2 14,334.24 281.67 14,058.51 17.75 -1.92
s200-2000-3 14,064.50 390.27 13,813.82 19.45 -1.78
s900-10000-1 115,996.28 431.97 113,765.27 97.37 -1.92
s900-10000-2 115,401.23 438.67 112,886.82 98.45 -2.18
s900-10000-3 116,995.84 427.29 113,926.51 89.84 -2.62

Average 243.97 35.41 -1.52

straints into large-scale E-DARP instances, we propose a sequential assignment heuristic that
ensures capacity-aware charging while maintaining computational efficiency. The heuristic
follows a structured process:

1. Sort vehicles based on the number of potential charging stations along their planned
routes. Vehicles with fewer available charging options are prioritized to minimize the
risk of infeasibility.

2. For each vehicle in the sorted list:

• Solve the insertion model to determine the optimal charging station and time
slot, considering the current charging station occupation schedule.

• Assign the selected charging time to the vehicle and update the station’s occu-
pation schedule accordingly.

• If the insertion model is infeasible due to lack of available capacity, attempt to
assign the vehicle to the next closest feasible station and its available time window.

This heuristic allows vehicles to be assigned sequentially in a conflict-aware manner. By
continuously updating station occupation schedules, it ensures that no more vehicles are
scheduled to charge than the number of chargers available at any given time. If a conflict
arises, the algorithm dynamically explores alternative feasible assignments. The procedure is
applied during the initial solution construction phase, ensuring that generated routes already
respect charging station capacity constraints. Additionally, during the improvement phase of

99

the algorithm, whenever routes are modified, Step 2 is re-executed for the affected vehicles
to maintain the feasibility of the solution concerning charging infrastructure limitations.

The results for this case, applied to the Limmer and Dong et al. instances, are presented in
Tables 6.11 and 6.12, respectively. The minimum required capacity (i.e., number of charg-
ers) for each charging station is estimated by rounding up the ratio of the total required
charging time in Case 2 (i.e., when there is no limitation on the number of chargers) to
the total available operational time of stations per day. As expected, incorporating capacity
limitations at charging stations resulted in the rerouting of certain vehicle paths, leading to
an increase in the total operational cost. Specifically, the cost increased by 3.75% for the
Limmer instances and 4.41% for the Dong et al. instances compared to the previous case
without capacity constraints. Additionally, the algorithm’s computational time increased
by 18% and 11%, respectively, reflecting the added complexity introduced by considering
charging station availability.

Table 6.11 Results on Limmer large instances for Case 5 (γ = 0.7)

Ins. Case 2 (without station capacity) Case 5 (with station capacity) Case 5 (with increasing capacity)
Obj Time (min) Minimum capacity Obj Time (min) 0 +1 +2 +3

a180-3600 28,168.05 17.11 6 29,451.38 22.38 4.56% 2.99% 1.41% 0.46%
a200-4000 30,791.76 22.25 7 31,719.63 27.29 3.01% 1.95% 0.96% 0.41%
a220-4400 33,815.90 26.39 7 35,307.64 29.41 4.41% 2.73% 1.32% 0.51%
a240-4800 36,896.59 29.84 8 38,167.92 36.12 3.45% 2.04% 1.00% 0.43%
a260-5200 40,183.71 34.21 9 41,525.37 43.76 3.34% 2.19% 1.13% 0.52%

Table 6.12 Results on Dong et al. large and very large instances for Case 5 (γ = 0.4)

Ins. Case 2 (without station capacity) Case 5 (with station capacity) Case 5 (with increasing capacity)
Obj Time (min) Minimum capacity Obj Time (min) 0 +1 +2 +3

s100-1000-1 5,690.81 12.52 1 5,963.64 13.40 4.79% 3.01% 1.14% 0.29%
s100-1000-2 5,570.30 10.87 1 5,758.46 12.81 3.38% 1.95% 0.80% 0.22%
s100-1000-3 5,927.99 12.07 1 6,126.02 12.92 3.34% 1.91% 0.74% 0.24%
s150-1500-1 8,004.30 17.04 1 8,367.61 18.79 4.54% 3.02% 1.24% 0.32%
s150-1500-2 8,139.36 14.98 1 8,428.04 18.26 3.55% 2.03% 0.76% 0.27%
s150-1500-3 8,034.68 16.45 1 8,404.79 17.87 4.61% 3.01% 1.15% 0.30%
s200-2000-1 10,710.39 18.94 2 11,133.10 20.77 3.95% 2.36% 0.92% 0.32%
s200-2000-2 10,531.01 17.64 2 11,005.26 18.99 4.50% 2.87% 1.12% 0.34%
s200-2000-3 10,358.29 19.68 2 10,778.05 22.76 4.05% 2.36% 0.90% 0.31%
s900-10000-1 85,708.43 98.34 3 90,211.58 106.57 5.25% 3.48% 1.34% 0.45%
s900-10000-2 85,081.85 99.13 3 89,834.22 109.74 5.59% 3.39% 1.39% 0.51%
s900-10000-3 85,255.31 94.04 3 89,883.71 104.52 5.43% 3.47% 1.34% 0.48%

To evaluate the sensitivity of the objective value to charging station capacity, the minimum
estimated number of chargers was incrementally increased by 1, 2, and 3 units per station.
The resulting percentage gaps in objective value between Case 5 (with capacity constraints)
and Case 2 (without capacity constraints) are presented in Tables 6.11 and 6.12 for the
Limmer and Dong et al. instances. As observed, increasing the number of chargers leads to a

100

consistent reduction in the gap, indicating improved flexibility in utilizing charging stations
and reduced operational costs. These results clearly indicate that enhancing the capacity of
charging stations can effectively reduce operational costs by minimizing waiting times and
rerouting due to congestion. However, it is also important to balance the infrastructure
investment cost with the operational savings.

6.6 Conclusion

This paper presents a novel and comprehensive approach to the E-DARP, addressing several
limitations in the existing literature by incorporating key electric vehicle features often over-
looked in prior studies. In contrast to traditional models that assume homogeneous batteries,
fully charged vehicles, and linear charging functions, our problem integrates heterogeneous
charging infrastructure, partial charging, and time-dependent charging pricing policies, as
well as a concave piecewise linear charging function to more accurately reflect real-world
charging dynamics. Importantly, we are the first to explicitly incorporate charging station
capacity constraints into the E-DARP, which significantly enhances the practical relevance
of the problem formulation. To effectively solve this complex and large-scale problem, we
proposed a tailored VNS algorithm enriched with adaptive neighborhood structures, charg-
ing station insertion strategies, and a mixed-integer programming component for optimizing
charging decisions. Computational experiments on extensive benchmark and real-world-
based datasets, including instances with up to 10,000 requests, demonstrate the algorithm’s
scalability and ability to produce high-quality solutions. The results show that our method
consistently outperforms baseline approaches and successfully handles each of the new chal-
lenges introduced. Overall, this study contributes both theoretically and practically to the
field of electric mobility and on-demand transport systems by proposing a realistic, flexible,
and scalable solution methodology. Future research may extend this work by considering
stochastic travel times, dynamic demand environments, or integration with renewable energy
resources in the charging process.

Acknowledgements

We gratefully acknowledge the financial support of the Natural Sciences and Engineering
Research Council of Canada under the Discovery grants 2023-03791 and 2020-06903.

101

CHAPTER 7 GENERAL DISCUSSION

This dissertation has explored a sequence of increasingly complex and operationally motivated
variants of the DARP, with a particular emphasis on scalability, realism, and energy-aware
planning. Conducted in close collaboration with GIRO Inc., a leading provider of software
for transit and paratransit systems, the research has been grounded in real-world operational
contexts. The company’s data and planning requirements provided both the foundation
and the validation environment for the models and algorithms proposed throughout this
work. Collectively, this thesis aims to bridge the persistent gap between the theoretical
development of routing algorithms and the practical needs of large-scale, demand-responsive
transportation systems.

In Chapter 4, a practical version of the DARP that incorporates user and vehicle hetero-
geneity, contract-based cost and regulatory constraints, route duration limits, break rules,
and capacity constraints was addressed. This variant, reflective of GIRO’s planning envi-
ronment, was formulated as a set-partitioning problem and solved using a tailored BPC
algorithm. The solution approach leveraged a column generation framework supported by a
sophisticated labeling algorithm capable of handling the full set of operational constraints, in-
cluding contract-specific rules and resource types. Computational results on real-world data
demonstrated the algorithm’s ability to optimally solve instances with up to 849 requests and
over 70 heterogeneous vehicles—representing the largest known instances of this kind solved
to proven optimality. This work served a dual purpose: it benchmarked the performance
of GIRO’s industrial heuristics and validated the practical relevance of exact methods for
moderate-scale applications.

Chapter 5 shifted the focus toward computational scalability, addressing the challenges posed
by very large-scale DARP instances often found in real-world systems. A VNS algorithm was
developed to manage problems involving thousands of transportation requests and hundreds
of vehicles. The method integrated a linear relaxation-based constructive phase followed by
iterative refinement through a diverse set of neighborhoods. To enhance solution quality,
the heuristic was further reinforced with embedded MIP components for local optimization.
Tested on very large-scale datasets ranging from 2,932 to over 10,500 requests, the algorithm
consistently produced high-quality solutions within competitive computational times—often
under one hour. For medium-sized cases tested in Chapter 4, the VNS achieved near-optimal
solutions with small optimality gaps (below 0.5%) while significantly reducing computation
time compared to the exact method. This contribution fully addressed the second research

102

objective, demonstrating how heuristic methods can scale to meet real-world operational
demands while preserving the modeling complexity introduced in earlier work.

The final contribution, presented in Chapter 6, extended the DARP framework to accom-
modate EV fleets, leading to the formulation of the E-DARP. This problem introduced new
layers of complexity, including battery constraints, charging operations, time-of-use electricity
pricing, and heterogeneous charging station capacities. A key innovation was the integration
of concave piecewise linear charging functions and the explicit modeling of charging station
capacity—elements rarely addressed in existing literature. The VNS algorithm developed
in Chapter 5 was adapted to include energy-aware routing logic, charging station insertion
strategies, and MIP-based modules for managing battery dynamics and recharging decisions.
Computational experiments on industrial-scale instances (up to 10,000 requests) confirmed
the robustness and scalability of the method, demonstrating its capacity to produce fea-
sible and energy-efficient solutions for large electric vehicle fleets. Chapter 6 fulfilled the
third research objective by offering a novel and practical approach to energy-aware DARP
optimization.

In summary, the dissertation provides a unified and scalable methodological framework that
advances both the modeling and solution capabilities for conventional and electric DARP
variants. It offers exact and heuristic tools that are not only theoretically sound but also
validated on real-world datasets of unprecedented size and complexity. Through its three
contributions, the thesis has systematically addressed the research objectives: delivering an
exact method for realistic small- to medium-sized problems, proposing a heuristic for very
large-scale systems, and extending the framework to integrate electric mobility constraints.
These outcomes contribute directly to the advancement of decision-support systems in public
and on-demand transportation planning, providing tools that are both operationally viable
and adaptable to future sustainability challenges.

103

CHAPTER 8 CONCLUSION

This dissertation has addressed the DARP and its EV variant (E-DARP) by developing a set
of advanced optimization algorithms capable of tackling realistic and large-scale transporta-
tion planning scenarios. Through a combination of exact and heuristic methods, the research
has responded to the increasing complexity of modern demand-responsive mobility systems.
A BPC algorithm was proposed to solve practical DARP instances to optimality, while a
VNS framework was designed and extended to efficiently handle very large-scale DARP and
E-DARP instances. These contributions were validated on industrial datasets provided by
GIRO Inc., demonstrating both theoretical rigor and practical relevance.

Despite these advances, the research is subject to several limitations that open the door to
future investigation. First, the exact algorithm presented in Chapter 4, while capable of
solving realistic instances, remains computationally intractable for larger datasets. Its scal-
ability is constrained by the exponential growth of the solution space and the complexity of
the pricing subproblem. While heuristics mitigate this issue, future work may focus on devel-
oping matheuristics that combine the strengths of heuristic exploration with the theoretical
guarantees of exact algorithms. Embedding heuristic BPC components within a large-scale
framework could enable the solution of large problems for better trade-offs between solution
quality and runtime.

Second, although the proposed VNS algorithm demonstrated strong performance across large-
scale instances, its success relies in part on the quality of the initial solution and the design of
the neighborhood structures. Further research could investigate adaptive or learning-based
neighborhood selection mechanisms to improve convergence behavior. Additionally, exploring
parallel and distributed versions of the algorithm may enhance its scalability and suitability
for real-time or large-fleet deployment environments.

Third, the E-DARP formulation introduced in Chapter 6 integrates a range of realistic fea-
tures, such as nonlinear charging behavior, station capacity, and time-of-use pricing. How-
ever, some simplifying assumptions were made—for example, deterministic travel times, fixed
energy consumption rates, and static request sets. Future extensions could consider stochas-
tic elements, such as uncertain demand or variable energy consumption based on traffic
conditions, as well as dynamic and online variants of the E-DARP, where requests arrive in
real time and charging station availability may fluctuate.

Lastly, while charging station insertion and scheduling are explicitly modeled, vehicle rout-
ing decisions are not yet co-optimized with infrastructure planning decisions, such as the

104

deployment or expansion of charging facilities. This restricts the long-term applicability of
the model for strategic planning. Combining routing decisions with infrastructure planning
represents a valuable long-term direction. Joint optimization of electric fleet routing and
charging station placement could lead to more effective policies for the deployment of smart,
resilient, and sustainable urban transport networks.

105

REFERENCES

[1] H. Dong, Z. Luo, N. Huang, H. Hu, and H. Qin, “The electric vehicle dial-a-ride
problem: Integrating ride-sharing and time-of-use electricity pricing,” Transportation
Research Part E: Logistics and Transportation Review, vol. 194, p. 103946, 2025.

[2] N. Wilson, J. Sussman, H. Wong, and B. Higonnet, “Scheduling algorithms for dial-
a-ride systems,” Urban Systems Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, Technical Report, 1971.

[3] J. F. Cordeau and G. Laporte, “The dial-a-ride problem: models and algorithms,”
Annals of Operations Research, vol. 153, pp. 29–46, 2007.

[4] S. Ropke and J. F. Cordeau, “Branch and cut and price for the pickup and delivery
problem with time windows,” Transportation Science, vol. 43, no. 3, pp. 267–286, 2009.

[5] O. B. G. Madsen, H. F. Ravn, and J. M. Rygaard, “A heuristic algorithm for a dial-a-
ride problem with time windows, multiple capacities, and multiple objectives,” Annals
of Operations Research, vol. 60, no. 1, pp. 193–208, 1995.

[6] E. Melachrinoudis, A. B. Ilhan, and H. Min, “A dial-a-ride problem for client trans-
portation in a health-care organization,” Computers & Operations Research, vol. 34,
no. 3, pp. 742–759, 2007.

[7] P. Toth and D. Vigo, “Fast local search algorithms for the handicapped persons trans-
portation problem,” in Meta-Heuristics, I. H. Osman and J. P. Kelly, Eds. Boston,
MA: Springer, 1996, pp. 677–690.

[8] J. Paquette, J.-F. Cordeau, G. Laporte, and M. M. B. Pascoal, “Combining multicri-
teria analysis and tabu search for dial-a-ride problems,” Transportation Research Part
B: Methodological, vol. 52, pp. 1–16, 2013.

[9] M. W. P. Savelsbergh and M. Sol, “The general pickup and delivery problem,” Trans-
portation Science, vol. 29, no. 1, pp. 17–29, 1995.

[10] P. Detti, F. Papalini, and G. Z. M. de Lara, “A multi-depot dial-a-ride problem with
heterogeneous vehicles and compatibility constraints in healthcare,” Omega, vol. 70,
pp. 1–14, 2017.

106

[11] U. Ritzinger, J. Puchinger, and R. F. Hartl, “Dynamic programming based metaheuris-
tics for the dial-a-ride problem,” Annals of Operations Research, vol. 236, no. 2, pp.
341–358, 2016.

[12] S. N. Parragh, “Introducing heterogeneous users and vehicles into models and algo-
rithms for the dial-a-ride problem,” Transportation Research Part C: Emerging Tech-
nologies, vol. 19, no. 5, pp. 912–930, 2011.

[13] S. N. Parragh, J.-F. Cordeau, K. F. Doerner, and R. F. Hartl, “Models and algo-
rithms for the heterogeneous dial-a-ride problem with driver-related constraints,” OR
Spectrum, vol. 34, no. 3, pp. 593–633, 2012.

[14] J. Zhao, M. Poon, Z. Zhang, and R. Gu, “Adaptive large neighborhood search for the
time-dependent profitable dial-a-ride problem,” Computers & Operations Research, vol.
147, p. 105938, 2022.

[15] C. Bongiovanni, M. Kaspi, and N. Geroliminis, “The electric autonomous dial-a-ride
problem,” Transportation Research Part B: Methodological, vol. 122, pp. 436–456, 2019.

[16] S. N. Parragh, K. F. Doerner, R. F. Hartl, and X. Gandibleux, “A heuristic two-
phase solution approach for the multi-objective dial-a-ride problem,” Networks: An
International Journal, vol. 54, no. 4, pp. 227–242, 2009.

[17] J.-F. Cordeau and G. Laporte, “A tabu search heuristic for the static multi-vehicle
dial-a-ride problem,” Transportation Research Part B: Methodological, vol. 37, no. 6,
pp. 579–594, 2003.

[18] T. Gschwind and S. Irnich, “Effective handling of dynamic time windows and its appli-
cation to solving the dial-a-ride problem,” Transportation Science, vol. 49, no. 2, pp.
335–354, 2015.

[19] Z. Luo, M. Liu, and A. Lim, “A two-phase branch-and-price-and-cut for a dial-a-ride
problem in patient transportation,” Transportation Science, vol. 53, no. 1, pp. 113–130,
2019.

[20] R. Chevrier, A. Liefooghe, L. Jourdan, and C. Dhaenens, “Solving a dial-a-ride problem
with a hybrid evolutionary multi-objective approach: Application to demand responsive
transport,” Applied Soft Computing, vol. 12, no. 4, pp. 1247–1258, 2012.

[21] T. Garaix, C. Artigues, D. Feillet, and D. Josselin, “Optimization of occupancy rate in
dial-a-ride problems via linear fractional column generation,” Computers & Operations
Research, vol. 38, no. 10, pp. 1435–1442, 2011.

107

[22] S. N. Parragh, J. P. de Sousa, and B. Almada-Lobo, “The dial-a-ride problem with
split requests and profits,” Transportation Science, vol. 49, no. 2, pp. 311–334, 2015.

[23] A. Lim, Z. Zhang, and H. Qin, “Pickup and delivery service with manpower planning
in hong kong public hospitals,” Transportation Science, vol. 51, no. 2, pp. 688–705,
2017.

[24] V. Pimenta, A. Quilliot, H. Toussaint, and D. Vigo, “Models and algorithms for
reliability-oriented dial-a-ride with autonomous electric vehicles,” European Journal
of Operational Research, vol. 257, no. 2, pp. 601–613, 2017.

[25] T. Y. Hu, G. C. Zheng, and T. Y. Liao, “Multi-objective model for dial-a-ride problems
with vehicle speed considerations,” Transportation Research Record, vol. 2673, no. 11,
pp. 161–171, 2019.

[26] R. M. Jorgensen, J. Larsen, and K. B. Bergvinsdottir, “Solving the dial-a-ride problem
using genetic algorithms,” Journal of the Operational Research Society, vol. 58, no. 10,
pp. 1321–1331, 2007.

[27] D. Kirchler and R. W. Calvo, “A granular tabu search algorithm for the dial-a-ride
problem,” Transportation Research Part B: Methodological, vol. 56, pp. 120–135, 2013.

[28] M. Schilde, K. F. Doerner, and R. F. Hartl, “Metaheuristics for the dynamic stochastic
dial-a-ride problem with expected return transports,” Computers & Operations Re-
search, vol. 38, no. 12, pp. 1719–1730, 2011.

[29] ——, “Integrating stochastic time-dependent travel speed in solution methods for the
dynamic dial-a-ride problem,” European Journal of Operational Research, vol. 238,
no. 1, pp. 18–28, 2014.

[30] O. Tellez, S. Vercraene, F. Lehuédé, O. Péton, and T. Monteiro, “The time-consistent
dial-a-ride problem,” Networks, vol. 79, no. 4, pp. 452–478, 2022.

[31] S. N. Parragh, K. F. Doerner, and R. F. Hartl, “Variable neighborhood search for the
dial-a-ride problem,” Computers & Operations Research, vol. 37, no. 6, pp. 1129–1138,
2010.

[32] S. N. Parragh and V. Schmid, “Hybrid column generation and large neighborhood
search for the dial-a-ride problem,” Computers & Operations Research, vol. 40, no. 1,
pp. 490–497, 2013.

108

[33] M. Chassaing, C. Duhamel, and P. Lacomme, “An els-based approach with dynamic
probabilities management in local search for the dial-a-ride problem,” Engineering Ap-
plications of Artificial Intelligence, vol. 48, pp. 119–133, 2016.

[34] C. E. Cortés, M. Matamala, and C. Contardo, “The pickup and delivery problem with
transfers: Formulation and a branch-and-cut solution method,” European Journal of
Operational Research, vol. 200, no. 3, pp. 711–724, 2010.

[35] R. Masson, F. Lehuédé, and O. Péton, “The dial-a-ride problem with transfers,” Com-
puters & Operations Research, vol. 41, pp. 12–23, 2014.

[36] J. Schönberger, “Scheduling constraints in dial-a-ride problems with transfers: a meta-
heuristic approach incorporating a cross-route scheduling procedure with postponement
opportunities,” Public Transport, vol. 9, no. 1, pp. 243–272, 2017.

[37] C. H. Häll, H. Andersson, J. T. Lundgren, and P. Värbrand, “The integrated dial-a-ride
problem,” Public Transport, vol. 1, no. 1, pp. 39–54, 2009.

[38] M. Posada, H. Andersson, and C. H. Häll, “The integrated dial-a-ride problem with
timetabled fixed route service,” Public Transport, vol. 9, no. 1, pp. 217–241, 2017.

[39] T. Grinshpoun, E. Shufan, H. Ilani, V. Levit, and H. Brama, “Effective pruning heuris-
tics for the fixed route dial-a-ride problem,” in Proceedings of the 13th International
Conference on the Practice and Theory of Automated Timetabling-PATAT, vol. 1, 2020.

[40] Z. Zhang, M. Liu, and A. Lim, “A memetic algorithm for the patient transportation
problem,” Omega, vol. 54, pp. 60–71, 2015.

[41] M. Liu, Z. Luo, and A. Lim, “A branch-and-cut algorithm for a realistic dial-a-ride
problem,” Transportation Research Part B: Methodological, vol. 81, pp. 267–288, 2015.

[42] M. A. Masmoudi, M. Hosny, E. Demir, K. N. Genikomsakis, and N. Cheikhrouhou,
“The dial-a-ride problem with electric vehicles and battery swapping stations,” Trans-
portation Research Part E: Logistics and Transportation Review, vol. 118, pp. 392–420,
2018.

[43] Y. Molenbruch, K. Braekers, O. Eisenhandler, and M. Kaspi, “The electric dial-a-ride
problem on a fixed circuit,” Transportation Science, vol. 57, no. 3, pp. 594–612, 2023.

[44] E. Hyytiä, S. Aalto, A. Penttinen, and R. Sulonen, “A stochastic model for a vehicle
in a dial-a-ride system,” Operations Research Letters, vol. 38, no. 5, pp. 432–435, 2010.

109

[45] S. C. Ho and D. Haugland, “Local search heuristics for the probabilistic dial-a-ride
problem,” OR Spectrum, vol. 33, no. 4, pp. 961–988, 2011.

[46] G. Heilporn, J. F. Cordeau, and G. Laporte, “An integer l-shaped algorithm for the
dial-a-ride problem with stochastic customer delays,” Discrete Applied Mathematics,
vol. 159, no. 9, pp. 883–895, 2011.

[47] C. H. Häll, J. T. Lundgren, and S. Voss, “Evaluating the performance of a dial-a-ride
service using simulation,” Public Transport, vol. 7, pp. 139–157, 2015.

[48] G. Berbeglia, J. F. Cordeau, and G. Laporte, “A hybrid tabu search and constraint
programming algorithm for the dynamic dial-a-ride problem,” INFORMS Journal on
Computing, vol. 24, no. 3, pp. 343–355, 2012.

[49] N. Marković, R. Nair, P. Schonfeld, E. Miller-Hooks, and M. Mohebbi, “Optimizing
dial-a-ride services in Maryland: benefits of computerized routing and scheduling,”
Transportation Research Part C: Emerging Technologies, vol. 55, pp. 156–165, 2015.

[50] D. O. Santos and E. C. Xavier, “Taxi and ride sharing: A dynamic dial-a-ride problem
with money as an incentive,” Expert Systems with Applications, vol. 42, no. 19, pp.
6728–6737, 2015.

[51] H. R. Sayarshad and J. Y. J. Chow, “A scalable non-myopic dynamic dial-a-ride and
pricing problem,” Transportation Research Part B: Methodological, vol. 81, pp. 539–554,
2015.

[52] H. R. Sayarshad and H. O. Gao, “A scalable non-myopic dynamic dial-a-ride and pricing
problem for competitive on-demand mobility systems,” Transportation Research Part
C: Emerging Technologies, vol. 91, pp. 192–208, 2018.

[53] X. Liang, G. H. de Almeida Correia, K. An, and B. van Arem, “Automated taxis’ dial-
a-ride problem with ride-sharing considering congestion-based dynamic travel times,”
Transportation Research Part C: Emerging Technologies, vol. 112, pp. 260–281, 2020.

[54] C. Paquay, Y. Crama, and T. Pironet, “Recovery management for a dial-a-ride system
with real-time disruptions,” European Journal of Operational Research, vol. 280, no. 3,
pp. 953–969, 2020.

[55] A. L. Souza, M. Bernardo, P. H. Penna, J. Pannek, and M. J. Souza, “Bi-objective
optimization model for the heterogeneous dynamic dial-a-ride problem with no rejects,”
Optimization Letters, vol. 16, no. 1, pp. 355–374, 2022.

110

[56] Z. Xiang, C. Chu, and H. Chen, “The study of a dynamic dial-a-ride problem un-
der time-dependent and stochastic environments,” European Journal of Operational
Research, vol. 185, no. 2, pp. 534–551, 2008.

[57] M. Maalouf, C. A. MacKenzie, S. Radakrishnan, and M. Court, “A new fuzzy logic
approach to capacitated dynamic dial-a-ride problem,” Fuzzy Sets and Systems, vol.
255, pp. 30–40, 2014.

[58] D. Muñoz-Carpintero, D. Sáez, C. E. Cortés, and A. Núñez, “A methodology based on
evolutionary algorithms to solve a dynamic pickup and delivery problem under a hybrid
predictive control approach,” Transportation Science, vol. 49, no. 2, pp. 239–253, 2015.

[59] A. Núñez, C. E. Cortés, D. Sáez, B. D. Schutter, and M. Gendreau, “Multiobjective
model predictive control for dynamic pickup and delivery problems,” Control Engineer-
ing Practice, vol. 32, pp. 73–86, 2014.

[60] E. Hyytiä, A. Penttinen, and R. Sulonen, “Non-myopic vehicle and route selection
in dynamic darp with travel time and workload objectives,” Computers & Operations
Research, vol. 39, no. 12, pp. 3021–3030, 2012.

[61] J.-F. Cordeau, “A branch-and-cut algorithm for the dial-a-ride problem,” Operations
Research, vol. 54, no. 3, pp. 573–586, 2006.

[62] Y. Rist and M. A. Forbes, “A new formulation for the dial-a-ride problem,” Trans-
portation Science, vol. 55, no. 5, pp. 1113–1135, 2021.

[63] D. Gaul, K. Klamroth, and M. Stiglmayr, “Event-based milp models for ridepooling
applications,” European Journal of Operational Research, vol. 301, no. 3, pp. 1048–1063,
2022.

[64] A. Schulz and C. Pfeiffer, “A branch-and-cut algorithm for the dial-a-ride problem
with incompatible customer types,” Transportation Research Part E: Logistics and
Transportation Review, vol. 181, p. 103394, 2024.

[65] Y. Qu and J. F. Bard, “A branch-and-price-and-cut algorithm for heterogeneous pickup
and delivery problems with configurable vehicle capacity,” Transportation Science,
vol. 49, no. 2, pp. 254–270, 2015.

[66] S. Guo, I. Dayarian, J. Li, and X. Qian, “Solving the equity-aware dial-a-ride prob-
lem using an exact branch-cut-and-price algorithm,” Transportation Research Part B:
Methodological, vol. 192, p. 103149, 2025.

111

[67] E. Melachrinoudis and H. Min, “A tabu search heuristic for solving the multi-depot,
multi-vehicle, double request dial-a-ride problem faced by a healthcare organisation,”
International Journal of Operational Research, vol. 10, no. 2, pp. 214–239, 2011.

[68] Z. Zang, Q. Tian, and D. Z. Wang, “On-demand transportation system for cross-state
abortion travel: A dual dial-a-ride problem,” Transportation Research Part A: Policy
and Practice, vol. 196, p. 104473, 2025.

[69] T. Gschwind and M. Drexl, “Adaptive large neighborhood search with a constant-time
feasibility test for the dial-a-ride problem,” Transportation Science, vol. 53, no. 2, pp.
480–491, 2019.

[70] F. Lehuédé, R. Masson, S. N. Parragh, O. Péton, and F. Tricoire, “A multi-criteria
large neighbourhood search for the transportation of disabled people,” Journal of the
Operational Research Society, vol. 65, no. 7, pp. 983–1000, 2014.

[71] Y. Molenbruch, K. Braekers, A. Caris, and G. V. Berghe, “Multi-directional local
search for a bi-objective dial-a-ride problem in patient transportation,” Computers &
Operations Research, vol. 77, pp. 58–71, 2017.

[72] C. Cubillos, E. Urra, and N. Rodríguez, “Application of genetic algorithms for the
darptw problem,” International Journal of Computers Communications & Control,
vol. 4, no. 2, pp. 127–136, 2009.

[73] M. A. Masmoudi, K. Braekers, M. Masmoudi, and A. Dammak, “A hybrid genetic al-
gorithm for the heterogeneous dial-a-ride problem,” Computers & Operations Research,
vol. 81, pp. 1–13, 2017.

[74] K. Braekers, A. Caris, and G. K. Janssens, “Exact and meta-heuristic approach for a
general heterogeneous dial-a-ride problem with multiple depots,” Transportation Re-
search Part B: Methodological, vol. 67, pp. 166–186, 2014.

[75] S. Belhaiza, “A hybrid adaptive large neighborhood heuristic for a real-life dial-a-ride
problem,” Algorithms, vol. 12, no. 2, p. 39, 2019.

[76] S. Jain and P. V. Hentenryck, “Large neighborhood search for dial-a-ride problems,”
in International Conference on Principles and Practice of Constraint Programming.
Springer, Berlin Heidelberg, 2011, pp. 400–413.

[77] Z. Xiang, C. Chu, and H. Chen, “A fast heuristic for solving a large-scale static dial-a-
ride problem under complex constraints,” European Journal of Operational Research,
vol. 174, no. 2, pp. 1117–1139, 2006.

112

[78] S. Muelas, A. LaTorre, and J. M. Pena, “A distributed vns algorithm for optimizing
dial-a-ride problems in large-scale scenarios,” Transportation Research Part C: Emerg-
ing Technologies, vol. 54, pp. 110–130, 2015.

[79] ——, “A variable neighborhood search algorithm for the optimization of a dial-a-ride
problem in a large city,” Expert Systems with Applications, vol. 40, no. 14, pp. 5516–
5531, 2013.

[80] C. Liu, A. Quilliot, H. Toussaint, and D. Feillet, “A filtering system to solve the large-
scale shared autonomous vehicles dial-a-ride problem,” Transportation Research Part
C: Emerging Technologies, vol. 161, p. 104551, 2024.

[81] J. Kytöjoki, T. Nuortio, O. Bräysy, and M. Gendreau, “An efficient variable neigh-
borhood search heuristic for very large scale vehicle routing problems,” Computers &
Operations Research, vol. 34, no. 9, pp. 2743–2757, 2007.

[82] M. Qi, W. H. Lin, N. Li, and L. Miao, “A spatiotemporal partitioning approach for
large-scale vehicle routing problems with time windows,” Transportation Research Part
E: Logistics and Transportation Review, vol. 48, no. 1, pp. 248–257, 2012.

[83] F. Arnold, M. Gendreau, and K. Sörensen, “Efficiently solving very large-scale routing
problems,” Computers & Operations Research, vol. 107, pp. 32–42, 2019.

[84] L. Accorsi and D. Vigo, “A fast and scalable heuristic for the solution of large-scale
capacitated vehicle routing problems,” Transportation Science, vol. 55, no. 4, pp. 832–
856, 2021.

[85] K. Zhang, M. Li, J. Wang, Y. Li, and X. Lin, “A two-stage learning-based method for
large-scale on-demand pickup and delivery services with soft time windows,” Trans-
portation Research Part C: Emerging Technologies, vol. 151, p. 104122, 2023.

[86] V. R. Máximo, J. F. Cordeau, and M. C. Nascimento, “Ails-ii: An adaptive iterated lo-
cal search heuristic for the large-scale capacitated vehicle routing problem,” INFORMS
Journal on Computing, vol. 36, no. 4, pp. 974–986, 2024.

[87] F. Cavaliere, L. Accorsi, D. Laganà, R. Musmanno, and D. Vigo, “An efficient heuris-
tic for very large-scale vehicle routing problems with simultaneous pickup and deliv-
ery,” Transportation Research Part E: Logistics and Transportation Review, vol. 186,
p. 103550, 2024.

113

[88] L. Accorsi and D. Vigo, “Routing one million customers in a handful of minutes,”
Computers & Operations Research, vol. 164, p. 106562, 2024.

[89] L. Grandinetti, F. Guerriero, F. Pezzella, and O. Pisacane, “A pick-up and delivery
problem with time windows by electric vehicles,” International Journal of Productivity
and Quality Management, vol. 18, no. 2–3, pp. 403–423, 2016.

[90] D. Goeke, “Granular tabu search for the pickup and delivery problem with time win-
dows and electric vehicles,” European Journal of Operational Research, vol. 278, no. 3,
pp. 821–836, 2019.

[91] M. Soysal, M. Çimen, and S. Belbağ, “Pickup and delivery with electric vehicles under
stochastic battery depletion,” Computers & Industrial Engineering, vol. 146, p. 106512,
2020.

[92] X. Liu, D. Wang, Y. Yin, and T. C. E. Cheng, “Robust optimization for the elec-
tric vehicle pickup and delivery problem with time windows and uncertain demands,”
Computers & Operations Research, vol. 151, p. 106119, 2023.

[93] C. Agrali and S. Lee, “The multi-depot pickup and delivery problem with capacitated
electric vehicles, transfers, and time windows,” Computers & Industrial Engineering,
vol. 179, p. 109207, 2023.

[94] S. Zhou, D. Zhang, W. Yuan, Z. Wang, L. Zhou, and M. G. Bell, “Pickup and delivery
problem with electric vehicles and time windows considering queues,” Transportation
Research Part C: Emerging Technologies, vol. 167, p. 104829, 2024.

[95] C. Bongiovanni, M. Kaspi, J. F. Cordeau, and N. Geroliminis, “A machine learning-
driven two-phase metaheuristic for autonomous ridesharing operations,” Transportation
Research Part E: Logistics and Transportation Review, vol. 165, p. 102835, 2022.

[96] Y. Su, N. Dupin, S. N. Parragh, and J. Puchinger, “A column generation approach
for the electric autonomous dial-a-ride problem,” in 24ème Congrès annuel de la So-
ciété Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF 2023),
Rennes, France, February 2023.

[97] S. Limmer, “Bilevel large neighborhood search for the electric autonomous dial-a-ride
problem,” Transportation Research Interdisciplinary Perspectives, vol. 21, p. 100876,
2023.

114

[98] Y. Su, N. Dupin, and J. Puchinger, “A deterministic annealing local search for the
electric autonomous dial-a-ride problem,” European Journal of Operational Research,
vol. 309, no. 3, pp. 1091–1111, 2023.

[99] M. Bresich, G. R. Raidl, and S. Limmer, “Letting a large neighborhood search for an
electric dial-a-ride problem fly: on-the-fly charging station insertion,” in Proceedings
of the Genetic and Evolutionary Computation Conference, Melbourne, Australia, July
2024, pp. 142–150.

[100] Y. Su, N. Dupin, S. N. Parragh, and J. Puchinger, “A branch-and-price algorithm for
the electric autonomous dial-a-ride problem,” Transportation Research Part B: Method-
ological, vol. 186, p. 103011, 2024.

[101] V. Stallhofer and S. N. Parragh, “Event-based models for the electric autonomous dial-
a-ride problem,” Transportation Research Part C: Emerging Technologies, vol. 171, p.
104896, 2025.

[102] Y. Dumas, J. Desrosiers, and F. Soumis, “The pickup and delivery problem with time
windows,” European Journal of Operational Research, vol. 54, no. 1, pp. 7–22, 1991.

[103] L. B. Reinhardt, T. Clausen, and D. Pisinger, “Synchronized dial-a-ride transportation
of disabled passengers at airports,” European Journal of Operational Research, vol. 225,
no. 1, pp. 106–117, 2013.

[104] S. Ropke, J. F. Cordeau, and G. Laporte, “Models and branch-and-cut algorithms
for pickup and delivery problems with time windows,” Networks: An International
Journal, vol. 49, no. 4, pp. 258–272, 2007.

[105] K. Braekers and A. A. Kovacs, “A multi-period dial-a-ride problem with driver consis-
tency,” Transportation Research Part B: Methodological, vol. 94, pp. 355–377, 2016.

[106] S. C. Ho, W. Y. Szeto, Y.-H. Kuo, J. M. Y. Leung, M. Petering, and T. W. H. Tou,
“A survey of dial-a-ride problems: Literature review and recent developments,” Trans-
portation Research Part B: Methodological, vol. 111, pp. 395–421, 2018.

[107] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance,
“Branch-and-price: Column generation for solving huge integer programs,” Operations
Research, vol. 46, pp. 316–329, 1998.

[108] L. Costa, C. Contardo, and G. Desaulniers, “Exact branch-price-and-cut algorithms
for vehicle routing,” Transportation Science, vol. 53, pp. 946–985, 2019.

115

[109] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen, “An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems,” Networks, vol. 44, no. 3, pp. 216–229, 2004.

[110] M. Dror, “Note on the complexity of the shortest path models for column generation
in vrptw,” Operations Research, vol. 42, no. 5, pp. 977–978, 1994.

[111] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger, “Subset-row inequalities ap-
plied to the vehicle-routing problem with time windows,” Operations Research, vol. 56,
no. 2, pp. 497–511, 2008.

[112] I. Malheiros, R. Ramalho, B. Passeti, T. Bulhoes, and A. Subramanian, “A hybrid algo-
rithm for the multi-depot heterogeneous dial-a-ride problem,” Computers & Operations
Research, vol. 129, p. 105196, 2021.

[113] S. Sohrabi, K. Ziarati, and M. Keshtkaran, “A hybrid genetic algorithm with an adap-
tive diversity control technique for the homogeneous and heterogeneous dial-a-ride
problem,” Annals of Operations Research, pp. 1–35, 2024.

[114] M. Karimi, F. Camiat, G. Desaulniers, and M. Gendreau, “An exact branch-and-price-
and-cut algorithm for a practical and large-scale dial-a-ride problem,” Journal of the
Operational Research Society, vol. 76, no. 6, pp. 1125–1139, 2025.

[115] M. Diana and M. M. Dessouky, “A new regret insertion heuristic for solving large-scale
dial-a-ride problems with time windows,” Transportation Research Part B: Methodolog-
ical, vol. 38, no. 6, pp. 539–557, 2004.

[116] Y. M. Nie and M. Ghamami, “A corridor-centric approach to planning electric vehicle
charging infrastructure,” Transportation Research Part B: Methodological, vol. 57, pp.
172–190, 2013.

[117] F. He, Y. Yin, and J. Zhou, “Deploying public charging stations for electric vehicles on
urban road networks,” Transportation Research Part C: Emerging Technologies, vol. 60,
pp. 227–240, 2015.

[118] A. Montoya, C. Guéret, J. E. Mendoza, and J. G. Villegas, “The electric vehicle routing
problem with nonlinear charging function,” Transportation Research Part B: Method-
ological, vol. 103, pp. 87–110, 2017.

[119] N. D. Kullman, J. C. Goodson, and J. E. Mendoza, “Electric vehicle routing with public
charging stations,” Transportation Science, vol. 55, no. 3, pp. 637–659, 2021.

116

APPENDIX A HETEROGENEOUS DIAL-A-RIDE FORMULATION

The heterogeneous dial-a-ride problem formulation used throughout the proposed VNS al-
gorithm is reported in detail in this Appendix. This model serves as a common foundation
for several components of our solution methodology. In particular, it is employed within
the LP-based heuristic for generating initial solutions, provides the basis for the IP formula-
tions used to define neighborhood classes in the VNS framework, and is also leveraged in the
IP-based local search procedure. We extend a heterogeneous dial-a-ride problem in which
both passengers and vehicles are of different types. Let U = {1, . . . , n} be the set of users
(requests). For each u ∈ U , let the pickup node be u and the delivery node be n + u. Let
P = {1, . . . , n}, D = {n + 1, . . . , 2n}, and N = P ∪ D ∪ {0, 2n + 1} where 0 and 2n + 1
are the origin and destination depots. Let K be the set of vehicles, and let M be the set of
passenger types. Each request u has a type m(u) ∈ M ; both nodes u and n+ u inherit this
type. The travel time and the cost on the arc (i, j) for vehicle k are tkij and ck

ij, respectively.
Node i ∈ N has service time sk

i and time window [ei, ℓi]. Vehicle k has route-duration limit
Tk and per-type capacities Qm

k for all m ∈ M . Let Lu be the maximum ride time for user u.
Define the per-type node load qm

i > 0 if i = u ∈ P with m(u) ∈ M , qm
i < 0 if i = n+ u ∈ D

with m(u) ∈ M , and qm
i = 0 otherwise. Let αk,m ∈ {0, 1} indicate whether vehicle k can

carry type m, and define ak,i = αk,m(u) for i ∈ {u, n + u} and ak,0 = ak,2n+1 = 1. We use
Big-M constants Mk

ij ≥ max{0, ℓi + sk
i + tkij − ej} and W k

ij,m ≥ min{Qm
k , Q

m
k + qm

i }.

Decision variables:

xk
ij ∈ {0, 1} equals 1 if vehicle k traverses (i, j);

Bk
i ≥ 0 is the service start time of k at node i;

Lk
u ≥ 0 is the ride time of user u on k;

Qk
i,m ≥ 0 is the number of type-m passengers on k after visiting i.

117

min
∑
k∈K

∑
i∈N

∑
j∈N

ck
ij x

k
ij (A.1)

∑
k∈K

∑
j∈N

xk
ij = 1 ∀i ∈ P (A.2)

∑
j∈N

xk
ij −

∑
j∈N

xk
n+i,j = 0 ∀i ∈ P, ∀k ∈ K (A.3)

∑
j∈N

xk
0j = 1 ∀k ∈ K (A.4)

∑
i∈N

xk
i, 2n+1 = 1 ∀k ∈ K (A.5)

∑
j∈N

xk
ji −

∑
j∈N

xk
ij = 0 ∀i ∈ P ∪D, ∀k ∈ K (A.6)

Bk
j ≥ Bk

i + sk
i + tkij −Mk

ij(1 − xk
ij) ∀i, j ∈ N, ∀k ∈ K (A.7)

ei ≤ Bk
i ≤ ℓi ∀i ∈ N, ∀k ∈ K (A.8)

Lk
u = Bk

n+u − (Bk
u + du) ∀u ∈ U, ∀k ∈ K (A.9)

tku, n+u ≤ Lk
u ≤ Lu ∀u ∈ U, ∀k ∈ K (A.10)

Bk
2n+1 −Bk

0 ≤ Tk ∀k ∈ K (A.11)

Qk
j,m ≥ Qk

i,m + qm
i −W k

ij,m(1 − xk
ij) ∀i, j ∈ N, ∀k ∈ K, ∀m ∈ M (A.12)

max{0, qm
i } ≤ Qk

i,m ≤ min{Qm
k , Q

m
k + qm

i } ∀i ∈ N, ∀k ∈ K, ∀m ∈ M (A.13)

Qk
0,m = Qk

2n+1,m = 0 ∀k ∈ K, ∀m ∈ M (A.14)

xk
ij ≤ ak,i, xk

ij ≤ ak,j ∀i, j ∈ N, ∀k ∈ K (A.15)

xk
ij ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ K (A.16)

Bk
i ≥ 0 ∀i ∈ N, ∀k ∈ K (A.17)

Lk
u ≥ 0 ∀u ∈ U, ∀k ∈ K (A.18)

Qk
i,M ≥ 0 ∀i ∈ N, ∀k ∈ K, ∀M ∈ M. (A.19)

The objective function (A.1) minimizes the total routing cost across all vehicles. Constraints
(A.2) guarantee that each pickup node is visited exactly once across all vehicles, ensuring
that every request is served. Constraints (A.3) enforce consistency between the pickup and
delivery of each request: if vehicle k serves a pickup node i, then the same vehicle must also
serve the corresponding delivery node n+ i. Together, these constraints guarantee that each
user is picked up and delivered exactly once by the same vehicle. Constraints (A.4)–(A.6)
ensure that valid vehicle routes are formed. Constraints (A.4) force each vehicle k to leave
its origin depot exactly once, while constraints (A.5) require each vehicle to arrive at its

118

destination depot exactly once. Constraints (A.6) maintain flow conservation at pickup and
delivery nodes, meaning that if a vehicle enters a node, it must also leave it. These three sets
of constraints together guarantee that each vehicle’s route starts at the origin depot, serves
a sequence of requests, and ends at the destination depot. Constraints (A.7) define the
temporal relationship between consecutive nodes in a route: if vehicle k travels directly from
node i to node j, then the service at j must begin no earlier than the completion of service
at i plus the travel time. The Big-M linearization ensures that this condition is only active
when arc (i, j) is used. Constraints (A.8) enforce that service at each node begins within its
allowable time window [ei, ℓi], thereby ensuring service feasibility. Constraints (A.9) define
the ride time of each user as the difference between the service start at the delivery node and
the departure from the pickup node. Constraints (A.10) bound this ride time between the
direct travel time and the maximum allowable ride time Lu. This prevents solutions where
users are transported excessively long compared to their direct journey. Constraints (A.11)
limit the total duration of each vehicle’s route, ensuring that it does not exceed the route
duration limit Tk. Constraints (A.12)–(A.14) manage the type-specific capacities of vehicles.
Constraints (A.12) propagate the load of type-m passengers carried by vehicle k along its
route: after visiting node i, the load at the next node j must equal the load at i plus the
change in demand qm

i (positive for pickups, negative for deliveries). The Big-M form ensures
that this update only applies when the arc (i, j) is traversed. Constraints (A.13) bound the
onboard load of each passenger type between zero (or the minimum pickup) and the vehicle’s
capacity for that type. Constraints (A.14) initialize and terminate each route with zero load,
ensuring vehicles leave and return empty. Constraints (A.15) enforce compatibility between
passengers and vehicles. A vehicle k may only travel to a node i if it is capable of serving that
passenger type, i.e., if αk,m(i) = 1. This prevents infeasible assignments, such as a standard
vehicle being routed to pick up a wheelchair passenger when it lacks the required equipment.
Finally, constraints (A.16) - (A.19) specify the domains of the decision variables.

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Context and Basic Concepts
	1.2 Elements of the Problem
	1.3 Research Objectives

	2 LITERATURE REVIEW
	2.1 Dial-a-Ride Problem
	2.2 Large-scale Routing Problem
	2.3 Electric Dial-a-Ride Problem (E-DARP)

	3 THESIS ORGANIZATION
	4 ARTICLE 1: AN EXACT BRANCH-AND-PRICE-AND-CUT ALGORITHM FOR A PRACTICAL AND LARGE-SCALE DIAL-A-RIDE PROBLEM
	4.1 Introduction
	4.2 Literature review
	4.3 Problem definition
	4.4 Mathematical model
	4.5 The proposed BPC algorithm
	4.5.1 Labeling algorithm
	4.5.2 Valid inequalities
	4.5.3 Branching strategy

	4.6 Computational results
	4.6.1 Instance description
	4.6.2 Linear relaxation results
	4.6.3 Integer solution results

	4.7 Conclusion

	5 ARTICLE 2: A VARIABLE NEIGHBORHOOD SEARCH ALGORITHM FOR A VERY LARGE-SCALE PRACTICAL DIAL-A-RIDE PROBLEM
	5.1 Introduction
	5.2 Literature review
	5.3 Problem definition
	5.4 The proposed algorithm
	5.4.1 Generating the initial solution
	5.4.2 Neighborhood classes
	5.4.3 Local search
	5.4.4 Break insertion
	5.4.5 Acceptance criterion

	5.5 Computational results
	5.5.1 Instance description
	5.5.2 Result of very large-scale instances
	5.5.3 Result of medium-size instances

	5.6 Conclusion

	6 ARTICLE 3: A VARIABLE NEIGHBORHOOD SEARCH ALGORITHM FOR THE ELECTRIC DIAL-A-RIDE PROBLEM WITH REALISTIC CHARGING CONSTRAINTS
	6.1 Introduction
	6.2 Literature review
	6.3 Problem definition
	6.4 The proposed algorithm
	6.4.1 Generating the initial solution
	6.4.2 Neighborhood classes
	6.4.3 Local search
	6.4.4 Charging station insertion
	6.4.5 Acceptance criterion

	6.5 Computational results
	6.5.1 Instance description
	6.5.2 Base Case - linear charging function
	6.5.3 Case 2 - concave piecewise linear charging function
	6.5.4 Case 3 - multiple charging infrastructure types
	6.5.5 Case 4 - time-of-use electricity pricing
	6.5.6 Case 5 - charging station capacity

	6.6 Conclusion

	7 GENERAL DISCUSSION
	8 CONCLUSION
	REFERENCES
	APPENDICES

