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RÉSUMÉ 

L'épilepsie est une maladie neurologique chronique invalidante qui affecte 1% de la population 

mondiale. Elle est caractérisée par la survenue imprévisible de crises épileptiques, des décharges 

électriques cérébrales anormales et synchronisées qui sont parfois associées à des symptômes 

neurologiques. L'électroencéphalogramme (EEG), un examen qui enregistre l'activité électrique 

corticale via des électrodes positionnées sur le scalp, est central au diagnostic et à la prise en charge 

de l'épilepsie. Son utilité diagnostique repose principalement sur l'identification visuelle de 

décharges épileptiformes interictales (DÉI), des anomalies sporadiques et asymptomatiques qui 

reflètent une irritabilité corticale anormale et donc un risque de crise accru. Malgré son importance, 

l’utilité de l’EEG en épilepsie pourrait être bonifiée. D’une part, les DÉI sont détectées chez une 

minorité de patients lors d'un EEG de routine de 30 minutes. D’autre part, leur identification 

visuelle comporte une part de subjectivité, menant parfois à un surdiagnostic. Des études 

préliminaires suggèrent qu’il existe d’autres différences subtiles dans l’EEG de patients avec 

épilepsie qui, bien qu’invisibles à l’œil nu, pourrait être captées par des méthodes 

computationnelles. Couplés au DÉI, ces marqueurs pourraient augmenter l’utilité diagnostique et 

prognostique de l’EEG. Cependant, le développement et la validation de tels biomarqueurs sont 

freinés par le manque de bases de données cliniques appropriées. 

L'objectif principal de cette thèse était de développer des méthodes computationnelles pour extraire 

de l'EEG des marqueurs quantifiables du risque de crise, indépendamment de la présence de DÉI. 

Plus spécifiquement, nous visions à: 1) développer une base de données d'EEG de routine avec 

données cliniques détaillées provenant de patients consécutifs, permettant la découverte et la 

validation rigoureuse de biomarqueurs; 2) valider les performances des biomarqueurs 

neurophysiologiques précédemment décrits et explorer de nouvelles caractéristiques du signal EEG 

associées à l'épilepsie; et 3) concevoir et optimiser un modèle d'apprentissage profond interprétable 

pour la détection de l'épilepsie et la prédiction du risque de crise à partir de l'EEG de routine. 

Pour le premier objectif, nous avons mis sur pied une cohorte de patients consécutifs ayant eu un 

EEG de routine au Centre hospitalier de l’Université de Montréal (CHUM) entre 2018 et 2020. 

Cette base de données unique contient présentement plus de 1 000 EEG consécutifs effectués chez 

plus de 900 patients. Chaque EEG est accompagné de variables cliniques détaillées provenant de 

leur suivi clinique, qui s’étend en moyenne sur plus de 2 ans après l’EEG. Pour chaque étude, de 
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nouveaux patients sont utilisés comme échantillon test, avec un décalage temporel mimant le 

déploiement de la technologie dans la vraie pratique. 

Le deuxième objectif a été adressé dans un premier article qui évaluait des caractéristiques 

computationnelles classiques comme la puissance de bande et l'entropie, extraites automatiquement 

de segments d'EEG de 10 secondes, pour prédire la récurrence de crise à un an. Le modèle 

développé a atteint une aire sous la courbe ROC (AUROC) de 0.63 (IC 95%: 0.55–0.71) dans la 

cohorte de test, démontrant des performances significatives même en l'absence de DÉI. Ceci 

validait ainsi l'hypothèse que l'EEG contient des biomarqueurs du risque de crise indépendants des 

DÉI, mais avec des performances diagnostiques modestes. 

Pour le troisième objectif, nous avons développé deux architectures d'apprentissage profond. Le 

premier modèle visait à démontrer l’applicabilité de ce type d’approche pour améliorer la précision 

diagnostique de l’EEG pour l’épilepsie. DeepEpilepsy, un Vision Transformer qui modélise 

directement le signal EEG brut, a surpassé les marqueurs computationnels ainsi que l'interprétation 

basée sur les DÉI avec une AUROC de 0.76 (0.69–0.83), atteignant 0.83 lorsque combiné aux DÉI. 

Une analyse de l’espace latent a révélé que DeepEpilepsy semblait dépendre des variabilités dans 

la puissance de bande des hautes fréquences (50–100 Hz).  

Bien que DeepEpilepsy démontrait la puissance des modèles profonds, son utilité clinique était 

limitée par la nature binaire de sa classification qui ne prenait pas en compte la variabilité clinique 

au sein des patients avec et sans épilepsie. Pour résoudre ce problème, nous avons développé 

EEGSurvNet, un modèle de survie profond qui permet de prédire le risque de crise à travers le 

temps. Entraîné sur 917 EEG et testé sur 135 enregistrement indépendants, EEGSurvNet atteint 

une discrimination (AUROC intégré à deux ans = 0.69, AUROC à deux mois = 0.80) et une 

calibration (score de Brier intégré à deux mois = 0.18) supérieures aux prédicteurs traditionnels. 

Comme DeepEpilepsy, EEGSurvNet ne dépend pas de la présence de DÉI ou de ralentissement 

anormal, et celui-ci obtient même de meilleures performances en leur absence. Cependant, les 

patrons captés semblent plutôt situés dans la bande de fréquence 6–15 Hz et évoluent sur une 

échelle temporelle d'au moins une minute.  

Cette thèse établit de nouveaux standards méthodologiques pour le développement d'algorithmes 

en épilepsie, notamment par l'utilisation d'une cohorte consécutive de patients et une validation 

temporellement décalée qui mime le déploiement clinique réel. Sur le plan scientifique, nos travaux 
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ouvrent une nouvelle fenêtre pour investiguer la neurophysiologie de l'épilepsie: les modèles 

profonds ont révélé des patrons EEG distincts des marqueurs traditionnels, évoluant sur une échelle 

temporelle plus longue. Ces caractéristiques, indépendantes des DÉI, pourraient refléter des 

altérations plus subtiles des réseaux neuronaux. Sur le plan clinique, la quantification précise du 

risque de crise pourrait transformer la prise en charge des patients en améliorant la certitude 

diagnostique, en guidant l'ajustement thérapeutique et en optimisant la sélection des patients pour 

des interventions plus agressives. Bien que la principale limitation soit l'utilisation de données d'un 

seul centre, une validation multicentrique est en cours. L'impact réel de cette technologie dépendra 

non seulement de cette validation robuste, mais aussi d'une réflexion approfondie sur son 

intégration dans la pratique clinique et son interaction avec le jugement médical. 
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ABSTRACT 

Epilepsy is a chronic disabling neurological disease affecting 1% of the world's population. It is 

characterized by unpredictable seizures—abnormal and synchronized electrical discharges in the 

brain that can provoke neurological symptoms. Electroencephalogram (EEG), a test that records 

cortical synaptic electrical activity via scalp electrodes, is central to the diagnosis and management 

of epilepsy. Its diagnostic utility in epilepsy relies primarily on the visual identification of interictal 

epileptiform discharges (IEDs), sporadic and asymptomatic abnormalities that reflect abnormal 

cortical irritability and thus an increased seizure risk. Despite its central role in epilepsy, the utility 

of EEG could be enhanced. On the one hand, interictal epileptiform discharges (IEDs) are detected 

in only a minority of patients during a routine 30-minute EEG. On the other hand, their visual 

identification remains somewhat subjective, which may occasionally lead to overdiagnosis. 

Preliminary studies suggest that there are other subtle differences in the EEG of patients with 

epilepsy that, although invisible to the naked eye, could be captured by computational methods. 

Coupled with IEDs, these markers could increase the diagnostic and prognostic yield of the EEG. 

However, the development and validation of such biomarkers are restrained by the lack of 

appropriate clinical databases. 

The main objective of this thesis was to develop computational methods to extract quantifiable 

markers of seizure risk from EEG, independently of the presence of IEDs. Specifically, we aimed 

to: 1) develop a routine EEG database with detailed clinical data from consecutive patients, 

enabling the discovery and rigorous validation of biomarkers; 2) validate the performance of 

previously described neurophysiological biomarkers and explore new EEG signal characteristics 

associated with epilepsy; and 3) design and optimize an interpretable deep learning model for 

epilepsy detection and seizure risk prediction from routine EEG. 

For the first objective, we established a cohort of consecutive patients who underwent routine EEG 

at the Centre hospitalier de l'Université de Montréal between 2018 and 2020. This unique database 

currently contains over 1,000 consecutive EEGs performed on more than 900 patients. Each EEG 

is accompanied by detailed clinical variables from their clinical follow-up, which extends on 

average over 2 years after the EEG. For each study, new patients are used as test samples, with a 

temporal shift mimicking real-world technology deployment. 
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The second objective was addressed in a first article that evaluated classical computational features 

such as band power and entropy, automatically extracted from 10-second EEG segments, to predict 

one-year seizure recurrence. The developed model achieved an area under the receiver operating 

characteristic curve (AUROC) of 0.63 (95% CI: 0.55-0.71) in the test cohort, demonstrating 

significant performance even in the absence of IEDs. This validated the hypothesis that EEG 

contains seizure risk biomarkers independent of IEDs, albeit with modest diagnostic performance. 

For the third objective, we developed two deep learning architectures. The first model, presented 

in the second article of the thesis, aimed to demonstrate the applicability of this approach to 

improve the diagnostic accuracy of EEG for epilepsy. DeepEpilepsy, a Vision Transformer that 

directly models raw EEG signal, outperformed computational markers and IED-based 

interpretation with an area under the ROC curve of 0.76 (95% CI: 0.69-0.83), reaching 0.83 when 

combined with IEDs. Latent space analysis revealed that DeepEpilepsy seemed to depend on 

variabilities in high-frequency band power (50–100 Hz). 

Although DeepEpilepsy demonstrated the power of deep models, its clinical utility was limited by 

the binary nature of its classification, which did not account for clinical variability among patients 

with and without epilepsy. To address this issue, we developed EEGSurvNet, a deep survival model 

that predicts seizure risk over time. In a third study, we trained EEGSurvNet on 917 EEGs and 

tested on 135 independent recordings, and showed that this model achieves discrimination 

(integrated AUROC at two years = 0.69, AUROC at two months = 0.80) and calibration (integrated 

Brier Score at two months = 0.18) superior to traditional predictors. Like DeepEpilepsy, 

EEGSurvNet does not depend on the presence of IEDs or abnormal slowing, and even performs 

better in their absence. However, the captured patterns appear to be located in the 6–15 Hz 

frequency band and evolve over a time scale of at least one minute. 

This thesis establishes new methodological standards for the development of algorithms in 

epilepsy, notably through the use of a consecutive patient cohort and temporally shifted validation 

that mimics real clinical deployment. From a scientific perspective, our work opens a new window 

to investigate the neurophysiology of epilepsy: deep models have revealed EEG patterns distinct 

from traditional markers, evolving over a longer time scale. These characteristics, independent of 

IEDs, could reflect more subtle alterations in neural networks. From a clinical perspective, precise 

quantification of seizure risk could transform patient care by improving diagnostic certainty, 
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guiding therapeutic adjustment, and optimizing patient selection for invasive interventions. 

Although the main limitation is the use of data from a single center, multicenter validation is 

ongoing. The real impact of this technology will depend not only on this robust validation but also 

on careful consideration of its integration into clinical practice and its interaction with medical 

judgment. 
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CHAPITRE 1 INTRODUCTION 

L’épilepsie affecte 1% de la population mondiale [1]. Il s’agit d’une maladie chronique invalidante 

caractérisée par la survenue sporadique et imprévisible d’une activité électrique anormale et 

synchronisée dans le cerveau, appelée crise épileptique [2], [3]. Ces crises peuvent entraîner des 

symptômes neurologiques incontrôlables, avec ou sans altération de l’état de conscience, mettant 

les patients en danger de blessure grave, d’accident automobile et même de décès [4], [5]. 

L’électroencéphalogramme (EEG), dont le premier enregistrement chez un humain est attribué à 

Hans Berger en 1929 [6], est un examen central au diagnostic et à la prise en charge de l’épilepsie. 

L’EEG consiste à enregistrer l’activité électrique corticale via des électrodes apposées sur le scalp, 

offrant une fenêtre sur les processus mêmes qui sous-tendent l’épilepsie. Son interprétation requiert 

une analyse visuelle approfondie des oscillations cérébrales à la recherche de changements subtils 

dans leur fréquence, amplitude et symétrie. Quelques années après les premiers EEG de Berger, on 

décrit de brèves ondes pointues, sporadiques et asymptomatiques, émanant du cerveau de patients 

avec épilepsie [6]. Ces décharges, maintenant appelées pointes épileptiformes ou décharges 

épileptiformes interictales (DÉI), sont le reflet d’une irritabilité corticale anormale et sont 

fortement associées à l’épilepsie [7]. Elles se distinguent des crises par une occurrence plus 

fréquente, une durée brève (< 200 ms) et l’absence de symptômes associés. Malheureusement, 

l’utilisation de DÉI comme biomarqueur d’épilepsie est limitée. Premièrement, de par leur nature 

sporadique, elles apparaissent chez moins de la moitié des patients avec épilepsie sur un 

enregistrement standard de 30 minutes [8], [9], [10]. Deuxièmement, elles peuvent survenir chez 

des patients sans épilepsie [11]. Troisièmement, elles reposent sur une analyse subjective et sont 

fréquemment sur-identifiées: plusieurs ondes pointues peuvent s’apparenter à des DÉI, et la 

mauvaise identification des DÉI est une cause importante du surdiagnostic d’épilepsie [12], [13], 

[14]. 

L’apprentissage machine, particulièrement l’apprentissage profond, a révolutionné plusieurs 

sphères de notre société. Dans les dernières années, des modèles mathématiques contenant 

plusieurs milliards de paramètres, optimisés sur des jeux de données massifs, se sont inscrits 

comme l’état de l’art dans plusieurs domaines tels que l’analyse d’image [15], l’interprétation du 

son [16] et la génération de texte [17]. En sciences, ces modèles ont mené à la découverte de 

médicaments [18] et ont résolu des problèmes jugés « impossibles » comme la modélisation de 
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protéines [19], [20]. L’EEG est un signal complexe avec des dynamiques temporelles, spatiales et 

fréquentielles encore largement incomprises [21], [22]. L’apprentissage machine est un outil idéal 

pour en extraire une représentation utile sur le plan clinique. L’application de l’apprentissage 

machine à l’EEG pourrait augmenter l’utilité diagnostique et prognostique de cet examen, offrir 

une alternative quantitative et automatisée à l’interprétation visuelle et possiblement mener à une 

meilleure compréhension de la neurophysiologie de l’épilepsie. 

Cette thèse adresse la question suivante: peut-on utiliser l’apprentissage machine pour modéliser 

le signal EEG en vue d’estimer le risque de crise d’un patient, sans dépendre de la présence de 

DÉI? Le projet se décline en trois étapes. Premièrement, nous mesurons les performances d’un 

modèle d’apprentissage machine basé sur l’extraction de caractéristiques classiques issues de la 

littérature. Par la suite, nous développons et évaluons des modèles profonds pour le diagnostic 

d’épilepsie. Troisièmement, nous améliorons l’architecture du modèle profond pour apprendre 

explicitement le risque de crise à travers le temps. Ces trois étapes sont rendues possibles grâce à 

une riche base d’EEG accompagnées de données cliniques bâtie sur mesure pour répondre à la 

question clinique au centre de cette thèse.  
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CHAPITRE 2 REVUE DE LITTÉRATURE 

2.1 Le défi diagnostic de l’épilepsie 

L’épilepsie est caractérisée par un risque élevé et persistant de crises épileptiques [2]. Ces crises 

correspondent à des épisodes transitoires d’activité neuronale excessive et anormalement 

synchrone, pouvant entraîner des manifestations neurologiques [3].  Environ 10% de la population 

subira une crise au cours de sa vie, sans nécessairement être atteint d’épilepsie [1], [23]. Après une 

seule crise, le risque de récidive est en moyenne de 40–50% [24]. Après deux crises non-

provoquées espacées de plus de 24h, le risque de récidive s’élève à 73% à 4 ans [25]. Lorsque ce 

niveau de risque est atteint, le diagnostic d’épilepsie peut être posé, et un traitement est 

généralement indiqué. Certains facteurs indiquent un risque plus élevé après une crise unique et 

permettent de diagnostiquer l’épilepsie plus précocement. Ces facteurs incluent la présence de 

certaines lésions épileptogènes à l’imagerie cérébrale, un examen neurologique anormal et la 

présence d’anomalies épileptiformes à l’EEG [2]. 

L’EEG de routine est l’évaluation paraclinique primaire la plus importante chez les patients avec 

suspicion d’épilepsie [26], [27], [28]. Cet examen de 30 à 60 minutes consiste à enregistrer 

l’activité électrique du cerveau, principalement la sommation de potentiels synaptiques corticaux, 

à travers des électrodes apposées à la surface du scalp. Cette activité est amplifiée et digitalisée par 

un appareil d’enregistrement, puis analysé à l’œil par un neurologue certifié dans la lecture d’EEG 

(Figure 2.1). L’activité électrique est scrutée à la recherche de patrons anormaux comme un 

ralentissement des oscillations ou des pointes épileptiformes ou décharges épileptiformes 

interictales (DÉI; Figure 2.2). Les DÉI sont des décharges abruptes, brèves (20–200 ms), de haute 

amplitude, souvent suivies d’une onde lente, qui interrompent le rythme de fond [28], [29]. Ces 

décharges sont fortement associées à l’épilepsie: leur présence indique un risque de crise futur 

environ deux fois plus élevé après une première crise [30], [31], [32]. Elles permettent donc de 

poser un diagnostic chez un patient ayant eu une seule crise [2] et de caractériser le type et la 

localisation de l’épilepsie [33]. De plus, elles sont fréquemment utilisées comme outil diagnostic 

chez des patients avec une probabilité pré-test faible, pour lesquels il existe une incertitude quant 

à la nature de leurs épisodes [34], [35]. La présence de pointes viendra appuyer la suspicion 

d’épilepsie, et leur absence pourrait encourager la poursuite d’autres hypothèses diagnostiques. 
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Figure 2.1 : Électroencéphalogramme à l’état d’éveil chez un patient sain. Image tirée de [36], © 
2020, Elsevier, avec permission d’Elsevier. 

La prédiction du risque de récidive de crise par l’EEG de routine est limitée par deux facteurs. 

Premièrement, sa faible sensibilité: des EEG de routine chez des patients avec épilepsie 

n’identifient des DÉI que dans 29–55% des cas [10], [28]. D’autre part, l’identification des pointes 

repose sur une analyse subjective de leur morphologie, localisation et fréquence, avec une fiabilité 

inter-observateur qui est au plus modérée [37], [38]. Par conséquence, des ondes pointues mais 

physiologiques peuvent être surinterprétées comme étant des anomalies épileptiformes [14]. La 

mauvaise interprétation de l’EEG est considérée comme un facteur majeur de surdiagnostic de 

l’épilepsie [39].  À cela s’ajoute une certaine prévalence des pointes épileptiformes chez les 

individus sans épilepsie, estimée à 1.74% (et allant jusqu’à 5.96% chez la personne âgée) [11]. De 

plus, la précision diagnostique de l’EEG dépend de la certitude clinique quant à la survenue d’une 

crise d’épilepsie, alors que pour beaucoup de patients, la nature même des épisodes est incertaine. 

Plusieurs causes alternatives peuvent expliquer des pertes de conscience ou symptômes 

neurologiques transitoires, et en l’absence de témoin ou de souvenirs francs des épisodes, il est 
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difficile d’être certain que ceux-ci soient des crises épileptiques. Dans les cliniques de « première 

crise », on conclut que l’épisode qui a amené le patient à consulter était non-épileptique dans 16–

60% des cas, avec des diagnostics alternatifs qui incluent des syncopes, des accidents ischémiques 

transitoires, ou des crises psychogènes non-épileptiques [40], [41], [42], [43]. Pour ces raisons, le 

taux de mauvais diagnostic est élevé: le taux d’erreur diagnostic approche 20% dans la 

communauté [13], et près de 25% des patients référés pour épilepsie réfractaire (i.e., ayant eu un 

échec à plus de deux médicaments anticrises appropriés), après une évaluation approfondie, n’ont 

jamais eu d’épilepsie [44].  

 

Figure 2.2 : Décharge épileptiforme interictale, ou pointe. Les annotations numériques dénotent 
les critères proposés par l’International Federation of Clinical Neurophysiology (IFCN) : 1) 

Morphologie di- ou triphasique et pointue, 2) fréquence différente du rythme de fond, 3) 
asymétrie, 4) onde lente subséquente, 5) perturbation du rythme de fond et 6) champ compatible 
avec une source cérébrale. Tirée de [29], © 2020 Wolters Kluwer Health, Inc., avec permission 

de Wolters Kluwer Health, Inc. 

Les facteurs gouvernants le risque de crise, ou seuil convulsif, sont multifactoriels. Certains sont 

fixes et incluent un historique d’insulte cérébrale (e.g., accident vasculaire cérébral, encéphalite, 

trauma crânien), l’historique familial, l’âge, la présence de certaines lésions à l’imagerie, et la 

nature même des épisodes ayant mené à consulter [45], [46]. D’autres varient dans le temps, comme 

la dose et l’efficacité du traitement anticrise, les cycles hormonaux et circadiens, le stress et 

l’efficacité du sommeil [47], [48]. Un biomarqueur quantifiable du seuil convulsif améliorerait 

grandement la précision diagnostique des cliniciens pour l’épilepsie et pourrait aider à 

l’optimisation du traitement anticrise [49]. Par exemple, un risque de crise très élevé motiverait un 
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régime thérapeutique plus agressif, une référence précoce pour évaluation chirurgicale et un 

resserrement des consignes de sécurité en lien avec les occupations et la conduite automobile [49]. 

De plus, un tel biomarqueur améliorerait l’efficacité des études cliniques en identifiant 

précocement les patients à risque d’épilepsie réfractaire ou même ceux ayant une haute chance de 

rémission [50], [51]. 

À ce jour, il n’existe pas de biomarqueur prédictif du seuil épileptique validé pour l’usage clinique 

[2], [52], [53]. Plusieurs efforts se sont concentrés sur des analyses génétiques et métaboliques, la 

neuroimagerie et l’EEG. En génétique, certains gènes ou scores polygéniques sont fortement 

associés à l’épilepsie, et permettent donc d’estimer plus précisément le risque de crise future après 

une crise unique non-provoquée. Certaines mutations de gènes impliqués dans la régulation du 

potentiel de membranes neuronales peuvent directement abaisser le seuil convulsif [54]. Des études 

plus récentes sur l’ensemble du génome mettent en lumière certaines altérations génétiques plus 

subtiles [55], [56]. Dans Heyne et al., les auteurs proposent un score de risque polygénique qui 

prédit le développement d’une épilepsie généralisée génétique (rapport de risque [RR] = 1.73) ou 

focale (RR = 1.13) après une première crise [57]. Le principal désavantage des biomarqueurs 

génétiques est leur aspect statique: ils ne permettent pas d’évaluer la variation du seuil dans le 

temps. Des biomarqueurs sériques comme les microARN circulants [58], [59] ou métabolites tels 

que le glutamate, lactate et citrate [60] pourraient bien saisir l’aspect dynamique du seuil 

épileptique, mais leur développement est miné par la faible spécificité, la susceptibilité au 

traitement anticrise et l’utilisation de devis cas-contrôle [60]. La neuroimagerie structurelle et 

métabolique est une autre source prometteuse de biomarqueur d’épilepsie, mais les efforts sont 

concentrés sur les patients avec épilepsie réfractaire pour l’identification de lésions subtiles et la 

prédiction de la réponse à la chirurgie  [61], [62], [63]. 

L’EEG demeure un candidat idéal pour la découverte de biomarqueurs prognostiques [53]. 

Premièrement, il est effectué chez virtuellement tout patient avec suspicion ou diagnostic 

d’épilepsie, et donc n’est pas sujet à des biais de sélection en fonction de la probabilité pré-test. 

Cela permet d’effectuer des études rétrospectives à grande échelle. Deuxièmement, l’EEG 

échantillonne directement le processus considéré pathologique chez les patients avec épilepsie: 

l’activité électrique cérébrale. L’EEG peut être appliqué sur de longue périodes (minutes à heure 

et même à jours) et possède une résolution temporelle assez élevée comparée aux autres techniques 

de neuroimagerie [64], [65]. Finalement, le test est standardisé et disponible partout dans le monde, 
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avec une barrière technologique basse [31], [66]. Une de ses faiblesses majeures réside dans son 

interprétation visuelle et la dépendance sur les pointes épileptiformes. Au-delà de sa subjectivité et 

de la nécessité d’une formation surspécialisée, l’interprétation visuelle fait fi de plusieurs 

caractéristiques cachées dans le signal, incluant les dynamiques temporelles complexes, des 

tendances sur longues échelles temporales (>10–20s, la taille de fenêtre typiquement utilisée pour 

analyser l’EEG de routine) et les interactions de haut-niveau entre les régions cérébrales. Dans une 

ère où les algorithmes peuvent converser avec les humains, rédiger des textes complexes et même 

analyser avec précision des imageries médicales, est-ce qu’il est possible d’exploiter davantage la 

richesse du signal capté par l’EEG et en tirer une information utile cliniquement?  

2.2 Des biomarqueurs computationnels d’épilepsie à l’EEG: revue 

systématique 

L'analyse automatisée de l'EEG à la recherche de biomarqueurs d'épilepsie intéresse les chercheurs 

en neurosciences, informatique et génie depuis plusieurs décennies. Plusieurs caractéristiques du 

signal EEG sont différentes dans le cerveau d’un patient épileptique comparé à des sujets sans 

épilepsie. Ces marqueurs incluent des caractéristiques du réseau de connectivité fonctionnelle, la 

complexité et prédictibilité du signal, la puissance spectrale et la chaoticité. L'analyse automatisée 

permettrait d'extraire cette information qui est invisible à l'œil nu, de manière quantitative et rapide, 

améliorant l'utilité diagnostique et prognostique de l'EEG. Malgré ces promesses, aucun de ces 

marqueurs n’est utilisé en clinique. Nous avons effectué une revue systématique pour évaluer la 

performance diagnostique de ces marqueurs en épilepsie, les populations étudiées et la qualité 

méthodologique des études, afin de comprendre pourquoi leur impact clinique est faible et émettre 

des recommandations pour les projets futurs. Je résume ici les résultats de la revue systématique, 

disponible en annexe (ainsi que son protocole publié dans un journal avec revue par les pairs) [67], 

[68], suivi d’une mise à jour sur les travaux publiés depuis. 

Notre revue systématique inclus toute étude rétrospective ou prospective comparant au moins un 

biomarqueur computationnel pour le diagnostic d’épilepsie sur l’EEG de routine (<24h), sans 

dépendre uniquement de la détection de pointes ou de crises. La population d’intérêt incluait des 

individus qui ont un EEG de routine dans le cadre de la clinique ou de la recherche, sans restreindre 

pour l’âge, les comorbidités, ou la médication. Le standard de référence était le diagnostic 
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d’épilepsie évalué cliniquement, tel que défini par les critères de la Ligue Internationale contre 

l’Épilepsie [2]. 

Notre stratégie de recherche, mise sur pied par deux bibliothécaires médicales, a identifié plus de 

10 000 articles publiés entre 1961 et 2022. Deux évaluateurs indépendants ont effectué le triage 

puis la sélection des études. Deux autres évaluateurs indépendants ont procédé à l’extraction des 

données et à l’évaluation méthodologique basée sur l’outil QUADAS-2 et adapté à la question de 

recherche de la revue [68]. Ces derniers évaluateurs ont aussi évalué la reproductibilité des études. 

Après le triage et la sélection, 37 études ont été incluses. Ces études ont exploré différentes 

approches d'analyse du signal EEG: des méthodes linéaires (43% des études), non-linéaires (27%), 

de connectivité (38%) et d'apprentissage profond (10%). La taille des échantillons variait 

considérablement, avec une moyenne de 54 participants et seulement six études incluant plus de 

100 sujets (Figure 2.3). La majorité des études incluaient à la fois des enfants et des adultes, et 

environ deux tiers des études incluaient tout type d'épilepsie. 

 

Figure 2.3 : Tailles d’échantillon des études incluent dans la revue systématique en fonction du 
type de marqueur (A) et de l’année de publication (B). Image tirée de [67] sous licence CC BY 

4.0. 

Les méthodes linéaires se sont concentrées sur l'analyse spectrale, notamment la puissance relative 

dans les bandes de fréquence. Des différences entre patients avec épilepsie et sans épilepsie ont été 

détectées dans toutes les bandes de fréquences: delta (≤4 Hz), thêta (4–8 Hz), alpha (8–13 Hz), beta 
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(13–40 Hz) et gamma (≥ 40 Hz), ainsi que les sous-bandes alpha [69], [70], [71], [72], [73], [74], 

[75]. D'autres approches ont exploré la stationnarité du signal et ses moments statistiques d'ordre 

supérieur (« High-order spectrum »)[71], [75]. Les paramètres de Hjorth, qui quantifient les 

moments statistiques du signal dans les domaines temporel et fréquentiel [76], semblaient 

discriminants dans deux études. Une approche originale consistait à détecter des événements lents 

paroxystiques (« Paroxysmal Slow Wave Events »), définis comme des segments de 2 secondes 

avec une fréquence médiane inférieure à 6 Hz, montrant une aire sous la courbe ROC (AUROC) 

de 0.72 pour prédire le risque de récidive à 18 mois après une première crise [77]. 

Les méthodes non-linéaires ont cherché à caractériser la complexité et la prévisibilité du signal 

EEG. L'entropie, sous ses différentes formes (Shannon, spectrale, approximative, de permutation), 

a été étudiée dans sept études [78], [79], [80], [81], [82], [83], [84]. Ces mesures tentent de 

quantifier le degré d'organisation ou de chaos dans l'activité cérébrale, supposément altéré chez les 

patients avec épilepsie. Certaines études ont calculé l’entropie après avoir filtré différentes bandes 

de fréquences, permettant d’évaluer l’entropie sur différentes échelles temporelles. D'autres 

caractéristiques non-linéaires incluaient les dimensions fractales [75], [78], l'exposant de Hurst 

[79], l'analyse des intervalles de passage à zéro (« zero-crossings interval analysis ») [85] et 

l'analyse quantitative de récurrence [83].  

L'analyse de la connectivité fonctionnelle a été utilisée par 14 études [69], [78], [81], [86], [87], 

[88], [89], [90], [91], [92], [93], [94], [95], [96]. Ces méthodes évaluent les interactions entre 

différentes régions cérébrales, soit par des mesures de synchronisation de phase, soit par des 

analyses de causalité. La plupart des études ont utilisé une analyse basée sur les capteurs plutôt que 

sur les sources, avec diverses mesures de connectivité comme l'information mutuelle [86], la 

cohérence [86], la valeur de verrouillage de phase [86], [88] et la causalité de Granger [87]. Une 

approche rapportée par deux études consistaient en un modèle des interactions entre les régions 

cérébrales inspiré de l’oscillateur de Kuramoto afin d’isoler les paramètres qui dictent la 

propension du réseau à générer des crises [88], [93]. Toutes les études ont analysé la connectivité 

sur plusieurs bandes de fréquence. Après avoir estimé la force de connectivité entre chaque 

électrode, la majorité des études ont extraits des caractéristiques qui décrivent la topologie du 

réseau. Trois études ont directement utilisé les matrices de connectivité comme entrée dans un 

algorithme de classification [87], [94], [95]. Les caractéristiques de réseau des patients avec 
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épilepsie étaient peu reproductibles d’une étude à l’autre. La seule caractéristique qui était associée 

à l’épilepsie dans toutes les études l’ayant étudiée était l’efficacité du réseau [89], [96], [97]. 

Quatre études ont utilisé des réseaux de neurones à convolution (CNN), avec des architectures 

variant d'une simple couche de convolution à trois blocs de deux couches convolutives [73], [74], 

[87], [98]. Certaines études ont prétraité les données en matrices de connectivité [87] ou en 

représentations temps-fréquence [73], tandis que d'autres ont directement utilisé le signal EEG brut 

en segments de 2 à 10 secondes [74], [98]. Les réseaux étaient de taille modeste, variant d’environ 

3 000 à 92 000 paramètres. L'augmentation du chevauchement des segments lors de l'analyse a 

semblé améliorer les performances, possiblement en augmentant artificiellement la taille de 

l'ensemble d'entraînement [74]. 

 

Figure 2.4 : Performances diagnostiques des études incluent dans la revue systématique et 
exemptent de fuite de données entre les ensembles d’entraînement et de test. A : Performances en 

fonction du type de caractéristiques. B : Performance en fonction du modèle d’apprentissage. 
Image tirée de [67] sous licence CC BY 4.0. 

Cependant, malgré des performances diagnostiques rapportées allant de 64% à 100%, l'évaluation 

rigoureuse de ces biomarqueurs est sévèrement limitée par d'importantes faiblesses 

méthodologiques. Aucune étude n'a démontré un faible risque de biais selon les critères 

standardisés d'évaluation QUADAS-2 [68], [99]. Les problèmes méthodologiques majeurs 

incluaient la sélection non-représentative des patients (utilisation fréquente d'un plan d’étude cas-

témoins plutôt qu'une cohorte consécutive), les fuites de données dans la validation des 



11 
 

performances (partage d'information entre les ensembles d'entraînement et de test) et le manque de 

reproductibilité des analyses. La sélection manuelle des segments EEG, effectuée dans 54% des 

études, introduisait une source additionnelle de subjectivité dont l'impact sur les performances n'a 

pas été quantifié. Seules six études (16%) ont été jugées reproductibles. 

 

Figure 2.5 : Résumé du risque de biais des études de la revue systématique par domaine 
PRISMA. Image tirée de [67] sous licence CC BY 4.0. 

Ces limitations empêchent actuellement de conclure sur l'utilité clinique réelle de ces biomarqueurs 

computationnels. Des études futures devront adopter une méthodologie plus rigoureuse, incluant 

des populations cliniquement pertinentes, une validation externe robuste et une documentation 

détaillée des méthodes d'analyse. Les approches basées sur l'apprentissage profond, bien que 

prometteuses, nécessiteront des bases de données considérablement plus grandes pour atteindre 

leur plein potentiel. Les futures études devront également prioriser l'automatisation complète du 

traitement des signaux EEG, incluant la détection et le rejet des artéfacts, pour faciliter l'application 

clinique de ces méthodes. L'avènement de grandes bases de données d'EEG standardisées et 

l'amélioration continue des techniques d'apprentissage automatique laissent espérer des avancées 
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significatives dans ce domaine, qui pourraient ultimement compléter l'analyse visuelle 

traditionnelle. 

2.2.1 Mise à jour sur le diagnostic automatisé de l’épilepsie à l’EEG 

Depuis la recherche effectuée dans le cadre de la revue systématique présentée à la section 

précédente, quelques articles additionnels ont tenté d’utiliser l’analyse automatisée de l’EEG pour 

améliorer le diagnostic de l’épilepsie. 

Myers et al. ont développé "EpiScalp", un modèle de régression logistique basé sur des 

caractéristiques spectrales et de connectivité, pour différencier l'épilepsie des conditions mimiques 

comme les crises psychogènes non-épileptiques [100]. Sur une cohorte de 218 patients admis à 

l’unité de monitoring d’épilepsie dans différents centres hospitaliers américains avec un EEG de 

routine préalable normal, les auteurs ont sélectionné les patients ayant un épisode habituel lors de 

l’admission permettant de confirmer ou infirmer le diagnostic d’épilepsie. Par la suite, ils ont 

identifié des marqueurs de connectivité et de puissance spectrale permettant de distinguer les 

patients avec et sans épilepsie avec une AUROC de 0.94 en validation croisée et une précision de 

80% sur un ensemble test. Les critères d'inclusion stricts (confirmation diagnostique par 

enregistrement d'un épisode habituel en vidéo-EEG prolongé) diminuent cependant la 

généralisabilité de leurs résultats à une population plus large. Cette performance doit aussi être 

interprétée avec prudence étant donné la petite taille de l'ensemble de test (20 patients) et un 

possible biais de sélection des caractéristiques, celle-ci ayant été effectuée sur l'ensemble des 

données. 

Une autre étude multicentrique par Tait et al. a validé un ensemble de biomarqueurs 

computationnels sur 281 EEG consécutifs normaux collectés dans huit centres au Royaume-Uni 

[101]. Le diagnostic d’épilepsie était basé sur les notes médicales, avec un suivi d’au moins un an. 

Leur approche combinait huit biomarqueurs: deux mesures spectrales, quatre de réseau et deux 

basées sur des modèles dynamiques. Leur modèle atteignait une précision balancée de 68% sur un 

ensemble test (sensibilité 61%, spécificité 75%). Les auteurs ont aussi confirmé l’absence d'impact 

de variables confondantes comme l'âge, le genre, le statut de traitement et les comorbidités. Cette 

étude présente une méthodologie robuste comparativement aux études précédemment décrites. Elle 

est tout de même limitée par l’absence d’un ensemble test et le manque de généralisabilité aux EEG 

anormaux, pour lesquels les performances étaient non-significatives. 
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Faiman et al. se sont concentrés spécifiquement sur la différenciation entre épilepsie et crises 

psychogènes non-épileptiques chez 148 patients naïfs au traitement [102]. Des segments 

visuellement normaux de 20s étaient sélectionnés pour l’analyse. Leur approche était divisée en 

deux: une première étude testait des biomarqueurs précédemment rapportés (puissance thêta et 

fréquence alpha pic), alors qu'une seconde étude explorait de nouvelles caractéristiques avec un 

algorithme de sélection de caractéristiques (pour un total de 7 729 caractéristiques). Ni l'approche 

guidée par hypothèse (précision moyenne 48%) ni l'approche exploratoire (précision 45-60%) n'ont 

permis d'identifier des biomarqueurs robustes. Cette étude négative souligne la difficulté de la tâche 

en question. Les faiblesses méthodologiques incluent une taille d’échantillon trop faible pour 

l’apprentissage, l’utilisation d’un segment unique de 20s pour chaque EEG et une possible sous-

optimisation des hyperparamètres. 

En parallèle, deux études majeures ont démontré le potentiel de l'apprentissage profond pour 

l’interprétation automatisée de l'EEG, particulièrement pour la détection de DÉIs. Bien que cette 

tâche soit différente du diagnostic, ces deux études présentent des parallèles intéressants avec les 

objectifs de cette thèse comme l’utilisation de modèles profonds, une méthodologie robuste et des 

données à grande échelle. Tveit et al. ont développé SCORE-AI, un réseau de neurones à 

convolution entraîné sur plus de 30 000 EEG pour classifier les enregistrements en catégories 

cliniquement pertinentes (normal, épileptiforme focal/généralisé, non-épileptiforme focal/diffus) 

[103]. Le modèle a atteint des performances similaires aux experts humains avec une aire sous la 

courbe ROC entre 0.89 et 0.96 selon la catégorie. La validation externe sur trois jeux de données 

indépendants, incluant un ensemble multicentrique de 100 EEG évalués par 11 experts et un 

ensemble monocentrique de 9 785 EEG, démontre la robustesse du modèle. Jing et al. ont créé 

SpikeNet, un réseau de neurones profond pour la détection automatisée de DÉI [104]. Entraîné sur 

plus de 9 500 EEG annotés par huit neurophysiologistes certifiés, SpikeNet a surpassé les 

performances humaines et les solutions commerciales existantes, avec une erreur de calibration 

plus faible (0.041 vs 0.183 pour les experts) et une meilleure discrimination (AUROC 0.98 vs 0.88 

pour le standard commercial). Bien que ces deux études ne visent pas directement le diagnostic 

d'épilepsie, elles démontrent la faisabilité d'analyser de grandes bases de données d'EEG avec 

l'apprentissage profond.  

Ces études récentes illustrent l’intérêt croissant pour la recherche de biomarqueurs alternatifs à 

l’EEG à l’aide de méthodes computationnelles. Les approches basées sur l'extraction de 
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caractéristiques prédéfinies montrent des résultats encourageants mais variables, possiblement 

limités par la taille des cohortes et des biais méthodologiques. Notamment, la difficulté à reproduire 

certains biomarqueurs précédemment rapportés souligne l'importance d'une validation externe 

rigoureuse et met en garde contre la surinterprétation d'études pilotes sur de petits échantillons sur-

sélectionnés. L'apprentissage profond émerge comme une approche prometteuse, particulièrement 

lorsqu'entraîné sur de grandes bases de données. Cependant, son application au diagnostic 

d'épilepsie reste à démontrer.  

2.3 L’apprentissage profond et l’EEG 

Au-delà de l’épilepsie, l’apprentissage profond promet de révolutionner l’analyse de l’EEG, avec 

des applications allant de l’interface cerveau-machine à la détection des stades de sommeil [105], 

[106]. En épilepsie, les avancées significatives se concentrent principalement à la détection de DÉI 

qui bénéficie d’ensembles de données comptant des dizaines de milliers d’EEG [103], [104]. Le 

choix de modèle optimal pour la classification de signaux EEG est un sujet de recherche très actif. 

Actuellement, deux familles de modèles dominent la littérature récente sur l’apprentissage profond 

et l’EEG: les réseaux de neurones à convolution et les Transformeurs. 

 

Figure 2.6 : Exemple de l’opération de « convolution » (qui est en réalité une corrélation croisée) 
avec plusieurs canaux. Image tirée de [107] sous licence CC BY-SA 4.0. 

Le CNN est l’approche la plus courante pour la modélisation du signal EEG [67], [105], [108], 

[109]. Introduit en 1998 avec LeNet-5 pour la reconnaissance de caractères manuscrits [110], le 

CNN combine trois concepts clés: les couches de convolutions, les fonctions d’activation non-

linéaires et le pooling (Figure 2.6 et Figure 2.7). Les couches de convolutions consistent à faire 

« glisser » un filtre sur l’entrée. Les paramètres du filtre sont optimisés au cours de l’entraînement. 
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Cela limite les connexions possibles entre les paramètres d’entrée (appelé champ réceptif ou 

receptive field) et confère une structure hiérarchique aux CNN, où les premières couches captent 

des caractéristiques locales alors que les couches plus profondes, des caractéristiques plus 

générales [111]. Les convolutions permettent aussi le partage de poids, ce qui réduit drastiquement 

le nombre de paramètres et force le réseau à apprendre des filtres invariants à la translation. Les 

fonctions d'activation non-linéaires, comme la fonction sigmoïde ou le Rectified Linear Unit 

(ReLU), introduisent la non-linéarité nécessaire pour modéliser des relations complexes et facilite 

l'entraînement du réseau. Le pooling agrège l'information spatiale locale avec une fonction max ou 

moyenne, réduisant la dimensionnalité et augmentant la robustesse aux petites transformations. À 

travers le CNN, les couches de pooling réduisent progressivement la dimensionnalité de la 

représentation. Ces propriétés définissent le biais inductif qui confère aux CNN une capacité 

naturelle à identifier les relations à travers diverses échelles temporelles et spatiales et leur confère 

une robustesse aux jeux de données modestes [112]. 

 

Figure 2.7 : Le modèle LeNet, reconnu comme un pionnier des réseaux de neurones à 
convolution. Image tirée de [110] sous licence CC BY 4.0. 

Depuis son invention, plusieurs changements importants ont été apportés au CNN, lui permettant 

d’être entraîné efficacement et avec stabilité sur des jeux de données massifs. En 2012, AlexNet a 

démontré la puissance des réseaux profonds en remportant la compétition ImageNet avec une 

marge considérable. La principale contribution était la profondeur du modèle, qui comportait 60 

millions de paramètres (contre 60 000 pour LeNet de 1998) et rendue possible grâce aux avancées 

en optimisation sur GPU [15]. Par la suite, VGGNet (2014) a standardisé l'architecture en utilisant 

des blocs répétitifs de petites convolutions (3x3) et de pooling, démontrant qu'une succession de 
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blocs de convolutions avec un petit champ récepteur est plus performante qu’une séquence plus 

courte de grandes convolutions [113]. Finalement, ResNet (2015) a révolutionné l’entraînement 

des réseaux très profonds en introduisant les connexions résiduelles (Figure 2.8), permettant au 

gradient de circuler plus efficacement à travers le réseau [114]. Ces avancées architecturales ont 

établi les CNN comme l'état de l'art dans pratiquement tous les domaines de vision par ordinateur 

[115], [116], [117] et ont inspiré leur application à d'autres types de données comme l'EEG. 

 

Figure 2.8 : Connection résiduelle au sein d’un réseau de neurones. Image tirée de [114]. © 2016, 
IEEE 

Pour l’EEG, les deux CNN phares sont l’EEGNet [118] et le ShallowConvNet [119], [120]. Ces 

deux modèles ont en commun l’utilisation séquentielle de point-wise convolution dans le domaine 

temporel puis spatial (Figure 2.9). Cette approche est inspirée de l’algorithme Filter Bank Common 

Spatial Patterns (FBCSP) utilisé pour décoder le signal EEG dans les interfaces cerveaux-machine 

[121] et permet de réduire considérablement le nombre de paramètres dans leur modèle. Dans un 

article récent [122], les auteurs du ShallowConvNet ont comparé les performances de ces 

algorithmes pour l’EEG de routine sur un jeu de données publiquement disponible, le Temple 

University Hospital EEG corpus [123], [124]. Il s’agit d’un ensemble de 10 700 EEG provenant 

de 8 710 patients avec le rapport correspondant. Pour certains sous-ensembles, les EEG ont été 

étiquetés à partir du rapport d’EEG (e.g., EEG globalement normal vs. anormal, patient avec 

épilepsie vs. sans épilepsie). Il est important de noter que les critères d’inclusion de ces EEG ne 

sont pas spécifiés, et les étiquettes sont à haut risque de biais puisqu’elles sont attribuées sur la base 

du rapport EEG et non d’une revue plus compréhensive du dossier longitudinal des patients. Dans 

leur analyse, les auteurs se sont intéressés à la performance des différents CNN en fonction de la 

taille de l’échantillon d’entraînement. Ils ont démontré que les performances de classification 

suivent une loi de puissance avec saturation, en fonction de la taille du modèle et de la taille du jeu 
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de données. Selon leurs conclusions, les modèles présentés saturent après entraînement sur 2 000 

exemples, avec une augmentation de la précision de seulement 1.5% lorsqu’entraînés sur 8 000 

autres exemples. Les limitations importantes de leur étude sont le biais dans l’étiquetage des 

données et la taille maximale de leur modèle (1.7M de paramètres). 

 

Figure 2.9 : Le modèle ShallowConvNet pour la classification d’EEG. Image tirée de [125]. © 
2017, IEEE 

Une autre architecture qui gagne en popularité pour l’EEG est le Transformeur. Le Transformeur 

a initialement été conçu pour modéliser les séries comme les séries temporelles ou le texte. 

Auparavant, les réseaux de neurones privilégiés pour les données en séries étaient les Réseaux de 

Neurones Récurrents (RNN) comme les réseaux Long Short-Term Memory (LSTM). Ces réseaux 

traitent les données séquentiellement en maintenant un état caché (hidden state) qui garde en 

mémoire l’information des états précédents [112]. Les RNN souffrent de trois limitations majeures: 

premièrement, le traitement séquentiel limite la parallélisation. Deuxièmement, ils sont sujets au 

problème d'évanescence des gradients où le signal d'apprentissage s'atténue exponentiellement lors 

de la rétropropagation à travers le temps ; et troisièmement, malgré les mécanismes de portes des 

LSTM, ces réseaux peinent à identifier les dépendances à long terme car l'information doit traverser 

de nombreuses étapes de traitement [112]. Les Transformeurs adressent ces problèmes grâce à leur 

mécanisme d'attention [17]. L'attention permet à chaque élément de la séquence d'interagir 

directement avec tous les autres éléments, facilitant ainsi la modélisation des dépendances 

temporelles sans les contraintes des architectures récurrentes (Figure 2.10). De plus, cette 

architecture permet un traitement parallèle, accélérant significativement l'entraînement. Les 

Transformeurs sont aussi reconnus pour leur extensibilité: des jeux de données plus volumineux et 

des modèles plus complexes résultent en de meilleures performances, et ce avec une utilisation plus 

efficace des ressources computationnelles [126]. Ces avantages en ont fait l'architecture dominante 
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pour les tâches complexes de traitement du langage naturel, et leur succès s'étend maintenant à 

d'autres domaines comme l'analyse de signaux EEG [127], [128], [129]. 

 

Figure 2.10 : À gauche : Attention avec produit scalaire. À droite : Attention multi-head, où les 
multiples « têtes » sont des modules d’attention avec produit scalaire parallèles. Image tirée de 

[17] sous licence CC BY-SA 4.0. 

Le Vision Transformer (ViT) est une adaptation du Transformeur à l’imagerie [130]. Son principe 

est de découper l'image en morceaux (patches) qui sont ensuite organisés en séquence et traités 

comme des lexèmes (tokens), similaires aux mots dans le traitement du langage (Figure 2.11). Cette 

approche permet d'appliquer directement les mécanismes d'attention aux données visuelles, en 

considérant chaque « patch » comme une unité distincte pouvant interagir avec toutes les autres. 

Depuis la publication du ViT, plusieurs améliorations ont été proposées pour faciliter leur 

entraînement, particulièrement aux jeux de données plus modestes. Le Compact Vision 

Transformer (CvT) combine une tokenisation par convolution avec un Transformeur compact, et 

il peut atteindre des performances état-de-l'art avec aussi peu que 0.28M paramètres [131], [132]. 

Un autre élément clé pour l’entraînement efficace du Transformeur est la régularisation.[133] 

Celle-ci peut être obtenue avec des techniques d’optimisation comme le weight decay ou le 

dropout, mais surtout  via des techniques d'augmentation de données comme le masquage aléatoire 

et la rotation [133], [134]. Cette régularisation est essentielle pour adapter les Transformeurs aux 

jeux de données limités [135]. Cette caractéristique est particulièrement pertinente pour l'analyse 

de l'EEG, où les données étiquetées sont souvent rares et où l'augmentation de données doit être 

appliquée avec précaution pour préserver la signification physiologique du signal. 
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Figure 2.11 : Aperçu du Vision Transformer. Image tirée de [130] sous licence CC BY 4.0. 

En EEG, le Transformeur a été utilisé pour le suivi des mouvements extra-oculaires [128], la 

prédiction de crises en temps réel [136], [137], la reconnaissance d’émotions [127] et le décodage 

des patrons moteurs [129]. Toutes ces études utilisent le ViT, mais varient dans leur méthode pour 

découper le segment d’EEG d’entrée. Deux études, ViT2EEG et EEGFormer [127], [128], utilisent 

les convolutions point-wise pour encoder le signal avant l’entrée dans le Transformeur, inspiré par 

les ShallowConvNet et EEGNet présentés plus tôt [118], [119]. Les deux autres études utilisent 

comme tokenizer soit une projection linéaire comme le ViT original [130], ou bien une couche de 

convolution avec activation ReLU. Trois des études utilisent le signal EEG sous la forme C x T 

[127], [128], [137], alors que la quatrième transforme le signal en spectrogramme de la forme C x 

F x T (dans leur cas, C = 1) [136]. Bien que chacun des articles démontrent une bonne performance 

du ViT pour l’EEG, les tailles de jeux de données se limitent à 15 000–80 000 segments provenant 

de 23–70 patients et les segments d’EEG sont courts (jusqu’à 50 000 points ou 10 secondes). Une 

autre initiative notable est le Brain Foundation Model par Bayazi et al. [138]. Ce Transformeur 

applique la complexité d’un large modèle de langage à l’analyse de l’EEG et de l’IRM 

fonctionnelle. Cependant, le modèle traite un canal à la fois, et donc ne peut pas modéliser les 

relations spatiales inhérentes à l’EEG. Ainsi, la capacité réelle du Transformeur à modéliser un 

large ensemble de données EEG pour une tâche clinique reste incertaine. 

Malgré ces avancées prometteuses, plusieurs limitations importantes persistent dans l'application 

de l'apprentissage profond à l'EEG. Premièrement, le plein potentiel de ces algorithmes pour le 

diagnostic d’épilepsie reste largement inexploré: les plus grands modèles actuels, qui ne comptent 
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que quelques dizaines de milliers de paramètres,[73], [74], [87], [98] sont modestes comparés aux 

modèles état de l'art dans d'autres domaines. Deuxièmement, de nombreuses questions 

méthodologiques fondamentales restent sans réponse claire: le choix optimal entre Transformeurs 

et CNN, la méthode de tokenisation la plus appropriée, l'utilisation de spectrogrammes versus 

signaux bruts, ou encore la longueur optimale des segments à analyser. Enfin, ces modèles profonds 

restent largement des "boîtes noires": nous avons une compréhension limitée des caractéristiques 

qu'ils extraient des signaux EEG et de la façon dont ils prennent leurs décisions. Cette opacité 

constitue un obstacle majeur à leur adoption clinique et souligne le besoin de développer des 

méthodes d'interprétabilité robustes. 
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CHAPITRE 3 OBJECTIFS ET ORGANISATION DE LA THÈSE 

Dans le chapitre précédent, nous avons démontré qu’il y a un besoin criant de biomarqueurs du 

risque de crise en épilepsie. L’EEG pourrait contenir une information pertinente invisible à l’œil 

nu mais détectable via des méthodes quantitatives. Cependant, les études actuelles sont limitées 

par des biais méthodologiques reliés à la sélection des patients et la validation. L’apprentissage 

profond est une approche intéressante pour modéliser l’EEG, mais sa capacité à détecter des 

caractéristiques liées au diagnostic d’épilepsie et au risque de crise est incertaine. 

Cette thèse tente de répondre à la question suivante: Comment extraire de l'EEG des biomarqueurs 

quantitatifs et robustes du risque de crise en épilepsie, indépendamment de la présence de DÉI? 

Plus spécifiquement: 

1) Quelles caractéristiques décrites dans la littérature permettent d’identifier les patients à 

risque de crise de façon indépendante des DÉI, et quelle est leur précision diagnostique? 

2) Est-ce que l’apprentissage profond peut améliorer les performances diagnostiques et 

prognostiques comparés à l’extraction de caractéristiques et à la présence de DÉI?  

Pour répondre à ces questions, les objectifs suivants ont été établis: 

1) Développer une base de données d'EEG de routine avec données cliniques détaillées 

provenant de patients consécutifs, permettant la découverte et la validation de 

biomarqueurs; 

2) Valider les performances des biomarqueurs neurophysiologiques précédemment décrits et 

explorer de nouvelles caractéristiques du signal EEG associées à l'épilepsie; 

3) Concevoir et optimiser un modèle d'apprentissage profond interprétable pour la détection 

de l'épilepsie et la prédiction du risque de crise à partir de l'EEG de routine. 

3.1 Organisation de la thèse 

La thèse est divisée en deux parties principales. La première partie (Chapitres 1 et 2) présentait une 

revue critique de la littérature, démontrant le besoin de biomarqueurs en épilepsie et le potentiel de 

l'apprentissage profond appliqué à l'EEG, tout en exposant les limitations méthodologiques 

actuelles.  
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La deuxième partie présente trois études complémentaires qui explorent progressivement la 

modélisation du risque de crise, des approches traditionnelles aux méthodes d'apprentissage 

profond. Le Chapitre 4 établit les fondations en évaluant un modèle basé sur des caractéristiques 

computationnelles classiques pour le diagnostic d'épilepsie et la prédiction de récurrence de crise 

à un an. Le Chapitre 5 introduit une nouvelle approche en développant une architecture 

d'apprentissage profond capable de modéliser directement le signal EEG brut pour prédire le 

diagnostic d'épilepsie. Le Chapitre 6 étend cette méthodologie en proposant un modèle qui prédit 

le risque de crise à travers le temps tout en améliorant l'interprétabilité clinique. 
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CHAPITRE 4 ARTICLE 1: MACHINE-LEARNING FOR THE 

PREDICTION OF ONE-YEAR SEIZURE RECURRENCE BASED ON 

ROUTINE ELECTROENCEPHALOGRAPHY 

Emile Lemoine, MD, MSc1,2,3, Denahin Toffa, MD, PhD1,3, Geneviève Pelletier-Mc Duff, BSc1,3, 

An Qi Xu3, Mezen Jemel, BSc1,3, Jean-Daniel Tessier, BSc1,3, Frédéric Lesage, PhD2,4, Dang K. 

Nguyen, MD, PhD1,3, Elie Bou Assi, MEng, PhD1,3* 
1Department of Neurosciences, Université de Montréal, Montréal, Qc, Canada 
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3Centre de Recherche du CHUM (CRCHUM), Montréal, Qc, Canada 

4Centre de Recherche de l’institut de Cardiologie de Montréal, Montréal, Qc, Canada 

*Corresponding author

Cet article aborde les premier et deuxième objectifs visant à mettre sur pied une base de données 

d’EEG de routine avec information clinique et de mesurer la performance diagnostique pour 

l’épilepsie des marqueurs computationnels existants. L’article a été publié le 4 août 2023 dans la 

revue Scientific Reports (https://www.nature.com/articles/s41598-023-39799-8) et compte 

maintenant 18 citations (Google Scholar). Il a remporté le prix Mary Ann Lee de la Ligue 

Canadienne contre l’Épilepsie pour meilleure publication par un résident en neurologie au 

Canada (2024) et le prix Pavel Hamet pour meilleure publication au CRCHUM (2024). Ce 

travail a fait l’objet de multiples présentations orales, notamment à l’American Academy of 

Neurology Annual Meeting (Boston, 2023; Prix Futures in Neurological Research) et au 

Canadian Neurological Sciences Federation Congress (Montréal, 2022; Prix Herbert Jasper pour 

meilleur abrégé en neurophysiologie clinique), ainsi que des présentations par affiches, incluant 

à ICTALS (Berne, 2022; Bourse de congrès), l’American Epilepsy Society Annual Meeting 

(Virtual [Chicago], 2021) et l’International Epilepsy Conference (Virtual, 2021). 

Ma contribution à cet article comprend l'identification de la problématique, la collecte de données, 

le développement de la méthode d'apprentissage automatique, le prétraitement des données EEG, 

la réalisation des expériences computationnelles, l'interprétation et l'analyse des résultats, la 

conception des visualisations, ainsi que la rédaction du manuscrit. 

https://www.nature.com/articles/s41598-023-39799-8
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4.1 Abstract 

Predicting seizure recurrence risk is critical to the diagnosis and management of epilepsy. Routine 

electroencephalography (EEG) is a cornerstone of the estimation of seizure recurrence risk. 

However, EEG interpretation relies on the visual identification of interictal epileptiform discharges 

(IEDs) by neurologists, with limited sensitivity. Automated processing of EEG could increase its 

diagnostic yield and accessibility. The main objective was to develop a prediction model based on 

automated EEG processing to predict one-year seizure recurrence in patients undergoing routine 

EEG. We retrospectively selected a consecutive cohort of 517 patients undergoing routine EEG at 

our institution (training set) and a separate, temporally shifted cohort of 261 patients (testing set). 

We developed an automated processing pipeline to extract linear and non-linear features from the 

EEGs. We trained machine learning algorithms on multichannel EEG segments to predict one-year 

seizure recurrence. We evaluated the impact of IEDs and clinical confounders on performances 

and validated the performances on the testing set. The receiver operating characteristic area-under-

the-curve for seizure recurrence after EEG in the testing set was 0.63 (95%CI: 0.55–0.71). 

Predictions were still significantly above chance in EEGs with no IEDs. Our findings suggest that 

there are changes other than IEDs in the EEG signal embodying seizure propensity. 

4.2 Introduction 

Epilepsy is a chronic neurological condition defined as an enduring, pathological propensity to 

recurring seizures [2]. Predicting the risk of seizure recurrence is at the heart of the diagnosis and 

management of people with epilepsy (PWE). The electroencephalogram (EEG), a 20- to 60-minute 

recording of the electrical activity of the cerebral cortex via scalp electrodes, is a cornerstone of 

the estimation of seizure recurrence risk. The hallmark of epilepsy on the EEG is the interictal 

epileptiform discharge (IED): a brief, sharp discharge emanating from the background rhythm 

between seizures. In several clinical scenarios, such as after a first unprovoked seizure, before 

withdrawing antiseizure medication (ASM), and after surgical resection of an epileptic focus, 

visual identification of IEDs on routine EEG grossly doubles the risk that a patient will have seizure 

recurrence in the next years [31]. This impacts ASM management and prescription of ancillary 

tests. 

Unfortunately, spikes are elusive: in PWE, a 20-minute EEG captures spike in only 29–55% of 

cases [10], [28]. As a result, the sensitivity of EEG for predicting seizure recurrence is limited [30]. 
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In addition, IEDs are subject to overinterpretation with an inter-rater agreement that is only 

moderate, even among fellowship-trained neurophysiologists [37]. The overidentification of 

sharply contoured waveforms and normal variants as epileptiform can lead to the misdiagnosis of 

epilepsy, particularly in the event of a poor clinical history [139], [140]. Finally, once the diagnosis 

of epilepsy is established, IEDs on routine EEG do not correlate well with disease activity, limiting 

their usefulness to monitor ASM therapy [141], [142], [143], [144]. A biomarker of seizure 

propensity that is automated, objective, and independent of IEDs would heavily impact clinical 

practice by reducing diagnostic error, accelerating treatment in patients at high risk of seizures, 

avoiding the consequences of overdiagnosis in the others, and monitor disease activity. 

Several studies have suggested that the routine EEG can capture non-visible anomalies in cortical 

activity in patients with both focal and generalized epilepsies [145], [146], [147], [148], [149], 

[150]. These differences include subtle power shifts in specific frequency bands [151], [152], [153], 

[154], changes in regularity of the signal [80], [155], or presence of power scaling laws [79]. 

However, key questions were not addressed in previous studies, such as the reproducibility on 

external data and the impact of confounders like age and antiseizure therapy. In addition, previous 

studies are underpowered (with samples smaller than 100 patients) [156]. Thus, the potential 

predictive performances of computational EEG biomarkers in the clinical setting remain unknown 

[157]. There is a need for high-powered cohort studies to assess the diagnostic accuracy of these 

biomarkers and initiate their clinical translation. 

In this paper, we develop and validate predictive models for the prediction of seizure recurrence at 

one year based on the computational extraction of biomarkers from the routine EEG signal. We 

train the model on a large retrospective cohort of consecutive patients undergoing routine EEG and 

validate the predictive accuracy on a temporally shifted cohort of patients. We investigate whether 

predictive accuracy is independent of IEDs and other clinical confounders. 
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Figure 4.1 : EEG processing and marker extraction methods. A: Processing of a single EEG: 
extraction from the database in which the EEG is stored with annotations, segmentation into 10s 

epochs according to pre-defined timepoints, identification of artefactual channels (in red) and 
interpolation. B: Marker extraction: for each marker, one value is computed at each channel, 
epoch, and frequency bands. The values for a given epoch are used as input for the machine 

learning algorithm. 

4.3 Methods 

4.3.1 Patient population and clinical file review 

We retrospectively recruited all consecutive patients who underwent a routine EEG at the 

University of Montreal Hospital Center (CHUM) between January 2018 and June 2019. Routine 

EEGs (both awake and sleep recordings) recorded between January and December 2018 constituted 

the training set, while EEGs recorded between January and June 2019 constituted the held out 

testing set. We excluded EEGs with no follow-up visit available after the EEG, uncertain diagnosis 

at the end of the available follow-up, or with excessive artifacts or seizures (as per the EEG report). 

For the testing set, we additionally excluded patients for whom an EEG was already included in 

the training set. We reviewed the patients’ entire medical chart for clinical information: 
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demographics (age, sex), comorbidities at the time of the EEG, epileptogenic factors, reason for 

EEG, presence of focal brain lesion on neuroimaging (when available), and number of ASMs. For 

PWE, we collected type of epilepsy, age of epilepsy onset, and date of the first seizure after the 

EEG. If the date of first seizure after the EEG was not available, we estimated it by linear 

interpolation based on the seizure frequency reported in the visit after the EEG. From the EEG 

report, we extracted the type of recording (awake or sleep deprived), deepest sleep stage achieved, 

presence of IED, and presence and degree of abnormal slowing. All clinical information was stored 

on a REDCap database hosted on the CHUM research center’s servers.  

4.3.2 Outcomes 

The primary outcome is the patient-reported seizure recurrence during the first year of follow-up 

after the EEG, as provided in the medical notes. We considered only unprovoked seizures and 

auras, which include seizures that occurred in the setting of sleep deprivation and medication non-

compliance [2]. The secondary outcome was the diagnosis of epilepsy, based on information 

available in medical notes by the appointed neurologist. The starting date of the diagnosis would 

be the date of the first seizure experienced by the patient. We only considered the diagnosis valid 

if it was concordant with International League Against Epilepsy criteria (Fisher et al., 2017): having 

had at least one seizure and either 1) a second seizure >24 hours apart or 2) an estimated risk of 

seizure recurrence ≥ 60% over the next 10 years [2]. If the diagnostic was not concordant, the 

patient would be excluded. The last outcome was active epilepsy: this required a diagnosis of 

epilepsy, at least one seizure in the year preceding the EEG, and seizure recurrence at any point 

after the EEG.  

4.3.3 EEG recording and processing 

EEGs were recorded using a Nihon Kohden EEG system. The recording protocol is standardized 

based on national recommendations [158]. Awake EEGs were 20–30 minutes in duration and are 

recorded at 200 Hz through 19 electrodes arranged with the standard 10-20 distribution. They 

included two 90s periods of hyperventilation and photic stimulation from 4 Hz to 22 Hz. 

Hyperventilation was not performed in patients >80 y.o., in patients unable to cooperate with 

technologists, nor in patients with medical contraindications. Moreover, the patients were 

instructed to open or close their eyes at several times during the recording. Sleep deprived 

recordings were 60 minutes in duration, with the same activation procedures. An EEG technologist 
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annotates the EEG in real-time. The protocol includes changes of montage at regular intervals 

during the recording, rotating through a total of seven montages. For this study, we converted the 

digital EEG to an average referential montage. EEGs were converted into EDF format and stored 

on the CHUM research center’s server for analysis. 

The processing pipeline is illustrated in Figure 4.1A. EEG recordings were high pass filtered at 

0.75 Hz and notch filtered at 60 Hz with a fast-impulse response (FIR) filter (hamming window). 

Ten-second epochs were extracted at pre-specified time points: every change of montage, every 

15s during hyperventilation, every 15s for 2 minutes post-hyperventilation, every photic 

stimulation frequency, and every eye closure or opening. Artifact detection and interpolation were 

done using the autoreject algorithm [159]. For a given EEG recording, an optimal peak-to-peak 

amplitude threshold was found for each individual epoch/channel combination using 5-fold cross-

validation (CV). Rejected channels were interpolated using spherical splines. The preprocessing 

pipeline was written in Python (version 3.8) and is based on the MNE library.  

4.3.4 Extraction of computational markers 

Ten univariate markers were extracted from the EEGs. The markers were selected based on 

previous literature, with the aim of capturing distinct linear and non-linear properties of the EEG 

signal across the time- and spectral-domain at each channel. The markers’ algorithms, 

mathematical details, and references are supplied in the Supplementary method 1. Linear features 

were: band power (BP) in ten frequency bands (low [1–2 Hz] and high [2–4 Hz] delta, low [4–6 

Hz] and high [6–8 Hz] theta, low [8–10 Hz] and high [10–13 Hz] alpha, low [13–20 Hz] and high 

[20–40 Hz] beta, low [40–75 Hz] and high [75–100 Hz] gamma), peak alpha frequency (PAF), and 

Hurst exponent (HE). For BP, the EEG were band pass filtered using a FIR (hamming window). 

Power spectrum density was calculated using a multitaper method, and the integral in each 

frequency band was estimated using Simpson’s method. For the PAF, the peak frequency of the 

alpha band (8–13 Hz, band pass filtered using a FIR window) was extracted for each EEG, epoch, 

and channel. HE was calculated for each EEG, epoch, channel, and wavelet decomposition level 

(see next paragraph), with a minimum window size of 10 points. 

Non-linear features were: line length (LL), correlation dimension (CD), and five different entropy 

estimates: Approximate (ApEn), Sample (SampEn), Fuzzy (FuzzEn), Permutation (PermEn), and 

Spectral entropy (SpecEn). For non-linear features and for HE, one value was calculated for each 
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feature, EEG, epoch, channel, and wavelet decomposition level (Figure 4.1B). The Sym5 wavelet 

was used with six decomposition levels (with frequency range: 100–50 Hz, 50–25 Hz, 25–12.5 Hz, 

12.5–6.25 Hz, 6.25–3.125 Hz, and 3.125–1.56 Hz) [160]. For entropies, optimal parameters were 

selected to maximize the inter-EEG vs. intra-EEG variance on five EEGs that were excluded from 

the study (m = 3, r = 0.25, τ = 5, n = 2, and k = 3). Missing values were imputed using multivariate 

iterative imputation. The calculation of the markers was independent on the outcomes. 

4.3.5 Machine learning model development and validation 

The ML model’s task is to map the vector of linear and non-linear features’ values for a single EEG 

to a clinical outcome. The training was done epoch-wise—each EEG epoch fed as an independent 

learning observation. To prevent data leakage, epochs from the same patient were grouped together 

in the same CV split. The predictions for epochs of a single EEG were aggregated using the median 

to yield a single prediction per EEG. We also tested other percentiles (0.1–0.9 in 0.1 steps) for the 

aggregation of predictions (Supplementary Table S1). The clinical outcomes are described in the 

Outcomes section. The performance metric is the receiver operating characteristic area-under-the-

curve (ROC AUC), selected for its robustness to class imbalance. Improvement over chance (IoC) 

was defined as an AUC significantly over 0.50. 
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Figure 4.2 : Machine learning evaluation methods. A: Nested cross-validation with 10-fold inner 
loop and 5-fold outer loop. B: Evaluation on the temporally shifted validation cohort (testing set). 

In blue: internal validation cohort (EEGs recorded in 2018). In red: testing cohort (EEGs 
recorded in 2019). 

Four ML algorithms were evaluated: Generalized linear model (GLM; L1- and L2-regularized 

logistic regression) [161], support vector machine with radial basis function (SVM), random forest 

(RF), and gradient boosted trees (LightGBM) [162]. Supervised feature selection was performed 

with a linear L1-regularized SVM. 

A nested CV was used first to evaluate the models, features, and clinical confounders on the 

training set (Figure 4.2A). In nested CV, an inner-loop is used to optimize hyperparameters of the 

feature selection and learning model, and an outer-loop is used to validate the performances on 

separate data. It allows to estimate confidence intervals and is more robust than CV [163]. We used 
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a 10-fold CV for the inner-loop and a 5-fold CV for the outer-loop, with patient-wise grouping of 

the EEG epochs at each level. ROC AUC values across outer-loop CV splits were averaged and 

95% confidence intervals were estimated using LeDell’s curve based approach [164]. ROC AUC 

values were compared against the random classifier (ROC AUC = 0.50). Statistics were calculated 

at the EEG level (after aggregating predictions for all epochs in a single EEG). ML models were 

trained and validated using Python 3.8 (with classifiers from Scikit-learn and LightGBM libraries). 

We tested the interacting effect of age, presence of IEDs, and presence of a focal lesion on 

neuroimaging to increase the performances of the algorithm. For age, we added interaction terms 

between scaled age and features to the set of features. For IEDs and focal lesions, we used a two-

step classifier: first, if the factor is positive (e.g.: presence of IEDs), the model automatically 

outputs a positive prediction. If the factor is negative, the ML model’s predictions are used. 

Validation of predictive performances on testing set 

We validated the performances of the best performing ML models on the testing cohort (Figure 

4.2B). First, we removed features that did not show IoC on the training cohort. Then, we performed 

a 10-fold CV on the training data (EEGs from 2018) to select the best features and best 

hyperparameters for each of the four previously described models and three outcomes. The best 

feature-set/hyperparameters were used to train the models on the training data. The trained models 

were then applied to the testing set (EEGs from 2019) to emit probabilistic predictions. We 

computed the ROC AUC values from the probabilistic predictions, with 95% confidence intervals 

estimated by DeLong’s approach (single prediction by patient) [165]. For the primary outcome, we 

calculated the performance using only patients who had at least a one-year follow-up after the EEG. 

We also tested the outcomes on all testing patients (including those with follow-up shorter than 

one year). For comparison, we tested the classification performance of IED alone (presence vs. 

absence) and focal lesion alone (presence vs. absence) on the risk of seizure recurrence. 

4.3.6 Post-hoc analyses 

Post-hoc analyses were performed on predictions from the LightGBM classifier. For each outcome, 

we evaluated the risk of bias of the classification for different subgroups by recomputing average 

AUC and 95% CI. The subgroups were age group (18–40, 40–60, and >60 years old), sex, presence 

of focal lesion, presence of IED (absence, presence, and uncertain), presence of slowing, number 

of ASM (0, 1, ≥2), and epilepsy type (focal, generalized, and unknown). We investigated the 
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performances in two specific subgroups: patient not yet diagnosed with epilepsy (undergoing 

evaluation for suspected seizures), and patients undergoing EEG pre-ASM withdrawal. 

We also investigated the time-dependence of the predictions for seizure recurrence as well as the 

impact of clinical confounders using a multivariate survival model. We used the model’s 

predictions to separate the patients into a low-predicted risk and high-predicted risk (above vs. 

below average). We then fit a cox proportional hazard model to estimate the hazard ratio of seizure 

recurrence dependent on the model’s predictions, controlled for the following characteristics: age, 

sex, and number of ASMs (selected based on a directed acyclic graph presented in Supplementary 

Figure S1). We checked the robustness of the choice of covariates with a sensitivity analysis (see 

Supplementary method 2). 

Comparison of individual markers 

We compared the predictions for seizure recurrence of individual markers between each other and 

with their combination. We repeated the nested CV independently for each marker, using only the 

values from this marker as input to the classification pipeline (keeping CV splits identical between 

markers).  

4.3.7 Sample-size estimation 

Power analysis is described in Supplementary method 3. With a significance level of 0.05, 

accounting for 12 multiple comparisons (3 outcomes x 4 models), we estimated that routine EEGs 

from a single year would provide us with a power > 0.9 for the expected effect size.  

4.3.8 Ethics 

Ethics approval was provided by the CHUM Research Centre’s Research Ethics Board (Montreal, 

Canada, project number: 19.334). A waiver of informed consent was provided by the CHUM 

Research Centre’s Research Ethics Board due to the absence of diagnostic/therapeutic intervention 

and the absence of risk for the subjects involved. All methods were carried out in accordance with 

Canada’s Tri-Council Policy statement on Ethical Conduct for Research Involving Humans.  

4.3.9 Reporting standards 

The reporting of the study conforms with the TRIPOD statement (Transparent reporting of 

multivariate prediction model for individual prognosis or diagnosis) when applicable.[166] 
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4.4 Results 

4.4.1 Patient characteristics 

Patients’ characteristics for the training cohort are described in Table 4.1. We screened 816 records 

for eligibility; 517 patients were included (549 EEG recordings). In this cohort, 132 EEGs were 

from patients who had seizure recurrence after the EEG (24%). There were 346 EEGs (63%) from 

PWE. The median age was 50 y.o. (IQR: 33–62 y.o.). Median follow-up after the EEG was 100 

weeks (IQR: 42–135). In PWE, 248 EEGs (72%) did not show IEDs. The EEG was part of the 

initial evaluation of suspected seizure(s) in 286 cases (Supplementary Table S1). 

Table 4.1 : Description of the training (EEG recordings between January and December 2018) 
and testing cohorts (EEG recordings between January and June 2019) 

 Training cohort (EEGs from 2018) Testing cohort (EEGs from 2019) 
 Seizure freedom at 

one year 
Seizure recurrence 

at one year 
Seizure freedom at 

one year 
Seizure recurrence 

at one year 
Number of EEGs 417 132 217 84 
Epilepsy diagnosis (%) 214 (51.3) 132 (100.0) 98 (45.2) 84 (100.0) 
Age (median [IQR]) 52.00 [35.00, 64.00] 37.00 [26.75, 55.00] 54.00 [36.00, 66.00] 37.00 [30.00, 57.25] 
Sex = woman (%) 223 (53.5) 56 (42.4) 115 (53.0) 51 (60.7) 
Total follow-up after eeg in 
weeks (median [IQR]) 

94.00 [35.00, 
133.00] 

136.00 [97.50, 
163.25] 

78.00 [32.00, 
122.00] 

123.50 [94.25, 
141.00] 

Epilepsy type (%) 
  

  
   Focal 148 (35.5) 88 (66.7) 71 (32.7) 66 (78.6) 
   Generalized 56 (13.4) 41 (31.1) 21 (9.7) 13 (15.5) 
   No epilepsy 203 (48.7) 0 (0.0) 119 (54.8) 0 (0.0) 
   Unknown 10 (2.4) 3 (2.3) 6 (2.8) 5 (6.0) 
Age of epilepsy onset 
(median [IQR]) 

24.00 [15.00, 43.00] 18.00 [13.00, 35.00] 28.00 [15.00, 53.00] 28.00 [14.00, 48.00] 

Number of days since last 
seizure (median [IQR]) 

801.00 [225.00, 
3525.00] 

43.00 [9.50, 127.00] 613.00 [165.00, 
1489.50] 

32.50 [4.00, 90.00] 

Number of ASM (%) 
  

  
   0 197 (47.2) 11 (8.3) 108 (49.8) 19 (22.6) 
   1 149 (35.7) 58 (43.9) 80 (36.9) 31 (36.9) 
   2 48 (11.5) 45 (34.1) 21 (9.7) 15 (17.9) 
   3 19 (4.6) 13 (9.8) 6 (2.8) 14 (16.7) 
   4 4 (1.0) 5 (3.8) 2 (0.9) 3 (3.6) 
   5 0 (0.0) 0 (0.0) 0 (0.0) 2 (2.4) 
Focal lesion on brain 
imaging (%) 

142 (34.1) 53 (40.2) 76 (35.0) 44 (52.4) 

Sleep deprived EEG (%) 51 (12.2) 13 (9.8) 33 (15.2) 18 (21.4) 
IED (%) 

  
  

   Absence 333 (79.9) 77 (58.3) 174 (80.2) 47 (56.0) 
   Presence 52 (12.5) 46 (34.8) 28 (12.9) 30 (35.7) 
   Uncertain 32 (7.7) 9 (6.8) 15 (6.9) 7 (8.3) 
Abnormal slowing on EEG 
(%) 

107 (25.7) 37 (28.0) 72 (33.2) 39 (46.4) 
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For the testing set, 429 records were screened for eligibility. After applying exclusion criteria, we 

included 301 EEGs from 261 patients (Table 4.1). The prevalence of seizure recurrence after EEG 

in this cohort was 32%. Other variables have a similar distribution to the training and validation 

cohort. 

4.4.2 Predictive performances on the internal validation cohort 

 

Figure 4.3 : Classification performances for each classification algorithm and each clinical 
outcome. A: AUC ROC with 95% interval estimated using nested five-fold cross-validation. B: 

ROC curves for each algorithm 

For all outcomes, all four algorithms had statistically significant IoC (Figure 4.3 and Table 4.2). 

For the prediction of seizure recurrence at one year, the best model was LightGBM with a ROC 

AUC of 0.67 (0.62–0.72). For the diagnosis of epilepsy, the best model was SVM with a ROC 

AUC of 0.64 (0.60–0.69). For active epilepsy, the best model was RandomForest with a ROC AUC 

of 0.66 (0.62–0.71). There was no statistical difference in performances across models for each 

outcome. The quantile used for aggregating predictions of the epochs from a single EEG had no 

significant impact (Supplementary Table S2). 
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Table 4.2 : Classification performances on internal validation cohort estimated from nested CV 

Outcome Classifier AUC 
Seizure recurrence at one year  GLM 0.62 (0.57–0.68) 

SVM 0.64 (0.58–0.69) 
RandomForest 0.65 (0.59–0.70) 
LightGBM 0.67 (0.62–0.72) 

Epilepsy diagnosis  GLM 0.63 (0.58–0.68) 
SVM 0.64 (0.60–0.69) 
RandomForest 0.62 (0.57–0.67) 
LightGBM 0.62 (0.57–0.66) 

Active epilepsy  GLM 0.58 (0.53–0.63) 
SVM 0.58 (0.53–0.63) 
RandomForest 0.66 (0.62–0.71) 
LightGBM 0.65 (0.60–0.70) 

   

 Adding clinical information to the feature set did not have a statistically significant effect. By 

integrating age, AUC was 0.67 (0.62–0.72). For the two-step model with IEDs, AUC was 0.66 

(0.60–0.71) and for the two-step model with focal lesion, AUC was 0.58 (0.53–0.64). 
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4.4.3 Survival analysis 

 

Figure 4.4 : Survival curve for seizure freedom after the EEG, dependent on the risk predicted by 
the LightGBM model. Dashed line indicates one-year follow-up. 

The overall probability of remaining seizure free at one-year was 0.73 (95%CI: 0.69–0.77). When 

stratifying by the LightGBM model predictions, the one-year seizure free survival was 0.82 (0.78–

0.87) in the high-predicted risk, and 0.61 (0.54–0.68) in the low predicted risk. In contrast, the one-

year seizure free survival as a function of IEDs was 0.49 (0.40–0.61) in the presence of IEDs, and 

0.78 (0.74–0.82) in the absence of IEDs. 

In the multivariate survival analysis, the adjusted hazard ratio of seizure recurrence for the model’s 

predictions was 1.22 (95%CI 1.07–1.40, p = 0.0029). The Kaplan-Meier curve (Figure 4.4) shows 

separation between groups up to one year after the EEG. The risk of seizure recurrence was strongly 

associated with age (aHR: 0.68, 0.56–0.82, p < 0.001) and number of ASM (1.66, 1.43–1.92, 

p<0.001). The sensitivity analysis showed robustness to different sets of covariates 

(Supplementary method 2).  
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4.4.4 Subgroup analyses 

 

Figure 4.5 : Predictive performances (ROC AUC) for the LightGBM model stratified by 
subgroups for each of the three outcomes, with 95% confidence intervals. The dotted line 

indicates AUC of 0.50. AUC ROC: Area-under-the-receiver operating characteristic curve. 

In the subgroup analysis, there was no statistical differences between any strata for almost all 

outcomes (Figure 4.5 and Supplementary Figure S2). For seizure recurrence at one year almost 

all subgroups had performances that were significantly above chance. Only the absence vs. 

presence of focal lesion showed a trend towards increased AUC. For the epilepsy outcome, 

performances were not above chance for patients between 40 and 60 y.o. For some subgroups, 

sample size was small, and estimation were either not reliable (“uncertain” IEDs [all outcomes], 

no ASM [outcome “seizure recurrence”]) or impossible (patients > 60 y.o. [outcome “seizure 

recurrence”], ≥2 ASM [outcome “Epilepsy”]).  

In the subgroup of patients undergoing initial evaluation for seizure(s) (N = 227), the ROC AUC 

was also statistically significantly above chance (0.65 [0.57–0.74]). For the subgroup of patients 
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undergoing EEG before ASM withdrawal, AUC could not be estimated because of the small 

sample size (N=32, < 1 per outcome in each nested CV fold).  

4.4.5 Comparison between markers 

The comparison between markers is shown in Figure 4.6. The best markers were BP (AUC ROC 

0.65 [95%CI: 0.59–0.70]), LL (0.63 [0.58–0.68]), and FuzzEn (0.61 [0.56–0.67]). PermEn, PAF, 

and SpecEn did not show IoC. The combination of all features had the greatest predictive 

performances (0.65 [0.60–0.70]).  

 

Figure 4.6 : Comparison of predictive performances for all markers using a LightGBM model. 
ApEn: Approximate entropy; BP: Band power; CD: Correlation dimension; FuzzEn: Fuzzy 

entropy; HE: Hurst exponent; LL: Line length; PAF: Peak alpha frequency; PermEn: Permutation 
entropy; SampEn: Sample entropy; SpecEn: Spectral entropy. 

We repeated the subgroup analysis for each individual feature (Supplementary Figure S3). For 

age, relative performances of CD and SpecEn were decreased in patients 40–60 y.o., while for BP, 

they were decreased in patients ≤ 40 y.o. Presence of focal lesion decreased performances in all 

markers. Presence of IEDs decreased performance of all markers except BP and LL. The presence 

of abnormal slowing particularly reduced the performances of CD. In patients with one ASM, LL 

and BP had higher performances, while in patients with ≥2 ASM, only BP had IoC. The 

combination of markers reduced the impact of stratification, and was the only feature set that 

showed IoC in all strata. 

4.4.6 Validation on a temporally shifted cohort 

In the testing cohort, the LightGBM model had IoC for predicting seizure recurrence at one year, 

with an AUC of 0.63 (95%CI: 0.55–0.71). The performances on the entire testing cohort (including 
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those with follow-up shorter than a year) were similar (0.64 [0.58–0.71]). The binary predictions 

had a negative predictive value (NPV) of 78%, a positive predictive value (PPV) of 37%, a 

sensitivity of 64%, and a specificity of 55%.  In the absence of IEDs, the LightGBM predictions 

were still significantly above chance (seizure recurrence: 0.63 [0.55-0.71]). For comparison, in this 

cohort, IEDs (presence vs. absence/uncertain) had an AUC of 0.61 (0.56–0.69) for seizure 

recurrence at one year, while the presence of a focal lesion had an AUC of 0.59 (0.53–0.65). For 

the outcomes “epilepsy diagnosis” and “active epilepsy”, AUC for the LightGBM model was 0.64 

(0.57–0.70) and 0.57 (0.50–0.63), respectively. 

We tested the two-step classifier with IEDs on the temporally shifted cohort for the prediction of 

seizure recurrence at one year, achieving an AUC was 0.70 (0.63–0.76). For the binary predictions, 

NPV was 80%, PPV was 51%, sensitivity was 83%, and specificity was 45%. 

4.5 Discussion 

This study demonstrates that machine learning models trained on computational features 

automatically extracted from 20-minute scalp EEG can predict seizure recurrence at one year with 

above-chance performances in a cohort of 778 consecutive patients undergoing routine EEG. The 

predictive performances for estimating seizure recurrence risk after routine EEG were validated in 

a temporally shifted cohort of 261 patients, where ROC AUC was 0.63, significantly above chance. 

In comparison, the presence of IEDs—the only validated marker of seizure risk in the clinical 

setting—was 0.61. A two-step model that uses first IEDs and then computational features on IED-

negative EEGs achieved a testing AUC of 0.70. These performances were still significant with 

EEGs that did not capture any visible IEDs. The best performances were achieved in patients 

without focal lesion. 

The most important finding of this study is the robust evidence for non-visible changes in the EEG 

signal associated with the propensity to have seizures. For decades, researchers have been hinting 

at non-visible differences in the EEG signal of PWE compared to healthy controls [145], [167]. 

Two important frameworks to model the EEG are linear and non-linear models. Linear models 

assume that the signal arises from a linear combination of independent oscillators. In general, alpha 

frequency is found to be slower in patients with focal [154], [168] and generalized epilepsy [151]. 

Non-linear models represent the signal as a non-linear dynamical system that can be characterized 

by entropy and dimensionality, among others. Entropy and correlation dimension, both measures 
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of signal complexity, tend to be reduced in PWE [80], [155], [169]. It must be emphasized that this 

body of literature is built upon small case-control studies [145], a study design that overestimates 

diagnostic performances [170].  

In contrast to case-control designs, cohort or nested case-control studies reduce the risk of selection 

bias when evaluating diagnostic accuracy [171]. Two studies used this more robust approach to 

predict seizure recurrence from automated analysis of routine EEG [69], [77]. In the first, the 

authors evaluated Paroxysmal slow wave events (PSWE, 2-second EEG windows with a median 

peak frequency of <6 Hz) on a cohort of 70 patients undergoing EEG after a first seizure [77]. They 

found that the rate of PSWE could predict seizure recurrence at 18-month with an AUC of 0.72. In 

the second, on a cohort of 114 patients undergoing EEG after a first suspected seizure, the 

connectivity in the theta band could predict a future diagnosis of epilepsy with a specificity of 70% 

and sensitivity of 53% [69]. Importantly, neither study validated their findings on a separate set of 

patients. In our study, we adopted a cohort design: subjects were drawn consecutively from a 

population of patients undergoing routine EEG, i.e., the target population in a real-world setting. 

We also used a temporally shifted testing cohort, which allows to explore the out-of-sample 

generalizability of the models in a manner that mimics their real-life deployment. These factors 

reinforce the robustness of the performance estimation, which should be consistent when deployed 

in the clinical setting [172]. However, the testing cohort was from the same institution as the 

training set. The capacity of this method to generalize to other institutions would need to be 

evaluated in a future study. 

While the correlation between seizure frequency and presence of IEDs on routine EEG is not well 

established, the ability to predict long-term seizure recurrence from routine EEG would greatly 

impact both the management of patients presenting with suspected seizure(s) and patients 

diagnosed and treated for epilepsy. Currently, the prognostic value of EEG at diagnosis is mostly 

focused on the evaluation of patients with an unequivocal, single unprovoked seizure. In these 

patients, identification of IEDs on a single routine EEG confers a two-fold increase in the risk of 

subsequent seizures if untreated, generally warranting ASM therapy [173]. In addition, the 

prognostic value of EEG before ASM withdrawal is demonstrated in patients with at least two-year 

seizure freedom (especially in children) [174]. Beyond these clinical scenarios, there is still little 

evidence to support the use of EEG to adjust ASM therapy and prognosticate the disease since a 

highly active EEG does not necessarily correlate with seizure frequency; this restricts the 
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usefulness of EEG as a monitoring tool [31], [141], [142], [175]. In this study, we included all 

consecutive patients undergoing routine EEG at our institution; we are interested in the potential 

of the routine EEG to quantify at one point in time the propensity to have future seizures. When 

combined with IEDs in a two-step model, the algorithm showed a testing ROC AUC of 0.70. For 

context, in our cohort, IEDs alone had an AUC of 0.61. These results demonstrate a certain 

complementarity between EEG features and IEDs, and bring hope that the routine EEG could 

potentially be used as a tool to assist clinicians in recommending for or against ASM treatments 

based on future seizure risk. However, the usefulness and real-life impact of this algorithm would 

need to be established in a prospective clinical setting. Moreover, while ML-based analysis of EEG 

holds important promises, it will only ever serve as additional data to physicians, allowing them 

and their patients to make more informed decisions. 

The best models for each outcome had a ROC AUC on the internal validation cohort of 0.67, 0.64, 

and 0.66 for seizure recurrence at one year, epilepsy diagnosis, and active epilepsy, respectively. 

While these performances are statistically significant, their clinical usefulness could be questioned, 

especially with regards to the limited PPV and specificity at a given threshold. Two major 

restrictions impede predictive performances: the capacity of the model and the reliability of the 

labels used for training. First, the small variance seen across different models and outcomes might 

indicate that the amount of data used saturated the capacity of the features and models (i.e.: 

underfitting). Machine learning studies consistently show that dataset size is correlated with 

predictive performances given sufficient capacity of the model [176], [177]. The next step to 

improve performances would therefore consist in gathering more training data to increase the 

complexity of the EEG features and ML architecture. The second hurdle is the confidence in the 

labels. Epilepsy diagnosis is probabilistic by definition: a patient could be at “high risk” of seizure 

and therefore have epilepsy, but never go on to have seizure recurrence [2]. Nevertheless, the 

performances for this outcome were still above chance on the temporally shifted cohort. The 

models trained to predict the outcome “Active epilepsy” did not generalize well to the testing 

cohort. We used this outcome to test the hypothesis that having had recent seizures would strongly 

affect the EEG signal. The results indicate that the features that we extracted from the EEG signal 

are more affected by seizure propensity (risk of having seizure recurrence) than past seizures. 

Ultimately, all these outcomes depend on the imperfect reporting of seizures by patients [49]; there 



42 
 

is promise that in the future, more objective outcomes could directly benefit predictive models in 

epilepsy [51]. 

EEG signals are altered by age, sex, comorbidities, antiseizure medications, and possibly several 

other factors; however, the degree to which these variables can confound predictions made from 

the EEG signal is unknown [178], [179], [180], [181]. In our study, the models trained to predict 

seizure recurrence at one year were robust to clinical variables. Patients with a focal finding on 

neuroimaging had reduced predictive performance, but we did not observe worse performance in 

patients with focal slowing on EEG. There was a poor correlation of focal findings on 

neuroimaging to focal slowing on EEG: only 37% (72) of EEGs with focal findings on 

neuroimaging had focal slowing, and 38% (54/144) with focal slowing on EEG did not have a focal 

finding on neuroimaging. This poor correlation highlights that neuroimaging and EEG query 

different aspects of the nervous system. Further work is needed to improve performance of our 

algorithm in patients with underlying non-epileptic focal abnormalities by using spatially aware 

features (e.g. left-right or anterior-posterior gradients, topographical voltage maps) [78], [182] or 

connectivity features [93], [183]. The post-hoc analyses were mostly limited by the number of 

patients, especially under the robust nested CV framework. 

The survival analysis showed that ASMs count and age were important predictors of seizure 

recurrence risk. Higher ASMs count is a proxy for refractory cases and higher seizure frequency. 

ASMs are, however, infrequently accounted for in previous studies [73], [97], [184]. In our case, 

grouping by number of ASMs did not affect performances for prediction of seizure recurrence, 

suggesting that extracted features were independent of ASM. Performances for patients with no 

ASM could not be reliably estimated because of the rare seizure recurrence in this subgroup (11 

EEGs). A small sample size also prevented the subgroup analysis for predicting the success of 

ASM withdrawal (32 EEGs). These two clinical applications would need to be explored in future 

studies. Regarding age, older patients carry a higher disease burden and are at higher risk of 

syncope, transient neurologic episodes, and confusion—nonepileptic conditions that could lead a 

patient to undergo an EEG exam. This partly explains why the yield of routine EEG for epilepsy 

in older patients is much lower [180]. Here, seizure recurrence was rare in the older patient group 

(>60 y.o.), for which performance could not be estimated. As predicted, the addition of age as an 

input feature slightly improved predictions. The potential benefit of using age as a predictor may 
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be limited by the resulting increase in dimensionality that could overthrow the increase in 

information, especially in a data-scarce setting that is subject to overfitting.  

The model had above-chance performances in the absence of IEDs for all outcomes. Previously, 

only a few studies tested the impact of IEDs on their model; most had a case-control design, and 

none validated their results on a separate validation set [69], [78], [83], [184]. This finding suggests 

that automated analysis of EEG would increase the yield of EEG even in the absence of IEDs 

(74.7% of all EEGs in our cohort). The low sensitivity of EEG for IEDs leads to delays in diagnosis 

and need for prolonged or repeated exam, so the “negative” subgroup of EEGs (without IEDs) 

would most directly benefit from an alternative and independent marker. The two-step classifier 

showed an increase in performance compared to IEDs or computational features alone. This could 

orient the clinical applications of such an algorithm, complementing the interpretation of the EEG 

reader when an EEG does not reveal IEDs. Recent studies have demonstrated that machine learning 

models can detect IEDs with expert-level performances [104], [185]. Our approach could 

complement these algorithms by predicting seizure risk in IED-negative EEG, to further improve 

the clinical value and objectivity of EEG. 

BP had the greatest performances when used alone to predict seizure recurrence, followed by 

FuzzEn and LL. Studies have suggested that slight shifts can be observed in the frequency spectrum 

of patients with epilepsy [151], [152], [153], [186], [187]. This could be secondary to the 

pathologically increased interictal synchronization, but could also be explained by ASM, age, or 

other confounders. In our study, compared with other features, BP had greater decrease in 

performances in younger patients and in the absence of abnormal slowing. Interestingly, it was the 

most performant feature in the presence of multiple ASMs (in opposition to FuzzEn and SampEn), 

suggesting that the changes in the frequency spectrum are not related to these confounders.  

Regarding entropy, it is generally found to be lower in patients with focal and generalized epilepsy 

[80], [155]. Increased predictability and reduced complexity could result from the constraints 

imposed by epileptogenic processes [188]. Several algorithms have been proposed to estimate the 

entropy of physiological time-series, without clear evidence that this measure can embody seizure 

propensity [189]. Compared with other features, FuzzEn was more affected by the presence of 

IEDs, focal lesion, and in patients with focal epilepsy; other entropy markers followed a similar 

trend. Entropies also had poor performances in patients with ≥ 2 ASMs, in line with previous 
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studies on non-linear analysis of EEG [85]. This complementarity between BP and entropy could 

be leveraged with clinical priors in the modeling process. 

Despite the methodological strengths of this study, some limitations must be highlighted. First, the 

data comes from a single center, preventing us to generalize the results to other institutions. Second, 

the data collection was retrospective. For some patients, follow-up might have been too short to 

detect seizure recurrence, and these patients would have been inappropriately flagged as “no 

seizure recurrence”. This limitation decreases the potential effect size (our capacity to discriminate 

between groups), and is, as such, conservative in nature. Third, most patients were on ASM at the 

time of EEG. ASM are known to affect the EEG signal and several of the features used in this 

study, such as BP and entropy [151], [152], [189]. A larger sample size is required to estimate the 

performances of such markers in patients with no ASM or in those undergoing ASM withdrawal. 

Finally, while statistically significant, the clinical impact of the performances reported in this study 

is modest. Applied to the clinical setting, the models would affect risk estimation by only a few 

percent, as demonstrated by the modest PPV, NPV, specificity, and sensitivity. This could 

potentially be addressed by using more powerful (albeit data-hungry) models to represent the EEG 

data, such as deep neural networks. With these limitations in mind, the findings in this study still 

robustly suggest that there exist changes in the EEG signal other than IEDs that can inform us about 

long-term seizure propensity; this opens the door to the possibility of using automated markers of 

epilepsy in the clinical setting, and strongly motivates future research in this direction. 

In conclusion, we demonstrate that there are changes other than IEDs in the EEG signal embodying 

seizure propensity. These changes have a predictive horizon of one year after the EEG and their 

significance is independent of IEDs, age, and number of antiseizure medications. While significant, 

the potential impact on decision making in the clinical setting is modest. Future work will focus on 

improving the representation of the EEG to increase the performances of this approach and evaluate 

its real-life impact on clinical decision making. 
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Dans cet article, nous nous attaquons au troisième objectif de la thèse, qui est d’améliorer la 

performance diagnostique de l’analyse computationnelle de l’EEG à l’aide de modèles profonds. 

Ce travail a été accepté pour publication dans la revue Brain Communications en date du 22 août 

2025. Il a fait l’objet de présentations orales locales au service de neurologie du CHUM et au 

séminaire du programme Clinicien-chercheur de l’Université de Montréal (2024; Prix Jacques-

Lacroix pour meilleure présentation orale), ainsi que des présentations par affiches à l’American 

Epilepsy Society Annual Meeting (Los Angeles, 2024) et à l’Institut Neurologique de Montréal 

(Montréal, 2024).  

Ma contribution à cet article comprend l'identification de la problématique, la collecte de données, 

le développement de la méthode d'apprentissage profond, le prétraitement des données EEG de 

routine, la maintenance des ressources computationnelles, la réalisation des expériences, 

l'interprétation et l'analyse des résultats, la conception des visualisations, ainsi que la rédaction du 

manuscrit. 

5.1 Abstract 

The yield of routine EEG to diagnose epilepsy is limited by low sensitivity and the potential for 

misinterpretation of interictal epileptiform discharges (IEDs). Our objective is to develop, train, 

and validate a deep learning model that can identify epilepsy from routine EEG recordings, 

complementing traditional IED-based interpretation. This is a retrospective cohort study of 

diagnostic accuracy. All consecutive patients undergoing routine EEG at our tertiary care center 

between January 2018 and September 2019 were included. EEGs recorded between July 2019 and 

September 2019 constituted a temporally shifted testing cohort. The diagnosis of epilepsy was 
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established by the treating neurologist at the end of the available follow-up period, based on clinical 

file review. Original EEG reports were reviewed for IEDs. We developed seven novel deep 

learning models based on Vision Transformers (ViT) and Convolutional Neural Networks (CNN), 

training them to classify raw EEG recordings. We compared their performance to IED-based 

interpretation and two previously proposed machine learning methods. The study included 948 

EEGs from 846 patients (820 EEGs/728 patients in training/validation, 128 EEGs/118 patients in 

testing). Median follow-up was 2.2 years and 1.7 years in each cohort, respectively. Our flagship 

ViT model, DeepEpilepsy, achieved an area under the receiver operating characteristic curve 

(AUROC) of 0.76 (95% CI: 0.69–0.83), outperforming IED-based interpretation (0.69; 0.64–0.73) 

and previous methods. Combining DeepEpilepsy with IEDs increased the AUROC to 0.83 (0.77–

0.89). DeepEpilepsy can identify epilepsy on routine EEG independently of IEDs, suggesting that 

deep learning can detect novel EEG patterns relevant to epilepsy diagnosis. Further research is 

needed to understand the exact nature of these patterns and evaluate the clinical impact of this 

increased diagnostic yield in specific settings. 

5.2 Introduction 

The diagnosis of epilepsy is notoriously challenging. It relies on the occurrence of either two 

seizures more than 24h apart, one seizure and a high risk of another, or the presence of an epilepsy 

syndrome.[2] Despite this clear definition, the rate of misdiagnosis remains high [190], [191], being 

highly dependent on the ability to collect a clear clinical history and accurately interpret the 

electroencephalogram (EEG). 

The EEG can capture ictal and interictal activity, namely interictal epileptiform discharges (IEDs), 

which are highly specific for epilepsy (98%) [192]. A scalp EEG is cost-effective and technically 

straightforward, with standard acquisition protocols that have been put in place by the International 

League Against Epilepsy [193], [194]. However, the sensitivity of a single routine EEG for IEDs 

is 20–50%, and only 17% in adults after a first unprovoked seizure [10], [28], [30]. Furthermore, 

the interrater reliability for IEDs is fair to moderate even among experts, with a kappa of 35–50% 

[37], [195], [196]. Consequently, the EEG has limitations as a diagnostic tool in patients with 

suspected seizures, with EEG misinterpretation contributing to diagnostic errors in epilepsy [39]. 

The identification of additional biomarkers beyond IEDs could help overcome these limitations 

and improve diagnostic accuracy [49], [50]. 
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In recent decades, efforts have focused on overcoming the limitations of traditional EEG 

interpretation by identifying alternative epilepsy biomarkers through computational methods [67], 

[145], [150], [153], [197]. While these approaches have shown promise, their translation to clinical 

practice has been limited by several factors: modest performance [102], [197], [198], small [100] 

or lack of dedicated [77], [78], [88], [199], [200] testing set, exclusion of patients with neurological 

comorbidities or abnormal EEGs [100], [199], [200], and reliance on IED-detection [199], [200]. 

As a result, the expected diagnostic accuracy of these approaches in a real-world population is 

uncertain. 

Deep learning (DL) has emerged as a powerful tool for the analysis of complex signals. DL models 

can autonomously extract features from time-series or images by optimizing millions of parameters 

on large datasets. DL has been applied to EEG to decode brain signals for brain-computer interface 

[119], predict delirium [201], and automatically detect IEDs [103], [104]. Given DL’s capacity to 

capture the complex brain dynamics, we hypothesized that it could enhance the detection of 

epilepsy-specific patterns on routine EEG recordings. 

The present study seeks to address these questions: can modern DL models detect epilepsy on 

interictal EEG, even in the absence of IEDs? What are the potential diagnostic performances of a 

DL-assisted EEG interpretation for epilepsy? And what sample size is required to train such 

models? 

5.3 Materials and Methods 

5.3.1 Study design 

This is a retrospective study on a consecutive cohort of patients undergoing routine EEG in a single 

tertiary care center in Montreal, Canada.  

5.3.2 Participants 

We included all patients who underwent a routine EEG (20- to 60-minute, with or without sleep 

deprivation) between January 2018 and September 2019 at the Centre Hospitalier de l’Université 

de Montréal (CHUM). Exclusion criteria were the absence of follow-up after the EEG, an uncertain 

diagnosis of epilepsy at the end of the available follow-up period, or an EEG performed in a 

hospitalized patient. Under a prespecified protocol, one neurology resident (EL) and three students 

(AQ, MJ, JDT) collected data from the electronic health record for each visit, including baseline 
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characteristics (age, sex), comorbidities, number of antiseizure medications, and presence of a focal 

lesion on neuroimaging. They also reviewed the EEG report for the presence of IED(s) and 

abnormal background slowing. All clinical information was stored on a REDCap database hosted 

on the CHUM research center’s servers. 

We separated the cohort into two independent subsets according to the date of the EEG. Recordings 

before July 15, 2019, comprised the training and validation set, while recordings after July 15, 

2019, comprised the testing set. We excluded from the testing set any recording from a patient 

already included in the training and validation set. The training and validation set was further 

separated into a training set and a validation set in a random fashion (80%/20% split). 

5.3.3 Test Methods 

Reference Standard 

The reference standard is the diagnosis of epilepsy according to the treating physician at the end of 

the available follow-up period. This diagnosis is based on the ILAE definition of epilepsy, i.e. 

having had two unprovoked seizures more than 24h apart or one unprovoked seizure and be 

considered at high (>60%) risk of seizure recurrence, or being diagnosed with an epilepsy 

syndrome [2]. The final diagnosis at the end of the follow up period was used, as opposed to the 

speculated diagnosis at the time of the EEG, because the follow up period provides additional 

information such as imaging, additional EEG recordings, video-monitoring admissions, and seizure 

recurrences. 

EEG recording 

EEGs were recorded using a standardized protocol on a Nihon Kohden EEG system, following 

national recommendations [158]. Awake EEGs, 20–30 minutes long, were recorded at 200 Hz with 

21 electrodes arranged with the 10-20 system. They included two 90-second periods of 

hyperventilation (except in patients >80 years old, uncooperative, or with medical 

contraindications) and photic stimulation from 4 Hz to 22 Hz. Patients were also instructed to open 

or close their eyes at several times. Sleep deprived recordings lasted 60 minutes, with the same 

activation procedures. Technologists annotated the EEG in real-time. For this study, EEGs were 

converted to an average referential montage (A1-A2), saved to EDF format, and stored on the 

CHUM research center’s server for analysis. 
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Automated processing of EEG and classification 

The index test is the classification of the EEG recordings using machine learning. We developed 

DeepEpilepsy, a Vision Transformer (ViT) model that takes raw EEG segments as input and 

outputs a probability of the diagnosis of epilepsy (Figure 5.1). EEGs in average referential montage 

(19 channels) were segmented into overlapping 10- or 30-second windows (95% overlap) and 

directly used as input into the DL models. The input dimensions were 19	 × 200𝑡, where 𝑡 is the 

window size in seconds. We initially explored two window sizes (10 and 30 seconds) based on 

common practice in EEG interpretation and computational constraints [67]. A 95% overlap 

between segments was used to provide sufficient data augmentation while maintaining 

computational feasibility. We also investigated the impact of other window sizes on performances 

(eTable 6). The model configurations for the ViT models, including DeepEpilepsy, are presented 

in eTable 1. To enhance model generalization, we applied a random data augmentation algorithm 

during training.[134] For each segment, an augmentation was drawn randomly from a set of 

transformations, which included filtering (band-pass, low-pass, high-pass), masking (channel, 

time), and adding noise (eFigure 1). These were applied with a 50% probability and randomized 

intensity. We performed a Bayesian hyperparameter search on the training and validation set to 

choose DeepEpilepsy’s final configuration. We also investigated different learning rates, weight 

decay, and batch size values. The final models were trained on the entire training and validation 

set. The optimization hyperparameters and model specifications are described in eTable 4. 



51 
 

 

 

Figure 5.1: Details of the DeepEpilepsy Transformer model. The EEG is first processed through 
the RandAugm algorithm with 50% probability. A tokenizer is used (upper right: convolutional 
tokenizer) before positional encoding. The tokens are then input into a Transformer model. A 

MLP head classifies the embeddings from the Transformer according to the diagnosis of 
epilepsy. BN: Batch normalization; Conv: Convolutional layer; MLP: Multilayer perceptron; 

RandAugment: Random Augmentation; ReLU: Rectified linear unit. 

In addition, we implemented other Deep Learning models (ViT and ConvNeXt; eTable 1 and 2), 

as well as two previously described methods: the ShallowConvNet inspired by the Filter Bank 

Common Spatial Patterns algorithm (eTable 3) [125], and a feature-extraction framework relying 

on the extraction of linear and nonlinear EEG markers that are used as input into a classifier 

(LightGBM) [198]. These methods are described in detail in eMethods 1. 

To obtain the diagnostic performances, the final models/procedures were applied to the testing set. 

This resulted in a single predicted probability for each EEG segments. To obtain one prediction per 

EEG recording, we aggregated the predicted probabilities at the EEG-level using the median of the 

predicted values. In cases where patients had multiple EEGs, each recording was treated as an 

independent observation. A sensitivity analysis excluding repeated EEGs was performed to assess 

potential bias.  
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We further evaluated DeepEpilepsy in a specific subgroup of patients which were not yet diagnosed 

with epilepsy at the time of the index EEG (i.e., undergoing evaluation for suspected seizures). We 

also measured the performance bias across different subgroups: age groups (18–40, 40–60, and 

>60 years old), sex, presence of focal lesion, presence of IED (absence, presence, and uncertain), 

presence of slowing, sleep deprivation before EEG, and number of ASM (0, 1, ≥2).  

5.3.4 Analysis 

We calculated the AUROC using the probabilistic predictions for each model, with 95% confidence 

intervals estimated using DeLong’s method (single prediction by patient) [165]. We also computed 

the Area Under the Precision-Recall Curve (AUPRC) with 95% confidence intervals estimated 

using bootstrap resampling (1000 iterations). For comparison, we tested the classification 

performance of IEDs alone (presence vs. absence). We also tested a two-step classification using 

IEDs first (traditional EEG interpretation), followed by DeepEpilepsy if IEDs were absent (DL 

interpretation).  

The optimal classification threshold was obtained using the validation cohort, minimizing the 

distance between the curve and the upper left corner of the ROC graph. This threshold was then 

applied to compute sensitivity, specificity, negative predictive value, and positive predictive value 

on the testing set. 

We performed additional analyses to better quantify the effect of window duration and random 

augmentation on DeepEpilepsy. For segment duration, we re-trained the model using window 

durations of 5s, 10s, 15s, 30s, 45s, and 60s (with fixed 1.5s overlap to maintain consistent training 

sample size). For random augmentation, we re-trained DeepEpilepsy eight times with and without 

RandAugment (20 epochs each). Performances between augmented and non-augmented models 

were compared with AUROC on the testing set as the performance metric. 

We performed an exploratory analysis of the embeddings learned by DeepEpilepsy and 

ShallowConvNet to better understand the patterns captured by both models (eMethods 2). 

Embeddings are the internal representations that deep learning models create while processing raw 

EEG data - they represent how the model "sees" the EEG after transforming it through multiple 

layers, without any pre-specified features. These learned representations differ from traditional 

EEG features and can provide insights into what patterns the model considers important for 

classification. 
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5.3.5 Sample size 

Using Obuchowski’s method [202], with a 60% epilepsy prevalence, a power of 0.9, and a 

significance level of 0.0071 (adjusted from 0.05 divided by 7 DL models), a minimum of 126 EEGs 

is required to detect an AUROC of 0.70. 

 

Figure 5.2 : Flowchart of patients included in the testing cohort. 

5.3.6 Standard Protocol Approvals, Registrations, and Patient Consents 

Ethics approval was granted by the CHUM Research Centre’s Research Ethics Board (REB) 

(Montreal, Canada, project number: 19.334). The REB waived informed consent due to the lack of 

diagnostic/therapeutic intervention and minimal risk to participants. All methods followed 

Canada’s Tri-Council Policy statement on Ethical Conduct for Research Involving Humans. 

5.4 Results 

5.4.1 Participants 

After exclusion, 948 EEGs from 846 patients were included: 820 EEGs in the training/validation 

set (728 patients) and 128 EEGs in the testing set (118 patients), with no patient overlap (Table 
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5.1). Before exclusion, 1 185 EEGs from 1 067 patients and 161 EEGs from 149 patients met the 

inclusion criteria for the training and testing cohorts, respectively. Reasons for exclusion were 

absence of follow-up after the EEG, uncertain diagnosis at the end of available follow-up, seizure 

during the EEG, and wrong EEG type (i.e., performed in a hospitalized patient) (Figure 5.2). 

Median age was 49 and 51.5 (IQR: 32–62 and 30–62.5) and the proportion of women were 51% 

and 62.5% in the training and testing cohorts, respectively. Median follow-up was 2.2 years (IQR: 

1.0–2.9) and 1.7 years (IQR: 0.9–2.3). Epilepsy prevalence was 63% in both sets. 

Table 5.1 : Description of the training (EEG recordings between January 2018 and July 2019) 
and testing cohorts (EEG recordings between July and September 2019) 

 Training/validation cohort (n = 820) Testing cohort (n = 128) 
 Epilepsy No Epilepsy Epilepsy No Epilepsy 
Number of EEGs 517 303 81 47 
Sex = woman (%) 259 (50.1) 159 (52.5) 54 (66.7) 26 (55.3) 
Age (median [IQR]) 42.00 [29.00, 

58.00] 
57.00 [41.00, 67.00] 37.00 [25.00, 

57.00] 
60.00 [50.50, 71.00] 

Total follow-up after EEG in 
weeks (median [IQR]) 

133.50 [95.75, 
173.00] 

59.00 [17.00, 116.00] 99.50 [70.25, 
125.00] 

62.00 [17.00, 
102.00] 

Epilepsy type (%) 
  

  
   Focal 370 (71.6) – 49 (60.5) – 
   Generalized 119 (23.0) – 26 (32.1) – 
   Unknown 28 (5.4) – 6 (7.4) – 
Age of epilepsy onset (median 
[IQR]) 

22.00 [13.00, 
40.00] 

– 23.00 [14.00, 
48.00] 

– 

Seizure recurrence after EEG (%) 269 (52.0) 0 (0.0) 44 (54.3) 0 (0.0) 
Number of days since last seizure 
(median [IQR]) 

237 [56, 1134] – 118 [44, 467] – 

Number of epilepsy risk factors 
(median [IQR]) 

3 [1, 4] 2 [1, 4] 2 [1, 3] 1 [0, 3] 

History of epilepsy surgery (%) 60 (11.6) 0 (0.0) 4 (4.9) 0 (0.0) 
Number of ASM (%)     
   0 55 (10.6) 253 (83.5) 17 (21.0) 42 (89.4) 
   1 280 (54.2) 36 (11.9) 34 (42.0) 5 (10.6) 
   2 123 (23.8) 12 (4.0) 19 (23.5) 0 (0.0) 
   3 47 (9.1) 2 (0.7) 6 (7.4) 0 (0.0) 
   4 10 (1.9) 0 (0.0) 5 (6.2) 0 (0.0) 
   5 2 (0.4) 0 (0.0) 0 (0.0) 0 (0.0) 
Focal lesion on brain imaging (%) 223 (43.1) 84 (27.7) 31 (38.3) 10 (21.3) 
Sleep deprived EEG (%) 62 (12.0) 50 (16.5) 22 (27.2) 8 (17.0) 
IED (%)     
   Absence 333 (64.4) 282 (93.1) 42 (51.9) 46 (97.9) 
   Presence 139 (26.9) 2 (0.7) 30 (37.0) 0 (0.0) 
   Uncertain 45 (8.7) 19 (6.3) 9 (11.1) 1 (2.1) 
Abnormal slowing on EEG (%) 199 (38.5) 46 (15.2) 32 (39.5) 10 (21.3) 
     

In the training cohort, 141 EEGs (17%) showed definite IEDs and 64 (8%) showed uncertain IEDs. 

Two definite IEDs were found in patients without epilepsy. In the testing cohort, 30 EEGs (23%) 
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showed definite IEDs and 10 (8%) showed uncertain IEDs, with all definite IEDs in patients with 

epilepsy. 

5.4.2 Test Results 

 

Figure 5.3 : Diagnostic performances of automated EEG analysis for the diagnosis of epilepsy on 
the testing set (n = 128). Our flagship model, DeepEpilepsy, is shown alone and combined with 
traditional EEG interpretation based on the identification of IED. The other novel approaches 

shown are ViTs and ConvNeXt using different configurations (size: small, large, huge; 
tokenizers: convolutional or linear; window size: 50 pt or 200 pt) as well as presence of 
RandAugm and the duration of EEG segments used as input. Previous methods are the 

ShallowConvNet,23 extraction of computational markers,21 and the presence of IEDs on EEG. 
AUROC: Area under the receiver operating characteristic curve; IED: interictal epileptiform 

discharges; ViT: Vision Transformers. 

The AUROC for the diagnosis of epilepsy in the testing cohort for every approach is pictured 

inFigure 5.3. For DeepEpilepsy, the AUROC was 0.76 (95%CI: 0.69–0.83) and AUPRC of 0.88 

(0.83–0.94) (Figure 5.4). Using the threshold computed on the validation cohort (0.86), there were 

75 true positives, 38 true negatives, 13 false positive, and 41 false negatives, equating to a 

sensitivity of 64.7%, a specificity of 74.5%, a positive predicted value (PPV) of 85.2%, and a 

negative predictive value (NPV) of 48.1%. For comparison, when using the presence of IEDs on 

EEG (as per the EEG report) as the index test, the sensitivity is 37.0%, specificity is 100.0%, PPV 

is 100.0%, and NPV is 41.1%, with an AUROC of 0.69 (95% CI: 0.64–0.73) and AUPRC of 0.86 
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(0.82–0.91) (Figure 5.4). The AUROC of DeepEpilepsy was higher than any other method, 

although this was only statistically significant when compared to the ShallowConvNet models 

(AUROC: 0.60, 95%CI: 0.50–0.69). The diagnostic performances of all methods are shown in 

Table 5.2.  

 

Figure 5.4 : Diagnostic performances on the testing set (n = 128). A: ROC curves for 
DeepEpilepsy, IEDs only, and DeepEpilepsy combined with IEDs in the testing cohort. B: 

Precision-recall curves for the three approaches. AUPRC: Area under the Precision-Recall curve; 
AUROC: Area under the receiver operating characteristic curve; IED: interictal epileptiform 

discharges. 

When using the two-step model as the index test (1: presence of IED classified as epilepsy, 2: if no 

IED: DeepEpilepsy models prediction), the AUROC was 0.83 (95%CI: 0.77–0.89) and AUPRC 

was 0.93 (0.90–0.96) (Figure 5.4). The sensitivity, specificity, PPV, and NPV were 73.2%, 74.5%, 

86.7%, and 55.1%. 

A sensitivity analysis excluding repeated EEGs from the testing set showed similar performance, 

with DeepEpilepsy achieving an AUROC of 0.74 (n = 118; 95% CI: 0.65–0.81). 

Table 5.2 : Classification performances on the testing set for all machine learning methods 
 

Segment duration (s) RandAugment AUC 
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DeepEpilepsy 30 False 0.77 (0.69--0.84) 
DeepEpilepsy 30 True 0.76 (0.68--0.83) 
ViT1d, Conv tokenizer, small 30 True 0.75 (0.68--0.83) 
ViT1d, Conv tokenizer, small 30 False 0.74 (0.66--0.82) 
DeepEpilepsy 10 True 0.74 (0.66--0.81) 
DeepEpilepsy 10 False 0.73 (0.64--0.81) 
ConvNeXt, large 30 True 0.73 (0.65--0.81) 
ViT1d, Linear tokenizer, large 30 False 0.73 (0.65--0.80) 
ViT1d, Conv tokenizer, small 10 True 0.72 (0.64--0.80) 
ViT1d, Linear tokenizer, large 10 True 0.72 (0.64--0.80) 
ViT1d, Linear tokenizer, large 30 True 0.72 (0.64--0.80) 
ViT1d, Conv tokenizer, small 10 False 0.72 (0.64--0.80) 
ConvNeXt, small 30 True 0.71 (0.63--0.80) 
ViT1d, Linear tokenizer, small 30 True 0.71 (0.63--0.79) 
ConvNeXt, huge 30 True 0.71 (0.62--0.79) 
ConvNeXt, huge 30 False 0.70 (0.61--0.78) 
ConvNeXt, large 30 False 0.70 (0.62--0.78) 
ViT1d, linear tokenizer, small 30 False 0.70 (0.61--0.78) 
ConvNeXt, small 30 False 0.70 (0.61--0.78) 
Feature extraction with LightGBM 30 --- 0.69 (0.60--0.78) 
ViT1d, Linear tokenizer, large 10 False 0.69 (0.60--0.76) 
Feature extraction with LightGBM 10 --- 0.68 (0.59--0.77) 
ViT1d, linear tokenizer, small 10 True 0.68 (0.59--0.76) 
ConvNeXt, huge 10 False 0.67 (0.58--0.76) 
ConvNeXt, huge 10 True 0.67 (0.58--0.75) 
ViT1d, linear tokenizer, small 10 False 0.67 (0.58--0.75) 
ConvNeXt, small 10 True 0.67 (0.58--0.76) 
ConvNeXt, large 10 False 0.66 (0.58--0.75) 
ConvNeXt, small 10 False 0.65 (0.57--0.74) 
ConvNeXt, large 10 True 0.65 (0.56--0.73) 
ShallowConvNet 30 False 0.60 (0.49--0.69) 
ShallowConvNet 10 True 0.57 (0.47--0.67) 
ShallowConvNet 30 True 0.56 (0.46--0.66) 
ShallowConvNet 10 False 0.42 (0.32--0.51) 

 

5.4.3 Subgroup analyses 

In the testing cohort, 75 patients (64%) had an uncertain diagnosis at the time of the EEG, 28 of 

which were eventually diagnosed with epilepsy. In the 47 others, the most common final diagnoses 

were syncope/faintness (11), dementia-related fluctuations (6), and non-specific sensitive 

symptoms (5). Within this subgroup of uncertain diagnoses, 10 patients who were diagnosed with 
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epilepsy showed IEDs and 6 had uncertain sharp transients (vs. 1 in patients without epilepsy). The 

complete characteristics of the subgroup are detailed in eTable 5. 

In the subgroup of 75 patients not diagnosed with epilepsy at the time of the EEG, DeepEpilepsy 

still had above-chance performances (AUROC: 0.69, 95%CI 0.56–0.80), and the two-step model 

had the following performances: sensitivity of 65.6%, specificity of 76%, PPV of 63.6% and NPV 

of 77.6%, with an AUROC of 0.77 (0.65–0.87). The ROC curves for IEDs only, DeepEpilepsy, 

and DeepEpilepsy combined with IEDs for this subgroup are shown in Figure 5.4. 

 

Figure 5.5 : Performance of DeepEpilepsy for classification of epilepsy diagnosis from routine 
EEG in different subgroups of the testing set. The subgroups have the following sample sizes: 1) 

Age < 40: n = 40, >40–≤60: n =  44, >60: n = 44; 2) male: n =  48, female: n = 80; 3) focal lesion: 
n = 41, no focal lesion: n = 87; 4) uncertain IED: n = 10, absence of IED: n = 88. 5) focal 

slowing: n = 42, no focal slowing: n = 86; 6) Sleep deprived EEG: n = 30, awake EEG: n = 98; 6) 
no ASM: n = 59, one ASM: n = 39, ≥2 ASMs: n = 30. ASM: Antiseizure medication; AUROC: 
Area under the receiver operating characteristic curve; IED: interictal epileptiform discharges. 

The results for other subgroups are presented in Figure 5.5. Across all subgroups, performances 

were above chance except for patients > 60 years old and patients with a single antiseizure 

medication. Notably, in absence of IEDs (n = 98), AUROC was 0.74 (0.65–0.83), with NPV of 

0.55%, PPV of 76%, sensitivity of 57%, and specificity of 75%. By comparison, in patients where 

DeepEpilepsy predicted low epilepsy risk (n = 79), IEDs had a AUROC of 0.62 (0.56–0.68), with 
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NPV of 55%, PPV of 100%, sensitivity of 24%, and specificity of 100%. Also, DeepEpilepsy 

performed similarly in sleep deprived EEG and awake EEGs (AUROC = 0.76 [0.67–0.84] and 0.76 

[0.58–0.90], respectively). 

5.4.4 Sample size, segment duration, and RandAugment analysis 

 

Figure 5.6 : Impact of training sample size on the performance of four deep learning models 
(ShallowConvNet, ConvNeXt, DeepEpilepsy, and other Vision Transformers) for detecting 

epilepsy from EEG segments. Performance is measured by the AUROC score on the testing set 
(n = 128), with models trained on varying numbers of EEGs (50, 100, 250, 500, and 750). The 

models were trained on 10s (top row) and 30s (bottom row) overlapping EEG segments. 
AUROC: Area under the receiver operating characteristic curve; IED: interictal epileptiform 

discharges; ViT1d: Vision Transformer with one-dimension tokenizer. 

We trained the different neural network models on subsets of the data (50, 100, 250, 500, and 750 

EEGs) to assess the impact of the size of the training sample on performance (Figure 5.6). With 

10-second segments, the ShallowConvNet had highest performances when trained on 250 EEG 

recordings. The other models tended towards increased performances, with a ceiling at 500 EEGs. 

Using 30-second segments, the ShallowConvNet showed a slight increase in performances with 
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increased training size, with a maximal AUROC of 0.6 at 750 EEGs. In contrast, the performance 

of the ConvNeXt and ViT models increased almost linearly with sample size, achieving the highest 

performances with 750 EEGs. In almost all cases, 500 EEGs was the minimal training size required 

to achieve above-chance performances. For reference, using our segmentation strategy, 500 EEGs 

resulted in 765,000 10-second overlapping segments or 500,000 30-second overlapping segments. 

A systematic evaluation of segment durations confirmed that 30-second windows achieved optimal 

performance (eTable 6). Models trained with RandAugment showed higher maximal performance, 

but increased variability compared to models without data augmentation (max AUROC 0.73 vs 

0.72, mean AUROC 0.71 vs. 0.71, standard deviation of AUROC: 0.011 vs. 0.017). 

5.4.5 Relationship between learned representations and traditional EEG 

features 

Deep learning models such as DeepEpilepsy transform raw EEG signals into hidden 

representations (embeddings) that are optimal for distinguishing patients with and without 

epilepsy. To understand what patterns these models capture, we analyzed how these embeddings 

relate with traditional EEG features (namely band power and entropy) using clustering analysis. 

For band power, DeepEpilepsy’s embeddings showed higher variance in the high-frequency range 

(> 13 Hz), particularly in the 20–40 Hz, 40–75 Hz, and 75–100 Hz bands. In contrast, 

ShallowConvNet’s embeddings exhibited relatively higher variance in the low-frequency range (< 

10 Hz) (eFigure 4). Although DeepEpilepsy showed significant heterogeneity across all frequency 

bands, ShallowConvNet had non-significant analysis of variance in the 20–40 Hz range (p = 0.24) 

Regarding entropy, both models showed significant heterogeneity across all frequencies, but 

ShallowConvNet displayed higher inter-cluster variance, especially for bands above 1.6 Hz, 

suggesting that this was a key feature learned by this model (eFigure 5). 

5.5 Discussion 

This study assessed the diagnostic performance of DL-based analysis of routine EEG for epilepsy. 

We developed and trained the DL models on 948 consecutive EEGs from 846 patients, testing them 

on a temporally shifted cohort of 128 EEGs from 118 patients. Our flagship model, DeepEpilepsy, 

had a testing AUROC of 0.76 (95%CI: 0.69–0.83), outperforming other methods including 

conventional IED-based interpretation and previously proposed computational methods. 
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Combining the presence of IEDs with DL analysis increased the AUROC to 0.83 (95%CI: 0.77–

0.89), demonstrating a potential for clinical translation. 

Epilepsy diagnosis is primarily clinical, guided by individualized seizure recurrence risk 

assessment, which can be challenging due to limited reliable data [2]. The identification of IEDs 

on rEEG is commonly used to support the diagnosis of epilepsy, but their low sensitivity and risk 

of over-interpretation can often lead to both over- or underdiagnosis [39]. In our study, IEDs had 

an AUROC of 0.69 with a sensitivity as low as 37%. Our DL models provided higher overall 

diagnostic performances from the EEG than IEDs. Combining both approaches allowed to leverage 

the model’s higher sensitivity and the high specificity of IEDs. Currently, no definitive, 

quantitative, non-ictal biomarkers have been validated for clinical use [2]. Although several studies 

have explored changes in the EEG such as shifts in band power [151], [152], [153] or changes in 

entropy [80], [203], many remain at the “proof-of-concept” stage, limited by case-control designs 

or inadequate validation [67]. More recent studies on computational analysis of EEG for the 

diagnosis of epilepsy have shown mixed results [102], [197]. Unlike prior work [67], our validation 

cohort corresponds to the group of patients in which the algorithm would be used in real-life, 

reducing bias in performance evaluation. Furthermore, the gold-standard in our study was based 

on a thorough review of clinical notes with a median follow-up period of over two years, allowing 

the clinician to build a more complete clinical picture integrating seizure recurrence, imaging, 

video-EEG evaluations, or new clinical symptoms. This is in contrast with studies that based the 

diagnosis on the EEG report or a single clinical visit [67]. These methodological strengths reduce 

bias and represent key steps towards the clinical integration of automated EEG analysis [67]. 

DeepEpilepsy is based on the Transformer architecture [17], which has greatly advanced our 

capacity to model sequence data. Transformers have been adapted for EEG-based tasks such as 

eye-tracking [128], seizure prediction [136], [137], and decoding of motor patterns [129]. A critical 

component in adapting Transformers to EEG is the tokenization method, which influences feature 

extraction and the timescales captured by the model. Previous studies have used separable 

convolutions as the tokenizer [128], [129], a popular approach in EEG models since the 

ShallowConvNet and EEGNet CNNs [118], [119]. However, in our early experiments, we found 

this approach underperformed and was inefficient, leading us to discard it. In contrast to the original 

ViT model, which “patchified” the input signal with a linear, non-overlapping tokenizer [130], we 

showed that a deep convolutional embedding results in higher performances. This improvement is 
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likely due to the convolution’s inductive bias towards hierarchical dynamics across timescales and 

spatial scales [204]. The discrepancies between our findings and previous studies on Transformer-

based EEG models probably arise, in part, from dataset size and complexity: our training dataset 

included over 1 million samples from more than 900 patients, while prior studies used significantly 

smaller training samples (15 000–80 000 segments from 23–70 patients [127], [128], [136], [137]) 

as well as shorter EEG segments (up to 50 000 points [127], [128], [136], [137], compared to our 

114,000 points per segment). 

A notable advantage of Transformers over CNNs is their scalability. DeepEpilepsy showed 

continual improvement as the size of the training sample increased, without hitting a performance 

ceiling. Recent studies have further demonstrated CNNs’ limitations in scaling to large EEG 

datasets [122]. While data augmentation through RandAugment increased model variability 

without clear performance benefits in our dataset, it might prove more valuable with larger training 

samples. The absence of a performance ceiling in DeepEpilepsy suggests potential for further 

improvements with larger datasets, motivating multicenter collaborations to expand the training 

sample. 

Unlike other approaches to automated EEG interpretation that rely on explicit IED detection [103], 

[104], [199], [200], DeepEpilepsy was trained without specific emphasis on IEDs. The model's 

good performance in EEGs without IEDs (AUROC of 0.74) and its complementarity with IED-

based classification suggests it captures additional epilepsy-specific patterns. Our embedding 

analysis suggests these patterns may be linked to changes in the higher frequency spectrum (40–

100 Hz), which include the lower range of high-frequency oscillations (HFOs, typically 80–500 

Hz). HFOs on intracranial EEG may have a prognostic value in patients with refractory temporal 

lobe epilepsies [205], [206], and some studies have successfully detected them on scalp EEG with 

promising correlation with seizure outcomes [207], [208], [209]. However, the role of HFOs on 

scalp EEG remains limited, largely due to technical challenges such as requirement for a high 

sampling frequency (most studies using > 500 Hz) and low signal-to-noise ratio [207].  

The superiority of DeepEpilepsy over our benchmark model (LightGBM) [198], which used 

carefully selected traditional EEG features (spectral power, nonlinear measures, peak alpha 

frequency), suggests that learning from raw EEG data captures relevant patterns that might be 

missed by conventional analysis. This is particularly evident in two aspects: the model's sensitivity 
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to high-frequency patterns (40–100 Hz) and its improved performance with longer segments (30s), 

suggesting it captures both fine-scale spectral features and longer-term dynamics not typically 

considered in routine EEG interpretation. These findings warrant further investigation to better 

understand the clinical significance of these patterns. 

Integrating DL models like DeepEpilepsy in the clinical workflow could enhance clinical decision-

making by the increasing the information available in case of diagnostic uncertainty. However, this 

must be balanced against the risks of false positive predictions. While IEDs showed perfect 

specificity in our dataset, DeepEpilepsy's improved sensitivity comes at the cost of lower 

specificity, which is particularly concerning given the significant impact of an incorrect epilepsy 

diagnosis (unnecessary medications, driving restrictions, and psychosocial consequences) [12], 

[140]. 

Therefore, we envision DeepEpilepsy as a decision support tool rather than a diagnostic test. A 

positive prediction by the model in a patient with neurological events of uncertain significance and 

negative workup (no IEDs on EEG, no epileptogenic lesion on MRI) could increase the suspicion 

of epilepsy, prompting to more frequent follow-ups or repeat EEGs. Conversely, a patient with a 

low pre-test probability of epilepsy, absence of IEDs and a negative DL prediction could reduce 

clinical suspicion. Most likely, combined with advances in other domains such as text processing, 

imaging and genetics [210], [211], [212], the automated EEG analysis will lead to a more 

comprehensive phenotyping of these patients and potentially lead to quantifying the seizure 

likelihood. This could also improve clinical trials in epilepsy, which are currently limited by self-

reported and unreliable outcome measures [49], [51]. 

This study has limitations. Our data comes from a single center, and although routine EEG 

recording is standardized, variability in hardware, software, and technique may affect 

generalizability. Additionally, at our center, patients with a first unprovoked seizure presenting at 

the emergency department generally undergo their EEG there and not as outpatient, limiting their 

inclusion in our cohort. Another limitation is the use of the EEG report as a measure of whether an 

EEG contains IEDs, which could be biased as EEG readers are not blinded to the diagnosis. 

However, for patients which were “undiagnosed” at the time of the EEG, the limitation does not 

apply. Finally, subgroup analyses were limited by the relatively small sample size. 
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In conclusion, this study demonstrates that DeepEpilepsy, a Transformer model, could identify 

epilepsy on routine EEG independently of IEDs. The DL algorithm alone had an AUROC of 0.76, 

surpassing previously proposed methods, which was increased to 0.83 when combined with IEDs. 

Several questions remain such as the exact nature of brain dynamics captured by DeepEpilepsy, 

the optimal sample sizes for training the model, and the true clinical impact of this increased 

diagnostic yield in specific clinical settings. 

5.5.1 Code and Data Availability 

The code for the study will be available upon publication at the following address: 

https://gitlab.com/chum-epilepsy/dl_epilepsy_reeg. Anonymized data will be made available to 

qualified investigators upon reasonable request, conditional to the approval by our REB. The 

STARD checklist is provided as Supplementary material. 
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5.6 Supplementary material 

5.6.1 eMethod 1: Automated processing of EEG and classification 

Deep Learning: We implemented two DL approaches. First, we adapted to EEG data the 

ConvNeXt model, a deep CNN analog to the ResNet, selected for its robust performance in 

computer vision tasks.[116] Second, we implemented a novel model coined DeepEpilepsy, based 

on the Vision Transformer (ViT) architecture, a Transformer model that takes images as input and 

that outputs class probabilities.[130] DeepEpilepsy uses a three-layer convolutional tokenizer plus 

a bottleneck convolution, restricting the complexity of the model and allowing to capture multi-

scale features (Error! Reference source not found.), akin to the Compact Convolutional 

Transformer.[132] We also tested a tokenizer with non-overlapping linear patch embedding proper 

to the original ViT model.[130] 

For all DL models, EEGs were segmented into overlapping 10- or 30-second segments and scaled 

so that each channel had a mean of zero and standard error of one. These scaled segments were 

used as input into the DL models. To enhance model generalization, we applied a random data 

augmentation algorithm during training, similar to the RandAugm algorithm.[134] For each EEG 

segment, one augmentation was drawn randomly from a set of transformations, which included 

filtering (band-pass, low-pass, high-pass), masking (channel, time), and adding noise (eFigure 1). 

These augmentations were applied with a 50% probability. The intensity of the augmentation (e.g., 

filter frequency, noise level, mask length) was also randomized and controlled by a hyperparameter 

M. Based on initial experiments on the training and validation data, we set M = 8. 

We performed a Bayesian hyperparameter search on the training and validation set to select four 

different configurations for the ViT (one of which was DeepEpilepsy) (eTable 1) and three for 

ConvNeXt (eTable 2). We also investigated different learning rates, weight decay, and batch size 

values. The final models were trained on the entire training and validation set. The optimization 

hyperparameters and model specifications are described in eTable 4. 

ShallowConvNet: We reimplemented the ShallowConvNet model following the configuration 

outlined in Schirrmeister et al.[125] However, after conducting a hyperparameter search on the 

training and validation set, we identified a more optimal configuration specific to our dataset, which 

we used for testing (eTable 3). The EEG segmentation and standardization were consistent with 

the other DL models. Similarly, we optimized training hyperparameters (learning rates, weight 
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decay, and batch size values) through a Bayesian search on the training and validation set (eTable 

4). 

EEG markers: We followed the methodology described in Lemoine et al.,[198]  selecting only 

the best-performing markers and testing both 10- and 30-second segments. EEGs were segmented 

at pre-specified time points (every change of montage, every 15s during hyperventilation, every 

15s for two minutes post-hyperventilation, every photic stimulation frequency, and every eye 

closure or opening). We applied an automated artifact detection/rejection algorithm 

(AutoReject)[159] and extracted the following markers: fuzzy entropy, line length, correlation 

dimension, band power, and peak alpha. Band power was calculated using a multitaper method, 

with integrals estimated using Simpson’s method (frequency ranges: 100–75 Hz, 75–40 Hz, 40–20 

Hz, 20–13 Hz, 13–10 Hz, 10–8 Hz, 8–6 Hz, 6–4 Hz, 4–2 Hz, and 2–1 Hz). For nonlinear features 

(fuzzy entropy, line length, and correlation dimension), the Sym5 wavelet was used with six 

decomposition levels (with frequency ranges: 100–50 Hz, 50–25 Hz, 25–12.5 Hz, 12.5–6.25 Hz, 

6.25–3.125 Hz, and 3.125–1.56 Hz).[160] One value was extracted per marker, EEG, segment, 

channel, and frequency band. Missing values were imputed using multivariate iterative imputation. 

Markers were used as input features for an L1-regularized boosted-trees classifier (LightGBM). 

The optimal hyperparameters for the classifier were selected via Bayesian optimisation using a 5-

fold cross-validation on the training and validation set. 

5.6.2 eMethod 2: Interpretability 

We performed an exploratory analysis of the embeddings learned by DeepEpilepsy and 

ShallowConvNet to better understand which patterns were captured by these DL models from the 

raw EEG data. This analysis is distinct from the LightGBM benchmark model, which used pre-

specified EEG features for classification. 

For the embedding analysis, thirty-second segments from the testing set were processed through 

each DL model, and their embeddings (internal representation before the classification layer) were 

extracted. A clustering algorithm was then used to group the embeddings into 12 distinct clusters. 

To understand what patterns these clusters represented, we computed two traditional EEG features 

(band power and entropy) from the original EEG segments and analyzed how these features were 

distributed across the clusters. These features were computed using the same methods and 
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frequency ranges described in the section Automated processing of EEG and classification: 

EEG markers.  

To test for heterogeneity between clusters, we applied an analysis of variance (Krusper-Wallis test) 

at each frequency band. We then compared the F-score between both models and between 

frequency bands to identify which frequency ranges showed the greatest variation between clusters, 

suggesting these were important patterns learned by each model. 

5.6.3 eFigure 1: Data augmentations used by the RandAugm algorithm 
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eFigure 5.1: Data augmentations used by the RandAugm algorithm, alongside the original EEG 
sample. RandomLPFilter: Low-pass filter, with random cut-off frequency. RandomBSFilter: 
band stop filter with randomly chosen frequency window. MaskRectangle: masking of data 
points contiguous in both time and space. ScaleAmpChannel: Random scaling of channels. 
MaskChannel: masking of all data points in randomly selected channels. GaussianNoise: 

Addition of gaussian noise with a random intensity. The intensity of the augmentations is scaled 
according to a hyperparameter M. For example, higher values of M result, on average, in lower 

values of cutoff frequencies for LPFilter, larger mask area for MaskRectangle, and a larger 
number of channels affected by ScaleAmpChannels as well as a higher amplitude of scaling. 

5.6.4 eTable 1–4: Deep learning hyperparameters for the final model 

configurations 
eTable 1: Model configurations for the Vision Transformer (ViT) models 

Model 
patch 
size tokenizer 

tokenizer: 
layers 

hidden 
dim layers heads 

MLP 
size dropout 

attention 
dropout 

params 
(M) 

ViT1d, linear, small 200 Linear 1 128 2 2 128 0.25 0.25 0.7 
ViT1d, linear, large 50 Linear 1 512 6 8 512 0.25 0.25 10.0 
ViT1d, Conv, small 200 Convolution 3 128 2 2 128 0.25 0.25 0.4 
DeepEpilepsy: 
ViT1d, Conv, large 50 Convolution 3 512 6 8 512 0.25 0.25 10.6 

 

eTable 2: Model configurations for the ConvNext models 

Model blocks channels 
stem: downsampling  

scale drop path rate params (M) 
ConvNeXt, small 1, 1, 3, 1 16, 32, 64, 128 4 0.1 0.3 
ConvNeXt, large 2, 2, 6, 2 32, 64, 128, 256 2 0.1 2.0 
ConvNeXt, huge 3, 3, 9, 3 64, 128, 256, 512 2 0.1 11.9 

 

eTable 3: Model configuration for the ShallowConvNet model 

Model kernel size (stride) space conv 
channels 

time conv 
channels 

max pool 
window dropout params (M) 

ShallowConvNet 16 (1) 64 128 80 0.25 0.040 

 

eTable 4: Optimization parameters for all neural networks 

Parameter value 
Optimizer AdamW 
Base learning rate 1.0e-5 
Weight decay 0.05 
Optimizer momentum β1, β2=0.9, 0.999 
Batch size 512 
Training epochs 30 
Learning rate schedule Cosine decay 
Warmup iterations 1000 
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Warmup schedule Linear 
RandAugm M 7 
Gradient clipping 1.0 (ViT only) 

 

5.6.5 eTable 5: Clinical characteristics of the “undiagnosed” subgroup of the 

testing cohort 
 Epilepsy No Epilepsy 
Number of patients 28 47 
Sex = woman (%) 19 (67.9) 26 (55.3) 
Age (median [IQR]) 41.00 [34.75, 58.25] 60.00 [50.50, 71.00] 
Total follow-up after EEG in weeks (median [IQR]) 119.00 [95.00, 134.50] 62.00 [17.00, 102.00] 
Epilepsy type (%) 

  

   Focal 23 (82.1) – 
   Generalized 3 (10.7) – 
   Unknown 2 (7.1) – 
Age of epilepsy onset (median [IQR]) 37.00 [23.25, 52.00] – 
Seizure recurrence after EEG (%) 17 (60.7) – 
Number of days since last seizure (median [IQR]) 87.50 [33.00, 164.00] – 
Number of epilepsy risk factors (median [IQR]) 2.00 [1.00, 4.00] 1.00 [0.00, 3.00] 
History of epilepsy surgery (%) 0 (0) – 
Number of ASM (%)   
   0 9 (32.1) 42 (89.4) 
   1 12 (42.9) 5 (10.6) 
   2 5 (17.9) 0 (0.0) 
   3 2 (7.1) 0 (0.0) 
   4 0 (0.0) 0 (0.0) 
   5 0 (0.0) 0 (0.0) 
Focal lesion on brain imaging (%) 10 (35.7) 10 (21.3) 
Sleep deprived EEG (%) 9 (32.1) 8 (17.0) 
IED (%)   
   Absence 12 (42.9) 46 (97.9) 
   Presence 10 (35.7) 0 (0.0) 
   Uncertain 6 (21.4) 1 (2.1) 
Abnormal slowing on EEG (%) 10 (35.7) 10 (21.3) 
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5.6.6 eFigure 2: Performance of DeepEpilepsy compared to interictal 

epileptiform discharges on the undiagnosed subgroup 

 

eFigure 2: ROC curves for IEDs only, DeepEpilepsy, and DeepEpilepsy combined with IEDs in 
the subgroup of patients not diagnosed with epilepsy at the time of the EEG (n = 77). AUROC: 
Area under the receiver operating characteristic curve; IED: interictal epileptiform discharges. 

  



71 
 

 

 

5.6.7 Segment duration and RandAugment Analysis 

 

eTable 6: Effect of segment duration on DeepEpilepsy’s performances 
Segment duration (s) AUROC (95% CI): RandAugment AUROC (95% CI): No RandAugment 
5 0.721 (0.639–0.804) 0.711 (0.625–0.792) 
10 0.713 (0.632–0.789) 0.691 (0.603–0.772) 
30 0.746 (0.663–0.821) 0.679 (0.589–0.763) 
45 0.733 (0.644–0.815) 0.717 (0.627–0.798) 
60 0.716 (0.634–0.796) 0.705 (0.615–0.787) 

 

 

eFigure 3: Effect of RandAugment on DeepEpilepsy’s performances. Each point represents the 
AUROC achieved by DeepEpilepsy on the testing set after independent training runs (20 epochs 

each) with (blue) or without (orange) RandAugment data augmentation. AUC: area under the 
curve. 
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5.6.8 eFigure 3: Power spectrum density of EEG segments clustered according to their latent representations 

using DeepEpilepsy vs. ShallowConvNet 

 

eFigure 4: Power spectrum density of 30s EEG segments clustered according to their latent representations using DeepEpilepsy vs. 
ShallowConvNet. Each point represent the normalized power spectrum density for individual EEG segments of 30s at different 
frequency band for both models. Each EEG segments was processed through either the trained ShallowConvNet (bottom) or the 

trained DeepEpilepsy (top) to generate a latent vector. The latent vectors were then clustered using K-means clustering (K=12). The 
power in each band was calculated for the input segment (1 Hz:2 Hz, 2 Hz:4 Hz, etc.) and plotted on the y-axis. A statistical analysis of 

inter-cluster variance was perform in each frequency band using the Krusper-Wallis test (p-values at the top of each facet, n = 1 024 
segment per test). A lower p-value correspond to a larger heterogeneity between clusters in that frequency bands. 



73 
 

 

5.6.9 eFigure 5: Entropy of EEG segments clustered according to their latent representations using 

DeepEpilepsy vs. ShallowConvNet 

 

eFigure 5: Entropy of EEG segments clustered according to their latent representations using DeepEpilepsy vs. ShallowConvNet. Each 
point represent the normalized entropy for individual EEG segments of 30s at different frequency band for both models.  Each EEG 
segments was processed through either the trained ShallowConvNet (bottom) or the trained DeepEpilepsy (top) to generate a latent 

vector. The latent vectors were then clustered using K-means clustering (K=12). The entropy in each band was calculated for the input 
segment (1 Hz:2 Hz, 2 Hz:4 Hz, etc.) and plotted on the y-axis. The fuzzy entropy algorithm was used with parameters m=2 and r=0.2. 
A statistical analysis of inter-cluster variance was perform in each frequency band using the Krusper-Wallis test (p-values at the top of 
each facet, n = 1 024 segment per test). A lower p-value correspond to a larger heterogeneity between clusters in that frequency bands.
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CHAPITRE 6 UN MODÈLE DE SURVIE PROFOND POUR PRÉDIRE 

LE RISQUE DE CRISE APRÈS L’EEG DE ROUTINE 

Le chapitre précédent a démontré la capacité de l’apprentissage profond à détecter des marqueurs 

d’épilepsie à l’EEG avec une performance supérieure aux DÉI et aux marqueurs computationnels. 

Cependant, le modèle DeepEpilepsy présente trois limitations en lien le format de ses prédictions. 

Premièrement, sa prédiction binaire (épilepsie vs. absence d'épilepsie) ne reflète pas la variabilité 

du risque de crise, notamment chez les patients bien contrôlés sous traitement. Deuxièmement, 

l'hétérogénéité des durées de suivi n'est pas prise en compte dans l'apprentissage, ce qui peut biaiser 

le modèle en faveur des patients avec un suivi plus court. Troisièmement, une quantification 

dynamique du risque de crise serait cliniquement plus pertinente qu'une classification binaire, 

permettant une meilleure personnalisation de la prise en charge. 

Ce chapitre complémentaire présente les travaux d’un troisième article en préparation qui adresse 

ces limitations en développant à partir de DeepEpilepsy un modèle de survie capable de prédire le 

risque de crise à travers le temps. De plus, des modifications substantielles à l'architecture et au 

prétraitement des données améliorent la robustesse et l'interprétabilité du modèle. À terme, le projet 

inclura une validation multicentrique du modèle, dont je présente le plan à la fin du chapitre. Les 

résultats de ce travail ont fait l’objet de présentations orales, notamment à l’Eastern Association of 

Electroencephalographers (Boston, 2025; Prix de Congrès Burnham Fellowship) et ICTALS 

(Montréal, 2025), ainsi que par affiche à l’American Academy of Neurology Annual Meeting (San 

Diego, 2025). 

6.1 Introduction 

L’épilepsie est définie cliniquement par un risque accru de crises [2]. L’évaluation de ce risque 

nécessite une approche multimodale intégrant la sémiologie des épisodes suspects, les facteurs de 

risque cliniques, la neuroimagerie et l’électroencéphalogramme (EEG). La présence d’anomalies 

épileptiformes à l’EEG est particulièrement informative, prédisant un risque de récidive 1.5–3 fois 

plus élevé dans plusieurs situations cliniques [8], [30], [31], [32]. 

Malheureusement, l’EEG présente plusieurs limitations. Sa sensibilité est faible, avec seulement 

29–55% des patients épileptiques qui présenteront des anomalies épileptiformes sur un EEG de 30 

à 60 minutes [8], [10], [28]. Son interprétation requiert une expertise surspécialisée, et même entre 
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experts, l’accord inter-observateur pour les anomalies épileptiformes est au plus modéré [37], 

[213]. L'analyse computationnelle de l'EEG, particulièrement par apprentissage profond, offre une 

alternative prometteuse en extrayant automatiquement des biomarqueurs quantitatifs qui 

représentent les interactions complexes entre fréquences et régions cérébrales à différentes échelles 

temporelles [74], [103], [104], [214]. 

Les modèles actuels d’analyse automatisée de l’EEG se concentrent principalement sur la 

classification du diagnostic [74], [100], [101], [214] ou la prédiction de récidive à des horizons 

temporels fixes [77], [198]. Bien que la classification puisse théoriquement prendre en compte 

plusieurs classes de risque, cette approche ne reflète pas pleinement la nature temporelle du risque 

épileptique. L’épilepsie est fondamentalement définie par un risque de crise qui évolue dans le 

temps [2], [3]. 

L’analyse de survie est un outil épidémiologie qui permet d’estimer la fonction de survie 𝑆(𝑡) qui 

décrit l’évolution d’une maladie après un facteur de risque ou un traitement [215]. Les modèles de 

survie sont particulièrement adaptés à l’épilepsie pour modéliser le risque de crise à travers le temps 

[45], [216], [217], [218]. Ces modèles statistiques sont généralement limités par la complexité des 

variables d’entrée, souvent constituées de quelques variables cliniques [215], [216], [217], [218]. 

Cependant, le couplage entre l’apprentissage profond et les modèles de survie permet de combiner 

une entrée complexe avec la prédiction du risque dans le temps [219], [220]. Quelques études ont 

démontré l’utilité de ces modèles de survie profond en oncologie [220], [221], [222], [223] et en 

soins intensifs [224], mais leur applicabilité en épilepsie est inconnue. 

Cette étude propose donc pour la première fois un modèle de survie profond en épilepsie, 

EEGSurvNet, qui analyse le signal EEG pour prédire le délai jusqu'à la prochaine crise sur un 

horizon de deux ans. La performance du modèle est comparée à un modèle de survie traditionnel 

avec les prédicteurs cliniques standards, incluant la présence d'anomalies épileptiformes. Au-delà 

de la prédiction, nous explorons l'interprétabilité du modèle pour identifier les caractéristiques du 

signal EEG associées au risque de crise ainsi que les paramètres qui optimisent sa généralisation. 
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6.2 Méthodes 

6.2.1 Design et population 

Il s’agit d’une étude rétrospective chez une cohorte de patients consécutifs ayant obtenu un EEG 

de routine au Centre hospitalier de l’Université de Montréal (CHUM), au Canada. Tous les patients 

qui ont eu un EEG au service de neurophysiologie entre le 1er janvier 2018 en le 31 décembre 2019 

étaient inclus. L’EEG de routine inclut les EEG de 30 à 60 minutes avec et sans déprivation de 

sommeil effectué chez des patients en centre ambulatoire. Les critères d’exclusion sont l’absence 

de suivi après l’EEG, un diagnostic d’épilepsie incertain à la fin de la période du suivi, ou la 

présence de crise à l’EEG. Les dossiers des patients ont été révisés par un résident en 

neurologie/neurologue (EL) ainsi que trois étudiants en neurosciences selon un protocole pré-

spécifié. Les données extraites incluaient l’âge, le sexe, les comorbidités, la présence de facteurs 

de risque d’épilepsie, la présence d’anomalies à l’imagerie neurologique (IRM ou scan) et le 

nombre de médicaments anticrises. Pour chaque visite, le nombre de crises depuis la visite 

précédente est extraite. Le diagnostic d’épilepsie est déterminé selon les critères de la Ligue 

Internationale contre l’Épilepsie [2] à partir de la dernière note disponible du neurologue traitant. 

Les rapports d’EEG ont été révisés à la recherche d’anomalies épileptiformes ou de ralentissement 

anormal. Les données cliniques sont stockées dans une base de données REDCap située sur les 

serveurs sécurisés du CRCHUM. 

Les EEG enregistrés avant septembre 2019 constituent l’échantillon d’entraînement et validation, 

et ceux après septembre 2019, l’échantillon test (Figure 6.1). Les patients ayant eu un EEG à la 

fois avant et après septembre 2019 sont exclus de l’échantillon test. 
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Figure 6.1 : Illustration de la séparation temporelle des échantillons d’entraînement/validation et 
de test. 

6.2.2 Issue primaire 

L’issue primaire est le délai (en jours) jusqu’à la prochaine crise épileptique après l’EEG, extraite 

des notes médicales de suivi. L’issue englobe tout type de crises épileptiques, incluant les crises 

focales sans altération de l’état de conscience et les myoclonies, mais pas les crises non-

épileptiques. Pour environ 25% des patients, la date exacte n’était pas rapportée; dans ce cas, nous 

effectuons une interpolation linéaire en fonction de la fréquence rapportée de crises, assumant une 

distribution uniforme des crises pour la période. Les patients n’ayant pas présenté de crises pendant 

leur suivi sont considérés comme censurés à la date de la dernière visite documentée. 

6.2.3 Prédicteurs 

EEG 

Les EEG sont enregistrés sur un appareil Nihon-Kohden selon un protocole standard en accord 

avec les lignes directrices canadiennes [225]. Les EEG d’éveil, d’une durée de 20 à 30 minutes, 

sont enregistrés avec une fréquence d’échantillonnage de 200 Hz via 19 électrodes respectant 

l’arrangement 10–20 [226]. Ils incluent deux périodes de 90s d’hyperventilation (excepté chez les 

patients de plus de 80 ans, non-coopératif, ou avec une contre-indication médicale) et stimulation 

photique de 4 à 22 Hz. Les EEG de sommeil durent 60 minutes et comportent les mêmes procédures 

d’activation. Les EEG sont enregistrés avec une référence A1-A2, convertis en format EDF, puis 

stockés sur les serveurs sécurisés du CRCHUM en suivant le standard BIDS [227]. 

Modèle de survie profond 

Pour cette étude, nous avons développé un modèle de survie profond pour l’EEG appelé 

EEGSurvNet. EEGSurvNet est bâti sur DeepEpilepsy, un Vision Transformer (ViT) qui prend en 

entrée des segments d’EEG multi-canaux de 10 ou 30s [214]. Plusieurs améliorations ont été 

apportées à l’architecture originale dans le but d’augmenter ses performances, sa robustesse aux 
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artéfacts et données externes et son interprétabilité. Ces améliorations ont été testées itérativement 

sur l’ensemble d’entraînement/validation ainsi que sur un jeu de données externes, le Temple 

University Abnormal EEG corpus (v3.0.1) [123]. 

La première amélioration consiste à allonger la durée des segments analysés de 30 et de 60 

secondes. Au-delà de 60 secondes, nous notons un plafonnement des performances au prix de 

ressources computationnelles très élevées. La deuxième amélioration consiste à appliquer un filtre 

passe-bande à 60 Hz pour éliminer la contribution du bruit de courant alternatif et de 

potentiellement rendre le modèle robuste aux EEG enregistrés dans différents pays. La troisième 

amélioration concerne le format d’entrée des données: les EEG sont convertis en spectrogrammes 

en utilisant la transformée avec ondelettes de Morlet (nombre de cycles: 7, nombre de bandes de 

fréquences : 24). Cette amélioration permet surtout d’améliorer l’interprétabilité. La résolution 

temporelle est diminuée par un facteur de 4 pour limiter la taille des données d’entrées. Le 

tokeniseur du modèle a également été modifié pour traiter ces spectrogrammes, utilisant maintenant 

des convolutions en 2D. La version finale comporte 27M de paramètres (Table 6.1). 

Tableau 6.1 : Architecture d’EEGSurvNet 

Hyperparamètre Valeur 
Taille de patch 0.2s 
Tokenizeur : type Convolution 
Tokenizeur : nombre de couches 3 
Tokenizeur : taille des filtres (fréquence, temps) (3, 11) 
Tokenizeur : dimensionalité des filtres (256, 362, 512) 
Transformeur : dimensions cachées 512 
Transformeur : nombre de couches 8 
Transformeur : nombre de têtes 8 
MLP : dimensionalité 1024 
Dropout 0.2 
Params (M) 27 

L’adaptation du modèle à l’analyse de survie repose sur une approche par discrétisation temporelle 

(discrete-time analysis; Figure 6.2) [228], [229]. La durée du suivi est divisée en 7 périodes 

espacées logarithmiquement entre 28 jours et 2 ans (la dernière période correspondant à > 2 ans).  

Le modèle prédit le hasard (risque instantané) ℎ(𝑡) de crise pour chaque période via une fonction 

logistique appliquée aux sorties du réseau (ϕ):  

ℎ!(𝑡) = σ0ϕ"(𝑡)1 =
1

1 + 𝑒#$!(&)
	,	 
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où 𝑠 représente le segment d’EEG analysé. Pour l’entraînement, chaque patient est représenté par 

deux valeurs: l’indice 𝑡( de la période où survient une crise ou la dernière période de suivi 

disponible et un indicateur d’évènement δ distinguant les crises (1) des censures (0). La fonction 

de loss correspond à la log-vraisemblance négative (negative log-likelihood) du modèle de hasard: 

ℒ = −9:δ( log0ℎ!(𝑡()1 + 9 log01 − ℎ!(𝑗)1
&"	#	*"

+,-

?
.

(,-

	. 

L'entraînement s'effectue sur des segments de 60 secondes avec chevauchement (1s), totalisant 

environ 1 800 segments par EEG de 30 minutes. Le modèle est entraîné sur deux GPUs A6000 

durant 25 époques, chaque époque comptant environ 1.7M de segments. Une augmentation des 

données est appliquée selon la méthode TrivialAugment [230] avec une probabilité de 90%, 

ajoutant soit un bruit gaussien aléatoire, soit un masque aléatoire, soit une égalisation aléatoire. 

L'optimisation utilise un cosine decay du taux d'apprentissage après une période de réchauffement 

d'une époque. Les hyperparamètres (taux d'apprentissage maximal, probabilité de TrivialAugment, 

probabilité de dropout et weight decay) ont été optimisés sur l'ensemble de validation, avec les 

valeurs finales présentées dans le Table 6.2. La libraire PyTorch (version 2.6.0) est utilisée pour 

entraîner les modèles profonds. 

Tableau 6.2 : Paramètres d’apprentissage pour EEGSurvNet 

Paramètre Valeur 
Optimisateur AdamW 
Taux d’apprentissage maximal 5.0 x10-5 
Weight decay 0.05 
Momentum β1, β2=0.9, 0.999 
Taille des lots effective 512 
Nombre de GPUs 2 
Époques 25 
Horaire du taux d’apprentissage Cosine decay 
Époque de réchauffement 1 
Horaire du réchauffement Linéaire 
Probabilité d’augmentation 0.9 
Gradient clipping Aucun 

Pour l’inférence sur un EEG complet, nous effectuons deux niveaux d’agrégation. Premièrement, 

les hasards sont moyennés sur tous les segments: 

ℎA(𝑡) =
1
𝑁9ℎ!(𝑡)

/

!,-

	. 
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Puis, pour régulariser la sortie, nous calculons un hasard constant ℎ∗ en moyennant les hasards sur 

toutes les périodes: 

ℎ∗ =
1
𝑇9ℎA(𝑡)

1

&,-

	. 

À partir de ce hasard constant, nous calculons la fonction de survie: 

𝑆(𝑡) = (1 − ℎ∗)&	. 

Le score de risque global 𝑅 est égal au hasard constant ℎ∗ et permet une comparaison avec les 

modèles de risque proportionnel comme Cox. 

 

Figure 6.2 : Analyse de survie par discrétisation temporelle. A : Les séries temporelles originales 
pour chaque patient, certains subissant une crise lors du suivi (éclair jaune). B : La discrétisation 

temporelle du suivi de chaque patient, où chaque période temps est représentée par une valeur 
binaire (0: pas de crise pendant la période; 1: crise pendant la période). C : Le modèle 

EEGSurvNet prend en entrée les signaux EEG transformés en spectrogramme, puis prédit une 
valeur de risque ℎ& pour chaque période. L'optimisation utilise la log-vraisemblance négative du 

modèle de hasard. Les prédictions sont par la suite agrégées à travers les segments puis les 
périodes pour obtenir un score de risque global. 
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Modèle clinique Cox 

À des fins de comparaison, nous avons développé un modèle de risque proportionnel de Cox 

utilisant les prédicteurs traditionnels de risque de crise: âge, sexe, histoire familiale d'épilepsie, 

présence de lésion focale en neuroimagerie et présence de pointes épileptiformes à l'EEG. Sur la 

base de travaux antérieurs [8], nous avons inclus des termes d'interaction entre la présence de 

pointes et les autres prédicteurs. Le modèle Cox prédit un risque proportionnel selon l'équation: 

ℎ(𝑡|𝑋) = ℎ2(𝑡) exp(β1𝑋)	, 

où h2(t)	est le risque de base, 𝑋 le vecteur des prédicteurs et β les coefficients estimés. Le risque 

total est calculé en combinant le risque de base (estimé sur l'échantillon d'entraînement) avec le 

risque proportionnel, produisant une mesure analogue au score de risque global du modèle profond. 

Combinaison entre le modèle clinique et le modèle profond 

Une troisième approche combine les prédictions des modèles profond et clinique en multipliant 

leurs scores de risque respectifs: 

𝑅combiné = 𝑅EEGSurvNet × exp(β1𝑋) 

Cette approche simple présente l'avantage d'une grande interprétabilité: les deux modèles restants 

indépendants, ils peuvent être analysés séparément sans avoir à considérer les interactions 

complexes entre données EEG et cliniques. Nous avons également exploré le développement d'un 

modèle profond multimodal intégrant directement les données cliniques et EEG. Cependant, 

malgré une optimisation extensive des hyperparamètres, ce modèle tendait systématiquement vers 

un surapprentissage des données cliniques en négligeant l'information EEG. Le développement 

d'une architecture multimodale efficace reste un axe de recherche prometteur à approfondir. 

6.2.4 Taille d’échantillon et analyse de puissance 

L'analyse de puissance a été réalisée avec la librairie R "powerSurvEpi" selon la méthode de 

Schmoor et al. [231] Nous avons estimé la taille d'échantillon requise pour un modèle de Cox avec 

un prédicteur binaire, représentant la présence ou l'absence d'anomalie à l'EEG. L'analyse assume 

un taux d'événements (crises) de 0.5, un rapport de risque (hazards ratio) de 2.0, un seuil de 

signification α de 0.05 et une puissance cible de 0.8. Selon ces paramètres, un échantillon de 131 

patients est nécessaire pour détecter l'effet d'intérêt. 
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6.2.5  Analyses 

L'évaluation des modèles repose sur deux aspects complémentaires: la discrimination et la 

calibration. La discrimination est évaluée par une extension des courbes ROC adaptée aux données 

de survie, appelée cumulative/dynamic time-dependant ROC curve [232], [233]. La sensibilité et 

la spécificité sont définies comme des mesures dépendantes du temps; les cas cumulatifs 

comprennent tous les individus ayant présenté un événement jusqu'au temps 𝑡, tandis que les 

contrôles dynamiques sont ceux qui présentent un événement après 𝑡. L'AUC 

cumulative/dynamique quantifie la capacité du modèle à distinguer les sujets qui auront une crise 

avant un temps donné de ceux qui en auront une après. Nous avons aussi appliqué une pondération 

par l'inverse de la probabilité de censure (IPCW) pour gérer le biais introduit par la censure [234]. 

Les poids IPCW sont estimés à partir de la distribution de censure de l'ensemble d'entraînement 

via l'estimateur de Kaplan-Meier, sous l'hypothèse d'une censure aléatoire indépendante des 

caractéristiques. Nous calculons l’AUROC à chaque période 𝑡 en plus de l’AUROC intégrée sur 

deux ans (iAUROC). La calibration, elle, est évaluée par le score de Brier intégré sur deux ans, qui 

mesure l'exactitude des probabilités prédites [235]. Les intervalles de confiance à 95% sont calculés 

par bootstrap (1000 itérations).  

Pour s’accorder avec la littérature des modèles prédictifs de récidive de crise [216], [236], [237], 

[238], [239], [240], nous avons aussi calculé les iAUROC et iBS sur 1 an, ainsi que l’index C de 

Harrell [241]. 

Nous avons aussi testé un modèle de référence Baseline qui prédit des probabilités centrées autour 

des probabilités de base observées dans l'ensemble d'entraînement. Spécifiquement, pour chaque 

patient de l'ensemble test, le modèle génère un score de risque tiré d'une distribution normale (𝜇 = 

risque moyen d'entraînement, 𝜎 = 0.2). La performance des modèles est comparée à cette référence 

via le score de Brier intégré (iBS) calculé sur 2 ans, ainsi que le score de compétence de Brier 

(BSS) à chaque période. Le BSS quantifie l'amélioration relative de la prédiction par rapport au 

modèle Baseline [242]: 

BSS(𝑡) = 1 −
BSmodel(𝑡)
BSref(𝑡)

	, 

où BSmodel et BSref sont respectivement les scores de Brier du modèle évalué et du modèle de 

référence. Le BSS prend des valeurs entre ] − ∞, 1.0], une valeur positive indiquant une 
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performance supérieure à la référence. La calibration du modèle a aussi été évaluée visuellement 

par des courbes de calibration à différents horizons temporels. Pour chaque période d'intérêt, les 

patients sont regroupés selon leur probabilité prédite de crise (bins de 0.2), et le taux observé de 

crises dans chaque groupe est comparé à la prédiction moyenne. 

Des analyses stratifiées ont été réalisées pour évaluer la performance dans des sous-populations 

cliniquement pertinentes: groupe d’âge (18–40, 40–60 et >60 ans), sexe, présence de lésion focale 

à l’imagerie et présence de ralentissement anormal à l’EEG et présence de décharges épileptiformes 

à l’EEG. 

Pour interpréter le modèle, nous utilisons les valeurs Shapley estimées selon la méthode des 

gradients, représentant la contribution de chaque valeur d’entrée du modèle sur sa prédiction [243], 

[244]. Nous avons entraîné l’estimateur des valeurs Shapley sur 500 segments aléatoires de 

l’échantillon d’entraînement, puis extrait les valeurs des 50 segments avec les scores de risque les 

plus élevés et les 50 avec les scores les plus bas. Les valeurs sont ensuite intégrées sur le domaine 

temps-fréquence et sur le domaine spatial. La libraire Python shap a été utilisées pour cette analyse 

[243]. 

Une étude d'ablation systématique évalue l'impact de quatre paramètres clés du modèle: la durée 

du segment (30s vs. 60s), la résolution fréquentielle (16 vs. 32), la résolution temporelle (0.4s vs. 

0.8s) et l'augmentation des données (présence vs. absence). Pour chaque configuration, le modèle 

est réentraîné sur l'ensemble d'entraînement avec des paramètres d'optimisation fixes (taux 

d'apprentissage, taille des lots, scheduling) et évalué sur l'échantillon test. En complément, le 

modèle DeepEpilepsy original [214] a été adapté à la prédiction de survie en modifiant sa couche 

de sortie pour générer les sept valeurs de risque temporel, puis réentraîné sur l’ensemble 

d’entraînement. 

6.2.6 Approbation éthique et disponibilité du code source 

Cette étude a reçu l'approbation du Comité d'éthique de la recherche du Centre de recherche du 

CHUM (Montréal, Canada, numéro de projet: 19.334). Le comité a accordé une dérogation au 

consentement éclairé en raison de l'absence d'intervention diagnostique/thérapeutique et du risque 

minimal pour les participants. Toutes les méthodes respectent l'Énoncé de politique des trois 

Conseils sur l'éthique de la recherche avec des êtres humains du Canada. 
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Le code source de l'étude sera disponible lors de la publication à l'adresse suivante: 

https://gitlab.com/chum-epilepsy/epi_surv.  

6.3 Résultats 

6.3.1 Caractéristiques de la population 

Dans la période d’intérêt, 1 540 EEG ont été réalisés au CHUM chez 1 286 patients. Après 

exclusion, 1 014 EEG de 994 patients ont été inclus: 879 EEG de 786 patients dans l’échantillon 

d’entraînement et 135 EEG de 115 patients dans l’échantillon test. Le suivi médian de l’échantillon 

d’entraînement et de test étaient de 2.2 ans après l’EEG. Les caractéristiques cliniques détaillées 

des échantillon d’entraînement et de test sont présentées dans le Table 6.3.  

Une crise est survenue après 295 des EEG d’entraînement (33.6%) et 40 des EEG de test (29.6%), 

avec un taux de survie sans crise à un an de 0.69% (95%CI: 0.66–0.73) dans l’ensemble 

d’entraînement et de 0.72% (0.66–0.79) dans l’ensemble test. Pour les prédicteurs cliniques du 

modèle Cox, les deux cohortes présentaient des distributions similaires (Table 6.3). 

Tableau 6.3 : Description des cohortes d’entraînement et de test 

Cohorte d’entraînement Cohorte de test 
Nombre d’EEG (nombre de patients) 879 (786) 135 (115) 
Récidive de crise au suivi (%) 295 (33.6) 40 (29.6) 
Sexe = femme (%) 450 (51.3) 73 (54.1) 
Âge (médiane [IQR]) 49.00 [32.00, 62.00] 51.00 [30.00, 63.50] 
Suivi total après l’EEG en semaines (médiane [IQR]) 116.00 [52.00, 153.00] 113.00 [57.00, 194.50] 
Type d’épilepsie (%) 

 

   Focale 409 (46.5) 58 (43.0) 
   Généralisée 103 (11.7) 13 (9.6) 
   Inconnue 53 (6.0) 3 (2.2) 
   Pas d’épilepsie 314 (35.7) 61 (45.2) 
Histoire de convulsion fébrile (%) 21 (2.4) 6 (4.4) 
Histoire familiale d’épilepsie (%) 63 (7.2) 15 (11.1) 
Nombre de jour depuis la dernière crise (médiane [IQR]) 225.00 [52.00, 1130.00] 200.00 [73.00, 938.25] 
Nombre de médicaments anticrises (%) 
   0 327 (37.2) 67 (49.6) 
   1 338 (38.5) 37 (27.4) 
   2 145 (16.5) 18 (13.3) 
   3 54 (6.1) 8 (5.9) 
   4 12 (1.4) 5 (3.7) 
   5 3 (0.3) 0 (0.0) 
Lésion focale à l’imagerie (%) 332 (37.8) 52 (38.5) 
EEG de sommeil (%) 126 (14.3) 20 (14.8) 
Pointes épileptiformes à l’EEG (%) 
   Absence 654 (74.4) 103 (76.3) 
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   Présence 156 (17.7) 26 (19.3) 
   Incertain 69 (7.8) 6 (4.4) 
Ralentissement anormal à l’EEG (%) 266 (30.3) 42 (31.1) 
   

6.3.2 Développement et entraînement du modèle 

Pour le développement du modèle, la cohorte d’entraînement a été séparée en un échantillon 

d’entraînement (80%) et un échantillon de validation (20%) de façon aléatoire. L’échantillon 

d’entraînement comportait 1.4M de segments, et celui de validation, 0.3M. Cet ensemble de 

validation a permis d’optimiser les hyperparamètres suivants: taille des lots, taux d’apprentissage, 

weight decay, dropout, gradient clipping et probabilité d’augmentation. L’ensemble de données 

TUH Abnormal Corpus (3.7M de segments) a aussi été utilisé pour optimiser le format d’entrée du 

modèle et corriger les erreurs du code source [123]. 

Le modèle final a été entraîné sur l’ensemble de la cohorte d’entraînement (1.7M de segments de 

60s pour 25 époques). 

6.3.3 Performances 

 

Figure 6.3 : Illustration des prédictions brutes du modèle EEGSurvNet sur deux patients de la 
cohorte test. Les EEG transformés en spectrogramme servent d’entrée au modèle. La sortie du 
modèle est ensuite convertie en fonction de survie qui caractérise la survie sans crise à chaque 
période (𝑆(𝑡)). La prédiction brute est basée sur le hasard moyenné sur les segments ℎA(𝑡), et la 
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prédiction régularisée, sur le risque constant ℎ∗. Le ruban ombragé démontre la déviation 
standard des prédictions à travers les segments d’un même EEG. 

Un exemple de prédictions du modèle EEGSurvNet est illustré à la Figure 6.3 et les résultats 

complets sont présentés dans le Table 6.4. Sur l’ensemble test, EEGSurvNet a obtenu un iAUROC 

sur deux ans de 0.69 (intervalle de confiance de 95%: 0.64–0.73) et un index C de 0.66 (0.60–

0.73). Par comparaison, l’iAUROC du modèle Cox était de 0.61 (0.56–0.65; C = 0.61 [0.55–0.68]), 

et celui du modèle combiné, 0.70 (0.66–0.74; C = 0.69 [0.65–0.73]). Pour tous ces modèles, les 

performances sont supérieures au modèle de référence (iAUROC = 0.54 [0.49–0.59], C = 0.53 

[0.45–0.61]). 

L’AUROC en fonction du temps est présentée à la Figure 6.4. Pour EEGSurvNet, celles-ci 

atteignent un pic à ~2 mois (AUROC: 0.80 [0.72–0.88]) et sont statistiquement supérieure au 

modèle de référence entre les 3e et 6e mois. 
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Figure 6.4 : Performance des différents modèles pour prédire la survie sans crise à travers le 
temps. Le modèle de référence (Baseline) correspond aux prédictions selon le risque de base de 

récidive de crise tiré de la cohorte d’entraînement. AUROC: Aire-sous-la-courbe ROC. 

 

Figure 6.5 : Brier Skill Score des modèles de survie dans le temps. Le Brier Skill Score est une 
mesure de l’amélioration de la calibration contre le modèle de référence, où des valeurs entre 0 et 

1 signifie un gain de calibration.  

Pour la calibration, EEGSurvNet obtient un score de Brier intégré à 2 ans de 0.18 (0.15–0.20), 

statistiquement significativement supérieur au modèle de référence (0.24 [0.23–0.25])] (Table 6.4). 

Le Brier Skill Score, mesurant le gain de performance contre le modèle de référence, est positif sur 

l’ensemble des périodes et atteint un pic à 3 mois avec une valeur de 0.22 (Figure 6.4). La courbe 

de calibration en fonction du temps sont présentées à la Figure 6.6. 
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Figure 6.6 : Calibration du modèle EEGSurvNet en fonction du temps. Pour chaque période, les 
patients sont regroupés en bins de taille 0.2 selon leur probabilité prédite de crise. L'axe des x 

représente la probabilité moyenne prédite dans chaque bin, l'axe des y le taux observé de crises. 
La taille des points est proportionnelle au nombre de patients dans chaque bin. La ligne diagonale 

représente une calibration parfaite. La ligne bleue représente une régression linéaire pondérée 
avec intervalle de confiance à 95%. 

Pour régulariser la sortie du modèle profond, le risque dans le temps ℎA(𝑡) est moyenné à travers 
les périodes pour un risque constant ℎ∗. Sans cette opération, les performances d’EEGSurvNet sont 

les suivantes : iAUROC à 2 ans de 0.60 (0.55–0.65), un iBS à deux ans de 0.18 (0.16–0.20) et 

index C de 0.61 (0.53–0.69). 

Tableau 6.4 : Discrimination et calibration des différents modèles sur la cohorte de test 

iAUROC à 1 an iAUROC à 2 ans iBS à 1 an iBS à 2 ans Index C 
Baseline (risque de base) 0.53 (0.47–0.58) 0.54 (0.49–0.59) 0.17 (0.16–0.18) 0.24 (0.23–0.25) 0.53 (0.45–0.61) 
Modèle clinique Cox 0.63 (0.58–0.68) 0.61 (0.56–0.65) 0.15 (0.14–0.16) 0.21 (0.20–0.23) 0.61 (0.55–0.68) 
EEGSurvNet 0.72 (0.68–0.77) 0.69 (0.64–0.73) 0.13 (0.11–0.15) 0.18 (0.15–0.20) 0.66 (0.60–0.73) 
EEGSurvNet + Cox 0.74 (0.70–0.78) 0.70 (0.66–0.74) 0.15 (0.12–0.17) 0.19 (0.17–0.21) 0.69 (0.65–0.73) 

En stratifiant la cohorte test selon le score de survie moyen prédit, on obtient trois groupes de 

risque: « Faible risque », « Risque moyen » et « Haut risque ». La survie sans crise de ces patients 

est significativement associée avec le risque prédit par EEGSurvNet (p = 0.003, Figure 6.7). Chez 
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les patients à faible risque, le taux de récidive à deux ans est de 12%, contre 42% pour les patients 

à haut risque. 

Figure 6.7 : Survie sans crise des patients de l’échantillon test, stratifié en fonction du risque 
prédit par le modèle EEGSurvNet. 

6.3.4 Analyse par sous-groupe 

Les analyses stratifiées révèlent des variations de performance selon les sous-groupes (Figure 6.8). 

Les jeunes adultes (<40 ans) présentent une meilleure discrimination avec un iAUROC à deux ans 

de 0.73 [0.68-0.79], comparativement aux 40–60 ans (0.64 [0.54-0.76]) et plus de 60 ans (0.67 

[0.58-0.82]). Pour le type d'épilepsie, le modèle performe modérément en épilepsie focale (0.66 

[0.60-0.72]) mais aléatoirement en épilepsie généralisée (0.50 [0.39-0.77]), bien que ce dernier 

résultat soit basé sur seulement 13 patients. La présence de lésion focale et l’absence de 

ralentissement anormal tendent à améliorer les performances. La seule différence statistiquement 

significative entre sous-groupes concerne la présence d'anomalies épileptiformes à l’EEG. Le 

modèle performe mieux en leur absence, avec un iAUROC de 0.78 (0.73-0.83), comparé à 0.53 

(0.43-0.63) en leur présence. 
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Figure 6.8 : Analyse des performances prédictives par sous-groupe. IED: Interictal epileptiform 
discharges (décharges épileptiformes interictales). 

6.3.5 Interprétabilité 

Pour interpréter le modèle profond, nous avons analysé les valeurs de Shapley par fréquence et par 

canal pour les 50 segments EEG où le modèle prédit un risque élevé, ainsi que pour les 50 segments 

où le modèle prédit un risque faible. Les résultats sont présentés à la Figure 6.9. Les valeurs de 

Shapley démontrent une importance élevée de la bande de fréquence de 6 à 15 Hz. En termes de 

localisation, les canaux situés au niveau temporal comportent la plus haute importance, suivi des 

canaux occipitaux. Nous observons aussi une asymétrie droite-gauche, avec des valeurs de Shapley 

plus élevées en temporal gauche que droit et un foyer de valeurs de Shapley basses en temporal 



91 

postérieur gauche. 

Figure 6.9 : Valeurs de Shapley pour les segments à plus haut et plus bas risque prédit. A : 
valeurs de Shapley moyennées par band de fréquence. La ligne plus sombre correspond à la 

moyenne sur les 50 segments. B : valeurs de Shapley moyennées par électrodes. 

6.3.6 Étude d’ablation 

Les résultats de l’étude d’ablation sont présentés dans le Table 6.5. Dans tous les cas, les 

performances sont inférieures à notre modèle. Le facteur ayant le plus d’impact est la résolution 

temporelle: lorsque celle-ci est diminuée de moitié, l’iAUROC à 2 ans passe de de 0.69 à 0.54. 

L’architecture originale de DeepEpilepsy, entraîné sur les signaux de base et non sur les 

spectrogrammes, n’a pas été transférable directement à l’analyse de survie, avec une iAUROC à 

deux ans de seulement 0.52. 

Tableau 6.5 : Étude d’ablation 

Modèle Augmentation Résolution temporelle 
(s) 

Résolution 
fréquentielle 

Durée des segments 
(s) 

iAUROC* 

DeepEpilepsy Oui 0.05 – 30 0.52 
No_augment Non 0.2 32 60 0.58 
16freq_8decim Oui 0.4 16 60 0.53 
8decim Oui 0.4 32 60 0.54 
16freq Oui 0.2 16 60 0.62 
30s Oui 0.2 32 30 0.58 
EEGSurvNet Oui 0.2 32 60 0.69 
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*Aire sous la courbe ROC intégrée à 2 ans

6.3.7 Discussion 

Cette étude présente le développement et la validation d’un modèle de survie profond, 

EEGSurvNet, pour prédire le risque de crise à partir de l’EEG de routine. Le modèle démontre des 

performances supérieures aux prédicteurs traditionnels, autant en termes de discrimination 

(iAUROC à deux ans = 0.69) que de calibration (iBS à deux ans = 0.18). Les performances sont 

plus élevées dans les premiers mois suivants l’EEG, atteignant un AUROC de 0.80 à 2 mois. 

L’ajout de prédicteur cliniques améliore marginalement les performances, suggérant que l’EEG 

capte une part essentielle de l’information pronostique. 

L’analyse de survie offre plusieurs avantages par rapport aux approches binaires traditionnelles. 

Elle modélise explicitement la composante temporelle du risque, tient compte des durées variables 

de suivi et permet une évaluation simultanée des effets à différents intervalles. Couplée à un modèle 

profond, elle permet de relier des données complexes comme l’image, le texte, ou les séries 

temporelles, avec une issue clinique plus granulaire. En oncologie, des modèles de survie profonds 

ont permis d'améliorer la prédiction du pronostic du chondrosarcome [221], du cancer du poumon 

[223] et du cancer de l’estomac [222], dépassant les performances des systèmes de classifications

des stades traditionnels. En soins intensifs, Thorsen et al. ont développé un modèle intégrant

données cliniques, texte libre et séries temporelles pour prédire la survie des patients avec un index

de concordance de 0.73 [224]. Dans certains cas, cette approche peut être jumelée à une

recommandation thérapeutique personnalisée [220].

En épilepsie, les modèles de survie traditionnels ont joué un rôle important dans la compréhension 

de l'histoire naturelle de la maladie et l'identification des facteurs pronostiques. Plusieurs études 

ont utilisé l'analyse de survie pour évaluer le risque de récidive après une première crise [25], 

caractériser la réponse au traitement [45], ou prédire la rémission à long terme après l’arrêt de la 

médication anti-crise [245], [246]. Certains modèles validés ont été spécifiquement développés 

pour guider la prise en charge clinique, notamment pour prédire la récidive de crise après une 

première crise aigüe symptomatique dans le contexte d’une hémorragie intracrânienne [216], [247], 

d’un accident vasculaire cérébral ischémique [217], [236], d’une thrombose veineuse cérébrale 

[238] ou d’un trauma crânien [237], ou pour prédire le succès du sevrage de la médication anticrise
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[218]. Pourtant, malgré cette utilisation établie des modèles de survie en épilepsie et le succès 

récent des approches profondes dans d'autres domaines médicaux, aucune étude n'a encore exploré 

le potentiel des modèles de survie profonds pour l'analyse de l'EEG. 

Les modèles de survie clinique existants ont des performances qui varient selon le contexte 

clinique, avec des index C allant de 0.67 pour la prédiction de récidive après le sevrage de la 

médication [218] à 0.89 pour le développement d’épilepsie post-traumatique [237]. Ces modèles, 

basés sur des variables cliniques facilement disponibles comme la présence de DEI à l’EEG, la 

sévérité de l’atteinte aigüe ou la durée de l’épilepsie, sont disponibles sous forme de nomogrammes 

(https://predictepilepsy.com) et sont utilisés dans la pratique clinique [248]. Dans notre cohorte 

moins sélectionnée, le modèle clinique obtient un index C de 0.61, reflétant la difficulté apportée 

d’une population plus hétérogène. Toutefois, EEGSurvNet atteint des performances comparables 

aux modèles cliniques validés, particulièrement lorsque combiné aux données cliniques (C = 0.69), 

suggérant sa pertinence pour une utilisation en pratique courante. Comme pour les autres modèles 

prédictifs en épilepsie, l'impact réel de ces prédictions sur les décisions cliniques et les issues des 

patients reste à démontrer par des études prospectives [248]. 

EEGSurvNet tend vers de meilleures performances chez certains sous-groupes, notamment les 

jeunes patients, chez les patients avec épilepsie focale, chez les patients sans ralentissement à 

l’EEG et chez les patients sans anomalie épileptiformes à l’EEG. Malheureusement, 

l’interprétation de cette analyse est complexifiée par la corrélation entre plusieurs de ces variables 

dans notre échantillon. Notamment, tous les patients de <40 ans présentaient une épilepsie focale 

(n = 11) ou indéterminée (n = 1), et la majorité des patients avec épilepsie généralisée montraient 

des DÉI à l’EEG (69% vs. 27% avec épilepsie focale). Il est donc difficile de départager l’effet de 

chacun de ces facteurs sur les performances. Plusieurs hypothèses peuvent tout de même être 

avancées. Les performances supérieures chez les jeunes patients pourraient s’expliquer par 

l’absence de facteurs confondants comme la polymédication ou comorbidités, plus fréquents chez 

les personnes âgées et susceptibles de masquer les marqueurs EEG de risque de crise. Concernant 

le type d'épilepsie, la meilleure performance dans l'épilepsie focale pourrait refléter des anomalies 

plus marquées du signal: 66% des patients présentaient une lésion à l'imagerie et 50% un 

ralentissement EEG anormal, contre seulement 8% et 15% respectivement dans l'épilepsie 

généralisée. Ces différences structurelles et fonctionnelles pourraient générer des signatures EEG 
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plus marquées. Tout de même, les EEG sans ralentissement étaient plus faciles à discriminer, 

suggérant que le ralentissement est un facteur confondant pour le modèle. 

Un résultat particulièrement intéressant est la performance supérieure du modèle sur les EEG sans 

anomalies épileptiformes (iAUROC: 0.78 vs 0.53). Bien que cette différence puisse partiellement 

s'expliquer par des taux de récidive différents (23% sans pointes vs. 46% avec pointes) et le type 

d’épilepsie associé (28% des EEG en épilepsie focal présentait des DÉI vs. 69% en épilepsie 

généralisée), elle suggère surtout que le modèle utilise des caractéristiques du signal distinctes des 

marqueurs épileptiformes classiques. Ceci est cohérent avec la méthode de traitement des sorties 

du modèle, qui fait la moyenne des prédictions pour tout l’EEG. Cette méthode pourrait enlever du 

poids aux patrons paroxystiques comme les DÉI et favoriser les anomalies plus constantes du 

rythme de fond. 

L'analyse des valeurs SHAP soulève plusieurs hypothèses quant aux patrons alternatifs détectés 

par EEGSurvNet. Une attention particulière semble être accordée aux régions temporales avec une 

asymétrie gauche-droite, ce qui pourrait s’expliquer par la prépondérance de l'épilepsie temporale 

dans notre cohorte (44% des cas, avec une latéralisation gauche prédominante). L’autre région 

importante est le lobe occipital. Combiné à l’importance accordée aux fréquences 6–15 Hz, ceci 

suggère que le modèle s’appuie sur le rythme postérieur dominant comme autre marqueur prédictif, 

ce qui concorde avec plusieurs travaux ayant révélé des altérations du rythme alpha chez les 

patients avec épilepsie [85], [152], [249], [250], [251]. D’autres patrons EEG de basse fréquence 

associés au risque de crise incluent le ralentissement temporal rythmique intermittent (TIRDA) 

[252] et les Paroxysmal Slow Wave Events [77], mais ces patrons sont intermittents et présents 

dans la bande 0–6 Hz, ce qui rend moins probable leur détection par le modèle. L’étude d’ablation 

souligne l’importance des longs segments, suggérant que les patrons pertinents évoluent sur une 

échelle temporelle d’une minute. Certaines trouvailles contrastent avec DeepEpilepsy, qui 

performait mieux avec des segments de 30s et s’appuyait sur les hautes fréquences (50–100 Hz) 

[214]. Cette différence dans les caractéristiques exploitées pourrait expliquer la meilleure 

robustesse d'EEGSurvNet, les fréquences 6–15 Hz étant généralement moins sensibles aux 

artéfacts [253]. 

Afin de combiner l’information clinique et l’EEG, nous avons simplement multiplié le rapport de 

risque (hazards ratio) avec le hasard prédit par le modèle profond. Cette approche a permis 
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d’améliorer légèrement les performances d’EEGSurvNet avec un iAUROC à 2 ans de 0.69 à 70. 

Cependant, elle ne permet pas d’interactions entre les deux modalités, les modèles profonds et Cox 

demeurant indépendants. L’apprentissage multimodal en EEG demeure un sujet peu exploré, 

particulièrement en épilepsie. Une revue de littérature récente [254] a identifié quatre articles en 

épilepsie combinant l’EEG à une autre modalité (EMG, spectroscopie proche infra-rouge, ECG) 

principalement pour améliorer la détection de crises d’épilepsie [255], [256], [257], [258]. Dans 

notre cas, la difficulté était de combiner des données tabulaires avec des séries temporelles. Une 

approche intéressante à envisager serait l’apprentissage auto-supervisé, qui a démontré sa 

faisabilité en maladie d’Alzheimer et en cardiologie en apprenant une représentation conjointe de 

l’IRM et des données cliniques [259], [260]. 

Cette étude comporte plusieurs limitations. Premièrement, les patients proviennent tous du même 

centre. Malgré la standardisation de l’EEG clinique, certains facteurs peuvent varier d’un centre à 

l’autre, autant en termes d’enregistrement que de pratique clinique. Par exemple, nos trouvailles 

pourraient mal se généraliser à une pratique de neurologie générale avec peu de cas d’épilepsie 

réfractaire, ou encore un centre où l’EEG ambulatoire est plus souvent utilisé que l’EEG de routine. 

Deuxièmement, le suivi clinique diffère entre les patients avec et sans épilepsie. Les patients avec 

épilepsie ont tendance à être suivi à plus long terme, ce qui affecte la probabilité de censure de 

l’analyse de survie. Afin de mitiger l’impact de ce biais, nous avons utilisé une pondération basée 

sur la censure (inverse probability of censoring weights: IPCW), mais son effet réel est difficile à 

quantifier étant donné que nos données sont issues de la pratique clinique réelle. Troisièmement, 

notre taille d’échantillon reste modeste pour les analyses par sous-groupes, pour lesquelles une 

erreur de type II ne peut être exclue. 

6.4 Prochaine étape: validation externe 

La validation externe d'EEGSurvNet est en cours en collaboration avec l'Université de 

Pennsylvanie (UPenn) et la Harvard Medical School (HMS). Ces centres disposent chacun d'un jeu 

de données d’environ 1 000 EEG avec notes cliniques correspondantes, offrant l’opportunité de 

tester la généralisabilité du modèle dans d’autres centres hospitaliers. 

La première étape, presque achevée, consiste en la standardisation des données selon le format 

BIDS [227] pour faciliter leur partage et leur analyse. Pour extraire les données de suivi clinique, 

nous utiliserons un algorithme de traitement du langage naturel développé par UPenn qui permet 
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d'identifier automatiquement le nombre de crises entre les visites cliniques dans les notes médicales 

[261]. Cette approche automatisée permettra de déterminer systématiquement soit la date de la 

première crise post-EEG, soit la date de censure pour chaque patient. 

Une fois ces données cliniques extraites, nous appliquerons EEGSurvNet aux EEG de ces cohortes 

externes. La performance du modèle sera évaluée selon les mêmes métriques que dans notre étude 

initiale: le score de Brier, l'AUROC dynamique/cumulatif et l'index C. Les analyses stratifiées 

seront également reproduites pour évaluer la consistance des patrons de performance observés dans 

notre cohorte, notamment concernant l'âge, le type d'épilepsie et la présence d'anomalies 

épileptiformes. 

6.5 Conclusion 

En conclusion, cette étude démontre la performance d’un modèle de survie profond pour prédire le 

risque de crise jusqu’à deux ans après un EEG de routine. Sa capacité à prédire le risque sur les 

EEG sans pointes renforce la suspicion de biomarqueurs neurophysiologiques invisibles à l’œil nu, 

possiblement dans les fréquences 6 à 15 Hz. Cette approche pourrait grandement améliorer le 

diagnostic et le suivi de l’épilepsie, qui sont actuellement grandement limités par le manque de 

biomarqueurs quantifiables du risque de crise. La prochaine étape sera de valider les performances 

sur des échantillons indépendants. Une collaboration est établie avec les Université de Harvard 

(Boston) et de Pennsylvanie (Philadelphie), où la collecte de données est présentement en cours. 

Par la suite, une étude prospective de ce modèle permettrait d’évaluer son utilité clinique réelle lors 

du diagnostic ou du suivi de patients avec épilepsie.



97 
 

 

CHAPITRE 7 DISCUSSION GÉNÉRALE 

Dans cette thèse, nous avons démontré l’applicabilité de l’analyse automatisée de l’EEG pour 

quantifier le risque de récidive de crise d’épilepsie. En premier lieu, nous avons exploré les 

performances diagnostiques de marqueurs computationnels décrits précédemment, appliqués à une 

cohorte de patients consécutifs ayant eu un EEG de routine au CHUM. Cette première expérience 

a démontré que ces marqueurs permettaient de distinguer les EEG de patients à haut risque de crise 

au-delà de la chance de façon statistiquement significative, mais avec des performances modestes.  

Pour améliorer la précision diagnostique, nous nous sommes ensuite tournés vers l’apprentissage 

profond afin d’augmenter la complexité de la représentation extraite du signal. Les modèles 

profonds, et plus spécifiquement les ViT dont DeepEpilepsy, ont permis d’augmenter la 

performance diagnostique comparativement aux marqueurs computationnels. Finalement, nous 

avons adapté DeepEpilepsy afin de prédire le risque de crise à travers le temps à la manière d’un 

modèle de survie. Cette approche permet de prédire une issue clinique actionnable, potentiellement 

plus pertinente comparativement au diagnostic seul. Notre modèle final, EEGSurvNet, peut prédire 

le risque de crise à travers le temps jusqu’à deux ans après un EEG de routine, mieux qu’un modèle 

basé sur les données cliniques seules. 

Comme décrit dans la revue de littérature, la majorité des travaux antérieurs sur la détection 

automatisée de l’épilepsie à l’EEG de routine porte sur des marqueurs computationnels. Ces 

marqueurs incluent des variations subtiles dans les bandes de fréquences [152], [249], [250], [262], 

une diminution de la régularité du signal et de son entropie [203], [263], ou bien des anomalies de 

connectivité fonctionnelle [88], [100], [264]. Cependant, ces changements ont souvent été détectés 

dans des études cas-contrôles, où des sujets provenant d’une certaine population (e.g., patients avec 

épilepsie) sont comparés avec des sujets d’une autre population (contrôles sains, patients avec 

crises non-épileptiques, etc.) [67]. Dans ce type d’étude, les différences entre les deux populations 

vont au-delà du diagnostic d’épilepsie et du risque de crise, et incluent les comorbidités, la 

prévalence de lésions cérébrales, la charge médicamenteuse et possiblement d’autres facteurs 

confondants non-mesurables. Ainsi, les études cas-témoins ont tendance à surévaluer les 

performances diagnostiques [170]. Dans notre cas, nous avons mis sur pied une cohorte qui 

comprend tous les patients consécutifs s’étant présentés pour un EEG de routine au CHUM et y 

ayant eu un suivi. Cette cohorte est représentative des patients chez qui nous déploierions un outil 
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d’analyse automatisée de l’EEG dans la vraie vie, et nous permet donc d’évaluer plus robustement 

les performances d’un tel outil [265]. De plus, la révision complète des dossiers médicaux de 

chaque patient avec un long suivi clinique (médiane de 2.2 ans), augmente la confiance dans les 

étiquettes utilisées pour l’apprentissage et permet des analyses stratifiées par sous-groupe. Ces 

détails méthodologiques visent à surmonter la principale limite des études précédentes : la sélection 

des sujets de l’étude [67].  

Sur cette cohorte, nous avons premièrement démontré que les marqueurs computationnels étaient 

bien capables d’identifier des différences dans l’EEG de patients avec épilepsie. Le marqueur le 

plus performant était la puissance des bandes spectrales, dont la capacité discriminative atteignait 

presque celles de tous les marqueurs combinés. Il est intéressant de noter que le modèle pouvait 

identifier les EEG des patients avec épilepsie même dans sans ralentissement anormal à la lecture 

par un neurologue, suggérant qu’un processus plus complexe est à l’origine des différences 

détectées par cette approche. Une hypothèse est celle d’une interaction pathologique entre les 

différentes bandes de fréquence [266]. En effet, les patients avec épilepsie présentent un couplage 

anormal entre les hautes et basses fréquences dans les moments précédant une crise [267], [268]. 

Bien que notre méthode ne permette pas de détecter explicitement les couplages à travers les 

fréquences, ce type d’évènement pourrait avoir une répercussion sur la puissance des bandes 

pendant l’EEG interictal [269]. La seconde catégorie de marqueurs qui atteignaient des 

performances statistiquement au-delà de la chance étaient les marqueurs non-linéaires de régularité 

du signal, incluant l’entropie et la longueur de ligne (Line Length). Dans les années 1990, 

l’application de l’analyse dynamique non-linéaire à l’EEG démontrait une organisation anormale 

du signal lors d’une crise et dans les moments qui la précédaient [270], [271], [272], [273]. D’autres 

travaux ont dénoté cette anomalie à distance des crises [80], [203], [263]. Notre premier travail 

corrobore l’hypothèse de changements dans l’entropie des patients avec épilepsie en interictal, mais 

la nature exacte de ces changements est difficile à identifier. En effet, chaque marqueur est extrait 

à plusieurs échelles temporelles et plusieurs localisations, puis est amené à interagir avec les autres 

marqueurs de façon non-linéaire. Ainsi, bien que notre travail démontre des différences dans le 

signal EEG, il ne permet pas de faire le lien avec des processus physiopathologiques précis, ce qui 

requerrait une étude dédiée. 

En utilisant les marqueurs computationnels comme entrée aux modèles, nous effectuons une forme 

de « régularisation » et contraignons la représentation de l’EEG à des changements observables, 
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ou du moins basés sur des hypothèses neurophysiologiques. En réalité, notre compréhension des 

processus générant le signal est limitée [21], [22], et dans ce contexte, l’apprentissage profond est 

très pertinent. Son utilisation permet de faire table rase sur les hypothèses qui sous-tendent les 

changements interictaux liés à l’épilepsie et au seuil convulsif, donnant (presque) carte blanche au 

modèle profond pour trouver les caractéristiques pertinentes. Le choix de l’architecture du modèle 

permet de diriger faiblement la nature des caractéristiques extraites.  

L’application de l’apprentissage profond à l’EEG a beaucoup évolué depuis les modèles 

ShallowConvNet [119] et EEGNet [118]. Ces modèles relativement simple (1.5K–300K 

paramètres) s’inspiraient d’algorithmes de traitement de signal comme le Filter Bank Common 

Spatial Patterns pour extraire des caractéristiques locales, et dont les performances de pointes 

plafonnent à une certaine taille de modèle et d’échantillon d’entraînement [122]. Plus récemment, 

les modèles SpikeNet et Score-AI, adaptés d’architecture plus modernes comme le ResNet [114] 

et DenseNet [274], ont démontré l’applicabilité de modèles plus profonds (~300K et 20M de 

paramètres) et entraînés sur de plus grandes bases de données (10K et 30K EEG) pour identifier 

des DÉI ou des périodes de ralentissement à l’EEG [103], [104]. 

DeepEpilepsy et EEGSurvNet se distinguent par une architecture hybride qui combine les 

convolutions au mécanisme d’attention du Transformeur [131], [132]. Les convolutions 

compriment efficacement le signal en intégrant rapidement l’information spatiale à courte échelle 

temporelle (0.2–1s), puis le Transformeur modélise l’information entre ces états sur des périodes 

plus longues (30s pour DeepEpilepsy, 60s pour EEGSurvNet). Cette architecture permet 

d’identifier des processus plus subtils avec dynamiques temporelles plus étendues, comme le 

démontre la performance supérieure de DeepEpilepsy comparée aux marqueurs computationnels 

et au ShallowConvNet. Bien que DeepEpilepsy surpasse aussi un CNN moderne de type ResNet 

(ConvNeXt, [116]), cette différence est probablement marginale, comme le démontrent des travaux 

en vision par ordinateur où CNN et ViT atteignent des performances similaires lorsque 

correctement optimisés [115]. Par rapport aux autres modèles profonds utilisés pour le diagnostic 

d’épilepsie, DeepEpilepsy et EEGSurvNet se distinguent aussi par leur taille. Avec 10M et 27M 

de paramètres, ils sont 300 à 9 000 fois plus grands que leurs prédécesseurs [73], [74], [87], [98]. 

Cette augmentation de complexité est contrebalancée par des méthodes de régularisation (weigth 

decay, dropout, augmentation de données) qui préviennent le surapprentissage [133]. 
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Les résultats de notre deuxième étude suggèrent que des modèles de plus grandes tailles mènent à 

des meilleures performances, avec des performances corrélées à la taille de l’échantillon 

d’entraînement. Ceci est contraire aux conclusions de Kiessner et al., qui ont identifié une 

saturation des performances entre 3 500 et 11 000 paramètres pour divers CNN sur un ensemble 

de données de 10 000 EEG classifiés comme normaux vs. anormaux [122]. Premièrement, il est 

possible que leurs architectures (basés sur EEGNet et ShallowConvNet) possèdent un biais inductif 

qui empêche d’apprendre des caractéristiques assez complexes [112]. Ceci concorde avec nos 

trouvailles, où la performance de ShallowConvNet saturait assez rapidement avec la taille 

d’entraînement. Deuxièmement, il existe une variabilité inter-observateurs non-négligeable dans 

l’interprétation d’un EEG [103], [213]. Le jeu de données utilisé comporte donc un taux d’erreur 

minimal qui est inconnu, plafonnant les performances. Ces trouvailles justifient l’investissement 

dans des infrastructures de collecte de données à grande échelle et des ressources 

computationnelles plus puissantes. Avec l’émergence de bases de données EEG en épilepsie telles 

que le Temple University Hospital EEG Corpus [123] et, plus récemment, le Harvard EEG 

Database [275], les modèles profonds prendront sûrement plus d’espace dans ce domaine. Ces 

données ouvrent la voie à des modèles encore plus ambitieux et l’application de techniques comme 

l’apprentissage auto-supervisée [276], dont l’application à l’EEG est à ses balbutiements [277], 

[278]. 

La nature exacte des patrons détectés par les modèles profonds demeure inconnue. Parmi les quatre 

études antérieures utilisant l’apprentissage profond pour détecter l’épilepsie à l’EEG, deux ont 

utilisé des techniques d’interprétabilité pour comprendre les caractéristiques extraites par les 

modèles [74], [87]. Dans Uyttenhove et al., les auteurs ont utilisé Grad-CAM pour détecter les 

segments d’EEG associés avec la classe « épilepsie », et ont démontré que le modèle avait appris 

à détecter les anomalies épileptiformes comme les pointes et les crises. Cette étude a utilisé le 

Temple University Dataset, qui comporte des EEG hautement anormaux incluant des tracés des 

soins intensifs. Dans Rijnders et al., les EEG sont présentés au CNN après extraction des matrices 

de connectivité, restreignant fortement la capacité du modèle à découvrir des patrons au sein du 

signal [87].  

Une des nouveautés des modèles présentés dans cette thèse est qu’ils utilisent le signal brut ou 

minimalement transformé. De plus, leur performance est maintenue en absence d’anomalies 

visibles. Ces modèles offrent donc une nouvelle fenêtre sur les répercussions 
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électroencéphalographiques de l’épilepsie. Pour DeepEpilepsy, notre analyse d’interprétabilité 

consistait à mesurer la variance de deux caractéristiques connues, l’entropie et la puissance de 

bande spectrale, au sein de l’espace latent appris par le modèle. Cette approche a révélé que les 

puissances des bandes de haute-fréquence avait une plus grande variance, et donc que les patrons 

détectés par le modèle y sont situés. Pour EEGSurvNet, nous avons plutôt estimé les valeurs 

Shapley [243], [244], ce qui a démontré une sensibilité du modèle à la bande thêta haute-alpha, 

ainsi qu’aux canaux temporaux et occipitaux. Ces contradictions entre les deux modèles 

s’expliquent possiblement par les changements du format d’entrée. En effet, pour EEGSurvNet, 

les données sont transformées en spectrogrammes et sont légèrement filtrées (filtre passe-haut à 

0.2 Hz et filtre Notch à 60 Hz). Ces modifications permettent possiblement de régulariser 

l’apprentissage et ont un impact positif sur les performances. Sans ces modifications, DeepEpilepsy 

était incapable de s’adapter à la tâche de l’analyse de survie, qui est plus complexe que la 

classification simple. Les hautes fréquences contiennent beaucoup d’artéfacts (surtout 

myogéniques et de contamination électrique), qui pourraient avoir confondues DeepEpilepsy. 

L’attention portée par EEGSurvNet aux fréquences 6 à 15 Hz est particulièrement intéressante car 

elle suggère une relation entre des anomalies du rythme alpha et le risque de crise, une des 

premières anomalies relevées par les analyses quantitatives de l'EEG dans les années 1940 [249]. 

La détection de l’épilepsie ou l’identification de patrons anormaux sont des issues cliniques 

pertinentes, mais la question fondamentale en épilepsie demeure le risque de crise chez un patient 

donné [2]. L’utilisation d’issue binaire (épilepsie vs. absence d’épilepsie, récidive de crise vs. 

absence de récidive) apporte plusieurs limitations. Premièrement, l’épilepsie comporte un spectre 

très large de présentation: certains patients auront des crises quotidiennes, alors que d’autres 

n’auront jamais de récidive. Deuxièmement, la prise de décision clinique ne s’arrête pas au 

diagnostic d’épilepsie; l’épilepsie est une maladie chronique avec une dynamique complexe, et une 

fois le diagnostic posé, l’ajustement du traitement passe par l’estimation du risque de crise. 

Troisièmement, par définition, les patients sans épilepsie aussi ont un risque théorique de crise, qui 

est inférieur à 60% à 4 ans [2]. Il est donc utile de modéliser ce risque théorique dans le contexte 

de la définition actuelle de l’épilepsie [2]. L’analyse de survie permet donc de réconcilier ces 

limitations en attribuant un risque à tous les patients, avec et sans épilepsie, une approche qui est 

analogue à la quantification du seuil convulsif.  
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Notre modèle final, EEGSurvNet, pourrait être déployée dans le contexte clinique et offrir une 

quantification du risque à tous les patients qui ont un EEG de routine. Ce serait ensuite au 

neurologue traitant d’intégrer cette information à la prise en charge clinique. Les impacts potentiels 

de cette information sont multiples. Premièrement, chez un patient se présentant avec une 

incertitude diagnostique (par exemple, ayant eu une crise épileptique unique ou avec épisodes 

neurologiques répétés de nature incertaine), un risque de crise prédit comme élevé pourrait mener 

à un suivi plus serré, une admission à l’unité de monitoring d’épilepsie, ou même un essai de 

médication anticrise. Au contraire, un risque prédit faible pourrait justifier une absence de suivi, 

étant donné que les patients à faibles risques n’ont que 12% de chance d’avoir une convulsion à 2 

ans. Par comparaison, sans utiliser de modèle profond, les patients avec un EEG sans anomalies 

épileptiformes et une crise non-provoquée ont un risque de récidive à 2 ans d’environ 25% [24]. 

Une autre utilité clinique potentielle est la sélection de patients pour le sevrage de médication 

anticrise. Certains patients ont un bon contrôle de l’épilepsie avec la médication, mais celle-ci 

comporte des effets secondaires nuisibles comme la somnolence, étourdissements et troubles de 

l’humeur [279]. Chez les patients sans crise depuis plus d’un an, l’échec de sevrage de la 

médication est d’environ 15–45% [174], [280]. EEGSurvNet pourrait donc s’ajouter aux outils 

cliniques existants [218], [280] pour diminuer le risque de récidive lors du sevrage. Finalement, les 

restrictions quant à la conduite automobile sont un enjeu majeur dans la qualité de vie des patients 

avec épilepsie [281]. Au Québec et ailleurs dans le monde, la réglementation quant à la conduite 

automobile est presqu’entièrement déterminée par la date de la dernière crise [239], [282]. Un outil 

plus précis, basé sur la quantification du risque de crise, pourrait améliorer la sécurité automobile 

et la qualité de vie des patients [283]. Dans tous ces cas, des études prospectives seront nécessaires 

pour évaluer l’impact réel sur la prise de décision clinique. 
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CHAPITRE 8 CONCLUSION  

L’objectif principal de cette thèse était de développer des méthodes computationnelles pour extraire 

de l’EEG des marqueurs quantifiables du risque de crise. À travers trois études complémentaires 

et appuyés par une base de données cliniques de haute qualité, nous avons progressé d’une 

classification binaire basée sur des caractéristiques prédéfinies vers une modélisation temporelle 

complexe du risque épileptique tirant avantage de l’apprentissage profond.  

La première implication de ce travail est l’établissement de nouveaux standards méthodologiques 

pour le développement d’algorithmes appliqués à l’EEG en épilepsie. Tel que démontré par notre 

revue systématique, le principal facteur qui freine la translation clinique dans ce domaine est la 

présence de biais méthodologiques dans la sélection des sujets et l’évaluation des algorithmes [67]. 

Au centre de cette thèse se situe une cohorte de patients consécutifs ayant eu un EEG de routine, 

représentant le spectre complet des patients chez qui cet examen est effectué et, ultimement, chez 

qui cette technologie serait déployée. À travers nos études, une emphase particulière est attribuée 

à la validation chez une cohorte de patients indépendants avec un décalage temporel. Malgré cela, 

la principale limitation de cette thèse est que les patients proviennent tous du même centre 

hospitalier. La validation de notre approche sur des cohortes similaires recrutés dans d’autres 

centres hospitaliers est présentement amorcée. 

L’autre implication importante est la découverte d’une nouvelle fenêtre pour investiguer la 

neurophysiologie de l’épilepsie. Les algorithmes profonds permettent une représentation du signal 

EEG distincte de celle perçue par l’analyse visuelle. Les caractéristiques captées par les modèles 

ont une échelle temporelle de l’ordre d’au moins une minute, et semblent impliquer principalement 

la bande de fréquence 6 à 15 Hz. Et plus important encore, ces marqueurs semblent être 

indépendants de la présence de décharges épileptiformes interictales. Ces patrons pourraient 

relever d’anomalies de plus haut niveau comme des altérations structurelles ou fonctionnelles de 

réseaux neuronaux, ou même des couplages entre les fréquences d’oscillation. De plus, les 

marqueurs pourraient varier selon le type d’épilepsie, de l’étiologie sous-jacente, de l’état d’éveil 

ou du nombre de médicaments. Nos trouvailles sont toutefois limitées par le nombre restreint 

d’EEG. En effet, la qualité de la représentation apprise par les ViT est corrélée avec le nombre 

d’échantillon [284], et bien que notre méthode de segmentation permette de présenter 1.7M 

segments aux modèles, ces segments ne proviennent en réalité que de 900 EEG différents. Une 
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étude approfondie de la représentation profonde sur un plus grand jeu de données pourrait mener à 

une meilleure compréhension de la physiopathologie de l’épilepsie.  

Finalement, l’implication majeure est la meilleure caractérisation du risque de crise chez les 

patients. La définition même de l’épilepsie repose sur le risque de crise, mais sa quantification est 

imprécise et fondée sur quelques éléments cliniques parfois subjectifs, telle que la certitude que les 

épisodes antérieurs constituent des crises et la présence de pointes épileptiformes à l’EEG [2]. La 

découverte de marqueurs quantifiables du risque de crise révolutionnerait la prise en charge de ces 

patients [49], [50], [157]. La certitude diagnostique serait améliorée, réduisant d’une part les délais 

diagnostiques mais surtout le surdiagnostic, dont les conséquences sont encore plus sévères [12], 

[13]. Lors du suivi, cette information permettrait un ajustement plus juste de la médication 

anticrise, une amélioration de la sécurité automobile, une référence plus précoce pour une 

évaluation chirurgicale et un sevrage plus sécuritaire des médicaments chez les patients 

sélectionnés [248]. Cette quantification du risque pourrait augmenter l’efficacité des unités de 

monitoring vidéo-EEG en présélectionnant les patients à haut risque de crise dans les prochains 

jours. Il en est de même pour les essais cliniques, qui pourraient sélectionner plus efficacement les 

patients avec un seuil convulsif abaissé. Bref, cela redéfinirait le rôle de l’EEG en épilepsie, le 

transformant en examen périodique qui offrirait une information à jour du contrôle de la maladie. 

Ces hypothèses nécessitent des études cliniques prospectives, pendant lesquelles sera évaluée 

l’interaction entre l’humain et la technologie proposée, qui sera un élément crucial de son utilité.   

À cette fin, une autre limitation importante de la thèse est que l’évaluation des modèles ne tient pas 

comptes des biais socioculturels présents dans les données. La nature rétrospective du jeu de 

données limite la quantité de variable collectée, et certaines informations comme l’origine 

ethnique, le statut socio-économique et le genre ne sont pas disponibles d’emblée dans les dossiers 

médicaux. Malheureusement, ces facteurs cliniques peuvent influencer les décisions cliniques et 

engendrer des biais dans la prise en charge des patients [285], [286], [287]. Les algorithmes 

entraînés sur ces données biaisées ont tendance à reconduire ces biais dans leurs prédictions [288]. 

Il est donc important d’incorporer un processus de reconnaissance et mitigation des biais lors du 

déploiement des modèles dans de futures études cliniques [289], [290]. 

L’EEG est un outil fondamental dans la prise en charge de l’épilepsie, mais son interprétation est 

basée sur l’analyse visuelle. L’apprentissage profond a révolutionné notre société par sa capacité à 
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modéliser des signaux complexes comme les images, le son et le langage. L’application de 

l’apprentissage profond à l’EEG est certainement une étape clé de l’évolution de la neurologie 

clinique. L’impact réel de cette nouvelle technologie dépendra d’une validation robuste et d’une 

réflexion approfondie sur l’interaction entre les humains (patients et cliniciens) et l’intelligence 

artificielle. 
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Ma contribution à cet article comprend la conception du protocole de revue systématique, 

l’encadrement de la recherche bibliographique, l'évaluation critique des articles, l'extraction et la 

synthèse des données sur les biomarqueurs EEG, l'analyse des différentes méthodes 

computationnelles, l'interprétation des résultats, ainsi que la rédaction et la révision du manuscrit. 

Cet article a été publié dans la revue Computational and Structural Biotechnology Journal 

(CSBJ) le 5 décembre 2023. 

A.1  Abstract

Background: Computational analysis of routine electroencephalogram (rEEG) could improve the 

accuracy of epilepsy diagnosis. We aim to systematically assess the diagnostic performances of 

computed biomarkers for epilepsy in individuals undergoing rEEG.  

Methods: We searched MEDLINE, EMBASE, EBM reviews, IEEE Explore and the grey literature 

for studies published between January 1961 and December 2022. We included studies reporting a 

computational method to diagnose epilepsy based on rEEG without relying on the identification of 

interictal epileptiform discharges or seizures. Diagnosis of epilepsy as per a treating physician was 

the reference standard. We assessed the risk of bias using an adapted QUADAS-2 tool. 

Results: We screened 10 166 studies, and 37 were included. The sample size ranged from 8–192 

(mean=54). The computed biomarkers were based on linear (43%), non-linear (27%), connectivity 

(38%), and convolutional neural networks (10%) models. The risk of bias was high or unclear in 
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all studies, more commonly from spectrum effect and data leakage. Diagnostic accuracy ranged 

between 64–100%. We observed high methodological heterogeneity, preventing pooling of 

accuracy measures. 

Conclusion: The current literature provides insufficient evidence to reliably assess the diagnostic 

yield of computational analysis of rEEG.  

Significance: We provide guidelines regarding patient selection, reference standard, algorithms, 

and performance validation. 

Systematic review registration: PROSPERO #292261 

A.2  Highlights 

1) There is insufficient evidence to reliably assess the diagnostic accuracy of computational 

analysis of routine EEG for epilepsy. 

2) Studies are at high risk of bias, mostly due to issues in patient selection and performance 

validation. 

3) We suggest guidelines for future studies regarding patient selection, reference standard, 

algorithms, and performance validation. 

A.3  Introduction 

Epilepsy is characterized by a chronic propensity towards epileptic seizures [2]. It is a common 

neurological condition, with an estimated period (lifetime) prevalence of 1% in the general 

population [291]. Diagnosing epilepsy poses a serious clinical challenge, with a ~20% 

misdiagnosis rate [190], [191]. A false positive diagnosis can lead to unnecessary employment and 

lifestyle restrictions, adverse effects from medications, and social stigma, often for several years 

[139]. On the contrary, a delay in diagnosis and treatment can put the patient at risk for seizure-

related injuries, road accidents, and death [5]. 

According to the International League Against Epilepsy (ILAE), the diagnosis of epilepsy requires 

at least two unprovoked epileptic seizures or a single unprovoked seizure with a risk of recurrence 

≥60% over 10 years [2]. A short term (20- to 60-minute) scalp electroencephalogram (EEG), or 

routine EEG, can support a diagnosis after a first single unprovoked seizure. Interictal epileptiform 

discharges (IEDs) on routine EEG double the risk of recurrent seizures, thus allowing a diagnosis 

of epilepsy and generally warranting antiseizure medication (ASM) therapy [2], [30], [31]. 
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While they are considered a hallmark of epilepsy, IEDs have limitations that impact the diagnostic 

utility of routine EEG for epilepsy. On the one hand, overinterpretation of EEG waveforms as IEDs 

can lead to an erroneous diagnosis of epilepsy [139]. Although the diagnosis of epilepsy is clinical 

and depends on a clear history of at least one unprovoked seizure [2], in reality, physicians often 

face an unreliable recounting of the suspected seizure event, and several paroxysmal disorders such 

as syncope can masquerade as seizures [13], [140]. In these situations, the moderate interrater 

reliability of IEDs (even among fellowship-trained neurophysiologists) can lead to epilepsy 

overdiagnosis [37], [253]. On the other hand, IEDs are elusive[10], [28]. In a systematic review of 

diagnostic accuracy studies assessing routine EEG after a first unprovoked seizure, the sensitivity 

of EEG was only 17% in adults  [30]. Computer-assisted analysis has been proposed as an 

alternative to increase the test performance of EEG. 

Several characteristics of brain activity on EEG may help identify people with epilepsy, including 

connectivity [88], [183], [292], signal predictability and complexity [184], [293], spectral power 

[151], [294], and chaoticity[295]. Discovering new, non-visible markers of epilepsy could increase 

the diagnostic yield of the EEG, improve its accessibility, and reduce costs, especially in settings 

where the expertise of a fellowship-trained neurophysiologist is unavailable [157], [296]. In spite 

of this, none of the proposed non-visible markers of epilepsy have translated into clinical practice 

[2], [31], [52], [53], [157]. Several narrative reviews have described potential biomarkers and EEG 

processing techniques [32], [297], [298], but there lacks a systematic review evaluating the 

population and methodological quality of these studies, and summarizing the diagnostic 

performance of these tools. 

We performed a systematic review of diagnostic test accuracy of computational biomarkers (other 

than IEDs or electrographic seizures) extracted from routine EEG for the diagnosis of epilepsy.  

A.4  Methods 

We complied with our published protocol to conduct this study [68]. 

A.4.1  Study design 

This study follows guidance from the Cochrane Diagnostic Test Accuracy group. We follow 

reporting standards set forth by the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses statement for diagnostic test accuracy (PRISMA-DTA) [299]. We considered studies in 
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all languages published after 1961 (the first use of digital EEG [300]) up to the last review update 

(December 2022).  

A.4.2  Study selection criteria 

Type of studies 

We included retrospective or prospective diagnostic studies comparing at least one computed 

biomarker for the diagnosis of epilepsy on <24h scalp EEG (either in the inpatient or outpatient 

setting) between people with and without epilepsy that did not explicitly rely on the identification 

of IEDs or ictal activity (seizures). We excluded studies without human participants, studies that 

used long-term (>24 hours), intracranial, or critical care recordings, studies that focused solely on 

seizure/spike detection or on short-term (<24h) seizure prediction, as well as studies that did not 

include both individuals with and without epilepsy. For studies that included multiple EEG 

recoding settings (e.g., routine and critical care settings) and electrode location (e.g., both surface 

and intracranial), we only extracted data that met the inclusion criteria.  

Population 

Our population of interest was individuals undergoing routine EEG in a clinical or research setting. 

We did not restrict the population to patients undergoing EEG after a first unprovoked seizure. 

Routine EEG was defined as a <24h scalp recording using the international 10–20 electrodes 

system, with or without prior sleep deprivation. There was no restriction on age, medication use, 

or comorbidities. 

Reference standard 

We defined the reference standard as the diagnosis of epilepsy, as determined by a physician, based 

on criteria specified by the study authors (clinical or para-clinical), so long as those criteria 

respected the definition of epilepsy by the International League Against Epilepsy (i.e., had at least 

one seizure and long-term enduring predisposition to other unprovoked seizures) [2], [3]. 

Alternative definitions (which do not rely on the presence of at least one seizure) were accepted 

for the qualitative analysis but excluded from meta-analyses. 

Index test 
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The index test is a characteristic or feature that is computationally extracted from the EEG signal 

to identify patients with epilepsy, without relying on the detection of IEDs or seizures. These 

include measures of connectivity, entropy, chaoticity, and power spectrum density[301], as well as 

statistical models that combine several features or models that directly use the raw EEG signal as 

their input. We included studies that computed the biomarkers from the same EEG used to diagnose 

epilepsy, although this was considered in the evaluation of the risk of bias (see Risk of Bias). 

A.4.3  Search strategy 

The search strategy (Appendix 1) was developed by two medical librarians specialized in 

knowledge synthesis (BN and RP). We searched MEDLINE (Ovid), EMBASE (Ovid), EBM 

reviews (Ovid), IEEE Explore along with grey literature (see Appendix 1 for details) for articles, 

conference papers and conference abstracts published between December 1961 and December 

2022. We used the Covidence platform (Melbourne, Australia) to manage study selection and data 

collection. Two independent, mutually blinded reviewers (EL, and either JNB or BR) screened the 

records for eligibility by title and abstract. Any item deemed relevant by any reviewer was 

independently assessed for final inclusion from its full text by the same reviewers. Conflicts 

regarding inclusion were resolved by consensus. 

A.4.4  Data collection 

Two independent reviewers (EL and OG) extracted pre-specified data while blinded to the verdict 

of the other reviewer using a custom extraction form tested on the first five articles. Any conflicting 

data were re-assessed and resolved by consensus. Corresponding authors were contacted through 

their electronic address if data of interest were not available in the original publication. Data 

collection included the following information: 1) Title, authors, country of sampling, year of 

publication; 2) Study type (retrospective vs. prospective, design); 3) Study sample 

(inclusion/exclusion criteria, number of screened/included patients); 4) Data collection (number of 

patients and EEGs, duration of EEGs, recording protocol, participants characteristics); 5) 

Reference standard (definition, application to all patients, time-lapse with EEG); 6) Index test 

(preprocessing, segment selection, feature extraction and selection, classification algorithm and 

methodology, reporting of performance); and 7) Measurements of diagnostic test validity (e.g., 

accuracy, sensitivity, specificity). These items are further detailed in the pre-published 

protocol[68]. 
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A.4.5  Study reproducibility 

Two independent reviewers (EL and OG) assessed study reproducibility. A study was judged 

reproducible when, given access to the data, the processing methodology and machine learning 

(ML) methods were sufficiently detailed such that the experiment could be fully reproduced. More 

specifically, the following items were assessed: objective criteria for selection of EEG segments, 

code and data availability, and reporting of key methodological details (preprocessing [filtering, 

channel selection, artifact detection and removal, segmentation], ML optimization [feature 

extraction and selection, choice of ML model, hyperparameter tuning], and ML evaluation).  

A.4.6  Risk of bias 

The risk of bias of all included studies was assessed through a version of the QUADAS-2 tool 

adapted for the characteristics of this review [68], [99]. Two independent and mutually blinded 

reviewers (EL and OG) assessed the risk of bias for each of the following four elements as low, 

high, or unclear: 1) Patient selection (representativeness of clinical practice, identical 

inclusion/exclusion criteria for all participants, exclusion of individual EEG/EEG segments); 2) 

Index test (identical EEG protocols for all patients, validation of the index test on an independent 

sample); 3) Reference standard (specified criteria for the diagnosis of epilepsy, independence of 

the diagnosis to the index test); and 4) Flow and timing (whether the whole sample underwent the 

same reference standard, timing between index test and epilepsy diagnosis, exclusion of EEG or 

EEG segments during the evaluation). Any conflicting interpretations were resolved by consensus. 

These criteria are further detailed in the pre-published protocol [68]. 

A.4.7  Data synthesis 

We planned to report the pooled sensitivity and specificity estimates for studies providing the 

number of true/false positives/negatives, and the area under the receiver operating characteristic 

curve (AUROC) for studies that provided a varying threshold. We planned a meta-analysis of 

diagnostic performances, a quantitative assessment of heterogeneity, and subgroup analyses [68]. 

However, due to excessive methodological heterogeneity among included studies, we concluded a 

meta-analysis would not help interpret our results and decided to report a qualitative assessment 

only (see Results: Risk of bias and applicability). 

A.4.8  Quality of evidence 
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The quality of evidence for the primary outcome was evaluated by two authors (EL and OM) based 

on the GRADE criteria for diagnostic test accuracy [302], recognizing that the GRADE approach 

is designed for pooled estimates. Data from cross-sectional or cohort study which included patients 

with diagnostic uncertainty for epilepsy started at “high quality”, while data from other 

observational designs started at “low quality”. We downgraded the evidence by one level for high 

risk of bias, indirectness, inconsistency, imprecision, and high probability of publication bias, and 

we upgraded the quality by one level for large effect size. 

A.5  Results

A.5.1  Study selection

The study selection flow diagram is presented in Figure A.1. Our initial search yielded 10 166 

items. After removal of duplicates, title and abstract screening, and full text review, we included 

37 studies. The most common reasons for exclusion pertained to study outcome (e.g., seizure or 

interictal spike detection) in 164 studies (45% of final exclusions), study design (e.g., no diagnostic 

accuracy testing) in 97 studies (27%), and EEG type (e.g., intracranial, critical care, or long-term 

monitoring) in 67 studies (19%).  

A.5.2  Study characteristics

We describe included studies in Table A.1. The sample size ranged from 8 to 192 (mean=54.4; 

Figure A.2), while only six studies (16%) included ≥100 subjects[69], [77], [97], [303], [304], 

[305]. Years of publication ranged from 2001 to 2022; twelve studies (32%) were published after 

2020. Most studies included both children (i.e., aged <=18 years old; n=18; 49%) and adults, 

whereas 11 studies (30%) only included children[70], [71], [72], [82], [83], [90], [91], [92], [98], 

[184], [306] and eight (22%) only included adults[69], [77], [85], [86], [96], [97], [182], [303]. 

Twenty-four studies (65%) included any type of epilepsy, whereas seven studies (19%) only 

included generalized epilepsy[80], [83], [86], [88], [89], [93], [184] and six (16%) only included 

focal epilepsy[85], [95], [96], [182], [303], [307]. Type of epilepsy, however, was not available in 

thirteen studies (35%). Five studies (14%) only included patients with electro-clinical syndromes 

(absence epilepsy[83], idiopathic generalized epilepsies[80], [88], [93], epileptic encephalopathy 

with spike-wave activation in sleep[82]).  
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Thirteen studies (35%) provided a definition for the reference standard (diagnosis of epilepsy)[69], 

[72], [73], [74], [77], [83], [86], [87], [88], [94], [97], [184], [305]. In seven studies (19%), the 

diagnosis was based on a history of two or more seizures, or one seizure with abnormal 

neuroimaging or IED on EEG[69], [72], [77], [86], [98], [184], [305]. Three studies (8%) based 

the diagnosis of epilepsy on EEG features only[83], [88], [94], and three based the diagnosis on 

the EEG report mentioning a diagnosis of epilepsy[73], [74], [87]. The index tests are described in 

the section Signal processing and machine learning, and the computational biomarkers that were 

used are listed in Table A.2. 

Three public datasets were used by five of the included studies (14%). Three studies used the 

Temple University Hospital (TUH) EEG dataset (“Epilepsy corpus”), with different sets of 

inclusion and exclusion criteria, resulting in sample sizes of 40–60 patients (for one study, the final 

sample size was not available)[73], [74], [87]. One study used the Emotiv dataset, a case-control 

dataset with 97 subjects recorded with an Emotiv low-cost scalp EEG helmet[81]. One study used 

the LEMON EEG dataset for the control group only[303]. 

A.5.3  Risk of bias and applicability 

Risk of bias was high or unclear in at least two domains for all studies (Figure A.3Figur). The final 

consensus for each study and the description of the assessments are provided as supplementary 

materials (Figure S1 and Table S2).  For patient selection, no study had a low risk of bias. The 

most common reason for a high risk of bias in this domain was the use of distinct inclusion and 

exclusion criteria for subjects with and without epilepsy (e.g., patients with a diagnosis of epilepsy 

undergoing presurgical evaluation for cases, and healthy individuals for controls). Other reasons 

were the exclusion of patients without proper justification, and a study population that was not 

representative of clinical practice. For the index test, two studies had a low risk of bias[74], [98]. 

High risk of bias in this domain was frequently attributed to failure to validate the index test on an 

independent sample of patients. In four cases (11%), the EEG recording protocol or setting was 

different for cases and controls[86], [88], [94], [303]. For the reference standard domain, nine 

studies (24%) had a low risk of bias[69], [72], [77], [83], [86], [88], [97, p. 202], [184], [305]. A 

common reason for a high risk of bias included failure to provide a definition for the reference 

standard. Finally, for the flow and timing domain, two studies had a low risk of bias[74], [94]. For 

most studies, the risk of bias was unclear because of an unspecified reference standard. Eight 
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studies (22%) had a high risk of bias in this last domain because they used a different reference 

standard for cases and controls. 

A.5.4  Results of individual studies 

Reports of performances for individual studies must be interpreted in the context of high risk of 

bias in several domains. Diagnostic performances are reported in Table A.3. The diagnostic 

accuracy ranged from 64% to 100%. Three studies (8%) provided a measure of statistical precision 

on their diagnostic performance metrics[92], [96], [305]. In the absence of pooled estimates, we 

assessed applicable GRADE criteria. The evidence quality was judged very low, starting at “low” 

for the study design and downgraded for high risk of bias, inconsistency (high variability in 

reported accuracy), and indirectness of evidence (differences between the studied and target 

populations). Publication bias and imprecision were omitted, as only three studies reported 

statistical precision.   

We analysed how performance was impacted by study size and risk of bias (Figure S2). Sample 

size did not correlate with diagnostic performance. There was no clear trend towards inflated 

performances for studies at high risk of bias in any of the QUADAS-2 domains although no study 

had low risk of bias for the Patient selection domain. The inter-test variability was smaller for 

AUROC than for accuracy. There was a visible trend towards reduced inter-test variability among 

studies with low risk-of-bias in the Index test (Accuracy and AUROC), Reference standard 

(AUROC only), and Flow and timing (AUROC only) domains. 

A.6  EEG processing and machine learning methods 

EEG processing methods for each study are described in Table A.2. Some technical terms related 

to EEG processing and machine learning are further defined in Table A.4Table. 

A.6.1  EEG recording  

The range of EEG recording times was 12 seconds to 3 hours (median: 20 minutes, interquartile 

range [IQR]: 5–25 minutes). The median number of electrodes was 19 (IQR: 19–20.5).  In studies 

reporting EEG montage, 21 (58%) used a referential, and four (11%) used a bipolar montage. 

Sampling frequency ranged from 114 Hz to 512 Hz, with two studies using frequencies above 1000 

Hz (2500[303] and 5000 Hz[182]). The most common sampling frequencies were either 256 Hz or 

250 Hz (n=21, 58%).  
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A.6.2  Segmentation and handling of artifact 

Thirty-six of the 37 studies (97%) segmented EEG recordings before analysis. Twenty-three 

studies (62%) performed manual selection of the EEG segments, most according to pre-specified 

criteria such as absence of artifacts or absence of ictal activity. The duration of individual EEG 

segments ranged between 1 and 240 seconds (median=11, IQR: 8–32). One study used the whole, 

non-segmented EEG for classification[77]. 

Ten studies (27%) performed artifact detection and rejection, most of which used independent 

component analysis (ICA, Table A.3)[87], [89], [91], [97], [182], [303], [304]. Another approach 

was to remove outlier segments based on amplitude[80], [182]. Twenty studies (54%) identified 

artefactual segments visually from the recordings. No study evaluated the inter-rater reliability of 

manual selection nor its effect on diagnostic performances. 

A.6.3  Computational biomarkers of epilepsy 

The computational biomarkers extracted from the EEG signal can be broadly categorized into the 

following categories: linear, non-linear, connectivity, and deep learning (Table A.2 and Table A.3). 

Here, we describe in more detail which features were used in the individual studies. Estimation of 

the diagnostic accuracy of each individual feature, along with comparison between features, was 

deemed uninformative due to high risk of bias. 

Linear 

The relative spectral powers of delta (≤4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–40 Hz), 

and gamma (≥ 40 Hz) bands were used in seven studies[69], [70], [71], [72], [73], [74], [75]. Two 

studies compared alpha sub-bands (6–9 Hz vs. 8–13 Hz and 7.5–10.5 Hz vs. 10.5–13.5 Hz)[88], 

[303]. These studies used several methods to extract the power spectral density, including Fast-

Fourier transform[70], [71], [75], [303] and an autoregressive model[72]. In all but two studies[78], 

[88], relative band power was a useful discriminant between groups. Besides estimating power 

spectral density, autoregressive models can be used to quantify the stationarity of a signal by 

computing its prediction errors[308], and autocorrelation functions provide a similar information. 

The linear methods for quantifying stationarity did not show consistent results across studies[79], 

[184], [308]. Hjorth parameters quantify higher-order statistical moments of the signal in both the 
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time- and frequency-domains[76]. They were extracted in two studies and seemed 

discriminant[71], [75].  

Zelig et al. (2022) extracted Paroxysmal Slow Wave Events (PSWE), defined as 2-second EEG 

windows with a median peak frequency of < 6 Hz. In a cohort of 70 patients presenting after a first 

seizure, the rate of PSWE in the first routine EEG could predict the diagnosis of epilepsy at 18-

month with an AUROC of 0.72, regardless of ASM. 

Non-linear 

Entropy was the most common feature explored for the automated diagnosis of epilepsy. Several 

algorithms have been developed to estimate entropy from finite physiological time-series. In the 

selected studies, Shannon[78], [79], Spectral[78], [80], Approximate[79], [81], Permutation[82], 

Sample (multiscale)[82], [83], Fuzzy[84], and Renyi entropy[78] were used. In some cases, entropy 

was computed after processing the signal in different frequency bands, either with wavelet 

decomposition[78] or using a coarse-graining procedure[83], allowing to estimate its value across 

different timescales. 

Other nonlinear features included fractal dimensions (using Higuchi’s, Katz’, and Petrosian’s 

algorithms)[75], [78], Hurst index (or exponent)[79], zero-crossing interval analysis[85], 

recurrence quantitative analysis[83], characteristic response analysis (a model of the dynamics of 

the covariance matrix through time)[305], the bispectrum magnitude (variance and average)[84], 

periodicity[79], and Kolmogorov complexity[81].  

Connectivity and topographical markers 

All but one[96] of the 14 connectivity studies used a sensor-based connectivity analysis[69], [78], 

[81], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95]. The connectivity measure varied widely 

across studies (Table A.2). A challenge of connectivity estimation is that some sensors may be 

spuriously connected due to a common underlying source or because of scalp conduction. When 

these spurious connections occur, the two sensors are phase-aligned (zero-lag), while a “true” 

communication between brain regions has a small time lag[309]. Therefore, one technique is to use 

a connectivity measure that accounts for this time lag, which four studies used: lagged 

correlation[93], lagged coherence[96], Granger’s causality[87], and transfer entropy[97]. Another 

approach reported in two studies was a model of interactions between brain regions based on the 
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Kuramoto oscillator to calculate parameters that could embody the seizure-generating capacity of 

the network[88], [93]. Each study analysed the connectivity across several frequency bands. 

Once the connectivity matrix is estimated for each frequency band, the studies either directly used 

the matrix as input into a classification scheme[87], [94], [95] or calculated higher-order features 

that describe the topology of the underlying network (Table A.2). The discriminative power of each 

feature was not consistent across studies. Only network efficiency (the average of the shortest path 

between pairs of nodes) was higher in people without epilepsy in the three studies in which it was 

analyzed[89], [96], [97]. Overall, the discriminative power of the network features was highly 

dependent on hyperparameters[91], [97], frequency band[69], [86], [87], [96], and localization[86], 

[87], with conflicting results between studies. None of the studies performed statistical testing to 

test the robustness of the estimated network or check it against a random network[310]. 

Microstates analysis was reported in two studies. Although this analysis can be applied to different 

frequency bands independently, one study found that microstates features were only discriminant 

in the beta band[78]. 

Deep learning 

Four studies used deep learning (DL) models, specifically convolutional neural networks 

(CNN)[73], [74], [87], [98]. Two studies performed significant preprocessing on the input signal: 

one pre-transformed the EEG into connectivity matrices based on Granger causality (6x6–24x24 

images)[87] and the other into power spectral density plots (32x32 images)[73]. The other two 

studies input the raw EEG data (18 channels x 2s and 19 channels x 10s, both 256 Hz), with minimal 

processing (band pass and notch filtering)[74], [98]. The number of layers in the CNNs ranged 

from one convolution layer to three blocks of two convolution layers. The number of parameters 

was not available, but was estimated from figures to range from ~2 960[87] to ~92 000.[98] 

The number of recordings used for optimization in those four studies was 48, 32, < 252, and < 1 

648 (estimated from figures for the last two studies). When training curves were provided, they 

revealed overfitting on the training data (i.e., no decrease in loss on the validation set). No study 

used pre-training nor data augmentation.  
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Optimization algorithms included Stochastic gradient descent, Adaptive moment estimation 

(ADAM), and Root Mean Squared Propagation (RMSProp). Only one study used regularization 

(L2-regularization with dropout) [74].  

Comparison between feature extraction approaches 

Figure A.4 depicts AUROC and accuracy for the eight studies that did not show data leakage 

(sharing of information between training and testing set; see section 4.4.3). Tests based on 

connectivity markers showed high variability in AUROC and accuracy compared to univariate 

features with no feature extraction. This finding could reflect the heterogeneous data processing 

related to connectivity analyses. Among these eight studies, only one investigated connectivity and 

non-linear features across  various frequency bands.[78] This study indicated a tendency for 

improved accuracy when using features extracted from the beta band (Katz’s fractal dimension, 

Shannon entropy, Spectral entropy, Renyi entropy, and microstates features). When assessing all 

37 studies, the most performant band varied between the delta,[77] theta,[85], [90] alpha,[72], [90], 

[93] and beta[78], [86] bands. 

A.6.4  Machine learning methods 

Thirty of 37 studies (81%) used machine learning to map the extracted features to epilepsy 

diagnosis. The remaining studies used a receiver operating characteristic (ROC) curve or simple 

thresholding based on a single, continuous biomarker value[77], [80], [85], [88], [93], [96], [305]. 

Supplementary Table S1 summarizes machine learning approaches in included studies. 

Algorithms 

The support vector machine (SVM) was the most popular across all studies (n=10, 27%)[71], [73], 

[74], [78], [83], [84], [94], [95], [97], [303]. Studies mainly used radial basis function kernels and 

polynomial kernels. In some cases, the SVM was directly applied to the pairwise connectivity 

measures[94], [95]. 

Multilayer perceptrons were also widely used (n=7, 19%)[71], [75], [78], [79], [81], [82], [304]. 

Four studies (11%) used convolutional neural networks (discussed in the previous section)[73], 

[74], [87], [98]. Regression algorithm included logistic regression (n=6, 16%)[69], [73], [89], 

[182], [184], [303], and linear discriminant analysis (n=3, 8%)[72], [182], [184], often combined 

with regularization to put a constraint on the value of the parameters and reduce overfitting. Other 
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classifiers included K-nearest-neighbors (n=5, 14%)[78], [86], [91], [92], [306], gaussian mixture 

models or naïve bayes with gaussian kernel[90], [303], random forest or other decision trees[74], 

[78], and gradient boosting[78], [184]. 

Six studies (16%) compared classifiers to one-another[71], [73], [74], [78], [184], [303]. In Ahmadi 

et al. (2020), SVM (linear and radial basis function [RBF] kernels) seemed superior to gradient 

boosting, decision trees, and random forest across experiments. In Varatharajah et al. (2020), both 

regularized logistic regression and naïve bayes had superior performances over SVM (RBF kernel). 

In these two studies, classifiers were trained on extracted features and not on the raw, EEG time 

series. Uyttenhove et al. (2020) compared CNNs trained on the preprocessed windowed EEG signal 

to an SVM and a random forest trained on the band powers of delta and alpha sub-bands (1.5–2Hz, 

10.5–11Hz, 11–11.5Hz, and 11.5–12Hz). They showed that CNNs had higher performance when 

tested on the TUH Epilepsy Corpus. For each of these studies, there were few details on the 

hyperparameter optimization of each model, which could have significantly affected the final 

performances. 

Performance evaluation 

The most common method for evaluating classification performances was K-fold cross-validation 

(CV, with K = 5 or 10), used in 10 studies (27%)[78], [81], [82], [83], [86], [87], [89], [95], [97], 

[98], [182]. A common variation was leave-one-out (or leave-one-pair-out) CV (n=8, 22%)[72], 

[75], [78], [85], [88], [94], [182], [303]. Repeated or nested-CV was used in five studies (14%)[71], 

[86], [98], [184], [303]. A potential advantage of CV or repeated testing is that they evaluate the 

variance of the performances across different partitions of the data. However, none of the studies 

that performed CV or repeated testing reported the variance of the estimated performances[74], 

[92], [96], [184]. 

One common culprit for data leakage was to train the classification algorithm on epochs from one 

EEG recording, and then evaluate it on different epochs from the same EEG. This could be 

prevented by grouping together epochs from a single subject into the same data subset. This was 

done in eight studies (22%)[72], [74], [78], [86], [88], [94], [98], [303]. 

In five studies (14%), the authors evaluated performances in a dedicated testing set[71], [74], [84], 

[184], [307]. However, this prevented data leakage in only two of these studies (see next 
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section)[74], [307]. For the remaining studies, performances were either tested directly on the 

training data or were not detailed. 

Data leakage and train-test loops 

Eight studies (22%) did not present data leakage for at least one classification pipeline[74], [78], 

[85], [88], [94], [98], [303], [307]. In machine learning, data leakage refers to the unintentional 

sharing of information from the testing set to the training set, resulting in over-optimistic validation 

performances. Data leakage occurred at different stages of the processing pipeline: feature 

extraction[72], [78], [84], [97], [182], [305], [308], feature selection[69], [72], [73], [79], [80], 

[83], [84], [85], [86], [88], [89], [96], [182], [304], [306], and model training and evaluation[69], 

[72], [74], [77], [78], [86], [88], [90], [92], [93], [94], [96], [98], [303], [304], [305], [306], [308]. 

Figure A.5 illustrates the most common examples of data leakage. For feature extraction, data 

leakage occurred when the computation of features required a model to be fitted to the whole 

dataset, which, for these studies, included samples from the testing set (Figure A.5FigureB). 

Feature selection caused data leakage in all studies that performed it (Figure A.5FigureC)[69], [72], 

[73], [79], [80], [83], [84], [85], [86], [88], [89], [96], [182], [304], [306]. Eight studies (22%) 

reported grouping samples from the same patients in the same set (training or evaluation), avoiding 

data leakage that would have occurred by training on epochs from one EEG and testing on different 

epochs from the same EEG (Figure A.5FigureE)[72], [74], [78], [86], [88], [94], [98], [303]. Ten 

studies (27%) did not use any external validation method when assessing diagnostic 

performance[69], [77], [90], [92], [93], [96], [304], [305], [306], [308]. 

Study reproducibility 

Six studies (16%) were judged reproducible[80], [83], [86], [93], [98], [184]. The following 

elements were the most frequently unspecified or poorly specified in studies judged as not 

reproducible: hyperparameter tuning (n=16, 43%), EEG segmentation (n=16, 43%), model 

evaluation (n=9, 24%), feature extraction (n=9, 24%), and handling of artifacts (n=9, 24%). 

In addition, only three studies (8%) did not involve manual selection of EEG segments[77], [94], 

[95]. Two studies (5%) provided a certain access to parts of the computer code used for the 

analysis[87], [93]. Four studies (10%) used publicly available data[73], [74], [81], [87]. 

Comparison between machine learning approaches 
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A comparison of the different machine learning models for the eight studies with no data leakage 

is shown in Figure A.4B. When looking at individual studies, we observed a trend towards higher 

performances for simpler models in two studies (logistic regression, decision trees),[78], [303] 

although the magnitude of this difference in accuracies was not reported. 

Across all eight studies, deep learning did not clearly show higher performances. However, a direct 

comparison between deep learning and traditional ML was done in only one study.[74]  This study 

used two different CNN architectures: EEGNet[118], with one split convolution layer (~1 000 

parameters) and tiny-VGG (t-VGG)[311], a compact version of the Visual Geometry Group (VGG) 

architecture with 3 blocks of 2 convolution layers (~21 000 parameters)[74]. They showed that the 

t-VGG had superior performance for the diagnosis of epilepsy. Few details, however, were 

provided regarding the training hyperparameters of EEGNet in their study, while they used heavy 

regularization during the training of t-VGG. In another study, increasing the overlap percentage 

during segmentation improved performances of CNN, which may be related to the increased size 

of the training sample with larger overlap (6,000 vs. 11,960 samples).[98] A rule-of-thumb for 

determining the sample size requirement of a deep neural network is to use 50 training data points 

per parameter.[312] In the four deep learning studies, the number of parameters were 

approximately 33,100,[74] 92,000,[98] 2,900,[87] and 19,700[73] (estimations based on study 

texts). Thus, we estimate that the number of data points represented 7.2%,[74] 0.3%,[98] 

0.04%[87], and 0.004%[73] of the sample recommended sample size.[312] 

A.7  Discussion 

We performed a systematic review of studies reporting computational biomarkers of routine EEG 

to assess their diagnostic performance for epilepsy.  We screened 10 166 studies and included 37 

studies, the largest of which had 192 subjects. The included studies reported biomarkers used to 

classify epilepsy based on linear (43%), non-linear (27%), connectivity (38%), and convolutional 

neural network (10%) models. Although reported accuracy measures were often high (up to 100%), 

methodological issues such as spectrum effects and data leakage were ubiquitous and limit the 

interpretation of these estimates. Therefore, despite several studies published in the last 20 years, 

the diagnostic performance of computational analysis of routine EEG remains unclear. 

The discovery of new reliable interictal markers of epilepsy from routine EEG would significantly 

impact the approach to the diagnosis of epilepsy[157]. While routine EEG plays an important part 
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in the classification of epilepsy types and identification of epilepsy syndromes, its role in the 

diagnosis of epilepsy is mostly restricted to capturing IEDs in patients presenting after a first 

unprovoked seizure[31], [173]. Because of the sporadic nature of IEDs, their absence cannot rule 

out a diagnosis of epilepsy (sensitivity), and thus their use as diagnostic biomarkers is limited[30], 

[31]. In addition, because of their resemblance with other physiological sharply contoured 

waveforms, overreliance on IEDs can lead to the misdiagnosis of epilepsy (specificity)[37], [253]. 

The rate of misdiagnosis in epilepsy in the community is estimated to be around 20%[190], [191]. 

Erroneous diagnoses carry unnecessary and harmful consequences such as stigma, adverse effects 

from medication, and lifestyle or employment restrictions[140]. Alternative biomarkers could 

counterweight the limitations of traditional EEG interpretation, potentially accelerating the 

diagnosis of epilepsy while reducing the burden of over-diagnosis[139]. Several modalities have 

been proposed as a source of diagnostic and prognostic biomarkers for epilepsy, including 

neuroimaging, body fluids (blood, cerebrospinal fluid), and metabolic imaging[157]. Compared to 

these modalities, EEG is inexpensive, technically easy to acquire, and confers functional 

information with high temporal resolution[64], [65]. Moreover, great effort was put in recent years 

to standardize the acquisition and storage of routine EEG data[193], [227]. For these reasons, EEG 

is an invaluable candidate in the search of new interictal markers of seizure risk[157]. 

We observed a high risk of bias in all included studies. Patient selection might have inflated 

diagnostic performances reported in most studies especially owing to adopting a “case-control” 

type of study design.[170], [171] In case-control diagnostic studies, the diagnostic test aims to 

identify cases (patients with epilepsy) and controls (patients without epilepsy), where both groups 

are drawn from separate populations (e.g., patients undergoing presurgical evaluation vs. patients 

evaluated for headaches). Many clinical conditions affect the EEG signal, such as psychiatric 

diseases, brain lesions, cognitive disorders, medication, and age[31], [178], [179], [313], [314], 

[315]; failure to account for systematic differences in these comorbidities between cases and 

controls can result in spectrum effects. This can largely inflate performances of diagnostic test 

accuracy studies. In this review, the impact of patient selection could not be measured because no 

studies showed low risk of bias in this domain. The better way to perform patient selection in 

diagnostic test accuracy studies is to use a consecutive sample of participants respecting common 

selection criteria (e.g., consecutive patients presenting to the emergency department after a first 

seizure)[316]. This second option tends to better replicate the scenario where the test will be applied 
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when deployed in real-life[172]. The need for more robust patient selection methodology is echoed 

in other recent systematic reviews on the use of machine learning in healthcare[317], [318], [319]. 

Validation of the biomarkers’ performances was another important issue in the evaluation of the 

risk of bias. Only 22% of the studies did not exhibit data leakage during training and classification. 

Data leakage occurs when a sample in the evaluation set is used to optimize the classification 

method[320]. This can happen when the features are computed (feature extraction), when the most 

discriminative features are selected (feature selection), during the selection of hyperparameters 

(model tuning), or during the optimization of the classification algorithm (model training) (Error! 

Reference source not found.)[321]. Classification algorithms frequently require setting specific 

hyperparameters that control the flexibility of the model and its capacity to fit a particular dataset; 

the selection of these hyperparameters was largely unreported and can bias accuracy measures 

upwards [163]. Robust model selection and hyper-parameter tuning do not involve the testing data, 

an important principle when evaluating clinical predictive algorithms[163], [322]. The studies with 

low risk of bias in the Index test domain demonstrated smaller inter-test variability. This may 

highlight the impact of avoiding data leakage on a more precise estimation of diagnostic 

performance for a given population.[172] However, this estimate may not be generalizable to real-

world scenarios depending on the selection criteria used for the study population.     

We reported the methods used for processing the EEG signal and predicting the diagnosis, 

including pre-processing techniques, algorithms for feature extraction, and classification models. 

A widespread limitation of the EEG processing was the manual selection of artifact-free segments 

in 54% of studies, without quantifying the effect of this operation on downstream performances, 

introducing a potential source of bias. Ideally, the processing pipeline should be fully automated 

and identical for all patients, including artifact detection and segmentation (for example, see [159], 

[323]). Because of its relatively low signal-to-noise ratio, EEG data is subject to high variability 

induced by the recording setting, apparel, and even patient-related characteristics (e.g., hair, muscle 

activation, eye movements).[324], [325], [326] In future studies, large-scale initiatives integrating 

rEEG recordings from multiple centers along with a more widespread use of ambulatory EEG as a 

diagnostic tool in patients with first unprovoked seizures[327] will likely amplify this challenge. 

Automated methods for artifact detection and rejection based on deep neural networks are 

promising alternatives to manual identification,[328], [329], [330] but their capacity to increase 

downstream performances remains unclear.[331] 
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EEGs were segmented into short epochs (typically ≤1 minute) in almost all studies. As a result, the 

longer-term dynamics of the computational markers were unexplored. The diagnosis of epilepsy 

relates to a chronically higher propensity to seizure, yet the markers that are evaluated operate on 

the millisecond-second timescale. Some models of interictal-ictal transition derived from 

intracranial EEG suggest that there may exist a slowly fluctuating state that embodies the seizure 

threshold[332], an observation replicated in studies of chronic EEG[47]. Taking these slower 

dynamics into account could improve the accuracy of seizure propensity assessment on routine 

EEG. 

We could not perform a reliable comparison of the wide range of potential computational 

biomarkers explored in included studies. It is uncertain whether the studied biomarkers truly 

represent seizure propensity or are instead a proxy of other conditions that are more prevalent in 

people with epilepsy, such as ASM therapy and brain lesions. Several markers such as band power 

were highly discriminant in some studies[70], [72], [303], but not better than chance in others[78], 

[88]. Most studies evaluated a wide range of features over several frequency bands on a small group 

of patients, without assessing the variance of the results or using robust model evaluation 

techniques. In particular, connectivity features were impacted by a low robustness to 

hyperparameters, which was directly demonstrated in two of the included studies[91], [97]. 

Statistical validation of network models could help characterize the usefulness of connectivity 

analysis in future studies[333], [334]. As shown in Figure A.4Figure, methods that take the raw 

EEG data as input and do not rely on feature extraction may be more robust to the variability 

introduced by processing parameters and potentially generalize better to external data. 

The SVM was the most popular classification algorithm. In a study on the performance of several 

model architectures for tabular data, ensembles of decision trees (XGBoost, LightGBM, and 

CatBoost) significantly outperformed deep neural networks and other architectures[335]. This 

category of machine learning models (initially published in 2016)[336] was used in only two 

studies (outperforming other models in only one)[78], [184]. An ensemble of decision trees have a 

high complexity and, without proper hyperparameter tuning and regularization, can easily overfit 

small datasets, which could explain this discrepancy[336]. For smaller datasets, regularized logistic 

regression and SVM, which have very few hyperparameters, might be preferable. For complex 

input such as raw EEG signal, deep neural networks have shown promising performances for the 

identification and prediction of seizures[337], flagging of abnormal recordings[125], and detection 
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of interictal discharges[37]. Only two studies used a deep convolutional neural network on the raw 

EEG data[74], [98]. The sample sizes of the deep learning studies were orders of magnitude smaller 

(between 0.004% and 7% of suggested sample size) than what is generally suggested.[312] 

Combined with the complexity and noise of the scalp EEG data, the sample sizes may not have 

been sufficient to harness the full capacity of deep neural networks. Several questions regarding 

deep learning remain unanswered, including the minimal quantity of EEGs required, the impact of 

architecture and optimizer, and the potential benefits of pretraining, self-supervised training, data 

augmentation, and transfer learning, all of which improved performances in other EEG-related 

classification tasks[105]. For seizure prediction, where the task consists in predicting (usually from 

long-term scalp or intracranial EEG data) when a seizure will start minutes or hours in advance, 

transformer models are becoming the state-of-the-art on benchmark datasets.[338], [339], [340] 

Transformers are typically larger and more data-hungry than CNN, but might scale better to large 

datasets.[341] 

Understanding the predictions of a machine learning model can provide insights into the 

neurophysiological manifestations of epilepsy, monitor biases and flaws in the data, and improve 

acceptability from patients and physicians[342]. This concept is referred to as interpretability, and 

can take many forms. In one study, the authors used a Kuramoto model to estimate local and global 

seizure susceptibility from the patients’ EEGs[93]. The Kuramoto model is an abstract model of 

the synchronization between weakly coupled oscillators. As such, their experiment led to the 

hypothesis that there is a higher coupling strength in patients with generalized epilepsy compared 

to controls. In another study, the authors investigated the gradient flow through the fitted CNN to 

identify the regions in the input data that had the highest impact on the CNN’s prediction[74]. They 

found that the EEG regions with highest impact had highly epileptiform anomalies; this would 

however indicate a limited utility of this approach in the absence of IEDs. In general, 

interpretability is improved by imposing constraints and sparsity to a machine-learning 

model[343]. Constraints include imposition of structure and abstraction of unimportant features. 

Sparsity means that the model is described by a small number of critical parameters. For predicting 

the diagnosis of epilepsy, an ideal model would provide: 1) a quantification of seizure recurrence 

risk, 2) actionable parameters (e.g., parameters that can be modified by medication), and 3) 

parameters that are related to the dynamics of the cortical activity (susceptibility to bifurcations, 



153 
 

 

altered connectivity, shifts in frequency). Such a model would have the potential to extrapolate to 

other use cases (e.g., intensive care unit, predict epileptogenicity, post-operatory outcome). 

How automated analysis of EEG will integrate into the current diagnostic pathway is yet to be 

determined. The exact role will likely depend on whether these algorithms prove more sensitive or 

specific to epilepsy than the current diagnostic approach. If these algorithms were sensitive (i.e., 

low false negative rate), they could be used as a screening test to exclude epilepsy in patients with 

low clinical suspicion, reducing the burden of repeat EEGs or accelerating the investigation for 

alternative conditions. If specific (i.e., low false positive rate), they could be considered as add-ons 

to IEDs in patients with high pre-test probability, either to individualize the estimation of seizure 

recurrence risk for a single patient or to provide electrophysiological evidence of epilepsy in 

patients who do not show IEDs on repeat EEGs. The overhead of the automated analysis of EEG 

is small and these algorithms could easily be integrated into EEG interpretation software. Even 

large deep learning models require little computational capabilities to provide inference.[344] 

Although inference is cheap, training modern and robust ML models requires important 

computational resources and large, multicenter datasets, both of which come at a potentially very 

high cost. Another and even more important caveat is the risk of increasing social and racial 

disparities that are well documented in epilepsy.[285], [286], [287]  By training on data that contain 

these bias, researchers must take active steps to identify and correct for these inequities.[289], [290] 

Simulation studies could help quantify the net clinical benefits and provide an accurate cost-

benefits estimate,[345] which will ultimately hinge on the diagnostic performances of the 

algorithms.  

The strengths of our study include the pre-registration and publication of our study protocol in a 

peer-reviewed journal, the inclusion of all computational methods, and rigorous study selection 

and data extraction processes conducted by two independent and mutually blinded reviewers. Our 

study, however, has limitations. We excluded studies that only used automated IEDs and seizure 

detection. Although such methods are reported[103], [104], any increment in accuracy from 

computational identification of IEDs and seizure for the diagnosis of epilepsy is intrinsically 

limited by their low prevalence in routine EEGs[346]. We considered reports using both 

IEDs/seizures and other biomarkers of epilepsy on routine EEG, but did not identify such studies. 

Our goal was to study biomarkers that may help circumvent known drawbacks of human expert 

assessment and reduce the current reliance on epileptiform discharges. Another limitation is the 
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high methodological heterogeneity in the studies which prevented any meta-analyses to be 

performed, although this limitation reflects the state of the existing literature on the topic of interest. 

A.7.1  Recommendations 

Considering these findings, we propose the following recommendations to guide future studies of 

computational analysis of EEG for the diagnosis of epilepsy. 

Patient selection, reference standard, and study design. Patient selection should be carefully 

planned to minimize spectrum effect when assessing diagnostic performances. The test should be 

validated on a consecutive sample of patients that represent the population in which the index test 

is intended to be used. The reference standard—the diagnosis of epilepsy—should be clearly 

defined, applied to all patients, and be based on the ILAE’s practical definition of epilepsy[2]. 

Enough details should be provided in the reporting of the study to adequately assess the risk of bias 

of the methodology, including the start and end of the recruitment period, the number of patients 

screened for inclusion, the number excluded and reasons for their exclusion. Contemporary 

reporting standards are available to improve the planification and reporting of diagnostic accuracy 

studies[166]. Although great effort has been made to publicly share EEG data, current available 

databases do not yet satisfy these criteria. 

Validation of performances. The presence of data leakage must be evaluated at every step 

of the processing pipeline, from the pre-processing of the EEG signal (using methods that rely on 

multiple EEGs) to the selection of optimal features and the optimization of the classification 

algorithm, regardless of the method used for validating performances. Ideally, external validation 

should also be assessed on independent data, both in terms of location (e.g., different hospital) and 

time (non-overlapping time periods). Reporting of diagnostic accuracy should be accompanied by 

a measure of statistical precision, such as a 95% confidence interval.  

Code and algorithms. Code should be publicly available to ensure reproducibility of all 

analyses. Automated segmentation of EEG should be preferred to manual selection of EEG 

segments. In the case of connectivity analyses, there should be rigorous statistical validation of the 

network model to increase confidence in the model’s prediction. Interpretability should be at the 

forefront of the design of the machine learning model to increase acceptability and monitor for 

biases during learning. Transformers, deep CNNs, and graph neural network have revolutionized 
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our capacity to model complex data and potentially remove the dependency on data pre-processing; 

they should be considered important candidates for the analysis of clinical EEG. 

Clinical translation and applicability. Future studies should provide clear paths towards 

clinical translation. They should more intentionally target specific clinical populations (e.g., 

patients evaluated after a first unprovoked seizure, patients with unexplained neurological episodes 

suspicious of epilepsy) and directly measure the clinical impact compared to current approaches. 

Small, proof-of-concept studies should make way for larger, multicenter evaluations of diagnostic 

performances. Integration into clinical workflow, including ease of use, time saved/lost, integration 

with available tools, computational requirements, and challenges in applicability, should be 

provided. 

A.8  Conclusion 

After two decades of research, the current literature provides insufficient evidence to assess the 

utility of computational analysis of routine EEG to diagnose epilepsy. Studies in this field are at 

high risk of bias, specifically for patient selection, the definition of the reference standard, and the 

methodology used to validate diagnostic accuracy. Because of its accessibility and information 

content, the routine EEG remains an important contender in the search for quantitative markers of 

seizure risk. We provide recommendations that could guide the design of future studies to 

maximize the potential for clinical translation of this technology. 
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A.10  Tables 

Table A.1 : Characteristics of included studies 

Study Country Epilepsy type Total 
sample 
size 

Group Description Age range Sex (F/M) Comorbidities Number 
of ASM 

 Framework 

Cao, 2021 UK Generalized 39 Epilepsy 15 PWE 33 ± 12 10/5 None 0-2  Connectivity 
No 
epilepsy 

10 HC and 14 with NEAD HC:  37 ± 
15 
NEAD: 33 
± 13 

HC: 6/4 
NEAD: 
10/4 

NEAD (14) HC: 0 
NEAD: 0-
4 

Guerrero, 2021 Colombia NA 40 Epilepsy 20 PWE (TUH Epilepsy 
corpus) 

NA NA NA NA  DL, Linear 

No 
epilepsy 

20 w/o epilepsy who 
underwent a rEEG (TUH 
Epilepsy corpus) 

NA NA NA NA 

Rijnders, 2021 United 
States 

NA 60 Epilepsy 30 PWE (TUH Epilepsy 
corpus) 

52.5 (mean) 19/11 Stroke (3), DM (2), dementia, 
HBV/HCV (NA) 

NA  DL, 
connectivity 

No 
epilepsy 

20 w/o epilepsy who 
underwent a rEEG (TUH 
Epilepsy corpus) 

53.7 (mean) 17/13 Stroke (8), DM (3), dementia (2), 
HBV/HCV (2) 

NA 

Zelig, 2021 Israel Focal, 
generalized, 
unknown 

100 Epilepsy 28 admitted to the ED 
after first seizure who 
developed epilepsy 

51.4 ± 20.9  12/16 Headache, brain tumors, IC 
hemorrhage, MG, depression, 
AD/HD, autism, schizophrenia, 
anxiety, substance abuse. 

Unclear  Linear 

No 
epilepsy 

42 admitted to ED after 
fst sz who remained 
seizure-free & 30 patients 
undergoing rEEG for 
neuropsychiatric diseases 

Fst sz: 48.5 
± 17.8 
Others: 55.1 
± 3.1 

Fst sz: 
15/27 
Others: NA 

Similar to cases for fst sz patients; 
NA for others 

Unclear 

Ahmadi, 2020 Belgium NA 10 Epilepsy 5 PWE NA NA NA NA  Connectivity, 
nonlinear No 

epilepsy 
5 with PNES  NA NA PNES NA 

Lin, 2020 Taiwan Focal and 
generalized 

50 Epilepsy 25 PWE 4-17 9/16 NA NA  DL 
No 
epilepsy 

25 with Tourette’s 
syndrome or syncope 

4-15 NA Tourette’s syndrome (92%), 
syncope (8%) 

NA 

Ouyang, 2020 Taiwan Generalized 
epilepsy 

63 Epilepsy 23 with GE 5-18 10/13 0 0-1  Linear 
No 
epilepsy 

23 age-matched HC 5-18 21/19 NA 0 

Prahbu, 2020 Guinea-
Bissau 

NA 97 Epilepsy 51 PWE 12-38 21/30 NA NA  Connectivity 
No 
epilepsy 

46 HC 17-33 5/41 NA NA 

Song, 2020 China NA 100 Epilepsy 50 PWE 29.59 ± 4.34 25/25 NA NA  Nonlinear 
No 
epilepsy 

50 age-matched HC 26.86 ± 3.69 25/25 NA NA 

Uyttenhove, 2020 Belgium NA NA Epilepsy PWE (TUH Epilepsy 
corpus) 

NA NA NA NA  DL 

No 
epilepsy 

Patients w/o epilepsy who 
underwent a rEEG (TUH 
Epilepsy corpus) 

NA NA NA NA 
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Varatharajah, 
2020 

United 
States 

Focal 192 Epilepsy 48 with DRFE 18-66 25/23 NA NA  Nonlinear 
No 
epilepsy 

144 HC 20-77 
(before 
exclusion) 

82/121 
(before 
exclusion) 

NA NA 

Yağmur, 2020 Turkey NA 108 Epilepsy 88 PWE NA NA NA NA  Linear 
No 
epilepsy 

20 HC NA NA NA NA 

Panwar, 2019 India Focal, 
generalized, 
focal and 
generalized 

100 Epilepsy 50 PWE (gen., focal, and 
LGS) 

6-69 16/34 NA NA  Nonlinear 

No 
epilepsy 

50 HC 6-79 20/30 NA NA 

Tripathi, 2018 India NA 20 Epilepsy 10 PWE 3-5 3/7 NA NA  Linear 
No 
epilepsy 

10 HC 3-5 3/7 NA NA 

V, 2018 India Focal 42 Epilepsy 21 with TLE 19-31 0/21 NA 2.66 
(mean) 

 Linear 

No 
epilepsy 

21 HC from existing 
imaging data bank 

24-32 0/21 NA NA 

Bosl, 2017 United 
States 

Generalized 73 Epilepsy 26 with absence seizures 8.6 (1.7) 13/13 NA NA  Nonlinear 
No 
epilepsy 

47 undergoing rEEG w/o 
epilepsy 

7.74 (4.3) 15/9 ASD NA 

Mazzucchi, 2017 Italy Focal 44 Epilepsy 22 with cryptogenic FE 18-76 13/9 NA 0-4  Connectivity 
No 
epilepsy 

22 age-matched HC 20-73 6/16 NA NA 

Tibdewal, 2017 India Focal, 
generalized 

60 Epilepsy 30 with DRFE undergoing 
pre-surgical evaluation 

NA NA NA NA  Nonlinear 

No 
epilepsy 

30 HC NA NA NA NA 

Uriguen, 2017 Spain Generalized 30 Epilepsy 20 with IGE 11-70 14/6 NA 0-3  Linear, 
nonlinear No 

epilepsy 
10 HC 23-60 3/7 NA NA 

Schmidt, 2016 UK Generalized 68 Epilepsy 30 patients with IGE w/o 
ASM 

NA NA NA 0  Connectivity 

No 
epilepsy 

38 HC NA NA NA NA 

Dasgupta, 2015 India Generalized 81 Epilepsy 51 with GE F: 15.21 
(mean), M: 
13.46 
(mean) 

26/25 NA NA  Connectivity 

No 
epilepsy 

30 HC F: 16.87 
(mean), M: 
17.67 
(mean) 

15/15 NA NA 

Pyrzowski, 2015 Poland Focal 78 Epilepsy 51 with TLE or FLE, 
mostly hospitalized for 
ASM resistance 

18-68 36/15 Mood disorder (4), cardiac 
disease (6), neurosis (2), stroke 
(2), cerebral palsy, cognitive 
impairment (2), brain tumor 

0 (4), 1 
(12), 2 
(20), 3 
(15) 

 Nonlinear 

No 
epilepsy 

13 with vEEG confirmed 
PNES & 14 admitted for 
headaches 

19-57 22/5 Mood disorder (2), migraine (2), 
meningitis, opioid usage disorder 

0 (14), 1 
(12), 2 (1) 

Rajaei, 2015* United 
States 

Focal, 
generalized  

14 Epilepsy 7 PWE 2-14 ¾ NA NA  Nonlinear 
No 
epilepsy 

7 HC 8-18 ¾ NA NA 

16 Epilepsy 9 PWE 4-15 4/5 NA 0  Connectivity 
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Sargolzai, 2015 
(1)* 

United 
States 

Focal, 
generalized 

No 
epilepsy 

7 HC 8-18 ¾ NA 0 

Sargolzai, 2015 
(2) 

United 
States 

Focal, 
generalized 

18 Epilepsy 11 PWE 8-18 5/6 NA NA  Connectivity 
No 
epilepsy 

7 HC 2-15 3/4 NA NA 

Schmidt, 2014*** UK Generalized 75 Epilepsy 35 with IGE 18-59 21/14 NA 0-4  Connectivity, 
linear 

 
No 
epilepsy 

40 HC 30.7 (mean) 20/20 NA NA 

Yang, 2014 China NA 20 Epilepsy 10 with ESES  3-9 6/4 NA NA  Nonlinear 
No 
epilepsy 

10 HC 3-9 6/4 NA NA 

Sargolzaei, 2013* United 
States 

Focal, 
generalized 

8 Epilepsy 4 PWE NA 2/2 NA NA  connectivity 
No 
epilepsy 

4 HC NA 2/2 NA NA 

Cabrerizo, 2012* United 
States 

Focal, 
generalized 

17 Epilepsy 9 PWE undergoing rEEG  1-15 3/6 NA 0  Linear 
No 
epilepsy 

8 patients w/o epilepsy 
undergoing rEEG 

8-18 3/5 NA 0 

Chaovalitwongse, 
2011** 

United 
States 

NA 15 Epilepsy 10 PWE undergoing 
rEEG 

NA NA NA NA  Linear, 
connectivity 

No 
epilepsy 

5 patients undergoing 
rEEG 

NA NA NA NA 

Douw, 2010 Netherlands Focal, 
generalized 

114 Epilepsy 57 PWE who underwent 
routine EEG after a first 
seizure 

50 (SD: 18) 29/28 White matter abnormalities, brain 
tumor, cortical atrophy, arachnoid 
cyst 

0-1  Connectivity, 
linear 

No 
epilepsy 

57 age-matched patients 
w/o epilepsy who 
underwent routine EEG 
after a fst sz 

54 (17) 29/28 Stress, syncope, TIA, brain 
contusion, neuropathy, sleeping 
disorders, hypoglycemia, 
migraine, drug abuse, motor 
neuron disease, orthostatic 
hypotension, white matter 
abnormalities, brain tumor, 
cortical atrophy.  

0 

Luo, 2010 China NA 34 Epilepsy 21 PWE NA NA NA NA  Linear, 
nonlinear No 

epilepsy 
13 HC NA NA NA NA 

Bao, 2009 China NA 12 Epilepsy 6 PWE NA NA NA NA  Linear, 
nonlinear No 

epilepsy 
6 HC NA NA NA NA 

Fan, 2009** United 
States 

Focal 10 Epilepsy 5 DRTLE NA NA NA NA  Connectivity 
No 
epilepsy 

5 HC NA NA NA NA 

Cassar, 2008 Greece Focal, 
generalized 

40 Epilepsy 20 PWE 9-13 11/9 None NA  Linear 
No 
epilepsy 

20 age- and sex-matched 
HC 

9-13 11/9 None NA 

Poulos, 2003 Greece NA 86 Epilepsy 42 PWE NA NA NA NA  Linear 
No 
epilepsy 

44 with non-epileptic loss 
of consciousness 

NA NA NA NA 

Ruseckaite, 2001 Lithuania Focal 40 Epilepsy PWE NA NA NA NA  Linear 
No 
epilepsy 

HC and head trauma 
patients 

NA NA NA NA 

*Same patients as ref.[90] **Same patients as ref.[94] ***Same patients as ref.[88] ASM: antiseizure medication; Db: diabetes; DL: deep learning; DR: drug-resistant; ESES: electrical status epilepticus during slow-
wave sleep; FE: focal epilepsy, FLE: frontal lobe epilepsy; GE: generalized epilepsy; HBV: hepatitis B virus; HC: healthy controls; HCV: hepatitis C virus; IED: interictal epileptiform discharge; IGE: idiopathic 
generalized epilepsy; NA: Not available; NEAD: non-epileptic attacks disorder; PNES: psychogenic non-epileptic seizures; PWE: patients with epilepsy; rEEG: routine electroencephalography; TLE: temporal 
lobe epilepsy; vEEG: video-electroencephalography.  
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Table A.2 : EEG recording and pre-processing details for each study 

Study EEG 
duration 

Electrodes 
(N) 

Sampling 
freq. (Hz) 

Automated 
artifact 
detection 

Frequency 
bands 

Manual 
segment 
selection 

Criteria for 
segment 
selection 

Segment 
duration 
(s) 

Overlapping 
segments 

Montage Channel 
selection 

Criteria for 
channel 
selection 

Cao, 2021 72s for HC, 
48s for EG 
and NEAD 

21 500 None 0.79-4, 4-
8, 8-15,15-
32, >32 

Yes  No interictal 
abnormalities 
and relatively 
artifact-free 

4 No  Bipolar Manual  Removed Fp1 
and Fp2 due 
to high levels 
of eye blink 
artifacts 

Guerrero, 2021 20-30 min 21 250, 256, 
400, 512 
Hz 

NA NA NA NA NA NA Bipolar 
(longitudinal) 

None - 

Rijnders, 2021 20 min 21 250 ICA (removed 
component with 
highest 
correlation with 
Fp1) and trend 
line removal 

1-4, 5-7, 8-
13, 14-29, 
30-55 

Yes Calmest 
segment  

50 No  Referential 
(avg)  

None - 

Zelig, 2021 20 min 19 512 NA 1-4, 4-8, 8-
12, 12-20, 
20-30, 30-
40 

No   Entire 
recording 

- 
 

NA None - 

Ahmadi, 2020 3h 27 256 None 1-4, 4-8, 9-
13, 13-30, 
30-40 

Yes  IED-free, 
least amount 
of noise or 
artifacts  

16 No Referential 
(G2) 

None - 

Lin, 2020 20 19 256 None 0.5-60 Yes No eye 
movement or 
muscle 
artifacts, no 
segments 
from IPS nor 
HV 

2 0%, 50%, 
90%, 95%, 

Referential 
(Cz) 

None - 

Ouyang, 2020 20 min 19 256 None 0.5-60 Yes Artifact-free 5 No Referential 
(Cz,) 

None  - 

Prahbu, 2020 5 14 128 NA NA NA NA NA NA NA Automated Best 
performing 
subset in 
classification 
task 

Song, 2020 2 min 16 512 ICA (NA)  1-4, 4-8, 8-
13, 13-30 

Yes,  No obvious 
signal loss 

20 No NA None - 

Uyttenhove, 2020 NA 19 256 None 0.5-128 No  10 No Referential 
(avg) 

None - 

Varatharajah, 
2020 

16 min 
(controls), 
NA (cases) 

62 
(controls), 
31 (cases) 

2500 Hz 
(controls), 
256 Hz 
(cases) 

ICA (manual 
selection) 

7.5-10.5 
10.5-13.5 

Yes Controls: 
segments with 
artifacts. 
Cases: 
segments with 
eye closure 
and no 

10 No Bipolar Manual Artefactual 
channels (4) 
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epileptiform 
activity 

Yağmur, 2020 18 min 16 200 ICA (NA)  0.1-500 NA NA NA NA NA None - 
Panwar, 2019 5 min 17 250, 256 None 0.5-15 Unclear Unclear 1 Yes Referential 

(avg)  
None  - 

Tripathi, 2018 30 19 NA NA 1-4, 4-8, 8-
13, 13-30 

NA  NA NA Referential Manual NA 

V, 2018 NA 32 5000 Average 
subtraction 
method 
considering R 
peaks as 
reference[347] 
and ICA (maual 
selection) 

2-20 Yes First 120s 
artifact-free 
segment 

120 No Referential 
(avg)  

None 

- 

Bosl, 2017 30 s 
(Hospital 
subjects) 
12 s 
(Laboratory 
subjects) 

19 200 Hz 
(Hospital 
subjects) 
500 Hz 
(Laboratory 
subjects) 

None and 
NetStation 
software artifact 
detection tool 
(ASD group, 
manual 
selection of 
artifactual 
components) 

None, 0.1-
100 

Yes, 
Unclear 

Visual review 
to select 30-s 
samples 
containing no 
spikes or 
evidence of 
epileptiform 
activity and 
with no 
artifacts, 
Exclude 
segments with 
eyes saccades 
and blinks. 
(automatically 
detected 
artifacts) 

30, 12 No, No Average, 
Average 

None and 
manual 

19 channels 
are selected 
corresponding 
to the 
electrode 
locations for 
hospital 
patients 

Mazzucchi, 2017 15 min 19 128 None 1-4, 5-7, 8-
13, 14-30, 
31-60 

Yes  Absence of 
artifacts, 
absence of 
IEDs  

2 s NA NA None  

- 

Tibdewal, 2017 12-15 min 19 114 NA NA NA NA 8 NA NA Manual  Removed O1-
O2 (corrupted 
data during 
acquisition) 

Uriguen, 2017 NA 32 200 Kurtosis 
threshold or 
statistical 
outliers 
(threshold: 
3SD) 

0.5-70 Yes,  No seizure 
activity, no 
epileptiform 
patterns 

10.24 No,  Referential 
(mastoids) 

None  - 

Schmidt, 2016 NA 19 256 None 6-9, 8-13 Yes  Artifact free 
and GSW free 

20 No NA None - 

Dasgupta, 2015 20-30 min 16 NA ICA + neural 
network 
(underspecified) 
with manual 
selection of ICs 

4-60 Yes Noise-free NA NA NA  None - 
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Pyrzowski, 2015 20 min 
(19.5 - 
22.1) 

19 250 None 4-13 NA  NA  1-120 NA  Referential  None  - 

Rajaei, 2015 NA 19 200, 512 None 0.5-70 Yes  Free of 
artifacts and 
ictal events 

10 No Referential None - 

Sargolzai, 2015 
(1) 

NA 19 200, 500, 
512 

ICA[348] (NA) NA Yes No seizures 
and no 
artifacts 

9-90 NA Referential 
(avg)  

None - 

Sargolzai, 2015 
(2) 

NA 19 200, 500, 
512 

None,  NA,  Yes  Artifact-free 
and seizure-
free 

9 50%, Referential None - 

Schmidt, 2014 50 19 256 None 1-3, 3-6, 6-
9, 10-14, 
15-30, 30-
70 

Yes  Artifact-free, 
eyes closed 

20 No Referential None - 

Yang, 2014 NA 16 500 None 0.5-35 Yes No artifacts 8 NA NA  None  - 
Sargolzaei, 2013 NA 19 NA None 0.1-70 NA NA NA NA Referential None - 
Cabrerizo, 2012 20-40 min 19 500 and 

512 
None <4, 4-8, 8-

13, 13-20, 
20-36, 36-
44 

Yes  Free of 
artifacts, free 
of seizures, 
eyes closed  

1 No  Referential  No - 

Chaovalitwongse, 
2011 

13-45 min 14-18 200 and 
250 

None NA No Random 
sampling  

60, 120, 
180, 240 

NA Bipolar,  Manual  Channels that 
were 
consistent 
across EEGs 

Douw, 2010 30 min 21 500 None 0.5-4, 4-8, 
8-10, 10-
13, 13-30, 
30-45, 55-
80 

Yes Artifact-free 
segments  

8 No Referential 
average 

Manual Fp1-2 and 
A1-2 

Luo, 2010 NA NA NA NA NA NA NA NA NA NA NA - 
Bao, 2009 NA 22 200 None 2-34 (1Hz 

incr.), 2-34 
in (2Hz 
incr.), 2-
34.5 in 
(2.5Hz 
incr.) 

No  20.48, 
40.96 

NA Referential, 
NA 

None - 

Fan, 2009 20-30 min 19 250 UNICA[349]  NA No Random 
sampling  

30 NA  Referential None  - 

Cassar, 2008 NA 30 400 None 0-4, 4-8, 8-
13, 13-30, 
30-45, 45-
90 

Yes Free of 
technical and 
biogenic 
artifacts 

10.24 No Referential 
(A1 + A2) 

None - 

Poulos, 2003 20 s 2 200 None 5-70 Yes No 
epileptiform 
discharges 

20 Yes O2-Cz Manual Channel with 
“best” PDR  

Ruseckaite, 2001 45 s 16 NA NA NA NA NA 3 No NA None  - 
EG: Epilepsy group; HC: Healthy controls; ICA: Independent component analysis; NEAD: Non-epileptic attack disorder; PDR: Posterior dominant rhythm. 
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Table A.3 : Biomarkers assessed in included studies by computational framework 

Framework Feature Studies 
Linear Power spectral density [70], [72], [73], [74], 

[75], [303] 

 Peak alpha frequency [88] 

 Mode of frequency spectrum [307] 

 Prediction error of autoregressive model [184] 

 Auto-correlation coefficient or standard deviation [79], [308] 

 Hjorth parameters (activity, mobility, complexity) [71], [75] 

 Statistical features (average, variance, standard deviation, skewness, kurtosis, 
Euclidean distance, T-Statistical distance, interquartile range, mutual information) 

[84], [94], [304] 

 Paroxysmal slow wave events (rate per min) [77] 

Nonlinear Shannon entropy [78], [79] 

 Spectral entropy [78], [80] 

 Approximate entropy [79], [81] 

 Permutation entropy [82] 

 Multiscale entropy [82], [83] 

 Fuzzy entropy [84] 

 Renyi entropy [78] 

 Fractal dimension [75], [78] 

 Hurst indices [79] 

 Zero-crossings interval analysis [85] 

 Recurrent quantitative analysis [83] 

 Characteristic response analysis [305] 

 Bispectrum magnitude (average and variance) [84] 

 Periodicity [79] 

 Kolmogorov complexity [81] 

Connectivity Connectivity measures  

     Mutual information [86] 

     Coherence [86] 

     Lagged coherence [96] 

     Phase-locking value [86], [88] 

     Pearson’s correlation coefficient [86], [89] 

     Euclidean distance [94], [95] 

     Cosine similarity [90], [91], [92], [306] 

     Horizontal visibility graph [78] 

     Synchronization likelihood [69] 

     Granger causality [87] 

     Phase-space recurrence [306] 

     Tucker decomposition [97] 

     Transfer entropy [97] 

 Connectivity features  

     Statistical (maximum, mean) [86] 

     Average degree [88], [91], [92], [306] 

     Closeness or betweenness centrality [78], [90], [91], [92] 

     Density [89], [90], [91], [92], 
[306] 

     Energy [89], [90], [91], [92] 

     Clustering coefficient [78], [89], [90], [91], 
[92], [96], [97] 

     Network efficiency [89], [97] 

     Rich club coefficient [89], [90], [91], [92], 
[306] 

     Small world index [89] 

     S-metric [90], [91], [92], [306] 

     Characteristic path length [92], [96] 

     Average vertex eccentricity [92] 

     Graph radius [92], [306] 

     Largest eigenvalue [78] 

 Other connectivity-based features  
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     Dynamical connectivity analysis (local and critical coupling constant, global order 
parameter) 

[88], [93] 

     Microstates analysis (occurrence, duration, time coverage) [78], [182] 

Deep 
learning 

No feature extraction [74], [98] 

Prior feature extraction [73], [87] 

 

Table A.4: Performance of computational EEG biomarkers for the diagnosis of epilepsy 

Study Classifier; feature(s) Sens 
(%) 

Spec 
(%) 

Acc 
(%) 

Prec (%) Rec 
(%) 

F1 
(%) 

AUROC Data 
leakage 

Statistical 
testing 

Cao, 2021 kNN; CohMean beta, eyes closed (F4C4-FzCz): 
Epi vs HC 

 
 

97.22 
   

0.983 Yes No 
 

kNN; CohMean beta, eye closed, (F3C3-FzCz): 
Epi vs HC 

 
     

0.969 Yes No 
 

kNN; CohMean beta, eye closed, (CzPz-C4P4): 
Epi vs HC 

 
     

0.888 Yes No 
 

kNN; CohMean beta, eye closed, (C3Cz-P3Pz): 
Epi vs HC 

 
     

0.929 Yes No 
 

kNN; MI delta, eye open, (T4T6-P4Pz): Epi vs 
NEAD 

 
 

74.44 
    

Yes No 
 

kNN; PLV gamma, eye open (T3C3-CzPz): Epi 
vs NEAD 

 
 

74.24 
    

Yes No 

Guerrero, 2021 LR; relative band power (best model) 
  

73.3 73.9 68 70.8 0.71 Yes  No 
 ANN; relative band power (best model) 

  
86.1 81 84 82.4 0.95 NA  No 

 SVM; relative band power (best model) 
  

77.3 77.5 74.3 75.8 0.78 NA  No 
 CNN; relative band power (best model) 

  
61.5 62.2 58.7 60.4 0.60 NA  No 

Rijnders, 2021 CNN; scaled GC matrix, one model per 
electrode combination, voting 

83 87 85 
  

0.85 
 

Yes No 
 

CNN; scaled GC matrix, FP1, F3 and P3 
electrodes 

80 77 78 
  

0.79 
 

Yes No 

Zelig, 2021 ROC; rate of PSWE 
      

0.72 Yes No  
ROC; rate of PSWE (only early (<72h) EEG) 

      
0.82 Yes No 

Ahmadi, 2020* Gradient Boost; microstates-derived features   75.4 79.2 75.4   Yes No 
 SVM (Radial basis function); linear, nonlinear 

and connectivity, alpha  

  
59.2 69.06 59.2 

  
No No 

 SVM (Linear); linear, nonlinear and 
connectivity, beta  

  
63.8 68.25 63.8 

  
No No 

 RandomForest; linear, nonlinear and 
connectivity, delta  

  
58.8 68.43 58.8 

  
No No 

 SVM (Radial basis function); linear, nonlinear 
and connectivity, theta 

  
53.4 64.92 53.4 

  
No No 

 
SVM (Linear); linear, nonlinear and 
connectivity, gamma 

  
55.4 70.01 55.4 

  
No No 

Lin, 2020 CNN; raw signal (0% overlap) 48 82 65 
  

57.83 0.6496 No No 
 CNN; raw signal (50% overlap) 56 82 69 

  
64.36 0.7010 No No 

 CNN; raw signal (90% overlap) 62 90 76 
  

72.09 0.7880 No No 
 CNN; raw signal (95% overlap) 70 90 80 

  
77.77 0.8188 No No 

Ouyang, 2020 XGBoost; autoregressive model errors 89.98 81.81 85.17 
   

0.8754 Yes No 
 L1-Reg. LR; autoregressive model errors 90.47 90.47 84.83 

   
0.8632 Yes No 

 RDA; autoregressive model errors 65.41 86.11 76 
   

0.8908 Yes No 
Prahbu, 2020 MLP; KC and ApEn for 14 electrodes 95.0 98.0 96.5 98.1 

  
0.964 Yes No  

MLP; KC and ApEn for 6 electrodes 99 94.5 97 95.5 
  

0.967 Yes No 
Song, 2020 SVM with medium Gaussian kernel; 

connectivity features 
86.60 90.0 88.3 

    
Yes No 

 SVM with linear kernel; connectivity features 73.3 70.0 71.70 
    

Yes No 
 SVM fine Gaussian kernel; connectivity features 60 93.3 76.7 

    
Yes No 

 SVM with coarse Gaussian kernel; connectivity 
features 

96.7 43.3 70 
    

Yes No 

Uyttenhove, 2020 t-VGG; raw signal 75.89 78.57 76.5 
 
75.89 

 
 No Yes† 

 t-VGG GAP; raw signal 81.56 80.95 81.42 
 
81.56 

 
 No Yes† 

 SVM; band power 75.18 71.43 74.32 
 
75.18 

 
 No Yes† 

 RandomForest; band power 92.91 52.38 83.61 
 
92.91 

 
 No Yes† 

 EEGNet; raw signal 75.89 73.81 75.41 
 
75.89 

 
 No Yes† 

Varatharajah, 
2020 

Naive Bayes with Gaussian prior; band power 
   

0.46 0.75 0.57 0.79 No No 
SVM (radial basis function); band power 

   
0.89 0.57 0.56 0.66 No No 

LASSO; band power 
   

0.89 0.56 0.55 0.76 No No 
 GNB (FT channels); band power 

   
0.69 0.73 0.7 0.81 No No 

 SVM-RBF (FT channels); band power 
   

0.889 0.55 0.53 0.73 No No 
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 LASSO (FT channels); band power 
   

0.38 0.5 0.43 0.82 No No 
Yağmur, 2020 PCA-MLP; statistical features 

  
96 96 97 

  
Yes No 

 LDA-MLP; statistical features 
  

96 98 95 
  

Yes No 
 Forward selection-MLP; statistical features 

  
85 94 88 

  
Yes No 

 Backward selection-MLP; statistical features 
  

94 95 96 
  

Yes No 
Panwar, 2019 ROC classifier; characteristic method analysis 

      
0.87 Yes Yes 

Tripathi, 2018 Normalised band power 
  

90 
    

NA No 
V, 2018 LDA; microstates features 85.7 66.6 76.1 0.69 0.85 0.76 0.7   Yes No 
 Logistic regression; microstates features 80.9 57.1 69.0 0.65 0.8 0.72 0.67 Yes No 
Bosl, 2017 Linear SVM with RFE; nonlinear features (Epi 

vs HC+ASD) 
100 100 100 

    
Yes No 

 
SVM; nonlinear features (Epi vs ASD) 72 77 75 

    
Yes No 

Mazzucchi, 2017 ROC classifier, path length pre- vs. per-HV 41 100 70 
   

0.71 Yes Yes 
Tibdewal, 2017 SVM; BMA-BMV 96.96 100 97.05 

    
Yes No 

 SVM; IQR-MI 98.82 100 99.41 
    

Yes No 
 SVM; MD-MI 98.82 100 99.41 

    
Yes No 

 SVM; MD-IQR 97.65 100 98.82 
    

Yes No 
Uriguen, 2017 ROC; spectral entropy, all channels 

  
85 

   
0.84 Yes No  

ROC; spectral entropy, optimal channels 86 76 81 
    

Yes No 
Schmidt, 2016 Peak alpha frequency 0 100 0†† 

    
No No 

 Connectivity based on PLV (mean degree) 3.3 100 10†† 
    

No No 
 Seizure-generating capability based on phase 

oscillator model 
56.7 100 61.7†† 

    
No No 

Dasgupta, 2015 Ridge regression with mRMR; connectivity 
features 

  
79.01 

   
0.87 Yes No 

Pyrzowski, 2015 ROC, alpha score from zero-crossings analysis 
      

0.81 Yes No 
 ROC, Shannon entropy from zero-crossings 

analysis 

      
0.76 No No 

 ROC, min-entropy from zero-crossings analysis 
      

0.71 No No 
Rajaei, 2015 KNN; connectivity features 85.7 100 92.8 

    
Yes No 

Sargolzai, 2015 (1) KNN; connectivity features 88.8 85.7 87.5 
    

Yes No  
KNN with feature selection; connectivity 
features 

  
96.87 

    
Yes No 

Sargolzai, 2015 (2) GMM with PCA; connectivity features 81.8 100 88.9 
    

Yes No 
Schmidt, 2014 ROC; theta band critical coupling constant 76.9 65.7 

 
69.2 

  
NA Yes No  

ROC; low-alpha band global order parameter for 
Fp1 

71.4 74.4 
 

NA 
  

0.78 Yes No 

Yang, 2014 ANFIS; PermEn 
  

89 
    

Yes No  
ANFIS; PermEn 

  
82 

    
Yes No 

Sargolzaei, 2013 KNN; connectivity features 75 100 
     

Yes Yes 
Cabrerizo, 2012 ANN; linear features 96.42 95.50 96.03 

    
Yes No  

SVM; linear features 97.06 96.63 96.79 
    

Yes No 
Chaovalitwongse, 
2011 

NSVM (Quadratic) dataset I; connectivity 96 100 98 
    

No No 
NSVM (Quadratic) dataset II; connectivity 

  
100 

    
No No 

A-SFM (Euclidean), dataset I; connectivity 
  

40 
    

No No 
 A-SFM (T-statistics), dataset II; connectivity 

  
0 

    
No No 

 V-SFM (Euclidean), dataset I; connectivity 
  

100 
    

No No 
 V-SFM (T-statistics), dataset II; connectivity 

  
0 

    
No No 

Douw, 2010 LR; theta band SL 53 70 61 
    

Yes No 
 LR; theta band power 58 77 NA 

    
Yes No 

 LR; theta band SL (EEG with no IEDs) 62 76 69 
    

Yes No 
Luo, 2010 ANN, top three features; linear and nonlinear 

features 
92.2 91.7 

    
0.883 Yes No 

 
ANN, all features; linear and nonlinear features 

      
0.908 Yes No 

Bao, 2009 Probabilistic NN, voting across channels for 
each segment, segment length 40.96s, cut-off 
frequency NA, band-pass filt. NA; linear and 
nonlinear features 

83.33 84.69 84.27 
    

Yes No 

 
Probabilistic NN, voting across channels for 
each segment, segment length 40.96s, cut-off 
frequency 56Hz, band-pass filt. 2-32 in 1Hz 
increments; linear and non-linear features 

  
94.07 

    
Yes No 

Fan, 2009 C-SVM with gaussian kernel; connectivity 
  

94.8 
    

Yes No 
 C-SVM with linear kernel; connectivity 

  
50.6 

    
Yes No 

 SVM with gaussian kernel; connectivity 
  

69.4 
    

Yes No 
 SVM with linear kernel; connectivity 

  
53.8 

    
Yes No 

Cassar, 2008 ARMA model with one band (unspecified) and 
one electrode (unspecified) 

100 65 85 
    

Yes No 

Poulos, 2003 Least-squares; auto-correlation coefficient 0.83 0.90 
     

Yes No 
Ruseckaite, 2001 Euclid classifier, mode of frequency spectrum 

(background segment) 

  
70 

    
No No 

*Reported from Table 3.[78] †Only for between test comparisons. ††Calculated from study.  Acc: Accuracy; ANFIS: Adaptative neuro-fuzzy inference 
system; ANN: Artificial neural network; ARMA: Autoregressive moving average; ASD: Autism spectrum disorder; BM(A/V): Bispectrum magnitude 
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(average/variance); CNN: Convolutional neural network; CohMean: Mean of coherence; Epi: Epilepsy; F1: F1-score; GC: Granger causality; GMM: 
Gaussian mixture model; GNB: Gaussian Naïve Bayes; HC: Healthy controls; HV: Hyperventilation; IQR: Interquartile range; KC: Kolmogorov 
complexity; kNN: k-nearest-neighbor; LDA: Linear discriminant analysis; LR: Logistic regression; MD: Mahalanobis distance; MI: Mutual information; 
MLP: Multilayer perceptron; mRMR: Maximum relevance minimum redundancy; NEAD: Non-epileptic attack disorder; PCA: Principal component 
analysis; PLV: Phase-locking value; Prec: Precision; PSWE: Paroxystic slow wave events; RDA: Regularized discriminant analysis; Rec: Recall; RFE: 
Recursive feature elimination; ROC: Receiver operating characteristic curve; Sens: Sensitivity; Spec: Specificity; SFM: Support feature machine; SVM: 
Support vector machine; t-VGG: tiny-VGG.  
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Table A.5 : Glossary for technical terms related to EEG processing and machine learning 

 

Terms Definitions 
Linear markers Markers derived from linear analysis, usually extracted with time-frequency decompositions like the 

Fourier or wavelet transform. These methods assume independent and stationary oscillating processes. 
Even though the EEG signal is highly non-linear and non-stationary[22], [350], this simple representation 
is closely tied to the way neurologists visually inspect EEG recordings. 

Non-linear 
markers 

Markers derived from the analysis of non-linear dynamics, either summarized using higher-order features 
such as entropy and fractal dimensions or analyzed with dynamical models like in recurrent quantitative 
analysis[351]. 

Connectivity 
markers 

Markers derived from the analysis of the connectivity between channels (sensor-based) or brain sources 
(source-based) based on a connectivity measure that represents the strength of pairwise connections 
between sensors or sources, respectively. Connectivity markers are higher-order features that characterize 
the network model. 

Microstates 
analysis 

In this approach, maps of global field power are extracted at distinct timepoints in the EEG[352]. Using a 
clustering algorithm, the most characteristic maps for each group are identified—the EEG microstates—on 
which new EEGs are back-fitted. Features are extracted from time series of microstates, including the 
duration and coverage (fraction of time that the microstate is active). 

Independent 
component 
analysis 

Blind source separation algorithm that attempts to separate the signal into statistically independent 
components[348]. The estimated sources are visually inspected to identify those that correspond to 
artifacts (e.g., blinking, heart rhythms), which are removed before reconstructing the signal with the 
remaining components. A machine-learning model can also be trained to automatically identify artifactual 
components[323]. 

Deep learning Type of machine learning where models are composed of layers of nonlinear functions that progressively 
abstract the representation of the raw input data, enabling to capture arbitrarily complex functions[353]. 
For EEG, the main advantage of deep learning is that the model learns its own representation of the input 
data, without the need of preprocessing and feature extraction. 

Support vector 
machine (SVM) 

Soft margin classifier that finds the hyperplane which maximizes the distance between it and the closest 
observation of each class (called the support vectors). With kernels, the SVM can be optimized on non-
linear feature space in a computationally efficient way. 

Cross-validation 
(CV) 

Method for validation of predictive performances of a machine-learning model. K-fold CV: in this 
approach, the dataset is split into K-folds. For K iterations, the machine learning algorithm is optimised on 
all but one folds, and its predictions are evaluated on the remaining fold.  Repeated or nested-CV: the CV 
is either repeated with different partitions of the data or nested into a second CV loop, both leading to more 
robust performance estimates[163]. 
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A.11  Figures 

 

Figure A.1 : PRISMA flowchart of the study selection, screening, and assessment. 
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Figure A.2 : Sample size of included studies. A: Number of individuals included in the 
assessment of computational biomarkers per study. B: Sample size of included studies by year of 
publication, with a moving average and 95% standard error overlay. Studies with unclear number 

of participants are not shown. 
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Figure A.3: Summary of the risk of bias for each of the PRISMA domains. 
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Figure A.4 : Diagnostic performance of studies with no data leakage; all studies reported either 
Accuracy, AUROC, or both. Each point denotes an individual test reported in the studies (some 

studies reporting more than one test).  A: Performance as a function of the class of feature 
extracted from the EEG signal. B: Performance as a function of the machine learning model. The 

size of the points represents sample size. AUROC: Area under the receiver-operating-
characteristic curve; CNN: Convolutional neural network; GNB: Gaussian Naïve Bayes; KNN: 

K-Nearest-neighbor; LR: Logistic regression; PSD: Power spectral density; RF: Random Forest; 
Uni+conn: Combination of univariate and connectivity features. 
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Figure A.5: Examples of common sources of data leakage in the included studies. The circles represent individual observations (e.g., a 
single EEG recording) and rectangles are the feature vectors for that single observation. Elements in red, blue, and green are in the 

training set, and elements in purple and orange, the testing set. A: Typical machine learning pipeline without data leakage. First, the 
individuals (circles) are split into a training and a testing set. Then, features are extracted from the training set; the optimized feature 

extraction algorithm is then applied to the testing set. Third, a feature selection algorithm is applied to the training data, and the 
optimal features are selected on the testing data. Fourth, the machine learning hyperparameters are tuned on the training data, and the 

best model is evaluated on the testing set. B: Data leakage during feature extraction, where the feature extraction algorithm is 
optimized on both training and testing data (before the train/test split). C: Data leakage during feature selection, where the optimal 

features are selected on both training and testing data. D: Data leakage during model evaluation, where the hyperparameters are tuned 
on both training and testing data. E: Data leakage during train/test split, where samples from the same individuals (e.g., different 

epochs of the same EEG) are present in both training and testing data. 




