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RESUME

L'épilepsie est une maladie neurologique chronique invalidante qui affecte 1% de la population
mondiale. Elle est caractérisée par la survenue imprévisible de crises épileptiques, des décharges
¢lectriques cérébrales anormales et synchronisées qui sont parfois associées a des symptomes
neurologiques. L'électroencéphalogramme (EEG), un examen qui enregistre l'activité électrique
corticale via des ¢électrodes positionnées sur le scalp, est central au diagnostic et a la prise en charge
de 1'épilepsie. Son utilité¢ diagnostique repose principalement sur l'identification visuelle de
décharges épileptiformes interictales (DEI), des anomalies sporadiques et asymptomatiques qui
reflétent une irritabilité corticale anormale et donc un risque de crise accru. Malgré son importance,
Iutilité¢ de I’EEG en épilepsie pourrait étre bonifiée. D une part, les DEI sont détectées chez une
minorité de patients lors d'un EEG de routine de 30 minutes. D’autre part, leur identification
visuelle comporte une part de subjectivité, menant parfois a un surdiagnostic. Des études
préliminaires suggérent qu’il existe d’autres différences subtiles dans ’EEG de patients avec
épilepsie qui, bien qu’invisibles a I’eil nu, pourrait étre captées par des méthodes
computationnelles. Couplés au DEI, ces marqueurs pourraient augmenter I’utilité diagnostique et
prognostique de I’EEG. Cependant, le développement et la validation de tels biomarqueurs sont

freinés par le manque de bases de données cliniques appropriées.

L'objectif principal de cette these était de développer des méthodes computationnelles pour extraire
de I'EEG des marqueurs quantifiables du risque de crise, indépendamment de la présence de DEI.
Plus spécifiquement, nous visions a: 1) développer une base de données d'EEG de routine avec
données cliniques détaillées provenant de patients consécutifs, permettant la découverte et la
validation rigoureuse de biomarqueurs; 2) valider les performances des biomarqueurs
neurophysiologiques précédemment décrits et explorer de nouvelles caractéristiques du signal EEG
associées a I'épilepsie; et 3) concevoir et optimiser un modele d'apprentissage profond interprétable

pour la détection de I'épilepsie et la prédiction du risque de crise a partir de I'EEG de routine.

Pour le premier objectif, nous avons mis sur pied une cohorte de patients consécutifs ayant eu un
EEG de routine au Centre hospitalier de I’Université de Montréal (CHUM) entre 2018 et 2020.
Cette base de données unique contient présentement plus de 1 000 EEG consécutifs effectués chez
plus de 900 patients. Chaque EEG est accompagné de variables cliniques détaillées provenant de

leur suivi clinique, qui s’étend en moyenne sur plus de 2 ans aprés ’EEG. Pour chaque étude, de
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nouveaux patients sont utilisés comme échantillon test, avec un décalage temporel mimant le

déploiement de la technologie dans la vraie pratique.

Le deuxiéme objectif a été adressé dans un premier article qui évaluait des caractéristiques
computationnelles classiques comme la puissance de bande et 'entropie, extraites automatiquement
de segments d'EEG de 10 secondes, pour prédire la récurrence de crise a un an. Le modéle
développé a atteint une aire sous la courbe ROC (AUROC) de 0.63 (IC 95%: 0.55-0.71) dans la
cohorte de test, démontrant des performances significatives méme en l'absence de DEI. Ceci
validait ainsi I'hypothese que 'EEG contient des biomarqueurs du risque de crise indépendants des

DEI, mais avec des performances diagnostiques modestes.

Pour le troisiéme objectif, nous avons développé deux architectures d'apprentissage profond. Le
premier mode¢le visait a démontrer I’applicabilité de ce type d’approche pour améliorer la précision
diagnostique de I’EEG pour 1’épilepsie. DeepEpilepsy, un Vision Transformer qui modélise
directement le signal EEG brut, a surpassé¢ les marqueurs computationnels ainsi que l'interprétation
basée sur les DEI avec une AUROC de 0.76 (0.69—0.83), atteignant 0.83 lorsque combiné aux DEI.
Une analyse de 1’espace latent a révélé que DeepEpilepsy semblait dépendre des variabilités dans

la puissance de bande des hautes fréquences (50-100 Hz).

Bien que DeepEpilepsy démontrait la puissance des modeles profonds, son utilité clinique était
limitée par la nature binaire de sa classification qui ne prenait pas en compte la variabilité clinique
au sein des patients avec et sans épilepsie. Pour résoudre ce probléme, nous avons développé
EEGSurvNet, un mod¢le de survie profond qui permet de prédire le risque de crise a travers le
temps. Entrainé sur 917 EEG et testé sur 135 enregistrement indépendants, EEGSurvNet atteint
une discrimination (AUROC intégré a deux ans = 0.69, AUROC a deux mois = 0.80) et une
calibration (score de Brier intégré a deux mois = 0.18) supérieures aux prédicteurs traditionnels.
Comme DeepEpilepsy, EEGSurvNet ne dépend pas de la présence de DEI ou de ralentissement
anormal, et celui-ci obtient méme de meilleures performances en leur absence. Cependant, les
patrons captés semblent plutdt situés dans la bande de fréquence 6—15 Hz et évoluent sur une

¢chelle temporelle d'au moins une minute.

Cette these établit de nouveaux standards méthodologiques pour le développement d'algorithmes
en épilepsie, notamment par ['utilisation d'une cohorte consécutive de patients et une validation

temporellement décalée qui mime le déploiement clinique réel. Sur le plan scientifique, nos travaux
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ouvrent une nouvelle fenétre pour investiguer la neurophysiologie de 1'épilepsie: les modeles
profonds ont révélé des patrons EEG distincts des marqueurs traditionnels, évoluant sur une échelle
temporelle plus longue. Ces caractéristiques, indépendantes des DEI, pourraient refléter des
altérations plus subtiles des réseaux neuronaux. Sur le plan clinique, la quantification précise du
risque de crise pourrait transformer la prise en charge des patients en améliorant la certitude
diagnostique, en guidant l'ajustement thérapeutique et en optimisant la sélection des patients pour
des interventions plus agressives. Bien que la principale limitation soit l'utilisation de données d'un
seul centre, une validation multicentrique est en cours. L'impact réel de cette technologie dépendra
non seulement de cette validation robuste, mais aussi d'une réflexion approfondie sur son

intégration dans la pratique clinique et son interaction avec le jugement médical.
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ABSTRACT

Epilepsy is a chronic disabling neurological disease affecting 1% of the world's population. It is
characterized by unpredictable seizures—abnormal and synchronized electrical discharges in the
brain that can provoke neurological symptoms. Electroencephalogram (EEG), a test that records
cortical synaptic electrical activity via scalp electrodes, is central to the diagnosis and management
of epilepsy. Its diagnostic utility in epilepsy relies primarily on the visual identification of interictal
epileptiform discharges (IEDs), sporadic and asymptomatic abnormalities that reflect abnormal
cortical irritability and thus an increased seizure risk. Despite its central role in epilepsy, the utility
of EEG could be enhanced. On the one hand, interictal epileptiform discharges (IEDs) are detected
in only a minority of patients during a routine 30-minute EEG. On the other hand, their visual
identification remains somewhat subjective, which may occasionally lead to overdiagnosis.
Preliminary studies suggest that there are other subtle differences in the EEG of patients with
epilepsy that, although invisible to the naked eye, could be captured by computational methods.
Coupled with IEDs, these markers could increase the diagnostic and prognostic yield of the EEG.
However, the development and validation of such biomarkers are restrained by the lack of

appropriate clinical databases.

The main objective of this thesis was to develop computational methods to extract quantifiable
markers of seizure risk from EEG, independently of the presence of IEDs. Specifically, we aimed
to: 1) develop a routine EEG database with detailed clinical data from consecutive patients,
enabling the discovery and rigorous validation of biomarkers; 2) validate the performance of
previously described neurophysiological biomarkers and explore new EEG signal characteristics
associated with epilepsy; and 3) design and optimize an interpretable deep learning model for

epilepsy detection and seizure risk prediction from routine EEG.

For the first objective, we established a cohort of consecutive patients who underwent routine EEG
at the Centre hospitalier de I'Université de Montréal between 2018 and 2020. This unique database
currently contains over 1,000 consecutive EEGs performed on more than 900 patients. Each EEG
is accompanied by detailed clinical variables from their clinical follow-up, which extends on
average over 2 years after the EEG. For each study, new patients are used as test samples, with a

temporal shift mimicking real-world technology deployment.
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The second objective was addressed in a first article that evaluated classical computational features
such as band power and entropy, automatically extracted from 10-second EEG segments, to predict
one-year seizure recurrence. The developed model achieved an area under the receiver operating
characteristic curve (AUROC) of 0.63 (95% CI: 0.55-0.71) in the test cohort, demonstrating
significant performance even in the absence of IEDs. This validated the hypothesis that EEG

contains seizure risk biomarkers independent of IEDs, albeit with modest diagnostic performance.

For the third objective, we developed two deep learning architectures. The first model, presented
in the second article of the thesis, aimed to demonstrate the applicability of this approach to
improve the diagnostic accuracy of EEG for epilepsy. DeepEpilepsy, a Vision Transformer that
directly models raw EEG signal, outperformed computational markers and IED-based
interpretation with an area under the ROC curve of 0.76 (95% CI: 0.69-0.83), reaching 0.83 when
combined with IEDs. Latent space analysis revealed that DeepEpilepsy seemed to depend on
variabilities in high-frequency band power (50-100 Hz).

Although DeepEpilepsy demonstrated the power of deep models, its clinical utility was limited by
the binary nature of its classification, which did not account for clinical variability among patients
with and without epilepsy. To address this issue, we developed EEGSurvNet, a deep survival model
that predicts seizure risk over time. In a third study, we trained EEGSurvNet on 917 EEGs and
tested on 135 independent recordings, and showed that this model achieves discrimination
(integrated AUROC at two years = 0.69, AUROC at two months = 0.80) and calibration (integrated
Brier Score at two months = 0.18) superior to traditional predictors. Like DeepEpilepsy,
EEGSurvNet does not depend on the presence of IEDs or abnormal slowing, and even performs
better in their absence. However, the captured patterns appear to be located in the 6-15 Hz

frequency band and evolve over a time scale of at least one minute.

This thesis establishes new methodological standards for the development of algorithms in
epilepsy, notably through the use of a consecutive patient cohort and temporally shifted validation
that mimics real clinical deployment. From a scientific perspective, our work opens a new window
to investigate the neurophysiology of epilepsy: deep models have revealed EEG patterns distinct
from traditional markers, evolving over a longer time scale. These characteristics, independent of
IEDs, could reflect more subtle alterations in neural networks. From a clinical perspective, precise

quantification of seizure risk could transform patient care by improving diagnostic certainty,
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guiding therapeutic adjustment, and optimizing patient selection for invasive interventions.
Although the main limitation is the use of data from a single center, multicenter validation is
ongoing. The real impact of this technology will depend not only on this robust validation but also
on careful consideration of its integration into clinical practice and its interaction with medical

judgment.
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CHAPITRE1 INTRODUCTION

L’épilepsie affecte 1% de la population mondiale [1]. Il s’agit d’'une maladie chronique invalidante
caractérisée par la survenue sporadique et imprévisible d’une activité électrique anormale et
synchronisée dans le cerveau, appelée crise épileptique [2], [3]. Ces crises peuvent entrainer des
symptomes neurologiques incontrolables, avec ou sans altération de 1’état de conscience, mettant

les patients en danger de blessure grave, d’accident automobile et méme de déces [4], [5].

L’¢lectroencéphalogramme (EEG), dont le premier enregistrement chez un humain est attribu¢ a
Hans Berger en 1929 [6], est un examen central au diagnostic et a la prise en charge de 1’épilepsie.
L’EEG consiste a enregistrer 1’activité électrique corticale via des €électrodes apposées sur le scalp,
offrant une fenétre sur les processus mémes qui sous-tendent 1’épilepsie. Son interprétation requiert
une analyse visuelle approfondie des oscillations cérébrales a la recherche de changements subtils
dans leur fréquence, amplitude et symétrie. Quelques années apres les premiers EEG de Berger, on
décrit de breéves ondes pointues, sporadiques et asymptomatiques, émanant du cerveau de patients
avec ¢€pilepsie [6]. Ces décharges, maintenant appelées pointes épileptiformes ou décharges
épileptiformes interictales (DEI), sont le reflet d’une irritabilité corticale anormale et sont
fortement associées a 1’épilepsie [7]. Elles se distinguent des crises par une occurrence plus
fréquente, une durée bréve (< 200 ms) et ’absence de symptomes associés. Malheureusement,
Iutilisation de DEI comme biomarqueur d’épilepsie est limitée. Premiérement, de par leur nature
sporadique, elles apparaissent chez moins de la moitié des patients avec épilepsie sur un
enregistrement standard de 30 minutes [8], [9], [10]. Deuxiémement, elles peuvent survenir chez
des patients sans épilepsie [11]. Troisiémement, elles reposent sur une analyse subjective et sont
fréquemment sur-identifiées: plusieurs ondes pointues peuvent s’apparenter a des DEI, et la
mauvaise identification des DEI est une cause importante du surdiagnostic d’épilepsie [12], [13],

[14].

L’apprentissage machine, particulierement 1’apprentissage profond, a révolutionné plusieurs
sphéres de notre société. Dans les dernieres années, des modeles mathématiques contenant
plusieurs milliards de parameétres, optimisés sur des jeux de données massifs, se sont inscrits
comme |’état de 1’art dans plusieurs domaines tels que 1’analyse d’image [15], I’interprétation du
son [16] et la génération de texte [17]. En sciences, ces modéles ont mené a la découverte de

médicaments [18] et ont résolu des problémes jugés « impossibles » comme la modélisation de



protéines [19], [20]. L’EEG est un signal complexe avec des dynamiques temporelles, spatiales et
fréquentielles encore largement incomprises [21], [22]. L’apprentissage machine est un outil idéal
pour en extraire une représentation utile sur le plan clinique. L’application de 1’apprentissage
machine a I’EEG pourrait augmenter 1’utilit¢ diagnostique et prognostique de cet examen, offrir
une alternative quantitative et automatisée a 1’interprétation visuelle et possiblement mener a une

meilleure compréhension de la neurophysiologie de 1’épilepsie.

Cette these adresse la question suivante: peut-on utiliser I’apprentissage machine pour modéliser
le signal EEG en vue d’estimer le risque de crise d’un patient, sans dépendre de la présence de
DEI? Le projet se décline en trois étapes. Premiérement, nous mesurons les performances d’un
modele d’apprentissage machine basé sur 1’extraction de caractéristiques classiques issues de la
littérature. Par la suite, nous développons et évaluons des modéles profonds pour le diagnostic
d’¢épilepsie. Troisitmement, nous améliorons 1’architecture du modele profond pour apprendre
explicitement le risque de crise a travers le temps. Ces trois étapes sont rendues possibles grace a
une riche base d’EEG accompagnées de données cliniques batie sur mesure pour répondre a la

question clinique au centre de cette thése.



CHAPITRE2 REVUE DE LITTERATURE
2.1 Le défi diagnostic de I’épilepsie

L’épilepsie est caractérisée par un risque ¢levé et persistant de crises épileptiques [2]. Ces crises
correspondent a des épisodes transitoires d’activité neuronale excessive et anormalement
synchrone, pouvant entrainer des manifestations neurologiques [3]. Environ 10% de la population
subira une crise au cours de sa vie, sans nécessairement &tre atteint d’épilepsie [1], [23]. Aprés une
seule crise, le risque de récidive est en moyenne de 40-50% [24]. Aprés deux crises non-
provoquées espacées de plus de 24h, le risque de récidive s’éleve a 73% a 4 ans [25]. Lorsque ce
niveau de risque est atteint, le diagnostic d’épilepsie peut étre posé, et un traitement est
généralement indiqué. Certains facteurs indiquent un risque plus élevé aprés une crise unique et
permettent de diagnostiquer 1’épilepsie plus précocement. Ces facteurs incluent la présence de
certaines lésions épileptogénes a 1’imagerie cérébrale, un examen neurologique anormal et la

présence d’anomalies épileptiformes a I’EEG [2].

L’EEG de routine est I’évaluation paraclinique primaire la plus importante chez les patients avec
suspicion d’épilepsie [26], [27], [28]. Cet examen de 30 a 60 minutes consiste a enregistrer
I’activité électrique du cerveau, principalement la sommation de potentiels synaptiques corticaux,
a travers des ¢lectrodes apposées a la surface du scalp. Cette activité est amplifiée et digitalisée par
un appareil d’enregistrement, puis analysé a 1’ceil par un neurologue certifié dans la lecture d’EEG
(Figure 2.1). L’activité électrique est scrutée a la recherche de patrons anormaux comme un
ralentissement des oscillations ou des pointes épileptiformes ou décharges épileptiformes
interictales (DEI; Figure 2.2). Les DEI sont des décharges abruptes, bréves (20200 ms), de haute
amplitude, souvent suivies d’une onde lente, qui interrompent le rythme de fond [28], [29]. Ces
décharges sont fortement associées a 1’épilepsie: leur présence indique un risque de crise futur
environ deux fois plus élevé aprés une premiere crise [30], [31], [32]. Elles permettent donc de
poser un diagnostic chez un patient ayant eu une seule crise [2] et de caractériser le type et la
localisation de 1’épilepsie [33]. De plus, elles sont fréquemment utilisées comme outil diagnostic
chez des patients avec une probabilité pré-test faible, pour lesquels il existe une incertitude quant
a la nature de leurs épisodes [34], [35]. La présence de pointes viendra appuyer la suspicion

d’épilepsie, et leur absence pourrait encourager la poursuite d’autres hypothéses diagnostiques.



Figure 2.1 : Electroencéphalogramme & I’état d’éveil chez un patient sain. Image tirée de [36], ©
2020, Elsevier, avec permission d’Elsevier.

La prédiction du risque de récidive de crise par ’EEG de routine est limitée par deux facteurs.
Premierement, sa faible sensibilité: des EEG de routine chez des patients avec épilepsie
n’identifient des DEI que dans 29—55% des cas [10], [28]. D’autre part, I’identification des pointes
repose sur une analyse subjective de leur morphologie, localisation et fréquence, avec une fiabilité
inter-observateur qui est au plus modérée [37], [38]. Par conséquence, des ondes pointues mais
physiologiques peuvent étre surinterprétées comme étant des anomalies épileptiformes [14]. La
mauvaise interprétation de I’EEG est considérée comme un facteur majeur de surdiagnostic de
1’épilepsie [39]. A cela s’ajoute une certaine prévalence des pointes épileptiformes chez les
individus sans épilepsie, estimée a 1.74% (et allant jusqu’a 5.96% chez la personne agée) [11]. De
plus, la précision diagnostique de I’EEG dépend de la certitude clinique quant a la survenue d’une
crise d’épilepsie, alors que pour beaucoup de patients, la nature méme des épisodes est incertaine.
Plusieurs causes alternatives peuvent expliquer des pertes de conscience ou symptomes

neurologiques transitoires, et en I’absence de témoin ou de souvenirs francs des épisodes, il est



difficile d’étre certain que ceux-ci soient des crises épileptiques. Dans les cliniques de « premiere
crise », on conclut que 1’épisode qui a amené le patient a consulter était non-épileptique dans 16—
60% des cas, avec des diagnostics alternatifs qui incluent des syncopes, des accidents ischémiques
transitoires, ou des crises psychogenes non-épileptiques [40], [41], [42], [43]. Pour ces raisons, le
taux de mauvais diagnostic est ¢€levé: le taux d’erreur diagnostic approche 20% dans la
communauté [13], et prés de 25% des patients référés pour épilepsie réfractaire (i.e., ayant eu un
échec a plus de deux médicaments anticrises appropriés), aprés une évaluation approfondie, n’ont

jamais eu d’épilepsie [44].

Figure 2.2 : Décharge épileptiforme interictale, ou pointe. Les annotations numériques dénotent
les criteéres proposés par |’ International Federation of Clinical Neurophysiology (IFCN) : 1)
Morphologie di- ou triphasique et pointue, 2) fréquence différente du rythme de fond, 3)
asymétrie, 4) onde lente subséquente, 5) perturbation du rythme de fond et 6) champ compatible
avec une source cérébrale. Tirée de [29], © 2020 Wolters Kluwer Health, Inc., avec permission
de Wolters Kluwer Health, Inc.

Les facteurs gouvernants le risque de crise, ou seuil convulsif, sont multifactoriels. Certains sont
fixes et incluent un historique d’insulte cérébrale (e.g., accident vasculaire cérébral, encéphalite,
trauma cranien), I’historique familial, I’age, la présence de certaines 1ésions a I’imagerie, et la
nature méme des épisodes ayant mené a consulter [45], [46]. D’autres varient dans le temps, comme
la dose et I’efficacité¢ du traitement anticrise, les cycles hormonaux et circadiens, le stress et
I’efficacité du sommeil [47], [48]. Un biomarqueur quantifiable du seuil convulsif améliorerait
grandement la précision diagnostique des cliniciens pour [’épilepsie et pourrait aider a

I’optimisation du traitement anticrise [49]. Par exemple, un risque de crise treés élevé motiverait un



régime thérapeutique plus agressif, une référence précoce pour évaluation chirurgicale et un
resserrement des consignes de sécurité en lien avec les occupations et la conduite automobile [49].
De plus, un tel biomarqueur améliorerait [’efficacité des études cliniques en identifiant
précocement les patients a risque d’épilepsie réfractaire ou méme ceux ayant une haute chance de

rémission [50], [51].

A ce jour, il n’existe pas de biomarqueur prédictif du seuil épileptique validé pour ’usage clinique
[2], [52], [53]. Plusieurs efforts se sont concentrés sur des analyses génétiques et métaboliques, la
neuroimagerie et I’EEG. En génétique, certains génes ou scores polygéniques sont fortement
associés a 1’épilepsie, et permettent donc d’estimer plus précisément le risque de crise future apres
une crise unique non-provoquée. Certaines mutations de genes impliqués dans la régulation du
potentiel de membranes neuronales peuvent directement abaisser le seuil convulsif [54]. Des études
plus récentes sur I’ensemble du génome mettent en lumiere certaines altérations génétiques plus
subtiles [55], [56]. Dans Heyne et al., les auteurs proposent un score de risque polygénique qui
prédit le développement d’une épilepsie généralisée génétique (rapport de risque [RR] = 1.73) ou
focale (RR = 1.13) apreés une premicre crise [57]. Le principal désavantage des biomarqueurs
génétiques est leur aspect statique: ils ne permettent pas d’évaluer la variation du seuil dans le
temps. Des biomarqueurs sériques comme les microARN circulants [58], [59] ou métabolites tels
que le glutamate, lactate et citrate [60] pourraient bien saisir ’aspect dynamique du seuil
épileptique, mais leur développement est miné par la faible spécificité, la susceptibilité au
traitement anticrise et 1’utilisation de devis cas-controle [60]. La neuroimagerie structurelle et
métabolique est une autre source prometteuse de biomarqueur d’épilepsie, mais les efforts sont
concentrés sur les patients avec épilepsie réfractaire pour 1’identification de Iésions subtiles et la

prédiction de la réponse a la chirurgie [61], [62], [63].

L’EEG demeure un candidat idéal pour la découverte de biomarqueurs prognostiques [53].
Premierement, il est effectué chez virtuellement tout patient avec suspicion ou diagnostic
d’épilepsie, et donc n’est pas sujet a des biais de sélection en fonction de la probabilité pré-test.
Cela permet d’effectuer des études rétrospectives a grande échelle. Deuxiémement, I’EEG
¢chantillonne directement le processus considéré pathologique chez les patients avec épilepsie:
I’activité électrique cérébrale. L’EEG peut étre appliqué sur de longue périodes (minutes a heure
et méme a jours) et posseéde une résolution temporelle assez élevée comparée aux autres techniques

de neuroimagerie [64], [65]. Finalement, le test est standardisé et disponible partout dans le monde,



avec une barriere technologique basse [31], [66]. Une de ses faiblesses majeures réside dans son
interprétation visuelle et la dépendance sur les pointes épileptiformes. Au-dela de sa subjectivité et
de la nécessit¢ d’une formation surspécialisée, 1’interprétation visuelle fait fi de plusieurs
caractéristiques cachées dans le signal, incluant les dynamiques temporelles complexes, des
tendances sur longues échelles temporales (>10-20s, la taille de fenétre typiquement utilisée pour
analyser ’EEG de routine) et les interactions de haut-niveau entre les régions cérébrales. Dans une
¢re ou les algorithmes peuvent converser avec les humains, rédiger des textes complexes et méme
analyser avec précision des imageries médicales, est-ce qu’il est possible d’exploiter davantage la

richesse du signal capté par I’EEG et en tirer une information utile cliniquement?

2.2 Des biomarqueurs computationnels d’épilepsie a PIEEG: revue

systématique

L'analyse automatisée de I'EEG a la recherche de biomarqueurs d'épilepsie intéresse les chercheurs
en neurosciences, informatique et génie depuis plusieurs décennies. Plusieurs caractéristiques du
signal EEG sont différentes dans le cerveau d’un patient épileptique comparé a des sujets sans
épilepsie. Ces marqueurs incluent des caractéristiques du réseau de connectivité fonctionnelle, la
complexité et prédictibilité du signal, la puissance spectrale et la chaoticité. L'analyse automatisée
permettrait d'extraire cette information qui est invisible a I'ceil nu, de maniére quantitative et rapide,
améliorant l'utilit¢ diagnostique et prognostique de I'EEG. Malgré ces promesses, aucun de ces
marqueurs n’est utilisé¢ en clinique. Nous avons effectué une revue systématique pour évaluer la
performance diagnostique de ces marqueurs en épilepsie, les populations étudiées et la qualité
méthodologique des études, afin de comprendre pourquoi leur impact clinique est faible et émettre
des recommandations pour les projets futurs. Je résume ici les résultats de la revue systématique,
disponible en annexe (ainsi que son protocole publié dans un journal avec revue par les pairs) [67],

[68], suivi d’une mise a jour sur les travaux publiés depuis.

Notre revue systématique inclus toute étude rétrospective ou prospective comparant au moins un
biomarqueur computationnel pour le diagnostic d’épilepsie sur I’EEG de routine (<24h), sans
dépendre uniquement de la détection de pointes ou de crises. La population d’intérét incluait des
individus qui ont un EEG de routine dans le cadre de la clinique ou de la recherche, sans restreindre

pour I’age, les comorbidités, ou la médication. Le standard de référence était le diagnostic



d’épilepsie évalué cliniquement, tel que défini par les critéres de la Ligue Internationale contre

I’Epilepsie [2].

Notre stratégie de recherche, mise sur pied par deux bibliothécaires médicales, a identifié¢ plus de
10 000 articles publiés entre 1961 et 2022. Deux évaluateurs indépendants ont effectué le triage
puis la sélection des études. Deux autres évaluateurs indépendants ont procédé¢ a I’extraction des
données et a I’évaluation méthodologique basée sur 1’outil QUADAS-2 et adapté a la question de

recherche de la revue [68]. Ces derniers évaluateurs ont aussi évalué la reproductibilité des études.

Apres le triage et la sélection, 37 études ont été incluses. Ces études ont exploré différentes
approches d'analyse du signal EEG: des méthodes linéaires (43% des études), non-linéaires (27%),
de connectivité (38%) et d'apprentissage profond (10%). La taille des échantillons variait
considérablement, avec une moyenne de 54 participants et seulement six études incluant plus de
100 sujets (Figure 2.3). La majorité des études incluaient a la fois des enfants et des adultes, et

environ deux tiers des études incluaient tout type d'épilepsie.

Figure 2.3 : Tailles d’échantillon des études incluent dans la revue systématique en fonction du
type de marqueur (A) et de ’année de publication (B). Image tirée de [67] sous licence CC BY
4.0.

Les méthodes linéaires se sont concentrées sur l'analyse spectrale, notamment la puissance relative
dans les bandes de fréquence. Des différences entre patients avec épilepsie et sans épilepsie ont été

détectées dans toutes les bandes de fréquences: delta (<4 Hz), théta (4—8 Hz), alpha (8—13 Hz), beta



(1340 Hz) et gamma (> 40 Hz), ainsi que les sous-bandes alpha [69], [70], [71], [72], [73], [74],
[75]. D'autres approches ont exploré la stationnarité du signal et ses moments statistiques d'ordre
supérieur (« High-order spectrum »)[71], [75]. Les parameétres de Hjorth, qui quantifient les
moments statistiques du signal dans les domaines temporel et fréquentiel [76], semblaient
discriminants dans deux études. Une approche originale consistait a détecter des événements lents
paroxystiques (« Paroxysmal Slow Wave Events »), définis comme des segments de 2 secondes
avec une fréquence médiane inférieure a 6 Hz, montrant une aire sous la courbe ROC (AUROC)

de 0.72 pour prédire le risque de récidive a 18 mois apres une premiere crise [77].

Les méthodes non-linéaires ont cherché a caractériser la complexité et la prévisibilité du signal
EEG. L'entropie, sous ses différentes formes (Shannon, spectrale, approximative, de permutation),
a été étudiée dans sept études [78], [79], [80], [81], [82], [83], [84]. Ces mesures tentent de
quantifier le degré d'organisation ou de chaos dans l'activité cérébrale, supposément altéré chez les
patients avec épilepsie. Certaines études ont calculé 1’entropie apres avoir filtré différentes bandes
de fréquences, permettant d’évaluer I’entropie sur différentes échelles temporelles. D'autres
caractéristiques non-linéaires incluaient les dimensions fractales [75], [78], I'exposant de Hurst
[79], l'analyse des intervalles de passage a zéro (« zero-crossings interval analysis ») [85] et

l'analyse quantitative de récurrence [83].

L'analyse de la connectivité fonctionnelle a été utilisée par 14 études [69], [78], [81], [86], [87],
[88], [89], [90], [91], [92], [93], [94], [95], [96]. Ces méthodes évaluent les interactions entre
différentes régions cérébrales, soit par des mesures de synchronisation de phase, soit par des
analyses de causalité. La plupart des études ont utilis€ une analyse basée sur les capteurs plutot que
sur les sources, avec diverses mesures de connectivité comme l'information mutuelle [86], la
cohérence [86], la valeur de verrouillage de phase [86], [88] et la causalité de Granger [87]. Une
approche rapportée par deux études consistaient en un modele des interactions entre les régions
cérébrales inspiré de 1’oscillateur de Kuramoto afin d’isoler les parametres qui dictent la
propension du réseau a générer des crises [88], [93]. Toutes les études ont analysé la connectivité
sur plusieurs bandes de fréquence. Apres avoir estimé la force de connectivité entre chaque
¢lectrode, la majorité des études ont extraits des caractéristiques qui décrivent la topologie du
réseau. Trois études ont directement utilisé les matrices de connectivité comme entrée dans un

algorithme de classification [87], [94], [95]. Les caractéristiques de réseau des patients avec
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épilepsie étaient peu reproductibles d’une étude a I’autre. La seule caractéristique qui était associée

a I’¢épilepsie dans toutes les études I’ayant étudiée était 1’efficacité du réseau [89], [96], [97].

Quatre études ont utilisé des réseaux de neurones a convolution (CNN), avec des architectures
variant d'une simple couche de convolution a trois blocs de deux couches convolutives [73], [74],
[87], [98]. Certaines études ont prétraité les données en matrices de connectivité [87] ou en
représentations temps-fréquence [73], tandis que d'autres ont directement utilisé le signal EEG brut
en segments de 2 a 10 secondes [74], [98]. Les réseaux étaient de taille modeste, variant d’environ
3 000 a 92 000 parametres. L'augmentation du chevauchement des segments lors de l'analyse a
semblé améliorer les performances, possiblement en augmentant artificiellement la taille de

I'ensemble d'entrainement [74].

Figure 2.4 : Performances diagnostiques des ¢tudes incluent dans la revue systématique et
exemptent de fuite de données entre les ensembles d’entrainement et de test. A : Performances en
fonction du type de caractéristiques. B : Performance en fonction du modele d’apprentissage.
Image tirée de [67] sous licence CC BY 4.0.

Cependant, malgré des performances diagnostiques rapportées allant de 64% a 100%, 1'évaluation
rigoureuse de ces biomarqueurs est séveérement limitée par d'importantes faiblesses
méthodologiques. Aucune étude n'a démontré un faible risque de biais selon les critéres
standardisés d'évaluation QUADAS-2 [68], [99]. Les problémes méthodologiques majeurs
incluaient la sélection non-représentative des patients (utilisation fréquente d'un plan d’étude cas-

témoins plutdt qu'une cohorte consécutive), les fuites de données dans la validation des
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performances (partage d'information entre les ensembles d'entrainement et de test) et le manque de
reproductibilité des analyses. La sélection manuelle des segments EEG, effectuée dans 54% des
études, introduisait une source additionnelle de subjectivité dont l'impact sur les performances n'a

pas été quantifié. Seules six études (16%) ont été jugées reproductibles.

Figure 2.5 : Résumé du risque de biais des études de la revue systématique par domaine
PRISMA. Image tirée de [67] sous licence CC BY 4.0.

Ces limitations empéchent actuellement de conclure sur 'utilité clinique réelle de ces biomarqueurs
computationnels. Des études futures devront adopter une méthodologie plus rigoureuse, incluant
des populations cliniquement pertinentes, une validation externe robuste et une documentation
détaillée des méthodes d'analyse. Les approches basées sur l'apprentissage profond, bien que
prometteuses, nécessiteront des bases de données considérablement plus grandes pour atteindre
leur plein potentiel. Les futures études devront également prioriser I'automatisation compléte du
traitement des signaux EEG, incluant la détection et le rejet des artéfacts, pour faciliter I'application
clinique de ces méthodes. L'avénement de grandes bases de données d'EEG standardisées et

'amélioration continue des techniques d'apprentissage automatique laissent espérer des avancées
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significatives dans ce domaine, qui pourraient ultimement compléter I'analyse visuelle

traditionnelle.
2.2.1 Mise a jour sur le diagnostic automatisé de 1’épilepsie a PEEG

Depuis la recherche effectuée dans le cadre de la revue systématique présentée a la section
précédente, quelques articles additionnels ont tenté d’utiliser I’analyse automatisée de ’EEG pour

améliorer le diagnostic de 1’épilepsie.

Myers et al. ont développé "EpiScalp", un modéle de régression logistique basé¢ sur des
caractéristiques spectrales et de connectivité, pour différencier I'épilepsie des conditions mimiques
comme les crises psychogenes non-épileptiques [100]. Sur une cohorte de 218 patients admis a
I’unité de monitoring d’épilepsie dans différents centres hospitaliers américains avec un EEG de
routine préalable normal, les auteurs ont sélectionné les patients ayant un épisode habituel lors de
I’admission permettant de confirmer ou infirmer le diagnostic d’épilepsie. Par la suite, ils ont
identifi¢ des marqueurs de connectivité et de puissance spectrale permettant de distinguer les
patients avec et sans épilepsie avec une AUROC de 0.94 en validation croisée et une précision de
80% sur un ensemble test. Les critéres d'inclusion stricts (confirmation diagnostique par
enregistrement d'un ¢épisode habituel en vidéo-EEG prolongé) diminuent cependant la
généralisabilité de leurs résultats a une population plus large. Cette performance doit aussi étre
interprétée avec prudence étant donné la petite taille de I'ensemble de test (20 patients) et un
possible biais de sélection des caractéristiques, celle-ci ayant été effectuée sur I'ensemble des

données.

Une autre étude multicentrique par Tait et al. a validé un ensemble de biomarqueurs
computationnels sur 281 EEG consécutifs normaux collectés dans huit centres au Royaume-Uni
[101]. Le diagnostic d’épilepsie était basé sur les notes médicales, avec un suivi d’au moins un an.
Leur approche combinait huit biomarqueurs: deux mesures spectrales, quatre de réseau et deux
basées sur des modeles dynamiques. Leur modé¢le atteignait une précision balancée de 68% sur un
ensemble test (sensibilité 61%, spécificité 75%). Les auteurs ont aussi confirmé I’absence d'impact
de variables confondantes comme 1'dge, le genre, le statut de traitement et les comorbidités. Cette
¢tude présente une méthodologie robuste comparativement aux études précédemment décrites. Elle
est tout de méme limitée par I’absence d’un ensemble test et le manque de généralisabilité aux EEG

anormaux, pour lesquels les performances étaient non-significatives.
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Faiman et al. se sont concentrés spécifiquement sur la différenciation entre épilepsie et crises
psychogenes non-épileptiques chez 148 patients naifs au traitement [102]. Des segments
visuellement normaux de 20s étaient sélectionnés pour 1’analyse. Leur approche était divisée en
deux: une premiere étude testait des biomarqueurs précédemment rapportés (puissance théta et
fréquence alpha pic), alors qu'une seconde étude explorait de nouvelles caractéristiques avec un
algorithme de sélection de caractéristiques (pour un total de 7 729 caractéristiques). Ni l'approche
guidée par hypothéese (précision moyenne 48%) ni 'approche exploratoire (précision 45-60%) n'ont
permis d'identifier des biomarqueurs robustes. Cette étude négative souligne la difficulté de la tache
en question. Les faiblesses méthodologiques incluent une taille d’échantillon trop faible pour
I’apprentissage, 1’utilisation d’un segment unique de 20s pour chaque EEG et une possible sous-

optimisation des hyperparametres.

En parallele, deux études majeures ont démontré le potentiel de l'apprentissage profond pour
I’interprétation automatisée de 'EEG, particuliérement pour la détection de DEIs. Bien que cette
tache soit différente du diagnostic, ces deux études présentent des paralléles intéressants avec les
objectifs de cette theése comme [’utilisation de modéles profonds, une méthodologie robuste et des
données a grande échelle. Tveit et al. ont développé SCORE-AI, un réseau de neurones a
convolution entrainé sur plus de 30 000 EEG pour classifier les enregistrements en catégories
cliniquement pertinentes (normal, épileptiforme focal/généralisé, non-épileptiforme focal/diffus)
[103]. Le mode¢le a atteint des performances similaires aux experts humains avec une aire sous la
courbe ROC entre 0.89 et 0.96 selon la catégorie. La validation externe sur trois jeux de données
indépendants, incluant un ensemble multicentrique de 100 EEG évalués par 11 experts et un
ensemble monocentrique de 9 785 EEG, démontre la robustesse du modele. Jing et al. ont créé
SpikeNet, un réseau de neurones profond pour la détection automatisée de DEI [104]. Entrainé sur
plus de 9 500 EEG annotés par huit neurophysiologistes certifié¢s, SpikeNet a surpassé¢ les
performances humaines et les solutions commerciales existantes, avec une erreur de calibration
plus faible (0.041 vs 0.183 pour les experts) et une meilleure discrimination (AUROC 0.98 vs 0.88
pour le standard commercial). Bien que ces deux études ne visent pas directement le diagnostic
d'épilepsie, elles démontrent la faisabilité d'analyser de grandes bases de données d'EEG avec

l'apprentissage profond.

Ces ¢études récentes illustrent I’intérét croissant pour la recherche de biomarqueurs alternatifs a

I’EEG a l’aide de méthodes computationnelles. Les approches basées sur I'extraction de
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caractéristiques prédéfinies montrent des résultats encourageants mais variables, possiblement
limités par la taille des cohortes et des biais méthodologiques. Notamment, la difficulté a reproduire
certains biomarqueurs précédemment rapportés souligne l'importance d'une validation externe
rigoureuse et met en garde contre la surinterprétation d'études pilotes sur de petits échantillons sur-
sélectionnés. L'apprentissage profond émerge comme une approche prometteuse, particuliérement
lorsqu'entrainé sur de grandes bases de données. Cependant, son application au diagnostic

d'épilepsie reste a démontrer.
2.3 L’apprentissage profond et PEEG

Au-dela de I’épilepsie, I’apprentissage profond promet de révolutionner I’analyse de ’EEG, avec
des applications allant de I’interface cerveau-machine a la détection des stades de sommeil [105],
[106]. En épilepsie, les avancées significatives se concentrent principalement a la détection de DEI
qui bénéficie d’ensembles de données comptant des dizaines de milliers d’EEG [103], [104]. Le
choix de mod¢le optimal pour la classification de signaux EEG est un sujet de recherche tres actif.
Actuellement, deux familles de modéles dominent la littérature récente sur 1’apprentissage profond

et ’EEG: les réseaux de neurones a convolution et les Transformeurs.
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Figure 2.6 : Exemple de I’opération de « convolution » (qui est en réalité une corrélation croisée)
avec plusieurs canaux. Image tirée de [107] sous licence CC BY-SA 4.0.

Le CNN est I’approche la plus courante pour la modélisation du signal EEG [67], [105], [108],
[109]. Introduit en 1998 avec LeNet-5 pour la reconnaissance de caractéres manuscrits [110], le
CNN combine trois concepts clés: les couches de convolutions, les fonctions d’activation non-
linéaires et le pooling (Figure 2.6 et Figure 2.7). Les couches de convolutions consistent a faire

« glisser » un filtre sur I’entrée. Les paramétres du filtre sont optimisés au cours de I’entrainement.
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Cela limite les connexions possibles entre les parameétres d’entrée (appelé champ réceptif ou
receptive field) et confére une structure hiérarchique aux CNN, ou les premiéres couches captent
des caractéristiques locales alors que les couches plus profondes, des caractéristiques plus
générales [111]. Les convolutions permettent aussi le partage de poids, ce qui réduit drastiquement
le nombre de parametres et force le réseau a apprendre des filtres invariants a la translation. Les
fonctions d'activation non-linéaires, comme la fonction sigmoide ou le Rectified Linear Unit
(ReLU), introduisent la non-linéarité nécessaire pour modéliser des relations complexes et facilite
l'entrainement du réseau. Le pooling agrége l'information spatiale locale avec une fonction max ou
moyenne, réduisant la dimensionnalité et augmentant la robustesse aux petites transformations. A
travers le CNN, les couches de pooling réduisent progressivement la dimensionnalité de la
représentation. Ces propriétés définissent le biais inductif qui confére aux CNN une capacité
naturelle a identifier les relations a travers diverses échelles temporelles et spatiales et leur confere

une robustesse aux jeux de données modestes [112].
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Figure 2.7 : Le mod¢le LeNet, reconnu comme un pionnier des réseaux de neurones a
convolution. Image tirée de [110] sous licence CC BY 4.0.

Depuis son invention, plusieurs changements importants ont été apportés au CNN, lui permettant
d’étre entrainé efficacement et avec stabilité sur des jeux de données massifs. En 2012, AlexNet a
démontré la puissance des réseaux profonds en remportant la compétition ImageNet avec une
marge considérable. La principale contribution était la profondeur du modele, qui comportait 60
millions de parameétres (contre 60 000 pour LeNet de 1998) et rendue possible grace aux avancées
en optimisation sur GPU [15]. Par la suite, VGGNet (2014) a standardisé l'architecture en utilisant

des blocs répétitifs de petites convolutions (3x3) et de pooling, démontrant qu'une succession de
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blocs de convolutions avec un petit champ récepteur est plus performante qu’une séquence plus
courte de grandes convolutions [113]. Finalement, ResNet (2015) a révolutionné I’entrainement
des réseaux trés profonds en introduisant les connexions résiduelles (Figure 2.8), permettant au
gradient de circuler plus efficacement a travers le réseau [114]. Ces avancées architecturales ont
établi les CNN comme 1'état de 1'art dans pratiquement tous les domaines de vision par ordinateur

[115],[116], [117] et ont inspiré leur application a d'autres types de données comme I'EEG.

Figure 2.8 : Connection résiduelle au sein d’un réseau de neurones. Image tirée de [114]. © 2016,
IEEE

Pour ’EEG, les deux CNN phares sont ’EEGNet [118] et le ShallowConvNet [119], [120]. Ces
deux mod¢les ont en commun I’utilisation séquentielle de point-wise convolution dans le domaine
temporel puis spatial (Figure 2.9). Cette approche est inspirée de I’algorithme Filter Bank Common
Spatial Patterns (FBCSP) utilisé pour décoder le signal EEG dans les interfaces cerveaux-machine
[121] et permet de réduire considérablement le nombre de paramétres dans leur modele. Dans un
article récent [122], les auteurs du ShallowConvNet ont comparé les performances de ces
algorithmes pour ’EEG de routine sur un jeu de données publiquement disponible, le Temple
University Hospital EEG corpus [123], [124]. 1l s’agit d’un ensemble de 10 700 EEG provenant
de 8 710 patients avec le rapport correspondant. Pour certains sous-ensembles, les EEG ont été
étiquetés a partir du rapport d’EEG (e.g., EEG globalement normal vs. anormal, patient avec
épilepsie vs. sans épilepsie). Il est important de noter que les critéres d’inclusion de ces EEG ne
sont pas spécifiés, et les étiquettes sont a haut risque de biais puisqu’elles sont attribuées sur la base
du rapport EEG et non d’une revue plus compréhensive du dossier longitudinal des patients. Dans
leur analyse, les auteurs se sont intéressés a la performance des différents CNN en fonction de la
taille de I’échantillon d’entrainement. Ils ont démontré que les performances de classification

suivent une loi de puissance avec saturation, en fonction de la taille du modéle et de la taille du jeu
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de données. Selon leurs conclusions, les modéles présentés saturent apres entrainement sur 2 000
exemples, avec une augmentation de la précision de seulement 1.5% lorsqu’entrainés sur 8 000
autres exemples. Les limitations importantes de leur étude sont le biais dans 1’étiquetage des

données et la taille maximale de leur modéle (1.7M de parameétres).

Figure 2.9 : Le mod¢le ShallowConvNet pour la classification d’EEG. Image tirée de [125]. ©
2017, IEEE

Une autre architecture qui gagne en popularité¢ pour I’EEG est le Transformeur. Le Transformeur
a initialement ét¢ congu pour modéliser les séries comme les séries temporelles ou le texte.
Auparavant, les réseaux de neurones privilégiés pour les données en séries étaient les Réseaux de
Neurones Récurrents (RNN) comme les réseaux Long Short-Term Memory (LSTM). Ces réseaux
traitent les données séquentiellement en maintenant un état caché (hidden state) qui garde en
mémoire I’information des états précédents [112]. Les RNN souffrent de trois limitations majeures:
premicrement, le traitement séquentiel limite la parallélisation. Deuxiémement, ils sont sujets au
probléme d'évanescence des gradients ou le signal d'apprentissage s'atténue exponentiellement lors
de la rétropropagation a travers le temps ; et troisiemement, malgré les mécanismes de portes des
LSTM, ces réseaux peinent a identifier les dépendances a long terme car 'information doit traverser
de nombreuses étapes de traitement [112]. Les Transformeurs adressent ces problémes grace a leur
mécanisme d'attention [17]. L'attention permet a chaque élément de la séquence d'interagir
directement avec tous les autres ¢éléments, facilitant ainsi la modélisation des dépendances
temporelles sans les contraintes des architectures récurrentes (Figure 2.10). De plus, cette
architecture permet un traitement parallele, accélérant significativement l'entrainement. Les
Transformeurs sont aussi reconnus pour leur extensibilité: des jeux de données plus volumineux et
des modeles plus complexes résultent en de meilleures performances, et ce avec une utilisation plus

efficace des ressources computationnelles [126]. Ces avantages en ont fait I'architecture dominante
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pour les taches complexes de traitement du langage naturel, et leur succés s'étend maintenant a

d'autres domaines comme 1'analyse de signaux EEG [127], [128], [129].

Figure 2.10 : A gauche : Attention avec produit scalaire. A droite : Attention multi-head, ou les
multiples « tétes » sont des modules d’attention avec produit scalaire paralleles. Image tirée de
[17] sous licence CC BY-SA 4.0.

Le Vision Transformer (ViT) est une adaptation du Transformeur a I’imagerie [130]. Son principe
est de découper I'image en morceaux (patches) qui sont ensuite organisé€s en séquence et traités
comme des lexémes (tokens), similaires aux mots dans le traitement du langage (Figure 2.11). Cette
approche permet d'appliquer directement les mécanismes d'attention aux données visuelles, en
considérant chaque « patch » comme une unité distincte pouvant interagir avec toutes les autres.
Depuis la publication du ViT, plusieurs améliorations ont été proposées pour faciliter leur
entrainement, particulierement aux jeux de données plus modestes. Le Compact Vision
Transformer (CvT) combine une tokenisation par convolution avec un Transformeur compact, et
il peut atteindre des performances état-de-l'art avec aussi peu que 0.28M parametres [131], [132].
Un autre ¢élément clé pour I’entralnement efficace du Transformeur est la régularisation.[133]
Celle-ci peut étre obtenue avec des techniques d’optimisation comme le weight decay ou le
dropout, mais surtout via des techniques d'augmentation de données comme le masquage aléatoire
et la rotation [133], [134]. Cette régularisation est essentielle pour adapter les Transformeurs aux
jeux de données limités [135]. Cette caractéristique est particulierement pertinente pour l'analyse
de I'EEG, ou les données étiquetées sont souvent rares et ou l'augmentation de données doit étre

appliquée avec précaution pour préserver la signification physiologique du signal.
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Figure 2.11 : Apergu du Vision Transformer. Image tirée de [130] sous licence CC BY 4.0.

En EEG, le Transformeur a été utilisé pour le suivi des mouvements extra-oculaires [128], la
prédiction de crises en temps réel [136], [137], la reconnaissance d’émotions [127] et le décodage
des patrons moteurs [129]. Toutes ces études utilisent le ViT, mais varient dans leur méthode pour
découper le segment d’EEG d’entrée. Deux études, ViIT2EEG et EEGFormer [127], [128], utilisent
les convolutions point-wise pour encoder le signal avant I’entrée dans le Transformeur, inspiré par
les ShallowConvNet et EEGNet présentés plus tot [118], [119]. Les deux autres études utilisent
comme tokenizer soit une projection linéaire comme le ViT original [130], ou bien une couche de
convolution avec activation ReLU. Trois des études utilisent le signal EEG sous la forme C x T
[127], [128], [137], alors que la quatriéme transforme le signal en spectrogramme de la forme C x
F x T (dans leur cas, C = 1) [136]. Bien que chacun des articles démontrent une bonne performance
du ViT pour I’EEG, les tailles de jeux de données se limitent a 15 000-80 000 segments provenant
de 23—70 patients et les segments d’EEG sont courts (jusqu’a 50 000 points ou 10 secondes). Une
autre initiative notable est le Brain Foundation Model par Bayazi et al. [138]. Ce Transformeur
applique la complexit¢ d’un large modéle de langage a l’analyse de ’EEG et de I'IRM
fonctionnelle. Cependant, le mod¢le traite un canal a la fois, et donc ne peut pas modéliser les
relations spatiales inhérentes a I’EEG. Ainsi, la capacité réelle du Transformeur a modéliser un

large ensemble de données EEG pour une tache clinique reste incertaine.

Malgré ces avancées prometteuses, plusieurs limitations importantes persistent dans l'application
de l'apprentissage profond a I'EEG. Premic¢rement, le plein potentiel de ces algorithmes pour le

diagnostic d’épilepsie reste largement inexploré: les plus grands modéeles actuels, qui ne comptent
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que quelques dizaines de milliers de parameétres,[73], [74], [87], [98] sont modestes comparés aux
modeles état de l'art dans d'autres domaines. Deuxieémement, de nombreuses questions
méthodologiques fondamentales restent sans réponse claire: le choix optimal entre Transformeurs
et CNN, la méthode de tokenisation la plus appropriée, 'utilisation de spectrogrammes versus
signaux bruts, ou encore la longueur optimale des segments a analyser. Enfin, ces modeles profonds
restent largement des "boites noires": nous avons une compréhension limitée des caractéristiques
qu'ils extraient des signaux EEG et de la fagon dont ils prennent leurs décisions. Cette opacité
constitue un obstacle majeur a leur adoption clinique et souligne le besoin de développer des

méthodes d'interprétabilité robustes.
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CHAPITRE 3  OBJECTIFS ET ORGANISATION DE LA THESE

Dans le chapitre précédent, nous avons démontré qu’il y a un besoin criant de biomarqueurs du
risque de crise en épilepsie. L’EEG pourrait contenir une information pertinente invisible a 1’ceil
nu mais détectable via des méthodes quantitatives. Cependant, les études actuelles sont limitées
par des biais méthodologiques reliés a la sélection des patients et la validation. L apprentissage
profond est une approche intéressante pour modéliser I’EEG, mais sa capacité a détecter des

caractéristiques liées au diagnostic d’épilepsie et au risque de crise est incertaine.

Cette these tente de répondre a la question suivante: Comment extraire de I'EEG des biomarqueurs
quantitatifs et robustes du risque de crise en épilepsie, indépendamment de la présence de DEI?

Plus spécifiquement:

1) Quelles caractéristiques décrites dans la littérature permettent d’identifier les patients a
risque de crise de fagon indépendante des DEI, et quelle est leur précision diagnostique?
2) Est-ce que I’apprentissage profond peut améliorer les performances diagnostiques et

prognostiques comparés a 1’extraction de caractéristiques et a la présence de DEI?
Pour répondre a ces questions, les objectifs suivants ont été établis:

1) Développer une base de données d'EEG de routine avec données cliniques détaillées
provenant de patients consécutifs, permettant la découverte et la validation de
biomarqueurs;

2) Valider les performances des biomarqueurs neurophysiologiques précédemment décrits et
explorer de nouvelles caractéristiques du signal EEG associées a 1'épilepsie;

3) Concevoir et optimiser un modéle d'apprentissage profond interprétable pour la détection

de I'épilepsie et la prédiction du risque de crise a partir de I'EEG de routine.
3.1 Organisation de la thése

La these est divisée en deux parties principales. La premiere partie (Chapitres 1 et 2) présentait une
revue critique de la littérature, démontrant le besoin de biomarqueurs en épilepsie et le potentiel de
l'apprentissage profond appliqué a I'EEG, tout en exposant les limitations méthodologiques

actuelles.
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La deuxiéme partie présente trois études complémentaires qui explorent progressivement la
modélisation du risque de crise, des approches traditionnelles aux méthodes d'apprentissage
profond. Le Chapitre 4 établit les fondations en évaluant un modeéle basé sur des caractéristiques
computationnelles classiques pour le diagnostic d'épilepsie et la prédiction de récurrence de crise
a un an. Le Chapitre 5 introduit une nouvelle approche en développant une architecture
d'apprentissage profond capable de modéliser directement le signal EEG brut pour prédire le
diagnostic d'épilepsie. Le Chapitre 6 étend cette méthodologie en proposant un modéle qui prédit

le risque de crise a travers le temps tout en améliorant l'interprétabilité clinique.
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CHAPITRE 4 ARTICLE 1: MACHINE-LEARNING FOR THE
PREDICTION OF ONE-YEAR SEIZURE RECURRENCE BASED ON
ROUTINE ELECTROENCEPHALOGRAPHY
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Cet article aborde les premier et deuxiéme objectifs visant a mettre sur pied une base de données
d’EEG de routine avec information clinique et de mesurer la performance diagnostique pour
I’épilepsie des marqueurs computationnels existants. L’article a été publi¢ le 4 aolt 2023 dans la
revue Scientific Reports (https://www.nature.com/articles/s41598-023-39799-8) et compte
maintenant 18 citations (Google Scholar). 11 a remporté le prix Mary Ann Lee de la Ligue
Canadienne contre I’Epilepsie pour meilleure publication par un résident en neurologie au
Canada (2024) et le prix Pavel Hamet pour meilleure publication au CRCHUM (2024). Ce
travail a fait I’objet de multiples présentations orales, notamment a 1’American Academy of
Neurology Annual Meeting (Boston, 2023; Prix Futures in Neurological Research) et au
Canadian Neurological Sciences Federation Congress (Montréal, 2022; Prix Herbert Jasper pour
meilleur abrégé en neurophysiologie clinique), ainsi que des présentations par affiches, incluant
a ICTALS (Berne, 2022; Bourse de congres), I’American Epilepsy Society Annual Meeting
(Virtual [Chicago], 2021) et I’ International Epilepsy Conference (Virtual, 2021).

Ma contribution a cet article comprend l'identification de la problématique, la collecte de données,
le développement de la méthode d'apprentissage automatique, le prétraitement des données EEG,
la réalisation des expériences computationnelles, l'interprétation et l'analyse des résultats, la

conception des visualisations, ainsi que la rédaction du manuscrit.
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4.1 Abstract

Predicting seizure recurrence risk is critical to the diagnosis and management of epilepsy. Routine
electroencephalography (EEG) is a cornerstone of the estimation of seizure recurrence risk.
However, EEG interpretation relies on the visual identification of interictal epileptiform discharges
(IEDs) by neurologists, with limited sensitivity. Automated processing of EEG could increase its
diagnostic yield and accessibility. The main objective was to develop a prediction model based on
automated EEG processing to predict one-year seizure recurrence in patients undergoing routine
EEG. We retrospectively selected a consecutive cohort of 517 patients undergoing routine EEG at
our institution (training set) and a separate, temporally shifted cohort of 261 patients (testing set).
We developed an automated processing pipeline to extract linear and non-linear features from the
EEGs. We trained machine learning algorithms on multichannel EEG segments to predict one-year
seizure recurrence. We evaluated the impact of IEDs and clinical confounders on performances
and validated the performances on the testing set. The receiver operating characteristic area-under-
the-curve for seizure recurrence after EEG in the testing set was 0.63 (95%CI: 0.55-0.71).
Predictions were still significantly above chance in EEGs with no IEDs. Our findings suggest that

there are changes other than IEDs in the EEG signal embodying seizure propensity.
4.2 Introduction

Epilepsy is a chronic neurological condition defined as an enduring, pathological propensity to
recurring seizures [2]. Predicting the risk of seizure recurrence is at the heart of the diagnosis and
management of people with epilepsy (PWE). The electroencephalogram (EEG), a 20- to 60-minute
recording of the electrical activity of the cerebral cortex via scalp electrodes, is a cornerstone of
the estimation of seizure recurrence risk. The hallmark of epilepsy on the EEG is the interictal
epileptiform discharge (IED): a brief, sharp discharge emanating from the background rhythm
between seizures. In several clinical scenarios, such as after a first unprovoked seizure, before
withdrawing antiseizure medication (ASM), and after surgical resection of an epileptic focus,
visual identification of IEDs on routine EEG grossly doubles the risk that a patient will have seizure
recurrence in the next years [31]. This impacts ASM management and prescription of ancillary

tests.

Unfortunately, spikes are elusive: in PWE, a 20-minute EEG captures spike in only 29-55% of

cases [10], [28]. As a result, the sensitivity of EEG for predicting seizure recurrence is limited [30].
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In addition, IEDs are subject to overinterpretation with an inter-rater agreement that is only
moderate, even among fellowship-trained neurophysiologists [37]. The overidentification of
sharply contoured waveforms and normal variants as epileptiform can lead to the misdiagnosis of
epilepsy, particularly in the event of a poor clinical history [139], [140]. Finally, once the diagnosis
of epilepsy is established, IEDs on routine EEG do not correlate well with disease activity, limiting
their usefulness to monitor ASM therapy [141], [142], [143], [144]. A biomarker of seizure
propensity that is automated, objective, and independent of IEDs would heavily impact clinical
practice by reducing diagnostic error, accelerating treatment in patients at high risk of seizures,

avoiding the consequences of overdiagnosis in the others, and monitor disease activity.

Several studies have suggested that the routine EEG can capture non-visible anomalies in cortical
activity in patients with both focal and generalized epilepsies [145], [146], [147], [148], [149],
[150]. These differences include subtle power shifts in specific frequency bands [151], [152], [153],
[154], changes in regularity of the signal [80], [155], or presence of power scaling laws [79].
However, key questions were not addressed in previous studies, such as the reproducibility on
external data and the impact of confounders like age and antiseizure therapy. In addition, previous
studies are underpowered (with samples smaller than 100 patients) [156]. Thus, the potential
predictive performances of computational EEG biomarkers in the clinical setting remain unknown
[157]. There is a need for high-powered cohort studies to assess the diagnostic accuracy of these

biomarkers and initiate their clinical translation.

In this paper, we develop and validate predictive models for the prediction of seizure recurrence at
one year based on the computational extraction of biomarkers from the routine EEG signal. We
train the model on a large retrospective cohort of consecutive patients undergoing routine EEG and
validate the predictive accuracy on a temporally shifted cohort of patients. We investigate whether

predictive accuracy is independent of IEDs and other clinical confounders.
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Figure 4.1 : EEG processing and marker extraction methods. A: Processing of a single EEG:
extraction from the database in which the EEG is stored with annotations, segmentation into 10s
epochs according to pre-defined timepoints, identification of artefactual channels (in red) and
interpolation. B: Marker extraction: for each marker, one value is computed at each channel,
epoch, and frequency bands. The values for a given epoch are used as input for the machine
learning algorithm.

4.3 Methods

4.3.1 Patient population and clinical file review

We retrospectively recruited all consecutive patients who underwent a routine EEG at the
University of Montreal Hospital Center (CHUM) between January 2018 and June 2019. Routine
EEGs (both awake and sleep recordings) recorded between January and December 2018 constituted
the training set, while EEGs recorded between January and June 2019 constituted the held out
testing set. We excluded EEGs with no follow-up visit available after the EEG, uncertain diagnosis
at the end of the available follow-up, or with excessive artifacts or seizures (as per the EEG report).
For the testing set, we additionally excluded patients for whom an EEG was already included in

the training set. We reviewed the patients’ entire medical chart for clinical information:
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demographics (age, sex), comorbidities at the time of the EEG, epileptogenic factors, reason for
EEG, presence of focal brain lesion on neuroimaging (when available), and number of ASMs. For
PWE, we collected type of epilepsy, age of epilepsy onset, and date of the first seizure after the
EEG. If the date of first seizure after the EEG was not available, we estimated it by linear
interpolation based on the seizure frequency reported in the visit after the EEG. From the EEG
report, we extracted the type of recording (awake or sleep deprived), deepest sleep stage achieved,
presence of IED, and presence and degree of abnormal slowing. All clinical information was stored

on a REDCap database hosted on the CHUM research center’s servers.
4.3.2 Outcomes

The primary outcome is the patient-reported seizure recurrence during the first year of follow-up
after the EEG, as provided in the medical notes. We considered only unprovoked seizures and
auras, which include seizures that occurred in the setting of sleep deprivation and medication non-
compliance [2]. The secondary outcome was the diagnosis of epilepsy, based on information
available in medical notes by the appointed neurologist. The starting date of the diagnosis would
be the date of the first seizure experienced by the patient. We only considered the diagnosis valid
if it was concordant with International League Against Epilepsy criteria (Fisher et al., 2017): having
had at least one seizure and either 1) a second seizure >24 hours apart or 2) an estimated risk of
seizure recurrence > 60% over the next 10 years [2]. If the diagnostic was not concordant, the
patient would be excluded. The last outcome was active epilepsy: this required a diagnosis of
epilepsy, at least one seizure in the year preceding the EEG, and seizure recurrence at any point

after the EEG.
4.3.3 EEG recording and processing

EEGs were recorded using a Nihon Kohden EEG system. The recording protocol is standardized
based on national recommendations [158]. Awake EEGs were 20—-30 minutes in duration and are
recorded at 200 Hz through 19 electrodes arranged with the standard 10-20 distribution. They
included two 90s periods of hyperventilation and photic stimulation from 4 Hz to 22 Hz.
Hyperventilation was not performed in patients >80 y.o., in patients unable to cooperate with
technologists, nor in patients with medical contraindications. Moreover, the patients were
instructed to open or close their eyes at several times during the recording. Sleep deprived

recordings were 60 minutes in duration, with the same activation procedures. An EEG technologist
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annotates the EEG in real-time. The protocol includes changes of montage at regular intervals
during the recording, rotating through a total of seven montages. For this study, we converted the
digital EEG to an average referential montage. EEGs were converted into EDF format and stored

on the CHUM research center’s server for analysis.

The processing pipeline is illustrated in Figure 4.1A. EEG recordings were high pass filtered at
0.75 Hz and notch filtered at 60 Hz with a fast-impulse response (FIR) filter (hamming window).
Ten-second epochs were extracted at pre-specified time points: every change of montage, every
15s during hyperventilation, every 15s for 2 minutes post-hyperventilation, every photic
stimulation frequency, and every eye closure or opening. Artifact detection and interpolation were
done using the autoreject algorithm [159]. For a given EEG recording, an optimal peak-to-peak
amplitude threshold was found for each individual epoch/channel combination using 5-fold cross-
validation (CV). Rejected channels were interpolated using spherical splines. The preprocessing

pipeline was written in Python (version 3.8) and is based on the MNE library.
4.3.4 Extraction of computational markers

Ten univariate markers were extracted from the EEGs. The markers were selected based on
previous literature, with the aim of capturing distinct linear and non-linear properties of the EEG
signal across the time- and spectral-domain at each channel. The markers’ algorithms,
mathematical details, and references are supplied in the Supplementary method 1. Linear features
were: band power (BP) in ten frequency bands (low [1-2 Hz] and high [2—4 Hz] delta, low [4—6
Hz] and high [6-8 Hz] theta, low [8—10 Hz] and high [10-13 Hz] alpha, low [13-20 Hz] and high
[20—40 Hz] beta, low [40—75 Hz] and high [75-100 Hz] gamma), peak alpha frequency (PAF), and
Hurst exponent (HE). For BP, the EEG were band pass filtered using a FIR (hamming window).
Power spectrum density was calculated using a multitaper method, and the integral in each
frequency band was estimated using Simpson’s method. For the PAF, the peak frequency of the
alpha band (813 Hz, band pass filtered using a FIR window) was extracted for each EEG, epoch,
and channel. HE was calculated for each EEG, epoch, channel, and wavelet decomposition level

(see next paragraph), with a minimum window size of 10 points.

Non-linear features were: line length (LL), correlation dimension (CD), and five different entropy
estimates: Approximate (ApEn), Sample (SampEn), Fuzzy (FuzzEn), Permutation (PermEn), and

Spectral entropy (SpecEn). For non-linear features and for HE, one value was calculated for each
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feature, EEG, epoch, channel, and wavelet decomposition level (Figure 4.1B). The Sym5 wavelet
was used with six decomposition levels (with frequency range: 100-50 Hz, 50-25 Hz, 25-12.5 Hz,
12.5-6.25 Hz, 6.25-3.125 Hz, and 3.125-1.56 Hz) [160]. For entropies, optimal parameters were
selected to maximize the inter-EEG vs. intra-EEG variance on five EEGs that were excluded from
the study (m =3, r=0.25,7=5, n =2, and k = 3). Missing values were imputed using multivariate

iterative imputation. The calculation of the markers was independent on the outcomes.
4.3.5 Machine learning model development and validation

The ML model’s task is to map the vector of linear and non-linear features’ values for a single EEG
to a clinical outcome. The training was done epoch-wise—each EEG epoch fed as an independent
learning observation. To prevent data leakage, epochs from the same patient were grouped together
in the same CV split. The predictions for epochs of a single EEG were aggregated using the median
to yield a single prediction per EEG. We also tested other percentiles (0.1-0.9 in 0.1 steps) for the
aggregation of predictions (Supplementary Table S1). The clinical outcomes are described in the
Outcomes section. The performance metric is the receiver operating characteristic area-under-the-
curve (ROC AUC), selected for its robustness to class imbalance. Improvement over chance (IoC)

was defined as an AUC significantly over 0.50.
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Figure 4.2 : Machine learning evaluation methods. A: Nested cross-validation with 10-fold inner
loop and 5-fold outer loop. B: Evaluation on the temporally shifted validation cohort (testing set).
In blue: internal validation cohort (EEGs recorded in 2018). In red: testing cohort (EEGs
recorded in 2019).

Four ML algorithms were evaluated: Generalized linear model (GLM; Li- and L»-regularized
logistic regression) [161], support vector machine with radial basis function (SVM), random forest
(RF), and gradient boosted trees (LightGBM) [162]. Supervised feature selection was performed
with a linear Li-regularized SVM.

A nested CV was used first to evaluate the models, features, and clinical confounders on the
training set (Figure 4.2A). In nested CV, an inner-loop is used to optimize hyperparameters of the
feature selection and learning model, and an outer-loop is used to validate the performances on

separate data. It allows to estimate confidence intervals and is more robust than CV [163]. We used
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a 10-fold CV for the inner-loop and a 5-fold CV for the outer-loop, with patient-wise grouping of
the EEG epochs at each level. ROC AUC values across outer-loop CV splits were averaged and
95% confidence intervals were estimated using LeDell’s curve based approach [164]. ROC AUC
values were compared against the random classifier (ROC AUC = 0.50). Statistics were calculated
at the EEG level (after aggregating predictions for all epochs in a single EEG). ML models were
trained and validated using Python 3.8 (with classifiers from Scikit-learn and LightGBM libraries).

We tested the interacting effect of age, presence of IEDs, and presence of a focal lesion on
neuroimaging to increase the performances of the algorithm. For age, we added interaction terms
between scaled age and features to the set of features. For IEDs and focal lesions, we used a two-
step classifier: first, if the factor is positive (e.g.: presence of IEDs), the model automatically

outputs a positive prediction. If the factor is negative, the ML model’s predictions are used.
Validation of predictive performances on testing set

We validated the performances of the best performing ML models on the testing cohort (Figure
4.2B). First, we removed features that did not show IoC on the training cohort. Then, we performed
a 10-fold CV on the training data (EEGs from 2018) to select the best features and best
hyperparameters for each of the four previously described models and three outcomes. The best
feature-set/hyperparameters were used to train the models on the training data. The trained models
were then applied to the testing set (EEGs from 2019) to emit probabilistic predictions. We
computed the ROC AUC values from the probabilistic predictions, with 95% confidence intervals
estimated by DeLong’s approach (single prediction by patient) [165]. For the primary outcome, we
calculated the performance using only patients who had at least a one-year follow-up after the EEG.
We also tested the outcomes on all testing patients (including those with follow-up shorter than
one year). For comparison, we tested the classification performance of IED alone (presence vs.

absence) and focal lesion alone (presence vs. absence) on the risk of seizure recurrence.
4.3.6 Post-hoc analyses

Post-hoc analyses were performed on predictions from the LightGBM classifier. For each outcome,
we evaluated the risk of bias of the classification for different subgroups by recomputing average
AUC and 95% CI. The subgroups were age group (18—40, 40—60, and >60 years old), sex, presence
of focal lesion, presence of IED (absence, presence, and uncertain), presence of slowing, number

of ASM (0, 1, >2), and epilepsy type (focal, generalized, and unknown). We investigated the
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performances in two specific subgroups: patient not yet diagnosed with epilepsy (undergoing

evaluation for suspected seizures), and patients undergoing EEG pre-ASM withdrawal.

We also investigated the time-dependence of the predictions for seizure recurrence as well as the
impact of clinical confounders using a multivariate survival model. We used the model’s
predictions to separate the patients into a low-predicted risk and high-predicted risk (above vs.
below average). We then fit a cox proportional hazard model to estimate the hazard ratio of seizure
recurrence dependent on the model’s predictions, controlled for the following characteristics: age,
sex, and number of ASMs (selected based on a directed acyclic graph presented in Supplementary
Figure S1). We checked the robustness of the choice of covariates with a sensitivity analysis (see

Supplementary method 2).
Comparison of individual markers

We compared the predictions for seizure recurrence of individual markers between each other and
with their combination. We repeated the nested CV independently for each marker, using only the
values from this marker as input to the classification pipeline (keeping CV splits identical between

markers).
4.3.7 Sample-size estimation

Power analysis is described in Supplementary method 3. With a significance level of 0.05,
accounting for 12 multiple comparisons (3 outcomes x 4 models), we estimated that routine EEGs

from a single year would provide us with a power > 0.9 for the expected effect size.
4.3.8 Ethics

Ethics approval was provided by the CHUM Research Centre’s Research Ethics Board (Montreal,
Canada, project number: 19.334). A waiver of informed consent was provided by the CHUM
Research Centre’s Research Ethics Board due to the absence of diagnostic/therapeutic intervention
and the absence of risk for the subjects involved. All methods were carried out in accordance with

Canada’s Tri-Council Policy statement on Ethical Conduct for Research Involving Humans.
4.3.9 Reporting standards

The reporting of the study conforms with the TRIPOD statement (Transparent reporting of

multivariate prediction model for individual prognosis or diagnosis) when applicable.[166]
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4.4 Results

4.4.1 Patient characteristics

Patients’ characteristics for the training cohort are described in Table 4.1. We screened 816 records
for eligibility; 517 patients were included (549 EEG recordings). In this cohort, 132 EEGs were
from patients who had seizure recurrence after the EEG (24%). There were 346 EEGs (63%) from
PWE. The median age was 50 y.o. (IQR: 3362 y.o.). Median follow-up after the EEG was 100
weeks (IQR: 42—-135). In PWE, 248 EEGs (72%) did not show IEDs. The EEG was part of the

initial evaluation of suspected seizure(s) in 286 cases (Supplementary Table S1).

Table 4.1 : Description of the training (EEG recordings between January and December 2018)
and testing cohorts (EEG recordings between January and June 2019)

Training cohort (EEGs from 2018)

Testing cohort (EEGs from 2019)

Seizure freedom at

Seizure recurrence

Seizure freedom at

Seizure recurrence

one year at one year one year at one year
Number of EEGs 417 132 217 84
Epilepsy diagnosis (%) 214 (51.3) 132 (100.0) 98 (45.2) 84 (100.0)
Age (median [IQR]) 52.00 [35.00, 64.00]  37.00[26.75,55.00] | 54.00 [36.00, 66.00]  37.00 [30.00, 57.25]
Sex = woman (%) 223 (53.5) 56 (42.4) 115 (53.0) 51(60.7)
Total follow-up after eeg in 94.00 [35.00, 136.00 [97.50, 78.00 [32.00, 123.50 [94.25,
weeks (median [IQR]) 133.00] 163.25] 122.00] 141.00]
Epilepsy type (%)

Focal 148 (35.5) 88 (66.7) 71 (32.7) 66 (78.6)

Generalized 56 (13.4) 41 (31.1) 21.(9.7) 13 (15.5)

No epilepsy 203 (48.7) 0(0.0) 119 (54.8) 0(0.0)

Unknown 10 (2.4) 3(2.3) 6(2.8) 5(6.0)
Age of epilepsy onset 24.00 [15.00, 43.00]  18.00[13.00, 35.00] | 28.00[15.00,53.00] 28.00[14.00, 48.00]
(median [IQR])

Number of days since last 801.00 [225.00, 43.00 [9.50, 127.00] 613.00 [165.00, 32.50 [4.00, 90.00]
seizure (median [IQR]) 3525.00] 1489.50]
Number of ASM (%)

0 197 (47.2) 11(8.3) 108 (49.8) 19 (22.6)

1 149 (35.7) 58 (43.9) 80 (36.9) 31 (36.9)

2 48 (11.5) 45 (34.1) 21.(9.7) 15 (17.9)

3 19 (4.6) 13(9.8) 6(2.8) 14 (16.7)

4 4(1.0) 5(3.8) 2(0.9) 3(3.6)

5 0(0.0) 0(0.0) 0(0.0) 2(24)
Focal lesion on brain 142 (34.1) 53 (40.2) 76 (35.0) 44 (52.4)
imaging (%)

Sleep deprived EEG (%) 51(12.2) 13(9.8) 33 (15.2) 18 (21.4)
IED (%)

Absence 333 (79.9) 77 (58.3) 174 (80.2) 47 (56.0)

Presence 52 (12.5) 46 (34.8) 28 (12.9) 30 (35.7)

Uncertain 32(7.7) 9(6.8) 15(6.9) 7(8.3)
Abnormal slowing on EEG 107 (25.7) 37 (28.0) 72 (33.2) 39 (46.4)

(o)
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For the testing set, 429 records were screened for eligibility. After applying exclusion criteria, we
included 301 EEGs from 261 patients (Table 4.1). The prevalence of seizure recurrence after EEG
in this cohort was 32%. Other variables have a similar distribution to the training and validation

cohort.

4.4.2 Predictive performances on the internal validation cohort

Figure 4.3 : Classification performances for each classification algorithm and each clinical
outcome. A: AUC ROC with 95% interval estimated using nested five-fold cross-validation. B:
ROC curves for each algorithm

For all outcomes, all four algorithms had statistically significant loC (Figure 4.3 and Table 4.2).
For the prediction of seizure recurrence at one year, the best model was LightGBM with a ROC
AUC of 0.67 (0.62—0.72). For the diagnosis of epilepsy, the best model was SVM with a ROC
AUC 0f 0.64 (0.60—0.69). For active epilepsy, the best model was RandomForest witha ROC AUC
of 0.66 (0.62—0.71). There was no statistical difference in performances across models for each
outcome. The quantile used for aggregating predictions of the epochs from a single EEG had no

significant impact (Supplementary Table S2).
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Table 4.2 : Classification performances on internal validation cohort estimated from nested CV

Outcome

Classifier

AUC

Seizure recurrence at one year

Epilepsy diagnosis

Active epilepsy

GLM

SVM
RandomForest
LightGBM
GLM

SVM
RandomForest
LightGBM
GLM

SVM
RandomForest
LightGBM

0.62 (0.57-0.68)
0.64 (0.58-0.69)
0.65 (0.59-0.70)
0.67 (0.62-0.72)
0.63 (0.58-0.68)
0.64 (0.60-0.69)
0.62 (0.57-0.67)
0.62 (0.57-0.66)
0.58 (0.53-0.63)
0.58 (0.53-0.63)
0.66 (0.62-0.71)
0.65 (0.60-0.70)

Adding clinical information to the feature set did not have a statistically significant effect. By

integrating age, AUC was 0.67 (0.62—0.72). For the two-step model with IEDs, AUC was 0.66

(0.60—0.71) and for the two-step model with focal lesion, AUC was 0.58 (0.53—0.64).
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4.4.3 Survival analysis

Figure 4.4 : Survival curve for seizure freedom after the EEG, dependent on the risk predicted by
the LightGBM model. Dashed line indicates one-year follow-up.

The overall probability of remaining seizure free at one-year was 0.73 (95%CI: 0.69-0.77). When
stratifying by the LightGBM model predictions, the one-year seizure free survival was 0.82 (0.78—
0.87) in the high-predicted risk, and 0.61 (0.54-0.68) in the low predicted risk. In contrast, the one-
year seizure free survival as a function of IEDs was 0.49 (0.40-0.61) in the presence of IEDs, and

0.78 (0.74-0.82) in the absence of IEDs.

In the multivariate survival analysis, the adjusted hazard ratio of seizure recurrence for the model’s
predictions was 1.22 (95%CI 1.07-1.40, p = 0.0029). The Kaplan-Meier curve (Figure 4.4) shows
separation between groups up to one year after the EEG. The risk of seizure recurrence was strongly
associated with age (aHR: 0.68, 0.56-0.82, p < 0.001) and number of ASM (1.66, 1.43-1.92,
p<0.001). The sensitivity analysis showed robustness to different sets of covariates

(Supplementary method 2).
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4.4.4 Subgroup analyses

Figure 4.5 : Predictive performances (ROC AUC) for the LightGBM model stratified by
subgroups for each of the three outcomes, with 95% confidence intervals. The dotted line
indicates AUC of 0.50. AUC ROC: Area-under-the-receiver operating characteristic curve.

In the subgroup analysis, there was no statistical differences between any strata for almost all
outcomes (Figure 4.5 and Supplementary Figure S2). For seizure recurrence at one year almost
all subgroups had performances that were significantly above chance. Only the absence vs.
presence of focal lesion showed a trend towards increased AUC. For the epilepsy outcome,
performances were not above chance for patients between 40 and 60 y.o. For some subgroups,
sample size was small, and estimation were either not reliable (“uncertain” IEDs [all outcomes],
no ASM [outcome “seizure recurrence’]) or impossible (patients > 60 y.o. [outcome “seizure

recurrence”], >2 ASM [outcome “Epilepsy”]).

In the subgroup of patients undergoing initial evaluation for seizure(s) (N = 227), the ROC AUC
was also statistically significantly above chance (0.65 [0.57-0.74]). For the subgroup of patients
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undergoing EEG before ASM withdrawal, AUC could not be estimated because of the small

sample size (N=32, < I per outcome in each nested CV fold).
4.4.5 Comparison between markers

The comparison between markers is shown in Figure 4.6. The best markers were BP (AUC ROC
0.65 [95%CI: 0.59-0.70]), LL (0.63 [0.58-0.68]), and FuzzEn (0.61 [0.56-0.67]). PermEn, PAF,
and SpecEn did not show IoC. The combination of all features had the greatest predictive

performances (0.65 [0.60—0.70]).

Figure 4.6 : Comparison of predictive performances for all markers using a LightGBM model.
ApEn: Approximate entropy; BP: Band power; CD: Correlation dimension; FuzzEn: Fuzzy
entropy; HE: Hurst exponent; LL: Line length; PAF: Peak alpha frequency; PermEn: Permutation
entropy; SampEn: Sample entropy; SpecEn: Spectral entropy.

We repeated the subgroup analysis for each individual feature (Supplementary Figure S3). For
age, relative performances of CD and SpecEn were decreased in patients 40—-60 y.o., while for BP,
they were decreased in patients < 40 y.o. Presence of focal lesion decreased performances in all
markers. Presence of IEDs decreased performance of all markers except BP and LL. The presence
of abnormal slowing particularly reduced the performances of CD. In patients with one ASM, LL
and BP had higher performances, while in patients with >2 ASM, only BP had IoC. The
combination of markers reduced the impact of stratification, and was the only feature set that

showed IoC in all strata.
4.4.6 Validation on a temporally shifted cohort

In the testing cohort, the LightGBM model had loC for predicting seizure recurrence at one year,

with an AUC of 0.63 (95%CI: 0.55-0.71). The performances on the entire testing cohort (including
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those with follow-up shorter than a year) were similar (0.64 [0.58—0.71]). The binary predictions
had a negative predictive value (NPV) of 78%, a positive predictive value (PPV) of 37%, a
sensitivity of 64%, and a specificity of 55%. In the absence of IEDs, the LightGBM predictions
were still significantly above chance (seizure recurrence: 0.63 [0.55-0.71]). For comparison, in this
cohort, IEDs (presence vs. absence/uncertain) had an AUC of 0.61 (0.56-0.69) for seizure
recurrence at one year, while the presence of a focal lesion had an AUC of 0.59 (0.53—0.65). For
the outcomes “epilepsy diagnosis” and “active epilepsy”, AUC for the LightGBM model was 0.64
(0.57-0.70) and 0.57 (0.50-0.63), respectively.

We tested the two-step classifier with IEDs on the temporally shifted cohort for the prediction of
seizure recurrence at one year, achieving an AUC was 0.70 (0.63-0.76). For the binary predictions,

NPV was 80%, PPV was 51%, sensitivity was 83%, and specificity was 45%.
4.5 Discussion

This study demonstrates that machine learning models trained on computational features
automatically extracted from 20-minute scalp EEG can predict seizure recurrence at one year with
above-chance performances in a cohort of 778 consecutive patients undergoing routine EEG. The
predictive performances for estimating seizure recurrence risk after routine EEG were validated in
a temporally shifted cohort of 261 patients, where ROC AUC was 0.63, significantly above chance.
In comparison, the presence of IEDs—the only validated marker of seizure risk in the clinical
setting—was 0.61. A two-step model that uses first IEDs and then computational features on IED-
negative EEGs achieved a testing AUC of 0.70. These performances were still significant with
EEGs that did not capture any visible IEDs. The best performances were achieved in patients

without focal lesion.

The most important finding of this study is the robust evidence for non-visible changes in the EEG
signal associated with the propensity to have seizures. For decades, researchers have been hinting
at non-visible differences in the EEG signal of PWE compared to healthy controls [145], [167].
Two important frameworks to model the EEG are linear and non-linear models. Linear models
assume that the signal arises from a linear combination of independent oscillators. In general, alpha
frequency is found to be slower in patients with focal [154], [168] and generalized epilepsy [151].
Non-linear models represent the signal as a non-linear dynamical system that can be characterized

by entropy and dimensionality, among others. Entropy and correlation dimension, both measures
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of signal complexity, tend to be reduced in PWE [80], [155], [169]. It must be emphasized that this
body of literature is built upon small case-control studies [145], a study design that overestimates

diagnostic performances [170].

In contrast to case-control designs, cohort or nested case-control studies reduce the risk of selection
bias when evaluating diagnostic accuracy [171]. Two studies used this more robust approach to
predict seizure recurrence from automated analysis of routine EEG [69], [77]. In the first, the
authors evaluated Paroxysmal slow wave events (PSWE, 2-second EEG windows with a median
peak frequency of <6 Hz) on a cohort of 70 patients undergoing EEG after a first seizure [77]. They
found that the rate of PSWE could predict seizure recurrence at 18-month with an AUC of 0.72. In
the second, on a cohort of 114 patients undergoing EEG after a first suspected seizure, the
connectivity in the theta band could predict a future diagnosis of epilepsy with a specificity of 70%
and sensitivity of 53% [69]. Importantly, neither study validated their findings on a separate set of
patients. In our study, we adopted a cohort design: subjects were drawn consecutively from a
population of patients undergoing routine EEG, i.e., the target population in a real-world setting.
We also used a temporally shifted testing cohort, which allows to explore the out-of-sample
generalizability of the models in a manner that mimics their real-life deployment. These factors
reinforce the robustness of the performance estimation, which should be consistent when deployed
in the clinical setting [172]. However, the testing cohort was from the same institution as the
training set. The capacity of this method to generalize to other institutions would need to be

evaluated in a future study.

While the correlation between seizure frequency and presence of IEDs on routine EEG is not well
established, the ability to predict long-term seizure recurrence from routine EEG would greatly
impact both the management of patients presenting with suspected seizure(s) and patients
diagnosed and treated for epilepsy. Currently, the prognostic value of EEG at diagnosis is mostly
focused on the evaluation of patients with an unequivocal, single unprovoked seizure. In these
patients, identification of IEDs on a single routine EEG confers a two-fold increase in the risk of
subsequent seizures if untreated, generally warranting ASM therapy [173]. In addition, the
prognostic value of EEG before ASM withdrawal is demonstrated in patients with at least two-year
seizure freedom (especially in children) [174]. Beyond these clinical scenarios, there is still little
evidence to support the use of EEG to adjust ASM therapy and prognosticate the disease since a

highly active EEG does not necessarily correlate with seizure frequency; this restricts the
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usefulness of EEG as a monitoring tool [31], [141], [142], [175]. In this study, we included all
consecutive patients undergoing routine EEG at our institution; we are interested in the potential
of the routine EEG to quantify at one point in time the propensity to have future seizures. When
combined with IEDs in a two-step model, the algorithm showed a testing ROC AUC of 0.70. For
context, in our cohort, IEDs alone had an AUC of 0.61. These results demonstrate a certain
complementarity between EEG features and IEDs, and bring hope that the routine EEG could
potentially be used as a tool to assist clinicians in recommending for or against ASM treatments
based on future seizure risk. However, the usefulness and real-life impact of this algorithm would
need to be established in a prospective clinical setting. Moreover, while ML-based analysis of EEG
holds important promises, it will only ever serve as additional data to physicians, allowing them

and their patients to make more informed decisions.

The best models for each outcome had a ROC AUC on the internal validation cohort of 0.67, 0.64,
and 0.66 for seizure recurrence at one year, epilepsy diagnosis, and active epilepsy, respectively.
While these performances are statistically significant, their clinical usefulness could be questioned,
especially with regards to the limited PPV and specificity at a given threshold. Two major
restrictions impede predictive performances: the capacity of the model and the reliability of the
labels used for training. First, the small variance seen across different models and outcomes might
indicate that the amount of data used saturated the capacity of the features and models (i.e.:
underfitting). Machine learning studies consistently show that dataset size is correlated with
predictive performances given sufficient capacity of the model [176], [177]. The next step to
improve performances would therefore consist in gathering more training data to increase the
complexity of the EEG features and ML architecture. The second hurdle is the confidence in the
labels. Epilepsy diagnosis is probabilistic by definition: a patient could be at “high risk” of seizure
and therefore have epilepsy, but never go on to have seizure recurrence [2]. Nevertheless, the
performances for this outcome were still above chance on the temporally shifted cohort. The
models trained to predict the outcome “Active epilepsy” did not generalize well to the testing
cohort. We used this outcome to test the hypothesis that having had recent seizures would strongly
affect the EEG signal. The results indicate that the features that we extracted from the EEG signal
are more affected by seizure propensity (risk of having seizure recurrence) than past seizures.

Ultimately, all these outcomes depend on the imperfect reporting of seizures by patients [49]; there
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is promise that in the future, more objective outcomes could directly benefit predictive models in
epilepsy [51].

EEG signals are altered by age, sex, comorbidities, antiseizure medications, and possibly several
other factors; however, the degree to which these variables can confound predictions made from
the EEG signal is unknown [178], [179], [180], [181]. In our study, the models trained to predict
seizure recurrence at one year were robust to clinical variables. Patients with a focal finding on
neuroimaging had reduced predictive performance, but we did not observe worse performance in
patients with focal slowing on EEG. There was a poor correlation of focal findings on
neuroimaging to focal slowing on EEG: only 37% (72) of EEGs with focal findings on
neuroimaging had focal slowing, and 38% (54/144) with focal slowing on EEG did not have a focal
finding on neuroimaging. This poor correlation highlights that neuroimaging and EEG query
different aspects of the nervous system. Further work is needed to improve performance of our
algorithm in patients with underlying non-epileptic focal abnormalities by using spatially aware
features (e.g. left-right or anterior-posterior gradients, topographical voltage maps) [78], [182] or
connectivity features [93], [183]. The post-hoc analyses were mostly limited by the number of

patients, especially under the robust nested CV framework.

The survival analysis showed that ASMs count and age were important predictors of seizure
recurrence risk. Higher ASMs count is a proxy for refractory cases and higher seizure frequency.
ASMs are, however, infrequently accounted for in previous studies [73], [97], [184]. In our case,
grouping by number of ASMs did not affect performances for prediction of seizure recurrence,
suggesting that extracted features were independent of ASM. Performances for patients with no
ASM could not be reliably estimated because of the rare seizure recurrence in this subgroup (11
EEGs). A small sample size also prevented the subgroup analysis for predicting the success of
ASM withdrawal (32 EEGs). These two clinical applications would need to be explored in future
studies. Regarding age, older patients carry a higher disease burden and are at higher risk of
syncope, transient neurologic episodes, and confusion—nonepileptic conditions that could lead a
patient to undergo an EEG exam. This partly explains why the yield of routine EEG for epilepsy
in older patients is much lower [180]. Here, seizure recurrence was rare in the older patient group
(>60 y.o.), for which performance could not be estimated. As predicted, the addition of age as an

input feature slightly improved predictions. The potential benefit of using age as a predictor may
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be limited by the resulting increase in dimensionality that could overthrow the increase in

information, especially in a data-scarce setting that is subject to overfitting.

The model had above-chance performances in the absence of IEDs for all outcomes. Previously,
only a few studies tested the impact of IEDs on their model; most had a case-control design, and
none validated their results on a separate validation set [69], [78], [83], [184]. This finding suggests
that automated analysis of EEG would increase the yield of EEG even in the absence of IEDs
(74.7% of all EEGs in our cohort). The low sensitivity of EEG for IEDs leads to delays in diagnosis
and need for prolonged or repeated exam, so the “negative” subgroup of EEGs (without IEDs)
would most directly benefit from an alternative and independent marker. The two-step classifier
showed an increase in performance compared to IEDs or computational features alone. This could
orient the clinical applications of such an algorithm, complementing the interpretation of the EEG
reader when an EEG does not reveal IEDs. Recent studies have demonstrated that machine learning
models can detect IEDs with expert-level performances [104], [185]. Our approach could
complement these algorithms by predicting seizure risk in IED-negative EEG, to further improve

the clinical value and objectivity of EEG.

BP had the greatest performances when used alone to predict seizure recurrence, followed by
FuzzEn and LL. Studies have suggested that slight shifts can be observed in the frequency spectrum
of patients with epilepsy [151], [152], [153], [186], [187]. This could be secondary to the
pathologically increased interictal synchronization, but could also be explained by ASM, age, or
other confounders. In our study, compared with other features, BP had greater decrease in
performances in younger patients and in the absence of abnormal slowing. Interestingly, it was the
most performant feature in the presence of multiple ASMs (in opposition to FuzzEn and SampEn),
suggesting that the changes in the frequency spectrum are not related to these confounders.
Regarding entropy, it is generally found to be lower in patients with focal and generalized epilepsy
[80], [155]. Increased predictability and reduced complexity could result from the constraints
imposed by epileptogenic processes [188]. Several algorithms have been proposed to estimate the
entropy of physiological time-series, without clear evidence that this measure can embody seizure
propensity [189]. Compared with other features, FuzzEn was more affected by the presence of
IEDs, focal lesion, and in patients with focal epilepsy; other entropy markers followed a similar

trend. Entropies also had poor performances in patients with > 2 ASMs, in line with previous
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studies on non-linear analysis of EEG [85]. This complementarity between BP and entropy could

be leveraged with clinical priors in the modeling process.

Despite the methodological strengths of this study, some limitations must be highlighted. First, the
data comes from a single center, preventing us to generalize the results to other institutions. Second,
the data collection was retrospective. For some patients, follow-up might have been too short to
detect seizure recurrence, and these patients would have been inappropriately flagged as “no
seizure recurrence”. This limitation decreases the potential effect size (our capacity to discriminate
between groups), and is, as such, conservative in nature. Third, most patients were on ASM at the
time of EEG. ASM are known to affect the EEG signal and several of the features used in this
study, such as BP and entropy [151], [152], [189]. A larger sample size is required to estimate the
performances of such markers in patients with no ASM or in those undergoing ASM withdrawal.
Finally, while statistically significant, the clinical impact of the performances reported in this study
is modest. Applied to the clinical setting, the models would affect risk estimation by only a few
percent, as demonstrated by the modest PPV, NPV, specificity, and sensitivity. This could
potentially be addressed by using more powerful (albeit data-hungry) models to represent the EEG
data, such as deep neural networks. With these limitations in mind, the findings in this study still
robustly suggest that there exist changes in the EEG signal other than IEDs that can inform us about
long-term seizure propensity; this opens the door to the possibility of using automated markers of

epilepsy in the clinical setting, and strongly motivates future research in this direction.

In conclusion, we demonstrate that there are changes other than IEDs in the EEG signal embodying
seizure propensity. These changes have a predictive horizon of one year after the EEG and their
significance is independent of IEDs, age, and number of antiseizure medications. While significant,
the potential impact on decision making in the clinical setting is modest. Future work will focus on
improving the representation of the EEG to increase the performances of this approach and evaluate

its real-life impact on clinical decision making.
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Dans cet article, nous nous attaquons au troisiéme objectif de la thése, qui est d’améliorer la
performance diagnostique de ’analyse computationnelle de ’EEG a ’aide de modéles profonds.
Ce travail a été accepté pour publication dans la revue Brain Communications en date du 22 aout
2025. 11 a fait ’objet de présentations orales locales au service de neurologie du CHUM et au
séminaire du programme Clinicien-chercheur de 1’Université de Montréal (2024; Prix Jacques-
Lacroix pour meilleure présentation orale), ainsi que des présentations par affiches a I’American
Epilepsy Society Annual Meeting (Los Angeles, 2024) et a I’Institut Neurologique de Montréal
(Montréal, 2024).

Ma contribution a cet article comprend I'identification de la problématique, la collecte de données,
le développement de la méthode d'apprentissage profond, le prétraitement des données EEG de
routine, la maintenance des ressources computationnelles, la réalisation des expériences,
l'interprétation et 'analyse des résultats, la conception des visualisations, ainsi que la rédaction du

manuscrit.

5.1 Abstract

The yield of routine EEG to diagnose epilepsy is limited by low sensitivity and the potential for
misinterpretation of interictal epileptiform discharges (IEDs). Our objective is to develop, train,
and validate a deep learning model that can identify epilepsy from routine EEG recordings,
complementing traditional IED-based interpretation. This is a retrospective cohort study of
diagnostic accuracy. All consecutive patients undergoing routine EEG at our tertiary care center
between January 2018 and September 2019 were included. EEGs recorded between July 2019 and
September 2019 constituted a temporally shifted testing cohort. The diagnosis of epilepsy was
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established by the treating neurologist at the end of the available follow-up period, based on clinical
file review. Original EEG reports were reviewed for IEDs. We developed seven novel deep
learning models based on Vision Transformers (ViT) and Convolutional Neural Networks (CNN),
training them to classify raw EEG recordings. We compared their performance to IED-based
interpretation and two previously proposed machine learning methods. The study included 948
EEGs from 846 patients (820 EEGs/728 patients in training/validation, 128 EEGs/118 patients in
testing). Median follow-up was 2.2 years and 1.7 years in each cohort, respectively. Our flagship
ViT model, DeepEpilepsy, achieved an area under the receiver operating characteristic curve
(AUROC) 0f 0.76 (95% CI: 0.69—0.83), outperforming IED-based interpretation (0.69; 0.64-0.73)
and previous methods. Combining DeepEpilepsy with IEDs increased the AUROC to 0.83 (0.77—
0.89). DeepEpilepsy can identify epilepsy on routine EEG independently of IEDs, suggesting that
deep learning can detect novel EEG patterns relevant to epilepsy diagnosis. Further research is
needed to understand the exact nature of these patterns and evaluate the clinical impact of this

increased diagnostic yield in specific settings.
5.2 Introduction

The diagnosis of epilepsy is notoriously challenging. It relies on the occurrence of either two
seizures more than 24h apart, one seizure and a high risk of another, or the presence of an epilepsy
syndrome.[2] Despite this clear definition, the rate of misdiagnosis remains high [190], [191], being
highly dependent on the ability to collect a clear clinical history and accurately interpret the
electroencephalogram (EEG).

The EEG can capture ictal and interictal activity, namely interictal epileptiform discharges (IEDs),
which are highly specific for epilepsy (98%) [192]. A scalp EEG is cost-effective and technically
straightforward, with standard acquisition protocols that have been put in place by the International
League Against Epilepsy [193], [194]. However, the sensitivity of a single routine EEG for IEDs
is 20-50%, and only 17% in adults after a first unprovoked seizure [10], [28], [30]. Furthermore,
the interrater reliability for IEDs is fair to moderate even among experts, with a kappa of 35-50%
[37], [195], [196]. Consequently, the EEG has limitations as a diagnostic tool in patients with
suspected seizures, with EEG misinterpretation contributing to diagnostic errors in epilepsy [39].
The identification of additional biomarkers beyond IEDs could help overcome these limitations

and improve diagnostic accuracy [49], [50].
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In recent decades, efforts have focused on overcoming the limitations of traditional EEG
interpretation by identifying alternative epilepsy biomarkers through computational methods [67],
[145], [150], [153], [197]. While these approaches have shown promise, their translation to clinical
practice has been limited by several factors: modest performance [102], [197], [198], small [100]
or lack of dedicated [77], [78], [88], [199], [200] testing set, exclusion of patients with neurological
comorbidities or abnormal EEGs [100], [199], [200], and reliance on IED-detection [199], [200].
As a result, the expected diagnostic accuracy of these approaches in a real-world population is

uncertain.

Deep learning (DL) has emerged as a powerful tool for the analysis of complex signals. DL models
can autonomously extract features from time-series or images by optimizing millions of parameters
on large datasets. DL has been applied to EEG to decode brain signals for brain-computer interface
[119], predict delirium [201], and automatically detect IEDs [103], [104]. Given DL’s capacity to
capture the complex brain dynamics, we hypothesized that it could enhance the detection of

epilepsy-specific patterns on routine EEG recordings.

The present study seeks to address these questions: can modern DL models detect epilepsy on
interictal EEG, even in the absence of IEDs? What are the potential diagnostic performances of a
DL-assisted EEG interpretation for epilepsy? And what sample size is required to train such

models?

5.3 Materials and Methods
5.3.1 Study design

This is a retrospective study on a consecutive cohort of patients undergoing routine EEG in a single

tertiary care center in Montreal, Canada.
5.3.2 Participants

We included all patients who underwent a routine EEG (20- to 60-minute, with or without sleep
deprivation) between January 2018 and September 2019 at the Centre Hospitalier de I’Université
de Montréal (CHUM). Exclusion criteria were the absence of follow-up after the EEG, an uncertain
diagnosis of epilepsy at the end of the available follow-up period, or an EEG performed in a
hospitalized patient. Under a prespecified protocol, one neurology resident (EL) and three students

(AQ, MJ, JDT) collected data from the electronic health record for each visit, including baseline
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characteristics (age, sex), comorbidities, number of antiseizure medications, and presence of a focal
lesion on neuroimaging. They also reviewed the EEG report for the presence of IED(s) and
abnormal background slowing. All clinical information was stored on a REDCap database hosted

on the CHUM research center’s servers.

We separated the cohort into two independent subsets according to the date of the EEG. Recordings
before July 15, 2019, comprised the training and validation set, while recordings after July 15,
2019, comprised the testing set. We excluded from the testing set any recording from a patient
already included in the training and validation set. The training and validation set was further

separated into a training set and a validation set in a random fashion (80%/20% split).
5.3.3 Test Methods

Reference Standard

The reference standard is the diagnosis of epilepsy according to the treating physician at the end of
the available follow-up period. This diagnosis is based on the ILAE definition of epilepsy, i.e.
having had two unprovoked seizures more than 24h apart or one unprovoked seizure and be
considered at high (>60%) risk of seizure recurrence, or being diagnosed with an epilepsy
syndrome [2]. The final diagnosis at the end of the follow up period was used, as opposed to the
speculated diagnosis at the time of the EEG, because the follow up period provides additional
information such as imaging, additional EEG recordings, video-monitoring admissions, and seizure

recurrences.
EEG recording

EEGs were recorded using a standardized protocol on a Nihon Kohden EEG system, following
national recommendations [158]. Awake EEGs, 20-30 minutes long, were recorded at 200 Hz with
21 electrodes arranged with the 10-20 system. They included two 90-second periods of
hyperventilation (except in patients >80 years old, uncooperative, or with medical
contraindications) and photic stimulation from 4 Hz to 22 Hz. Patients were also instructed to open
or close their eyes at several times. Sleep deprived recordings lasted 60 minutes, with the same
activation procedures. Technologists annotated the EEG in real-time. For this study, EEGs were
converted to an average referential montage (A1-A2), saved to EDF format, and stored on the

CHUM research center’s server for analysis.
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Automated processing of EEG and classification

The index test is the classification of the EEG recordings using machine learning. We developed
DeepEpilepsy, a Vision Transformer (ViT) model that takes raw EEG segments as input and
outputs a probability of the diagnosis of epilepsy (Figure 5.1). EEGs in average referential montage
(19 channels) were segmented into overlapping 10- or 30-second windows (95% overlap) and
directly used as input into the DL. models. The input dimensions were 19 X 200t, where t is the
window size in seconds. We initially explored two window sizes (10 and 30 seconds) based on
common practice in EEG interpretation and computational constraints [67]. A 95% overlap
between segments was used to provide sufficient data augmentation while maintaining
computational feasibility. We also investigated the impact of other window sizes on performances
(eTable 6). The model configurations for the ViT models, including DeepEpilepsy, are presented
in eTable 1. To enhance model generalization, we applied a random data augmentation algorithm
during training.[134] For each segment, an augmentation was drawn randomly from a set of
transformations, which included filtering (band-pass, low-pass, high-pass), masking (channel,
time), and adding noise (eFigure 1). These were applied with a 50% probability and randomized
intensity. We performed a Bayesian hyperparameter search on the training and validation set to
choose DeepEpilepsy’s final configuration. We also investigated different learning rates, weight
decay, and batch size values. The final models were trained on the entire training and validation

set. The optimization hyperparameters and model specifications are described in eTable 4.
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Figure 5.1: Details of the DeepEpilepsy Transformer model. The EEG is first processed through
the RandAugm algorithm with 50% probability. A tokenizer is used (upper right: convolutional
tokenizer) before positional encoding. The tokens are then input into a Transformer model. A
MLP head classifies the embeddings from the Transformer according to the diagnosis of
epilepsy. BN: Batch normalization; Conv: Convolutional layer; MLP: Multilayer perceptron;
RandAugment: Random Augmentation; ReLU: Rectified linear unit.

In addition, we implemented other Deep Learning models (ViT and ConvNeXt; eTable 1 and 2),
as well as two previously described methods: the ShallowConvNet inspired by the Filter Bank
Common Spatial Patterns algorithm (eTable 3) [125], and a feature-extraction framework relying
on the extraction of linear and nonlinear EEG markers that are used as input into a classifier

(LightGBM) [198]. These methods are described in detail in eMethods 1.

To obtain the diagnostic performances, the final models/procedures were applied to the testing set.
This resulted in a single predicted probability for each EEG segments. To obtain one prediction per
EEG recording, we aggregated the predicted probabilities at the EEG-level using the median of the
predicted values. In cases where patients had multiple EEGs, each recording was treated as an
independent observation. A sensitivity analysis excluding repeated EEGs was performed to assess

potential bias.
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We further evaluated DeepEpilepsy in a specific subgroup of patients which were not yet diagnosed
with epilepsy at the time of the index EEG (i.e., undergoing evaluation for suspected seizures). We
also measured the performance bias across different subgroups: age groups (18-40, 40-60, and
>60 years old), sex, presence of focal lesion, presence of IED (absence, presence, and uncertain),

presence of slowing, sleep deprivation before EEG, and number of ASM (0, 1, >2).
5.3.4 Analysis

We calculated the AUROC using the probabilistic predictions for each model, with 95% confidence
intervals estimated using DeLL.ong’s method (single prediction by patient) [165]. We also computed
the Area Under the Precision-Recall Curve (AUPRC) with 95% confidence intervals estimated
using bootstrap resampling (1000 iterations). For comparison, we tested the classification
performance of IEDs alone (presence vs. absence). We also tested a two-step classification using
IEDs first (traditional EEG interpretation), followed by DeepEpilepsy if IEDs were absent (DL

interpretation).

The optimal classification threshold was obtained using the validation cohort, minimizing the
distance between the curve and the upper left corner of the ROC graph. This threshold was then
applied to compute sensitivity, specificity, negative predictive value, and positive predictive value

on the testing set.

We performed additional analyses to better quantify the effect of window duration and random
augmentation on DeepEpilepsy. For segment duration, we re-trained the model using window
durations of 5s, 10s, 15s, 30s, 45s, and 60s (with fixed 1.5s overlap to maintain consistent training
sample size). For random augmentation, we re-trained DeepEpilepsy eight times with and without
RandAugment (20 epochs each). Performances between augmented and non-augmented models

were compared with AUROC on the testing set as the performance metric.

We performed an exploratory analysis of the embeddings learned by DeepEpilepsy and
ShallowConvNet to better understand the patterns captured by both models (eMethods 2).
Embeddings are the internal representations that deep learning models create while processing raw
EEG data - they represent how the model "sees" the EEG after transforming it through multiple
layers, without any pre-specified features. These learned representations differ from traditional
EEG features and can provide insights into what patterns the model considers important for

classification.
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5.3.5 Sample size

Using Obuchowski’s method [202], with a 60% epilepsy prevalence, a power of 0.9, and a
significance level of 0.0071 (adjusted from 0.05 divided by 7 DL models), a minimum of 126 EEGs
is required to detect an AUROC of 0.70.

‘ 149 consecutive patients undergoing routine EEG (n EEG = 161)

33 EEG excluded

+ 13 had an uncertain
diagnosis at the end of the
available follow-up

« 17 did not have a follow-up
after the EEG

« 2recorded a seizure

« 1 had wrong EEG type

Y
128 EEG included in testing
cohort (n patients = 118)

Index test
Detection of epilepsy
by DL (trained on a

¢ separate set of 820
Reference standard EEGs from 728
Final diagnosis by treating patients)
physician at the end of the
follow-up period

|

81 EEGs from patients 47 EEGs from patients
with epilepsy without epilepsy

Figure 5.2 : Flowchart of patients included in the testing cohort.

5.3.6 Standard Protocol Approvals, Registrations, and Patient Consents

Ethics approval was granted by the CHUM Research Centre’s Research Ethics Board (REB)
(Montreal, Canada, project number: 19.334). The REB waived informed consent due to the lack of
diagnostic/therapeutic intervention and minimal risk to participants. All methods followed

Canada’s Tri-Council Policy statement on Ethical Conduct for Research Involving Humans.

5.4 Results

5.4.1 Participants

After exclusion, 948 EEGs from 846 patients were included: 820 EEGs in the training/validation
set (728 patients) and 128 EEGs in the testing set (118 patients), with no patient overlap (Table
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5.1). Before exclusion, 1 185 EEGs from 1 067 patients and 161 EEGs from 149 patients met the
inclusion criteria for the training and testing cohorts, respectively. Reasons for exclusion were
absence of follow-up after the EEG, uncertain diagnosis at the end of available follow-up, seizure
during the EEG, and wrong EEG type (i.e., performed in a hospitalized patient) (Figure 5.2).
Median age was 49 and 51.5 (IQR: 3262 and 30-62.5) and the proportion of women were 51%
and 62.5% in the training and testing cohorts, respectively. Median follow-up was 2.2 years (IQR:

1.0-2.9) and 1.7 years (IQR: 0.9-2.3). Epilepsy prevalence was 63% in both sets.

Table 5.1 : Description of the training (EEG recordings between January 2018 and July 2019)
and testing cohorts (EEG recordings between July and September 2019)

Training/validation cohort (n = 820) Testing cohort (n = 128)
Epilepsy No Epilepsy Epilepsy No Epilepsy
Number of EEGs 517 303 81 47
Sex = woman (%) 259 (50.1) 159 (52.5) 54 (66.7) 26 (55.3)
Age (median [IQR]) 42.00 [29.00, 57.00 [41.00, 67.00] 37.00 [25.00, 60.00 [50.50, 71.00]
58.00] 57.00]
Total follow-up after EEG in 133.50 [95.75, 59.00[17.00, 116.00] 99.50 [70.25, 62.00 [17.00,
weeks (median [IQR]) 173.00] 125.00] 102.00]
Epilepsy type (%)
Focal 370 (71.6) - 49 (60.5) -
Generalized 119 (23.0) - 26 (32.1) -
Unknown 28 (5.4) - 6(7.4) -
Age of epilepsy onset (median 22.00[13.00, - 23.00 [14.00, -
[IQR]) 40.00] 48.00]
Seizure recurrence after EEG (%) 269 (52.0) 0(0.0) 44 (54.3) 0(0.0)
Number of days since last seizure 237 [56, 1134] - 118 [44, 467] -
(median [IQR])
Number of epilepsy risk factors 311,4] 2[1,4] 201, 3] 1[0, 3]
(median [IQR])
History of epilepsy surgery (%) 60 (11.6) 0(0.0) 4(4.9) 0(0.0)
Number of ASM (%)
0 55 (10.6) 253 (83.5) 17 (21.0) 42 (89.4)
1 280 (54.2) 36 (11.9) 34 (42.0) 5(10.6)
2 123 (23.8) 12 (4.0) 19 (23.5) 0(0.0)
3 47 (9.1) 2(0.7) 6(7.4) 0(0.0)
4 10 (1.9) 0(0.0) 5(6.2) 0(0.0)
5 2(0.4) 0(0.0) 0(0.0) 0(0.0)
Focal lesion on brain imaging (%) 223 (43.1) 84 (27.7) 31(38.3) 10 (21.3)
Sleep deprived EEG (%) 62 (12.0) 50 (16.5) 22 (27.2) 8(17.0)
IED (%)
Absence 333 (64.4) 282 (93.1) 42 (51.9) 46 (97.9)
Presence 139 (26.9) 2(0.7) 30 (37.0) 0(0.0)
Uncertain 45 (8.7) 19 (6.3) 9(11.1) 1(2.1)
Abnormal slowing on EEG (%) 199 (38.5) 46 (15.2) 32 (39.5) 10 (21.3)

In the training cohort, 141 EEGs (17%) showed definite IEDs and 64 (8%) showed uncertain IEDs.

Two definite IEDs were found in patients without epilepsy. In the testing cohort, 30 EEGs (23%)
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showed definite IEDs and 10 (8%) showed uncertain IEDs, with all definite IEDs in patients with
epilepsy.

5.4.2 Test Results

Figure 5.3 : Diagnostic performances of automated EEG analysis for the diagnosis of epilepsy on
the testing set (n = 128). Our flagship model, DeepEpilepsy, is shown alone and combined with
traditional EEG interpretation based on the identification of IED. The other novel approaches
shown are ViTs and ConvNeXt using different configurations (size: small, large, huge;
tokenizers: convolutional or linear; window size: 50 pt or 200 pt) as well as presence of
RandAugm and the duration of EEG segments used as input. Previous methods are the
ShallowConvNet,? extraction of computational markers,?! and the presence of IEDs on EEG.
AUROC: Area under the receiver operating characteristic curve; IED: interictal epileptiform
discharges; ViT: Vision Transformers.

The AUROC for the diagnosis of epilepsy in the testing cohort for every approach is pictured
inFigure 5.3. For DeepEpilepsy, the AUROC was 0.76 (95%CI: 0.69-0.83) and AUPRC of 0.88
(0.83-0.94) (Figure 5.4). Using the threshold computed on the validation cohort (0.86), there were
75 true positives, 38 true negatives, 13 false positive, and 41 false negatives, equating to a
sensitivity of 64.7%, a specificity of 74.5%, a positive predicted value (PPV) of 85.2%, and a
negative predictive value (NPV) of 48.1%. For comparison, when using the presence of IEDs on
EEG (as per the EEG report) as the index test, the sensitivity is 37.0%, specificity is 100.0%, PPV
is 100.0%, and NPV is 41.1%, with an AUROC of 0.69 (95% CI: 0.64—0.73) and AUPRC of 0.86
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(0.82-0.91) (Figure 5.4). The AUROC of DeepEpilepsy was higher than any other method,
although this was only statistically significant when compared to the ShallowConvNet models
(AUROC: 0.60, 95%CI: 0.50-0.69). The diagnostic performances of all methods are shown in
Table 5.2.

Figure 5.4 : Diagnostic performances on the testing set (n = 128). A: ROC curves for
DeepEpilepsy, IEDs only, and DeepEpilepsy combined with IEDs in the testing cohort. B:
Precision-recall curves for the three approaches. AUPRC: Area under the Precision-Recall curve;
AUROC: Area under the receiver operating characteristic curve; IED: interictal epileptiform
discharges.

When using the two-step model as the index test (1: presence of IED classified as epilepsy, 2: if no
IED: DeepEpilepsy models prediction), the AUROC was 0.83 (95%CI: 0.77-0.89) and AUPRC
was 0.93 (0.90-0.96) (Figure 5.4). The sensitivity, specificity, PPV, and NPV were 73.2%, 74.5%,
86.7%, and 55.1%.

A sensitivity analysis excluding repeated EEGs from the testing set showed similar performance,

with DeepEpilepsy achieving an AUROC of 0.74 (n = 118; 95% CI: 0.65-0.81).

Table 5.2 : Classification performances on the testing set for all machine learning methods

‘ Segment duration (s) RandAugment AUC
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DeepEpilepsy 30 False 0.77 (0.69--0.84)
DeepEpilepsy 30 True 0.76 (0.68--0.83)
ViT1d, Conv tokenizer, small 30 True 0.75 (0.68--0.83)
ViT1d, Conv tokenizer, small 30 False 0.74 (0.66--0.82)
DeepEpilepsy 10 True 0.74 (0.66--0.81)
DeepEpilepsy 10 False 0.73 (0.64--0.81)
ConvNeXt, large 30 True 0.73 (0.65--0.81)
ViT1d, Linear tokenizer, large 30 False 0.73 (0.65--0.80)
ViT1d, Conv tokenizer, small 10 True 0.72 (0.64--0.80)
ViT1d, Linear tokenizer, large 10 True 0.72 (0.64--0.80)
ViT1d, Linear tokenizer, large 30 True 0.72 (0.64--0.80)
ViT1d, Conv tokenizer, small 10 False 0.72 (0.64--0.80)
ConvNeXt, small 30 True 0.71 (0.63--0.80)
ViT1d, Linear tokenizer, small 30 True 0.71 (0.63--0.79)
ConvNeXt, huge 30 True 0.71 (0.62--0.79)
ConvNeXt, huge 30 False 0.70 (0.61--0.78)
ConvNeXt, large 30 False 0.70 (0.62--0.78)
ViT1d, linear tokenizer, small 30 False 0.70 (0.61--0.78)
ConvNeXt, small 30 False 0.70 (0.61--0.78)
Feature extraction with LightGBM 30 - 0.69 (0.60--0.78)
ViT1d, Linear tokenizer, large 10 False 0.69 (0.60--0.76)
Feature extraction with LightGBM 10 - 0.68 (0.59--0.77)
ViT1d, linear tokenizer, small 10 True 0.68 (0.59--0.76)
ConvNeXt, huge 10 False 0.67 (0.58--0.76)
ConvNeXt, huge 10 True 0.67 (0.58--0.75)
ViT1d, linear tokenizer, small 10 False 0.67 (0.58--0.75)
ConvNeXt, small 10 True 0.67 (0.58--0.76)
ConvNeXt, large 10 False 0.66 (0.58--0.75)
ConvNeXt, small 10 False 0.65 (0.57--0.74)
ConvNeXt, large 10 True 0.65 (0.56--0.73)
ShallowConvNet 30 False 0.60 (0.49--0.69)
ShallowConvNet 10 True 0.57 (0.47--0.67)
ShallowConvNet 30 True 0.56 (0.46--0.66)
ShallowConvNet 10 False 0.42 (0.32--0.51)

5.4.3 Subgroup analyses

In the testing cohort, 75 patients (64%) had an uncertain diagnosis at the time of the EEG, 28 of
which were eventually diagnosed with epilepsy. In the 47 others, the most common final diagnoses
were syncope/faintness (11), dementia-related fluctuations (6), and non-specific sensitive

symptoms (5). Within this subgroup of uncertain diagnoses, 10 patients who were diagnosed with
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epilepsy showed IEDs and 6 had uncertain sharp transients (vs. 1 in patients without epilepsy). The

complete characteristics of the subgroup are detailed in eTable 5.

In the subgroup of 75 patients not diagnosed with epilepsy at the time of the EEG, DeepEpilepsy
still had above-chance performances (AUROC: 0.69, 95%CI 0.56—0.80), and the two-step model
had the following performances: sensitivity of 65.6%, specificity of 76%, PPV of 63.6% and NPV
of 77.6%, with an AUROC of 0.77 (0.65-0.87). The ROC curves for IEDs only, DeepEpilepsy,
and DeepEpilepsy combined with IEDs for this subgroup are shown in Figure 5.4.

Figure 5.5 : Performance of DeepEpilepsy for classification of epilepsy diagnosis from routine
EEG in different subgroups of the testing set. The subgroups have the following sample sizes: 1)
Age <40: n =40, >40-<60: n = 44, >60: n = 44; 2) male: n = 48, female: n = 80; 3) focal lesion:
n =41, no focal lesion: n = 87; 4) uncertain IED: n = 10, absence of IED: n = 88. 5) focal
slowing: n = 42, no focal slowing: n = 86; 6) Sleep deprived EEG: n = 30, awake EEG: n = 98; 6)
no ASM: n =59, one ASM: n =139, >2 ASMs: n = 30. ASM: Antiseizure medication; AUROC:
Area under the receiver operating characteristic curve; IED: interictal epileptiform discharges.

The results for other subgroups are presented in Figure 5.5. Across all subgroups, performances
were above chance except for patients > 60 years old and patients with a single antiseizure
medication. Notably, in absence of [EDs (n = 98), AUROC was 0.74 (0.65-0.83), with NPV of
0.55%, PPV of 76%, sensitivity of 57%, and specificity of 75%. By comparison, in patients where
DeepEpilepsy predicted low epilepsy risk (n = 79), IEDs had a AUROC of 0.62 (0.56—0.68), with
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NPV of 55%, PPV of 100%, sensitivity of 24%, and specificity of 100%. Also, DeepEpilepsy
performed similarly in sleep deprived EEG and awake EEGs (AUROC =0.76 [0.67-0.84] and 0.76
[0.58-0.90], respectively).

5.4.4 Sample size, segment duration, and RandAugment analysis

Figure 5.6 : Impact of training sample size on the performance of four deep learning models
(ShallowConvNet, ConvNeXt, DeepEpilepsy, and other Vision Transformers) for detecting
epilepsy from EEG segments. Performance is measured by the AUROC score on the testing set
(n = 128), with models trained on varying numbers of EEGs (50, 100, 250, 500, and 750). The
models were trained on 10s (top row) and 30s (bottom row) overlapping EEG segments.
AUROC: Area under the receiver operating characteristic curve; IED: interictal epileptiform
discharges; ViT1d: Vision Transformer with one-dimension tokenizer.

We trained the different neural network models on subsets of the data (50, 100, 250, 500, and 750
EEGs) to assess the impact of the size of the training sample on performance (Figure 5.6). With
10-second segments, the ShallowConvNet had highest performances when trained on 250 EEG
recordings. The other models tended towards increased performances, with a ceiling at 500 EEGs.

Using 30-second segments, the ShallowConvNet showed a slight increase in performances with
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increased training size, with a maximal AUROC of 0.6 at 750 EEGs. In contrast, the performance
of the ConvNeXt and ViT models increased almost linearly with sample size, achieving the highest
performances with 750 EEGs. In almost all cases, 500 EEGs was the minimal training size required
to achieve above-chance performances. For reference, using our segmentation strategy, 500 EEGs

resulted in 765,000 10-second overlapping segments or 500,000 30-second overlapping segments.

A systematic evaluation of segment durations confirmed that 30-second windows achieved optimal
performance (eTable 6). Models trained with RandAugment showed higher maximal performance,
but increased variability compared to models without data augmentation (max AUROC 0.73 vs

0.72, mean AUROC 0.71 vs. 0.71, standard deviation of AUROC: 0.011 vs. 0.017).

5.4.5 Relationship between learned representations and traditional EEG

features

Deep learning models such as DeepEpilepsy transform raw EEG signals into hidden
representations (embeddings) that are optimal for distinguishing patients with and without
epilepsy. To understand what patterns these models capture, we analyzed how these embeddings
relate with traditional EEG features (namely band power and entropy) using clustering analysis.
For band power, DeepEpilepsy’s embeddings showed higher variance in the high-frequency range
(> 13 Hz), particularly in the 20-40 Hz, 40-75 Hz, and 75-100 Hz bands. In contrast,
ShallowConvNet’s embeddings exhibited relatively higher variance in the low-frequency range (<
10 Hz) (eFigure 4). Although DeepEpilepsy showed significant heterogeneity across all frequency
bands, ShallowConvNet had non-significant analysis of variance in the 2040 Hz range (p = 0.24)
Regarding entropy, both models showed significant heterogeneity across all frequencies, but
ShallowConvNet displayed higher inter-cluster variance, especially for bands above 1.6 Hz,

suggesting that this was a key feature learned by this model (eFigure 5).
5.5 Discussion

This study assessed the diagnostic performance of DL-based analysis of routine EEG for epilepsy.
We developed and trained the DL models on 948 consecutive EEGs from 846 patients, testing them
on a temporally shifted cohort of 128 EEGs from 118 patients. Our flagship model, DeepEpilepsy,
had a testing AUROC of 0.76 (95%CI: 0.69-0.83), outperforming other methods including

conventional IED-based interpretation and previously proposed computational methods.
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Combining the presence of IEDs with DL analysis increased the AUROC to 0.83 (95%CI: 0.77—

0.89), demonstrating a potential for clinical translation.

Epilepsy diagnosis is primarily clinical, guided by individualized seizure recurrence risk
assessment, which can be challenging due to limited reliable data [2]. The identification of IEDs
on rEEG is commonly used to support the diagnosis of epilepsy, but their low sensitivity and risk
of over-interpretation can often lead to both over- or underdiagnosis [39]. In our study, IEDs had
an AUROC of 0.69 with a sensitivity as low as 37%. Our DL models provided higher overall
diagnostic performances from the EEG than IEDs. Combining both approaches allowed to leverage
the model’s higher sensitivity and the high specificity of IEDs. Currently, no definitive,
quantitative, non-ictal biomarkers have been validated for clinical use [2]. Although several studies
have explored changes in the EEG such as shifts in band power [151], [152], [153] or changes in
entropy [80], [203], many remain at the “proof-of-concept” stage, limited by case-control designs
or inadequate validation [67]. More recent studies on computational analysis of EEG for the
diagnosis of epilepsy have shown mixed results [102], [197]. Unlike prior work [67], our validation
cohort corresponds to the group of patients in which the algorithm would be used in real-life,
reducing bias in performance evaluation. Furthermore, the gold-standard in our study was based
on a thorough review of clinical notes with a median follow-up period of over two years, allowing
the clinician to build a more complete clinical picture integrating seizure recurrence, imaging,
video-EEG evaluations, or new clinical symptoms. This is in contrast with studies that based the
diagnosis on the EEG report or a single clinical visit [67]. These methodological strengths reduce

bias and represent key steps towards the clinical integration of automated EEG analysis [67].

DeepEpilepsy is based on the Transformer architecture [17], which has greatly advanced our
capacity to model sequence data. Transformers have been adapted for EEG-based tasks such as
eye-tracking [128], seizure prediction [136], [137], and decoding of motor patterns [129]. A critical
component in adapting Transformers to EEG is the tokenization method, which influences feature
extraction and the timescales captured by the model. Previous studies have used separable
convolutions as the tokenizer [128], [129], a popular approach in EEG models since the
ShallowConvNet and EEGNet CNNs [118], [119]. However, in our early experiments, we found
this approach underperformed and was inefficient, leading us to discard it. In contrast to the original
ViT model, which “patchified” the input signal with a linear, non-overlapping tokenizer [130], we

showed that a deep convolutional embedding results in higher performances. This improvement is
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likely due to the convolution’s inductive bias towards hierarchical dynamics across timescales and
spatial scales [204]. The discrepancies between our findings and previous studies on Transformer-
based EEG models probably arise, in part, from dataset size and complexity: our training dataset
included over 1 million samples from more than 900 patients, while prior studies used significantly
smaller training samples (15 000-80 000 segments from 23—70 patients [127], [128], [136], [137])
as well as shorter EEG segments (up to 50 000 points [127], [128], [136], [137], compared to our
114,000 points per segment).

A notable advantage of Transformers over CNNs is their scalability. DeepEpilepsy showed
continual improvement as the size of the training sample increased, without hitting a performance
ceiling. Recent studies have further demonstrated CNNs’ limitations in scaling to large EEG
datasets [122]. While data augmentation through RandAugment increased model variability
without clear performance benefits in our dataset, it might prove more valuable with larger training
samples. The absence of a performance ceiling in DeepEpilepsy suggests potential for further
improvements with larger datasets, motivating multicenter collaborations to expand the training

sample.

Unlike other approaches to automated EEG interpretation that rely on explicit IED detection [103],
[104], [199], [200], DeepEpilepsy was trained without specific emphasis on IEDs. The model's
good performance in EEGs without IEDs (AUROC of 0.74) and its complementarity with IED-
based classification suggests it captures additional epilepsy-specific patterns. Our embedding
analysis suggests these patterns may be linked to changes in the higher frequency spectrum (40—
100 Hz), which include the lower range of high-frequency oscillations (HFOs, typically 80—-500
Hz). HFOs on intracranial EEG may have a prognostic value in patients with refractory temporal
lobe epilepsies [205], [206], and some studies have successfully detected them on scalp EEG with
promising correlation with seizure outcomes [207], [208], [209]. However, the role of HFOs on
scalp EEG remains limited, largely due to technical challenges such as requirement for a high

sampling frequency (most studies using > 500 Hz) and low signal-to-noise ratio [207].

The superiority of DeepEpilepsy over our benchmark model (LightGBM) [198], which used
carefully selected traditional EEG features (spectral power, nonlinear measures, peak alpha
frequency), suggests that learning from raw EEG data captures relevant patterns that might be

missed by conventional analysis. This is particularly evident in two aspects: the model's sensitivity
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to high-frequency patterns (40—-100 Hz) and its improved performance with longer segments (30s),
suggesting it captures both fine-scale spectral features and longer-term dynamics not typically
considered in routine EEG interpretation. These findings warrant further investigation to better

understand the clinical significance of these patterns.

Integrating DL models like DeepEpilepsy in the clinical workflow could enhance clinical decision-
making by the increasing the information available in case of diagnostic uncertainty. However, this
must be balanced against the risks of false positive predictions. While IEDs showed perfect
specificity in our dataset, DeepEpilepsy's improved sensitivity comes at the cost of lower
specificity, which is particularly concerning given the significant impact of an incorrect epilepsy
diagnosis (unnecessary medications, driving restrictions, and psychosocial consequences) [12],

[140].

Therefore, we envision DeepEpilepsy as a decision support tool rather than a diagnostic test. A
positive prediction by the model in a patient with neurological events of uncertain significance and
negative workup (no IEDs on EEG, no epileptogenic lesion on MRI) could increase the suspicion
of epilepsy, prompting to more frequent follow-ups or repeat EEGs. Conversely, a patient with a
low pre-test probability of epilepsy, absence of IEDs and a negative DL prediction could reduce
clinical suspicion. Most likely, combined with advances in other domains such as text processing,
imaging and genetics [210], [211], [212], the automated EEG analysis will lead to a more
comprehensive phenotyping of these patients and potentially lead to quantifying the seizure
likelihood. This could also improve clinical trials in epilepsy, which are currently limited by self-

reported and unreliable outcome measures [49], [51].

This study has limitations. Our data comes from a single center, and although routine EEG
recording is standardized, variability in hardware, software, and technique may affect
generalizability. Additionally, at our center, patients with a first unprovoked seizure presenting at
the emergency department generally undergo their EEG there and not as outpatient, limiting their
inclusion in our cohort. Another limitation is the use of the EEG report as a measure of whether an
EEG contains IEDs, which could be biased as EEG readers are not blinded to the diagnosis.
However, for patients which were “undiagnosed” at the time of the EEG, the limitation does not

apply. Finally, subgroup analyses were limited by the relatively small sample size.
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In conclusion, this study demonstrates that DeepEpilepsy, a Transformer model, could identify
epilepsy on routine EEG independently of IEDs. The DL algorithm alone had an AUROC of 0.76,
surpassing previously proposed methods, which was increased to 0.83 when combined with IEDs.
Several questions remain such as the exact nature of brain dynamics captured by DeepEpilepsy,
the optimal sample sizes for training the model, and the true clinical impact of this increased

diagnostic yield in specific clinical settings.
5.5.1 Code and Data Availability

The code for the study will be available upon publication at the following address:
https://gitlab.com/chum-epilepsy/dl_epilepsy reeg. Anonymized data will be made available to
qualified investigators upon reasonable request, conditional to the approval by our REB. The

STARD checklist is provided as Supplementary material.
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5.6 Supplementary material

5.6.1 eMethod 1: Automated processing of EEG and classification

Deep Learning: We implemented two DL approaches. First, we adapted to EEG data the
ConvNeXt model, a deep CNN analog to the ResNet, selected for its robust performance in
computer vision tasks.[116] Second, we implemented a novel model coined DeepEpilepsy, based
on the Vision Transformer (ViT) architecture, a Transformer model that takes images as input and
that outputs class probabilities.[130] DeepEpilepsy uses a three-layer convolutional tokenizer plus
a bottleneck convolution, restricting the complexity of the model and allowing to capture multi-
scale features (Error! Reference source not found.), akin to the Compact Convolutional
Transformer.[132] We also tested a tokenizer with non-overlapping linear patch embedding proper

to the original ViT model.[130]

For all DL models, EEGs were segmented into overlapping 10- or 30-second segments and scaled
so that each channel had a mean of zero and standard error of one. These scaled segments were
used as input into the DL models. To enhance model generalization, we applied a random data
augmentation algorithm during training, similar to the RandAugm algorithm.[134] For each EEG
segment, one augmentation was drawn randomly from a set of transformations, which included
filtering (band-pass, low-pass, high-pass), masking (channel, time), and adding noise (eFigure 1).
These augmentations were applied with a 50% probability. The intensity of the augmentation (e.g.,
filter frequency, noise level, mask length) was also randomized and controlled by a hyperparameter

M. Based on initial experiments on the training and validation data, we set M = 8.

We performed a Bayesian hyperparameter search on the training and validation set to select four
different configurations for the ViT (one of which was DeepEpilepsy) (eTable 1) and three for
ConvNeXt (eTable 2). We also investigated different learning rates, weight decay, and batch size
values. The final models were trained on the entire training and validation set. The optimization

hyperparameters and model specifications are described in eTable 4.

ShallowConvNet: We reimplemented the ShallowConvNet model following the configuration
outlined in Schirrmeister et al.[125] However, after conducting a hyperparameter search on the
training and validation set, we identified a more optimal configuration specific to our dataset, which
we used for testing (eTable 3). The EEG segmentation and standardization were consistent with

the other DL models. Similarly, we optimized training hyperparameters (learning rates, weight
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decay, and batch size values) through a Bayesian search on the training and validation set (eTable

4).

EEG markers: We followed the methodology described in Lemoine et al.,[198] selecting only
the best-performing markers and testing both 10- and 30-second segments. EEGs were segmented
at pre-specified time points (every change of montage, every 15s during hyperventilation, every
15s for two minutes post-hyperventilation, every photic stimulation frequency, and every eye
closure or opening). We applied an automated artifact detection/rejection algorithm
(AutoReject)[159] and extracted the following markers: fuzzy entropy, line length, correlation
dimension, band power, and peak alpha. Band power was calculated using a multitaper method,
with integrals estimated using Simpson’s method (frequency ranges: 10075 Hz, 75—40 Hz, 40-20
Hz, 20-13 Hz, 13-10 Hz, 10-8 Hz, 86 Hz, 64 Hz, 4-2 Hz, and 2—1 Hz). For nonlinear features
(fuzzy entropy, line length, and correlation dimension), the Sym5 wavelet was used with six
decomposition levels (with frequency ranges: 100-50 Hz, 50-25 Hz, 25-12.5 Hz, 12.5-6.25 Hz,
6.25-3.125 Hz, and 3.125-1.56 Hz).[160] One value was extracted per marker, EEG, segment,
channel, and frequency band. Missing values were imputed using multivariate iterative imputation.
Markers were used as input features for an L1-regularized boosted-trees classifier (LightGBM).
The optimal hyperparameters for the classifier were selected via Bayesian optimisation using a 5-

fold cross-validation on the training and validation set.
5.6.2 eMethod 2: Interpretability

We performed an exploratory analysis of the embeddings learned by DeepEpilepsy and
ShallowConvNet to better understand which patterns were captured by these DL models from the
raw EEG data. This analysis is distinct from the LightGBM benchmark model, which used pre-

specified EEG features for classification.

For the embedding analysis, thirty-second segments from the testing set were processed through
each DL model, and their embeddings (internal representation before the classification layer) were
extracted. A clustering algorithm was then used to group the embeddings into 12 distinct clusters.
To understand what patterns these clusters represented, we computed two traditional EEG features
(band power and entropy) from the original EEG segments and analyzed how these features were

distributed across the clusters. These features were computed using the same methods and
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frequency ranges described in the section Automated processing of EEG and classification:

EEG marKkers.

To test for heterogeneity between clusters, we applied an analysis of variance (Krusper-Wallis test)
at each frequency band. We then compared the F-score between both models and between
frequency bands to identify which frequency ranges showed the greatest variation between clusters,

suggesting these were important patterns learned by each model.

5.6.3 eFigure 1: Data augmentations used by the RandAugm algorithm
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eFigure 5.1: Data augmentations used by the RandAugm algorithm, alongside the original EEG
sample. RandomLPFilter: Low-pass filter, with random cut-off frequency. RandomBSFilter:
band stop filter with randomly chosen frequency window. MaskRectangle: masking of data
points contiguous in both time and space. ScaleAmpChannel: Random scaling of channels.

MaskChannel: masking of all data points in randomly selected channels. GaussianNoise:

Addition of gaussian noise with a random intensity. The intensity of the augmentations is scaled

according to a hyperparameter M. For example, higher values of M result, on average, in lower
values of cutoff frequencies for LPFilter, larger mask area for MaskRectangle, and a larger
number of channels affected by ScaleAmpChannels as well as a higher amplitude of scaling.

5.6.4 eTable 1-4: Deep learning hyperparameters for the final model

configurations
eTable 1: Model configurations for the Vision Transformer (ViT) models
patch tokenizer:  hidden MLP attention params

Model size tokenizer layers dim layers heads size dropout dropout ™)
ViT1d, linear, small 200 Linear 1 128 2 2 128 0.25 0.25 0.7
ViT1d, linear, large 50 Linear 1 512 6 8 512 0.25 0.25 10.0
ViT1d, Conv, small 200  Convolution 3 128 2 2 128 0.25 0.25 0.4
DeepEpilepsy:

ViT1d, Conv, large 50  Convolution 3 512 6 8 512 0.25 0.25 10.6

eTable 2: Model configurations for the ConvNext models

stem: downsampling

Model blocks channels scale drop path rate params (M)
ConvNeXt, small | 1,1,3,1 16,32, 64, 128 4 0.1 0.3
ConvNeXt, large (2,2,6,2 32,64, 128,256 2 0.1 2.0
ConvNeXt, huge |3,3,9,3 64, 128, 256, 512 2 0.1 11.9

Model

eTable 3: Model configuration for the ShallowConvNet model

space conv time conv max pool

kernel size (stride) channels channels window

dropout params (M)

ShallowConvNet ‘

16 (1) 64 128 80 0.25 0.040

eTable 4: Optimization parameters for all neural networks

Parameter value
Optimizer AdamW
Base learning rate 1.0e-5
Weight decay 0.05
Optimizer momentum p1, p2=0.9, 0.999
Batch size 512
Training epochs 30
Learning rate schedule Cosine decay
Warmup iterations 1000



Warmup schedule
RandAugm M
Gradient clipping

testing cohort

Linear
7
1.0 (ViT only)

Epilepsy No Epilepsy
Number of patients 28 47
Sex = woman (%) 19 (67.9) 26 (55.3)

Age (median [IQR])
Total follow-up after EEG in weeks (median [IQR])
Epilepsy type (%)

Focal

Generalized

Unknown
Age of epilepsy onset (median [IQR])
Seizure recurrence after EEG (%)
Number of days since last seizure (median [IQR])
Number of epilepsy risk factors (median [IQR])
History of epilepsy surgery (%)
Number of ASM (%)

0

1

2

3

4

5
Focal lesion on brain imaging (%)
Sleep deprived EEG (%)
IED (%)

Absence

Presence

Uncertain
Abnormal slowing on EEG (%)

41.00 [34.75, 58.25]
119.00 [95.00, 134.50]

23 (82.1)
3(10.7)
2(7.1)

37.00 [23.25, 52.00]
17 (60.7)

87.50 [33.00, 164.00]

2.00 [1.00, 4.00]
0 (0)

9(32.1)
12 (42.9)
5(17.9)
2(7.1)
0 (0.0)
0 (0.0)
10 (35.7)
9(32.1)

12 (42.9)
10 (35.7)
6(21.4)
10 (35.7)

60.00 [50.50, 71.00]
62.00 [17.00, 102.00]

1.00 [0.00, 3.00]

42 (89.4)
5(10.6)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)

10 (21.3)
8(17.0)

46 (97.9)
0 (0.0)
1(2.1)

10 (21.3)
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5.6.5 eTable S: Clinical characteristics of the “undiagnosed” subgroup of the
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5.6.6 eFigure 2: Performance of DeepEpilepsy compared to interictal

epileptiform discharges on the undiagnosed subgroup

eFigure 2: ROC curves for IEDs only, DeepEpilepsy, and DeepEpilepsy combined with IEDs in
the subgroup of patients not diagnosed with epilepsy at the time of the EEG (n = 77). AUROC:
Area under the receiver operating characteristic curve; IED: interictal epileptiform discharges.



5.6.7 Segment duration and RandAugment Analysis

eTable 6: Effect of segment duration on DeepEpilepsy’s performances

Segment duration (s)

AUROC (95% CI): RandAugment AUROC (95% CI): No RandAugment

5

10
30
45
60

0.721 (0.639-0.804)
0.713 (0.632-0.789)
0.746 (0.663-0.821)
0.733 (0.644-0.815)
0.716 (0.634-0.796)

0.711 (0.625-0.792)
0.691 (0.603-0.772)
0.679 (0.589-0.763)
0.717 (0.627-0.798)
0.705 (0.615-0.787)

71

eFigure 3: Effect of RandAugment on DeepEpilepsy’s performances. Each point represents the
AUROC achieved by DeepEpilepsy on the testing set after independent training runs (20 epochs
each) with (blue) or without (orange) RandAugment data augmentation. AUC: area under the

curve.
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5.6.8 eFigure 3: Power spectrum density of EEG segments clustered according to their latent representations

using DeepEpilepsy vs. ShallowConvNet

eFigure 4: Power spectrum density of 30s EEG segments clustered according to their latent representations using DeepEpilepsy vs.
ShallowConvNet. Each point represent the normalized power spectrum density for individual EEG segments of 30s at different
frequency band for both models. Each EEG segments was processed through either the trained ShallowConvNet (bottom) or the
trained DeepEpilepsy (top) to generate a latent vector. The latent vectors were then clustered using K-means clustering (K=12). The
power in each band was calculated for the input segment (1 Hz:2 Hz, 2 Hz:4 Hz, etc.) and plotted on the y-axis. A statistical analysis of
inter-cluster variance was perform in each frequency band using the Krusper-Wallis test (p-values at the top of each facet, n = 1 024
segment per test). A lower p-value correspond to a larger heterogeneity between clusters in that frequency bands.
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5.6.9 eFigure 5: Entropy of EEG segments clustered according to their latent representations using

DeepEpilepsy vs. ShallowConvNet

eFigure 5: Entropy of EEG segments clustered according to their latent representations using DeepEpilepsy vs. ShallowConvNet. Each
point represent the normalized entropy for individual EEG segments of 30s at different frequency band for both models. Each EEG
segments was processed through either the trained ShallowConvNet (bottom) or the trained DeepEpilepsy (top) to generate a latent
vector. The latent vectors were then clustered using K-means clustering (K=12). The entropy in each band was calculated for the input
segment (1 Hz:2 Hz, 2 Hz:4 Hz, etc.) and plotted on the y-axis. The fuzzy entropy algorithm was used with parameters m=2 and »=0.2.
A statistical analysis of inter-cluster variance was perform in each frequency band using the Krusper-Wallis test (p-values at the top of
each facet, n = 1 024 segment per test). A lower p-value correspond to a larger heterogeneity between clusters in that frequency bands.
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CHAPITRE 6 UN MODELE DE SURVIE PROFOND POUR PREDIRE
LE RISQUE DE CRISE APRES L’EEG DE ROUTINE

Le chapitre précédent a démontré la capacité de I’apprentissage profond a détecter des marqueurs
d’épilepsie a ’EEG avec une performance supérieure aux DEI et aux marqueurs computationnels.
Cependant, le modele DeepEpilepsy présente trois limitations en lien le format de ses prédictions.
Premierement, sa prédiction binaire (épilepsie vs. absence d'épilepsie) ne refléte pas la variabilité
du risque de crise, notamment chez les patients bien contrdlés sous traitement. Deuxiémement,
'hétérogénéité des durées de suivi n'est pas prise en compte dans l'apprentissage, ce qui peut biaiser
le modele en faveur des patients avec un suivi plus court. Troisiémement, une quantification
dynamique du risque de crise serait cliniquement plus pertinente qu'une classification binaire,

permettant une meilleure personnalisation de la prise en charge.

Ce chapitre complémentaire présente les travaux d’un troisieme article en préparation qui adresse
ces limitations en développant a partir de DeepEpilepsy un mod¢le de survie capable de prédire le
risque de crise a travers le temps. De plus, des modifications substantielles a l'architecture et au
prétraitement des données améliorent la robustesse et I'interprétabilité du modele. A terme, le projet
inclura une validation multicentrique du modele, dont je présente le plan a la fin du chapitre. Les
résultats de ce travail ont fait I’objet de présentations orales, notamment a I’ Eastern Association of
Electroencephalographers (Boston, 2025; Prix de Congres Burnham Fellowship) et ICTALS
(Montréal, 2025), ainsi que par affiche a I’American Academy of Neurology Annual Meeting (San
Diego, 2025).

6.1 Introduction

L’épilepsie est définie cliniquement par un risque accru de crises [2]. L’évaluation de ce risque
nécessite une approche multimodale intégrant la sémiologie des épisodes suspects, les facteurs de
risque cliniques, la neuroimagerie et 1’¢lectroencéphalogramme (EEG). La présence d’anomalies
épileptiformes a I’EEG est particulierement informative, prédisant un risque de récidive 1.5-3 fois

plus ¢élevé dans plusieurs situations cliniques [8], [30], [31], [32].

Malheureusement, ’EEG présente plusieurs limitations. Sa sensibilité est faible, avec seulement
29-55% des patients épileptiques qui présenteront des anomalies épileptiformes sur un EEG de 30

a 60 minutes [8], [10], [28]. Son interprétation requiert une expertise surspécialisée, et méme entre
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experts, I’accord inter-observateur pour les anomalies épileptiformes est au plus modéré [37],
[213]. L'analyse computationnelle de 'EEG, particuliérement par apprentissage profond, offre une
alternative prometteuse en extrayant automatiquement des biomarqueurs quantitatifs qui
représentent les interactions complexes entre fréquences et régions cérébrales a différentes échelles

temporelles [74], [103], [104], [214].

Les mod¢les actuels d’analyse automatisée de I’EEG se concentrent principalement sur la
classification du diagnostic [74], [100], [101], [214] ou la prédiction de récidive a des horizons
temporels fixes [77], [198]. Bien que la classification puisse théoriquement prendre en compte
plusieurs classes de risque, cette approche ne refléte pas pleinement la nature temporelle du risque
épileptique. L’épilepsie est fondamentalement définie par un risque de crise qui évolue dans le

temps [2], [3].

L’analyse de survie est un outil épidémiologie qui permet d’estimer la fonction de survie S(t) qui
décrit I’évolution d’une maladie aprés un facteur de risque ou un traitement [215]. Les mode¢les de
survie sont particulierement adaptés a I’épilepsie pour modéliser le risque de crise a travers le temps
[45], [216], [217], [218]. Ces mod¢les statistiques sont généralement limités par la complexité des
variables d’entrée, souvent constituées de quelques variables cliniques [215], [216], [217], [218].
Cependant, le couplage entre ’apprentissage profond et les modeles de survie permet de combiner
une entrée complexe avec la prédiction du risque dans le temps [219], [220]. Quelques études ont
démontré I’utilité¢ de ces modeles de survie profond en oncologie [220], [221], [222], [223] et en

soins intensifs [224], mais leur applicabilité en épilepsie est inconnue.

Cette étude propose donc pour la premiere fois un modéle de survie profond en épilepsie,
EEGSurvNet, qui analyse le signal EEG pour prédire le délai jusqu'a la prochaine crise sur un
horizon de deux ans. La performance du modele est comparée a un modele de survie traditionnel
avec les prédicteurs cliniques standards, incluant la présence d'anomalies épileptiformes. Au-dela
de la prédiction, nous explorons l'interprétabilité du modele pour identifier les caractéristiques du

signal EEG associées au risque de crise ainsi que les parameétres qui optimisent sa généralisation.
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6.2 Méthodes

6.2.1 Design et population

Il s’agit d’une étude rétrospective chez une cohorte de patients consécutifs ayant obtenu un EEG
de routine au Centre hospitalier de I’Université de Montréal (CHUM), au Canada. Tous les patients
qui ont eu un EEG au service de neurophysiologie entre le 1 janvier 2018 en le 31 décembre 2019
¢taient inclus. L’EEG de routine inclut les EEG de 30 a 60 minutes avec et sans déprivation de
sommeil effectué chez des patients en centre ambulatoire. Les critéres d’exclusion sont I’absence
de suivi apres I’EEG, un diagnostic d’épilepsie incertain a la fin de la période du suivi, ou la
présence de crise a I’EEG. Les dossiers des patients ont été révisés par un résident en
neurologie/neurologue (EL) ainsi que trois €tudiants en neurosciences selon un protocole pré-
spécifié. Les données extraites incluaient 1’age, le sexe, les comorbidités, la présence de facteurs
de risque d’épilepsie, la présence d’anomalies a 1’imagerie neurologique (IRM ou scan) et le
nombre de médicaments anticrises. Pour chaque visite, le nombre de crises depuis la visite
précédente est extraite. Le diagnostic d’épilepsie est déterminé selon les critéres de la Ligue
Internationale contre 1’Epilepsie [2] & partir de la derniére note disponible du neurologue traitant.
Les rapports d’EEG ont été révisés a la recherche d’anomalies épileptiformes ou de ralentissement
anormal. Les données cliniques sont stockées dans une base de données REDCap située sur les

serveurs sécurisés du CRCHUM.

Les EEG enregistrés avant septembre 2019 constituent 1’échantillon d’entrainement et validation,
et ceux aprés septembre 2019, 1’échantillon test (Figure 6.1). Les patients ayant eu un EEG a la

fois avant et apreés septembre 2019 sont exclus de 1’échantillon test.
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Figure 6.1 : Illustration de la séparation temporelle des échantillons d’entrainement/validation et
de test.

6.2.2 Issue primaire

L’issue primaire est le délai (en jours) jusqu’a la prochaine crise épileptique aprés ’EEG, extraite
des notes médicales de suivi. L’issue englobe tout type de crises épileptiques, incluant les crises
focales sans altération de 1’état de conscience et les myoclonies, mais pas les crises non-
épileptiques. Pour environ 25% des patients, la date exacte n’était pas rapportée; dans ce cas, nous
effectuons une interpolation linéaire en fonction de la fréquence rapportée de crises, assumant une
distribution uniforme des crises pour la période. Les patients n’ayant pas présenté de crises pendant

leur suivi sont considérés comme censurés a la date de la derniére visite documentée.
6.2.3 Prédicteurs

EEG

Les EEG sont enregistrés sur un appareil Nihon-Kohden selon un protocole standard en accord
avec les lignes directrices canadiennes [225]. Les EEG d’éveil, d’une durée de 20 a 30 minutes,
sont enregistrés avec une fréquence d’échantillonnage de 200 Hz via 19 électrodes respectant
I’arrangement 10-20 [226]. Ils incluent deux périodes de 90s d’hyperventilation (excepté chez les
patients de plus de 80 ans, non-coopératif, ou avec une contre-indication médicale) et stimulation
photique de 4 4 22 Hz. Les EEG de sommeil durent 60 minutes et comportent les mémes procédures
d’activation. Les EEG sont enregistrés avec une référence A1-A2, convertis en format EDF, puis

stockés sur les serveurs sécurisés du CRCHUM en suivant le standard BIDS [227].
Modgéle de survie profond

Pour cette étude, nous avons développé un modele de survie profond pour I’EEG appelé
EEGSurvNet. EEGSurvNet est bati sur DeepEpilepsy, un Vision Transformer (ViT) qui prend en
entrée des segments d’EEG multi-canaux de 10 ou 30s [214]. Plusieurs améliorations ont été

apportées a I’architecture originale dans le but d’augmenter ses performances, sa robustesse aux
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artéfacts et données externes et son interprétabilité. Ces améliorations ont été testées itérativement
sur I’ensemble d’entrainement/validation ainsi que sur un jeu de données externes, le Temple

University Abnormal EEG corpus (v3.0.1) [123].

La premiére amélioration consiste a allonger la durée des segments analysés de 30 et de 60
secondes. Au-dela de 60 secondes, nous notons un plafonnement des performances au prix de
ressources computationnelles trés élevées. La deuxiéme amélioration consiste a appliquer un filtre
passe-bande a 60 Hz pour ¢liminer la contribution du bruit de courant alternatif et de
potentiellement rendre le modele robuste aux EEG enregistrés dans différents pays. La troisiéme
amélioration concerne le format d’entrée des données: les EEG sont convertis en spectrogrammes
en utilisant la transformée avec ondelettes de Morlet (nombre de cycles: 7, nombre de bandes de
fréquences : 24). Cette amélioration permet surtout d’améliorer I’interprétabilité. La résolution
temporelle est diminuée par un facteur de 4 pour limiter la taille des données d’entrées. Le
tokeniseur du mod¢le a ¢galement été modifi€ pour traiter ces spectrogrammes, utilisant maintenant

des convolutions en 2D. La version finale comporte 27M de parametres (Table 6.1).

Tableau 6.1 : Architecture d’EEGSurvNet

Hyperparameétre Valeur
Taille de patch 0.2s
Tokenizeur : type Convolution
Tokenizeur : nombre de couches 3
Tokenizeur : taille des filtres (fréquence, temps) 3,11
Tokenizeur : dimensionalité des filtres (256,362, 512)
Transformeur : dimensions cachées 512
Transformeur : nombre de couches 8
Transformeur : nombre de tétes 8
MLP : dimensionalité 1024
Dropout 0.2
Params (M) 27

L’adaptation du modele a I’analyse de survie repose sur une approche par discrétisation temporelle
(discrete-time analysis; Figure 6.2) [228], [229]. La durée du suivi est divisée en 7 périodes
espacées logarithmiquement entre 28 jours et 2 ans (la derniére période correspondant a > 2 ans).
Le modele prédit le hasard (risque instantané) h(t) de crise pour chaque période via une fonction
logistique appliquée aux sorties du réseau (§):

hs(t) = G(d)s(t)) RETPENGE
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ou s représente le segment d’EEG analysé. Pour I’entrainement, chaque patient est représenté par
deux valeurs: I’indice t; de la période ou survient une crise ou la derniére période de suivi
disponible et un indicateur d’événement 6 distinguant les crises (1) des censures (0). La fonction

de loss correspond a la log-vraisemblance négative (negative log-likelihood) du modéle de hasard:

n ti—§;
L= —Z Isi log(hs(t)) + z log(1 — hy(N)]
i=1 j=1

L'entrailnement s'effectue sur des segments de 60 secondes avec chevauchement (1s), totalisant
environ 1 800 segments par EEG de 30 minutes. Le mode¢le est entrainé sur deux GPUs A6000
durant 25 époques, chaque époque comptant environ 1.7M de segments. Une augmentation des
données est appliquée selon la méthode TrivialAugment [230] avec une probabilit¢ de 90%,
ajoutant soit un bruit gaussien al€atoire, soit un masque aléatoire, soit une égalisation aléatoire.
L'optimisation utilise un cosine decay du taux d'apprentissage apres une période de réchauffement
d'une époque. Les hyperparamétres (taux d'apprentissage maximal, probabilité de TrivialAugment,
probabilité de dropout et weight decay) ont été optimisés sur l'ensemble de validation, avec les
valeurs finales présentées dans le Table 6.2. La libraire PyTorch (version 2.6.0) est utilisée pour

entrainer les modeles profonds.

Tableau 6.2 : Parametres d’apprentissage pour EEGSurvNet

Parametre Valeur
Optimisateur AdamW
Taux d’apprentissage maximal 5.0x10°
Weight decay 0.05
Momentum p1, 2=0.9, 0.999
Taille des lots effective 512
Nombre de GPUs 2
Epoques 25
Horaire du taux d’apprentissage Cosine decay
Epoque de réchauffement 1
Horaire du réchauffement Linéaire
Probabilité d’augmentation 0.9
Gradient clipping Aucun

Pour I’inférence sur un EEG complet, nous effectuons deux niveaux d’agrégation. Premic¢rement,

les hasards sont moyennés sur tous les segments:

_ 1w
A(t) = Nz hy(t) .
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Puis, pour régulariser la sortie, nous calculons un hasard constant h* en moyennant les hasards sur

toutes les périodes:

T
o=l Z A(t)
-7 _
t=1

A partir de ce hasard constant, nous calculons la fonction de survie:
S(t)=(1—-h")t.

Le score de risque global R est égal au hasard constant h* et permet une comparaison avec les

modeles de risque proportionnel comme Cox.

Figure 6.2 : Analyse de survie par discrétisation temporelle. A : Les séries temporelles originales
pour chaque patient, certains subissant une crise lors du suivi (éclair jaune). B : La discrétisation
temporelle du suivi de chaque patient, ou chaque période temps est représentée par une valeur
binaire (0: pas de crise pendant la période; 1: crise pendant la période). C : Le modele
EEGSurvNet prend en entrée les signaux EEG transformés en spectrogramme, puis prédit une
valeur de risque h; pour chaque période. L'optimisation utilise la log-vraisemblance négative du
modele de hasard. Les prédictions sont par la suite agrégées a travers les segments puis les
périodes pour obtenir un score de risque global.
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Modzéle clinique Cox

A des fins de comparaison, nous avons développé un modéle de risque proportionnel de Cox
utilisant les prédicteurs traditionnels de risque de crise: age, sexe, histoire familiale d'épilepsie,
présence de Iésion focale en neuroimagerie et présence de pointes épileptiformes a I'EEG. Sur la
base de travaux antérieurs [8], nous avons inclus des termes d'interaction entre la présence de

pointes et les autres prédicteurs. Le modéle Cox prédit un risque proportionnel selon 1'équation:
h(¢|X) = ho(t) exp(B"X),

ou hy (t) est le risque de base, X le vecteur des prédicteurs et 8 les coefficients estimés. Le risque
total est calculé en combinant le risque de base (estimé sur I'échantillon d'entrainement) avec le

risque proportionnel, produisant une mesure analogue au score de risque global du modele profond.
Combinaison entre le modele clinique et le modele profond

Une troisieme approche combine les prédictions des modeles profond et clinique en multipliant

leurs scores de risque respectifs:

Rcombiné = REEGSurvNet X eXp(BTX)

Cette approche simple présente l'avantage d'une grande interprétabilité: les deux modeles restants
indépendants, ils peuvent étre analysés séparément sans avoir a considérer les interactions
complexes entre données EEG et cliniques. Nous avons également exploré le développement d'un
modele profond multimodal intégrant directement les données cliniques et EEG. Cependant,
malgré une optimisation extensive des hyperparamétres, ce modele tendait systématiquement vers
un surapprentissage des données cliniques en négligeant l'information EEG. Le développement

d'une architecture multimodale efficace reste un axe de recherche prometteur a approfondir.
6.2.4 Taille d’échantillon et analyse de puissance

L'analyse de puissance a été réalisée avec la librairie R "powerSurvEpi" selon la méthode de
Schmoor et al. [231] Nous avons estimé la taille d'échantillon requise pour un modéle de Cox avec
un prédicteur binaire, représentant la présence ou l'absence d'anomalie a 'EEG. L'analyse assume
un taux d'événements (crises) de 0.5, un rapport de risque (hazards ratio) de 2.0, un seuil de
signification a de 0.05 et une puissance cible de 0.8. Selon ces parametres, un échantillon de 131

patients est nécessaire pour détecter I'effet d'intéreét.
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6.2.5 Analyses

L'évaluation des modeles repose sur deux aspects complémentaires: la discrimination et la
calibration. La discrimination est évaluée par une extension des courbes ROC adaptée aux données
de survie, appelée cumulative/dynamic time-dependant ROC curve [232], [233]. La sensibilité et
la spécificit¢ sont définies comme des mesures dépendantes du temps; les cas cumulatifs
comprennent tous les individus ayant présenté un événement jusqu'au temps t, tandis que les
controles dynamiques sont ceux qui présentent un ¢événement aprées t. L'AUC
cumulative/dynamique quantifie la capacité du modele a distinguer les sujets qui auront une crise
avant un temps donné de ceux qui en auront une apres. Nous avons aussi appliqué une pondération
par l'inverse de la probabilité de censure (IPCW) pour gérer le biais introduit par la censure [234].
Les poids IPCW sont estimés a partir de la distribution de censure de I'ensemble d'entrainement
via l'estimateur de Kaplan-Meier, sous I'hypothése d'une censure aléatoire indépendante des
caractéristiques. Nous calculons ’AUROC a chaque période t en plus de I’AUROC intégrée sur
deux ans (IAUROC). La calibration, elle, est évaluée par le score de Brier intégré sur deux ans, qui
mesure l'exactitude des probabilités prédites [235]. Les intervalles de confiance a 95% sont calculés

par bootstrap (1000 itérations).

Pour s’accorder avec la littérature des modeles prédictifs de récidive de crise [216], [236], [237],
[238], [239], [240], nous avons aussi calculé les iIAUROC et iBS sur 1 an, ainsi que I’index C de
Harrell [241].

Nous avons aussi testé un modele de référence Baseline qui prédit des probabilités centrées autour
des probabilités de base observées dans 1'ensemble d'entrainement. Spécifiquement, pour chaque
patient de I'ensemble test, le modele génére un score de risque tiré d'une distribution normale (¢ =
risque moyen d'entrainement, o = 0.2). La performance des mod¢les est comparée a cette référence
via le score de Brier intégré (iBS) calculé sur 2 ans, ainsi que le score de compétence de Brier
(BSS) a chaque période. Le BSS quantifie 'amélioration relative de la prédiction par rapport au

modele Baseline [242]:

BSmodel(t)

BSS(t) =1—————,
( ) BSref(t)

ou BS,0qe1 €t BS,e sont respectivement les scores de Brier du modele évalué et du modele de

référence. Le BSS prend des valeurs entre | — o0,1.0], une valeur positive indiquant une
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performance supérieure a la référence. La calibration du modele a aussi été évaluée visuellement
par des courbes de calibration a différents horizons temporels. Pour chaque période d'intérét, les
patients sont regroupés selon leur probabilité prédite de crise (bins de 0.2), et le taux observé de

crises dans chaque groupe est comparé a la prédiction moyenne.

Des analyses stratifiées ont été réalisées pour évaluer la performance dans des sous-populations
cliniquement pertinentes: groupe d’age (18—40, 40—60 et >60 ans), sexe, présence de lésion focale
a I’imagerie et présence de ralentissement anormal a ’EEG et présence de décharges épileptiformes
a ’EEG.

Pour interpréter le modele, nous utilisons les valeurs Shapley estimées selon la méthode des
gradients, représentant la contribution de chaque valeur d’entrée du modele sur sa prédiction [243],
[244]. Nous avons entrainé I’estimateur des valeurs Shapley sur 500 segments aléatoires de
I’échantillon d’entrainement, puis extrait les valeurs des 50 segments avec les scores de risque les
plus ¢élevés et les 50 avec les scores les plus bas. Les valeurs sont ensuite intégrées sur le domaine

temps-fréquence et sur le domaine spatial. La libraire Python shap a été utilisées pour cette analyse

[243].

Une étude d'ablation systématique évalue I'impact de quatre paramétres clés du modele: la durée
du segment (30s vs. 60s), la résolution fréquentielle (16 vs. 32), la résolution temporelle (0.4s vs.
0.8s) et 'augmentation des données (présence vs. absence). Pour chaque configuration, le modéle
est réentrainé sur l'ensemble d'entrainement avec des paramétres d'optimisation fixes (taux
d'apprentissage, taille des lots, scheduling) et évalué sur 1'échantillon test. En complément, le
modele DeepEpilepsy original [214] a été¢ adapté a la prédiction de survie en modifiant sa couche
de sortie pour générer les sept valeurs de risque temporel, puis réentrainé sur [’ensemble

d’entrainement.
6.2.6 Approbation éthique et disponibilité du code source

Cette étude a regu l'approbation du Comité d'éthique de la recherche du Centre de recherche du
CHUM (Montréal, Canada, numéro de projet: 19.334). Le comité a accordé une dérogation au
consentement éclairé en raison de l'absence d'intervention diagnostique/thérapeutique et du risque
minimal pour les participants. Toutes les méthodes respectent 1'Enoncé de politique des trois

Conseils sur I'¢thique de la recherche avec des étres humains du Canada.
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Le code source de 1'¢tude sera disponible lors de la publication a I'adresse suivante:

https://gitlab.com/chum-epilepsy/epi_surv.
6.3 Résultats
6.3.1 Caractéristiques de la population

Dans la période d’intérét, 1 540 EEG ont été réalisés au CHUM chez 1 286 patients. Apres
exclusion, 1 014 EEG de 994 patients ont été inclus: 879 EEG de 786 patients dans 1’échantillon
d’entrainement et 135 EEG de 115 patients dans I’échantillon test. Le suivi médian de 1’échantillon
d’entrainement et de test étaient de 2.2 ans apres I’EEG. Les caractéristiques cliniques détaillées

des échantillon d’entrainement et de test sont présentées dans le Table 6.3.

Une crise est survenue apres 295 des EEG d’entrainement (33.6%) et 40 des EEG de test (29.6%),
avec un taux de survie sans crise a un an de 0.69% (95%CI: 0.66-0.73) dans I’ensemble

d’entrainement et de 0.72% (0.66-0.79) dans I’ensemble test. Pour les prédicteurs cliniques du

modele Cox, les deux cohortes présentaient des distributions similaires (Table 6.3).

Tableau 6.3 : Description des cohortes d’entrainement et de test

Cohorte d’entrainement

Cohorte de test

Nombre d’EEG (nombre de patients) 879 (786) 135 (115)
Récidive de crise au suivi (%) 295 (33.6) 40 (29.6)
Sexe = femme (%) 450 (51.3) 73 (54.1)

Age (médiane [IQR])
Suivi total aprés I’EEG en semaines (médiane [IQR])
Type d’épilepsie (%)

49.00 [32.00, 62.00]
116.00 [52.00, 153.00]

51.00 [30.00, 63.50]
113.00 [57.00, 194.50]

Focale 409 (46.5) 58 (43.0)
Généralisée 103 (11.7) 13 (9.6)
Inconnue 53 (6.0) 3(2.2)
Pas d’¢épilepsie 314 (35.7) 61 (45.2)
Histoire de convulsion fébrile (%) 21(2.4) 6(4.4)
Histoire familiale d’épilepsie (%) 63 (7.2) 15(11.1)

Nombre de jour depuis la derniére crise (médiane [IQR])
Nombre de médicaments anticrises (%)

225.00 [52.00, 1130.00]

200.00 [73.00, 938.25]

0 327 (37.2) 67 (49.6)
1 338 (38.5) 37(27.4)
2 145 (16.5) 18 (13.3)
3 54 (6.1) 8(5.9
4 12 (1.4) 5@3.7)
5 3(0.3) 0(0.0)
Lésion focale a I’imagerie (%) 332 (37.8) 52 (38.5)
EEG de sommeil (%) 126 (14.3) 20 (14.8)
Pointes épileptiformes a I’EEG (%)
Absence 654 (74.4) 103 (76.3)
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Présence 156 (17.7) 26 (19.3)
Incertain 69 (7.8) 6(4.4)
Ralentissement anormal a I’EEG (%) 266 (30.3) 42 (31.1)

6.3.2 Développement et entrainement du modéle

Pour le développement du modele, la cohorte d’entrainement a été séparée en un échantillon
d’entrainement (80%) et un échantillon de validation (20%) de facon aléatoire. L’échantillon
d’entrainement comportait 1.4M de segments, et celui de validation, 0.3M. Cet ensemble de
validation a permis d’optimiser les hyperparameétres suivants: taille des lots, taux d’apprentissage,
weight decay, dropout, gradient clipping et probabilité¢ d’augmentation. L’ensemble de données
TUH Abnormal Corpus (3.7M de segments) a aussi été utilisé pour optimiser le format d’entrée du

modele et corriger les erreurs du code source [123].

Le modele final a été entrainé sur I’ensemble de la cohorte d’entrailnement (1.7M de segments de

60s pour 25 époques).

6.3.3 Performances

Figure 6.3 : Illustration des prédictions brutes du modele EEGSurvNet sur deux patients de la
cohorte test. Les EEG transformés en spectrogramme servent d’entrée au modele. La sortie du
modele est ensuite convertie en fonction de survie qui caractérise la survie sans crise a chaque
période (S(t)). La prédiction brute est basée sur le hasard moyenné sur les segments h(t), et la
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prédiction régularisée, sur le risque constant h*. Le ruban ombragé démontre la déviation
standard des prédictions a travers les segments d’'un méme EEG.

Un exemple de prédictions du modeéle EEGSurvNet est illustré a la Figure 6.3 et les résultats
complets sont présentés dans le Table 6.4. Sur I’ensemble test, EEGSurvNet a obtenu un iAUROC
sur deux ans de 0.69 (intervalle de confiance de 95%: 0.64—0.73) et un index C de 0.66 (0.60—
0.73). Par comparaison, I'iAUROC du mode¢le Cox était de 0.61 (0.56—0.65; C =0.61 [0.55-0.68]),
et celui du modéle combing, 0.70 (0.66—0.74; C = 0.69 [0.65-0.73]). Pour tous ces mod¢les, les
performances sont supérieures au modele de référence (IAUROC = 0.54 [0.49-0.59], C = 0.53
[0.45-0.61]).

L’AUROC en fonction du temps est présentée a la Figure 6.4. Pour EEGSurvNet, celles-ci
atteignent un pic a ~2 mois (AUROC: 0.80 [0.72—0.88]) et sont statistiquement supérieure au

modeéle de référence entre les 3° et 6° mois.



87

Figure 6.4 : Performance des différents modeles pour prédire la survie sans crise a travers le
temps. Le modele de référence (Baseline) correspond aux prédictions selon le risque de base de
récidive de crise tiré de la cohorte d’entrainement. AUROC: Aire-sous-la-courbe ROC.

Figure 6.5 : Brier Skill Score des modeles de survie dans le temps. Le Brier Skill Score est une
mesure de ’amélioration de la calibration contre le modéle de référence, ou des valeurs entre 0 et
1 signifie un gain de calibration.

Pour la calibration, EEGSurvNet obtient un score de Brier intégré a 2 ans de 0.18 (0.15-0.20),
statistiquement significativement supérieur au modele de référence (0.24 [0.23—-0.25])] (Table 6.4).
Le Brier Skill Score, mesurant le gain de performance contre le modele de référence, est positif sur
I’ensemble des périodes et atteint un pic a 3 mois avec une valeur de 0.22 (Figure 6.4). La courbe

de calibration en fonction du temps sont présentées a la Figure 6.6.
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Figure 6.6 : Calibration du modele EEGSurvNet en fonction du temps. Pour chaque période, les
patients sont regroupés en bins de taille 0.2 selon leur probabilité prédite de crise. L'axe des x
représente la probabilité moyenne prédite dans chaque bin, 1'axe des y le taux observé de crises.
La taille des points est proportionnelle au nombre de patients dans chaque bin. La ligne diagonale
représente une calibration parfaite. La ligne bleue représente une régression linéaire pondérée
avec intervalle de confiance a 95%.

Pour régulariser la sortie du modéle profond, le risque dans le temps h(t) est moyenné a travers

les périodes pour un risque constant h*. Sans cette opération, les performances d’EEGSurvNet sont
les suivantes : iIAUROC a 2 ans de 0.60 (0.55-0.65), un iBS a deux ans de 0.18 (0.16-0.20) et
index C de 0.61 (0.53-0.69).

Tableau 6.4 : Discrimination et calibration des différents modéles sur la cohorte de test

iAUROC alan iAUROC a2 ans iBSalan iBS a2 ans Index C
Baseline (risque de base) | 0.53 (0.47-0.58) 0.54 (0.49-0.59)  0.17 (0.16-0.18)  0.24 (0.23-0.25) 0.53 (0.45-0.61)
Modéle clinique Cox 0.63 (0.58-0.68) 0.61 (0.56-0.65)  0.15(0.14-0.16) 0.21 (0.20-0.23)  0.61 (0.55-0.68)
EEGSurvNet 0.72 (0.68-0.77)  0.69 (0.64-0.73)  0.13 (0.11-0.15) 0.18 (0.15-0.20)  0.66 (0.60-0.73)
EEGSurvNet + Cox 0.74 (0.70-0.78)  0.70 (0.66-0.74)  0.15(0.12-0.17)  0.19 (0.17-0.21)  0.69 (0.65-0.73)

En stratifiant la cohorte test selon le score de survie moyen prédit, on obtient trois groupes de
risque: « Faible risque », « Risque moyen » et « Haut risque ». La survie sans crise de ces patients

est significativement associée avec le risque prédit par EEGSurvNet (p = 0.003, Figure 6.7). Chez
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les patients a faible risque, le taux de récidive a deux ans est de 12%, contre 42% pour les patients

a haut risque.

Figure 6.7 : Survie sans crise des patients de 1’échantillon test, stratifi¢ en fonction du risque
prédit par le modeéle EEGSurvNet.

6.3.4 Analyse par sous-groupe

Les analyses stratifiées révelent des variations de performance selon les sous-groupes (Figure 6.8).
Les jeunes adultes (<40 ans) présentent une meilleure discrimination avec un iAUROC a deux ans
de 0.73 [0.68-0.79], comparativement aux 40—60 ans (0.64 [0.54-0.76]) et plus de 60 ans (0.67
[0.58-0.82]). Pour le type d'épilepsie, le modele performe modérément en épilepsie focale (0.66
[0.60-0.72]) mais aléatoirement en épilepsie généralisée (0.50 [0.39-0.77]), bien que ce dernier
résultat soit basé sur seulement 13 patients. La présence de lésion focale et I’absence de
ralentissement anormal tendent & améliorer les performances. La seule différence statistiquement
significative entre sous-groupes concerne la présence d'anomalies épileptiformes a I’EEG. Le
modele performe mieux en leur absence, avec un iAUROC de 0.78 (0.73-0.83), comparé a 0.53

(0.43-0.63) en leur présence.
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Figure 6.8 : Analyse des performances prédictives par sous-groupe. IED: Interictal epileptiform
discharges (décharges épileptiformes interictales).

6.3.5 Interprétabilité

Pour interpréter le modele profond, nous avons analysé les valeurs de Shapley par fréquence et par
canal pour les 50 segments EEG ou le modéle prédit un risque élevé, ainsi que pour les 50 segments
ou le modele prédit un risque faible. Les résultats sont présentés a la Figure 6.9. Les valeurs de
Shapley démontrent une importance ¢levée de la bande de fréquence de 6 a 15 Hz. En termes de
localisation, les canaux situés au niveau temporal comportent la plus haute importance, suivi des
canaux occipitaux. Nous observons aussi une asymétrie droite-gauche, avec des valeurs de Shapley

plus élevées en temporal gauche que droit et un foyer de valeurs de Shapley basses en temporal
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postérieur gauche.

Figure 6.9 : Valeurs de Shapley pour les segments a plus haut et plus bas risque prédit. A :
valeurs de Shapley moyennées par band de fréquence. La ligne plus sombre correspond a la
moyenne sur les 50 segments. B : valeurs de Shapley moyennées par électrodes.

6.3.6 Etude d’ablation

Les résultats de 1’étude d’ablation sont présentés dans le Table 6.5. Dans tous les cas, les
performances sont inférieures a notre modele. Le facteur ayant le plus d’impact est la résolution
temporelle: lorsque celle-ci est diminuée de moiti¢, I'iAUROC a 2 ans passe de de 0.69 a 0.54.
L’architecture originale de DeepEpilepsy, entrainé sur les signaux de base et non sur les
spectrogrammes, n’a pas €té transférable directement a 1’analyse de survie, avec une iAUROC a

deux ans de seulement 0.52.

Tableau 6.5 : Etude d’ablation

Modéle Augmentation  Résolution temporelle Résolution Durée des segments iAUROC*
(s) fréquentielle (s)
DeepEpilepsy Oui 0.05 - 30 0.52
No_augment Non 0.2 32 60 0.58
16freq 8decim Oui 0.4 16 60 0.53
8decim Oui 0.4 32 60 0.54
16freq Oui 0.2 16 60 0.62
30s Oui 0.2 32 30 0.58
EEGSurvNet Oui 0.2 32 60 0.69
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*dire sous la courbe ROC intégrée a 2 ans

6.3.7 Discussion

Cette ¢étude présente le développement et la validation d’un modeéle de survie profond,
EEGSurvNet, pour prédire le risque de crise a partir de ’EEG de routine. Le mod¢le démontre des
performances supérieures aux prédicteurs traditionnels, autant en termes de discrimination
(1IAUROC a deux ans = 0.69) que de calibration (iBS a deux ans = 0.18). Les performances sont
plus élevées dans les premiers mois suivants I’EEG, atteignant un AUROC de 0.80 a 2 mois.
L’ajout de prédicteur cliniques améliore marginalement les performances, suggérant que I’EEG

capte une part essentielle de I’information pronostique.

L’analyse de survie offre plusieurs avantages par rapport aux approches binaires traditionnelles.
Elle modélise explicitement la composante temporelle du risque, tient compte des durées variables
de suivi et permet une évaluation simultanée des effets a différents intervalles. Couplée a un modele
profond, elle permet de relier des données complexes comme I’image, le texte, ou les séries
temporelles, avec une issue clinique plus granulaire. En oncologie, des mode¢les de survie profonds
ont permis d'améliorer la prédiction du pronostic du chondrosarcome [221], du cancer du poumon
[223] et du cancer de I’estomac [222], dépassant les performances des systemes de classifications
des stades traditionnels. En soins intensifs, Thorsen et al. ont développé un modéle intégrant
données cliniques, texte libre et séries temporelles pour prédire la survie des patients avec un index
de concordance de 0.73 [224]. Dans certains cas, cette approche peut étre jumelée a une

recommandation thérapeutique personnalisée [220].

En épilepsie, les modeles de survie traditionnels ont joué un réle important dans la compréhension
de I'histoire naturelle de la maladie et I'identification des facteurs pronostiques. Plusieurs études
ont utilisé 1'analyse de survie pour évaluer le risque de récidive aprés une premicre crise [25],
caractériser la réponse au traitement [45], ou prédire la rémission a long terme apres ’arrét de la
médication anti-crise [245], [246]. Certains modeles validés ont été spécifiquement développés
pour guider la prise en charge clinique, notamment pour prédire la récidive de crise aprés une
premicre crise aigiie symptomatique dans le contexte d’ une hémorragie intracranienne [216], [247],
d’un accident vasculaire cérébral ischémique [217], [236], d’une thrombose veineuse cérébrale

[238] ou d’un trauma cranien [237], ou pour prédire le succes du sevrage de la médication anticrise
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[218]. Pourtant, malgré cette utilisation établie des modéles de survie en é€pilepsie et le succes
récent des approches profondes dans d'autres domaines médicaux, aucune étude n'a encore exploré

le potentiel des modeles de survie profonds pour I'analyse de I'EEG.

Les modéles de survie clinique existants ont des performances qui varient selon le contexte
clinique, avec des index C allant de 0.67 pour la prédiction de récidive apres le sevrage de la
médication [218] a 0.89 pour le développement d’épilepsie post-traumatique [237]. Ces modéles,
basés sur des variables cliniques facilement disponibles comme la présence de DEI a ’EEG, la
sévérité de I’atteinte aigiie ou la durée de 1’épilepsie, sont disponibles sous forme de nomogrammes
(https://predictepilepsy.com) et sont utilisés dans la pratique clinique [248]. Dans notre cohorte
moins sé¢lectionnée, le modele clinique obtient un index C de 0.61, reflétant la difficulté apportée
d’une population plus hétérogene. Toutefois, EEGSurvNet atteint des performances comparables
aux modeles cliniques validés, particulierement lorsque combiné aux données cliniques (C = 0.69),
suggérant sa pertinence pour une utilisation en pratique courante. Comme pour les autres modeles
prédictifs en épilepsie, I'impact réel de ces prédictions sur les décisions cliniques et les issues des

patients reste a démontrer par des études prospectives [248].

EEGSurvNet tend vers de meilleures performances chez certains sous-groupes, notamment les
jeunes patients, chez les patients avec épilepsie focale, chez les patients sans ralentissement a
I’EEG et chez les patients sans anomalie épileptiformes a I’EEG. Malheureusement,
I’interprétation de cette analyse est complexifiée par la corrélation entre plusieurs de ces variables
dans notre échantillon. Notamment, tous les patients de <40 ans présentaient une épilepsie focale
(n=11) ou indéterminée (n = 1), et la majorité des patients avec épilepsie généralisée montraient
des DEI a ’EEG (69% vs. 27% avec épilepsie focale). Il est donc difficile de départager ’effet de
chacun de ces facteurs sur les performances. Plusieurs hypothéses peuvent tout de méme étre
avancées. Les performances supérieures chez les jeunes patients pourraient s’expliquer par
I’absence de facteurs confondants comme la polymédication ou comorbidités, plus fréquents chez
les personnes agées et susceptibles de masquer les marqueurs EEG de risque de crise. Concernant
le type d'épilepsie, la meilleure performance dans 1'épilepsie focale pourrait refléter des anomalies
plus marquées du signal: 66% des patients présentaient une lésion a l'imagerie et 50% un
ralentissement EEG anormal, contre seulement 8% et 15% respectivement dans 1'épilepsie

généralisée. Ces différences structurelles et fonctionnelles pourraient générer des signatures EEG
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plus marquées. Tout de méme, les EEG sans ralentissement étaient plus faciles a discriminer,

suggérant que le ralentissement est un facteur confondant pour le modele.

Un résultat particulierement intéressant est la performance supérieure du modele sur les EEG sans
anomalies épileptiformes (IAUROC: 0.78 vs 0.53). Bien que cette différence puisse partiellement
s'expliquer par des taux de récidive différents (23% sans pointes vs. 46% avec pointes) et le type
d’épilepsie associé¢ (28% des EEG en épilepsie focal présentait des DEI vs. 69% en épilepsie
généralisée), elle suggere surtout que le modele utilise des caractéristiques du signal distinctes des
marqueurs épileptiformes classiques. Ceci est cohérent avec la méthode de traitement des sorties
du mode¢le, qui fait la moyenne des prédictions pour tout I’EEG. Cette méthode pourrait enlever du
poids aux patrons paroxystiques comme les DEI et favoriser les anomalies plus constantes du

rythme de fond.

L'analyse des valeurs SHAP souléve plusieurs hypothéses quant aux patrons alternatifs détectés
par EEGSurvNet. Une attention particuliére semble étre accordée aux régions temporales avec une
asymétrie gauche-droite, ce qui pourrait s’expliquer par la prépondérance de I'épilepsie temporale
dans notre cohorte (44% des cas, avec une latéralisation gauche prédominante). L autre région
importante est le lobe occipital. Combiné a I’importance accordée aux fréquences 615 Hz, ceci
suggere que le modele s’appuie sur le rythme postérieur dominant comme autre marqueur prédictif,
ce qui concorde avec plusieurs travaux ayant révélé des altérations du rythme alpha chez les
patients avec épilepsie [85], [152], [249], [250], [251]. D’autres patrons EEG de basse fréquence
associés au risque de crise incluent le ralentissement temporal rythmique intermittent (TIRDA)
[252] et les Paroxysmal Slow Wave Events [77], mais ces patrons sont intermittents et présents
dans la bande 0—6 Hz, ce qui rend moins probable leur détection par le modele. L’étude d’ablation
souligne I’'importance des longs segments, suggérant que les patrons pertinents évoluent sur une
échelle temporelle d’une minute. Certaines trouvailles contrastent avec DeepEpilepsy, qui
performait mieux avec des segments de 30s et s’appuyait sur les hautes fréquences (50-100 Hz)
[214]. Cette différence dans les caractéristiques exploitées pourrait expliquer la meilleure
robustesse d'EEGSurvNet, les fréquences 6—15 Hz étant généralement moins sensibles aux

artéfacts [253].

Afin de combiner I’information clinique et ’EEG, nous avons simplement multiplié le rapport de

risque (hazards ratio) avec le hasard prédit par le modele profond. Cette approche a permis



95

d’améliorer 1égérement les performances d’EEGSurvNet avec un iAUROC a 2 ans de 0.69 a 70.
Cependant, elle ne permet pas d’interactions entre les deux modalités, les modéles profonds et Cox
demeurant indépendants. L’apprentissage multimodal en EEG demeure un sujet peu exploré,
particulierement en épilepsie. Une revue de littérature récente [254] a identifié quatre articles en
épilepsie combinant ’EEG a une autre modalit¢ (EMG, spectroscopie proche infra-rouge, ECG)
principalement pour améliorer la détection de crises d’épilepsie [255], [256], [257], [258]. Dans
notre cas, la difficulté était de combiner des données tabulaires avec des séries temporelles. Une
approche intéressante a envisager serait 1’apprentissage auto-supervisé, qui a démontré sa
faisabilité¢ en maladie d’Alzheimer et en cardiologie en apprenant une représentation conjointe de

I’IRM et des données cliniques [259], [260].

Cette étude comporte plusieurs limitations. Premie¢rement, les patients proviennent tous du méme
centre. Malgré la standardisation de I’EEG clinique, certains facteurs peuvent varier d’un centre a
’autre, autant en termes d’enregistrement que de pratique clinique. Par exemple, nos trouvailles
pourraient mal se généraliser a une pratique de neurologie générale avec peu de cas d’épilepsie
réfractaire, ou encore un centre ou I’EEG ambulatoire est plus souvent utilisé que I’EEG de routine.
Deuxiémement, le suivi clinique différe entre les patients avec et sans épilepsie. Les patients avec
épilepsie ont tendance a étre suivi a plus long terme, ce qui affecte la probabilité¢ de censure de
I’analyse de survie. Afin de mitiger I’impact de ce biais, nous avons utilisé¢ une pondération basée
sur la censure (inverse probability of censoring weights: IPCW), mais son effet réel est difficile a
quantifier étant donné que nos données sont issues de la pratique clinique réelle. Troisiémement,
notre taille d’échantillon reste modeste pour les analyses par sous-groupes, pour lesquelles une

erreur de type Il ne peut étre exclue.
6.4 Prochaine étape: validation externe

La validation externe d'EEGSurvNet est en cours en collaboration avec ['Université de
Pennsylvanie (UPenn) et la Harvard Medical School (HMS). Ces centres disposent chacun d'un jeu
de données d’environ 1 000 EEG avec notes cliniques correspondantes, offrant 1’opportunité de

tester la généralisabilit¢ du modele dans d’autres centres hospitaliers.

La premicre étape, presque achevée, consiste en la standardisation des données selon le format
BIDS [227] pour faciliter leur partage et leur analyse. Pour extraire les données de suivi clinique,

nous utiliserons un algorithme de traitement du langage naturel développé par UPenn qui permet
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d'identifier automatiquement le nombre de crises entre les visites cliniques dans les notes médicales
[261]. Cette approche automatisée permettra de déterminer systématiquement soit la date de la

premicre crise post-EEG, soit la date de censure pour chaque patient.

Une fois ces données cliniques extraites, nous appliquerons EEGSurvNet aux EEG de ces cohortes
externes. La performance du modéle sera évaluée selon les mémes métriques que dans notre étude
initiale: le score de Brier, 'AUROC dynamique/cumulatif et 1'index C. Les analyses stratifi¢es
seront également reproduites pour évaluer la consistance des patrons de performance observés dans
notre cohorte, notamment concernant l'dge, le type d'épilepsie et la présence d'anomalies

épileptiformes.
6.5 Conclusion

En conclusion, cette ¢tude démontre la performance d’un mode¢le de survie profond pour prédire le
risque de crise jusqu’a deux ans apres un EEG de routine. Sa capacité a prédire le risque sur les
EEG sans pointes renforce la suspicion de biomarqueurs neurophysiologiques invisibles a I’ceil nu,
possiblement dans les fréquences 6 a 15 Hz. Cette approche pourrait grandement améliorer le
diagnostic et le suivi de I’épilepsie, qui sont actuellement grandement limités par le manque de
biomarqueurs quantifiables du risque de crise. La prochaine étape sera de valider les performances
sur des échantillons indépendants. Une collaboration est établie avec les Université de Harvard
(Boston) et de Pennsylvanie (Philadelphie), ou la collecte de données est présentement en cours.
Par la suite, une étude prospective de ce modele permettrait d’évaluer son utilité clinique réelle lors

du diagnostic ou du suivi de patients avec épilepsie.
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CHAPITRE 7 DISCUSSION GENERALE

Dans cette thése, nous avons démontré I’applicabilit¢ de 1’analyse automatisée de ’EEG pour
quantifier le risque de récidive de crise d’épilepsie. En premier lieu, nous avons exploré les
performances diagnostiques de marqueurs computationnels décrits précédemment, appliqués a une
cohorte de patients consécutifs ayant eu un EEG de routine au CHUM. Cette premicre expérience
a démontré que ces marqueurs permettaient de distinguer les EEG de patients a haut risque de crise
au-dela de la chance de fagon statistiquement significative, mais avec des performances modestes.
Pour améliorer la précision diagnostique, nous nous sommes ensuite tournés vers 1’apprentissage
profond afin d’augmenter la complexité de la représentation extraite du signal. Les modeles
profonds, et plus spécifiquement les ViT dont DeepEpilepsy, ont permis d’augmenter la
performance diagnostique comparativement aux marqueurs computationnels. Finalement, nous
avons adapté DeepEpilepsy afin de prédire le risque de crise a travers le temps a la manicre d’un
modele de survie. Cette approche permet de prédire une issue clinique actionnable, potentiellement
plus pertinente comparativement au diagnostic seul. Notre modele final, EEGSurvNet, peut prédire
le risque de crise a travers le temps jusqu’a deux ans aprés un EEG de routine, mieux qu’un mode¢le

basé sur les données cliniques seules.

Comme décrit dans la revue de littérature, la majorité des travaux antérieurs sur la détection
automatisée de I’épilepsie a ’EEG de routine porte sur des marqueurs computationnels. Ces
marqueurs incluent des variations subtiles dans les bandes de fréquences [152], [249], [250], [262],
une diminution de la régularité du signal et de son entropie [203], [263], ou bien des anomalies de
connectivité fonctionnelle [88], [100], [264]. Cependant, ces changements ont souvent été détectés
dans des études cas-controles, ou des sujets provenant d’une certaine population (e.g., patients avec
épilepsie) sont comparés avec des sujets d’une autre population (contrdles sains, patients avec
crises non-épileptiques, etc.) [67]. Dans ce type d’étude, les différences entre les deux populations
vont au-dela du diagnostic d’épilepsie et du risque de crise, et incluent les comorbidités, la
prévalence de lésions cérébrales, la charge médicamenteuse et possiblement d’autres facteurs
confondants non-mesurables. Ainsi, les études cas-témoins ont tendance a surévaluer les
performances diagnostiques [170]. Dans notre cas, nous avons mis sur pied une cohorte qui
comprend tous les patients consécutifs s’étant présentés pour un EEG de routine au CHUM et y

ayant eu un suivi. Cette cohorte est représentative des patients chez qui nous déploierions un outil
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d’analyse automatisée de I’EEG dans la vraie vie, et nous permet donc d’évaluer plus robustement
les performances d’un tel outil [265]. De plus, la révision compléte des dossiers médicaux de
chaque patient avec un long suivi clinique (médiane de 2.2 ans), augmente la confiance dans les
étiquettes utilisées pour 1’apprentissage et permet des analyses stratifiées par sous-groupe. Ces
détails méthodologiques visent a surmonter la principale limite des études précédentes : la sélection

des sujets de 1’étude [67].

Sur cette cohorte, nous avons premi¢rement démontré que les marqueurs computationnels étaient
bien capables d’identifier des différences dans ’EEG de patients avec épilepsie. Le marqueur le
plus performant était la puissance des bandes spectrales, dont la capacité discriminative atteignait
presque celles de tous les marqueurs combinés. Il est intéressant de noter que le modele pouvait
identifier les EEG des patients avec épilepsie méme dans sans ralentissement anormal a la lecture
par un neurologue, suggérant qu’un processus plus complexe est a 1’origine des différences
détectées par cette approche. Une hypothése est celle d’une interaction pathologique entre les
différentes bandes de fréquence [266]. En effet, les patients avec épilepsie présentent un couplage
anormal entre les hautes et basses fréquences dans les moments précédant une crise [267], [268].
Bien que notre méthode ne permette pas de détecter explicitement les couplages a travers les
fréquences, ce type d’événement pourrait avoir une répercussion sur la puissance des bandes
pendant I’EEG interictal [269]. La seconde catégorie de marqueurs qui atteignaient des
performances statistiquement au-dela de la chance étaient les marqueurs non-linéaires de régularité
du signal, incluant I’entropie et la longueur de ligne (Line Length). Dans les années 1990,
I’application de I’analyse dynamique non-linéaire 4 ’EEG démontrait une organisation anormale
du signal lors d’une crise et dans les moments qui la précédaient [270], [271], [272], [273]. D autres
travaux ont dénoté cette anomalie a distance des crises [80], [203], [263]. Notre premier travail
corrobore I’hypothése de changements dans 1’entropie des patients avec épilepsie en interictal, mais
la nature exacte de ces changements est difficile a identifier. En effet, chaque marqueur est extrait
a plusieurs échelles temporelles et plusieurs localisations, puis est amené a interagir avec les autres
marqueurs de fagon non-linéaire. Ainsi, bien que notre travail démontre des différences dans le
signal EEG, il ne permet pas de faire le lien avec des processus physiopathologiques précis, ce qui

requerrait une étude dédiée.

En utilisant les marqueurs computationnels comme entrée aux modeles, nous effectuons une forme

de « régularisation » et contraignons la représentation de ’EEG a des changements observables,
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ou du moins basés sur des hypothéses neurophysiologiques. En réalité, notre compréhension des
processus générant le signal est limitée [21], [22], et dans ce contexte, I’apprentissage profond est
trés pertinent. Son utilisation permet de faire table rase sur les hypothéses qui sous-tendent les
changements interictaux liés a I’épilepsie et au seuil convulsif, donnant (presque) carte blanche au
modele profond pour trouver les caractéristiques pertinentes. Le choix de I’architecture du modele

permet de diriger faiblement la nature des caractéristiques extraites.

L’application de D’apprentissage profond a ’EEG a beaucoup évolué¢ depuis les modeles
ShallowConvNet [119] et EEGNet [118]. Ces modéles relativement simple (1.5K-300K
parametres) s’inspiraient d’algorithmes de traitement de signal comme le Filter Bank Common
Spatial Patterns pour extraire des caractéristiques locales, et dont les performances de pointes
plafonnent a une certaine taille de modele et d’échantillon d’entrainement [122]. Plus récemment,
les modeles SpikeNet et Score-Al, adaptés d’architecture plus modernes comme le ResNet [114]
et DenseNet [274], ont démontré 1’applicabilité de modeles plus profonds (~300K et 20M de
parametres) et entrainés sur de plus grandes bases de données (10K et 30K EEG) pour identifier

des DEI ou des périodes de ralentissement a ’EEG [103], [104].

DeepEpilepsy et EEGSurvNet se distinguent par une architecture hybride qui combine les
convolutions au mécanisme d’attention du Transformeur [131], [132]. Les convolutions
compriment efficacement le signal en intégrant rapidement I’information spatiale a courte échelle
temporelle (0.2—1s), puis le Transformeur modélise I’information entre ces états sur des périodes
plus longues (30s pour DeepEpilepsy, 60s pour EEGSurvNet). Cette architecture permet
d’identifier des processus plus subtils avec dynamiques temporelles plus étendues, comme le
démontre la performance supérieure de DeepEpilepsy comparée aux marqueurs computationnels
et au ShallowConvNet. Bien que DeepEpilepsy surpasse aussi un CNN moderne de type ResNet
(ConvNeXt, [116]), cette différence est probablement marginale, comme le démontrent des travaux
en vision par ordinateur ou CNN et ViT atteignent des performances similaires lorsque
correctement optimisés [115]. Par rapport aux autres modeles profonds utilisés pour le diagnostic
d’épilepsie, DeepEpilepsy et EEGSurvNet se distinguent aussi par leur taille. Avec 10M et 27M
de paramétres, ils sont 300 a 9 000 fois plus grands que leurs prédécesseurs [73], [74], [87], [98].
Cette augmentation de complexité est contrebalancée par des méthodes de régularisation (weigth

decay, dropout, augmentation de données) qui préviennent le surapprentissage [133].
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Les résultats de notre deuxieme étude suggerent que des modeles de plus grandes tailles meénent a
des meilleures performances, avec des performances corrélées a la taille de 1’échantillon
d’entralnement. Ceci est contraire aux conclusions de Kiessner et al., qui ont identifi¢ une
saturation des performances entre 3 500 et 11 000 paramétres pour divers CNN sur un ensemble
de données de 10 000 EEG classifiés comme normaux vs. anormaux [122]. Premiérement, il est
possible que leurs architectures (basés sur EEGNet et ShallowConvNet) posseédent un biais inductif
qui empéche d’apprendre des caractéristiques assez complexes [112]. Ceci concorde avec nos
trouvailles, ou la performance de ShallowConvNet saturait assez rapidement avec la taille
d’entrainement. Deuxiémement, il existe une variabilité inter-observateurs non-négligeable dans
I’interprétation d’un EEG [103], [213]. Le jeu de données utilisé comporte donc un taux d’erreur
minimal qui est inconnu, plafonnant les performances. Ces trouvailles justifient 1’investissement
dans des infrastructures de collecte de données a grande échelle et des ressources
computationnelles plus puissantes. Avec I’émergence de bases de données EEG en épilepsie telles
que le Temple University Hospital EEG Corpus [123] et, plus récemment, le Harvard EEG
Database [275], les modeles profonds prendront stirement plus d’espace dans ce domaine. Ces
données ouvrent la voie a des modeles encore plus ambitieux et I’application de techniques comme
I’apprentissage auto-supervisée [276], dont I’application a I’EEG est a ses balbutiements [277],
[278].

La nature exacte des patrons détectés par les modeles profonds demeure inconnue. Parmi les quatre
¢tudes antérieures utilisant I’apprentissage profond pour détecter 1’épilepsie a ’EEG, deux ont
utilis¢ des techniques d’interprétabilité pour comprendre les caractéristiques extraites par les
modeles [74], [87]. Dans Uyttenhove et al., les auteurs ont utilis¢ Grad-CAM pour détecter les
segments d’EEG associés avec la classe « épilepsie », et ont démontré que le modele avait appris
a détecter les anomalies épileptiformes comme les pointes et les crises. Cette étude a utilisé le
Temple University Dataset, qui comporte des EEG hautement anormaux incluant des tracés des
soins intensifs. Dans Rijnders et al., les EEG sont présentés au CNN apres extraction des matrices
de connectivité, restreignant fortement la capacité du modele a découvrir des patrons au sein du

signal [87].

Une des nouveautés des modeles présentés dans cette theése est qu’ils utilisent le signal brut ou
minimalement transformé. De plus, leur performance est maintenue en absence d’anomalies

visibles. Ces modeles offrent donc une nouvelle fenétre sur les répercussions
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¢lectroencéphalographiques de 1’épilepsie. Pour DeepEpilepsy, notre analyse d’interprétabilité
consistait a mesurer la variance de deux caractéristiques connues, 1’entropie et la puissance de
bande spectrale, au sein de 1’espace latent appris par le modele. Cette approche a révélé que les
puissances des bandes de haute-fréquence avait une plus grande variance, et donc que les patrons
détectés par le modele y sont situés. Pour EEGSurvNet, nous avons plutdt estimé les valeurs
Shapley [243], [244], ce qui a démontré une sensibilité du modéle a la bande théta haute-alpha,
ainsi qu’aux canaux temporaux et occipitaux. Ces contradictions entre les deux modeles
s’expliquent possiblement par les changements du format d’entrée. En effet, pour EEGSurvNet,
les données sont transformées en spectrogrammes et sont 1égérement filtrées (filtre passe-haut a
0.2 Hz et filtre Notch a 60 Hz). Ces modifications permettent possiblement de régulariser
I’apprentissage et ont un impact positif sur les performances. Sans ces modifications, DeepEpilepsy
¢tait incapable de s’adapter a la tdche de l’analyse de survie, qui est plus complexe que la
classification simple. Les hautes fréquences contiennent beaucoup d’artéfacts (surtout
myogéniques et de contamination électrique), qui pourraient avoir confondues DeepEpilepsy.
L’attention portée par EEGSurvNet aux fréquences 6 a 15 Hz est particuliérement intéressante car
elle suggere une relation entre des anomalies du rythme alpha et le risque de crise, une des

premicres anomalies relevées par les analyses quantitatives de 'EEG dans les années 1940 [249].

La détection de I’épilepsie ou I’identification de patrons anormaux sont des issues cliniques
pertinentes, mais la question fondamentale en épilepsie demeure le risque de crise chez un patient
donné [2]. L’ utilisation d’issue binaire (épilepsie vs. absence d’épilepsie, récidive de crise vs.
absence de récidive) apporte plusieurs limitations. Premiérement, 1’épilepsie comporte un spectre
trés large de présentation: certains patients auront des crises quotidiennes, alors que d’autres
n’auront jamais de récidive. Deuxieémement, la prise de décision clinique ne s’arréte pas au
diagnostic d’épilepsie; I’épilepsie est une maladie chronique avec une dynamique complexe, et une
fois le diagnostic posé, 1’ajustement du traitement passe par 1’estimation du risque de crise.
Troisiémement, par définition, les patients sans €pilepsie aussi ont un risque théorique de crise, qui
est inférieur a 60% a 4 ans [2]. Il est donc utile de modéliser ce risque théorique dans le contexte
de la définition actuelle de I’épilepsie [2]. L’analyse de survie permet donc de réconcilier ces
limitations en attribuant un risque a tous les patients, avec et sans épilepsie, une approche qui est

analogue a la quantification du seuil convulsif.
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Notre modele final, EEGSurvNet, pourrait étre déployée dans le contexte clinique et offrir une
quantification du risque a tous les patients qui ont un EEG de routine. Ce serait ensuite au
neurologue traitant d’intégrer cette information a la prise en charge clinique. Les impacts potentiels
de cette information sont multiples. Premiérement, chez un patient se présentant avec une
incertitude diagnostique (par exemple, ayant eu une crise épileptique unique ou avec épisodes
neurologiques répétés de nature incertaine), un risque de crise prédit comme élevé pourrait mener
a un suivi plus serré, une admission a ’'unité de monitoring d’épilepsie, ou méme un essai de
médication anticrise. Au contraire, un risque prédit faible pourrait justifier une absence de suivi,
étant donné que les patients a faibles risques n’ont que 12% de chance d’avoir une convulsion a 2
ans. Par comparaison, sans utiliser de modéle profond, les patients avec un EEG sans anomalies
épileptiformes et une crise non-provoquée ont un risque de récidive a 2 ans d’environ 25% [24].
Une autre utilité clinique potentielle est la sélection de patients pour le sevrage de médication
anticrise. Certains patients ont un bon contréle de 1’épilepsie avec la médication, mais celle-ci
comporte des effets secondaires nuisibles comme la somnolence, étourdissements et troubles de
I’humeur [279]. Chez les patients sans crise depuis plus d’un an, I’échec de sevrage de la
médication est d’environ 15-45% [174], [280]. EEGSurvNet pourrait donc s’ajouter aux outils
cliniques existants [218], [280] pour diminuer le risque de récidive lors du sevrage. Finalement, les
restrictions quant a la conduite automobile sont un enjeu majeur dans la qualité de vie des patients
avec ¢épilepsie [281]. Au Québec et ailleurs dans le monde, la réglementation quant a la conduite
automobile est presqu’entierement déterminée par la date de la derniére crise [239], [282]. Un outil
plus précis, basé sur la quantification du risque de crise, pourrait améliorer la sécurité automobile
et la qualité de vie des patients [283]. Dans tous ces cas, des études prospectives seront nécessaires

pour évaluer I’'impact réel sur la prise de décision clinique.
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CHAPITRE8 CONCLUSION

L’objectif principal de cette these était de développer des méthodes computationnelles pour extraire
de ’EEG des marqueurs quantifiables du risque de crise. A travers trois études complémentaires
et appuyés par une base de données cliniques de haute qualité, nous avons progressé d’une
classification binaire basée sur des caractéristiques prédéfinies vers une modélisation temporelle

complexe du risque épileptique tirant avantage de 1’apprentissage profond.

La premicre implication de ce travail est 1’établissement de nouveaux standards méthodologiques
pour le développement d’algorithmes appliqués a I’EEG en épilepsie. Tel que démontré par notre
revue systématique, le principal facteur qui freine la translation clinique dans ce domaine est la
présence de biais méthodologiques dans la sélection des sujets et 1’évaluation des algorithmes [67].
Au centre de cette thése se situe une cohorte de patients consécutifs ayant eu un EEG de routine,
représentant le spectre complet des patients chez qui cet examen est effectué et, ultimement, chez
qui cette technologie serait déployée. A travers nos études, une emphase particuliére est attribuée
a la validation chez une cohorte de patients indépendants avec un décalage temporel. Malgré cela,
la principale limitation de cette thése est que les patients proviennent tous du méme centre
hospitalier. La validation de notre approche sur des cohortes similaires recrutés dans d’autres

centres hospitaliers est présentement amorcée.

L’autre implication importante est la découverte d’une nouvelle fenétre pour investiguer la
neurophysiologie de 1’épilepsie. Les algorithmes profonds permettent une représentation du signal
EEG distincte de celle percue par I’analyse visuelle. Les caractéristiques captées par les modéeles
ont une échelle temporelle de I’ordre d’au moins une minute, et semblent impliquer principalement
la bande de fréquence 6 a 15 Hz. Et plus important encore, ces marqueurs semblent étre
indépendants de la présence de décharges épileptiformes interictales. Ces patrons pourraient
relever d’anomalies de plus haut niveau comme des altérations structurelles ou fonctionnelles de
réseaux neuronaux, ou méme des couplages entre les fréquences d’oscillation. De plus, les
marqueurs pourraient varier selon le type d’épilepsie, de 1’étiologie sous-jacente, de 1’état d’éveil
ou du nombre de médicaments. Nos trouvailles sont toutefois limitées par le nombre restreint
d’EEG. En effet, la qualité de la représentation apprise par les ViT est corrélée avec le nombre
d’échantillon [284], et bien que notre méthode de segmentation permette de présenter 1.7M

segments aux modeles, ces segments ne proviennent en réalité que de 900 EEG différents. Une
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¢tude approfondie de la représentation profonde sur un plus grand jeu de données pourrait mener a

une meilleure compréhension de la physiopathologie de I’épilepsie.

Finalement, ’implication majeure est la meilleure caractérisation du risque de crise chez les
patients. La définition méme de 1’épilepsie repose sur le risque de crise, mais sa quantification est
imprécise et fondée sur quelques éléments cliniques parfois subjectifs, telle que la certitude que les
épisodes antérieurs constituent des crises et la présence de pointes épileptiformes a ’EEG [2]. La
découverte de marqueurs quantifiables du risque de crise révolutionnerait la prise en charge de ces
patients [49], [50], [157]. La certitude diagnostique serait améliorée, réduisant d’une part les délais
diagnostiques mais surtout le surdiagnostic, dont les conséquences sont encore plus séveres [12],
[13]. Lors du suivi, cette information permettrait un ajustement plus juste de la médication
anticrise, une amélioration de la sécurit¢ automobile, une référence plus précoce pour une
évaluation chirurgicale et un sevrage plus sécuritaire des médicaments chez les patients
sélectionnés [248]. Cette quantification du risque pourrait augmenter I’efficacité¢ des unités de
monitoring vidéo-EEG en présélectionnant les patients a haut risque de crise dans les prochains
jours. Il en est de méme pour les essais cliniques, qui pourraient sélectionner plus efficacement les
patients avec un seuil convulsif abaissé. Bref, cela redéfinirait le role de ’EEG en épilepsie, le
transformant en examen périodique qui offrirait une information a jour du contréle de la maladie.
Ces hypothéses nécessitent des études cliniques prospectives, pendant lesquelles sera évaluée

I’interaction entre I’humain et la technologie proposée, qui sera un élément crucial de son utilité.

A cette fin, une autre limitation importante de la thése est que I’évaluation des modéles ne tient pas
comptes des biais socioculturels présents dans les données. La nature rétrospective du jeu de
données limite la quantité de variable collectée, et certaines informations comme 1’origine
ethnique, le statut socio-économique et le genre ne sont pas disponibles d’emblée dans les dossiers
médicaux. Malheureusement, ces facteurs cliniques peuvent influencer les décisions cliniques et
engendrer des biais dans la prise en charge des patients [285], [286], [287]. Les algorithmes
entrainés sur ces données biaisées ont tendance a reconduire ces biais dans leurs prédictions [288].
11 est donc important d’incorporer un processus de reconnaissance et mitigation des biais lors du

déploiement des modeles dans de futures études cliniques [289], [290].

L’EEG est un outil fondamental dans la prise en charge de 1’épilepsie, mais son interprétation est

basée sur I’analyse visuelle. L’apprentissage profond a révolutionné notre société par sa capacité a
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modéliser des signaux complexes comme les images, le son et le langage. L’application de
I’apprentissage profond a ’EEG est certainement une étape clé¢ de 1’évolution de la neurologie
clinique. L’impact réel de cette nouvelle technologie dépendra d’une validation robuste et d’une
réflexion approfondie sur I’interaction entre les humains (patients et cliniciens) et 1’intelligence

artificielle.
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A.1 Abstract

Background: Computational analysis of routine electroencephalogram (rEEG) could improve the
accuracy of epilepsy diagnosis. We aim to systematically assess the diagnostic performances of

computed biomarkers for epilepsy in individuals undergoing rEEG.

Methods: We searched MEDLINE, EMBASE, EBM reviews, IEEE Explore and the grey literature
for studies published between January 1961 and December 2022. We included studies reporting a
computational method to diagnose epilepsy based on rEEG without relying on the identification of
interictal epileptiform discharges or seizures. Diagnosis of epilepsy as per a treating physician was

the reference standard. We assessed the risk of bias using an adapted QUADAS-2 tool.

Results: We screened 10 166 studies, and 37 were included. The sample size ranged from 8—192
(mean=54). The computed biomarkers were based on linear (43%), non-linear (27%), connectivity

(38%), and convolutional neural networks (10%) models. The risk of bias was high or unclear in
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all studies, more commonly from spectrum effect and data leakage. Diagnostic accuracy ranged
between 64-100%. We observed high methodological heterogeneity, preventing pooling of

accuracy measurcs.

Conclusion: The current literature provides insufficient evidence to reliably assess the diagnostic

yield of computational analysis of rEEG.

Significance: We provide guidelines regarding patient selection, reference standard, algorithms,

and performance validation.

Systematic review registration: PROSPERO #292261

A.2 Highlights

1) There is insufficient evidence to reliably assess the diagnostic accuracy of computational
analysis of routine EEG for epilepsy.

2) Studies are at high risk of bias, mostly due to issues in patient selection and performance
validation.

3) We suggest guidelines for future studies regarding patient selection, reference standard,

algorithms, and performance validation.
A.3 Introduction

Epilepsy is characterized by a chronic propensity towards epileptic seizures [2]. It is a common
neurological condition, with an estimated period (lifetime) prevalence of 1% in the general
population [291]. Diagnosing epilepsy poses a serious clinical challenge, with a ~20%
misdiagnosis rate [190], [191]. A false positive diagnosis can lead to unnecessary employment and
lifestyle restrictions, adverse effects from medications, and social stigma, often for several years
[139]. On the contrary, a delay in diagnosis and treatment can put the patient at risk for seizure-

related injuries, road accidents, and death [5].

According to the International League Against Epilepsy (ILAE), the diagnosis of epilepsy requires
at least two unprovoked epileptic seizures or a single unprovoked seizure with a risk of recurrence
>60% over 10 years [2]. A short term (20- to 60-minute) scalp electroencephalogram (EEG), or
routine EEG, can support a diagnosis after a first single unprovoked seizure. Interictal epileptiform
discharges (IEDs) on routine EEG double the risk of recurrent seizures, thus allowing a diagnosis

of epilepsy and generally warranting antiseizure medication (ASM) therapy [2], [30], [31].
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While they are considered a hallmark of epilepsy, IEDs have limitations that impact the diagnostic
utility of routine EEG for epilepsy. On the one hand, overinterpretation of EEG waveforms as IEDs
can lead to an erroneous diagnosis of epilepsy [139]. Although the diagnosis of epilepsy is clinical
and depends on a clear history of at least one unprovoked seizure [2], in reality, physicians often
face an unreliable recounting of the suspected seizure event, and several paroxysmal disorders such
as syncope can masquerade as seizures [13], [140]. In these situations, the moderate interrater
reliability of IEDs (even among fellowship-trained neurophysiologists) can lead to epilepsy
overdiagnosis [37], [253]. On the other hand, IEDs are elusive[10], [28]. In a systematic review of
diagnostic accuracy studies assessing routine EEG after a first unprovoked seizure, the sensitivity
of EEG was only 17% in adults [30]. Computer-assisted analysis has been proposed as an

alternative to increase the test performance of EEG.

Several characteristics of brain activity on EEG may help identify people with epilepsy, including
connectivity [88], [183], [292], signal predictability and complexity [184], [293], spectral power
[151], [294], and chaoticity[295]. Discovering new, non-visible markers of epilepsy could increase
the diagnostic yield of the EEG, improve its accessibility, and reduce costs, especially in settings
where the expertise of a fellowship-trained neurophysiologist is unavailable [157], [296]. In spite
of this, none of the proposed non-visible markers of epilepsy have translated into clinical practice
[2], [311, [52], [53], [157]. Several narrative reviews have described potential biomarkers and EEG
processing techniques [32], [297], [298], but there lacks a systematic review evaluating the
population and methodological quality of these studies, and summarizing the diagnostic

performance of these tools.

We performed a systematic review of diagnostic test accuracy of computational biomarkers (other

than IEDs or electrographic seizures) extracted from routine EEG for the diagnosis of epilepsy.
A.4 Methods
We complied with our published protocol to conduct this study [68].

A.4.1 Study design

This study follows guidance from the Cochrane Diagnostic Test Accuracy group. We follow
reporting standards set forth by the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses statement for diagnostic test accuracy (PRISMA-DTA) [299]. We considered studies in
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all languages published after 1961 (the first use of digital EEG [300]) up to the last review update
(December 2022).

A.4.2 Study selection criteria

Type of studies

We included retrospective or prospective diagnostic studies comparing at least one computed
biomarker for the diagnosis of epilepsy on <24h scalp EEG (either in the inpatient or outpatient
setting) between people with and without epilepsy that did not explicitly rely on the identification
of IEDs or ictal activity (seizures). We excluded studies without human participants, studies that
used long-term (>24 hours), intracranial, or critical care recordings, studies that focused solely on
seizure/spike detection or on short-term (<24h) seizure prediction, as well as studies that did not
include both individuals with and without epilepsy. For studies that included multiple EEG
recoding settings (e.g., routine and critical care settings) and electrode location (e.g., both surface

and intracranial), we only extracted data that met the inclusion criteria.
Population

Our population of interest was individuals undergoing routine EEG in a clinical or research setting.
We did not restrict the population to patients undergoing EEG after a first unprovoked seizure.
Routine EEG was defined as a <24h scalp recording using the international 10-20 electrodes
system, with or without prior sleep deprivation. There was no restriction on age, medication use,

or comorbidities.
Reference standard

We defined the reference standard as the diagnosis of epilepsy, as determined by a physician, based
on criteria specified by the study authors (clinical or para-clinical), so long as those criteria
respected the definition of epilepsy by the International League Against Epilepsy (i.e., had at least
one seizure and long-term enduring predisposition to other unprovoked seizures) [2], [3].
Alternative definitions (which do not rely on the presence of at least one seizure) were accepted

for the qualitative analysis but excluded from meta-analyses.

Index test
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The index test is a characteristic or feature that is computationally extracted from the EEG signal
to identify patients with epilepsy, without relying on the detection of IEDs or seizures. These
include measures of connectivity, entropy, chaoticity, and power spectrum density[301], as well as
statistical models that combine several features or models that directly use the raw EEG signal as
their input. We included studies that computed the biomarkers from the same EEG used to diagnose

epilepsy, although this was considered in the evaluation of the risk of bias (see Risk of Bias).
A.4.3 Search strategy

The search strategy (Appendix 1) was developed by two medical librarians specialized in
knowledge synthesis (BN and RP). We searched MEDLINE (Ovid), EMBASE (Ovid), EBM
reviews (Ovid), IEEE Explore along with grey literature (see Appendix 1 for details) for articles,
conference papers and conference abstracts published between December 1961 and December
2022. We used the Covidence platform (Melbourne, Australia) to manage study selection and data
collection. Two independent, mutually blinded reviewers (EL, and either JNB or BR) screened the
records for eligibility by title and abstract. Any item deemed relevant by any reviewer was
independently assessed for final inclusion from its full text by the same reviewers. Conflicts

regarding inclusion were resolved by consensus.
A.4.4 Data collection

Two independent reviewers (EL and OG) extracted pre-specified data while blinded to the verdict
of the other reviewer using a custom extraction form tested on the first five articles. Any conflicting
data were re-assessed and resolved by consensus. Corresponding authors were contacted through
their electronic address if data of interest were not available in the original publication. Data
collection included the following information: 1) Title, authors, country of sampling, year of
publication; 2) Study type (retrospective vs. prospective, design); 3) Study sample
(inclusion/exclusion criteria, number of screened/included patients); 4) Data collection (number of
patients and EEGs, duration of EEGs, recording protocol, participants characteristics); 5)
Reference standard (definition, application to all patients, time-lapse with EEG); 6) Index test
(preprocessing, segment selection, feature extraction and selection, classification algorithm and
methodology, reporting of performance); and 7) Measurements of diagnostic test validity (e.g.,
accuracy, sensitivity, specificity). These items are further detailed in the pre-published

protocol[68].
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A.4.5 Study reproducibility

Two independent reviewers (EL and OG) assessed study reproducibility. A study was judged
reproducible when, given access to the data, the processing methodology and machine learning
(ML) methods were sufficiently detailed such that the experiment could be fully reproduced. More
specifically, the following items were assessed: objective criteria for selection of EEG segments,
code and data availability, and reporting of key methodological details (preprocessing [filtering,
channel selection, artifact detection and removal, segmentation], ML optimization [feature

extraction and selection, choice of ML model, hyperparameter tuning], and ML evaluation).

A.4.6 Risk of bias

The risk of bias of all included studies was assessed through a version of the QUADAS-2 tool
adapted for the characteristics of this review [68], [99]. Two independent and mutually blinded
reviewers (EL and OG) assessed the risk of bias for each of the following four elements as low,
high, or unclear: 1) Patient selection (representativeness of clinical practice, identical
inclusion/exclusion criteria for all participants, exclusion of individual EEG/EEG segments); 2)
Index test (identical EEG protocols for all patients, validation of the index test on an independent
sample); 3) Reference standard (specified criteria for the diagnosis of epilepsy, independence of
the diagnosis to the index test); and 4) Flow and timing (whether the whole sample underwent the
same reference standard, timing between index test and epilepsy diagnosis, exclusion of EEG or
EEG segments during the evaluation). Any conflicting interpretations were resolved by consensus.

These criteria are further detailed in the pre-published protocol [68].
A.4.7 Data synthesis

We planned to report the pooled sensitivity and specificity estimates for studies providing the
number of true/false positives/negatives, and the area under the receiver operating characteristic
curve (AUROC) for studies that provided a varying threshold. We planned a meta-analysis of
diagnostic performances, a quantitative assessment of heterogeneity, and subgroup analyses [68].
However, due to excessive methodological heterogeneity among included studies, we concluded a
meta-analysis would not help interpret our results and decided to report a qualitative assessment

only (see Results: Risk of bias and applicability).

A.4.8 Quality of evidence
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The quality of evidence for the primary outcome was evaluated by two authors (EL and OM) based
on the GRADE criteria for diagnostic test accuracy [302], recognizing that the GRADE approach
is designed for pooled estimates. Data from cross-sectional or cohort study which included patients
with diagnostic uncertainty for epilepsy started at “high quality”, while data from other
observational designs started at “low quality”. We downgraded the evidence by one level for high
risk of bias, indirectness, inconsistency, imprecision, and high probability of publication bias, and

we upgraded the quality by one level for large effect size.

A.5 Results

A.5.1 Study selection

The study selection flow diagram is presented in Figure A.1. Our initial search yielded 10 166
items. After removal of duplicates, title and abstract screening, and full text review, we included
37 studies. The most common reasons for exclusion pertained to study outcome (e.g., seizure or
interictal spike detection) in 164 studies (45% of final exclusions), study design (e.g., no diagnostic
accuracy testing) in 97 studies (27%), and EEG type (e.g., intracranial, critical care, or long-term

monitoring) in 67 studies (19%).
A.5.2 Study characteristics

We describe included studies in Table A.1. The sample size ranged from 8 to 192 (mean=54.4;
Figure A.2), while only six studies (16%) included >100 subjects[69], [77], [97], [303], [304],
[305]. Years of publication ranged from 2001 to 2022; twelve studies (32%) were published after
2020. Most studies included both children (i.e., aged <=18 years old; n=18; 49%) and adults,
whereas 11 studies (30%) only included children[70], [71], [72], [82], [83], [90], [91], [92], [98],
[184], [306] and eight (22%) only included adults[69], [77], [85], [86], [96], [97], [182], [303].
Twenty-four studies (65%) included any type of epilepsy, whereas seven studies (19%) only
included generalized epilepsy[80], [83], [86], [88], [89], [93], [184] and six (16%) only included
focal epilepsy[85], [95], [96], [182], [303], [307]. Type of epilepsy, however, was not available in
thirteen studies (35%). Five studies (14%) only included patients with electro-clinical syndromes
(absence epilepsy[83], idiopathic generalized epilepsies[80], [88], [93], epileptic encephalopathy

with spike-wave activation in sleep[82]).
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Thirteen studies (35%) provided a definition for the reference standard (diagnosis of epilepsy)[69],
[72], [73], [74], [77], [83], [86], [87], [88], [94], [97], [184], [305]. In seven studies (19%), the
diagnosis was based on a history of two or more seizures, or one seizure with abnormal
neuroimaging or IED on EEG[69], [72], [77], [86], [98], [184], [305]. Three studies (8%) based
the diagnosis of epilepsy on EEG features only[83], [88], [94], and three based the diagnosis on
the EEG report mentioning a diagnosis of epilepsy[73], [74], [87]. The index tests are described in
the section Signal processing and machine learning, and the computational biomarkers that were

used are listed in Table A.2.

Three public datasets were used by five of the included studies (14%). Three studies used the
Temple University Hospital (TUH) EEG dataset (“Epilepsy corpus”), with different sets of
inclusion and exclusion criteria, resulting in sample sizes of 40—60 patients (for one study, the final
sample size was not available)[73], [74], [87]. One study used the Emotiv dataset, a case-control
dataset with 97 subjects recorded with an Emotiv low-cost scalp EEG helmet[81]. One study used
the LEMON EEG dataset for the control group only[303].

A.5.3 Risk of bias and applicability

Risk of bias was high or unclear in at least two domains for all studies (Figure A.3Figur). The final
consensus for each study and the description of the assessments are provided as supplementary
materials (Figure S1 and Table S2). For patient selection, no study had a low risk of bias. The
most common reason for a high risk of bias in this domain was the use of distinct inclusion and
exclusion criteria for subjects with and without epilepsy (e.g., patients with a diagnosis of epilepsy
undergoing presurgical evaluation for cases, and healthy individuals for controls). Other reasons
were the exclusion of patients without proper justification, and a study population that was not
representative of clinical practice. For the index test, two studies had a low risk of bias[74], [98].
High risk of bias in this domain was frequently attributed to failure to validate the index test on an
independent sample of patients. In four cases (11%), the EEG recording protocol or setting was
different for cases and controls[86], [88], [94], [303]. For the reference standard domain, nine
studies (24%) had a low risk of bias[69], [72], [77], [83], [86], [88], [97, p. 202], [184], [305]. A
common reason for a high risk of bias included failure to provide a definition for the reference
standard. Finally, for the flow and timing domain, two studies had a low risk of bias[74], [94]. For

most studies, the risk of bias was unclear because of an unspecified reference standard. Eight



141

studies (22%) had a high risk of bias in this last domain because they used a different reference

standard for cases and controls.
A.5.4 Results of individual studies

Reports of performances for individual studies must be interpreted in the context of high risk of
bias in several domains. Diagnostic performances are reported in Table A.3. The diagnostic
accuracy ranged from 64% to 100%. Three studies (8%) provided a measure of statistical precision
on their diagnostic performance metrics[92], [96], [305]. In the absence of pooled estimates, we
assessed applicable GRADE criteria. The evidence quality was judged very low, starting at “low”
for the study design and downgraded for high risk of bias, inconsistency (high variability in
reported accuracy), and indirectness of evidence (differences between the studied and target
populations). Publication bias and imprecision were omitted, as only three studies reported

statistical precision.

We analysed how performance was impacted by study size and risk of bias (Figure S2). Sample
size did not correlate with diagnostic performance. There was no clear trend towards inflated
performances for studies at high risk of bias in any of the QUADAS-2 domains although no study
had low risk of bias for the Patient selection domain. The inter-test variability was smaller for
AUROC than for accuracy. There was a visible trend towards reduced inter-test variability among
studies with low risk-of-bias in the Index test (Accuracy and AUROC), Reference standard
(AUROC only), and Flow and timing (AUROC only) domains.

A.6 EEG processing and machine learning methods

EEG processing methods for each study are described in Table A.2. Some technical terms related

to EEG processing and machine learning are further defined in Table A.4Table.
A.6.1 EEG recording

The range of EEG recording times was 12 seconds to 3 hours (median: 20 minutes, interquartile
range [IQR]: 5-25 minutes). The median number of electrodes was 19 (IQR: 19-20.5). In studies
reporting EEG montage, 21 (58%) used a referential, and four (11%) used a bipolar montage.
Sampling frequency ranged from 114 Hz to 512 Hz, with two studies using frequencies above 1000
Hz (2500[303] and 5000 Hz[182]). The most common sampling frequencies were either 256 Hz or
250 Hz (n=21, 58%).
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A.6.2 Segmentation and handling of artifact

Thirty-six of the 37 studies (97%) segmented EEG recordings before analysis. Twenty-three
studies (62%) performed manual selection of the EEG segments, most according to pre-specified
criteria such as absence of artifacts or absence of ictal activity. The duration of individual EEG
segments ranged between 1 and 240 seconds (median=11, IQR: 8-32). One study used the whole,

non-segmented EEG for classification[77].

Ten studies (27%) performed artifact detection and rejection, most of which used independent
component analysis (ICA, Table A.3)[87], [89], [91], [97], [182], [303], [304]. Another approach
was to remove outlier segments based on amplitude[80], [182]. Twenty studies (54%) identified
artefactual segments visually from the recordings. No study evaluated the inter-rater reliability of

manual selection nor its effect on diagnostic performances.
A.6.3 Computational biomarkers of epilepsy

The computational biomarkers extracted from the EEG signal can be broadly categorized into the
following categories: linear, non-linear, connectivity, and deep learning (Table A.2 and Table A.3).
Here, we describe in more detail which features were used in the individual studies. Estimation of
the diagnostic accuracy of each individual feature, along with comparison between features, was

deemed uninformative due to high risk of bias.
Linear

The relative spectral powers of delta (<4 Hz), theta (4—8 Hz), alpha (8-13 Hz), beta (13—40 Hz),
and gamma (> 40 Hz) bands were used in seven studies[69], [70], [71], [72], [73], [74], [75]. Two
studies compared alpha sub-bands (69 Hz vs. 8-13 Hz and 7.5-10.5 Hz vs. 10.5-13.5 Hz)[8§],
[303]. These studies used several methods to extract the power spectral density, including Fast-
Fourier transform[70], [71], [75], [303] and an autoregressive model[72]. In all but two studies[78],
[88], relative band power was a useful discriminant between groups. Besides estimating power
spectral density, autoregressive models can be used to quantify the stationarity of a signal by
computing its prediction errors[308], and autocorrelation functions provide a similar information.
The linear methods for quantifying stationarity did not show consistent results across studies[79],

[184], [308]. Hjorth parameters quantify higher-order statistical moments of the signal in both the
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time- and frequency-domains[76]. They were extracted in two studies and seemed

discriminant[71], [75].

Zelig et al. (2022) extracted Paroxysmal Slow Wave Events (PSWE), defined as 2-second EEG
windows with a median peak frequency of < 6 Hz. In a cohort of 70 patients presenting after a first
seizure, the rate of PSWE in the first routine EEG could predict the diagnosis of epilepsy at 18-
month with an AUROC of 0.72, regardless of ASM.

Non-linear

Entropy was the most common feature explored for the automated diagnosis of epilepsy. Several
algorithms have been developed to estimate entropy from finite physiological time-series. In the
selected studies, Shannon[78], [79], Spectral[78], [80], Approximate[79], [81], Permutation[82],
Sample (multiscale)[82], [83], Fuzzy[84], and Renyi entropy[ 78] were used. In some cases, entropy
was computed after processing the signal in different frequency bands, either with wavelet
decomposition[78] or using a coarse-graining procedure[83], allowing to estimate its value across

different timescales.

Other nonlinear features included fractal dimensions (using Higuchi’s, Katz’, and Petrosian’s
algorithms)[75], [78], Hurst index (or exponent)[79], zero-crossing interval analysis[85],
recurrence quantitative analysis[83], characteristic response analysis (a model of the dynamics of
the covariance matrix through time)[305], the bispectrum magnitude (variance and average)[84],

periodicity[79], and Kolmogorov complexity[81].
Connectivity and topographical markers

All but one[96] of the 14 connectivity studies used a sensor-based connectivity analysis[69], [78],
[81],[86], [87], [88], [89], [90], [91], [92], [93], [94], [95]. The connectivity measure varied widely
across studies (Table A.2). A challenge of connectivity estimation is that some sensors may be
spuriously connected due to a common underlying source or because of scalp conduction. When
these spurious connections occur, the two sensors are phase-aligned (zero-lag), while a “true”
communication between brain regions has a small time lag[309]. Therefore, one technique is to use
a connectivity measure that accounts for this time lag, which four studies used: lagged
correlation[93], lagged coherence[96], Granger’s causality[87], and transfer entropy[97]. Another

approach reported in two studies was a model of interactions between brain regions based on the
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Kuramoto oscillator to calculate parameters that could embody the seizure-generating capacity of

the network[88], [93]. Each study analysed the connectivity across several frequency bands.

Once the connectivity matrix is estimated for each frequency band, the studies either directly used
the matrix as input into a classification scheme[87], [94], [95] or calculated higher-order features
that describe the topology of the underlying network (Table A.2). The discriminative power of each
feature was not consistent across studies. Only network efficiency (the average of the shortest path
between pairs of nodes) was higher in people without epilepsy in the three studies in which it was
analyzed[89], [96], [97]. Overall, the discriminative power of the network features was highly
dependent on hyperparameters[91], [97], frequency band[69], [86], [87], [96], and localization[86],
[87], with conflicting results between studies. None of the studies performed statistical testing to

test the robustness of the estimated network or check it against a random network[310].

Microstates analysis was reported in two studies. Although this analysis can be applied to different
frequency bands independently, one study found that microstates features were only discriminant

in the beta band[78].
Deep learning

Four studies used deep learning (DL) models, specifically convolutional neural networks
(CNN)[73], [74], [87], [98]. Two studies performed significant preprocessing on the input signal:
one pre-transformed the EEG into connectivity matrices based on Granger causality (6x6—24x24
images)[87] and the other into power spectral density plots (32x32 images)[73]. The other two
studies input the raw EEG data (18 channels x 2s and 19 channels x 10s, both 256 Hz), with minimal
processing (band pass and notch filtering)[74], [98]. The number of layers in the CNNs ranged
from one convolution layer to three blocks of two convolution layers. The number of parameters

was not available, but was estimated from figures to range from ~2 960[87] to ~92 000.[98]

The number of recordings used for optimization in those four studies was 48, 32, <252, and < 1
648 (estimated from figures for the last two studies). When training curves were provided, they
revealed overfitting on the training data (i.e., no decrease in loss on the validation set). No study

used pre-training nor data augmentation.
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Optimization algorithms included Stochastic gradient descent, Adaptive moment estimation
(ADAM), and Root Mean Squared Propagation (RMSProp). Only one study used regularization
(L2-regularization with dropout) [74].

Comparison between feature extraction approaches

Figure A.4 depicts AUROC and accuracy for the eight studies that did not show data leakage
(sharing of information between training and testing set; see section 4.4.3). Tests based on
connectivity markers showed high variability in AUROC and accuracy compared to univariate
features with no feature extraction. This finding could reflect the heterogeneous data processing
related to connectivity analyses. Among these eight studies, only one investigated connectivity and
non-linear features across various frequency bands.[78] This study indicated a tendency for
improved accuracy when using features extracted from the beta band (Katz’s fractal dimension,
Shannon entropy, Spectral entropy, Renyi entropy, and microstates features). When assessing all
37 studies, the most performant band varied between the delta,[77] theta,[85], [90] alpha,[72], [90],
[93] and beta[78], [86] bands.

A.6.4 Machine learning methods

Thirty of 37 studies (81%) used machine learning to map the extracted features to epilepsy
diagnosis. The remaining studies used a receiver operating characteristic (ROC) curve or simple
thresholding based on a single, continuous biomarker value[77], [80], [85], [88], [93], [96], [305].

Supplementary Table S1 summarizes machine learning approaches in included studies.
Algorithms

The support vector machine (SVM) was the most popular across all studies (n=10, 27%)[71], [73],
[74], [78], [83], [84], [94], [95], [97], [303]. Studies mainly used radial basis function kernels and
polynomial kernels. In some cases, the SVM was directly applied to the pairwise connectivity

measures[94], [95].

Multilayer perceptrons were also widely used (n=7, 19%)[71], [75], [78], [79], [81], [82], [304].
Four studies (11%) used convolutional neural networks (discussed in the previous section)[73],
[74], [87], [98]. Regression algorithm included logistic regression (n=6, 16%)[69], [73], [89],
[182], [184], [303], and linear discriminant analysis (n=3, 8%)[72], [182], [184], often combined

with regularization to put a constraint on the value of the parameters and reduce overfitting. Other
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classifiers included K-nearest-neighbors (n=5, 14%)[78], [86], [91], [92], [306], gaussian mixture
models or naive bayes with gaussian kernel[90], [303], random forest or other decision trees[74],

[78], and gradient boosting[78], [184].

Six studies (16%) compared classifiers to one-another[71], [73], [74], [78], [184], [303]. In Ahmadi
et al. (2020), SVM (linear and radial basis function [RBF] kernels) seemed superior to gradient
boosting, decision trees, and random forest across experiments. In Varatharajah et al. (2020), both
regularized logistic regression and naive bayes had superior performances over SVM (RBF kernel).
In these two studies, classifiers were trained on extracted features and not on the raw, EEG time
series. Uyttenhove et al. (2020) compared CNNs trained on the preprocessed windowed EEG signal
to an SVM and a random forest trained on the band powers of delta and alpha sub-bands (1.5-2Hz,
10.5-11Hz, 11-11.5Hz, and 11.5-12Hz). They showed that CNNs had higher performance when
tested on the TUH Epilepsy Corpus. For each of these studies, there were few details on the
hyperparameter optimization of each model, which could have significantly affected the final

performances.
Performance evaluation

The most common method for evaluating classification performances was K-fold cross-validation
(CV, with K =5 or 10), used in 10 studies (27%)[78], [81], [82], [83], [86], [87], [89], [95], [97],
[98], [182]. A common variation was leave-one-out (or leave-one-pair-out) CV (n=8, 22%)[72],
[75],[78], [85], [88], [94], [182], [303]. Repeated or nested-CV was used in five studies (14%)[71],
[86], [98], [184], [303]. A potential advantage of CV or repeated testing is that they evaluate the
variance of the performances across different partitions of the data. However, none of the studies
that performed CV or repeated testing reported the variance of the estimated performances[74],

[92], [96], [184].

One common culprit for data leakage was to train the classification algorithm on epochs from one
EEG recording, and then evaluate it on different epochs from the same EEG. This could be
prevented by grouping together epochs from a single subject into the same data subset. This was

done in eight studies (22%)[72], [74], [78], [86], [88], [94], [98], [303].

In five studies (14%), the authors evaluated performances in a dedicated testing set[71], [74], [84],

[184], [307]. However, this prevented data leakage in only two of these studies (see next



147

section)[74], [307]. For the remaining studies, performances were either tested directly on the

training data or were not detailed.
Data leakage and train-test loops

Eight studies (22%) did not present data leakage for at least one classification pipeline[74], [78],
[85], [88], [94], [98], [303], [307]. In machine learning, data leakage refers to the unintentional
sharing of information from the testing set to the training set, resulting in over-optimistic validation
performances. Data leakage occurred at different stages of the processing pipeline: feature
extraction[72], [78], [84], [97], [182], [305], [308], feature selection[69], [72], [73], [79], [80],
[83], [84], [85], [86], [88], [89], [96], [182], [304], [306], and model training and evaluation[69],
[72], [74], [77], [78], [86], [88], [90], [92], [93], [94], [96], [98], [303], [304], [305], [306], [308].
Figure A.5 illustrates the most common examples of data leakage. For feature extraction, data
leakage occurred when the computation of features required a model to be fitted to the whole
dataset, which, for these studies, included samples from the testing set (Figure A.SFigureB).
Feature selection caused data leakage in all studies that performed it (Figure A.5FigureC)[69], [72],
[73], [79], [80], [83], [84], [85], [86], [88], [89], [96], [182], [304], [306]. Eight studies (22%)
reported grouping samples from the same patients in the same set (training or evaluation), avoiding
data leakage that would have occurred by training on epochs from one EEG and testing on different
epochs from the same EEG (Figure A.5FigureE)[72], [74], [78], [86], [88], [94], [98], [303]. Ten
studies (27%) did not use any external validation method when assessing diagnostic

performance[69], [77], [90], [92], [93], [96], [304], [305], [306], [308].
Study reproducibility

Six studies (16%) were judged reproducible[80], [83], [86], [93], [98], [184]. The following
elements were the most frequently unspecified or poorly specified in studies judged as not
reproducible: hyperparameter tuning (n=16, 43%), EEG segmentation (n=16, 43%), model
evaluation (n=9, 24%), feature extraction (n=9, 24%), and handling of artifacts (n=9, 24%).

In addition, only three studies (8%) did not involve manual selection of EEG segments[77], [94],
[95]. Two studies (5%) provided a certain access to parts of the computer code used for the

analysis[87], [93]. Four studies (10%) used publicly available data[73], [74], [81], [87].

Comparison between machine learning approaches
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A comparison of the different machine learning models for the eight studies with no data leakage
is shown in Figure A.4B. When looking at individual studies, we observed a trend towards higher
performances for simpler models in two studies (logistic regression, decision trees),[78], [303]

although the magnitude of this difference in accuracies was not reported.

Across all eight studies, deep learning did not clearly show higher performances. However, a direct
comparison between deep learning and traditional ML was done in only one study.[74] This study
used two different CNN architectures: EEGNet[118], with one split convolution layer (~1 000
parameters) and tiny-VGG (t-VGG)[311], a compact version of the Visual Geometry Group (VGQG)
architecture with 3 blocks of 2 convolution layers (~21 000 parameters)[74]. They showed that the
t-VGG had superior performance for the diagnosis of epilepsy. Few details, however, were
provided regarding the training hyperparameters of EEGNet in their study, while they used heavy
regularization during the training of t-VGG. In another study, increasing the overlap percentage
during segmentation improved performances of CNN, which may be related to the increased size
of the training sample with larger overlap (6,000 vs. 11,960 samples).[98] A rule-of-thumb for
determining the sample size requirement of a deep neural network is to use 50 training data points
per parameter.[312] In the four deep learning studies, the number of parameters were
approximately 33,100,[74] 92,000,[98] 2,900,[87] and 19,700[73] (estimations based on study
texts). Thus, we estimate that the number of data points represented 7.2%,[74] 0.3%,[98]
0.04%[87], and 0.004%][73] of the sample recommended sample size.[312]

A.7 Discussion

We performed a systematic review of studies reporting computational biomarkers of routine EEG
to assess their diagnostic performance for epilepsy. We screened 10 166 studies and included 37
studies, the largest of which had 192 subjects. The included studies reported biomarkers used to
classify epilepsy based on linear (43%), non-linear (27%), connectivity (38%), and convolutional
neural network (10%) models. Although reported accuracy measures were often high (up to 100%),
methodological issues such as spectrum effects and data leakage were ubiquitous and limit the
interpretation of these estimates. Therefore, despite several studies published in the last 20 years,

the diagnostic performance of computational analysis of routine EEG remains unclear.

The discovery of new reliable interictal markers of epilepsy from routine EEG would significantly

impact the approach to the diagnosis of epilepsy[157]. While routine EEG plays an important part
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in the classification of epilepsy types and identification of epilepsy syndromes, its role in the
diagnosis of epilepsy is mostly restricted to capturing IEDs in patients presenting after a first
unprovoked seizure[31], [173]. Because of the sporadic nature of IEDs, their absence cannot rule
out a diagnosis of epilepsy (sensitivity), and thus their use as diagnostic biomarkers is limited[30],
[31]. In addition, because of their resemblance with other physiological sharply contoured
waveforms, overreliance on IEDs can lead to the misdiagnosis of epilepsy (specificity)[37], [253].
The rate of misdiagnosis in epilepsy in the community is estimated to be around 20%[190], [191].
Erroneous diagnoses carry unnecessary and harmful consequences such as stigma, adverse effects
from medication, and lifestyle or employment restrictions[140]. Alternative biomarkers could
counterweight the limitations of traditional EEG interpretation, potentially accelerating the
diagnosis of epilepsy while reducing the burden of over-diagnosis[139]. Several modalities have
been proposed as a source of diagnostic and prognostic biomarkers for epilepsy, including
neuroimaging, body fluids (blood, cerebrospinal fluid), and metabolic imaging[157]. Compared to
these modalities, EEG is inexpensive, technically easy to acquire, and confers functional
information with high temporal resolution[64], [65]. Moreover, great effort was put in recent years
to standardize the acquisition and storage of routine EEG data[ 193], [227]. For these reasons, EEG

is an invaluable candidate in the search of new interictal markers of seizure risk[157].

We observed a high risk of bias in all included studies. Patient selection might have inflated
diagnostic performances reported in most studies especially owing to adopting a “case-control”
type of study design.[170], [171] In case-control diagnostic studies, the diagnostic test aims to
identify cases (patients with epilepsy) and controls (patients without epilepsy), where both groups
are drawn from separate populations (e.g., patients undergoing presurgical evaluation vs. patients
evaluated for headaches). Many clinical conditions affect the EEG signal, such as psychiatric
diseases, brain lesions, cognitive disorders, medication, and age[31], [178], [179], [313], [314],
[315]; failure to account for systematic differences in these comorbidities between cases and
controls can result in spectrum effects. This can largely inflate performances of diagnostic test
accuracy studies. In this review, the impact of patient selection could not be measured because no
studies showed low risk of bias in this domain. The better way to perform patient selection in
diagnostic test accuracy studies is to use a consecutive sample of participants respecting common
selection criteria (e.g., consecutive patients presenting to the emergency department after a first

seizure)[316]. This second option tends to better replicate the scenario where the test will be applied
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when deployed in real-life[172]. The need for more robust patient selection methodology is echoed

in other recent systematic reviews on the use of machine learning in healthcare[317], [318], [319].

Validation of the biomarkers’ performances was another important issue in the evaluation of the
risk of bias. Only 22% of the studies did not exhibit data leakage during training and classification.
Data leakage occurs when a sample in the evaluation set is used to optimize the classification
method[320]. This can happen when the features are computed (feature extraction), when the most
discriminative features are selected (feature selection), during the selection of hyperparameters
(model tuning), or during the optimization of the classification algorithm (model training) (Error!
Reference source not found.)[321]. Classification algorithms frequently require setting specific
hyperparameters that control the flexibility of the model and its capacity to fit a particular dataset;
the selection of these hyperparameters was largely unreported and can bias accuracy measures
upwards [163]. Robust model selection and hyper-parameter tuning do not involve the testing data,
an important principle when evaluating clinical predictive algorithms[163], [322]. The studies with
low risk of bias in the Index test domain demonstrated smaller inter-test variability. This may
highlight the impact of avoiding data leakage on a more precise estimation of diagnostic
performance for a given population.[172] However, this estimate may not be generalizable to real-

world scenarios depending on the selection criteria used for the study population.

We reported the methods used for processing the EEG signal and predicting the diagnosis,
including pre-processing techniques, algorithms for feature extraction, and classification models.
A widespread limitation of the EEG processing was the manual selection of artifact-free segments
in 54% of studies, without quantifying the effect of this operation on downstream performances,
introducing a potential source of bias. Ideally, the processing pipeline should be fully automated
and identical for all patients, including artifact detection and segmentation (for example, see [159],
[323]). Because of its relatively low signal-to-noise ratio, EEG data is subject to high variability
induced by the recording setting, apparel, and even patient-related characteristics (e.g., hair, muscle
activation, eye movements).[324], [325], [326] In future studies, large-scale initiatives integrating
rEEG recordings from multiple centers along with a more widespread use of ambulatory EEG as a
diagnostic tool in patients with first unprovoked seizures[327] will likely amplify this challenge.
Automated methods for artifact detection and rejection based on deep neural networks are
promising alternatives to manual identification,[328], [329], [330] but their capacity to increase

downstream performances remains unclear.[331]
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EEGs were segmented into short epochs (typically <1 minute) in almost all studies. As a result, the
longer-term dynamics of the computational markers were unexplored. The diagnosis of epilepsy
relates to a chronically higher propensity to seizure, yet the markers that are evaluated operate on
the millisecond-second timescale. Some models of interictal-ictal transition derived from
intracranial EEG suggest that there may exist a slowly fluctuating state that embodies the seizure
threshold[332], an observation replicated in studies of chronic EEG[47]. Taking these slower
dynamics into account could improve the accuracy of seizure propensity assessment on routine

EEG.

We could not perform a reliable comparison of the wide range of potential computational
biomarkers explored in included studies. It is uncertain whether the studied biomarkers truly
represent seizure propensity or are instead a proxy of other conditions that are more prevalent in
people with epilepsy, such as ASM therapy and brain lesions. Several markers such as band power
were highly discriminant in some studies[70], [72], [303], but not better than chance in others[7§],
[88]. Most studies evaluated a wide range of features over several frequency bands on a small group
of patients, without assessing the variance of the results or using robust model evaluation
techniques. In particular, connectivity features were impacted by a low robustness to
hyperparameters, which was directly demonstrated in two of the included studies[91], [97].
Statistical validation of network models could help characterize the usefulness of connectivity
analysis in future studies[333], [334]. As shown in Figure A.4Figure, methods that take the raw
EEG data as input and do not rely on feature extraction may be more robust to the variability

introduced by processing parameters and potentially generalize better to external data.

The SVM was the most popular classification algorithm. In a study on the performance of several
model architectures for tabular data, ensembles of decision trees (XGBoost, LightGBM, and
CatBoost) significantly outperformed deep neural networks and other architectures[335]. This
category of machine learning models (initially published in 2016)[336] was used in only two
studies (outperforming other models in only one)[78], [184]. An ensemble of decision trees have a
high complexity and, without proper hyperparameter tuning and regularization, can easily overfit
small datasets, which could explain this discrepancy[336]. For smaller datasets, regularized logistic
regression and SVM, which have very few hyperparameters, might be preferable. For complex
input such as raw EEG signal, deep neural networks have shown promising performances for the

identification and prediction of seizures[337], flagging of abnormal recordings[125], and detection
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of interictal discharges[37]. Only two studies used a deep convolutional neural network on the raw
EEG data[74], [98]. The sample sizes of the deep learning studies were orders of magnitude smaller
(between 0.004% and 7% of suggested sample size) than what is generally suggested.[312]
Combined with the complexity and noise of the scalp EEG data, the sample sizes may not have
been sufficient to harness the full capacity of deep neural networks. Several questions regarding
deep learning remain unanswered, including the minimal quantity of EEGs required, the impact of
architecture and optimizer, and the potential benefits of pretraining, self-supervised training, data
augmentation, and transfer learning, all of which improved performances in other EEG-related
classification tasks[105]. For seizure prediction, where the task consists in predicting (usually from
long-term scalp or intracranial EEG data) when a seizure will start minutes or hours in advance,
transformer models are becoming the state-of-the-art on benchmark datasets.[338], [339], [340]
Transformers are typically larger and more data-hungry than CNN, but might scale better to large
datasets.[341]

Understanding the predictions of a machine learning model can provide insights into the
neurophysiological manifestations of epilepsy, monitor biases and flaws in the data, and improve
acceptability from patients and physicians[342]. This concept is referred to as interpretability, and
can take many forms. In one study, the authors used a Kuramoto model to estimate local and global
seizure susceptibility from the patients’ EEGs[93]. The Kuramoto model is an abstract model of
the synchronization between weakly coupled oscillators. As such, their experiment led to the
hypothesis that there is a higher coupling strength in patients with generalized epilepsy compared
to controls. In another study, the authors investigated the gradient flow through the fitted CNN to
identify the regions in the input data that had the highest impact on the CNN’s prediction[74]. They
found that the EEG regions with highest impact had highly epileptiform anomalies; this would
however indicate a limited utility of this approach in the absence of IEDs. In general,
interpretability is improved by imposing constraints and sparsity to a machine-learning
model[343]. Constraints include imposition of structure and abstraction of unimportant features.
Sparsity means that the model is described by a small number of critical parameters. For predicting
the diagnosis of epilepsy, an ideal model would provide: 1) a quantification of seizure recurrence
risk, 2) actionable parameters (e.g., parameters that can be modified by medication), and 3)

parameters that are related to the dynamics of the cortical activity (susceptibility to bifurcations,
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altered connectivity, shifts in frequency). Such a model would have the potential to extrapolate to

other use cases (e.g., intensive care unit, predict epileptogenicity, post-operatory outcome).

How automated analysis of EEG will integrate into the current diagnostic pathway is yet to be
determined. The exact role will likely depend on whether these algorithms prove more sensitive or
specific to epilepsy than the current diagnostic approach. If these algorithms were sensitive (i.e.,
low false negative rate), they could be used as a screening test to exclude epilepsy in patients with
low clinical suspicion, reducing the burden of repeat EEGs or accelerating the investigation for
alternative conditions. If specific (i.e., low false positive rate), they could be considered as add-ons
to IEDs in patients with high pre-test probability, either to individualize the estimation of seizure
recurrence risk for a single patient or to provide electrophysiological evidence of epilepsy in
patients who do not show IEDs on repeat EEGs. The overhead of the automated analysis of EEG
is small and these algorithms could easily be integrated into EEG interpretation software. Even
large deep learning models require little computational capabilities to provide inference.[344]
Although inference is cheap, training modern and robust ML models requires important
computational resources and large, multicenter datasets, both of which come at a potentially very
high cost. Another and even more important caveat is the risk of increasing social and racial
disparities that are well documented in epilepsy.[285], [286], [287] By training on data that contain
these bias, researchers must take active steps to identify and correct for these inequities.[289], [290]
Simulation studies could help quantify the net clinical benefits and provide an accurate cost-
benefits estimate,[345] which will ultimately hinge on the diagnostic performances of the

algorithms.

The strengths of our study include the pre-registration and publication of our study protocol in a
peer-reviewed journal, the inclusion of all computational methods, and rigorous study selection
and data extraction processes conducted by two independent and mutually blinded reviewers. Our
study, however, has limitations. We excluded studies that only used automated IEDs and seizure
detection. Although such methods are reported[103], [104], any increment in accuracy from
computational identification of IEDs and seizure for the diagnosis of epilepsy is intrinsically
limited by their low prevalence in routine EEGs[346]. We considered reports using both
IEDs/seizures and other biomarkers of epilepsy on routine EEG, but did not identify such studies.
Our goal was to study biomarkers that may help circumvent known drawbacks of human expert

assessment and reduce the current reliance on epileptiform discharges. Another limitation is the
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high methodological heterogeneity in the studies which prevented any meta-analyses to be

performed, although this limitation reflects the state of the existing literature on the topic of interest.
A.7.1 Recommendations

Considering these findings, we propose the following recommendations to guide future studies of

computational analysis of EEG for the diagnosis of epilepsy.

Patient selection, reference standard, and study design. Patient selection should be carefully
planned to minimize spectrum effect when assessing diagnostic performances. The test should be
validated on a consecutive sample of patients that represent the population in which the index test
is intended to be used. The reference standard—the diagnosis of epilepsy—should be clearly
defined, applied to all patients, and be based on the ILAE’s practical definition of epilepsy[2].
Enough details should be provided in the reporting of the study to adequately assess the risk of bias
of the methodology, including the start and end of the recruitment period, the number of patients
screened for inclusion, the number excluded and reasons for their exclusion. Contemporary
reporting standards are available to improve the planification and reporting of diagnostic accuracy
studies[166]. Although great effort has been made to publicly share EEG data, current available

databases do not yet satisfy these criteria.

Validation of performances. The presence of data leakage must be evaluated at every step
of the processing pipeline, from the pre-processing of the EEG signal (using methods that rely on
multiple EEGs) to the selection of optimal features and the optimization of the classification
algorithm, regardless of the method used for validating performances. Ideally, external validation
should also be assessed on independent data, both in terms of location (e.g., different hospital) and
time (non-overlapping time periods). Reporting of diagnostic accuracy should be accompanied by

a measure of statistical precision, such as a 95% confidence interval.
9

Code and algorithms. Code should be publicly available to ensure reproducibility of all
analyses. Automated segmentation of EEG should be preferred to manual selection of EEG
segments. In the case of connectivity analyses, there should be rigorous statistical validation of the
network model to increase confidence in the model’s prediction. Interpretability should be at the
forefront of the design of the machine learning model to increase acceptability and monitor for

biases during learning. Transformers, deep CNNs, and graph neural network have revolutionized
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our capacity to model complex data and potentially remove the dependency on data pre-processing;

they should be considered important candidates for the analysis of clinical EEG.

Clinical translation and applicability. = Future studies should provide clear paths towards
clinical translation. They should more intentionally target specific clinical populations (e.g.,
patients evaluated after a first unprovoked seizure, patients with unexplained neurological episodes
suspicious of epilepsy) and directly measure the clinical impact compared to current approaches.
Small, proof-of-concept studies should make way for larger, multicenter evaluations of diagnostic
performances. Integration into clinical workflow, including ease of use, time saved/lost, integration
with available tools, computational requirements, and challenges in applicability, should be

provided.
A.8 Conclusion

After two decades of research, the current literature provides insufficient evidence to assess the
utility of computational analysis of routine EEG to diagnose epilepsy. Studies in this field are at
high risk of bias, specifically for patient selection, the definition of the reference standard, and the
methodology used to validate diagnostic accuracy. Because of its accessibility and information
content, the routine EEG remains an important contender in the search for quantitative markers of
seizure risk. We provide recommendations that could guide the design of future studies to

maximize the potential for clinical translation of this technology.
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A.10 Tables

Table A.1 : Characteristics of included studies
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Study Country Epilepsy type  Total Group Description Age range Sex (F/M) Comorbidities Number Framework
sample of ASM
size
Cao, 2021 UK Generalized 39 Epilepsy 15 PWE 33+12 10/5 None 0-2 Connectivity
No 10 HC and 14 with NEAD  HC: 37+ HC: 6/4 NEAD (14) HC: 0
epilepsy 15 NEAD: NEAD: 0-
NEAD: 33 10/4 4
+13
Guerrero, 2021 Colombia NA 40 Epilepsy 20 PWE (TUH Epilepsy NA NA NA NA DL, Linear
corpus)
No 20 w/o epilepsy who NA NA NA NA
epilepsy  ynderwent a rEEG (TUH
Epilepsy corpus)
Rijnders, 2021 United NA 60 Epilepsy 30 PWE (TUH Epilepsy 52.5 (mean) 19/11 Stroke (3), DM (2), dementia, NA DL,
States corpus) HBV/HCV (NA) connectivity
No 20 w/o epilepsy who 53.7 (mean) 17/13 Stroke (8), DM (3), dementia (2), NA
epilepsy  ynderwent a rEEG (TUH HBV/HCV (2)
Epilepsy corpus)
Zelig, 2021 Israel Focal, 100 Epilepsy 28 admitted to the ED 51.4+20.9 12/16 Headache, brain tumors, IC Unclear Linear
generalized, after first seizure who hemorrhage, MG, depression,
unknown developed epilepsy AD/HD, autism, schizophrenia,
anxiety, substance abuse.
No 42 admitted to ED after Fst sz: 48.5 Fst sz: Similar to cases for fst sz patients; ~ Unclear
epilepsy  fst sz who remained +17.8 15/27 NA for others
seizure-free & 30 patients ~ Others: 55.1  Others: NA
undergoing rEEG for +3.1
neuropsychiatric diseases
Ahmadi, 2020 Belgium NA 10 Epilepsy 5 PWE NA NA NA NA Connectivity,
No 5 with PNES NA NA PNES NA nonlinear
epilepsy
Lin, 2020 Taiwan Focal and 50 Epilepsy 25 PWE 4-17 9/16 NA NA DL
generalized No 25 with Tourette’s 4-15 NA Tourette’s syndrome (92%), NA
epilepsy  syndrome or syncope syncope (8%)
Ouyang, 2020 Taiwan Generalized 63 Epilepsy 23 with GE 5-18 10/13 0 0-1 Linear
epilepsy No 23 age-matched HC 5-18 21/19 NA 0
epilepsy
Prahbu, 2020 Guinea- NA 97 Epilepsy 51 PWE 12-38 21/30 NA NA Connectivity
Bissau No 46 HC 17-33 5/41 NA NA
epilepsy
Song, 2020 China NA 100 Epilepsy 50 PWE 29.59+4.34  25/25 NA NA Nonlinear
No 50 age-matched HC 26.86 £3.69  25/25 NA NA
epilepsy
Uyttenhove, 2020  Belgium NA NA Epilepsy ~ PWE (TUH Epilepsy NA NA NA NA DL
corpus)
No Patients w/o epilepsy who ~ NA NA NA NA
epilepsy  ynderwent a rEEG (TUH

Epilepsy corpus)
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Varatharajah, United Focal 192 Epilepsy 48 with DRFE 18-66 25/23 NA NA Nonlinear
2020 States No 144 HC 20-77 82/121 NA NA
epilepsy (before (before
exclusion) exclusion)
Yagmur, 2020 Turkey NA 108 Epilepsy 88 PWE NA NA NA NA Linear
No 20 HC NA NA NA NA
epilepsy
Panwar, 2019 India Focal, 100 Epilepsy 50 PWE (gen., focal, and 6-69 16/34 NA NA Nonlinear
generalized, LGS)
focal and No 50 HC 6-79 20/30 NA NA
generalized epilepsy
Tripathi, 2018 India NA 20 Epilepsy 10 PWE 3-5 3/7 NA NA Linear
No 10 HC 3-5 3/7 NA NA
epilepsy
V,2018 India Focal 42 Epilepsy 21 with TLE 19-31 0/21 NA 2.66 Linear
(mean)
No 21 HC from existing 24-32 0/21 NA NA
epilepsy  imaging data bank
Bosl, 2017 United Generalized 73 Epilepsy 26 with absence seizures 8.6 (1.7) 13/13 NA NA Nonlinear
States No 47 undergoing rEEG w/o 7.74 (4.3) 15/9 ASD NA
epilepsy epilepsy
Mazzucchi, 2017 Italy Focal 44 Epilepsy 22 with cryptogenic FE 18-76 13/9 NA 0-4 Connectivity
No 22 age-matched HC 20-73 6/16 NA NA
epilepsy
Tibdewal, 2017 India Focal, 60 Epilepsy 30 with DRFE undergoing NA NA NA NA Nonlinear
generalized pre-surgical evaluation
No 30HC NA NA NA NA
epilepsy
Uriguen, 2017 Spain Generalized 30 Epilepsy 20 with IGE 11-70 14/6 NA 0-3 Linear,
No 10 HC 23-60 3/7 NA NA nonlinear
epilepsy
Schmidt, 2016 UK Generalized 68 Epilepsy 30 patients with IGE w/o NA NA NA 0 Connectivity
ASM
No 38 HC NA NA NA NA
epilepsy
Dasgupta, 2015 India Generalized 81 Epilepsy 51 with GE F:15.21 26/25 NA NA Connectivity
(mean), M:
13.46
(mean)
No 30 HC F: 16.87 15/15 NA NA
epilepsy (mean), M:
17.67
(mean)
Pyrzowski, 2015 Poland Focal 78 Epilepsy 51 with TLE or FLE, 18-68 36/15 Mood disorder (4), cardiac 0(4),1 Nonlinear
mostly hospitalized for disease (6), neurosis (2), stroke (12),2
ASM resistance (2), cerebral palsy, cognitive (20), 3
impairment (2), brain tumor (15)
No 13 with vEEG confirmed 19-57 22/5 Mood disorder (2), migraine (2), 0(14),1
epilepsy  PNES & 14 admitted for meningitis, opioid usage disorder (12),2 (1)
headaches
Rajaei, 2015" United Focal, 14 Epilepsy 7 PWE 2-14 Ya NA NA Nonlinear
States generalized No 7HC 8-18 Ya NA NA
epilepsy
16 Epilepsy 9 PWE 4-15 4/5 NA 0 Connectivity
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Sargolzai, 2015 United Focal, No 7HC 8-18 Ya NA 0
(D" States generalized epilepsy
Sargolzai, 2015 United Focal, 18 Epilepsy 11 PWE 8-18 5/6 NA NA Connectivity
2) States generalized No 7HC 2-15 3/4 NA NA
epilepsy
Schmidt, 2014™* UK Generalized 75 Epilepsy 35 with IGE 18-59 21/14 NA 0-4 Connectivity,
No 40 HC 30.7 (mean) 20/20 NA NA linear
epilepsy
Yang, 2014 China NA 20 Epilepsy 10 with ESES 3-9 6/4 NA NA Nonlinear
No 10 HC 3-9 6/4 NA NA
epilepsy
Sargolzaei, 2013*  United Focal, 8 Epilepsy 4 PWE NA 2/2 NA NA connectivity
States generalized No 4 HC NA 2/2 NA NA
epilepsy
Cabrerizo, 2012 United Focal, 17 Epilepsy 9 PWE undergoing rEEG 1-15 3/6 NA 0 Linear
States generalized No 8 patients w/o epilepsy 8-18 3/5 NA 0
epilepsy  undergoing rEEG
Chaovalitwongse,  United NA 15 Epilepsy 10 PWE undergoing NA NA NA NA Linear,
2011 States rEEG connectivity
No 5 patients undergoing NA NA NA NA
epilepsy EEG
Douw, 2010 Netherlands  Focal, 114 Epilepsy 57 PWE who underwent 50 (SD: 18) 29/28 White matter abnormalities, brain 0-1 Connectivity,
generalized routine EEG after a first tumor, cortical atrophy, arachnoid linear
seizure cyst
No 57 age-matched patients 54 (17) 29/28 Stress, syncope, TIA, brain 0
epilepsy /o epilepsy who contusion, neuropathy, sleeping
underwent routine EEG disorders, hypoglycemia,
after a fst sz migraine, drug abuse, motor

neuron disease, orthostatic
hypotension, white matter

abnormalities, brain tumor,
cortical atrophy.

Luo, 2010 China NA 34 Epilepsy 21 PWE NA NA NA NA Linear,
No 13 HC NA NA NA NA nonlinear
epilepsy

Bao, 2009 China NA 12 Epilepsy 6 PWE NA NA NA NA Linear,
No 6 HC NA NA NA NA nonlinear
epilepsy

Fan, 2009™ United Focal 10 Epilepsy 5 DRTLE NA NA NA NA Connectivity

States No SHC NA NA NA NA
epilepsy

Cassar, 2008 Greece Focal, 40 Epilepsy 20 PWE 9-13 11/9 None NA Linear

generalized No 20 age- and sex-matched 9-13 11/9 None NA
epilepsy HC

Poulos, 2003 Greece NA 86 Epilepsy 42 PWE NA NA NA NA Linear
No 44 with non-epileptic loss ~ NA NA NA NA
epilepsy  of consciousness

Ruseckaite, 2001 Lithuania Focal 40 Epilepsy PWE NA NA NA NA Linear
No HC and head trauma NA NA NA NA

epilepsy  patients

o

*Same patients as ref.[90] *"Same patients as ref.[94] ***Same patients as ref.[88] ASM: antiseizure medication; Db: diabetes; DL: deep learning; DR: drug-resistant; ESES: electrical status epilepticus during slow-
wave sleep; FE: focal epilepsy, FLE: frontal lobe epilepsy; GE: generalized epilepsy; HBV: hepatitis B virus; HC: healthy controls; HCV: hepatitis C virus; IED: interictal epileptiform discharge; IGE: idiopathic
generalized epilepsy; NA: Not available; NEAD: non-epileptic attacks disorder; PNES: psychogenic non-epileptic seizures; PWE: patients with epilepsy; tEEG: routine electroencephalography; TLE: temporal
lobe epilepsy; VEEG: video-electroencephalography.
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Study EEG Electrodes  Sampling Automated Frequency  Manual Criteria for Segment  Overlapping Montage Channel Criteria for
duration ™) freq. (Hz) artifact bands segment  segment duration  segments selection channel
detection selection  selection (s) selection

Cao, 2021 72s for HC, 21 500 None 0.79-4, 4- Yes No interictal 4 No Bipolar Manual Removed Fpl

48s for EG 8, 8-15,15- abnormalities and Fp2 due
and NEAD 32,>32 and relatively to high levels
artifact-free of eye blink
artifacts
Guerrero, 2021 20-30 min 21 250, 256, NA NA NA NA NA NA Bipolar None -
400, 512 (longitudinal)
Hz
Rijnders, 2021 20 min 21 250 ICA (removed 1-4,5-7,8-  Yes Calmest 50 No Referential None -
component with 13, 14-29, segment (avg)
highest 30-55
correlation with
Fpl) and trend
line removal
Zelig, 2021 20 min 19 512 NA 1-4,4-8,8- No Entire - NA None -
12, 12-20, recording
20-30, 30-
40
Ahmadi, 2020 3h 27 256 None 1-4,4-8,9-  Yes IED-free, 16 No Referential None -
13, 13-30, least amount (G2)
30-40 of noise or
artifacts
Lin, 2020 20 19 256 None 0.5-60 Yes No eye 2 0%, 50%, Referential None -
movement or 90%, 95%, (Cz)
muscle
artifacts, no
segments
from IPS nor
HV
Ouyang, 2020 20 min 19 256 None 0.5-60 Yes Artifact-free 5 No Referential None -
(Cz)

Prahbu, 2020 5 14 128 NA NA NA NA NA NA NA Automated  Best
performing
subset in
classification
task

Song, 2020 2 min 16 512 ICA (NA) 1-4,4-8,8-  Yes, No obvious 20 No NA None -

13, 13-30 signal loss
Uyttenhove, 2020 NA 19 256 None 0.5-128 No 10 No Referential None -
(avg)
Varatharajah, 16 min 62 2500 Hz ICA (manual 7.5-10.5 Yes Controls: 10 No Bipolar Manual Artefactual
2020 (controls), (controls), (controls), selection) 10.5-13.5 segments with channels (4)
NA (cases) 31 (cases) 256 Hz artifacts.
(cases) Cases:

segments with
eye closure
and no




161

epileptiform
activity
Yagmur, 2020 18 min 16 200 ICA (NA) 0.1-500 NA NA NA NA NA None -
Panwar, 2019 S min 17 250, 256 None 0.5-15 Unclear Unclear 1 Yes Referential None
(avg)
Tripathi, 2018 30 19 NA NA 1-4,4-8,8- NA NA NA Referential Manual NA
13, 13-30
V, 2018 NA 32 5000 Average 2-20 Yes First 120s 120 No Referential None
subtraction artifact-free (avg)
method segment
considering R
peaks as )
reference[347]
and ICA (maual
selection)

Bosl, 2017 30s 19 200 Hz None and None, 0.1- Yes, Visual review 30, 12 No, No Average, None and 19 channels
(Hospital (Hospital NetStation 100 Unclear to select 30-s Average manual are selected
subjects) subjects) software artifact samples corresponding
128 500 Hz detection tool containing no to the
(Laboratory (Laboratory ~ (ASD group, spikes or electrode
subjects) subjects) manual evidence of locations for

selection of epileptiform hospital
artifactual activity and patients
components) with no
artifacts,
Exclude
segments with
eyes saccades
and blinks.
(automatically
detected
artifacts)
Mazzucchi, 2017 15 min 19 128 None 1-4,5-7,8-  Yes Absence of 2s NA NA None
13, 14-30, artifacts,
31-60 absence of )
IEDs
Tibdewal, 2017 12-15 min 19 114 NA NA NA NA 8 NA NA Manual Removed O1-
02 (corrupted
data during
acquisition)

Uriguen, 2017 NA 32 200 Kurtosis 0.5-70 Yes, No seizure 10.24 No, Referential None -

threshold or activity, no (mastoids)
statistical epileptiform

outliers patterns

(threshold:

3SD)

Schmidt, 2016 NA 19 256 None 6-9, 8-13 Yes Artifact free 20 No NA None -

and GSW free

Dasgupta, 2015 20-30 min 16 NA ICA + neural 4-60 Yes Noise-free NA NA NA None -

network
(underspecified)
with manual
selection of ICs
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Pyrzowski, 2015 20 min 19 250 None 4-13 NA NA 1-120 NA Referential None -
(19.5 -
22.1)
Rajaei, 2015 NA 19 200, 512 None 0.5-70 Yes Free of 10 No Referential None -
artifacts and
ictal events
Sargolzai, 2015 NA 19 200, 500, ICA[348] (NA) NA Yes No seizures 9-90 NA Referential None -
@ 512 and no (avg)
artifacts
Sargolzai, 2015 NA 19 200, 500, None, NA, Yes Artifact-free 9 50%, Referential None -
?) 512 and seizure-
free
Schmidt, 2014 50 19 256 None 1-3,3-6,6-  Yes Artifact-free, 20 No Referential None -
9, 10-14, eyes closed
15-30, 30-
70
Yang, 2014 NA 16 500 None 0.5-35 Yes No artifacts 8 NA NA None -
Sargolzaei, 2013 NA 19 NA None 0.1-70 NA NA NA NA Referential None -
Cabrerizo, 2012 20-40 min 19 500 and None <4, 4-8, 8- Yes Free of 1 No Referential No -
512 13, 13-20, artifacts, free
20-36, 36- of seizures,
44 eyes closed
Chaovalitwongse,  13-45 min 14-18 200 and None NA No Random 60, 120, NA Bipolar, Manual Channels that
2011 250 sampling 180, 240 were
consistent
across EEGs
Douw, 2010 30 min 21 500 None 0.5-4, 4-8, Yes Artifact-free 8 No Referential Manual Fpl-2 and
8-10, 10- segments average Al-2
13, 13-30,
30-45, 55-
80
Luo, 2010 NA NA NA NA NA NA NA NA NA NA NA -
Bao, 2009 NA 22 200 None 2-34 (1Hz No 20.48, NA Referential, None -
incr.), 2-34 40.96 NA
in (2Hz
incr.), 2-
34.5 in
(2.5Hz
incr.)
Fan, 2009 20-30 min 19 250 UNICA[349] NA No Random 30 NA Referential None -
sampling
Cassar, 2008 NA 30 400 None 0-4,4-8,8-  Yes Free of 10.24 No Referential None -
13, 13-30, technical and (Al +A2)
30-45, 45- biogenic
90 artifacts
Poulos, 2003 20s 2 200 None 5-70 Yes No 20 Yes 02-Cz Manual Channel with
epileptiform “best” PDR
discharges
Ruseckaite, 2001 45s 16 NA NA NA NA NA 3 No NA None -

EG: Epilepsy group; HC: Healthy controls; ICA: Independent component analysis; NEAD: Non-epileptic attack disorder; PDR: Posterior dominant rhythm.
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Table A.3 : Biomarkers assessed in included studies by computational framework

Framework  Feature Studies
Linear Power spectral density [701, [72], [73], [74],
[75], [303]
Peak alpha frequency [88]
Mode of frequency spectrum [307]
Prediction error of autoregressive model [184]
Auto-correlation coefficient or standard deviation [79], [308]
Hjorth parameters (activity, mobility, complexity) [71], [75]
Statistical features (average, variance, standard deviation, skewness, kurtosis, [841], [94], [304]
Euclidean distance, T-Statistical distance, interquartile range, mutual information)
Paroxysmal slow wave events (rate per min) [77]
Nonlinear Shannon entropy [78], [79]
Spectral entropy [78], [80]
Approximate entropy [79], [81]
Permutation entropy [82]
Multiscale entropy [82], [83]
Fuzzy entropy [84]
Renyi entropy [78]
Fractal dimension [75], [78]
Hurst indices [79]
Zero-crossings interval analysis [85]
Recurrent quantitative analysis [83]
Characteristic response analysis [305]
Bispectrum magnitude (average and variance) [84]
Periodicity [79]
Kolmogorov complexity [81]
Connectivity  Connectivity measures
Mutual information [86]
Coherence [86]
Lagged coherence [96]
Phase-locking value [86], [88]
Pearson’s correlation coefficient [86], [89]
Euclidean distance [94], [95]
Cosine similarity [90], [91], [92], [306]
Horizontal visibility graph [78]
Synchronization likelihood [69]
Granger causality [87]
Phase-space recurrence [306]
Tucker decomposition [97]
Transfer entropy [97]
Connectivity features
Statistical (maximum, mean) 86]

Average degree
Closeness or betweenness centrality
Density

Energy
Clustering coefficient

Network efficiency
Rich club coefficient

Small world index
S-metric
Characteristic path length
Average vertex eccentricity
Graph radius
Largest eigenvalue

Other connectivity-based features

[

[

[

%

[89], [90], [91], [92]
(78], [89], [90], [91],
[92], [96], [97]

[89], [97]

[89], [90], [91], [92],
[306]

[89]

[90], [91], [92], [306]
[92], [96]

[92]

[92], [306]

(78]
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Dynamical connectivity analysis (local and critical coupling constant, global order ~ [88], [93]
parameter)
Microstates analysis (occurrence, duration, time coverage) [78], [182]
Deep No feature extraction [74], [98]
learning Prior feature extraction [73], [87]

Table A.4: Performance of computational EEG biomarkers for the diagnosis of epilepsy

Study Classifier; feature(s) Sens Spec Acc  Prec (%) Rec F1 AUROC Data Statistical
(%) (%) (%) (%) (%) leakage testing
Cao, 2021 kNN; CohMean beta, eyes closed (F4C4-FzCz): 97.22 0.983 Yes No
Epi vs HC
kNN; CohMean beta, eye closed, (F3C3-FzCz): 0.969 Yes No
Epi vs HC
kNN; CohMean beta, eye closed, (CzPz-C4P4): 0.888 Yes No
Epi vs HC
kNN; CohMean beta, eye closed, (C3Cz-P3Pz): 0.929 Yes No
Epi vs HC
kNN; MI delta, eye open, (T4T6-P4Pz): Epi vs 74.44 Yes No
NEAD
kNN; PLV gamma, eye open (T3C3-CzPz): Epi 74.24 Yes No
vs NEAD
Guerrero, 2021 LR; relative band power (best model) 733 739 68 70.8 0.71 Yes No
ANN; relative band power (best model) 86.1 81 84 824 0.95 NA No
SVM,; relative band power (best model) 77.3 77.5 743 75.8 0.78 NA No
CNN; relative band power (best model) 61.5 62.2 58.7 604 0.60 NA No
Rijnders, 2021 CNN; scaled GC matrix, one model per 83 87 85 0.85 Yes No
electrode combination, voting
CNN; scaled GC matrix, FP1, F3 and P3 80 77 78 0.79 Yes No
electrodes
Zelig, 2021 ROC; rate of PSWE 0.72 Yes No
ROC; rate of PSWE (only early (<72h) EEG) 0.82 Yes No
Ahmadi, 2020* Gradient Boost; microstates-derived features 75.4 792 754 Yes No
SVM (Radial basis function); linear, nonlinear 59.2 69.06 59.2 No No
and connectivity, alpha
SVM (Linear); linear, nonlinear and 63.8 68.25 63.8 No No
connectivity, beta
RandomForest; linear, nonlinear and 58.8 68.43 58.8 No No
connectivity, delta
SVM (Radial basis function); linear, nonlinear 534 64.92 534 No No
and connectivity, theta
SVM (Linear); linear, nonlinear and 55.4 70.01 55.4 No No
connectivity, gamma
Lin, 2020 CNN; raw signal (0% overlap) 48 82 65 57.83 0.6496 No No
CNN; raw signal (50% overlap) 56 82 69 64.36 0.7010 No No
CNN; raw signal (90% overlap) 62 90 76 72.09 0.7880 No No
CNN; raw signal (95% overlap) 70 90 80 77.77 0.8188 No No
Ouyang, 2020 XGBoost; autoregressive model errors 89.98 81.81 85.17 0.8754 Yes No
L1-Reg. LR; autoregressive model errors 90.47 90.47 84.83 0.8632 Yes No
RDA; autoregressive model errors 65.41 86.11 76 0.8908 Yes No
Prahbu, 2020 MLP; KC and ApEn for 14 electrodes 95.0 98.0 96.5 98.1 0.964 Yes No
MLP; KC and ApEn for 6 electrodes 99 94.5 97 95.5 0.967 Yes No
Song, 2020 SVM with medium Gaussian kernel; 86.60 90.0 88.3 Yes No
connectivity features
SVM with linear kernel; connectivity features 73.3 70.0 71.70 Yes No
SVM fine Gaussian kernel; connectivity features 60 933 76.7 Yes No
SVM with coarse Gaussian kernel; connectivity ~ 96.7 43.3 70 Yes No
features
Uyttenhove, 2020 t-VGG; raw signal 75.89 78.57 76.5 75.89 No Yes'
t-VGG GAP; raw signal 81.56 80.95 81.42 81.56 No Yes'
SVM; band power 75.18 71.43 74.32 75.18 No Yest
RandomForest; band power 92.91 52.38 83.61 92.91 No Yes'
EEGNet; raw signal 75.89 73.81 75.41 75.89 No Yest
Varatharajah, Naive Bayes with Gaussian prior; band power 046 0.75 0.57 0.79 No No
2020 SVM (radial basis function); band power 0.89 0.57 0.56 0.66 No No
LASSO; band power 0.89 0.56 0.55 0.76 No No
GNB (FT channels); band power 0.69 0.73 0.7 0.81 No No
SVM-RBF (FT channels); band power 0.889 0.55 0.53 0.73 No No
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LASSO (FT channels); band power 038 0.5 043 0.82 No No
Yagmur, 2020 PCA-MLP; statistical features 96 9% 97 Yes No
LDA-MLP; statistical features 96 98 95 Yes No
Forward selection-MLP; statistical features 85 94 88 Yes No
Backward selection-MLP; statistical features 94 95 96 Yes No
Panwar, 2019 ROC classifier; characteristic method analysis 0.87 Yes Yes
Tripathi, 2018 Normalised band power 90 NA No
V,2018 LDA; microstates features 85.7 66.6 76.1 0.69 0.85 0.76 0.7 Yes No
Logistic regression; microstates features 80.9 57.1 69.0 0.65 0.8 0.72 0.67 Yes No
Bosl, 2017 Linear SVM with RFE; nonlinear features (Epi 100 100 100 Yes No
vs HC+ASD)
SVM; nonlinear features (Epi vs ASD) 7277 75 Yes No
Mazzucchi, 2017 ROC classifier, path length pre- vs. per-HV 41 100 70 0.71 Yes Yes
Tibdewal, 2017 SVM; BMA-BMV 96.96 100 97.05 Yes No
SVM; IQR-MI 98.82 100 99.41 Yes No
SVM; MD-MI 98.82 100 99.41 Yes No
SVM; MD-IQR 97.65 100 98.82 Yes No
Uriguen, 2017 ROC; spectral entropy, all channels 85 0.84 Yes No
ROC; spectral entropy, optimal channels 86 76 81 Yes No
Schmidt, 2016 Peak alpha frequency 0 100 off No No
Connectivity based on PLV (mean degree) 33 100 qoff No No
Seizure-generating capability based on phase 56.7 100 ¢1.77T No No
oscillator model
Dasgupta, 2015 Ridge regression with mRMR; connectivity 79.01 0.87 Yes No
features
Pyrzowski, 2015 ROC, alpha score from zero-crossings analysis 0.81 Yes No
ROC, Shannon entropy from zero-crossings 0.76 No No
analysis
ROC, min-entropy from zero-crossings analysis 0.71 No No
Rajaei, 2015 KNN; connectivity features 85.7 100 92.8 Yes No
Sargolzai, 2015 (1) KNN; connectivity features 88.8 857 875 Yes No
KNN with feature selection; connectivity 96.87 Yes No
features
Sargolzai, 2015 (2) GMM with PCA; connectivity features 81.8 100 88.9 Yes No
Schmidt, 2014 ROC; theta band critical coupling constant 76.9 65.7 69.2 NA Yes No
ROC; low-alpha band global order parameter for 71.4 74.4 NA 0.78 Yes No
Fpl
Yang, 2014 ANFIS; PermEn 89 Yes No
ANFIS; PermEn 82 Yes No
Sargolzaei, 2013 KNN; connectivity features 75 100 Yes Yes
Cabrerizo, 2012  ANN; linear features 96.42 95.50 96.03 Yes No
SVM; linear features 97.06 96.63 96.79 Yes No
Chaovalitwongse, NSVM (Quadratic) dataset I; connectivity 96 100 98 No No
2011 NSVM (Quadratic) dataset II; connectivity 100 No No
A-SFM (Euclidean), dataset I; connectivity 40 No No
A-SFM (T-statistics), dataset II; connectivity 0 No No
V-SFM (Euclidean), dataset I; connectivity 100 No No
V-SFM (T-statistics), dataset II; connectivity 0 No No
Douw, 2010 LR; theta band SL 53 70 61 Yes No
LR; theta band power 58 77 NA Yes No
LR; theta band SL (EEG with no IEDs) 62 76 69 Yes No
Luo, 2010 ANN, top three features; linear and nonlinear 922 91.7 0.883 Yes No
features
ANN, all features; linear and nonlinear features 0.908 Yes No
Bao, 2009 Probabilistic NN, voting across channels for 83.33 84.69 84.27 Yes No
each segment, segment length 40.96s, cut-off
frequency NA, band-pass filt. NA; linear and
nonlinear features
Probabilistic NN, voting across channels for 94.07 Yes No
each segment, segment length 40.96s, cut-off
frequency 56Hz, band-pass filt. 2-32 in 1Hz
increments; linear and non-linear features
Fan, 2009 C-SVM with gaussian kernel; connectivity 94.8 Yes No
C-SVM with linear kernel; connectivity 50.6 Yes No
SVM with gaussian kernel; connectivity 69.4 Yes No
SVM with linear kernel; connectivity 53.8 Yes No
Cassar, 2008 ARMA model with one band (unspecified) and 100 65 85 Yes No
one electrode (unspecified)
Poulos, 2003 Least-squares; auto-correlation coefficient 0.83 0.90 Yes No
Ruseckaite, 2001  Euclid classifier, mode of frequency spectrum 70 No No

(background segment)

*Reported from Table 3.[78] +Only for between test comparisons. T Calculated from study. Acc: Accuracy; ANFIS: Adaptative neuro-fuzzy inference

system; ANN: Artificial neural network; ARMA: Autoregressive moving average; ASD: Autism spectrum disorder; BM(A/V): Bispectrum magnitude
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(average/variance); CNN: Convolutional neural network; CohMean: Mean of coherence; Epi: Epilepsy; Fi: F1-score; GC: Granger causality; GMM:
Gaussian mixture model; GNB: Gaussian Naive Bayes; HC: Healthy controls; HV: Hyperventilation; IQR: Interquartile range; KC: Kolmogorov
complexity; KNN: k-nearest-neighbor; LDA: Linear discriminant analysis; LR: Logistic regression; MD: Mahalanobis distance; MI: Mutual information;
MLP: Multilayer perceptron; mRMR: Maximum relevance minimum redundancy; NEAD: Non-epileptic attack disorder; PCA: Principal component
analysis; PLV: Phase-locking value; Prec: Precision; PSWE: Paroxystic slow wave events; RDA: Regularized discriminant analysis; Rec: Recall; RFE:
Recursive feature elimination; ROC: Receiver operating characteristic curve; Sens: Sensitivity; Spec: Specificity; SFM: Support feature machine; SVM:
Support vector machine; t-VGG: tiny-VGG.
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Glossary for technical terms related to EEG processing and machine learning

Terms

Definitions

Linear markers

Markers derived from linear analysis, usually extracted with time-frequency decompositions like the
Fourier or wavelet transform. These methods assume independent and stationary oscillating processes.
Even though the EEG signal is highly non-linear and non-stationary[22], [350], this simple representation
is closely tied to the way neurologists visually inspect EEG recordings.

Non-linear Markers derived from the analysis of non-linear dynamics, either summarized using higher-order features

markers such as entropy and fractal dimensions or analyzed with dynamical models like in recurrent quantitative
analysis[351].

Connectivity Markers derived from the analysis of the connectivity between channels (sensor-based) or brain sources

markers (source-based) based on a connectivity measure that represents the strength of pairwise connections
between sensors or sources, respectively. Connectivity markers are higher-order features that characterize
the network model.

Microstates In this approach, maps of global field power are extracted at distinct timepoints in the EEG[352]. Using a

analysis clustering algorithm, the most characteristic maps for each group are identified—the EEG microstates—on
which new EEGs are back-fitted. Features are extracted from time series of microstates, including the
duration and coverage (fraction of time that the microstate is active).

Independent Blind source separation algorithm that attempts to separate the signal into statistically independent

component components[348]. The estimated sources are visually inspected to identify those that correspond to

analysis artifacts (e.g., blinking, heart rhythms), which are removed before reconstructing the signal with the

remaining components. A machine-learning model can also be trained to automatically identify artifactual
components[323].

Deep learning

Type of machine learning where models are composed of layers of nonlinear functions that progressively
abstract the representation of the raw input data, enabling to capture arbitrarily complex functions[353].
For EEG, the main advantage of deep learning is that the model learns its own representation of the input
data, without the need of preprocessing and feature extraction.

Support vector
machine (SVM)

Soft margin classifier that finds the hyperplane which maximizes the distance between it and the closest
observation of each class (called the support vectors). With kernels, the SVM can be optimized on non-
linear feature space in a computationally efficient way.

Cross-validation
(CV)

Method for validation of predictive performances of a machine-learning model. K-fold CV: in this
approach, the dataset is split into K-folds. For K iterations, the machine learning algorithm is optimised on
all but one folds, and its predictions are evaluated on the remaining fold. Repeated or nested-CV: the CV
is either repeated with different partitions of the data or nested into a second CV loop, both leading to more
robust performance estimates[163].
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A.11 Figures

Figure A.1 : PRISMA flowchart of the study selection, screening, and assessment.



169

Figure A.2 : Sample size of included studies. A: Number of individuals included in the
assessment of computational biomarkers per study. B: Sample size of included studies by year of
publication, with a moving average and 95% standard error overlay. Studies with unclear number

of participants are not shown.
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Figure A.3: Summary of the risk of bias for each of the PRISMA domains.
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Figure A.4 : Diagnostic performance of studies with no data leakage; all studies reported either
Accuracy, AUROC, or both. Each point denotes an individual test reported in the studies (some
studies reporting more than one test). A: Performance as a function of the class of feature
extracted from the EEG signal. B: Performance as a function of the machine learning model. The
size of the points represents sample size. AUROC: Area under the receiver-operating-
characteristic curve; CNN: Convolutional neural network; GNB: Gaussian Naive Bayes; KNN:
K-Nearest-neighbor; LR: Logistic regression; PSD: Power spectral density; RF: Random Forest;
Uni+conn: Combination of univariate and connectivity features.
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Figure A.5: Examples of common sources of data leakage in the included studies. The circles represent individual observations (e.g., a
single EEG recording) and rectangles are the feature vectors for that single observation. Elements in red, blue, and green are in the
training set, and elements in purple and orange, the testing set. A: Typical machine learning pipeline without data leakage. First, the
individuals (circles) are split into a training and a testing set. Then, features are extracted from the training set; the optimized feature
extraction algorithm is then applied to the testing set. Third, a feature selection algorithm is applied to the training data, and the
optimal features are selected on the testing data. Fourth, the machine learning hyperparameters are tuned on the training data, and the
best model is evaluated on the testing set. B: Data leakage during feature extraction, where the feature extraction algorithm is
optimized on both training and testing data (before the train/test split). C: Data leakage during feature selection, where the optimal
features are selected on both training and testing data. D: Data leakage during model evaluation, where the hyperparameters are tuned
on both training and testing data. E: Data leakage during train/test split, where samples from the same individuals (e.g., different
epochs of the same EEG) are present in both training and testing data.





