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RÉSUMÉ

L’industrie minière actuelle se confronte à des défis croissants pour optimiser l’exploration
et l’exploitation des ressources géologiques, notamment en raison de la complexité des for-
mations rocheuses et de la variabilité des données de forage, influencée par des facteurs tels
que l’usure du trépan, les conditions opératoires et les vibrations. Cette thèse propose des
solutions innovantes pour la délimitation des massifs rocheux et l’interpolation spatiale en
s’appuyant sur les données de mesures prises durant le forage de production, appelé en anglais
‘measurements while drilling‘ (MWD). Structurée autour de trois articles de recherche, cette
thèse explore la valorisation de ces données par l’application des techniques d’apprentissage
automatique et d’interpolation avancées.

Le premier article vise à estimer un indicateur de l’énergie nécessaire pour la fragmentation
de la roche, appelé en anglais le blastability index (BI) pour des régions inexplorées. Pour ce
faire, une méthode d’interpolation spatiale basée sur la rétropropagation a été développée.
Cette approche intègre des techniques de paramétrisation pour tenir compte des propriétés
spatiales, notamment l’anisotropie géométrique. Elle aboutit au modèle Gradient-Based In-
verse Distance Weighting with Leave-Hole-Out Cross-Validation (GBM-IDW-LHOCV), qui
se révèle robuste face aux anomalies géologiques et dont les performances sont comparables
à celles du modèle processus Gaussien imbriqué (GP-nested).

Le deuxième article se concentre sur la définition de zones spatiales continues en apprenant
la structure sous-jacente des données MWD, spécifiquement liée à la dureté des roches, par
l’utilisation de l’empilement des autoencodeurs avec le modèle GBM-IDW-LHOCV développé
dans le premier article. L’objectif est d’extraire des caractéristiques latentes, appelées pseudo-
BI, qui représentent efficacement la dureté des roches. Le modèle de clustering résultant a
démontré sa capacité à améliorer la précision des domaines spatiaux en atténuant les effets
des valeurs atypiques et en assurant une meilleure contiguïté spatiale des zones géologiques.

Le troisième article présente un modèle d’interpolation multicouche (ML-IDW), inspiré des
réseaux de neurones, et qui permet une ajustabilité selon la complexité des données. L’objectif
de ce modèle est d’optimiser l’efficacité d’apprentissage tout en intégrant les structures de
dépendance spatiale inhérentes aux données.

Ensemble, ces travaux montrent comment l’application des techniques d’apprentissage auto-
matique et d’interpolation avancées peut offrir des solutions prometteuses pour l’analyse des
données recueillies par les capteurs installés sur les équipements de forage de production afin
d’améliorer la connaissance du massif rocheux, tout en soulevant des défis liés à la qualité



vi

des données et à la complexité computationnelle. Des perspectives pour des travaux futurs
incluent l’exploration d’approches de transfert d’apprentissage et l’intégration d’architectures
hybrides pour améliorer l’évolutivité et la robustesse des solutions proposées.
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ABSTRACT

The current mining industry faces increasing challenges in optimizing the exploration and
exploitation of geological resources, primarily due to the complexity of rock formations and
data variability. This thesis proposes innovative solutions for rock mass domaining and spatial
interpolation, leveraging Measurements While Drilling (MWD) data. Structured around
three research articles, this study explores the application of machine learning techniques
and advanced interpolation methods.

The first article aims to estimate the Blastability Index (BI) for unexplored regions by de-
veloping a spatial interpolation method based on backpropagation, incorporating param-
eterization techniques to account for spatial properties, particularly geometric anisotropy.
This approach results in the Gradient-Based Inverse Distance Weighting with Leave-Hole-
Out Cross-Validation model (GBM-IDW-LHOCV), which proves robust against geological
anomalies and exhibits performance comparable to that of the Nested Gaussian Process
model (GP-nested).

The second article focuses on defining continuous spatial zones by learning the underlying
structure of MWD data, specifically related to rock hardness, through the use of stacked
autoencoders with the GBM-IDW-LHOCV model developed in the first article. The objective
is to extract latent features, termed pseudo-BI, that effectively represent rock hardness. The
resulting clustering model has demonstrated its ability to enhance the accuracy of spatial
domains by mitigating the effects of outlier values and ensuring better spatial contiguity of
geological zones.

The third article presents the Multilayer Interpolation (ML-IDW) model, inspired by neural
networks, allowing for customization according to data complexity. The objective of this
model is to optimize learning efficiency while integrating the inherent spatial dependency
structures of data.

Together, these studies demonstrate how the application of machine learning techniques
and advanced interpolation can offer promising solutions for analyzing data collected by
sensors installed on production drilling equipment to enhance the understanding of the rock
mass. However, they also highlight challenges related to data quality and computational
complexity. Future research directions include exploring transfer learning approaches and
integrating hybrid architectures to improve the scalability and robustness of the proposed
solutions.
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CHAPITRE 1 INTRODUCTION

1.1 Domaine de recherche

Depuis plus d’une dizaine d’années, de nouvelles technologies permettent la captation, la
gestion et la valorisation des données d’opérations minières en temps réel. Entre autres, les
équipements miniers (foreuses, camions, pelles, etc.) sont maintenant munis de plusieurs cap-
teurs qui permettent de prendre des mesures sur différentes caractéristiques opérationnelles.
Ces avancées offrent des ressources qui peuvent être utilisées pour transformer les activités
d’extraction traditionnelles en interventions plus autonomes.

La notion de l’automatisation englobe plusieurs fonctionnalités clés. La première consiste
à calibrer en temps réel l’opération de forage. La seconde consiste à prédire le comporte-
ment des foreuses en fonction des variations des conditions du site. Finalement, la troisième
fonctionnalité permettra de mettre à jour régulièrement le modèle géologique grâce à des
analyses géostatistiques sophistiquées. En outre, une valorisation de ces données permettra
d’optimiser les patrons de forage et de dynamitage pour obtenir une meilleure fragmentation
et pour concevoir et coordonner les trajets des foreuses afin d’améliorer l’efficacité de l’opéra-
tion de forage. Parmi ces aspects, l’intégration des données de forage joue un rôle important,
permettant une compréhension des caractéristiques locales du gisement.

1.2 Contexte

Le développement de capteurs pouvant être attachés à la foreuse a rendu possible l’acqui-
sition des mesures pendant le forage (Measurements While Drilling-MWD). Ces données
capturent divers paramètres mécaniques du processus de forage, tels que le taux de pénétra-
tion (Rate Of Penetration - ROP), qui mesure la vitesse à laquelle le trépan avance dans la
roche (généralement en mètres par minute), la force sur le trépan (Weight On Bit - WOB),
représentant la force axiale appliquée au trépan (mesurée en kilonewtons), le nombre de rota-
tions par minute (Rotations Per Minute - RPM) du trépan, et le couple (Torque - TRQ), qui
quantifie la force de rotation exercée sur la tige de forage (mesurée en kilonewton-mètres).
La disponibilité de ces données permet leur analyse en temps réel pendant le processus de
forage. Ces mesures sont enregistrées à chaque niveau de profondeur au fur et à mesure du
forage. Elles offrent ainsi une image détaillée de la performance des machines tout au long
du processus. Exploiter efficacement ces informations contribue à améliorer l’efficacité des
opérations minières et permet des prises de décision plus rapides et mieux informées.
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Cette recherche vise à développer de nouvelles méthodes pour l’analyse et la prédiction des
données issues de l’exploitation minière à ciel ouvert, en se concentrant particulièrement sur
les données MWD.

Une utilisation courante de ces données consiste à calculer l’énergie spécifique de forage
(Specific Energy of Drilling - SED), qui quantifie l’énergie nécessaire pour pénétrer la roche.
Cette énergie est souvent normalisée pour obtenir un indice de fragmentation connu en anglais
sous le terme Blastability Index (BI), un indicateur clé de la dureté des roches. L’idée est
simple : plus l’énergie nécessaire pour forer est élevée, plus la roche est dure. Cependant,
étant donné que la dureté des roches est une propriété géologique intrinsèque, les données
MWD peuvent présenter des corrélations spatiales importantes qui doivent être examinées
de près.

Toutefois, le BI, défini comme une fonction explicite des variables MWD, peut être for-
tement influencé par des facteurs externes non géologiques (réglages de l’opérateur sur le
WOB/RPM, mode de forage, pression d’air, usure du trépan, vibrations/bruit, fréquence
d’échantillonnage). Ces effets introduisent de la variabilité et des biais (valeurs non directe-
ment comparables entre engins, motifs ou campagnes), si bien que le BI ne reflète pas toujours
fidèlement la dureté ou la lithologie ; de plus, il ne tient pas compte explicitement de la dé-
pendance spatiale ni de l’incertitude. Pour surmonter ces défis, des approches plus avancées,
telles que l’apprentissage profond, sont nécessaires pour révéler les structures cachées au sein
de ces données. C’est dans ce cadre que des méthodes d’interpolation spatiale compatibles
avec les réseaux neuronaux sont proposées et étudiées dans notre recherche. Ces techniques
visent à préserver les dépendances spatiales tout en offrant une grande flexibilité en termes
de complexité et de modélisation, répondant ainsi aux besoins spécifiques des opérations
minières.

1.3 Éléments de la problématique

Le BI est crucial pour les opérations ultérieures, comme le dynamitage, car il permet de déter-
miner la quantité d’explosifs nécessaire pour obtenir la fragmentation souhaitée. Cependant,
une fois qu’un trou est foré, il doit être dynamité, laissant peu de marge pour ajuster l’énergie
utilisée. Cette contrainte souligne la nécessité d’estimer le BI avant le début du forage. Avec
de telles estimations, les mineurs peuvent prendre des décisions éclairées sur les prochaines
zones à cibler, permettant ainsi un meilleur contrôle de la consommation d’énergie.

Cette problématique est abordée en estimant, avant forage, le BI dans les zones non forées —
objet du premier projet (Chapitre 4). La difficulté tient à l’absence de mesures MWD directes
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dans ces zones, malgré leur proximité avec des forages déjà réalisés dans la même région,
ainsi qu’à l’incertitude associée aux données disponibles. Dans ce contexte, nous proposons
un cadre d’estimation préalable du BI qui mobilise l’information issue des forages existants et
les relations spatiales observées, afin d’éclairer la planification des opérations tout en tenant
compte des incertitudes.

Une approche de base pourrait consister à utiliser une moyenne pondérée des observations
précédentes de BI. Cependant, étant donné que le BI est lié à la dureté des roches, une
propriété géologique présentant une continuité spatiale, cette corrélation doit être prise en
compte dans le processus d’estimation. Ce sujet est exploré en détail dans notre premier
projet, où nous présentons des approches pour aborder ce problème de manière constructive.

Définir des zones pour le dynamitage après le forage, en se basant sur le BI comme indicateur
de dureté, nécessite que le regroupement des données présente une certaine contiguïté spatiale,
de sorte que chaque groupe puisse être considéré comme un domaine spatial. Toutefois, la
variabilité du BI, influencée par des facteurs externes tels que les réglages de l’opérateur et
l’état du trépan, combinée au fait que le BI ne tient pas compte de la corrélation spatiale
inhérente à la géologie, rend cette tâche particulièrement complexe. Cette problématique a
motivé notre deuxième projet, axé sur la définition de ces zones en apprenant la structure
sous-jacente des données MWD, spécifiquement liée à la dureté des roches, tout en intégrant
l’interpolation spatiale pour capturer la similarité géologique et l’intégrer aux caractéristiques
sous-jacentes. La méthodologie proposée pour ce projet est détaillée au chapitre 5 de cette
thèse.

L’approche adoptée dans cette thèse, qui combine l’interpolation spatiale avec une architec-
ture de réseau de neurones en un seul modèle de bout en bout, nous a conduits à dévelop-
per des interpolateurs spatiaux dont la formulation mathématique et l’approche d’inférence
(rétropropagation), ainsi que la complexité ajustable, s’inspirent des réseaux de neurones
multicouches. Cependant, contrairement aux réseaux de neurones traditionnels, nos modèles,
dénommés modèles de pondération par distance inverse multicouche, modélisent la struc-
ture de dépendance spatiale et prennent en compte l’anisotropie spatiale géométrique. Cette
classe de modèles est largement discutée et comparée aux modèles d’interpolation spatiale
conventionnels dans le chapitre 6.

1.4 Objectifs de recherche

Compte tenu des défis précédemment évoqués, l’objectif global de cette thèse est de dévelop-
per des modèles et des approches adaptés aux mesures en cours de forage (MWD) dans le
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contexte de l’exploitation minière à ciel ouvert. Ces modèles doivent tenir compte des caracté-
ristiques spécifiques des données MWD, telles que l’interpolation spatiale et l’intégration des
contraintes spatiales et géologiques. Cet objectif global peut être divisé en trois sous-objectifs
principaux :

— Sous-objectif 1 : Développer un modèle d’interpolation spatiale adapté pour la prédic-
tion du BI. Cela impliquera l’introduction d’un nouveau cadre de modélisation pour
l’interpolation spatiale, incorporant une inférence par rétropropagation, rendant le
processus plus orienté vers la tâche.

— Sous-objectif 2 : Généraliser les modèles d’interpolation spatiale développés dans le
sous-objectif 1, afin de fournir une classe de modèles ajustables en termes de com-
plexité et capables de modéliser la non-linéarité, tout en résolvant des problèmes
d’interpolation spatiale plus complexes. Une étude détaillée de leurs performances
et caractéristiques sera incluse.

— Sous-objectif 3 : Développer un modèle de délimitation des masses rocheuses en empi-
lant des architectures de réseaux neuronaux, notamment des autoencodeurs variation-
nels (VAEs), qui sont bien adaptés pour apprendre les structures sous-jacentes. Cela
sera intégré avec les modèles d’interpolation spatiale développés dans les sous-objectifs
1 et 2 pour prendre en compte la corrélation spatiale et les contraintes géologiques.

1.5 Plan du thèse

Cette thèse est structurée en six chapitres, chacun abordant des aspects clés de la probléma-
tique et des objectifs de recherche développés dans cette étude.

Le chapitre 1, intitulé Introduction et contexte, présente le cadre général de la recherche, en
mettant en lumière les problématiques liées aux mesures pendant le forage et leur importance
dans l’exploitation minière à ciel ouvert. Il définit également les objectifs principaux et les
sous-objectifs de la thèse.

Le chapitre 2, Revue de littérature, propose une analyse approfondie des travaux existants
sur l’utilisation des données MWD et les méthodes d’apprentissage automatique appliquées
à l’industrie minière. Il commence par une exploration des applications générales des MWD,
notamment leur rôle dans l’évaluation des propriétés mécaniques des roches et l’identifica-
tion des formations lithologiques. Ensuite, l’essor des techniques d’apprentissage automatique
dans le domaine minier est examiné, avec une attention particulière portée aux approches
dédiées aux données MWD. Enfin, une comparaison entre les méthodes traditionnelles d’in-
terpolation spatiale et les modèles d’apprentissage automatique est effectuée, mettant en
évidence leurs avantages respectifs dans la modélisation géologique.
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Le chapitre 3, Vue d’ensemble des projets de la thèse, expose l’organisation générale de la
recherche en détaillant la progression des projets développés dans le cadre de cette étude. Il
met en évidence leur contribution à l’amélioration des techniques d’interpolation spatiale et
de modélisation des données MWD.

Le chapitre 4, Inférence basée sur la rétropropagation pour l’interpolation spatiale afin d’es-
timer l’indice de blastabilité dans une mine à ciel ouvert, présente le premier projet de re-
cherche. Ce travail consiste à développer un modèle d’interpolation spatiale permettant d’esti-
mer le BI. Les méthodes conventionnelles sont comparées à un nouveau cadre de modélisation
basé sur l’inférence par rétropropagation, visant à améliorer la précision des estimations.

Le chapitre 5, Intégration des autoencodeurs variationnels et de l’interpolation spatiale pour
améliorer la délimitation des massifs rocheux dans les mines à ciel ouvert, se concentre sur
le deuxième projet de recherche. Ce projet propose une approche combinant l’apprentissage
automatique et l’interpolation spatiale pour définir des zones de dynamitage en fonction de
la dureté des roches. L’objectif est de modéliser la structure sous-jacente des données MWD
tout en intégrant les contraintes géologiques et spatiales.

Le chapitre 6, Amélioration de l’interpolation spatiale : un modèle multicouche de pondération
à distance inverse pour des tâches de régression et de classification complexes dans l’analyse
de données spatiales, propose une généralisation des modèles d’interpolation spatiale en les
rendant compatibles avec les architectures de réseaux neuronaux. Ce modèle vise à améliorer
la flexibilité et la précision des interpolations en intégrant des paramètres optimisés par
apprentissage. Les performances de cette approche sont évaluées et comparées aux techniques
d’interpolation classiques.

Enfin, le chapitre 7, Conclusion, synthétise les principaux résultats obtenus au cours de cette
recherche. Il met en évidence les contributions scientifiques de l’étude et propose des perspec-
tives pour des travaux futurs en matière de modélisation des données MWD et d’approches
avancées d’interpolation spatiale.

Nota bene — Publications : Les chapitres 4, 5 et 6 correspondent à des articles scienti-
fiques évalués par les pairs (publiés/acceptés/soumis), respectivement dans Computers and
Geosciences., Computers and Geosciences. et World Academy of Science, Engineering and
Technology International Journal of Mathematical and Computational Sciences.
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CHAPITRE 2 REVUE DE LITTÉRATURE

2.1 MWD et leurs applications générales

Les MWD jouent un rôle crucial dans l’acquisition de données en temps réel pendant les
opérations de forage, apportant une meilleure compréhension des caractéristiques géologiques
sous-jacentes. Cette section explore deux domaines d’application principaux des MWD :
la mécanique des roches et la reconnaissance ainsi que l’identification lithologique. D’une
part, les MWD permettent d’analyser les propriétés mécaniques des formations rocheuses,
essentielles pour optimiser les performances de forage et la stabilité des excavations. D’autre
part, ces données facilitent l’identification des lithologies traversées, offrant des informations
précieuses pour la modélisation géologique et la prise de décisions en exploitation minière.

2.1.1 La mécanique des roches

La mécanique des roches consiste à étudier les masses rocheuses sous diverses conditions
physiques et environnementales, entre autres l’évaluation de la dureté des roches, de sa frac-
turation, sa résistance, sa stabilité, et sa perméabilité. Des études ont montré que les para-
mètres mécaniques dérivés des données MWD sont efficaces pour fournir des informations sur
la mécanique des roches [35, 124, 197]. L’association entre les données MWD et les proprié-
tés des roches est souvent explorée à travers des techniques d’apprentissage automatique et
d’analyse de données. Une grande partie des recherches s’est concentrée sur la classification
et la caractérisation des masses rocheuses à l’aide des données MWD. Par exemple, [35] ont
utilisé des séquences de mesures MWD provenant de trous de forage pour prédire les classes
de roches environnantes. De même, [197] ont relié les mesures MWD aux conditions litholo-
giques, comme le marbre et le marbre fracturé. [124] ont combiné les données MWD avec la
photogrammétrie pour classer les roches en tant que faibles, fracturées ou compétentes.

De plus, les données MWD se sont montrées efficaces pour évaluer la qualité des roches et
déterminer les conditions in situ afin d’assurer un soutien adéquat des roches dans les projets
de tunnels, comme le montre [193]. L’association entre les données MWD et la perméabilité
des roches a également été étudiée en utilisant des estimations de pression de pore et de
porosité dérivées des paramètres mécaniques de forage [105], et en employant le couple et la
pression sur le trépan en temps réel pour l’évaluation de la perméabilité [158].

En outre, de nombreux travaux ont été réalisés pour tirer parti des données MWD dans
l’estimation de la résistance des roches afin d’évaluer la stabilité des puits. Des études telles
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que [198], [51], [33] et [139] se sont concentrées sur l’utilisation des paramètres MWD pour
prédire la résistance des roches et améliorer les évaluations de stabilité.

2.1.2 La reconnaissance des roches et identification lithologique

La reconnaissance des roches et l’identification lithologique se concentrent sur l’identification
et la classification des différents types de roches ainsi que leurs caractéristiques géologiques
et géophysiques à l’aide des données MWD. La reconnaissance des roches consiste à évaluer
la dureté des roches en utilisant les données MWD, ce qui implique généralement le déve-
loppement de systèmes de classification et d’indices qui relient cette propriété aux variables
mécaniques fournies par MWD. Ces indices dérivés des données MWD sont souvent appelés
"indices basés sur le forage", par opposition aux indices basés sur des études géotechniques
traditionnelles [10].

Une étude importante menée par [104] dans une mine de cuivre à ciel ouvert en Colombie-
Britannique a exploré la corrélation entre la performance des foreuses rotatives et le facteur
de poudre (la quantité d’explosifs nécessaire pour le dynamitage). Cette recherche a conduit
au développement d’une équation reliant le facteur de poudre à l’indice de qualité de la roche
(RQI) [10,104] :

ln(Powder factor) = RQI− 24.9
7.1 ,

où RQI=WOB/ROP, où WOP signifie Weight on bit et ROP Rate of Penetration. Cepen-
dant, les auteurs ont constaté que le RQI n’était pas un indicateur fiable des masses rocheuses
et que l’approche n’avait été testée que sur un seul type de foreuse [10,104]. D’autres études
utilisant des méthodologies similaires ont développé différentes équations reliant le facteur de
poudre aux données MWD via une analyse de corrélation [80,211]. Dans une étude réalisée à
la mine BOLIDEN Aitik en Suède en utilisant les données MWD du système de forage Aquila
(aujourd’hui appelé CAT Terrain™ Drills), [135] ont trouvé une corrélation entre la fragmen-
tation et l’énergie spécifique de forage (SED) dérivée des données MWD. Cette recherche
a motivé un projet collaboratif entre Teck Metals et Peck Tech Consulting Ltd. en 2008 à
la mine de cuivre Highland Valley (HVC) près de Kamloops, en Colombie-Britannique [10].
Le projet a abouti au développement d’un algorithme pour l’évaluation du BI, prenant en
compte la présence de fractures, tel que développé par Peck Tech. Le BI est essentiellement
une version normalisée du SED [10, 148]. Dans l’identification lithologique, l’objectif est gé-
néralement d’associer les données MWD avec des lithologies connues étudiées sur le terrain.
Cette tâche peut aider à comprendre la géologie souterraine, à guider les opérations de fo-



8

rage et à améliorer la précision des modèles géologiques. De nombreux chercheurs se sont
appuyés sur des indices développés pour établir de telles associations. Par exemple, [107] ont
mené une analyse de l’énergie de forage pour classer les roches en catégories telles que dures,
molles et moyennes. De même, [212] ont pris en compte l’indice de perçabilité des roches et
l’énergie spécifique de forage pour la reconnaissance de la résistance des roches. Dans [107], la
résistance à la compression uniaxiale (UCS) et l’énergie spécifique de forage ont été utilisées
pour prédire différentes catégories de roches.

Cependant, comme l’ont souligné [175], les paramètres MWD et les indices développés ne
correspondent pas toujours directement aux propriétés physiques des roches, car plusieurs
facteurs (tels que la résistance, la dureté et la porosité) se combinent avec les différents
réglages de forage pour produire les résultats MWD. De plus, des facteurs externes peuvent
influencer les mesures MWD, comme l’usure du foret, les changements des conditions in situ,
et les réglages des opérateurs humains. Par exemple, un opérateur peut augmenter le couple
tandis qu’un autre augmente la pression sur le trépan (WOB), ce qui conduit à des résultats
MWD différents pour des lithologies identiques. Cette variabilité rend difficile la distinction
entre la lithologie et les propriétés intrinsèques des roches par rapport à d’autres facteurs
influents [175].

En conséquence, de nombreux chercheurs ont exploré l’utilisation de l’apprentissage automa-
tique et de l’intelligence artificielle pour améliorer la reconnaissance lithologique à partir des
données MWD [96,134,181,198,224–226].

2.2 L’essor de l’IA et de l’apprentissage automatique dans l’industrie minière

Les récents progrès en apprentissage automatique (ML) et en intelligence artificielle (IA) au
cours de la dernière décennie ont introduit un potentiel considérable pour améliorer les pro-
cessus de prise de décision dans l’industrie minière. La capacité à exploiter automatiquement
les données massives historiques et à apprendre à partir d’informations passées — appelée
apprentissage automatique — permet de détecter des motifs cachés dans les données, aidant
ainsi à améliorer les expériences passées ou à en découvrir de nouvelles. Cela dépasse les
capacités de la programmation explicite traditionnelle et de la modélisation basée sur des
règles physiques. En conséquence, l’industrie minière se détourne progressivement des déci-
sions basées sur des tests empiriques de caractérisation et sur l’intuition des opérateurs, où il
est difficile de gérer efficacement de grandes quantités d’informations traitées. Désormais, les
entreprises minières se tournent de plus en plus vers des modèles prédictifs basés sur le ML
pour traiter de vastes ensembles de données et prendre des décisions d’ingénierie éclairées,
suivies par une optimisation opérationnelle.
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2.2.1 Les méthodes d’apprentissage automatique utilisées pour résoudre les pro-
blèmes miniers en général

Le ML est devenu un outil crucial dans diverses applications minières, réparties en trois
grands domaines : l’exploration, l’exploitation et la réhabilitation (gestion environnementale).
Dans chacun de ces domaines, les méthodes de ML ont démontré leur capacité à traiter de
grands ensembles de données, à détecter des motifs et à fournir des prédictions qui améliorent
l’efficacité opérationnelle, réduisent les coûts et augmentent la sécurité. Cette section présente
les principales études dans ces domaines, en expliquant comment le ML a été utilisé pour
relever les défis spécifiques de l’industrie minière.

Dans la phase d’exploration, les techniques d’apprentissage automatique sont largement uti-
lisées pour l’exploration minérale, la détection d’anomalies géomécaniques, la cartographie
géologique et l’analyse minérale. Les études dans ce domaine se concentrent principalement
sur l’utilisation des données d’exploration pour détecter des anomalies géomécaniques et
réaliser une cartographie géologique en se basant sur les caractéristiques des roches. Par
exemple, [217] ont appliqué des approches d’apprentissage automatique pour identifier des
structures géologiques subtiles, tandis que [20], [21], [166], et [167] ont utilisé des techniques
de classification et de cartographie pour analyser les données géologiques et établir des liens
entre les propriétés des roches et les caractéristiques géomécaniques. De plus, l’analyse mi-
nérale a bénéficié de ces techniques en utilisant les données de forage pour prédire la compo-
sition des minéraux. Des études telles que [1], [156], [74], [45], et [85] ont permis de classifier
et d’analyser la composition des minéraux, améliorant ainsi la précision de l’estimation des
ressources minérales. L’apprentissage automatique joue également un rôle clé dans la pla-
nification et l’évaluation des mines, avec des modèles développés pour estimer les coûts et
optimiser la conception. Par exemple, [61], et [142] ont construit des modèles pour estimer les
coûts opérationnels des mines. Des études comme [3], [146], et [90] ont exploré des modèles
prédictifs pour assister la planification minière, l’optimisation de la conception des mines et
l’estimation des réserves [8, 129].

La phase d’exploitation des mines, qui consiste à extraire les ressources, utilise largement
l’apprentissage automatique pour optimiser les processus tels que le forage, le dynamitage, le
transport et la gestion des sols. Un domaine d’intérêt majeur est le forage et le dynamitage,
où ces techniques sont appliquées pour prédire des résultats comme la surpression d’air [68,
141], fracturation arrière (en anglais backbreak) [89, 165, 194], et les projections de roches
[6,61,117,121,131]. La prédiction des vibrations du sol a également fait l’objet d’une grande
attention, avec des modèles développés pour prédire les niveaux de vibration en fonction des
conceptions de dynamitage et des paramètres géotechniques [49, 137, 157, 170, 203, 207, 219].
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De plus, l’apprentissage automatique a été utilisé pour prédire la fragmentation des roches,
un facteur essentiel pour une extraction efficace des ressources [67,123], ainsi que pour évaluer
les dommages aux structures environnantes causés par le dynamitage [140,193,229].

En plus du dynamitage et du forage, la gestion des équipements dans le secteur minier a gran-
dement bénéficié de l’apprentissage automatique. Des études ont appliqué ces techniques pour
diagnostiquer les défaillances d’équipements [43,220] et optimiser le transport en surveillant
les modes de fonctionnement des équipements [14, 15, 122, 161, 179, 204]. Les stratégies de
maintenance prédictive basées sur l’apprentissage automatique ont été essentielles pour iden-
tifier les défaillances potentielles des équipements avant qu’elles ne surviennent, évitant ainsi
des temps d’arrêt coûteux et améliorant l’efficacité opérationnelle [18,83,160].

La mécanique des roches est un autre domaine clé où l’apprentissage automatique joue un
rôle vital, en particulier pour assurer la stabilité du sol dans les mines souterraines et à
ciel ouvert. Des études ont appliqué ces techniques pour prédire la stabilité des piliers dans
les mines souterraines, aidant à prévenir les effondrements et à assurer des opérations sûres
[46, 84, 205]. La prédiction de la séismicité des excavations profondes qui vise à prédire les
risques de micro-séismes qui occasionnent des éclats de roches, a également fait l’objet de
recherches, les chercheurs utilisant des données de séries temporelles pour prédire les risques
sismiques [19, 70, 147, 227, 228]. La prédiction de la stabilité des pentes a été abordée par
des modèles de l’apprentissage automatique pour évaluer et surveiller les déformations des
pentes, assurant la sécurité des opérations dans les mines à ciel ouvert [29, 47, 78, 120, 153].
En outre, des méthodes ont été utilisées dans la conception de remblais, aidant les ingénieurs
à optimiser la résistance et la composition des matériaux de remblayage [118,151,152,215].

La sécurité des mines est d’une importance capitale dans les opérations minières, et l’ap-
prentissage automatique a été essentiel pour prédire et atténuer les risques. Des études ont
développé des modèles pour prédire les niveaux d’eau souterraine et contrôler le drainage,
réduisant ainsi les risques associés aux inondations dans les zones minières [64, 65, 201, 222].
La prédiction de la qualité de l’air et la gestion du contrôle de la poussière dans les mines
ont également été abordées pour assurer la santé et la sécurité des travailleurs [28, 81, 154].
D’autres recherches ont exploré la prédiction des tremblements de terre en utilisant des
données sismiques pour prévoir la probabilité d’activités sismiques dans les régions mi-
nières [27, 54], tandis que des études sur le contrôle des gaz ont appliqué l’apprentissage
automatique pour prédire les émissions de gaz dangereux comme le méthane dans les mines
souterraines [127,174,216]. En outre, des études sur la sécurité au travail ont utilisé l’appren-
tissage automatique pour prédire les probabilités d’accidents, permettant aux opérateurs de
mettre en place de meilleures mesures préventives [23, 55,87].
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Dans la réhabilitation des parcs à résidus miniers, les applications de l’apprentissage auto-
matique sont orientées vers la restauration des terres et la gestion environnementale après
les opérations minières. La surveillance de la couverture terrestre joue un rôle crucial dans
la réhabilitation, et des modèles ont été appliqués pour détecter les changements de surface
terrestre causés par les activités minières. Ces modèles permettent de cartographier la couver-
ture terrestre et de surveiller les altérations de surface afin de guider efficacement les efforts
de réhabilitation. Des études telles que [149], [196], [136], et [108] ont démontré l’efficacité de
ces approches pour surveiller et analyser les changements de la couverture terrestre.

L’évaluation des risques miniers est également un domaine important dans la réhabilitation,
visant à prédire et à gérer les risques environnementaux. Les modèles ont été utilisés pour
évaluer les risques liés aux changements géographiques, y compris la prédiction des glissements
de terrain et de l’affaissement des mines [79,103,106,119,178,183]. La pollution des sols et de
l’eau causée par les activités minières est également une préoccupation majeure, et des études
telles que [7] et [22] ont utilisé des techniques d’apprentissage automatique pour prédire les
niveaux de contamination et aider à guider les efforts de remédiation des sols et de l’eau,
garantissant ainsi l’atténuation des risques environnementaux.

2.2.2 Classification des méthodes utilisées

Les méthodes d’apprentissage automatique appliquées aux domaines de l’exploration, de l’ex-
ploitation et de la réhabilitation minière peuvent être classées en deux grandes catégories :
les méthodes supervisées et les méthodes non supervisées. Ces techniques permettent d’ana-
lyser et de prédire des phénomènes complexes en exploitant les vastes ensembles de données
géologiques et opérationnelles collectées tout au long du cycle de vie des projets miniers.
Ci-dessous, nous décrivons ces deux types de méthodes en détaillant leurs principes et appli-
cations dans le domaine minier.

Les méthodes supervisées sont utilisées pour des tâches de classification et de régression où
un modèle est entraîné sur des données étiquetées, c’est-à-dire des données pour lesquelles
la sortie attendue est connue. Dans ce contexte, des approches telles que les forêts aléatoires
(Random Forest - RF) sont couramment utilisées, comme l’indique [167], qui ont appliqué
cette méthode pour estimer des variables géochimiques manquantes dans des projets d’explo-
ration minière. De même, les machines à vecteurs de support (SVM) sont souvent employées
dans des tâches de classification géologique, notamment pour différencier les types de roches,
comme le montrent [20], qui ont utilisé ces techniques pour classifier des lithologies dans
une mine à ciel ouvert sur la base d’images de véhicules aériens sans pilote (UAVs) et de
données de forage. En outre, les réseaux de neurones ont été utilisés dans l’étude de [156]
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pour l’association entre des caractéristiques d’imagerie et des signatures de spectrométrie de
fluorescence des rayons X (XRF) des roches dans les mines souterraines, permettant ainsi
une identification plus précise des types de roches.

D’autre part, les méthodes non supervisées n’exigent pas de données étiquetées et sont par-
ticulièrement utiles pour explorer des structures ou des motifs cachés dans des ensembles de
données complexes. [217] ont utilisé une approche de clustering combinée à un autoencodeur
pour détecter des anomalies géochimiques dans les données d’exploration minière. Cette mé-
thode permet de découvrir des structures dans des ensembles de données géochimiques sans
supervision préalable. De plus, [166] ont utilisé des processus gaussiens pour classifier des
images hyperspectrales dans le but d’extraire des caractéristiques géologiques, contribuant
ainsi à la classification des types de roches à partir de données géophysiques. Les méthodes
de réduction de dimensionnalité, bien que non explicitement mentionnées, sont souvent inté-
grées dans ces études, comme dans le cas de [167], qui ont réduit la complexité des données
géochimiques avant d’appliquer des techniques de classification comme les forêts aléatoires.

Les méthodes hybrides, combinant des approches supervisées et non supervisées, ont égale-
ment montré leur efficacité dans l’optimisation des prédictions et l’analyse des données. [74]
ont combiné à la fois des techniques supervisées et non supervisées pour relier les roches
protolithes aux équivalents altérés, améliorant ainsi la prédiction des types de roches et des
modifications géologiques dans les zones d’exploration. Une autre approche hybride est celle
utilisée par [217], qui ont intégré un réseau autoencodeur pour la réduction de dimensionna-
lité et un clustering spatial basé sur la densité pour organiser les données restantes, afin de
détecter des anomalies géochimiques dans les projets d’exploration minière. En outre, [61]
ont combiné un réseau de neurones profonds avec un algorithme d’optimisation pour évaluer
les risques liés aux opérations de dynamitage, comme la prédiction du flyrock, en exploitant
à la fois l’apprentissage supervisé et des méthodes d’optimisation heuristique pour améliorer
la précision des résultats.

Étant donné que nous nous intéressons spécifiquement aux données MWD, notre recherche
se situe dans la catégorie de l’exploitation minière. Les données MWD sont utilisées pour
extraire des informations sur les propriétés mécaniques des roches en temps réel, ce qui permet
d’améliorer les processus de forage et de dynamitage ainsi que la gestion des équipements.
Cette catégorie met en évidence l’utilisation des techniques de forage pour optimiser les
opérations d’extraction tout en garantissant la sécurité et l’efficacité dans les environnements
miniers. Les modèles d’apprentissage automatique appliqués aux données MWD jouent un
rôle clé dans la prédiction des résultats et l’optimisation des opérations.
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2.2.3 Les méthodes d’apprentissage automatique appliquées au données MWD

Les méthodes d’apprentissage automatique appliquées aux données MWD ont été explorées
dans plusieurs études afin de mieux comprendre et caractériser les propriétés du massif ro-
cheux pendant les opérations de forage. Parmi ces études, des approches supervisées et non
supervisées ont été développées pour tirer parti des données MWD et améliorer la reconnais-
sance des types de roches.

Dans l’apprentissage supervisé, des modèles tels que les réseaux neuronaux profonds (DNN)
et les forêts aléatoires (RF) sont utilisés pour des tâches de classification et de prédiction. Par
exemple, [35] ont appliqué un réseau neuronal profond BILSTM pour prédire la classification
des masses rocheuses à partir des données MWD, ce qui aide à identifier la résistance et la
qualité des roches pendant le forage. De même, des modèles comme les SVM sont utilisés
pour prédire la capacité de forage et la résistance des roches, fournissant des informations
utiles sur l’efficacité du forage et la sécurité. [124] ont utilisé ces modèles supervisés pour
caractériser les masses rocheuses en combinant les données MWD avec la photogrammétrie,
améliorant ainsi l’exactitude de la classification des roches.

Les techniques non supervisées, telles que le clustering et l’analyse en composantes princi-
pales (PCA), sont également essentielles pour traiter les données MWD. [197] ont utilisé
une analyse multivariée pour optimiser les stratégies d’échantillonnage dans la classification
des roches, en appliquant des techniques non supervisées pour extraire des motifs des don-
nées de forage sans nécessiter d’échantillons étiquetés. Cette approche permet une meilleure
utilisation des données, en particulier lorsque les données étiquetées sont rares.

Les modèles hybrides, qui combinent des méthodes supervisées et non supervisées, se révèlent
particulièrement efficaces pour la caractérisation des masses rocheuses. Par exemple, [134] ont
utilisé un modèle hybride pour apprendre les structures géologiques 3D à partir des capteurs
de la foreuse, combinant le clustering pour l’extraction de caractéristiques et l’apprentissage
supervisé pour la classification des masses rocheuses. Ces modèles se montrent efficaces pour
créer des représentations plus complètes du sous-sol, améliorant ainsi la précision et la fiabilité
des prédictions des masses rocheuses.

Une autre application notable est la surveillance en temps réel et la maintenance prédictive.
Les études [5] et de [56] ont appliqué des méthodes de classification et de régression en utilisant
des réseaux neuronaux et des forêts aléatoires, ainsi que des réseaux neuronaux profonds et des
techniques de régression, pour détecter des anomalies dans les forages horizontaux et prédire
les logs soniques en temps réel. Ces modèles prédictifs aident non seulement à anticiper les
problèmes comme les défaillances des équipements, mais aussi à optimiser les paramètres de
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forage, réduisant ainsi les coûts et améliorant la sécurité.

Enfin, des techniques de prédiction, telles que les processus gaussiens (GP) et les projections
d’espace de caractéristiques en ondelettes, ont été utilisées pour la prédiction des perfor-
mances du forage. [226] ont employé une classification GP combinée avec des projections
d’ondelettes pour améliorer la précision des prédictions des propriétés des roches à partir des
données MWD, optimisant ainsi la performance du forage.

En conclusion, bien que les méthodes d’apprentissage automatique appliquées aux données
MWD aient été largement adoptées pour des tâches de classification et de prédiction des
propriétés des roches, il est important de souligner que les données MWD présentent souvent
une dépendance spatiale significative. Cependant, peu d’études ont comparé les modèles d’in-
terpolation spatiale avec les modèles d’apprentissage automatique appliqués sur les données
MWD, malgré l’importance de cette dépendance spatiale. Cela ouvre la voie à une nouvelle
discussion dans la section suivante : modèles d’interpolation spatiale vs modèles d’apprentis-
sage automatique dans le domaine de la géoscience.

2.3 Modèles d’interpolation spatiale vs modèles d’apprentissage automatique
dans le domaine de la géoscience.

Dans le domaine de la géoscience, le débat entre l’utilisation des modèles d’interpolation spa-
tiale traditionnels, notamment les méthodes géostatistiques comme le krigeage, et les modèles
d’apprentissage automatique (ML), prend de plus en plus d’ampleur. Cette controverse repose
principalement sur la capacité respective de ces deux approches à capturer les phénomènes
spatiaux complexes et à prédire des variables environnementales. Les méthodes géostatis-
tiques, longtemps considérées comme la référence en matière de modélisation spatiale, sont
largement reconnues pour leur aptitude à intégrer des dépendances spatiales explicites à tra-
vers des techniques comme le krigeage ordinaire ou universel. D’un autre côté, les modèles
d’apprentissage automatique se sont imposés par leur capacité à capturer des relations non
linéaires complexes dans des jeux de données volumineux, notamment grâce à des algorithmes
tels que les forêts aléatoires, les réseaux neuronaux et les méthodes de boosting.

D’un point de vue traditionnel, les méthodes géostatistiques sont préférées dans les situations
où la continuité spatiale est cruciale et où l’incertitude des prédictions doit être estimée avec
précision. Le krigeage, par exemple, est souvent utilisé pour estimer des surfaces ou des
volumes tout en tenant compte de la structure spatiale sous-jacente des données, grâce à des
variogrammes qui permettent de modéliser ces relations spatiales [44, 168]. Cependant, les
limites de ces méthodes apparaissent lorsqu’il s’agit de traiter des ensembles de données à
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grande échelle ou des phénomènes non linéaires, où elles peuvent devenir inefficaces ou moins
précises que les approches d’apprentissage automatique [191].

Les modèles d’apprentissage automatique, quant à eux, ont démontré une capacité exception-
nelle à modéliser des phénomènes complexes, comme le montrent plusieurs études récentes.
Par exemple, dans la cartographie géochimique, les modèles d’arbres de décision, tels que les
forêts aléatoires, ont surpassé les méthodes géostatistiques en termes de précision de prédic-
tion [110]. Cependant, l’une des critiques principales envers l’apprentissage automatique est
son incapacité à modéliser directement les relations spatiales inhérentes aux données géoscien-
tifiques. Les modèles d’apprentissage automatique classiques ignorent souvent la dépendance
spatiale, ce qui peut conduire à des résultats incohérents dans des applications où cette dé-
pendance est cruciale, comme dans la cartographie des sols ou la prédiction de la hauteur de
la canopée forestière [185]. En revanche, des modèles hybrides, combinant des méthodes géo-
statistiques avec des algorithmes de machine learning, ont émergé pour combler cette lacune.
Ces approches, telles que le Random Forest Kriging ou le Neural Network Kriging, offrent une
combinaison des forces des deux méthodes : la capacité des modèles de ML à capturer des
relations non linéaires complexes et la capacité de la géostatistique à modéliser la continuité
spatiale [34, 73].

Ainsi, la question se pose de savoir quelle approche est la plus adaptée selon les cas d’ap-
plication. Pour des données fortement spatiales avec des relations globalement linéaires, les
méthodes géostatistiques sont souvent privilégiées, car elles modélisent finement la structure
spatiale et fournissent des incertitudes mieux maîtrisées. À l’inverse, pour des ensembles
volumineux et complexes, l’apprentissage automatique offre souvent la meilleure précision
prédictive, mais au prix d’une interprétation spatiale moins directe ; de plus, l’incertitude qui
en découle est plus difficile à calibrer et peut être moins fiable, en particulier en présence de
dépendance spatiale [2].

C’est pourquoi, dans notre recherche, nous visons à développer de nouvelles classes de modèles
qui combinent la capacité des réseaux neuronaux, typiques de l’apprentissage automatique,
tout en maintenant la dépendance spatiale essentielle. Contrairement aux approches actuelles
qui dissocient souvent ces deux aspects, nos modèles sont conçus pour être à la fois compa-
tibles avec les réseaux neuronaux et capables de capturer explicitement la structure spatiale
des données. Cette orientation vise non seulement à améliorer la précision des prédictions,
mais aussi à préserver la cohérence spatiale, enjeu critique dans les données géoscientifiques
comme les mesures en forage (MWD).

Cette nouvelle approche est motivée par les limites observées dans l’application des méthodes
d’apprentissage automatique classiques, qui, bien qu’efficaces pour capturer des relations
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complexes et non linéaires, ne tiennent pas compte de la continuité spatiale intrinsèque [110,
185]. De plus, les méthodes géostatistiques classiques, comme le krigeage, se concentrent
principalement sur la modélisation de cette continuité spatiale, mais ne peuvent pas gérer
efficacement des volumes de données complexes ou des relations non linéaires [168].

En intégrant les avantages des deux mondes - l’apprentissage profond pour la modélisation
non linéaire et la géostatistique pour la dépendance spatiale, nous espérons combler ces
lacunes. Nos efforts s’inscrivent dans la lignée des approches hybrides telles que celles décrites
par [73] et [191], mais avec l’intention d’aller plus loin en rendant les nouvelles méthodes
entièrement compatibles avec les techniques modernes d’apprentissage automatique.
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CHAPITRE 3 VUE D’ENSEMBLE DES PROJETS DE LA THÈSE

Ce chapitre présente une vue d’ensemble des trois projets de recherche inclus dans cette thèse,
chacun apportant une contribution unique à l’amélioration des modèles d’interpolation spa-
tiale et à l’analyse des données MWD dans l’exploitation minière à ciel ouvert. Ces travaux,
tout en étant fondés sur des concepts communs, abordent progressivement des problématiques
de plus en plus complexes, tout en intégrant des techniques d’apprentissage automatique et
d’interpolation spatiale avancées.

3.1 Projet 1 : Inférence basée sur la rétropropagation pour l’interpolation spa-
tiale afin d’estimer le BI dans une mine à ciel ouvert

Le premier projet propose une approche novatrice pour l’estimation de BI à différentes pro-
fondeurs en utilisant uniquement les coordonnées spatiales et les mesures de BI observées
lors du forage de puits précédents. Cette étude se concentre sur l’amélioration des techniques
d’interpolation spatiale, en introduisant une nouvelle méthode pour le traitement des pro-
cessus gaussiens (GP) et de la pondération inverse de la distance (IDW). L’intégration de
la variographie assure un meilleur ajustement entre les données et la composante spatiale,
en tenant compte de l’anisotropie observée. L’optimisation par descente de gradient avec ré-
tropropagation permet de renforcer la performance des modèles GP et IDW pour prédire le
BI.

Lien avec les autres projets : Cette première approche fournit la base méthodologique
pour les projets suivants, qui introduisent des architectures plus sophistiquées, comme les
autoencodeurs variationnels (VAE) et les modèles multicouches. L’inférence basée sur la ré-
tropropagation pour les modèles GP et IDW sert de point de départ pour la compréhension
de l’interpolation spatiale dans un contexte géologique complexe, ouvrant la voie à des tech-
niques d’apprentissage plus profondes.

Statut de publication : Cet article a été accepté et publié dans la revue Computers and
Geosciences.
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3.2 Projet 2 : Utilisation des autoencodeurs variationnels et de l’interpolation
spatiale pour la délimitation des masses rocheuses

Le deuxième projet explore le concept de la délimitation des masses rocheuses en utilisant
des données MWD pour créer des domaines spatiaux contigus, caractérisés par une dureté
rocheuse homogène. Ce projet propose l’utilisation d’un modèle d’autoencodeur variationnel
(VAE) couplé avec un modèle d’interpolation spatiale compatible avec des réseaux neuronaux.
L’objectif est d’apprendre la structure sous-jacente des données MWD, en ciblant spécifique-
ment la dureté des roches, tout en capturant la similarité spatiale pour assurer la cohérence
des domaines. Le VAE, en tant qu’outil d’apprentissage, permet de réduire la dimensionna-
lité tout en conservant des informations importantes, et les résultats sont évalués à l’aide des
métriques pour mesurer la précision des domaines (Domain Accuracy - DA) et la consistance
de la dureté rocheuse (Pooled Standard Deviation - PSD). Ce modèle permet non seulement
de créer des domaines spatiaux, mais aussi de détecter des lithologies réelles, identifiées par
des experts, et d’étendre ces résultats à une modélisation en 3D.

Lien avec les autres projets : Ce projet s’appuie directement sur les résultats du premier
en empilant des modèles d’interpolation capables de préserver les relations spatiales, tout en
intégrant un VAE pour apprendre la représentation sous-jacente commune des MWD.

Statut de publication : Cet article a été soumis et est en attente de révision dans Com-
puters and Geosciences.

3.3 Modèle multicouche de pondération inverse de la distance pour l’interpola-
tion spatiale

Le troisième projet introduit un modèle multicouche de pondération inverse de la distance
(ML-IDW), qui combine les avantages des réseaux neuronaux multicouches (ML-NN) et du
modèle d’interpolation inverse de la distance (IDW). Ce modèle tire parti des capacités de
traitement des ML-NN, caractérisées par des fonctions non linéaires apprenables appliquées
aux caractéristiques d’entrée, et intègre la capacité du modèle IDW à apprendre les dépen-
dances spatiales anisotropiques. Le modèle ML-IDW est optimisé en utilisant la descente de
gradient et la rétropropagation, et ses performances sont comparées aux modèles classiques
d’interpolation spatiale tels que le Krigeage et l’IDW standard, sur des tâches de régression et
de classification utilisant des ensembles de données spatiales simulées de complexité variable.
Les résultats montrent que le modèle ML-IDW surpasse ces méthodes classiques, particuliè-
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rement dans la gestion de données spatiales complexes, avec une erreur quadratique moyenne
plus faible en régression et un score F1 plus élevé en classification.

Lien avec les autres projets : Le modèle ML-IDW constitue une évolution et une géné-
ralisation des modèles développés dans le premier projet en intégrant les concepts de réseaux
neuronaux multicouches pour mieux capturer les relations spatiales complexes et non li-
néaires. Il complète ainsi les travaux précédents en proposant une solution plus robuste et
flexible pour l’interpolation dans des contextes géologiques plus complexes.

Statut de publication : Cet article a été accepté et publié dans la revue de World Aca-
demy of Science, Engineering and Technology International Journal of Mathematical and
Computational Sciences.

3.4 Conclusion

Ces trois projets illustrent l’avancement progressif des techniques d’interpolation et de mo-
délisation, allant des méthodes classiques à des approches plus complexes et adaptées aux
défis géologiques spécifiques rencontrés dans l’exploitation minière.



20

CHAPITRE 4 ARTICLE 1 : BACKPROPAGATION-BASED INFERENCE
FOR SPATIAL INTERPOLATION TO ESTIMATE THE BLASTABILITY

INDEX IN AN OPEN PIT MINE

Cet article a été publié dans la revue Computers & Geosciences le 6 novembre 2024, coécrit
avec Richard Labib, Jean-François Plante et Michel Gamache.

Aperçu du chapitre

Ce chapitre présente une approche pour estimer le BI en exploitant l’inférence basée sur la
rétropropagation appliquée aux techniques d’interpolation spatiale. En combinant l’optimi-
sation par descente de gradient avec des modèles de pondération inverse de la distance (IDW)
et des processus gaussiens (GP), cette méthode vise à mieux capturer les relations spatiales
complexes et à améliorer la précision des estimations. L’étude intègre également une analyse
variographique pour ajuster les modèles aux caractéristiques spatiales des données MWD.

4.1 Abstract

The blastability index (BI) is a measure that indicates the resistance of rock to fragmentation
when blasting. With novel technologies, miners are now able to collect and calculate BI at
different depths while drilling. In this research, we propose an approach to estimate the BI
at multiple depths for new areas using only spatial locations and observed BI measurements
of previously drilled holes. Spatial interpolation techniques are investigated. This study
introduces a novel treatment for Gaussian Processes (GPs) and Inverse Distance Weighting
(IDW). Variography is leveraged to ensure an appropriate fit between the data and the spa-
tial component. The parameters controlling anisotropy are constrained to intervals chosen
to reflect the observed anisotropy. Gradient descent with back-propagation is used for opti-
mization. The proposed approach improves the performance of GP and IDW at predicting
BI. The similarities between the IDW variant proposed and a single-layer neural network are
discussed.

4.2 Introduction

Rock hardness is a critical factor in open-pit mining operations, directly influencing the effi-
ciency of the blasting phase and overall productivity. The Blastability Index (BI) quantifies
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rock hardness, representing the energy required for effective fragmentation during blast-
ing [11]. This index plays a crucial role in optimizing drilling operations and reducing asso-
ciated costs.

In this study, the BI was derived using data from sensors embedded in drilling machines,
which recorded key mechanical parameters such as Rate of Penetration (ROP), Weight on
Bit (WOB), Rotation per Minute (RPM), and Torque (TRQ). The BI was then calculated
by normalizing the Specific Energy of Drilling (SED), following the method described in
[11]. Compared to Uniaxial Compressive Strength (UCS), the BI is a more cost-effective
measure for assessing rock hardness in the context of blasting, taking into account factors
like fragmentation and response to explosives. This makes it an economically advantageous
choice for mining operations aiming to optimize resources [225].

Recent studies have highlighted the significance of Monitoring While Drilling (MWD) data,
particularly SED, for lithology identification, drilling performance evaluation, and the deriva-
tion of rock mechanical properties [42, 97,112,144,214].

The MWD data in this study is similar to the data in a study in which our industrial partner
played a key role [148]. This project developed an algorithm for BI that incorporated the
impact of fractures in rock formations. The BI algorithm was based on the normalization of
SED, with BI essentially being a normalized version of SED (BI = SED/BInorm) [11,148]. This
work was inspired by earlier studies at the BOLIDEN Aitik mine in Sweden, where MWD
data proved valuable in correlating blastability with SED [135], further demonstrating the
potential of MWD data to optimize mining operations.

While the BI provides valuable insights for previously drilled areas, predicting the BI for
undrilled or unexplored locations holds significant potential for enhancing mining opera-
tions. Accurate BI predictions for new locations can inform decision-making in several ways.
Firstly, it allows mining engineers to strategically place future boreholes in areas where rock
hardness is expected to be more suitable for efficient drilling and blasting operations. This
optimized placement reduces the need for unnecessary drilling, thereby lowering operational
costs and minimizing delays. Moreover, predictive BI modeling can help identify zones of
varying rock hardness, which is crucial for tailoring the blasting process to the specific ge-
ological conditions. In softer rock areas, less explosive material may be required, reducing
costs and improving safety. Conversely, in harder rock zones, enhanced drilling techniques
can be deployed in advance, ensuring that the equipment and resources are appropriate for
the conditions. By extending BI predictions to untested locations, mining operations can
also better manage the lifecycle of open-pit projects. It allows for more efficient long-term
planning, where drilling and blasting schedules can be adapted to anticipated geological chal-
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lenges. This forward-looking approach not only reduces downtime but also enhances overall
productivity by ensuring that equipment and manpower are utilized effectively. Additionally,
predictive models using BI can contribute to environmental sustainability. By reducing over-
drilling and optimizing resource allocation, mining companies can minimize their ecological
footprint, lowering the amount of energy consumed during operations and limiting the envi-
ronmental disruption associated with excessive drilling and blasting. Ultimately, predicting
BI for new locations represents a significant step forward in the intelligent automation of
mining operations. The integration of spatial interpolation techniques and machine learning
into these predictions further enhances accuracy, ensuring that the BI model aligns with the
geological and spatial relationships of the mining complex. This forward-looking capability
leads to smarter, more efficient, and cost-effective mining practices [48,66].

Existing literature on BI estimation primarily focuses on utilizing geophysical or geomechan-
ical parameters [9, 209, 210]. However, these parameters are typically available only after
drilling has occurred. Limited attention has been given to predicting the BI itself before
drilling, and some studies explore predicting the Formation Drillability (FD) based on vari-
ous parameters, including a three-dimensional coordinate system and acoustic properties of
the formation [52]. Machine learning, deep learning, and traditional geostatistical methods
have been employed to enhance the accuracy of such predictions [52,53,88,200].

Spatial interpolation techniques, such as Gaussian Processes (GPs) and Inverse Distance
Weighting (IDW), are commonly used for spatial prediction based on coordinates [169,189].
Many studies have used and compared these models for spatial prediction problems applied in
various fields. In mining, they have been used for lithology prediction and rock mass quality
prediction [4, 182]. In environmental applications, these models have been used to predict
groundwater quality and spatial rainfall information [57, 173]. These studies often conduct
comparative analyses with respect to the data, use cases, and underlying assumptions [77].
Geostatistics, particularly Kriging, is a standard method for spatial interpolation, employing
variography for covariance model selection. GPs, considered the counterpart to Kriging for
surrogate modeling and statistical learning incorporating the maximization of the marginal
log-likelihood to derive its hyperparameters [41]. However, existing studies often overlook
the efficiency of variography in covariance model selection and anisotropy detection [150]. In
this context, our study proposes an integrated approach that combines variography and GP
modeling for BI prediction, aiming to improve accuracy by incorporating spatial structures
and geological information into the predictive model.

Conventional IDW methods often rely on grid search for estimating parameters, such as
the exponent, to minimize Leave One Out Cross Validation (LOOCV) error [12, 114, 116].
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Some studies simplify the model by fixing the exponent to two [38, 111, 208]. Our treat-
ment of IDW exploits the differentiability of weights as functions of parameters, employing
continuous optimization with back-propagation and gradient descent instead of grid search.
Geological information and anisotropy are incorporated by constraining the domain search
using variography.

In our study we consider a dataset comprising measurements of the BI at different three-
dimensional coordinates. For each measurement i = 1, ..., N , ti represents the BI recorded
at location si = [xi, yi, zi]T , specifically in a hole located at (xi, yi) with altitude zi. Let
Hj denote the set of indices of measurements for hole j = 1, ..., M . To evaluate predictive
performance, models need to be tested on data not used during training. In a general scenario,
let H ⊂ {1, . . . , M} represent the set of hole indices designated for testing. The set of indices
T = ∪j∈HHj identifies data points in the test set, while its complement T constitutes the
training set.

For a test datum with index i ∈ T , the model predicts a BI of t̂i at location si. The Root-
Mean-Square Error (RMSE) between the observed and predicted BI serves as the performance
criterion:

RMSEtest =
√√√√ 1
|T |

∑
i∈T

(t̂i − ti)2. (4.1)

The literature review sets the stage for understanding the current state of BI prediction,
highlighting the importance of spatial coordinates, geological information, and the potential
improvements offered by advanced modeling techniques. In the following sections, we present
the models and methodologies in detail, including the handling of data points (datums) and
the validation process.

4.3 Models

In general, spatial interpolation methods derive the estimation t̂j at location sj for j ∈ T
using the weighted average of the observed values ti, i ∈ T of the training data [100]:

t̂j =
∑
i∈T

wjiti, (4.2)

where wji is the weight that is associated with ti (the target of the i th observation) to estimate
the true value tj in location sj.

When the weight wji takes anisotropy into account, the distance between locations si and sj
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denoted da(si, sj) is written

da(si, sj) =
√√√√(xi − xj)2

ℓ2
x

+ (yi − yj)2

ℓ2
y

+ (zi − zj)2

ℓ2
z

, (4.3)

where ℓx is called the range, or length-scale, of the x principal direction, and similarly for ℓy

and ℓz in the principal direction of y and z respectively.

The idea of spatial interpolation relies on the hypothesis that the closer the distance between
BI measures, the more similar they are. When ℓx, ℓy, and ℓz are unequal, the similarity
also depends on the direction, a situation described as directional anisotropy, or geometric
anisotropy [150]. We demonstrate in the Appendix A.4 that this equation is sufficient for
accounting for anisotropy when modeling both horizontal and vertical variograms in the
context of drilling data.

The value of the length-scale of each input component is inversely proportional to the in-
fluence of the associated dimension on the output result [213]. Modeling anisotropy using
Eq.(4.3) is known in the Gaussian Processes literature as Automatic Relevance Determination
(ARD) [159,213].

Since Gaussian Processes (GP) and Inverse Distance Weighting (IDW) are two of the most
widely used spatial interpolation algorithms in geostatistics, they will be introduced and
explored in this study. We aim to improve these conventional interpolation methods for
enhanced accuracy and performance by incorporating learnable parameters through back-
propagation and integrating advanced geostatistical techniques.

4.3.1 Models based on Gaussian Processes (GPs)

GPs examine interpolation from a probabilistic perspective. The deterministic target values
ti at the location si are considered as realizations of the random variables Ti = T (si). To
predict tj for a point in the test set, j ∈ T , we will use the observations from the training
set. For convenience, we denote by T = [Ti], the n × 1 random vector containing the
training targets, hence n = |T |. GPs are based on the assumption that the prior probability
distribution of T is a multivariate normal distribution with mean m and covariance matrix
K + σ2

0In [159]. Symbolically,
T ∼ N (m, K + σ2

0In), (4.4)

where m = E[T] = [mi] is the n× 1 mean vector, In is the n× n identity matrix, and σ2
0 is

the noise variance. The values in K = [Kij] are derived from the model and correspond to
the covariance between Ti and Tj. In the context of GPs, that covariance only depends on
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the distance between the two locations, here si and sj. For i, j ∈ T , i ̸= j,

cov[Ti, Tj] = Kij = k(da(si, sj)), (4.5)

where k() is known as the kernel function. Although several functions k() could be used
to model the covariance, Radial Basis Function (RBF) is the most common. Based on a
variography described in the next section, the exponential kernel appears more appropriate
for our data. We formulate the kernel so that it will correspond to the exponential semi-
variogram model described in Eq.4.14 [26]:

kexp(da(s, s′)) = σfexp(−3da(s, s′)), (4.6)

where s and s′ are arbitrary locations and σf is the output-scale (the partial sill in Kriging).
This function also depends on the length-scales included in the distance calculation da(s, s′)
in Eq.(4.3).

We will use constant-mean GPs, where the mean is assumed constant, in such a case
E[Ti] = m for all i, and E[T] = m1n, with 1n = [1, . . . , 1]⊤ ∈ Rn. We denote by θ =
(σf , ℓx, ℓy, ℓz, σ0, m) the vector of hyper-parameters of the model. They are inferred from
the data and then plugged-in to yield a Bayesian model for the distribution of new t’s given
the observations. The inference for θ relies on maximizing the log-likelihood function,

l(θ) = −1
2(t−m1n)⊤(K + σ2

0In)−1(t−m1n)− 1
2log|K + σ2

0In| −
n

2 log(2π), (4.7)

where t = [ti], i ∈ T is the vector containing the observed target values. Generally, the
optimization of this log-likelihood is a non-convex problem. A gradient-based optimization
algorithm is used to infer the hyper-parameters, and back-propagation is employed for com-
plex setups.

Using the maximum likelihood estimate (MLE) for θ as a plugin estimate, the target at a new
location sj = [xj, yj, zj]⊤ may now be obtained from the posterior probability distribution
for Tj given (ti, si) for i ∈ T , which is N(t̂j, σ̂2

j ) where:

t̂j = m̂ + kj
T (K + σ̂2

0In)−1(t− m̂1n); (4.8)

σ̂2
j = k(0)− kj

T (K + σ̂2
0In)−1kj, (4.9)

where kj is the vector of covariances between the training data and Tj. Although distances
and covariances depend on the estimate θ̂, we omit to indicate it explicitly for simplicity
of notation. In this case wj =(K + σ̂2

0In)−1kj = [wji]i, is a n × 1 vector containing the
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interpolation weights. Using these weights, Eq.(4.8) may be rewritten as

t̂j = m̂ +
∑
i∈T

wji(ti − m̂), (4.10)

a form more similar to the formulas for Ordinary Kriging [126].

Variography and variogram modeling are commonly used in Kriging to infer the hyper-
parameters. Inspired by this treatment, we combine variography with GPs to select the
appropriate kernel function, and to detect and model anisotropies.

Variogram modeling and variography

In this section, variography and geostatistical exploratory analysis were conducted to gain
deeper insight into the spatial relationships between data points and to verify hypotheses
regarding anisotropy. Later, we demonstrate how our modeling framework can incorporate
this information to constrain the models, ensuring they align realistically with the observed
spatial dependencies.

The theoretical variogram is a measure of dissimilarity (variability) of the random field T ()
expressed as a function of h, the oriented vector separating the positions s and s′ = s+h [40].
The semi-variogram is defined as [40]:

γ(h) = 1
2E[(T (s + h)− T (s))2]. (4.11)

By expanding Eq.(4.11), the following relation between the kernel function k() and the the-
oretical semi-variogram is obtained:

γ(h) = Var[T ]− cov[T (s + h), T (s)] = k(0)− k(da(s, s + h)). (4.12)

Experimentally, the variogram is calculated using the realizations ti, i ∈ T and corresponds
to the average dissimilarity of all pairs (ti, tj), (i, j) ∈ T × T within a neighborhood of h.
Consider the following set of indices corresponding to lag tolerance 2ϵ and angle tolerance α

Dh =

(i, j)

∣∣∣∣∣∣ | ∥si − sj∥ − ∥h∥ | ≤ ϵ and
∣∣∣∣∣ (sj − si)⊤h
∥si − sj∥ ∥h∥

∣∣∣∣∣ ≥ cos(α)

 .
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Then the experimental semi-variogram [126] is defined as :

γ̂(h) = 1
2|Dh|

∑
(i,j)∈Dh

(ti − tj)2. (4.13)

For a fixed direction represented by the unit vector u, the variography is the plot of the ex-
perimental semi-variogram γ̂(h) = γ̂(hu) as a function of the lag distance h =

∥∥∥h∥∥∥. Notably,
u = [0, 0, 1]⊤ yields the vertical variogram, γ(v) which is shown in Fig.4.1. A slightly different
definition of Dh yields the horizontal variogram, γ(h) in Fig.4.2. The latter leverages a work-
ing assumption of horizontal isotropy and defines lag tolerance on the difference in altitude.
The semi-variogram models (blue lines) that are used to fit the experimental variograms are:

γ(h)(h) = σ0 + σ
(h)
f (1− exp(−3h/ah)), (4.14)

γ(v)(h) = σ0 + σ
(v)
f (1− exp(−3h/av)), (4.15)

where ah = ℓx = ℓy is the horizontal range, σ
(h)
f is the horizontal partial sill, and similarly

for av = ℓz and σ
(v)
f in the vertical direction.

We use the traditional Weighted Least Square (WLS) approach developed by [39] to deter-
mine parameter values by minimizing

∑
h∈V
|Dh|

{
γ̂(h)
γ(h) − 1

}2

, (4.16)

where V is a set of vectors that are carefully chosen to make the sets Dh a partition of the
data. For variograms with a fixed direction, notably γ(v), or for γ(h) that assumes isotropy,
the sets may simply be represented by scalar values h = ||h||.

The variograms and their estimated parameters are computed on the training data. In the
following sections, six different scenarios for train-test are considered. Note that Fig.4.1
and Fig.4.2 were computed based on one of these scenarios which also yields the following
estimates

σ̂0 = 12, the nugget (i.e noise variance),

σ̂
(v)
f = 45.79, the partial sill of the vertical semi-variogram,

σ̂
(h)
f = 36.78, the partial sill of the horizontal semi-variogram,

âv = 9.62, the range of the vertical semi-variogram,

âh = 18.23, the range of the horizontal semi-variogram.
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Note that the changes in the variograms and their parameter values are not noticeably differ-
ent from one train-test scenario to another. The experimental semi-variograms show different
ranges for the horizontal direction (direction perpendicular to the holes), and the vertical di-
rection (parallel to the holes), which leads us to conclude to the existence of directional
anisotropy. Similarly, we notice different sills on these semi-variograms, which indicates the
existence of zonal anisotropy. In Fig.4.3 we monitored the range and the sill values for differ-
ent azimuth angles varying in the interval [0◦

, 180◦ ] in the horizontal plane. We observe that
the partial sill and the range are quasi-constant with respect to the azimuth. The assumption
on the semi-variograms isotropy on the horizontal plane (x, y) could reasonably be considered
valid.

Figure 4.1 Vertical semivariogram with angle tolerance 0.1◦ and lag tolerance 1 cm, computed
in a train–test scenario using real BI data from an operating open-pit mine. Red points denote
the empirical semi-variogram, and the blue curve is the fitted theoretical model.
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Figure 4.2 Horizontal semivariogram computed in a train–test scenario using real BI data
from an operating open-pit mine. Red points denote the empirical semi-variogram, and the
blue curve is the fitted theoretical model.

Figure 4.3 Partial sill/range vs azimuth: Partial sill and range are monitered by computing
several semi-variograms for different azimuth angles, using a train-test scenario of real BI
data extracted from an operating open pit mine.
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In this section, we used variography to identify some spatial properties such as directional and
zonal anisotropies. We will leverage these characteristics as well as the observed parameter
values to determine a domain therefore in our proposed approach.

Combining Gaussian Processes and variography information

The originality of this study is to leverage the information extracted from variography to
make better choices in GP modeling. In addition to selecting kernels that match the structure
unveiled by the variograms, we add constraints to the optimization of the GP to ensure that
the parameters with physical interpretations are constrained to values that are empirically
compatible with those variograms.

In Sect.4.3.1, we discuss the ability of GP-based (Gaussian Process) machine learning to infer
scales automatically, thereby capturing geometric anisotropy through Automatic Relevance
Determination (ARD). This feature allows the model to adaptively weight different input
dimensions, which is particularly advantageous in spatial interpolation where anisotropic
patterns are present. By doing so, GPs can effectively model complex spatial dependencies
and directional trends in the data. However, while this flexibility is highly desirable, it
introduces numerical challenges that can lead to solutions misrepresenting the underlying
geometry of the data. Specifically, the model may become more sensitive to outliers and
atypical data points. This sensitivity can result in overfitting, where the GP model fits the
noise in the data rather than the true underlying spatial structure, as noted by [30]. Such
numerical instability underscores the importance of careful model calibration and validation
to ensure that the inferred geometric anisotropy accurately reflects the true spatial patterns
in the data.

Additionally, these numerical challenges can complicate the optimization process, potentially
leading to convergence issues or suboptimal parameter estimates. Therefore, while GP-based
models with ARD offer powerful tools for capturing anisotropy in spatial data, they require
robust handling of numerical issues to fully realize their potential in accurately modeling
spatial phenomena. In such case, variography in Kriging could be used to make GP more
robust [186]. It is recognized as an effective tool in covariance-model selection and in detecting
both geometric and zonal anisotropies [92](see Sect.4.3.1). In addition to using variography
to select an appropriate covariance model, we use the same representations to manually
extract intervals and bound the hyper-parameters of the GP model such as the output-
scale, and the length-scales. A parametrization approach is applied in the gradient descent
algorithm to enforce those domain constraints yet retain some automatic inference. For
a generic parameter θ that we would like to constrain to the interval [θlower, θupper], the
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reparametrization approach of [94] consists in expressing θ as a differentiable function of the
unrestricted raw parameter θ̃ ∈ R:

θ = g(θ̃) = (θupper − θlower)
1

1 + e−θ̃
+ θlower, (4.17)

ensuring that for θ̃ ∈ R, we have θ = g(θ̃) ∈ [θlower, θupper].

The likelihood function in Eq.(4.7) comprises six parameters, namely θ = (σf , σ0, ℓx, ℓy, ℓz, m).
Among these six parameters, m remains unconstrained, and σ0 will be fixed. To add some
flexibility, instead of fixing σf , we preferred to optimize it over a small interval bounding all
partial sills displayed by the variograms. Appendix A.1 shows how this interval is determined.
The remaining optimizable parameters are reparametrized, leading to θ̃ and the likelihood
function may be written as

l(θ) = l(g(θ̃)). (4.18)

In general, variography requires some subjective choices in the sense that different experts
will normally come to similar but not identical conclusions. Similarly, we followed intuition
to select appropriate intervals from the variograms. Guidelines for those choices are discussed
in Appendix A.1, but expert knowledge could also be leveraged.

Back-propagation algorithm is applied on θ̃ in this case instead of θ. Algorithm 3 in Appendix
A.2 presents the main steps of the inference approach.

In the previous section, exponential variogram models were appropriate choices to fit the
empirical variograms, which yields the study of a simple GP model with a simple exponential
kernel function. However, in Sect.4.3.1, we noticed that the spatial structure exhibits a zonal
anisotropy in which the partial sill changes with directions. Since simple kernel functions
such as the exponential kernel are unable to model such cases, a more complex composed
model is required. This model namely the nested model will be studied as well to account
for zonal anisotropy.

The simple model We model the covariance matrix using the simple exponential kernel
function:

Kij = k(da(si, sj)) = σfexp(−3da(si, sj)). (4.19)

In the simple exponential, only directional anisotropy is modeled through da() using ARD.
Zonal anisotropy however is not modeled because the output-scale (partial sill) is invariant
when changing directions. The hyper-parameters θ = (σf , σ0, ℓx, ℓy, ℓz, m) of the likelihood
function are inferred using Algorithm 3. The domain for the vertical partial sill (i.e the
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maximum partial sill) σ
(v)
f will be used to constrain σf .

The nested model We propose to model zonal anisotropy by adding two simple expo-
nential kernel functions leading to the following nested model:

Kij =
(
σ

(v)
f − σ

(h)
f

)
exp

−3

√√√√(zi − zj)2

ℓ2
z


+ σ

(h)
f exp

−3
√√√√(xi − xj)2

ℓ2
x

+ (yi − yj)2

ℓ2
y

+ (zi − zj)2

ℓ2
z

 , (4.20)

where σ
(v)
f is the partial sill along the vertical direction, and σ

(h)
f is the partial sill along the

horizontal direction. In the horizontal direction, zi = zj, and Eq.(4.20) is reduced to a simple
exponential kernel with partial sill σ

(h)
f and nugget σ

(v)
f − σ

(h)
f :

Kij = σ
(v)
f − σ

(h)
f + σ

(h)
f exp

−3
√√√√(xi − xj)2

ℓ2
x

+ (yi − yj)2

ℓ2
y


= σ

(v)
f − σ

(h)
f + σ

(h)
f exp

(
− 3 da(si, sj)

)
. (4.21)

In the vertical direction, we have that xi = xj and yi = yj, hence Eq.(4.20) is reduced to a
simple exponential kernel with partial sill σ

(v)
f :

Kij = σ
(v)
f exp

−3

√√√√(zi − zj)2

ℓ2
z

 = σ
(v)
f exp(−3da(si, sj)). (4.22)

This GP-nested approach models the zonal anisotropy and is compatible with the variography
in Sect.4.3.1. The hyper-parameters θ = (σ(v)

f , σ
(h)
f , σ0, ℓx, ℓy, ℓz, m) of the likelihood function

are inferred using Algorithm.3.

4.3.2 Inverse Distance Weighting based models

Background

Unlike GPs which are based on probabilities, IDW is a deterministic (non-probabilistic)
interpolation approach. The weights then associated with our targets, wji, (i, j) ∈ T ×T are
parametric functions of the distance [100,171]:

wji = da(si, sj)−p∑
i

da(si, sj)−p
, (4.23)
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with weight functions depending on the exponent parameter p and the length-scales ℓx, ℓy, and
ℓz used implicitly to compute the distances da(si, sj) (see Eq.(4.3)). The studies that account
for geometric anisotropy rely on variography to infer ℓx, ℓy, and ℓz [169,189,208]. While some
studies fix p = 2 claiming that it is suitable for geological interpolation [38, 111, 208], others
infer p and Leave One Out Cross Validation (LOOCV) is the most common approach therefor
[12,114,116]. The method consists of searching over a discretized domain G = {1, 1.5, 2, ....}
to choose p that minimizes the LOOCV Error given by ELOOCV = (1/|T |)∑j∈T (t̂j − tj)2

where t̂j = ∑
(i,j)∈T 2

, i ̸=j
wjiti is the IDW estimation of the real observation tj using all the

other observations and leaving tj out. Algorithm 1 in Appendix A.2 shows the detailed steps
of the LOOCV method used on the training data Dtrain = {(si, ti), i ∈ T } to infer the
parameter p. To improve IDW, [38] proposed a modification of the conventional approach.
The errors ei = ( t̂i − ti)2, i ∈ T between the estimations t̂i and the real values ti, are used
to compute coefficients ci, expressed as:

ci = 1 + ei

max
v∈T

ev

, i ∈ T , (4.24)

and used to adjust the interpolation weights as follows:

w̃ji = ci.wji∑
u∈T

cu.wju

. (4.25)

The interpolation is performed using the modified weights w̃ji instead of wji:

t̂j =
∑
i∈T

w̃jiti, for all j ∈ T . (4.26)

[38] noticed that if ei = maxv∈T ev, then ci = 2, and the influence of ti when interpolating
is doubled. However, if ei = 0, then ci = 1, and the influence of ti is unchanged. They
concluded that the coefficients ci emphasize low-accuracy (high-error) interpolation points.

Algorithm 2 in Appendix A.2 presents the inference of p of the modified approach using
LOOCV.

Gradient based inference for IDW

In this section, we propose a new IDW treatment that is inspired by neural networks and
leverages a back-propagation algorithm. The strategy deployed for GPs that consists in
constraining the length-scale parameters using variography information will be used here as
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well.

The Gradient-based conventional IDW: We present a gradient-based inference frame-
work for the IDW model. Conventional anisotropic IDW and the modified IDW depend
on the parameters θ = (p, ℓx, ℓy, ℓz). In our approach, these parameters are inferred using
gradient-based optimization. The main idea is to model IDW as a single-layer neural network
and use back-propagation to infer the IDW parameters.

In the LOOCV approach, the error ELOOCV (θ) = (1/|T |)∑j∈T (t̂j − tj)2 must be minimized,
where t̂j = ∑

i∈T , i ̸=jw̃jiti is the IDW estimation of the real observation tj of the training
data, using all the other observations and leaving tj out. In our approach, we use the matrix
notation to exploit parallelism in the calculation of t̂j for all j. We show in Appendix
A.3.1 that the LOOCV applied on IDW could be equivalently performed by minimizing the
following error:

ELOOCV (θ) = 1
|T |

∥∥∥t̂− t
∥∥∥2

= 1
|T |

∥∥∥W(θ)t− t
∥∥∥2

, (4.27)

where t = [ti], and t̂ = [t̂i] are the vectors containing respectively the true values and the
IDW predicted values for i ∈ T , W is the matrix with a zero diagonal and the IDW weights
wji elsewhere. As usual,

∥∥∥.∥∥∥ is the Euclidean norm.

Since W = W(θ) is differentiable with respect to the parameter vector θ, t̂ = W(θ)t could
be seen as a forward step of a single-layer neural network that has input vector t and output
vector t̂. With this setup, we infer θ by minimizing Eq.(4.27) using back-propagation. As
with neural networks, the inference algorithm consists of two main steps (see e.g. [58]):

1. forward step : compute ELOOCV (θ) = 1
|T |

∥∥∥W(θ)t− t
∥∥∥2

;

2. backward step: θ ← θ − α∂ELOOCV (θ)
∂θ

, where α is the learning rate.

In anisotropic IDW, variography could be used to restrict the domain search of the length-
scales ℓx, ℓy, and ℓz. The exponent parameter p must be positive and its domain search
must be restricted to [0, +∞[. The reparametrization technique is used to model these
restrictions. As indicated in Eq.(4.17), a function g() and an unrestricted vector of raw
parameters θ̃ = (ℓ̃x, ℓ̃y, ℓ̃z, p̃) are introduced so that θ = g(θ̃) lies in the desired domain. The
LOOCV error in this case is a differentiable function of θ̃:

ELOOCV (θ) = ELOOCV (g(θ̃)) = 1
|T |

∥∥∥W(g(θ̃))t− t
∥∥∥2

. (4.28)

The inference is then applied with respect to θ̃ instead of θ:

1. forward step : compute ELOOCV (g(θ̃)) = 1
|T |

∥∥∥W(g(θ̃))t− t
∥∥∥2

;
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2. backward step: θ̃ ← θ̃ − α∂ELOOCV (g(θ̃))
∂θ̃

, where α is the learning rate.
Algorithm 4 in Appendix A.2 shows the detailed steps of IDW’s gradient-based inference
approach.

The gradient-based modified model: The modified IDW approach introduced in Sect.4.3.2
consists of adjusting the IDW weights wji using the coefficients ci defined in Eq.(4.24). As
illustrated previously, the LOOCV error in the case of the modified approach could be com-
puted in one single forward step:

ELOOCV (g(θ̃)) = 1
|T |

∥∥∥t̂− t
∥∥∥2

= 1
|T |

∥∥∥∥W(g(θ̃))[c⊙t]
W(g(θ̃))c

− t
∥∥∥∥2

, (4.29)

where c = [ci] is the vector that contains the coefficients for all i ∈ T ; and the operator ⊙ is
the element-wise product ( c⊙ t = [citi]). The division on vectors is also performed element-
wise (c/t = [ci/ti]) through this paper. The detailed derivation of Eq.(4.29) is presented in
Appendix A.3.2. Notice that ELOOCV (g(θ̃)) is differentiable with respect to θ̃. Algorithm 4
in Appendix A.2 could thus be used to infer θ̃.

The coefficients vector could be considered as a parameter instead of being calculated using
Eq.(4.24). In this case, ELOOCV (g(θ̃)) is differentiable with respect to c. Next, we propose a
novel Gradient Based Modified IDW (GBM-IDW) in which the coefficients c = [ci] are derived
using back-propagation along with θ. By considering that the coefficients are restricted to
the interval [1, 2], the reparametrization approach will be employed. A parameter vector for
unrestricted raw coefficients c̃ ∈ Rn and a differentiable function h are therefore defined such
that c = h(c̃) ∈ [1, 2]n. The inference of c and θ comprises two main steps:

1. forward step : Compute ELOOCV (θ, c):

ELOOCV (θ, c) = ELOOCV (g(θ̃), h(c̃)) = 1
|T |

∥∥∥∥W(g(θ̃))[h(̃c)⊙t]
W(g(θ̃))[h(̃c)⊙1]

− t
∥∥∥∥2

;

2. backward step : θ̃ ← θ̃ − α∂E(g(θ̃),h(̃c))
∂θ̃

, c̃← c̃− α∂E(g(θ̃),h(̃c))
∂c̃ .

Algorithm 5 in Appendix A.2 shows the detailed process of inference in the new GBM-IDW.
Because the coefficients are considered parameters, GBM-IDW might be more flexible than
the conventional modified approach proposed by [38].

Leave Hole Out Cross Validation Interpolation: In the previous sections, we demon-
strated that using our approach, LOOCV could be performed in one single forward step by
computing ELOOCV (θ) = 1/|T |

∥∥∥W(θ)t− t
∥∥∥2

2
. In many cases, using LOOCV could underesti-

mate the generalized error. K-Fold Cross Validation (K-FCV) is then preferred over LOOCV
for spatial non-structured data [188]. However, geological and ecological data often show
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internal spatial or temporal dependence structures [162]. In our case, the data is spatially
structured as blocks of holes. It is not suitable for our case to separate the data randomly
using K-FCV. This problem is addressed by Blocking [162], where blocks (in our case holes)
are considered as Folds. In Leave Hole Out Cross Validation (LHOCV), each point in a
hole is interpolated using only the observed points belonging to other observed holes during
inference.

LHOCV could also be computed in a single forward step by eliminating the contributions of
the weights wji if si and sj belong to the same hole. This means working with the weights
w̃ji = wji ∗ aji where,

aji = I{(xi − xj)2 + (yi − yj)2 ̸= 0} =

1 If (xi − xj)2 + (yi − yj)2 ̸= 0

0 Otherwise
,

is the indicator function. The weights w̃ji are still differentiable with respect to θ. In the
case of LHOCV, ELHOCV (θ) is minimized instead of ELOOCV (θ):

ELHOCV (θ) = 1
|T |

∥∥∥[W(θ)⊙A]t− t
∥∥∥2

= 1
|T |

∥∥∥W̃(θ)t− t
∥∥∥2

, (4.30)

where: A = [aji] is the matrix that contains aji as elements. With this treatment, we obtain
a sparser parameter matrix W̃. Note that this is a form of regularization since it is very
analogous to dropout-regularization in neural networks [177]. By using LHOCV, we foresee
a better regularization, giving in turn more accurate predictions.

LHOCV could be applied to all previously developed IDW approaches. Algorithm 6 in
Appendix A.2 shows GBM-IDW’s inference using LHOCV, denoted GBM-IDW-LHOCV.

4.4 Experiments and results

In this section, we will compare the models introduced previously on different train-test split
scenarios of data consisting of BI measurements and their corresponding three-dimensional
coordinates extracted from an operating open pit mine. We use the minimum RMSE (see
Eq.(4.1)) as a performance criterion.

All the models are implemented using Pytorch (a machine-learning framework) in python.
The tests were performed on a computer with an Intel(R) Core(TM) i7-8550 CPU @ 1.80GHz
processor and 8 GB of RAM. The presented models are tested on a real-world data set
provided by our industrial partner from an operating open pit mine.
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4.4.1 Data

We have data consisting of BI measurements and their corresponding (x, y, z) coordinates
from 72 boreholes, leading to 4719 data points. Fig.4.4 is a three-dimensional plot represent-
ing the data points in the three-dimensional coordinate systems named CoordX, CoordY,
and CoordZ. The color bar represents the BI values of each data point. Fig.4.5 shows a
two-dimensional cross section of BI values at altitude 1240 cm.

Figure 4.4 Data consisting of BI measurements of the drilled holes presented in a three-
dimensional coordinates system. The intensity of the color-bar indicates the BI values.

4.4.2 Models’ comparison

In this section, we present the results and the interpretations of the proposed approaches. The
approaches are tested and compared using six extrapolation scenarios. A scenario consists
of choosing five boreholes as testing data, and the rest are considered as training data. The
circled boreholes in Fig.4.6 present the test boreholes of each scenario. The choice of the
test data in each scenario to be in sequence and located in the border areas was intended
to emulate the possible drilling patterns. According to experts and mining operators, the
machine drills holes in series and it is convenient to consider the interior areas as drilled and
the border areas as not drilled.
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Figure 4.5 A two-dimensional cross section of BI values at altitude 1240 cm.

The minimization of the Root-Mean-Square Error (RMSE) defined in Eq.(4.1) is used as a
performance criterion. We chose RMSE because it allows us to assess both bias and variance
in the model’s predictions simultaneously.

To compare models, an average RMSE of all scenarios is calculated for each model. Fig.6.6
shows the average RMSEtest of each model. The approaches that are compared are presented
in the abscissa axis with the following notations:

— Mean: Using the mean of the training data as estimator.
— GP: The conventional Gaussian Process with a simple exponential kernel.
— GP-C: The conventional Gaussian Process with a simple exponential kernel and con-

strained hyper-parameters.
— GP-nested: The nested model with constrained hyper-parameters.
— IDW: The gradient-based conventional IDW model defined in Sect.4.3.2.
— IDW-C: The gradient-based conventional IDW model defined in Sect.4.3.2 with con-

strained parameters.
— IDW-LHOCV: The gradient-based conventional IDW model defined in Sect.4.3.2 with

LHOCV inference.
— M-IDW-LHOCV: The gradient-based IDW-modified approach with LHOCV inference.
— GBM-IDW-LHOCV: The gradient-based IDW modified approach with learnable co-

efficients and LHOCV inference.
According to Fig.4.7, the Unconstrained GP (Gaussian Process) performed worse than the
baseline, but it exhibited less variance in RMSEtest. This can be attributed to the Un-
constrained GP being more sensitive to outliers and prone to overfitting. By introducing
constraints and incorporating realistic physical ranges from variography, both the average
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Figure 4.6 Train-test scenarios, in each scenario, the circled set of holes presents the test set
and the remaining holes are the training set.

RMSEtest and the variance in RMSEtest decreased. A similar pattern was observed with
IDW and IDW-C. The application of LHOCV inference regularization resulted in lower test
errors.

Comparing GP-nested and GBM-IDW-LHOCV, both methods were quite comparable. While
GP-nested had a better average RMSEtest, GBM-IDW-LHOCV showed less variance in
RMSEtest. This suggests that GBM-IDW-LHOCV is more robust to outliers and exhibits
less variability.

4.4.3 The effect of regularization on IDW

In Sect.4.3.2, we discussed that by adding constraints and using LHOCV, the error ELHOCV

estimates the test error better compared to the error ELOOCV used in LOOCV. This could
clearly be seen in Fig.4.8 where the more the IDW model is regularized, the closer the gap
between the training error and the average test error.

LHOCV regularization has also an effect on the parameters p, ℓx, ℓy, and ℓz of the IDW model.
Fig.4.9 shows the changes on the parameters when moving from IDW-C to IDW-LHOCV
by considering LHOCV inference. And then, from IDW-LHOCV to GBM-IDW-LHOCV by
introducing the modified model with learnable coefficients. Moving from IDW-C to IDW-
LHOCV, ℓx and ℓy increased to improve the contribution of points belonging to nearby holes.
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Figure 4.7 The evolution of the RMSEtest of all scenario from the worst performed model
(higher RMSE) to the best performed model (lower RMSE) (boxplots) along with the corre-
spondant variance (orange curve).

The vertical range ℓz decreased to reduce the contribution points belonging to the same holes
because in real situations, they are not available for a non-drilled location to be predicted,
and hence could not be used in interpolation. The parameter p is increased to limit the radius
of influence to a closer boreholes, rending to a more localized and less smooth interpolation.
By introducing the coefficients when moving from IDW-LHOCV to GBM-IDW-LHOCV, the
range parameters ℓx, ℓy, and ℓz are approximately unchanged. However, as a reaction of
emphasizing the contribution of some points, the power parameter p increased to make the
interpolation more localized.

From this analysis, we conclude that there is a significant interaction between the anisotropic
parameters and the power parameter. This contrasts with the traditional approach used in
most geographic and geoscience studies [169,189,208], where these parameters are optimized
in separate steps: anisotropy is first determined through variography, followed by the op-
timization of the exponent parameter using LOOCV. Our optimization scheme, however,
integrates variography directly into the process, allowing for the concurrent optimization of
both parameters. This differs from other methods that employ ellipsoidal search techniques,
where interpolation is performed only for points within the ellipsoid, adhering to the interpo-
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lation equation [128,145]. While these methods respect the geometric anisotropy of the data,
they often demand more computational resources due to the complexity of the ellipsoidal
search process.

In addition, our study demonstrates that integrating Leave Hole-Out Cross Validation (LHOCV)
or other regularization techniques is straightforward, offering the potential to improve accu-
racy depending on the specific case. In summary, this framework provides a valuable, realistic,
and automated solution to geospatial problems in geography and geoscience, ensuring a more
holistic and efficient optimization of interpolation parameters.

Figure 4.8 Effect of regularization on the error, the curves monitor the change in the test
error (blue) and the train error (orange curve) when increasing regularization in IDW by
adding constraints in IDW-C and then by adopting LHOCV inference in IDW-LHOCV.

4.4.4 Interpreting the coefficients in M-IDW-LHOCV and GBM-IDW-LHOCV

In M-IDW-LHOCV, the coefficients are calculated using Eq.(4.24). However, in GBM-IDW-
LHOCV the coefficients are considered learnable parameters. In this section, we interpret
these coefficients. We present in Fig.4.10 the coefficients ci in the abscissa axis and the cor-
respondent observed BI, ti in the ordinate axis. According to Eq.(4.24) the coefficients of
M-IDW-LHOCV (blue curve) are increasingly linear with the error (the method emphasizes
high error points). The interpolation points with coefficients that are above 1.5, correspond
to BI above 80 (orange line). They are associated with high error, so their contribution is
increased. However, these points are considered minorities and may be outliers. GBM-IDW-
LHOCV (gray curve) does not give large coefficients to these rare points. The coefficients
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Figure 4.9 The infered parameters’ values in IDW-C (blue curve), IDW-LHOCV (orange
curve), and GBM-IDW-LHOCV (gray curve). The figure captures their changes when moving
from one IDW variant to another.

values’ scheme is more complex and aims to minimize global LHOCV error through gradi-
ent descent. GBM-IDW-LHOCV might be less sensitive to outliers which explains why it
performed slightly better than M-IDW-LHOCV.

Fig.4.11 shows the spatial distribution of the coefficients for the GBM-IDW-LHOCV model
and the corresponding BI distribution. We can visually note that the coefficients depict more
variability. The role of the learnable coefficients is to make the IDW model more flexible in
order to capture abrupt changes. This is achieved through the automatic optimization of the
Leave-Hole-Out Cross-Validation (LHOCV) error, introducing variability as needed to cope
with abrupt changes that the conventional IDW model would not handle effectively. This
aspect will be seen more clearly when analyzing the three-dimensional cross-sections of the
interpolated values of the proposed models.

4.4.5 Analyzing two-dimensional cross sections of an interpolated volume

To conduct a visual analysis of the spatial interpolation volume of the models, we focus
on the three-dimensional cross-section at an altitude of 1240 cm with a thickness of 1 cm.
Fig.4.12 displays the borehole data for this cross-section, which we consider as test data,
while the remaining data serves as training data. We employ the models GP-C, IDW-C, GP-
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Figure 4.10 The curves present the coefficients ci in the abscissa axis and the correspondent
observed BI, ti in the ordinate axis for M-IDW-LHOCV (blue curve) and GBM-IDW-LHOCV
(gray curve). The interpolation points with coefficients that are above 1.5, correspond to BI
above 80 (orange line).

nested, and GBM-IDW-LHOCV to interpolate across the volume that includes and extends
beyond the existing boreholes. Fig.4.13 illustrates the two dimensional cross section of the
interpolation volume for the aforementioned models.

The GP-C interpolation model shows continuous high-intensity zones characterized by BI
values above 60, which do not match well with the ground truth data presented in the cross-
section. GP-C is more sensitive to high BI values, which are less prevalent in the data. In
some boundary regions, especially those lacking observational data, purple regions appear,
indicating that the model tends towards the mean BI value of around 12.

The GP-nested model minimizes the regions of high BI and aligns more closely with the
ground truth. It predicts some regions with high BI but not as extreme as GP-C. IDW-
C shows more continuous purple regions (closer to the mean of the data). Although it
performs better than the mean, it fails to account for some abrupt changes where higher
BI values are present (blue regions). GBM-IDW-LHOCV resolves this issue. The learnable
coefficients increase the flexibility of IDW-C, allowing it to handle abrupt changes from
darker to lighter regions more effectively, making it closer to the ground truth. Because
all the models are tested on only one single dataset we have to be cautious and not jump
directly into generalizing the models’ behaviors. The current results, however, indicate that
the developed models are promising for spatial interpolation.
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Figure 4.11 The three-dimensional spatial distribution of the coefficients of the GBM-IDW-
LHOCV model (left), and the corresponding BI values (right).

4.5 Conclusion

In this paper, we used gradient-based machine learning (back-propagation) on conventional
interpolation approaches. By employing parametrization techniques, we introduced con-
straints to account for spatial properties, such as geometric anisotropy, and improve pre-
dictions in the case of the Gaussian Process (GP) model. The GP-nested model, a more
sophisticated variant, was specifically designed to account for zonal anisotropy. Additionally,
we proposed a novel inference treatment for Inverse Distance Weighting (IDW), leading to the
development of GBM-IDW-LHOCV, whose performance was found to be comparable to that
of GP-nested. The results indicated that the Leave-One-Hole Cross Validation (LHOCV)
error was closer to the average test error compared to the Leave-One-Out Cross Validation
(LOOCV) error. This transition from LOOCV to LHOCV was achieved by zeroing out the
weights associated with the hole to be predicted. This can be seen as a form of regulariza-
tion, as it mirrors dropout regularization in neural networks [177]. By increasing horizontal
ranges and decreasing vertical ranges, LHOCV regularization emphasizes interpolation in
nearby boreholes while reducing the influence of points within the same hole that would not
be available in an actual predictive scenario.
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Figure 4.12 A three-dimensional cross-section at an altitude of 1240 cm with a thickness of
1 cm.

GP-C GP-nested

IDW-C GBM-IDW-LHOCV

Figure 4.13 Models interpolation of a cross section at altitude 1240 cm.
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Moreover, we demonstrated that GBM-IDW-LHOCV is potentially more robust to outliers
compared to M-IDW-LHOCV, as it does not overly emphasize the contribution of rare or
isolated interpolation points. This added robustness is particularly beneficial in geospatial
data, where outliers can significantly distort predictions.

As future work, we propose extending this novel inference framework for IDW by exploring
deeper architectures, analogous to deep neural networks. Since the current model, based on
back-propagation, functions similarly to a single-layer neural network, it holds promise for
solving more complex interpolation problems. By developing a deeper structure for our IDW
variant, we could capture more intricate spatial relationships and dependencies.

Additionally, we envision stacking the IDW model with deep learning architectures such as
Variational Autoencoders (VAE). This integration would allow the model to learn more com-
plex latent structures while preserving spatial dependency, an essential factor in geoscience
applications. In particular, such a framework could be applied to rock mass domaining
and lithology recognition, improving both geological modeling and rock hardness predictions
while maintaining the spatial continuity of the data. This would not only enhance the robust-
ness of spatial interpolation but also provide deeper insights into the underlying geological
structures of mining complexes, leading to better decision-making in mining operations.

Apport du chapitre à la thèse

Les résultats obtenus dans ce travail montrent que l’inférence basée sur la rétropropagation
améliore considérablement la performance des modèles IDW et GP pour l’estimation du
BI. En optimisant les paramètres du modèle via l’apprentissage automatique, cette approche
surpasse les méthodes classiques en prenant en compte l’anisotropie et les structures spatiales
sous-jacentes. Les modèles développés dans ce chapitre sont compatibles avec les réseaux de
neurones, ouvrant ainsi la voie à l’intégration de techniques de réduction de dimension basées
sur ces réseaux. Cela permet de concevoir des modèles mieux adaptés aux tâches spécifiques,
telles que la délimitation des masses rocheuses, comme exploré dans les chapitres suivants.
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CHAPITRE 5 ARTICLE 2: INTEGRATING VARIATIONAL
AUTO-ENCODERS (VAEs) AND SPATIAL INTERPOLATION FOR

IMPROVING ROCK MASS DOMAINING IN OPEN PIT MINES

Cet article a été soumis le 06 avril 2025 à la revue Computers & Geosciences et est en attente
de révisions, coécrit avec Richard Labib, Jean-François Plante et Michel Gamache.

Aperçu du chapitre

L’identification des massifs rocheux dans les mines à ciel ouvert repose sur la capacité à
regrouper des zones homogènes en termes de dureté et de comportement mécanique. Ce
chapitre propose une méthode combinant les autoencodeurs variationnels (VAE) et l’interpo-
lation spatiale pour améliorer la délimitation des domaines géologiques à partir des données
MWD. L’objectif est d’extraire une représentation latente pertinente des MWD qui capture
à la fois la dureté des roches et la continuité spatiale, permettant ainsi une classification plus
robuste des unités géologiques.

5.1 Abstract

This study focuses on rock mass domaining, using measurement while drilling (MWD) data to
create contiguous spatial domains characterized by consistent rock hardness. The proposed
method employs a stacking variational encoder (VAE) combined with a spatial interpola-
tion model compatible with neural networks. The VAE is designed to learn the underlying
shared structure of the MWD data, specifically targeting rock hardness, while the spatial
interpolator captures spatial similarity to ensure consistency. The resulting feature, termed
Pseudo-BI, serves as the primary input for clustering via BIRCH algorithm (Balanced Iter-
ative Reducing and Clustering Using Hierarchies). Three different VAE layer types——fully
connected (FC), convolutional (Conv), and radial basis function (RBF)—are explored. The
models’ performances are evaluated by assessing contiguity using Domain Accuracy (DA)
and rock hardness consistency through Pooled Standard Deviation (PSD). Beyond achieving
spatial domaining, the models successfully detect true lithologies identified by experts in 2D
and extend these findings into 3D, demonstrating their potential as powerful geomodeling
tools for mining applications.
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5.2 Introduction

Bench rock classification poses a significant challenge, requiring the identification of spatial
zones with homogeneous rock properties for effective mining operations. To achieve a tar-
geted fragmentation size distribution, it is essential to apply similar explosive energy to zones
with comparable rock hardness. Rock mass domaining, which involves delineating contigu-
ous spatial zones with similar rock hardness, is crucial for optimizing explosive recipes and
subsequent operations such as grinding.

Rock hardness, quantified by the Blastability Index (BI), is derived by normalizing the Spe-
cific Energy of Drilling (SED). This process relies on mechanical parameters recorded by
Monitoring While Drilling (MWD) sensors, which are attached to the drilling machines.
These parameters include the Rate of Penetration (ROP), which measures the speed at
which the drill bit advances through the rock (typically in meters per minute), the Weight on
Bit (WOB), representing the axial force applied to the drill bit (measured in kilonewtons),
the Rotations Per Minute (RPM) of the drill bit, and the Torque (TRQ), which quantifies
the rotational force exerted on the drill string (measured in kilonewton-meters). The SED is
computed using the following equation:

SED = WOB
A

+ 2π × RPM× TRQ
A× ROP , (5.1)

where A represents the cross-sectional area of the wellbore [11,225]. The BI is then obtained
by normalizing the SED to account for variations in drilling conditions and machine settings,
ensuring a more consistent representation of rock hardness.

Traditional geological surveys, while informative on surface rock composition, are costly and
time consuming [224]. These surveys lack the ability to provide comprehensive 3D rock
recognition along the wells, limiting insight into rock characteristics. To overcome these
limitations, recent studies propose employing Machine Learning (ML) techniques to relate
rock properties to drilling measurements [175]. The existing literature categorizes these
studies into two main approaches: supervised and unsupervised methods [175,224].

Supervised methods rely on labeled data, where each MWD data point is assigned a cor-
responding rock class label. Several ML approaches have been explored, including Neu-
ral Networks [50, 62, 82, 98, 99, 125, 130, 192, 214], Boosting [62, 82, 214], Gaussian Processes
[176, 223, 224, 226], Fuzzy Logic [82], Decision Trees [62, 96, 214], and Conditional Random
Fields (CRF) [132, 133]. Challenges arise due to labels availability and the complexity of
predicting rock types from MWD, resulting from the lack of a one-to-one correspondence be-
tween lithology and MWD measurements. Addressing these challenges, researchers propose
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innovative solutions such as mapping MWD to the Adjusted Penetration Rate (APR) as a
rock hardness measurement [224]. Entropy analysis, as proposed by [225], claims to eliminate
inherent variability in ROP measurements.

Unsupervised learning approaches are introduced to analyze unlabeled data, primarily through
clustering algorithms. However, their application to drilling measurements remains limited,
with most studies employing unsupervised methods for feature learning as a precursor to
classification [93,225]. Spatial dependency is often overlooked, with notable exceptions being
the work of [132–134], where boosted decision trees and Conditional Random Fields (CRF)
are used to capture spatial relationships among neighboring measurements. Nevertheless,
these approaches do not account for anisotropy, particularly geometrical anisotropy, which
refers to the directional variation in spatial continuity, where the range of spatial correlation
differs depending on direction. Ignoring anisotropy in spatial models can lead to inaccu-
rate geological representations, particularly in structurally complex formations where rock
properties exhibit directional dependencies. Despite its critical role in geostatistical model-
ing, anisotropy remains largely unexplored in machine learning applications to drilling data,
highlighting a key gap in the current research landscape.

Nowadays, the baseline clustering relies on BI (similar to SED) as a measure that char-
acterizes rock hardness of the zones. However, BI inherently captures the variability in
mechanical parameters arising from measurement errors, vibration, bit wear, and operator
and/or auto-drill setpoints. Its clusters, as we will show, lack provision for spatial domains.
Addressing these challenges, our research focuses on developing a machine learning model
leveraging Variational Auto-Encoders (VAEs) and spatial interpolation techniques. VAEs
are employed to learn an underlying structure namely pseudo-BI from MWD parameters;
it is considered as an indication of the rock hardness as a characteristic shared by all four
mechanical parameters. Spatial interpolation techniques are then applied to learn spatial
similarity and anisotropy, ensuring contiguity in space and mitigating observation variabili-
ties. This integrated approach yields a 3D spatial mapping of pseudo-BI for every point in
the minefield.

The spatial contiguity and similarity concerning geology are guaranteed by the spatial inter-
polator. Moreover, this methodology addresses data scarcity by using the same interpolator
to estimate pseudo-BI in spatial locations lacking observational data. The final step in-
volves clustering based on the pseudo-BI for the augmented data, defining contiguous spatial
domains with consistent rock hardness. This integrated approach promises to significantly
improve the efficiency of mining operations, marking a substantial step forward in the field
of bench rock classification.
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The following sections provide a detailed overview of the models and methodologies, including
experimental procedures and visual illustrations. Section 2 covers the theoretical framework
and methodology, Section 3 presents the experiments and results, and Section 4 discusses the
conclusions and findings.

5.3 Theory and methodology

5.3.1 Auto-Enocders (AEs)

AEs represent a specific type of neural network (NN) designed to encode input into a mean-
ingful latent representation with lower dimension and then decode it back to ensure that the
reconstructed input closely resembles the original input [16,17]. Numerous variations of AEs,
such as VAE [95], Correlational Neural Networks (CorrNets) [32], and Variational Canoni-
cal Correlation Analysis (VCCA) [199], have been developed to address challenges posed by
conventional dimensionality reduction techniques, including Principal Component Analysis
(PCA), Probabilistic Principal Component Analysis (PPCA) [184], Canonical Correlation
Analysis (CCA) and Factor Analysis (FA). These variations cater to specific tasks, whether
it is performing dimensionality reduction, learning a probabilistic latent representation, or
finding a representation that maximizes the correlation of two random vectors.

In the domain of mining, geology and geoscience, recent studies have explored VAEs for
geochemical pattern recognition [202], digital rock reconstruction [36], rock burst assess-
ment [113]. A geologically constrained VAE showed promise in mineral prospectivity map-
ping [230] and recognizing geochemical anomalies [221]. VAE exhibited fair modeling flexibil-
ity, accommodating physical and geological constraints. Most studies introduced a geology-
related loss, which is added to the VAE loss [221, 230]. In our study, we consider extending
this approach by stacking a gradient-based spatial interpolator onto the VAE to account for
spatial dependency, anisotropy, and spatial smoothness, thereby enhancing spatial contiguity.

Since VAEs serve as the foundational components of our proposed models, this section pro-
vides a comprehensive explanation of VAEs. Let ti, for i = 1, . . . , N , denote the input data,
where each vector ti ∈ Rd represents a single observation of the MWD data. Similar to
AEs, VAEs encode each input vector, denoted by t, into a latent representation zt through
an encoder network. This latent variable is then decoded back to t̂, a reconstruction of the
original input, through a decoder network. What differentiates VAEs from AEs is the prob-
abilistic framework they employ, particularly variational Bayesian inference. Rather than
directly learning a deterministic mapping from input to latent variables, VAEs assume that
the latent space follows a probabilistic distribution.
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In VAEs, the model learns a variational approximation to the intractable Bayesian pos-
terior over the latent variables. Specifically, it models a variational normal distribution
q(zt, θenc) = N (zt|µt, σ2

t) as an approximation to the true posterior distribution p(zt|t),
which is generally intractable. Here, θenc represents the parameters of the encoder network,
which learns a probabilistic mapping from the input t to the mean µt = fµ

θenc(t) and the
standard deviation σt = fσ

θenc(t) of the approximate posterior. The decoder learns the con-
ditional normal likelihood p(t|zt, θ) = N (t|t̂, σ2

tI), where t̂ = fθdec
(zt) is the reconstructed

input. This conditional likelihood assumes that the reconstruction of the input t is normally
distributed around t̂ with variance σ2

t .

The parameters of both the encoder and decoder networks are learned by minimizing the
VAE loss function, which is derived from the Evidence Lower Bound (ELBO). To enable
efficient training, VAEs use the reparameterization trick to sample the latent variable zt

while maintaining differentiability. Instead of sampling directly from N (µt, σ2
t), we express

it as zt = µt + σt ∗ ϵ, where ϵ ∼ N (0, 1).

The ELBO provides a tractable lower bound on the log-likelihood of the observed data
p(t1, . . . , tN), since computing the exact log-likelihood is computationally intractable. The
ELBO consists of two terms: the first term is the reconstruction loss, which encourages the
decoder to produce accurate reconstructions of the input; the second term is the KL diver-
gence, which regularizes the encoder by minimizing the difference between the approximate
posterior q(zt | t) and the prior p(zt), usually a standard normal distribution. Here, the
Kullback–Leibler (KL) divergence is DKL(q∥p) = Eq

[
log q(zt)

p(zt)

]
, a non-negative measure of

dissimilarity between distributions that equals zero if and only if q = p. This regularization
helps ensure that the learned latent space is well-structured. Mathematically, the VAE loss
function can be written as:

LVAE = −
N∑

i=1

(1
2
(
ln
(
(σti

)2
)
− (µti

)2 − (σti
)2 + 1

)
+ Eq(zti

,θenc) [ln p(ti|zti
, θ)]

)
(5.2)

In this expression, the first part of the loss corresponds to the KL divergence between the
approximate posterior q(zt|t) and the prior p(zt), and the second part corresponds to the
expected log-likelihood of the data given the latent variables. By minimizing this loss, the
VAE learns both an efficient latent representation and a generative model that can produce
realistic data reconstructions, while also ensuring that the latent space adheres to the chosen
prior distribution.

Figure 5.1 shows the basic architecture of a VAE, in which the four mechanical parameters
ROP, RPM, TRQ, and WOB are regarded as inputs that are encoded into one-dimensional
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latent representation and then decoded back into pseudo-ROP, pseudo-WOB, pseudo-RPM,
and pseudo-TRQ.

.

5.3.2 Proposed methodology

Stacking gradient-based spatial interpolator and VAE

In this study, we address a dataset containing MWD data at various three-dimensional co-
ordinates. Each measurement, denoted as i = 1, ..., N , is represented by a four-dimensional
vector ti, encapsulating ROP, WOB, RPM, and TRQ, recorded at the specific location
si = [xi, yi, zi]T within a borehole situated at coordinates (xi, yi) and depth zi. The set
of of measurements for a hole j (j = 1, ..., M) is denoted as Hj. We employ a VAE model
to encode each input feature vector ti into a one-dimensional latent representation z

(i)
t . To

mitigate variability, account for spatial dependency, and enhance spatial contiguity, we in-
tegrate a spatial interpolator and compute the interpolation ẑ

(i)
t using observations of zt

other than the datum i. In previous work, we developed a gradient-based spatial interpo-
lator based on the Modified Inverse Distance Weighting (IDW) model, referred to as the
Gradient-Based Modified Inverse Distance Weighting (GBM-IDW) [63]. This method inte-
grates backpropagation-based optimization into the conventional IDW framework, making it
compatible with neural networks. For validation, we employed Leave Hole Out Cross Valida-
tion (LHOCV), which differs from the standard Leave One Out Cross Validation (LOOCV).
In LHOCV, the interpolation at a given location si within the kth borehole (i ∈ Hk) is per-
formed using observations from all boreholes except the kth one. This approach accounts for
spatial dependency between boreholes and has been shown to improve interpolation accuracy
compared to LOOCV, which excludes only the individual point being interpolated from the
training data. In our context, employing such interpolation to compute ẑ

(i)
t would increase

smoothness, spatial contiguity, and address data scarcity, as it enables the estimation of ẑt be-

Figure 5.1 VAE architecture
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tween boreholes where MWD data are unavailable. Subsequently, the GBM-IDW model with
LHOCV interpolation is utilized as the spatial interpolator to compute ẑt = [ẑ(1)

t , ..., ẑ
(N)
t ]T

using the inputs zt = [z(1)
t , ..., z

(N)
t ]T :

ẑt = [W(ρ)⊙A][c⊙ zt]
W(ρ)[c⊙ 1] (5.3)

Here, W is an N × N matrix that has zeros on its diagonal, and IDW’s weights wji =
da(si, sj)−p/

∑
i

da(si, sj)−p elsewhere.

The Euclidean distance da(si, sj) =
√

(xi − xj)2/ℓ2
x + (yi − yj)2/ℓ2

y + (zi − zj)2/ℓ2
z accounts

for anisotropy by incorporating ℓx as the range, or length-scale, of the x principal direction,
and similarly for ℓy and ℓz in the principal direction of y and z respectively. The set ρ =
{p, ℓx, ℓy, ℓz} comprises the learnable parameters of the IDW weights, and the vector c =
[c1, ..., cN ] contains learnable coefficients constrained to the domain [1, 2]N to maintain model
stability and prevent overfitting, ensuring reasonable adjustment of the spatial data without
excessive sensitivity to outliers [63]. To perform LHOCV, the matrix A = [aji] is used to
eliminate the contribution of points belonging to the same borehole in the interpolation (aji is
set to zero if there is a hole k such that i, j ∈ Hk, it is set to one otherwise). The element-wise
product is denoted by ⊙ (e.g., c⊙ t = [citi]), and vector division is performed element-wise
(e.g., c/t = [ci/ti]) throughout this study. Using the interpolation equation, each ẑ

(i)
t is

computed as follows:
ẑ

(i)
t =

∑
j ̸=i

ajiwjicjz
(j)
t (5.4)

The measurements ẑt = [ẑ(1)
t , ..., ẑ

(N)
t ]T are referred to as pseudo-BI measurements, repre-

senting the structure aimed to be learned. They are decoded back using a VAE decoder
to reconstruct the mechanical parameters, denoted as pseudo-ROP, pseudo-WOB, pseudo-
RPM, and pseudo-TRQ, represented by the vector t̂. Figure 5.2 shows the VAE with the
stacked GBM-IDW-LHOCV spatial interpolator.

Figure 5.2 VAE with stacked GBM-IDW-LHOCV architecture
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Add spatial information using VAE and correlation loss

To incorporate spatial feature information into pseudo-BI measurements, we introduce a sec-
ond VAE that encodes the input spatial features, represented by s, into a one-dimensional
latent representation zs. To ensure consistency between spatial and mechanical represen-
tations, we constrain both VAEs to maximize the sample correlation coefficient between
the interpolated measurements ẑt = [ẑ(1)

t , . . . , ẑ
(N)
t ]T and the spatial latent variables zs =

[z(1)
s , . . . , z(N)

s ]T . This is achieved by introducing a correlation loss term, Lcorr, to the VAE
objective function, defined as:

Lcorr = 1− |Corr(ẑt, zs)|. (5.5)

The correlation loss term would enhance the spatial-awareness in the learned representations,
aligning with techniques used in [199,221,230].

The general loss function L is the sum of the first VAE loss, L
(1)
VAE, the second VAE loss,

L
(2)
VAE, and the correlation loss, Lcorr. For VAE losses, we introduce a tunable parameter

β to control the trade-off between reconstruction accuracy and latent space regularization,
improving the efficiency of the VAE. This approach is known as the Beta-VAE variant [72]:

L
(1)
VAE = −

N∑
i=1

(
β

2
(
1 + ln((σti

)2)− (µti
)2 − (σti

)2
)

+ E
q(z(i)

t ,θ
(1)
enc)

(
ln(p(ti|z(i)

t , θ(1)))
))

, (5.6)

L
(2)
VAE = −

N∑
i=1

(
β

2
(
1 + ln((σsi

)2)− (µsi
)2 − (σsi

)2
)

+ E
q(z(i)

s ,θ
(2)
enc)

(
ln(p(si|z(i)

s , θ(2)))
))

, (5.7)

L = α1L
(1)
VAE + α2L

(2)
VAE + α3Lcorr, (5.8)

Here, α1, α2, and α3 are hyperparameters that can be tuned to optimize training perfor-
mance. In particular, with this approach, the general loss is differentiable with respect to
the parameters of the first VAE, θ(1), the parameters of the second VAE, θ(2), as well as the
parameters of the GBM-IDW-LHOCV model, ρ. Consequently, we achieved an end-to-end
model, as depicted in Figure 5.3, in which all parameters are trained simultaneously using
backpropagation. In this figure, Rec-CoordX, Rec-CoordY, and Rec-CoordZ represent the
reconstructed spatial coordinates.



55

This approach provides a comprehensive framework for integrating spatial information into
the pseudo-BI measurements, enabling efficient training and optimization of the VAEs and
the GBM-IDW-LHOOV model.

Investigating three types of NN layers for VAEs

In this study, three types of neural network architectures were investigated for modeling
VAEs: Fully Connected (FC) networks, Convolutional (Conv) networks, and Radial Basis
Function (RBF) networks.

The FC networks establish connections between every neuron in a layer, resulting in a dense
connection matrix. This architecture allows for non-local interactions, enabling each neuron
to influence every other neuron in the subsequent layer. While this provides a high represen-
tational capacity that can be advantageous in capturing complex representations, it can also
lead to overfitting in some cases [59].

In contrast, Conv networks are characterized by parameter sharing and local connectivity,
where the same weights are applied across different regions of the input, and each neuron
is connected only to a local subset of the input space. This structure has been particularly
effective in image processing due to the strong correlation among neighboring pixels [102].
Compared to FC networks, which learn independent weights for each connection, Conv net-
works impose structured constraints that can improve generalization when meaningful local
dependencies exist. In the context of MWD data, the correlation structure arises primarily
from the four mechanical parameters (WOB, RPM, TRQ, and ROP). While spatial adja-
cency is explicitly modeled using a spatial interpolator, this study examines whether Conv
networks can inherently detect and leverage the correlation structure among the mechanical
parameters.

Lastly, RBF networks employ a set of radial basis functions, each associated with a center
and width parameter. This architecture can be viewed as a form of kernel-based learning
that inherently considers the similarity and correlation of data points. Inputs are mapped
to a high-dimensional feature space to enhance separability [24], making RBF networks par-
ticularly well-suited for clustering tasks. In this study, to determine the most suitable basis
function, we investigate three different types: Gaussian RBF, defined as ϕ(r) = e−r2 ; in-
verse quadratic RBF, given by ϕ(r) = 1/(1 + r2); and thin plate spline RBF, expressed as
ϕ(r) = r2 ln(r + 1). Here, r represents the Euclidean distance from the center of the basis
function.

These distinct characteristics highlight the potential applications of each network type in the
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Figure 5.3 Adding spatial information by encoding spatial coordinates and adding a correla-
tion constraint

context of VAE modeling, providing insights into their ability to capture and represent rock
hardness from MWD data.

Clustering using pseudo-BI

After training the models, pseudo-BI measurements ẑt = [ẑ(1)
t , . . . , ẑ

(N)
t ]T are used for clus-

tering. In this study, we leverage the BIRCH algorithm (Balanced Iterative Reducing and
Clustering Using Hierarchies) as an initial clustering step to generate compact representations
of the data. Specifically, BIRCH incrementally constructs a hierarchical clustering feature
(CF) tree, which summarizes the dataset into a set of potential cluster centers based on den-
sity and distribution properties. These centers serve as refined initialization points, improving
the stability and efficiency of the subsequent clustering step. Following this, agglomerative
clustering is applied to further refine the clusters. By starting with well-separated cluster cen-
ters provided by BIRCH, the agglomerative approach ensures better-defined spatial domains
while preserving geological consistency. This two-step clustering strategy enhances both com-
putational efficiency and cluster stability, making it particularly suitable for structuring the
pseudo-BI feature space [218].

When clustering is applied solely to observed boreholes, there is a geometric restriction
on the cluster centers, confining them to these specific holes. To mitigate this limitation,
data augmentation is employed using the trained spatial interpolator to estimate pseudo-BI
between the existing ones. This is achieved by sampling the locations s∗ from a normal
distribution N (s∗|S, σ2I), where S =[s1, ..., sN ]T represents the locations of the wells drilled
and σ2I is the covariance matrix. The estimated pseudo-BI values, ẑ

(∗)
t , are determined using
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Equation 3. Using augmented pseudo-BI measurements would enhance spatial coverage and
ensure that cluster centers are not restricted solely to observed boreholes.

5.4 Experiments and results

5.4.1 Data and the studied mining complex

A drilling pattern refers to a specific arrangement or sequence of holes within a designated
area of the mining site. These holes are drilled in a predetermined sequence and layout,
with the intention of loading them with explosives for a synchronized blast. The goal is to
break the rock efficiently and control fragmentation, ensuring that the material is suitable
for subsequent processing. In this study, we investigated the MWD data for 40 such drilling
patterns, each consisting of a series of holes planned to be blasted together as part of the
mining operation. The mining complex where these patterns are implemented is managed
by an iron mine site in northern Quebec, and the data is provided by our industrial partner,
Peck Tech Consulting.

Throughout the experimentation section, we will visually illustrate the results for a single
pattern, denoted (P1), to demonstrate the underlying methodology, and we will present the
appropriate key performance indicators for all 40 patterns. The architecture and parameter
count of the FC, Conv, and RBF models used in these experiments are presented in Table
5.1.

Table 5.1 Models parameters

Block / model FC (# parameters) Conv (# parameters) RBF (# parameters)

Encoder 1

input layer (500) input layer (72) input layer (20)
hidden layers (10100) hidden layers (272) hidden layers (40)

mean layer (101) mean layer (49) mean layer (5)
variance layer (101) variance layer (49) variance layer (5)

Decoder 1 hidden layers (200) hidden layers (168) hidden layers(28)
output layer (404) output layer (56) output layer (56)

Encoder 2

input layer (400) input layer (42) input layer (12)
hidden layers (10100) hidden layers (156) hidden layers (24)

mean layer (303) mean layer (37) mean layer (4)
variance layer (303) variance layer (37) variance layer (4)

Decoder 2 hidden layers (400) hidden layers (102) hidden layers (18)
output layer (303) output layer (33) output layer (24)

Spatial interpolator 60 60 60
Total parameters 23275 1133 284
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5.4.2 Analyzing the Relation Between Pseudo-BI, Pseudo-parameters and Orig-
inal Mechanical Parameters

In this section, we aim to demonstrate that the mechanical parameters reconstructed from
the pseudo-BI—denoted as pseudo-ROP, pseudo-WOB, pseudo-RPM, and pseudo-TRQ—
capture the general trends of the mechanical parameters while avoiding variability and out-
liers. The spatial interpolator played an important role in capturing spatial similarities and
replacing extreme points and outliers with reasonable values that follow the general trend of
the data. This can be seen in Figure 5.4, which shows the relationships between pseudo-BI
with pseudo-ROP, pseudo-WOB, and pseudo-RPM (orange scatter) and the original mechan-
ical parameters ROP, WOB, RPM, and TRQ (represented by rainbow scatters) using the
model with FC layers in the pattern (P1). In this figure, the more intense and hot colors
indicate a higher concentration of data points.

The models with Conv and RBF layers also succeeded in reconstructing pseudo-parameters
from the learned latent representations that are smoother than the original mechanical pa-
rameters and follow their general trend. Figures 5.5 and 5.6 show the relationships using
Conv layers and RBF layers with Gaussian basis functions, respectively, for the same pattern
(P1).

Since the models are able to reconstruct the general behavior of the four mechanical pa-
rameters using only information about pseudo-BI, we can conclude that this latent structure
represents a shared characteristic of the four mechanical parameters. This shared character-
istic is presumably correlated with the hardness of the rock as a common physical property.

To obtain real physical and interpretable values that can be used in the industry, we com-
puted the Reconstructed Blastability Index (Rec-BI) as a normalization of the Reconstructed
Specific Energy of Drilling (Rec-SED) using the SED formula and replacing the mechanical
parameters with the pseudo-parameters:

Rec-SED = pseudo-WOB
A

+ 2π × pseudo-RPM× pseudo-TRQ
A× pseudo-ROP , (5.9)

Figure 5.7 shows Rec-BI and BI as functions of pseudo-BI for the model with FC layers,
applied to the pattern (P1). We could see that Rec-BI presents the same physical units as
BI, and its scatter (represented in orange) follows the general trend of the BI scatter plot
in rainbow colors. However, Rec-BI is smoother and discards the less frequent data points
(outliers) presented in cold colors, thus reducing the variability introduced by extrinsic factors
and focusing on the intrinsic properties of the rock. As we will see later, this measurement
provides better separation and less overlap when interpreting the spatial domains.



59

Figure 5.4 The reconstructed Pseudo-parameters (orange scatter) and original parameters
(rainbow scatter) as a function of the learned latent feature (Pseudo-BI) using the model
with FC layers on the pattern (P1). For the rainbow scatters more intense and hot colors
indicate a higher concentration of data points.
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Figure 5.5 The reconstructed Pseudo-parameters (orange scatter) and original parameters
(rainbow scatter) as a function of the learned latent feature (Pseudo-BI) using the model
with Conv layers on the pattern (P1).
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Figure 5.6 The reconstructed Pseudo-parameters (orange scatter) and original parameters
(rainbow scatter) as a function of the learned latent feature (Pseudo-BI) using the model
with RBF layers and Gaussian basis functions on the pattern (P1).
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Figure 5.7 The Rec-BI (orange scatter) and BI (rainbow scatter) as a function of the learned
latent feature (Pseudo-BI) using the model with FC layers on the pattern (P1).
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5.4.3 Collar detection

Before starting drilling operations, operators often begin blasting the surface of the previous
bench to facilitate access to the ore body, resulting in a zone comprising broken rocks known as
the collar. Due to the need for caution while traversing this zone during drilling, MWD within
this area do not accurately reflect the true hardness of the rock or the energy required for
drilling. The collar is estimated to extend to a depth of approximately 2 meters. Identifying
and subsequently excluding this collar zone from the dataset is vital to obtain precise insight
into the genuine rock hardness during drilling operations.

Our objective is to compare the clusters obtained using the blastability index (BI) with those
generated using the pseudoblastability index (pseudo-BI) as features. We aim to discern the
effectiveness of each in detecting the broken material zone, particularly the collar. This com-
parison will aid in determining which feature representation yields better clustering results to
accurately identify the collar zone and distinguish it from the surrounding rock formations.

Figure 5.8 shows the two clusters after using Birch and agglomerative clustering on the
pseudo-BI learned using the model with FC layers versus those provided using clustering
applied to the BI itself. The blue group has a lower median BI (requiring less energy to be
blasted), indicating softer material, whereas the red group indicates harder material. Since
the collar is a broken material, it will eventually be considered soft. Visually, we can see
that collar detection is more accurate when using pseudo-BI. Due to the variability of the BI
inherited from the original mechanical parameters, its clusters are not spatially contiguous
and separable, showing more overlap and making it difficult to clearly identify the collar
zone. However, pseudo-BI clusters are more continuous and spatially separable, accurately
representing the collar zone as experts presumed to be around the first two meters.

Figures 5.9 and 5.10 show the cases for the pseudo-BI learned using, respectively, the models
with Conv and RBF layers. We notice that visually, all models achieved good collar detection.

To numerically measure the performance of a given feature in providing spatially contiguous
and separable clusters, we used an SVM linear classifier to perform a classification task on the
provided clusters, using only the spatial coordinates as features. The classification accuracy
indicates how well these clusters are spatially linearly separable and non-overlapping. We
refer to this metric as DA.

Figure 5.11 presents boxplots showing DA for all patterns, comparing the performance of
clustering on BI with clustering on Pseudo-BI learned from the proposed models (FC, Conv,
RBF-Gaussian, RBF-inv-quad, RBF-spline). As shown, BI resulted in the lowest DA values
compared to all proposed models. Among the proposed models, the RBF-inv-quad exhibited
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the highest median DA value, indicating that it generally produces domains with the best
spatial characteristics. However, all proposed models showed comparable performance in
terms of DA, with some models exhibiting more variability than others. This aspect will be
discussed in greater detail in the next section when comparing the three proposed models.

Figure 5.8 Two clusters provided by Birch and agglomerative clustering applied on Pseudo-BI
learned using the model with FC layers (left) vs those applied on BI (right) for the pattern
(P1).
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Figure 5.9 Two clusters provided by Birch and agglomerative clustering applied on Pseudo-BI
learned using the model with Conv layers (left) vs those applied on BI (right) for the pattern
(P1).
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Figure 5.10 Two clusters provided by Birch and agglomerative clustering applied on Pseudo-
BI learned using the model with RBF layers (left) vs those applied on BI (right) for the
pattern (P1).
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Figure 5.11 Box plots showing the Domain Accuracy for domains provided by performing
clustering on BI, Pseudo-BI learned using the model with FC layers, Conv layers, RBF-
Gaussian, RBF-inv-quad, and RBF-spline.

5.4.4 Rock Mass Domaining of Patterns with no Collar Using Pseudo-BI Based
Clustering

After excluding the collar zone from each pattern dataset, we apply clustering on the pseudo-
BI learned by each of the designed models (FC, RBF with variants Gaussian, Inverse Quadratic
and Spline, and Conv). These clusters are considered domains with consistent rock hardness.
To assess rock hardness in general, BI is typically used as an indicator. However, we demon-
strate that Rec-BI is a better indicator in this case. Since Rec-BI is computed using the
pseudo-parameters, it effectively handles variability and outliers. Moreover, it aligns with
spatial and geological constraints, as these parameters are reconstructed from the pseudo-BI.

To assess the efficiency of domaining and ensure that rock hardness is consistent within
each domain, we use two metrics: Domain Accuracy, as mentioned in the previous section, to
assess spatial separability and contiguity; the Pooled Standard Deviation (PSD) with respect
to Rec-BI (or BI if BI is used to assess rock hardness). A low PSD indicates that the Rec-
BI measurements within each cluster are relatively close to their cluster centers, ensuring
consistent rock hardness. In contrast, a high PSD implies greater variability within clusters,
which can lead to less distinct grouping with respect to rock hardness.

Figure 5.12(a) shows an example of how the domains are spatially conceived when performing
three clusters using pseudo-BI as the feature learned by the model with FC layers. We used
the same pattern, (P1), that was previously considered. The DA is 0.84 in this example, which
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is considered good because, as we see, the three clusters are spatially linearly separable and
show some contiguity.

Figures 5.12(b) and 5.12(c) provide boxplots showing the Rec-BI and the BI for each cluster,
respectively, along with their PSD metric values. As we can see, Rec-BI shows greater cluster
separation and lower PSD, as it ignores variabilities, extreme values, and outliers. This is
expected since it is reconstructed from pseudo-BI, which takes spatial geological similarities
into account. Hence, we suggest using Rec-BI as a physical measure to assess and interpret
the rock hardness of the provided domains.

Figures 5.13(a) and Figure 5.13(b) show the boxplots for PSD values for all patterns and the
associated PSD standard deviation, respectively, using 3 clusters for domaining for each of
the designed models.

Figures 5.14(a) and Figure 5.14(b) show the boxplots for the DA values for all the patterns
and the associated DA standard deviation, respectively, using 3 clusters for domaining for
each of the designed models.

On average, the model with the RBF Spline variant layers achieved better results in terms of
PSD, as evidenced by Figure 5.13(a). The results also show lower PSD variability compared
to models with Conv and FC layers, as demonstrated in Figure 5.13(b). This suggests that
the RBF Spline variant domains exhibit a more distinct grouping with respect to Rec-BI.
Additionally, from the visual analysis of both figures, it is evident that the RBF-Spline variant
consistently demonstrates tighter clustering with minimal variability across patterns. Rec-
BI values remain close to cluster centers, reinforcing the consistency and reliability of the
domains identified by this model. These findings are further supported by the overall lower
PSD standard deviation shown in Figure 5.13(b), emphasizing the robustness of the RBF
Spline architecture in achieving spatially consistent and geologically meaningful domains.
Regarding spatial separability, the RBF models on average achieved a higher DA compared
to FC and Conv. However, the DA standard deviation is highest for RBF-Spline, indicating
that, for some patterns, its DA is compromised over Rec-BI similarity compared to other
models. RBF-inv-quad shows a good balance between DA and DA consistency. In contrast,
the FC model shows comparable DA with very low variability, but PSD is compromised,
since it is highest for the FC model. This suggests a potential trade-off between spatial
separability (DA) and rock hardness consistency within domains (PSD). Although RBF-
Spline excels in achieving high DA, it may sometimes sacrifice the internal homogeneity of
the resulting domains, as measured by Rec-BI. RBF-Gaussian and RBF-inv-quad appear
to strike a better balance between these two objectives. However, FC models prioritize
consistent Rec-BI within clusters but might result in less spatially distinct and potentially
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more fragmented domains. In conclusion, the RBF-spline model shows a strong performance
in identifying domains with consistent rock hardness (low PSD and low PSD variability).
However, it exhibits higher variability in its DA performance compared to other models,
suggesting a potential trade-off between spatial separability and rock hardness consistency.
The RBF-inv-quad appears to offer a more balanced approach, achieving reasonable DA with
lower variability and maintaining good control over PSD. The choice of model will depend
on the specific priorities of the application, whether it is more critical to prioritize spatially
distinct domains or to ensure high internal homogeneity within the domains.

(a) Example of 3D Spatial Domains Ob-
tained by Pseudo-BI Clustering for Pat-
tern (P1) Using FC Layers.

(b) Boxplots of Rec-BI for Each Cluster
in Pattern (P1) Using FC Layers.

(c) Boxplots of BI for Each Cluster in
Pattern BW-648-035 Using FC Layers.

Figure 5.12 Boxplots of BI for Each Cluster in Pattern (P1) Using FC Layers.
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(a) Pooled Standard Deviation (PSD)
Boxplots for Pseudo-BI Domaining
Across All Patterns Using FC, Conv,
and RBF Models.

(b) Standard Deviation of PSD for
Pseudo-BI Domaining Across All Pat-
terns Using FC, Conv, and RBF Mod-
els.

Figure 5.13 Subfigures illustrating the Pooled Standard Deviation and Standard Deviation
of PSD for Pseudo-BI Domaining Across All Patterns Using FC, Conv, and RBF Models.

(a) Domain Accuracy (DA) Boxplots for
Pseudo-BI Domaining Across All Pat-
terns Using FC, Conv, and RBF Mod-
els.

(b) Standard Deviation of DA for
Pseudo-BI Domaining Across All Pat-
terns Using FC, Conv, and RBF Mod-
els.

Figure 5.14 Subfigures illustrating Domain Accuracy (DA) Boxplots and Standard Deviation
of DA for Pseudo-BI Domaining Across All Patterns Using FC, Conv, and RBF Models.

5.4.5 Correspondance of Some Examples with Lithology

In this section, we present examples where the domains identified by the developed models
correspond to lithologies observed by geologists during surface tests of each borehole. As
mentioned above, there is no one-to-one correspondence between rock hardness and litholo-
gies. However, in many cases where the lithologies exhibit significantly different hardnesses,
the similarity in patterns becomes visibly clear. The fact that the provided domains capture
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such similarities is encouraging. It reassures that the domains can distinguish certain forma-
tions using only MWD data, without relying on expert geologists. This also helps extend the
understanding of formations beyond the surface, by incorporating the subsurface component,
as MWD data is available along boreholes. Such models could serve as powerful tools in ge-
omodeling software for mining applications, not only to divide the mining field into domains
characterized by consistent rock hardness but also to gain insight into the three-dimensional
lithology and geological formations beneath the surface.

Figure 5.15 shows the lithology of the pattern (P1) (left graph) and the three-dimensional
domains obtained using clustering in pseudo-BI derived from the model with FC layers (right
graph). According to the boxplot shown in the previous section of Rec-BI values for each
cluster, cluster 0 (purple), cluster 1 (green) and cluster 2 (orange) are in increasing order of
rock hardness. For this particular pattern, geologists detected three types of lithology on the
surface: IFH (purple), MS (green), and GN (orange). The domaining results align with these
formations. Specifically, IFH and MS are predominantly represented by Cluster 0 (purple)
and Cluster 1 (green), indicating that they are softer compared to GN, which is represented
by Cluster 2 (orange).

In Figure 5.16, we present the case of a pattern (P2), characterized by the same three
lithologies as in the previous example. The plot in the left panel shows the three-dimensional
domains obtained through clustering on pseudo-BI derived from the model with Conv layers.
Similarly to the previous example, IFH and MS are predominantly represented by cluster
0 (purple) and cluster 1 (green), indicating that they are softer compared to GN, which is
represented by cluster 2 (orange). From these two examples, we observe that domaining
effectively differentiates GN from IFH and MS, suggesting that GN is considerably harder.

Figure 5.17 presents the case for a pattern (P3), where the RBF-Gaussian model is used
for domaining. In this example, the three formations are represented by the three clusters,
and the patterns are very close to the lithologies shown in the right-hand plot. Thus, we
can associate IFH with cluster 0, MS with cluster 1, and GN with cluster 2. Based on our
knowledge of the hardness of each cluster, we can conclude that IFH, MS, and GN are in
increasing order of hardness.

Using our approach, domaining provided valuable insight into the three-dimensional forma-
tion and helped to assess the hardness of the lithologies determined by expert geologists.
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(a) Lithology for Pattern (P1).

(b) 3D Spatial Domains for Pattern
(P1) Using Pseudo-BI Clustering with
FC Layers.

Figure 5.15 Comparison of Lithology for Pattern (P1) Using Pseudo-BI Clustering with FC
Layers.
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(a) Lithology for Pattern (P2).

(b) 3D Spatial Domains for Pattern
(P2) Using Pseudo-BI Clustering with
Conv Layers.

Figure 5.16 Comparison of Lithology for Pattern (P2) Using Pseudo-BI Clustering with Conv
Layers.
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(a) Lithology for Pattern (P3).

(b) 3D Spatial Domains for Pattern (P3) Using Pseudo-BI Clustering
with RBF-Gaussian Layers.

Figure 5.17 Comparison of Lithology for Pattern (P3) Using Pseudo-BI Clustering with RBF-
Gaussian Layers
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5.5 Conclusion

This study introduced a novel approach to rock mass domaining, using MWD data to iden-
tify contiguous spatial domains with consistent rock hardness. Using a stacked VAE and
a spatial interpolation model, we were able to extract a latent feature, pseudo-BI, that ef-
fectively represents rock hardness. The pseudo-BI, when used for clustering, demonstrated
remarkable capability in reconstructing mechanical parameters (pseudo-ROP, pseudo-WOB,
pseudo-RPM, and pseudo-TRQ) that capture general trends while mitigating variability and
outliers.

Our analysis showed that the spatial interpolator played a crucial role in ensuring spatial
contiguity, leading to more reliable clustering results. The models with different VAE network
types (FC, Conv, and RBF) all succeeded in reconstructing smoother and more consistent
pseudo-parameters compared to the original mechanical parameters. The proposed Rec-BI
metric, derived from pseudo-BI, provided better separation and less overlapping of clusters,
offering a more accurate representation of rock hardness.

The study also highlighted the effectiveness of pseudo-BI in detecting the collar zone, where
pseudo-BI-based clustering outperformed traditional BI-based clustering in identifying and
excluding this zone. Collar detection was more accurate and spatially separable, particularly
with the model using RBF network with inverse quadratic basis function.

In terms of rock mass domaining, pseudo-BI-based clustering proved to be a robust tool,
consistently providing spatially contiguous and geologically meaningful domains across vari-
ous patterns. The models were able to identify lithologies that correspond to those observed
by geologists, even extending this correspondence into 3D, thus offering valuable insight into
the subsurface formations.

Our analysis further revealed that the RBF-inv-quad model demonstrated strong performance
in terms of DA, indicating its ability to generate spatially distinct and separable domains.
Although RBF-Spline showed competitive DA performance, it exhibited higher variability
in DA across different patterns. In terms of rock hardness consistency within domains,
the RBF-Spline model demonstrated the lowest PSD values and the lowest PSD variability,
suggesting that it effectively identifies domains with consistent rock hardness. However, this
performance comes at the potential cost of a lower and more variable DA. RBF-Gaussian
and RBF-inv-quad appear to offer a more balanced approach, achieving a reasonable DA
with lower variability and maintaining good control over PSD.

Overall, this approach not only enhances the precision of rock mass domaining but also
provides a powerful tool for geomodeling in mining applications. By effectively handling
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variability and outliers and aligning with geological constraints, the pseudo-BI-based mod-
els offer a promising avenue for better understanding and managing mining fields. Future
work could explore the integration of these models into broader geomodeling frameworks,
potentially improving the accuracy and reliability of mining operations.

Apport du chapitre à la thèse

Dans ce chapitre, nous avons étudié l’application des VAEs couplés à l’interpolation spatiale
pour la segmentation des masses rocheuses à partir des données MWD. Les résultats mon-
trent que cette approche améliore la définition des domaines géologiques en garantissant à la
fois une continuité spatiale et une homogénéité de la dureté des roches. Elle constitue une
avancée significative dans la modélisation des données MWD et ouvre la voie à des méthodes
d’interpolation plus flexibles et adaptées aux défis complexes de la géologie minière.

Dans le chapitre suivant, nous approfondissons cette démarche en introduisant un modèle
multicouche de pondération inverse de la distance (ML-IDW), qui s’inspire des capacités des
réseaux neuronaux multicouches et des modèles de pondération inverse de la distance pour
mieux capturer les relations spatiales complexes et non linéaires.
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CHAPITRE 6 ARTICLE 3: ENHANCING SPATIAL INTERPOLATION: A
MULTI-LAYER INVERSE DISTANCE WEIGHTING MODEL FOR

COMPLEX REGRESSION AND CLASSIFICATION TASKS IN SPATIAL
DATA ANALYSIS

Cet article a été publié dans la revue World Academy of Science, Engineering and Technology
— International Journal of Mathematical and Computational Sciences le 23 octobre 2024,
coécrit avec Jean-François Plante, Richard Labib et Michel Gamache.

Aperçu du chapitre

Les modèles d’interpolation spatiale traditionnels sont souvent limités par leur rigidité et
leur incapacité à capturer des relations complexes dans des environnements géologiques
hétérogènes. Ce chapitre présente une nouvelle architecture de pondération inverse de la
distance multicouche (ML-IDW), inspirée des réseaux neuronaux. En combinant la flexibil-
ité des modèles neuronaux avec la robustesse des techniques d’interpolation classiques, cette
approche améliore la précision aussi bien en régression qu’en classification spatiale.

6.1 Abstract

This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), in-
spired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and
Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabil-
ities, characterized by compositions of learnable non-linear functions applied to input fea-
tures, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting
a promising solution for nonlinear spatial interpolation and learning from complex spatial
data. We employ gradient descent and backpropagation to train ML-IDW. The performance
of the proposed model is compared against conventional spatial interpolation models such
as Kriging and standard IDW on regression and classification tasks using simulated spatial
datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly
in handling complex spatial dataset, exhibiting lower mean square error in regression and
higher F1 score in classification.
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6.2 Introduction

Deep learning has emerged as a transformative tool for discerning intricate structures within
complex datasets, proving its efficacy across a spectrum of tasks from regression to classifi-
cation in diverse domains such as natural language processing and computer vision [71]. By
leveraging the inherent compositional properties of learnable non-linear functions applied to
inputs, multi-layer neural networks (ML-NNs) have demonstrated remarkable prowess in pat-
tern recognition [25]. This capability is underpinned by parameter optimization through gra-
dient descent, facilitated by the efficient computation of gradients using the back-propagation
algorithm [164].

Nevertheless, feedforward ML-NNs, like many machine learning models, often assume that
data observations are independently sampled from a given distribution, thereby overlooking
the spatial dependency structures inherent in the data. Conversely, spatial interpolation
models like Inverse Distance Weighting (IDW) excel at capturing such dependencies, but
they frequently lack the flexibility and the learning capacity of ML-NNs.

Numerous studies have compared machine learning against spatial interpolation (SI) mod-
els [31,91,155,164], showcasing the advantages of ML models in accurately depicting nonlinear
relationships [91]. However, discussions on the limitations of ML models in modeling spatial
relationships have led to a preference for spatial interpolations in scenarios where data ex-
hibit significant spatial correlations [143]. Additionally, by employing linear interpolation, SI
models furnish smooth predictions that risk overlooking abrupt changes and non-linearities
in the data [206]. In response to these constraints, many researchers have proposed the fusion
of both approaches [37,76,86,109,180,190].

For instance, some studies have combined SI with artificial neural networks (ANNs), utilizing
SI to augment data by interpolating in locations lacking observational features, subsequently
leveraging ANN that uses the provided feature maps as dependent variables for prediction
[190]. Other studies combined Regression Kriging with machine learning models like Support
Vector Machine (SVM) where the ML model predicts the drift, while Kriging performs spatial
interpolation on the residuals, treating them as corrections to the predicted values [109,
138]. This approach has also been extended to classification tasks, where Simplical Indicator
Kriging is combined with SVM for classification purposes [138,187].

Despite the effectiveness of many ML models, they still lack the representational capacity,
computational efficiency, and flexibility of deep neural networks, in which model complexity
is customizable relative to the datasets. Proposed architectures such as Residual Neural
Networks have been introduced to safely use deeper models without risking the vanishing
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gradient problem [69]. To our knowledge, no study has yet been conducted to introduce a
spatial interpolation model that has similar benefits. We aim to address this gap through our
study by introducing such a model: the ML-IDW model. This model applies compositions
of learnable non-linear functions to input data and uses IDW interpolation with learnable
parameters. Trained using gradient descent and back-propagation, it is compatible to be
stacked with other ANNs models or architectures. This would allow us to leverage the power
of deep learning while simultaneously accounting for spatial dependency structures.

6.3 Theory and Methodology

6.3.1 Conventional IDW: a brief background

Let the data consist of targets ti, i = 1, ...., N , which are spatially correlated and located
in 2D spatial coordinates si = [xi, yi]T . We denote by T the set of indices in the test data
and by T the set of indices in the training data. Conventional Inverse Distance Weighting
(IDW) performs a prediction at an unsampled location sj, j ∈ T , by computing an average
weighted sum of targets ti, i ∈ T :

t̂j =
∑
i∈T

wjiti, (6.1)

where wji = da(si, sj)−p/
∑
k

da(sk, sj)−p are the IDW weights that depend on the power param-

eter p. The term da(si, sj) =
√

(xi − xj)2/ℓ2
x + (yi − yj)2/ℓ2

y represents the Euclidean distance
accounting for anisotropy in the spatial correlation, where ℓx is called the range, or length-
scale, of the x principal direction, and similarly for ℓy the principal direction of y [101, 172].
In the conventional approach, the set of parameters to be learned, denoted θ = {p, ℓx, ℓy}, are
derived using the Leave One Out Cross Validation (LOOCV) algorithm [13,115]. This algo-
rithm involves conducting a grid search G of possible parameter candidates in order to choose
the set of parameters that minimizes the LOOCV error: ELOOCV = (1/|T |)∑i∈T (t̂i − ti)2.
This error consists of the average of the squared errors between every target ti in the train-
ing data and its IDW estimate t̂i, computed using IDW performed on all the training data,
leaving the ith observation out.

This training approach has a time complexity scaling as O(|T |2 ∗ |G|) and a space complexity
of O(|T | + |G|), where |T | represents the size of the training dataset without the omitted
observation, and |G| = m3 denotes the size of the grid, with m being the number of parameter
possibilities. This method faces challenges in scalability due to the potentially large size
of the grid |G|. As m increases to explore more parameter possibilities, both time and
space complexity grow significantly. While a higher m might lead to improved accuracy by
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considering a finer-grained search over parameter space, it also compromises scalability.

6.3.2 Gradient Based IDW

To address the challenges posed by conventional Inverse Distance Weighting (IDW) interpo-
lation, we introduced a Gradient-Based IDW (GB-IDW) approach in a previous study. In
GB-IDW, we leveraged the matrix formulation of an IDW model to compute the leave-one-
out cross-validation (LOOCV) error in a single forward pass: ELOOCV (θ) = 1/|T |

∥∥∥t̂− t
∥∥∥2

=

1/|T |
∥∥∥W(θ)t− t

∥∥∥2
.

Here, t and t̂ are vectors containing the true values and the IDW predicted values, respec-
tively, for i ∈ T . W is a matrix with zeros on the diagonal and GB-IDW weights wji

elsewhere. ∥.∥ denotes the Euclidean norm.

We exploited the differentiability of this error with respect to the parameter set θ to apply
gradient descent and backpropagation for minimizing ELOOCV (θ). The time complexity of
this training approach scales as O(|T |2 × |I|), where |I| denotes the number of training
iterations. This is because the backpropagation algorithm scales linearly with the number
of parameters (O(3 × |I|)) [163], making the time complexity dominated by O(|T |2 × |I|).
This represents a significant reduction in time complexity compared to conventional methods,
especially when |I| ≪ |G|.

Additionally, the space complexity is dominated by O(|T |2). While time and space complexity
could be a drawback for large data sizes, leveraging the power of Graphics Processing Units
(GPUs) in parallelism and memory efficiency can mitigate this challenge significantly.

By exploiting the optimized matrix operations inherent in GPUs, we can achieve substantial
improvements in computational efficiency [60,75,195]. GPUs are designed to handle parallel
operations efficiently, particularly in deep learning tasks, making them well-suited for acceler-
ating the training process of GB-IDW. This can effectively address the scalability challenges
encountered in large-scale interpolation tasks.

6.3.3 Single Layer IDW

GB-IDW, trained with gradient descent and backpropagation, is compatible with neural
networks and can be stacked with an Artificial Neural Network (ANN) for further processing
of the targets t. We introduce a Single Layer IDW (SL-IDW) by adding a single processing
layer to the vector t before using GB-IDW for interpolation.

Let X denote dependent covariates that may contain other dependent features along with the
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spatial locations S = [si]. We employ a simple feedforward Neural Network, denoted as NN ,
which takes X as input and produces two vectors c = [ci] and b = [bi] representing the slope
and intercept for t, respectively. A simple linear regression is performed on t to compute
the hidden vector h = c ⊙ t + b using these two parameters, where ⊙ denotes elementwise
product and + denotes elementwise sum (c⊙t+b = [citi +bi]). We then apply an activation
function g(1) to introduce nonlinearity and compute the hidden layer a(1) = g(1)(h).

Spatial interpolation is then applied to a(1) by computing t̂ = W(θ)a(1). The LOOCV error
ELOOCV (θ, φ) = (1/|T |)

∥∥∥W(θ)a(1) − t
∥∥∥2

remains differentiable with respect to all parame-
ters of the model, comprising θ = {p, ℓx, ℓy} as GB-IDW parameters, and φ, as the parameters
of the feedforward neural network NN.

In summary, the interpolation equation of the Single Layer IDW is:

t̂ = W(θ)a(1),

a(1) = g(1)(h),

h = c⊙ t + b, c, b = NN(X).

6.3.4 Mutli-Layer IDW for regression

Multi-Layer IDW (ML-IDW) for regression extends Single Layer IDW (SL-IDW) by incor-
porating multiple processing layers for t. Each layer k takes a(k−1) from the previous layer as
input and computes the hidden vector h(k) = c(k)⊙a(k−1) +b(k), where c(k), b(k) = NN (k)(X)
represent the intercept and slope provided by the feedforward neural network for layer k,
NN (k). An activation function g(k) is then applied to compute a(k) = g(k)(h(k)).

Inspired by Residual Neural Networks (ResNet), which learn a nonlinear residual to facil-
itate identity map learning and address vanishing gradients [69], we introduce a skipping
connection layer such that a(k) = g(k)(h(k)) + h(k−2). Spatial interpolation is performed on
the output of the last layer L: t̂ = W(θ)a(L).

In summary, the interpolation equation of ML-IDW is:

t̂ = W(θ)a(L),

a(k) = g(k)(h(k)) + h(k−2), k = 2, ..., L,
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a(1) = g(1)(h(1)),

a(0) = t,

h(k) = c(k) ⊙ a(k−1) + b(k),

c(k), b(k) = NN (k)(X), k = 1, ..., L.

It’s worth noting that with this setup, the model will also be able to learn through spatial
interpolation on the values t, any unknown mapping u of t: u = f(t). A special case could
be explored for classification in which we transform t into categorical variables u using the
function ui = f(ti) = 1 if ti ≥ α, ui = f(ti) = 0 otherwise, where α is a threshold. Such a
setup will make our model competitive with nonlinear spatial interpolation methods such as
Simplicial Indicator Kriging.

6.3.5 Mutli-Layer IDW for classification

In ML-IDW for classification, we aim to predict categorical spatial targets ui ∈ {1, ....., C},
where C is the number of possible categories obtained through categorizing the targets ti.
We extend ML-IDW for regression to perform classification tasks by introducing a feedfor-
ward neural network FN and applying a softmax function to each value t̂i to obtain the
vector of probabilities pi = [p(1)

i , ..., p
(C)
i ] containing the probability of each category. The

classification rule in this case is assigning the class characterized by the highest probability:
ûi = argmax(pi). The cross-entropy loss function is utilized as the minimization criterion:
L(U, P) = 1/|T |∑|T |

i=1
∑C

l=1 u
(l)
i ln(p(l)

i ). Here, U = [u(l)
i ] contains the ground truth labels (1

if sample i belongs to class l, 0 otherwise), and P = [p(l)
i ] contains the predicted probabilities

that sample i belongs to class l. In summary the interpolation equation of ML-IDW in case
of classification is:

P = softmax(FN(W(θ)a(L))),

a(k) = g(k)(h(k)) + h(k−2), k = 2, ..., L,

a(1) = g(1)(h(1)),
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a(0) = t,

h(k) = c(k) ⊙ a(k−1) + b(k), c(k),

b(k) = NN (k)(X), k = 1, ..., L.

6.4 Experiments and results

6.4.1 Data description

To assess our models, we employed the Turning Band method [150] for geostatistical sim-
ulation to generate 2D spatial data across varying sizes, ranging from 100 to 10,000 data
points. We utilized two types of variogram models for simulation to provide spatially cor-
related datapoints: a simple model composed of a Gaussian variogram and a nested model
combining Gaussian and exponential variograms. Across all datasets, the partial sill was set
at 20 with a nugget of 4. Anisotropy was introduced by establishing the range along the
y-axis as one third of the range along the x-axis (ℓy = ℓx/3). We introduced complexity
variations by considering different range values ℓx: 20, 50, and 80. A smaller range implies a
more localized correlation, introducing local abrupt changes, thus increasing the complexity
of the data. Table 6.1 summarizes the simulated datasets.

These datasets serve both regression and classification purposes. For classification tasks,
categorical targets (u) were derived from continuous targets (t) by setting ui = 1 if ti ≥ α,
ui = 0 otherwise. Here, the threshold α is set as the median of the observations t to ensure
data balance.

6.4.2 Training efficiency

In this section, we explore the training efficiency of GB-IDW and ML-IDW using gradient
descent and backpropagation, comparing them to the conventional approach of training an
IDW model via a search in a discretized grid. As previously noted, time complexity can
be a significant challenge for conventional IDW, it varies polynomially with the number of
possibilities per parameter m, and exponentially with the number of parameters. Fig. 6.1
illustrates different values of m versus the training time and the training error ELOOCV ,
utilizing dataset 6 comprising 1000 data points. As anticipated, employing a finer grid leads
to lower training error; however, the training time increases significantly.
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Table 6.1 Geostatistical characteristics of the simulated datasets

Datasets Variogram model Size Nugget Partial Sill Range Anisotropy
dataset 1 Gaussian 100 4 20 20 ℓy = ℓx/3
dataset 2 Gaussian 100 4 20 50 ℓy = ℓx/3
dataset 3 Gaussian 100 4 20 80 ℓy = ℓx/3
dataset 4 Gaussian 1000 4 20 20 ℓy = ℓx/3
dataset 5 Gaussian 1000 4 20 50 ℓy = ℓx/3
dataset 6 Gaussian 1000 4 20 80 ℓy = ℓx/3
dataset 7 Gaussian 10000 4 20 20 ℓy = ℓx/3
dataset 8 Gaussian 10000 4 20 50 ℓy = ℓx/3
dataset 9 Gaussian 10000 4 20 80 ℓy = ℓx/3
dataset 10 Gaussian + Exponential 100 4 20 20 ℓy = ℓx/3
dataset 11 Gaussian + Exponential 100 4 20 50 ℓy = ℓx/3
dataset 12 Gaussian + Exponential 100 4 20 80 ℓy = ℓx/3
dataset 13 Gaussian + Exponential 1000 4 20 20 ℓy = ℓx/3
dataset 14 Gaussian + Exponential 1000 4 20 50 ℓy = ℓx/3
dataset 15 Gaussian + Exponential 1000 4 20 80 ℓy = ℓx/3
dataset 16 Gaussian + Exponential 10000 4 20 20 ℓy = ℓx/3
dataset 17 Gaussian + Exponential 10000 4 20 50 ℓy = ℓx/3
dataset 18 Gaussian + Exponential 10000 4 20 80 ℓy = ℓx/3

Table 6.2 presents the ELOOCV values for IDW, GB-IDW, and ML-IDW, along with the
number of gradient descent iterations, the grid size for conventional IDW, and the total
training time. GB-IDW achieves a comparable training error in a shorter duration, while
ML-IDW with 5 layers achieves a lower training error in a very short time. For larger datasets,
such as those with 10,000 data points, the time complexity will significantly increase, making
it exceedingly challenging to train conventional IDW within a reasonable timeframe while
considering all three parameters {p, ℓx, ℓy}.

Table 6.2 Models efficiency

Model Number of iterations |I| or grid size |G| ELOOCV Training time (seconds)
Conventional IDW |G| = 203 = 8000 7.804 1594.709
GB-IDW |I| =1000 7.804 12.49
ML-IDW (5 layers) |I| =1000 6.680 136.234

6.4.3 Results on regression tasks

To investigate model performance on regression tasks, we partitioned each dataset so that
seventy percent of the data served as training data, while the remaining thirty percent served
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(a) Training time vs grid size (b) ELOOCV error vs. grid size

Figure 6.1 (a) Training time of conventional IDW vs. number of possibilities per parameter.
(b) ELOOCV error vs. number of possibilities per parameter for conventional IDW.

as test data. We began with datasets containing 10,000 data points and monitored the
prediction performance of Ordinary Kriging, Grad-IDW, and ML-IDW with 5 layers with
Relu activation function (referred to as Deep-IDW) while varying complexity (specifically,
varying the range).

Fig. 6.2 depicts, from the upper left figure to bottom right figure, the simulated data (dataset
7 characterized by high complexity with a range of 20), the training data, the test data,
predictions from Ordinary Kriging, predictions from Grad-IDW, and predictions from Deep-
IDW.

On datasets characterized by high complexity, Deep-IDW exhibits higher resolution, with
predicted values closer to the ground truth values of the test data. Grad-IDW demonstrates
lesser resolution. However, Ordinary Kriging appears very smooth and is unable to capture
abrupt changes in the data.

Fig. 6.3a and Fig. 6.3b illustrate the Mean Square Error (MSE) for the three models
concerning complexity respectively for datasets with simple and nested variogram models. It
is evident that Deep-IDW excels in higher complexity scenarios (range=20), exhibiting lower
MSEtest. However, the results are remarkably comparable in medium complexity situations
(range=50), with Grad-IDW demonstrating the lowest test error in Fig 3a. On low complexity
datasets (range=80), Ordinary Kriging performs slightly better.

The advantage of ML-IDW in this context lies in its customised nature: we can adjust the
model complexity by adding or removing layers according to data complexity. It is worth
noting that Grad-IDW is a variant of ML-IDW with no layers, making it a simpler alternative
in certain scenarios.
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Figure 6.2 Top: Simulated dataset, training set, and test set. Bottom: Kriging, Grad-IDW,
and Deep-IDW predictions.

Fig. 6.4a and Fig. 6.4b display the Mean Square Error (MSE) test results for the three
models across different data sizes, specifically focusing on high complexity (range=20) and
low complexity (range=80) scenarios, respectively.

Table 6.3 shows the MSE for all dataset. Observing the results while fixing complexity
and varying data size, it is evident that the performance of all models declines as the data
size decreases. Notably, Deep-IDW exhibits better performance than OK, and comaparable
performance with Grad-IDW in high complexity scenarios, while Ordinary Kriging exhibits
slightly superior performance in low complexity situations.

6.4.4 Results on classification

In the classification task, we compare a ML-IDW classifier with 5 layers, referred to as
Deep-IDW-Classifier, against Indicator Kriging (IK) and Simplical Indicator Kriging (SIK)
combined with Support Vector Machine for Classification (SVC). We employ the F1 score
as the performance criterion (higher values indicating better performance) to evaluate the
prediction capabilities on the test data. Similar to the regression task, we divide the data
into training and test sets.

Fig. 6.5 illustrates the training and test data, along with the predictions of the three models
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Table 6.3 The Mean Square Error test (MSE) for each model and each dataset.

Datasets Complexity OK Grad-IDW Deep-IDW (5 layers ML-IDW)
dataset 1 High 29.218 24.6919 24.455
dataset 2 Medium 23.64497 26.115776 26.46
dataset 3 Low 16.72 18.425 18.41
dataset 4 High 20.748 16.26 16.5218
dataset 5 Medium 10.339 12.695 12.443
dataset 6 Low 8.6799 9.9069 9.991
dataset 7 High 15.905 11.53 10.78
dataset 8 Medium 8.347 7.6757 8.2087
dataset 9 Low 6.5 6.643 6.88957
dataset 10 High 39.19 36.139 36.54
dataset 11 Medium 22.829 25.23613 25.397
dataset 12 Low 15.705 16.7 16.63
dataset 13 High 23.047 17.45 18.89
dataset 14 Medium 9.6436 13.549 14.19
dataset 15 Low 8.133 12.393 12.7872
dataset 16 High 16.919 11.891 10.98
dataset 17 Medium 6.589 7.33 8.5141
dataset 18 Low 6.507 6.592 7.0053

Note: Lower MSE indicates closer predictions to the ground truth. The bold values are
the lowest for each dataset.
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(a) Simple variogram

(b) Nested variogram

Figure 6.3 Mean Square Error for OK, Grad-IDW, and DeepIDW on 10,000-point dataset:
(a) Simple variogram; (b) Nested variogram.

for dataset 7. It is evident that Deep-IDW can capture nonlinearities and abrupt changes in
the data. Simplical Indicator Kriging combined with SVC also performs well, while Indicator
Kriging struggles to mimic the behavior of the test set.

Fig. 6.6 presents the F1 score for each model with respect to complexity. In this case, Deep-
IDW-Classifier outperforms Simplical Indicator Kriging with SVC and Indicator Kriging in
high and medium complexity scenarios, whereas Indicator Kriging performs better in low
complexity scenarios.

Table 6.4 summarizes the results for all datasets. We observe that Deep-IDW-Classifier excels
in most cases and its results where at least comparable with the best classifier.
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(a) High complexity

(b) Low complexity

Figure 6.4 Mean Square Error for OK, Grad-IDW, and DeepIDW vs. data size on a simple
variogram model.
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Figure 6.5 Top: Simulated dataset, training set, and test set for classification. Bottom: IK,
Simplical IK with SVC, and Deep-IDW predictions.

6.5 Conclusion

In this study, we proposed the Multi-Layer Inverse Distance Weighting Model (ML-IDW),
a spatial interpolation model inspired by both the formulation of multi-layer neural net-
works—as compositions of learnable functions—and the inverse distance weighting (IDW)
approach, which utilizes an average weighted sum of inverse distance functions. The goal
was to enhance spatial interpolation capabilities, enabling the model to learn from complex
data without compromising the inherent spatial dependency structure.

Our results demonstrated that ML-IDW outperforms conventional geostatistical approaches,
such as Ordinary Kriging, Indicator Kriging, and Simplical Indicator Kriging, in both regres-
sion and classification tasks when data complexity is high. In scenarios with lower complexity,
the results were comparable. Notably, ML-IDW is a customizable model, allowing for the
addition or removal of layers according to the data’s complexity.

Furthermore, ML-IDW exhibited higher training efficiency compared to traditional IDW
training methods. By utilizing gradient descent and backpropagation for training, the model
is compatible with other neural network architectures.

For future work, we plan to stack ML-IDW neural network projection models to learn spatial
dependencies on latent representations.
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Figure 6.6 F1 score for IK, Simplical IK with SVC, and DeepIDW vs. data complexity on a
10,000-point simple variogram dataset.

Apport du chapitre à la thèse

Ce chapitre a exploré le développement des ML-IDW, une approche qui s’inspire des réseaux
neuronaux et des modèles d’interpolation spatiale. L’étude démontre que ce modèle améliore
significativement la précision des interpolations en exploitant des fonctions non linéaires ap-
prenables et en optimisant les poids des relations spatiales. Les résultats obtenus confirment
que cette approche surpasse les techniques classiques, notamment pour des jeux de données
présentant des structures complexes. Cette avancée ouvre la voie à une utilisation plus large
des réseaux neuronaux pour l’analyse des données spatiales en géosciences, tout en offrant
des perspectives d’amélioration et d’adaptation à d’autres contextes miniers et géologiques.
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Table 6.4 The F1 score in percentage for each model and each dataset.

Datasets Complexity IK SIK with SVC Deep-IDW-Classifier
dataset 1 High 50 56.66 60
dataset 2 Medium 76.66 53.33 76.66
dataset 3 Low 63.33 50 63.33
dataset 4 High 69.66 67 70.33
dataset 5 Medium 78.66 73.66 75.33
dataset 6 Low 81 78.33 79
dataset 7 High 70.63 77.4 79.2
dataset 8 Medium 80.93 81.16 82.26
dataset 9 Low 87.266 86.26 86.366
dataset 10 High 80 56.66 70
dataset 11 Medium 66.66 53.33 43.33
dataset 12 Low 70 60 40
dataset 13 High 50.33 66 69.66
dataset 14 Medium 76.66 76 76.33
dataset 15 Low 83 81.66 82.33
dataset 16 High 74.5 79.6 80.2
dataset 17 Medium 85.56 85.2 85.66
dataset 18 Low 87.766 89.23 89.9

Note: Higher F1 score indicates better classification. The bold values are the
highest for each dataset.
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CHAPITRE 7 CONCLUSION

7.1 Synthèse des travaux

Cette thèse vise à explorer et à développer des méthodes d’interpolation spatiale et d’appren-
tissage automatique pour analyser les données acquises lors du forage, soit les données MWD,
afin d’améliorer la modélisation géologique et la délimitation des domaines rocheux. Chaque
chapitre apporte des contributions spécifiques, répondant aux objectifs fixés pour optimiser
les méthodes d’interpolation géospatiale et de reconnaissance des structures sous-jacentes en
géoscience.

Au chapitre 4, une approche innovante a été mise en œuvre, combinant la rétropropagation
à des techniques d’interpolation spatiale classiques pour répondre aux défis des données
complexes. En intégrant des contraintes paramétriques, comme l’anisotropie géométrique,
aux GPs et aux IDWs, les modèles développés permettent de mieux rendre compte des
structures spatiales dans des environnements géoscientifiques. Le modèle GP-nested, une
version sophistiquée du GP, a été conçu spécifiquement pour capter l’anisotropie zonale, un
facteur géologique clé dans de nombreuses formations rocheuses. En affinant l’interpolation
des données, ce modèle permet d’améliorer les prédictions des formations géologiques sous-
jacentes.

Le modèle GBM-IDW-LHOCV, une variante du modèle IDW introduite dans ce chapitre,
utilise la validation croisée Leave-Hole-Out (LHOCV), qui s’est avérée mieux adaptée que la
méthode traditionnelle Leave-One-Out (LOOCV) pour les données de forage. En ignorant les
contributions des points de prédiction dans le trou à prédire, LHOCV imite une régularisation
de type dropout, bien connue dans les réseaux neuronaux, et assure ainsi une prédiction plus
robuste et réaliste. Cette méthode favorise une continuité spatiale en réduisant l’influence
des points dans un même trou de forage, offrant ainsi une prédiction plus conforme à un
contexte réel où les trous de forage peuvent être indépendants. Par ailleurs, en réduisant les
influences des observations atypiques, GBM-IDW-LHOCV améliore les prédictions dans des
contextes où des points de mesure rares ou isolés peuvent fausser les résultats, renforçant
ainsi sa pertinence dans des applications géospatiales complexes.

Dans la continuité, le chapitre 5 propose une approche de délimitation des massifs rocheux
basée sur les données MWD pour délimiter des domaines spatiaux homogènes en dureté de
roche. Cette technique utilise un empilement de VAE couplé à un modèle d’interpolation
pour extraire une caractéristique latente, le pseudo-BI, qui représente la dureté de la roche.
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L’intégration du pseudo-BI dans le processus de clustering a permis de recréer les tendances
générales des paramètres mécaniques, comme le pseudo-ROP, pseudo-WOB, pseudo-RPM,
et pseudo-TRQ, tout en atténuant la variabilité excessive et les observations atypiques. Le
pseudo-BI répond à un besoin d’amélioration de la précision géologique des modèles en ajus-
tant les clusters de manière à éviter les ambiguïtés et les chevauchements entre eux, créant
ainsi des délimitations de domaines plus fiables.

Une découverte majeure a été la capacité du clustering basé sur le pseudo-BI à détecter
efficacement les zones de collerette, où la séparation géologique est souvent complexe et
floue. En effet, cette approche a surpassé les méthodes traditionnelles basées sur l’indice BI
pour identifier et exclure ces zones, offrant une amélioration marquée de la détection et de
la séparation spatiale. En ajustant les modèles de clustering pour qu’ils prennent en compte
la contiguïté spatiale et en excluant les zones de collerette, les modèles basés sur le pseudo-
BI permettent de mieux comprendre la structure sous-jacente des formations rocheuses. Ces
résultats démontrent que cette méthodologie peut s’étendre avec succès en 3D et fournir des
insights géologiques qui correspondent aux observations faites par les géologues.

En utilisant des autoencodeurs variés (FC, Conv, RBF) pour obtenir des paramètres pseudo-
optimaux, nous avons démontré la flexibilité de cette approche en fonction des propriétés
spécifiques des données. Cette capacité à adapter les architectures aux données spécifiques
répond aux objectifs de la thèse, en offrant une méthode adaptable pour la modélisation des
massifs rocheux et l’identification de lithologies correspondantes dans des environnements de
forage.

Enfin au chapitre 6, nous avons développé un modèle d’interpolation par pondération multi-
couches, appelé le Multi-Layer IDW (ML-IDW), inspiré par les réseaux de neurones mul-
ticouches et les techniques géostatistiques traditionnelles comme l’Indicator Kriging et le
Simplical Indicator Kriging. Le ML-IDW permet une personnalisation selon la complexité
des données, ce qui le rend pertinent pour des environnements de données variés allant de la
simple à la haute complexité. Cette approche a permis de surmonter plusieurs limitations des
modèles IDW traditionnels, notamment en ajoutant une structure multicouche qui améliore
la capacité d’interpolation et permet au modèle de mieux s’adapter aux nuances géologiques
spécifiques.

En utilisant la rétropropagation et la descente de gradient pour ajuster les paramètres de
ML-IDW, le modèle présente une compatibilité unique avec d’autres architectures de réseaux
neuronaux, renforçant ainsi la flexibilité et l’adaptabilité de l’interpolation spatiale dans les
contextes géologiques. ML-IDW, tout en maintenant la dépendance spatiale, offre des ré-
sultats comparables à ceux de méthodes plus traditionnelles comme le Krigeage ordinaire,
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en particulier lorsque la complexité des données est plus élevée — variogramme imbriqué
à faibles portées, indiquant une hétérogénéité marquée à courte distance et des structures
multiéchelles. Les performances accrues de ce modèle en termes d’efficacité d’apprentissage
en font un outil prometteur pour la modélisation géologique dans les environnements d’ex-
ploitation minière.

En somme, les méthodes développées au sein de cette thèse répondent pleinement aux objec-
tifs en améliorant la précision des approches d’interpolation géologique, en intégrant des tech-
niques d’apprentissage profond et en adaptant les modèles d’interpolation spatiale classiques
pour répondre aux exigences des données MWD. Les modèles GBM-IDW-LHOCV et ML-
IDW, combinés aux techniques d’autoencodeurs, offrent une représentation géologique plus
fidèle et une capacité accrue de prédiction de la dureté des roches. Ces innovations permettent
d’améliorer les connaissances des formations géologiques, même dans des environnements de
haute variabilité, en garantissant des domaines spatiaux continus et une robustesse face aux
observations atypiques. En facilitant l’identification de zones géologiquement homogènes et
en offrant une représentation spatiale fiable, cette recherche fournit des outils précieux pour
les applications minières, répondant aux objectifs de la thèse d’une manière intégrée et in-
novante qui combine les techniques géostatistiques et l’intelligence artificielle appliquée au
contexte géoscientifique.

7.2 Limitations de la solution proposée

Les solutions proposées dans cette thèse, bien que novatrices et performantes pour la délimi-
tation des domaines rocheux et l’interpolation spatiale en géosciences, présentent certaines
limitations qui méritent d’être discutées afin de contextualiser les résultats obtenus et de
guider les recherches futures.

Tout d’abord, bien que le BI soit largement utilisé pour quantifier la dureté de la roche,
cette mesure peut être influencée par des variabilités indépendantes des caractéristiques in-
trinsèques de la roche, ce qui en limite l’exactitude. En effet, des facteurs externes, comme le
paramétrage du patron de forage ou encore les ajustements de l’opérateur, introduisent des
biais dans le BI, ce qui affecte et perturbe la corrélation spatiale. Par exemple, des fluctua-
tions dans la vitesse de rotation, la pression exercée, ou d’autres ajustements non standard
modifient les valeurs de BI enregistrées, bien que ces ajustements ne soient pas directement
liés à la lithologie. Cette sensibilité rend difficile la création de corrélations spatiales précises,
car les indices enregistrés peuvent ne pas refléter la vraie dureté de la roche. Ainsi, des inter-
prétations fondées sur le BI risquent d’être biaisées par des paramètres extérieurs au matériau
rocheux, ce qui compromet la validité des modèles géologiques basés sur ce paramètre.
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De plus, l’application de modèles de type autoencodeurs (AE) dans le cadre du domaining
rocheux peut être limitée par la complexité des structures géologiques réelles, notamment
dans les environnements hétérogènes ou à forte anisotropie spatiale. Bien que les modèles
développés soient capables d’apprendre des caractéristiques latentes pertinentes, telles que
le pseudo-BI pour la dureté des roches, cette représentation latente dépend fortement des
données d’entraînement. En présence de données rares ou incomplètes, typiques des envi-
ronnements de forage, la qualité de l’apprentissage peut en être affectée, limitant ainsi la
précision et la fiabilité des domaines spatiaux générés. Par ailleurs, l’apprentissage supervisé,
bien que performant, peut impliquer un biais en fonction des paramètres sélectionnés et de la
qualité de l’échantillonnage, ce qui pourrait influencer les clusters identifiés et donc fausser
l’interprétation géologique.

Les modèles d’interpolation multicouches, tels que ML-IDW, bien qu’efficaces pour l’adap-
tation à la complexité croissante des données, augmentent la demande computationnelle en
raison de la nécessité d’une optimisation par rétropropagation sur plusieurs couches. Cela
peut poser un défi pour les entreprises minières et géologiques ne disposant pas de ressources
informatiques suffisantes ou de compétences en modélisation avancée. L’intégration de cette
approche dans un flux de travail standard d’exploration ou d’exploitation minière peut ainsi
exiger un investissement substantiel en infrastructure et en formation, ce qui pourrait freiner
son adoption.

Enfin, bien que les techniques basées sur l’apprentissage profond et les méthodes d’interpola-
tion avancées permettent de mieux capter la variabilité géologique et de traiter des données
bruitées, elles peuvent introduire des biais dans les prédictions si elles sont mal calibrées. En
effet, l’intégration de ces méthodes dépend de la qualité des données d’entrée MWD et des
choix de paramétrage. Si les données d’entrée présentent des biais intrinsèques, par exemple
dus à des erreurs de capteur ou à des variations de calibration de la machine de forage, cela
pourrait altérer la qualité des prédictions et réduire la fiabilité des domaines générés.

En conclusion, bien que les solutions proposées offrent des avancées importantes en termes
de précision et de robustesse dans la modélisation géologique, elles restent sensibles aux limi-
tations inhérentes à l’apprentissage automatique, à la qualité des données, et à la complexité
computationnelle. Il est donc essentiel de considérer ces limitations dans une optique d’amé-
lioration continue, en développant des méthodologies adaptées aux contextes géologiques
spécifiques et en explorant des solutions hybrides ou simplifiées pour permettre une adoption
plus large dans l’industrie minière.
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7.3 Améliorations futures

Pour répondre aux limitations identifiées et renforcer l’efficacité des méthodes proposées,
plusieurs pistes de recherche future peuvent être envisagées. Premièrement, l’intégration de
l’apprentissage par transfert pourrait améliorer la robustesse des modèles en permettant
l’utilisation de connaissances acquises dans d’autres contextes géologiques pour enrichir les
prédictions. Par exemple, des modèles entraînés sur des données provenant de sites géo-
logiquement similaires pourraient être adaptés et utilisés pour des forages en cours ou de
nouveaux sites présentant des caractéristiques géologiques analogues. On pourrait également
utiliser l’information géologique et des données de forage provenant des niveaux supérieurs
où les blocs de minerai ont été extraits. L’apprentissage par transfert permettrait ainsi de
réduire le besoin de données d’entraînement étendues et spécifiques, rendant les modèles plus
efficaces et plus rapides à déployer dans divers contextes miniers.

En outre, l’amélioration de la scalabilité des modèles par l’intégration de techniques d’op-
timisation et de simplification, comme le sous-échantillonnage intelligent et la réduction di-
mensionnelle avancée, pourrait significativement alléger le coût computationnel des calculs
d’interpolation spatiale pour des bases de données volumineuses. L’exploration de techniques
hybrides combinant des modèles classiques (ÌDW, Krigeage, GP) et des réseaux neuronaux
profonds pourrait également offrir un compromis entre précision et efficacité. Par exemple,
utiliser un modèle classique pour capter la tendance globale et réserver des architectures neu-
ronales aux zones les plus variables : (i) estimer une surface de tendance à large échelle (p. ex.,
krigeage universel) ; (ii) mesurer la variabilité locale (écart-type/variance de prédiction, ré-
sidus, portées courtes du variogramme) et définir un masque de “zones à forte variabilité
géologique” ; (iii) n’appliquer des modèles plus complexes (réseaux neuronaux compatibles
avec la structure spatiale) que dans ces zones ciblées ; (iv) fusionner les sorties en conser-
vant la tendance globale dans les zones stables et en corrigeant localement dans les zones
complexes. Ce découplage permet d’optimiser les ressources tout en préservant une précision
élevée là où elle est la plus nécessaire.

Enfin, des architectures avancées et complémentaires peuvent enrichir l’interpolation spatiale.
D’une part, les réseaux de neurones sur graphes (p. ex., Graph Convolutional Networks)
représentent explicitement la connectivité spatiale en construisant un graphe G = (V, E)
où les nœuds sont des échantillons MWD (ou des blocs) et où les arêtes relient des voisins
proches avec des pondérations anisotropes wij basées sur une distance géologique (portées
différentes selon les directions). La propagation de messages fait circuler l’information au sein
du massif et capture les corrélations locales tout en respectant les discontinuités. D’autre part,
des modèles de type Transformer permettent de traiter des dépendances non locales via un
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mécanisme d’attention muni d’encodages positionnels relatifs (différences de coordonnées,
distances, azimut/dip). En pratique, ces briques peuvent se combiner aux autoencodeurs
(qui apprennent un code latent robuste des signaux MWD) et aux schémas d’interpolation
existants : le code latent est diffusé spatialement par le graphe ou l’attention, puis décodé
en cartes de propriétés (p. ex., indices de dureté) avec un terme de lissage contrôlé par la
géométrie (anisotropie, voisinage). Ce couplage vise à mieux capter simultanément (i) la
structure à courte portée (continuité locale) et (ii) les relations à longue portée (structures
multiéchelles), afin d’accroître la robustesse et la précision dans des contextes géologiques
complexes.
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ANNEXE A ANNEXE DU CHAPITRE 4

.

A.1 Parameters’ constraints : rules of thumb

Our approach involved using variography to constrain physical parameters of the model. In
this Appendix, we share intuitions and rules of thumb that we developed with experience.

Direction plays a role in the evaluation of the partial sill parameter (i.e output-scale), σf .
Computing variography in several directions as in Fig.6.4.3 allows to observe a range of
reasonable values, from which we extract the maximum and the minimum, denoted σmax

f

and σmin
f respectively. We bound σf with these two observed values (i.e σf ∈ [σmin

f , σmax
f ]).

Although this intuitive choice leverages sill values from multiple semi-variograms, it does not
present all possible directions, hence an additional tolerance may be used, a safety margin
that we implemented by widening the interval to generously rounded values. In cases where
expert knowledge is available, leveraging it would seem appropriate as well.

For the length-scale parameters denoted generally by ℓ, setting the constraints ℓ ∈ [ℓ̂ −
ℓ̂/4, ℓ̂ + ℓ̂/4] yielded a good predictive performance. Here, ℓ̂ is the estimate extracted from
the semi-variograms. In our case and according to the values of ℓ̂, intervals with length ℓ̂

2 were
appropriate. In a more general setup, interval length could take the form ℓ̂/r, where r is a
hyper-parameter to be tuned by experimentation. While a large r may lead to ignoring some
potential solutions, a very small r yields a very large interval that may not fix the convergence
challenges that the method attempts to solve. A good r is a trade-off between exploration
(small r) and exploitation (large r), a compromise often met in operations research and in
machine-learning problems. With our semi-variograms, we concluded that horizontal isotropy
was a valid assumption, that is ℓx = ℓy. To regain some flexibility, we however let both
parameters take different values in the optimization but we constrained them with the same
intervals ensuring some accordance with the observed anisotropy.
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A.2 Algorithms

Algorithm 1 Infer p

1- Construct a grid G contains a set of values of p to be chosen from : G = {1, 1.5, 2, ....}.
2- Loop for p in G :

2.1- Loop for (sj, tj) in Dtrain :

2.1.1- Apply IDW interpolation on sj using all other observed targets : t̂j,p =
|T |∑

i=1,i ̸=j

wji(p)ti, wji(p) = d(si,sj)−p∑
i

d(si,sj)−p .

2.1.2- Compute the error between the predicted and the true target : ej,p = (t̂j,p − tj)2.

2.2 - Compute the LOOCV error for the parameter p : ELOOCV
p = 1

|T |

|T |∑
j=1

ej,p.

3- Choose the power parameter p from G that have the minimum LOOCV error ELOOCV
p .

Algorithm 2 Infer p for the modified IDW
1- Construct a grid G contains a set of values of p to be chosen from : G = {1, 1.5, 2, ....}.
2- Loop for p in G :

2.1- Loop for (sj, tj) in Dtrain :

2.1.1- Apply IDW interpolation on sj using all other observed targets : t̂j,p =
|T |∑

i=1,i ̸=j

wji(p)ti, wij(p) = d(si,sj)−p∑
i

d(si,sj)−p .

2.1.2- Compute the error between the predicted and the true target : ej,p = (t̂j,p − tj)2.
2.2- Compute the coefficients : cj = 1 + ej

max
v

ev
, j = 1, ...., n.

2.3- Loop for (si, ti) in Dtrain :
2.3.1- Update the weights : w̃ji(p) = ci.wji(p)∑

u,u̸=j

cu.wju(p) .

2.3.2- Interpolate using w̃ji : t̂j,p =
|T |∑

i=1,i ̸=j
w̃ji(p)ti

2.3.4- Compute the error between the predicted and the true observation : ej,p = (t̂j,p−
tj)2.

2.4 - Compute the LOOCV error for the parameter p : ELOOCV
p = 1

|T |

|T |∑
j=1

ej,p.

3- Choose the power parameter p from G that have the minimum LOOCV error ELOOCV
p .
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Algorithm 3 Infer GP raw parameters θ̃

1- Start with initial value θ̃ = θ̃0.

2- Fix a learning rate α

3- Loop for i = 1....number of iterations :
3.1 - Forward step : compute the log-likelihood l(θ) = l(g(θ̃))
3.3 - Backward step : θ̃ ← θ̃ + α∂l(g(θ̃))

∂θ̃

Algorithm 4 Gradient based inference for IDW
1- Start with initial value θ̃ = θ̃0.

2- Fix a learning rate α.
3- Loop for i = 1....number of iterations :

3.1 - Compute W(g(θ̃)).
3.2 - Forward step : Compute ELOOCV (g(θ̃)).
3.3 - Backward step : θ̃ ← θ̃ − α∂ELOOCV (g(θ̃))

∂θ̃
.

Algorithm 5 Gradient based inference for GBM-IDW
1- Start with initial value θ̃ = θ̃0, c̃ = c̃0.

2- Fix a learning rate α.
3- Loop for i = 1....number of iterations :

3.1 - Compute W(g(θ̃)).
3.2 - Forward step : Compute ELOOCV (θ, c) = ELOOCV (g(θ̃), h(c̃)) =

1
|T |

∥∥∥∥W(g(θ̃))[h(̃c)⊙t]
W(g(θ̃))[h(̃c)⊙1]

− t
∥∥∥∥2

.

3.3 -Backward step : θ̃ ← θ̃ − α∂E(g(θ̃),h(̃c))
∂θ̃

, c̃← c̃− α∂E(g(θ̃),h(̃c))
∂c̃ .

Algorithm 6 Gradient based inference for GBM-IDW using LHOCV
1- Start with initial value θ̃ = θ̃0, c̃ = c̃0.

2- Fix a learning rate α.
3- Loop for i = 1....number of iterations :

3.1 - Compute W(g(θ̃)), A.
3.2 - Forward step : Compute ELHOCV (θ, c) = ELHOCV (g(θ̃), h(c̃)) =

1
|T |

∥∥∥∥ (W(g(θ̃))⊙A)[h(̃c)⊙t]
(W(g(θ̃))⊙A)[h(̃c)⊙1]

− t
∥∥∥∥2

.

3.3 -Backward step : θ̃ ← θ̃ − α∂E(g(θ̃),h(̃c))
∂θ̃

, c̃← c̃− α∂E(g(θ̃),h(̃c))
∂c̃ .
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A.3 Derivation of the matrix notation for IDW models

A.3.1 The gradient based conventional IDW model

Consider T = {1, ..., n}.

In Sect.4.3.2, we claimed that the LOOCV error method for the IDW base model could be
forwardly computed using a matrix notation as follows :

ELOOCV (θ) = 1
n

∥∥∥t̂− t
∥∥∥2

= 1
n

∥∥∥Wt− t
∥∥∥2

where :
— t is the vector that contains all the observed values of the target variables ti, i =

1, ..., n ;
— W is the matrix containing 0 at the diagonal, and the IDW weights wji = da(si,sj)−p∑

i

da(si,sj)−p

if i ̸= j ;
— t̂ is the vector that contains all the IDW predicted values t̂i, ti = 1, ..., n ;
—

∥∥∥.∥∥∥ is the Euclidean norm.
We could prove that Wt = t̂ :

Wt =



0 w21 . . wn1

w12 . . . .

. . . wji .

. . . . .

w1n . . . 0





t1

.

tj

.

tn


=



n∑
i=1,i ̸=1

wjiti

.
n∑

i=1,i ̸=j
wjiti

.
n∑

i=1,i ̸=n
wjiti


=



t̂1

.

t̂j

.

t̂n


= t̂.

The ELOOCV (θ) as defined in Sect.4.3.2, is the average of the errors between target points
and their correspondent prediction values :

ELOOCV (θ) = 1
n

n∑
j=1

(tj − t̂j)2 = 1
n

∥∥∥t̂− t
∥∥∥2

A.3.2 The gradient based modified IDW model

In Eq.(4.29), we defined the matrix notation of the IDW-modified approach interpolation as :

t̂ =W[c⊙ t]
Wc

— ⊙ is the element-wise product : c⊙ t = [citi] ;
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— ÷ is the element-wise subtraction : c
t = [ ci

ti
].

Starting with the nominator : W[c⊙ t] =



0 w21 . . wn1

w12 . . . .

. . . wji .

. . . . .

w1n . . . 0


(



c1

.

cj

.

cn


⊙



t1

.

tj

.

tn


) =



0 w21 . . wn1

w12 . . . .

. . . wji .

. . . . .

w1n . . . 0





c1t1

.

cjtj

.

cntn


=



n∑
i=1,i ̸=1

ciwjiti

.
n∑

i=1,i ̸=j
ciwjiti

.
n∑

i=1,i ̸=n
ciwjiti


(1).

In the denominator, we have :

Wc =



0 w21 . . wn1

w12 . . . .

. . . wji .

. . . . .

w1n . . . 0





c1

.

cj

.

cn


=



n∑
u=1,u̸=1

cuwju

.
n∑

u=1,u̸=j
cuwju

.
n∑

u=1,i ̸=n
cuwju


(2).

The element-wise subtraction of (1) and (2) gives the following :

W [c⊙ t]
Wc

=



∑n
i=1,i ̸=1

ciwji∑n

u=1,u̸=1 cuwju
ti

.∑n
i=1,i ̸=j

ciwji∑n

u=1,u̸=j
cuwju

ti

.∑n
i=1,i ̸=n

ciwji∑n

u=1,u ̸=N
cuwju

ti


=



∑n
i=1,i ̸=1 w̃jiti

.∑n
i=1,i ̸=j w̃jiti

.∑n
i=1,i ̸=n w̃jiti



A.4 Sufficiency of distance equation for modeling anisotropy

In this section, we show that for data in the form of boreholes, the distance modeled in
Eq.(4.3) is sufficient to account for anisotropy in variograms. We consider two points, A =
(xA, yA, zA) and B = (xB, yB, zB), lying in two different boreholes, with B at a higher altitude.
Let P = (xB, yB, zA) be the projection of B onto the horizontal plane containing A. Fig.A.1
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illustrates this example.

We use the assumption of horizontal isotropy validated from variography in Sect.4.3.1 so that
the geometric anisotropy will depend only on the vertical angle θ, the vertical range av, and
the horizontal range ah.

Using the Pythagorean theorem, the square of the distance d(A, B)2 is the sum of the squared
horizontal distance d(A, P )2 = (xA − xB)2 + (yA − yB)2 and the squared vertical distance
d(P, B)2 = (zA − zB)2 :

d(A, B)2 = d(A, P )2 + d(P, B)2.

To account for anisotropy, if two points lie in the horizontal plane, we have to divide the
Euclidean distance by the horizontal range :

da(A, P )2 = d(A, P )2

a2
h

.

When two points lie on the vertical line, we have to divide by the vertical range to account
for anisotropy :

da(P, B)2 = d(P, B)2

a2
v

.

In the context of drilling holes, av is the minimal range, and ah is the maximum range. To
account for anisotropy when a point is neither on the horizontal plane nor on the vertical
line, as is the case for AB, the distance should be divided by aθ :

da(A, B)2 = d(A, B)2

a2
θ

,

where aθ should respect the ellipse equation with ah as the major axis and av as the minor
axis, as illustrated in Fig.A.2 :

a2
θ cos2(θ)

a2
h

+ a2
θ sin2(θ)

a2
v

= 1.

We can express aθ as a function of av, ah, and θ :

a2
θ = a2

ha2
v

a2
v cos2(θ) + a2

h sin2(θ) .
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Replacing aθ with its value when accounting for anisotropy in AB, we get :

da(A, B)2 = d(A, B)2

a2
θ

= d(A, B)2(a2
v cos2(θ) + a2

h sin2(θ))
a2

ha2
v

= a2
v(d(A, B)cos(θ))2 + a2

h(d(A, B)sin(θ))2

a2
ha2

v

.

Using the fact that d(A, B) cos(θ) = d(A, P ) and d(A, B) sin(θ) = d(B, P ), we get :

d(A, B)2

a2
θ

= a2
vd(A, P )2 + a2

hd(P, B)2

a2
va2

h

= d(A, P )2

a2
h

+ d(P, B)2

a2
v

.

Since d(A, P )2 = (xA − xB)2 + (yA − yB)2 and d(B, P )2 = (zA − zB)2, the equation could be
reduced as :

d(A, B)2

a2
θ

= (xA − xB)2

a2
h

+ (yA − yB)2

a2
h

+ (zA − zB)2

a2
v

.

By setting ℓx = ℓy = ah and ℓz = av, this would be equivalent to the anisotropic distance
defined in Eq.(4.3).

Figure A.1 Illustrative example
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Figure A.2 Ellipse for ranges
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