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RÉSUMÉ

Le réseau intelligent représente un progrès majeur par rapport au réseau conventionnel pour
répondre aux préoccupations croissantes liées à l’efficacité énergétique et aux enjeux envi-
ronnementaux. Avec des fonctionnalités clés telles que la communication bidirectionnelle
et la surveillance en temps réel, la stabilité et la fiabilité du réseau sont considérablement
améliorées. Les programmes de réponse à la demande, qui permettent aux consommateurs
de jouer un rôle plus actif dans la gestion de leur consommation d’électricité, connaissent
un engouement croissant ces dernières années. En tant que l’une des ressources DR les plus
prometteuses, les charges contrôlées par thermostat (TCL) peuvent fournir des services aux-
iliaires flexibles au réseau grâce à leur inertie thermique et à leur large déploiement dans le
réseau de distribution. Par conséquent, l’étude des techniques de contrôle d’une population
de TCLs revêt un intérêt majeur, tant sur le plan théorique que pratique. Cette thèse vise
à résoudre le problème de suivi de puissance pour une population de TCLs hétérogènes.
Pour représenter avec précision le comportement thermodynamique, chaque charge est mod-
élisée à l’aide de modèles de paramètres thermiques équivalents du premier ou du deuxième
ordre, tandis que la dynamique macroscopique de la population est décrite par des équa-
tions de Fokker-Planck couplées ou leurs extensions d’ordre supérieur. Divers algorithmes
de commande sont développés en s’appuyant sur la méthode de linéarisation entrée-sortie,
accompagnés d’une analyse de stabilité rigoureuse du système en boucle fermée, incluant à
la fois la dynamique de l’erreur de suivi et la dynamique interne à dimension infinie. Les
algorithmes de commande proposés reposent uniquement sur des observations partielles de
l’état de la population, indépendamment des paramètres du système, tout en offrant des
performances accrues pour des ensembles de TCL à grande échelle et à très grande échelle.
Pour alléger davantage le fardeau de communication, les techniques de commande déclenchée
par événement sont adaptées dans le suivi de puissance. Les stratégies de commande dé-
clenchée par événement statiques et dynamiques sont étudiées, chacune assurant la stabilité
du système en boucle fermée tout en évitant l’apparition du phénomène de Zeno.

Cette thèse a contribué à approfondir la compréhension de la coordination de grandes popula-
tions de TCL pour améliorer leur performance dans les programmes de réponse à la demande
au sein des réseaux intelligents. Nos résultats montrent que les méthodes de commande pro-
posées sont hautement efficaces, en particulier pour les grandes populations hétérogènes de
TCLs. Par ailleurs, les algorithmes de commande proposés démontrent une robustesse re-
marquable vis-à-vis de diverses perturbations fréquemment rencontrées en conditions réelles
d’application.
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ABSTRACT

The smart grid (SG) represents a major advancement over the conventional grid to meet the
growing concern of energy efficiency and environmental challenges. With core features such
as two-way communication and real-time monitoring, the stability and reliability of the grid
is highly improved. Demand response (DR) programs, which empower energy consumers to
take a more active role in managing their electricity usage, have grown increasingly popular
in recent years. As one of the most promising DR resources, thermostatically controlled
loads (TCLs) can provide flexible auxiliary services to the grid due to their thermal inertia
and widespread presence across the distribution network. Therefore, it is of great theoretical
and practical significance to study the control techniques for a population of TCLs. This
dissertation aims at addressing the power tracking control problem for a popoulation of
heterogeneours TCLs. To accurately capture the thermodynamic behavior, individual loads
are modeled using first- or second-order equivalent thermal parameter (ETP) models, while
the macroscopic dynamics of the population are described by coupled Fokker-Planck (CFP)
equations or their higher-order extensions. Various control algorithms are developed based on
the method of input–output linearization, accompanied by a rigorous stability analysis of the
closed-loop system, including both the tracking error dynamics and the infinite-dimensional
internal dynamics. The proposed control schemes use only partial observations of the state
of the population, independent of system parameters, and exhibit enhanced performance
for large-scale and ultra-large-scale ensembles of TCLs. To further alleviate communication
burdens, event-triggerd control techniques are adapted in power tracking control. Both static
and dynamic event-triggered control strategies are studied, each ensuring the closed-loop
stability while preventing the occurrence of the Zeno phenomena.

This dissertation is expected to give a deeper understanding on coordinating large-scale TCL
populations for their better performance in demand response programs within the smart
grid. Our findings show that the proposed control methods are highly effective, particularly
for large-scale heterogeneous TCL populations. Moreover, the proposed control schemes
demonstrate robustness against a range of disturbances commonly encountered in real-world
applications.



vii

TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 General context of demand response in the smart grid . . . . . . . . . . . . . 1

1.1.1 Conventional grid vs smart grid . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Demand-side management . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Demand response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Thermostatically controlled loads for demand response . . . . . . . . . . . . 9
1.3 Objective and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Dissertation organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

CHAPTER 2 PROBLEM STATEMENT AND RELATED WORK . . . . . . . . . 17
2.1 Scope of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Model-based or data-driven control strategies . . . . . . . . . . . . . 17
2.1.2 Centralized, decentralized, and distributed control . . . . . . . . . . . 18
2.1.3 Model discretization or controller discretization . . . . . . . . . . . . 19

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Finite dimensional state space models . . . . . . . . . . . . . . . . . . 21
2.2.2 Coupled Fokker-Planck model for first-order TCL populations . . . . 22
2.2.3 Coupled Fokker-Planck model for higher order TCL populations . . . 23



viii

2.2.4 Communication and computation burden reduction . . . . . . . . . . 24
2.2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

CHAPTER 3 BASIC NOTATIONS, TOOLS, AND PRELIMINARIES . . . . . . . 27
3.1 Lyapunov stability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Lyapunov stability definitions . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Finite time stability and ultimate boundedness . . . . . . . . . . . . . 29
3.1.3 Input-to-state stability and generalizations . . . . . . . . . . . . . . . 32

3.2 Linear Active Disturbance Rejection Control . . . . . . . . . . . . . . . . . . 35
3.3 Numerical estimations of function values . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Mid-point rule for one estimation . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Huber’s M estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Numerical analysis of the aggregate dynamics . . . . . . . . . . . . . . . . . 40
3.4.1 Simulation setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Step response of the aggregate dynamics . . . . . . . . . . . . . . . . 40

CHAPTER 4 ARTICLE 1: POWER TRACKING CONTROL OF HETEROGE-
NEOUS POPULATIONS OF THERMOSTATICALLY CONTROLLED LOADS
WITH PARTIALLY MEASURED STATES . . . . . . . . . . . . . . . . . . . . . 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Notations and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Finite-time input-to-state stability of finite dimensional systems . . . 51

4.3 Mathematical model and problem specification . . . . . . . . . . . . . . . . . 52
4.3.1 Dynamics of individual TCLs . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Dynamics of aggregate TCL population . . . . . . . . . . . . . . . . . 53
4.3.3 Problem statement and basic assumptions . . . . . . . . . . . . . . . 56

4.4 Control design and stability analysis . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 Control design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2 Finite-time input-to-state stability of the tracking error dynamics . . 62
4.4.3 Properties of the governing PDEs . . . . . . . . . . . . . . . . . . . . 64

4.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2 Numerical results and analysis . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7 Appendix: Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . 72



ix

CHAPTER 5 ARTICLE 2: EVENT-TRIGGERED POWER TRACKING CONTROL
OF HETEROGENEOUS TCL POPULATIONS . . . . . . . . . . . . . . . . . . . 78
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Notations and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Dynamic model of TCL populations and power tracking control . . . . . . . 82

5.3.1 Dynamics of a single TCL . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Coupled Fokker-Planck equations for the aggregated dynamics of the

population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 Continuous-time tracking control law . . . . . . . . . . . . . . . . . . 85

5.4 A static event-triggered tracking control scheme . . . . . . . . . . . . . . . . 87
5.4.1 Error dynamics with event-triggered tracking control . . . . . . . . . 87
5.4.2 Design of static event-triggering condition . . . . . . . . . . . . . . . 89

5.5 A dynamic event-triggered tracking control scheme . . . . . . . . . . . . . . 93
5.5.1 A dynamic execution rule . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.2 An implementation of the dynamic triggering scheme . . . . . . . . . 97

5.6 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.2 Results of static ETC . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.3 Results of dynamic ETC . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

CHAPTER 6 ARTICLE 3: POWER TRACKING CONTROL OF SECOND-ORDER
HETEROGENEOUS TCL POPULATIONS . . . . . . . . . . . . . . . . . . . . . 106
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Mathematical model for TCL populations . . . . . . . . . . . . . . . . . . . 108

6.2.1 Second order ETP model for a single TCL . . . . . . . . . . . . . . . 109
6.2.2 Aggregate dynamics of TCL populations . . . . . . . . . . . . . . . . 111

6.3 Power tracking controller design and closed-loop stability . . . . . . . . . . . 113
6.3.1 Input-output dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.2 Introducing saturation control . . . . . . . . . . . . . . . . . . . . . . 115
6.3.3 Proportional auxiliary controller . . . . . . . . . . . . . . . . . . . . . 116
6.3.4 LADRC auxiliary controller . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.5 Numerical implementation of the control scheme . . . . . . . . . . . . 118

6.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4.1 Simulation setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4.2 Numerical results for 1000 ACs . . . . . . . . . . . . . . . . . . . . . 123



x

6.4.3 Numerical results for 100,000 ACs . . . . . . . . . . . . . . . . . . . . 126
6.4.4 Results analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

CHAPTER 7 GENERAL DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 130

CHAPTER 8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.1 Summary of research work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2 Limitations and future research prospects . . . . . . . . . . . . . . . . . . . . 133

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



xi

LIST OF TABLES

Table 1.1 The TOU electricity prices in Ontario . . . . . . . . . . . . . . . . . . 6
Table 1.2 The rate D prices in Quebec . . . . . . . . . . . . . . . . . . . . . . . 7
Table 1.3 Major differences between a VPP and an MG . . . . . . . . . . . . . 12
Table 2.1 Comparisons between centralized, decentralized, and distributed con-

trol schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 2.2 Comparisons of early-lumping and late-lumping schemes . . . . . . . 21
Table 3.1 Simulation parameters and default values . . . . . . . . . . . . . . . . 41
Table 4.1 Simulation parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 4.2 Tracking performance of 10 episodes for the population with 1,000 TCLs 69
Table 4.3 Tracking performance of 10 episodes for the population with 100,000

TCLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 5.1 Parameters used in the simulation. . . . . . . . . . . . . . . . . . . . 99
Table 5.2 Tracking performance of 5 episodes with periodic control strategy. . . 101
Table 5.3 Comparison of the static ETC for different k′ and ϵ. . . . . . . . . . . 102
Table 5.4 Average triggering intervals (ATI) for different values of θ. . . . . . . 102
Table 6.1 Simulation parameters and default values . . . . . . . . . . . . . . . . 121
Table 6.2 Power tracking results for 1000 ACs . . . . . . . . . . . . . . . . . . . 123
Table 6.3 Power tracking results for 100,000 ACs . . . . . . . . . . . . . . . . . 126



xii

LIST OF FIGURES

Figure 1.1 The differences between the conventional grid and the smart grid. . . 2
Figure 1.2 The smart grid architecture proposed by NIST. . . . . . . . . . . . . 4
Figure 1.3 Global clean-energy investment in the last decade. . . . . . . . . . . . 5
Figure 1.4 Classification of DR programs. . . . . . . . . . . . . . . . . . . . . . . 8
Figure 1.5 The VPP communication model. . . . . . . . . . . . . . . . . . . . . 10
Figure 1.6 Schematic view of different components in a micro-grid. . . . . . . . . 11
Figure 1.7 Flowchart of the dissertation structure. . . . . . . . . . . . . . . . . . 15
Figure 2.1 Different control architectures for TCL populations. . . . . . . . . . . 18
Figure 2.2 Different controller design approaches. . . . . . . . . . . . . . . . . . 20
Figure 3.1 An illustration of different convergence patterns. . . . . . . . . . . . . 31
Figure 3.2 Basic steps for obtaining function value estimation. . . . . . . . . . . 37
Figure 3.3 Aggregate power curve under sudden set-point change. . . . . . . . . 41
Figure 3.4 Temperature trajectories of the first 10 ACs. . . . . . . . . . . . . . . 42
Figure 3.5 t = 11 : 00− (a) ONs distribution; (b) OFFs distribution. . . . . . . . 43
Figure 3.6 t = 11 : 01 (a) ONs distribution; (b) OFFs distribution. . . . . . . . . 43
Figure 3.7 t = 11:25 (a) ONs distribution; (b) OFFs distribution. . . . . . . . . 44
Figure 3.8 t = 11:45 (a) ONs distribution; (b) OFFs distribution. . . . . . . . . 45
Figure 3.9 t = 16:00 (a) ONs distribution; (b) OFFs distribution. . . . . . . . . 45
Figure 3.10 The impact of different set-point offset. . . . . . . . . . . . . . . . . . 46
Figure 4.1 Hybrid thermostat-based deadband control scheme. . . . . . . . . . . 53
Figure 4.2 Illustration of probability density functions of a TCL population at a

given time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 4.3 Schematics diagram of power tracking control of a TCL population. . 63
Figure 4.4 Ambient temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 4.5 Desired power profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 4.6 Control performance for a population of 1,000 TCLs: (a) tracking per-

formance; (b) temperature trajectories of 10 ACs; (c) set-point varia-
tion rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 4.7 Control performance for a population of 100,000 TCLs: (a) tracking
performance; (b) temperature trajectories of 10 ACs; (c) set-point vari-
ation rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 5.1 Illustration of probability density functions of a TCL population at a
given time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



xiii

Figure 5.2 Schematics of event-triggered power tracking control of a TCL popu-
lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.3 Flowchart for static ETC algorithm. . . . . . . . . . . . . . . . . . . 90
Figure 5.4 Ambient temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 5.5 Desired power profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 5.6 Static triggering scheme. Top: tracking performance; bottom: set-

point variation rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 5.7 Dynamic triggering scheme. Top: tracking performance; bottom: set-

point variation rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 5.8 Inter-execution time distributions of static and dynamic ETC schemes. 105
Figure 6.1 The circuit diagram for the second-order ETP model. . . . . . . . . . 109
Figure 6.2 Block diagram for the controller implementation. . . . . . . . . . . . 120
Figure 6.3 Ambient temperature and desired power curve (a) ambient temperature

curve; (b) desired power profile. . . . . . . . . . . . . . . . . . . . . . 122
Figure 6.4 Control performance for a population of 1000 ACs: (a) tracking curve;

(b) tracking errors; (c) set-point variation rate. . . . . . . . . . . . . . 124
Figure 6.5 Trajectories and actions of No. 1 and No. 2 AC in the population of

1,000 ACs (a) air and mass temperature trajectories; (b) independent
set-point changing velocities. . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 6.6 Control performance for a population of 100,000 ACs: (a) tracking
curve; (b) tracking errors; (c) set-point variation rate. . . . . . . . . . 127

Figure 6.7 Trajectories and actions of No. 1 and No. 2 AC in the population of
100,000 ACs (a) air and mass temperature trajectories; (b) independent
set-point changing velocities. . . . . . . . . . . . . . . . . . . . . . . . 128



xiv

LIST OF SYMBOLS AND ABBREVIATIONS

AC Air Conditioner
ADRC Active Disturbance Rejection Control
AGC Automatic Generation Control
AMI Advanced Metering Infrastructure
ASMP Ancillary Services Market Program
ATI Average Triggering Interval
AVR Automatic Voltage Regulation
BIBO Bounded-Input, Bounded-Output
CFP Coupled Fokker-Planck
CMP Capacity Market Program
COP Coefficient Of Performance
CPP Critical Peak Pricing
DAU Data Aggregator Unit
DBBP Demand Bidding/Buyback Program
DER Distributed Energy Resource
DG Distribution Generation
DLC Direct Load Control
DMS Distribution Management System
DOE Department Of Energy
DR Demand Response
DSM Demand Side Management
DSO Distribution System Operator
EDRP Emergency Demand Response Program
EE Energy Efficiency
EKF Extended Kalman Filter
EMS Energy Management System
ESO Extended State Observer
ESS Electric Energy Storage
ESS Energy Storage System
ETC Event-Triggered Control
ETP Equivalent Thermal Parameter
FACTS Flexible AC Transmission System
FTISS Finite-Time Input-to-state Stable



xv

HEMS Household Energy Management System
HVAC Heating, Ventilation, And Air Conditioning
HVDC High-Voltage Direct Current
IBR Inclining Block Rate
IBVP Initial-Boundary Value Problem
ICS Interruptible/Curtailable Service
ICT Information And Communications Technology
IEA International Energy Agency
IRLS Iteratively Reweighted Least Square
ISS Input-to-State Stable
ISpS Input-to-State Practically Stable
LADRC Linear Active Disturbance Rejection Control
MG Micro-Grid
MLE Maximum Likelihood Estimator
MPC Model Predictive Control
MVC Minimum Variance Controller
NIST National Institute Of Standards And Technology
ODE Ordinary Differential Equation
OEB Ontario Energy Board
OLS Ordinary Least Square
OMS Outage Management System
PAR Peak-to-Average Ratio
PCC Point Of Common Coupling
PDE Partial Differential Equation
PDF Probability Density Function
PHEV Plug-In Hybrid Electric Vehicle
QoS Quality Of Service
RES Renewable Energy Resource
RMSE Root-Mean-Square Error
RTP Real-Time Pricing
SG Smart Grid
SHS Stochastic Hybrid System
SISO Single-Input-Single-Output
SM Smart Meter
STD Standard Deviation
TCL Thermostatically Controlled Load



xvi

TD Tracking Differentiator
TOU Time-Of-Use
ULO Ultra-Low Overnight
VPP Virtual Power Plant
WAMS Wide Area Management System
ZOH Zero-Order-Hold



xvii

LIST OF APPENDICES

Appendix A Supplymentary materials for Chapter 6 . . . . . . . . . . . . . . . . . 157



1

CHAPTER 1 INTRODUCTION

1.1 General context of demand response in the smart grid

1.1.1 Conventional grid vs smart grid

The Smart Grid (SG) is a comprehensive concept that encompasses an extensive range of
technologies, innovations, and solutions related to the power grid, all designed to accom-
modate the growing concern of energy efficiency and the pressing issue of climate change,
see [8,12,16,43,86,153,197] etc. for an overview. The definition of it has been stated by many
entities and researches, embodying the complexity and multiface of this concept. According
to the International Energy Agency (IEA) [83],

A smart grid is an electricity network that uses digital and other advanced tech-
nologies to monitor and manage the transport of electricity from all generation
sources to meet the varying electricity demands of end-users. Smart grids coor-
dinate the needs and capabilities of all generators, grid operators, end-users and
electricity market stakeholders to operate all parts of the system as efficiently as
possible, minimising costs and environmental impacts while maximising system
reliability, resilience, and stability.

Some other definitions, such as the one provided by the U.S. Department of Energy (DOE)
[195] or by the European Technology Platform (ETP) for the Electricity Networks of the
Future [46], are also very common in the literature. Although general descriptions of this
concept diverse, the core principles or features of the modernized power grid are commonly
shared. Figure 1.1, adapted from [151], illustrates some predominant differences between the
conventional grid and the smart grid infrastructure.

According to the National Institute of Standards and Technology (NIST) architecture [1,59],
seven logical domains are included in the smart grid framework, which are, respectively, gen-
eration including distributed energy resources (DERs), transmission, distribution, customer,
markets, operations, and service providers. In the following, some major differences of each
domain are briefly summarized.

Engery generation In conventional power grids, the primary source of energy is
dominated by few large power plants. While in contrast, the smart grid enables the
integration of a higher percentage of DERs such as photovoltaic (PV) arrays, wind
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Figure 1.1 The differences between the conventional grid and the smart grid.

farms, geothermal and biomass energy sources, etc. Modern communication networks
are deployed on the generation side to collect the real-time supply status.

Transmisson Smart transmission technologies, such as the high-voltage direct current
(HVDC) and the Flexible AC Transmission Systems (FACTS) [105, 190], are used to
transfer energies from the generation side to the distribution side through several sub-
stations. The direction and amount of power flows are monitored in real-time and a
protection mechanism will be activated when transmission faults are detected.

Distribution The advanced metering infrastructure (AMI) systems, one of the core
components in smart grid [88], are deployed at the distribution side, responsible for
gathering and analyzing energy consumption information from a large number of cus-
tomers. The smart meters (SMs) records the energy usages and the data aggregator
units (DAUs) automatically read the data and forward it to the AMI system. Un-
like in traditional power grids where the electricity only flows from the substations to
customers, the smart grid allows two-way flow of electricity between substations and
micro-grids (MGs). As aforementioned in the energy generation domain, there exist a
lot of nondispatchable renewable energy resources (RESs) in the smart grid. The inter-
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mittent behaviors of these generators will be timely observed and the supply-demand
dismatches can be properly handled by the AMI system.

Customers Traditionally, the end-users are only passive customers, and the bills are
generated based on their energy consumptions. In contrast, the smart grid empowers
the customers with real-time access to their energy usage data and provides them with
different demand response programs. The customers can be roughly categorized as
industrial, commercial, and residential users. The household users can take an active
role in the interactions with the power grid through their equipments such as heating,
ventilation, and air conditioning (HVAC) devices or plug-in hybrid electric vehicles
(PHEVs).

Markets The smart grid is a decentralized, open, and dynamic system that enables
various electric suppliers and load-serving entities to exchange energies. Except for
bulky generators and transmission system operators, distributed generators, demand
response aggregators and energy storage providers all can compete for market share
and revenue. The market platform provides improved flexibility, increased reliability
and enhanced energy efficiency to the power grid.

Operations The smooth operation of the power system severely depends on ad-
vanced operation technologies, which include but not limit to Energy Management Sys-
tem (EMS), Automatic Generation Control (AGC), Distribution Management System
(DMS), Automatic Voltage Regulation (AVR), Outage Management System (OMS),
Wide Area Management System (WAMS), and Demand-side Management (DSM) [44,
49,165,194,202]. With the help of various intelligent operation softwares, the real-time
system awareness, intelligent energy distribution and automatic fault detection and
correction etc. can be achieved.

Service providers Service providers offers various support for the business processes
between power system producers, distributors, and customers. Some common services,
like billing and account management, installation and management services, cyber se-
curity etc., are all available from utilities or third-party organizations.

It is remarkable that the seven domains are not independent, various interactions happen
between them. Figure 1.2 shows the interoperability between them, illustrating both the
communication and the energy flows inside the smart grid. The development and utilization
of RESs is essential for ensuring a clean and low-carbon energy supply. Two main driven
factors, i.e., the escalating energy demand and the concern on environmental impacts, are
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Figure 1.2 The smart grid architecture proposed by NIST.

the underlying reasons for the large-scale integration of RESs. Firstly, the ever-increasing
energy demand is obvious. As the population size grows or more people move to the cities,
more energy is required for powering houses, commercial buildings or industries. A rapid
growing economy also required more energy investment, for example, PHEVs and data cen-
ters all consume a significant amount of electricity every day. Secondly, fossil fuel-based
energy production generates massive amounts of greenhouse gas, which has a catastrophic
impact on global climate, environment, and human health. Figure 1.3 shows the global in-
vestment on clean energies in the last decade. The data, with billion USD as units for the
energy investment, is obtained from [84], while the value for year 2024 is an estimation. This
graph indicates that developing clean energies is a global consensus, and now the investment
on clean energies is almost twice as that on the fossil fuels. The penetration of RESs into
the utility grid brings severe challenges to the stability, service quality, and reliability of
the smart grid [7, 28, 141, 188]. Some renewable energy generators, such as wind turbines
and solar photovoltaic (PV) systems, are heavily influenced by weather conditions, seasonal
variations and geographical locations, thus the power output is highly unpredictable and has
large fluctuations. The intermittent behavior increases the strain on the power grid, espe-
cially during periods of high demand. Some services traditionally provided by synchronous
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Figure 1.3 Global clean-energy investment in the last decade.

generators, such as load following, voltage and frequency stabilities, spinning reserve, etc.,
become more difficult when there are too much uncertainties introduced by RESs.

To effectively handle the issues arising from energy supply intermittency, it is essential to
explore all available remedies and technologies, such as market competition, active energy
storage, demand management, real-time forecasting etc., see [6,45,64,134,182] and references
therein. As a cost-effective solution, demand-side management and demand response (DR)
are introduced in the following.

1.1.2 Demand-side management

Demand-side management is not a new concept. A formal definition of DSM can be obtained
from [60]:

Demand-side management is the planning, implementation, and monitoring of
those utility activities designed to influence customer use of electricity in ways
that will produce desired changes in the utility’s load shape, i.e., changes in the
time pattern and magnitude of a utility’s load. (Gellings 1984-1988)

Increasing supply by building new plants and transmission networks is costly, whose cost
is usually passed to the customers meanwhile creating more pollutions. DSM, however,
is a win-win-win for utilities, customers, and the planet. For the utilities, DSM is a cost-
effective method for maintaining supply-demand balance and reducing peak-to-average power
ratio (PAR), which significantly improves the efficiency and reliability of the grid. For the
customers, the financial benefit, such as a lower electricity rate, is usually applied for reducing
consumption or shifting electricity demand from on-peak to off-peak hours. For the planet, a
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lower carbon footprint is achieved, which is essential for the global climate targets. Besides,
less harmful pollutants are emitted, which is also indispensable to a sustainable future.

According to [15], there are three catagories for DSM, respectively Energy Efficiency (EE),
Demand Response, and Distributed Energy Resources (DERs). EE refers to completing
the same tasks with less power. DR programs adjust the load profile when the power grid
is under stress, see the next subsection (subsection 1.1.3) for more details. DER refers to
the decentralized power generation systems that connected to the grid at distribution level.
It mainly consists of two subcategories, Distribution Generation (DG) and Electric Energy
Storage (ESS).

DSM is not just a theoretical concept, it might happen in the daily routines of some Cana-
dians. According to Ontario Energy Board (OEB), there are three types of electricity rates
for residential customers to choose, respectively Time-of-Use (TOU), Ultra-Low Overnight
(ULO) and Tiered prices. Table 1.1 shows the TOU rates for household users in Ontario,
valid from November 2023 to October 2024. It is clear that the on-peak price are higher than
those of mid-peak and off-peak periods. Therefore, if one person in Toronto uses TOU rates
and tries to move his/her EV charging time or his/her washing and drying time from on-peak
to off-peak periods, he/she is already participating in the demand-side management. For the
tiered prices, it is similar to the domestic rates for household users in Quebec, as shown in
Table 1.2, refer to rate D in [81]. According to Hydro-Quebec, if the daily consumption is less
than 40 kW, the rate is billed at 6.704 ¢/kWh. Otherwise, a higher price of 10.342 ¢/kWh; is
applied. Thus, if a person always tries to avoid using larger power consumption appliances,
he/she is involved in the energy efficiency category of demand-side management.

Table 1.1 The TOU electricity prices in Ontario

TOU Period Hours TOU Prices
(¢/kWh)Winter Summer

Off-peak 7 p.m. – 7 a.m. 7 p.m. – 7 a.m. 8.7

Mid-peak 11 a.m. – 5 p.m. 7 a.m. – 11 a.m.
5 p.m. – 7 p.m. 12.2

On-peak 7 a.m. – 11 a.m.
5 p.m. – 7 p.m. 11 a.m. – 5 p.m. 18.2
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Table 1.2 The rate D prices in Quebec

Description Prices ((¢/kWh))
system access charge 44.810

daily electricity [0,40] 6.704
consumption(kW) [40,65] 10.342

1.1.3 Demand response

Demand response is a subset of demand-side management, as claimed in subsection 1.1.2.
After comparing existing definitions, the authors of [133] provide a relatively new definition
of demand response:

Demand response is the actions of customer-sited energy resources, located down-
stream of metering points, to voluntarily, actively, and temporarily adjust their
electricity production and/or consumption in response to signals (e.g., commands,
prices, measurements).

DR is a valuable tool for stabilizing the power grid in peak demand time or in emergencies.
Figure 1.4 illustrates some common DR options. There are roughly two types of demand re-
sponse programs, respectively price-based and incentive-based, based on how the load profile
changes are brought about.

Price-based DR regulates the energy usage by changing price signals. Time-of-Use (TOU),
a common strategy adopted in a lot of countries, charges the customers with different rates
based on the consumption time of day or season. However, it uses a static price schedule,
whose optimality is unclear and might cause a “rebound peak” after the namely on-peak
period, see [3,155]. Real-time pricing (RTP) is a scheme that reflects the real-time wholesale
price of electricity, usually fluctuates hourly based on advanced forecasting technologies.
Critical peak pricing (CPP) entails using higher power chargers at a peak time. The difference
between CPP and TOU is that TOU is designed for a medium and long-term, while CPP is
usually applied for a short-term period, for example a few days in a year. Inclining block rate
(IBR) is a scheme where customers pay higher prices if the total consumption exceeds a fixed
threshold. It encourages end-users to use less energy and thus facilitates energy efficiency.

Incentive-based DR pays customers some monetary incentives in exchange for active re-
sponses from the DR events. Some common incentive-based options include direct load
control (DLC), emergency demand response programs (EDRP), capacity market programs
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(CMP), interruptible/curtailable service (ICS), demand bidding/buyback programs (DBBP),
ancillary services market programs (ASMP), etc. DLC grants the utilities or grid operators
remotely regulate the appliances to fulfill demand and EDRP programs pays users for volun-
tarily decreasing power consumption in case of reserve shortfalls such as failure of generation
units, extreme weather events etc. CMP requires a prespecified load reduction during system
emergencies. ICS, which traditionally offers to larger industrial and commercial organiza-
tions, also requires a demand reduction at critical times. Unlike DLC and EDRP, CMP and
ICS suffer penalties when fails to curtail. DBBP and ASMP are based on market clearing
schemes, while DBBP is mainly offered to large market participants. The customers take a
bid for curtailing at more suitable prices.

1.2 Thermostatically controlled loads for demand response

A thermostatically controlled load (TCL) is an electrical device that is designed by automat-
ically heating or cooling a physical system so that the temperature is kept within a limited
range or around a fixed set-point. For a TCL, such as an air conditioner, a heat pump, or a
refrigerator, it is usually controlled by a bang-bang controller [104], where the control signal
switches abruptly between two power states, ON and OFF respectively. The operations of
TCLs all follow a similar manner. Without loss of generality, take a residential air conditioner
(AC) as an example. When the temperature is above the deadband, the cooling device turns
on, making the temperature drops. And when the temperature is below the deadband, the
AC power turns off, and the temperature slowly increases. In the following, ACs are always
used as the example for the analysis, and thus a TCL population has the same meaning of
an AC population. However, the established work can be easily generalized to other types of
cooling or heating devices whenever needed.

The most noticeable feature of a TCL is its high thermal inertia, which is defined as “the
capacity of a material to store heat and to delay its transmission” [112]. Thus, temporary
and short interruptions are allowed within a regular operating cycle with little or without
compromise on the service quality. According to a study in UK, there is no significant
difference on the human thermal comfort when the AC set-point increases from 22 ◦C to 24 ◦C,
see [95, 170]. In fact, it is shown that the set-point of a TCL can be quite flexible between
19.5 ◦C and 25.5 ◦C without considering the thermal acceptability [214]. In summary, TCLs
are ideal candidates for participating DR programs.

There are great potentials for populations of TCLs to participant in DR programs. Although
a single TCL has limited impact on the whole grid, ensembles of a large number of TCLs,
when managed in an orderly and controllable manner, can have a significant impact on the
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entire power grid. According to the statistics, ACs account for around 30% ∼ 40% of the total
power consumption during the peak hours during summer in big cities of China, Spain, and
India, see [39,75,204]. Thus, the potentials of TCLs need to be further explored and they can
even act as a major role in responding to various demand response events. Many existing
studies have shown that the population of TCLs can participate in tasks such as power
balancing [77,93,124], energy arbitrage [26,129,152], frequency regulation [37,107,136,185],
voltage adjustment [80,204,228], etc..

As one type of DERs, TCLs are usually geographically dispersed over a vast region. There
are two closely-connected concepts aiming at aggregating such scattered resources, namely
virtual power plant (VPP) and micro-grid (MG).

A VPP is a clustered, interconnected system which aggregates different types of DERs,
aiming to provide affordable, secure, and flexible energy services similar to a conventional
power plant. When distributed small-scale generators, energy storages or flexible loads are
integrated into a VPP, they can be traded collectively in the energy market, where small
individual asset is usually blocked by the minimum bid size. Figure 1.5, adopted from [156],
shows the VPP communication model.

VPP
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Main Grid Information
flow

Information
flow

Cash
Flow

Power
Flow

Power
Flow
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Flow

Weather
Data
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Figure 1.5 The VPP communication model.

A micro-grid is conceptualized as a group of interconnected DGs, DERs, and energy stor-
age systems (ESSs) with clearly defined electrical boundaries that can be operated in grid-
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connected mode or act in an islanded mode. According to [140, 157], there are four main
components in a MG, respectively, distributed generators, local loads, ESS, and point of
common coupling (PCC). An MG usually has a confined geographical limit, while the PCC
controls the power exchange between the MG and the main utility grid. Figure 1.6 shows
the typical architecture of a MG.

Static Switch

Utility
Grid

Point of Common
Coupling

Solar
Generator

Wind
Generator

Energy
Storage Units

Dispatchable
Generator Load

Load

Common Bus

Load

Figure 1.6 Schematic view of different components in a micro-grid.

Both VPP and MG involve the integration of DERs, and they offer different advantages and
deficiencies. Some major differences are summarized in Table 1.3. These differences suggest
that a MG focus more on end-user power supplies, while a VPP serves the interest of utility
companies and puts more emphasis on the wholesale market.

In this work, the perspective of a distribution system operator (DSO) or a utility company
is considered. The population size is assumed to be as large as possible. By doing so, we
can better understand the dynamics of TCL populations at a larger scale and better harness
the benefits of aggregating these loads. Thus, the scope of the current research is a VPP,
not confined to a household energy management system (HEMS) or an MG with limited and
usually fixed loads. At last, it is worthy pointing out that both VPPs and MGs are important
in the context of the smart grid. The synergy between VPPs and MGs is at the forefront
of research and revolutionizing the energy sector’s landscape by providing reliable, efficient,
and resilient grid services while facilitating the transition to a greener and more sustainable
energy future.
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Table 1.3 Major differences between a VPP and an MG

Description VPP MG

Connected the main grid Always connected Either connected mode or
islanded mode

Energy storage system May or may not have Requires ESS
Grid contingency hap-
pens Cannot deliver power Can operate independently

Geographical area wider area limited

Technology dependencies

Mainly requires smart
meters, information, and
communications technolo-
gies (ICTs)

Mainly requires PCC, in-
verters, switches, etc.

Market trade at the retailer and the
wholesall market

retailer level, usually sell to
local substations

1.3 Objective and contributions

With the development of many smart grid technologies, it requires that the demand-side
takes an active role to avoid situations of power supply shortage or surplus. This dissertation
focuses on designing control algorithms for heterogeneous TCL populations to fulfill the
automatic power tracking tasks, especially in the context of demand response programs.

Heterogeneous TCL populations refer to ensembles of thermal devices of the same type (either
cooling or heating), for example a group of ACs, with different thermal parameters. Note that
even for two ACs manufactured with exactly the same technical specifications, they are still
considered as two heterogeneous units due to different working environment. For example,
they maybe working in two rooms with different sizes, building materials, or window-to-wall-
ratios. Thus, heterogeneous populations, consisting of individuals with different thermal
behaviors, are more common in real life and deserve to be better studied.

Heterogeneous TCL populations are well suitable for such kind of power tracking tasks,
where some common load regulation tasks, such as peak clipping, valley filling, load shifting
or flexible load shaping, can be easily achieved.

In this work, the method of input-output linearization is adopted in power tracking control.
To develop effective control strategies, system performances, such as stability, robustness,
etc., should be seriously considered. To this aim, we impose the finite-time input-to-state
stability (FTISS) to the tracking error dynamics, which characterizes the desired performance
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while ensuring the robustness of the system in the presence of modeling error, parametric
uncertainties, and disturbances. Then, the active disturbance rejection control (ADRC) is
utilized to improve the system performance. Furthermore, we employ event-triggered control
strategies to reduce communication and computation burden, which is a critical issue in
the implementation of large-scale TCL population control systems. The reference curves for
power tracking control can be generated based on price changes in the market or intermittent
behaviors from distributed generators. The property of the internal dynamics, which are also
described by CFP equations, is rigorously analyzed to ensure the stability of the system in
closed loop.

Specifically, the key findings are presented as follows:

• Based on the first-order equivalent thermal parameter (ETP1) model for thermal appli-
ances and the coupled Fokker-Planck (CFP) model for aggregate population dynamics,
a control framework which requires only partially observed states is proposed. The
control scheme is in a composite form, where the auxiliary controller is quite flexible
on its choices. It shows that the closed-loop system is FTISS when a sliding mode-like
auxiliary controller is utilized. This finding fills the gap of designing control strategies
with model-based methods, providing a feasible engineering solution for power regula-
tions for a population of heterogeneous TCLs. The performance of the proposed control
strategy is validated by investigating the power tracking effect in a simulator.

The results of this work are published in IEEE Access in 2024 [220].

• Cost-effective event-triggered control strategies are developed. By seamlessly integrat-
ing with event-triggered mechanisms, the data transmission frequencies are significantly
reduced. Both static and dynamic event-triggered methods are considered, and a rigor-
ous theoretical analysis shows that their corresponding closed-loop systems are input-
to-state practical stability (ISpS) and free from Zeno phenomena. The performances
of the novel event-triggered control methods are quantitatively evaluated by numerical
simulations. This work extends the proposed continuous-time control scheme [220] to
the event-triggered control field, and demonstrates the applicability and potential for
real-world applications.

The results of this work are published in IEEE Trans. Smart Grid in 2024 [219].

• The second-order ETP model, compared with its first-order counterpart, is more ac-
curate on describing the thermodynamics of a single TCL. When the individual TCL

1In this work, the abbreviation ETP is duplicated defined, but from now on, the ETP only stands for
“the equivalent thermal parameter.”
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dynamics is of higher-order (≥ 2), the CFP model should also be generalized to high
dimensional for the aggregate dynamics. The control laws in [220] and [219] are re-
examined and modified to accommodate the high-dimensional scenario. Furthermore,
incorporating the disturbance rejection control technique into the auxiliary controller
significantly reduces the steady-state error, representing a notable improvement. This
newly-introduced control scheme is evaluated by numerical simulations, and the results
show an improved performance for the considered tracking problem.

The results of this work are reported in IEEE Trans. Smart Grid in 2025 (submitted).

1.4 Dissertation organization

The remainder of this thesis consists of 7 chapters, shown in Fig. 1.7, in addition to this
chapter of introduction.

Chapter 2 establishes the scope of the research topic, and examines the existing literature
related to this research work. The main focus is the coupled Fokker-Planck model, which
is a partial differential equation (PDE) system commonly used for describing the aggregate
dynamics of TCL populations. Moreover, some popular event-triggered control schemes
are also reviewed, as this is an important step towards real-world applications, especially
for resource-constrained systems. Compared with periodic control methods, the benefits
in energy consumption and communication bandwidth usage often outweigh some possible
performance degradations.

Chapter 3 presents some mathematical background knowledge, which serves as theoretical
foundations for the subsequent controller design, stability analysis, and numerical implemen-
tations. On the other hand, some preliminary sensitivity analysis is conducted, which helps
gaining insights into the qualitative responses of a TCL population. Chapter 3, together with
Chapter 2, establishes the theoretical framework underpinning the research, providing de-
tails for tools such as the relevant models, hypotheses, stability analysis methods, simulation
environment, etc., employed in Chapter 4, Chapter 5, and Chapter 6.

Chapter 4 presents a nonlinear controller which requires only partially observed states for the
first-order TCL populations. A novel output function for the tracking problem is proposed,
and the control scheme is derived based on a rigorous analysis on the tracking error dynamics.
The closed-loop stability of the system is carefully checked to show the robustness of the
proposed controller.

The research work in Chapter 5 and Chapter 6 is a direct extension of Chapter 4. Chapter 5
explores the integration of event-triggered mechanisms with the proposed control methods.
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For an event-triggered control method, it does not need to periodically broadcast the control
signals to the whole population, which can significantly save the network communication
resources. Both the static and dynamic event-triggered control strategies are explored in this
part.

Chapter 6 generalize the work in Chapter 4 to higher-dimensional scenarios. A second-order
ETP model is used for single TCL dynamics, and a generalized higher-dimensional coupled
Fokker-Planck model is used for the aggregate dynamics. Compared with the first-order
model, the second-order ETP model has enhanced accuracy on describing the thermody-
namics by separating the mass and air temperatures. Another highlight is the adoption of
linear active disturbance rejection control (LADRC) method as the auxiliary controller, and
its effect on the the steady state errors is discreetly examined.

Chapter 7 highlights the intrinsic connections between the proposed control strategies. The
underlying methodological relationship of the three control schemes developed in Chapter 4,
Chapter 5 and Chapter 6 are re-examined.

Chapter 8 concludes the whole thesis, summarizing the key findings, considering limitations
of the current work and suggesting possible avenues for future research.
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CHAPTER 2 PROBLEM STATEMENT AND RELATED WORK

2.1 Scope of the dissertation

The coordination of a population of TCLs is a complex control problem, and there exist
many control algorithms tailored for different tasks. In order to fulfill the objective of this
dissertation, the scope of the solution should be well clarified. In the following, different
aspects related to the design process are presented, which may help to clarify the capabilities
of the proposed control algorithm.

2.1.1 Model-based or data-driven control strategies

For a large-scale population control prolbem, both model-based methods and data-driven
methods [183, 187] are popular choices, and each group of methods has its advantages and
limitations. In this work, we focus on model-based control methods for the power tracking
task. The data-driven methods for TCL population control, see e.g. [34,35,168,175], are out
the scope of this work. Different with these data-driven methods, an aggregate model based
on first principle is required before designing appropriate control strategies.

A few major factors need to take into consideration when characterizing the overall dynamics
with an aggregate model. To begin, as aforementioned, the heterogeneity is quite common as
the TCLs usually dispersed in a broad region with different working environments. Hence,
there is a loss of fidelity in some works by assuming a collection of homogeneous loads. Here,
homogeneity means that two TCLs will have identical temperature trajectories when start-
ing with the same initial temperatures. It is shown in [20, 146] that the aggregate dynamics
of a homogeneous population has a more fierce oscillation than its heterogeneous counter-
parts. Another factor to be mentioned is the time-varying external conditions, such as the
outside temperatures, unexpected switching ONs/OFFs1, locked-out time, communication
delays, etc. They all have impacts on the aggregate dynamics to some extent, although
not conducive to the controller design, should be taken into consideration. Finally, prac-
tical applications often requires the communication overheads as small as possible due to
limited network bandwidth. To save the scarce communication resources, spatial and tem-
poral measures can be explored. The conventional control signal transmission mechanism
is time-triggered, i.e., the signals are generated and transmitted periodically with a prede-

1In this work, the word ‘forced-switches’ is used to refer to the state changes not happening on the
deadband boundaries.
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fined fixed-time interval. The huge amount of data can easily cause network congestion, and
may block some more important data exchanges. Thus, event-triggered control mechanism
should be given a priority to reduce the temporal redundancy. Another strategy can be used
is only collecting partial information from the population. This can also largely relieve the
communication burdens and simultaneously boost the privacy protections on the customers.

2.1.2 Centralized, decentralized, and distributed control

In general, control architectures can be broadly classified into three types: centralized, de-
centralized, and distributed, each with its own advantages and limitations. In a central-
ized control structure, all TCLs communicate directly with a central operator/power utility,
which is responsible for monitoring and analyzing real-time data from the peripheral nodes
and providing appropriate control signals. While in a distributed control scheme, each unit is
independent with only possible communications with their neighbors, and there is no clusters
of smaller “centralized” hubs which exists in a decentralized control structure. Figure 2.1
shows a schematic view of different control modes and Table 2.1 shows some major differences
between different control patterns.
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Figure 2.1 Different control architectures for TCL populations.

For decentralized control, the term “decentralized” may have two slightly ambiguous mean-
ings:

1 In a VPP, the power utility usually divide the whole population into different subgroups,
where TCLs with similar parameters are usually assigned into the same group. The
operation workload is distributed to multiple sub-aggregators, and each of them can
act as an independent central controller.
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Table 2.1 Comparisons between centralized, decentralized, and distributed control schemes

Centralized Decentralized Distributed
Deployment easy moderate moderate

Fault Tolerance low moderate high
Latency low moderate high

Scalability low moderate high
Maintenance easy moderate hard

2 For each sub-aggregator, it broadcasts a common reference signal to all appliances, and
each TCL controls its own power consumption with its local controller.

In this work, a decentralized control scheme with the second meaning is used, while the
coordination problem between different sub-aggregators in the first meaning is out of the
scope of this research. Thus, the focus is only part of the decentralized graph in Fig. 2.1. This
control architecture is decentralized due to the fact that each individual unit is autonomous
on its own behavior. This is also the same terminology used in [191,192].

2.1.3 Model discretization or controller discretization

Modern controllers are usually implemented in digital platforms, thus, discrete-time con-
trollers are commonly required as inputs. For a continuous-time system obtained from first
principles or physical laws, there are two approaches to derive a corresponding digital con-
troller. The first approach to achieve this is by discretizing the continuous-time plant and
then design a discrete-time controller, while the second is by designing a continuous-time con-
troller and then approximate it with a digital counterpart. The first approach is called model
discretization, and the second one is called controller discretization. Figure 2.2 illustrates
the two different routes for acquiring the final discrete-time controllers.

For a system described by partial differential equations (PDEs), discretization might not
only happens in the time domain, but also in the the spatial domain. In the field of PDE
controller design, two special terminologies, called “early-lumping” and “late-lumping”, are
used to distinguish the model discretization and controller discretization strategies. “Early
lumping” means approximating the PDE with a finite-dimensional, or lumped model before
designing the controller, and “late-lumping” indicates designing a control scheme directly
from the PDE model and then discretizing the controller for implementation purposes, refer
to [137, Chapter 1] more details.
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Figure 2.2 Different controller design approaches.

Both “early-lumping” and “late-lumping” have their particular advantages and disadvantages,
as summarized in Table 2.2. Generally, “late-lumping” method can preserve the essential dy-
namics of the PDE, thus providing a higher model accuracy and more flexible controller design
strategies. But this approach is often more mathematically involving, which requires more so-
phisticated deductions and computations. Some of the research works based on late-lumping
approach can be found in observer design [127], fuzzy control schemes [162], or backstepping
controller designs [13] etc. A loss of model accuracy usually happens when approximating the
PDE dynamics with finite-dimensional equivalent models, which might only contain part of
the information of the original PDE model. Furthermore, the space domain is usually divided
by different binning or griding strategies, and choices of different bin sizes often results in
models with different level of accuracy. Nevertheless, this approach allows leveraging classic
control techniques, although they may suffer from the curse of dimensionality for applications
in large-scale systems.

In this work, the controller discretization method is used. As we focus on PDE models in
characterizing the population dynamics, controller discretization has the same meaning as
late-lumping method here. Compared with model discretization method, the physical insight
is well retained and the system stability and controller performance problems can be well
dealt with [9,143]. The design procedure is emphasize with bold lines in Fig. 2.2. Note that
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Table 2.2 Comparisons of early-lumping and late-lumping schemes

Early-lumping Late-lumping
Model accuracy low high

Controller design easy difficult
Computational complexity high low
Implementation complexity high low

in Fig. 2.2, the two approaches both generate discrete-time control signals. However, it is
worth mentioning that the aggregate models used in these two approaches are not appropriate
for building simulation environments. To stay in closer line with practical applications, the
simulation environment should be composed by individual units, and each of them owns
individual dynamics. The population dynamics is the collective behavior of all TCLs, and
the control signal should be broadcast to all members in the population. In this scenario,
the aggregate models are only tools for analyzing the overall dynamics and for designing
appropriate control schemes, and mismatches with the real world happen when used directly
for the population dynamics.

The aggregate model used in this work is introduced in the following section, see Section 2.2.
Some finite-dimensional state space models are also presented, as most finite-dimensional
state space model can be treated as model discretization counterparts of the PDE system.

2.2 Literature review

2.2.1 Finite dimensional state space models

For the system dynamics, the key point is finding a way to characterize the evolution of prob-
ability distributions of the ONs and OFFs respectively. An intuitive method is to group the
population into different temperature “bins”, and check the number of TCLs in each temper-
ature bin. By tracking over time, the evolution of the aggregate dynamics is vividly shown
in the bins, and the aggregate power can be regulated by temperature priority control strat-
egy, see [116–118, 198] and the references therein. Broadcasting ON and OFF signals based
on a temperature priority list can achieve precise control to each individual TCL. However,
this scheme requires huge communication resources and raises concerns on customer privacy
leakage problems. Hence, decentralized control scheme based on the temperature set-point
or forced-switching rate is a better choice for an extremely large population. Furthermore, it
is better to acquire the transition probabilities from one state bin to other bins, then the ag-
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gregate dynamics can be represented by a system of ordinary differential equations (ODEs),
and many well-established control techniques for ODEs can be applied.

In [131], the extended Kalman filtering (EKF) technique is used to identify the state tran-
sition matrix, and a linear time-invariant (LTI) system is obtained for the heterogeneous
populations. In [21], a bilinear state-space model with constant transition matrix is de-
duced by using a fixed transport rate. The authors of [36, 77] generalize the work of [21]
to ODE systems with time-variant coefficient matrices. These ODE systems can be viewed
as a form of simplified, lumped representation of a more complex underlying PDE model,
where the spatial effects are averaged by a few bins. This connection is extremely obvious
in [21], where the bilinear model is derived by the finite difference approximation of two cou-
pled transport PDEs for homogeneous populations. In [178], a modified LTI model taking
account of compressor delays is proposed and a probabilistic control strategy is provided.
In [109], a distributed model predictive control (MPC) scheme is put forward by considering
lockout time with an LTI state bins system. As the transport rate in each bin is different,
non-uniform lengths for the state bins are more appropriate, refer to [177] for related works.

2.2.2 Coupled Fokker-Planck model for first-order TCL populations

The coupled Fokker-Planck model plays a primordial role in characterizing the aggregate
dynamics of homogeneous TCL populations [126]. A first-order equivalent thermal parameter
(ETP) model is used to describe the heat dynamics for an individual device. It is a lumped-
parameter model widely used in the literature, among which a Wiener process is included
to account for unexpected heat gains or losses, refer to [74, 115, 176] for more details. The
aggregate model is obtained by investigating the evolution of probability densities of the TCL
in the ON and OFF states, respectively. The stationary solution to the CFP is presented
by Callaway in [24]. Additionally in this work, a linear ARMAX model (AutoRegressive
Moving Average model with eXogenous inputs) is obtained through system identification
technique, and a minimum variance controller (MVC) is designed, which is successfully used
on tracking high-frequency power signals from wind farms. After introducing the set-point
variation rate into the coupled PDEs, Bashash et al. [21] designed a sliding mode control
method to regulate the aggregate powers. Note that in their work, there is no diffusion
terms in the PDE system, as the noise process is not taken into account. Additionally, their
design is based on model discretization method, where a bilinear state bin transition model
is firstly derived before designing the controller. Hence, there is a close connection between
CFP model and finite-dimensional state-space models. In [191, 192], after summing the two
CFP equations, a linear controller is designed based on changing the average convection rate.
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In [55], the effect of heterogeneity or other disturbances is incorporated in the CFP equations,
and an model predictive control (MPC) method is presented.

Compared with finite dimensional state space models, the PDE paradigm provides a more
generic framework for modeling the aggregate dynamics of TCL populations, which allows
handling nonlinearity, time-varying operational conditions, and parametric uncertainties with
often very simple control algorithms. There exist close connections between the CFP model
and some commonly used state-space aggregate models. Many of the later can be treated as
space-discretization implementations of the simplified CFP model. It has been shown that the
finer the discretization, i.e., the more state bins, the more accuracy the aggregate dynamics,
see [21, 131]. The original CFP model naturally contains more information than its discrete
counterparts. However, a controller designed for a PDE system generally involves more
complex mathematical analysis and is more challenging. Some of finite-dimensional aggregate
models are already discussed in Section 2.2.1, and some more relevant works can be found in
Markov chain model/state space transition model [36,90,109,130,131,148,163,171,177,184],
state queuing model [17,19,32,116–118,212], bilinear model [21,77,78,198], duty cycle based
model [68,79,122,130,132,158,159,191,192], etc.

For TCL population power consumption control, a thermostat set-point variation rate is
broadcast to the population. Three types of signals are commonly used for controlling a popu-
lation of TCLs, namely direct ON/OFF control, thermostat set-point control, and probability
switching control. For direct ON/OFF control, the aggregator broadcasts switching-ON/OFF
signals directly to the TCLs. For example, the authors in [115,118,172] control a population
of TCLs based on a real-time temperature priority list. For thermostat set-point control, a
set-point offset [184] or a set-point variation rate [21, 24] is broadcast to all the population
members. For probability switching control, see e.g. [193, 215], a switching probability is
broadcast to the population and each TCL reverses its states randomly with this probability.
In general, the direct ON/OFF is quite efficient in reducing instantaneous power consump-
tion, while thermostat set-point control is more suitable for load management purposes with
a longer period [154,198]. The probability switching control has a similar performance with
set-point control, and both of them uses less communication resources compared to direct
ON/OFF control.

2.2.3 Coupled Fokker-Planck model for higher order TCL populations

The dynamic models presented in Section 2.2.2 are all based on first-order ETP models. This
approach simplifies the environment where the TCLs operate (e.g., residential houses or small
commercial buildings) to a network of several nodes connected with equivalent thermal resis-
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tances and capacitances. The nodes represent different parts of the building, such as walls,
interior spaces, windows, etc. The heat flow and temperature changes in the house can be
similarly analyzed as in an electrical circuit. The first-order ETP model only considers room
air temperatures, while the second-order model considers both air and mass temperatures in
the building. The later model tackles thermal behaviors in a building with a more refined
approach, making it more accurate in capturing both steady-state and transient thermal dy-
namics, refer to [18, 89] for more details on the 2nd-order model. With enhanced accuracy,
it is used in the Gridlab-d simulator for end-user modeling [27], and also used for demand
response potential evaluations in [29,115]. The authors of [14,69] present more sophisticated
2nd-order thermal dynamics models by further considering the solar radiations. Models with
order greater than 2 are also available, see [38,102,142,150]. Generally, the more complicated
or the higher order the model, the more accurate in predicting the temperature changes, but
it also requires more complex circuit topologies and more computations. In Section 6.2, the
CFP model is generalized to higher dimensional forms to present the dynamics of higher-
order TCL populations. It focus on dealing with second-order populations. Eventually, the
generalized CFP model can be extended to populations of order higher than 2.

Unlike first order populations, controlling a higher order population is not adequately studied
in the literature. To characterize the aggregate load dynamics, the research work in [221] is
reported in this dissertation. Similar to [126], the aggregate model is derived starting from a
stochastic hybrid system (SHS) model, which includes both continuous and discrete behaviors
in the mathematical expression. The existing CFP model can be treated as a 1D special
case of the derived PDE system. However, this work only involves describing the overall
dynamics, and no control laws is mentioned for the system. As for the space-discretization
approximations of the underlying higher order CFP model, there already exist a few works
on the second-order Markov chain model or the bilinear model. For example, [215,216] deal
with the Markov chain model, and it is observed that the more state bins, the more accurate
for the model to capture the aggregate dynamics. Finally, MPC-based schemes are proposed
for the second-order linear model in [108,123], and for the bilinear model in [209].

2.2.4 Communication and computation burden reduction

Smart grid is changing the traditional power grid into a network-based distributed control
system, realizing real-time system awareness, intelligent control, and self-healing. Thus, the
communication and computation burden are crucially important, and it must be carefully
considered for practical applications.

In the aforementioned literature in Section 2.2.2 and Section 2.2.3, it is supposed that the



25

control signals broadcast to the population periodically, which obviously generates great
communication burdens. Moreover, a synchronized periodical data exchange is infeasible
for nearly all the practical applications that involve communication networks spreading over
a wide geographical region. Event-triggered control (ETC), which requires only to update
the control signals when a certain triggering event occurs, can be exploited as an effec-
tive solution to alleviate the internet redundancy problem [72, 98, 139]. In the literature,
threshold-based signals are one of the commonly used triggering conditions. Different types
of threshold signals are available, including fixed threshold, relative threshold [186, 217],
switching threshold [205], and dynamic threshold [52, 56, 160]. Among the aforementioned
triggering mechanisms, dynamic threshold strategies have attracted much attention in recent
years. Compared with static event-triggering schemes, auxiliary variables are additionally
incorporated in the triggering threshold function, which can usually enlarge inter-event in-
tervals and thus enable more flexible and effective resource utilization. Note that, to ensure
the control performance, the closed-loop systems need to possess certain robust stability
properties, in particular, they should be input-to-state stable (ISS) with respect to (w.r.t.)
disturbances representing the effect of aperiodic sampling [56, 186]. Moreover, considering
uncertainties in practical applications, a more realistic requirement is that the closed-loop
system should be input-to-state practically stable (ISpS) w.r.t. the disturbances [62, 87]. It
should be mentioned that the notion of ISS and its variations, including ISpS, play a vital role
in robust control system design and analysis, allowing for characterizing the robust stability
of a system w.r.t. disturbances induced by, e.g., external perturbations, modeling errors, and
parametric uncertainties, as well as those introduced in control system implementations, such
as measurement and actuation noises, sampling and quantization errors, and delays [138,181].

Real-time processing is another essential feature of smart grid. To guarantee a certain level of
Quality of Service (QoS), TCL population control algorithms should not be time-consuming.
However, a population with tens or hundreds of thousands of TCLs can be computational de-
manding [33,38,61,82,121,135,222]. Hence, low-complexity control laws that are insensitive
to the population size should be well studied. Additionally, another method to reduce time
cost is the use of only partially measured states. A higher response speed can be expected
when the full state knowledge of the controlled system is not required. More importantly,
only collecting partial information from the population can also significantly relieve the com-
munication burden and simultaneously boost the privacy protections on the customers.
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2.2.5 Concluding remarks

This chapter outlines the scope of the research problems of this thesis and presents a general
review of related work in the literature. The effective operation and coordination of TCLs
in a population is a challenging problem, and an accurate aggregate model is essential in
capturing the evolution of the TCLs in ONs and OFFs states. In light of the review, PDE-
based models provide spatial-temporal continuous descriptions on the distribution evolutions,
capture subtle changes and dynamic behaviors of the population, and enable more in-depth
analysis of the system responses. Many finite dimensional state space models can be treated
as lumped counterparts of the PDE models by using “early-lumping” method. Some of them
are only rough approximations of the underlying PDE model, while some useful information
is either simplified or ignored. Therefore, the control strategies based on these lumped models
might be not accurate and the stability results of the system cannot be guaranteed.

Some existing control algorithms derived from PDE models are reviewed in this part, high-
lighting aspects on which further exploration are still needed. Particularly, design of the
system output function should account for both the ease of mathematical analysis and the
clarity of physical interpretations while providing desired property for power control. More-
over, the control input, which is the change rate of the nominal temperature set-point, should
not be too large, otherwise the aggregate power fluctuates fiercely and this might also cause
uncomfortness to the customers. Thus, saturation functions should be introduced in the
developed control strategies. Noting that the real-time information of the whole population
is not available, as synchronized communication is impossible in a real-world scenario. Com-
munication delays with various durations exist due to different communication technologies
and geographical locations of the TCLs. Hence, decentralized control mode is a reasonable
choice for the population. To reduce the communication burden, methods using partial mea-
surements of the population or event-triggered control schemes can be considered. These
motivations inspire the following research directions, which are further elaborated in the
subsequent chapters.
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CHAPTER 3 BASIC NOTATIONS, TOOLS, AND PRELIMINARIES

This chapter presents notions, tools, and mathematical preliminaries for controller design and
stability analysis used in this thesis. Furthermore, the simulation environment is introduced
and preliminary qualitative results are shown to illustrate the behavior of the considered
problems.

3.1 Lyapunov stability theory

3.1.1 Lyapunov stability definitions

We first review some relevant notations and results on Lyapunov stability theory, refer to
[92,174,189] for more details. Consider a time-varying system,

ẋ = f(t, x), (3.1)

where x ∈ D ⊂ Rn is the state variable, f : R≥0 ×D → Rn is locally Lipschitz in x and piece-
wise continuous in t. Furthermore, assume that xeq is the equilibrium point, i.e. f(t, xeq) ≡ 0
for all t ∈ [0,∞).

Definition 3.1. Asymptotical stablility The equilibrium xeq is said to be Lyapunov stable
at t = t0 ≥ 0 for the system (3.1) if

∀ε > 0,∃δ(ε, t0) > 0, |x(t0) − xeq| < δ ⇒ |x(t) − xeq| < ε,∀t ≥ t0.

It is uniformly Lyapunov stable if δ(ε, t0) is independent of t0, i.e.

∀ε > 0,∃δ(ε) > 0, |x(t0) − xeq| < δ ⇒ |x(t) − xeq| < ε,∀t ≥ t0.

It is attractive if

∃c(t0) > 0,∀|x(t0) − xeq| < c(t0) ⇒ lim
t→+∞

|x(t) − xeq| = 0.

Or more precisely, ∃c(t0) > 0,∀|x(t0) − xeq| < c(t0), the following convergence result holds:

∀ε > 0,∃T (ε) > 0,∀t ≥ t0 + T (ε), |x(t) − xeq| < ε.
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It is uniformly attractive if c(t0) is independent of t0, i.e.

∃c(t0) > 0,∀|x(t0) − xeq| < c ⇒ lim
t→+∞

|x(t) − xeq| = 0.

It is asymptotically stable if it is both stable and attractive, i.e.

∀ε, t0 > 0,∃δ(ε, t0) > 0, |x(t0) − xeq| < δ ⇒ lim
t→+∞

|x(t) − xeq| = 0.

Similarly, it is uniformly asymptotically stable if it is both uniformly stable and uniformly
attractive,

∀ε, t0 > 0,∃δ > 0, |x(t0) − xeq| < δ ⇒ lim
t→+∞

|x(t) − xeq| = 0.

Remark 3.1. Intuitively, an equilibrium is Lyapunov stable means that all solutions starting
around the equilibrium stay in its neighborhood all the time. And the equilibrium is asymptotic
stable means that all solutions starting near the equilibrium tend to it as t → ∞.

Note that the asymptotic stability (see Definition 3.1) does not quantify the rate of conver-
gence. Hence, more specific definitions, such as exponential stability or finite-time stability,
are required to be introduced.

Definition 3.2. Exponential stability The equilibrium xeq is exponentially stable if there
exist constants m,α > 0 and δ > 0 such that for the system (3.1)

∀t ≥ t0, |x(t0) − xeq| ≤ δ ⇒ |x(t) − xeq| < me−α(t−t0)|x(t0) − xeq|.

The largest constant α in the inequality is called the rate of convergence.

Comparison functions enable characterizing the stability properties of a dynamical system in
a more natural and convenient manner. In the following, formal definitions of some commonly
used comparison functions are introduced and then, an equivalent definition of Definition 3.1
is presented.

Definition 3.3. A class K function is a function α : [0, a) → R≥0, a > 0 which is continuous,
strictly increasing, and satisfies α(0) = 0.

Definition 3.4. A class K∞ function is a function α : R≥0 → R≥0 which is continuous,
strictly increasing, unbounded, and satisfies α(0) = 0.
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Definition 3.5. A class L function is a function α : R≥0 → R≥0 which is continuous, strictly
decreasing, and satisfies limt→∞ α(t) = 0.

Definition 3.6. A class KL function is a continuous function β : [0, a) ×R≥0 → R≥0 which
satisfies

• for each fixed s, β(r, s) belongs to class K;

• for each fixed r, β(r, s) belongs to class L.

With the concepts of comparison functions, the stability properties of the system can be
described in an equivalent manner as follows:

Lemma 3.1. [189, Theorem 16.2] The equilibrium point xeq is uniformly stable if and only
if there exists a class K function α and a constant c, independent of t0, such that for the
system (3.1)

|x(t)| < α(|x(t0)|),∀t ≥ t0 ≥ 0,∀|x(t0)| < c.

It is uniformly asymptotically stable if and only if there exists a class KL function α and a
constant c, independent of t0, such that

|x(t)| < β(|x(t0)|, t− t0),∀t ≥ t0 ≥ 0,∀|x(t0)| < c.

3.1.2 Finite time stability and ultimate boundedness

In the following, some Lyapunov theorems on time-varying systems are presented, and many
of them can be found in the aforementioned textbooks [92,174,189].

Definition 3.7. Positive definite and positive semi-definite A time-invariant function
W (x) : D → Rn where D ⊂ Rn is said to be positive definite if W (0) = 0, and W (x) > 0,∀x ̸=
0. It is radially unbounded if W (x) → ∞ when x → ∞. For a time-varying function V (t, x),
it is positive semi-definite if V (t, x) ≥ 0. Moreover, it is positive definite if V (t, x) ≥ W1(x)
for some positive definite function W1(x), and it is radially unbounded is W1(x) is radially
unbounded. It is decrescent if V (t, x) ≤ W2(x) for some positive definite function W2(x).

Negative definite and negative semi-definite functions can be defined in a similar manner;
therefore, their definitions are omitted.

Theorem 3.1. [92, Theorem 4.8] Consider the time-varying system ẋ = f(t, x) in (3.1). Let
V : R≥0 ×D → R be a continuously differentiable function (denoted as C1 function hereafter).
Suppose that

V (t, x) ≥ W1(x),
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and
∂

∂t
V + ∂

∂x
f(t, x) ≤ 0,∀t ≥ 0,∀x ∈ D,

where W1(x) is a continuous positive definite function, then the origin is stable. If further-
more, V (t, x) is decrescent with respect to a continuous positive definite function W2(x), i.e.,
V (t, x) ≤ W2(x), then the origin is uniformly stable. Moreover, if there exists a continuous
positive definite function W3(x), such that

∂

∂t
V + ∂

∂x
f(t, x) ≤ −W3(x),∀t ≥ 0, ∀x ∈ D,

then, the origin is uniformly asymptotically stable. Replacing Wi(x), i = 1, 2, 3 with ki∥x∥a,
where ki, i = 1, 2, 3 and a are constants, the conditions for V (t, x) become

k1∥x∥a ≤ V (t, x) ≤ k2∥x∥a,

and
∂

∂t
V + ∂

∂x
f(t, x) ≤ −k3∥x∥a,∀t ≥ 0,∀x ∈ D,

then the origin is exponentially stable.

Definition 3.8. Finite-time stability [65, Definition 3.1] Suppose x = 0 is an equilibrium
of the system (3.1), i.e. f(t, 0) = 0, ∀t ≥ 0. The origin is said to be finite-time stable if it
is Lyapunov stable and there exists some constant T ∈ R≥0 such that limt→T x(t) = 0. With
the ε− δ language, it is:

∀ε, t0 > 0,∃δ > 0, |x(t0)| < δ ⇒ lim
t→T

|x(t)| = 0.

The function T (x(t0)) := inf{T : x(t) ≡ 0, ∀t ≥ T} is called the settling time function. The
system (3.1) is uniformly finite-time stable if it is uniformly Lyapunov stable and there exists
T = T (x(t0)) < ∞ such that limt→T x(t) = 0.

Figure 3.1 shows a schematic graph on the differences between asymptotic stability, exponen-
tial stability, and finite-time stability. From a practical viewpoint, faster convergence speed
is always perfered. In many dynamical systems, the settling time is commonly used as a
performance specification.

Definition 3.9. The solutions of the system ẋ = f(t, x) are said to be uniformly bounded if
∃c > 0, independent of t0 ≥ 0, such that

∀a ∈ (0, c),∃α = f(a) > 0, ∥x(t0)∥ ≤ a ⇒ ∥x(t)∥ ≤ α, ∀t ≥ t0.
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Figure 3.1 An illustration of different convergence patterns.

It is said to be uniformly ultimately bounded if ∃b, c > 0, independent of t0, such that

∀a ∈ (0, c),∃T = T (a, b) > 0, ∥x(t0)∥ ≤ a ⇒ ∥x(t)∥ ≤ b, ∀t ≥ t0 + T.

The concept of ultimate boundedness is useful in describing stability properties of perturbed
systems. Consider a perturbed system

ẋ = f(t, x) + g(t, x), (3.2)

where x ∈ D ⊂ Rn is the state variable, f : R≥0 ×D → Rn and g : R≥0 ×D → Rn are locally
Lipschitz in x and piecewise continuous in t. This system can be treated as a deviation of the
nominal system (3.1). When the nominal system is exponentially stable and the perturbation
term g(t, x) is bounded, it can be shown that the solutions of the perturbed system is robust
to the disturbances, see Theorem 3.2 for this property.

Theorem 3.2. [92, Lemma 9.2] Suppose x = 0 is an exponentially stable point of the
nominal system (3.1), and V (t, x) is an associated Lyapunov function that satisfies

c1∥x∥2 ≤ V (t, x) ≤ c2∥x∥2,

∂

∂t
V + ∂

∂x
f(t, x) ≤ −c3∥x∥2,

∥ ∂

∂x
V ∥ ≤ −c3∥x∥2,∀t ≥ 0, ∀x ∈ D,
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where c1, c2, c3, c4 are some positive constants, and D := {x ∈ Rn|∥x∥ < r}. Furthermore,
suppose that the perturbation term in system (3.2) is bounded, i.e.

∥g(t, x)∥ ≤ δ <
c3

c4

√
c1

c2
θr,

where 0 < θ < 1 is a constant. Then, for all ∥x(t0)∥ <
√

c1
c2
r, the solution of the perturbed

system (3.2) satisfies

∥x(t)∥ ≤ ke−γ(t−t0)∥x(t0)∥,∀t0 ≤ t < t0 + T

and
∥x(t)∥ ≤ b, ∀t ≥ t0 + T

for some finite time T , where

k =
√
c2

c1
, γ = (1 − θ)c3

2c2
, b = c4

c3

√
c2

c1

δ

θ
.

3.1.3 Input-to-state stability and generalizations

For a perturbed system under the form (3.2), if g(t, x) depends only on t, then the perturba-
tion term g(t) can be visualized as a generalized input term, and then the system dynamics
can be characterized by the notation of input-to-state stability. Consider a time-invariant
system

ẋ = f(x, u), (3.3)

where x ∈ Rn is the state variable, u : R≥0 → Rm is a bounded, piecewise continuous control
input, and f : Rn × Rm → Rn is locally Lipschitz in x and u.

Definition 3.10. The system (3.3) is input-to-state stable if there exists β ∈ KL and γ ∈ K∞

such that for all x0 ∈ Rn, all admissible input u(t), and all t ≥ 0,

|x(t)| ≤ β(|x0|, t) + γ(∥u∥∞). (3.4)

Note that ∀t ≥ 0, the solution x(t) only depends on u(s), 0 ≤ s ≤ t. Thus, the second term
in (3.4) is equivalent to

γ( sup
s∈[0,t]

∥u(s)∥).

In the following, we will not distinguish between these two formats. Furthermore, it is clear
from (3.4) that the solution x(t) is ultimately bounded by a class K function of ∥u∥∞. When
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∥u∥∞ is sufficiently small in magnitude, x(t) converges asymptotically to the origin. The ISS-
Lyapunov function is an important tool for the ISS assessment as described in the following
theorems.

Definition 3.11. [189, Definition 19.2] A continuously differentiable function V : R≥0 ×
Rn → R is called an ISS-Lyapunov function if there exist ψ1, ψ2 ∈ K∞, χ ∈ K and a contin-
uous positive definite function W3, such that

ψ1(∥x∥) ≤ V (x) ≤ ψ2(x),∀x ∈ Rn,

∥x∥ ≥ χ(∥u∥) ⇒ ∂

∂x
V · f(x, u) ≤ −W3(∥x∥),

where the function χ is called the Lyapunov gain.

Theorem 3.3. [92, Theorem 3.1] A system ẋ = f(t, x, u) is ISS if it admits a smooth
ISS-Lyapunov function.

For an autonomous system ẋ = f(x, u), the condition in Theorem 3.3 is both necessary and
sufficient.

The ISS concept bridges the gap between state-space methods and input-output methods,
and it is widely used within the control community. It has a lot of generalizations, such
as integral ISS, local ISS, incremental ISS, input-to-state dynamical stability (ISDS), input-
to-state practical stability (ISpS), input-to-output stability (IOS), etc. In the following,
notions of input-to-state practical stability (ISpS) and finite-time input-to-state stability are
introduced.

Definition 3.12. System (3.3) is input-to-state practically stable if there exists β ∈ KL and
γ ∈ K∞ and d ∈ R≥0 such that for all x0 ∈ Rn, all admissible input u(t), and all t ≥ 0, it
holds

|x(t)| ≤ β(∥x0∥, t) + γ(∥u∥∞) + d. (3.5)

Note that in (3.5), the definition degenerates to the case of ISS if d = 0. Moreover, similar
to the case in ISS, an ISpS-Lyapunov function can be parallelly defined.

Definition 3.13. A continuously differentiable function V : R≥0 ×Rn → R is called an ISS-
Lyapunov function if there exist ψ1, ψ2 ∈ K∞, χ ∈ K, a constant c ∈ R≥0, and a continuous
positive definite function W3, such that

ψ1(∥x∥) ≤ V (x) ≤ψ2(x),∀x ∈ Rn,

∥x∥ ≥ max{χ(∥u∥), c} ⇒ ∂

∂x
V · f(x, u) ≤ −W3(∥x∥). (3.6)
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Note that V (x) satisfying (3.6) with c = 0 is an ISS-Lyapunov function for system (3.3).
Similarly, there exists an important relationship between the ISpS property and the ISpS-
Lyapunov function, as described in Theorem 3.4.

Theorem 3.4. [87, Proposition 2.1] System (3.3) is ISpS if and only if it admits an ISpS-
Lyapunov function.

Finite-time stability ensures that the controlled states can reach the equilibrium in finite time
and exhibits strong robustness to uncertainties. Taking account of both ISS and finite-time
stability properties, a new concept, finite-time input-to-state stability (FTISS), provides a
refined characterization of the dynamical system.

Definition 3.14. System (3.3) is finite-time input-to-state stable (with respect to u(t)) if for
all t0 ≥ 0 and x0 = x(t0), there exist γ ∈ K, β ∈ KL such that

∥x(t)∥ ≤ β(∥x0∥, t− t0) + γ(∥u∥∞),

and there exists a time constant T = T (x0) such that

β(∥x0∥, t) ≡ 0,∀t ≥ t0 + T.

A Lyapunov-like condition for FTISS is shown in Theorem 3.5.

Theorem 3.5. [110, Lemma 1] Suppose x = 0 is an equilibrium of the dynamic system
ẋ = f(x, u). If there exists a Lyapunov function V (x), three class K∞ functions ψ1(x), ψ2(x)
and ψ3(x), and two constants λ > 0 and 0 < θ < 1, such that ∀x0 ∈ Rn, all admissible input
u(t),

ψ1(x) ≤ V (x) ≤ ψ2(x),

V̇ (x) ≤ −2λV θ(x) + ψ3(∥u∥∞),

hold, then the closed-loop system is FTISS. Furthermore, the settling time is upper bounded
by

T ≤ V 1−θ(∥x0∥, t0)
λ(1 − θ) + t0.

Similar conclusions can also be drawn for input-to-state practically stable systems, refer
to [231] for details.
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3.2 Linear Active Disturbance Rejection Control

The active disturbance rejection control (ADRC) method, first proposed by Han [67], has
attracted considerable attention in recent years. It is a practical adpative control method,
and has been applied successully in a large variety of industrial fields, refer to [48, 100, 203,
207, 211, 226]. It consists mainly of three parts: a tracking differentiator (TD), an extended
state observer (ESO), and an ESO-based feedback law. The TD focuses on the the reference
signals, ensuring a smooth transition process while mitigating the noise amplification prob-
lem when using the conventional PID controller. The ESO is used to estimate the “total
disturbance” in real time, including both unknown part of the system dynamics and uncer-
tain external perturbations. With the information contained in the ESO, the feedback law
neutralizes the negative effects of disturbances in real time, and transforms the closed-loop
system into a nominal disturbance-free process. Linear ADRC (LADRC) is developped on
the basis of ADRC method, where linear ESO and linear state feedback law are used. Com-
pared with ADRC, LADRC uses less parameters, making the controller tuning process much
simpler and easier to be deployed in practice. For more details on the parameter tuning
process, see, e.g., [40, 70], and on the algorithm implementations, refere to [73, 229] etc..
With appropriately chosen hyperparameters, the LADRC algorithm provides a solution with
disturbance rejection capabilities and often achieves satisfactory control performance.

In this work, the tracking error dynamics is a first-order model. Hence, for simplicity, the
main emphasis is placed on the LADRC method for first-order plants.

Consider a first-order single-input-single-output (SISO) system

ẏ(t) = b0v(t) + f(t), (3.7)

where f(t) is the total disturbance, v(t)is the control input, y(t) is the system output, b0 is the
known or unknown critical gain of the system. The total disturbance function f(t) consists
of both the unmeasured internal dynamics and the unexpected external disturbances, and
its expression does not need to be explicitely known. Let x1(t) = y(t) be the system power
output, x2(t) = f(t) be the extended state, and supppose that f(t) is differentiable. Then,
the SISO dynamics (3.7) can be rewritten as:

ẋ = Ax+Bv(t) + Eḟ(t),

y = Cx,
(3.8)
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where

x =
x1

x2

 , A =
0 1
0 0

 , B =
b0

0

 , E =
0
1

 , C =
[
1 0

]
.

It is straightforward that the system (3.8) is observable. Thus the Luenberger observer is of
the form:

˙̂x = Ax̂+Bv(t) + L(y − ŷ),

ŷ = Cx̂.
(3.9)

where x̂ = [x̂1, x̂2]⊤ are the estimated states, and L = [β1, β2]⊤ are the observer gains. Let
ei = xi − x̂i, i = 1, 2 be the state estimation errors. It follows by (3.8) and (3.9) that

ė(t) = (A− LC)e+ Eḟ(t). (3.10)

Note that

A− LC =
−β1 1
−β2 0

 .
and its characteristic equation is s2 + β1s+ β2 = 0. Let

β1 = 2ωo, β2 = (ωo)2,

where ωo > 0 is the observer bandwidth. Then A−LC is exponentially stable. Furthermore,
when ḟ(t), the derivative of the total disturbance, is bounded, the observation errors become
reasonably small within a finite time. Define the control input as:

v(t) = 1
b0

(−kx̂1 − x̂2), (3.11)

where k is the controller gain. Note that the controller gain and the observer bandwidth can
be designed seperately according to the separation principle for linear systems. It follows
that

ẋ1 = b0v(t) + x2

= (−kx̂1 − x̂2) + x2

= −kx1 + k(x1 − x̂1) + (x2 − x̂2)

= −kx1 + ke1 + e2.

Therefore, the convergence rate of x1(t) is determined by k, the controller gain, and a practical
stability for the tracking can be achieved when the observation errors are constrained to a
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small region. The tracking error of the extended state observer is not asymptotically stable.
However, theoretical result shows that it is bounded when either the total disturbance or its
derivative is bounded, see [51]. When the state feedback is also convergent, the closed-loop
system is bounded-input, bounded-output (BIBO) stable, as described in Theorem 3.6.

Theorem 3.6. For the SISO system (3.8), the closed-loop system with the LADRC is BIBO
stable if the state feedback law and the LESO are stable.

The proof of Theorem 3.6 can also be generalized to higher-order sytems. The authors
of [57, 208] present more elaborated stability analysis for these systems with generalized
ESO.

3.3 Numerical estimations of function values

Consider a continuous function f(x) whose analytical expression is unknown or very hard to
be acquired. However, for any point inside the interval of interest, the integral results for some
small narrow intervals are observable. The objective is to obtain a reliable estimation of the
function value around a particular point x0. In this work, three basic steps are used to obtain
a relatively robust estimation of function values. First, a few small intervals with different
sizes are seleted. Then, an array of function values are acquired by treating the function
as contant in each interval. Finally, Huber’s M-estimator is used to improve the estimation
accuracy. A schematic graph is shown in Fig. 3.2 for the procedures. In the following, the
method to obtain one estimation is explained, and Huber’s M-estimation method is also
briefly introduced.

Select a few small
intervals:

∆x1,∆x2,· · · ,∆xn

Obtain an array of
function value

candidates for f(x0)

Huber’s M estimator
to refine the

estimation result

Figure 3.2 Basic steps for obtaining function value estimation.

3.3.1 Mid-point rule for one estimation

Let x0 be the middle point of a small interval, and ∆x be the length. If ∆x is sufficiently
small, and f(x) changes relatively slowly in it, it is reasonable to treat it as constant. Let
C∆ denote the integral of f(x) over the interval, i.e.

∫ x0+ ∆x
2

x0− ∆x
2

f(x) dx = C∆.
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Because, ∫ x0+ ∆x
2

x0− ∆x
2

f(x) dx ≈ f(x0)∆x,

it follows that
f(x0) ≈ C∆

∆x.

This method is only a rough estimation, hence sometimes the error may be quite large. To
improve the accurary, a straightforward method is to esimate multiple times with different
intervals and to use the mean value as the final result. With a more elaborated manner,
robust estimators, such as M estimators, S estimators, etc., can be introduced to get the
final estimation. In this work, Huber’s M estimator is used and the relevant background is
briefly recalled in the next subsection.

3.3.2 Huber’s M estimator

In statistics, Ordinary Least Squares (OLS) is a popular method for estimating unknown
parameters in a regression model. It minimizes the squared sum of the differences between the
observed values and the estimated output values. When the errors are normally distributed,
the OLS estimator is also the maximum likelihood estimator (MLE). However, the OLS
method is highly sensitive to outliers, thus leading to biased estimations. To overcome this
issue, robust estimators are proposed [125, 128, 201], and many of them, for example M-
estimators, S-estimators, MM estimators, least median square, etc., are frequently used in
the literature.

The M-estimators are one type of the robust measures of location, where M stands for
“maximum likelihood-type.” In the robust M-estimators, a symmetric loss function of the
residuals ρ is used, and the objective function is shown as follows:

Minimize ρ(ri).

The loss function is appropriately chosen such that the impact of outliers is significantly
reduced. Some common candidates for ρ are Huber’s loss function, Hampel’s loss function,
Andrew’s wave function, Tukey’s Biweight function, etc., see [2, 41, 166]. The Huber’s loss
function is defined as:

H(x) :=


1
2x

2, |x| ≤ K,

K|x| − 1
2K

2, |x| > K,
(3.12)

where K is the bending constant to be tuned. For example, a 95% confidence interval of the
estimation is obtaned when K = 1.345 and the residuals are normally distributed. Note that
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Huber’s loss function is quadratic for small values, but linear for large values. This character
makes it quite resilent to outliers. The derivative of the loss function, also known as the
distance function in some literature, is:

Ψ(x) =

x, |x| ≤ K,

Ksgn(x), |x| > K,
(3.13)

where sgn(x) is the sign function. The weight function is defined as the fraction between
Ψ(x) and x:

W (x) :=


1, |x| ≤ K,
K

|x|
, |x| > K.

(3.14)

Suppose there exists a list of data points, x1, x2, . . . , xn,n ∈ N, then Huber’s M-estimator x⋆

is the weighted average of all the residuals:

x⋆ :=

n∑
i=0

wixi

n∑
i=0

wi

, (3.15)

where wi = W (xi − x⋆) is the weight for the corresponding data point.

The mathematical expression in (3.15) is in implicit form, as the weight wi depends on the
final M-estimator x⋆. Iteratively reweighted least squares (IRLS) algorithm can be applied
to get a reliable estimation. The iterative formula is written as:

xk+1 =

n∑
i=0

W (xi − xk)xi

n∑
i=0

W (xi − xk)
, k = 0, 1, . . . . (3.16)

The pseudocode in Algorithm 1 shows the basic steps for the iterative process.

Huber’s M-estimator is a fairly simple strategy for estimating values. It is resistant to outliers,
and the iterative algorithm is very easy to implement. However, the bending constant needs
to be carefully chosen, and the maximum iteration of numbers and the convergence tolerance
bound should also be reasonable values. In this work, the hyperparameters are empiracally
determined, and more advanced estimation methods should be further explored.
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Algorithm 1 Iteratively reweighted least squares for Huber’s M-estimator
1: Input the dataset x1, x2, . . . , xn;
2: Initialize the relative tolerance ε, the maximum number of iterations MaxIt, the default

threshold value K = 1.345;
3: Set the initial estimator θ0 as the sample median;
4: θ1 = θ0;
5: for k in 1:1:MaxIt do
6: Compute the residuals of the dataset;
7: for idx in 1:1:n do
8: if residuals[idx] == 0 then
9: residuals[idx] = ε3;

10: end if
11: end for
12: Compute the weights for the dataset with (3.14);
13: Compute θ1 with (3.16) for the new weighted estimation;
14: if |θ1 − θ0| < ε then
15: Break;
16: end if
17: θ0 = θ1;
18: end for
19: Output θ1;

3.4 Numerical analysis of the aggregate dynamics

In this section, we present a numerical simulation study of a population of 1,000 ACs to
evaluate the dynamics of the population.

3.4.1 Simulation setups

Table 3.1 lists some parameters and their default values used in the simulation. The thermal
capacitances of the TCLs in the population follow the log-normal distribution with a mean
value of 2 kWh/◦C and a standard deviation of 0.2 kWh/◦C. The thermal resistances of the
TCLs also follow the log-normal distribution with a mean value of 0.5 ◦C/kW and a standard
deviation of 0.2 ◦C/kW. The rated thermal powers are fixed as 14kW and the Coefficient of
Performance (COP) is set to be 2.5 for all ACs. These values are similar to those listed
in [24] and should be properly adjusted based on practical applications.

3.4.2 Step response of the aggregate dynamics

A set-point step response on the aggregate dynamics provides an intuitive understanding on
the stability of a system. It provides information on how the system behaves when a step
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Table 3.1 Simulation parameters and default values

Parameter Description [unit] Value

R
Equivalent thermal
resistance[◦C/kW] LogN(0.5, 0.4)

C
Equivalent thermal
capacitance[kW/◦C] LogN(2, 2)

P Thermal power[kW] 14
η Coefficient of Performance (COP) 2.5

xsp(0) Initial temperature set point[◦C] 20
δ Thermostat deadband width[◦C] 0.5

pf
Probability of forced switchings

per hour 3

tl Lockout time of each unit [min] 5
td Communication delays [sec] LogN(1, 0.2)
∆t Resolution of the simulator [sec] 30

change on the set-point is applied.

Figure 3.3 Aggregate power curve under sudden set-point change.

Figure 3.3 shows the aggregate power curve under approximate step change at 11:00am,
where the aggregate power is normalized between 0 and 1 for better illustration. It is clear
that there is a sudden power drop at 11:00am when a sudden set-point increase of 0.1 ◦C is
introduced. The steady state aggregate power is before the set-point change is around 0.4,
which means that there are around 40% percent of the ACs are in “ON” state. This steady
value is determined by detailed population parameters. After the step stimulating input, the
system presents more fierce oscillations in the next 1.5 hours before returning to steady state
again.
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Figure 3.4 Temperature trajectories of the first 10 ACs.

Figure 3.4 shows the impact of step change on the population individuals, where the tem-
perature trajectories of the firtst 10 ACs in the population are given. A nominal set-point
change, which increases from 20 ◦C to 20.1 ◦C, is clearly seen at 11:00am on the image. Here,
we call it “nominal” as the population is controlled in a decentralized manner, and each AC
unit should determine its own set-point temperature after receiving the “nominal” set-point
variation rate. The temperatures are increasing and decreasing with different velocities re-
flects that the population is heterogeneous. And the unnoraml temperatures outside the
deadband maybe caused by locked-out mechanism in the population.

There are five particular time points to observe in Fig. 3.3, respectively, 11:00, 11:01, 11:25,
11:45 and 16:00. They are the time just before the set-point change, 1 minute after the set-
point change, the approximate power valley moment, the approximate power peak moment
and the new steady power moment after the step change. Five verticle lines are drawn on the
graph to indicate their position. Figure 3.5a and 3.5b show the ON and OFF distributions at
t = 11 : 00−. Both of the histograms are almost uniformly distributed inside the deadband
centering around 20 ◦C.

Figure 3.6a and 3.6b are the distributions at 11:01. The sudden set-point increasing behavior,
which moves the nominal deadband a bit to the right, largely changes the landscape of the
histograms. The AC units in “ON” states get a rapid reduction on its left side, while on the
contrary, the AC units in “OFF” states rocket up on its left side. At this moment, the nominal
center of the distributions is 20.1 ◦C. However, it is obvious that the two distributions are a
bit left-skewed when using 20.1 ◦C as the center line. This means that the set-point change
is a bit too sudden, and the system still needs a bit more time to settle down around the new
nominal center.
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(a) (b)

Figure 3.5 t = 11 : 00− (a) ONs distribution; (b) OFFs distribution.

(a) (b)

Figure 3.6 t = 11 : 01 (a) ONs distribution; (b) OFFs distribution.
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Figure 3.7a and 3.7b are the distributions at 11:25. It takes about 25 minutes for the aggregate
power to reach the aggregate power valley. These two distributions are all centered around
20.1 ◦C. However, note that the ACs are not uniformly distributed, especially for those in
“ON” states (see the image on the left side). This means that the system is still not in steady
state, and more oscillations of the distributions are predictable.

(a) (b)

Figure 3.7 t = 11:25 (a) ONs distribution; (b) OFFs distribution.

Figure 3.8a and 3.8b are histograms for almost the power peak moment. Compared with
Fig. 3.7a, there are more ACs in “ON” state in Fig. 3.8a, thus, the aggregate power is
larger. On the other hand, similar as those at 11:25, the histograms are also not uniformly
distributed. This suggests that future fluctuations are to be expected.

Figure 3.9a and 3.9b present histograms in the new steady state. Both of the distributions
are centering around 20.1 ◦C, and they become almost uniform distributed again.

The simulation result shows that sudden changes on the set-point temperature cause large
oscillations on the system. In fact, the larger the set-point changes, the more fierce the
oscillations are, as shown in Fig. 3.10. Thus, large instant changes should be carefully
avoided and the set-point variation rate should be constraint when designing a controller.
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(a) (b)

Figure 3.8 t = 11:45 (a) ONs distribution; (b) OFFs distribution.

(a) (b)

Figure 3.9 t = 16:00 (a) ONs distribution; (b) OFFs distribution.
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Figure 3.10 The impact of different set-point offset.
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Abstract

This paper presents a new aggregate power tracking control scheme for populations of ther-
mostatically controlled loads (TCLs). The control design is performed in the framework
of partial differential equations (PDEs) based on a late-lumping procedure without trun-
cating the infinite-dimensional model describing the dynamics of the TCL population. An
input-output linearization control scheme, which is independent of system parameters and
uses only partial state measurement, is derived, and a sliding mode-like control is applied
to achieve finite-time input-to-state stability for tracking error dynamics. Such a control
strategy can ensure robust performance in the presence of modeling uncertainties, while con-
siderably reducing the communication burden in large-scale distributed systems similar to
that considered in the present work. A rigorous analysis of the closed-loop stability of the
underlying PDE system was conducted, which guarantees the validity of the developed con-
trol scheme. Simulation studies were performed while considering two TCL populations with
a significant difference in their size, and the results show that the developed control scheme
performs well in both cases, thereby confirming the effectiveness of the proposed solution.

keywords Aggregate power tracking control, finite-time input-to-state stability, input-output
linearization, partial differential equations, thermostatically controlled loads.

4.1 Introduction

In the context of today’s smart grids, it is widely recognized that demand response (DR)
programs have great potentials in dealing with ongoing demands, while enhancing the energy
efficiency and resilience of the power grid [53,66,173,230]. As a promising demand-response
enabled resource, thermostatically controlled loads (TCLs), such as air conditioners (ACs),
space heating devices, refrigerators, and water heaters, are attracting increasing attention.
Although a single TCL unit has very limited power regulation capability, ensembles of a
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large number of TCLs, when managed in an orderly and controllable manner, can have a
significant impact on the entire power grid [169, 179, 199, 222]. It has been shown that a
large TCL population can be managed to support demand response tasks, including peak
load shaving and load following [33, 77, 159, 206], and to provide ancillary services, such as
primary or secondary frequency controls [131,136,200,215].

The present work focuses on load tracking control, which allows the aggregate power of a TCL
population to follow a desired consumption profile. The control design is based on a model
of the dynamics of the TCL population described by partial differential equations (PDEs).
Specifically, we consider a set of TCLs in which the dynamics of every individual device are
modeled by a lumped stochastic hybrid system (SHS) operated through thermostat-based
deadband control. The aggregate dynamics of such a TCL population can be modeled by
two coupled Fokker-Planck equations (see, e.g, [24, 36, 126, 221]) describing the evolution of
the probability distribution of TCLs in the ON and OFF states over the temperature. Note
that the same form of PDE-based models can also be derived by assuming that the dynam-
ics of individual TCLs are described by deterministic systems while considering population
heterogeneity [21, 54, 146]. Compared with finite-dimensional state-space models, such as
state-bins [108, 123, 171, 178, 216] or state queues [94, 117, 198], the PDE paradigm provides
a more generic framework for modeling the aggregate dynamics of TCL populations, which
allows handling nonlinearity, time-varying operational conditions, and parametric uncertain-
ties with often very simple control algorithms. However, the PDE control system design
procedure generally involves more complex mathematical analysis and is more challenging.

It is known that the total power consumption of a TCL population can be manipulated by
changing the temperature set-point, moving the deadband, or interfering with the probability
distributions of the TCLs via forced switches (see, e.g., [21,24,123,193,215]). Because a TCL
population usually contains a large number of units that may spread over a large geographical
area, only decentralized or distributed schemes are applicable. In fact, a remarkable amount
of work on the control of TCL populations has been reported in the literature, and the
majority of the proposed solutions are based on lumped models by applying optimization
theory and optimal control techniques, in particular model predictive control (see, e.g,
[21,108,117,120,123,131,164,171,178,193,198,215,216,223]). It should be noted that, owing
the nature of the considered problem, control schemes requiring the state measurement of
the entire population in real-time are practically infeasible (see, e.g., [196] and the references
therein). This problem can be addressed using state observers [131, 144]. Nevertheless, it is
still very challenging to assess the performance of model-based state estimation algorithms
because it depends heavily on the accuracy of the system parameters.
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The load tracking control algorithm developed in the present work is a decentralized scheme
in which the rates for set-point temperature adjustment generated by a central unit are
broadcast to the TCLs over the population. Emphasis is placed on solving issues arising
in practical applications, particularly communication restrictions and modeling uncertainties
for large-scale TCL populations. The control system design is carried out in the framework of
PDE-based modeling and control techniques. It should be noted that the two basic paradigms
in PDE control system design and implementation, namely early-lumping and late-lumping
procedures, have all been applied to the control of the coupled Fokker-Planck equations
associated with TCL populations. The early-lumping method discretizes the underlying
PDEs to obtain a lumped model, and then applies the techniques for finite-dimensional
control system design [21, 24, 54, 146, 193]. In contrast, with the late-lumping method, the
controller is designed using the PDE model and then discretized for implementation [55,223].
A significant advantage of the late-lumping method is that it can preserve the essential
properties of the PDE model and no approximation is required in the control design.

In this paper, we developed a new control algorithm based on the input-output linearization
technique, which results in a system composed of finite-dimensional input-output dynamics
and infinite-dimensional internal dynamics. The control design amounts then to finding a
robust closed-loop control law that stabilizes the finite-dimensional input-output dynamics
while guaranteeing the stability of the infinite-dimensional internal dynamics. Specifically:

• A new system output for power tracking control is proposed, guaranteeing the control-
lability of the input-output dynamics.

• An input-output linearization control law, which is independent of system parameters,
e.g., the diffusion coefficient, while requiring only knowledge of the states of TCLs near
the deadband boundaries, is derived.

• To tackle modeling uncertainties while making the control scheme computationally
tractable, a sliding mode-like tracking control scheme that can achieve finite-time input-
to-state stability (FTISS) [76,114], is designed.

• The non-negativeness of the solution to the Fokker-Planck equations under the de-
veloped control law and other properties required to ensure closed-loop stability are
rigorously validated.

The main contribution of the present work lies in the simplicity, scalability, and applicability
of the control strategy developed under a generic framework. In addition, it is worth noting
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that compared to the existing TCL control techniques, the developed control algorithm re-
quires only measuring the state of the TCLs near the end-points of the deadband. Because
the cyclic rate of the TCLs is much slower than the controller sampling rate, the communi-
cation burden can be significantly reduced. Obviously, it is very difficult for state feedback
control schemes based on lumped aggregate models to achieve such features, which is critical
for practical implementations.

The remainder of this paper is organized as follows. Section 4.2 introduces the notations
used in the study and preliminaries on FTISS. Section 4.3 presents the first-order equivalent
thermal parameter (ETP) model for a single TCL unit and the coupled Fokker-Planck model
for the aggregate dynamics of the TCL population. Section 4.4 presents the power tracking
control design and closed-loop stability analysis. The results of simulation study for validating
the developed control strategy are reported in Section 4.5, followed by concluding remarks
in Section 4.6. Finally, the proof of one of the main theoretical results is presented in the
appendix.

4.2 Notations and preliminaries

4.2.1 Notations

Let R := (−∞,+∞), R≥0 := [0,+∞), R>0 := (0,+∞), and R≤0 := (−∞, 0]. Denote by ∂sf

the derivative of the function f w.r.t. argument s. Note that, for notation simplicity, we
may omit the arguments of functions if there is no ambiguity.

By convention, we denote by | · | the module of a function. For positive integers m,n and
a given (open or closed) domain Ω ⊂ Rn, let L∞(Ω;Rm) := {ϕ : Ω → Rm| ϕ is measurable
in Ω and satisfies ess sups∈Ω|ϕ(s)| < +∞}. For ϕ ∈ L∞(Ω;Rm), the norm of ϕ is defined
by ∥ϕ∥L∞(Ω) := ess sups∈Ω|ϕ(s)|. Let L∞

loc(Ω;Rm) := {ϕ : Ω → Rm| ϕ ∈ L∞(Ω′;Rm) for any
Ω′ ⫋ Ω}

For given (open or closed) domains Ω1,Ω2 ⊂ Rn and Ω3 ⊂ R, let C (Ω1; Ω3) := C0 (Ω1; Ω3) :=
{ϕ : Ω1 → Ω3| ϕ is continuous w.r.t. its all augments in Ω1}. For positive integers i, j, let
Ci (Ω1; Ω3) := {ϕ : Ω1 → Ω3| ϕ has continuous derivatives up to order i w.r.t. its all augments
in Ω1}, and Ci,j (Ω1 × Ω2; Ω3) := {ϕ : Ω1 ×Ω2 → Ω3| ϕ has continuous derivatives up to order
i w.r.t. its augments in Ω1 and up to order j w.r.t. its augments in Ω2}. In particular, if
Ω3 = R, we denote C (Ω1) := C0 (Ω1;R) and Ci (Ω1) := Ci (Ω1;R) for i > 0.

As in [114] and [92], we define the following sets of comparison functions. Let K := {ϑ :
R≥0 → R≥0| ϑ(0) = 0, ϑ is continuous, strictly increasing}; L := {ϑ : R≥0 → R≥0| ϑ is
continuous, strictly decreasing, lims→+∞ ϑ(s) = 0}; KL := {β : R≥0 × R≥0 → R≥0| β(·, t) ∈
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K,∀t ∈ R≥0, and β(s, ·) ∈ L,∀s ∈ R>0}; K∞ := {ϑ : R≥0 → R≥0| ϑ ∈ K and lims→+∞ ϑ(s) =
+∞}; GKL := {β : R≥0 × R≥0 → R≥0| β(·, 0) ∈ K, and for each fixed s ∈ R>0 there exists
T̃ (s) ∈ R≥0 such that β(s, t) = 0 for all t ≥ T̃ (s)}.

4.2.2 Finite-time input-to-state stability of finite dimensional systems

Consider the following nonlinear system

ż(t) =f(z(t), d(t)), ∀t ∈ R≥0, (4.1a)

z(0) =z0, (4.1b)

where z := [z1, z2, ..., zn]⊤ ∈ Rn is the state, z0 ∈ Rn is the initial datum, d ∈ D :=
L∞

loc(R≥0;Rm) is the input (disturbance) to the system, f : Rn × Rm → Rn is a nonlinear
function that is continuous w.r.t. (z, d), ensures the forward existence of the system solutions,
at least locally, and satisfies f(0, 0) = 0, and m ≥ 1 and n ≥ 1 are integers.

Definition 4.1. System (4.1) is said to be finite-time input-to-state stable (FTISS) if there
exist functions ϑ ∈ K and β ∈ GKL such that for any x0 ∈ Rn and d ∈ D its trajectory
satisfies

|z(t)| ≤ β(|z0|, t) + ϑ(∥d∥L∞(0,t)), ∀t ∈ R≥0. (4.2)

Remark 4.1. Note that FTISS is defined in a similar way to the definition of input-to-state
stability (ISS) in [92, Chapter 4] via the norm of d over the interval (0, t) rather than (0,+∞).
Thus, the FTISS presented here is a refined notion of the one introduced in [76, 114], where
the second term in the right-hand side of (4.2) is under the form ϑ(∥d∥L∞(0,+∞)), which
describes the influence of the global bounds of d instead of the bounds of d over the finite time
interval (0, t).

Definition 4.2. A continuously differentiable function V : Rn → R≥0 is said to be an FTISS
Lyapunov function for system (4.1) if there exist functions µ1, µ2 ∈ K∞, χ ∈ K and constants
c > 0 and θ ∈ (0, 1) such that for all x ∈ Rn and all d ∈ D it holds that

µ1(|x|) ≤ V (x) ≤ µ2(|x|),

|z| ≥ χ(|d|) ⇒ DV (z) · f(z, d) ≤ −cV θ(z),

where DV (z) :=
[

∂V
∂z1
, . . . , ∂V

∂zn

]
.

The following Lyapunov-like lemma gives a sufficient condition for the FTISS.
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Lemma 4.1. System (4.1) is FTISS if it admits a finite-time ISS Lyapunov function.

Proof. Setting V := {z|V (z) ≤ µ2(χ(|d|))} in the proof of [76, Theorem 1(a)], the lemma
statement follows immediately.

4.3 Mathematical model and problem specification

4.3.1 Dynamics of individual TCLs

In the present work, we focus on modeling the population of residential air conditioners (ACs).
While, its extension to other cooling and heating devices is straightforward. We consider the
case where all ACs are operated by thermostats and hence, every AC switches between the
ON and OFF states whenever it reaches the prescribed lower or upper temperature bounds.
For simplicity, we ignore the solar irradiation and internal heat gains and assume that the
ACs operate at a fixed frequency. Then, the dynamics of the indoor temperature, denoted
by x(t), can be expressed by the following SHS (see, e.g., [24, 126,193]):

dx(t) = 1
CR

(xa(t) − x(t) − s(t)RP ) dt+ σ dw(t), (4.3)

where xa(t) is the ambient temperature, R, C, and P are the thermal resistance, capaci-
tance, and power, respectively, and s(t) is the switching signal. In (4.3), w(t) is a standard
Wiener process, which, along with the parameter σ, represents modeling uncertainties, such
as unaccounted heat loss or heat gain, parameter variations, and disturbances.

For a thermostat-controlled AC, the switching signal s(t) takes a binary value from {0, 1}, rep-
resenting the OFF and ON states, respectively. Figure 4.1 illustrates one possible trajectory
of an AC described by (4.3), where the temperature moves back-and-forth in a fixed-width
region. Meanwhile, forced switches, denoted by r(t), may also occur in the process. Let
r(t) = 1 represent the occurrence of switching and 0 otherwise and suppose that x and x are
the lower and upper temperature bounds, respectively. Then, the switching signal s(t) for
an AC can be expressed as

s(t) =


1, if x ≥ x;

0, if x ≤ x;

(s(t−) ∧ r(t)) + (s(t−) ∨ r(t)), otherwise;

where “+” is the one-bit binary addition with overflow. In addition, the notations (·)− and
(·)+ denote the left and right limits of the scalar variable, respectively. Note that different
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actions, such as random switches to avoid power demand oscillations due to synchronization
within a TCL population, mechanisms for blocking the switches to protect the ACs, etc., can
be integrated in the design of forced switching schemes.
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Figure 4.1 Hybrid thermostat-based deadband control scheme.

4.3.2 Dynamics of aggregate TCL population

As mentioned previously, the dynamics of an aggregate TCL population can be characterized
by the evolution of the distributions of the TCLs over temperature. When the number of
TCLs in the population tends to be infinite, this population can be modeled as a continuum
whose temperature distribution is governed by the coupled Fokker-Planck equations [24, 54,
126, 146]. Specifically, we denote by f1(x, t) and f0(x, t) the probability density functions
(PDFs) of the TCLs in the ON and OFF states at temperature x and time t, respectively. As
illustrated in Fig. 4.2, we assume that all the loads are confined in a fixed temperature range
(xL, xH) along all possible operations, where xL and xH are constants, which is a reasonable
assumption for practical application. Moreover, owing to the nature of thermostat-based
control, there must be that f1(x, t) = 0 for all x ≤ x and t ∈ R>0, and that f0(x, t) = 0 for
all x ≥ x and t ∈ R>0. Therefore, we can divide the range (xL, xH) into three segments:

Ia := (xL, x), Ib := (x, x), Ic := (x, xH),

which will be used in the upcoming study.

Suppose that the dynamics of each load in the TCL population are described by (4.3). Let
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Figure 4.2 Illustration of probability density functions of a TCL population at a given time.

further

α0(x, t) := 1
CR

(xa(t) − x) ,

α1(x, t) := 1
CR

(xa(t) − x−RP ) .

The evolutions of f0(x, t) and f1(x, t) are governed by the following coupled Fokker-Planck
equations [24,126,193]:

∂tf0 =∂x

(
σ2

2 ∂xf0 − (α0 − u)f0

)
in Ia × R>0, (4.4a)

∂tf0 =∂x

(
σ2

2 ∂xf0 − (α0 − u)f0

)
− g(f0, f1) in Ib × R>0, (4.4b)

∂tf1 =∂x

(
σ2

2 ∂xf1 − (α1 − u)f1

)
+ g(f0, f1) in Ib × R>0, (4.4c)

∂tf1 =∂x

(
σ2

2 ∂xf1 − (α1 − u)f1

)
in Ic × R>0, (4.4d)

where g(f0, f1) represents the net probability flux due to the switches which only occur over
the segment Ib, that is, the so-called forced switches. Hence, the signs of g(f0, f1) in (4.4b)
and (4.4c) should be opposite to each other, which implies a mass conservation property as
claimed in Theorem 4.3 in Section 4.4.3. Note that (4.4b) and (4.4c) have a general form
compared to that given in [193] (see (19a) and (19b) of that paper), where an explicitly linear
function g(f0, f1) was used to model a switching rate control scheme.
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Following [193], we introduce the notation of probability flows Fi. When there is no additional
flux from the forced switches, i.e., g = 0, Fi is the integral of the probability fluxes ∂tfi over
the temperature (x-) coordinate:

Fi(x, t) := σ2

2 ∂xfi(x, t) − (αi(x, t) − u(t))fi(x, t), i = 0, 1.

The boundary conditions can then be written as

F0(x+
L , t) =0, ∀t ∈ R>0, (4.5a)

F0(x−, t) =F0(x+, t) + F1(x+, t), ∀t ∈ R>0, (4.5b)

f0(x−, t) =f0(x+, t), ∀t ∈ R>0, (4.5c)

f0(x−, t) =0, ∀t ∈ R>0, (4.5d)

f1(x+, t) =0, ∀t ∈ R>0, (4.5e)

f1(x−, t) =f1(x+, t), ∀t ∈ R>0, (4.5f)

F1(x+, t) =F0(x−, t) + F1(x−, t), ∀t ∈ R>0, (4.5g)

F1(x−
H , t) =0, ∀t ∈ R>0, (4.5h)

F0(x−, t) >F0(x+, t), ∀t ∈ R>0, (4.5i)

F1(x+, t) <F1(x−, t), ∀t ∈ R>0. (4.5j)

The initial data of f0 and f1 defined over Ia0 := [xL, x(0)], Ib0 := [x(0), x(0)], and Ic0 :=
[x(0), xH ] are given by

f0(0, x) =fa0
0 (x), ∀x ∈ Ia0, (4.6a)

f0(0, x) =f b0
0 (x), ∀x ∈ Ib0, (4.6b)

f1(0, x) =f b0
1 (x), ∀x ∈ Ib0, (4.6c)

f1(0, x) =f c0
1 (x), ∀x ∈ Ic0. (4.6d)

Note that the integration of f1(x, t) with respect to x is the proportion of the ACs in ON state
in the population. Thus, the total power demand of the TCL population at time t ∈ R≥0 is
given by

ytotal(t) := P

η

∫ xH

x(t)
f1(x, t) dx, (4.7)

where η is the load efficiency coefficient, which indicates the effectiveness of a device at
transferring heat versus the amount of electrical power it consumes.
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Remark 4.2. We provide remarks on the boundary conditions presented in (4.5).

(i) For continuous functions α0, α1, and u, the boundary conditions in (4.5) are equivalent
to:

σ2

2 ∂xf0(x+
L , t) =(α0(x+

L , t) − u(t))f0(x+
L , t), (4.8a)

∂xf0(x−, t) =∂xf0(x+, t) + ∂xf1(x+, t), (4.8b)

f0(x−, t) =f0(x+, t), (4.8c)

f0(x, t) =0, (4.8d)

f1(x, t) =0, (4.8e)

f1(x−, t) =f1(x+, t), (4.8f)

∂xf1(x+, t) =∂xf0(x−, t) + ∂xf1(x−, t), (4.8g)
σ2

2 ∂xf1(x−
H , t) =(α1(x−

H , t) − u(t))f1(x−
H , t), (4.8h)

∂xf1(x+, t) >0, (4.8i)

∂xf0(x−, t) <0. (4.8j)

(ii) It is worth noting that this set of boundary conditions ( (4.5) or (4.8)), with possible
variations, is commonly used in the literature [24, 126, 193], which captures the basic
properties of the considered problem, for example, impenetrable wall reflections ( (4.8a)
and (4.8h)), absorbing actions due to thermostat switching ( (4.8d)) and (4.8e)), and
probability conservation at the boundaries of the deadband ( (4.8b) and (4.8g)). Note
that because of the absorbing property and the continuity of the PDFs on the boundaries
of the deadband, the conditions (4.8b) and (4.8g) remain the same as those originally
derived in [126], even though the considered problem in the present work contains control
actions.

4.3.3 Problem statement and basic assumptions

In this work, we study the dynamics described by the PDE model (4.4) under the boundary
and initial conditions (4.5) and (4.6). Based on (4.7), a new output function will be defined
and specified in Section 4.4. With these dynamics, a continuous time controller that considers
the convergence time and robustness is designed to stabilize the tracking process.
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In the sequel, we assume that xa ∈ C(R≥0) x, x ∈ C1(R≥0;R>0), and denote

Sab :=
(
C2,1(Ia × R>0) ∩ C(Ia × R≥0)

)
∪
(
C2,1(Ib × R>0) ∩ C(Ib × R≥0)

)
,

Sbc :=
(
C2,1(Ib × R>0) ∩ C(Ib × R≥0)

)
∪
(
C2,1(Ic × R>0) ∩ C(Ic × R≥0)

)
.

Based on the physical properties of the problem, we impose the following structural conditions
and basic assumptions on the solution and control for the system:
• The function of net probability flux g belongs to C1(R2;R) and satisfies

(G1) g(0, τ) ≤ 0 for all τ ∈ R;

(G2) g(s, 0) ≥ 0 for all s ∈ R;

(G3) |gs(s, τ)| + |gτ (s, τ)| ≤ 1 for all (s, τ) ∈ R2.

• The pair of solution (f0, f1) and the control u satisfy

(U) u ∈ C(R≥0;R) such that ẋ = ẋ = u in R≥0;

(F1) fa0
0 ∈ C(Ia0;R≥0), f b0

0 ∈ C(Ib0;R≥0), f b0
1 ∈ C(Ib0;R≥0), f c0

1 ∈ C(Ic0;R≥0);

(F2) f0 ∈ Sab and has derivatives ∂xf0(x+
L , t), ∂xf0(x±, t), and ∂xf0(x−, t) for any fixed

t ∈ R>0;

(F3) f1 ∈ Sbc and has derivatives ∂xf1(x−
H , t), ∂xf1(x±, t), and ∂xf1(x+, t) for any fixed

t ∈ R>0.

Remark 4.3. It should be mentioned that for f0 = 0 (or f1 = 0), condition (G1) (or (G2))
guarantees −g(f0, f1) ≥ 0 (or g(f0, f1) ≥ 0) in (4.4b) (or (4.4c)) . This indicates that
forced switching, which generates additional fluxes, is only possible from the f1 system into
the f0 system when f0 is zero.

Condition (G3) indicates that the change in the probability density of the additional flux
cannot be too fast for practical applications. This is in accordance with the suggestion provided
in [193].

Condition (F1) indicates that the initial data are assumed to be nonnegative and continuous
over the given domains. Conditions (F2) and (F3) describe the regularity of the solutions at
the endpoints of the given domains at any time t.
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4.4 Control design and stability analysis

In this section, we design a feedback control law to ensure that the output of the system (4.4)-
(4.6) tracks a reference power curve, and assess the stability of the error dynamics in the
framework of FTISS theory. Moreover, we study the mass conservation and non-negativeness
properties of the solutions to the considered system, which allows further clarification of the
physical meanings of the mathematical model.

4.4.1 Control design

The control objective is to drive the power consumption of the population to track the desired
regulation signal. To this end, we choose an output of the power tracking control scheme as

y(t) := ytotal(t) + P

η

∫ xH

x(t)
f1(x, t) dx− P

η

∫ x(t)

xL

f0(x, t) dx, t ∈ R≥0. (4.9)

It is worth noting that, as the probability flows of f0 and f1 always move towards the
deadband, y(t) defined in (4.9) converges to the aggregated power demand ytotal(t) in the
steady state. The motivation to add two extra terms to ytotal(t) is to ensure the controllability
of the input-output dynamics.

The regulation of power consumption of the TCL population is achieved by moving the
mass of the temperature distribution, and the control signal is chosen to be the set-point
temperature variation rate ẋsp, which may induce a change in the probability flux [24, 221].
As we consider a control scheme with a fixed deadband width, denoted by δ0, we have
x = xsp − δ0

2 , x = xsp + δ0
2 . Thus, the actual control signal is given by u(t) := ẋsp = ẋ = ẋ.

Let yd : R≥0 → R be the desired power profile, which is sufficiently smooth, and define the
power tracking error as

e(t) := y(t) − yd(t).

In what follows, we introduce a nonlinear control law and derive the corresponding tracking
error dynamics.

Theorem 4.1. Consider the system given in (4.4) and (4.9) under the boundary conditions
in (4.5) (or equivalently (4.8)). Let the control input be defined as

u(t) :=k|e(t)|γsgn(e(t)) + Φ(t)
2 (f1(x, t) + f0(x, t))

, (4.10)
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where k ∈ R>0 and γ ∈ (0, 1) are constants, sgn(e) is the sign function defined by

sgn(e) :=


−1, e < 0,

0, e = 0,

1, e > 0,

and

Φ(t) := − η

P
ẏd(t). (4.11)

Then, the power tracking error dynamics are given by

ė(t) = −P

η
k|e(t)|γsgn(e(t)) + Γ(t), (4.12)

where

Γ(t) :=P
η

(α1(x, t)f1(x, t) + α0(x, t)f0(x, t)) − σ2P

2η
(
∂xf1(x+, t) + ∂xf1(x+, t)

)
− σ2P

2η
(
∂xf0(x−, t) + ∂xf0(x−, t)

)
+ P

η

∫ x(t)

x(t)
g(f0, f1) dx. (4.13)

Remark 4.4. Γ(t) defined in (4.13) captures the terms depending on the diffusion coefficient
or requiring instantaneous state measurements and will be treated as a disturbance thereafter.
Moreover, the control law given in (4.10) involves only the measurement of the states (proba-
bility distributions f0 and f1) on the end-points of the deadband (x and x), which results in a
control scheme with significantly reduced communication burden compared to control schemes
that require full-state measurements.

Proof of Theorem 4.1. Note that

ė(t) = ẏ(t) − ẏd(t)

= d
dt

(
P

η

∫ xH

x(t)
f1(x, t) dx+ P

η

∫ xH

x(t)
f1(x, t) dx− P

η

∫ x(t)

xL

f0(x, t) dx
)

− ẏd(t)

= P

η

d
dt

∫ xH

x(t)
f1(x, t) dx+ P

η

d
dt

∫ xH

x(t)
f1(x, t) dx− P

η

d
dt

∫ x(t)

xL

f0(x, t) dx− ẏd(t).

Hence, we decompose the whole computation process into three steps.

Step 1: Compute d
dt

∫ xH

x(t) f1(x, t) dx. It follows immediately from Leibniz’s integral rule and
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(4.4d) that

d
dt

∫ xH

x(t)
f1(x, t) dx

=0 − ẋ(t)f1(x, t) +
∫ xH

x(t)
∂tf1(x, t) dx

= − u(t)f1(x, t) +
∫ xH

x(t)
∂x

(
σ2

2 ∂xf1(x, t) − (α1(x, t) − u(t))f1(x, t)
)

dx

= − u(t)f1(x, t) +
(
σ2

2 ∂xf1(x−
H , t) − (α1(x−

H , t) − u(t))f1(x−
H , t)

)

−
(
σ2

2 ∂xf1(x+, t) − (α1(x, t) − u(t))f1(x, t)
)
.

Using boundary condition (4.8h), it follows that

d
dt

∫ xH

x(t)
f1(x, t) dx = −2u(t)f1(x, t) − σ2

2 ∂xf1(x+, t) + α1(x, t)f1(x, t). (4.14)

Step 2: Compute d
dt

∫ xH

x(t) f1(x, t) dx. Since

d
dt

∫ xH

x(t)
f1(x, t) dx = d

dt

∫ x(t)

x(t)
f1(x, t) dx+ d

dt

∫ xH

x(t)
f1(x, t) dx,

and d
dt

∫ xH
x f1(x, t) dx is given by (4.14), we only need to compute d

dt

∫ x(t)
x(t) f1(x, t) dx. It follows

from (4.4c) and (4.8e) that

d
dt

∫ x(t)

x(t)
f1(x, t) dx =u(t)f1(x, t) +

∫ x(t)

x(t)
g(f0, f1) dx

+
∫ x(t)

x(t)
∂x

(
σ2

2 ∂xf1(x, t) − (α1(x, t) − u(t))f1(x, t)
)

dx

=u(t)f1(x, t) +
∫ x(t)

x(t)
g(f0, f1) dx

+
(
σ2

2 ∂xf1(x−, t) − (α1(x−, t) − u(t))f1(x−, t)
)

−
(
σ2

2 ∂xf1(x+, t) − (α1(x+, t) − u(t))f1(x+, t)
)

=u(t)f1(x, t) + σ2

2 ∂xf1(x−, t) − (α1(x, t) − u(t))f1(x, t)

− σ2

2 ∂xf1(x+, t) +
∫ x(t)

x(t)
g(f0, f1) dx
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=2u(t)f1(x, t) + σ2

2 ∂xf1(x−, t) − α1(x, t)f1(x, t)

− σ2

2 ∂xf1(x+, t) +
∫ x(t)

x(t)
g(f0, f1) dx. (4.15)

Combining (4.14) and (4.15) we obtain by (4.8h)

d
dt

∫ xH

x(t)
f1(x, t) dx = −σ2

2 ∂xf1(x+, t) − σ2

2 ∂xf0(x−, t) +
∫ x(t)

x(t)
g(f0, f1) dx. (4.16)

Step 3: Compute d
dt

∫ x(t)
xL

f0(x, t) dx. According to (4.4a) and (4.8a), we have

d
dt

∫ x(t)

xL

f0(x, t) dx =u(t)f0(x, t) +
∫ x(t)

xL

∂tf0(x, t) dx

=u(t)f0(x, t) +
∫ x(t)

xL

∂x

(
σ2

2 ∂xf0 − (α0 − u)f0

)
dx

=u(t)f0(x, t) +
(
σ2

2 ∂xf0(x−, t) − (α0(x, t) − u(t))f0(x, t)
)

−
(
σ2

2 ∂xf0(x+
L , t) − (α0(x+

L , t) − u(t))f0(x+
L , t)

)

=2u(t)f0(x, t) + σ2

2 ∂xf0(x−, t) − α0(x, t)f0(x, t). (4.17)

Finally, by combining (4.14), (4.16), and (4.17), we obtain:

ė(t) =P
η

(
−σ2

2 ∂xf1(x+, t) − σ2

2 ∂xf0(x−, t)
)

+ P

η

(
−2u(t)f1(x, t) − σ2

2 ∂xf1(x+, t) + α1(x, t)f1(x, t)
)

− P

η

(
2u(t)f0(x, t) + σ2

2 ∂xf0(x−, t) − α0(x, t)f0(x, t)
)

− ẏd(t) + P

η

∫ x(t)

x(t)
g(f0, f1) dx

= − 2P
η
u(t) (f1(x, t) + f0(x, t)) − σ2P

2η ∂xf1(x+, t)

− σ2P

2η ∂xf1(x+, t) − σ2P

2η ∂xf0(x−, t)

− σ2P

2η ∂xf0(x−, t) + P

η

∫ x(t)

x(t)
g(f0, f1) dx

+ P

η
α1(x, t)f1(x, t) + P

η
α0(x, t)f0(x, t) − ẏd(t).
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The error dynamics can then be expressed as

ė(t) = −2P
η
u(t) (f1(x, t) + f0(x, t)) + P

η
Φ(t) + Γ(t).

Let

u(t) := v(t) + Φ(t)
2 (f1(x, t) + f0(x, t))

,

where v(t) is an auxiliary control input, then

ė(t) = −P

η
v(t) + Γ(t). (4.18)

Considering an auxiliary control of the form:

v(t) := k|e(t)|γsgn(e(t)), (4.19)

the tracking error dynamics in the closed loop are then given by (4.12).

Remark 4.5. Note that for the given initial data (see (F1)), it can be shown that the term
f1(x, t) + f0(x, t) is strictly positive (see Theorem 4.4 (iii) in Section 4.4.2). Therefore, the
control signal u, given in (4.10) is well-defined. In addition, u is continuous due to the fact
that γ ∈ (0, 1) and the assumptions on the continuity of ẏd(t) and f1(x, t) + f0(x, t) (see (F2)
and (F3)). It is also worth noting that, as f1(x, t) and f0(x, t) describe the probability density
of TCLs in the ON and OFF states at the prescribed upper and lower temperature boundaries
x and x, respectively, it is impossible in practice that f1(x, t) + f0(x, t) → 0 as t → +∞.

Figure 4.3 shows the schematic diagram of an implementation of the proposed power tracking
control for a TCL population on a digital platform. Note that each TCL is configured with
a zero-order-hold (ZOH), which allows keeping the control signal to be a constant in every
controller execution period. Furthermore, a numerical approximation method, which uses
only partially observed states, is used to compute the values of f1(x(tk), tk) and f0(x(tk), tk)
in u(tk) at the control center.

4.4.2 Finite-time input-to-state stability of the tracking error dynamics

In this section, we assess the robust stability of the tracking error dynamics in the sense of
FTISS, with Γ as the input (disturbance). One of the main properties of the closed-loop
system is stated below.
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Figure 4.3 Schematics diagram of power tracking control of a TCL population.

Theorem 4.2. The power tracking error dynamics (4.12) under the control law given in
(4.10) are FTISS w.r.t. Γ(t) for any γ ∈ (0, 1).

Proof. Consider a Lyapunov candidate of the form V (e) = 1
2e

2. The time derivative of V
along the trajectory of the tracking error dynamics (4.12) is given by:

V̇ = eė

= e

(
−P

η
k|e|γsgn(e) + Γ

)

= −P

η
k|e|1+γ + eΓ

= −P

η
k
(√

2V
)1+γ

+ eΓ

= −P

η
k (2V )

1+γ
2 + eΓ,

which implies that
DV (e) · f(e,Γ) ≤ −P

η
k(2V )

1+γ
2 + |e||Γ| (4.20)

with f(e,Γ) := −P
η
k|e(t)|γsgn(e(t)) + Γ(t).

Let C0 ∈ (0, k) be a constant. Then, for any |e| ≥
(

η
P C0

|Γ|
) 1

γ , i.e., |Γ| ≤ P
η
C0|e|γ, we deduce
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by (4.20) that

DV (e) · f(e,Γ) ≤ −P

η
k(2V )

1+γ
2 + P

η
C0|e|1+γ

= −P

η
k(2V )

1+γ
2 + P

η
C0(2V )

1+γ
2

= −P

η
(k − C0)2

1+γ
2 V

1+γ
2 .

Note that P
η

(k − C0)2
1+γ

2 > 0, 1+γ
2 ∈ (1

2 , 1), and that χ(s) := ( η
P C0

s)
1
γ is a K-function w.r.t.

s ∈ R≥0. The FTISS of system (4.12) is then guaranteed by Lemma 4.1.

4.4.3 Properties of the governing PDEs

In practice, we can assume that the number of TCLs in a population remains unchanged
within a specific DR control period. Therefore, the mass conservation property of the so-
lutions to the system (4.4)-(4.6) should be verified under the imposed boundary conditions,
thereby conforming the compliance of the mathematical model with the imposed condition.
Moreover, non-negativeness of the solutions is also required.

Theorem 4.3 (Mass conservation property). The solution to the initial-boundary value prob-
lem (IBVP) (4.4)-(4.6) is conservative in the sense that

∫ x(t)

xL

f0(x, t) dx+
∫ xH

x(t)
f1(x, t) dx = 1 ∀t ∈ R≥0, (4.21)

provided that

∫ x(0)

xL

fa0
0 (x) dx+

∫ x(0)

x(0)
f b0

0 (x) dx+
∫ x(0)

x(0)
f b0

1 (x) dx+
∫ xH

x(0)
f c0

1 (x) dx = 1. (4.22)

Proof. Using (4.4a), (4.4b), (4.8a), (4.8b), and (4.8d), and noting (U) and (F2), we have

d
dt

(∫ x(t)

xL

f0(x, t) dx
)

= d
dt

(∫ x(t)

xL

f0(x, t) dx+
∫ x(t)

x(t)
f0(x, t) dx

)
(4.23)

=
∫ x(t)

xL

∂tf0(x, t) dx+ f0(x(t), t)ẋ(t) +
∫ x(t)

x(t)
∂tf0(x, t) dx

+ f0(x(t), t)ẋ(t) − f0(x(t), t)ẋ(t)

=
∫ x(t)

xL

∂x

(
σ2

2 ∂xf0(x, t) − (α0(x, t) − u(t))f0(x, t)
)

dx
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+
∫ x(t)

x(t)
∂x

(
σ2

2 ∂xf0(x, t) − (α0(x, t) − u(t))f0(x, t)
)

dx

−
∫ x(t)

x(t)
g(f0, f1) dx

=
(
σ2

2 ∂xf0(x, t) − (α0(x, t) − u(t))f0(x, t)
) ∣∣∣∣∣

x−(t)

x+
L

+
(
σ2

2 ∂xf0(x, t) − (α0(x, t) − u(t))f0(x, t)
) ∣∣∣∣∣

x−(t)

x+(t)

−
∫ x(t)

x(t)
g(f0, f1) dx

=σ
2

2 ∂xf0(x−(t), t) − (α0(x(t)) − u(t))f0(x(t), t) − 0

+ σ2

2 ∂xf0(x−(t), t) − (α0(x(t)) − u(t))f0(x(t), t)

−
(
σ2

2 ∂xf0(x+(t), t) − (α0(x(t)) − u(t))f0(x(t), t)
)

−
∫ x(t)

x(t)
g(f0, f1) dx

=σ
2

2 (∂xf0(x−(t), t) − ∂xf0(x+(t), t))

+ σ2

2 ∂xf0(x−(t), t) −
∫ x(t)

x(t)
g(f0, f1) dx

=σ
2

2 ∂xf1(x+, t) + σ2

2 ∂xf0(x−(t), t) −
∫ x(t)

x(t)
g(f0, f1) dx.

Similarly, we infer from (4.4c), (4.4d), (4.8e), (4.8g), (4.8h), (U), and (F3) that

d
dt

(∫ xH

x(t)
f1(x, t) dx

)

= d
dt

(∫ x(t)

x(t)
f1(x, t) dx+

∫ xH

x(t)
f1(x, t) dx

)

= − σ2

2 ∂xf1(x+, t) − σ2

2 ∂xf0(x−(t), t) +
∫ x(t)

x(t)
g(f0, f1) dx. (4.24)

By (4.23) and (4.24), we obtain

d
dt

(∫ x(t)

xL

f0(x, t) dx+
∫ xH

x(t)
f1(x, t) dx

)
= 0 ∀t ∈ R≥0,

which along with (4.22) implies (4.21).
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Theorem 4.4 (Non-negativeness). The following statements hold true for the solution to
IBVP (4.4)-(4.6):

(i) f0(x, t) ≥ 0 for all x ∈ [xL, x(t)] and all t ∈ R≥0;

(ii) f1(x, t) ≥ 0 for all x ∈ [x(t), xH ] and all t ∈ R≥0;

(iii) f0(x(t), t) + f1(x(t), t) > 0 for all t ∈ R>0.

The proof of this theorem is provided in Appendix 4.7.

4.5 Simulation study

In this section, we present the results obtained in simulation study to demonstrate the effec-
tiveness of the proposed control scheme. Note that the control law given in (4.10) is derived
from the coupled Fokker-Planck equations, which assume a population of an infinite number
of TCLs. Therefore, the larger the population size, the more accurate the PDE model. Con-
sequently, a better performance can be expected for populations with larger numbers. To
illustrate this property, we consider in the simulation two heterogeneous populations, with
1,000 and 100,000 TCLs respectively. To quantitatively evaluate the control performance,
root-mean-square error (RMSE) is used to measure the average tracking errors.

4.5.1 Simulation setup

A numerical simulation is conducted to validate the proposed control scheme and evaluate
its performance. Table 4.1 lists the physical parameters of the AC units utilized in the
simulation, which are the same as those in [24]. The thermal capacitances of the TCLs in
the population follow the log-normal distribution with a mean value of 10 kWh/◦C and a
standard deviation of 2 kWh/◦C. The thermal resistances of the TCLs also follow the log-
normal distribution with a mean value of 2 ◦C/kW and a standard deviation of 0.4 ◦C/kW.
This results in a heterogeneity described by σ in the Fokker-Planck equations (4.4) [24,145].
Nevertheless, as mentioned in Remark 4.4, the implementation of the proposed robust control
scheme is independent of the value of σ. In our experiment, the initial temperatures of the AC
units are uniformly distributed around the initial set-point x0

sp = 20◦C over the deadband,
and initially 40% of the AC units are set randomly in the ON-state. This setting causes the
population to begin running from an almost steady state.

The disturbances brought into the system come mainly from the following three sources.
First, all AC units operate under the same varying outside temperature, as depicted in
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Table 4.1 Simulation parameter

Parameter Description (Unit) Value
R average thermal resistance (◦C/kW) 2
C average thermal capacitance (kWh/◦C) 10
P electric power (kW) 14
η load efficiency 2.5
x0

sp initial temperature set-point (◦C) 20
δ temperature deadband width (◦C) 0.5
pf forced switch probability per hour (%) 3
tci control interval (second) 30
tlock locked time of each TCL (minute) 6

Fig. 4.4, which rises from 30◦C at 11:30 to 23◦C at 12:30 and then drops back from 14:30 to
15:30. Second, a forced random switch mechanism is added to desynchronize AC operations.
The number of forced interrupts per hour can be adjusted through the hyper-parameter pf .
Moreover, a safe border distance of 5% of the deadband width is incorporated to prevent
forced switches from happening when an AC is around x(t) and in “ON” state or around x(t)
and in “OFF” state. Finally, because frequent switching leads to reduced energy efficiency
and more rapid compressor wear out, a lockout time, tlock, is included for each AC. Thus, an
AC unit remains inactive to the control signals when it is locked.
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Figure 4.4 Ambient temperature.

The reference power is a predefined curve, as shown in Fig. 4.5, which is chosen arbitrarily.
From 10:30 to 11:30, the normalized desired power is maintained constant at 0.4. From 11:30
to 12:00, the reference power drops to 0.2 and keeps constant for the following two and a half
hours. From 14:30, the desired power rises to 0.5 in 30 minutes and remains constant until
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16:30. During the rising and dropping phases, the desired power is specified by a smooth
polynomial with the endpoint constraints given below:

yd(t) = (yd(tf ) − yd(ti)) τ 5(t)
4∑

l=0
alτ

l(t), t ∈ [ti, tf ], (4.25)

ẏd(ti) = ẏd(tf ) = ÿd(ti) = ÿd(ti) = ...
yd(ti) = ...

yd(tf ) = 0, (4.26)

where ti and tf are, respectively, the starting and ending times, and τ(t) := (t− ti)/(tf − ti).
By a direct computation, the coefficients can be determined as follows:

a0 = 126, a1 = 420, a2 = 540, a3 = 315, and a4 = 70.
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Figure 4.5 Desired power profile.

In the simulation, the control signal is updated every 30 seconds (tci in Table 4.1). The control
signal that every AC receives is the set-point variation rate. To compute the denominator
of the controller given in (4.10), a mid-point rectangular method with a temperature bin
width δx is used to estimate f1(x(tk), tk) and f0(x(tk), tk). The percentage of ACs falling
in the rectangular region is used as f1(x(tk), tk) × δx or f0(x(tk), tk) × δx. In general, δx

should not be too large because the underlying system has complex nonlinear dynamics. On
the other hand, considering the limited number of ACs involved in the simulation, the bin
width δx should not be too small, which may introduce larger biases. In our implementation,
histogram bin widths of 0.008◦C, 0.004◦C, and 0.002◦C are used, which are reasonable and
provide reliable estimations of f1(x(tk), tk) and f0(x(tk), tk). Note that the mid-point rule
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only requires partially observed states of the population distributions, which is a great relief
of the communication burden.

4.5.2 Numerical results and analysis

First, we present the test results for the population with 1,000 TCLs. The control cycle lasts
for 6 hours, from 10:30 to 16:30. The test is performed continuously for 10 episodes, and the
tracking performance is measured by the RMSE, as reported in Table 4.2. In the test, the
controller parameters in (4.10) are set to be k = 8 and γ = 0.5, respectively. The final result
shows that the mean RMSE for this setting is 0.896%, and the standard deviation (STD) of
the RMSEs is 0.040%.

Table 4.2 Tracking performance of 10 episodes for the population with 1,000 TCLs

Episode 1 2 3 4 5
RMSE (%) 0.948 0.923 0.844 0.834 0.935

Episode 6 7 8 9 10
RMSE (%) 0.880 0.923 0.890 0.925 0.861

Figure 4.6 shows a sample of the control results corresponding to the episode with an RMSE
of 0.948%. It can be seen from Fig. 4.6a that the proposed control strategy is effective.
The temperature evolution of 10 randomly selected ACs in the population is presented in
Fig. 4.6b. It can be observed that all of them, unless forced switches occur, operate smoothly
inside the deadband between the turning-on and turning-off points. Figure 4.6c shows the
control signal generated during this episode. During the first 30 minutes (from 10:00 to
10:30), the controller is inactive, and the system operates in an open-loop mode. The control
loop is closed at 10:30. It can be observed that the amplitude of the control signal may vary
importantly in transient state or when the reference power raises or drops rapidly.

When the number of ACs increases, the model of the coupled Fokker-Planck equations be-
comes more accurate. To evaluate the effectiveness of the proposed control strategy, tracking
control performance is examined for a population of 100,000 ACs. The RMSE values for 10
continuous tests are shown in Table 4.3, which gives a mean RMSE of 0.497% and an STD
of 0.004%. In this test, k = 15 and γ = 0.5 are used. Figure 4.7 illustrates one of the con-
trol samples corresponding to the episode with an RMSE of 0.505%. The normalized power
consumption is shown in Fig. 4.7a, and the temperature evolutions of 10 ACs are shown in
Fig. 4.7b. The control signal is shown in Fig. 4.7c.

The results of the comparative study show clearly that the tracking control system performs
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Figure 4.6 Control performance for a population of 1,000 TCLs: (a) tracking performance;
(b) temperature trajectories of 10 ACs; (c) set-point variation rate.
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Figure 4.7 Control performance for a population of 100,000 TCLs: (a) tracking performance;
(b) temperature trajectories of 10 ACs; (c) set-point variation rate.
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Table 4.3 Tracking performance of 10 episodes for the population with 100,000 TCLs

Episode 1 2 3 4 5
RMSE (%) 0.505 0.500 0.496 0.491 0.490

Episode 6 7 8 9 10
RMSE (%) 0.497 0.499 0.495 0.498 0.500

better for the population of larger size with smaller RMSE, smoother power trajectory, and
less “noisy” control signals. This is consistent with the nature of the PDE model on which
the proposed control scheme is based. Nevertheless, the performance is not significantly
degraded for a population with a significantly smaller size. This demonstrates the robustness
and potential applicability of the developed control strategy to practical systems.

4.6 Conclusion

In this work, we have developed a strategy for power tracking control of heterogeneous TCL
populations based on a PDE model. It is shown that the proposed control scheme can ensure
a robust performance in the presence of modeling uncertainties in the sense of FTISS and
requires measuring the states of the system only on the end-points of the deadband. The
simulation results provided encouraging evidence that the proposed control approach is highly
effective. However, great challenges still exist for deploying this control scheme for real world
applications. Particularly, the Fokker-Planck equations can only describe TCL populations
with a limited heterogeneity and hence, they cannot capture populations involving different
type of devices or systems. Moreover, power tracking is only a task in demand response
programs. Therefore, coordinating with other systems in the grid, such as distributed power
generation [232] and energy storage [5], or other demand-response tasks, such as frequency
regulation or transaction controls [82,101,103,149,210], is still a challenging problem. These
issues will be considered in our future work.

4.7 Appendix: Proof of Theorem 4.4

We first prove statement (i). Given any T > 0, it suffices to show that f0 ≥ 0 over [xL, x(t)]×
[0, T ] for all t ∈ [0, T ].

Indeed, the transformations of variable y := x−xL

x−xL
:= x−xL

h
and f0(x, t) = f0(yh + xL, t) :=
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f̃0(y, t) yield

∂xf0 = 1
h
∂yf̃0,

∂xxf0 = 1
h2∂yyf̃0, ∂tf0

= ∂tf̃0 + ∂yf̃0
∂y

∂t

= ∂tf̃0 − (x− xL) ẋ
h2∂yf̃0

= ∂tf̃0 − 1
h
yu∂yf̃0.

Note that
x ∈ [xL, x] ⇔ y ∈ [0, 1], 0 < δ0 ≤ h(t) ≤ xH − xL,∀t ∈ [0, T ].

The PDEs (4.4a) and (4.4b) are equivalent to

∂tf̃0 − 1
h

(
σ2

2h∂yyf̃0 + ((1 + y)u− α̃0) ∂yf̃0 − α̃0yf̃0

)
= 0,

∀y ∈ (0, z(t)) ,∀t ∈ (0, T ], (4.27a)

∂tf̃0 − g(f̃0, f̃1) − 1
h

(
σ2

2h∂yyf̃0 + ((1 + y)u− α̃0) ∂yf̃0 − α̃0yf̃0

)
= 0,

∀y ∈ (z(t), 1) ,∀t ∈ (0, T ], (4.27b)

respectively, where α̃0(y, t) := α0(yh(t) + xL, t), f1(x, t) = f1(yh + xL, t) := f̃1(y, t), and
z(t) := 1 − δ0

h(t) .

Note that (4.8) is equivalent to (4.5), and (4.8a), (4.8b), and (4.8d) become

σ2

2 ∂yf̃0(0+, t) − (α̃0(0+, t) − u(t))h(t)f̃0(0+, t) = 0, ∀t ∈ (0, T ], (4.28a)

∂yf̃0
(
z−(t), t

)
− ∂yf̃0

(
z+(t), t

)
= σ0(t), ∀t ∈ (0, T ], (4.28b)

f̃0(1−, t) = 0 ∀t ∈ (0, T ], (4.28c)

where, for the given solution f1, σ0(t) := σ2

2 ∂xf1(x+(t), t) is a well-defined function w.r.t. t,
and σ0(t) > 0 for all t ∈ [0, T ] owing to (F3) and (4.8i).

The initial data of f̃0 over the domain [0, z(t)] and [z(t), 1] are given by

f̃a0
0 (y) := fa0

0 (yh(0) + xL) ≥ 0,
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and

f̃ b0
0 (y) := f b0

0 (yh(0) + xL) ≥ 0,

respectively.

Let ϕ(y) := em(y− 1
2 )2 and f̃0 := ϕeγtf̂0 with m > 0 and γ > 0 being constants that will be

chosen later. Then (4.27) and (4.28) lead to

∂tf̂0 − σ2

2h2∂yyf̂0 + B(y, t)∂yf̂0 + C(y, t)f̂0 = 0, ∀y ∈ (0, z(t)) , ∀t ∈ (0, T ], (4.29a)

∂tf̂0 − σ2

2h2∂yyf̂0 + B(y, t)∂yf̂0 + C(y, t)f̂0 + e−γt

ϕ(y)g(f̃0, f̃1) = 0,

∀y ∈ (z(t), 1) ,∀t ∈ (0, T ], (4.29b)
σ2

2 ∂yf̂0(0+, t) − k(t)f̂0(0+, t) = 0, ∀t ∈ (0, T ], (4.29c)

∂yf̂0
(
z−(t), t

)
− ∂yf̂0

(
z+(t), t

)
= σ̂0(t), ∀t ∈ (0, T ], (4.29d)

f̂0(1−, t) = 0, ∀t ∈ (0, T ], (4.29e)

where

B(y, t) := − 1
h

(
σ2

2h
2∂yϕ

ϕ
+ (1 + y)u− α̃0

)
,

C(y, t) :=1
h

(
γ − σ2

2h
∂yyϕ

ϕ
− ∂yϕ

ϕ
((1 + y)u− α̃0) + α̃0y

)
,

k(t) :=mσ
2

2 + (α̃0(0+, t) − u(t))h(t),

σ̂0(t) := e−γt

ϕ(1)σ0(t).

The initial data for the f̂0-system over the domain [0, z(t)] and [z(t), 1] are given by

f̂a0
0 (y) := f̃a0

0 (y)
ϕ(y) ≥ 0 and f̂ b0

0 (y) := f̃ b0
0 (y)
ϕ(y) ≥ 0, (4.30)

respectively.

Note that u, α̃0, and α̃0y are continuous in [0, 1] × [0, T ]. Letting first m and then γ be
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sufficiently large, there must be positive constants k0 and c0 such that

k(t) ≥k0,∀t ∈ (0, T ], (4.31)

C(y, t) − 1 ≥c0,∀(y, t) ∈ (0, 1) × (0, T ]. (4.32)

To prove the non-negativeness property of f0, it suffices to show that f̂0 ≥ 0 in [0, 1] × [0, T ].
We now proceed with the proof by contradiction. Assume that there exists a point (y0, t0) ∈
[0, 1] × [0, T ] such that

f̂0(y0, t0) = min
(y,t)∈[0,1]×[0,T ]

f̂0(y, t) < 0.

Considering (4.29e) and (4.30), we have y0 ̸= 1 and t0 ∈ (0, T ].

Case 1 : y0 ∈ (0, z(t0)). At point (y0, t0), it holds that

∂tf̂0(y0, t0) ≤ 0, ∂yf̂0(y0, t0) = 0, ∂yyf̂0(y0, t0) ≥ 0.

Then (4.29a) and (4.32) imply that

0 > (c0 + 1) f̂0(y0, t0) ≥ ∂tf̂0(y0, t0) − σ2

2h2(t0)
∂yyf̂0(y0, t0)

+ B(y0, t0)∂yf̂0(y0, t0) + C(y0, t0)f̂0(y0, t0)

=0,

which leads to a contradiction.

Case 2 : y0 ∈ (z(t0), 1). At the point (y0, t0), it also holds that

∂tf̂0(y0, t0) ≤ 0, ∂yf̂0(y0, t0) = 0, ∂yyf̂0(y0, t0) ≥ 0.

In addition, using the Mean Value Theorem, (G1), and (G2), we obtain:

g(f̃0(y0, t0), f̃1(y0, t0))

=g(0, f̃1(y0, t0)) + f̃0(y0, t0)gs(s, f̃1(y0, t0))|s=ξ

≤|f̃0(y0, t0)|,

where ξ is between 0 and f̃0(y0, t0).
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It follows that

e−γt0

ϕ(y0)
g(f̃0(y0, t0), f̃1(y0, t0)) ≤ |f̃0(y0, t0)|

e−γt0

ϕ(y0)
= −f̂0(y0, t0). (4.33)

From (4.29b), (4.32), and (4.33), we obtain:

0 >c0f̂0(y0, t0)

≥ (C(y0, t0) − 1) f̂0(y0, t0)

≥C(y0, t0)f̂0(y0, t0) + e−γt0

ϕ(y0)
g(f̃0(y0, t0), f̃1(y0, t0))

≥∂tf̂0(y0, t0) − σ2

2h2(t0)
∂yyf̂0(y0, t0) + e−γt0

ϕ(y0)
g(f̃0(y0, t0), f̃1(y0, t0))

+ B(y0, t0)∂yf̂0(y0, t0) + C(y0, t0)f̂0(y0, t0)

=0,

which leads to a contradiction.

Case 3 : y0 = 0. It follows that ∂yf̂0(0+, t0) ≥ 0, which, along with (4.29c) and (4.31), yields

0 < −k0f̂0(0+, t0) ≤ −k(t0)f̂0(0+, t0) ≤ σ2

2 ∂tf̂0(0+, t) − k(t0)f̂0(0+, t) = 0.

We get a contradiction.

Case 4 : y0 = 1. It follows that ∂yf̂0(1+, t0) ≤ 0, which along with (4.29c) and (4.31) yields

0 < −k0f̂0(0+, t0) ≤ −k(t0)f̂0(0+, t0) ≤ σ2

2 ∂yf̂0(0+, t) − k(t0)f̂0(0+, t) = 0.

We get a contradiction.

Case 5 : y0 = z(t0). It follows that ∂yf̂0(z−(t0), t0) ≤ 0 and ∂yf̂0(z+(t0), t0) ≥ 0, which along
with (4.29d) and σ̂0(t) > 0 yields

0 ≥ ∂yf̂0(z−(t0), t0) − ∂yf̂0(z+(t0), t0) = σ̂0(t0) > 0,

leading to a contradiction.

Because we always obtain a contradiction in each case, we have shown that f̂0 ≥ 0 over the
domain [0, 1] × [0, T ], which implies the non-negativeness property of f0 over the domain
[xL, x(t)] × [0, T ] for all t ∈ [0, T ] and all T ∈ R>0.

Because the proof of statement (ii) can proceed in the same way as above, we omit the details
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of the proof.

Finally, suppose that statement (iii) fails to be true; then, for any given T ∈ R>0 there must
be a t0 ∈ (0, T ] such that

f0(x(t0), t0) + f1(x(t0), t0) = 0,

which, along with the non-negativeness property of f0 and f1, implies that f0 and f1 attain
their minima at (x(t0), t0) and (x(t0), t0), respectively. Then, using the same argument as
that in Case 5, we obtain a contradiction. Therefore, statement (iii) holds true.
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Abstract

This paper presents a study on event-triggered power tracking control of heterogeneous
thermostatically controlled load (TCL) populations. The developed schemes are based on
continuous-time tracking control of TCL populations of which the aggregated dynamics are
described by coupled Fokker-Planck equations. Two event-triggering mechanisms, namely
static and dynamic event-triggered control strategies, are proposed, which can guarantee the
input-to-state practical stability (ISpS) of the tracking error dynamics while excluding Zeno
phenomenon. A simulation study is conducted, and the obtained results show that the devel-
oped control strategies can significantly reduce the communication burden while still offering
a satisfactory control performance.
keywords heterogeneous thermostatically controlled loads, coupled Fokker-Planck equa-
tions, event-triggered control, input-to-state practical stability.

5.1 Introduction

Demand response (DR) programs, together with flourishing smart-grid technologies, are cre-
ating more sustainable, resilient, and efficient power systems. The paradigm of DR allows
the consumers to be actively engaged into power consumption management, offering cost-
effective solutions for eliminating electricity supply-demand discrepancies. It is noted that
there exist a great variety of DR programs [66, 173, 196, 213]. The focus of the present work
is placed on managing populations of thermostatically controlled loads (TCLs), such as air
conditioning units, refrigerators, heat pumps, etc., as demand-response resources capable of
providing ancillary services, including peak-load shaving, load shifting, frequency regulation,
etc., see, e.g., [38, 58, 120, 124, 129, 161, 191]. In this context, a heterogeneous TCL popu-
lation refers to an ensemble of thermal devices of the same type with potentially different
parameters [21, 24,55,116,117,126,178,193,198,215,224].

As a promising distributed DR resource, TCLs are usually geographically spread over a wide
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area and are connected via communication networks for information exchange. Based on the
information flow in the population, there are roughly three control paradigms, i.e., centralized
control, decentralized control, and distributed control. In this work, a decentralized control
strategy is adopted, where a central unit, also called an aggregator, is responsible of managing
the power consumption of the TCL population by controlling the temperature set-point.
Concerning the control design for a TCL population, some popular aggregated models are
proposed to characterize the underlying dynamics, including coupled Fokker-Planck (CFP)
equation models [21, 24, 55, 126, 193, 224], state-bins models [178, 215], state-queuing models
[116, 117, 198] and so on. It should be noted that in the existing literature, the controllers
designed based on these models are of continuous time and will use periodically sampled data
in their implementation. Therefore, the control signals need to be broadcast to the entire
population periodically.

Obviously, continuously or periodically delivering control signals generates heavy communi-
cation burdens. Moreover, a synchronized periodical data exchange is infeasible for nearly
all the practical applications that involve communication networks spread over a wide geo-
graphical region. Event-triggered control (ETC), which requires only to update the control
signals when a certain triggering event occurs, is then developed as a solution to overcome
this difficulty [72, 98, 139]. In the literature, threshold-based signals are one of the com-
monly used triggering conditions. Different types of threshold signals are available, including
fixed threshold, relative threshold [186,217], switching threshold [205], and dynamic thresh-
old [52,56,160]. Among the aforementioned triggering mechanisms, dynamic threshold strate-
gies have attracted much attention in recent years. Compared with static event-triggering
schemes, auxiliary variables are additionally incorporated in the triggering threshold function,
which can usually enlarge inter-event intervals and thus enable more flexible and effective
resource utilization. Note that, to ensure the control performance, the closed-loop systems
need to possess certain robust stability properties, in particular, they should be input-to-
state stable (ISS) with respect to (w.r.t.) disturbances representing the effect of aperiodic
sampling [56, 186]. Moreover, considering uncertainties in practical applications, a more re-
alistic requirement is that the closed-loop system should be input-to-state practically stable
(ISpS) w.r.t. the disturbances [87, 181]. It should be mentioned that the notion of ISS and
its variations, including ISpS, play a vital role in robust control system design and analysis,
allowing for characterizing the robust stability of a system w.r.t. disturbances induced by,
e.g., external perturbations, modeling errors, and parametric uncertainties, as well as those
introduced in control system implementations, such as measurement and actuation noises,
sampling and quantization errors, and delays [138,180].

The aim of this work is to develop ETC schemes for power tracking of heterogeneous TCL
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populations. To this goal, we adopt the emulation approach. Specifically, we choose first
a modified version of the continuous-time control scheme presented in [220]. Then, a static
event-triggering mechanism, which combines fixed threshold and relative threshold signals, is
proposed. We show that the ISpS of the closed-loop system with this triggering scheme can be
achieved and the Zeno phenomenon is excluded from this triggering scheme. Furthermore, a
dynamic event-triggering strategy, derived from the static one, is developed. The closed-loop
stability and enlarged inter-execution time properties are investigated. Finally, numerical
simulation is conducted to evaluate the proposed event-trigged control schemes. It should be
noted that although it has been shown in the recent literature that event-triggered paradigm
is beneficial to different problems in power systems control, see, e.g., [30,31,85,106,111,218],
to the best of authors’ knowledge, the present work is the first attempt to apply this method
to the control of TCL populations for power tracking.

The main contributions of this work can be summarized as follows:

• An input-output linearization control law, which requires only partial measurement of
the system state on the end-points of the temperature deadband, has been developed for
power tracking control of heterogeneous TCL populations described by CFP equations.

• Two ETC schemes (static and dynamic) have been proposed, which allow for a further
reduction of communication burdens.

• It is shown that the proposed ETC schemes can guarantee a robust stability, in the
sense of ISpS, of the tracking error dynamics w.r.t. the effect of aperiodic sampling
and in the presence of different types of disturbances, and the avoidance of the Zeno
phenomenon related to the ETC schemes has been assessed rigorously.

• The stability of the closed-loop system including infinite-dimensional internal dynamics
has been verified, and the validity and the effectiveness of the proposed control schemes
have been confirmed by a comparative simulation study.

The remainder of the paper is organized as follows. In Section 5.2, some notations and
terminologies are introduced. Section 5.3 recalls the CFP model for heterogeneous TCL
populations and the continuous-time tracking control law presented in [220]. Then, a static
ETC scheme based on the proposed controller is derived, and its closed-loop stability and
Zeno-behavior free properties are analyzed in Section 5.4. A dynamic triggering scheme is
developed by composing a new auxiliary variable in Section 5.5. A simulation study is carried
out in Section 5.6 to validate the developed control schemes. Finally, concluding remarks are
outlined in Section 5.7.
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5.2 Notations and preliminaries

Let R := (−∞,+∞), R≥0 := [0,+∞), R>0 := (0,+∞), and R≤0 := (−∞, 0]. Let N denote
the set of non-negative integers.

By convention, let ∥x∥ be the Euclidean norm of a vector x ∈ Rn(n ≥ 1). In particular, let
|x| := ∥x∥ for x ∈ R.

For a function f : R≥0 → R, we denote by f(t+), or respectively f(t−), the limit of f(s)
when s tends to t from the right, or respectively from the left.

For given (open or closed) domains Ω1,Ω2 ⊂ Rn(n ≥ 1) and Ω3 ⊂ R, let C (Ω1; Ω3) :=
C0 (Ω1; Ω3) := {ϕ : Ω1 → Ω3| ϕ is continuous w.r.t. all its augments in Ω1}. For positive
integers i, j, let Ci (Ω1; Ω3) := {ϕ : Ω1 → Ω3| ϕ has continuous derivatives up to order i
w.r.t. its all augments in Ω1}, and Ci,j (Ω1 × Ω2; Ω3) := {ϕ : Ω1 ×Ω2 → Ω3| ϕ has continuous
derivatives up to order i w.r.t. its augments in Ω1 and up to order j w.r.t. its augments in
Ω2}. In particular, if Ω3 = R, we denote C (Ω1) := C0 (Ω1;R) and Ci (Ω1) := Ci (Ω1;R) for
i ≥ 1.

As in [92] and [91], for some a ∈ R>0, a function α : [0, a) → R≥0 is said to be in class K
(α ∈ K) if α is continuous, strictly increasing and α(0) = 0. If, in addition, a = +∞ and
α(r) → +∞ as r → +∞, α is said to be in class K∞. A continuous function β : [0, a)×R≥0 →
R≥0 is said to be in class KL (β ∈ KL) if β(·, s) ∈ K for each fixed s ∈ R≥0, β(r, ·) is strictly
decreasing and β(r, s) → 0 as s → +∞ for each fixed r ∈ R>0.

Definition 5.1. ( [87]) Consider a system

ẋ = f(x, u), (5.1)

where x ∈ Rn, u ∈ Rm, f : Rn × Rm → Rn is locally Lipschitz continuous, and m,n ≥ 1.
System (5.1) is said to be input-to-state practically stable (ISpS) w.r.t. u if there exist β ∈
KL, γ ∈ K, and d ∈ R≥0 such that for any initial data x(0) and any continuous input u, the
following inequality holds:

∥x(t)∥ ≤ β(∥x(0)∥, t) + γ

(
sup

s∈(0,t)
∥u(s)∥

)
+ d,∀t ∈ R≥0. (5.2)

Moreover, if (5.2) holds for d = 0, then System (5.1) is said to be input-to-state stable (ISS).

Definition 5.2. A function V ∈ C1(Rn;R≥0) is called an ISpS-Lyapunov function for (5.1)
if:
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(i) there exist functions ψ1, ψ2 ∈ K∞ such that

ψ1(∥x∥) ≤ V (x) ≤ ψ2(∥x∥),∀x ∈ Rn;

(ii) there exist a function χ ∈ K, a constant c ∈ R≥0, and a positive definite function α

such that
∥x∥≥max{χ(∥u∥), c} ⇒ ∇V (x) · f(x, u)≤−α(∥x∥), (5.3)

where ∇V (x) is the gradient of V (x), i.e., ∇V (x) :=
(

∂V (x)
∂x1

, ∂V (x)
∂x2

, ..., ∂V (x)
∂xn

)
.

Note that V (x) satisfying (5.3) with c = 0 is an ISS-Lyapunov function for system (5.1).
An important relationship between the ISpS (respectively ISS) and the existence of an ISpS
(respectively ISS) Lyapunov function for system (5.1) is given below (see, e.g., [181]).

Lemma 5.1. System (5.1) is ISpS (respectively ISS) if and only if it admits an ISpS (re-
spectively ISS) Lyapunov function.

5.3 Dynamic model of TCL populations and power tracking control

5.3.1 Dynamics of a single TCL

In this work, we consider a population of residential air conditioners (ACs) represented by
the first-order equivalent thermal parameter (ETP) model [176]. Suppose that xi(t) and
xa

i (t) are the temperature and ambient temperature for the i-th AC, respectively, and si(t)
is its thermostat state with a value of 1 for the ON-state and 0 for the OFF-state. Then,
the dynamics of the indoor temperature can be described by the following stochastic hybrid
system (SHS) [24,126,221]:

dxi(t) = 1
CiRi

(xa
i (t) − xi(t) − si(t)RiPi) dt+ σ dwi(t), (5.4)

where Ci, Ri, and Pi are thermal capacitance, resistance, and cooling power, respectively,
wi is assumed to be a standard Wiener process, and σ is the variance parameter that takes
account of uncertain modeling errors. Let xsp,i(t) be the set-point temperature of the i-th
device and δ be a prescribed deadband width. The lower and upper temperature boundary
can be respectively written as

x(t) = xsp,i(t) − δ

2 , x(t) = xsp,i(t) + δ

2 .
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Then, the thermostat state in (5.4) is given by [224]

si(t) =


1, if xi(t) ≥ x(t);

0, if xi(t) ≤ x(t);

(si(t−)∧ri(t))+(si(t−)∨ri(t)), otherwise;

(5.5)

where “+” is the one-bit binary addition with overflow, ri(t) is the forced switching signal.
Note that the boolean-valued variable si(t) will be opposite to si(t−) when the forced-switch
occurs. For example, if si(t−) = 0 and ri(t) = 1, then si(t) = 0 ∧ 1 + 0 ∨ 1 = 0 + 1 = 1. Note
also that the generalized deadband control given in (5.5) is indeed of event-triggering nature.

5.3.2 Coupled Fokker-Planck equations for the aggregated dynamics of the pop-
ulation

Consider a large group of ACs, whose dynamics are described by (5.4) and (5.5). Let f1(x, t)
and f0(x, t) be the probability densities for the loads in the ON and OFF states, respectively.
It is shown that the aggregated dynamics of the population can be modeled by a system of
coupled Fokker-Planck equations given below [24,124,126]:

∂tf0 =∂x

(
σ2

2 ∂xf0 − (α0 − u)f0

)
, (5.6a)

∂tf1 =∂x

(
σ2

2 ∂xf1 − (α1 − u)f1

)
, (5.6b)

where u(t) := ẋ = ẋ is the control input to be designed later, and

α1(x, t) := 1
CR

(xa(t) − x−RP ) ,

α0(x, t) := 1
CR

(xa(t) − x) ,

where R, C and P are average values of thermal capacitance, resistance, and cooling power
of the population, respectively, and xa(t) is the time-varying ambient temperature.

In practical application scenarios, the operation of all the ACs is confined to a fixed tem-
perature range (xL, xH) for all t ∈ [t0, T ], where xL ad xH are, respectively, lower and upper
temperature boundaries for the ACs, and t0 and T are the starting and ending time in-
stants. Then, f0 and f1 are confined in a fixed temperature range (xL, xH) along all possible
operations, as illustrated in Fig. 5.1. Moreover, for heterogeneous TCL populations, we in-
troduce g(f0, f1) to represent modeling errors, such as forced switchings [193,220]. Then, the
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Figure 5.1 Illustration of probability density functions of a TCL population at a given time.

dynamics of the population are described by [24,193,220]

∂tf0 =∂x

(
σ2

2 ∂xf0 − (α0 − u)f0

)
− g(f0, f1), ∀(x, t) ∈ (xL, x) × [t0, T ], (5.7a)

∂tf1 =∂x

(
σ2

2 ∂xf1 − (α1 − u)f1

)
+ g(f0, f1), ∀(x, t) ∈ (x, xH) × [t0, T ]. (5.7b)

Moreover,based on the conservative property of the number of the TCLs switching between
ON and OFF states, g ∈ C(R2;R) should satisfy that

g(0, τ) ≤0 ≤ g(s, 0),∀(s, τ) ∈ R2,

|g(s, τ)| ≤ min{|s|, |τ |},∀(s, τ) ∈ R2,

and that

g(f0(x, t), f1(x, t)) ≡ 0

for (x, t) ∈ (xL, x)×[t0, T ] or (x, xH)×[t0, T ]. The boundary conditions for the CFP equations
are given by

∂xf1(x+, t) =∂xf0(x−, t) + ∂xf1(x−, t), (5.8a)

∂xf0(x−, t) =∂xf0(x+, t) + ∂xf1(x+, t), (5.8b)

f0(x, t) =0, (5.8c)

f1(x, t) =0, (5.8d)
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f0(x−, t) =f0(x+, t), (5.8e)

f1(x−, t) =f1(x+, t), (5.8f)
σ2

2 ∂xf0(x+
L , t) =(α0(x+

L , t) − u(t))f0(x+
L , t), (5.8g)

σ2

2 ∂xf1(x−
H , t) =(α1(x−

H , t) − u(t))f1(x−
H , t), (5.8h)

∂xf1(x+, t) >0, (5.8i)

∂xf0(x−, t) <0. (5.8j)

As indicated in [220], (5.8a)-(5.8h) are conservation of probability conditions, among which
(5.8c) and (5.8d) are absorbing conditions, (5.8e) and (5.8f) are continuity conditions, and
(5.8g) and (5.8h) capture the properties of impenetrable wall reflections. The conditions (5.8i)
and (5.8j) capture the properties of probability flows defined via the integral of ∂tfi over the
temperature coordinate when no additional flux is involved due to the forced switches.

5.3.3 Continuous-time tracking control law

As f1(x, t) is the probability density function of TCLs in the ON-state, the aggregated power
of a TCL population with the same power consumption P is given by [21,24,55,193,215,224]:

ytotal(t) :=P
η

∫ xH

x(t)
f1(x, t) dx, ∀t ∈ [t0, T ], (5.9)

where η > 1 is the load efficiency of the cooling devices. To ensure a required controllability
of the input-output dynamics, we use an output function as follows:

y(t) := ytotal(t) + P

η

∫ xH

x(t)
f1(x, t) dx− P

η

∫ x(t)

xL

f0(x, t) dx, t ∈ [t0, T ]. (5.10)

Suppose that yd(t) ∈ C1(R≥0;R) is the desired power consumption profile in responding to
DR control signals from the power network for, e.g., peak-load shaving or load shifting, and
denote by e(t) the tracking error, i.e.

e(t) := y(t) − yd(t). (5.11)

Based on (5.7), (5.9), (5.10), (5.11), and the boundary conditions (5.8), the tracking error
dynamics can be expressed by:

ė(t) = −2P
η
u(t) (f1(x, t) + f0(x, t)) + P

η
Φ(t) + Γ(t), (5.12)
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where

Φ(t) := − η

P
ẏd(t),

and

Γ(t) :=α1(x, t)f1(x, t) + α0(x, t)f0(x, t) − σ2P

2η ∂xf1(x+, t)

− σ2P

2η ∂xf1(x+, t) − σ2P

2η ∂xf0(x−, t) − σ2P

2η ∂xf0(x−, t)

+ P

η

∫ x(t)

x(t)
g(f0, f1) dx. (5.13)

Thus, with the following nonlinear control:

u(t) = ke(t) + Φ(t)
2 (f1(x, t) + f0(x, t))

, (5.14)

the tracking error dynamics (5.12) become

ė(t) = −P

η
ke(t) + Γ(t). (5.15)

Note that the control law (5.14) only requires partial state information at the endpoints of
the deadband. Compared with the control methods requiring full state measurements, the
communication burden can be significantly reduced. Moreover, this control law is indepen-
dent of σ in the Fokker-Planck equations, which is considered as a parametric uncertainty
captured by Γ(t). The reason to treat σ as an unknown parameter is mainly due to the fact
that it is not physically measurable and its estimation may be very complex and infeasible
for practical applications (see, e.g., [145]). Denote

Ilm :=
(
C2,1((xL, x) × (t0, T )) ∩ C([xL, x] × [t0, T ])

)
∪
(
C2,1((x, x) × (t0, T )) ∩ C([x, x] × [t0, T ])

)
,

Imh :=
(
C2,1((x, x) × (t0, T )) ∩ C([x, x] × [t0, T ])

)
∪
(
C2,1((x, xH) × (t0, T )) ∩ C([x, xH ] × [t0, T ])

)
.

In the sequel, we always assume that the ambient temperature xa ∈ C([t0, T ];R≥0) and
x, x ∈ C1([t0, T ]; [xL, xH ]). Moreover, under the control law (5.14), we assume that the
solution (f0, f1) to the system (5.7) admits the following regularity properties:
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(i) f0 ∈ Ilm and has derivatives ∂xf0(x+
L , t), ∂xf0(x±, t), and ∂xf0(x−, t) for any fixed

t ∈ [t0, T ];

(ii) f1 ∈ Imh and has derivatives ∂xf1(x−
H , t), ∂xf1(x±, t), and ∂xf1(x+, t) for any fixed

t ∈ [t0, T ];

(iii) ∂xf1(x+(t), t), ∂xf1(x+(t), t), ∂xf0(x−(t), t), and ∂xf0(x−(t), t) are continuous w.r.t. t ∈
[t0, T ].

Note that under these conditions, Γ(t) given by (5.13) is continuous, and hence e(t) governed
by (5.15) is continuously differentiable. In addition, given nonnegative initial data (f 0

0 , f
0
1 ),

with slight modifications of the proof of Proposition 4.3 in [220], it can be shown that

f0(x, t) ≥0,∀x ∈ [xL, x], t ∈ [t0, T ],

f1(x, t) ≥0,∀x ∈ [x, xH ], t ∈ [t0, T ],

f0(x(t), t) + f1(x(t), t) >0,∀t ∈ [t0, T ],

among which the last property guarantees that the control signal u defined by (5.14) is
well-defined.

It is also worth mentioning that the system is conservative in the following sense (see [220,
Proposition 4.2]):

∫ x(t)

xL

f0(x, t) dx+
∫ xH

x(t)
f1(x, t) dx = 1, ∀t ∈ (t0, T ],

provided

∫ x(t0)

xL

f 0
0 (x) dx+

∫ xH

x(t0)
f 0

1 (x) dx = 1.

5.4 A static event-triggered tracking control scheme

5.4.1 Error dynamics with event-triggered tracking control

For an emulation-based ETC, the control inputs generated by (5.14) are updated only at
discrete time instants. Therefore,

u(t) = u(ti) = ke(ti) + Φ(ti)
2 (f1(x(ti), ti) + f0(x(ti), ti))

, t ∈ [ti, ti+1), i ∈ S, (5.16)
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where S is a subset of N. Figure 5.2 shows the schematic diagram for power tracking control
of a TCL population. The solid line in the figure shows that the signals are continuously or
periodically monitored, while the dashed line indicates that the signals are sent aperiodically.
Note that each TCL is configured with a zero-order-hold (ZOH), which allows keeping the
control signal to be a constant in each inter-execution interval. Furthermore, note that the
data transmission from the TCLs to the aggregator are also aperiodic. It is mainly because
first, a numerical approximation method is used to compute the values of f1(x(t), t) and
f0(x(t), t) [220]. Thus, only a portion of TCLs need to report their states to the aggregator
when their temperatures are around the deadband endpoints. In addition, when the system
is running in a steady regime, each TCL needs only to send a signal to the aggregator when
it changes its state at the endpoints. The aggregator continuously collects information on
e(t), f1(x(t), t), and f0(x(t), t). Nevertheless, the controller will not update until the next
triggering event occurs.

ZOH
TCL1

ZOH
TCL2

ZOH
TCL3

ZOH
TCLn

TCL
Population

Control Input
Generator y(t)

Reference Power

AggregatorEvent
Detector

Communication Network

Figure 5.2 Schematics of event-triggered power tracking control of a TCL population.

Define

ẽ(t) :=e(ti) − e(t), (5.17)

and let ũ(t) := u(ti) − u(t). Then

ė(t) = − 2P
η
u(ti) (f1(x, t) + f0(x, t)) + P

η
Φ(t) + Γ(t)

= − 2P
η

(u(t) + ũ(t)) (f1(x, t) + f0(x, t)) + P

η
Φ(t) + Γ(t)
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= − P

η
ke(t) + Γ(t) − 2P

η
ũ(t) (f1(x, t) + f0(x, t))

= − P

η
ke(t) + Γ(t)

− P

η

f1(x, t) + f0(x, t)
f1(x(ti), ti) + f0(x(ti), ti)

(ke(ti) + Φ(ti)) + P

η
(ke(t) + Φ(t)).

Let
p(t) := f1(x, t) + f0(x, t)

f1(x(ti), ti) + f0(x(ti), ti)
.

Then, ∀t ∈ [ti, ti+1), it follows

ė(t) = − P

η
ke(t) + Γ(t) − P

η
(p(t)ke(ti) − ke(t)) − P

η
(p(t)Φ(ti) − Φ(t))

= − P

η
ke(t) + Γ(t) − P

η
(ke(ti) − ke(t))

− P

η
(p(t) − 1)ke(ti) − P

η
(p(t)Φ(ti) − Φ(t))

= − P

η
ke(t) − P

η
kẽ(t) + Γ(t) − P

η
(p(t) − 1)ke(ti) − P

η
(p(t)Φ(ti) − Φ(t)) .

Therefore, the tracking error dynamics under an ETC scheme can be written as

ė(t) = −P

η
ke(t) − P

η
kẽ(t) + Γ(t), (5.18)

where

Γ(t) := Γ(t) − P

η
(p(t) − 1)ke(ti) − P

η
(p(t)Φ(ti) − Φ(t)) .

5.4.2 Design of static event-triggering condition

Note that the tracking error dynamics in (5.18) are not only influenced by e(t) and ẽ(t),
but also by Γ(t). Therefore, we introduce a constant positive offset, ϵ, on the basis of the
triggering condition proposed in [186]. The triggering condition is designed as:

 t0 = 0,

ti+1 = inf {t > ti : |e(ti) − e(t)| ≥ max{k′|e(t)|, ϵ}} ,
(5.19)

where ϵ > 0 is a pre-defined threshold, and k′ ∈ (0, 1) is a hyper-parameter. Figure 5.3
shows the flowchart for implementing such an ETC scheme, where ∆t is a constant sampling
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period. Note that the system needs to compute and broadcast u(ti) only when the triggering
event in (5.19) occurs.

Start
Initialize system parameters
i = 0, u(t0) = 0, t0, T,∆t

Monitor system
state e(t), ẽ(t)

Triggering event?

i = i + 1

Compute
u(ti) by (16)

Broadcast u(ti)

t = t + ∆t

t > T? End

yes

yes

no

no

Figure 5.3 Flowchart for static ETC algorithm.

In what follows, we show that the closed-loop system with the proposed ETC scheme is ISpS.
Specifically, we have:

Theorem 5.1. Under the event triggering condition (5.19), the tracking error dynamics
governed by (5.18) are ISpS w.r.t. Γ(t).

Proof. Let V (e) := 1
2e

2. Then

V̇ (e) =e(t)ė(t)

= − P

η
ke2(t) − P

η
ke(t)ẽ(t) + e(t)Γ(t)

≤ − P

η
ke2(t) + P

η
k|e(t)||ẽ(t)| + |e(t)||Γ(t)|. (5.20)

With the proposed triggering condition (5.19), it follows that

|ẽ(t)| ≤ max{k′|e(t)|, ϵ},∀t ∈ [t0, T ].
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Thus,
|e(t)||ẽ(t)| ≤ |e(t)| max{k′|e(t)|, ϵ},∀t ∈ [t0, T ]. (5.21)

Note that

|e(t)| max{k′|e(t)|, ϵ} = k′|e(t)|2 < 2k′V (e) + ϵ2

k′

when k′|e(t)| ≥ ϵ, and

|e(t)| max{k′|e(t)|, ϵ} = ϵ|e(t)| < ϵ2

k′ ≤ 2k′V (e) + ϵ2

k′

when k′|e(t)| < ϵ. Hence, it always holds that

|e(t)| max{k′|e(t)|, ϵ} < 2k′V (e) + ϵ2

k′ . (5.22)

Using the inequalities in (5.20), (5.21), and (5.22), we have

V̇ (e) ≤ − P

η
2kV (e) + 2P

η
kk′V (e) + P

η

kϵ2

k′ + |e(t)||Γ(t)|

=P
η

(−2k + 2kk′)V (e) + P

η

kϵ2

k′ + |e(t)||Γ(t)|.

Define χ(s) := 2k1
η
P
s for s ∈ R≥0. It is clear that χ ∈ K. Let c :=

√
2k2k

k′ ϵ with k1, k2 ∈ R>0.
Note that as −2k + 2kk′ = −2k(1 − k′) < 0, we can always find k1, k2 such that

−2k + 2kk′ + 1
k1

+ 1
k2

< 0.

Consequently, for all t ∈ [t0, T ], we have

V̇ (e) ≤ P

η

(
−2k + 2kk′ + 1

k1
+ 1
k2

)
V (e),

as long as
|e(t)| ≥ max{χ(|Γ(t)|, c)}.

Thus, V (e) is an ISpS-Lyapunov function for the error dynamics (5.18). By Lemma 5.1, the
system (5.18) is ISpS w.r.t. Γ(t).

For an ETC scheme, the inter-sampling intervals should be lower bounded by a positive
number τ0, i.e., ti+1 − ti > τ0 > 0 for all i ∈ S. Otherwise, Zeno behavior might happen, that
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is, an infinite number of triggerings take place in a finite amount of time. In the following,
we show that our triggering condition excludes Zeno behavior.

Theorem 5.2. The dynamic system (5.18) under the execution rule given in (5.19) is Zeno-
free.

Proof. Let ti ≤ t < ti+1, i ∈ S. Note that

|e(ti) − e(t)| =
∣∣∣∣∫ t

ti

ė(t)dt
∣∣∣∣

=
∣∣∣∣∣
∫ t

ti

(
−P

η
ke(t) − k

P

η
ẽ(t) + Γ(t)

)
dt
∣∣∣∣∣

≤P

η
k
∫ t

ti

|e(t)|dt+ P

η
k
∫ t

ti

|ẽ(t)|dt+
∫ t

ti

|Γ(t)|dt.

First, because e(t) is continuous in [ti, ti+1], supti≤t<ti+1 |e(t)| is finite. Then, it follows that

sup
ti≤t<ti+1

|ẽ(t)| ≤ max
{
k′ sup

ti≤t<ti+1

|e(t)|, ϵ
}

≤ k′ sup
ti≤t<ti+1

|e(t)| + ϵ.

Furthermore, as Γ(t) is bounded in [t0, T ], supti≤t<ti+1 |Γ(t)| is finite. Therefore, for all
t ∈ [ti, ti+1), it follows that

|e(ti) − e(t)| ≤
(
P

η
k sup

ti≤t<ti+1

|e(t)| + P

η
kk′ sup

ti≤t<ti+1

|e(t)| + P

η
kϵ+ sup

ti≤t<ti+1

|Γ(t)|
)

(t− ti).

Particularly, we have

|e(ti) − e(ti+1)| ≤
(
P

η
k(1 + k′)Ce(i) + P

η
kϵ+ CΓ(i)

)
∆ti, (5.23)

where Ce(i) := supti≤t<ti+1 |e(t)|, CΓ(i) := supti≤t<ti+1 |Γ(t)|, and ∆ti := ti+1 − ti.

On the other hand, according to the event triggering condition, we have

|e(ti) − e(ti+1)| ≥ max{k′|e(ti+1)|, ϵ} ≥ ϵ. (5.24)

Define

Ce := max
t0≤t≤T

|e(t)| and CΓ := max
t0≤t≤T

|Γ(t)|,
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then

Ce(i) ≤ Ce and CΓ(i) ≤ CΓ, ∀i ∈ S. (5.25)

By the inequalities in (5.23), (5.24), and (5.25), we have

∆ti ≥ ϵ
P

η
k(1 + k′)Ce(i) + P

η
kϵ+ CΓ(i)

≥ ϵ
P

η
k(1 + k′)Ce + P

η
kϵ+ CΓ

>0,∀i ∈ S.

Thus, the Zeno behavior is excluded for all t ∈ [t0, T ].

5.5 A dynamic event-triggered tracking control scheme

Dynamic event-triggering mechanisms can be seen as filtered versions of static schemes.
Besides some available system information (such as state or output), an internal dynamic
variable is also included in the triggering condition. Hence, the triggering events can be
dynamically adjusted at different times. With some elaborated properties of the auxiliary
dynamic variable (such as nonnegativity), a dynamic event triggering scheme can extend the
triggering intervals and thus further reduce the consumption of network resources.

In this section, a dynamic ETC scheme is designed based on the static scheme (5.19), and
then the closed-loop stability of the system under this control scheme is assessed.

5.5.1 A dynamic execution rule

Note that the static triggering condition (5.19) can be equivalently written as:
 t0 = 0,

ti+1 = inf {t > ti : max {k′2|e(t)|2, ϵ2} ≤ |ẽ(t)|2} .
(5.26)

Based on (5.26), we propose the following dynamic triggering condition:
 t0 = 0,

ti+1 = inf{t > ti : 2ρ(t) + θk (max {k′2|e(t)|2, ϵ2} − |ẽ(t)|2) ≤ 0},
(5.27)
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where θ ∈ R≥0 is a hyper-parameter, ρ(t) is an internal dynamic variable satisfying

ρ̇(t) = −α(ρ(t)) + k

2
(
max

{
k′2|e(t)|2, ϵ2

}
− |ẽ(t)|2

)
(5.28)

with α being a Lipschitz continuous function and belonging to K∞, and ρ(t0) := ρ0 ∈ R≥0.

Note that when θ tends to +∞, the dynamic triggering scheme falls down to the static one.
It is clear that ρ(t) can be seen as a filtered value of max {k′2|e(t)|2, ϵ2}−|ẽ(t)|2. Furthermore,
it admits a special property, that is, it is always nonnegative, as stated below.

Lemma 5.2. Suppose that α is a locally Lipschitz continuous function and belongs to K∞.
Let e(t), ẽ(t), and ρ(t) be given by (5.18), (5.17), and (5.28), respectively. Then, ρ(t) ≥ 0 for
all t ∈ [t0, T ].

Proof. Based on the triggering condition given in (5.27), it always holds that

ρ(t) + θk

2
(
max

{
k′2|e(t)|2, ϵ2

}
− |ẽ(t)|2

)
≥ 0.

If θ = 0, the result is trivial. If θ > 0, it follows that

k

2 max
{
k′2|e(t)|2, ϵ2

}
− |ẽ(t)|2 ≥ −1

θ
ρ(t).

Thus, by the internal variable dynamics (5.28), it yields

ρ̇(t) ≥ −α(ρ(t)) − 1
θ
ρ(t).

According to the comparison lemma for ordinary differential equations, ρ(t) ≥ 0 for all
t ∈ [t0, T ].

In what follows, we show that the closed-loop system is still ISpS under this dynamic trig-
gering condition.

Theorem 5.3. There exists a function α, which is locally Lipschitz continuous and belongs
to K∞, such that the system given by (5.18) and (5.28) is ISpS under the dynamic triggering
scheme (5.27).
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Proof. Let W (t) := V (e(t)) + ρ(t) with V (e(t)) := 1
2 |e(t)|2. For all t ∈ [t0, T ], we have

d
dtW (t) =e(t)

(
−P

η
ke(t) − P

η
kẽ(t) + Γ(t)

)
+ ρ̇(t)

≤ − P

η
2kV (e(t)) + P

η
k|e(t)||ẽ(t)| + |e(t)||Γ(t)| + ρ̇(t)

≤ − P

η
2kV (e(t)) + P

η

k

2
(
|e(t)|2 + |ẽ(t)|2

)
+ ς

2 |e(t)|2 + 1
2ς |Γ(t)|2 + ρ̇(t) (ς ∈ R>0)

= −
(
P

η
k − ς

)
V (e(t)) + 1

2ς |Γ(t)|2 − α(ρ(t))

+ P

η

k

2 max
{
k′2|e(t)|2, ϵ2

}
(by (5.28))

≤ − P

η

(
k − kk′2 − η

P
ς
)
V (e(t)) + P

η

k

2 ϵ
2 + 1

2ς |Γ(t)|2 − α(ρ(t)).

Choose ς ∈ R>0 and α ∈ K∞ such that

λd := k − kk′2 − η

P
ς > 0,

α(s) ≥ P

η
λds,∀s ∈ R≥0,

then,

d
dtW (t) ≤ − P

η
λdW (t) + 1

2ς |Γ(t)|2 + P

η

k

2 ϵ
2,∀t ∈ [t0, T ].

By the comparison lemma, we obtain

W (t) ≤e− P
η

λd(t−t0)W (t0) +
∫ t

t0
e− P

η
λd(t−s)

(
1
2ς |Γ(s)|2 + P

η

k

2 ϵ
2
)

ds

≤e− P
η

λd(t−t0)W (t0) +
(

1
2ς max

t∈[t0,T ]
|Γ(s)|2 + P

η

k

2 ϵ
2
)∫ t

t0
e− P

η
λd(t−s) ds

Because ∫ t

t0
e− P

η
λd(t−s) ds = η

P
λd − η

P
λde

P
ηλd

(t0−t) ≤ η

P
λd,

it follows that for all t > t0:

W (e(t)) ≤ e− P
η

λd(t−t0)W (t0) + η

2ςPλd

max
s∈[t0,t]

|Γ(s)|2 + k

2λd

ϵ2. (5.29)
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By Lemma 5.2, it always holds that

V (e(t)) ≤ W (e(t)), ∀t > t0. (5.30)

Therefore, by (5.29), (5.30), and Definition 5.1, we can conclude that the tracking error
dynamics (5.18) under the dynamic triggering condition (5.27) are ISpS.

In the following theorem, we show that the next execution time for a given state under the
dynamic event triggering condition (5.27) cannot be smaller than that of the static triggering
condition (5.19).

Theorem 5.4. Suppose that t > ti and the next execution time for static and dynamic events
are tsi+1 and tdi+1, respectively. Then, tdi+1 ≥ tsi+1.

Proof. (Proof by contradiction). If tdi+1 < tsi+1, then based on the static execution rule (5.26),
we must have

max
{
k′2
∣∣∣e (tdi+1

)∣∣∣2 , ϵ2
}

−
∣∣∣ẽ (tdi+1

)∣∣∣2 > 0. (5.31)

Case 1: θ > 0. By the dynamic triggering rule (5.27), we have

2ρ
(
tdi+1

)
+ θk

(
max

{
k′2
∣∣∣e (tdi+1

)∣∣∣2 , ϵ2
}

−
∣∣∣ẽ (tdi+1

)∣∣∣2) ≤ 0.

Since ρ(t) ≥ 0 always holds true, then

max
{
k′2
∣∣∣e (tdi+1

)∣∣∣2 , ϵ2
}

−
∣∣∣ẽ (tdi+1

)∣∣∣2 ≤ 0,

which is a contradiction to (5.31).
Case 2: θ = 0. By the dynamic triggering condition (5.27) and Lemma 5.2, we have

ρ
(
tdi+1

)
= 0.

From the dynamics of ρ(t) in (5.28), it follows that

0 ≥ ρ̇
(
tdi+1

)
= 1

2 max
{
k′2
∣∣∣e (tdi+1

)∣∣∣2 , ϵ2
}

− 1
2
∣∣∣ẽ (tdi+1

)∣∣∣2 ,
which is also a contradiction to (5.31).

Remark 5.1. Theorem 5.4 is a property on one sampling interval with the same starting state
for static and dynamic triggering schemes given in (5.19) and (5.27), respectively. The other
inter-execution intervals may vary depending on the starting states. Nevertheless, we can
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conclude from this theorem that the minimum inter-execution time for the dynamic triggering
scheme is larger than that of the static one. Thus, the Zeno behavior will also be excluded
from the proposed dynamic triggering scheme.

5.5.2 An implementation of the dynamic triggering scheme

In our experiment, we set α(ρ(t)) = λαρ(t) with λα ∈ R>0. Let

f(t) :=k2
(
max

{
k′2|e(t)|2, ϵ2

}
− |ẽ(t)|2

)
.

Then, the solution to the internal dynamics (5.28) is

ρ(t) = e−λα(t−t0)ρ(t0) + e−λα(t−t0)
∫ t

t0
eλα(s−t0)f(s) ds. (5.32)

Based on (5.32), for n ∈ N, the values of ρ(tn) can then be computed with numerical inte-
gration methods. In a digital-controlled platform, the signals are usually sampled at evenly
spaced time intervals. An algorithm to compute ρ(tn) with a fixed time interval ∆t is shown
in Algorithm 2. In the 6th line of the algorithm, we compute the integration by using the

Algorithm 2 Pseudo code for computing ρ(tn) in the dynamic triggering scheme.
1: Initialize:

θ, λα, ρ(t0),∆t, sum = 0, n = 0, eps=1e-8
2: while tn ≤ T do
3: f[n] = k

2 · (max{k′2|e(tn)|2, ϵ2} − |ẽ(tn)|2)
4: Sum = e−λα(tn−t0) · ρ(t0)
5: for idx in 1:1:n do
6: sum = sum + e−λα(n−idx)∆t · f[n] · ∆t
7: end for
8: ρ(tn) = max{sum,eps}
9: f(tn) = f[n]

10: if ρ(tn) + θf(tn) ≤ 0 then
11: Update the control signal
12: end if
13: tn = tn + ∆t
14: end while

right-endpoint rectangular method, which gets an approximative value based on the defini-
tion of Riemann integral; see [25, 167]. It is noted that although theoretically ρ(tn) should
always be nonnegative as given in Lemma 5.2, this may not be true with the numerical com-
putation. Thus, in the 8th line, we use a very tiny positive number eps as a lower bound for
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guaranteeing the nonnegativity of ρ(tn). This will affect the numerical precision. Whereas,
the use of higher sampling rates or periodic event-triggered methods [71] may lighten its
negative effect.

Note that compared with the static ETC scheme (5.19), only the triggering condition and the
function ρ(t) need to be changed in the dynamic event triggering condition (5.27). Thus, the
flowchart of the dynamic ETC scheme is similar to that shown in Fig. 5.3 by incorporating
Algorithm 2.

5.6 Experimental validation

In this section, we perform numerical simulations to evaluate the performance of the de-
veloped ETC schemes. The simulation is conducted on a workstation with four Intel Xeon
W3550 CPUs with 16 GB RAM running at 3.07 GHz. The operating system is Arch Linux 6.
Python programming language is used to implement the simulation.

5.6.1 Simulation setup

In the simulation study, we consider a population of heterogeneous ACs, each of them is
governed by the first-order ETP model with randomly generated thermal parameters [24,55,
145, 224]. Note that the controller is designed by using the CFP model that is of infinite
dimension. To assess the validity and the performance of the developed control strategy, we
consider a population with a modest number of only 5,000 ACs. Eventually, as the CFP
model becomes more accurate as the number of TCLs increases, we can reasonably expect
a better performance when the proposed control scheme is applied to populations of larger
sizes. The parameters used in the simulation are summarized in Table 5.1. The thermal
capacitances of the TCLs in the population follow the log-normal distribution with a mean
value of 10 kWh/◦C and a standard deviation of 2 kWh/◦C. The thermal resistances of the
TCLs also follow the log-normal distribution with a mean value of 2 ◦C/kW and a standard
deviation of 0.4 ◦C/kW. This results in a heterogeneity described by σ in the Fokker-Planck
equations (5.6) [24, 145, 224]. Nevertheless, as mentioned earlier, the implementation of the
proposed robust control scheme is independent of the value of σ. The sampling interval,
tc, in the simulation is set to be 30 seconds, as listed in Table 5.1, which can be adjusted
based on specific applications. To update control signals with (5.14) or (5.16), the values of
f1(x, t) and f0(x, t) are required. The midpoint rule with a temperature bin width denoted
by δx is used. Note that the bin width should not be too large, as the solutions to the CFP
model are nonlinear functions. It should not be too small, because the number of ACs in
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the simulation is limited, which may cause biases. In the implementation, three bin widths,
0.08, 0.04, and 0.02, are used to obtain initial estimations. Then, the average value of these
initial estimations is used in the controller.

Three types of disturbances, corresponding to the dynamical model (5.4), are added in the
simulation. First, a local forced switch process, which allows for alternating the state of each
TCL, is introduced. The probability of switching rate is set to be 3% per hour. Second,
random communication delays following a log-normal distribution are added for each AC.
Based on the research of [147], the average value of the delay is set to be 1 second, the
standard deviation is 0.2 seconds, and the maximum delay is limited to 2 seconds. In this
setting, no significant effect on the set-point change for each AC unit was observed. Finally,
a lockout time, tl, is included, allowing for mitigating the impact of frequent switchings of
the compressor.

Table 5.1 Parameters used in the simulation.

Parameters Values
R: average thermal resistance 2 ◦C/kW
C: average thermal capacitance 10 kWh/◦C
P : electric power 14 kW
η: load efficiency 2.5
θsp: intial set point 20 ◦C
δ: deadband width 0.5 ◦C
tc: control interval length 30 seconds
δx: initial histogram bin width 0.02 ◦C
p: forced switch probability per hour 3%
td: average network delays 1 second
tl: lockout time of each TCL 6 minutes

In the initialization phase, the temperature of ACs is uniformly distributed over a deadband
centered at 20 ◦C, and 40% of the ACs are randomly set to the ON-state. In the control
execution phase, the data transmitted from TCLs are collected with a frame of 30 seconds.
For the implementation of the continuous-time controller (5.14), the control signal is sampled
periodically. While the static triggering scheme (5.19) and the dynamic triggering scheme
(5.27) are updated aperiodically.

In the experiment, we consider the same scenario studied in [220]. Specifically, the control
cycle is 6 hours, from 10:30 to 16:30. The population shares a common ambient temperature
curve, as shown in Fig. 5.4. Furthermore, we use a predefined power profile, shown in
Fig. 5.5, as the reference for tracking control. In the first hour, the desired (normalized)
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power is maintained constant at 0.4. Then, it drops to 0.2 in half an hour and maintains
constant for the next 2.5 hours until 14:30. Starting from 14:30, it rises to 0.5 in the next 30
minutes and stays constant until the end of the control cycle. During the rising and dropping
phases, the desired power curve is specified by a smooth polynomial of the form:

yd(t) := (yd(tf ) − yd(ti)) τ 5(t)
4∑

l=0
alτ

l(t), t ∈ [ti, tf ], (5.33)

where ti and tf are, respectively, the starting and ending times, and τ(t) :=(t− ti)/(tf − ti).
By setting

ẏd(ti) = ẏd(tf ) = ÿd(ti) = ÿd(ti) = ...
yd(ti) = ...

yd(tf ) = 0,

the coefficients of the polynomial (5.33) are given by [99]:

a0 = 126, a1 = 420, a2 = 540, a3 = 315, and a4 = 70.
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Figure 5.4 Ambient temperature.

5.6.2 Results of static ETC

We start the experiment by examining the continuous-time control scheme (5.14). The
sampling interval of the periodic control scheme is set to be 30 seconds (tc in Table 4.1).
During the test, the parameters k and γ in (5.14) are chosen to be k = 8 and γ = 0.5. The
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Figure 5.5 Desired power profile.

same values are used in the ETC schemes. The tracking performance is indicated by the
rooted-mean-squared errors (RMSEs) of the normalized power. Table 5.2 shows the RMSEs
of 5 continuously tested episodes with an average value of RMSEs of 1.068%. This set of
data will be used as a baseline to evaluate the performance of the static ETC scheme (5.19)
and the dynamic ETC scheme (5.27).

Table 5.2 Tracking performance of 5 episodes with periodic control strategy.

Episode 1 2 3 4 5
RMSE (%) 1.018 1.074 1.056 1.115 1.075

For the static ETC scheme (5.19), different choices of k′ and ϵ are examined. Each config-
uration is successively tested 5 times, and the average triggering intervals (ATIs) and the
average rooted-mean-squared errors (ARs) are recorded, as summarized in Table 5.3. The
units for ATIs and ARs are second and kW, respectively.

For the average event-triggering intervals (ATIs), the trend w.r.t. the controller parameter
variations is apparent. Specifically, for a fixed k′, the ATIs increase as ϵ increases. When
ϵ is fixed, the triggering intervals also increase as k′ increases. The average RMSEs (ARs)
share the same trend as the ATI, increasing slightly when either k′ or ϵ increases. The best
AR is achieved with k′ = 0.1 and ϵ = 0.001, and the worst case is the one with k′ = 0.5 and
ϵ = 0.005. Figure 5.6 illustrates one tracking control execution sample with k′ = 0.1 and
ϵ = 0.001 and another one with k′ = 0.5 and ϵ = 0.005. For ease of comparison, the results
of a periodic control sample with an RMSE of 1.018% are also displayed. In this test, the
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Table 5.3 Comparison of the static ETC for different k′ and ϵ.

ϵ
ATI/ARk′

0.1 0.3 0.5

0.001 85.0 / 1.252 130.2 / 1.415 161.7 / 1.528
0.002 108.1 / 1.284 142.7 / 1.385 178.4 / 1.507
0.003 132.4 / 1.299 162.3 / 1.440 200.4 / 1.530
0.004 162.2 / 1.360 187.3 / 1.475 206.9 / 1.505
0.005 183.4 / 1.402 201.9 / 1.436 219.7 / 1.524

ATI with k′ = 0.1 and ϵ = 0.001 is 89.3 seconds and the RMSE is 1.364%. For the sample
with k′ = 0.5 and ϵ = 0.005, the ATI is 237.4 seconds and the RMSE is 1.484%. Compared
with the periodic control scheme, the average control update intervals of the ETC scheme
increase by 3 ∼ 7 times while the performance remains similar.

5.6.3 Results of dynamic ETC

For the dynamic ETC scheme (5.27), we set k′ = 0.1, ϵ = 0.003, ρ(t0) = 1, and α(ρ) = −10ρ
(k′ and ϵ are randomly chosen from Table 5.3, and ρ(t0) and α(ρ) can be adjusted based on
specific applications). The effect of different choices of θ is reported in Table 5.4. It can be
observed that first, the ATI decreases when θ increases. Hence, the value of θ is inversely
proportional to the inter-execution interval. Moreover, the averages of RMSEs (ARs) are
also inversely proportional to the values of θ. They drop slightly while θ increases. This
trend, as shown in Table 5.4, is different from that in Table 5.3, which is always proportional
to k′ or ϵ. Finally, although the inter-execution interval keeps decreasing, it is always larger
than 132.4 seconds in the static ETC scheme. This observation complies with the claim of
Theorem 5.4. Nevertheless, more appropriate values of k′, ϵ, and θ should be determined
based on the requirements of practical applications.

Table 5.4 Average triggering intervals (ATI) for different values of θ.

θ 0.1 1 5
ATI/AR 171.7 / 1.523 162.2 / 1.401 154.4 / 1.429

θ 10 50 100
ATI/AR 153.4 / 1.339 148.6 / 1.353 145.2 / 1.323

Figure 5.7 shows two samples of the system using the dynamic ETC scheme with θ = 0.1 and
θ = 100. The same periodic control result shown in Fig. 5.6 is also depicted for comparison.
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Figure 5.6 Static triggering scheme. Top: tracking performance; bottom: set-point variation
rate.
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For the dynamic ETC with θ = 0.1, the ATI is 170.1 seconds and the RMSE is 1.491%. For
the dynamic ETC with θ = 100, the ATI is 145.0 seconds and the RMSE is 1.389%. It is
evident that the tracking performance remains similar, while the dynamic triggering schemes
can significantly reduce the control update frequencies.
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Figure 5.7 Dynamic triggering scheme. Top: tracking performance; bottom: set-point varia-
tion rate.

To better visualize the effect of ETC, we show in Fig. 5.8 the distribution of execution
intervals of the static ETC and the dynamic ETC. The static ETC result is a sample with
k = 0.1, ϵ = 0.003, and the dynamic ETC result is a sample with k = 0.1, ϵ = 0.003, and
θ = 0.1. It is clear that the mass of the execution interval distribution is concentrated around
120 ∼ 140 seconds, which are 3 ∼ 5 times larger than the sampling period. Moreover, the
distribution of execution intervals for the dynamic ETC scheme tends to have more occurrence
on the right side, thereby representing a higher mean inter-execution gap compared to the
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static ETC scheme.

Figure 5.8 Inter-execution time distributions of static and dynamic ETC schemes.

5.7 Conclusion

This paper presented the development, implementation, and validation of static and dynamic
ETC schemes for power tracking control of TCL populations for which the aggregate dynam-
ics are described by coupled Fokker-Planck equations. The control design is based on the
emulation approach, which is widely adopted in the development of ETC. The basic proper-
ties for ETC systems, in particular the closed-loop stability with aperiodic control updates
and the avoidance of Zeno phenomenon have been rigorously analyzed, which ensures that
the proposed control strategies are well-behaved. A simulation study has been carried out,
and the results indicate that both static and dynamic ETC schemes perform well and are
effective in extending the control execution interval compared to the original continuous-time
control scheme, thereby allowing for relaxing the capacity constraint on the underlying com-
munication infrastructure for supporting the DR programs, which is indeed one of the most
important considerations for real-time implementations. The realization of the present work
is an encouraging attempt, which represents a step forward towards practical applications
of numerous recently developed techniques for power systems control in the context of the
smart grid.
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Abstract

This paper addresses the modeling and control of heterogeneous thermostatically controlled
load (TCL) populations, which is an important issue for demand response programs in the
context of smart grid technologies. Specifically, we consider in the present work the problem
of power consumption control of 2nd-order TCL populations whose dynamics are described by
higher-order coupled Fokker-Planck (CFP) equations. Based on this model, a nonlinear power
tracking control scheme with partially observed states is developed. For further performance
improvement, an active disturbance rejection control is employed, which allows for the power
tracking error to converge to a small bounded region even in the presence of various types of
disturbances, including communication delays, lockout effect, varying ambient temperatures,
etc.. A numerical simulation study is conducted to demonstrate the effectiveness and the
performance of the proposed control scheme.

keywords Power tracking control, heterogeneous thermostatically controlled loads, higher-
order coupled Fokker-Planck equations, linear active disturbance rejection control.

6.1 Introduction

In light of the rapidly increasing energy demand and the surging integration of intermit-
tent renewable energy sources, demand-side management (DSM) has gained momentum in
maintaining the reliability and efficiency of the modern smart grid, see, e.g., [11,113]. Many
demand response programs, either price-based or incentive-based, play a pivotal role in main-
taining the supply-demand balances. By leveraging the collective behaviors of consumers,
power consumption burdens can be shifted from on-peak to off-peak hours. It is known that
thermostatically controlled loads (TCLs), such as air conditioners, heat pumps, water heaters,
refrigerators, etc., represent an important proportion of the total energy consumption and
are usually tolerated to small fluctuations inside the comfort zone. These characteristics
make TCLs suitable for power regulation tasks, such as peak shaving or valley filling, for
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responding to demand response events [38,58,120].

The present work deals with power tracking problems for heterogeneous TCL populations
based on the decentralized control paradigm [191,192], which can make the aggregate power
of the population to follow desired consumption profiles. Specifically, we consider a heteroge-
nous population with its TCLs described by the second-order equivalent thermal parameter
(ETP) model. In such a control system, each unit in the population is operated by a thermo-
stat, taking independent actions in responding to a common control signal from the control
center. It is also supposed that communication delays exist in signal transmission within the
population, and forced switching between ON and OFF states is also allowed.

The considered control scheme falls into the category of model-based control methods, where
the coupled Fokker-Planck (CFP) model originally introduced in [126] plays an essential
role in characterizing the aggregate dynamics of the TCL populations. It is noted that by
continuously adjusting the nominal set-point temperatures, Callaway [24] has successfully
used this model on tracking high-frequency power signals generated from wind farms. After
introducing the set-point variation rate into the coupled PDEs, Bashash et al. [21] designed
a sliding mode control scheme to regulate the aggregate powers. In [55], an model predictive
control (MPC) method is proposed while including the effect of heterogeneity into the CFP
equations. In [219, 220], another continuous controller and its event-triggered schemes are
considered for load following tasks. However, all the aforementioned PDE models are derived
from a simplified first-order ETP model for individual loads. It has been shown that a second-
order ETP model, which considers both indoor air temperature and mass temperature, is
more accurate for describing the underlying steady and transient thermal dynamics (see, e.g.,
[115, 215]). Hence, the corresponding CFP model should also be generalized for describing
the aggregate dynamics of higher-dimensional TCL populations. It should also be noted that
there exists also a rich literature on finite-dimensional models of aggregate TCL dynamics,
such as state-bins model [21,77,108,178,215], state-queueing model [17,116], etc., and most
of them can be derived from the CFP model by discretizing the temperature variables over
the space.

Real-time processing is one of the essential considerations in order to guarantee a certain
level of quality of service (QoS). However, controlling a population composed of tens or
hundreds of thousands of TCLs can be computationally demanding [61, 222]. Therefore,
low-complexity control algorithms that are insensitive to the population size should be well
studied. For this reason, control schemes without using full state knowledge of the system
are highly preferred. More importantly, only collecting partial state information from the
population can also significantly relieve communication burdens and simultaneously boost
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the privacy protections on the customers.

The present work is a further improvement of [219] by using second-order models for indi-
vidual loads and a higher-dimensional CFP model for the aggregate dynamics while consid-
ering various disturbances which may occur in practical applications. Particularly, distur-
bance rejection control, such as active disturbance rejection control (ADRC) or linear ADRC
(LADRC) [4,63,67,73], are incorporated into the control scheme. The main contributions of
this paper include:

• an improved aggregate model, which slightly modifies the work in [221] and deals with
higher-order thermal dynamics, is introduced;

• a nonlinear power tracking control law based on the method of input-output lineariza-
tion while requiring only partially observed states of the population is developed;

• an improved auxiliary controller scheme by utilizing LADRC is proposed, which can
significantly suppress the steady state error due to diverse disturbances;

• the robust stability of the closed-loop system in the sense of input-to-state stability
(ISS) is assessed.

The remainder of the paper is organized as follows. Section 6.2 presents the dynamical model
of the system, including both the second-order ETP model for individual thermal loads and
the generalized CFP model for the population. Section 6.3 puts forward the control law
design for power tracking and assess the closed-loop stability of the system. In Section 6.4,
simulation results are presented, showing that the proposed control law performs well for
larger-scale TCL populations. Section 6.5 concludes the work by providing discussions on its
limitation and potential future improvements.

6.2 Mathematical model for TCL populations

In this section, we investigate the thermodynamics of a single TCL unit and explore the
aggregate dynamics of a large population. The single TCL dynamics is described by the
second-order ETP model, and the aggregated dynamics of TCL populations is characterized
by generalized coupled Fokker-Planck equations. Residential air conditioners (ACs) are con-
sidered in the following study. Nevertheless, the established model can be easily generalized
to other types of cooling or heating devices.
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6.2.1 Second order ETP model for a single TCL

The ETP model is widely used to describe household thermal dynamics, where the parameters
in a heat transfer process are analogized to circuit parameters such as voltages, currents,
capacitances, resistances, and so on. For the second-order ETP model, the temperature
evolution process inside a room can be equivalently represented by the electrical schematic
shown in Fig. 6.1. Compared with the first-order ETP model [24, 224], this model further
takes mass temperature, equivalent mass capacitance, and equivalent mass resistance into
consideration, resulting in an enhanced accuracy.

Figure 6.1 The circuit diagram for the second-order ETP model.

Denote by xa(t) and xm(t) the indoor air and the mass temperatures, respectively. For
notational simplicity, we may omit the time variable if no ambiguities occur. Then, for the
air temperature node and the mass node in Fig 6.1, it yields:

Caẋa = xm − xa

Rm

+ xo − xa

Ra

+Qa,

Cmẋm = xa − xm

Rm

+Qm,
(6.1)

where Ca, Ra, Cm, and Rm are equivalent capacitances and resistances of air and mass
respectively, Qa and Qm represent the heat gain to the interior air and mass, and xo denotes
the outside temperature. Suppose that the heat gain directly added onto the bulk of mass,
Qm, is insignificant, and the heat gain on the interior air is approximately written as:

Qa = s(t)ηP, (6.2)
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where P is the rated power of the cooling device, η is the coefficient of performance (COP),
and s(t) is the thermostat operating state of the unit. The state transition law of s(t) is
defined as:

s(t) =


1, if xa(t) ≥ xa(t);

0, if xa(t) ≤ xa(t);

s(t−), otherwise,

(6.3)

where xa(t) = xa
sp(t) − δa

2 and xa(t) = xa
sp(t) + δa

2 are the lower and upper boundaries with
xa

sp(t) being the set-point temperature, and δa being a constant dead-band width, and (t−)
means approaching t from the left side.

The hybrid model defined by (6.1), (6.2), and (6.3) captures the temperature variations in a
room. It reveals the temperature changing pattern of a local area where the TCL is located,
reflecting the relationship between indoor mass or air temperatures, power consumption, and
outside weather profile. In a more compact form while considering the disturbances, the
dynamic model of a TCL can be equivalently written as:

dx = (Ax+B0 − s(t)B1) dt+ σ dW, (6.4)

where x :=
[
xa, xm

]⊤
,

A :=

− 1
Ca

( 1
Ra

+ 1
Rm

) 1
CaRm1

CmRm

− 1
CmRm

 , (6.5)

B0 :=

 1
CaRa

xo

0

 , (6.6)

B1 :=

 1
Ca

ηP

0

 , (6.7)

W is a Wiener process on 2D space, and σ is a constant measuring the standard deviation
of uncounted heat sources or sinks.

Remark 6.1. In (6.3), the values of s(t), either 0 or 1, are determined only by xa(t),
xa(t), and xa(t). For notational simplicity, we will use hereafter xsp(t), δ, x(t), and x(t) in
the replace of xa

sp(t), δa, xa(t), and xa(t), respectively. For a more generic switching scheme
depending also on the value of mass temperature, a more elaborated research is needed (see,
e.g., [221]).
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6.2.2 Aggregate dynamics of TCL populations

In this work, a generalized CFP model on second-order/higher-order hybrid-state dynamics
is used to describe the aggregate dynamics (see, e.g., [221]).

Consider the tracking process in [t0, T ], where t0 is the starting point and T is the ending
moment satisfying 0 ≤ t0 < T < ∞. For the space variables, divide the region R2 into three
parts with two air temperature boundaries, denoted by Ωa, Ωb, and Ωc, respectively:

Ωa :=
{

(xa, xm) ∈ R2 : xa < xsp − δ

2

}
,

Ωb :=
{

(xa, xm) ∈ R2 : xsp − δ

2 < xa < xsp + δ

2

}
,

Ωc :=
{

(xa, xm) ∈ R2 : xa(t) > xsp + δ

2

}
.

Let f0a(x, t) and f0b(x, t) be the probability density function (PDF) for the ACs in OFF
(s = 0) states in region Ωa and Ωb respectively, and accordingly f1b(x, t) and f1c(x, t) be the
PDFs in ON (s = 1) states in region Ωb and Ωc respectively. Note that there is no need
to consider f0c(x, t) and f1a(x, t), as they are always zero for all t ∈ [t0, T ]. Assume that
f0a(x, t), f0b(x, t), f1b(x, t), and f1c(x, t) are C2,1 in each region, where C2,1 denotes the class
of functions having 2nd order continuous partial derivatives with respect to x and 1st order
continuous derivative with respect to t. Furthermore, assume that all the above functions
have uniformly continuous partial derivatives of order up to 2 on bounded subsets in each
region. Then, for a population of higher-order heterogenous ACs, the aggregated dynamics
of the population satisfy the following coupled Fokker-Planck equations:

∂

∂t
f0a(x, t) + ∇ ·

(
(α0(x, t) − U(t))f0a(x, t)

)
− σ2

2 ∆f0a(x, t) = 0, (6.8a)

∂

∂t
f0b(x, t) + ∇ ·

(
(α0(x, t) − U(t))f0b(x, t)

)
− σ2

2 ∆f0b(x, t) = 0, (6.8b)

∂

∂t
f1b(x, t) + ∇ ·

(
(α1(x, t) − U(t))f1b(x, t)

)
− σ2

2 ∆f1b(x, t) = 0, (6.8c)

∂

∂t
f1c(x, t) + ∇ ·

(
(α1(x, t) − U(t))f1c(x, t)

)
− σ2

2 ∆f1c(x, t) = 0. (6.8d)

where ∇ = ( ∂
∂xa

, ∂
∂xm

) is the gradient operator, ∆ = ∂2

∂x2
a

+ ∂2

∂x2
m

is the Laplacian operator,
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U(t) := [u(t), 0]⊤ is the control input, and

α1(x, t) := Ax+B0,

α0(x, t) := Ax+B0 −B1,

with A, B0, and B1 defined in (6.5), (6.6), and (6.7). For (6.8), as the probability flux of
entering and leaving the deadband bounds should be equal, the conservation conditions are:

∂

∂xa

f0a(x−, xm, t) − ∂

∂xa

f0b(x+, xm, t) − ∂

∂xa

f1b(x+, xm, t) = 0, (6.9a)

∂

∂xa

f1c(x+, xm, t) − ∂

∂xa

f1b(x−, xm, t) − ∂

∂xa

f0b(x−, xm, t) = 0, (6.9b)

∀xm ∈ R, t ∈ [t0, T ],

where (·)− and (·)+ denote the left and right limit of the variable. The absorbing condition
is:

f0b(x, xm, t) = f1b(x, xm, t) = 0, (6.10a)
∂

∂xa

f0b(x−, xm, t) > 0, ∂

∂xa

f1b(x+, xm, t) > 0, (6.10b)

∀xm(∈ R, t ∈ [t0, T ].

And the natural boundary conditions are:

f0a(−∞, xm, t) = f1c(+∞, xm, t) = 0. (6.11a)
∂

∂xa

f0a(−∞, xm, t) = ∂

∂xa

f1c(+∞, xm, t) = 0. (6.11b)

f0a(xa,±∞, t) = f0b(xa,±∞, t) = 0, (6.11c)

f1b(xa,±∞, t) = f1c(xa,±∞, t) = 0. (6.11d)
∂

∂xm

f0a(xa,±∞, t) = ∂

∂xm

f0b(xa,±∞, t) = 0, (6.11e)

∂

∂xm

f1b(xa,±∞, t) = ∂

∂xm

f1c(xa,±∞, t) = 0. (6.11f)

Additionally, at the lower and upper bounds of the deadband, the continuity conditions need
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to be respected:

f0a(x, xm, t) = f0b(x, xm, t), (6.12a)

f1b(x, xm, t) = f1c(x, xm, t), (6.12b)

∀xm ∈ R, t ∈ [t0, T ].

Finally, the total mass probability should be unity, that is:
∫ +∞

−∞

∫ +∞

−∞
f0adxmdxa+

∫ +∞

−∞

∫ +∞

−∞
(f0b + f1b)dxmdxa +

∫ +∞

−∞

∫ +∞

−∞
f1cdxmdxa = 1. (6.13)

In summary, (6.8), along with its boundaries conditions (6.9), (6.10), (6.11), (6.12), and
(6.13), describes the overall dynamics for populations with higher-order load dynamics, which
will be the basis for designing effective control schemes in the following Section 6.3.

Remark 6.2. In this work, we assume that the control input u(t) = ẋsp = ẋ = ẋ is al-
ways continuous, or equivalently, xsp, x, x ∈ C1([t0, T ],R). For piece-wise continuous control
inputs, random jump terms would be included in the dynamics in (6.8), see [221] for more
details. Additionally, certain smoothness conditions on the initial distributions are also set
as default, otherwise, the solutions to (6.8) can only hold in a weak sense. These issues are
beyond the scope of this work.

6.3 Power tracking controller design and closed-loop stability

6.3.1 Input-output dynamics

By the dynamics in (6.8), the aggregate power at time t ∈ [t0, T ] should be:

yp = P

η

∫ x

x

∫ +∞

−∞
f1b(xa, xm, t)dxmdxa + P

η

∫ +∞

x

∫ +∞

−∞
f1c(xa, xm, t)dxmdxa.

However, to guarantee the input-output controllability, a slightly modified version of the
output function is used, shown as follows:

y =P
η

∫ x

x

∫ +∞

−∞
f1b(xa, xm, t)dxmdxa + 2P

η

∫ +∞

x

∫ +∞

−∞
f1c(xa, xm, t)dxmdxa

− P

η

∫ x

−∞

∫ +∞

−∞
f0a(xa, xm, t)dxmdxa.

(6.14)

Note that in steady state, there will be no ACs in Ωa and Ωc, thus y = yp holds. Suppose
yd ∈ C1([t0, T ],R≥0), where R≥0 := [0,∞), is the reference power curve. Then, the tracking
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error is written as:
e = yd − y. (6.15)

The main objective is to find a control law u(t) = ẋsp(t) = ẋ = ẋ such that the tracking error
(6.15) tends to zero. To this aim, we compute the derivative of e(t) first. The computation
process is similar to that in [219], and the final error dynamics is written as:

ė = ẏd + 2P
η
u(t)

(∫ +∞

−∞
f1c|x dxm +

∫ +∞

−∞
f0a|x dxm

)
+ Γ(t). (6.16)

where
Γ(t) := − P

η

∫ +∞

−∞
(α1f1c) |xdxm − P

η

∫ +∞

−∞
(α0f0a) |xdxm

+ Pσ2

2η

∫ +∞

−∞

[(
∂

∂xa

f1c

)
|x+dxm +

(
∂

∂xa

f0b

)
|x−

+
(
∂

∂xa

f1b

)
|x+ +

(
∂

∂xa

f0a

)
|x−

]
dx.

(6.17)

Note that in (6.16) and (6.17), notations similar as f0a|x := f0a(x, xm, t) are applied for
notational simplicity. Define

u(t) := η

2P
v(t) − ẏd∫+∞

−∞ f1c|xdxm +
∫+∞

−∞ f0a|xdxm

, (6.18)

where v(t) is an auxiliary control to be determined, then the tracking error dynamics become:

ė = v(t) + Γ(t). (6.19)

With the boundary conditions given in (6.9), (6.10), (6.11), (6.12), and the probability con-
servation property (6.13), it can be shown that, similar to the proof given in [220], the de-
nominator in the controller (6.18) is always positive in [t0, T ], for all 0 ≤ t0 < T < ∞ under
appropriate initial conditions. Suppose that the auxiliary controller v(t) and the derivative
of the reference power curve ẏd are bounded, then the control signal generated by (6.20) is
always bounded. Thus, the existence and uniqueness of the solutions to the CFP system (6.8)
is always guaranteed (see [10,22,96,97]).

The control scheme (6.18) is in an ideal form without constraints on the maximum temper-
ature offsets. Furthermore, note that the denominator in (6.18) requires analytical solution
of the PDE system, which is hard to obtain. Hence, approximation techniques, such as nu-
merical estimations, need to be exploited for efficient controller implementation. Finally, the
auxiliary control, v(t), is also undetermined and it is expected to have the ability to reject
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disturbances. In the following, we tackle these issues by incorporating saturation function in
the control law, using mid-point rule for numerical estimations, and introducing LADRC in
the auxiliary controller to counteract unknown and unmodeled disturbances.

6.3.2 Introducing saturation control

In practical application scenarios, drastic temperature fluctuations may introduce instabilities
to power systems and can cause discomfort to residents. Hence, the set-point temperature
offset per hour should be appropriately constrained. For this reason, a saturation function
with a constant limit M is added to (6.18), leading to a saturated control:

sat(u(t)) =


M, when u(t) > M,

u(t), when |u(t)| ≤ M,

−M, when u(t) < −M,

(6.20)

where M is the maximum changing velocity at time t or the maximum temperature set-point
offset per hour. Let δu(t) denote the difference between sat(u(t)) and u(t), i.e.,

δu(t) := sat(u(t)) − u(t),

then, the error dynamics (6.16) become:

ė(t) =ẏd(t) + 2P
η

sat(u(t))
(∫ +∞

−∞
f1c|x dxm +

∫ +∞

−∞
f0a|x dxm

)
+ Γ(t)

=ẏd(t) + 2P
η
u(t)

(∫ +∞

−∞
f1c|x dxm +

∫ +∞

−∞
f0a|x dxm

)
+ Γ(t) + 2P

η
δu(t)

(∫ +∞

−∞
f1c|x dxm +

∫ +∞

−∞
f0a|x dxm

)
=v(t) + Γ̃(t), (6.21)

where
Γ̃(t) := Γ(t) + 2P

η
δu(t)

(∫ +∞

−∞
f1c|xdxm +

∫ +∞

−∞
f0a|xdxm

)
. (6.22)

In (6.18) and (6.20), the auxiliary control signal v(t) is undetermined, and there exist various
choices. In [220] and [219], a proportional auxiliary controller and a slide mode-like version
are respectively utilized for power tracking control of the first-order TCL populations. In the
following, the proportional auxiliary controller continues to be used and acts as a baseline
for control performance verification of the second-order populations. An upgraded version
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combined with LADRC is proposed to counteract the disturbances due to unmeasurable and
unmodeled dynamics.

6.3.3 Proportional auxiliary controller

When v(t) = −ke(t), where k is the proportional gain, the tracking dynamics in (6.19) for
the second-order populations become:

ė = −ke+ Γ(t). (6.23)

For (6.23), the equilibrium solution is eeq(t) = 1
k
Γ(t). Note that Γ(t) is a bounded function

in [t0, T ], i.e., there exists a positive constant CΓ such that Γ(t) ≤ CΓ,∀t ∈ [t0, T ]. Thus, the
tracking error will always converge to a bounded interval [− 1

k
CΓ,

1
k
CΓ] despite the uncertain

initial conditions or small disturbances. In the context of the input-to-state stability (ISS),
this stability property is characterized by the following theorem.

Theorem 6.1. Consider the system (6.8) with the output defined in (6.14). Suppose that the
control law is given by (6.18) with proportional auxiliary controller v(t) = −ke(t). Then, the
tracking error dynamics given in (6.19) are ISS with respect to Γ(t).

Proof. For the unforced dynamics ė = −ke, the origin is globally asymptotically stable for
any k > 0. Chose a Lyapunov function candidate of the form V (e) = 1

2e
2(t), which is positive-

definite and radically unbounded. Furthermore, letting θ be a constant with 0 < θ < 1, then
we have

V̇ (e) = eė

= −ke2 + eΓ(t)

≤ −ke2 + |e(t)||Γ(t)|

= −(1 − θ)ke2 − θke2 + |e||Γ(t)|.

Then,
V̇ (e) ≤ −(1 − θ)ke2

provided that
−θke2 + |e||Γ(t)| ≤ 0,

and the latter inequality is satisfied if

|e| ≥ 1
θk

|Γ(t)|.

Defining a Lyapunov gain function χ(r) = 1
θk
r, then V̇ (e) ≤ −(1 − θ)ke2(t) for all |e(t)| ≥
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χ(|Γ(t)|). Because there exists a smooth ISS-Lyapunov function V (e), the system is ISS with
respect to Γ(t), see [92,181].

The stability result given in Theorem 6.1 is under the assumption that the control input takes
the form of (6.20). After introducing the saturation function, the error dynamics change to
(6.21), and a similar stability result still holds, as shown in Theorem 6.2.

Theorem 6.2. Consider the system (6.8) with the output defined in (6.14). Suppose that the
control law is given by (6.18) and (6.20) with proportional auxiliary controller v(t) = −ke(t).
Then, the tracking error dynamics given in (6.21) are ISS with respect to Γ̃(t).

The proof Theorem 6.2 can be proceeded in a similar way as the proof of Theorem 6.1 and
hence, it is omitted.

6.3.4 LADRC auxiliary controller

It should be noted that there may be steady-state errors with the proportional auxiliary
controller. Moreover, modeling errors due to unaccounted heat loss or gain should also be well
compensated in the control process. In what follows, LADRC method is employed to suppress
these effects. LADRC is a model-free control technique which is developed on the basis of
ADRC method and can effectively counteract the negative impacts of internal disturbances
or other unconsidered dynamics. With an appropriate tuning, this control algorithm can
achieve satisfactory control effects in many practical applications (see, e.g., [70, 73]).

Note that in the considered problem, although the value of Γ̃(t) in (6.21) is not available or
very hard to measure, all its information is hidden in the error dynamics. Therefore, Γ̃(t)
can be treated as an extended state, and the negative effects can be actively compensated by
inject the estimate of disturbances obtained by an observer to the controller. Specifically, let
x1 = e and x2 be the total disturbance (including Γ̃(t)) of the system. Then, it follows that

ẋ1 = v(t) + x2. (6.24)

Let x̂1 and x̂2 be the estimates of x1 and x2, respectively. Then, an extended observer for
state and disturbance estimation can be chosen as:

˙̂x1 = β1(e− x̂1) + v(t) + x̂2,

˙̂x2 = β2(e− x̂1),
(6.25)

where β1 > 0 and β2 > 0 are the observer gains. By the LADRC algorithm, the linear
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feedback control is designed as:
v(t) = −kx̂1 − x̂2. (6.26)

It follows that

ẋ1 = (−kx̂1 − x̂2) + x2

= −kx1 + k(x1 − x̂1) + (x2 − x̂2)

= −kx1 + ke1 + e2. (6.27)

Suppose ωc > 0 and ωo > 0 are the auxiliary controller bandwidth and observer bandwidth,
respectively, and let k = ωc, β1 = 2ωo, β2 = ω2

o . By the separation principle for linear
control systems, ωc and ωo can be designed separately with their values tuned based on the
applications. When the observer errors are sufficiently small, the power tracking error, i.e.,
e, drops to 0 quickly.

Note that from (6.24) to (6.27), the negative effect of x1(t) (including Γ̃(t)) can be greatly
constrained by incorporating x̂2 in the control scheme. Thus, a better performance with the
new auxiliary controller can be expected. Comparative studies are conducted in Section 6.4
to illustrate the performance of the two auxiliary controllers.

Remark 6.3. It can be shown that the observation errors for x̂1 and x̂2 are small when
ẋ2 is bounded (see, e.g., [40, 57, 225, 227]). However, this conclusion is only piecewisely
valid in the considered problem. Suppose that there is no modeling error in the system, then
ẋ2 = ˙̃Γ(t) always holds. However, it should be noted that the saturation function included
in Γ̃(t) in (6.22) is not differentiable when saturation happens. Thus, with appropriately
tuned parameters, x̂1 and x̂2 will only approach to e and Γ̃(t) piecewisely in t ∈ [t0, T ],
0 ≤ t0 < T < ∞.

6.3.5 Numerical implementation of the control scheme

To implement the proposed controller in (6.18) and (6.20), a significant challenge still exists.
Note that in the denominator of (6.18), the internal states,

∫+∞
−∞ f0a|xdxm and

∫+∞
−∞ f1c|xdxm,

are required in the computation. Because the accurate state values are not accessible, two
numerical estimations based on midpoint rule are introduced to obtain their practical ap-
proximations. In the following, we assume that the controller is implemented on a digital
platform, and the control signals are generated and broadcast periodically to the population.

Specifically, consider the region Ωx := [x − ∆xa

2 , x + ∆xa

2 ] × R with an air temperature bin
width ∆xa. Let N be the size of the AC population and n1 denotes the number of ACs in
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Ωx at time ti, i ∈ N. We have then

∫ x+ ∆xa
2

x− ∆xa
2

∫ +∞

−∞
f0a(xa, xm, ti)dxmdxa ≈ n1

N
.

By the mid-point rule w.r.t. the air temperature variable xa, we have
∫ +∞

−∞
f1(x, xm, ti)dxm ≈ n1

N∆xa

.

Then, a reasonable estimate of
∫+∞

−∞ f0a|xdxm is:

Êx := n1

N∆xa

. (6.28)

Similarly, letting n2 be the number of ACs in the region Ωx := [x− ∆xa

2 , x+ ∆xa

2 ] ×R at time
ti, the estimate of

∫+∞
−∞ f1c|xdxm is:

Êx := n2

N∆x. (6.29)

Note that in (6.28) and (6.29), only partially observed states are collected for the compu-
tation, which will considerably relieve the communication burden. According to (6.28) and
(6.29), the controller and the saturation control in (6.18) and (6.20) change to

û(ti) := η

2P
v(ti) − ẏd(ti)
Êx + Êx

, (6.30)

and

sat(û(ti)) =


M, when û(ti) > M,

û(ti), when |û(ti)| ≤ M,

−M, when û(ti) < −M,

(6.31)

respectively.

When the LADRC algorithm is used as the auxiliary control scheme, the negative effects of
the total disturbance, including Γ̃(ti), quantization noise, etc., will be timely compensated.
Figure 6.2 shows the controller implementation process in a practical scenario, where the
shadowed region highlights the computation procedure for the LADRC auxiliary controller.

6.4 Simulation study

In this section, we investigate the effectiveness of the proposed control strategy for power
tracking control by numerical simulations. Note that the control strategy is designed based
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Figure 6.2 Block diagram for the controller implementation.

on the coupled Fokker-Planck model, which is derived by assuming an infinite collections of
TCLs. Therefore, the more TCLs in the population, the more accurate the aggregate model.
Accordingly, the proposed control scheme is supposed to have a better performance when the
population size increases. To verify this claim, comparative results with two different popu-
lation sizes containing, respectively, 1,000 and 100,000 TLCs are tested in Subsection 6.4.2
and 6.4.3. Furthermore, the control effects with the proportional auxiliary controller and the
LADRC auxiliary controller are tested for the purpose of comparison. A concise analysis is
reported at the end of this section.

6.4.1 Simulation setups

Table 6.1 lists some parameters and their default values used in the simulation. The air and
mass thermal resistances of the population follow log-normal distributions, with mean values
of 2 ◦C/kW,1 ◦C/kW and standard deviations (STDs) of 0.4 ◦C/kW, 0.2 ◦C/kW, respectively.
Similarly, the air and mass thermal capacitances are also log-normally distributed, with mean
values as 3.6 kW/◦C, 4.3 kW/◦C, and STDs as 0.72 kW/◦C and 0.86 kW/◦C, respectively.
The rated thermal power is fixed as 2kW and the coefficient of performance (COP) is set to
be 3 for all the TCLs. These values are justified in [18,123] and should be properly adjusted
based on practical applications.

Various types of perturbations are also considered in the simulation. A forced switching
mechanism, which mimics unpredictable switchings in the population, is incorporated in the
simulated operation. For each AC unit, the probability of forced switching ONs/OFFs per
hour is 3%. Furthermore, a lockout mechanism is also introduced, as excessive switchings
accelerates wear and tear on the compressors. In our setting, only forced switchings can
break the lockout effect, otherwise each AC keeps its ON/OFF state unchanged for at least
5 minutes after the last alternation. During the locked time, the set-point temperature
keeps updating. Whereas, the AC unit ignores the temperature changing signal. Finally,
communication delays are also taken into account since individuals in the population usually
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Table 6.1 Simulation parameters and default values

Parameter Description [unit] Value

Ra
Equivalent indoor air thermal

resistance[◦C/kW] LogN(2, 0.4)

Rm
Equivalent building mass thermal

resistance[◦C/kW] LogN(1, 0.2)

Ca
Equivalent indoor air thermal

capacitance[ kW/◦C] LogN(3.6, 0.72)

Cm
Equivalent building mass thermal

capacitance[ kW/◦C] LogN(4.3, 0.86)

P Thermal power[kW] 2
η Coefficient of Performance (COP) 3

xsp or xa
sp Initial temperature set point[ ◦C] 20

δ or δa Thermostat deadband width[ ◦C] 0.5

pf
Probability of forced switchings

per hour 3

tl Lockout time of each unit [min] 5
td Communication delays [sec] LogN(1, 0.2)
∆t Resolution of the simulator [sec] 30

spread over a wide region. In the experiment, each AC unit is randomly assigned with a
constant delay, drawing from a log-normal distribution with a mean value of 1 second and
an STD of 0.2 second.

We examine the aggregate power of the population for 6.5 hours, starting at 10:00 and
ending at 16:30. The system operates in an open-loop mode in the first half an hour while
the closed-loop control is activated in the following 6 hours. During this period, the outside
temperature is time-varying, as shown in Fig. 6.3a. The desired normalized power curve is
shown in Fig. 6.3b, which is determined by the following polynomial [99]:

yd(t) := (yd(tf ) − yd(ti)) τ 5(t)
4∑

l=0
alτ

l(t), t ∈ [ti, tf ],

where ti and tf are the beginning and ending points, τ(t) := (t− ti)/(tf − ti), and a0 = 126,
a1 = 420, a2 = 540, a3 = 315, and a4 = 70.

The sampling resolution in the simulation, ∆t, is set to 30 seconds. The control signal is
computed and broadcast at every sampling instant. The values of

∫∞
∞ f0(x, xm, t)dxm and∫∞

∞ f1(x, xm, t)dxm are estimated by the midpoint rule [23] with respect to the xa−coordinate.
The average estimation of three bin widths, 0.008, 0.004 and 0.002 ◦C, respectively, are used
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Figure 6.3 Ambient temperature and desired power curve (a) ambient temperature curve;
(b) desired power profile.
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to reduce random errors and improve the reliability. The computation time of the control
signal, usually less than 0.01 millisecond, is ignored in the simulation, as it is very small
compared to the communication delays and sampling intervals.

6.4.2 Numerical results for 1000 ACs

In the simulation, k = 100 is used for the proportional auxiliary controller, and kp = 50,
l1 = 100, and l2 = 2500 are used for the LADRC auxiliary controller. The numerical results
are summarized in Table 6.2, where the RMSE values are multiplied by 100 for the ease of
readability. The mean values for proportional (RMSE-P) and LADRC auxiliary controller
(RMSE-L) are 1.158% and 0.751%, respectively, and the STDs are 0.012% and 0.035%. The
data show that the controllers performance well, as the mean values are quite small (all below
2%) and the STDs are also not significant.

Table 6.2 Power tracking results for 1000 ACs

Episode 1 2 3 4 5
RMSE-P(%) 1.151 1.169 1.141 1.158 1.155
RMSE-L(%) 0.700 0.754 0.745 0.813 0.755

Episode 6 7 8 9 10
RMSE-P(%) 1.171 1.174 1.166 1.147 1.147
RMSE-L(%) 0.769 0.745 0.706 0.794 0.730

For a better visualization, the time evaluation of the data in Episode 1 in Table 6.2 with
LADRC auxiliary controller is shown in Fig. 6.4. The tracking effect is illustrated in Fig. 6.4a,
whereas the results with proportional controller is shown as a baseline. The tracking errors
between the actual and the desired powers are shown in Fig. 6.4b, and Fig. 6.4c presents
the changing velocities broadcasted to the population. In this tracking process, the RMSE
is 0.700% and the tracking errors belong in [−0.021%, 0.023%]. Note that in Fig. 6.4c,
the changing velocities are constrained to be within [−1, 1]. Thus, the maximal set-point
temperature offset cannot exceed 1 ◦C per hour. In fact, the set-point temperature for this
episode is in the rang [20 ◦C, 21.82 ◦C] all along 6.5 hours.

In the simulation, communication delays and lockout time are also considered. Figure 6.5
shows the temperature profiles and action curves for the first and second AC units in the
population. Note that the mass temperature changes are slower than that for the air tem-
perature, while the later ones move back and forth inside a fixed deadband region. Another
remarkable point is that the actions are hardly distinguishable to the one shown in Fig. 6.4c,
which is the “ideal” action profile without delays or any other disruptions.
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Figure 6.4 Control performance for a population of 1000 ACs: (a) tracking curve; (b) tracking
errors; (c) set-point variation rate.
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Figure 6.5 Trajectories and actions of No. 1 and No. 2 AC in the population of 1,000 ACs
(a) air and mass temperature trajectories; (b) independent set-point changing velocities.
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6.4.3 Numerical results for 100,000 ACs

For a population of 100,000 ACs, power tracking control is also tested for 10 times successively.
The final results are listed by order in Table 6.3. The mean RMSE-Ps and RMSE-Ls are
1.050% and 0.295%, respectively, and the STDs are 0.006% and 0.007%.

Table 6.3 Power tracking results for 100,000 ACs

Episode 1 2 3 4 5
RMSE-P(%) 1.045 1.052 1.047 1.046 1.056
RMSE-L(%) 0.294 0.304 0.293 0.305 0.293

Episode 6 7 8 9 10
RMSE-P(%) 1.060 1.044 1.046 1.047 1.061
RMSE-L(%) 0.287 0.294 0.302 0.297 0.283

Similar as in the previous subsection, the first tracking episode is used to demonstrate the
control effect. Figure 6.6 shows the power tracking curve, the tracking-error sequence, and
the broadcasted control signals. Meanwhile, Fig. 6.7 shows the temperature profiles and
control actions for the first two AC units in the population.

6.4.4 Results analysis

The results in Table 6.2 and Table 6.3 are very promising. It can be seen that LADRC per-
forms better than the proportional control, as the mean RMSE is smaller while the standard
deviations are almost the same. Another remarkable point is that the LADRC auxiliary
controller uses a smaller proportional gain kp while having a better performance than the
proportional controller. By Theorem 6.1 and 6.2, larger proportional gains should be used
to narrow down the convergence zone bounds. However, larger gains may induce chattering
phenomena. Hence, LADRC auxiliary controller can act as a remedy for avoid using large
proportional gains. Finally, the results also show that the proposed control law indeed per-
forms better on larger size populations, when compared either by RMSE-Ps or RMSE-Ls.
The average RMSE becomes smaller, demonstrating that the actual power consumption is
getting closer to the reference one. Meanwhile, the STD becomes smaller, showing that the
control effects are more stable under the same varying outside temperatures and a same level
of disturbances.

Finally, another noticeable feature in tracking control is the fast response property of the
proposed control scheme. When the reference power drops rapidly during 11:30 am∼12:00 pm
or increases dramatically during 14:30 pm∼15:00 pm, the tracking control still performers
well, as shown in Fig. 6.4a and Fig. 6.6a. This observation shows that the designed control



127

10 11 12 13 14 15 16

Time(Hr)

0.1

0.2

0.3

0.4

0.5
N

o
rm

a
liz

e
d
 P

o
w

e
r Proportional 100000

LADRC 100000

Desired Power

(a)

10 11 12 13 14 15 16

Time(Hr)

-0.02

-0.01

0

0.01

0.02

T
ra

c
k
in

g
 e

rr
o
r(

%
) 

 

(b)

10 11 12 13 14 15 16

Time(Hr)

-1

-0.5

0

0.5

1

u
(t

)(
o
C

/H
r)

(c)

Figure 6.6 Control performance for a population of 100,000 ACs: (a) tracking curve; (b)
tracking errors; (c) set-point variation rate.
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(a) air and mass temperature trajectories; (b) independent set-point changing velocities.
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law, which has a negligible computational complexity, is even suitable for participating in
real time electricity markets or taking active part in time urgent frequency regulation tasks.

6.5 Conclusion

Power tracking control of the second-order heterogeneous TCL populations is investigated in
the context of smart grid. A novel nonlinear control strategy, which requires only partially
observed states is designed based on the input-output dynamics of the system. Specifically,
a generalized CFP model is introduced to characterize the aggregate dynamics of the TCL
population when the dynamics of individual TCLs are described by a hybrid 2nd order ETP
model. Then, a nonlinear control scheme with saturation and disturbance rejection capabil-
ity is designed. The stability of the closed-loop system has been analyzed, and the tracking
performance is validated by numerical simulations. The obtained results demonstrate that
the proposed control method has great potential for real-world applications, where the envi-
ronments are usually with parameter uncertainties or disruptions. It should be noted that the
considered aggregate model deals with TCL populations of the same type, requiring that the
power of each unit is approximately the same. Therefore, different types of heating or cooling
devices need to be treated as separate groups. The cooperation problem between different
groups, or more generally with other types of appliances, such as distributed generators,
energy storage devices in the micro-grids, is a research topic worthy exploring [42,50,119].
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CHAPTER 7 GENERAL DISCUSSION

As the conventional grid transitions to a more intelligent and efficient smart grid network,
thermostatically controlled loads (TCLs) are emerging as one type of flexible loads that of-
fer an important demand response (DR) capability, thereby ensuring improved reliability,
enhanced sustainability and better customer service. Their ability to adjust power consump-
tions in response to rapidly changing supply-demand mismatches makes them more valuable
in demand response programs. The focus of this thesis is the regulation of aggregate power
consumptions of heterogeneous TCL populations, with the rate of change in set-point tem-
peratures as control input. By employing a model-based approach, effective control strategies
for regulating the collective power consumptions are presented. The coupled Fokker-Planck
(CFP) model is used to characterize the evolution of the distribution of TCLs in ON and
OFF states of the population. Compared with finite-dimensional lumped models, the PDE
paradigm provides a more generic framework and a higher model accuracy, thus facilitating
more flexible control designs.

A well-designed output function is crucial for achieving desired system responses, and its
design should take account of both mathematical validity and physical meaningfulness. By
mathematical validity, it means that for a tracking control problem, the input-output dy-
namics of the system should be controllable, ensuring that external inputs has the ability to
drive the aggregate power to the desired value. Particularly, it is essential to ensure that the
system is computationally tractable and free of singularity points in the derivative of the out-
put function. Otherwise, it hinders the analysis of the tracking error dynamics and thereby
preventing the development of effective control strategies. By physical meaningfulness, it
means that the system output should have practical meanings for the problem. Inspired by
the results obtained in a preliminary Monte-Carlo simulation on the aggregate dynamics of
TCL populations presented in Chapter 3, the work in Chapter 4 solves this tricky problem
by proposing a new output function, which is equivalent to the real aggregate power demand
in steady state. In fact, according to our simulation, there are only a small fraction of TCLs
outside the deadband in transient state, and almost no TCLs remain outside the deadband
in steady state. This observation supports the validity of the proposed output scheme.

Chapter 4 proposed a nonlinear control scheme based on the method of input-output lineariza-
tion which guarantees a robust performance. As a standard component in validating tracking
control schemes, the stability of the closed-loop system involving infinite-dimensional internal
dynamics has been assessed by a rigorous analysis. The work of Chapter 4 paves the path for
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further investigations. Among which, Chapter 5 addresses the challenging problem of further
minimizing communication burden that may occur in larger-scale TCL populations. For a
network-controlled system, communication burden is a critical obstacle for real-world im-
plementations. By using event-triggered control techniques, the convergence of the tracking
error is re-examined, and the proposed triggering conditions can also make sure that no Zeno
phenomena will occur. This work broadens the applicability and scalability of the proposed
control strategies for practical, real-life systems. Chapter 6 extends the considered problem
to higher-dimensional systems by using second order ETP model aiming at an enhanced
accuracy on the thermodynamics of a single TCL. The second order ETP model will result
in a generalized PDE dynamics with higher-dimensional spaces, and controller re-design is
inevitable. First, a minor variation on the system output function, which preserves the math-
ematical validity and physical meaning, is proposed. Then, in parallel, a new type of control
law is derived under this modification with a similar computational procedure. Further, by
incorporating saturation and disturbance rejection abilities with a linear ADRC scheme, this
control strategy also exhibits enhanced robustness with respect to different disturbances.

In summary, this thesis is motivated by the application of advanced control theory and tech-
niques to a significant problem in the rapidly evolving field of the smart grid, where advance-
ments can have substantial impacts from engineering, academic, and economic, perspectives.
The research comprises a series of studies, each focusing on a specific problem encountered in
practical applications, all of which are closely connected by a strong methodological founda-
tion. The work of this thesis is grounded in rigorous theoretical analysis, complemented by
validation through numerical simulations. Despite the mathematical challenges inherent in
analyzing and designing PDE control systems, the achievements of this thesis demonstrate
the promise and potential of applying advanced control theory and techniques to practical
problems across diverse fields.
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CHAPTER 8 CONCLUSION

8.1 Summary of research work

TCLs, as promising flexible loads, present great potential to help maintain the reliability
and stability of the future smart grid. This thesis presents an in-depth investigation of the
power tracking control problem using heterogeneous TCL populations as demand response
resources. In this work, advanced modeling methods are introduced and novel control strate-
gies are proposed for coordinating large or ultra-large scale heterogeneous populations.

Chapter 2 is the problem formulation and in-depth literature review part, right after the
research background shown in Chapter 1. The research scope is clarified in this part, and
some existing models and control strategies are meticulously examined.

Chapter 3 details some mathematical preliminaries of the thesis, including theoretical tools for
controller design, stability analysis, and numerical implementations. Furthermore, a Monte-
Carlo simulation on a TCL population is conducted, which helps to gain better intuitive
understandings of the aggregate dynamics of the system.

Chapter 4 proposes a nonlinear control scheme by investigating the power tracking error
dynamics. An novel system output function is proposed by integrating the distribution
functions of the TCLs, on the premise that the evolution of the population is characterized
by the CFP model. Under the framework of input-output linearization, multiple candidates
of the auxiliary controller can be considered. A sliding model mode-like auxiliary control
is selected, and it is then shown that the overall system is finite-time input-to-state stable.
The feasibility and effectiveness of the proposed control scheme are validated by numerical
simulations. Furthermore, it has also been shown that this method performs better on larger
size populations. This finding is consistent with the underlying model we used in control
design, where an infinite collection of TCLs is assumed for the coupled Fokker-Planck model.

Chapter 5 tackles the problem related to the communication burden by integrating event-
triggered mechanisms with a control scheme based on the one proposed in Chapter 4. Both
the static and dynamic triggering conditions are studied. It is shown that the closed-loop
system is input-to-state practical stable with either the static or dynamic triggering ap-
proaches, and no Zeno phenomena happen for both cases. The simulation results show that
the communication burden can be tremendously reduced, whereas the tracking performances
are within tolerable degradation.

The work of Chapter 6 is built on top of that in Chapter 4. A second-order ETP model is
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utilized in the place of the original first-order model. This model involves the mass and air
temperatures, which takes account of equivalent mass and air capacitances, and equivalent
mass and air resistances into consideration, leading to enhanced accuracy. Accordingly, a
higher-dimensional coupled Fokker-Planck model is used to describe the aggregate dynamics.
Furthermore, an LADCR method is introduced as the auxiliary controller, which reduces the
steady state error and shows better performance than the proportional auxiliary controller.

8.2 Limitations and future research prospects

The proposed control strategies in this dissertation demonstrate excellent performance in a
simulation environment, and the obtained results indicate the feasibility and effectiveness
of coordinating large scale TCLs for demand response programs. Due to limited time and
research facilities, many issues are remaining to be explored in the future. Some of them are
shown as follows:

• In this work, the TCLs in a population are considered as fixed power. However, this
might not be true in reality. For example, most of the modern air conditioners are
variable-speed, thus their power consumptions change according to different interior or
exterior conditions. Furthermore, most modern air conditioners are accompanied by
many auxiliary functions, which makes its dynamics more challenging for prediction.
The power fluctuations will certainly cause trouble for us to calculate the population
aggregate power.

• The reference power data used in this work are designed from subjective experience,
only for demonstration purpose. Actually, the reference curve should be provided by
a utility company, which could be generated by complex optimization or predictive
algorithms. Therefore, the derivative of the curve should be considered at higher layers
in a complete demand response control framework.

• It is observed that a better performance is achieved with LADRC auxiliary controller
when compared with proportional auxiliary controller. It will be of interest to inte-
grate this control scheme with event-triggered control schemes. Note that the LADRC
method needs continuous observations on the tracking error and the total disturbance,
while the event-triggered control method naturally rejects periodically broadcast control
signals. A control strategy which can exploit the advantages of both control schemes
is a great extension of the current work.

• The thermal comfortness is not considered in the current work. We try to accom-
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plish the demand response task as soon as possible, and the negative effects caused
by rapid temperature variations are not considered. In fact, in real-life environments,
temperatures should be kept inside a comfort zone that the customers prefer as much as
possible. Smoothly slowing down the regulation process based on customer comfortness
should be further explored in the future.
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APPENDIX A SUPPLYMENTARY MATERIALS FOR CHAPTER 6

Due to page limitations, the computation of the error dynamics and some proofs are not
included in the original journal article in Chapter 6. This appendix is to provide the details
of the related mathematical development.

Calculating the tracking error dynamics

The Leibniz integral rule for multidimensional integrals

The Leibniz integral rule for higher dimensions (LIR-higher) can be expressed as follows:

d
dt

∫
D(t)

F (x, t) dV =
∫

D(t)

∂

∂t
F (x, t) dV +

∫
∂D(t)

F (x, t)(vb · n) dS,

where F (x, t) can be tensor-, vector- or scalar-valued, D(t) and ∂D(t) are a time-varying
connected region and its boundary respectively, vb denotes the Eulerian velocity of the region,
n is the outward unit normal vector of the surface element.

Computing the derivative of e(t) for second-order populations

To compute the derivative of e(t), based on the mathematical expression for y(t) in (6.14),
we decompose the computation process into the following three steps.
Step 1: Compute d

dt

∫ x
x

∫+∞
−∞ f1b(xa(t), xm(t), t)dxmdxa.

d
dt

∫ x

x

∫ +∞

−∞
f1b(xa(t), xm(t), t)dxmdxa

=u(t)
∫ +∞

−∞
f1b|xdxm − u(t)

∫ +∞

−∞
f1b|xdxm +

∫ x

x

∫ +∞

−∞

∂

∂t
f1bdxmdxa (A.1a)

=u(t)
∫ +∞

−∞
f1b|xdxm +

∫ x

x

∫ +∞

−∞

∂

∂t
f1bdxmdxa (A.1b)

=u(t)
∫ +∞

−∞
f1b|xdxm +

∫ x

x

∫ +∞

−∞
[− ∂

∂xa

((α1 − u)f1b)

− ∂

∂xm

((α1 − u)f1b) + σ2

2
∂2

∂x2
a

f1b + σ2

2
∂2

∂x2
m

f1b]dxmdxa (A.1c)

=u(t)
∫ +∞

−∞
f1b|xdxm −

∫ +∞

−∞
((α1 − u)f1b)|xxdxm + 0
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+ σ2

2

∫ +∞

−∞
( ∂

∂xa

f1b)|x
−

x+dxm + 0 (A.1d)

=2u(t)
∫ +∞

−∞
f1b|xdxm −

∫ +∞

−∞
(α1f1b)|xdxm + σ2

2

∫ +∞

−∞
( ∂

∂xa

f1b)|x−dxm

− σ2

2

∫ +∞

−∞
( ∂

∂xa

f1b)|x+dxm

Note that in (A.1), for simplicity, we use the notations f1b|x := f1b(x, xm(t), t), and f1b|x :=
f1b(x, xm(t), t). Equation (A.1a) is derived based on Leibniz integral rule for higher di-
mensions (LIR-higher), shown in Appendix A. Specifically, in (A.1), the region is D(t) :=
[x, x] × R. Let ∂D1, ∂D2 be the left and right boundaries of D(t) respectively. For these
boundaries, the outward unit normal vector are (−1, 0) and (1, 0) respectively. Moreover, for
∂D1, ∂D2, the Eulerian velocity both are (u(t), 0). Therefore, with LIR-higher, we have:

d
dt

∫ x

x

∫ +∞

−∞
f1b(xa(t), xm(t), t)dxmdxa

=
∫ x

x

∫ +∞

−∞

∂

∂t
f1bdxmdxa +

∫
∂D1

f1b(−u(t)) dS +
∫

∂D2
f1bu(t) dS

=
∫ x

x

∫ +∞

−∞

∂

∂t
f1bdxmdxa − u(t)

∫
∂D1

f1b dS + u(t)
∫

∂D2
f1b dS

=
∫ x

x

∫ +∞

−∞

∂

∂t
f1bdxmdxa − u(t)

∫ +∞

−∞
f1b|xdxm + u(t)

∫ +∞

−∞
f1b|xdxm.

Equation (A.1b) is obtained by the absorbing condition (6.10). Then, the PDE dynamics in
(6.8c) is substituted in (A.1c). As f1b(x, t) ∈ C2,1 and the integral in the domain [x, x] × R
is finite, Fubini’s theorem is valid. Combining with the boundary conditions for the mass in
(6.11), the result in (A.1d) is obtained. By using the absorbing condition (6.10), the final
step is derived.

Step 2: Compute d
dt

∫+∞
x

∫+∞
−∞ f1c(xa(t), xm(t), t)dxmdxa.

d
dt

∫ +∞

x

∫ +∞

−∞
f1c(xa(t), xm(t), t)dxmdxa

= − u(t)
∫ +∞

−∞
f1c|xdxm +

∫ +∞

x

∫ +∞

−∞

∂

∂t
f1cdxmdxa (A.2a)

(LIR-higher, see Appendix A)

= − u(t)
∫ +∞

−∞
f1c|xdxm +

∫ +∞

x

∫ +∞

−∞
[− ∂

∂xa

((α1 − u(t))f1c)

− ∂

∂xm

((α1 − u(t))f1c) + σ2

2
∂2

∂x2
a

f1c + σ2

2
∂2

∂x2
m

f1c]dxmdxa (A.2b)
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(substitute PDE (6.8d))

= − u(t)
∫ +∞

−∞
f1c|xdxm −

∫ +∞

−∞
((α1 − u(t))f1c)|+∞

x dxm

+ 0 + σ2

2

∫ +∞

−∞
( ∂

∂xa

f1c)|+∞
x+ dxm + 0 (A.2c)

(Fubini, mass natural condition (6.11)

= − u(t)
∫ +∞

−∞
f1c|xdxm − 0 +

∫ +∞

−∞
((α1 − u(t))f1c)|xdxm + 0

− σ2

2

∫ +∞

−∞
( ∂

∂xa

f1c)|x+dxm (A.2d)

(air natural condition (6.11))

= − 2u(t)
∫ +∞

−∞
f1c|xdxm +

∫ +∞

−∞
(α1f1c)|xdxm − σ2

2

∫ +∞

−∞
( ∂

∂xa

f1c)|x+dxm

The computation with LIR-higher is similar as that in (A.1), and it shows that

d
dt

∫ +∞

x

∫ +∞

−∞
f1c(xa(t), xm(t), t)dxmdxa

=
∫ +∞

x

∫ +∞

−∞

∂

∂t
f1cdxmdxa − u(t)

∫ +∞

−∞
f1c|xdxm.

Step 3: Compute d
dt

∫ x
−∞

∫+∞
−∞ f0a(xa(t), xm(t), t)dxmdxa.

d
dt

∫ x

−∞

∫ +∞

−∞
f0a(xa(t), xm(t), t)dxmdxa

=u(t)
∫ +∞

−∞
f0a|xdxm +

∫ x

−∞

∫ +∞

−∞

∂

∂t
f0a(xa(t), xm(t), t)dxmdxa (A.3a)

(LIR-higher)

=u(t)
∫ +∞

−∞
f0a|xdxm +

∫ x

−∞

∫ +∞

−∞
[− ∂

∂xa

((α0 − u(t))f0a)

− ∂

∂xm

((α0 − u(t))f0a) + σ2

2
∂2

∂x2
a

f0a + σ2

2
∂2

∂x2
m

f0a]dxmdxa

(substitute PDE)

=u(t)
∫ +∞

−∞
f0a|xdxm −

∫ +∞

−∞
((α0 − u(t))f0a)|x

−

−∞dxm

+ 0 + σ2

2

∫ +∞

−∞
( ∂

∂xa

f0a)|x
−

−∞dxm + 0 (A.3b)

(Fubini, mass natural condition (6.11))

=u(t)
∫ +∞

−∞
f0a|xdxm −

∫ +∞

−∞
((α0 − u(t))f0a)|x + σ2

2

∫ +∞

−∞
( ∂

∂xa

f0a)|x−dxm (A.3c)
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(air natural condition(6.11))

=2u(t)
∫ +∞

−∞
f0a|xdxm −

∫ +∞

−∞
(α0f0a)|x + σ2

2

∫ +∞

−∞
( ∂

∂xa

f0a)|x−dxm

The LIR-higher is similarly used in (A.3), and we have

d
dt

∫ x

−∞

∫ +∞

−∞
f0a(xa(t), xm(t), t)dxmdxa =

∫ x

−∞

∫ +∞

−∞

∂

∂t
f0adxmdxa + u(t)

∫ +∞

−∞
f0a|xdxm.

Summing the equations in (A.1), (A.2), (A.3), and using the continuity condition in (6.12)
and the flux conservation condition in (6.9), the derivative of y(t) can be written as:

ẏ(t) = − 2P
η
u(t)(

∫ +∞

−∞
f1c|xdxm +

∫ +∞

−∞
f0a|xdxm)

+ P

η

∫ +∞

−∞
(α1f1c)|xdxm + P

η

∫ +∞

−∞
(α0f0a)|xdxm

+ Pσ2

2η

∫ +∞

−∞
( ∂

∂xa

f1b)|x−dxm − Pσ2

2η

∫ +∞

−∞
( ∂

∂xa

f1b)|x+dxm

− 2 · Pσ
2

2η

∫ +∞

−∞
( ∂

∂xa

f1c)|x+dxm − Pσ2

2η
∂

∂xa

∫ +∞

−∞
f0a|x−dxm

= − 2P
η
u(t)(

∫ +∞

−∞
f1c|xdxm +

∫ +∞

−∞
f0a|xdxm)

+ P

η

∫ +∞

−∞
(α1f1c)|xdxm + P

η

∫ +∞

−∞
(α0f0a)|xdxm

− Pσ2

2η

∫ +∞

−∞
( ∂

∂xa

f1c)|x+dxm − Pσ2

2η

∫ +∞

−∞
( ∂

∂xa

f0b)|x−dxm

− Pσ2

2η

∫ +∞

−∞
( ∂

∂xa

f1b)|x+dxm − Pσ2

2η

∫ +∞

−∞
( ∂

∂xa

f0a)|x−dxm

Thus,

ė(t) =ẏd(t) + 2P
η
u(t)(

∫ +∞

−∞
f1c|xdxm +

∫ +∞

−∞
f0a|xdxm)

− P

η

∫ +∞

−∞
(α1f1c)|xdxm − P

η

∫ +∞

−∞
(α0f0a)|xdxm

+ Pσ2

2η

∫ +∞

−∞
( ∂

∂xa

f1c)|x+dxm + Pσ2

2η

∫ +∞

−∞
( ∂

∂xa

f0b)|x−dxm

+ Pσ2

2η

∫ +∞

−∞
( ∂

∂xa

f1b)|x+dxm + Pσ2

2η

∫ +∞

−∞
( ∂

∂xa

f0a)|x−dxm
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A well-defined denominator of the second-order controller

Maximum principle for unbounded region

In this section, strong parabolic maximum principle, see [47], is generalized to unbounded
regions with vanishing boundary values. More specifically, define ΩT := Ωa × (t0, T ], ΓT :=
ΩT \ΩT and suppose f0a(x0

a, x
0
m, T0) attains a non-positive minimummf in ΩT , then f0a(xa, xm, t) ≡

0, ∀(xa, xm, t) ∈ ΩT0 . Here, we take f0a(xa, xm, t) as an example. For other functions
f0b(xa, xm, t), f1b(xa, xm, t), f1c(xa, xm, t), the conclusion holds following a similar reasoning
process.

Note that f0a(xa, xm, t) vanishes at the infinities, then ∀ϵ > 0, there exist Ga, Gm such that

(x0
a, x

0
m) ∈ (−Ga, x) × (−Gm, Gm) =: Ω0,

and
|f0a(xa, xm, T0)| < ϵ,∀(xa, xm) ∈ Ωa\Ω0. (A.4)

By the strong maximum principle for the bounded region Ω0 × (t0, T ], f0a(xa, xm, t) ≡
mf , ∀(xa, xm, t) ∈ Ω0 × (t0, T0]. By the inequality in (A.4) and the continuity of f0a(xa,xm, t)
in Ωa, it follows that |mf | ≤ ϵ. Letting ϵ → 0, then mf = 0. Thus,

f0a(xa, xm, t) = mf ≡ 0, ∀(xa, xm, t) ∈ Ω0 × (t0, T0].

Since (x0
a, x

0
m) is arbitrary, f0a(xa, xm, t) ≡ 0 holds in all the region ΩT0 .

Non-negativity of the solutions

Take f0a(xa, xm, t) as an example, and try to prove that f0a(xa, xm, t) ≥ 0,∀(xa, xm) ∈ Ωa, t ∈
(t0, T ]. For other functions f0b(xa, xm, t),f1b(xa, xm, t) and f1c(xa, xm, t), the conclusion holds
following a similar reasoning process.

Proof. (proof by contradiction). Suppose the minimum value of f0a(xa, xm, t) achieves at
(x0

a, x
0
m, T0), T0 ∈ (t0, T ] and satisfies mf := f0a(x0

a, x
0
m, T0) < 0.

Case 1: (x0
a, x

0
m) ∈ Ωa, i.e. f0a(xa, xm, t) attains a non-positive minimum in the interior of

Ωa. Then by the strong parabolic maximum principle (shown in the following subsection),
f0a(xa, xm, t) ≡ 0 in ΩT0 . This contradicts the initial condition that f0a(xa, xm, t0) > 0 in
proposition 6.10. Case 2: x0

a = x, i.e. f0a(xa, xm, t) attains a non-positive minimum on
the boundary of Ωa. Then, it follows that ∂

∂t
f0a(x−, x0

m, T0) ≤ 0. Now consider the region
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Ωb×(t0, T0]. Similar to the arguments in the first case, f0b(xa, xm, t) attains its minimum value
on the boundary x = x or x = x. Note that f0b(x, xm, t) = 0 always holds by the absorbing
boundary condition in (6.10), thus, f0b(xa, xm, t) also attains its minimum on x = x. Note
that f0a(x, xm, t) = f0b(x, xm, t) always holds by the continuity condition in (6.12), thus,
f0b(x+, x0

m, T0) is also the minimum value in Ωb × (t0, T0]. Hence, ∂
∂t
f0b(x+, x0

m, T0) ≥ 0.
Then, by the flux conservation condition in (6.9), it follows that

∂

∂xa

f1b(x+, xm(t), t) = ∂

∂xa

f0a(x−, xm(t), t) − ∂

∂xa

f0b(x+, xm(t), t) ≤ 0,

which contradicts the absorbing condition in (6.10).

Therefore, f0a(x0
a, x

0
m, T0) ≥ 0 always holds, i.e. f0a(xa, xm, t) is always non-negative for all

(xa, xm) ∈ Ωa, t ∈ (t0, T ].

Well-defined denominator of the controller

Proposition A.1. Suppose f0a(xa, xm, t0), f0b(xa, xm, t0), f1b(xa, xm, t0), and f1c(xa, xm, t0)
are all C2,1 functions and have uniformly continuous 2nd-order partial derivatives on bounded
subsets in each region. Furthermore, assume that ∀xm ∈ R, f0a(xa, xm, t0), f0b(xa, xm, t0),
f1b(xa, xm, t0), and f1c(xa, xm, t0) are strictly positive, except f0b(x, xm, t0) = 0, f1b(x, xm, t0) =
0 at t0. And finally, suppose that they also satisfy the boundary conditions in (6.9), (6.10),
(6.11), (6.12), and the probability conservation property in (6.13). Then, the denominator in
the controller (6.20) will always be positive in [t0, T ], 0 ≤ t0 < T < ∞.

Proof. (prove by contradiction) Suppose there exists some T0 ∈ (t0, T ] such that the denom-
inator is zero, i.e.

∫ +∞

−∞
f0a(x, xm, T0)dxm +

∫ +∞

−∞
f1c(x, xm, T0)dxm = 0. (A.5)

It is shown that the probability density functions (PDFs) are always non-negative, i.e.

f0a(xa, xm, t) ≥ 0, f1c(xa, xm, t) ≥ 0, ∀(xa, xm, t) ∈ R × R × [t0, T ].

This fact is validated in the Section A or the readers can refer to [10]. Together with (A.5),
it follows that:

f0a(x, xm, T0) = 0,∀xm ∈ R,

f1c(x, xm, T0) = 0,∀xm ∈ R.
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Therefore,

∂

∂xa

f0a(x−, xm, T0) ≤ 0, ∂
∂xa

f0b(x+, xm, T0) ≥ 0.

∂

∂xa

f1c(x−, xm, T0) ≤ 0, ∂
∂xa

f1b(x+, xm, T0) ≥ 0.

Based on the flux conservation condition in (6.9), it follows that

∂

∂xa

f1b(x+, xm(t), t) = ∂

∂xa

f0a(x−, xm(t), t) − ∂

∂xa

f0b(x+, xm(t), t) ≤ 0,

∂

∂xa

f0b(x−, xm(t), t) = ∂

∂xa

f1c(x+, xm(t), t) − ∂

∂xa

f1b(x−, xm(t), t) ≤ 0,

which contradicts the absorbing condition in (6.10). Hence, the denominator in the control
scheme (6.20) will never be zero.
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