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RÉSUMÉ

La recherche de molécules médicales est une tâche coûteuse en terme de temps et de res-
sources. Considérant que la majorité des molécules possibles ne sont pas désirables, l’utilisation
d’un mécanisme automatisé tel que l’apprentissage automatique gagne en popularité pour fil-
trer les candidats ou pour trouver des molécules ayant des propriétés particulières. Par contre,
de tels mécanismes ne garantissent pas de respecter les propriétés qu’on essaie de leur faire
apprendre.

SMILES est une représentation uni-dimensionelle couramment utilisée dans le domaine de la
chimie ainsi qu’en apprentissage automatique.

Dans notre recherche, nous proposons un modèle de programmation par contraintes qui per-
met de représenter les molécules organiques en utilisant la représentation SMILES. Ce modèle
met de l’avant la contrainte grammar comme principale composante pour la représentation
valide de molécules.

On démontre comment certaines propriétés chimiques, comme le poids moléculaire et la
lipophilicitée, peuvent être représentées en programmation par contraintes dans notre modèle.

On répond aussi au manque de garanties dans les modèles d’apprentissage automatique en
utilisant notre modèle neurosymbolique GeAI-BlAnC. Les probabilités qu’apprend le modèle
d’apprentissage automatique sont mélangées avec les probabilitées marginales calculées à
partir de notre modèle de programmation par contraintes augmentée avec de la BP lors
de la génération de séquence. Le prochain jeton que l’on génère est choisi à partir de la
distribution de probabilités obtenue à partir du modèle. Nos expérimentations sur ce modèle
hybride montrent qu’on réussit à respecter la struncture imposée après l’entrainement du
modèle sans trop s’éloigner de la structure apprise lors de l’apprentissage.
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ABSTRACT

Drug discovery is a very costly endeavor in both time and resources and, unfortunately, most
possible molecules are not desirable. Using automated techniques such as Machine Learning
has become standard to reduce the number of likely candidates or to target specific types of
molecules. However, these techniques offer no guarantees that such targets are reached.

Among the standard formats used to encode molecules, SMILES is a widespread string
representation that has gained traction in both Machine Learning and chemistry circles. We
propose a constraint programming model showcasing the grammar constraint to express the
design space of organic molecules using the SMILES notation. We show how some common
physicochemical properties — such as molecular weight and lipophilicity — and structural
features can be expressed as constraints in the model.

We also address the lack of guarantees in Machine Learning models by using our neurosym-
bolic framework GeAI-BlAnC. The learned probabilities of the sequence model are mixed in
with the marginal probabilities from a constraint programming / belief propagation frame-
work at inference time. The next predicted token is then selected from the resulting probabil-
ity distribution. Experiments on this hybrid model show that we can achieve the post-training
imposed structure without straying too much from the structure of the dataset learned during
training.
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CHAPTER 1 INTRODUCTION

Drug discovery is a very time-consuming and costly endeavor due to its enormous design
space — estimated to contain between 1023 and 1060 different molecules [1] — and to the
lengthy and failure-fraught process of bringing a product to market. Automated molecule
design is nowadays a vital part of drug discovery and material science, with computational
approaches coming from deep generative models and combinatorial search methods [2]. It
aims to extract from this huge design space the most likely candidates according to some
desired properties. Even among these, only a few may lead to a usable product after extensive
testing.

SMILES, a one-dimensional encoding of molecules, is one of the standards commonly used
by this research community. It lends itself well to techniques used for Natural Language
Processing (NLP), such as sequential generative neural models. LLMs in particular have
come to the forefront of popular attention as impressive tools for generating text. However,
this generation isn’t limited to purely human languages as we can train the model on another
text format, such as SMILES, and get a model capable of generating molecules.

SMILES also lends itself very well to CP. CP seems like a natural approach to molecule
discovery since it allows hard constraints to be placed which could ensure only valid molecules
are generated. Using a Context-Free Grammar (CFG) and a few additional constraints could
allow us to describe valid SMILES strings in a CP model. We also believe it may be possible
to model desirable molecular properties using CP, thus allowing our model to restrict its
search even further. This allows us to explore the huge design space of possible molecules
while adding constraints in order to restrict that space to suitable candidates.

This CP approach, which excels at imposing hard rules and long-term structure while lacking
the informed decision making that trained models gain from the dataset used, could allow us
to answer one of the issues with sequence models in Machine Learning (ML). Often times,
these models struggle to exhibit long-term structure, stemming in part from the token-by-
token nature of the prediction process used to generate a sequence. In other words, these
models do not explicitly learn the hard rules that determine validity nor desirability and
merely mimic what was observed.

While this problem can be addressed at training, by changing what the model is trained on
such that it can better learn the structure, there is no guarantee that the desired structure
will be respected. We wish to introduce a Constraint Programming with Belief Propagation
(CPBP) model at inference time (generation) to enforce the presence of the desired structure,
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which is critical if it is mandatory [3, 4]. We will discuss this further in Chapter 4 of our
work.

This combination of CP and ML, which will be seen in Chapter 5, could allow us to target
properties and structures that the model was never trained to generate while still maintaining
advantages of the original model. Another point of interest, the combined model could
introduce constraints that the base ML model was not trained on. This allows the satisfaction
of these new constraints while avoiding the retraining of the model, which can be costly with
larger models.

This combination of both techniques could lead to valid, realistic and property-constrained
molecules. However, there is a balance to maintain as we do not wish to stray too far from
what was featured in the training dataset in order to respect the imposed constraints. This
is particularly difficult for long-term structure, which requires balancing foresight over many
yet-to-be generated tokens and the immediacy of next-token predictions from the sequence
model.

1.1 Problem Statement

As mentioned previously, drug discovery is both time-consuming and costly and automated
drug discovery has been an important field of research to reduce these costs. While ML
methods have been gaining a lot of popularity in the field, those techniques suffer from a
lack of long-term structure [5, 6]. To address this, CP is a natural answer since it provides
the lacking long-term structure.

However, while CP is used in the domain [7–10], there isn’t much work relating to generating
molecule candidates using CP.

We believe that a CP model would be beneficial and would reduce the number of invalid
molecules generated.

More importantly however, a CP model that generates valid molecules could then be used
to target property-specific molecules using constraints to eliminate undesirable options.

The issue of using CP for this problem is the size of the search space to explore. By using
BP, we believe that the search will be better guided towards a solution and require less
backtracking. However, it remains to be seen if the added cost for the BP increases the
overall time to solve the task.

Finally, we believe that by combining a trained token-by-token generating ML model with
our CPBP model, we might get molecules similar to what is being used today (molecules in
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datasets) while still maintaining the long-term structure in the CP model.

1.2 Research Questions

During our research we will answer the following questions:

1. Can we use CP to model valid molecules in a one-dimensional encoding?

2. Can we use CP to model desirable molecular properties in that encoding?

3. Can Belief Propagation be used to better guide a solver towards a solution?

4. How can we combine a CP model with a NLP model to improve the realism of generated
sequences and is it an effective method?

1.3 Thesis Outline

The rest of this thesis is organized in the following chapters:

• Chapter 2 goes over the necessary concepts to understand the rest of the thesis.

• Chapter 3 reviews the state of the art.

• Chapter 4 presents our base CP model as well as constraints to represent: validity,
structure and desirable molecular properties. This will address our first three research
questions.

• Chapter 5 details how we combine our CP model with a NLP model. This will answer
our fourth research question and further address our third one.

• Chapter 6 goes over the thesis’s contributions, its limitations and potential ways to
improve this in future work.
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CHAPTER 2 BACKGROUND

This chapter will go over necessary notions for the rest of the work. We cover CFG as
they are important for our implementation, the chemistry notions needed to understand
our application to molecule generation, the basics of Constraint Programming and a brief
overview of NLP concepts that come up in our work.

2.1 Context-Free Grammar

A Context-Free Grammar is a set of rewrite rules used to generate strings. Formally, gram-
mar G = (N , Σ,R, S) is defined, respectively, by a set of nonterminal symbols N , a set
of terminal symbols (its alphabet) Σ, a set of production rules R, and a start symbol S.
We denote L(G) the language recognized by G i.e. the set of strings that grammar can
generate. According to Chomsky’s classification, there are many types of grammars, ranging
from least to most restrictive: Recursively Enumerable (Type-0), Context-Sensitive (Type-1),
Context-Free (Type-2) and Regular (Type-3). For a grammar to qualify as context-free, its
production rules must respect two restrictions: the left-hand side of the production must be
a single nonterminal, and the right-hand side must be a string of terminals and nonterminals.

The classic example of a CFG is one where we match opening and closing parentheses. This
becomes necessary later to ensure the validity of the generated molecules.

As an example of a CFG, take the grammar defined as follows:

N = {S, A, B, C}

Σ = {⟨, ⟩}

R = { 1 S → SS, 2 S → AC, 3 S → BC, 4 B → AS, 5 A→ ⟨, 6 C →⟩}

S = S

This context-free grammar recognizes correctly bracketed words such as “⟨⟨⟩⟩”, obtained by
the successive application of rules: S

3→ BC
4→ ASC

6→ AS⟩ 2→ AAC⟩ 5→ A⟨C⟩ 6→ A⟨⟩⟩ 5→
⟨⟨⟩⟩. Some of these rules could have been applied in a different order, but all such orderings
correspond here to the same parse tree (the red one in Figure 2.1).
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S

B

S S S

A A AC C C

⟨ ⟨ ⟨⟩ ⟩ ⟩

Figure 2.1 Grammar parse tree for the two words of length 4 recognized by the grammar
shown in Section 2.1. The first word is shown in red (solid line), the second is in blue (dotted
line).

2.2 Chemistry

This section will detail different important notions in organic chemistry needed to understand
the rest of this work.

2.2.1 Chemical Notation

Atoms are the building blocks of molecules and the bonds they can make are what allows the
formation of complex structures. In organic chemistry, the atoms of interest are: Boron (B),
Carbon (C), Nitrogen (N), Oxygen (O), Fluorine (F), Phosphorus (P), Sulphur (S), Chlorine
(Cl), Bromine (Br) and Iodine (I). The number of bonds an atom can make is limited by the
electrons in its valence shell, also called valence electrons. This valence shell refers to the
outermost layer of electrons.

A valence shell is made up of multiple subshells of different energy levels: 1s, 2s, 2p, 3s, 3p,
3d, etc. Each of these subshells can hold a different number of electrons and the valence
shell of a given atom is said to be complete when the outermost subshells are full. This often
comes back to reaching the configuration of a noble gas, which are the rightmost atoms in
the periodic table.

Having a complete valence shell is the stable configuration that most atoms tend towards.
To achieve this, atoms will make ionic bonds, a bond where an electron is taken from another
atom, or covalent bonds, a bond where an electron is shared by two atoms. In the case of
organic molecules, we will usually only consider covalent bonds.

If we take Hydrogen and Carbon as examples, two of the more common atoms in organic
chemistry, they need one and four more electrons respectively to complete their valence
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shell. The earlier atoms used in organic chemistry have the following number of valence
electrons: Boron has 3; Carbon has 4; Nitrogen and Sulfur have 5; Oxygen and Sulphur
have 6; Fluorine, Chlorine, Bromine and Iodine have 7. They can do this by making the
corresponding number of covalent bonds required to complete their valence shell (commonly
represented as line segments between atoms; see e.g. Figure 2.2A).

As seen in Figure 2.2B, to reduce the visual clutter of molecular graphs, Carbon and Hydrogen
atoms are omitted. Carbon atoms are simply vertices with no letter indicating anything and
Hydrogen atoms are implicitly present to complete the valence shell of any atoms that appear
to be missing a bond.

2.2.2 Hydrogen Bonds

Hydrogen bonds are inter-molecular bonds caused by polarized molecules. They require a
donor and an acceptor. Covalent bonds do not always equally share the shared electron,
specifically, the more electronegative an atom is, the more it pulls on the shared electron.
The electronegative atoms that interest us in the context of organic molecules are: Fluorine
(F), Sulphur (S), O (Oxygen) and N (Nitrogen).

The donor is an electronegative atom linked to a Hydrogen atom. By pulling on the shared
electron more than the Hydrogen atom does, the electronegative gains a partial negative
charge. Inversely, the Hydrogen atom gains a partial positive charge.

The acceptor is an electronegative atom with a free electron pair on its valence shell. This
electron pair, can then attract the partially positively charged Hydrogen from the donor.

This attraction, between two different polarized molecules, is what we call a Hydrogen bond.
The most famous example of this is in water and is the reason for many of water’s interesting
properties (cohesion, high boiling point, high heat capacity, surface tension, expands when
frozen, etc). In this case, the Oxygen atom is both the donor and the acceptor. The Oxygen
atom, acting as the acceptor, is negatively charged and can attract the positively charged
Hydrogen atoms from other water molecules. The same atom will donate its positively
charged Hydrogen atoms to other Oxygen atoms.

2.2.3 Molecule Encodings

Molecules can be encoded in many different ways. Two common methods are representing
molecules as graphs or as one-dimensional strings. We will be using a one-dimensional en-
coding in our work to simplify the representation and potentially allow a combined model
using NLP models. We will present different one-dimensional encodings used in the molecule



7

Figure 2.2 Deriving a SMILES representation for a molecule (reproduced in part from [11]).
The structural formula of the molecule (A), its skeletal formula stripped of all hydrogen
atoms and with broken cycles (B), the selected main path (shown in green) and branches
(C), and the corresponding SMILES notation (D).

discovery field.

InChI

International Chemical Identifier (InChI) is a notation standard introduced by the Inter-
national Union of Pure and Applied Chemistry (IUPAC) [12]. It provides a unique one-
dimensional representation of the molecule. The encoding contains information on both the
structure and certain properties of the molecule. This representation was not adopted by
the automated molecule discovery research community because of its low readability by both
humans and machines. Instead, it has become commonly used in indexing and searching
tasks (e.g. databases).

SMILES

SMILES is a one-dimensional string representation for molecular encoding [13]. This en-
coding is much simpler than InChI, only maintaining the structural information required to
reconstruct the molecule. However, any lost information can be recovered using different
techniques. Admittedly, the process can be difficult and time-intensive to guarantee accurate
results.

If we picture a molecule as a graph where every vertex is an atom, a SMILES string would be
the order in which we explore a tree representation of the graph using a Depth-First Search
(DFS). Since SMILES is a DFS over a tree, any cyles that were in the original graph would be
lost. Thankfully, SMILES considers this by designating a specific token to represent broken
cycle bonds. This prevents losing the cycles when we convert the graph into a tree. These
tokens are represented by number tokens as seen in Figure 2.2B and, later, in D. Similarly,
when we reach a branching path in the tree, one side is chosen as the main branch, which is
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Encoding Representation
InChI InChI=1S/C17H18FN3O3/c18-13-7-11-14(8-15(13)20-5-3-19-4-6-

20)21(10-1-2-10)9-12(16(11)22)17(23)24/h7-10,19H,1-6H2,(H,23,24)
SMILES N1CCN(CC1)c(c(F)c2)cc(c2c4=O)n(C3CC3)cc4C(=O)O

canonical SMILES O=C(O)c1cn(C2CC2)c2cc(N3CCNCC3)c(F)cc2c1=O
DeepSMILES O=CO)ccnCCC3)))cccNCCNCC6))))))cF)cc6c%10=O

SELFIES [N][C][C][N][Branch1][Branch1][C][C][Ring1][=Branch1][C][Branch1]
[=Branch1][C][Branch1][C][F][=C][=C][C][=Branch1][=Branch1][=C]
[Ring1][Ring2][C][=O][N][Branch1][=Branch1][C][C][C][Ring1][Ring1]
[C][=C][Ring1][Branch2][C][=Branch1][C][=O][O]

Table 2.1 Different encodings of the molecule shown in Figure 2.2. DeepSMILES could not
originally encode the SMILES string, we converted the molecule to canon SMILES for it to
encode it correctly.

shown in green in Figure 2.2C, while the other side is written between parentheses to indicate
that it is a branch.

A very common concept in organic chemistry is aromatic rings. These are usually 5 or 6 atoms
in a ring, the ring bonds alternate between single and double bonds. Due to their frequency,
the SMILES language has started using a shorthand for it by writing atoms in aromatic rings
using lowercase letters. This allows us to omit the alternating single and double bonds during
writing and makes aromatic rings much more visible when reading a molecule. Kekulized
SMILES keeps these bonds explicit, but non-kekulized SMILES is preferred.

This encoding has gained a lot of popularity in the automated molecule discovery research
community due to its age and ease of readability. Since its introduction, it has become the
most popular string representation in automated discovery. However it comes with certain
issues that we must address. Unlike InChI, SMILES does not offer a unique encoding for
each molecule. It is therefore possible to generate two different strings that describe the
same molecule. Another prominent issue is linked to SMILES’ special tokens. By requiring
an opening token, as is needed to describe cycles, branches and isotopes (which we did not
describe), any string that does not have corresponding open and close tokens is syntactically
invalid.

This can be problematic in token-by-token generation if these rules are not hard constraints,
which is the case in ML techniques since they lack the ability to impose long-term structure.

SMILES also has no check on the valence shells of the atoms within it. For example a Carbon
atom, which wants to make 4 bonds to complete its valence shell, could be placed in such a
way that it has 6 bonds.
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There are some ways to generate canonical SMILES strings (i.e. unique for a given molecule),
however no consensus has been reached on which method to use.

We use the SMILES encoding in our work, mainly due to its popularity within the automated
molecule discovery community, which allowed us to find documentation and tools that helped
during the work. We will present two other molecule encodings that were introduced to
resolve issues within SMILES, but they were not used due to their relatively new appearance
and, consequently, to their smaller research community.

DeepSMILES

DeepSMILES was introduced to answer some of SMILES’ shortcomings [14]. It changes how
branches and cycles are represented so that only one token is required. Instead of representing
cycles using numbers as tags, they instead use numbers to indicate the size of the cycle and
place the number at the end of the cycle. Similarly, branches no longer require opening
branch tokens, instead they place as many branch closing tokens as there are atoms in the
described branch.

Unfortunately, DeepSMILES is not perfect and sometimes fails to encode a molecule cor-
rectly [14]. The example molecule used in Figure 2.2 cannot be directly converted into
DeepSMILES from its SMILES format. This is a big issue, since the encoding could fail
based on which bond in a cycle we choose to break to convert the graph into a tree. How-
ever, this can be avoided by first converting the molecule to canonical SMILES. The molecule
still has an encoding in DeepSMILES, as shown in Table 2.1.

SELFIES

Similarly to DeepSMILES, SELF-referencIng Embedded Strings (SELFIES) [15] was intro-
duced specifically for ML applications, its language having been designed to minimize syntax
invalidity and simplify the structure for ML models.

To resolve some of SMILES’ syntax problems (i.e. branch and cycle invalidity), it associates
each token to a numeric value. It then overloads the tokens following cycle or branch tokens,
replacing them by their numeric value. In the case of branches, they place the token at the
start of the branch and the overloaded value tells us how many of the future tokens are a
part of this branch. For cycles, the token is placed at the end of the cycle and the overloaded
value indicates how many atoms back we have to go to find the start of the cycle.

Another important difference is that all tokens are described between square brackets to
remove some ambiguity. In SMILES, the square brackets are omitted for common atoms to
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improve readability.

2.2.4 Lipinski’s Rule of Five

Lipinski’s Rule of Five is a set of rules describing properties that orally administered drugs
tend to respect. While there are only four rules, each rule contains a value that is a multiple
of five, which is where the name comes from.

The rules are as follows:

• The molecular weight must not exceed 500 Daltons.

• There must not be more than 10 Hydrogen-bond acceptors.

• There must not be more than 5 Hydrogen-bond donors.

• The logP must not exceed 5.

The molecular weight is the simplest property to understand. By limiting the weight
of the molecule, we tend to avoid molecules that are too large. It is important to note that
Daltons are on a one-to-one scale with g/mol, which is the more commonly used unit.

Hydrogen-bond acceptors as seen in section 2.2.2, are electronegative atoms (e.g. F, S,
N, O) with a free electron pair on their valence shell to act as an acceptor for the Hydrogen-
bond.

Hydrogen-bond donors as seen in section 2.2.2, are electronegative atoms linked to a
Hydrogen atom. This Hydrogen atom will allow the Hydrogen-bond with an acceptor.

The logP is an evaluation of how lipophilic or hydrophobic a molecule is, i.e. how easily
the molecule dissolves in fats as opposed to water. This is relevant when trying to control
how a drug is absorbed in the human body.

2.3 Constraint Programming

Constraint Programming is a complete, heuristic guided search method which excels at ensur-
ing the respect of constraints while generating a solution. It is complete in that if a solution
exists in a given search space, a CP model is guaranteed to find it. By using heuristics as well



11

as constraint propagation (more on that later), it can be much faster than a simple brute
force of all possible solutions.

We will first define how a simple CP model functions. We will cover the initial problem
declaration, the constraint declaration to describe the problem and finally the solving process
and its intricacies (constraint propagation, branching decisions, backtracking). Once that is
covered, we can expand on this topic by introducing CPBP [16] which is an improvement
over standard constraint propagation and leads to more informed decisions. We use CPBP
in our work since it tends to yield better results and allows for the combination with a ML
model as we will describe later.

2.3.1 Used Constraints

All Different Constraint

The AllDifferent constraint takes a single parameter:

• X: a set of variables.

It does exactly as its name implies and ensures that the variables within its scope are each
assigned a different value.

AllDifferent(⟨X1, X2, . . . , Xn⟩)

Among Constraint

The Among constraint takes three parameters:

• X: a set of variables,

• V : a set of values whose occurrences we count in the variables X,

• o: a set of variables indicating the allowed occurrences of the corresponding value in V .

It ensures the values in V appear in X as many times as indicated by the corresponding
occurrence variable in o.

Among(⟨X1, X2, . . . , Xn⟩, {V1, V2, . . . , Vm}, {o1, o2, . . . , om})
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Element Constraint

The Element constraint takes three parameters:

• V : an array of size m,

• X: a variable whose domain represents indices to array V ,

• Y : a variable which will be constrained to take a value from V .

It binds the value of Y to the value in V indexed by the value of X. In other words, if X

had a value of i, then we would attempt to assign Vi to Y .

Element([V1, V2, . . . , Vi, . . . , Vm], X, Y )

Regular Constraint

The Regular constraint gets its name from the regular languages that it models in CP. It
usually takes four parameters:

• X: a set of variables whose domains are the alphabet of the automata,

• A: a transition matrix mapping each state to the next appropriate state given an input
value. For a given state, s, and value v, the next state, s′, is determined as follows:
A[s][v] = s′,

• S: an initial state,

• f : a list of final states. This parameter can be omitted in the case where all states are
valid accepting states, which is the case in the Regular constraints used in our work.

Starting at the initial state, we use the value of the next variable (i.e. the first one) in the
sequence to map towards the next state. The constraint is respected if our last variable leads
to an accepting state. In other words, a solution to this constraint will always be an accepted
word from the regular language of the automata.

Regular(⟨X1, X2, . . . , Xn⟩,A, S, [s1, s3, . . .])
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Cost Regular Constraint

The CostRegular constraint takes the same four parameters as the Regular constraint,
however it takes two supplementary values:

• W : A matrix indicating the associated weight to each state transition in A,

• t: A variable whose domain constrains the minimal and maximal allowed cost.

Similarly to the Regular constraint, we go through the state machine using the value of
each variable to determine the next state to visit. However, we now have two conditions to
respect. First, we still have to end on a valid accepting state as was the case previously.
Second, our final cost must be in the domain of our total cost variable, t. We represent
the domain of the t variable underneath the CostRegular constraint. For the sake of our
example, we define t− and t+ as the minimal and maximal value respectively.

CostRegular(⟨X1, X2, . . . , Xn⟩,A,W , S, [s1, s3, . . .], t)

t− ≤ t ≤ t+

Grammar Constraint

The Cfg constraint takes two parameters:

• X: a set of variables,

• g: a Context-Free Grammar (CFG).

It ensures that the values assigned to the variables represent a word from the given grammar’s
recognized language.

This constraint is critical to our work as it allows us to represent our molecule encoding as
a CFG, guaranteeing that generated sequences are a word in the recognized language.

Cfg(⟨X1, X2, . . . , Xn⟩, g)

Sum Constraint

The Sum constraint takes two parameters:
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• X: a set of variables,

• Y : a variable that represents the sum of the values of variables X.

This constraint constrains the sum of the values of the variables in its scope to be within the
domain of the variable Y . We represent the domain of the Y variable underneath the Sum
constraint. For the sake of our example, we define y− and y+ as the minimal and maximal
value respectively for variable Y .

Sum(⟨X1, X2, . . . , Xn⟩, Y )

y− ≤ Y ≤ y+

Table Constraint

The Table constraint takes two parameters:

• X: a set of variables,

• T : a table of recognized tuples.

The Table constraint ensures that the given variables are assigned values such that there is
a matching tuple in the table T .

Table(⟨X1, X2, . . . , Xn⟩, T )

Short Table Constraint

The ShortTable is an improvement on the Table constraint and takes the same two
parameters. It allows the use of a wild card token in the table. We use this to compress a
very large table in our work (Chapter 4).

2.3.2 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined in three parts:

• The variables making up the problem, defined as the finite set X

• The domains of these variables, defined as a finite set of values D. Each variable can
have its own domain
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• The constraints, each of which is applied to a subset of the variables, defined as a set
of constraints C.

There are a finite number of variables defined in the set X . Each of these variables has its
own domain as is defined in the set D, which contains the possible values that a variable
may take on. Finally, we define a finite number of constraints, each of which is applied
on a subset of the variables. Each variable must then be assigned a value from its domain
such that it respects all the applied constraints. If such an assignment is possible for all the
variables, that is a solution to the problem.

If we take the Sudoku problem as an example, a classic and very commonly seen problem,
we can define it as a CSP as follows. Our variables will be each tile in the 9x9 grid. While
this gives us the layout of our problem, we must define the possible values for each variable
to be able to solve this problem. All the variables can take on the same values and so we can
define the domain as being the integer values between 1 and 9 inclusively.

We could represent this using a 2-dimensional array of variables like so:

tile[i][j] ∈ {1, 2, . . . , 9} | i, j ∈ {1, 2, . . . , 9} (2.1)

All that is missing are the constraints, which are the source of the complexity of the problem.

The constraints in a Sudoku are fairly straightforward, lines, columns and all 3x3 sub-grids
within the total grid may not contain any repeat values. In the CP community, this type of
constraint is very common and is called an AllDifferent constraint. The Sudoku problem
would therefore have the following constraints:

AllDifferent(tile[1][j], tile[2][j], . . . , tile[9][j]) ∀ j | j ∈ {1, 2, . . . , 9}

AllDifferent(tile[i][1], tile[i][2], . . . , tile[i][9]) ∀ i | i ∈ {1, 2, . . . , 9}

AllDifferent(

tile[3u + 1][3v + 1], tile[3u + 1][3v + 2], tile[3u + 1][3v + 3],

tile[3u + 2][3v + 1], tile[3u + 2][3v + 2], tile[3u + 2][3v + 3],

tile[3u + 3][3v + 1], tile[3u + 3][3v + 2], tile[3u + 3][3v + 3],

) ∀ u, v | u, v ∈ {0, 1, 2}



16

Overall, we would need 81 variables to define this CSP as well as 27 constraints. Each of our
variables could take on any of the 9 possible values in their domain.

2.3.3 Domain Filtering

As mentioned in the previous section, each constraint is applied to a subset of the variables
in the problem definition. When a constraint is declared, a filtering algorithm that is specific
to that constraint will eliminate values that are inconsistent.

The simple example below illustrates how a constraint can filter a variable’s domain after
being declared.

x ∈ {2, 3, 4}

y ∈ {1, 2, 3}

x ≤ y

x ∈ {2, 3, A4}

y ∈ {A1, 2, 3}

Both variables initially contained a value that would always breach the constraint if chosen.
A value such as that one is said to have no support, i.e. there are no solutions to the current
constraint that contain this value. A visual representation of this can be seen in Figure 2.3,
where a constraint is applied to two different variables and both have their domain filtered.
While we do not know all the solutions to a problem in all cases, we can use logical processes
to determine values that would guarantee a breach of the constraint.

2.3.4 Constraint Propagation and Backtrack Search

Now that we have declared our constraints, the solver begins propagating the consequences of
these constraints. Each constraint in the queue communicates to the variables it affects which
values in the domain have to be filtered out. Once a variable’s domain has been changed, it
notifies the constraints that are affected by the change and those constraints are then added
to the queue again.

The solver continues propagating the consequences of the constraints and updating domains
until it reaches one of three situations:

1. The queue is empty, but there remain unassigned variables.
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Figure 2.3 A constraint is declared on both variable X and Y . Valid combinations to the
constraint are illustrated by green points on the grid. Values that have no support (no solution
to this constraint contains these values) are removed from the domain of the variable. This
can be seen as a projection of the solution space onto the domain of each variable.

2. All variables have been assigned a value, this is a solution to the problem.

3. One of the variables’ domain has been completely filtered, there is no solution in the
current state of the problem.

In the first case, there is nothing else to deduce with the information currently available and
the solver has to make a branching decision from the current state. Any time we reach one
of the three cases above, we can consider that state as being a node in the search tree. The
solver makes a branching decision from the current node and propagates the consequences of
this decision until it reaches another node to handle.

In the second case, the solver has found a solution and can add it it the solution set. Once
the solution has been found, we backtrack to the previous node in the search tree and search
along the other branches.

Finally, if we reach an unsatisfiable state, the solver backtracks to the previous node and
continues its search from there.

Since we have a finite number of values, we know that this process will eventually end and
we will either find a value that respects the constraint, or, find that the constraint cannot be
satisfied.

To continue with the example of a Sudoku, a classic way humans continue solving, once
they reach a dead end in their reasoning, is by assigning a value to a tile and seeing if they
reach a contradictory state. If they do, then they know their choice was wrong and they can
eliminate that possibility.
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2.3.5 Marginals-Augmented Constraint Programming

In an ideal world, if we knew every possible solution to a problem, we could use the values
within the solution to inform our search and avoid bad branching decisions. This is especially
useful when we consider bigger problems that might have a huge combinatorial space to
explore.

Marginals-augmented constraint programming is the idea of guiding our branching decisions
by counting the number of solutions to a constraint that contain a given value for a given
variable as seen in Figure 2.4. The difficulty of this task is that it requires an efficient
algorithm which can predict the number of solutions without finding and enumerating all
possible solutions to the constraint.

2
2
2
2

1
5

2

3 3
2

5

2
1

Figure 2.4 Taking the same example as in Figure 2.3, we can count how many valid solutions
contain a given value for both variables X and Y . The numbers seen on the left and the
bottom of the grid indicate the number of solutions containing the value. This can help guide
our branching decisions towards solution-dense regions in the search space.

One use of these marginals is to change standard constraint propagation to contain more
information. BP does this by modifying the message that constraints send variables. Instead
of sending a message containing a binary representation of which values in the domain have a
support, the messages are modified to communicate the probability of a value being contained
within a solution as seen in Figure 2.5. This allows the solver to avoid branching on values
that have a very small chance of being valid.

When multiple constraints interact on one variable, they each simultaneously communicate
to the variable what they estimate the probability distribution to be. The variable then
merges these probabilities into the final values as seen in Figure 2.6.
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Figure 2.5 BP replaces standard constraint messages, which consist of a binary message
indicating which values are supported in the domain, with a probabilistic distribution over
the domain. As we can see, instead of communicating that the value c for variable X lacks a
support, the blue constraint communicates that X = c has a 0% chance of being in a valid
solution. This ensures that we can still communicate what values must be filtered out, but
we also gain information on the other values in the domain.
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Figure 2.6 The variables which are affected by multiple constraints (X and Z) merge the
communicated probabilities that were communicated by the different constraints. X filters
out the value c and Z filters out b, as was communicated by the constraints seen in Figure 2.5.

2.4 Neural Networks for Natural Language Processing

This section will give simplified descriptions of different necessary notions for this work.

2.4.1 Neural Network

Neural Networks are a Machine Learning architecture that get their name from their resem-
blance to a brain. Similarly to a brain, a Neural Network (NN) has neurons that communicate
with each other to learn how to solve the task at hand. The simplest network we can make
is made up of one input layer and one output layer. To improve the learning capabilities of
this model, we can add hidden layers, which are neuron layers between the input and output
ones. A model which has more than 2 hidden layers is called a Deep Neural Network.



20

The input layer contains as many nodes as the problem has inputs, each node representing
one value. Similarly, the output layer contains as many nodes as there are outputs in the
problem. A model can contain any number of hidden layers, each of which is made up of
any number of nodes. Each node in a hidden layer takes its inputs from every node in the
previous layer and, inversely, sends its output to every node in the next layer.

In a standard model, the node sums up the product of all the inputs and their associated
weight before applying an activation function to the sum. This result is the node’s output and
will be passed on to the next layer where it will be used as the input in a similar operation.
For the model to learn complex relations, it is critical that the activation function used is
non-linear. If the activation function were linear, the entire model would collapse back into
a simple linear equation.

To find the right weights, the model must first be trained on a part of the total dataset.
During training, the model computes the error between the expected result and the predicted
one and then backpropagates this error from layer to layer. Each layer then recalculates the
weights of its inputs based on the obtained error before sending a modified message to the
previous layer.

From there, the trained model can be given any problem input and will calculate the predicted
output based on its internal weights.

2.4.2 Transformers

Transformers [17] are a ML architecture based on encoders and decoders. The model first
passes the input through an encoder, that encoded sequence is then used by the decoder to
generate an output one token at a time.

The encoder is made up of multiple identical layers, each composed of two sub-layers: a
multi-head attention layer and a feed-forward network. The multi-head attention layer is an
improvement over standard attention models and allows the model to learn more complex
relations. The input embeddings received by the multi-head attention sub-layer maintain
more context during training and generation by encoding both the input sequence as well as
positional information.

The decoder is also made up of multiple identical layers, each composed of three sub-layers: a
masked multi-head attention layer, a standard multi-head attention layer and a feed-forward
network. The masked multi-headed attention layer’s output is then fed into the next multi-
headed attention layer with the encoded input from the encoder. This is finally passed
through a feed-forward network. The input received by the masked multi-headed atten-
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tion is an embedding which encodes both the current output sequence as well as positional
information on the tokens.

Once this final output is calculated, we apply a softmax on it to get the probabilities for the
next token. This is a type of sequential generation model, capable of generating a sequence
token-by-token by sampling over the given probability distribution.

2.4.3 Large Language Model

LLMs were introduced shortly after the proposal of transformers in 2017. Following trans-
formers, Bidirectional Encoder Representations from Transformers (BERT) [18] was intro-
duced as an encoder-only architecture and can be considered the start of LLMs. However,
this type of architecture came into the limelight with the Generative Pre-trained Transformer
(GPT) models from OpenAI.

The specific GPT model that interests us is the GPT-2 model [19], it is what we use in our
architecture. Similarly to what was introduced for GPT-1 [20], the model is a large decoder
layer, as seen in the transformers. An important difference is that the second multi-head
attention sub-layer is removed from each of the identical layers in the decoder.

These models are usually trained to complete many different tasks, however by training one
on a SMILES dataset, we can get a GPT-2 model to generate molecules based on what it
has seen.
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CHAPTER 3 LITERATURE REVIEW

This chapter will focus on an overview of the state of the art on this topic of research.

3.1 Drug Discovery

Drug Discovery, and molecule design in general, is a vast topic. There are many different
methods that are applicable to the problem.

A recent survey by Du et al. [2] presents various representation formalisms. It covers one-
dimensional representations such as SMILES and InChI as well as two-dimensional and three-
dimensional representations. It describes some of the main problems tackled, and an array
of computational methods used to solve them, mostly generative machine learning but also
combinatorial solvers. They mention the difficulty of exploring little known/seen areas of
the molecular design space (the common out-of-distribution generation issue) and the need
for lots of training data (generation in low-data regime issue i.e. high sample complexity).
They also mention as opportunity the generation of specialized molecules with more complex
structure.

Since our work focuses on this subject, the next sections will give more about interesting
methods and their applications to drug discovery.

3.2 NLP applied to drug discovery

There are many works that have applied NLP to the domain of drug discovery. They use a
one-dimensional representation, as was discussed previously, to represent molecules as words,
allowing standard NLP methods to be used.

Gómez-Bombarelli et al. [21] work on converting molecules from a SMILES representation to
a latent space from which properties can be estimated. An encoder encodes SMILES inputs
into a latent space, a multilayer perceptron model is used to estimate properties from a point
in this latent space and a decoder can take a point in the latent space and parse it back out
into a SMILES string. This allows them to generate new molecules with desirable properties
by: decoding random vectors in their latent space, altering a known molecule’s representation
or combining parts of different known molecule encodings into a new one. Furthermore, by
representing molecules as a latent space, they can use known techniques to search through
a continuous representation while looking for molecules that match the desired properties.
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One such technique is gradient-based optimization. They also test their work using an InChI
representation, but results were unsatisfactory due to the notation’s complexity. However,
this work limits itself to molecules which contain fewer than nine non-Hydrogen atoms.

Schoenmaker et al. [22] propose a SMILES string corrector. This technique would take invalid
outputs from a previous model and fix them. When given an invalid molecule and its valid
representation (i.e. what the molecule should be after it is fixed), the model was generally
capable of getting the right value. While we also wish to address the invalid molecules
generated by a model, we wish to do so at inference time, and we hope to add property
targeting.

Vidal et al. [23] worked on a technique directly inspired from NLP: n-grams. This technique
allows models to learn more context by grouping tokens into what n-grams. They first group
every sequence of two individual tokens together and add the encountered 2-grams to the
language. This process can then be repeated with any sequence of three individual tokens,
for 3-grams, and so on for any given integer. This process can be repeated until the desired
amount of context, in this paper, the authors stop at 4-grams that they call LINGOS. While
they do not use this to generate molecules, they report a decent predictive model using a
linear regression, capable of estimating certain molecular properties. We believe this work
might be relevant to ours as we also wish to estimate the same property, however we wish to
do this directly in our CP model.

Bagal et al. [24] describe different methods that have been gaining traction in the field of
drug discovery, datasets that they use for training and some properties they train their model
to predict. They train their model to generate full molecules when given target properties
and an initial scaffold. They use RDKit1, an open source tool, to calculate a molecule’s
properties and extract the SMILES scaffold to use as an initial sequence. Their model is also
capable of targeting specific structure. While the model trains to predict the logP score of a
molecule, a property we wish to model later on in Chapter 4, it also targets properties that
fall out of scope of our work.

We end by mentioning the work of Guo et al. [25] who recently proposed a sample-efficient
neural method for molecule generation that is based on learning a graph grammar. This is
similar to the method we wish to apply, by using the Cfg constraint.

1https://www.rdkit.org/
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3.3 CP applied to drug discovery

Among combinatorial solvers, the use of constraint programming in this area was pioneered 25
years ago by Krippahl and Barahona for protein structure determination [7]. They showed
that CP can help determine the position of atoms in a molecule. By approximating the
distance between non-hydrogen atoms they infer the shape of the protein.

Later work on protein docking [8] uses CP to prune the search space, allowing a trained
Naive Bayes classifier to find solutions much faster.

Several works consider a particular family of molecules, benzenoids, and exploit their special
geometry when defining their representation in a CP model and expressing various properties
as constraints. Carissan et al. [9,10] add constraints to benzenoid generation in order to model
certain properties such as the number of carbon atoms or the shape of the molecule. They
also formulate the problem of determining local aromaticity as a CSP. Peng and Solnon [26]
improve the enumeration of benzenoid graphs by representing them using short canonical
codes that are invariant to symmetries and rotations, expressed in a CP model. They ensure
the presence of a given pattern by completing a suitably prefixed code. The sequential nature
of these codes, obtained through graph traversal, makes them similar in spirit to the SMILES
notation, though much less general.

In the context of their work on constrained graph generation using CP, Omrani and
Naanaa [27] consider the generation of molecular graphs corresponding to a given molecular
formula.

So despite some prior work involving CP, none address the problem we consider and especially
the use of the Cfg constraint.

3.4 Combining CP with ML

CP is a programming paradigm that allows the user to define constraints that must be
satisfied in a solution. This is in stark opposition to ML as CP guarantees the presence of the
defined structure. This has made a combination between CP and ML an interesting subject
for a while now, as the combination of both technique’s advantages could yield significant
improvements over each technique individually.

Reinforcement Learning in particular has seen a lot of research on this topic, as constraints
can be directly injected into the reward signal [28,29]. This would train the model to respect
the constraints, though still gives no guarantee that it will be respected. Resulting sequences
are more likely to avoid undesirable traits while still reflecting the training data and achieving
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good sample efficiency (i.e. requiring less training data).

However, the field that is of more interest to us is the addition of a constraint module post-
training to a NN, as this resembles our method more.

Lattner et al. [6] use a convolutional restricted Boltzmann machine as a generative model and
enforce constraints as differentiable cost functions that are minimized during the sampling
process to resemble the structure of a reference musical piece. By representing constraints as
differentiable cost functions, they show that they can integrate the constraints to the musical
generation while maintaining the learned local musical coherence of the original model.

Lee et al. [4] use gradient-based inference to adjust the model’s parameters toward the sat-
isfaction of the constraints during inference. They show that by modifying the feed-forward
algorithm of their model, they can give weight to constraints. This modifies the model’s
inner workings and guides the generation towards valid sequences as they demonstrate in
their work.

While these past methods did integrate constraints into their ML model at inference time,
they are not using CP and use different representations. These next methods combine the
two using a CSP as we intend to do.

Paolo et al. [30] introduce a constrained structured predictor expressed in a CP language that
acts as a final layer to a NN. The total model can be trained to finetune the predictions
while enforcing soft and hard constraints during inference. They then compare their hybrid
architecture, Nester to both separate models and find that achieves better results. While
this work uses CP to refine a ML model, it acts on the output of the latter model. Note, this
model is not used to generate, it was used to predict handwriting.

In a CP-driven generation, as we intend to do, [31] builds a CSP incrementally by adding
sequence variables on the fly and limiting their domain to an LLM’s short list of candidate
tokens, queried at each step. Similarly to what we wish to do in our work, they query a LLM
model at each step of the sequence generation and use the most probable returned values to
determine the potential values for the next token. The main difference between us and this
work is that we will modify the probabilities of the next token returned by the LLM by using
BP.

While these are closer to our work, we plan to use CP as a way to modify the message of the
ML model as we generate the sequence token-by-token.

Deutsch et al. [3] do something extremely similar. By expressing commonly-used constraints
in NLP as automata, they filter out inconsistent token values and renormalize the NN’s output
probability distribution accordingly at each step of the generation. This approach allows them
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to apply constraints at inference time to guarantee the satisfaction of given constraints. Our
method is closest in spirit to this as we also modify the output probability distribution by
removing inconsistent values at inference time. However, more importantly, we potentially
change these probabilities relative to each other to reflect the marginal probabilities computed
from the constraints of our CP model. This guides the model towards valid solutions while
maintaining the ML model’s message.

Using CP also offers a variety of constraints, including automata [32], allowing inconsistent
values to be removed at each step through constraint propagation instead of checking the full
completion of the partial sequence with the automata.
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CHAPTER 4 MODELING VALID MOLECULES USING CP

In this chapter, we will put forward a way to model that can represent valid molecules using
CP. As mentioned previously, we choose to use SMILES to encode our molecules. This
is a simple and easy-to-read one-dimensional molecule representation which can easily be
modelled by CP.

We first describe the grammar that was required to describe the SMILES language. This is
the key component that allows our model to generate molecules in the right encoding. We
will then give a formal definition for our model before finally explaining our experiments and
results.

4.1 SMILES Grammar

SMILES was developed for applications in organic chemistry, this can be seen in some of its
rules. For example, the addition of tokens to describe aromatic rings is something that was
added to simplify the notation, specifically due to the common occurrence of these rings.
Another example is that simple atom tokens with no descriptor tokens have an implied
complete valence shell (i.e. the atom is in its stable state). SMILES requires an explicit
indication when an atom does not respect its valence shell, whether it has more or less than
the expected amount. This is why the grammar we chose to use, which is a variation of the
one described by Kraev in his work [33], ensures that atom valences are respected.

Kraev’s original work uses masks in addition to this grammar to completely avoid invalid
outputs. The first mask handles numerical assignment for cycles, guaranteeing that cycles
are numbered correctly. The second mask avoids making cycles that are too small (i.e. cycles
of 2 atoms) and cycles that are too long. They limit their cycle length to 8 based on what
they observe in their database [33].

We address both of these issues by modifying the base grammar (a small sample can be seen
in Table 4.1) and adding new constraints as will be discussed later. The final grammar used
for validity can be seen in Appendix A.

4.1.1 Padding

For the purpose of using this grammar in our CP model, we add padding tokens that can
complete the end of a molecule. This will allow our model to generate any molecule up to
the size instead of giving it a fixed length, allowing for a more versatile model. We chose “_”



28

1 smiles → simple_bond
2 smiles → atom_valence_1 simple_bond
3 smiles → atom_valence_2 double_bond
4 smiles → atom_valence_3 triple_bond

. . .
5 atom_valence_1 → “F”

. . .
6 simple_bond → valence_1
7 simple_bond → valence_2 simple_bond
8 simple_bond → valence_3 double_bond
9 simple_bond → valence_4 triple_bond

. . .
10 valence_1 → atom_valence_1

. . .
11 valence_2 → atom_valence_2

Table 4.1 A small extract from the total grammar. It is used to represent valid molecules.
The rules seen here include the starting token “smiles”. We show how that starting token
can be developed into a growing sequence. A simple example: start with rule 2 and repeat
rule 7 until the sequence is as large as desired. We insert “. . . ” to indicate a jump in lines
from the complete grammar in Appendix A

as our padding token.

An easy way to make this change is to create a new starting token that can be developed
into the old start token and any number of padding tokens (including none). This change
was not influential on the performance of the algorithm and allows for more options during
generation. See Table 4.2 to see the added sequences for this change.

4.1.2 Hydrogen Tokens

Some Hydrogen tokens can be included in the molecule. These can be followed by a number
to indicate the number of Hydrogen atoms present. We change these tokens to directly
include the number. Instead of needing two tokens (“H” and “3”) we now use one token
(“H3”) made up of two characters.

This avoids confusing Hydrogen count tokens for cycle tokens and improves our model’s
understanding of what it is generating.
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1 empty_smiles → smiles
2 empty_smiles → smiles void
3 void → “_” void
4 void → “_”

Table 4.2 Added productions to add padding to our grammar. By creating a new starting
token, “empty_smiles”, we allow our grammar to generate all previous sequences as normal.
However, we also allow any valid sequence of smaller size followed by the void token until
the sequence is full.

4.1.3 Cycle-length Limit

The final required modification we make to our grammar is to limit the cycle length. We wish
to ensure that cycle lengths remain in the desired range (between 3 and 8 inclusively). In
datasets of known drug-like molecules, long cycles are infrequent. In the dataset MOSES [34],
containing near two million molecules, no molecule features anything greater than a length-6
cycle. However, in another dataset containing near 250 thousand molecules, Zinc_250k [35],
we can find up to length-8 cycles. This seems to indicate that long cycles are either undesir-
able or lead to chemically unstable molecules (i.e. molecules that we cannot synthesize).

We achieve this by limiting the number of tokens that a cycle production can be developed
into. This information must be encoded in nonterminals where a larger cycle nonterminal
can be rewritten as an atom and a smaller cycle nonterminal as seen in Table 4.3.

This change alone guarantees that any nonterminal “num” will have another nonterminal
“num” within an acceptable distance. However, this does not guarantee that the nonter-
minal “num” will be developed into the same cycle number. Take the unfinished chain
“CnumCCCCCnumNCnumCCCCCnum” as an example. While we would expect the fin-
ished chain to be “C1CCCCC1NC2CCCCC2”, the current grammar would also accept
“C1CCCCC2NC2CCCCC1”, which results in both cycles being the wrong size.

This was a problem we ran into fairly quickly after applying the cycle size limit changes to
the grammar, resulting in one very long cycle and one small one instead of two appropriate
cycles. The solution was to integrate into the left-hand side of the production information
about which cycle is being developed as can also be seen in Table 4.3.

As Kraev mentions in the original paper [33], this change will make the grammar grow very
quickly in size based on the maximum number of cycles allowed (not to be confused with
the maximum cycle-length). Therefore, it was critical to limit the number of cycles to avoid
drastically increasing the size of our grammar. After examining the two datasets at our
disposal, 6 molecules from the ZINC250K dataset [35] and 4 from the MOSES [34] dataset
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1 valence_2 → valence_4_num1 “(” cycle1_n_bond “)”
2 cycle1_n_bond → cycle1_7_bond
3 cycle1_7_bond → cycle1_6_bond
4 cycle1_6_bond → cycle1_5_bond
5 cycle1_5_bond → cycle1_4_bond
6 cycle1_4_bond → cycle1_3_bond
7 cycle1_3_bond → cycle1_2_bond
8 cycle1_7_bond → valence_2 cycle1_6_bond
9 cycle1_6_bond → valence_2 cycle1_5_bond

. . .
10 cycle1_2_bond → valence_2 valence_2_num1

Table 4.3 Cycle degradation example from the grammar. Rule 1 shows how a cycle is started,
in this case it is started in a branch. The nonterminal outside the branch, “valence_4_num1”,
is a part of the cycle and must be taken into account for the length. Rule 2 was added to easily
change the starting size of the cycle. Rules 3-7 allow for cycles to get smaller without adding
another token, this is how we allow smaller cycles than 8. Rules 8-10 are the development
of the cycle, we add a nonterminal and go down to the cycle size down. Rule 10 is special
since it is the end of a cycle, so we first place a nonterminal followed by a nonterminal that
is numbered to indicate the end of the cycle. The name of the cycle nonterminal contains
information on what it will develop into: “cycle1” means it is the cycle identified by the “1”
token, “_n_” indicates how many more atoms this nonterminal will develop into, “bond”
tells us that it is a simple bond that is expected.

exceed 6 cycles. These datasets contain, respectively, 250K and 2M molecules. Based on this,
we decided to limit the number of cycles to 6, seeing as it does not exclude many molecules
from the ones observed in the known drugs datasets.

All of these changes ensure that cycles have an appropriate length. However, this does in-
crease the size of the grammar. While the original CFG from Kraev contained 34 terminals,
36 nonterminals and 138 productions, the current CFG now has 32 terminals, 194 nontermi-
nals and 538 productions.

We have two fewer terminals overall because we removed 3 cycle numbering tokens (“7”, “8”,
“9”) as well as the token that is used to number cycles using two digits (“%”). However,
we did add the padding token, “_”, and we added the “H3” token to fully distinguish cycle
numbering tokens from other numeric tokens. Notice we did not add the “H2” token as it
was not present in the grammar previously.
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4.1.4 Coverage Analysis

We ran a coverage test over the 2’186’417 molecules we have at our disposal to see how many
molecules are recognized by our grammar. To do this, we load each molecule into our model.

If the molecule contains a token that is unrecognized, we exclude it from the metrics. This
happens for 17’507 molecules, a small minority in the total scope of the test. We do not
limit the size of the tested molecule to get a more comprehensive look at our grammar’s
inclusivity. We also allow up to 8 cycles during this test, this avoids needlessly excluding a
few molecules that exceed 6 cycles in the sequence.

In total, we find a coverage rate of 39.18%. While this coverage is not as high as we would
hope, we believe most of these molecules could be rewritten as an equivalent SMILES string
that would be recognized. Unfortunately, we have no way of testing this without iterating
through every possible SMILES string for this molecule.

We chose to continue our work with this grammar as it was sufficient for our purposes,
however a less restrictive grammar that maintains its validity would be ideal. This will be
discussed later.

4.2 Our CP Model

This section will first describe our model’s variables and their domains. We will then go
over formal definitions of the constraints used to model valid molecules and break certain
easily-identifiable symmetries. Following the validity constraints, we define constraints that
target specific structures in our generated molecules. Finally, we will define the constraints
required to target desirable properties.

4.2.1 Variables

We chose to limit the size of our molecules to 40 tokens. Since we use padding tokens, this
means we can model any molecule of size 40 or less, which represents 83% of all molecules
in the two datasets we chose to use in our work (ZINC250K and MOSES). This decision
ensures the problem is representative of real-life molecules observed in our datasets and
hence provides a meaningful empirical study.

We define 40 variables, one for each token in the molecule such as X = X1, X2, . . . , X40.
Each token starts with the same domain, containing every possible terminal in the SMILES
grammar alphabet.

This is formally defined as:
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D(Xi) ={ Br, Cl, F, I, C, N, O, S, c, n, o, s, 1, 2, 3, 4, 5, 6, (, ), =, #, [, ], +, -, H, H3, /, \,
@, _ }

This setup allows any combination of SMILES tokens of size 40, including invalid ones. To
ensure validity, we use three constraints as described in the following subsection.

4.2.2 Validity Constraints

This section will serve to answer our first research question: Can we use CP to model valid
molecules using a one-dimensional encoding? With the following constraints, our model will
be able to model valid SMILES molecules. We will test to see if the model finds valid solutions
later on, which will definitively answer our first research question.

Grammar Constraint

The grammar constraint is responsible for guaranteeing the SMILES syntax in our generated
molecules. The grammar constraint is a global constraint applied to all variables in the
model. It also requires the CFG that we defined earlier in Section 4.1.

grammar(⟨X1, X2, . . . , X40⟩,GSMILES)

This constraint does a lot of the work in ensuring that the generated output is a valid SMILES
string. It guarantees:

1. No valence mistakes. Atoms used in the molecule will respect the expected number of
bonds to complete their valence shell.

2. Opened cycles are appropriately paired to another cycle token to close it.

3. Cycles respect a maximal length to avoid non-sensically large cycles that do not appear
in drug-like molecules in known datasets.

4. Any branch token has a corresponding opening/closing branch token.

This constraint on its own would already generate valid SMILES strings. However, we
add two more constraints to improve the readability of our generated results and avoid
symmetries.
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Cycle Parity Constraint

The cycle parity constraint ensures that all cycle tokens in the grammar’s alphabet are used
either twice or never. This avoids having two cycles with the same cycle identifier. In classic
SMILES notation, the same cycle identifier can be reused if there is no ambiguity.

We decided not to allow the reuse of cycle tokens, since adding checks to avoid ambiguity
in the grammar would make it much more complex, as we would need to track which cycles
are currently open at all times. This simple constraint avoids the generation of ambiguous
molecules while avoiding a larger grammar that would have taken a long time to design.

Among(⟨X1, X2, . . . , X40⟩, {j}, {0, 2}) ∀ j | 1 ≤ j ≤ 6

Cycle Numbering Constraint

The cycle numbering constraint is a symmetry-breaking constraint. It avoids using larger
cycle identification tokens before smaller ones. In other words, the first opened cycle is
identified using the token “1”, the second will be identified using “2” and so on and so forth.
This ensures there is only one possible cycle token choice every time a cycle token is placed.

This constraint is considered to be symmetry-breaking since it avoids exploring branches
where a “1” would be replaced by a “2” without any other changes.

We represent this using a Regular constraint which ensures the variables it is placed upon
respect a given automaton. The automaton defined in Figure 4.1 ensures that, at any given
state, we can freely place any cycle token already encountered. It also guarantees that only
the next smallest cycle token can be used, excluding the ones already encountered, and using
it transitions us to the next state.

Regular(⟨X1, X2, . . . , Xn⟩,A)

4.2.3 Structural Constraints

This section will present two constraints targeting specific structures in generated molecules.
These constraints will be used to get samples of varying difficulty during our experiments.
These constraints will never be used on their own, instead always being used in tandem with
the validity constraints from Section 4.2.2.
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start 1 cycle 2 cycles · · · i cycles · · · 6 cycles

Σ \ {1, . . . , 6}

1

Σ \ {2, . . . , 6}

2

Σ \ {3, . . . , 6}

3 i

Σ \ {i + 1, . . . , 6}

i+1 6

Σ

Figure 4.1 Automaton A which imposes ordinal order on cycle numbering. The starting state
has no cycles that have been opened yet and subsequent states each contain one more opened
cycle than the last. The Σ character represents all terminals in the grammar’s alphabet.
Every token, other than certain cycle tokens, lead back to the same state. Starting at the
first state after the start state, cycle tokens that have already been seen can be placed freely.

Cycle Count Constraint

This constraint forces our generated output to contain a certain number of cycles. Using
SMILES notation, this is very simple to do. By previously placing the cycle numbering
constraint, we guarantee that each cycle has its own number token used to identify it. This
allows us to use an Among constraint, requiring the presence of the number token equivalent
to the number of desired cycles, e.g. if we want 4 cycles, we require the presence of the token
“4”.

While this ensures we get 4 cycles, it actually ensures we get at least 4 cycles. To avoid
getting more than 4, we have to place a second Among constraint that forbids the use of
the next smallest cycle token. In our example where we have 4 cycles, we would forbid the
use of the token “5”.

Formally this is defined using the two following constraints where Nc is the number of desired
cycles in the chain. It is important we ask for 2 and not 1, since the cycle parity constraint
from Section 4.2.2 already restricts the number of appearances to either 0 or 2.

Among(⟨X1, X2, . . . , X40⟩, {Nc}, 2)

Among(⟨X1, X2, . . . , X40⟩, {Nc + 1}, 0)
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Branch Count Constraint

Similarly to the previous constraint, the branch count constraint requires a certain number of
branches in the generated output. Since the grammar constraint from Section 4.2.2 ensures
that any opened branch is closed, we can constrain the number of total branches by placing an
Among constraint on either the opening or closing branch tokens. In the following definition,
Nb is the desired number of branches.

Among(⟨X1, X2, . . . , X40⟩, {“(”}, Nb)

4.2.4 Molecular Property Constraints

In this section, we answer our second research question: Can we use CP to model desirable
molecular properties in SMILES molecules?

We previously talked about Lipinski’s rule of five in Section 2.2.4. We will show how it is
possible to describe each of these properties using constraints in our current model.

These constraints will never be used alone, they are always used with the constraints from
Section 4.2.2.

Due to the two Hydrogen-bond constraints we will define later, the grammar we use has to be
modified and, in its CFG form, now has 35 terminals, 195 nonterminals and 607 productions.

Molecular Weight Constraint

The first property constraint is the molecular weight. Since the solver we use only allows for
integers, we multiply all weight values by 10 to get more precision for this constraint.

Estimating the weight of the grammar’s tokens. Since we are working on a one-
dimensional representation, SMILES, we attempt to estimate the weight of the total molecule
by estimating the weight of each token in the SMILES string. However, this isn’t as simple
as linking atoms to their atomic weight, since we have to account for the Hydrogen atoms
that are potentially bonded but implicit in SMILES notation.

An intuitive solution to this is to assume that each atom token is making two bonds, one on
its left and one on its right in the SMILES chain. This allows us to assume that each atom
token is bonded to two less Hydrogen atoms than the number of bonds needed to complete
its valence shell, e.g. Carbon, which needs to make 4 bonds to complete its valence shell,
would have an assumed 2 bonds with Hydrogen atoms.
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However, this sometimes results in an overestimation of the molecule’s weight. To correct
this, we associate a weight, which is sometimes negative, to non-atomic tokens.

Cycle tokens are an extra bond that our current weight model does not account for. Each
extra bond is a bond that cannot be made with a Hydrogen atom. For that reason, we
associate all our cycle tokens to the negative weight of a Hydrogen atom.

It would seem like branch tokens need special weights for the same reason. However, the
opening branch token indicates an extra bond (i.e. a negative weight) while the closing
branch token indicates a lacking bond that we assumed was present (i.e. a positive weight).
Overall, these two tokens should cancel out. However, this is only true if the token to the
left of the closing branch token was expected to make a bond on its right. If the last atom
already has a full valence shell, e.g. “. . . F)” or “. . . =O)”, it cannot bond with another on
its right. In such cases, our assumption that the closing branch token “replaced” one of the
atom’s bonds is wrong and would result in a slightly higher weight than expected.

Bond tokens are also associated to negative weights. When we make a double bond, there are
two fewer Hydrogen atoms than we assumed there would be in our atom weights. Similarly,
a triple bond means there are four fewer Hydrogen atoms bonded to the two atoms around
the bond token. Therefore, the double and triple bond tokens are, respectively, associated
to a weight of -20 and -40.

We also had to adjust the weight of aromatic cycle tokens. As we explained earlier in
Section 2.2.3, aromatic cycles are a specific type of cycle where single and double bonds
alternate. This is common enough to justify a shorthand notation in SMILES. We can
assume that these atoms are bonded to 3 other atoms, unlike the 2 bonds for non-aromatic
atoms, e.g. the aromatic variant of Carbon would have 1 Hydrogen atom bonded to it instead
of 2 and its associated weight would reflect this.

Finally, we did some testing to see the accuracy of our estimation. We used the open-source
tool RDKit1 to calculate the true weight. RDKit can recognize valid SMILES molecules and
can calculate different molecular properties using an internal graph representation. During
our tests, we found that associating a positive weight to the “+” token improved the score.
Atoms with a charge have a different number of Hydrogen atoms bonded to them.

With this we create a weight array (Table 4.4), T w, indexed by token IDs.

1https://www.rdkit.org/
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Token Human Estimated Weight Linear Regression Weight
C 140 140
c 130 130
N 150 148
n 140 144
O 160 161
o 160 158
S 321 338
s 321 319
F 180 180
Cl 345 346
Br 789 793
I 1259 1259
= -20 -13
# -40 -35
+ 10 11
- 10 -1
1 -10 -9
2 -10 -9
3 -10 -9
4 -10 -9
5 -10 -9
6 -10 -9
( 0 1
) 0 1
[ 0 -4
] 0 -4
H 0 12
H2 0 18
H3 0 19
@ 0 -3
/ 0 -5
\ 0 -9

Table 4.4 Estimated token to weight array T w. Any token that is not present in this weight
map has a weight of 0. The middle column are the weights we defined using our intuition to
take into consideration the weight of the Hydrogen atoms in the molecule, the right column
are the weights as predicted by the linear regression. While there are some differences, most
weights are similar which confirms our intuition. We continue to use the human weights in
our experiments.

Defining the constraint. To apply this constraint, we first create weight variables, Wi,
that will represent the weight of their associated token variables, Xi.
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We link the values of these variables using the Element constraint. It uses the weight array
previously defined, T w as a lookup table and ensures that Wi is the value associated to index
Xi.

Once these variables are defined, we can constrain the sum, Sw, of the variable array, W ,
to our desired estimated value. To respect Lipinski’s rule of five, we would limit the value
to 500 Daltons (in our model, we would instead use 5000 since we multiply values by 10 for
more significant numbers).

Element(T w, Xi, Wi) ∀ i | 1 ≤ i ≤ n

Sum(⟨W1, W2, . . . , Wn⟩, Sw)

Sw ≤ 500

How accurate is this estimation? As mentioned previously, we tested this process on
the 2.2M molecules in the two datasets used thus far in our work. On average the error is
1.06% of the molecule’s real weight. However, at its maximum, we find errors of 4.83%.

We include a graph of the distribution of relative error frequencies in Figure 4.2. Since it
is an estimation, the relative error rate is acceptable and doesn’t stop us from targeting a
desirable region of the search space.

Can we improve this using a simple linear regression? By using a linear regression,
we can see how close our intuition was and get a potential improvement to our current
constraint.

We first convert all our molecules into frequency arrays, where each position contains the
number of times the associated token shows up in the molecule. We can then use the python
library SKLearn to do a linear regression and find weights for each token.

This leads to a good improvement on the average error, now of 0.23%, and a massive reduction
in the maximum error, now of 2.80%. The results can be seen in Figure 4.3.

While the linear regression’s weights do vary from our own, they are mostly similar as can
be seen in Table 4.4. This confirms our intuition but goes to show that there is room for
improvement.
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Figure 4.2 Relative error frequency when estimating the weight of molecules using human
intuition. Most values are concentrated around 1%, but we see nearly 50k molecules with
errors around 2%. The maximum error is 4.85%, but has a frequency so low it does not
appear in the graph.

Hydrogen-Bond Acceptors Constraint

This property is simple enough to represent in SMILES notation. As long as one of the atoms
of interest (i.e. N, O, S) have a free electron pair, they are considered an acceptor. For these
atoms to not have a free electron pair would require it to be used to make another bond
and for its valence shell to be overloaded (i.e. making more bonds than what is expected).
This is possible but not common, and so a good estimation of the number of Hydrogen-bond
acceptors in a molecule is simply the number of relevant atoms, i.e. Nitrogen, Oxygen and
Sulfur. The aromatic version of the atoms are included in the constraint.

While Fluorine is an electronegative, Lipinski’s rule of five specifically excludes it from the
list of potential Hydrogen-bond acceptors [36].

We note the number of wanted acceptors as Na in the formal definition below.
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Figure 4.3 Relative error frequency when estimating the weight of molecules using a linear
regression.

Among(⟨X1, X2, . . . , Xn⟩, {“N”, “O”, “S”, “n”, “o”, “s”}, Na)

Na ≤ 10

Hydrogen-Bond Donors Constraint

This property, while similar to the previous one, requires changes to our grammar in order
to be represented correctly. The full changes can be seen in Appendix B.

Since our grammar already accounts for the number of bonds that atoms are making, it
seemed natural to change certain productions to determine which atoms were donors and
which ones weren’t. However, this implies the need for new atom tokens to differentiate
between the donor and non-donor version of the same atom. We add:
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• “ND” as the donor version of “N”

• “OD” as the donor version of “O”

• “SD” as the donor version of “S”

Since the atoms in question have to be bonded to a Hydrogen atom to be Hydrogen-bond
donors, we suppose that they cannot be donors if they are a part of an aromatic cycle. For
that reason, only the non-aromatic version of the atoms are included in the constraint.

Once we have modified our grammar, it is simply a matter of limiting how many of the donor
tokens appear in our molecule. We note the number of wanted donors as Nd as seen below.

Among(⟨X1, X2, . . . , Xn⟩, {“T”, “X”, “R”}, Nd)

Nd ≤ 5

LogP Constraint

To model the logP value using only SMILES notation, another of Lipinski’s rules, human
ingenuity is not enough.

Ridge Regression. Basing ourselves on the work done previously by Vidal et al. [23], we
use a linear regression to estimate the partial contribution, positive or negative, of sequences
of four tokens (4-grams) on the logP score. In their work, they used a partial least squares
regression to estimate the logP value of different molecules. Their results indicate that their
model could accurately predict logP values. Similarly, we compute the partial contribution
of every possible 4-gram in the datasets by using a ridge regression (a linear regression where
we add a small value to the input to avoid linearly dependant inputs).

The accuracy of this model is very variable. We did a relative error analysis as well as an
absolute error analysis as can be seen in Table 4.5.

Absolute Error Analysis. The first thing to note is that the average error sits at 0.1235,
an acceptable value when we are targeting a logP score under 5. However, the maximum
error is much bigger, at 2.2231. To get a clearer message, we calculate the median error
(i.e. the second quartile) and find that it is lower than our average, at 0.0861. We decide
to exclude outliers in our data by using the IQR filtering method [37]. This method defines
any value whose distance to the median is greater than the difference between the third and
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first quartile as an outlier. This filters out 4.56% of our data as outliers and gives us our new
average: 0.1063.

Relative Error Analysis. Relative error allows us to get a better picture by comparing
the error to the targeted value instead of keeping an absolute scale. With an average error of
12.56%, our method doesn’t seem too accurate. However, our maximum error of 108′851.38%
seems absurd. Upon further inspection, we found that we were getting these absurdly high
relative errors on molecules with very small logP scores (i.e. smaller than 0.001). Since the
relative error has the true value as the denominator, this makes the relative error for this
sample grow disproportionately. Once again, we looked at the median value, which is less
sensitive to outliers and find that it is four times smaller than our current average at 3.68%.
To avoid falsifying our average with outliers, we filter our data using IQR filtering, filtering
out 7.86% of our data. This allows us to get a more reliable average of 4.54% relative error,
a very acceptable error rate for our estimations.

Calculated Value Absolute Relative
Total Average Error 0.1235 12.56%

Total Maximum Error 2.2231 108′851.38%
Q1 0.0388 1.56%
Q2 0.0861 3.68%
Q3 0.1715 8.02%

Inlier Data Coverage 95.44% 92.14%
Inlier Average Error 0.1063 4.54%

Table 4.5 Error analysis on the logP estimation constraint. The first two rows are the aver-
age and maximum error on all data points. The next three rows are the quartile values. We
include a row to detail what percentage of the data points are still included after excluding
outliers. The final row is the new average, excluding outliers, this gives us a better represen-
tation of our method’s efficiency.

Table Implementation. We can then create a table T p which links every possible 4-gram
to its estimated contribution. In the case where a 4-gram has no or a very small partial
contribution, its weight is set to 0, thus having no effect on the final estimation of the logP
value.

Our model then uses a Table constraint as defined below:
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Table(⟨Xi, . . . , Xi+3, Pi⟩, T p) ∀ i | 1 ≤ i ≤ n− 3

Sum(⟨P1, P2, . . . , Pn−3⟩, Sp)

Sp ≤ 5

However, this table can potentially be quite large (the number of terminal tokens elevated to
the power 4), we limit its size through the use of a wildcard token (⋆) and the ShortTable
constraint [38].

Short Table Implementation. Since a ⋆ token can represent any other token, we can use
it to map large numbers of zero-weight 4-grams to the appropriate weight. To identify the
4-grams to which we can apply these wildcards, we iterate on each position and on all possible
tokens for that position, if no important 4-grams (that have a non-zero weight) contain the
prefix, we associate that prefix followed by wildcard tokens to a weight of 0. This wildcard
allows us to reduce the table down to 39305 4-grams that have a non-zero weight, which is
3% of all the possible 4-grams. The total table, including zero weight 4-grams, has 168′731
rows, closer to 12.6% of the size a normal Table constraint would have needed.

The constraint definition doesn’t change much, we replace the Table constraint by a
ShortTable constraint and use the new table, T p⋆:

ShortTable(⟨Xi, . . . , Xi+3, Pi⟩, T p⋆) ∀ i | 1 ≤ i ≤ n− 3

Sum(⟨P1, P2, . . . , Pn−3⟩, Sp)

Sp ≤ 5

This representation results in a number of constraints which grows linearly with the number
of token variables. However, there is a way to represent this property by using a single
CostRegular constraint applied on the entire variable array X.

Cost Regular Implementation To implement this constraint using a CostRegular,
we have to remap our T p⋆ table into an automaton Ap. We also create a transition cost table
WAp indicating the associated weight to each state transition.

Contrary to the ShortTable representation where we constrained Sp to determine the
allowed logP value, in this implementation, we simply change the domain of tw, the total
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cost variable.

This automaton contains a state for each non-zero weight 4-gram as well as states for every
3-gram, 2-gram and 1-gram necessary to get to the non-zero weight 4-grams. The transition
to a 4-gram state is associated to the partial contribution of that 4-gram. All other state
transitions have a weight of 0 and all states in the automaton are considered valid final
states. See Algorithm 1 to see exactly how we create the transition and weight table for our
automaton.

The final automaton has 41′741 states, a considerable reduction in size compared to the
previous ShortTable constraint.

CostRegular(⟨X1, X2, . . . , Xn⟩,Ap,WAp , tw)

start a ab abb abba

Σ:0

a:0

a:0

b:0
Σ:0 a:0

b:0

Σ:0

a:2.4

Σ:0

a:0

b:0

Σ:0

Figure 4.4 Simplified example of automaton Ap, associating a weight to a sequence during
generation. This example associates a weight of 2.4 to the 4-gram abba. For clarity and
simplicity, we limit ourselves to one sequence as the graph quickly becomes very connected.
The only transition that has an associated weight is the one that completes the 4-gram. Each
state has a transition back to the start state in the case where it receives a token that is in
the alphabet (Σ) but does not have its own state. For all transitions that have Σ associated
to them, we assume any tokens that are in another transition are excluded from Σ.

4.3 Experiments

In the previous section, we began answering our first two research questions:

1. Can we use CP to model valid molecules in a one-dimensional encoding?
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Algorithm 1: regularAutomatonCreation(N, w, g)
Input:

A list of non-zero weight 4-grams: N ;
A dictionary mapping each 4-gram to its weight: w;
A list of the tokens in the grammar’s alphabet: g

Output:
A transition matrix: TAp ;
A weight matrix: WAp ;

// Define a state set that starts with the empty state
1 S← {“”}

// Find all relevant states from our 4-grams
2 foreach ngram ∈ N do
3 state← “”

// Add each partial sequence of the 4-gram to the state set
4 foreach token ∈ ngram do
5 state← state + token
6 S← S ∪ state

// Fill the transition and weight matrix
7 foreach state ∈ S do
8 foreach token ∈ g do

// Define the next state as the current state’s last three
tokens plus the given token

9 state′ ← state[1 :] + token
// Remove the first token from the next state until we find a

valid transition state. This will always default to the
start state “” if nothing is found.

10 while state′ /∈ S do
11 state′ ← state′[1 :]
12 TAp [state][token]← state′

13 if len(state′) = 4 then
14 WAp [state][t]← w[state]
15 return (TAp , WAp)
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2. Can we use CP to model desirable molecular properties in SMILES molecules?

The experiments in this section will serve to finalize our first two questions and answer the
third research question: Can BP be used to better guide a solver towards a solution? These
experiments will also serve to see the usefulness of the newly implemented weighted counting
algorithm that was designed for the Cfg constraint. The algorithm itself is out of scope for
this thesis, however these experiments were designed with the algorithm in mind.

We do three sets of experiments: experiments on the structural constraints, experiments on
the constraints modeling Lipinski’s rule of five and experiments on both sets of constraints
at the same time. Each of these three experiments incorporate the validity constraints to
always generate SMILES molecules.

The first two tests were run as part of articles we were working on. They are reported here
as they were run originally. The third test series is a combination that was added as it was
a logical next step in our testing process.

We run these tests using the MiniCPBP solver2.

4.3.1 Structural Experiments

These experiments were run on an AMD Rome 7532 processor (2.4GHz, 256M cache L3)
with 1 GB of Random Access Memory (RAM) and using a 30-minute timeout. The results
can be seen later in Section 4.4.

For these tests, we first apply constraints necessary for validity, then apply structural con-
straints and finally apply the molecular weight constraint.

Validity Constraints. These will always be active in our tests as they are required to
ensure the generated sequence respects SMILES.

Structural Constraints. These constraints are used to diversify our experiments and run
different instances of varying difficulty. This should give us a better overview of how different
heuristics behave depending on the problem’s complexity. We consider every combination of
number of cycles and branches in the respective ranges of 1. . . 3 and 2. . . 4. We note instance
cibj as the instance corresponding to i cycles and j branches (in which case we add Nb to j

and Nc to i in the corresponding pair of Among constraints seen earlier in Section 4.2.3).

2https://github.com/PesantGilles/MiniCPBP

https://github.com/PesantGilles/MiniCPBP
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Molecular Weight Constraint. Long term structure increases a problem’s complexity
by making early decisions potentially have a significant impact on the generated sequence
later. We target molecules close to the upper limit recommended by Lipinski’s rule of five
(i.e. we constrain Sw between 475 and 500 Daltons).

4.3.2 Molecular Properties Experiments

These experiments were run on an AMD Rome 7532 processor (2.4GHz, 256M cache L3)
with 4 GB of RAM and using a 30-minute timeout. The results can be seen in Table 4.9.

We apply the validity constraints similarly to the previous experiments, however the struc-
tural constraints are not needed to generate more instances. This can be done directly with
the rest of the molecular property constraints. All property constraints are applied to the
model.

The validity constraints are identical to the ones in the previous experiments, there is nothing
to add.

Molecular Weight Constraint. This time, we vary the target range for the molecu-
lar weight constraint to generate instances of varying complexity. The ranges we use are:
[175. . . 225], [275. . . 325], [375. . . 425]. These ranges give us an idea of the behavior while
generating light, medium and heavy molecules.

LogP Constraint. By varying the targeted logP score, we get nine different instances
similarly to the previous experiments. We choose the ranges: [-4,-3], [-2,-1], [1,2]. Note, none
of our ranges include 0 as it may encourage the model to only use zero-weight 4-grams. This
behavior would be of little interest to us as we wish to show the advantages of BP and this
could be equivalent to disabling the constraint.

Hydrogen-bond Acceptors/Donors Constraints. We apply the Hydrogen-bond Ac-
ceptors constraint as well as the Hydrogen-bond Donors constraint with no changes to their
previous definitions.

4.3.3 Chomsky Normal Form

All of our experiments require the Cfg constraint and since the solver we use, miniCPBP3,
requires a grammar in Chomsky Normal Form (CNF) for its implementation, we develop a

3https://github.com/PesantGilles/MiniCPBP

https://github.com/PesantGilles/MiniCPBP
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method to automate the transformation from the readable CFG form to the desired CNF.
This allows us to keep working on the more readable CFG format.

A grammar is said to be in Chomsky Normal Form if it follows a few additional rules on top
of those of a CFG. No production may contain the null symbol ϵ and the right-hand side of
any production must be either: a single terminal or two nonterminals. The following CFG
could be converted to be in Chomsky Normal Form by applying four steps.

N = {S, X, Y, Z}

Σ = {a, b}

R = {S → XY Z, X → aXb, X → ϵ, Y → aa, Y → bb, Y → X, Z → abba, Z → XabY }

S = S

0. Initial grammar

S → XY Z

X → aXb | ϵ

Y → X | aa | bb

Z → XabY | abba

1. Remove null productions

S → XY Z | XZ | Y Z | Z

X → aXb | ab

Y → X | aa | bb

Z → XabY | Xab | abY | ab | abba
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2. Replace unit productions

S → XY Z | XZ | Y Z | XabY | Xab | abY | ab | abba

X → aXb | ab

Y → aXb | ab | aa | bb

Z → XabY | Xab | abY | ab | abba

3. Shorten the right-side to two tokens

S → XC | XZ | Y Z | XD | XE | EY | ab | EF

X → aG | ab

Y → aG | ab | aa | bb

Z → XD | XE | EY | ab | EF

C → Y Z

D → EY

E → ab

F → ba

G→ Xb
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4. Create unit productions for terminal tokens

S → XC | XZ | Y Z | XD | XE | EY | AB | EF

X → AG | AB

Y → AG | AB | AA | BB

Z → XD | XE | EY | AB | EF

A→ a

B → b

C → Y Z

D → EY

E → AB

F → BA

G→ XB

After converting the original grammar, the number of nonterminals and productions, respec-
tively, increase to 169 and 411. Meanwhile, the final grammar for the structural experiments
grows to 640 nonterminals and 1996 productions. The grammar for the molecular prop-
erty experiments is slightly larger in CFG form, however, once converted to CNF it remains
comparable to the previous one with 642 nonterminals and 1990 productions. The differ-
ence between the structural grammar and the molecular property grammar should not be a
significant factor in terms of time since they are of comparable size in every metric.

The complexity of the base propagation algorithm is cubic in regards to the number of
variables as well as linear according to the number of productions [39]. The number of
variables in our model does not change with the size of the grammar, however we do have
nearly five times as many productions. However, seeing as we are using Belief Augmented
Constraint Programming, this requires an additional step which is also cubic in relation to
the number of variables, linear in relation to the number of productions and linear in relation
to the number of nonterminals.

4.3.4 Used Heuristics

In our experiments, we include tests on two different heuristics.
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domWDeg. Being a learning-based heuristic, domWDeg [40] is run with restarts, which is
a common practice as it is a learning heuristic. In this context, a restart resets the search
back to the top of the search tree. This allows us to use the information learned since the
last restart to find a better solution. We initially restart after 100 fails and increase this
by a factor of 1.5 each time. Early experiments on our instances confirmed that it generally
performs better with restarts than without. Its default value-selection heuristic, selecting the
smallest value in the domain, performed very poorly, only managing to solve the first problem
instance within our time limit. Instead, we select a domain value uniformly at random and
report the median of 11 runs. We consider a problem instance to have timed out if 6 or more
runs time out.

maxMarginalStrength. maxMarginalStrength [16] is a branching heuristic based on the
marginals computed by MiniCPBP using the weighted counting algorithm of each constraint
in the model. Because it is not learning-based and is deterministic, using restarts would not
help. We report on its use with standard depth-first search (DFS) and also with Limited-
Discrepancy Search (LDS) (LDS, with a maximum number of discrepancies starting at 1 and
doubled at each iteration, ultimately making the search complete), which is a sensible option
for a trusted branching heuristic [41].

4.3.5 Metrics

We report on two metrics for each heuristic: fails and time. The time is self-explanatory, while
the fails are the number of times the solver had to backtrack due to reaching an unsatisfiable
state in the search tree.

4.4 Results

This section will briefly go over our results as well as preliminary tests performed to determine
which logP constraint to use.

4.4.1 LogP Comparison

To determine which version of the logP constraint to use, we ran a few preliminary tests on
our problem instances using the different implementations of the constraints. We note the
time taken for each part of the process as well as the failures while exploring the search tree
to determine which one we should keep.
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To limit the effect of other constraints on the model we deactivate all constraints other than
the validity constraints and the logP constraint. This maintains valid molecule generation,
which is the context in which these constraints will be used.

Since these constraints will be used in tandem to other constraints, sometimes with BP
active, we use a BP heuristic for all three. We use maxMarginalStrength (a constraint we
use later on in our tests) with a Biased Wheel Selection for values which introduces some
randomness and allows us to average the time and fails for multiple runs to get a better idea
of the constraints effects. We do 10 runs and average the results for setup time (the post for
each constraint as well as the first propagation), solve time (the time until a first solution is
found) and the number of failures.

While using a BP based heuristic does give the ShortTable without BP a disadvantage,
it is justified since the constraint will be run in a similar environment later and we wish to
see if it is a viable option compared to the other two. Note, the ShortTable constraint
without BP has its component fully disabled, meaning we do not waste time computing its
marginals (i.e. only the validity constraints compute marginals, which is included in the
other two constraints’ time).

The results can be seen in Table 4.6.

We initially compared the ShortTable and Regular constraints with BP active for both.
However, during our tests, we noticed that the BP component of the ShortTable constraint
would result in strange molecules. They were much shorter than previous tests (as small as
the model could make them while still respecting all constraints) and had very little variety.
We add the ShortTable constraint without BP to our tests since, by disabling the BP
component, we find varied results of standard length again.

When looking at the results in Table 4.6, ShortTable with BP performs best in time.
However, we believe this low solve time is due to the extremely short molecules it is generating.
It would place at most 10 non-padding tokens before filling the rest of the sequence with
padding. Furthermore, it has to backtrack 13 times to find a small solution. Meanwhile,
the Regular constraint takes more time, but generates full length molecules with very
few failures. The ShortTable without BP is dominated in every aspect by the other two
candidates. We settle on using the Regular constraint, preferring its low failure count and
reliable results over the ShortTable equivalent.

We later decided to run a sanity check using the ShortTable constraint without BP and our
best heuristic (i.e. maxMarginalStrength/LDS). These results can be seen in Table 4.8 and
are significantly worse than the official results in Table 4.9 using the Regular constraint.
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Initial Setup (s) Solve Time (s) Failures
ShortTable with BP 10.707 1.168 13

ShortTable without BP 17.670 24.116 111
Regular 31.917 20.944 4

Table 4.6 Performance comparison between different implementations of the logP estimation
constraint. The addition of BP clearly reduces the number of failures before a solution is
found.

By using the ShortTable constraint, the number of fails drastically increases and, in most
instances, the instance takes more time to solve. This is most likely due to the lack of BP
component to help guide the search towards a solution for the ShortTable constraint.

4.4.2 Structural Experiments

The results to our structural experiments can be seen in Table 4.7.

The domWDeg/random heuristic manages to solve all instances, however it can require in the
thousands of fails. Branching heuristics based on marginals make an integrated choice of vari-
able and value. The very low number of fails for maxMarginalStrength (several instances are
even solved backtrack-free) is remarkable and shows the usefulness of the weighted counting
algorithm for the Cfg constraint and of BP as a whole. There are four instances that are
unsolved within the time limit, this is likely due to a bad decision early on in the search
tree (as we are using a DFS). As can be seen by the results using LDS, all but one instance
become solved, confirming our previous suspicion. Even though, our BP heuristics take more
time per fail than their pure CP counterpart (i.e. domWDeg/random), by quickly guiding the
search towards a valid solution, BP heuristics end up solving the problem faster in most
cases.

4.4.3 Molecular Properties Experiments

The results to our structural experiments can be seen in Table 4.9.

Similarly to the previous experiments, the domWDeg/random heuristic performs well on most
instances, solving every instance in the allocated time. The advantage BP gives to a solver
can be seen clearly in these instances. Even though all instances are solved by each heuristic,
the difference in fails is significant. Almost every instance is solved with fewer than 10
backtracks when using maxMarginalStrength. Unfortunately, whether we use DFS or LDS
makes very little difference, and we cannot reliably say one method is better than the other
in this instance. However, not only does maxMarginalStrength solve the problem with very
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few fails, the time to solve the instance is sometimes comparable or better than the pure CP
alternative (i.e. domWDeg/Random). This isn’t always the case, so we cannot state that one
method is faster than the other.

Overall, these results once again confirm that constrained molecule generation is achievable
using a CP model such as the one described prior. Although using the Cfg constraint
is convenient, the aforementioned computational cost can be felt due to its large size. It
takes one second to post the constraint (including the initial propagation). Running several
iterations of BP (including the weighted counting algorithm for Cfg) before branching takes
three to four times longer than a branching heuristic such as domWDeg. However, these are
clearly offset by the superior search guidance, and thus, much smaller search tree.
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domWdeg/random maxMarginalStrength/DFS maxMarginalStrength/LDS
instance time(s) fails time(s) fails time(s) fails

c1b2 20.2 103 8.9 0 8.9 0
c1b3 14.0 65 12.0 0 11.7 0
c1b4 61.7 484 12.2 0 12.6 0
c2b2 26.3 105 – – 16.7 3
c2b3 37.4 253 16.0 0 16.0 0
c2b4 245.3 2083 17.9 12 17.5 6
c3b2 131.2 1389 – – 32.0 14
c3b3 40.2 106 – – – –
c3b4 101.5 1040 – – 498.8 247

Table 4.7 Comparing branching heuristics on some structurally-constrained molecule gen-
eration instances. Instances marked with a blank line indicate a timed out instance. The
number of fails indicates how many dead ends the solver ran into and had to backtrack to
get out of. Since domWdeg/random incorporates randomness, we run 11 instances and report
the median.

maxMarginalStrength/LDS
instance time(s) fails
[175,225] [-4,-3] 541.8 266
[175,225] [-2,-1] 388.5 36
[175,225] [1,2] 45.4 1
[275,325] [-4,-3] 611.7 225
[275,325] [-2,-1] 518.0 41
[275,325] [1,2] 52.0 1
[375,425] [-4,-3] – –
[375,425] [-2,-1] 385.1 85
[375,425] [1,2] 61.1 18

Table 4.8 Runs using the ShortTable constraint without BP as a comparison to the results
from Table 4.9. We do not test the performance of ShortTable with BP as it guides
the search towards undesirable results. We only report on maxMarginalStrength/LDS as it
had the best results. Using the ShortTable constraint appears to have significantly worse
results, most likely due to the lack of BP to guide the search towards a valid solution.
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domWdeg/random maxMarginalStrength/DFS maxMarginalStrength/LDS
instance time(s) fails time(s) fails time(s) fails
[175,225] [-4,-3] 253.5 137 200.3 30 173.4 2
[175,225] [-2,-1] 134.3 110 166.1 0 186.0 0
[175,225] [1,2] 374.5 261 190.5 6 233.6 9
[275,325] [-4,-3] 130.4 109 260.0 0 287.1 0
[275,325] [-2,-1] 97.0 33 287.2 0 279.8 0
[275,325] [1,2] 141.0 105 282.6 0 321.3 0
[375,425] [-4,-3] 312.9 258 160.7 2 179.2 1
[375,425] [-2,-1] 79.0 31 140.6 1 160.4 1
[375,425] [1,2] 74.5 6 187.0 0 141.4 0

Table 4.9 Comparing branching heuristics on some Lipinski-constrained molecule generation
instances. The number of fails indicates how many dead ends the solver ran into and had to
backtrack to get out of. Since domWdeg/random incorporates randomness, we run 11 instances
and report the median.
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CHAPTER 5 COMBINING CP WITH NLP TO IMPROVE GENERATION

This chapter details how we combine our previous CP with a chosen LLM to try and improve
the realism of our generated molecules. By combining a model trained on real drug-like
molecules and our CP model, we believe it is possible to get molecules that are informed by
what is in current use while still maintaining the guaranteed validity and property targeting.

The first section will present the combined architecture before going in depth on each part.
We will then go over the experiments we did and their results in the next two sections.

The work in this chapter was published as part of a joint article presented at IJCAI’25 [42].

5.1 Architecture

To combine the two models, we use a combination at inference time (i.e. during generation).
Our CPBP model takes the LLM’s prediction probabilities over the next token as an input
and updates them using BP. The combined model then samples the next token from this
new distribution and sends this new string as an input to the LLM.

This combined model, called Generative AI using Belief-Augmented Constraints (GeAI-
BlAnC), can be seen in Figure 5.1. We start with the start token and, after each iteration,
sample a new token that is informed by both the LLM and our CPBP model.

5.1.1 LLM

We chose to use the GPT model, GPT2-ZINC480M-87M1 (henceforth referred to simply as
GPT). It has 87M parameters and was trained on 480M molecules from the ZINC database2.
This is the same database that we have partial access to (we can access 250k molecules). It
is a transformer model trained to generate molecules in the standard string representation
SMILES (Fig. 5.2 gives an example).

The use of a token-by-token generation model allows us to change the probability distribution
over the next token before sampling and is necessary for this combined architecture to work.

However, changing this distribution might overpower the LLM’s message with the CPBP
model’s message. This will be studied later in our experiments through the use of the
perplexity metric (which will be explained in Section 5.2).

1https://huggingface.co/entropy/gpt2_zinc_87m
2https://zinc.docking.org/

https://huggingface.co/entropy/gpt2_zinc_87m
https://zinc.docking.org/
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. . . Xt−1, Xt, Xt+1 . . .

NN

X1 = x1 . . . Xt−1 = xt−1

oracle(Xt, )

C(X1, . . . , Xn)

CP

BP

Sample

New sequence

Start token

Figure 5.1 Combined CP and token-by-token generator architecture. In our case, the token-
by-token generator is a LLM, but any other can be used as long as it was trained on SMILES
strings. The NN outputs a probability distribution over the next token, Xt in our example.
This distribution is given as the outside belief of the Oracle constraint. After a few itera-
tions of BP, we get our new distribution and sample for the next token. This process starts
by inputting the start token to the NN.

5.1.2 Oracle Constraint

The Oracle constraint is a unary constraint defined as follows: Oracle (X, p). X is a
finite-domain variable and p is a fixed probability mass function over the domain of X. In
our case the variable is Xt, representing the token at step t and p is the NN’s probabilities
for the current token xt. Uncharacteristically, this constraint does not enforce a relation but
only associates a probability to each domain value. Its sole purpose is to contribute messages
to variable Xt during BP in the same way as the other constraints in the CP model. Without
the Oracle constraint, the resulting marginals would only take into account the satisfaction
of C(X1, . . . , Xn) (i.e. the satisfaction of the constraints over the variables) and not what
was learned from the dataset. Therefore, the Oracle constraint is our way of integrating
the NN’s knowledge into the process of CPBP.

To balance this integration, we can associate a weight to our constraints, in this case we would
adjust the weight of the Oracle constraint (as will be shown later in our experiments).
This weight affects the marginals sent by constraints during BP (and not the filtering nor
the hardness of the constraint). Given a positive weight w (the default value being 1) each
marginal pX(v) for a value v in the domain of variable X is raised to the power of that
weight and normalized, yielding new marginal (pX(v))w/

∑
d∈D(X)(pX(d))w. As a result, a

weight w > 1 accentuates the disparities between marginals while 0 < w < 1 lessens them
and makes them more uniform. We will use such a weight on the Oracle constraint in order
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Figure 5.2 “C[C@H]1C(O)C(N(C(N)C)C(C)C)C(C)C(C)C1(C)", a molecule of weight 256.3
Da and PPL=1.8487 generated by GeAI-BLAnC.

to control its importance on the resulting distribution.

5.1.3 Communication

Since the two models are in different programming languages, GPT is in Python while
MiniCPBP (the solver from Section 4.3) is in Java, we had to set up a way for them to
communicate. We could do this by integrating one model into the other language, however
we chose to use a minimalistic HyperText Transfer Protocol (HTTP) server approach.

By making the GPT model a server with its own interface, we can easily change the model
being used, and we can allocate more resources to it if needed. The GPT model can compute
the next token’s probability distribution fast enough that it can keep up with multiple client
instances making requests.

The client instances in question are the CPBP model. It makes an asynchronous HTTP
request to the server with the current molecule in the request. The server decodes the
molecule and calculates the next token’s probabilities.

An issue we encountered is that our CPBP model’s language is made up of relevant single
tokens in the SMILES alphabet. However, the GPT model’s language contains sub-words,
which includes single tokens, but also includes sequences made up of multiple tokens. If we
were to return those probabilities as they are, our client instance would be unable to input
them into the Oracle constraint. We first convert the result into something our client can
understand.

To do this, we pass over every sub-word and associate its probability to the first token
that appears in it. If the first token already has an associated weight, we sum the two
probabilities into a new one. An example of this can be seen below where we convert four sub-
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words and their probabilities into tokens recognized by our grammar and their corresponding
probabilities.

CCN1→ 0.42

CNNC → 0.23

NNC2→ 0.30

NO(C → 0.05

C → 0.65

N → 0.35

Since we get the probability of every sub-word in the GPT model, every token from our
CPBP model’s language is guaranteed to have an associated probability, though that weight
may be 0 if every sub-word the token leads has a null-probability. This conversion also allows
us to remove any unwanted tokens that our CPBP model does not support (e.g. higher cycle
number tokens). Finally, during this process, we also change the end-of-sequence token,
“</s>”, to our padding token, “_”, since they functionally represent the same thing. Once
we place a padding token, the only thing that can follow are more padding tokens.

With this, we have a functioning HTTP server that takes the current molecule as input
and returns the probability distribution over the next token’s value in our CPBP model’s
language.

5.2 Experiments

This section will detail the experimental context and any steps required to reproduce our
results.

With our experiments, we wish to show two things. First, we want to further our findings
from Section 4.3 and evaluate the advantages of BP when looking for a solution as per our
third research question. We also aim to show that our approach more consistently generates
sequences exhibiting the desired structure while still reflecting what the NN has learned from
the training corpus.



61

GPT model’s settings. As mentioned prior, we use the GPT2-ZINC480M-87M3 model
that was trained on 480M molecules from the ZINC dataset.

During generation, we kept the model’s default configuration with the following exceptions:
we limited the generation to one new token at a time as per Fig. 5.1, we set the model’s
temperature to 1.5 which gives more varied results as reported by the model’s authors, we
decreased the maximum length of the molecule to fit our target length, and we disabled the
early stopping parameter.

Changes to the CP solver. During most of our tests, we choose to disable the backtrack-
ing ability of our CP solver, MiniCPBP4. We do this to allow a more faithful comparison
between the models. We keep one test with the backtracking active to evaluate the differ-
ences.

We will detail which search heuristics were used during generation later on.

Experimental conditions. We attempt to generate 100 molecules. Our experiments were
run using an 8-core processor with a core speed of 4.20 GHz and 64GB of RAM. All our code
and data for these tests are available5. As an initial input to the GPT model, we use the
start-of-sequence token, “<s>”.

5.2.1 Chosen constraints

For these tests, we did not use all the constraints described previously in our CP model. These
tests were done for an article we were writing before we designed the constraints modeling
the rest of Lipinski’s rule of five. However, to answer our fourth research question, we do
not need all property constraints. The molecular weight constraint is sufficient to model
long-term structure in our molecule and is something the NN was not trained to target.

All constraints relating to the validity of the SMILES string are necessary to ensure that
any generated final result respects SMILES notation. These are the constraints described in
Section 4.2.2.

We do not keep any of the structural constraints described in Section 4.2.3. While they
would add complexity to the problem, they do not require long-term structure the way the
property constraints do.

3https://huggingface.co/entropy/gpt2_zinc_87m
4https://github.com/PesantGilles/MiniCPBP
5https://github.com/cravethedave/MiniCPBP/tree/ijcai-2025

https://huggingface.co/entropy/gpt2_zinc_87m
https://github.com/PesantGilles/MiniCPBP
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While all property constraints from Section 4.2.4 introduce some form of long-term structure
to the molecule, only one is required to evaluate it. We chose the molecular weight constraint
for three reasons: most tokens in the chain will have an effect on the weight, the GPT model
was not trained on this property, and it is more accurate than the logP constraint.

Overall, we apply the following constraints. Note that the targeted molecular weight is
now between 200 and 275 Daltons. This weight is only achieved by 20.48% of the 40-token
molecules observed in the datasets.

Validity Constraints:

grammar(⟨X1, X2, . . . , X40⟩,GSMILES)

Among(⟨X1, X2, . . . , X40⟩, {j}, {0, 2}) ∀ j | 1 ≤ j ≤ 6

Regular(⟨X1, X2, . . . , Xn⟩,A)

Molecular Weight Constraint:

Element(T w, Xi, Wi) ∀ i | 1 ≤ i ≤ n

Sum(⟨W1, W2, . . . , Wn⟩, Sw)

200 ≤ Sw ≤ 275

5.2.2 Evaluation metrics

To evaluate our different models, we use three metrics: time, success rate and perplexity.

The time is self-explanatory, we measure the average time to generate a molecule over all
successful molecules generated. This means that unsuccessful runs aren’t accounted for in
this average. We also set a time limit on the CPBP model running with backtracking in case
the search takes too long. The time limit was set to 10 minutes.

As for the success rate, it is evaluated as the number of successfully generated molecules out
of the 100 attempts. However, we categorize a molecule as "successfully generated" if the
generated molecule is valid and respects all constraints that we defined.

Finally, perplexity [43] is a common metric in NLP:

PPL(x1, . . . , xn) = exp
(
− 1

n

n∑
t=1

log p(xt|x1, . . . , xt−1)
)

The higher the perplexity, the less likely it would be generated by the neural model and
the more surprising it is with respect to the training set. This is particularly interesting for
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our CP model as it may disagree with the probability distribution it receives from GPT and
modify it. This could increase the perplexity score for the current token if the chosen value
is one that GPT would be less likely to choose. We also consider perplexity for individual
tokens, 1/p(xt|x1, . . . , xt−1), in order to track its behavior across the whole sequence.

5.2.3 Tested model combinations

CPBP with backtrack

This is the default solving method for our CPBP solver. It should have the highest success
rate as it can backtrack to fix its mistakes while the other methods will be limited to token-
by-token generation. Its perplexity score could be high, but it’ll be interesting to see if it
differs from the CP model with no backtracking.

To ensure the results are as close to the other models, allowing for a better comparison,
we use a lexicographic variable choice (i.e. in order from left to right) and a biased wheel
selection for the value (i.e. weighted random or roulette wheel selection) according to the
marginal distribution.

All further models will generate the sequence token-by-token.

CPBP no backtrack

By removing the backtracking from our model, it may end up making mistakes. However,
this serves as a better comparison to the GPT models as we cannot backtrack to fix our
mistakes, which is how the CP model will be used in the combined architecture.

GPT

The first GPT model is run without any input from the CP side of things. This serves as
our baseline for the perplexity score. Once we add CP to the setup, we’ll be able to see how
it affects the success rate of our model.

GPT + CP

By adding the CP component to our GPT model, we expect the success rate to rise in ex-
change for an increase in perplexity. This model does not use BP and thus the integration
between the two models is slightly altered. Instead of modifying the GPT model’s probabili-
ties, we simply use CP to eliminate values that would breach one of our constraints and then
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normalize the probabilities of the possible values that are left. We then proceed normally,
using a biased wheel selection.

GPT + CPBP

Finally, this model is the one presented in Figure 5.1. It utilizes BP to modify the probabilities
received by the GPT while also getting rid of values breaching contraints.

As mentioned in Section 5.1.2, we can modify the weight of the Oracle constraint to increase
or decrease its influence on the generated sequence. We test this model using a baseline
constraint weight of 1, as well as 0.5 and 1.5 to observe the effects it has on the perplexity
and the success rate. The time should not be affected by this change.

5.3 Results

This section will go over the results presented in Table 5.1 for the different model combinations
that we described previously.

CPBP with and without backtrack. As we expected, the backtracking model has the
highest success rate at the cost of having a very high perplexity and run time. It takes twice
as long to solve when we use backtracking, but we achieve a perfect success rate. The success
rate of the no-backtracking model is much lower than we anticipated. By eliminating values
that lead to unsolvable sequences, we thought the model would still perform with very few
errors. However, BP is a heuristic, and we are using a biased wheel selection, meaning we
might make multiple non-ideal choices which lead to an unsolvable sequence.

What’s interesting to note is that backtracking seems to increase the perplexity. We believe
this is due to a type of “survivor bias”. When we have backtracking enabled, a non-ideal
decision, which would have lead to an unsolvable sequence in the no-backtrack model, can
still be solved using backtracking and results in a molecule that is atypical and has a high
perplexity score. In other words, the perplexity is higher because molecules that have a high
perplexity are harder to solve and end in failure when we don’t have backtracking.

GPT model alone. Contrary to the previous two models, this one’s success rate is the
lowest, but it also achieves the best perplexity score in the least time. Since the model is
used to calculate perplexity, it holds that molecules generated purely with this model would
have the lowest score.
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method success(%)↑ PPL↓ time(s)↓
CPBP (backtrack) 100 1236.71 125.4
CPBP (no backtrack) 59 503.48 62.4
GPT 7 5.30 1.2
GPT+CP 18 13.50 25.2
GPT+CPBP (w = 1) 92 8.35 67.2
GPT+CPBP w = 0.5 82 17.30 70.8
GPT+CPBP w = 1.5 72 8.14 63.6

Table 5.1 Success rate, average perplexity, and average runtime over 100 attempts to generate
weight-constrained 40-token molecules. The arrows near the column heads indicate what the
goal is for this column (i.e. minimize or maximize).

A reminder that a successful molecule is one that respects validity and the molecular weight.
The model generates more valid molecules, but as it was not trained to target the specified
molecular weight range, it does not perform well in terms of success.

GPT with an added layer of CP. Just by adding a layer of CP at inference time, we
double our success rate. Unfortunately, as we do a biased wheel selection using the GPT
model’s probabilities, we still end up making mistakes. This model’s increased success rate
does show that CP filters out some wrong choices, however there is a significant increase in
both time and perplexity.

GPT + CPBP, the full combined architecture. This model is the final one we pro-
posed, a combined architecture that utilizes both the learned information from a GPT model
and the BP of our CP model.

We ran tests with three different Oracle constraint weights: 0.5, 1 and 1.5. The success
rate of the baseline model (weight of 1) is the highest of the three. As was expected, by
increasing the weight of the constraint, we decrease the perplexity as we are giving more
weight to the GPT model’s message (and inversely when we decrease the weight of the
constraint). However, what was unexpected is the decrease in success rate regardless of
which way we shift the weight. Intuitively, one would expect the success rate to increase as
we decrease the Oracle constraint’s weight, giving priority to the hard constraints. But,
as we can see, the GPT model contributes to the validity of the model and decreasing the
strength of its message leads to more mistakes. There might be another point between 0.5
and 1.5 with a higher success rate, but finding it falls outside the scope our work. When we
decrease the constraint’s weight, we see a clear increase in perplexity: giving more weight to
the constraint model over the GPT model would have that effect.
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Overall, this final model performs incredibly well in terms of success rate, firmly beating
GPT and CPBP without backtracking. It takes more time, roughly one minute per molecule,
far more than GPT. We can see that a large part of that time comes from the added BP
calculations (note the difference between GPT+CP and GPT+CPBP). We will discuss ways
to mitigate this in our future work. The perplexity score stays pretty low even after adding
the CPBP component, far lower than CPBP on its own and not too far above the GPT
model alone.

Something very interesting is how the addition of BP lowers the perplexity. We expected the
opposite to happen, where adding BP would change the GPT model’s probabilities during
sampling and lead to a higher perplexity. This could be explained by high-cost decisions
the no BP model has to make. Since BP guides the search towards probable solutions, we
believe the no BP model ends up in bottlenecks where it has to make multiple high-cost
decisions to maintain solvability. Meanwhile, the BP model anticipates these problems and
guides the search towards a more likely solution, making fewer high-cost decisions earlier to
avoid multiple high-cost ones later. This can be seen in Figure 5.3, where the model with
no BP starts off with very low perplexity choices and slowly gets worse. Meanwhile, the BP
variants make a high-cost decision early, allowing future decisions to remain low.

Figure 5.3 Average perplexity indexed by token (darker is higher).

The combined architecture successfully targets the molecular weight desired, even though
the base GPT model was not trained to do so, while still maintaining a low perplexity.
Admittedly, the time is high, but we believe this can be improved and does not prevent an
answer to our fourth research question: How can we combine a CP model with a NLP model
to improve the realism of generated sequences and is it an effective method? We have shown
how to combine the two models with the help of the Oracle constraint and the results
indicate that it is effective at targeting the specified constraints without overpowering the
information learned by the GPT model.
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CHAPTER 6 CONCLUSION

This chapter will conclude our work. We will first go over the work we did, summarizing our
main findings and their impact in regard to the research questions stated at the start of this
thesis. Then we will highlight the limitations of our work and how it might have affected our
results. Finally, we will discuss future work that could be of interest to future researchers
wishing to pursue this topic further.

6.1 Summary of Works

We defined a model capable of modelling valid molecules using a commonly used one-
dimensional representation: SMILES.

We first tested this model using additional structural constraints and three heuristics:
domWdeg/Random, maxMarginalStrength/DFS, and maxMarginalStrength/LDS. On every in-
stance, our model manages to find at least one solution across the three heuristics, confirming
that our representation can generate valid molecules in SMILES format.

We then modelled desirable molecular properties using CP and applied the constraints to
our model, without the structural constraints. This model is capable of generating valid
molecules while targeting specific properties. These property constraints are estimations
with low error rates. Once again, the model is tested using the same three heuristics and
every instance is resolved at least once.

The results of these two test series allow us to compare the advantages of the different
heuristics. BP guides the search towards valid solutions significantly better, however the
added cost in time can cause it to solve the instance in more time than standard CP. We
believe that some of our constraints, namely the Cfg constraint, are quite large and the
additional cost to compute the marginals needed for BP slow down the solving. We will
discuss this more later, in both our limitations and future work.

Finally, we combined a simple CP model with a LLM. The CP model guarantees the validity
of generated sequences, while also targeting a desired molecular weight range. We choose to
combine the two at inference time, taking advantage of BP and the Oracle constraint to
modify the probabilities of the model before sampling the next token. We observed that the
combined model was capable of generating valid molecules in the desired weight range much
more often than either individual model (be it CP without backtracking or the LLM model).

This shows that our combined model allows us to repurpose a trained LLM to target a
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more specific type of molecule without having to retrain it to target that range. This makes
the model much more versatile as we can change the desired range with no cost in time or
resources (as opposed to retraining the model to target that specific range).

We also show the consequences of changing the weight of the Oracle constraint (i.e. chang-
ing the weight of the LLM’s message). We see that the result worsens whether we increase or
decrease the weight, seemingly indicating that both models contribute significantly towards
the model’s success rate.

Once again, by introducing CP and CPBP to the LLM model, we increase the time required
to generate a sequence. However, this time the added cost of BP was much more clear as
we could see the time more than doubled. We, once again, attribute this increase to the BP
module of our large constraints.

6.2 Limitations

This section will highlight the limitations that we could not or chose not to address in the
span of our work.

Grammar Constraint’s BP Module. As mentioned multiple times, the Cfg constraint’s
costly BP module is one of the main suspects as to why the addition of BP increases the time
so drastically. We attempted some tests with another, lighter grammar, however it was too
permissive with its rules and invalid SMILES strings were included in its language. We could
not find an alternative grammar that satisfied our needs. Designing a light grammar that
still manages to do everything we wanted proved to be too time-consuming. We abandoned
the effort.

Grammar Restricting Too Many Sequences. Our current grammar is too restrictive
and certain valid SMILES chains are unrecognized. This was a known issue stated in the
original work [33]. Initially, we assumed that, while the grammar did not recognize certain
SMILES strings, it would be able to recognize the molecule under a different SMILES repre-
sentation (since the same molecule can have multiple representations). However, during one
of our tests, we attempted to do tests on a known molecule family (Benzodiazepines) and
found no recognizable SMILES representation that our grammar accepted. This seems to be
due to two cycles sharing an edge with each other as the model would fail when attempting
to place a cycle token after the end of one of the branches required to represent the molecule
(as seen in red below).
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CN3C(=O)CN=C(c1ccccc1)c2cc(Cl)ccc23

Lack of Tests on Molecular Properties. Our generative models are capable of modelling
valid molecules and estimating probabilities. These estimations were each evaluated on the
datasets that we have access to and seemed to be reliable. However, we didn’t test how
accurate these estimations are on the final model. This is mainly due to the time it takes to
generate full sequences. We assumed the results would be similar to what we observed on
the datasets, however it would be interesting to generate a large amount of molecules and
evaluate their real properties using the open source tool RDKit.

ShortTable Constraint’s BP Problems. The reason we had to implement the logP
score’s estimation using a CostRegular constraint instead of continuing with
ShortTable is due to the strange behavior of the BP component. We couldn’t find a reason
as to why it preferred smaller molecules, however we did test multiple molecules generated
using the CostRegular and they were recognized by the module with ShortTable and
found the same estimate. While it isn’t an exhaustive test, it means we found no indication
of the constraint behaving irregularly.

We note this as a limitation as it prevented us from truly comparing the two methods.
We compare the CostRegular to a ShortTable without BP and prefer it for its lower
failure count and similar solve time. However, during this comparison, we state that the
ShortTable with BP is faster due to the small molecules it is generating. While this is
likely accurate (the ShortTable constraint would push for an early padding token and the
Cfg constraint would then pad the rest), we would have to find ways to test this to be sure.

Backtracking in the Combined Model. A big limitation of our combined model is its
inability to backtrack. The main reason we didn’t implement this is that the combined model
research was done for our joint article in IJCAI’25 [42]. The other half of the experiments
were done on a model like the one we present and changing it to allow for backtracking
would have been a large shift. This fell outside the scope of our work, but would have been
an interesting final iteration to compare to the others.

Lack of Comparison and Evaluation. At no point in our research do we compare our
work to other models nor do we evaluate the quality of our molecules using metrics other
than perplexity. This is due to the goal of our experiments.

In our first experiments, we wanted to show that valid and desirable molecules could be
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modelled using CP and that BP heuristics were better at guiding the search than standard
CP heuristics. We achieve both of these goals and evaluating the quality of our molecules
was considered out of scope for these experiments.

In our second experiments, our goal was to demonstrate that the addition of CP did not get
rid of the original model’s (the LLM in our case) message while still guiding the generation
towards good solutions. We evaluate this using perplexity as it indicates how unlikely our
sequence was from the LLM’s perspective. However, once again, evaluating the molecules’
quality did not serve the goal of our research as it would obscure what we are trying to show.

While our research successfully accomplishes the goals we had set, had we had more time,
evaluating the quality of our molecules using metrics used by the drug research community
would have been an interesting addition to our research.

Lexicographic Generation. One limitation imposed on us by the type of model we chose
is lexicographic generation (i.e. from left to right). CP is capable, and can benefit from,
generating a sequence out of order. We did look into doing something similar using models
that can complete sequences given a “mask” token, however our tests did not continue far
and we settled on a token-by-token generation model. This was primarily due to a lack of
time and to follow suit with the other experiments in our joint IJCAI’25 article.

Our CP Model vs Sub-Words. One issue we had to take into account during our com-
bination of our CP model to a NLP model was that the latter models often use sub-words
and our CP model does not understand these values. As we described in Section 5.1.3, we
have to account for this by transforming the sub-words into simple tokens. However, this
was done presuming that casting the probabilities from sub-words to simple tokens would
not significantly alter the end result.

6.3 Future Research

We will cover some of the future research that could further this project.

Decreasing the Grammar Constraint’s Size. Decreasing the size of the grammar con-
straint could allow us to save a lot of time while calculating marginals. There are multiple
ways we could achieve this. First, we could change the algorithm converting our CFG into its
Chomsky Normal Form. While the algorithm already tries to keep the resulting grammar’s
size to a minimum, we believe the process could be optimized to reduce it further by finding
sequences of nonterminals that appear frequently near each other.
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Second, the more direct solution would be to change the grammar. By rewriting the gram-
mar, we could design one that is smaller. This could also be a good opportunity to make
the grammar more permissive, allowing it to recognize all SMILES strings while keeping it
restrictive enough to not allow invalid SMILES strings.

Evaluate Generated Molecules using Known Metrics. Whether this is done in com-
parison to another model or not, there is merit in evaluating the end result of our research.
While, as we said, we did accomplish everything we set out to do in our research, it would
be interesting to evaluate the quality of generated molecules and see what methods generate
the best quality molecules.

Token by Token Perplexity Constraint. In our research, we explore the topic of com-
bining a CP model to a ML model at inference time to affect the probabilities before we
sample the next token. However, an interesting approach that might have some success
would be to integrate a constraint to our CP model that calculates the perplexity of the
generated sequence according to a given ML model. This could lead to a CP model “learn-
ing” from a ML model and using it to generate sequences that respect the constraints and
resemble sequences from the training dataset.

Combining with Different Models. It could be interesting to combine our CPBP mod-
ule to other ML models to see the results. This isn’t too hard to do as we use a server-client
approach and can easily substitute one server for another. In specific, one limitation we
mentioned was lexicographic generation, we would like to explore out of order generation. It
would allow us to use CP to its full extent and there are ML models that support this. The
main issue is finding a way to make both models agree on the number of tokens to place in
each position since ML models tend to use sub-words as we mentioned previously.
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APPENDIX A GRAMMAR FOR VALIDITY

Grammar used to model SMILES validity in Appendix A.

empty_smiles → smiles
empty_smiles → smiles void
void → “_” void
void → “_”
smiles → simple_bond
smiles → atom_valence_1 simple_bond
smiles → atom_valence_2 double_bond
smiles → atom_valence_3 triple_bond
atom_valence_1 → “F”
atom_valence_1 → “Cl”
atom_valence_1 → “Br”
atom_valence_1 → “I”
atom_valence_1 → “[” “O” “-” “]”
atom_valence_1 → “[” “N” hydrogen_3 “+” “]”
atom_valence_2 → “O”
atom_valence_2 → “S”
atom_valence_3 → “N”
atom_valence_3 → “[” “C” “@” hydrogen_1 “]”
atom_valence_3 → “[” “C” “@” “@” hydrogen_1 “]”
atom_valence_3 → “[” “N” hydrogen_1 “+” “]”
atom_valence_4 → “C”
atom_valence_4 → “[” “C” “@” “]”
atom_valence_4 → “[” “C” “@” “@” “]”
atom_valence_4 → “[” “N” “+” “]”
hydrogen_1 → “H”
hydrogen_3 → “H3”
simple_bond → valence_1
simple_bond → valence_2 simple_bond
simple_bond → valence_3 double_bond
simple_bond → valence_4 triple_bond
simple_bond → valence_2 slash valence_3 “=” valence_3 slash valence_2
slash → “/”
slash → “\”
valence_1 → atom_valence_1
valence_1 → valence_2
valence_1 → valence_2 “(” simple_bond “)”
valence_1 → valence_3 “(” double_bond “)”
valence_1 → valence_4 “(” triple_bond “)”
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valence_2 → atom_valence_2
valence_2 → “S” “(” “=” “O” “)” “(” “=” “O” “)”
valence_2 → valence_3
valence_2 → valence_3 “(” simple_bond “)”
valence_2 → valence_4 “(” double_bond “)”
valence_3 → atom_valence_3
valence_3 → valence_4
valence_3 → valence_4 “(” simple_bond “)”
valence_4 → atom_valence_4
double_bond → “=” valence_2
double_bond → “=” valence_3 simple_bond
double_bond → “=” valence_4 double_bond
triple_bond → “#” valence_3
triple_bond → “#” valence_4 simple_bond
simple_bond → valence_3_num1 cycle1_n_bond
simple_bond → valence_3_num2 cycle2_n_bond
simple_bond → valence_3_num3 cycle3_n_bond
simple_bond → valence_3_num4 cycle4_n_bond
simple_bond → valence_3_num5 cycle5_n_bond
simple_bond → valence_3_num6 cycle6_n_bond
simple_bond → valence_4_num1 cycle1_n_double_bond
simple_bond → valence_4_num2 cycle2_n_double_bond
simple_bond → valence_4_num3 cycle3_n_double_bond
simple_bond → valence_4_num4 cycle4_n_double_bond
simple_bond → valence_4_num5 cycle5_n_double_bond
simple_bond → valence_4_num6 cycle6_n_double_bond
simple_bond → ring_n_segment
simple_bond → ring_n_segment simple_bond
valence_2 → valence_4_num1 “(” cycle1_n_bond “)”
valence_2 → valence_4_num2 “(” cycle2_n_bond “)”
valence_2 → valence_4_num3 “(” cycle3_n_bond “)”
valence_2 → valence_4_num4 “(” cycle4_n_bond “)”
valence_2 → valence_4_num5 “(” cycle5_n_bond “)”
valence_2 → valence_4_num6 “(” cycle6_n_bond “)”
cycle1_n_bond → cycle1_7_bond
cycle1_n_double_bond → cycle1_7_double_bond
cycle1_n-1_bond → cycle1_6_bond
cycle1_n-1_double_bond → cycle1_6_double_bond
cycle1_n-2_bond → cycle1_5_bond
cycle1_n-2_double_bond → cycle1_5_double_bond
cycle1_7_bond → cycle1_6_bond
cycle1_6_bond → cycle1_5_bond
cycle1_5_bond → cycle1_4_bond
cycle1_4_bond → cycle1_3_bond
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cycle1_3_bond → cycle1_2_bond
cycle1_7_double_bond → cycle1_6_double_bond
cycle1_6_double_bond → cycle1_5_double_bond
cycle1_5_double_bond → cycle1_4_double_bond
cycle1_4_double_bond → cycle1_3_double_bond
cycle1_3_double_bond → cycle1_2_double_bond
cycle1_7_bond → valence_2 cycle1_6_bond
cycle1_7_bond → valence_3 cycle1_6_double_bond
cycle1_7_bond → ring_n_segment cycle1_6_bond
cycle1_7_double_bond → “=” valence_3 cycle1_6_bond
cycle1_6_bond → valence_2 cycle1_5_bond
cycle1_6_bond → valence_3 cycle1_5_double_bond
cycle1_6_bond → ring_n_segment cycle1_5_bond
cycle1_6_double_bond → “=” valence_3 cycle1_5_bond
cycle1_5_bond → valence_2 cycle1_4_bond
cycle1_5_bond → valence_3 cycle1_4_double_bond
cycle1_5_bond → ring_n_segment cycle1_4_bond
cycle1_5_double_bond → “=” valence_3 cycle1_4_bond
cycle1_4_bond → valence_2 cycle1_3_bond
cycle1_4_bond → valence_3 cycle1_3_double_bond
cycle1_4_bond → ring_n_segment cycle1_3_bond
cycle1_4_double_bond → “=” valence_3 cycle1_3_bond
cycle1_3_bond → valence_2 cycle1_2_bond
cycle1_3_bond → valence_3 cycle1_2_double_bond
cycle1_3_bond → ring_n_segment cycle1_2_bond
cycle1_3_double_bond → “=” valence_3 cycle1_2_bond
cycle1_2_bond → valence_2 valence_2_num1
cycle1_2_bond → valence_3 “=” valence_3_num1
cycle1_2_bond → ring_n_segment valence_2_num1
cycle1_2_double_bond → “=” valence_3 valence_2_num1
cycle2_n_bond → cycle2_7_bond
cycle2_n_double_bond → cycle2_7_double_bond
cycle2_n-1_bond → cycle2_6_bond
cycle2_n-1_double_bond → cycle2_6_double_bond
cycle2_n-2_bond → cycle2_5_bond
cycle2_n-2_double_bond → cycle2_5_double_bond
cycle2_7_bond → cycle2_6_bond
cycle2_6_bond → cycle2_5_bond
cycle2_5_bond → cycle2_4_bond
cycle2_4_bond → cycle2_3_bond
cycle2_3_bond → cycle2_2_bond
cycle2_7_double_bond → cycle2_6_double_bond
cycle2_6_double_bond → cycle2_5_double_bond
cycle2_5_double_bond → cycle2_4_double_bond
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cycle2_4_double_bond → cycle2_3_double_bond
cycle2_3_double_bond → cycle2_2_double_bond
cycle2_7_bond → valence_2 cycle2_6_bond
cycle2_7_bond → valence_3 cycle2_6_double_bond
cycle2_7_bond → ring_n_segment cycle2_6_bond
cycle2_7_double_bond → “=” valence_3 cycle2_6_bond
cycle2_6_bond → valence_2 cycle2_5_bond
cycle2_6_bond → valence_3 cycle2_5_double_bond
cycle2_6_bond → ring_n_segment cycle2_5_bond
cycle2_6_double_bond → “=” valence_3 cycle2_5_bond
cycle2_5_bond → valence_2 cycle2_4_bond
cycle2_5_bond → valence_3 cycle2_4_double_bond
cycle2_5_bond → ring_n_segment cycle2_4_bond
cycle2_5_double_bond → “=” valence_3 cycle2_4_bond
cycle2_4_bond → valence_2 cycle2_3_bond
cycle2_4_bond → valence_3 cycle2_3_double_bond
cycle2_4_bond → ring_n_segment cycle2_3_bond
cycle2_4_double_bond → “=” valence_3 cycle2_3_bond
cycle2_3_bond → valence_2 cycle2_2_bond
cycle2_3_bond → valence_3 cycle2_2_double_bond
cycle2_3_bond → ring_n_segment cycle2_2_bond
cycle2_3_double_bond → “=” valence_3 cycle2_2_bond
cycle2_2_bond → valence_2 valence_2_num2
cycle2_2_bond → valence_3 “=” valence_3_num2
cycle2_2_bond → ring_n_segment valence_2_num2
cycle2_2_double_bond → “=” valence_3 valence_2_num2
cycle3_n_bond → cycle3_7_bond
cycle3_n_double_bond → cycle3_7_double_bond
cycle3_n-1_bond → cycle3_6_bond
cycle3_n-1_double_bond → cycle3_6_double_bond
cycle3_n-2_bond → cycle3_5_bond
cycle3_n-2_double_bond → cycle3_5_double_bond
cycle3_7_bond → cycle3_6_bond
cycle3_6_bond → cycle3_5_bond
cycle3_5_bond → cycle3_4_bond
cycle3_4_bond → cycle3_3_bond
cycle3_3_bond → cycle3_2_bond
cycle3_7_double_bond → cycle3_6_double_bond
cycle3_6_double_bond → cycle3_5_double_bond
cycle3_5_double_bond → cycle3_4_double_bond
cycle3_4_double_bond → cycle3_3_double_bond
cycle3_3_double_bond → cycle3_2_double_bond
cycle3_7_bond → valence_2 cycle3_6_bond
cycle3_7_bond → valence_3 cycle3_6_double_bond
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cycle3_7_bond → ring_n_segment cycle3_6_bond
cycle3_7_double_bond → “=” valence_3 cycle3_6_bond
cycle3_6_bond → valence_2 cycle3_5_bond
cycle3_6_bond → valence_3 cycle3_5_double_bond
cycle3_6_bond → ring_n_segment cycle3_5_bond
cycle3_6_double_bond → “=” valence_3 cycle3_5_bond
cycle3_5_bond → valence_2 cycle3_4_bond
cycle3_5_bond → valence_3 cycle3_4_double_bond
cycle3_5_bond → ring_n_segment cycle3_4_bond
cycle3_5_double_bond → “=” valence_3 cycle3_4_bond
cycle3_4_bond → valence_2 cycle3_3_bond
cycle3_4_bond → valence_3 cycle3_3_double_bond
cycle3_4_bond → ring_n_segment cycle3_3_bond
cycle3_4_double_bond → “=” valence_3 cycle3_3_bond
cycle3_3_bond → valence_2 cycle3_2_bond
cycle3_3_bond → valence_3 cycle3_2_double_bond
cycle3_3_bond → ring_n_segment cycle3_2_bond
cycle3_3_double_bond → “=” valence_3 cycle3_2_bond
cycle3_2_bond → valence_2 valence_2_num3
cycle3_2_bond → valence_3 “=” valence_3_num3
cycle3_2_bond → ring_n_segment valence_2_num3
cycle3_2_double_bond → “=” valence_3 valence_2_num3
cycle4_n_bond → cycle4_7_bond
cycle4_n_double_bond → cycle4_7_double_bond
cycle4_n-1_bond → cycle4_6_bond
cycle4_n-1_double_bond → cycle4_6_double_bond
cycle4_n-2_bond → cycle4_5_bond
cycle4_n-2_double_bond → cycle4_5_double_bond
cycle4_7_bond → cycle4_6_bond
cycle4_6_bond → cycle4_5_bond
cycle4_5_bond → cycle4_4_bond
cycle4_4_bond → cycle4_3_bond
cycle4_3_bond → cycle4_2_bond
cycle4_7_double_bond → cycle4_6_double_bond
cycle4_6_double_bond → cycle4_5_double_bond
cycle4_5_double_bond → cycle4_4_double_bond
cycle4_4_double_bond → cycle4_3_double_bond
cycle4_3_double_bond → cycle4_2_double_bond
cycle4_7_bond → valence_2 cycle4_6_bond
cycle4_7_bond → valence_3 cycle4_6_double_bond
cycle4_7_bond → ring_n_segment cycle4_6_bond
cycle4_7_double_bond → “=” valence_3 cycle4_6_bond
cycle4_6_bond → valence_2 cycle4_5_bond
cycle4_6_bond → valence_3 cycle4_5_double_bond
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cycle4_6_bond → ring_n_segment cycle4_5_bond
cycle4_6_double_bond → “=” valence_3 cycle4_5_bond
cycle4_5_bond → valence_2 cycle4_4_bond
cycle4_5_bond → valence_3 cycle4_4_double_bond
cycle4_5_bond → ring_n_segment cycle4_4_bond
cycle4_5_double_bond → “=” valence_3 cycle4_4_bond
cycle4_4_bond → valence_2 cycle4_3_bond
cycle4_4_bond → valence_3 cycle4_3_double_bond
cycle4_4_bond → ring_n_segment cycle4_3_bond
cycle4_4_double_bond → “=” valence_3 cycle4_3_bond
cycle4_3_bond → valence_2 cycle4_2_bond
cycle4_3_bond → valence_3 cycle4_2_double_bond
cycle4_3_bond → ring_n_segment cycle4_2_bond
cycle4_3_double_bond → “=” valence_3 cycle4_2_bond
cycle4_2_bond → valence_2 valence_2_num4
cycle4_2_bond → valence_3 “=” valence_3_num4
cycle4_2_bond → ring_n_segment valence_2_num4
cycle4_2_double_bond → “=” valence_3 valence_2_num4
cycle5_n_bond → cycle5_7_bond
cycle5_n_double_bond → cycle5_7_double_bond
cycle5_n-1_bond → cycle5_6_bond
cycle5_n-1_double_bond → cycle5_6_double_bond
cycle5_n-2_bond → cycle5_5_bond
cycle5_n-2_double_bond → cycle5_5_double_bond
cycle5_7_bond → cycle5_6_bond
cycle5_6_bond → cycle5_5_bond
cycle5_5_bond → cycle5_4_bond
cycle5_4_bond → cycle5_3_bond
cycle5_3_bond → cycle5_2_bond
cycle5_7_double_bond → cycle5_6_double_bond
cycle5_6_double_bond → cycle5_5_double_bond
cycle5_5_double_bond → cycle5_4_double_bond
cycle5_4_double_bond → cycle5_3_double_bond
cycle5_3_double_bond → cycle5_2_double_bond
cycle5_7_bond → valence_2 cycle5_6_bond
cycle5_7_bond → valence_3 cycle5_6_double_bond
cycle5_7_bond → ring_n_segment cycle5_6_bond
cycle5_7_double_bond → “=” valence_3 cycle5_6_bond
cycle5_6_bond → valence_2 cycle5_5_bond
cycle5_6_bond → valence_3 cycle5_5_double_bond
cycle5_6_bond → ring_n_segment cycle5_5_bond
cycle5_6_double_bond → “=” valence_3 cycle5_5_bond
cycle5_5_bond → valence_2 cycle5_4_bond
cycle5_5_bond → valence_3 cycle5_4_double_bond
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cycle5_5_bond → ring_n_segment cycle5_4_bond
cycle5_5_double_bond → “=” valence_3 cycle5_4_bond
cycle5_4_bond → valence_2 cycle5_3_bond
cycle5_4_bond → valence_3 cycle5_3_double_bond
cycle5_4_bond → ring_n_segment cycle5_3_bond
cycle5_4_double_bond → “=” valence_3 cycle5_3_bond
cycle5_3_bond → valence_2 cycle5_2_bond
cycle5_3_bond → valence_3 cycle5_2_double_bond
cycle5_3_bond → ring_n_segment cycle5_2_bond
cycle5_3_double_bond → “=” valence_3 cycle5_2_bond
cycle5_2_bond → valence_2 valence_2_num5
cycle5_2_bond → valence_3 “=” valence_3_num5
cycle5_2_bond → ring_n_segment valence_2_num5
cycle5_2_double_bond → “=” valence_3 valence_2_num5
cycle6_n_bond → cycle6_7_bond
cycle6_n_double_bond → cycle6_7_double_bond
cycle6_n-1_bond → cycle6_6_bond
cycle6_n-1_double_bond → cycle6_6_double_bond
cycle6_n-2_bond → cycle6_5_bond
cycle6_n-2_double_bond → cycle6_5_double_bond
cycle6_7_bond → cycle6_6_bond
cycle6_6_bond → cycle6_5_bond
cycle6_5_bond → cycle6_4_bond
cycle6_4_bond → cycle6_3_bond
cycle6_3_bond → cycle6_2_bond
cycle6_7_double_bond → cycle6_6_double_bond
cycle6_6_double_bond → cycle6_5_double_bond
cycle6_5_double_bond → cycle6_4_double_bond
cycle6_4_double_bond → cycle6_3_double_bond
cycle6_3_double_bond → cycle6_2_double_bond
cycle6_7_bond → valence_2 cycle6_6_bond
cycle6_7_bond → valence_3 cycle6_6_double_bond
cycle6_7_bond → ring_n_segment cycle6_6_bond
cycle6_7_double_bond → “=” valence_3 cycle6_6_bond
cycle6_6_bond → valence_2 cycle6_5_bond
cycle6_6_bond → valence_3 cycle6_5_double_bond
cycle6_6_bond → ring_n_segment cycle6_5_bond
cycle6_6_double_bond → “=” valence_3 cycle6_5_bond
cycle6_5_bond → valence_2 cycle6_4_bond
cycle6_5_bond → valence_3 cycle6_4_double_bond
cycle6_5_bond → ring_n_segment cycle6_4_bond
cycle6_5_double_bond → “=” valence_3 cycle6_4_bond
cycle6_4_bond → valence_2 cycle6_3_bond
cycle6_4_bond → valence_3 cycle6_3_double_bond
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cycle6_4_bond → ring_n_segment cycle6_3_bond
cycle6_4_double_bond → “=” valence_3 cycle6_3_bond
cycle6_3_bond → valence_2 cycle6_2_bond
cycle6_3_bond → valence_3 cycle6_2_double_bond
cycle6_3_bond → ring_n_segment cycle6_2_bond
cycle6_3_double_bond → “=” valence_3 cycle6_2_bond
cycle6_2_bond → valence_2 valence_2_num6
cycle6_2_bond → valence_3 “=” valence_3_num6
cycle6_2_bond → ring_n_segment valence_2_num6
cycle6_2_double_bond → “=” valence_3 valence_2_num6
ring_n_segment → valence_3 “(” cycle1_n-2_bond “)” valence_3_num1
ring_n_segment → valence_4 “(” cycle1_n-2_bond “)” “=” valence_4_num1
ring_n_segment → valence_4 “(” cycle1_n-2_double_bond “)” valence_3_num1
ring_n_segment → valence_3 “(” cycle2_n-2_bond “)” valence_3_num2
ring_n_segment → valence_4 “(” cycle2_n-2_bond “)” “=” valence_4_num2
ring_n_segment → valence_4 “(” cycle2_n-2_double_bond “)” valence_3_num2
ring_n_segment → valence_3 “(” cycle3_n-2_bond “)” valence_3_num3
ring_n_segment → valence_4 “(” cycle3_n-2_bond “)” “=” valence_4_num3
ring_n_segment → valence_4 “(” cycle3_n-2_double_bond “)” valence_3_num3
ring_n_segment → valence_3 “(” cycle4_n-2_bond “)” valence_3_num4
ring_n_segment → valence_4 “(” cycle4_n-2_bond “)” “=” valence_4_num4
ring_n_segment → valence_4 “(” cycle4_n-2_double_bond “)” valence_3_num4
ring_n_segment → valence_3 “(” cycle5_n-2_bond “)” valence_3_num5
ring_n_segment → valence_4 “(” cycle5_n-2_bond “)” “=” valence_4_num5
ring_n_segment → valence_4 “(” cycle5_n-2_double_bond “)” valence_3_num5
ring_n_segment → valence_3 “(” cycle6_n-2_bond “)” valence_3_num6
ring_n_segment → valence_4 “(” cycle6_n-2_bond “)” “=” valence_4_num6
ring_n_segment → valence_4 “(” cycle6_n-2_double_bond “)” valence_3_num6
valence_2_num1 → atom_valence_2 “1”
valence_2_num1 → “S” “1” “(” “=” “O” “)” “(” “=” “O” “)”
valence_2_num1 → valence_3_num1
valence_2_num1 → valence_3_num1 “(” simple_bond “)”
valence_2_num1 → valence_4_num1 “(” double_bond “)”
valence_3_num1 → atom_valence_3 “1”
valence_3_num1 → valence_4_num1
valence_3_num1 → valence_4_num1 “(” simple_bond “)”
valence_4_num1 → atom_valence_4 “1”
valence_2_num2 → atom_valence_2 “2”
valence_2_num2 → “S” “2” “(” “=” “O” “)” “(” “=” “O” “)”
valence_2_num2 → valence_3_num2
valence_2_num2 → valence_3_num2 “(” simple_bond “)”
valence_2_num2 → valence_4_num2 “(” double_bond “)”
valence_3_num2 → atom_valence_3 “2”
valence_3_num2 → valence_4_num2
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valence_3_num2 → valence_4_num2 “(” simple_bond “)”
valence_4_num2 → atom_valence_4 “2”
valence_2_num3 → atom_valence_2 “3”
valence_2_num3 → “S” “3” “(” “=” “O” “)” “(” “=” “O” “)”
valence_2_num3 → valence_3_num3
valence_2_num3 → valence_3_num3 “(” simple_bond “)”
valence_2_num3 → valence_4_num3 “(” double_bond “)”
valence_3_num3 → atom_valence_3 “3”
valence_3_num3 → valence_4_num3
valence_3_num3 → valence_4_num3 “(” simple_bond “)”
valence_4_num3 → atom_valence_4 “3”
valence_2_num4 → atom_valence_2 “4”
valence_2_num4 → “S” “4” “(” “=” “O” “)” “(” “=” “O” “)”
valence_2_num4 → valence_3_num4
valence_2_num4 → valence_3_num4 “(” simple_bond “)”
valence_2_num4 → valence_4_num4 “(” double_bond “)”
valence_3_num4 → atom_valence_3 “4”
valence_3_num4 → valence_4_num4
valence_3_num4 → valence_4_num4 “(” simple_bond “)”
valence_4_num4 → atom_valence_4 “4”
valence_2_num5 → atom_valence_2 “5”
valence_2_num5 → “S” “5” “(” “=” “O” “)” “(” “=” “O” “)”
valence_2_num5 → valence_3_num5
valence_2_num5 → valence_3_num5 “(” simple_bond “)”
valence_2_num5 → valence_4_num5 “(” double_bond “)”
valence_3_num5 → atom_valence_3 “5”
valence_3_num5 → valence_4_num5
valence_3_num5 → valence_4_num5 “(” simple_bond “)”
valence_4_num5 → atom_valence_4 “5”
valence_2_num6 → atom_valence_2 “6”
valence_2_num6 → “S” “6” “(” “=” “O” “)” “(” “=” “O” “)”
valence_2_num6 → valence_3_num6
valence_2_num6 → valence_3_num6 “(” simple_bond “)”
valence_2_num6 → valence_4_num6 “(” double_bond “)”
valence_3_num6 → atom_valence_3 “6”
valence_3_num6 → valence_4_num6
valence_3_num6 → valence_4_num6 “(” simple_bond “)”
valence_4_num6 → atom_valence_4 “6”
simple_bond → aromatic_ring1_5
simple_bond → aromatic_ring2_5
simple_bond → aromatic_ring3_5
simple_bond → aromatic_ring4_5
simple_bond → aromatic_ring5_5
simple_bond → aromatic_ring6_5
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simple_bond → aromatic_ring1_6
simple_bond → aromatic_ring2_6
simple_bond → aromatic_ring3_6
simple_bond → aromatic_ring4_6
simple_bond → aromatic_ring5_6
simple_bond → aromatic_ring6_6
simple_bond → double_aromatic_ring1
simple_bond → double_aromatic_ring2
simple_bond → double_aromatic_ring3
simple_bond → double_aromatic_ring4
simple_bond → double_aromatic_ring5
aromatic_os → side_aliphatic_ring1
aromatic_os → side_aliphatic_ring2
aromatic_os → side_aliphatic_ring3
aromatic_os → side_aliphatic_ring4
aromatic_os → side_aliphatic_ring5
aromatic_os → side_aliphatic_ring6
full_aromatic_segment → side_aliphatic_ring1_segment
full_aromatic_segment → side_aliphatic_ring2_segment
full_aromatic_segment → side_aliphatic_ring3_segment
full_aromatic_segment → side_aliphatic_ring4_segment
full_aromatic_segment → side_aliphatic_ring5_segment
full_aromatic_segment → side_aliphatic_ring6_segment
full_aromatic_segment → aromatic_atom aromatic_atom
aromatic_atom → “n”
aromatic_atom → “c”
aromatic_atom → “c” “(” simple_bond “)”
aromatic_os → “o”
aromatic_os → “s”
aromatic_os → “n” “(” simple_bond “)”
aromatic_os → “[” “n” hydrogen_1 “]”
starting_aromatic_c_num1 → “c” “1”
aromatic_atom_num1 → “n” “1”
aromatic_atom_num1 → “c” “1”
aromatic_atom_num1 → “c” “1” simple_bond
aromatic_os_num1 → “o” “1”
aromatic_os_num1 → “s” “1”
aromatic_os_num1 → “n” “1” simple_bond
aromatic_ring1_6 → starting_aromatic_c_num1 aromatic_atom full_aromatic_segment aro-

matic_atom aromatic_atom_num1
aromatic_ring1_6 → starting_aromatic_c_num1 full_aromatic_segment

full_aromatic_segment aromatic_atom_num1
aromatic_ring1_5 → starting_aromatic_c_num1 aromatic_os full_aromatic_segment aro-

matic_atom_num1
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aromatic_ring1_5 → starting_aromatic_c_num1 aromatic_atom aromatic_os aro-
matic_atom aromatic_atom_num1

aromatic_ring1_5 → starting_aromatic_c_num1 full_aromatic_segment aromatic_os aro-
matic_atom_num1

aromatic_ring1_5 → starting_aromatic_c_num1 full_aromatic_segment aromatic_atom aro-
matic_os_num1

aromatic_ring1_5 → starting_aromatic_c_num1 aromatic_atom full_aromatic_segment aro-
matic_os_num1

double_aromatic_ring1 → “c” “1” aromatic_atom aromatic_atom aromatic_atom “c” “2” “c” “1”
aromatic_atom aromatic_atom aromatic_atom aromatic_atom_num2

double_aromatic_ring1 → “c” “1” aromatic_atom aromatic_atom aromatic_atom “c” “2” “n” “1”
aromatic_atom aromatic_atom aromatic_atom_num2

double_aromatic_ring1 → “c” “1” aromatic_atom aromatic_atom aromatic_atom “n” “2” “c” “1”
aromatic_atom aromatic_atom aromatic_atom_num2

side_aliphatic_ring1 → “c” “1” “(” cycle1_n_bond “)”
side_aliphatic_ring1_segment → “c” “1” “c” “(” cycle1_n-1_bond “)”
side_aliphatic_ring1_segment → “c” “(” cycle1_n-1_bond “)” “c” “1”
starting_aromatic_c_num2 → “c” “2”
aromatic_atom_num2 → “n” “2”
aromatic_atom_num2 → “c” “2”
aromatic_atom_num2 → “c” “2” simple_bond
aromatic_os_num2 → “o” “2”
aromatic_os_num2 → “s” “2”
aromatic_os_num2 → “n” “2” simple_bond
aromatic_ring2_6 → starting_aromatic_c_num2 aromatic_atom full_aromatic_segment aro-

matic_atom aromatic_atom_num2
aromatic_ring2_6 → starting_aromatic_c_num2 full_aromatic_segment

full_aromatic_segment aromatic_atom_num2
aromatic_ring2_5 → starting_aromatic_c_num2 aromatic_os full_aromatic_segment aro-

matic_atom_num2
aromatic_ring2_5 → starting_aromatic_c_num2 aromatic_atom aromatic_os aro-

matic_atom aromatic_atom_num2
aromatic_ring2_5 → starting_aromatic_c_num2 full_aromatic_segment aromatic_os aro-

matic_atom_num2
aromatic_ring2_5 → starting_aromatic_c_num2 full_aromatic_segment aromatic_atom aro-

matic_os_num2
aromatic_ring2_5 → starting_aromatic_c_num2 aromatic_atom full_aromatic_segment aro-

matic_os_num2
double_aromatic_ring2 → “c” “2” aromatic_atom aromatic_atom aromatic_atom “c” “3” “c” “2”

aromatic_atom aromatic_atom aromatic_atom aromatic_atom_num3
double_aromatic_ring2 → “c” “2” aromatic_atom aromatic_atom aromatic_atom “c” “3” “n” “2”

aromatic_atom aromatic_atom aromatic_atom_num3
double_aromatic_ring2 → “c” “2” aromatic_atom aromatic_atom aromatic_atom “n” “3” “c” “2”

aromatic_atom aromatic_atom aromatic_atom_num3
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side_aliphatic_ring2 → “c” “2” “(” cycle2_n_bond “)”
side_aliphatic_ring2_segment → “c” “2” “c” “(” cycle2_n-1_bond “)”
side_aliphatic_ring2_segment → “c” “(” cycle2_n-1_bond “)” “c” “2”
starting_aromatic_c_num3 → “c” “3”
aromatic_atom_num3 → “n” “3”
aromatic_atom_num3 → “c” “3”
aromatic_atom_num3 → “c” “3” simple_bond
aromatic_os_num3 → “o” “3”
aromatic_os_num3 → “s” “3”
aromatic_os_num3 → “n” “3” simple_bond
aromatic_ring3_6 → starting_aromatic_c_num3 aromatic_atom full_aromatic_segment aro-

matic_atom aromatic_atom_num3
aromatic_ring3_6 → starting_aromatic_c_num3 full_aromatic_segment

full_aromatic_segment aromatic_atom_num3
aromatic_ring3_5 → starting_aromatic_c_num3 aromatic_os full_aromatic_segment aro-

matic_atom_num3
aromatic_ring3_5 → starting_aromatic_c_num3 aromatic_atom aromatic_os aro-

matic_atom aromatic_atom_num3
aromatic_ring3_5 → starting_aromatic_c_num3 full_aromatic_segment aromatic_os aro-

matic_atom_num3
aromatic_ring3_5 → starting_aromatic_c_num3 full_aromatic_segment aromatic_atom aro-

matic_os_num3
aromatic_ring3_5 → starting_aromatic_c_num3 aromatic_atom full_aromatic_segment aro-

matic_os_num3
double_aromatic_ring3 → “c” “3” aromatic_atom aromatic_atom aromatic_atom “c” “4” “c” “3”

aromatic_atom aromatic_atom aromatic_atom aromatic_atom_num4
double_aromatic_ring3 → “c” “3” aromatic_atom aromatic_atom aromatic_atom “c” “4” “n” “3”

aromatic_atom aromatic_atom aromatic_atom_num4
double_aromatic_ring3 → “c” “3” aromatic_atom aromatic_atom aromatic_atom “n” “4” “c” “3”

aromatic_atom aromatic_atom aromatic_atom_num4
side_aliphatic_ring3 → “c” “3” “(” cycle3_n_bond “)”
side_aliphatic_ring3_segment → “c” “3” “c” “(” cycle3_n-1_bond “)”
side_aliphatic_ring3_segment → “c” “(” cycle3_n-1_bond “)” “c” “3”
starting_aromatic_c_num4 → “c” “4”
aromatic_atom_num4 → “n” “4”
aromatic_atom_num4 → “c” “4”
aromatic_atom_num4 → “c” “4” simple_bond
aromatic_os_num4 → “o” “4”
aromatic_os_num4 → “s” “4”
aromatic_os_num4 → “n” “4” simple_bond
aromatic_ring4_6 → starting_aromatic_c_num4 aromatic_atom full_aromatic_segment aro-

matic_atom aromatic_atom_num4
aromatic_ring4_6 → starting_aromatic_c_num4 full_aromatic_segment

full_aromatic_segment aromatic_atom_num4
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aromatic_ring4_5 → starting_aromatic_c_num4 aromatic_os full_aromatic_segment aro-
matic_atom_num4

aromatic_ring4_5 → starting_aromatic_c_num4 aromatic_atom aromatic_os aro-
matic_atom aromatic_atom_num4

aromatic_ring4_5 → starting_aromatic_c_num4 full_aromatic_segment aromatic_os aro-
matic_atom_num4

aromatic_ring4_5 → starting_aromatic_c_num4 full_aromatic_segment aromatic_atom aro-
matic_os_num4

aromatic_ring4_5 → starting_aromatic_c_num4 aromatic_atom full_aromatic_segment aro-
matic_os_num4

double_aromatic_ring4 → “c” “4” aromatic_atom aromatic_atom aromatic_atom “c” “5” “c” “4”
aromatic_atom aromatic_atom aromatic_atom aromatic_atom_num5

double_aromatic_ring4 → “c” “4” aromatic_atom aromatic_atom aromatic_atom “c” “5” “n” “4”
aromatic_atom aromatic_atom aromatic_atom_num5

double_aromatic_ring4 → “c” “4” aromatic_atom aromatic_atom aromatic_atom “n” “5” “c” “4”
aromatic_atom aromatic_atom aromatic_atom_num5

side_aliphatic_ring4 → “c” “4” “(” cycle4_n_bond “)”
side_aliphatic_ring4_segment → “c” “4” “c” “(” cycle4_n-1_bond “)”
side_aliphatic_ring4_segment → “c” “(” cycle4_n-1_bond “)” “c” “4”
starting_aromatic_c_num5 → “c” “5”
aromatic_atom_num5 → “n” “5”
aromatic_atom_num5 → “c” “5”
aromatic_atom_num5 → “c” “5” simple_bond
aromatic_os_num5 → “o” “5”
aromatic_os_num5 → “s” “5”
aromatic_os_num5 → “n” “5” simple_bond
aromatic_ring5_6 → starting_aromatic_c_num5 aromatic_atom full_aromatic_segment aro-

matic_atom aromatic_atom_num5
aromatic_ring5_6 → starting_aromatic_c_num5 full_aromatic_segment

full_aromatic_segment aromatic_atom_num5
aromatic_ring5_5 → starting_aromatic_c_num5 aromatic_os full_aromatic_segment aro-

matic_atom_num5
aromatic_ring5_5 → starting_aromatic_c_num5 aromatic_atom aromatic_os aro-

matic_atom aromatic_atom_num5
aromatic_ring5_5 → starting_aromatic_c_num5 full_aromatic_segment aromatic_os aro-

matic_atom_num5
aromatic_ring5_5 → starting_aromatic_c_num5 full_aromatic_segment aromatic_atom aro-

matic_os_num5
aromatic_ring5_5 → starting_aromatic_c_num5 aromatic_atom full_aromatic_segment aro-

matic_os_num5
double_aromatic_ring5 → “c” “5” aromatic_atom aromatic_atom aromatic_atom “c” “6” “c” “5”

aromatic_atom aromatic_atom aromatic_atom aromatic_atom_num6
double_aromatic_ring5 → “c” “5” aromatic_atom aromatic_atom aromatic_atom “c” “6” “n” “5”

aromatic_atom aromatic_atom aromatic_atom_num6



91

double_aromatic_ring5 → “c” “5” aromatic_atom aromatic_atom aromatic_atom “n” “6” “c” “5”
aromatic_atom aromatic_atom aromatic_atom_num6

side_aliphatic_ring5 → “c” “5” “(” cycle5_n_bond “)”
side_aliphatic_ring5_segment → “c” “5” “c” “(” cycle5_n-1_bond “)”
side_aliphatic_ring5_segment → “c” “(” cycle5_n-1_bond “)” “c” “5”
starting_aromatic_c_num6 → “c” “6”
aromatic_atom_num6 → “n” “6”
aromatic_atom_num6 → “c” “6”
aromatic_atom_num6 → “c” “6” simple_bond
aromatic_os_num6 → “o” “6”
aromatic_os_num6 → “s” “6”
aromatic_os_num6 → “n” “6” simple_bond
aromatic_ring6_6 → starting_aromatic_c_num6 aromatic_atom full_aromatic_segment aro-

matic_atom aromatic_atom_num6
aromatic_ring6_6 → starting_aromatic_c_num6 full_aromatic_segment

full_aromatic_segment aromatic_atom_num6
aromatic_ring6_5 → starting_aromatic_c_num6 aromatic_os full_aromatic_segment aro-

matic_atom_num6
aromatic_ring6_5 → starting_aromatic_c_num6 aromatic_atom aromatic_os aro-

matic_atom aromatic_atom_num6
aromatic_ring6_5 → starting_aromatic_c_num6 full_aromatic_segment aromatic_os aro-

matic_atom_num6
aromatic_ring6_5 → starting_aromatic_c_num6 full_aromatic_segment aromatic_atom aro-

matic_os_num6
aromatic_ring6_5 → starting_aromatic_c_num6 aromatic_atom full_aromatic_segment aro-

matic_os_num6
side_aliphatic_ring6 → “c” “6” “(” cycle6_n_bond “)”
side_aliphatic_ring6_segment → “c” “6” “c” “(” cycle6_n-1_bond “)”
side_aliphatic_ring6_segment → “c” “(” cycle6_n-1_bond “)” “c” “6’
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APPENDIX B GRAMMAR FOR LIPINSKI’S RULE OF 5

Grammar used to model molecular properties in Appendix B.

We represent it as changes applied to the grammar in Appendix A. Green plus symbols
indicate an added production, while red subtraction symbols indicate a removed production.

- smiles → simple_bond
- smiles → atom_valence_1 simple_bond
- smiles → atom_valence_2 double_bond
- smiles → atom_valence_3 triple_bond
+ smiles → valence_1
+ smiles → valence_1 simple_bond
+ smiles → valence_2 double_bond
+ smiles → valence_3 triple_bond
+ smiles → valence_1 slash valence_3 “=” valence_3 slash valence_2
+ smiles → valence_2_num1 cycle1_n_bond
+ smiles → valence_2_num2 cycle2_n_bond
+ smiles → valence_2_num3 cycle3_n_bond
+ smiles → valence_2_num4 cycle4_n_bond
+ smiles → valence_2_num5 cycle5_n_bond
+ smiles → valence_2_num6 cycle6_n_bond
+ smiles → valence_3_num1 cycle1_n_double_bond
+ smiles → valence_3_num2 cycle2_n_double_bond
+ smiles → valence_3_num3 cycle3_n_double_bond
+ smiles → valence_3_num4 cycle4_n_double_bond
+ smiles → valence_3_num5 cycle5_n_double_bond
+ smiles → valence_3_num6 cycle6_n_double_bond
+ smiles → ring_n_start
+ smiles → ring_n_start simple_bond
+ smiles → aromatic_ring1_5
+ smiles → aromatic_ring2_5
+ smiles → aromatic_ring3_5
+ smiles → aromatic_ring4_5
+ smiles → aromatic_ring5_5
+ smiles → aromatic_ring6_5
+ smiles → aromatic_ring1_6
+ smiles → aromatic_ring2_6
+ smiles → aromatic_ring3_6
+ smiles → aromatic_ring4_6
+ smiles → aromatic_ring5_6
+ smiles → aromatic_ring6_6
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+ smiles → double_aromatic_ring1
+ smiles → double_aromatic_ring2
+ smiles → double_aromatic_ring3
+ smiles → double_aromatic_ring4
+ smiles → double_aromatic_ring5
- atom_valence_1 → “[” “N” hydrogen_3 “+” “]”
+ atom_valence_1 → “[” “ND” hydrogen_3 “+” “]”
+ atom_valence_1 → “OD”
+ atom_valence_1 → “SD”
+ atom_valence_1 → “ND”
+ atom_valence_1 → “[” “C” “@” hydrogen_1 “]”
+ atom_valence_1 → “[” “C” “@” “@” hydrogen_1 “]”
+ atom_valence_1 → “[” “ND” hydrogen_1 “+” “]”
+ atom_valence_1 → “C”
+ atom_valence_1 → “[” “C” “@” “]”
+ atom_valence_1 → “[” “C” “@” “@” “]”
+ atom_valence_1 → “[” “N” “+” “]”
+ atom_valence_2 → “ND”
+ atom_valence_2 → “[” “C” “@” hydrogen_1 “]”
+ atom_valence_2 → “[” “C” “@” “@” hydrogen_1 “]”
+ atom_valence_2 → “[” “ND” hydrogen_1 “+” “]”
+ atom_valence_2 → “C”
+ atom_valence_2 → “[” “C” “@” “]”
+ atom_valence_2 → “[” “C” “@” “@” “]”
+ atom_valence_2 → “[” “N” “+” “]”
- atom_valence_3 → “[” “N” hydrogen_1 “+” “]”
+ atom_valence_3 → “[” “ND” hydrogen_1 “+” “]”
+ atom_valence_3 → “C”
+ atom_valence_3 → “[” “C” “@” “]”
+ atom_valence_3 → “[” “C” “@” “@” “]”
+ atom_valence_3 → “[” “N” “+” “]”
- valence_1 → valence_2
- valence_2 → valence_3
- valence_3 → valence_4
+ ring_n_start → valence_2 “(” cycle1_n-2_bond “)” valence_3_num1
+ ring_n_start → valence_3 “(” cycle1_n-2_bond “)” “=” valence_4_num1
+ ring_n_start → valence_3 “(” cycle1_n-2_double_bond “)” valence_3_num1
+ ring_n_start → valence_2 “(” cycle2_n-2_bond “)” valence_3_num2
+ ring_n_start → valence_3 “(” cycle2_n-2_bond “)” “=” valence_4_num2
+ ring_n_start → valence_3 “(” cycle2_n-2_double_bond “)” valence_3_num2
+ ring_n_start → valence_2 “(” cycle3_n-2_bond “)” valence_3_num3
+ ring_n_start → valence_3 “(” cycle3_n-2_bond “)” “=” valence_4_num3
+ ring_n_start → valence_3 “(” cycle3_n-2_double_bond “)” valence_3_num3
+ ring_n_start → valence_2 “(” cycle4_n-2_bond “)” valence_3_num4
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+ ring_n_start → valence_3 “(” cycle4_n-2_bond “)” “=” valence_4_num4
+ ring_n_start → valence_3 “(” cycle4_n-2_double_bond “)” valence_3_num4
+ ring_n_start → valence_2 “(” cycle5_n-2_bond “)” valence_3_num5
+ ring_n_start → valence_3 “(” cycle5_n-2_bond “)” “=” valence_4_num5
+ ring_n_start → valence_3 “(” cycle5_n-2_double_bond “)” valence_3_num5
+ ring_n_start → valence_2 “(” cycle6_n-2_bond “)” valence_3_num6
+ ring_n_start → valence_3 “(” cycle6_n-2_bond “)” “=” valence_4_num6
+ ring_n_start → valence_3 “(” cycle6_n-2_double_bond “)” valence_3_num6
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