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Résumé

Les systémes de production considérés dans cette thése sont constitués de plusieurs
machines interconnectées qui produisent simultanément plusieurs types de pieces.
Ces machines sont sujettes a des pannes et réparations aléatoires, et leurs
distributions des pannes dépendent de leurs ages. Le probléme de planification de la
production et de la maintenance de ces systemes de production est formulé comme
un probleme d'optimisation stochastique de grande dimension. Cette dimension
croit de facon exponentielle avec le nombre de machines et de types de piéces
considérés. Les problémes d’optimisation stochastique associés a une telle dimension
sont complexes et tres difficiles a résoudre de nos jours. L’objectif de notre recherche
est de déterminer une loi sous-optimale qui approxime la loi de commande de ces

problemes complexes, en utilisant une approche hiérarchisée a deux niveaux.

Dans cette these, nous avons:

(i) proposé une méthode de réduction de la taille du probléme de commande
et résolu le probleme réduit pour trouver une approximation de la loi de

commande du probleme d’optimisation stochastique considéré;

(ii) proposé une stratégie de commande plus réaliste en raffinant, a I'aide d'une

méthode heuristique, la loi de commande approximeée;

. (iii) validé les résultats obtenus a l'aide des modeles de simulation.
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L'approche de commande proposée consiste a utiliser les méthodes des
perturbations singuliéres pour transformer le probleme de commande stochastique
initial en un probleme de commande déterministe équivalent. Cette méthode est
basée sur le fait que la dynamique du systéme est associée a une existence simultanée
des phénomeénes rapides et lents. Ces phénomenes correspondent respectivement
a des fréquences d’arrivées des pannes, d’entretiens préventifs des machines et
d’actualisation du coiit encouru. En associant ces phénomenes aux échelles de temps
rapides et lents, nous formulons deux problémes de commande (déterministe et

stochastique) aux niveaux 1 et 2 de la hiérarchie proposée.

L’approche de Kushner est par la suite appliquée au probleme déterministe
pour obtenir un probleme de décision markovien. En résolvant ce probléme de faible
dimension a l'aide des méthodes numériques. nous obtenons une loi de commande a
partir de laquelle nous construisons la loi de commande recherchée pour le probleme
d’optimisation stochastique initial. Une méthode heuristique est proposée pour
une telle construction. Des modéles de simulation sont enfin utilisés pour valider

I'approche de commande proposée dans cette theése.
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Abstract

Manufacturing systems considered in this thesis are constituted of several
interconnected machines that produce several part types simultaneously. These
machines are subject to random breakdowns and repairs, and their distributions
of breakdowns depend on their ages. The production and preventive maintenance
planning problem of these systems is formulated as a large scale stochastic
optimization problem. The problem dimension grows exponentially with the number
of machines and part types involved. Stochastic optimization problems related to a
such dimension are complex and very difficult to solve. The objective of this research
is to determine a suboptimal control policy, which approximate the optimal control

policy of these complex problems, using a two-level hierarchical control approach.

In this thesis we have:

(i) proposed a method based on the reduction of the control problem size and
solved the reduced control problem in order to find an approximation of the

control policy of the considered stochastic optimization problem;

(ii) proposed a more realistic control policy by improving the approximated one

with the aim of a heuristic method;

(iii) validated the obtained results with the help of simulation models.




The proposed control approach is based on singular perturbation methods
which are used here to derive an equivalent deterministic control problem from
the initial stochastic one. These methods are based on the fact that the system
dynamics involves rapid and slow phenomena simultaneously. These phenomena
correspond respectively to the arrival frequencies of machines breakdowns or
preventive maintenance and to the actualization of the cost incurred. By associating
these phenomena to rapid and slow time scales, we formulate two control problems

(deterministic and stochastic) at levels 1 and 2 of the proposed hierarchy.

The Kushner approach is then applied to the deterministic control problem
to obtain a markovian decision control process. This small size control problem is
solved with numerical methods and the obtained control policy is used to construct
the control policy of the original stochastic optimization problem. A heuristic
approach is proposed for the construction of such a policy. Finally, simulation

models are used to validate the control approach proposed in this thesis.
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Chapitre 1

Introduction

Face aux exigences technologiques des derniéres décennies, la taille et la
complexité des probléemes industriels relatifs a la production ne cessent de croitre.
Pendant ces années, des installations manufacturiéres sophistiquées ont été mises au
point pour répondre a la demande des consommateurs. Les systéemes de production
associés a ces installations sont généralement constitués de plusieurs machines
pouvant procurer une certaine flexibilité et garantir ainsi la survie de 1'usine dans
un environnement de plus en plus compétitif. De plus, ces types de systémes sont
sujets a des événements aléatoires discrets tels que les pannes et les réparations des
machines, les fluctuations de la demande, etc.

Les systemes de production flexible (Flexible Manufacturing System (F'MS)) se
distinguent par leur capacité de satisfaire la demande des consommateurs en tenant
compte de la présence des événements aléatoires ci-haut mentionnés. Ces systémes
doivent par conséquent utiliser des lois de commande appropriées qui integrent la
présence d'événements aléatoires. La commande des FMS a par conséquent occupé,
ces derniéres années, une place prépondérante dans la littérature de commande des
systémes de production. Cette prépondérance est due principalement a I'importance

des investissements engagés et a la nature stochastique (présence d’aléas) du



probleme de commande optimale considéré.

Une bonne stratégie de planification de la production et de la maintenance
des machines est alors nécessaire afin de rentabiliser les investissements engagés
malgré la présence des pannes des machines ou de tout autre événement aléatoire.
L'industrie manufacturiere est alors confrontée au probleme de détermination des
rvthmes de production et de maintenance des machines qui maximisent le profit en

général tout en satisfaisant le plus possible les exigences des clients.

1.1 Problématique et objectif général de la

recherche

Les FMSs sont généralement constitués de plusieurs machines interconnectées qui
produisent simultanément plusieurs types de piéces. Ces machines sont sujettes a
des pannes et réparations aléatoires, et leurs distributions des pannes dépendent
de leurs ages. De plus, ces machines ne peuvent pas toujours étre purement
flexibles (autrement dit, elles peuvent requérir un temps et un coiit de setup ou de
changement de piece). Les aspects qualitatifs tels que les regles d’'ordonnancement
et d’affectation dynamique des produits aux machines peuvent également influencer
de facon significative les performances du systeme. Dans ces conditions, la loi
de commande & déterminer est constituée d'un rythme de production, d'une
politique de maintenance des machines, d'une stratégie de setup et d’une régle
d’ordonnancement et d’affectation dynamique des produits aux machines. Le
probleme d’optimisation associé a4 une telle loi de commande est un probleme
complexe dans la littérature de contréle des FMS.

Cette recherche a pour but de résoudre le probleme de planification de la



production et de la maintenance des systémes de production. Nous utilisons une
approche basée sur la réduction de la complexité du probleme d’optimisation posé. A
partir de cette réduction, nous décrivons une méthode heuristique d’approximation
de la loi de commande optimale (taux de production et de maintenance préventive
des machines).

Le probleme a résoudre est formulé comme un probleme d'optimisation
stochastique de grande dimension. Face a la complexité du probleme. les politiques
de setup et les regles d’'ordonnancement et d’affectation des produits aux machines
ne sont pas considérées dans cette thése. La loi de commande recherchée est donc
constituée des taux de production et de maintenance préventive des machines.
Le probleme d'optimisation stochastique considéré consiste a trouver une loi de
commande qui minimise une fonction cout dépendant des coiits de stockage des

produits finis et des cotits de réparation ou de maintenance des machines.

1.2 Revue de la littérature

Malgré la connaissance a priori de la politique de setup et des regles
d’ordonnancement, le probleme d’optimisation considéré dans cette recherche reste
un probléme trés complexe a cause du nombre de machines et de types de produits
impliqués. Dans la littérature, plusieurs auteurs considérent, pour fin de simplicité,
le cas ou le cout est essentiellement lié au stockage des produits et au degré de
satisfaction de la demande. Les méthodes proposées sont généralement basées sur
la représentation des FMS a l'aide des systeémes perturbés par des processus de saut.
Ces processus sont couramment modélisés par des chaines de Markov.

Dans les travaux pionniers d'Olsder et Suri (1980) et de Kimenia et Gershwin




(1983). ces processus de saut sont modélisés par des chaines de Markov homogeénes
selon le formalisme de Rishel (1975). Akella et Kumar (1986) ont montré que, pour
un systéme constitué d'une machine qui produit un seul type de piece et dont le
processus de saut est une chaine de Markov homogéne (& cause de la constance des
taux de transition), la politique de type seuil critique (hedging point) est optimale.
Cette stratégie de commande consiste a construire et & maintenir constant un niveau
optimal de stock des produits finis dans le but de continuer de satisfaire la demande
durant les états non opérationnels de la machine. Les extensions de la stratégie de
commande de type seuil critique sont également discutées par Sharifnia (1988),
Malhameé et Boukas (1991) et Bielecki et Kumar (1988). Le probléeme de recherche
de la stratégie de commande optimale devient plus difficile lorsque la chaine de
Markov n’est pas homogéne (c’est-a-dire lorsque les taux de transition ne sont pas
constants et peuvent dépendre des ages des machines et/ou de la commande).

En considérant le fait que la distribution des probabilités de panne d'une
machine dépend de son 4ge, le formalisme de Boukas, présenté dans Boukas (1987),
Boukas et Haurie (1990) et Boukas (1995), considére l'age de la machine dans la
modélisation et la commande d'un FMS. En combinant la commande du taux de
production et celle des actions de maintenance préventive, I'approche de Boukas
a établi, par application d'une méthode numérique basée sur l'approximation de
Kushner, que la solution au probléme de commande optimale stochastique du FMS
considéré est non seulement de type seuil critique mais dépend également de l'dge.
A partir de ce résultat, Boukas et al. (1995a) et Boukas et Yang (1996) ont modifié
le concept du hedging point classique en montrant qu'il existe un age optimal de

la machine a partir duquel on doit batir un stock tel que dans Akella et Kumar




(1986). Avant cet age, la machine est supposée neuve et la politique du juste a
temps (c’est-a-dire une production au taux de la demande) est optimale. Kenne et
al. (1997a) ont par la suite déterminé, par une combinaison d’approches analytique
et de simulation, le niveau de stock critique (différent du “threshold” obtenu
analvtiquement par Akella et Kumar (1986) et utilisé par Boukas et al. (1995a))
et I'dge de commutation associé. Dans le cas général, lorsqu’on est en présence de
plusieurs machines et plusieurs types de piéces, les conditions d’optimalité obtenues
sont difficiles & résoudre. Dans le cas des systémes de faible dimension (maximum
de deux machines traitant un seul type de piece), |’approche numeérique permet de
résoudre les conditions d’optimalité et d’approximer la loi de commande optimale
du FMS tel que dans Boukas (1987) et dans Boukas et Kenne (1997).

En ce qui concerne les systémes complexes, constitués de plusieurs machines,
le probleme de planification du taux de production est reconnu dans la littérature
comme €étant un probléeme complexe. Pour un systéeme constitué de deux machines
en série et traitant un seul type de piéce, Lou et al. (1994) ont proposé une
formulation qui tient compte des contraintes additionnelles rattachées a I'existence
d'un stock tampon (work-in-process (WIP)) entre les deux machines. Dans ce cas,
le concept du hedging point n’est plus directement applicable. Lou et al. (1994)
ont étudié les propriétés dvnamiques du probléme de commande optimale associé
a ce systéme a partir d’'une extension du modele d’Akella et Kumar (1986). Van
Ryzin et al. (1993) ont généralisé les stratégies de commande optimale de ce méme
systeme en appliquant les méthodes numeériques sur un exemple spécifique. En se
basant sur les résultats numériques obtenus, Van Ryzin et al. (1993) proposent

I’approximation d'une loi de commande sous-optimale du probleme considéré. Dans




le cas de plusieurs machines. les conditions d’optimalité du probleme de commande
optimale sont présentées par Presman et al. (1995). Les résultats obtenus ont été
étendus au cas ou l'on contréle simultanément le rythme de production et le taux
de réparation des machines (maintenance corrective) par Kenne et al. (1997b).
Les approches proposées dans la littérature au sujet des systemes en tandem sont
difficilement applicables lorsqu’on tient compte de 'age. Cela est di non seulement
a la dimension du probléeme de contrdle, mais également & la contrainte imposée
par le WIP.

Pour un systéme constitué de plusieurs machines et traitant plusieurs types de
pieces. Bai et Gershwin (1994) et Glassey et Hong (1993) abordent le probleme de
planification de la production en utilisant une méthode basée sur la décomposition.
[Is traitent le FMS comme un agrégat de plusieurs systémes a deux machines traitant
un seul tyvpe de piece dont des lois de commande sous-optimales sont disponibles.
Ils considérent trois classes d’activités (production, réparation et blocage ou non-
alimentation des machines) dans le probleme d'ordonnancement de la production
et de controle du niveau du WIP. La méthode heuristique proposée est basée
sur 'approximation de la fonction valeur et sur un certain nombre d’hypotheses
restrictives. Ces hypothéses limitent les applications d’une telle méthode et rendent
difficiles leurs extensions aux systémes de production modélisés en tenant compte
du fait que la capacité d’'un systéme dépend des ages des machines.

Dans le cas des FMS constitués de plusieurs machines, l'approche des
perturbations singuliéres a été souvent utilisée. Cette approche se distingue des
approches classiques car elle exploite la structure particuliére d’'un systeme en vue

de procurer une loi de commande hiérarchisée. L'idée principale de cette approche



est de réduire la taille du probleme de commande des systémes larges en considérant
une hiérarchie qui dérive du fait que les taux de transition entre les différents
modes du systéme (pannes des machines par exemple) sont plus grands que le
taux suivant lequel le coiit est actualisé. Dans ces conditions, on peut remplacer
les équations classiques d'Hamilton-Jacobi-Belleman (HJB) par des équations de
la programmation dynamique d'un probleme déterministe équivalent dit “probléeme
limite”. Ce probleme dépend uniquement des valeurs moyennes des phénomenes
rapides (pannes des machines par exemple) et correspond & une approximation du
probléme original. A partir de la solution optimale de ce probléme, on reconstruit
une solution dite “sous-optimale” du probléme optimal original. L'approche utilisée
par Lehoczky et al. (1991), Sethi et Zhang (1994) et Soner (1993) differe de celle
présentée par Grammel (1996), Kokotovié et al. (1986) et Saksena et al. (1984) qui
ont associé les échelles de temps considérées a la dynamique continue plutét qu'a
la dynamique discréte. Cependant, les deux approches visent le méme but: a savoir
réduire la complexité de résolution du probleme d’optimisation posé. Dans le cas ou
les processus de saut sont décrits par des chaines de Markov non homogenes, une
telle approche s applique difficilement car la construction de la solution au probléeme
stochastique original n’est plus évidente des lors que 'hypothése d homogénéité de
la chaine de Markov n'est plus valide.

Nous pouvons également noter qu'il existe une large littérature illustrant
la puissance de l'outil de simulation dans la conception, la planification,
I'ordonnancement et le contréle des FMS complexes. A laide des langages de
simulation a4 usage général (voir Pritsker (1986) et Bengu (1994)), nous pouvoas

décrire en détail le comportement d'un FMS. La flexibilité de ces types de langage



a permis de développer des modeéles qui procurent une détection précise des
performances d’'un FMS, quelles que soient sa taille et ses conditions d’opération.
Certains chercheurs ont essayé d’augmenter l'efficacité de la simulation dans le cas
des FMS en exploitant les capacités descriptives de cette derniére, soit a l'aide de
systemes experts (voir Bai et Nagarur (1994), Haddock (1990) et Mellichamp et
al. (1990)). soit en utilisant le design expérimental (voir Abdulnour et al. (1994),
Gupta et al. (1993) et Tarum et Rizvan (1994)). Les systémes experts ont surtout
été utilisés pour générer automatiquement des modeles de simulation pour FMS tel
que dans Haddock (1990) ou pour interpréter les résultats de simulation, identifier
les problémes ou les possibilités d’amélioration de la conception d’'un FMS. Ces
systemes experts sont basés sur une analyse des entrées des modéles de simulation
et des sorties correspondantes (voir Haddock (1990) et Mellichamp et al. (1990)).
La méthodologie de design expérimental, quant a elle, est surtout utilisée pour
aider a identifier les facteurs et les interactions qui influent sur le systéme et, par
conséquent, permet de dégager un modele de régression qui pourra, par la suite,
étre minimisé pour déterminer les conditions optimales d'opération (voir Kenne et
Gharbi (1997)).

Notons cependant que 1'utilisation de la simulation, aussi bien en combinaison
avec les systéemes experts qu’avec le design expérimental, nécessite la connaissance
a priori de la loi de commande. Cette condition rend donc difficile I'application des
modeles de simulation classiques dans le domaine de la commande des FMS, ou les

lois de commande sont des variables de contréle & déterminer.



1.3 Motivation de la recherche

Nous observons que l'extension du concept du hedging point au cas des systemes
décrits par des chaines de Markov non homogenes est complexe dans le cas
des systeémes constitués de plusieurs machines traitant plusieurs types de pieces.
De méme. il n'existe pas une méthode satisfaisante qui permet de déterminer
simultanément les taux optimaux de production et de maintenance des machines
dans le cas de ces systémes complexes. Les modeéles analytiques présentés dans
la littérature ne peuvent étre résolus que dans le cas des systémes de tres faible
dimension. Pour les systemes complexes, il n'existe pas une approche générale qui
permet d’obtenir une loi de commande optimale d'un FMS tout en tenant compte
des ages des machines dans le modéele.

Pour certains des systemes de production étudiés dans la littérature, les
solutions sous-optimales obtenues sont basées sur un certain nombre d’hypotheses
restrictives (chaines de Markov homogénes par exemple) et sur des approches
limitées par les dimensions des problémes de commande associées (équations d' HIB
stochastiques).

Face a la complexité de résolution des équations d’'HJB stochastiques d'une
part et au manque de méthodes heuristiques de commande des FMS en situation
réelle d’autre part, nous nous proposons dans cette recherche de batir des méthodes
heuristiques pour la commande des FMS en utilisant une formulation plus générale.
Cette formulation tient compte des dges des machines et de la politique de

maintenance des machines dans le modéle.
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1.4 Méthodologie

Dans le but d’aborder I'étude des systémes complexes, nous allons nous concentrer
particulierement sur des approches basées sur la réduction de la complexité du
probleme de commande optimale de ces systémes. La méthode proposée consiste a
utiliser la technique des perturbations singulieres pour transformer le probleme
de commande stochastique initial en un probleme de commande déterministe
équivalent. Les problemes de commande stochastique et déterministe équivalent sont
formulés respectivement aux niveaux 2 et 1 de la hiérarchie proposée. L’approche
de Kushner est par la suite appliquée au probléeme déterministe pour obtenir un
probleme de décision markovien. En résolvant ce probleme de faible dimension a
I'aide des méthodes numériques, nous obtenons une loi de commande qui est a la
base de la construction de la loi de commande recherchée pour notre probleme
initial. Une méthode heuristique est proposée pour une telle construction. Des
modeles de simulation sont enfin utilisés pour valider I'approche de commande
proposée dans cette recherche.

Les principaux développements de notre démarche sont résumés dans la figure
1.1 qui présente la méthodologie de commande heuristique que nous proposons.
Nous détaillons ci-aprés, de facon séquentielle, les étapes E; a E4 associées a la
méthode proposée et qui regroupent les différents développements illustrés par la

figure 1.1.

E, Présenter un formalisme plus général du probleme de commande de
FMS en nous basant sur le formalisme de Rishel (1975) et l'extension
proposée par Boukas (1987). Nous formulons dans cette étape un certain

nombre d’hypothéses dites de modélisation et nous considérons une loi de
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Figure 1.1: Méthodologie générale de commande heuristique proposée

commande constituée des taux de production et de maintenance préventive.

Nous présentons les conditions d'optimalité qui garantissent l’existence et

I'unicité d’'une loi de commande optimale. Cette étape présente donc la

formulation d'un probléeme de commande optimale stochastique dit

probléme initial que nous associons au deuxiéme niveau de la hiérarchie

proposée.

E, Proposer une approche de commande hiérarchisée basée sur la méthode des

perturbations singuliéres pour réduire la taille du probleme de contréle.
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Cette approche consiste a déduire de la formulation de I'étape E; un probleme
de commande optimale déterministe équivalent en remplagant les
phénomenes rapides (les pannes et les réparations des machines par exemple)
par leurs movennes. La loi de commande résultante est par conséquent d'une
optimalité asymptotique et peut étre considérée a la limite comme loi de
commande du probleme stochastique initial. Cette limite n'étant pas physique,
nous disons qu’'une telle loi est une loi sous-optimale du probléme stochastique

initial.

Appliquer l'approche de Kushner au probleme déterministe équivalent,
caractérisé par des conditions d'optimalité de faible dimension. Résoudre le
probleme de décision markovien obtenu a l'aide des méthodes numeériques.
Ressortir par la suite la structure de la loi de rétroaction résultante et
proposer une méthode de construction de la loi de commande du
probléme stochastique a partir de la solution du probleme limite (probleme
déterministe). La méthode de construction proposée est basée sur une
discrétisation du vecteur des ages des machines suivie du regroupement
de ces derniéres en classes. En nous basant sur ce regroupement. nous
présentons également dans cette étape une approche de construction d’une
loi de commande dépendant de 'dge et qui intégre la nature stochastique du

probleme.

Valider par la suite la méthode heuristique proposée, a 1'aide d'un modéle
de simulation discréte, en comparant les performances du FMS (niveaux
d’inventaire et le coit total encouru) lorsque ce dernier est soumis a deux lois

de commande différentes. Les deux lois considérées sont issues respectivement
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de la méthode proposée et de la résolution numérique directe des équations
d'HJB. Raffiner par la suite la loi de commande obtenue en augmentant le
nombre de classes de la partition du vecteur des dges des machines. Le nombre
maximal des classes de cette partition est imposé par le fait que chaque classe

doit contenir au moins deux élements.

Plus précisément, pour résoudre ces différents problemes reliés a la commande

optimale stochastique des FMS, cette recherche a pour objet de répondre aux

questions Q; a Q4 formulées ci-apres:

Q.

Qs

Q.

Pouvons-nous développer des modeles généralisés simples de commande
stochastique (incluant des actions de maintenance préventive)? Ces modeéles
doivent étre caractérisés par des conditions d’optimalité de faible dimension,

comparées a celles des conditions d'optimalité couramment utilisées.

Pouvons-nous inclure des actions d'entretien préventif et des taux de panne
des machines qui dépendent de leurs ages dans ces modeéles et établir les

conditions d'optimalité correspondantes ?

Pouvons-nous résoudre numériquement le probleme de commande optimale
relatif aux modeles simples issus de la réduction de la taille du probléeme

d’optimisation initial ?

Pouvons-nous par la suite construire la solution du probleme de commande
initial a partir de la solution du probléme limite et la valider a l'aide des

modeéles de simulation ?
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1.5 Contributions originales

Les réponses a ces questions constituent les contributions de cette these. Ces
contributions comprennent une étude théorique et une étude pratique. L’étude
théorique est constituée des réponses aux questions Q;, Q2 et Q3 qui regroupent
les étapes E;. E; et E3 de la méthodologie proposée. Cette partie de l'étude
consiste a développer des modeles simples de commande des systemes de production
flexible a l'aide de I'approche de commande hiérarchisée. Cette approche réduit
la taille du systeme d’'équations qui décrit l'optimum dans le cas des systémes
complexes. En plus, ces modeles incluent les dges des machines et la politique de
maintenance préventive de ces machines. L'étude pratique, réponse a la question
Q4, est constituée de l'étape E4 de la méthodologie proposée. Cette deuxiéme
partie de l'étude consiste a appliquer la structure de commande, obtenue par I'étude

théorique, a des modeles de simulation pour valider I’approche proposée.

1.6 Organisation de la these

Au chapitre 2, nous présentons une formulation plus générale du probleme de
commande optimale des FMS. En nous basant sur le formalisme de Rishel (1975) et
sur l'extension proposée par Boukas (1987). nous présentons un modele analytique
de ce probléme, les conditions d’optimalité, I'impact de la taille des équations d'HJB
sur la résolution du probleme et les difficultés de résolution de ces types d’équations.

Au chapitre 3, nous présentons l'approche de commande hiérarchisée basée
sur la méthode des perturbations singuliéres. Nous montrons dans ce chapitre qu’il

est possible de trouver un probleme de commande optimale déterministe qui est



équivalent au probleme initial de commande optimale stochastique. L 'approche de
Kushner est appliquée aux conditions d’optimalité de ce probleme déterministe et le
probléme de décision markovien obtenu est résolu a I’aide des méthodes numériques.
Nous présentons également dans ce chapitre une méthode de construction de la
solution du probleme de commande initial & partir de la solution du probleme
déterministe.

Au chapitre 4. nous appliquons la méthode proposée au chapitre 3 sur
deux exemples numériques. Afin de valider I'approche heuristique proposée, nous
considérons pour cela des systemes dont les conditions d’optimalité peuvent étre
résolues directement (c’est-a-dire lorsque nous n'utilisons aucune transformation)
par des méthodes numériques. Nous validons l'approche en comparant dans ce
chapitre les performances de ces systémes lorsqu’ils sont soumis respectivement
a la politique issue de l'approche hiérarchisée et a celle issue de la résolution directe
des conditions d’optimalité. Les modéles de simulation sont utilisés pour valider la

méthodologie proposée.
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Chapitre 2

Formulation du probleme et

conditions d’optimalité

2.1 Introduction

En nous basant sur des hypothéses semblables a celles utilisées par Rishel
(1975) et par Boukas (1987), nous étudions dans ce chapitre les conditions
d’optimalité du probléme de planification de la production et de la maintenance des
svstemes de production considérés dans cette these. En utilisant la programmation
dvnamique, nous montrons que ces conditions décrivent un systéme d’équations aux
dérivées partielles de type HJB (Hamilton-Jacobi-Belleman). Pour des systémes de
production larges, ces équations sont de grande dimension et sont par conséquent
difficiles a résoudre. Nous présentons au chapitre suivant une approche heuristique
de résolution de ces types d’équations.

Ce chapitre vise un double objectif. Le premier objectif consiste a formuler
le probleme de planification de la production et de la maintenance des systémes
de production. Le second objectif consiste a établir les conditions d optimalité de
ce probleme en considérant l’exemple des systémes de production constitués de

plusieurs machines identiques qui traitent plusieurs types de piéces. Le modele que
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nous présentons dans ce chapitie est basé sur une chaine de Markov non homogene
caractérisé par la dépendance des taux de transition des ages des machines et de la
loi de commande.

Le plan de ce chapitre est le suivant: a la section 2, nous présentons la structure
du FMS considéré et les modeles dynamiques correspondants. Le probleme de
commande optimale relatif & ces modeles et les propriétés de la fonction valeur
correspondante sont étudiés a la section 3. Les limites de résolution numérique des

conditions d'optimalité obtenues sont discutées a la section 4.

2.2 Structure du FMS et modeéles dynamiques

Dans cette recherche, nous nous limitons a la dynamique des machines et a celle des
stocks de pieces. Nous développons les modeles analytiques des systémes considérés

sous les hvpotheses restrictives suivantes:

(H,) : Le temps de manutention des appareils de transport tels que les AGVs

(Automated Guided Vehicles) est négligeable.

(H2) : Le temps requis pour le changement de piéce (ou setup) et le colt de cette
opération sont négligeables comparativement au temps d usinage d'une tache
et au cout des opérations telles que la réparation ou la maintenance des

machines.

(H3) : Les piéeces se déplacent d'une machine a 'autre selon un routage défini a
I'avance. De plus, aucune regle d’affectation ou d’'ordonnancement dynamique

n'est considérée dans le modele analytique que nous présentons.
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(H4) : Les distributions des temps de panne d'une machine dépendent de son age
et les taux de transition des modes du processus stochastique qui décrit la

dvnamique des pannes d’une telle machine peuvent étre controlés.

Les hypothéses (H,), (H2) et (Hs) permettent de représenter la dynamique du
systeme par des équations différentielles simples et de simplifier par conséquent
les conditions d’optimalité. L'hypothese (H4) permet de considérer l'age d'une
machine dans le modele et de contréler simultanément les taux de production et de
maintenance préventive des machines.

Le probleme d’optimisation mentionné au chapitre 1, correspondant a la
planification de la production et de la maintenance d'un systéme de production,
est un probleme d’optimisation stochastique a cause des événements aléatoires tels
que les pannes des machines. Les actions de maintenance préventive sont introduites
dans le modéle pour augmenter la disponibilité des machines. Nous présentons ci-
aprés le modele mathématique associé a notre approche. Nous considérons dans
cette theése les systémes de production constitués de plusieurs machines identiques

en paralléle qui produisent plusieurs types de pieces.

2.2.1 Modele dynamique

Nous présentons dans cette section les équations qui décrivent la dynamique des
stocks et celle des modes des machines. Le modeéle du systéme, constitué de m
machines et traitant n produits différents, est décrit par un état hybride constitué
d'une partie continue (dynamique des stocks et des iges) et d'une partie discréete
(modes des machines). La variable continue du vecteur d’état est composée d’un

vecteur x(t) traduisant les différents stocks et d’un vecteur a(t) représentant les
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ages des différentes machines.

2.2.1.1 Dynamique continue

Soient &(t) = (z’(t). a'(t))" le vecteur d'état continu du systeme, d(t) le vecteur
des taux de demande et u(t) le vecteur des taux de production des machines. La

notation A’ désigne la transposée de A. La dynamique de Z(t) peut étre décrite par:

8¢
—_—

[
g

I

f(&(t), u(t). d(t)) (2.1)

£(0) = & (2.2)

avec = donné. &(t) € R™™, d(t) € R" et u(t) € IR™ Nous supposons que les
fonctions f(-) : R™™ x IR® x R® — IR"™™ sont continues par rapport a &(t),
w(t) et d(t) et satisfont la condition de Lipschitz. En posant w = (&', @/, dy,
nous définissons ci-apres la continuité d'une fonction et la condition de Lipschitz

appliquée a une telle fonction.

Définition 2.1 La fonction f(-)} est dite continue au point wg € R™™" x R™
si, pour tout ¢ > 0, ¢ € R™™™, il eriste & > 0 tel que |f(w) — f(wg)| < € avec
we R™ ™ x [R*™ et |w—1g| < §. Si f(-) est continu en tout point de R™™" x R*",

on dit que f(-) est continu dans cet ensemble.

Définition 2.2 La fonction f(-), définie dans R™ ™™ x IR™, satisfait la condition de
Lipschitz sl existe une constante K telle que, pour chaque paire de points w! w’e

[R™™ x IR*™ nous avons:

?

If(@') = f(@?)] < K - @' — @7 (2.3)

Avec la condition (2.3), on dit que f(-) est & variation bornée dans IR™™ x R>".

L’exemple suivant nous permet de spécifier la fonction f(-) relative a un systeme
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de production donné.

Exemple 2.1: Deux machines en paralléle traitant deux produits
Soit le systeme illustré a la figure 2.1 et constitué de deux machines en parallele

qui produisent deux types de piéces (m = 2 et n = 2).

Figure 2.1: Modele de deux machines en parallele

Le systeme d’'équations (2.1)-(2.2) est dans ce cas donné par:

£1(t) = uy(t) +unt) —dit), z.(0) = z, (2.4)
io(t) = uja(t) + uae(t) — da(t), z2(0) = zo (2.5)
ay(t) = kpun(t) + kipua(t), a;(0) = a; (2.6)
aa(t) = kojuai(t) + koouea(t),  a2(0) = as (2.7)

En posant

Z(t) = (2'(t) d'(t)) = (z1(t) z2(t) ar(t) aa(t))

u(t) = (un(t) via(t) ua(t) um(t)) € R

&
——
~
s
il

(dy(t) da(t))',
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le systéme d’'équations (2.4)-(2.7) devient:

Z(t) = Au(t) + Bd(t) z(0) = & (2.8)
avec
1 0 1 0 -1 0
0 1 0 1 0 -1
A=l ky ka 00 B=| 49 o
0 0 ku kxn 0 0

2.2.1.2 Dynamique discréte

La dynamique décrite par le systéme d’équations (2.1)-(2.2) est perturbée par un
processus de saut {{(t), t > 0} correspondant a 'état discret du systéme. Cet état
discret est généré par un processus markovien a temps continu et a état fini {(t),
appelé mode. prenant ses valeurs dans un ensemble fini B C IN avec les probabilités

de transition du mode a au mode F décrites par les relations suivantes:

Mag ()6t + o(5t) if o # 3

Plo(t +66) = BlC(t) = o] = { 1+ Aag()6t + o(6¢) ifa =3 (2.9)

Le processus ((t) est caractérisé par la matrice des taux de transition [/\Qg(-)] tels
que les Ayg(.) : IR™ x R™ — IR sont différentiables par rapport & & et & et
vérifient les relations suivantes:

> Xas() = OWaeB (2.10)
B8eB

dap(-) 2 0 V8 # a (2.11)

avec limg: g % = 0.
Le processus de saut {(t) est un vecteur dont les éléments sont des variables

aléatoires (;(t) a états dans B; (i = 1,--+,m). Nous avons en général B = B, x
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- % B;--+ x Bp. Dans le cas de 'exemple 2.1, {,(t) € B: = {1, 2.3} tel que:

1 sila machine M; est opérationnelle
Si(t) = 2 si la machine M; est en réparation (2.12)
3 si la machine M; est en maintenance préventive

Les taux de transition Aog(.) du processus {(t) se déduisent aisément de ceux des

processus (;(t). ¢ = 1,---, m, comme suit:

1. définir B tel que card(B) = 3™. Identifier les medes de {{t) tels que:
¢ty e{1.2,---,3m}

2. établir le lien entre les modes de {(t) et ceux de {;(t), ¢t = 1l.---, m, en utilisant
un tableau similaire au tableau 2.1 et en déduire A,g, (@, 3 € B) a partir de

la connaissance des A, 4, (o', 3’ € B;)

oll AL.4 est le taux de transition du mode o' au mode 3’ correspondant au processus

Zi(t). D’apreés le tableau 2.1, on peut noter que A2 = /\%2, Ay = /\fz, Al = )\{2, etc.

Tableau 2.1: Modes de {(t) et i(t), i =1,2

(1 111 21213133
(o 2 11213{1(213
¢ 213 516 |7(|819
Soit & = (u', ')’ le vecteur de commande ol w’ = (wy,-+-,wm) est le vecteur

des taux d’envoi en entretien préventif des machines M; Ces taux représentent
physiquement l'inverse du temps qui sépare |'appel du technicien de maintenance et
son arrivée. Nous supposons que l'arrivée du technicien, appelé pour une machine
M;, correspond a l'arrét de cette machine. Les w;, ¢ = 1,---,m, sont considéreés

comme étant des variables de commande et correspondent aux taux de transition
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du mode opérationnel au mode de maintenance préventive pour chaque machine
M;. Pour plus d’'information sur ce concept, nous renvoyons le lecteur a Boukas
(1987) et a Boukas (1995).

Nous présenterons plus en détail au chapitre 4 les significations physiques des
différents taux de transition A,g(.) en montrant leur dépendance vis-a-vis des ages
des machines et de la commande. Cependant, nous pouvons noter ici que le concept

de taux de transition variable ainsi utilisé permet de:

1. Modéliser des fréquences de panne d'une machine 7 qui dépendent de son age
a;(t). On peut poser par exemple A,(a;(t)) = T(a;(t)) ot T(-) est une fonction
réelle quelconque et A},(.) est le taux de transition du mode opérationnel au

mode panne de la machine M;.

2. Définir une politique de maintenance préventive en contrélant simultanément
les taux de production u(.) du systéme et de maintenance préventive w(.) des

machines.

2.2.2 Commande optimale stochastique

Nous présentons dans cette section l'ensemble des commandes admissibles, la forme
du coiit instantané considéré et I'expression du critére de performance. Nous posons
par la suite le probleme de commande optimale stochastique associé au probléme
de planification de la production et de la maintenance du systéme de production
considéré. Pour le systeme de m machines identiques en paralléle qui produisent n
types de piéces, rappelons ici que nous avons xz(¢) € R", a(t) € R™, u(t) € IR",
¢(t) € B ={l,---,p} et d(t) € IR" ol p € N est le dernier mode du systéme

(p = 3™). La dynamique de Z(t) est donnée par le systéme d'équations (2.1)-(2.2)
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dont une structure particuliére est présentée par les équations (2.4)-(2.7) relatives
a l'exemple 2.1.

Soit Q(-) = [Aas(’)] une matrice p x p telle que les conditions (2.10)-(2.11)
soient vérifiées. St Q(-) est la matrice des taux de transition de la chaine de Markov

J(t). nous avons pour toute fonction yp définie dans B:

Q()e(@) = 3 Aas()[0(8) = o) (2.13)

B#a

Pour un mode a € B, définissons |'ensemble des lois de commande admissibles U (a)

comme suit:

Ula) = {&(') : 0 < ug() £ Ind{G(t) = puus

0 < wi(.) < Ind{Gi(t) = 1}wmar (2.14)
ol u¥__ est le taux de production maximale du produit j (j = 1, -~ ,n) sur la
machine i (i = 1,---,m) et wWma- est le taux de maintenance préventive maximale

de chaque machine. La fonction Ind{P(-)} est définie telle que Ind{P(:)} = 1 si
la proposition P(-) est vraie et Ind{P(-)} = 0 si la proposition P(-) est fausse.
L’ensemble U (a) est constitué des lois de commande définies sur BxIR"™™ telles que
(a, &) est partout continiment différentiable avec des dérivées partielles bornees

en . Nous pouvons remarquer que U (a) est un ensemble convexe.
Définition 2.3 Une fonction u(a, &) est appelée loi de feedback admissible si:
(i) pour toute condition initiale T, l’équation
z(t) = f(2(t), u(a, Z).d(t)) z(0) = & (2.15)
admet une solution unique;

(i) @() ={a(t) = @(a, &), t > 0}e U(a).




Au lieu de définir un ensemble de lois de feedback admissibles, nous exprimons par
la suite la condition d’admissibilité (ii) en posant simplement ¢ (a, ) € U(a) avec
un abus de notation.

Soit ¢%*(z.u) la fonction coit instantané qui permet de pénaliser. dans chaque
mode a du svstéme. le stockage des produits, les opérations de production et celles
de réparation et de maintenance des machines. Cette fonction sera définie de fagon
précise au chapitre 4 consacré a l'expérimentation de l'approche de commande
hiérarchisée (présentée au chapitre 3). Pour chaque loi de commande @(.) € U{a),

la fonction coit peut étre définie comme suit:

J(E o a() = E{[)me“"[g“"(a‘:(t),ﬁ(t))]dtl

£(0) = z. ¢(0) = a} (2.16)

ol p est le taux d’actualisation. Le probleme de commande optimale considéré
consiste a déterminer une stratégie de production et de maintenance des machines
qui minimise 1'expression (2.16).

La fonction valeur associée a ce probleme d'optimisation est donnée par

I'expression suivante:

v(®,a)= inf J(Z, o, ()) (2.17)
u()el (a)

Si la fonction valeur v(&, ) est différentiable par rapport a &, elle doit satisfaire un
certain nombre de relations a 'optimum dites conditions d’optimalité du probleme
d’optimisation stochastique posé. Nous spécifions ces relations a la section suivante

en terme de propriétés de la fonction valeur.
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2.3 Propriétés de la fonction valeur

Dans cette section, il est question d’'établir les conditions d’optimalité pour un
probleme de commande stochastique de FMS. Ces conditions se traduisent par
un ensemble de relations que la fonction valeur doit satisfaire. Nous établissons
les propriétés de la fonction valeur en montrant qu'elle est localement Lipschitz
(ce qui garantit qu'elle est différentiable partout) et qu’elle satisfait un ensemble
d’équations aux dérivées partielles dites équations d’Hamilton-Jacobi-Bellman
(HJB). Nous établissons également une condition suffisante pour la commande

optimale. Pour établir ces propriétés, nous avons besoin de I'hypothese suivante:

(A2.1) La fonction cout instantane ¢g*(T,w) est une fonction continue et il

existe des constantes Cy et kg telles que:
0 < g%(&. @) < Cy(l +|21%)
et pour tout T,, 4, et T, Uz

1g%(&1, 1) — ¢%(Z2, &a)| < Cg(1 + |&1]% + |Za2|*) |2, — Zo

Remarque 2.1: L’hypothése (A2.1) indique que le colt instantané satisfait une
certaine condition de croissance par rapport I. De plus. cette fonction coit est
localement Lipschitz en & (voir Boukas et al. (1995b)}).

Le prochain théoréeme montre que la fonction valeur v(.) satisfait un ensemble
de conditions & l'optimum qui dépendent du gradient vg(). Cette dépendance
nécessite alors les propriétés de continuité et de différentiabilité de v(.). Nous
allons maintenant présenter ces conditions d’optimum et établir par la suite la
différentiabilité de la fonction valeur associée.

Soit

H{a,7,2) = (u—d) -r+ Q(w)v(Z, }{a) +¢%(Z,u) (2.18)
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Les équations de la programmation dynamique associées au probléme de commande

optimale considéré sont données par:

pv(Z.¢) = min  H(o,vgp(Z, o)) YZeR"™™ a€B (2.19)
(Uw)el (a)

ol vg(&. ) est le gradient de v(.) mentionné précédemment. Nous utilisons les

définitions suivantes pour montrer que la fonction valeur v(.) satisfait 1'équation

(2.19).

Définition 2.4 La super-différentiabilité D™ f(Z) et la sous-différentiabilité
D™ f(x) de toute fonction f(T) sont definies respectivement comme suit:

f(&+h) - f(&) - hr
] < o}

L nom e f@EFR) = f(&) = hor
D f(z) = {remr™: lim inf ] > 0}

D f(z) = {TGHZ"*"‘: lim sup
h-o

Définition 2.5 On dit que la fonction valeur v(.) est une solution de viscosité de

(2.19) si les conditions suivantes sont verifices:
(a) v(.) est continu et 0 < v(T, ) < Cy(1 + |T|"9);

(b) VYr € D v(z, a)

min  H(a,r ) —pv(Z a) >0 (2.20)
(uw)elU (a)
(¢) VYreD v(z a)
min  H(a,7,u)-pr(z,e) <0 (2.21)
(ww)elU(a)

Si les conditions (a) et (b) sont satisfaites, alors la fonction valeur v(.) est dite
une sous-solution de viscosité. Si les conditions (a) et (c) sont satisfaites, v(.) est
appelée une super-solution de viscosité. Pour plus d’information et de discussion sur
le concept de solution de viscosité, nous référons le lecteur aux travaux de Grandall

et al. (1984) et de Sethi et Zhang (1994).
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Théoréme 2.1 La fonction valeur v(&, a) est (i) continument differentiable et (ii)

satisfait l'équation d’HJB donnée par (2.19).

Preuve: Nous allons prouver successivement les deux parties de ce théoreme.

(1)

(ii)

A partir du fait que »(Z. a) satisfait la propriété de Lipschitz, nous pouvons
conclure qu'une telle fonction est différentiable par rapport a &, pour tout
a € B. Notons également que toute fonction qui est convexe et satisfait la

condition de Lipschitz est continument différentiable.

Pour prouver que la fonction valeur satisfait 1'équation d’HJB, utilisons
maintenant les concepts donnés par la deéfinition 2.4. D’apres la premiére
partie du théoréeme (2.1), c’est-a-dire v(.) est continiment différentiable par
rapport & &. D™ u(&, a) et D~ u(Z, a) sont tous les deux égaux a {v4(Z, a)}.
Dans ces conditions, les deux inégalités dans la définition du concept de
solution de viscosité (voir équations (2.20) et (2.21)) deviennent des égalités.

Donc v(.) satisfait les équations d'HJB. O

Le théoreme de vérification ci-apres établit une condition suffisante d’optimalité.

Théoréme 2.2 (théoréme de vérification) Soit v(Z, ) une solution differentiable

de l'equation d’HJB (2.19) telle que s:

alors
(1)
(i)

0 < v(Z, @) < Cy(1 + |Z[*)

v(Z,a) < J(&,a,1) pour tout @ € U (a).
st u' (&, ) est une loi de feedback admissible telle que

min  H(a,vz(&, ), 2) = H(a,vg(E, a), w' (T, a))
(ww)elU (a)
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alors:
‘](:i:v a, ﬁ"()) = v(:i:Y CX)

ou w'() = (u'(),w'()) = (v'(z() a() a),w'(z(-) al-).a)). La lo de

commande (u*(-),w*(:)) est alors optimale.

Preuve: La preuve de ce théoréme est présentée dans Boukas et al. (1995b). O

La loi de commande optimale 4*(.) est celle qui minimise, a travers U (), le
membre de droite de 1'équation (2.19). Cette commande est associée a la fonction
valeur décrite par le théoréme précédent. Lorsque la fonction valeur est disponible,
une politique de commande optimale est obtenue d’apres (2.19). Mais une solution
analytique de (2.19) qui donne v(.) et la commande optimale associée est difficile a
obtenir.

Chercher a résoudre analytiquement le systéeme d’équations (2.19) n'est donc
pas un objectif réaliste a cause de sa complexité dans le cas des systemes larges,
constitués de plusieurs machines qui produisent plusieurs types de piéces. Une
solution analytique de cette équation existe dans le cas d'un systeme constitué
d’'une machine produisant un seul type de piece et avec une dynamique des pannes
de la machine décrite par une chaine de Markov homogeéne (voir Akella et Kumar
(1986)). Une alternative pour résoudre ces équations consiste a appliquer des
méthodes numériques. Nous présentons aux annexes A et C l'application de telles
méthodes aux cas de deux systémes de production constitués de deux machines.
Les systéemes considérés produisent respectivement un seul type de piece et deux
types de pieces. Les méthodes numériques utilisées se heurtent malheureusement

a la grande dimension des équations d’HJB pour des systemes complexes. Cette
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dimension varie exponentiellement avec la taille du probleme d'optimisation. tel

que nous le ressortons a la section suivante.

2.4 Dimension des équations d’HJB

A cause de la large dimension des problémes de planification de la production et de
la maintenance des FMS dans des situations réelles, I'obtention d’une solution aux
équations d'HJB est extrémement difficile sinon impossible. Notons cependant qu’a
I’aide des méthodes numériques, il est possible d’envisager une solution de 1'équation
(2.19) dans le cas des systémes constitués d'un maximum de deux machines et
produisant un seul ou deux types de pieces. L'espace mémoire disponible pour
I'implantation des algorithmes numeériques développés dans le passé ne permet pas
d’utiliser un maillage fin dans le cas d’'un systéme complexe. Cette limitation vient
du fait que la dimension du probleme est relativement importante. Cette dimension

dépend des éléments principaux suivants:

1. nombre de modes du processus stochastique {(t};

[

nombre de machines et de types de pieces qui constituent le systéme de

production;

3. maillage ou grille des variables d’état (défini par les bornes supérieure et

inférieure des variables d’état et les pas de discrétisation considérés);

4. maillage ou grille de commande (défini par les différentes valeurs possibles des

variables de commande);

5. combinaisons des taux de production dans les différents modes ou la

production a lieu;
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6. combinaisons des taux de maintenance préventive dans les différents modes

ot la maintenance préventive a lieu.

Lorsque les nombres de machines et de types de pieces augmentent, la dimension
du probleme d’optimisation croit trés rapidement et rend de plus en plus difficile
I'implantation des algorithmes numériques de résolution des équations d'HJB.

Avec une telle croissance de la dimension, le probleme de commande ne
peut étre résolu numériquement par l'approche classique que lorsqu'on considere
un maillage grossier (c'est-a-dire a large pas de discrétisation) dont le stockage
n'excede pas la mémoire RAM disponible. Etant donné que la précision des
résultats numériques dépend du pas de discrétisation des variables. les lois de
commande issues des approches numériques sont dites d'optimalité asymptotique.
Nous demandons au lecteur de se référer au travaux de Boukas et Kenne (1997) et
de Kushner et Dupuis (1992) pour plus de détails sur la convergence des solutions
numeériques vers les solutions optimales lorsque le pas de discrétisation diminue.
Lorsque le nombre de variables impliquées est relativement faible (probleme de
faible dimension), les méthodes numériques peuvent étre utilisées pour déterminer
les lois de commande du FMS avec un maillage fin.

L’approche que nous proposons dans cette thése consiste a éviter d’aborder
le probleme de commande des FMS en considérant les équations d’HJB telles que
présentées par l'expression (2.19) mais plutét de réduire la taille du probléme avant
d’appliquer les méthodes numériques. Les détails sur cette alternative sont donnés

au chapitre 3.
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2.5 Conclusion

Dans ce chapitre, nous avons présenté une formulation générale du probleme
de planification des lois de commande des FMS dans le cas ou les taux de
transition dépendent de 1'état et de la commande. Nous avons ressorti le fait que la
fonction valeur associée au probleme d’optimisation considéré satisfait les équations
d’'HJB. Nous avons établi que la dimension du probleme de commande optimale
stochastique augmente trés rapidement avec les nombres de machines et de types
de pieces impliqués. C’'est cette augmentation qui rend difficile la résolution des
équations d'HJB et qui est a I'origine de la motivation principale de cette recherche.

Ce chapitre nous a permis de définir clairement le probléme d’optimisation
stochastique a résoudre dans cette thése. De plus, nous avons défini les concepts
couramment utilisés dans la théorie de commande stochastique et nous avons
ressorti une difficulté rencontrée lorsqu'on aborde le probleme selon le formalisme de
Boukas (1987). Le chapitre suivant étend ce formalisme a la commande des systémes
de production plus larges en proposant une approche alternative qui réduit le niveau

de complexité de résolution du probleme.
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Chapitre 3

Commande hiérarchisée

3.1 Introduction

La méthode de décomposition hiérarchisée est I'une des p.ds importantes approches
utilisées pour la commande des problemes d optimisation associés aux systémes de

production complexes. L’idée de cette méthode consiste:

(i) a réduire la complexité du probleme d’optimisation global en approximant ce
dernier soit par un probleme d’optimisation simple, soit par un ensemble de

problemes de commande de faible dimension;

(ii) a résoudre le probleme d'optimisation simple ou ’ensemble des problemes de

faible dimension issus de la réduction précédente;

(i1} & construire une solution du probleme d’optimisation initial a partir des
solutions du probléme ou des problemes d’optimisation simples.
Il existe plusieurs méthodes qui peuvent étre utilisées pour réduire la complexité

d'un probléme de commande. Ces méthodes ne sont pas mutuellement exclusives

et les plus importantes, présentées par Lehoczky et al. (1991}, sont les suivantes:

1. méthode de décomposition du probléme initial en plusieurs problemes de faible

‘ dimension et avec un mécanisme de coordination approprié;
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2. méthode basée successivement sur une agrégation des ressources, sur une
étude des problemes de commande obtenus et enfin sur une désagrégation

des ressources;

3. méthode basée sur le remplacement des phénomenes rapides par leurs

movennes et autres moments si possible.

La troisieme méthode est généralement associée aux méthodes des perturbations
singuliéres. L’approche résultante, dite hiérarchisée, est basée sur plusieurs échelles
de temps. Ces échelles de temps sont associées aux phénomenes aléatoires ou
déterministes caractérisés respectivement par un temps moyen d’'interarrivée
court (phénomenes rapides) et un temps moyen d’interarrivée relativement long
(phénomenes lents). Ce concept, lorsqu’il est basé sur deux échelles, permet de
développer des modeéles de commande hiérarchisée & deux niveaux. Pour plus de
détails sur les approches de commande hiérarchisée appliquées aux systémes de
production et sur l'importance de telles approches, nous demandons au lecteur de
se référer aux travaux de Sethi et Zhang (1994) et aux références qui y sont relatives.

Dans ce chapitre, nous considérons le probleme d'optimisation relié a la
planification des activités dans un FMS. Nous controlons simultanément les taux de
production et de maintenance préventive des machines de maniére a satisfaire le plus
possible un taux de demande donné. Ce probleme, dit global, est formulé comme
un probleme dynamique d’optimisation stochastique en présence d’une capacité de
production décrite par une chaine de Markov non homogene a états finis.

En pratique, la planification des activités dans un systeme de production
complexe se fait a plusieurs niveaux d’organisation, soit a cause de la complexité

du probléme d'optimisation ou a cause des considérations organisationnelles




(structure hiérarchisée par exemple). Le probléeme d’optimisation considéré dans
cette recherche peut ainsi se ramener 4 un probléme hiérarchisé de prise de décision

associé aux niveaux suivants :

1. le niveau de planification de la production et de la maintenance préventive
a long terme qui ignore les fluctuations journaliéres de la capacité de chaque

machine:

2. le niveau de production et de maintenance préventive des machines en temps
reel qui utilise une stratégie basée sur une planification a long terme et qui

integre la nature stochastique du probleme.

En nous basant sur une approche de commande hiérarchisée associée a ces deux
niveaux. nous nous proposons d’'étendre la méthodologie de commande hiérarchisée,
présentée par Lehoczky et al. (1991), Sethi et Zhang (1994) et Soner (1993), au cas
des systémes de production décrits par des chaines de Markov non homogeénes.

Nous réduisons la complexité du probleme de commande initial en considérant
des échelles de temps différents reliés aux processus des pannes et réparations des
machines et a l'actualisation du coiit. Les phénomenes rapides sont remplacés par
leurs movennes et le probleme d’optimisation obtenu est associé au niveau 1 de la
hiérarchie proposée. A partir de la solution du probleme du niveau 1, nous passons
au niveau 2 de la hiérarchie en construisant une loi de commande qui approxime
celle du probléme stochastique initial (voir Kenne et Boukas (1997b)).

Nous présentons dans ce chapitre une application de |'approche des
perturbations singuliéres & la commande d’'un FMS dont la capacité de production
est décrite par une chaine de Markov non homogéne. Cette approche permet de

. réduire la complexité du probleme de commande et de proposer une approximation
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de la loi de commande optimale en utilisant une méthode de commande hiérarchisée
a deux niveaux.

Le plan de ce chapitre est le suivant: dans la section 2, nous présentons
I'approche des perturbations singuliéres et son application dans la commande des
systemes de production. Dans la section 3, nous formulons a nouveau le probléme
d’'optimisation présenté au chapitre 2 dans le cas des machines identiques en
paralléle qui produisent plusieurs types de piéces. La section 4 présente le probléme
déterministe que nous obtenons a partir du probleme stochastique initial par
application de la méthode des perturbations singuliéres. La section 5 présente le
probleme de décision markovien associé au probleme limite. La section 6 présente
la méthode heuristique de construction de la loi de commande stochastique du

probleme initial a partir de la solution du probléme de décision markovien.

3.2 Principe de la méthode des perturbations

singulieres

3.2.1 Approche générale de commande hiérarchisée

Les systémes perturbés de facon singuliére (singularly perturbed systems) et, plus
précisément. les systémes a plusieurs échelles de temps (multi-time scale systems)
sont naturellement dus a la présence des phénomenes de hautes fréquences dans
le modele. Ces phénomeénes sont généralement associés a une échelle de temps
dite échelle de temps rapide (fast time scale). Les phénomeénes lents sont associés
a l'échelle de temps lent. Le passage d'une échelle de temps a l'autre peut

étre interprété comme une perturbation. Ce type de perturbation étant brusque,



comparée a une perturbation réguliere, est dite singuliére. L'existence des deux
échelles de temps est généralement modélisée par un parametre de perturbation
singuliére ¢ et le systéme est dit perturbé de facon singuliere.

Dans la théorie de commande, plusieurs approches de modélisation et de
commande. basées sur le concept des perturbations singuliéres, ont été présentées
dans la littérature. Les échelles de temps considérées dans les différents modeles
développés dans la littérature sont soit associées a la dynamique continue du systeme
(constituée des équations différentielles d’état), soit a la dynamique discrete du
systéeme (constituée du processus stochastique décrivant les différents modes du
svsteme). Nous présentons aux sections 3.2.2 et 3.2.3 les références associées aux

approches correspondant a ces modeles.

3.2.2 Echelles de temps basées sur la dynamique continue

Lorsque la dynamique d'un systéme est telle qu’il existe un faible couplage
entre les différentes équations différentielles d’état, le modele standard suivant est

généralement utilisé dans la littérature

z = h(z,z,t), z(tg) = z9, z € R? (3.1)

ez = g(z,2,t), z(tg) =29, z€IR? (3.2)

ou h(-) et g(-) sont des fonctions continiment différentiables par rapport a leurs
arguments z, z, t. Le scalaire ¢ représente dans ce cas tous les parametres a négliger
(petits parametres physiques, faibles constantes de temps, etc.). La variable d’'état
z(-) est associée au phénomene lent et la variable z(-) au phénomene rapide.

En faisant tendre € vers zéro, les parametres non significatifs sont négligés et

nous obtenons ainsi une réduction de l'ordre du systeme d’équations différentielles
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(3.1)-(3.2). En résolvant g(z,z,t) = 0 et en introduisant la solution trouvée
dans (3.1). nous obtenons un systéeme d’ordre p comparé a l'ordre initial p + q.
Cette approche de modélisation a été utilisée par Kokotovic¢ et al. (1986) pour
montrer qu'en négligeant l'inductance L d'un moteur & courant continu (c’est-a-
dire en posant L = ¢), nous pouvons retrouver facilement le modéle du premier
ordre couramment utilisé pour décrire la dynamique d'un tel moteur. Pour plus
d’information sur ces types de réduction et leurs applications dans la commande
des systémes. nous demandons au lecteur de se référer aux travaux de Grammel
(1996). de Kokotovié et al. (1986) et de Saksena et al. (1984).

D’apres la modélisation du chapitre 2 et les modéles dynamiques utilisés dans
la littérature de commande des FMS, il ressort que les équations d’état ne sont
pas caractérisées par la présence des faibles parameétres qui peuvent jouer le role
de ¢ comme dans les travaux de Grammel (1996), de Kokotovié¢ et al. (1986) et
de Saksena et al. (1984). Nous ne pouvons donc pas utiliser, dans le cadre de
cette recherche, des modeles basés sur une association des échelles de temps a la
dvnamique continue du systéme. Par contre, si nous associons la notion d'échelle de
temps a la dvnamique discréte du systéme en étude, nous obtenons des modeles qui
sont des extensions de ceux présentés par Lehoczky et al. (1991), Sethi et Zhang
(1994) et Somner (1993). Nous présentons dans ce chapitre une méthodologie de
commande hiérarchisée qui est basée sur une extension des approches basées sur
des chaines de Markov homogénes au cas des systémes décrits par des chaines de

Markov non homogenes.
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3.2.3 Echelles de temps basées sur la dynamique discréte

L application de la méthode de commande hiérarchisée, basée sur plusieurs échelles

de temps. a la commande d'un FMS peut également se justifier par le fait que

ce dernier est généralement caractérisé par divers changements de capacité de

production. Les points suivants présentent les principales approches présentées

dans la littérature et qui sont basées sur ces changements de capacité (dynamique

discrete).

1.

Existence des machines lentes et rapides dans un systeme de production en
tandem. L'exemple présenté par Bielecki (1996) illustre bien cette approche.
L’approche est basée sur le fait que les capacités de production d’un systeme
constitué de deux machines en série peuvent étre décrites par une chaine de
Markov dont les taux de transition sont consistants par rapport a l'échelle
de temps de la machine rapide. Cette approche réduit considérablement la

dimension du probleme de commande optimale initial.

La matrice des taux de transition Q(-) du processus stochastique qui décrit

la dynamique des machines est telle qu'on peut la décomposer comme suit :
1 1 o
QL)=Q () +-Q°() (3.3)
ol ¢ est le paramétre de perturbation singuliere, Q'(-) est la matrice des taux
de transition des phénomeénes lents et Q?(-) est celle des phénomenes rapides.

Des détails sur cette approche peuvent étre trouvés dans Sethi et Zhang (1994)

et dans Sethi et al. (1994).

Les transitions entre les modes du processus stochastique qui modélise la

dynamique des pannes des machines sont rapides comparées a 'actualisation
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du cout. Ce processus de capacité du systeme change de mode avant toute
déviation substantielle de e 7! par rapport 4 1 (correspondant a e™* a t = 0).
La méthode de commande hiérarchisée que nous présentons dans cette these

est basée sur une telle approche.

Pour plus d'information sur la troisieme approche de modélisation, nous invitons
le lecteur a se référer aux travaux de Kenne et Boukas (1997b), de Lehoczky et al.
(1991) et de Sethi et Zhang (1994). Avec une telle approche, les changements de
capacité se font plus rapidement que les changements associés aux phénomenes tels

que l'actualisation du coit.

Probleme de commande

stochastique initial

Techniques des Méthode heuristique de
perturbations construction de la loi de
singulieres commande stochastique

Probléme de commande

déterministe équivalent

Figure 3.1: Approche de commande hiérarchisée

En d’autres termes, le taux suivant lequel la capacité du systéme de production
change est plus grand que le taux d’actualisation du coit ou plus grand qu'un
taux associé a toute autre échelle de temps. Pour une demande constante et un
taux d’actualisation relativement faible, nous obtenons deux échelles de temps.

L’approche de commande associée a ces deux échelles de temps est illustrée a la
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figure 3.1. Cette figure montre qu'en appliquant la méthode des perturbations
singuliéres au probleme de commande stochastique initial, nous pouvons obtenir
un probleme de commande déterministe équivalent. L’approche de cette méthode
consiste a remplacer le phénomeéne rapide par ses valeurs moyennes lorsque les
phénomenes lents et rapides sont associés a deux échelles de temps différentes. Le
probleme de commande déterministe obtenu, caractérisé par une faible dimension,
est relativement plus facile a résoudre et est associé au niveau 1 de la hiérarchie. A
partir de la solution de ce dernier probleme, nous nous proposons d’approximer la
solution du probleme de commande initial a l'aide d’'une méthode heuristique. La
loi de commande issue de cette méthode heuristique integre les fluctuations réelles
de production et correspond & une planification & court terme ou au niveau 2 de la
hiérarchie proposée.

Dans le modele que nous présentons, le processus de capacité du systeme
dépend des ages des machines et de la commande. Nous présentons ci-apres la
formulation du probléeme d’optimisation du FMS perturbé de fagon singuliére par

la présence de deux échelles de temps.

3.3 Formulation du probléme

Dans cette section, nous présentons une formulation explicite du probleme de
planification des taux de production et de maintenance préventive d’'un FMS soumis
a des processus qui appartiennent a deux échelles de temps. La méthode des
perturbations singuliéres est utilisée pour réduire la complexité du probleme de
commande. Une approche hiérarchisée est alors proposée pour résoudre le probleme

complexe de commande posé.
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Le fait que les taux de changement des modes des machines sont en général plus
grands que le taux d’actualisation du coit nous permet d’appliquer une méthode
basée sur deux échelles de temps. Nous supposons (sans perdre de vue la généralite
de I'approche) un taux de demande constant. Avec cette hypothese, I'existence
d’un parameétre de perturbation € et la méthodologie présentée a la figure 3.1 nous
permettent de présenter une méthode d’approximation de la solution du probléeme
de commande optimale initial.

Nous considérons un systéme constitué de m machines identiques qui
produisent n tvpes de piéces. Comme au chapitre précédent. le mode opérationnel
d’une machine i peut étre décrit par un processus stochastique {;(t) (1 < i < m).
Rappelons qu’une telle machine est soit opérationnelle ({;(t) = 1), en réparation
(¢i(t) = 2) ou en maintenance préventive ({;(t) = 3). Pour chaque machine, nous

avons alors un processus (;(t) tel que (;(¢t) € B; = {1.2,3}. Nous pouvons alors

décrire le mode du systéme global par le vecteur {(t) = ({1(t),---. {m(t)) & valeur
dans B=B; x --- X Bp,.
Soient @ = (@, --.am) et w = (w1, -, wm) les vecteurs des ages et des taux

d’envoi en entretien préventif des machines respectivement. Le processus {(t) est
modélisé par une chaine de Markov a états finis ayant une matrice de taux de

transition Q(.) qui dépend de a et de w. Cette matrice est donnée par:

Qa.w) = [as(@w)], Aag() 20, Va#35
M
> Xesla,w) =0, a=1,--.M
B=1
ot M = card(B). Les taux de transition Mg(.) sont obtenus a partir d’'une

combinaison des taux de transition des processus dépendants {;(t), i = 1,---,m,

en utilisant la méthode présentée i la section 2.2.1.2. Les probabilités de transition
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de ces processus sont données par |'expression (2.9).

Nous allons considérer pour la suite du développement deux échelles de temps.
Le parametre de perturbation singuliére ¢ correspondant est associé a l'écart entre
le temps moven d’interarrivée des phénomeénes rapides (pannes/réparation ou envoi
en entretien préventif/maintenance des machines) et celui des phénomeénes lents

(actualisation du cott). Le point suivant se déduit de cette considération:

e Si A\,5(.) est un taux de transition associé au processus rapide, alors eA,5(.) et
p ont le méme ordre de grandeur. Il existe donc un taux de transition gog(.)
du méme processus dans l'échelle de temps des phénomenes lents (associée a

I'actualisation du coiit) tel que Aog(.) = € 'qas(").

Nous pouvons alors décrire la capacité du systéme par un processus stochastique

£¢(t) associé & une matrice des taux de transition Q°(.) définie comme suit:

Q() = é[qaa(-)] a,BEB (3.4)

(autrement dit Q°(-) = —i—Q()) L’approche des perturbations singulieres est
basée sur des probabilités limites du processus rapide. Ces probabilités permettent
de remplacer la capacité stochastique du systéme par une capacité moyenne et
d’obtenir ainsi un probléme de commande déterministe équivalent.

Si nous désignons par ay l'dge moyen des machines et par o le taux de
maintenance préventive moyen des machines et remplagons respectivement a; et w;,
i =1,---.m, par ay et & dans le modele, nous obtenons une matrice des taux de
transition constante Q(ay, w). La chaine de Markov associée a une telle matrice est

donc homogene, a états finis, et admet des probabilités limites v = (v}, vo, -+, vpr)’
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telles que:

M

vQ(.)=0 et Zui = 1. (3.9)
=1

Pour plus d’'information relative a I'existence de telles probabilités, nous demandons
au lecteur de se référer aux travaux de Ross (1993). Notons que les probabilités
limites. issues de I'équation (3.5), sont indépendantes de ¢.
Remarque 3.1 Sur un horizon infini. I'dge moyen ajs est indépendant de la
commande. Son taux de variation dépend uniquement du taux de demande des
produits finis. Notons que le taux de demande correspond, dans ce cas, au taux de
production moyven des machines. L'age moyen des machines peut étre approximé a
partir du developpement qui suit.

La variation de 'age de chaque machine i, peut étre décrite par l'équation

différentielle suivante:
n
d,‘ = Zk,-juu, t=1l---,m (36)
=1

ou k;; sont des constantes données. Ces constantes sont utilisées dans le modéle
de l'exemple du systéme de production constitué de deux machines qui produisent
deux tvpes de piece, présenté au chapitre 2. La variation de 1'dge moyen ajs est

donnée par:

1 m n

am = —> D kyguy (3.7)

i=17=1

Comme les machines sont identiques, nous avons k;; = k;, quelque soit la machine

i. Nous avons dans ce cas:
1 n m
dM = ;ij[Zulj]
j=1 i=1
n 1 m

=1 ™Mo




L'dge moyen des machines a un instant t est alors donné par la relation suivante:

1
aM = ;Zk d X t (3,9)

avec Y7, u,;(t) = d; (voir remarque 3.1). La valeur moyenne de 'dge moyen des

machines est alors donnée par:

y = E[— ["" aM(T)dT] (3.10)

ou T,, est le temps moyen pendant lequel les machines sont opérationnelles. En

utilisant les équations (3.9) et (3.10) nous obtenons:

1
m ;

En notant que E[f;°" 7d7| = E[Ton)?. nous avons:
]. n
ay = — > kjd; X E[Ton| (3.12)
j=1

avec

1

ElTen] = Aa(ap) + A3

Pour Ma(-) = & et Ao = kg + kq@ar, 'équation (3.12) devient:
2 1 &
kaayy + (@ + ko)anr — ;gkjd,- =0 (3.13)
Pour un choix approprié de k;, kg et k4, nous utiliserons I'’équation (3.13) au chapitre
4 pour determiner la valeur de ayps appartenant au domaine de définition choisi.
Pour simplifier le modéle et adopter la notation de Sethi et Zhang (1994).
nous définissons un processus { Z¢(t), t > 0} a états finis correspondant au nombre

de machines opérationnelles au temps ¢t et ayant des valeurs dans £ ={0, 1,---, m}.
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L’utilisation de ce nouveau processus constitue déja un premier niveau d’aggrégation
car ce processus n’est pas équivalent au processus {*(t). Nous reformulons ci-apres
le probléme original de commande optimale en utilisant le processus Z¢(t). L'age
de chaque machine et son taux d’envoi en entretien préventif seront remplacés
respectivement par a,, et & a la section 3.4.2 consacrée au probléme de commande
limite.

L’ensemble des commandes admissibles K (z}, avec z = Z¢(t), est donné par:

K(z) = {(w)w) € R™™ uy(t) 20, 3 (X uy(t)y < =

=1 1=l
et OswiSwm} 0<z<m (3.14)
ou v, est le temps de traitement du produit de type j sur chaque machine et wmez
est le taux d’envoi en entretien préventif maximal des machines.
Soient ¢ = (11, ---.zZ,) et @ = (ay,---,an) les variables d'état du systéme
correspondant respectivement aux vecteurs de stocks et d’ages des machines. Ces

variables sont décrites par le systéme d’'équations différentielles suivant:

e(t) = wu(t)-d z(0) ==z (3.15)
ﬂ,(t) =5 Zn:u,](t) ai(O) = aQ;, 1= 1,~-,m (316)
i=1

olt k,; sont des constantes telles qu’a léquation (3.6). Notons que T, a et d désignent
respectivement le vecteur des stocks, d’ages des machines et des taux de demande
des produits finis.

Soit G(a, a, z,u,w) le colit instantané défini comme suit:
Gla,a,z,u,w)=c " +c T +c%, Vo € & (3.17)

ol ¢™ et ¢~ sont respectivement des coiits encourus par unité de piece

produite dans le cas d’inventaire et dans le cas de manque de piéces. De plus,
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-~

- = (max(0.z;).--+.max(0,z,)), = = (max{—z,,0), -+, max(—z,,0))". Les

constantes ¢® permettent de pénaliser le séjour des machines dans un mode c.
Soit £ = (x.a) et &2 = (u.w). La fonction G(a, . u) satisfait les hypotheses

sutvantes:
(A3‘1) : 0< G(a,i:,ﬁ.) <C(l+ |a':|“*)

(A3.2): |G(a.z,u)-GCG(a,g.u)| S C(1+|Z|*+|y|™)|z-y| s |2-Y[<?b
pour des constantes C, cg, b > 0 appropriees.
Remarque 3.2 Les hvpothéses (A3.1) et (A3.2) montrent que le coit instantané
G(a, &, ) est convexe, positif et borné a droite par rapport a T et admet un taux de
croissance polynomial. Ces hypotheses sont généralement utilisées pour établir les
conditions d’optimalité du probléme de commande posé (voir Lou et Sethi (1994)
et Sethi et Zhang (1994)).
L'objectif du probléme de commande est de contrdler le vecteur des taux de
production u(t) et celui des taux d'envoi des machines en entretien préventif w(t)

de fagon a minimiser le coiit moyen actualisé donné par:

J(a. &.@) = E{Lme""G(Z‘(t).a’:(t),iz(t))dtlaz(O)=:z:,

a(0) = a, Z¢(0) = a} (3.18)

sous les contraintes données par le systéme d'équations (3.15)-(3.16).

Soit v¢(a, ) le scalaire désignant le minimum du colt actualisé, c’est-a-dire:

v’ (a,Z) = u.g;{f( )J‘(a,:z':,‘&.) Vo € & (3.19)

Le scalaire v*(a, ) est appelé fonction valeur du probleme d’optimisation posé.
Dans les sections suivantes, nous présentons quelques propriétés élémentaires

de la fonction valeur v¢(.) et la méthodologie d’obtention du probléme limite.
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3.4 Conditions d’optimalité

3.4.1 Probléeme stochastique initial

Dans cette section. nous présentons les propriétés de la fonction valeur v¢(e, ) du
probléme de commande stochastique initial perturbé par le parametre €. Si Q*(-)

est la matrice des taux de transition de Z¢(t), nous avons:

[ %0 % O 0 - 0 0 0 °
o) @) a2 0
1 0 ay() a52() el
QOy==-| ‘ L
0 Uncam-30) Tn2am—2() T _2.m-1 0
0 Upctm—20) Fnoim-1() Gim
\ o o o o . 0 0 Tm-t() Gnm() /

ou (-) désigne (a,w).

Nous montrons que v¢(a, &) est solution des équations d'HJB suivantes:

pvi(a.z) = ﬁlen;i(?a){f(')vfb(a' )+ Gla,z,u) + égjqégu‘(ﬁ, :i:)} (3.20)

ot f(.) = (u—d, ] kjuyj, - --, L) kjum;)' et vg(a, T) est le gradient de ve(.)
par rapport a £. Comme la différentiabilité de v¢{.) n'est pas en général garantie,
nous utilisons la méthode des solutions de viscosité " viscosity solution”, telle que
dans Fleming et Soner (1992), dans Kenne et Boukas (1997b) et dans Lehoczky
et al. (1991) pour établir les propriétés d'une telle fonction. Nous reprenons dans
cette section les définitions des solutions de type viscosité pour bien illustrer leurs
utilisations dans cette these.

Soit une classe de solutions du systéme d'équations aux dérivées partielles

(3.20) de la forme:

F(z,v¢(8, &), vg(8,&)) =0 VieLl, Bef& (3.21)
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ou £L C R"™™. En posant

F() = pvS(a,&)— min {f(.)v:‘i:(a,a':)+G(a.:i:,&)
UeK(a)

£ 23 qh()t(8,2))
€ 8=90

nous pouvons noter que les équations (3.20) et (3.21) sont équivalentes.

L'équation (3.21) est une combinaison des deux relations suivantes:

lim sup (v°(.. &) = v’(., &) ~ po - (& = &0))|Z ~ o "' < 0 (3-22)
T—~To
lim inf (v*(. &) — v*(.. Z0) ~ po - (& ~ %0) )& ~ Fol ' 2 0 (3.23)
r—Tq

ol pg € R™™™ tel que Dve(.,Zy) = po € IR™ ™. Pour obtenir les relations (3.22) et
(3.23), nous avons supposé que la fonction v¢(.) est différentiable au point zg € L,

ce qui nous permet d’écrire :
v (.. &) = (., &o) + po- (T — Zo) + o(|T — Tol) (3.24)

ou a - b est le produit scalaire euclidien de a et b et o(-) est tel que

of|€ — 2ol) _ 0

Les équations (3.22) et (3.23) sont équivalentes aux relations utilisées dans les
définitions des ensembles D*v(., &) et D v(.,Z) donnés par les conditions (a) et
(b) de la définition 2.4.

Nous avons noté au chapitre 2 que la fonction valeur d’'un tel probléme est
continue (voir théoréme 2.3) et continiment différentiable, mais en considérant
les équations (3.22) et (3.23), la dérivée de v¢(-) n'existe pas toujours pour tout

g € IR™™. Il est donc nécessaire d'étendre la définition 2.4 & D¥v(-, Z) et &



D~vu(-. &) qui sont des ensembles fermés et convexes. Pour la notation et la forme
des systemes d’'équations aux dérivées partielles considérées dans ce chapitre, nous
avons la définition suivante:

Définition 3.1  Une solution de type viscosite de F(&,v¢(8.&), Dv¢(3.z)) = 0

dans L est une fonction v¢(3,Z) qui satisfait:
F(z.v*(j.2),7)<0 Vzel, VreDv(,z), j€& (3.25)
et

F(z.v*(j,z),7) >0 VzeLl, VreDv(,z) j€& (3.26)

Ce concept de solution de type viscosité d'une équation sera utilisé ultérieurement

pour montrer le théoreme suivant:

Théoréme 3.1 5i v¢(a, &) satisfait la condition de Lipschitz pour chaque a € £,

alors il eziste une constante C telle que:

1
|z — v
< C+[2[%) (3.27)

1 -
v (a. )| + —|vi(e, ) —v%(6.2)| + [v¥(e, &) = v(e, )|

Va,8 € £ et T # y satisfaisant |T — g| < b, ou ¢ et b sont les mémes qu'aux
hypotheses (A3.1) et (A3.2). De plus, la fonction valeur v(a,Z), a € &£, est
l'unique solution de viscosité de l'équation de la programmation dynamique (3.20)

st ve(.) est différentiable. Au point de non-differentiabilite, nous avons:
1 m
vi{a.T)— mi JYer+Gla,x,uw) + - '8, )< 0 3.28
P @)~ min {£0)7p + Gl 8,8) + 25 dgl (6. 2)}< 0 (329
pour tout p € dv(a, &)

Preuve: Avec G(.) > 0 et v(.) > 0, nous pouvons choisir @(t) = 0 et utiliser

I'hypothese (A3.1) pour obtenir:

0 < v(a, &) < Cy(1 + |&(*) (3.29)



Dans un mode a € &, considérons des conditions initiales £ # y € IR™"" telles que

| — y{ < b. Pour 9 supérieur a zéro donné, soit une commande u telle que:
J(a,z,0) <v{(a,Z)+ 7 (3.30)

Si  est admissible pour la condition initiale (a, %), alors I'équation (3.30) peut étre

utilisée pour obtenir:

v(a,.y) — v{a, ) < JYa,y,u) - JS(a,z,0) + 7

-9+ E/ome_”‘[G(a,g)(t),ﬂ(t)) — Gle &(1), w(1))|at

Avec I'hypothese (A3.2), nous pouvons écrire:

E [ e [Gla, #(t). 3() - Gla 2(t), ()] dt

o
<E [ ec(1+Gla2(), a)la(t) - B(0)lat
0
En observant que |y(t) — &(t)| = |Z — ¥| et que [5° e ?'dt = p~', nous obtenons:

vé(a,y) - v(a. &) <9+Cly— :l':I{E/m e PG a, Z(t), u(t))dt + l}
0 p

1
= 9+ Clg—&|{J(a. &, w)dt + ;}

D’apres la relation (3.30), nous obtenons :
] i e 1
v(a,y) —v(a,Z2) < 9+ Cly — a:l{v (a,z)dt +9 + —}
p

En combinant cette derniére expression avec (3.29), nous obtenons:

L (e, &)~ v¥(e §)] < Ca(l + [E[*) (3.31)
|z — gl

pour une constante C» donnée. Nous complétons ainsi la preuve que v*(c, -) satisfait

la condition de Lipschitz. Pour compléter la preuve de (3.27), nous devons d’abord



montrer que (3.28) est vraie. En effet, le fait que v*(a, -) satisfait la condition de
Lipschitz permet de déduire (3.28) du principe de la programmation dynamique
(voir Flemming et al. (1987)).

Si T3 est un point ou v¢(a,.) est différentiable pour chaque o« € £,
alors l'équation (3.20) est vérifiée. Nous avons supposé que Ty est un point de
différentiabilité pour v¢(a, ). L'ensemble des points &y est dense a cause de la
continuité de v*(a, ). Notons ici que l'irréductibilité de Q(-) implique que son
noyau est un sous-espace généré par le vecteur 1 = (1,1,---.1)" € R™"!. Pour

chaque a. 3 € £, on peut trouver une constante Cy telle que:
1 € = € = = | ~
zlv (@, o) = v (8. To)| < C3(1 + [ZTo[*), VEZo€L (3.32)

En combinant 'équation (3.32) avec (3.29) et (3.31), nous obtenons l'inégalité (3.27)
pour un choix approprié de C. a

En utilisant le concept de solution de type viscosité de la programmation
dynamique, nous pouvons établir que v¢(a.Z) est une solution de type viscosité
de (3.20). En effet, v¢(a, Z) est différentiable dans la direction &. pour a € £, si
D*v¢(a. &) et D~ v¢(e, &) sont tous égaux i un singleton. Dans ce cas, ce singleton
correspond au gradient v§ (a, £). De plus, avec l'existence de la loi de commande
optimale (voir le théoréme de vérification établi au chapitre 2), D7v¢(a, &) est un
ensemble vide, excepté au point & ol v¢() est différentiable et D~ v*(c, &) coincide
avec l'ensemble de sous-différentiels de v¢(-) tel que dans la définition 2.5. 1l se

déduit du théoreme 3.1 que v¢(.) est la solution de type viscosité de (3.20).




3.4.2 Probléeme de commande limite

Nous formulons dans cette section le probléeme déterministe équivalent associé
au probleme de commande stochastique initial présenté a la section précédente.
Rappelons ici qu'en supposant l'existence de la dérivée de la fonction valeur, les
conditions d'optimalité de notre probleme d’optimisation associées au processus

Z<(t) sont les suivantes:

pri(e, &) = min {f()vg(a &) +Gla & @
UeK(a)

m|»—-

m
an[,( J(3.2)}  (3.33)
En remplacant respectivement 1'dge et le taux de maintenance préventive dans le
modéle par a., et par & (c'est-a-dire que & = (T, am) € R* et @& = (u,&) € R™™)
et en multipliant les deux membres de I'équation (3.33), au mode a = i, par u; et

en sommant sur tous les modes de Z¢(t), nous obtenons:

pzu, (&) = Zm min {F()ug(,8) + =3 als()(3,2)
: 8=0

UEK ()
+G(i. 2w} (3.34)
ol u, est la probabilité limite d’étre au mode i pour le processus Z¢(t) et u'
représente la loi de commande @ au mode i. En observant que les probabilités
limites du processus (¢(t) sont reliées a la matrice des taux de transition Q'(-),

nous avons:

1 m m . 1 ) i
=D mi ) aig( ) (8, &) = -u(")Q'(") (3.35)
€i=0 =0 €

La matrice Q’(-) étant une matrice stochastique, nous avons e(Q'() = 0.

L’équation (3.34) devient alors:

v({,Z) =  min [t = d)vs (i, &
pv'(iE) = min {3 p(u’ = d)uz(i 2)
m i m .
+ 3wkl (i, 2) + 3 pGli, &, aY)} (3.36)

=0 =0




Définissons une loi de commande déterministe U (t) dans l'espace de commande A°

donné par:
A° = {U@) = (0,0, (u'(), 31, (™), 5™)
0< zn:vpu:,(t) <i, 0<G" < wWinaz, Vi€ E} (3.37)
=1
ot u' = (uj.---.up. ---. u}) et 7, désignent respectivement le vecteur des taux de

production au mode i et le temps de traitement du produit p. Notons ici que nous
avons considéré que @ est un parametre fixé (autrement dit ! = &% = - =
o™ =&).

A partir des expressions (3.36) et (3.37). définissons le probleme de commande

optimale, P°. suivant:

- 10( s _ e i 7 - ;
min J (2, U(-)) = E{Fe "‘;;L,G(,m(t),u(t))dtl

2(0) = =, an(0) = ayf (3.38)

ou & = (x.ap) € R™ . Les équations d’état sont les suivantes:

2(1) = Spwi)-d  z(0) =z (3.39)
1=0

dlw(t) = i,u,-kiui(t) agy[(O) = apy (3.40)
=0

La fonction valeur du probleme P° est donnée par:

v(&) = inf JOUZ,U()) (3.41)
u()eA°

Lorsque ¢ tend vers 0, alors v*(a, &) tend vers v(Z), c’est-a-dire:
v(&) = lingv‘(a,:z':)
€—

La fonction valeur v(-), indépendante de a, est celle du probleme déterministe limite

associé au probleme de commande stochastique initial.




S]]
(S]]

La structure de l'équation (3.36) nous suggere une formulation plus simple du
probleme limite. En effet, en utilisant I'hypothése de linéarité de f(.) par rapport a
u, si nous remplacons le nombre de machines opérationnelles Z¢(t) (ou i € £), par

un nombre moyen de machines donné par :
B m
k(am, @) = E[(Z°(t)]= ) ip
=0

et posons

m

Gz, u) =) uG(i.z.w)

=1

nous pouvons écrire encore l'équation (3.36) comme suit:

pv(Z) = _ min {('& — d)vg (&) + kiivg,, (£) + é(:;:,ﬁ)} (3.42)
WeK(K(.))

Remarque 3.3 Le taux de maintenance préventive moyen « est choisi comme
parametre et est supposé connu lors de la recherche du taux de production optimal.
De plus. la fonction coit instantané que nous avons choisie est indépendante du
taux de production u (voir équation (3.17}). Par abus de notation, nous désignons
ce cout par G(a.Z,w) pour tout a € £ dans le reste du développement.

Avec les remarques 3.1 et 3.3, I'équation (3.42) peut s'écrire comme suit:

po(@) =, min {(a- d)vz(i)}i‘r—i‘(j; ki va (&) + G(8,0)  (349)

Par identification, nous notons que I'équation (3.43) correspond aux conditions
d’optimalité de type HJB d'un probléme déterministe équivalent & P°. Ce probléeme

. . =0 .
dénoté P se formule comme suit:

min J(&, @ (")) = / T e P G(E(t), 0)dt (3.44)
0




sous les équations d’'état suivantes:

£(t) = alt)-d z(0) = T (3.45)

[}

am(t) = (i kjd;) am(0) = ay (3.46)
7=1

3|~

avec une fonction valeur donnée par:

9(&) = inf _ Joz,a()) (3.47)
ucA

. 20 . ) , .. v .
ol A est I'ensemble des lois de commande déterministe défini comme suit:

-0 - _ _ _ -
A" ={a() = @0),5()): 0< Y wip() < Ef (3.48)
p=1
ol @ = (&, --.1,). En utilisant le théoréme 3.1, il en résulte que (&) est une

solution de type viscosité de I'équation (3.43). Le théoreme 3.2 ci-apres établit que

les formulations PP et 130 sont équivalentes.
Théoréme 3.2 (i) v(z) = o(x)

(ii) sz U*(-) :(uo(-),’--,u"‘(-))e A est optimal pour P°, alors u'(-) =

~ 0
Yomonit'(+) est optimal pour P .

(iii) siu* € A° est optimal pour 1_30, alors il existe U* () :(u°(~). e ,u"‘(-))e A°

qui satisfait:
m
0< Z"/P”;(-) <i  u'()= Z#iut(-)
i=0
et

Glz,@) = f:,uiG(i, T,) (3.49)
i=0

De plus, u*(-) est optimal pour P°.




Preuve: La preuve de ce théoréme est présentée dans Sethi et Zhang (1994). O

Il est intéressant de remarquer que le probleme de commande déterministe
limite obtenu ne dépend pas directement de Q'(-). Il dépend seulement de k(axs, @)
qui est le nombre moyen de machines opérationnelles correspondant a a,, et w
donnés. Comme w est une variable de commande du probleme d'optimisation
original considéré. nous devons trouver la valeur optimale de w*(-) et celle du taux de
production optimale u*(-) associé. Pour ce faire, nous devons résoudre le probleme

d’optimisation suivant:

- . . _ - 1,& -
pr(T) = s in ﬂerf(ll(g(_))[(u—d)vz(m)]+;(j§kjdj)vw(m)
+G (&)} (3.50)

Cette structure rend le probléme limite facile a résoudre car il est caractérisé par
une dimension réduite comparée au probleme stochastique initial.

En résolvant I'équation (3.30), nous obtenons la loi de rétroaction u(z) du
probleme limite et la fonction valeur v{x) associée. Notons que la solution obtenue
est indépendante des ages des machines (le vecteur des ages a a été remplacé par
I'age moyen a,,). En nous basant sur la structure de la loi de commande optimale
du probléeme original, telle que présentée aux annexes A et C ou dans les travaux
de Boukas (voir Boukas et Haurie (1990) par exemple), nous décrivons ci-apres une
méthode heuristique qui fait dépendre la loi de commande du probléme limite des

ages des machines.

1. Définir un ige moyen équivalent
Considérons un age moyen équivalent a I’age d’une machine dans le cas d'un

systeme constitué d'une seule machine. Soit a,, cet age.




2. Définir un voisinage de I’dge moyen équivalent
Définir a partir de la valeur de 1'age moyen un voisinage a partir duquel une

machine est supposée jeune ou vieille. Soit V ce voisinage:
V={5M : aA,,—!SSt—I/wS(lhf'f"s} (351)
pour une constante § donnée.

3. Taux de maintenance préventive

(a) Sil'age moyven équivalent n’atteint pas le voisinage V (c’est-a-dire @y <

ayr — 6). alors le taux de maintenance préventive est nul.

(b) Si I'dge moyen équivalent est dans le voisinage V (c’est-a-dire ap — § <
ayp < ap + 8), alors assigner le taux de maintenance préventive du
probléeme limite & la machine équivalente en considérant le fait que la
maintenance préventive ne doit avoir lieu que lorsque le niveau de stock

est significatif.

(c) Si l'age moyen équivalent dépasse le voisinage V (c’est-a-dire dpy >
ay + 6), alors assigner le taux maximal de maintenance préventive a la
machine équivalente pour des valeurs non nulles des taux de maintenance

préventive du probleme limite.
4. Taux de production

(a) Sil’age moyen équivalent n’atteint pas le voisinage V (c'est-a-dire ap <
apy — 8), alors la production doit se faire aux taux de demande des

différents produits.




(b) SiI'dge moyen équivalent est dans le voisinage V (c'est-a-dire apy — 6§ <
dy < apr+8) ou dépasse le voisinage V (c’est-a-dire apr > apr +6), alors
on doit batir un stock avec un niveau de stock qui croit avec I’'dge moyen

de la machine équivalente (c'est-a-dire lorsque a,, augmente).

Le lien entre I'age de la machine équivalente et les ages de machine se fait
en comparant le maximum des ages des machines avec l'dge de cette machine
équivalente. Nous établissons un tel lien au chapitre 4 en appliquant la méthode
heuristique proposée sur deux exemples de systémes de production. Nous présentons
ci-apres l'approche numérique de résoiution des équations d’HJB déterministes

associées au probléeme limite.

3.5 Meéthodes numériques

L’'idée de l'approche basée sur les méthodes numériques consiste a utiliser les
différences finies pour approximer les dérivées partielles de la fonction valeur v(Z) a
I'intérieur des maillages G g’ et G Z associés respectivement au vecteur d’état &, au
vecteur de commande u et au vecteur des pas de discrétisation h. Cette approche
va nous permettre de transformer le probleme de commande déterministe associé
a (3.30) en un probleme de décision markovien. Pour plus de détails concernant
une telle transformation, nous invitons le lecteur a se référer aux travaux de Boukas
(1987) et (1997). Nous utilisons par la suite la méthode d’itérations de la commande
pour résoudre le probléme d’optimisation de décision markovien tel que développé
par Boukas (1987) et (1997).

Le probleme d’optimisation construit dans le maillage Gg' X G% a la forme
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suivante:
vp(@) = min { min {=— G2, @) N ! [
osishimesuccly - Qn(E WL+ grizml 1 g
> Pi(x.am. T u)vy (' an)
:x:’ecg
+ Y Palz.an.ay (@ ay)| }} (3.52)
a;necg

Les expressions de Qp: Pilz,am, z'.u) et Py(x,am,a,,, u) seront données au

chapitre 4 reservé a 'expérimentation des méthodes numériques et de |'approche de
commande proposée. La technique d’approximation utilisée nous a ainsi permis de
transformer le probléeme de commande déterministe a résoudre en un probleme
de décision markovien avec espaces d'état et de commande finis. Ce probléme
d’optimisation approximé satisfait toutes les hypothéses et les propriétés relatives a
I'existence et a l'unicité de la solution optimale. Pour obtenir une approximation de
cette solution. nous allons utiliser la technique d'itérations de la commande. Nous
présentons ci-apres l'algorithme de la technique d’itérations de la commande.
Pour une politique 1, soient deux opérateurs Ty et T*, appliqués sur vy, (-) et

qui sont définis comme suit:

Ta(vp(3) = ¢(@ 2) P
R T QpG ot gl T )
Z P;,(:z:,aM,:c',u)vh(:z:',aM)
zech
+ 3 Pile,aum, @l u)vp (= aly))] (3.53)
a;,‘ecg
T*(vp(x)) = min  min {Tg(vp(Z))} (3.54)

0<@< kwmaz
ueGl
Pour un vecteur h donné, I'algorithme d’itération de la commande (policy iteration)

est le suivant:
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1. Initialisation: Choisir n € R", poser k := 1 et U?L(i:) =0, VI € Gg.

Supposer une commande stationnaire 2* € Gﬁ.

2. Evaluation de la commande: Avec la commande stationnaire u* € G% et
0 € &* < kwmaz, calculer la fonction valeur correspondante v;‘l(-) en utilisant

I'équation (3.53).

3. Raffinement de la commande: Obtenir une nouvelle commande

stationnaire u**! Gﬁ, 0 < %! < kwmaz en utilisant 'équation (3.54).

4. Test de la convergence:

" k(5 k=1
¢ = min {vp (T) — v, (&)
h
i K@)
¢ = max {v;‘l(:i:)-—vz’l(:i:)}
zech
P
Cmin = c
l—p
c = F_.
max - 1 _ p_
Si {cmin — Cmaz| < 7, alors arréter l'exécution et poser u° = @ sinon

incrémenter k (c’est-a-dire k = k + 1) et retourner a l'étape 2.

L’utilisation de cet algorithme donne une approximation de la solution au probléeme
de décision markovien que nous avons formulé précédemment. Cette solution
approximée converge vers la solution optimale pour des faibles valeurs de h (voir
Bertsekas (1987)). Nous présentons a la section suivante une approche heuristique de
construction de la loi de rétroaction stochastique %(a, &) du probléme de commande

initial pour tout a € £.
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3.6 Construction de 1la loi de commande

stochastique

Dans cette section. nous présentons une méthode heuristique de construction de
la loi de commande du probléme stochastique initial a partir de la solution du
probléeme de commande limite. L'approche proposée étend les méthodes classiques
(basées sur des chaines de Markov homogenes) de construction de telles lois au cas
ou la dynamique des modes d’'une machine dépend de son age. Le lecteur est invité
a se référer aux travaux de Lehoczky et al. (1991) et de Sethi et Zhang (1994),
dans lesquels la construction du taux de production du probléeme de commande
initial, a partir du taux de production optimal du probleme limite, est décrite par

le théoreme suivant:

Théoréme 3.3 Si: uw*(.) est le taur de production optimal du probleme limite
relatif a une chaine de Markov homogéne, nous pouvons approrimer le lauz
de production optimal relatif au probleme d’optimisation stochastique initial par

l'équation suivante:

&

*(+)
EI

u(a)=c a €& - {0} (3.53)

ou a est le nombre de machines operationnelles et k' est le nombre moyen de
machines operationnelles pour ce formalisme. Les o machines €etant identiques, le

tauz de production de chacune d’elle est donne par:

w(-a) = ——2, i=1-, a (3.56)

Preuve: La preuve de ce théoréeme est présentée par Lehoczky et al. (1991). O
Ce théoreme stipule que le taux de production du systeme doit étre distribué

uniformément aux différentes machines opérationnelles (voir équation (3.56)). Ce
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théoreme ne peut pas étre appliqué directement dans cette recherche car le modele
proposé est basé sur une dynamique des pannes de machine qui dépend de l'age.
Il est évident que les trajectoires des ages des machines, initialement identiques,
deviennent différentes au cours du temps. Ces machines ne sont donc plus identiques.
Le théoreme 3.3 ne s’applique donc plus directement.

Pour construire la loi de commande du probleéeme d’optimisation initial, nous
allons nous baser sur les caractéristiques des lois de commande stochastiques des
systémes de faible dimension modélisés par des chaines de Markov non homogenes
telles que dans cette recherche. Nous avons présenté a l'annexe A la loi de
rétroaction stochastique obtenue a l'aide d’'une résolution numérique directe du
svsteme d’équations (3.20) pour m = 2 et n = 1. La capacité des systémes de
production considérés dans cette thése est telle que I'ensemble des m machines est
requis pour satisfaire la demande. Avec cette considération. la loi de commande
issue de la méthode directe de résolution des équations d'HJB est représentée par

les figures A.1 a2 A.10. Les points suivants caractérisent une telle loi de commande:

1. Lorsque le stock est négatif (c'est-a-dire lorsque z(t) < 0), les taux de
production des machines sont fixés a leurs valeurs maximales et les taux
de maintenance préventive sont fixés a zéro (car on ne doit pas envisager

d’entretien préventif dans cette situation).

2. Lorsque le stock est nul (c’est-a-dire quand z(t) = 0), le taux de production
global du FMS est soit égal au taux de demande, soit supérieur au taux de
demande. Il est égal au taux de demande lorsque les machines sont neuves
(faibles valeurs des ages). Pour des grandes valeurs des dges, les machines sont

vieilles et la nécessité de stocker des pieces s'impose. Les taux de maintenance



64

préventive restent fixés a zéro.

3. Lorsque le stock est positif et que les ages des machines sont différents, nous
devons exploiter les vieilles machines selon un taux de production maximal.
Par contre. nous remarquons que le domaine de maintenance préventive se
rétrécit lorsque les machines deviennent de plus en plus vieilles et que le stock

demeure non significatif.

De ces observations, issues de la méthode directe de résolution des équations
d'HJB dans ce cas simple, nous présentons ci-aprés la méthode heuristique de
construction de la loi de commande sous-optimale du probléeme stochastique initial.

Cette méthode heuristique est constituée des étapes 1, 2 et 3 suivantes:

. Etape 1: Soit une partition finie constituée de ¢+ 1 ensembles Cq, Cy, ---,Cq
correspondant aux classes d’ages d’'une machine. La dynamique de |'dge d'une
telle machine est telle que son age se déplace de C; a C;.; et de Ck, (k # 0)
a Cy aprés chaque intervention sur la machine (réparation ou maintenance

préventive). Cette partition est définie comme suit:

q q
JG=A e [NC=0 (3.57)
1=0 1=0

ou A ={a;: a; = (i—1)hg}, i = 1,---, Ng, pour N, et h, donnés. Notons que

A est un maillage a une dimension généré par N, et h,. La figure 3.2 illustre un
exemple de partition pour ¢ = 1 (partition a deux classes). Cette illustration
correspond 4 un systéme de deux machines. La combinaison des classes C;,
i = 0, 1, des deux machines donne les quatre cases (I), (II), (III) et (IV) ou

@maer désigne 'age maximal de chaque machine. Le choix de la partition étant



ax(t)
y
Qmaz
¢, (Iv) (1)
%amaz
Co (I) (II)
0
- a,(t)
0 Co 3Cmaz C; Gmar

Figure 3.2: Différentes classes d'iges des machines opérationnelles

arbitraire, nous allons montrer plus loin 'effet d’'une telle partition sur la loi

de commande heuristique obtenue.

Etape 2: A chaque instant, regrouper les machines opérationnelles en classes
et appliquer le théoreme 3.3 (équations (3.55) et (3.56)) lorsque les machines
appartiennent 2 une méme classe. Dans le cas de la figure 3.2, les cases (I)
et (III) correspondent aux cas ou les machines appartiennent a une méme
classe. De telles machines sont supposées identiques. Le taux de maintenance

préventive de chacune des machines opérationnelles est donné dans ce cas par:

w(E,a) = au}’g((f) (3.38)
wi(®,a) = “’(i’a), 1<i<a (3.59)

ol a désigne toujours le nombre de machines opérationnelles et w;(Z, a)) le
taux de maintenance préventive de la machine i au mode «. L’équation (3.58)

nous permet de définir le taux de maintenance préventive du systéme a partir
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du taux de maintenance préventive du probléme limite. L'équation (3.39)
stipule que le taux de maintenance préventive du systéme doit étre distribué

uniformément aux o machines opérationnelles (¢ > 1).

Etape 3: Exploiter les machines plus dgées au maximum et assigner des
valeurs aux taux de production des autres machines telle que la somme
des taux de production des machines opérationnelles soit égale au taux de
production du systéme (défini par la solution du probleme limite). Les taux
de production u(a,Z) et de maintenance préventive w(a, ) du FMS sont
respectivement donnés par (3.55) et (3.38). Si z(t) > 0, w(.) #Oou w(.) #0,
alors nous pouvons distribuer u(a, &) et w(a, &), o € &, aux machines

opérationnelles en suivant les étapes ci-apres:

(i) Pour chaque mode o du systéme, classifier I'ensemble des machines
opérationnelles par rapport a un ordre décroissant des dges (autrement
dit. commencer par la machine la plus vieille, suivie de la moins vieille,
ainsi de suite jusqu'a la plus jeune). Soit O cet ensemble ordonné de

machines.

(ii) Pour le taux de production, assigner le taux maximal de production
a la plus vieille des machines (qui correspond au premier élément de
I'ensemble O). Assigner par la suite et de fagon séquentielle une valeur
égale au taux maximal de production ou au taux de demande aux taux
de production des autres machines, en suivant l'ordre établi dans O,
jusqu’a ce que la somme des taux assignés atteigne u(a, ). Assigner

enfin la valeur zéro au taux de production des machines restantes.
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(iii) Pour la maintenance préventive, suivre l'ordre établi dans O pour
assigner des valeurs au taux de maintenance préventive dans chaque
mode. Assigner séquentiellement le taux d’envoi en entretien préventif
maximal au taux de maintenance préventive de chaque machine, en
commencant par le premier élément de O jusqu'a ce que la somme
des taux assignés atteigne w(a, ). Comme précédemment, assigner par
la suite zéro aux taux de maintenance des jeunes machines restantes.
Notons ici que lorsque la capacité du systeme est telle que l'ensemble
des m machines soit requis pour satisfaire la demande. le taux de

maintenance préventive est nul pour tout mode a < m.

(iv) Répéter les étapes (i), (ii) et (iii) pour tout a € £ ={1,---.m}.

Au chapitre suivant, nous appliquerons |'approche proposée dans cette section sur
des exemples numeériques et nous comparerons, pour fin de validation, les résultats

obtenus a ceux issus d'une résolution directe des équations d’'HJB stochastiques.

3.7 Conclusion

Dans ce chapitre, nous avons proposé un modele de commande des systemes de
production basé sur une approche de commande hiérarchisée. En considérant une
structure particuliére du systéme, dans laquelle des événements arrivent a des
échelles de temps différents, nous avons établi qu'une hiérarchie a deux niveaux
peut étre utilisée pour approximer la loi de commande d’'un systéme de production.
En remplacant la capacité du systéme de production par une capacité moyenne, nous
avons formulé au niveau 1 de la hiérarchie un probleme de commande déterministe

et nous avons utilisé le fait que la solution au probléme de commande stochastique
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initial converge vers celle d'un probleme déterministe équivalent. La solution a
ce probleme limite nous a permis de faire une planification a long terme des
activités du svstéeme de production. Au niveau 2 de la hiérarchie, correspondant
a une planification a court terme, nous avons présenté une méthode heuristique
de construction de la loi de commande stochastique a partir de la planification du
niveau 1. Nous avons par la suite développé des méthodes numériques permettant de
résoudre les conditions d’optimalité du probléme limite en formulant un probléeme
de décision markovien. Nous avons enfin présenté l'algorithme de résolution du
probleme d optimisation approximé ainsi obtenu.

Le chapitre suivant sera consacré & l'application de I'approche de commande
hiérarchisée proposée dans ce chapitre a deux exemples numeériques. A l'aide des
modeles de simulation, nous allons valider la méthodologie proposée en comparant
les performances du systéme avec celles issues de la commande générée par la

méthode directe de résolution des équations d’HJB dans des cas simples.



69

Chapitre 4

Expérimentation de ’approche de

commande hiérarchisée

4.1 Introduction

Le but de ce chapitre est d’expérimenter |'approche de commande hiérarchisee sur
des exemples de systémes de production. Les systémes considérés sont caractérisés
par l'existence de deux échelles de temps associées respectivement aux événements
lents et rapides. Pour faciliter la présentation et la validation de 'approche, nous
étudions dans un premier temps le cas d’'un systeme de production constitué de deux
machines qui produisent un seul type de piece. Avec cet exemple, nous présentons
en détail une validation de l'approche de commande proposée en comparant les
résultats obtenus avec ceux issus de la résolution numeérique directe des équations
d’'HJB. Nous appliquons par la suite l'approche de commande hiérarchisée au
probleme de commande d’un FMS constitué de deux machines qui produisent
deux types de pieces. Comme dans le premier exemple, une seconde validation
de 'approche est présentée en utilisant ce dernier exemple.

Nous reprenons de fagon succincte la formulation du probléeme de commande

optimale stochastique sur horizon infini pour chacun des deux systémes considérés.
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Nous établissons par la suite les conditions d’optimalité des problemes de commande
relatifs a ces systemes en nous basant sur les résultats des chapitres 2 et 3.
Les perturbations singulieres sont enfin appliquées a ces probléemes d'optimisation
stochastique pour réduire la complexité de la résolution des conditions d’optimalité.

Pour valider 'approche de commande proposée au chapitre 3, nous utilisons
des modeles de simulation pour évaluer les performances des FMS considérés sous

une des deux lois de commande suivantes :

1. loi de commande obtenue en appliquant I'approche de commande hiérarchisée;

2. loi de commande issue de la résolution directe des équations d'HJB a ['aide

des méthodes numériques.

Les seuils critiques du stock et les colits movens encourus associés a ces
deux politiques seront comparés pour évaluer les pourcentages d'écart entre les
performances des deux approches. Nous allons nous baser sur les résultats de cette
comparaison pour valider la méthodologie proposée et discuter par la suite de la
structure des lois de commande dans le cas des systemes plus larges.

Le plan que nous adoptons dans ce chapitre est le suivant: a la section 2, nous
traitons le probléme de commande d’un systeme de production constitué de deux
machines qui produisent un seul type de piece. La section 3 est consacrée a I'étude de
la commande d’un systéeme de production similaire produisant deux types de piéeces.
Dans la section 4, nous discutons de la structure générale de la loi de commande qui

se dégage de nos résultats et qui peut étre étendue a des systemes plus complexes.
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4.2 Systéme de production a deux machines et

un seul produit

Les deux machines considérées, montées en paralléle, sont spécialisées dans la
production d'un seul type de piece. Le probleme de commande a résoudre consiste
a controler simultanément les taux de production du systéme et de maintenance
préventive des machines dans le but de satisfaire un taux de demande constant
tout en minimisant le coit total encouru. Le systeme de production a controler est

illustré a la figure 4.1.

Machine 1 I

ar(t), ui(t) z(t)
t a(t d
Stock amont w(t) + ua(t) Stock aval ——

Machine 2 —

as(t), uoft)

Figure 4.1: Systéme de production 4 deux machines et un seul produit

Le systeme est constitué principalement des deux machines, d'un ou de
plusieurs systémes de transport servant pour le cheminement des piéces du stock
en amont vers les machines et de celles-ci vers le stock en aval. Les piéces produites

sont stockées et seront écoulées selon un taux de demande donné.
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4.2.1 Dynamiques des pannes et de production

La dynamique des pannes de chacune des deux machines est modélisée par un
processus stochastique continu {;(t), i = 1, 2, a espace d’état fini B; = {1, 2, 3} dont
les modes sont définis par 'équation (2.12). Le processus global {(t) = ¢;(t) x Ja(t)
est également un processus stochastique continu a espace d'état fini B = {1,- - -, 3°}.
Le lien entre chacun des neuf modes du processus {(¢) avec les modes des processus
Ci(t). i = 1.2. est défini par le tableau 2.1. Si a un instant donné ¢, {(¢) est au mode
a € B, avec une usure des machines @ = (a;, a2) et que la loi de commande © =

(u1. uo, wy, wo) est employée, alors deux événements possibles peuvent se produire a

I'instant ¢ + 6t:

e Le systeme saute vers un autre mode 3 avec une probabilité donnée par:

PC(t + 6t) = 3[¢(t) = a| = Aap(a, @)bt + o(5t) (4.1)

e Le systeme reste au mode a avec la probabilité suivante:

Pl¢(t +6t) = |C(t) =a] =1 + Asala.@)bt + o(6t) (4.2)

ou les taux de transition A.g(-), @, 8 € B remplissent les conditions (2.10)-(2.11) et

. o(6t)
lim =

§t—0 &t 0

Avec la présence de deux échelles de temps, nous supposons qu’il existe un
parameétre ¢ < 1 qui nous permet de passer d'une échelle de temps a l'autre
comme décrit au chapitre 3. Rappelons ici qu’en multipliant les taux de transition
du processus {(t), (taux relatifs a 1’échelle de temps des phénomeénes rapides) par

€, nous obtenons les taux de transition d'un processus lent noté (¢(t) (taux relatifs



73

a l'échelle de temps des phénomeénes lents). Notons que le processus {*(¢) est une
représentation du processus initial {(t) dans I'échelle de temps des phénomenes
lents.

Si Q(-) = {Xas(-)} est la matrice des taux de transition du processus ¢ (t), alors
Q(-) = ¢ {qas(-)} est la matrice des taux de transition de J¢(t) avec Aug(-) =
€ 'gap(-). Dou :

1

Q() = —[tas()] Va.deB

Notons enfin que {*(t) et {(t), associés respectivement a Q°(.) et a Q(.), expriment
tous les deux le méme processus dans deux échelles de temps différents.

La dynamique du vecteur d'état &(t) = (z(t),ai(t),aa(t)) est décrite par
le systeme d’'équations (2.1)-(2.2). Rappelons que z(t), a,(t) et ao{t) désignent
respectivement le stock de pieces en aval des machines, I'dge de la premiere machine
et I'age de la seconde machine. L’hypothése suivante définit la relation entre le taux

de panne de chaque machine et son usure ou age :

e Pour chaque machine i, le taux de transition A},(.) du mode opérationnel au

mode panne ou réparation est donné par |'expression:
Ao(ai(t)) = Ab + Kliai(t) (4.3)

ol A} et K. sont des constantes réelles positives données et a;(t) désigne I'dge

de la machine 7 au temps t.

Les deux machines étant supposées identiques, leurs caractéristiques probabilistes
sont égales. Nous posons pour le reste de ce chapitre gig(.) = gap(.), 45 = Ag et

. K: = K,. Avec ces notations, la matrice des taux de transition associée & (*(t) est
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donnée par:

[(a1() a2() @) @) 0 0 aia() 0 o\
@1 gqn() 0 0 q2() 0 0 q13(.) 0
31 0 q() 0 Q qr2(.) Y 0 qu()
1 Q1 0 0 Qs qu2()) qua() 0 0 0
Q) =- 0 qn 0 qn 55 0 0 0 Q
¢ 0 0 q21 q31 0 Qs6 0 0 0
L3 e 0 0 0 g-=(-) @2() qal}
0 931 0 0 0 0 921 q8s8 0
\ 0 0 Q1 0 0 q31 0 q9e )
ou (.) représente (T.u) et
Gaal.) = — Z as(-), Vae B

BeB-{a}

Le processus Z¢(t), correspondant au nombre de machines opérationnelles au temps
t. est tel que ses modes appartiennent a I'ensemble £ = {0, 1, 2}. Si Z¢(¢) = 0 (c’est-
a-dire qu aucune machine n’'est opérationnelle) alors les taux de production et de
maintenance préventive sont nuls. Dans le cas contraire, 'ensemble des commandes

admissibles, pour Z¢(t) = z, est donné par :

K(z) =

~

(u(t), wr(t), wa(t)) e R x R? 0 < u(t) <z
et 0<wi(t) < Wmar, j=12} z=12 (4.4)

En utilisant les taux de transition ¢35, «,3 € £, associés a Z¢(t), la matrice des

taux de transition de ce processus est donnée par :

. %0 %01 0
Q"() = Z Q;o(‘) q,u(') Q;Q
0 qél(') qag(')

ou (-) désigne (a;, az,w;, ws) et
q;a(') == Z q;a(')y Va € &
BeB-{a}

Nous présentons ci-aprés le probleme de commande optimale associé a ces

dynamiques et les conditions d’optimalité correspondantes.



4.2.2 Commande optimale et conditions d’optimalité

Le cotut instantané est donné par:
G(Z® z(t).ar(t), az2(t)) = c = (t) + c z(t) + &'V (4.5)

Le probleme d’optimisation considéré consiste a déterminer, dans l'ensemble des
commandes admissibles K(.), une stratégie de pilotage des deux machines qui

minimise le cout suivant:

J(&.a. @) = E‘{/:Qe“"[G(Z‘(t),x(t).al(t),ag(tj)]dﬂ

£(0) = z. Z(0) = a} (4.6)

sous les contraintes données par les équations d’état.

St v¢(a. &) est la fonction valeur associée a la loi de commande admissible
(.) et aux conditions initiales (a, &), alors les conditions d’optimalité sont données
par des équations d’'HJB similaires a celles présentées a l'équation (3.20). Nous
présentons ci-apres les conditions d’optimalité du probleme déterministe limite
issu du probleme de commande précédent par application des méthodes des

perturbations singulieres.

4.2.3 Probléme de commande limite

Le probléeme de commande limite consiste a trouver une loi de commande & = (&. )’

qui minimise J{.) défini comme suit:

J(&, @) = jom e P G(2(1), @)dt (4.7)

G(E(t).@) = 3 paGla, #(t),w) = Tz (t) + ¢z (1) + 3 ha
=0 a=0

[+ 4
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avec la probabilité limite d'étre au mode a qui est désignée par p. La commande @
est définie par 'équation (3.42) et le taux de maintenance préventive & est considéré
comme parameétre. La valeur optimale de ce parametre et le taux de production
associé constituent la loi de commande recherchée.

La minimisation de (4.7) est soumise aux contraintes d'état données par les

équations suivantes:

z(t) = a(t)—d z(0) =z (4.8)

kid apm(0) = am (4.9)

ol nous avons posé u(t) = d. Notons que k; est une constante donnée. L'équation

de la programmation dynamique pour ce probleme est donnée par:

1
poz.an) = min { min {(@—d)v(s.an) + 3kidva, (s ay)
+ é(r,am,Q)}} (4.10)

ou K (.) et k sont définis de la méme maniere qu’aux sections 3.3 et 3.4.
L'équation (4.10) est une équation hyperbolique aux dérivées partielles dont la
résolution permet de trouver la fonction valeur v(Z) et la loi de commande (i, %)
associée. Par contre, les équations d’'HJB du probleme de commande stochastique
initial se traduisent par un systéme hyperbolique de neuf équations aux dérivées
partielles. Nous observons donc qu’une seule équation (c’est-a-dire I'équation (4.10))
permet de décrire les conditions d’optimalité du probléme limite associé a I’exemple
considéré. Cette observation nous permet d'illustrer la réduction de la complexité de
résolution d’'un probléme de commande lorsqu’on utilise I’approche de commande
proposée. Cette approche est essentiellement basée sur la transformation d’un

probleme stochastique initial en un probleme déterministe équivalent.



Comme nous l'avons mentionné au chapitre 3, au lieu de chercher a
résoudre l'ensemble des neuf équations, nous allons plutdt résoudre les conditions
d'optimalité du probléeme limite, données par 1'équation (4.10). A partir de la
solution obtenue, correspondant a la loi de commande du probleme déterministe
équivalent. nous allons présenter plus loin la méthode de construction de la loi de
commande stochastique associée au probleme d’optimisation initial (voir section

4.2.5). Nous présentons ci-aprés la résolution numérique de I'équation (4.10).

4.2.4 Meéthodes numériques

Le probléme de décision markovien relatif a I'exemple de FMS constitué de deux

machines qui traitent un type de piece est décrit par la condition d’optimalité

suivante :
. . cTricTxr + ZE,_O KaC 1
l'h(I-am) = min { mln{ — P -
0% Shimas * e gh Qp()1+ Qh(.)l 1+ Qh(.)][

Ph (z,ap,2 + ha)Up (T + heoapr)
+Pn (2,05, % = he)vp (T — heay) (4.11)
+Pr(z,apm + ha)vp(z,anm + ha)] }}

ou h, et h, désignent les pas de discrétisation associés respectivement aux variables

d’état r et ays. De plus, nous avons:

kid |z —d|
Qp() = o o
i—d .
Ro. ) sit—d>0
P (z,ap T +hg) = ¢ P90 .
0 ailleurs
d—i .
sit—d <0
Pn(z,ap, T —hg) = R=Qp, ) '
0 ailleurs
kyd

Pho(I,aM +ha) m
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Remarque 4.1: G’f: est un maillage de commande dépendant du nombre moyen de
machines opérationnelles k. Par exemple, si les machines ont une capacité maximale
égale a 'unité (c’est-a-dire u,,: = 1), alors Gi‘ est tel que 0 < @ < k. Dans ces
conditions. la faisabilité du probleme de commande exige que k > d.

L algorithme d’itération de la commande, présenté a la section 3.6.2, a été
programmeé en utilisant Matlab avec des données de simulation fixées. Ces données
sont choisies teiles que le systeme de production considéré soit en mesure de

satisfaire la demande sur un horizon infini. Ces données ne correspondent donc

pas a un systeme réel donné et sont présentées ci-apres:

1. Variables d’'état et de commande.

Soit hy = he = 0.2. Pour z € [—2.2] et ap € [0, 6| nous avons:

Gg = {(:z:ll,af,{‘:,) . oh = —2 + lyhe: aljf! = laha;

I, =0.---,20. .= 0.--.30}

Gt = {a . aefo.dk]}
lorsque Umar = 1 et wipee = 0.04.
2. Taux d’actualisation et de demande

d=16 et p=0.005 (4.12)

3. Caractéristiques probabilistes
- Taux de panne
q12(ai(t)) = Ag + Kaay(t), i=1,2

avec Ag = 0.0001 et K, = 0.005



79

- Taux de réparation et de retour d’entretien préventif

g1 =01 et qa; = 0.25

Les taux de transition qj,.3 du processus Z¢(t), o' 3’ € {0, 1,2}, se déduisent

des gag. @. 3 € {1,---,9}, en considérant les différents modes du processus

équivalent (€(t).

4. Cout instantané

Les différents parametres du cout instantané sont représentés dans le tableau

4.1.

Tableau 4.1: Constantes du cofit instantané (deux machines, un seul produit)

il | E eS|l je e |tk
1 |10{0 [10]1 (1020111 (112 |4
Les é#, 3 = 1.---,9, sont associés a Zé(t) et les ¢*, @ = 0, 1,2, sont définis
comme suit:
¢ = Elul
¢t = 62112 + Eau;; + 641/4 + é7u,v
&l = 551/5 + 661/5 + ésllg + 69119

Avec ces données, nous obtenons les résultats présentés aux figures 4.2 et 4.3
correspondant respectivement aux taux de production et de maintenance préventive
du probleme limite. D’apres la figure 4.2, le taux moyen de production est maximal
lorsque le niveau de stock est inférieur ou égal & 0.8 (c'est-a-dire z(t) < 0.8). Ce

taux est égal au taux de demande lorsque z(t) = 1. De plus, aucune production ne
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Figure 4.2: Taux de production #(z) du probleme limite

doit étre envisagée lorsque z(t) > 1. La loi de commande limite stipule également
que le taux de maintenance préventive moyven doit étre égal a zéro lorsque z(t) < 1
(voir figure 4.3). Dans le cas contraire, le taux de maintenance préventive moyven
doit étre égal au taux maximal de maintenance préventive.

En appliquant la méthode heuristique présentée a la section 3.4.2, relative a la
construction d’une loi de commande du probleme limite qui dépend de 1'age, nous
obtenons les taux de production et de maintenance préventive illustrés aux figures
1.4 et 4.5. Ces résultats montrent que la loi de commande du probleme limite est
une loi de commande de type “bang-bang” dépendant d’'un age moyen équivalent &
I'age d’une machine dans le cas d'un systéeme de production constitué d’'une seule
machine. De ces figures, il ressort clairement que la politique de planification a
long terme (taux de production et de maintenance préventive) doit étre choisie

en fonction des valeurs des dges des machines (comparées a 1'age de la machine
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Figure 4.3: Taux de maintenance préventive w(r) du probleme limite
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Figure 4.4: Taux de production du probléme limite en fonction de I'age

de la machine équivalente
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Figure 4.5: Taux de maintenance préventive du probleme limite en

fonction de I'age de la machine équivalente

équivalente) et du niveau de stock. Nous résumons la description de cette loi de

commande a travers les observations suivantes:

e Lorsqu une des deux machines opérationnelles est neuve (M- par exemple
avec a» = 2.8). la politique de production du probleme limite prévoit une
production au taux de la demande si l'autre machine est également neuve
{c’est-a-dire M, avec par exemple a; < 3} et le niveau de stock est positif et
faible. Un taux de production maximal est assigné a la politique de production
lorsqu'une des machines vieillit (M, par exemple). La loi de commande dans

ce cas maintient un niveau de stock significatif tel qu’illustré par la figure 4.4.

e Si une des deux machines opérationnelles est vieille (M. par exemple avec
as = 5), la politique de production du probleme limite prévoit une production

au taux maximal, non seulement en présence d'un manque de piéces produites
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mais aussi dans le cas d'inventaire. La région ou le taux de production est
non nul. pour z(t) > 0, dépend de I'dge de la machine équivalente et est bien

illustrée. Cette région croit avec 'age telle que le montre la figure 4.4.

e Pour la politique de maintenance préventive, il est intéressant de noter qu'on
doit envisager de faire de la maintenance préventive seulement si l'age de
chacune des machines atteint une certaine valeur. Si le maximun des ages des
deux machines atteint la valeur de 3 pour z(t) = 1.6 (voir figure 4.5), on doit
faire de la maintenance préventive. Par contre, si z(¢t) < 0 (c’est-a-dire qu'il
v a une rupture de stock), aucun entretien préventif ne doit étre envisagé tel

qu’illustré par la figure 4.5.

Pour ressortir la réduction de la complexité issue de 'application de la méthode
des perturbations singulieres, nous comparons ci-apres deux grandeurs associées
respectivement a l'approche proposée et a une méthode directe de résolution des
équations d'HJB. Nous avons ainsi choisi de comparer les ordres de grandeur
des dimensions des problémes de commande et les temps de résolution relatifs a

I'algorithme de résolution des conditions d'optimalité.

1. Dimension du probléme de commande
Dans 'exemple du systéeme constitué de deux machines qui traitent un seul
type de piéce, nous avons résolu numériquement le probleme de commande
dont la dimension peut étre approximée par:

sup __ Iinf

dim = card(Up) x card(U,) x (1 + xT-)
r
sup inf
x (1+ M M (4.13)

ha




84

ou U, = {0,d,umaz} et U. = {0, kwmez} dénotent respectivement les
ensembles des taux possibles de production et de maintenance préventive.
La dimension du probléme stochastique équivalent est card(B) x card(U,)° x
card(U,.)° x dim. Pour des systemes de production de grande taille, la

réduction obtenue pour le probleme de commande considéré est significative.

2. Temps de résolution
Pour le maillage décrit précédemment. le temps de résolution relatif a
I'approche de commande hiérarchisée est de 20 minutes environ lorsque
nous utilisons 'algorithme d’itération de la commande. Par contre, le méme
algorithme de résolution, lorsqu’il est appliqué directement aux équations

d'HJB, converge apreés cinq jours.

Nous présentons, a la section 4.2.6.2, un tableau de comparaison des approches
basées respectivement sur la commande hiérarchisée et la résolution directes des
équations d’'HJB. Notons pour le moment qu'une comparaison des dimensions des
deux problémes de commande et les temps de résolution associés montre les limites
des méthodes numériques classiques et l'utilité de 'approche de commande que

nous proposons dans cette recherche.

4.2.5 Construction de la loi de commande stochastique

Dans cette section, nous appliquons la méthode heuristique de construction de la loi
de commande stochastique du probléme initial 4 '’exemple du systéme de production
constitué de deux machines avec un seul type de produit. Nous avons présenté a la
section précédente la loi de commande du probleme limite a partir de laquelle cette

loi de commande stochastique ou planification a court terme doit étre construite.




)
6
Ra Raq Raa
4
Ro; Ron Roa
2
R Rio Ria
% 2 1 g )

Figure 4.6: Ensemble des neuf régions issues du regroupement des machines

Dans cette application. nous suivons de fagon séquentielle les étapes 1, 2 et 3 de la
méthodologie heuristique présentée a la section 3.5.
1. Partition des dges des machines
A titre d’exemple, considérons une partition de trois classes Cq, C; et Co tel
que:
ClJalJc. = A (4.14)
ou
A={af: af =kha, k=0---30}, :=12
La figure 4.6 illustre la partition considérée. Notons que Cq = (0, 2], C; = [2, 4]
et Co = [4,6]. En combinant les classes C,, j = 0, 1,2 pour h, = 0.2, nous

obtenons I'ensemble des régions R;;, 7,5 = 1,2,3.

2. Regroupement des machines en classes

La dynamique des dges des machines permet de passer d’une région a l'autre.
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La structure de la figure 4.6 permet ainsi de regrouper les machines en
régions ou classes d’ages. Lorsqu'a un instant donné la dynamique des ages
des machines est telle que ces dernieres sont toutes les deux dans une région
R.. t = 1.2, 3, nous devons appliquer le théoreme 3.3 pour déterminer le taux
de production de chaque machine. Pour illustrer cette procédure, considérons

I'exemple suivant.

Exemple 4.1: Pour la région Rj; (par exemple a; = 5.2 et ag =
5 avec max(a;,a2) = 3.2 qui doit étre comparé a I’'adge de la machine
équivalente), si z = 0.4, alors & = k et @ = 0 (voir figures 4.4 et 4.3).
Comme les deux machines sont identiques, nous avons, d’apreés (3.53) et

(3.56). le taux de production suivant:
u(z,a,,a9,2) =2 et u,(z,a;.09,2) =1, j=12

D’apres les équations (3.58) et (3.59), le taux de maintenance préventive

est donné par:
w(r.ay,a2,2)=0 et wj(z,a,a2,2)=0 J =12

3. Machines dans des classes différentes
Lorsque les machines appartiennent & des régions différentes, les taux de
production et de maintenance préventive du systéme sont toujours donnés

respectivement par:

—~~

u(z,ay,a2,2) = 2u—£;->- et w(z,a;,a92) = 2w )

- (4.15)

?r-|

Comme les deux machines ne sont plus identiques, le partage de u(z, a;, as, 2)

ou de w(z, ay, ag, 2) entre les deux machines ne se fait plus de fagon uniforme.
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Figure 4.7: Classification des machines par ordre décroissant par rapport a l'age

La méthode heuristique proposée consiste a classifier les deux machines selon
un ordre décroissant par rapport a l'age. La figure 4.7 présente ’ensemble
ordonné (M, Ms) ou (Mo, M) associé a la région R;;, i # j lorsque My, k =
1.2 représente la machine k. Dans la notation (M, M»), la machine M est
plus vieille que M». Suite a cette classification, nous devons exploiter la vieille
machine au maximum et choisir le taux de production de la machine jeune en

conséquence.

Pour illustrer ce concept, considérons l'exemple suivant:

Exemple 4.2: Pour la région R, (par exemple a; = 3.8 et ap = 5 avec
max(a;, as) = 5 qui doit étre comparé a l'age de la machine équivalente),
siz =2, alors @ = 0 et @ = kwmaz (voir figures 4.4 et 4.5). Comme les

deux machines sont différentes, 1'équation (3.36) n’est plus valide. Le
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taux de production du systeme est le suivant:
u(z.a1,a2,2) =0 avec uj(z,a;,a2,2) =0. j=1.2

De méme, I'équation (3.59) n'est plus valide. Le taux de maintenance

préventive du systéme est toujours donné par:

w(z.ay,a9,2) = 2

k()
Le taux de maintenance préventive de la vieille machine (c'est-a-dire
M) est wo(z, @y, as,2) = Wmaz et celui de M, est tel que wa(z.ay, as,2)+

w1(r.ay,a9,2) £ w(r,a;.a9,2).

En appliquant cette méthode heuristique de construction de la loi de commande
stochastique. nous obtenons une approximation de la loi de commande optimale
du probléme d'optimisation initial. Les figures 4.8 a 4.11 représentent les taux de
production et de maintenance préventive associés aux figures 4.2 a 4.5, relatives au
probleme limite.

Nous présentons ci-apreés la validation de la méthode heuristique proposée en
comparant les performances du systéme lorsqu’il est soumis a loi de commande
développée ultérieurement (commande hiérarchisée). avec les performances relatives

a la loi de commande issue de la résolution numérique directe des équations d’HJB.

4.2.6 Validation de 'approche de commande hiérarchisée

L’approche de validation que nous proposons consiste a suivre de fagon séquentielle

les étapes suivantes:

1. développer des modéles de simulation qui permettent de décrire le

comportement d'un systéme de production sous une loi de commande donnée;
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Figure 4.8: Taux de production des deux machines relatifs au probleme

original (mode 1} pour ao =1
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Figure 4.9: Taux de production des deux machines relatifs au probleme

original (mode 1) pour ao =5
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Figure 4.10: Taux de maintenance préventive des deux machines relatifs
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Figure 4.11: Taux de maintenance préventive des deux machines relatifs

au probleme original (mode 1) pour as = 3
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2. déterminer, pour une partition donnée, les performances du systeme sous la

loi de commande hiérarchisée;

3. simuler le méme systéme de production en considérant la loi de commande
issue de la méthode directe et comparer les performances obtenues avec celles

de I'étape 2;

4. étudier l'effet de la partition (nombre de classes) sur le raffinement de la loi

de commande approximée par ’approche de commande hiérarchisée.

4.2.6.1 Approche de simulation proposée

Nous présentons dans cette section une approche de simulation basée sur une
combinaison d'événements, d’activités et de circulation d’entités associés a ces
événements. Nous supposons que les changements relatifs a la dynamique globale
du systeme arrivent a des intervalles de temps discrets pour des regles d’opération
définies a 'avance. Ces regles sont définies en utilisant une loi de commande donnée
(par exemple celle issue de l'approche de commande hiérarchisée).

Sans perte de généralité de l'approche, nous adoptons la modélisation par
simulation de tyvpe réseaux. Les réseaux représentent graphiquement le systéme
considéré a l'aide de symboles (noeuds ou branches) interconnectés avec des sous-
programmes usagers si nécessaire. Pour décrire le comportement du systéme, nous
utilisons un modeéle qui consiste en une séquence d’événements ordonnés dans le
temps alternés avec plusieurs noeuds, activités et branches orientées. Pour plus
d'informations sur ce concept, le lecteur est invité a se référer a Kenne et al. (1997a)
et a Gharbi et Kenne (1997).

Pour simuler I'arrivée des pannes d'une machine, nous utilisons une distribution
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de probabilités de panne P{a;(t)), i = 1,2, pour générer une entité qui retire la
machine ¢ de la production. Une telle machine est aussitot envoyée en réparation
pour une durée distribuée selon une loi exponentielle de moyenne mt = Aj'. La

distribution P(a;(t)) est telle que:
P(a(t)) = 1 —exp(—7(a(t)) (4.16)

Pour différentes fonctions v(.), nous présentons a la figure 4.12 la forme de P(a(t))
correspondante {courbes ¢; & cq). Les courbes ¢, k = 1, ---. 4, sont telles que:

kia(t) pour la courbe ¢;
k2(a(t))® pour la courbe co

v(alt) = ka(a(t))® pour la courbe c; (4.17)

k4(a(t))* pour la courbe c4
Les constantes k;, j = 1,---,4, sont choisies telles que les machines soient tres
vieilles a a,(t) = 6 (autrement dit pour P(6) suffisamment grand). Pour k;, =
5% 107 . ko = 1075 k3 = 1072 et k4 = 107!, nous obtenons les courbes de

la figure 4.12. Notons que les courbes c3 et cs sont généralement utilisées pour
modéliser la dvnamique des pannes des machines dites a taux de panne croissant
(machines outils telles que tour, fraiseuse, etc.).

Pour envover une machine en entretien préventif, une entité générée apres
un temps T.(.). avant une distribution exponentielle de moyenne w~!(.), retire la
machine de la production. Une telle machine est aussitot envoyée en maintenance
préventive pendant une durée exponentielle de moyenne A3'. Nous présentons
ci-apres |'algorithme de simulation de la dynamique du systeme de production
considéré sur un horizon de planification P, donné. L’algorithme de simulation

utilisé est le sujvant:

1. Initialisation et définitions des parameétres
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Figure 4.12: Distribution des probabilités de pannes d'une machine

r(0) = 0; a;(0) := 0: a0) := 0. temps := 0. Définir

GR. GR. P(a,t)), rt. mt. Py

Définition de la loi de commande
VT € Gg, définir le taux de production et de maintenance a partir des figures
1.8 a 4.11 (commande hiérarchisée) ou des figures A.1 2 A.10 (méthode directe

de résolution numérique des équations d'HJB).

Envoi d’une machine i en entretien préventif

(a) Si w;(.) # 0 alors envoyer la machine 7 en entretien préventif aprés un
temps exponentiel de moyenne w~!(.) unités de temps, poser a;(.) =

0 (nous supposons que la machine est remise a neuf aprés chaque
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intervention), satisfaire la demande, faire la mise a jour du coiit et passer
a l'étape (b); sinon passer a |'étape 4.

(b) Faire de la maintenance préventive sur la machine i pendant un temps

exponentiel de moyenne mt unités de temps et passer a l'étape 5.

Panne d’une machine :
Générer de fagon probabiliste la panne de la machine 7 en utilisant P(a;(t)). Si
I'entité de panne de la machine i est présente, envoyer la machine en réparation
pendant une durée exponentielle de moyenne rt unités de temps. poser a;(.) =
0. satisfaire la demande et faire la mise a jour du coiit; sinon passer a l'étape

5.

Production avec la machine

(el) Siwu;(.) =0, attendre T, unités sans produire et passer a l'étape (e3).

(e2) Si u,(.) # 0, occuper la machine pendant une unité de temps, poser

temps = temps + |, z(temps) = z(temps) + u;(.)

a;(temps) = a;(temps) + u;(.)

et passer a |'étape (e3).

(e3) Incrémenter le temps de simulation Tho, comme suit:
Trow = Tnow + Ind{u(.) # 0} + Tolnd{u(.) = 0}

et passer a |'étape (ed).

(e4) Faire la mise a jour du colit et du stock et passer a |'étape 6.




6. Tester ’arrét de la simulation

= Si Thow < P, poser time := 0 et retourner a 'étape 3.: sinon arréter la

simulation.

Nous avons implanté cet algorithme en utilisant le langage de simulation SLAM II
développé par Pritsker (1986). Ce langage est associé a différents sous-programmes
FORTRAN. Par exemple, nous avons défini la loi de commande dans un sous-
programme en utilisant une variable a trois dimensions (ces dimensions étant
rattachées successivement a z(t), a;(t), aa(t)).

Nous présenterons plus en détail a I'annexe B les différents sous-programmes
interconnectés aux réseaux SLAM II. A la section suivante, nous comparons les
performances du systéme de production considéré (deux machines, un seul produit)
lorsqu’il est soumis & plusieurs stratégies de planification. Nous montrons également
dans cette section |'effet du nombre de classes de la partition des ages des machines

sur les performances du systeme.

4.2.6.2 Etude comparative

Nous allons utiliser le niveau de stock optimal approximé et le colit moyen a long
terme associé comme critéres de comparaison pour valider la méthode de commande
hiérarchisée proposée au chapitre 3. En utilisant la loi de commande hiérarchisee
et celle issue de la méthode directe dans le modele de simulation, nous obtenons
deux trajectoires de stock (voir figure 4.13) issues de trois réplications. Chaque
point de la figure 4.13 est une moyenne des trois réplications faites en variant les

nombres sources, pour la génération des nombres aléatoires, utilisés par SLAM II
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Commande hiérarchisée

stock moyen
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Figure 4.13: Trajectoires des stocks avec des seuils critiques :c';'p =1.19

d
op

fixes)

et % = 1.005 pour les méthodes heuristique et directe (avec a; et a»

pour générer des distributions de probabilité.
La loi de commande hiérarchisée construite a la section 4.2.5 avec une partition

de cinq classes (c’est-a-dire ¢ = 4) donne un seuil critique de stock r{,‘p ~ 1.2 tandis

gp: 1 (pour a; =

que celle issue de la méthode directe donne un seuil critique z

a» = 3). Le coiit moyen encouru obtenu, illustré a la figure 4.14, est évidemment

plus faible lorsque nous utilisons la loi de commande issue de la méthode directe.
I1 est intéressant de noter que la déviation du coiit moyen encouru associée a

la méthode heuristique par rapport a celui du coiit relatif a la méthode directe est

de l'ordre de 47% pour q = 2. Nous avons approximé cet ordre de grandeur par la
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Figure 4.14: Coits moyens associés a la méthode directe et a la

méthode heuristique pour différentes partitions (¢ = 2. 3,4)

relation suivante:

d rh
_lcd, - ¢,

od
e,

(4.18)

ou C'gp et C'g‘p désignent respectivement les colits moyens approximeés, associés aux
methodes directe et heuristique.

Pour étudier l'effet du nombre de classes de la partition sur la loi de commande
hiérarchisée, nous avons simulé la dynamique de production du systéme considéré
avec des lois de commande relatives a des partitions de trois, quatre et cinq classes
(c'est-a-dire g = 2, ¢ = 3 et g = 4). Il ressort des résultats obtenus que le coiit moyen

encouru diminue lorsque le nombre de classes de la partition augmente. Nous notons

par conséquent que l'ordre de grandeur de la déviation od, issu de l'application de
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I'expression (4.18). décroit avec le nombre de classes de la partition. L'ordre de
grandeur de la déviation passe de 47% pour ¢ = 2 4 32% et 14% pour ¢ = 3 et g = 4
respectivement (c’est-a-dire pour des partitions de 4 et 5 classes respectivement).
L’augmentation du nombre de classes de la partition permet ainsi de rapprocher la
loi de commande hiérarchisée de la loi de commande issue de la méthode directe
et de raffiner ainsi la politique sous-optimale obtenue. Le tableau 4.2 récapitule les
résultats de 1'étude comparative des approches basées sur la commande hiérarchisée

et sur la résolution numérique directe des équations d'HJB.

Tableau 4.2: Etude comparative des approches basées sur la commande
hiérarchisée (pour une partition de cinq classes) et la méthode directe

de résolution des équations d'HJB

Approche dimension | temps coiit seuil
du maillage | de résolution | moven | critique

Commande hiérarchisée | 3.9 x 10° 0.333h 0.61 1.19

Méthode directe 27.3 x 10° | 120h 0.43 1.00

Cette comparaison nous permet de conclure que l'approche de commande
hiérarchisée proposée donne de bons résultats et peut étre utilisée pour des systémes
de production de grande taille pour lesquels une résolution directe des équations
d’HJB est difficile. Nous appliquons ci-apres la méthode de commande hiérarchisée a
la planification des activités d'un systéme de production constitué de deux machines

qui traitent deux types de piece.
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4.3 Systemes de production a deux machines,

deux produits

Les deux machines considérées, montées en parallele, sont spécialisées dans la
production de deux types de piéce. Le probleme de commande que l'on se pose
consiste a contrdler simultanément le taux de maintenance préventive et le taux
de production de chacun des produits dans le but de satisfaire des taux de
demande constants des deux produits tout en minimisant le cott total encouru. Le
systeme de production a contrdler est illustré a la figure 2.1. Nous allons montrer
que l'application de la méthode de commande hiérarchisée a la résolution de ce
probleme d’optimisation stochastique, difficile a résoudre, permet d’obtenir une

bonne approximation de la loi de commande optimale stochastique.

4.3.1 Dynamiques des pannes et de production

La dynamique des pannes des machines M; et Mo est la méme que celle de la
section 4.2. De méme, les processus stochastiques (¢(t) et Z°(t) sont les mémes
qu'a la section 4.2 et ne seront pas repris dans cette section. En ce qui concerne
la dynamique de production, nous allons écrire les équations d'état qui décrivent
les variations de l'usure de chacune des deux machines et des stocks en aval. La

dynamique du vecteur d'état &(t) = (z1(¢), z2(t), a1(t), a=(t))’ est donnée par:

21(t) = un(t) +ue(t) —d; z,(0) = z, (4.19)
Za(t) = wuoi(t) + uze(t) —ds z2(0) = 2 (4.20)
ai(t) = knun(t)+ kiougo(t) a1(0) = a, (4.21)

ao(t) = kayug(t) + koouon(t) a2(0) = a2 (4.22)
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ou k. k12, koy et koo sont des constantes données. De plus, u;; et d;, i,7 = 1,2,
désignent respectivement le taux de production de la machine M; du produit j et

le taux de demande du produit j supposé constant.

4.3.2 Commande optimale et conditions d’optimalité
L’ensemble des commandes admissibles relatives a chaque mode : du processus
Z%(t) est donné par:

K(z) = {(‘u-(t),u(t)) e R*2, uy(t) >0, iu,-j(t)yj <z i=12

j=1
et 0<w(t) < wm} :=1,2 (4.23)
ou 7v; est le temps de traitement du produit de type j sur chaque machine et wmar
est le taux d’'envoi en entretien préventif maximal des machines.
Soit G(a. Z.w) le colit instantané, payé quand le systeme est au mode o et a

I'état & = (z,(¢), za(t), a1(t), aa(t)), donné par:

Gla,z(t),ai(t),as(t),w) = c 7 (t) + ez~ (t) + * (4.24)

- -

o €7 = (cj.c3), € = (cf,c3) et c® sont des constantes réelles positives qui
permettent de pénaliser toute déviation d'un stock de la valeur zéro et le séjour des
machines dans les modes a.

Le probleme d’optimisation considéré consiste & déterminer, dans l'ensemble
des commandes admissibles K (.), une stratégie de pilotage des deux machines qui

minimise le colt suivant:

J(Z, a,u()) = E{/Owe""[c(z‘(t),a:(t),al(t),az(t).w(t))]dtl

2(0) = , Z%(0) = a} (4.25)




101

sous les contraintes données par les équations d'état. Comme i la section 4.2,
si v(a. ) est la fonction valeur associée a loi de commande admissible u(.) et
aux conditions initiales (a. ), alors les conditions d’optimalité sont similaires aux
équations d'HJB présentées a 1'équation (3.20).

Nous présentons a ['annexe C la loi de commande issue d'une résolution
numérique directe des conditions d'optimalité associées a cet exemple. Nous allons
comparer. comme a la section 4.2, les performances du systéme sous cette loi de

commande avec celles issues de la loi de commande hiérarchisée correspondante.

4.3.3 Probléme de commande limite

Le probleme de commande limite consiste a trouver une loi de commande & =

(2. @9, @) qui minimise le coit actualisé J(.) défini comme suit:

&, @) = Lme“”@(:ﬁ(t),u})dt (4.26)

G(z(t).w) = Z-:uaG(a.z_:(t),cD) =cTz7(t)+cT (L) + Zc"ya
a=0

a=0
avec la probabilité limite d'étre au mode o qui est désignée par p,. Les commandes
@, et i» sont définies comme 4 l'équation (3.42) et la commande & est choisie dans
un premier temps comme parametre. Ensuite, une minimisation par rapport au
parameétre & permet de trouver les valeurs optimales des taux de production des
différents produits et du taux de maintenance préventive des machines (probleme
limite).

La minimisation de (4.26) est soumise aux contraintes d’état données par les
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équations suivantes:

n(t) = () —d; ,(0) = z, (4.27)
Io(t) = uo(t) —d2 z2(0) = 0 (4.28)
ap(t) = ';’(kldl + koda) ap(0) = apy (4.29)

oll a,, désigne I'dge moyven des machines et k; et ko sont des constantes données.

L'équation de la programmation dynamique pour ce probléme est donnée par:

pv(Z) = _ min { _min_ {(ﬁl = d)vg, (2) + (B2 — d2)vg, (T)
1 )
5 (kudi + kadz)va,, () + Gz, ap, @)} (4.30)

La résolution de cette équation hyperbolique aux dérivées partielles permet de

trouver la fonction valeur v(Z) et la loi de commande optimale (2, 2, w) associée.

4.3.4 Meéthodes numériques

En introduisant les approximations des dérivées partielles dans I'équation (4.30) et

apres quelques manipulations, nous obtenons:

(z,.z ) min { min ezt Fano ket I_L [
v 1-Zn.Q - 1 2 i

Ph, (T, 21 + hg Jop(z1 + hey, T2, a01)

Phey (T, 22 + hey )vp (21, T2 + hayapr)

+Ph=1 (T, z; — h,l)uh(zl — hz,, T2, apn) (4.31)
+Ph,, (T, T2 — hz,)up (21, T2 — hzy, amr)

+Pn(Z, ap + ha)vp (21, 22 apr + ha)] }}
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ou hg,, hr, et h, désignent les pas de discrétisation associés respectivement aux

variables d’'état r,. zg et a,,. De plus. nous avons :

th,(') _ kid; + kod, + |2; — dy| + |io — dof

2h, hIl hrz
st siug—-d 20
Ph:; (mv I + h'Il) = { gleh() ailleurs
gy Sii2—d220
Ph‘zz(iv I2+h’12) = z2 h -}
0 ailleurs
—h_ sit;—d; <0
th (:i:sxl htl) = h’lQh(-)
1 0 ailleurs
_dz:_}_".z_ si ﬁQ _ d'_) <0
Py (Z.,20—-hg) = hz;Qp ()
N 2 0 ailleurs
kidy + kods
Pro(@.an +ha) = — T
2>~ h

Les données de simulation dans ce cas sont les suivantes:

1. Variables d’'état et de commande.
Soit hy, = hg, = hg = 0.2. Pour 7,22 € [-2,2] et ap € [0, 6], nous avons:
th = {(zlllv Ié’21a‘i€{) : Il]_I =-2+ llhll; -TSI = ~2 + l?.h'z'?;
a = lha;  lila=0,---.20, I3=0,--.30}
GR = {(a1 ) (@1,62) €[0,dy, k| %[0, do, ] }

tJ —
lorsque u}?,. = 1.

2. Cout instantané

Les différents parametres du cott instantané sont représentés dans le tableau

. 4.3.
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Tableau 4.3: Constantes du coiit instantané {deux machines, deux produits)

e lep Jes Jea [V [ et eefe®]e |88 [k |ko
1 101110210 {101 [20] 10 1 111112 (|2 |2
Les . 3 = 1, -, 9, sont définis en fonction des ¢®. o = 0. 1.2, tel que dans

I'exemple de la section 4.2.

3. Taux d’actualisation et de demande

dy =d; =16 et p=0.005 (4.32)

4. Caractéristiques probabilistes

- Taux de panne

q12(ai(t)) = Ao + Kaai(t), 1=1.2

avec Ag = 0.0001 et K, = 0.005

- Taux de réparation et de retour d’entretien préventif

g0y =01 et ¢33 =025

Notons que les taux de transition du processus Z¢(t) sont les mémes que dans

I'exemple de la section 4.2.

Avec ces données, nous obtenons les taux de production 4, et ; des deux produits

et le taux de maintenance préventive w du probléme limite qui sont présentés aux

figures 4.15, 4.16 et 4.17.

Analyse des résultats:
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Figure 4.17: Taux de maintenance préventive w(z,, r») du probleme limite

Désignons par P; et P les types de produits 1 et 2. La politique de production
pour les deux produits P, et P-, relative au probléme limite, est présentée aux figures
4.15 et 4.16. Lorsqu'une priorité est accordée a P, (avec c5 > c¢] et ¢; > ¢ ), nous
ne devons produire P; que lorsque z> > 0 en maintenant un niveau de stock faible
(voir figure 4.15). D’apres la figure 4.16, la production de P» est maximale pour
zo < 0. quelle que soit la valeur de z,. Dés que zo > 0, une production au taux
maximal est envisagée au voisinage de zo = 0, z; > 0 dans le but de maintenir
un niveau de stock donné. La production de P- se fait par la suite au taux de la
demande de P> lorsque z; > 1 et zo = 0.2. Pour a,, = 3.2 et @ = 0.04, la capacité
maximale moyenne du systéme pour chaque produit est 1.834.

La figure (4.17) montre que le taux de maintenance préventive du probleme
limite est différent de zéro pour des niveaux de stock significatifs (c'est-a-dire lorsque

zy > 0.6 et 7o > 0.6). En appliquant la méthode heuristique présentée a la section
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Figure 4.18: Taux de production 4,(z,, zo, 1) du produit 1 pour un age

de la machine équivalente fixé a 1
3.4.2. relative a la construction d'une loi de commande du probléme limite qui
dépend de 'age, nous obtenons les taux de production et de maintenance préventive
illustrés aux figures 4.18 a 4.23.

Lorsque les deux machines sont relativement jeunes (a; = 1 et ao = 1 par
exemple). les figures 4.18 et 4.19 montrent que dans ces conditions. nous devons
stocker trés peu de piéces (c’est-a-dire que le taux de production de chaque produit
est nul lorsque son niveau de stock est significatif). Par contre, lorsque les machines
vieillissent (par exemple a; = 3 et a» = 5), la politique optimale de production
exige de stocker d’avantage de pieces. L'effet des ages des machines sur la politique
de production est ainsi bien illustré par 'augmentation du niveau de stock optimal
lorsque les machines vieillissent. Nous résumons l'analyse de ces résultats par la

schématisation de la figure 4.24 dans le cas ou les machines sont relativement jeunes.
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Figure 4.23: Taux de maintenance préventive @ (z,. o, 3) du probleme

limite pour un age de la machine équivalente fixé a 5

Quant a la politique de maintenance préventive, la figure 4.22 donne un taux
d’envoi en entretien préventif nul lorsque les machines sont neuves (a; = 1, a2 = 1).
Pour a; = 3. a» = 5. une maintenance préventive doit étre envisagée lorsque 2o >
0.8 et ; > 0.6 (voir figure 4.23). Nous reprenons brievement ci-apres la procédure

de construction de la loi de commande stochastique présentée a la section 4.2.5.

4.3.5 Construction de la loi de commande stochastique

Le probleme de commande considéré dans cette section est caractérisé par un
vecteur d'état a quatre composantes r;{.), ra(.), a;(.) et aa(.). Ceci complique
la représentation graphique de la loi de commande du probleme d'optimisation

considéré. Cependant, a partir de l'illustration des figures 4.18 a 4.23, limitée a
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Figure 4.24: Schématisation des taux de production du probleme limite

dans le plan (z,, z2) lorsque 'dge de la machine équivalente est fixé a 1
quelques combinaisons des adges des machines (obtenues en comparant le maximum
des ages des deux machines avec I’dge de la machine équivalente comme dans
I'exemple de la section 4.2), nous ressortons l'effet du vieillissement des machines
sur la loi de commande hiérarchisée. La procédure de construction de la loi de
commande stochastique a partir de celle du probléme limite est identique & celle

présentée a la section 3.5 et appliquée aisément & l'exemple de la section 4.2.5.
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Figure 4.25: Taux de production des deux machines au mode 1 pour

a; =1 et ao = 3 (produit 1)

Pour appliquer ia méthode de construction de la section 3.3. il suffit tout
simplement de garder en mémoire de l'ordinateur les vecteurs u,(Z). @a(Z) et
Z(z) et d’appliquer les étapes 1, 2 et 3 de la méthode présentée au chapitre 3.
La loi de commande heuristique obtenue, illustrée pour quelques variations d ages
de machines. est représentée par les figures 4.25 a 4.30. Cette loi de commande est

une désagrégation de celle du probleme limite représentée par les figures 4.18 a 4.23.

A l'aide de la simulation, nous avons déterminé le coiit total moyen encouru et
le seuil critique de stock associés a une partition de six classes. Les performances
du systéme sous cette loi de commande sont comparées ci-apres a celles relatives
a la loi de commande issue de I'application directe des méthodes numériques aux

équations d'HJB.
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Figure 4.26: Taux de production des deux machines au mode 1 pour
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0 o !
O 0
\ o
X X0.51
- -
X X
- -
5 g 0
-2

Figure 4.27: Taux de production des deux machines au mode 1 pour

a; = 3 et ao = 5 (produit 1)
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Figure 4.30: Taux de maintenance préventive des deux machines au

mode 1 poura; =3 et ap =3

4.3.6 Etude comparative

Il ressort des résultats de la simulation que la loi de commande hiérarchisée. pour
une partition de six classes, donne des seuils critiques x'l‘ap =094 et Iﬁ_op = 1.12
associés aux stocks des produits P1 et P2 respectivement. La figure 4.31 montre que
le coiit total moyen encouru, associé a la méthode directe, demeure inférieur a celui
généré par la loi de commande hiérarchisée. Il est & noter ici que la déviation du coit
moven de la méthode hiérarchisée par rapport au coiit moyen de la méthode directe
est de 'ordre de 18% seulement. Ce niveau de déviation, relativement faible, est di
principalement au fait que nous avons utilisé une partition raffinée de 6 classes: ce
qui nous rapproche de la méthode directe.

Cette seconde comparaison permet de conclure que 'approche de commande

hiérarchisée que nous proposons peut étre utilisée pour des systémes de production
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Figure 4.31: Coiits movens associés aux méthodes directe et
hiérarchisée pour ¢ = 5 (partition de six classes)
plus larges pour lesquels la résolution numeérique des équations d’HJB. pendant un
temps de simulation raisonnable, n'est possible qu'avec des maillages tres réduits.
Nous présentons ci-aprés une structure geénérale et heuristique des stratégies de
planification des systemes de production qui se dégage des caractéristiques des

résultats obtenus.

4.4 Structure générale des lois de commande

Les résultats obtenus montrent que les lois de commande optimales sont de type
“bang-bang” et sont caractérisées par des seuils critiques dépendant des ages des
machines. La structure générale que nous pouvons retenir de ces lois de commande
est donc de type “hedging point” dépendant de I’dge (le seuil critique pour chaque

produit dépend de la dynamique des dges). Pour un seuil critique donné, la politique
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classique du “hedging point” s'applique.

Comme |'usure d'une machine ne fait qu’augmenter tant qu'on n’intervient pas
sur elle (réparation ou maintenance préventive qui remet la machine a neuf), il est
clair qu’il n’existe pas une politique de planification qui maintient |'usure constante
tout en produisant. C'est ainsi que la loi de commande optimale ne peut étre
caractérisée que par des seuils critiques sur les stocks. Par contre, il est intéressant de
noter que ces seuils critiques dépendent de la politique de maintenance préventive,
basée sur le concept des taux de transition variables (fonction des ages et de la
commande).

Soit X, le seuil critique du produit j, j = 1,---, n ol n est le nombre de types

de pieces. Le taux de production u,;(.) du produit de type j est donné par:
wla.e Siozi(t) < X;
uj(Z) = d, si zi(t) = X; (4.33)
0 si zi(t) > X
ol v, = ¥, ul  avec u¥__ qui désigne le taux maximal de production sur la
machine i du produit j.

La politique de maintenance préventive, dépendant essentiellement des ages
des machines. ne peut pas étre exprimée comme & l'équation (4.33) car il n’existe
pas un seuil critique sur I’age d’'une machine. Cependant, en observant de prés nos
résultats, nous pouvons noter que le taux d’envoi en entretien préventif de toute
machine, selon la politique optimale, doit étre égal a zéro s’il existe £;, 7 = 1,--- . n,
tel que ; < X ;. C'est quand le seuil critique est atteint pour tous les produits que
nous pouvons envisager de faire de la maintenance préventive.

En nous basant sur ces observations, nous pouvons associer a la loi de

commande de type seuil critique des parametres caractéristiques correspondant

respectivement au seuil critique de chaque produit et a la valeur d’'age a partir
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de laquelle les machines doivent étre envoyées en entretien préventif lorsque le seuil
critique est atteint. Un exemple d’une telle paramétrisation peut étre trouvé dans
Kenne et Gharbi (1997) ou une combinaison d’approches analytiques, de simulation
et de méthodes statistiques ont permis de trouver une bonne approximation de

chacun des parametres utilisés.

4.5 Conclusion

Dans ce chapitre, nous avons appliqué la méthode de commande hiérarchisée et
les méthodes numériques au probleme de commande d'un systeme de production
constitué de deux machines qui produisent un seul type de piece. Pour valider
I'efficacité de la méthode heuristique proposée, nous avons comparé les performances
de la loi de commande obtenue a celle d'une loi de commande issue d'une résolution
directe des équations d’HJB. Il ressort de cette étude comparative que la loi de
commande obtenue se rapproche de la loi de commande optimale approximée par
les méthodes numériques lorsque le nombre de classes de la partition augmente.
Nous avons par la suite étendu l'application de l'approche proposée au cas
d'un systéme de production constitué de deux machines qui traitent deux types de
piéces. La résolution d'un tel probleme de commande nous a permis d’illustrer la
contribution de cette recherche car la résolution directe des équations d'HJB pour
cet exemple n'est pas évidente. De plus, nous avons dégage des résultats obtenus
et des conclusions de certaines de nos études (non présentées dans cette theése mals
citées en référence) que la loi de commande optimale pour les types de systémes

considérés est de type hedging point dépendant des ages des machines.
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Conclusions générales

L'objectif global de cette these était de trouver une politique optimale de
planification de la production et de la maintenance d’'un systéme de production
constitué de plusieurs machines spécialisées dans la production de plusieurs types
de pieces. Pour résoudre ce probleme, nous avons, sur une base théorique, présenté
une approche de commande hiérarchisée basée sur la méthode des perturbations
singulieres. Nous avons par la suite appliqué cette approche de commande sur deux
exemples de systéemes de production.

Du point de vue théorique, nous avons contribué a l'extension de I'approche de
commande hiérarchisée, basée sur la méthode des perturbations singulieres, au cas
ol le processus de saut est commandé et au cas ou les taux de transition dépendent
de l'état du systeme. Nous avons utilisé le fait que la solution au probléeme de
commande optimale stochastique initial converge de fagon asymptotique vers celle
d'un probleme de commande déterministe équivalent lorsque les taux de transition
des phénomenes rapides tendent vers l'infini. Les conditions d’optimalité obtenues,
aussi bien pour le probléme de commande stochastique initial que pour le probléme
de commande déterministe équivalent, sont une extension de celles obtenues dans
la littérature.

Pour résoudre les conditions d’optimalité du probleme déterministe, nous
avons utilisé I'approximation de Kushner pour formuler un probléme de décision
markovien a événements discrets. Apres avoir établi le lien entre ce formalisme

et celui proposé initialement, nous avons utilisé un algorithme numeérique pour
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résoudre les conditions d'optimalité obtenues. Une méthode de construction de la
loi de commande stochastique du probléme initial a partir de la solution numérique
du probleme limite a par la suite été proposée.

Au niveau des applications, nous avons considéré deux systémes de production.
Nous avons dans un premier temps déterminé la loi de commande d'un systeme
de production constitué de deux machines produisant un seul type de piece. En
suivant les principales étapes de |'approche proposée, nous avons montré, a l’aide
des modeles de simulation, que lorsque le nombre de classes de la partition des ages
des machines augmente, nous obtenons un raffinement de la loi de commande. Les
performances du systéme obtenues avec une telle politique se rapprochent de celles
que procure une loi de commande sous-optimale issue de ['application directe des
méthodes numériques aux équations d’HJB stochastiques.

La loi de commande hiérarchisée obtenue qui fixe les taux de production du
systeme et de maintenance préventive de chaque machine dans chaque mode du
processus stochastique décrivant la dynamique des machines est une commande
de tyvpe “bang-bang”. Pour la planification de la production, la loi de commande
obtenue est de type “hedging point” modifié, caractérisée par un seuil critique
qui dépend de la dynamique des ages des machines. La politique de maintenance
préventive dépend elle aussi du seuil critique et est telle qu'aucun entretien préventif
ne doit étre envisagé lorsque le seuil critique n’est pas atteint.

Comme extension de l'approche de commande proposée dans cette these, nous

pensons qu'il serait souhaitable:

1. d’introduire la maintenance corrective dans le modele et de résoudre le

probleme de planification de la production, de la maintenance préventive et de
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la maintenance corrective des systémes de production en utilisant l'approche
de commande hiérarchisée, basée sur les méthodes des perturbations

singulieres;

. d’appliquer l'approche de commande hiérarchisée, comme dans cette thése, a
la commande des systémes en tandem (machines en série) lorsque le processus

de saut est commandé et dépend des dges des machines;

. d’étendre l'approche proposée au cas des systémes de production qui

produisent plusieurs types de piéces en présence du setup;

. d'associer des parameétres a la structure générale de la loi de commande de
tvpe hedging point modifié et d’utiliser 'approche basée sur la combinaison
des modeles de simulation et des méthodes statistiques pour obtenir une
bonne approximation de la loi de commande. Cette méthode est basée sur
le fait qu'on n’'aura pas a résoudre au préalable les conditions d'optimalitée du

probleme de commande considéré.
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Annexe A

Systéeme de production a deux
machines traitant un seul type de
piece

L'objet de cette annexe est de présenter brievement la loi de commande issue
d’une résolution numérique des conditions d’optimalité stochastiques du probleme
de planification de la production et de la maintenance préventive. Nous considérons
le cas d'un systéme constitué de deux machines spécialisées dans la production
d'un seul type de piece. Pour plus d’information sur les équations qui décrivent
le probleme de décision markovien associé aux équations d’'HJB stochastiques
développées aux chapitres 2 ou 3 (voir équation (2.19)), nous renvoyons le lecteur
aux travaux de Boukas (1987) et (1997). Nous présentons dans cette annexe la loi
de commande issue d’une résolution numeérique du systeme d’équations qui décrit
les conditions d'optimalité du probléme de décision markovien associé au probléme
consideéré.

Nous avons résolu le probleme de décision markovien obtenu en utilisant les
mémes données qu’'a la section 4.2. Les figures A.1 & A.10 représentent les taux de

production et de maintenance préventive de chaque machine dans le mode oul toutes
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ut{al 1,x)

Figure A.1l: Taux de production de M, pour as = 1

les deux machines sont opérationnelles. Ces figures, limitées a quelques combinaisons
des variables d'état . illustrent la loi de commande associée a la méthode dite directe
dans cette these.

Comme nous pouvons le constater, il ressort de cette politique de planification
que nous devons exploiter plus fréquemment les machines les plus vieilles et utiliser
les machines plus jeunes en cas de nécessité. Cette stratégie garantit une réserve
de capacité car les vieilles machines doivent tomber incessamment en panne et la
production ne pourra se faire qu'avec celles qui restent opérationnelles (c’est-a-dire
les machines jeunes). Cette remarque est bien illustrée par une comparaison des
fizures A.1 a A.4. De plus, il est intéressant de remarquer, d’apres les figures A.5 a
A.10. que la zone ou la maintenance préventive doit étre envisagée diminue lorsque
les machines vieillissent (c'est-a-dire lorsque leur dge augmente).

Les méthodes numériques nous ont ainsi permis de résoudre le probleme de
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Annexe B

Modeles de simulation des

systéemes de production

L'objet de cette annexe est de présenter une approche de simulation des systémes
de production basée sur un ensemble de réseaux. Chaque réseau est un ensemble
de noeuds qui représentent graphiquement et de facon spécifique une partie de la
dynamique du systeme. Cette dynamique est décrite par un ensemble d’événements
discrets. d’activités et de branches. Le programme de simulation que nous proposons
est constitué principalement de trois réseaux associés respectivement aux modes
opérationnels des machines, aux modes d’arrét des machines et a la boucle de

simulation.

B.1 Modes opérationnels des machines

C’est dans un mode opérationnel que chaque machine produit selon un rythme de
production défini a I'avance. Ce rythme de production peut correspondre soit a la
loi de commande hiérarchisée ou a celle issue de la méthode directe de résolution des
équations d’'HJB stochastiques. La loi de commande u#(a, ) = (u(a, &), w(a, T))

est d'abord initialisée, pour chaque mode a du processus stochastique, dans
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[1[MAC1|1l2m+1lyn+1l1l [T[MAC,..Ill 3ml2m ]m] 4 (G|
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Figure B.1: Machines opérationnelles avec Y fo, TSe = u™!(.) et k = A(1)
un tableau de dimension appropriée. Pour simplifier la présentation et la
compréhension, nous considérons le cas d'un systeme de production constitué de
m machines identiques (m > 2) et produisant un seul type de piéce. La figure
B.1 présente le réseau qui modélise la production des piéces par les machines
opérationnelles.

Les m machines sont modélisées par des RESOURCES (MAC;), i =1, ---,m, qui
sont considérées comme des postes de travail ayant un seul serveur. Un service au
niveau d'une RESOURCE i correspond a la production d'une piéce par la machine
correspondante. Initialement, une entité fictive représentant I’ordre de production
est créée au noeud (C,) au temps tg = 0. Cette entité est dirigée au noeud (AS;) ou
m est assigné a son attribut A(2). L’attribut A(2) de l'entité fictive est ensuite
utilisée, avec le noeud UNBATCH désigné par (UB;), pour introduire m entités
identiques dans le réseau. Les m entités résultantes sont successivement dirigées au
noeud (AS») ou z; (avecz; = 1,---, m) est assigné a leur attribut A(1). Chacune de
ces entités représente une machine décrite par un numeéro donné par z,. Les entités
sont par la suite dirigées au noeud (G)) ou un aiguillage est prévu. Un maximum
d’une branche est choisi pour diriger ces entités en fonction du taux de production

actuel. Les deux cas suivants peuvent se produire:
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1. Si u(.) = 0. (c’est-a-dire que la production n'est pas nécessaire), alors les

entités sont retournées au noeud (G;) par une activité de tres faible durée Tp.

2. Siu(.) # 0, (c'est-a-dire que l'on doit produire au taux de demande ou au
taux maximal), alors les entités sont dirigées vers le noeud (A;) ou l'entité
1 doit attendre que la RESOURCE (MAC;) soit disponible. Lorsque (MAC;) est
disponible. I'entité le capture pour une durée de TS, unités de temps telle
que:

iTsFu-‘(,) et k= A(l) (B.1)
k=1

Apres cette activité, la machine (MAC;) est libérée au noeud (F1) et devient

disponible pour la production d'une autre piece.

Par la suite. l'entité est dirigée au noeud (E,), ou l'appel d'un sous-programme
FORTRAN fait la mise a jour du stock, de la demande cumulative et du coit de
stockage. Apres le noeud (E;), 'entité est retournée au noeud (G,) pour un autre

cvcle de production.

B.2 Pannes et maintenances préventives des

machines

Lorsqu’une machine n'est pas opérationnelle, elle est soit en panne ou en
maintenance préventive. Nous présentons a la figure B.2 le réseau qui modélise
les pannes et les envois en entretien préventif des machines. Les arrivées des pannes
et des maintenances préventives sont générées par une entité initialement créée au
noeud (C->) au temps tg = 0. Cette entité est dirigée au noeud (AS3) ou m est

assigné a son attribut A(2). L’entité est ensuite dirigée au noeud UNBATCH dénoté
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9 =219 +1
A(l) = 2
L A(2) =m 2 A(2) =2 +m ASs
‘453 U32 rg=13+l
A(4) = 3+ 2m
ASs T
3 r
A@3) = P(az,) DA AT A A
ASg GZ I&\J LEQ_I
w()#0T
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AT a1 + A1) | )fASs]
P @
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Figure B.2: Pannes et maintenances des machines avec T, = 1/A},,

Tm =1/X, Ty = 1/wi(.), T2 =0.1
par (I B,) afin de pouvoir introduire m entités identiques dans le réseau. Les m
entités sont dirigées successivement au noeud (AS,) ol les attributs A(1), A(2) et
A(3) de chacune d'elles prennent les valeurs za, zo + m et zo + 2m. Chaque entité
est ensuite dirigée vers le noeud (ASs) ou la probabilité de panne P(a.,(.)) de la
machine z, est assignée a l'attribut A(3). Quand 'entité arrive au noeud (Gs), une
branche sur trois doit étre choisie en fonction de la probabilité de panne A(3) et du
taux d’'envoi en entretien préventif. Une des trois conditions suivantes doit étre par

conséquent valide.

1. Si A(3) ou P(ag,(.)) est telle qu'une panne de machine doit avoir lieu, alors
I'entité est dirigée au noeud (PA) ou la RESOURCE (MAC4(1)) est capturée. Si
la machine correspondante était entrain de produire une piece, cette opération

est interrompue. L'activité de réparation de la machine commence aussitot et
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Figure B.3: Boucle de simulation avec Ty = d !

dure 7T, unités de temps. Apres l'activité de réparation, (MAC,())) est libéré
par l'entité au noeud (F3). L'entité de panne de chaque machine est par la

suite retournée au noeud (ASs) pour la génération de la prochaine panne.

S’il n'y a pas panne de machine et que l'entretien préventif est envisagé (c'est-
a-dire lorsque w(.) # 0), alors I'entité doit capturer la RESOURCE (MAC41))
comme dans le cas précédent. Apres |’activité de maintenance qui dure T),
unités de temps, (MAC4(1)) est libéré au noeud (F) et I'entité est retournée au

nceud (ASs) pour une autre génération.

S’il n'y a pas panne de machine et aucune activité de maintenance n’est
planifiée, alors |'entité est retournée au noeud (ASs) apres To unités de temps.
Notons que T» est généralement négligeable par rapport au temps d'usinage

d'une piece.

B.3 Boucle de simulation

Cette boucle génére la demande des produits finis, fait la mise a jour du stock et
du cott a chaque arrivée de demande et contrdle 'arrét de la simulation. Le réseau

correspondant est représenté a la figure B.3.

Une entité correspondant a une simulation est initialement créée au noeud (C3)
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au temps tg = 0. Cette entité est dirigée au noeud (ASs) ou le temps de production
Py (ou temps de simulation dans ce cas) prend la valeur 10000 unités de temps.
L’entité est ensuite dirigée au noeud (Ga) et par la suite au noeud (E2) apres Ty
unités de temps correspondant au temps d’interarrivées de la demande (c’est-a-dire
que nous avons Ty = d~!). La demande cumulative, le stock et le colt sont révisés
au noeud (E-) par 'appel d'un sous-programme FORTRAN. En retournant par la
suite I’entité au noeud (G3), ce sous-programme est appelé a chaque Ty unités de
temps. Si le temps de simulation courant Thp,, demeure inférieur a la durée totale
de simulation Py, alors I'entité est retournée au noeud G3; sinon il faut arréter la
simulation.

Le programme de simulation du systéme de production constitué de deux
machines traitant un type de piéce est constitué des réseaux présentés aux figures
B.1. B.2 et B.2. Nous avons présenté aux figures 4.13 et 4.14 les performances
de ce syvstéme lorsqu’il est simulé sous deux types de loi de commande (loi de
commande hiérarchisée et loi de commande issue de la méthode directe de résolution

des équations d'HJIB).
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Annexe C

Systéme de production a deux
machines traitant deux types de
pieces

L'objet de cette annexe est de présenter brievement la loi de commande issue
d'une résolution numérique des conditions d'optimalité stochastiques du probléeme
de planification de la production et de la maintenance préventive. Nous considérons
le cas d'un systéme constitué de deux machines spécialisées dans une production
simultanée de deux types de piéces. Comme dans I'annexe A, nous demandons au
lecteur de se référer aux travaux de Boukas (1987) et (1997) pour plus de détails
sur le probleme de décision markovien associé a cet exemple.

La résolution du probléeme de décision markovien associé au probléeme
d’optimisation considéré dans cette annexe est difficile a cause de la dimension
du probleme. Nous avons cependant tenu a résoudre ce probleme dans le but
d’illustrer la réduction de complexité de résolution que nous offre l'approche de
commande hiérarchisée. En utilisant les mémes données qu’a la section 4.3, nous
avons résolu numériquement les conditions d’optimalité relatives a ce probléme a

I’aide de 'algorithme d’itération de la commande. Nous présentons aux figures C.1
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Figure C.1: Taux de production du produit 1 sur la machine M, pour

a, = L. an = 3
a C.14 la loi de commande obtenue, correspondant au mode ou toutes les machines
sont opérationnelles.

Pour représenter cette loi de commande, nous nous sommes limités a quelques
combinaisons des variables d'état. Les combinaisons retenues nous permettent
d'illustrer la dépendance de la loi de commande obtenue vis-a-vis des ages des
machines. La loi de commande représentée par les figures C.1 a C.14 confirme le fait
que les ages des machines influencent de fagon significative les taux de production
du systéme et de maintenance préventive des machines. L'exploitation des machines
(production) et la stratégie de maintenance préventive des machines sont telles que
la commande d'une machine jeune se distingue nettement de celle d’une machine

vieille.
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Figure C.6: Taux de production du produit 1 sur la machine M+ pour
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