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Résumé 

Les systèmes de production considérés dans cette thèse sont constitués de plusieurs 

machines interconnectées qui produisent simultanément plusieurs types de pièces. 

Ces machines sont sujettes à des pannes et réparations aléatoires, et leurs 

distributions des pannes dépendent de leurs âges. Le problème de planification de la 

production et de la maintenance de ces systèmes de production est formulé comme 

un problème d'optimisation stochastique de grande dimension. Cette dimension 

croît de façon exponentielle avec le nombre de machines et de types de pièces 

considérés. Les problèmes d'optimisation stochastique associés à une telle dimension 

sont complexes et très difficiles à résoudre de nos jours. L'objectif de notre recherche 

est de déterminer une loi sous-optimale qui approxime la Loi de commande de ces 

problèmes complexes, en utilisant une approche hiérarchisée à deux niveaux. 

Dans cette thèse, nous avons: 

(il 

( i i) 

(iii) 

proposé une méthode de réduction de la taille du problème de commande 

et résolu le problème réduit pour trouver une approximation de la loi de 

commande du problème d'optimisation stochastique considéré; 

proposé une stratégie de commande plus réaiiste en raffinant, à l'aide d'une 

méthode heuristique, la loi de commande approximée; 

validé les résultats obtenus à l'aide des modèles de simulation. 
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L'approche de commande proposée consiste à utiliser les méthodes des 

perturbations singulières pour transformer le problème de commande stochastique 

initial en un problème de commande déterministe équivalent. Cet te rnét hode est 

basée sur le fait que la dynamique du système est associée à une existence simultanée 

des phénomènes rapides et lents. Ces phénomènes correspondent respectivement 

à des fréquences d'arrivées des pannes. d'entretiens préventifs des machines et 

d'actualisation du coût encouru. En associant ces phénomènes aux échelles de temps 

rapides et lents, nous formulons deux problèmes de commande (déterministe et 

stochastique) aux niveaux 1 et 2 de la hiérarchie proposée. 

L'approche de Kushner est par la suite appliquée au problème déterministe 

pour obtenir un problème de décision markovien. En résolvant ce problème de faible 

dimension à l'aide des méthodes numériques. nous obtenons une loi de commande a 

partir de iaquelle nous construisons la loi de commande recherchée pour le problème 

d'optirnisat ion stochastique initial. Une méthode heuristique est proposée pour 

une telle construction. Des modèles de simulation sont enfin utilisés pour valider 

l'approche de commande proposée dans cette thèse. 



Abstract 

Manufacturing systems considered in this thesis are constituted of several 

interconnected machines that produce several part types simultaneously. These 

machines are subject to random breakdowns and repairs, and their distributions 

of breakdowns depend on their âges. The production and preventive maintenance 

planning problem of these systems is formulated as a large scale stochastic 

optimization problem. The problem dimension grows exponentially wit h the  number 

of machines and part types involved. Stochastic optirnization problems related to a 

such dimension are complex and very difficult to solve. The objective of this research 

is to determine a suboptimal control policy, which approximate the optimal control 

policy of these complex problems, using a two-level hierarchical control approach. 

In this thesis we have: 

(i) proposed a method based on the reduction of the control problem size and 

solved the reduced control problem in order to find an approximation of the 

control policy of the considered stochastic optimizstion problem; 

(ii) proposed a more realistic control policy by improving the approximated one 

with the aim of a heuristic method; 

(iii) validated the obtained results with the help of simulation models. 



The proposed control approach is based on singular perturbation met hods 

which are used here to derive an equivalent deterministic control problem from 

the initial stochastic one. These methods are based on the fact that the system 

dynarnics involves rapid and slow phenomena simultaneously. These phenomena 

correspond respectively to the arriva1 Frequencies of machines breakdowns or 

preventive maintenance and to the actualization of the cost incurred. By associating 

these phenomena to rapid and slow time scales. we formulate two control problems 

(deterministic and stochastic) at levels 1 and 2 of the proposed hierarchy. 

The Kushner approach is then applied to the deterministic control problem 

to obtain a markovian decision controi process. This srnall size control problem is 

solved with numerical methods and the obtained control policy is used to construct 

the control policy of the original stochastic optimization problem. .A heuristic 

approach is proposed for the construction of such a policy. Finally! simulation 

models are used to validate the control approach proposed in this thesis. 
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Chapitre 1 

Introduction 

Face aux exigences technologiques des dernières décennies. la taille et la 

complexité des problèmes industriels relatifs à la production ne cessent de  croître. 

Pendant ces années, des installations manufacturières sophistiquées ont été mises au 

point pour répondre à la demande des consommateurs. Les systèmes de production 

associés a ces installations sont généralement constitués de plusieurs machines 

pouvant procurer une certaine flexibilité et garantir ainsi la survie de l'usine dans 

un environnement de plus en plus compétitif. De plus, ces types de systèmes sont 

sujets a des événements aléatoires discrets tels que les pannes et  les réparations des 

machines. les fluctuations de la demande, etc. 

Les systèmes de production flexible (Flexible Manufacturing System ( F M S ) )  se 

distinguent par leur capacité de satisfaire la demande des consommateurs en tenant 

compte de la présence des événements aléatoires ci-haut mentionnés. Ces systèmes 

doivent par conséquent utiliser des lois de commande appropriées qui intègrent la 

présence d'événements aléatoires. La commande des FMS a par conséquent occupé, 

ces dernières années, une place prépondérante daris la littérature de commande des 

systèmes de production. Cette prépondérance est due principalement à l'importance 

des investissements engagés et à la nature stochastique (présence d'aléas) du 



problème de commande optimale considéré. 

Une bonne stratégie de planification de la production et  de la maintenance 

des machines est alors nécessaire aiin de rentabiliser les investissements engagés 

malgré la présence des pannes des machines ou de tout autre événement aléatoire. 

L'industrie manufacturière est alors confrontée au problème de détermination des 

rythmes de production et de maintenance des machines qui maximisent le profit en 

général tout en satisfaisant le plus possible les exigences des clients. 

1.1 Problématique et objectif général de la 

recherche 

Les FMSs sont généralement constitués de plusieurs machines interconnectées qui 

produisent simultanément plusieurs types de pièces. Ces machines sont sujettes à 

des pannes et réparations aléatoires. et leurs distributions des pannes dépendent 

de leurs âges. De plus. ces machines ne peuvent pas toujours être purement 

flexibles (autrement dit? elles peuvent requérir un temps et un coût de setup ou de 

changement de pièce). Les aspects qualitatifs tels que les règles d'ordonnancement 

et d'affectation dynamique des produits aux machines peuvent également influencer 

de façon significative les performances du système. Dans ces conditions. la loi 

de commande à déterminer est constituée d'un rythme de production, d'une 

politique de maintenance des machines, d'une stratégie de setup et d'une règle 

d'ordonnancement et d'affectation dynamique des produits aux machines. Le 

problème d'optimisation associé à une telle loi de commande est un problème 

complexe dans la littérature de contrôle des FMS. 

Cette recherche a pour but de résoudre le problème de planification de la 



production et de la maintenance des systèmes de production. Nous utilisons une 

approche basée sur la réduction de la complexité du problème d'optimisation posé. A 

partir de cet te réduction, nous décrivons une méthode heuristique d'approximation 

de la loi de commande optimaie (taux de production et de maintenance préventive 

des machines). 

Le problème à résoudre est formulé comme un problème d'optimisation 

stochastique de grande dimension. Face à la complexité du  problème. les politiques 

de setup et les règles d'ordonnancement et d'affectation des produits aux machines 

ne sont pas considérées dans cette thèse. La loi de commande recherchée est donc 

constituée des taux de production et de maintenance préventive des machines. 

Le problème d'optimisation stochastique considéré consiste à trouver une loi de 

commande qui minimise une fonction coût dépendant des coûts de stockage des 

produits finis et des coûts de réparation ou de maintenance des machines. 

1.2 Revue de la littérature 

MaIgré la connaissance à priori de la politique de setup et  des règles 

d'ordonnancement, le problème d'optimisation considéré dans cet te recherche reste 

un problème très complexe à cause du nombre de machines et de types de produits 

impliqués. Dans la littérature. plusieurs auteurs considèrent, pour fin de simplicité. 

le cas où le coût est essentiellement lié au stockage des produits et au degré de 

satisfaction de la demande. Les méthodes proposées sont généralement basées sur 

la représentation des FMS à l'aide des systèmes perturbés par des processus de saut. 

Ces processus sont couramment modélisés par des chaînes de Markov. 

Dans les travaux pionniers d'Olsder et Suri (1980) et de Kimenia et Gershwin 



(1983). ces processus de saut sont modélisés par des chaînes de Markov homogènes 

selon le formalisme de Rishel (1975). Akella et Kumar (1986) ont montré que, pour 

un système constitué d'une machine qui produit un seul type de  pièce e t  dont le 

processus de saut est une chaîne de Markov homogène (à cause de la constance des 

taux de transition) . la poli tique de type seuil critique (hedging point ) est optimale. 

Cette stratégie de commande consiste à construire et à maintenir constant un niveau 

optimal de stock des produits finis dans le but de continuer de satisfaire la demande 

durant les états non opérationnels de  la machine. Les extensions de la stratégie de 

commande de type seuil critique sont également discutées par Sharifnia (1988). 

Malhamé et Boukas (1991) et Bielecki et  Kumar (1988). Le problème de  recherche 

de la stratégie de commande optimale devient plus difficile lorsque la chaîne de 

Markov n'est pas homogène (c'est-à-dire lorsque les taux de transition ne sont pas 

constants et peuvent dépendre des âges des machines et/ou de la commande). 

En considérant le fait que la distribution des probabilités de panne d'une 

machine dépend de son âge, le formalisme de Boukas, présenté dans Boukas (1987). 

Boukas et Haurie (1990) et Boukas (1995), considère l'âge de la machine dans la 

modélisation et la commande d'un FMS. En combinant la commande du taux de 

production et  celIe des actions de maintenance préventive, l'approche de Boukas 

a établi. par application d'une méthode numérique basée sur l'approximation de 

Kushner, que la solution au problème de commande optimale stochastique du FMS 

considéré est non seulement de type seuil critique mais dépend également de  l'âge. 

.4 partir de  ce résultat, Boukas et  al. (1995a) et Boukas et Yang (1996) ont modifié 

le concept du hedging point classique en montrant qu'il existe un âge optimal de 

la machine à partir duquel on doit bâtir un stock tel que dans Akella et Kumar 



(1986). Avant cet âge, la machine est supposée neuve et  la politique du juste à 

temps (c'est-à-dire une production au taux de la demande) est optimale. Kenne et 

al. (1997a) ont par la suite déterminé, par une combinaison d'approches analytique 

et de simulation. le niveau de stock critique (différent d u  "threshold" obtenu 

analytiquement par ..\kella et Kumar (1986) et utilisé par Boukas et al. (199%~)) 

et l'âge de commutation associé. Dans le cas générai, lorsqu'on est en présence de 

plusieurs machines et plusieurs types de pièces, les conditions d'optimalité obtenues 

sont difficiles à résoudre. Dans le cas des systèmes de faible dimension (maximum 

de deux machines traitant un seul type de pièce), l'approche numérique permet de 

résoudre les conditions d'optimalité et  d'approximer la loi de  commande optimale 

du FMS tel que dans Boukas (1957) et dans Boukas et  Kenne (1997). 

En ce qui concerne les systèmes complexes, constitués de plusieurs machines. 

le problème de planification du taux de production est reconnu dans la littérature 

comme étant un problème complexe. Pour un système constitué de deux machines 

en série et traitant un seul type de pièce. Lou et al. (1994) ont proposé une 

formulation qui tient compte des contraintes additionnelles rattachées à l'existence 

d'un stock tampon (work-in-process (WIP)) entre les deux machines. Dans ce cas, 

le concept du hedging point n'est plus directement applicable. Lou et  al. (1994) 

ont étudié Ies propriétés dynamiques du problème de commande optimale associé 

à ce système à partir d'une extension du modèle dTAkella et Kumar (1986). Van 

Ryzin et al. (1993) ont généralisé les stratégies de commande optimale de ce même 

système en appliquant les méthodes numériques sur un exemple spécifique. En se 

basant sur les résultats numériques obtenus, Van Ryzin et  al. (1993) proposent 

l'approximation d'une loi de commande sous-optimale du problème considéré. Dans 



le cas de plusieurs machines. les conditions d'optimalité du problème de commande 

optimale sont présentées par Presman et al. (1995). Les résultats obtenus ont été 

étendus au cas ou l'on contrôle simultanément le rythme de production et le taux 

de réparation des machines (maintenance corrective) par Kenne et al. ( 1997b). 

Les approches proposées dans la littérature au sujet des systèmes en tandem sont 

difficilement applicables lorsqu'on tient compte de l'âge. Cela est dü non seulement 

à la dimension du problème de contrôle, mais également à la contrainte imposée 

par le WIP. 

Pour un système constitué de plusieurs machines et traitant plusieurs types de 

pièces. Bai et Gershwin (1994) et Glassey et Hong (1993) abordent le problème de 

planification de la production en utilisant une méthode basée sur la décomposition. 

Ils traitent le FMS comme un agrégat de plusieurs systèmes à deux machines traitant 

un seul type de pièce dont des lois de commande sous-optimales sont disponibles. 

Ils considèrent trois classes d'activités (production, réparation et blocage ou non- 

alimentation des machines) dans le problème d'ordonnancement de la production 

et de controle du niveau du WIP. La méthode heuristique proposée est basée 

sur l'approximation de la fonction valeur et sur un certain nombre d'hypothèses 

restrictives. Ces hypothèses limitent les applications d'une telle méthode et rendent 

difficiles leurs extensions aux systèmes de production modélisés en tenant compte 

du fait que la capacité d'un système dépend des âges des machines. 

Dans le cas des FMS constitués de plusieurs machines. l'approche des 

perturbations singulières a été souvent utilisée. Cette approche se distingue des 

approches classiques car elle exploite la structure particulière d'un système en vue 

de procurer une loi de commande hiérarchisée. L'idée principale de cette approche 



est de réduire la taille du problème de commande des systèmes larges en considérant 

une hiérarchie qui dérive du fait que les taux de transition entre les différents 

modes du système (pannes des machines par exemple) sont plus grands que le 

taux suivant lequel le coût est actualisé. Dans ces conditions, on peut remplacer 

les équations classiques d'Hamilton-Jacobi-Belleman (HJB) par des équations de 

la programmation d-ynamique d'un problème déterministe équivalent dit "problème 

limite". Ce problème dépend uniquement des valeurs moyennes des phénomènes 

rapides (pannes des machines par exemple) et correspond à une approximation du 

problème original. -4 partir de la solution optimale de ce problème, on reconstruit 

une solution dite "sous-op timale" du problème optimal original. L'approche utilisée 

par Lehoczky et al. (1991)' Sethi e t  Zhang (1994) et Soner (1993) difEere de celle 

présentée par Gramme1 (1996)' KokotoviC et al. (1986) et Saksena et al. (1984) qui 

ont associé les échelles de temps considérées à la dynamique continue plutôt qu'à 

la dynamique discrète. Cependant, les deux approches visent le même but: à savoir 

réduire la complexité de résolution du problème d'optimisation posé. Dans le cas où 

les processus de saut sont décrits par des chaînes de Markov non homogènes. une 

telle approche s'applique difficilement car la construction de la solution au problème 

stochastique original n'est plus évidente dès lors que l'hypothèse d'homogénéité de 

la chaîne de Markov n'est plus valide. 

'ious pouvons également noter qu'il existe une large littérature illustrant 

la puissance de l'outil de simulation dans la conception, la planification. 

l'ordonnancement et le contrôle des FMS complexes. A l'aide des langages de 

simulation à usage général (voir Pritsker (1986) et Bengu (1994)), nous pouvons 

décrire en détail le comportement d'un FMS. La flexibilité de ces types de langage 



a permis de développer des modèles qui procurent une détection précise des 

performances d'un FMS, quelles que soient sa taille et ses conditions d'opération. 

Certains chercheurs ont essayé d'augmenter l'efficacité de la simulation dans le cas 

des FMS en exploitant les capacités descriptives de cette dernière. soit a l'aide de 

systèmes experts (voir Bai et Naganir (1994), Haddock (1990) et Mellichamp et 

al. (1990)). soit en utilisant le design expérimental (voir .4bdulnour et al. (1994), 

Gupta et al. (1993) et Tarum et Rizvan (1994)). Les systèmes experts ont surtout 

été utilisés pour générer automatiquement des modèles de simulation pour FMS tel 

que dans Haddock (1990) ou pour interpréter les résultats de simulation. identifier 

les problèmes ou les possibilités d'amélioration de la conception d'un FMS. Ces 

systèmes experts sont basés sur une analyse des entrées des modèles de simulation 

et des sorties correspondantes (voir Haddock (1990) et Mellichamp et  al. (1990)). 

La méthodologie de design expérimental, quant à elle, est surtout utilisée pour 

aider à identifier les facteurs et les interactions qui influent sur le système et, par 

conséquent. permet de dégager un modèle de régression qui pourra, par la suite, 

être minimisé pour déterminer les conditions optimales d'opération (voir Kenne et 

Gharbi (1997)). 

Notons cependant que l'utilisation de la simulation, aussi bien en combinaison 

avec les systèmes experts qu'avec le design expérimental, nécessite La connaissance 

à priori de la loi de commande. Cette condition rend donc difficile l'application des 

modèles de simulation classiques dans le domaine de la commande des FMS, où les 

lois de commande sont des variables de contrôle à déterminer. 



1.3 Motivation de la recherche 

Sous observons que l'extension du concept du hedging point au  cas des systèmes 

décrits par des chaînes de Markov non homogènes est complexe dans le cas 

des systèmes constitués de plusieurs machines traitant plusieurs types de pièces. 

De même. il n'existe pas une méthode satisfaisante qui permet de déterminer 

simiiltanément les taux optimaux de production et de maintenance des machines 

dans le cas de ces systèmes complexes. Les modèles analytiques présentés dans 

la littérature ne peuvent être résolus que dans le cas des systèmes de très faible 

dimension. Pour les systèmes complexes. il n'existe pas une approche générale qui 

permet d'obtenir une loi de commande optimale d'un FMS tout en tenant compte 

des âges des machines dans le modèle. 

Pour certains des systèmes de production étudiés dans la littérature. les 

solutions sous-optimales obtenues sont basées sur un certain nombre d'hypothèses 

restrictives (chaînes de Markov homogènes par exemple) et  sur des approches 

limitées par les dimensions des problèmes de commande associées (équations d'HJB 

stochastiques). 

Face à la complexité de résolution des équations d'HJB stochastiques d h n e  

part et au manque de méthodes heuristiques de commande des FMS en situation 

réelle d'autre part, nous nous proposons dans cette recherche de bâtir des méthodes 

heuristiques pour la commande des FMS en utilisant une formulation plus générale. 

Cette formulation tient compte des âges des machines et  de la politique de 

maintenance des machines dans le modèle. 



1.4 Méthodologie 

Dans le but d'aborder l'étude des systèmes complexes, nous allons nous concentrer 

particulièrement sur des approches basées sur la réduction de la complexité du 

problème de commande optimaie de ces systèmes. L a  méthode proposée consiste à 

utiliser la technique des perturbations singulières pour transformer le problème 

de commande stochastique initiai en un problème de commande déterministe 

équivalent. Les problèmes de commande stochastique et déterministe équivalent sont 

formulés respectivement aux niveaux 2 et 1 de la hiérarchie proposée. L'approche 

de Kushner est par la suite appliquée au problème déterministe pour obtenir un 

problème de décision markovien. En résolvant ce problème de faible dimension à 

l'aide des méthodes numériques, nous obtenons une loi de commande qui est à la 

base de la construction de la loi de commande recherchée pour notre problème 

initial. Une méthode heuristique est proposée pour une telle construction. Des 

modèles de simulation sont enfin utilisés pour valider l'approche de commande 

proposée dans cette recherche. 

Les principaux développements de notre démarche sont résumés dans la figure 

1.1 qui présente la méthodologie de commande heuristique que nous proposons. 

Xous détaillons ci-après, de facon séquentielle, les étapes El à Er associées à la 

méthode proposée et qui regroupent les différents développements illustrés par la 

figure 1.1. 

El Présenter un formalisme plus général du problème de commande de 

FMS en nous basant sur le formalisme de Rishel (1973) et l'extension 

proposée par Boukas (1987). Nous formulons dans cette étape un certain 

nombre d'hypothèses dites de modélisation et  nous considérons une loi de 
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commande constituée des taux de production et de maintenance préventive. 
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Cette approche consiste à déduire de la formulation de l'étape El un problème 

de commande optimale déterministe équivalent en remplaçant les 

phénomènes rapides (les pannes et les réparations des machines par exemple) 

par leurs moyennes. La loi de commande résultante est par conséquent d'une 

optimalité asymptotique et peut être considérée à la limite comme loi de 

commande du problème stochastique initial. Cette limite n'étant pas physique, 

nous disons qu'une telle loi est une loi sous-optimale du problème stochastique 

initial. 

ES Appliquer l'approche de Kushner au problème déterministe équivalent, 

caractérisé par des conditions d'opt imali té de faible dimension. Résoudre le 

problème de décision markovien obtenu a l'aide des méthodes numériques. 

Ressortir par la suite la structure de la loi de rétroaction résultante et 

proposer une méthode de construction de la loi de commande du 

problème stochastique a partir de la solution du problème limite (problème 

déterministe). La méthode de construction proposée est basée sur une 

discretisation du vecteur des âges des machines suivie du regroupement 

de ces dernières en classes. En nous basant sur ce regroupement, nous 

présentons également dans cet te étape une approche de construction d'une 

loi de commande dépendant de l'âge et qui intègre la nature stochastique du 

problème. 

E4 Valider par Ia suite la méthode heuristique proposée, à l'aide d'un modèle 

de simulation discrète, en comparant les performances du FMS (niveaux 

d'inventaire et le coût total encouru) lorsque ce dernier est soumis à deux lois 

de  commande différentes. Les deux lois considérées sont issues respectivement 



de la méthode proposée et de la résolution numérique directe des équations 

d'HJB. Raffiner par la suite la loi de commande obtenue en augmentant le 

nombre de classes de la partition du vecteur des âges des machines. Le nombre 

maximal des classes de cette partition est imposé par le fait que chaque classe 

doit contenir au moins deux élements. 

Plus précisément. pour résoudre ces différents problèmes reliés a la commande 

optimale stochastique des FMS, cette recherche a pour objet de répondre aux 

questions Ql à Q4 formulées ci-après: 

Q1 Pouvons-nous développer des modèles généralises simples de commande 

stochastique (incluant des actions de maintenance préventive)? Ces modèles 

doivent être caractérisés par des conditions d'optimalité de faible dimension, 

comparées à celles des conditions d'optimalité couramment utilisées. 

Q z  Pouvons-nous inclure des actions d'entretien préventif et des taux de panne 

des machines qui dépendent de leurs âges dans ces modèles et établir les 

conditions d'optimalité correspondantes ? 

Q3 Pouvons-nous résoudre numériquement le problème de commande optimale 

relatif aux modèles simples issus de la réduction de la taille du problème 

d'optimisation initial ? 

Qg Pouvons-ROUS par la suite construire la solution du problème de commande 

initial à partir de la solution du problème limite et la valider à l'aide des 

modèles de simulation ? 



1.5 Contributions originales 

Les réponses à ces questions constituent les contributions de  cette thèse. Ces 

contributions comprennent une étude théorique et une étude pratique. L'étude 

théorique est constituée des réponses aux questions Q I ,  Q2 e t  Q3 qui regroupent 

les étapes EL. E2 et EJ de la méthodologie proposée. Cette partie de l'étude 

consiste à développer des modèles simples de commande des systèmes de production 

flexible à l'aide de l'approche de commande hiérarchisée. Cette approche réduit 

la taille du système d'équations qui décrit l'optimum dans le cas des systèmes 

complexes. En plus, ces modèles incluent les âges des machines et la politique de 

maintenance préventive de ces machines. L'étude pratique, réponse à la question 

Q4, est constituée de l'étape Eq de la méthodologie proposée. Cette deuxième 

partie de  l'étude consiste à appliquer la structure de commande, obtenue par l'étude 

théorique. à des modèles de simulation pour valider l'approche proposée. 

Organisation de la thèse 

Au chapitre 2, nous présentons une formulation plus générale du problème de 

commande optimale des FMS. En nous basant sur le formalisme de Rishel (1975) et 

sur l'extension proposée par Boukas (1987). nous présentons un modèle analytique 

de ce problème. les conditions d'optimalité, l'impact de la taille des équations d'H JB 

sur la résolution du problème et les difficultés de résolution de ces types d'équations. 

Au chapitre 3, nous présentons l'approche de commande hiérarchisée basée 

sur la méthode des perturbations singulières. Nous montrons dans ce chapitre qu'il 

est possible de trouver un problème de commande optimale déterministe qui est 



équivalent au problème initial de commande optimale stochastique. L'approche de 

Kushner est appliquée aux conditions d'optimalité de ce problème déterministe et le 

problème de décision markovien obtenu est résolu à l'aide des méthodes numériques. 

Nous présentons également dans ce chapitre une méthode di. construction de  la 

solution du problème de commande initial à partir de la solution du problème 

déterministe. 

Au chapitre 4. nous appliquons la méthode proposée au chapitre 3 sur 

deux exemples numériques. Afin de valider I'approche heuristique proposée, nous 

considérons pour cela des systèmes dont les conditions d'optimalité peuvent être 

résolues directement (c'est-à-dire lorsque nous n 'utilisons aucune transformation) 

par des méthodes numériques. Nous validons l'approche en comparant dans ce 

chapitre les performances de ces systèmes lorsqu'ils sont soumis respectivement 

à la politique issue de l'approche hiérarchisée et à celle issue de la résolution directe 

des conditions d'optimali té. Les modèles de simulation sont utilisés pour valider la 

méthodologie proposée. 



Chapitre 2 

Formulation du problème et 

condit ions d'opt imalit é 

2.1 Introduction 

En nous basant sur des hypothèses semblables à celles utilisées par Rishel 

(1973) et par Boukas (1987): nous étudions dans ce chapitre les conditions 

d'optimalité du problème de planification de la production et de la maintenance des 

systèmes de production considérés dans cette thèse. En utilisant la programmation 

dynamique' nous montrons que ces conditions décrivent un système d'équations aux 

dérivées partielles de type HJB (Hamilton-Jacobi-Belleman). Pour des systèmes de 

production larges, ces équations sont de grande dimension et sont par conséquent 

difficiles à résoudre. Nous présentons au chapitre suivant une approche heuristique 

de résolution de ces types d'équations. 

Ce chapitre vise un double objectif. Le premier objectif consiste à formuler 

le problème de planification de la production et de la maintenance des systèmes 

de production. Le second objectif consiste à établir les conditions d'optimalité de 

ce problème en considérant l'exemple des systèmes de production constitués de 

plusieurs machines identiques qui traitent plusieurs types de pièces. Le modèle que 



nous présentons dans ce chapitie est basé sur une chaîne de Markov non homogène 

caractérisé par la dépendance des taux de transition des âges des machines et de la 

loi de commande. 

Le pian de ce chapitre est le suivant: & la section 2, nous présentons la structure 

du FMS considéré e t  les modèles dynamiques correspondants. Le problème de 

commande optimale relatif à ces modèles et  les propriétés de la fonction valeur 

correspondante sont étudiés ii la section 3. Les limites de résolution numérique des 

conditions d'optimali té obtenues sont discutées à la section 4. 

2.2 Structure du FMS et modèles dynamiques 

Dans cette recherche. nous nous limitons à la dynamique des machines et à celle des 

stocks de pièces. Xous développons les modèles analytiques des systèmes considérés 

sous les hypothèses restrictives suivantes: 

(Xi ) : Le temps de manutention des appareils de transport tels que les AGVs 

(Automated Guided Vehicles) est négligeable. 

(Hz) : Le temps requis pour le changement de pièce (ou setup) et le coût de cette 

opération sont négligeables comparativement au temps d'usinage d'une tâche 

et au  coiit des opérations telles que la réparation ou la maintenance des 

machines. 

( f i 3 )  : Les pièces se déplacent d'une machine à l'autre selon un routage défini à 

l'avance. De plus, aucune règle d'affectation ou d'ordonnancement dynamique 

n'est considérée dans le modèle analytique que nous présentons. 



(R4) : Les distributions des temps de panne d'une machine dépendent de son âge 

et les taux de transition des modes du processus stochastique qui décrit la 

d-ynamique des pannes d'une telle machine peuvent être contrôlés. 

Les hypothèses (Ri), ('Hz) et (R3)  permettent de représenter la dynamique du 

système par des équations différentielles simples et de simplifier par conséquent 

les conditions d'optirnalité. L'hypothèse (X4) permet de considérer l'âge d'une 

machine dans le modele et de contrôler simultanément les taux de production et de 

maintenance préventive des machines. 

Le problème d'optimisation mentionné au chapitre 1, correspondant à la 

planification de la production et de la maintenance d'un système de production, 

est un problème d'optimisation stochastique à cause des événements aléatoires tels 

que les pannes des machines. Les actions de maintenance préventive sont introduites 

dans le modèle pour augmenter la disponibilité des machines. Nous présentons ci- 

après le modèle mathématique associé à notre approche. Xous considérons dans 

cet te thèse les systèmes de production constitués de plusieurs machines identiques 

en parallèle qui produisent plusieurs types de pièces. 

2.2.1 Modèle dynamique 

30,s présentons dans cette section les équations qui décrivent la dynamique des 

stocks et celle des modes des machines. Le modèle du système, constitué de rn 

machines et traitant n produits différents, est décrit par un état hybride constitué 

d'une partie continue (dynamique des stocks et des âges) et d'une partie discrète 

(modes des machines). La variable continue du vecteur d'état est composée d'un 

vecteur x(t  ) traduisant les différents stocks e t  d'un vecteur a@) représentant les 



âges des différentes machines. 

2.2.1.1 Dynamique continue 

Soient x ( t )  = ( ~ ' ( t ) .  a f ( t ) ) '  le vecteur d'état continu du système, d ( t )  le vecteur 

des taux de demande et u(t ) le vecteur des t a u  de production des machines. La 

notation A' désigne la transposée de A. La dynamique de x(t  ) peut ètre décrite par: 

avec x donné. x ( t )  E IRnim. d ( t )  E IRn et  u(t) E IRn. Sous supposons que les 

fonctions j ( - )  : Rn'm x Rn x Rn -t IRnAm sont continues par rapport à x ( t  ), 

u(t)  et d ( t )  et satisfont la condition de Lipschitz. En posant w = (x', ü'! d')',  

nous définissons ci-après la continuité d'une fonction et la condition de Lipschitz 

appliquée à une telle fonction. 

Définition 2.1 La fonction / ( -)  est dite continue au point wo E mm-" x l?2'" 

si. pour tout E > O ,  E E Rn+". il eziste 6 > O tel que 1 f (w) - f (wo)l < E avec 

U> mm-" ~ 2 n  et lib - lùol < 6 .  Si f (a) est continu e n  tout point de lRm'" x R * ~ .  

on dit que f ( -1  est continu dans cet ensemble. 

Définition 2.2 La fonction j (.) , définie dans mm'" x IR?", satisfait la condition de 

Lipschitz s'il existe une constante K telle que, pour chaque paire de  points wl, w2 E 
R m t n  ~ 2 n  , nous avons: 

Avec la condition (2.3), on dit que f (a) est à variation bornée dans IRmfn x p. 

L'exemple suivant nous permet de spécifier la fonction / ( - )  relative à un système 



de production donné. 

Exemple 2.1: Deux machines en parallèle traitant deux produits 

Soit le système illustré à la figure 2.1 et constitué de deux machines en parallèle 

qui produisent deux types de pièces (rn = 2 et n = 2). 

Figure 2.1: Modèle de deux machines en parallèle 

Le système d'équations (2.1)-(2.2) est dans ce cas donné par: 

En posant 



le système d'équations (2.4)-(2.7) devient: 

~ ( t )  = Au(t) + Bd( t )  a(0) = x 

avec 

2.2.1.2 Dynamique discrète 

La dynamique décrîte par le système d'équations (2.1)-(2.2) est perturbée par un 

processus de saut { ~ ( t ) .  t  2 0) correspondant a l'état discret du système. Cet état 

discret est généré par un processus markovien à temps continu et à état fini ~ ( t  ), 

appelé mode. prenant ses valeurs dans un ensemble fini B C N avec les probabilités 

de transition du mode CL au mode @ décrites par les relations suivantes: 

Le processus ; ( t )  est caractérisé par la matrice des taux de transition [XQo(-)] tels 

que les A,&) : Rn x IRm + IR sont différentiables par rapport à 2 et ii et 

vérifient Ies relations suivantes: 

o(6t) avec lirnat-o 7 = 0. 

Le processus de saut C ( t )  est un vecteur dont les éléments sont des variables 

aléatoires c i ( t )  à états dans Bi (i = 1,. . , m).  Nous avons en général B = BI x 



- - - x B, . . x Bm. Dans le cas de l'exemple 2.1, C,(t) E 8, = (1.2.3) tel que: 

1 si la machine M i  est opérationnelle 

< d t )  = 2 si Ia machine M i  est en réparation (2.12) 
3 si la machine M i  est en maintenance préventive 

Les taux de transition Xao(.) du processus ,'(t) se déduisent aisément de ceux des 

processus ( , ( t ) .  i = 1;- - , m .  comme suit: 

1. définir B tel que card(B) = 3m. Identifier les modes de C( t  ) tels que: 

2. établir le lien entre ies modes de ( ( t  ) et ceux de ci(t), i = 1. - - - , m,  en utilisant 

un tableau similaire au tableau 2.1 et  en déduire Aao, (a, 3 E B) à partir de 

la connaissance des A610, , (a'' 9' E Bi) 

où est le taux de transition du mode a' au mode O' correspondant au processus 

ci(t). D'après le tableau 2.1, on peut noter que A i ?  = A:?, Xia = X14 = x:~ .  etc. 

Tableau 2.1: Modes de < ( t )  et c i ( t ) ,  i = 1:2 

Soit ü = (u', w')' le vecteur de commande où w' = (wi, - - , w,) est le vecteur 

des taux d'envoi en entretien préventif des machines Mi. Ces taux représentent 

physiquement l'inverse du temps qui sépare l'appel du technicien de maintenance et 

son arrivée. Nous supposons que l'amvée du technicien, appelé pour une machine 

Mi, correspond à l'arrêt de cette machine. Les ui, i = 1, - - - , rn, sont considérés 

comme étant des variables de commande et  correspondent aux taux de transition 



du mode opérationnel au mode de maintenance préventive pour chaque machine 

Mi. Pour plus d'information sur ce concept, nous renvoyons le lecteur à Boukas 

(1987) et à Boukas (1995). 

Nous présenterons plus en détail au chapitre 4 les significations physiques des 

différents taux de transition A,& en montrant leur dépendance vis-à-vis des âges 

des machines et de la commande. Cependant, nous pouvons noter ici que le concept 

de taux de transition variable ainsi utilisé permet de: 

1. Modéliser des fréquences de panne d'une machine i qui dépendent de  son âge 

aiji). On peut poser par exemple A;.(ûi(t)) = T ( a i ( t ) )  où T ( - )  est une fonction 

réelle quelconque et X i 2 ( . )  est le taux de transition du mode opérationnel au 

mode panne de la machine Mi. 

2. Définir une politique de maintenance préventive en contrôlant simultanément 

les taux de production u(.) du système et de maintenance préventive w ( . )  des 

machines. 

2.2 -2 Commande optimale stochastique 

Nous présentons dans cette section l'ensemble des commandes admissibles, la forme 

du coût instantané considéré et l'expression du critère de performance. Nous posons 

par la suite le problème de commande optimale stochastique associé a u  problème 

de planification de la production et de la maintenance du système de production 

considéré. Pour le système de m machines identiques en parallèle qui produisent n 

types de pièces, rappelons ici que nous avons x ( t )  E IRn, a( t )  E IRm, u(t ) E IRn, 

~ ( t )  E B = { l , - -  , p )  et d ( t )  E IRn où p E IN est le dernier mode du  système 

(p = 3*). La dynamique de & ( t )  est donnée par le système d'équations ( 2 4 4 2 . 2 )  



dont une structure particulière est présentée par les équations (2.4)-(2.7) relatives 

à l'exemple 2.1. 

Soit Q(-) = [ A a o ( - ) ]  une matrice p x p telle que les conditions (2.10)-(2.11) 

soient vérifiées. Si Q(-) est la matrice des taux de transition de la chaîne de Markov 

< ( t ) .  nous avons pour toute fonction 9 définie dans 13: 

Pour un mode 

comme suit: 

a E 0, définissons l'ensemble des lois de commande admissibles U(cr )  

i j  ou u,, est le taux de production maximale du produit j ( j  = 1, . - , n )  sur la 

machine i ( i  = 1, - - - m )  et w,, est le t a w  de maintenance préventive maximale 

de chaque machine. La fonction Ind{ P (-)) est définie telle que Ind{P(-)} = 1 si 

la proposition P(-) est vraie et Ind{ P ( - ) )  = O si la proposition P (-1 est fausse. 

L'ensemble U (a) est constitué des lois de commande définies sur i3 x IRn'" telles que 

ü(û. x) est partout continûment différentiable avec des dérivées partielles bornées 

en x. Nous pouvons remarquer que U(a) est un ensemble convexe. 

Définition 2.3 Une fonction ir(cr, 5 )  est appelée loi de  feedbuck admissible si: 

(il 

( ii) 

pour toute condition initiale 2; l'équation 

~ ( t )  = f (5( t ) ,  G(cr, 5):  d ( t ) )  I(0)  = 6 

admet une  solution unique; 

ü(.) = { ü ( t )  = ü(û, +), t 2 O}€ U ( O ) .  



Au lieu de définir un ensemble de lois de feedback admissibles, nous exprimons par 

la suite la condition d'admissibilité (i i)  en posant simplement ü(a, 2) E U (a) avec 

un abus de notation. 

Soit gn(x. ii) la fonction coût instantané qui  permet de pénaliser. dans chaque 

mode CI du système. le stockage des produits. les opérations de production et celles 

de réparation et de maintenance des machines. Cette fonction sera définie de façon 

précise au chapitre 4 consacré à l'expérimentation de l'approche de commande 

hiérarchisée (présentée au chapitre 3) .  Pour chaque loi de commande ü(.) E U ( a ) ,  

la fonction coût peut être définie comme suit: 

où p est le taux d'actualisation. Le problème de commande optimale considéré 

consiste à déterminer une stratégie de production et  de maintenance des machines 

qui minimise l'expression (2.16). 

La fonction valeur associée a ce problème d'optimisation est donnée par 

l'expression suivante: 

v ( x ,  a) = inf J ( x ,  a, ü(.)) 
C ( . ) € U ( a )  

Si la fonction valeur v (x, a )  est différentiable par rapport à 5, elle doit satisfaire un 

certain nombre de relations à l'optimum dites conditions dloptimalité du problème 

d'optimisation stochastique posé. Nous spécifions ces relations à la section suivante 

en terme de propriétés de la fonction valeur. 



2.3 Propriétés de la fonction valeur 

Dans cette section, il est question d'établir Ies conditions d'optimalité pour un 

problème de commande stochastique de FMS. Ces conditions se traduisent par 

un ensemble de relations que la fonction valeur doit satisfaire. Kous établissons 

les propriétés de la fonction valeur en montrant qu'eIle est localement Lipschitz 

(ce qui garantit qu'elle est différentiable partout) et qu'elle satisfait un ensemble 

d'équations aux dérivées partielles dites équations d'Hamilton-Jacobi-Bellman 

(HJB). Nous établissons également une condition suffisante pour la commande 

optimale. Pour établir ces propriétés, nous avons besoin de l'hypothèse suivante: 

(A2.1)  La fonction coût ins tantané g a ( x ,  Ü) est une /onction continue e t  il 

e n s t e  des constantes Cg et kg telles que: 

et  pour tout xl, u1 et u2 

Remarque 2.1: L'hypothèse (A2.1) indique que le coût instantané satisfait une 

certaine condition de croissance par rapport 5. De plus. cette fonction coût est 

localement Lipschitz en x (voir Boukas et al. (l99Eib)). 

Le prochain théorème montre que la fonction valeur v(. ) satisfait un ensemble 

de conditions a I'optimum qui dépendent du gradient vg(). Cette dépendance 

nécessite alors les propriétés de continuité et de différentiabilité de v ( . ) .  Nous 

allons maintenant présenter ces conditions d'optimum et établir par la suite la 

différentiabilité de la fonction valeur associée. 

Soit 



Les équations de la programmation dynamique associées au problème de commande 

optimale considéré sont données par: 

p v ( x . a ) =  min H(a,ua(5,a),ii) V X E I R " ' ~ .  a E B  (2.19) 
(U .w ) E U (a) 

où L.+(x. a )  est le gradient de v ( . )  mentionné précédemment. Nous utilisons les 

définitions suivantes pour montrer que la fonction valeur u (. ) satisfait l'équation 

(2.19). 

Défini t ion 2.4 La super-dtfl&entiabzlzté D- f (5 )  et la sous-différentiabilzté 

D-  f (5) de toute fonction f (5)  sont définies respectivement comme suit: 

f ( X  + h )  - /(I) - h . ~  
D -  f (5 )  = {T  E LRnTm : lim inf 

Ihl 2 0) 
h-O 

Définit ion 2.5 On dit que la fonction valeur u(.) est une solution de uiscosité de 

(2.19) si les conditions suivantes sont vérifiées: 

(a) u ( . )  est continu et O 5 u ( 2 .  a) 5 C,(l + l x ( " 9 ) ;  

(b) V r  E D - v ( i .  a )  

Si les conditions (a) et (b) sont satisfaites, alors la fonction valeur v ( . )  est dite 

une sous-solution de viscosité. Si les conditions (a) et (c) sont satisfaites, v(.) est 

appelée une super-solution de viscosité. Pour plus d'information et de discussion sur 

le concept de solution de viscosité, nous référons le lecteur aux travaux de Grandall 

et al. (1984) e t  de Sethi et Zhang (1994). 



Théorème 2.1 La fonction valeur v (x. a )  est ( i )  continûment diflkrentiable et  (ii) 

satisfait l'équation d ' H J B  donnée par (2.19). 

Preuve: Nous allons prouver successivement les deux parties de  ce théorème. 

(i) .\ partir du fait que u ( 5 .  a)  satisfait la propriété de Lipschitz. nous pouvons 

conclure qu'une telle fonction est différentiable par rapport a x. pour tout 

a E B. Notons égaiement que toute fonction qui est convexe et. satisfait la 

condition de Lipschitz est continûment différentiable. 

( i i )  Pour prouver que la fonction valeur satisfait l'équation d7H J B, utilisons 

maintenant les concepts donnés par la définition 2.4. D'après la première 

partie du théorème (2.1 ) , c'est-à-dire u (. ) est continûment différentiable par 

rapport à 2. D + v ( 5 .  a )  et D - v ( x .  a )  sont tous les deux égaux à { u , ( t ,  O ) } .  

Dans ces conditions, les deux inégalités dans la définition du concept de 

solution de viscosité (voir équations (2.20) et (2.21)) deviennent des égalités. 

Donc v( . )  satisfait les équations d'HJB. 0 

Le théorème de vérification ci-après établit une condition suffisante d'optimali té. 

Théorème 2.2 (théorème de vérification) Soit v ( x ,  a) une solution dzflérentiable 

de  l'équation d ' H J B  (2.19) telle que si 

alors 

(2) ~ ( 5 ,  a) 5 J(5, a, Uj pour tout iL E U(a). 

(22) si ~ ' ( 2 ,  a )  est une loi de Ieedback admissible telle que 



alors : 

où 6 )  = (u' ( - ) ,  si*(.)) = (ue(x(-), a(-), a), w 4 ( x ( . ) ,  a(-). a)). La loi de 

commande (TL*(-), w*(.)) est alors optimale. 

Preuve: La preuve de ce théorème est présentée dans Boukas et al. (1 995b). 0 

La  loi de commande optimale Ü4(. )  est celle qui minimise, à travers U ( a ) ,  le 

membre de droite de l'équation (2.19). Cette commande est associée à la fonction 

valeur décrite par le théorème précédent. Lorsque la fonction valeur est disponible, 

une politique de commande optimale est obtenue d'après (2.19). Mais une solution 

analytique de (2.19) qui donne v( . )  et la commande optimale associée est difficile à 

obtenir. 

Chercher à résoudre analytiquement le système d'équations (2.19) n'est donc 

pas un objectif réaliste à cause de sa complexité dans le cas des systèmes larges, 

constitués de plusieurs machines qui produisent plusieurs types de pièces. Une 

solution analytique de cette équation existe dans le cas d'un système constitué 

d i n e  machine produisant un seul type de pièce e t  avec une dynamique des pannes 

de la machine décrite par une chaîne de Markov homogène (voir Akella e t  Kumar 

(1986)). Une alternative pour résoudre ces équations consiste à appliquer des 

méthodes numériques. Nous présentons aux annexes .4 et C l'application de telles 

méthodes aux cas de deux systèmes de production constitués de deux machines. 

Les systèmes considérés produisent respectivement un seul type de pièce et deux 

types de pièces. Les méthodes numériques utilisées se heurtent malheureusement 

à la grande dimension des équations d7HJB pour des systèmes complexes. Cette 



dimension varie exponentiellement avec la taille du problème d'optimisation. tel 

que nous le ressortons à la section suivante. 

2.4 Dimension des équations d'HJB 

-4 cause de Ia large dimension des problèmes de planification de la production et de 

la maintenance des FMS dans des situations réelles, l'obtention d'une solution aux 

équations d'H J B est extrêmement difficile sinon impossible. No tons cependant qu'à 

l'aide des méthodes numériques, il est possible d'envisager une solution de l'équation 

(2.19) dans le cas des systèmes constitués d'un maximum de deux machines et 

produisant un seul ou deux types de pièces. L'espace mémoire disponible pour 

l'implantation des algorithmes numériques développés dans le passé ne permet pas 

d'utiliser un maillage fin dans le cas d'un système complexe. Cette limitation vient 

du fait que la dimension du problème est relativement importante. Cette dimension 

dépend des éléments principaux suivants: 

1. nombre de modes du processus stochastique ~ ( t  ); 

2. nombre de machines et de types de pièces qui constituent le système de 

production; 

3. maillage ou grille des variables d'état (défini par les bornes supérieure et 

inférieure des variables d'état et les pas de discrétisation considérés) ; 

4. maillage ou grille de commande (défini par les différentes valeurs possibles des 

variables de commande) ; 

5. combinaisons des taux de production dans les différents modes où la 

production a lieu; 



6. combinaisons des taux de maintenance préventive dans les différents modes 

où la maintenance préventive a lieu. 

Lorsque les nombres de machines et de types de pièces augmentent. la dimension 

du problème d'optimisation croit très rapidement et rend de plus en plus difficile 

l'implantation des algorithmes numériques de résolution des équations d'H J B. 

Avec une telle croissance de la dimension, le problème de commande ne 

peut être résolu numériquement par l'approche classique que lorsqu'on considère 

un maillage grossier (c'est-à-dire à large pas de discrétisation) dont le stockage 

naexcede pas la mémoire RAM disponible. Étant donné que la précision des 

résultats numériques dépend du pas de discrétisation des variables. les lois de 

commande issues des approches numériques sont dites d'optimalité asymptotique. 

Nous demandons au lecteur de se référer au travaux de Boukas et Kenne (1997) et 

de Kushner et Dupuis (1992) pour plus de détails sur la convergence des solutions 

numériques vers les solutions optimales lorsque le pas de discrétisation diminue. 

Lorsque le nombre de variables impliquées est relativement faible (problème de 

faible dimension), les méthodes numériques peuvent être utilisées pour déterminer 

les lois de commande du FMS avec un maillage fin. 

L'approche que nous proposons dans cette thèse consiste à éviter d'aborder 

le problème de commande des FMS en considérant les équations d1H.JB telles que 

présentées par l'expression (2.19) mais piutôt de réduite la taille du problème avant 

d'appliquer les méthodes numériques. Les détails sur cet te alternat ive sont donnés 

au chapitre 3. 



2.5 Conclusion 

Dans ce chapitre, nous avons présenté une formulation générale du problème 

de planification des lois de commande des FMS dans le cas où les taux de 

transition dépendent de l'état et de la commande. Nous avons ressorti le fait que la 

fonction valeur associée au problème d'optimisation considéré satisfait les équations 

d'HJB. Nous avons établi que la dimension du problème de commande optimale 

stochastique augmente très rapidement avec les nombres de machines et de types 

de pièces impliqués. C'est cette augmentation qui rend difficile la résolution des 

équations d'HJB et qui est à l'origine de la motivation principale de cette recherche. 

Ce chapitre nous a permis de définir clairement le problème d'optimisation 

stochastique à résoudre dans cette thèse. De plus, nous avons défini les concepts 

couramment utilisés dans la théorie de commande stochastique et nous avons 

ressorti une difficulté rencontrée lorsqu'on aborde le problème selon le formalisme de 

Boukas (1987). Le chapitre suivant étend ce formalisme à la commande des systèmes 

de production plus larges en proposant une approche alternative qui réduit le niveau 

de complexité de résolution du problème. 



Chapitre 3 

Commande hiérarchisée 

3.1 Introduction 

La méthode de décomposition hiérarchisée est l'une des p , ~ s  importantes approches 

utilisées pour la commande des problèmes d'optimisation associés aux systèmes de 

production complexes. L'idée de cette méthode consiste: 

(i) à réduire la complexité du problème d'optimisation global en approximant ce 

dernier soit par un problème d'optimisation simple. soit par un ensemble de 

problèmes de commande de faible dimension; 

(ii) à résoudre le problème d'optimisation simple ou l'ensemble des problèmes de 

faible dimension issus de la réduction précédente; 

(iii) à construire une solution du problème d'optimisation initial à partir des 

solutions du  problème ou des problèmes d'optimisation simples. 

Il existe plusieurs méthodes qui peuvent ëtre utilisées pour réduire la complexité 

d'un problème de commande. Ces méthodes ne sont pas mutuellement exclusives 

et les plus importantes, présentées par Lehoczky et  al. (1991), sont les suivantes: 

1. méthode de décomposition du problème initial en plusieurs problèmes de faible 

dimension et avec un mécanisme de coordination approprié; 



2. méthode basée successivement sur une agrégation des ressources, sur une 

étude des problèmes de commande obtenus e t  enfin sur une désagrégation 

des ressources; 

3. méthode basée sur le remplacement des phénomènes rapides par leurs 

moyennes et autres moments si possible. 

La troisième méthode est généralement associée aux méthodes des perturbations 

singulières. L'approche résultante, dite hiérarchisée, est basée sur plusieurs échelles 

de temps. Ces échelles de temps sont associées aux phénomènes aléatoires ou 

déterministes caractérisés respectivement par un temps moyen d'interarrivée 

court (phénomènes rapides) et un temps moyen d'interarrivée relativement long 

(phénomènes lents). Ce concept, lorsqu'il est basé sur deux échelles. permet de 

développer des modèles de commande hiérarchisée à deux niveaux. Pour plus de 

détails sur les approches de commande hiérarchisée appliquées aux systèmes de 

production et sur l'importance de telles approches. nous demandons au lecteur de 

se référer aux travaux de Sethi et Zhang (1994) et aux références qui y sont relatives. 

Dans ce chapitre, nous considérons le problème d'optimisation relié à la 

planification des activités dans un FMS. Nous controlons simultanément les taux de 

production et de maintenance préventive des machines de manière à satisfaire le plus 

possible un taux de demande donné. Ce problème, dit global, est formulé comme 

un problème dynamique d'optimisation stochastique en présence d'une capacité de 

production décrite par une chaîne de Markov non homogène à états finis. 

En pratique, la planification des activités dans un système de production 

complexe se fait à plusieurs niveaux d'organisation, soit à cause de la complexité 

du problème d'optimisation ou à cause des considérations organisationnelles 



(structure hiérarchisée par exemple). Le problème d'optimisation considéré dans 

cette recherche peut ainsi se ramener à un probléme hiérarchisé de prise de décision 

associe aux niveau suivants : 

1. le niveau de planification de la production et de la maintenance préventive 

à long terme qui ignore les fluctuations journahères de la capacité de chaque 

machine: 

2. le niveau de production et de maintenance préventive des machines en temps 

réel qui utilise une stratégie basée sur une planification à long terme et qui 

intègre la nature stochastique du problème. 

En nous basant sur une approche de commande hiérarchisée associée à ces deux 

niveaux. nous nous proposons d'étendre la méthodologie de commande hiérarchisée, 

présentée par Lehoczky et al. (1991), Sethi et Zhang (1994) et Soner (1993). a u  cas 

des systèmes de production décrits par des chaînes de Markov non homogènes. 

Xous réduisons la complexité du problème de commande initial en considérant 

des échelles de temps différents reliés aux processus des pannes et réparations des 

machines et à l'actualisation du coût. Les phénomènes rapides sont remplacés par 

leurs moyennes et le problème d'optimisation obtenu est associé au niveau 1 de la 

hiérarchie proposée. A partir de la solution du problème du niveau 1, nous passons 

au niveau 2 de la hiérarchie en construisant une loi de commande qui approxime 

celle du problème stochastique initial (voir Kenne et Boukas (1997b)). 

Nous présentons dans ce chapitre une application de l'approche des 

perturbations singulières à la commande d'un FMS dont la capacité de production 

est décrite par une chaîne de Markov non homogène. Cette approche permet de 

réduire la complexité d u  problème de commande et de proposer une approximation 



de la loi de commande optimale en utilisant une méthode de commande hiérarchisée 

à deux niveaux. 

Le plan de ce chapitre est le suivant: dans la section 2, nous présentons 

l'approche des perturbations singulières et son application dans la commande des 

systèmes de production. Dans la section 3, nous formulons à nouveau le problème 

d'optimisation présenté au chapitre 2 dans le cas des machines identiques en 

parallèle qui produisent plusieurs types de pièces. La section 4 présente le problème 

déterministe que nous obtenons à partir du problème stochastique initial par 

application de la méthode des perturbations singulières. La section 5 présente le 

problème de décision markovien associé au problème limite. La section 6 présente 

la méthode heuristique de construction de la loi de commande stochastique du 

problème initial à partir de la solution du problème de décision markovien. 

3.2 Principe de la méthode des perturbations 

singulières 

3.2.1 Approche générale de commande hiérarchisée 

Les systèmes perturbés de façon singulière (singularly perturbed systems) et. plus 

précisément. les systèmes à plusieurs échelles de temps (multi- time scale systems) 

sont naturellement dus à la présence des phénomènes de hautes fréquences dans 

le modèle. Ces phénomènes sont généralement associés à une échelle de temps 

dite échelle de temps rapide (fast time scale) . Les phénomènes lents sont associés 

à l'échelle de temps lent. Le passage d'une échelle de temps à l'autre peut 

être interprété comme une perturbation. Ce type de perturbation étant brusque, 



comparée à une perturbation régulière, est dite singulière. L'existence des deux 

échelles de temps est générdement modélisée par un paramètre de perturbation 

singulière E et le système est dit perturbé de façon singulière. 

Dans la théorie de commande, phsieurs approches de modélisation et de 

commande. basées sur le concept des perturbations singulières, ont été présentées 

dans la littérature. Les échelles de temps considérées dans les différents modèles 

développés dans la littérature sont soit associées à la dynamique continue du système 

(constituée des équations différentielles d'état), soit à La dynamique discrète du 

système (constituée du processus stochastique décrivant les différents modes du 

système). Yous présentons aux sections 3.2.2 et 3.2.3 les références associées aux 

approches correspondant à ces modèles. 

3.2.2 Échelles de temps basées sur la dynamique continue 

Lorsque la dynamique d'un système est telle qu'il existe un faible couplage 

entre les différentes équations différentielles d'état, le modèle standard suivant est 

généralement utilisé dans la littérature 

où h ( - )  et g(-) sont des fonctions continûment différentiables par rapport à leurs 

arguments x, z ,  t .  Le scalaire e représente dans ce cas tous les paramètres à négliger 

(petits paramètres physiques. faibles constantes de temps. etc.). La variable d'état 

x(.) est associée au phénomène lent et la variable z ( - )  au phénomène rapide. 

En faisant tendre E vers zéro, les paramètres non significatifs sont négligés et 

nous obtenons ainsi une réduction de l'ordre du système d'équations différentielles 



(3.1)-(3.2). En résolvant g ( x ,  z ,  t )  = O et en introduisant la solution trouvée 

dans (3.1). nous obtenons un système d'ordre p comparé à l'ordre initial p + q. 

Cette approche de modélisation a été utilisée par KokotoviC et al. (1986) pour 

montrer qu'en négligeant l'inductance L d'un moteur à courant continu (c'est-à- 

dire en posant L = E ) ,  nous pouvons retrouver facilement le modèle du premier 

ordre couramment utilisé pour décrire la dynamique d'un tel moteur. Pour plus 

d'information sur ces types de réduction et leurs applications dans la commande 

des systèmes. nous demandons au lecteur de se référer aux travaux de Grammel 

(1996). de Kokotovii. et  al. (1986) et de Saksena et  al. (1984). 

D'après la modélisation du chapitre 2 et  les modèles dynamiques utilisés dans 

la littérature de commande des FMS, il ressort que les équations d'état ne sont 

pas caractérisées par la présence des faibles paramètres qui peuvent jouer le rôle 

de E comme dans les travaux de Grammel (1996), de KokotoviC et al. (1986) et 

de Saksena et al. (1984). Nous ne pouvons donc pas utiliser, dans le cadre de 

cette recherche, des modèles basés sur une association des échelles de temps à la 

d-ynarnique continue du système. Par contre, si nous associons la notion d'échelle de 

temps à la dynamique discrète du système en étude, nous obtenons des modèles qui 

sont des extensions de ceux présentés par Lehoczky et al. (1991). Sethi et Zhang 

(1994) et Soner (1993). Nous présentons dans ce chapitre une méthodologie de 

commande hiérarchisée qui est basée sur une extension des approches basées sur 

des chaînes de Markov homogènes au cas des systèmes décrits par des chaînes de 

Markov non homogènes. 



3.2.3 Échelles de temps basées sur la dynamique discrète 

L'application de la méthode de commande hiérarchisée, basée sur plusieurs échelles 

de temps. à la commande d'un FMS peut également se justifier par le fait que 

ce dernier est généralement caractérisé par divers changements de capacité de 

production. Les points suivants présentent les principales approches présentées 

dans la littérature et qui sont basées sur ces changements de capacité (dynamique 

discrète). 

1. Existence des machines lentes et rapides dans un systeme de production en 

tandem. L'exemple présenté par Bielecki ( 1 996) illustre bien cette approche. 

L'approche est basée sur Ie fait que les capacités de production d'un systeme 

constitué de deux machines en série peuvent être décrites par une chaîne de 

Yarkov dont les taux de transition sont consistants par rapport à l'échelle 

de temps de la machine rapide. Cette approche réduit considérablement la 

dimension du problème de commande optimale initial. 

2. La matrice des taux de transition Q(-) du processus stochastique qui décrit 

la dynamique des machines est telle qu'on peut la décomposer comme suit : 

où E est le paramètre de perturbation singulière, Q' (.) est la matrice des taux 

de transition des phénomènes lents et Q'(-) est celle des phénomènes rapides. 

Des détails sur cette approche peuvent être trouvés dans Sethi et Zhang (1994) 

et dans Sethi et al. (1994). 

3. Les transitions entre les modes du processus stochastique qui modélise la 

dynamique des pannes des machines sont rapides comparées à l'actualisation 



du coût. Ce processus de capacité du système change de mode avant toute 

déviation substantielle de e -PL par rapport à 1 (correspondant à e-Pt a t = 0). 

La méthode de commande hiérarchisée que nous présentons dans cette thèse 

est basée sur une telle approche. 

Pour plus d'information sur la troisième approche de modélisation, nous invitons 

le lecteur à se référer aux travaux de Kenne et Boukas (1997b), de Lehoczky et al. 

(1991) et de Sethi et Zhang (1994). Avec une telle approche, les changements de 

capacité se font plus rapidement que les changements associés aux phénomènes tels 

que l'actualisation du coût. 

Problème de commande 

stochastique initial 

Techniques des 
perturbations 
singulières 

Méthode heuristique de 
construction de la Ioi de 
commande stochastique 

1 Problème de commande 1 
/ déterministe équivalent 

Figure 3.1: Approche de commande hiérarchisée 

En d'autres termes, le taux suivant lequel La capacité du système de production 

change est plus grand que le taux d'actualisation du coût ou plus grand qu'un 

t a u  associé à toute autre échelle de temps. Pour une demande constante et un 

taux d'actualisation relativement faible, nous obtenons deux échelles de temps. 

L'approche de commande associée à ces deux échelles de temps est illustrée à la 



figure 3.1. Cette figure montre qu'en appliquant la méthode des perturbations 

singulières au problème de commande stochastique initial, nous pouvons obtenir 

un problème de commande déterministe équivalent. L'approche de cette méthode 

consiste à remplacer le phénomène rapide par ses valeurs moyennes lorsque les 

phénomènes lents et rapides sont associés a deux échelles de temps différentes. Le 

problème de commande déterministe obtenu. caractérisé par une faible dimension, 

est relativement plus facile à résoudre et est associé au niveau 1 de la hiérarchie. ..\ 

partir de la solution de ce dernier problème, nous nous proposons d'approximer la 

solution du problème de commande initial à l'aide d'une méthode heuristique. La 

loi de commande issue de cette méthode heuristique intègre les fluctuations réelles 

de production et correspond à une planification à court terme ou au niveau 2 de la 

hiérarchie proposée. 

Dans le modèle que nous présentons, le processus de capacité du système 

dépend des àges des machines et de la commande. Nous présentons ci-aprés la 

formulation du problème d'optimisation du FMS perturbé de façon singulière par 

la présence de deux échelles de temps. 

3.3 Formulation du problème 

Dans cette section, nous présentons une formulation explicite du problème de 

planification des taux de production et de maintenance préventive d'un FMS soumis 

à des processus qui appartiennent à deux échelles de temps. La méthode des 

perturbations singulières est utilisée pour réduire la complexité du problème de 

commande. Une approche hiérarchisée est alors proposée pour résoudre le problème 

complexe de commande posé. 



Le b i t  que les taux de changement des modes des machines sont en général plus 

grands que le taux d'actualisation du coût nous permet d'appliquer une méthode 

basée sur deux échelles de temps. Nous supposons (sans perdre de vue la généralité 

de l'approche) un taux de demande constant. Avec cette hypothèse, l'existence 

d'un paramètre de perturbation E et la méthodologie présentée à la figure 3.1 nous 

permet tent de présenter une méthode d'approximation de la solution du problème 

de commande optimale initial. 

Nous considérons un système constitué de m machines identiques qui 

produisent n types de pièces. Comme au chapitre précédent. le mode opérationnel 

d'une machine i peut être décrit par un processus stochastique & ( t )  (1 4 i 5 m). 

Rappelons qu'une telle machine est soit opérationnelle ( c i ( t )  = 1 ) , en réparation 

( C ( t )  = 2)  ou en maintenance préventive ( c i ( [ )  = 3) .  Pour chaque machine, nous 

avons alors un processus ci(t  ) tel que C,(t) E Bi = { 1.2.3). Nous pouvons alors 

décrire le mode du système global par le vecteur C ( t )  = (ci ( t  ). - - . . ;,(t ) )' à valeur 

dans 17 = B1 x - - -  x O,. 

Soient a = (a l ,  - - - : a,)' et w = (wl  , - . - , u,)' les vecteurs des âges et des taux 

d'envoi en entretien préventif des machines respectivement. Le processus < ( t  ) est 

modélisé par une chaîne de Markov à états finis ayant une matrice de taux de 

transition Q(. ) qui dépend de o et de w.  Cette matrice est donnée par: 

ou M = card(B). Les taux de transition AaB( . )  sont obtenus à partir d'une 

combinaison des taux de transition des processus dépendants Ci( t ) ,  i = 1,  . . , m, 

en utilisant la méthode présentée à la section 2.2.1.2. Les probabilités de transition 



de ces processus sont données par l'expression (2.9). 

Nous allons considérer pour la suite du développement deux échelles de temps. 

Le paramètre de perturbation singulière c: correspondant est associé à l'écart entre 

le temps moyen d'interarrivée des phénomènes rapides (pannes/réparation ou envoi 

en entretien préventif/maintenance des machines) et celui des phénomènes lents 

(actualisation du coût). Le point suivant se déduit de cette considération: 

0 Si X a o ( . )  est un taux de transition associé au processus rapide. alors e A a D ( . )  et 

p ont le même ordre de grandeur. 11 existe donc un taux de transition qao(-) 

du même processus dans l'échelle de temps des phénomènes lents (associée à 

I'actualisation du coût) tel que x,~(.) = E-'~,~(-). 

Nous pouvons alors décrire la capacité du système par un processus stochastique 

~ ' ( t  ) associé à une matrice des taux de transition QL(. ) définie comme suit: 

(autrement dit QL(-) = tQ(-)). L'approche des perturbations singulières est 

basée sur des probabilités limites du processus rapide. Ces probabilités permettent 

de remplacer la capacité stochastique du système par une capacité moyenne et 

d'obtenir ainsi un problème de commande déterministe équivalent. 

Si nous désignons par a~ l'âge moyen des machines et  par ij le taux de 

maintenance préventive moyen des machines et remplaçons respectivement ai et wi? 

i = 1, - - - . m, par a~ et W dans le modèle, nous obtenons une matrice des taux de 

transition constante Q ( a M ,  cj). La chaine de Markov associée à une telle matrice est 

donc homogène, à états finis, et admet des probabilités limites v = (pl ,  Q, - - . , un# 



telles que: 

z= 1 

Pour plus dïnformation relative à l'existence de telles probabilités, nous demandons 

au lecteur de se référer aux travaux de Ross (2993). Notons que les probabilités 

limites. issues de l'équation (3 .5) .  sont indépendantes de c. 

Remarque 3.1 Sur un horizon infini. l'âge moyen a~ est indépendant de la 

commande. Son taux de variation dépend uniquement du taux de demande des 

produits finis. Notons que le taux de demande correspond, dans ce cas, au taux de 

production moyen des machines. L'âge moyen des machines peut être approximé à 

partir du developpement qui suit. 

L a  variation de l'âge de chaque machine i: peut être décrite par l'équation 

différentielle suivante: 

n 

où k,, sont des constantes données. Ces constantes sont utilisées dans le modèle 

de 1-exemple du système de production constitué de deux machines qui produisent 

deux types de pièce, présenté au chapitre 2. La  variation de l'âge moyen a~ est 

donnée par: 

Comme les machines sont identiques, nous avons kij = 5, quelque soit la machine 

i. Nous avons dans ce cas: 



L'iige moyen des machines a un instant t est alors donné par la relation suivante: 

avec CzL U i j ( t )  d j  (voir remarque 3.1) .  La valeur moyenne de l'âge moyen des 

machines est alors donnée par: 

où Tm est le temps moyen pendant lequel les machines sont opérationnelles. En 

utilisant les équations (3.9) et (3.10) nous obtenons: 

En notant que E [ J ~  T ~ T ]  = E [ T ~ ~ ] ~ .  nous avons: 

avec 

Pour X 1 3 ( . )  = L' et X12 = ko + k J i M ,  l'équation (3.12) devient: 

Pour un choix approprié de kj, ko et ka, nous utiliserons l'équation (3.13) au chapitre 

4 pour determiner la valeur de a~ appartenant au domaine de définition choisi. 

Pour simplifier le modèle et adopter la notation de Sethi et Zhang (1994). 

nous définissons un processus { Z L ( t ) ,  t 2 0) à états finis correspondant au nombre 

de machines opérationnelles au temps t et ayant des valeurs dans E ={O, 1, , m ). 



L'utilisation de ce nouveau processus constitue déja un premier niveau d'aggrégation 

car ce processus n'est pas équivalent au  processus jt(t ) .  Nous reformulons ci-après 

le problème original de  commande optimale en utilisant le processus Z C ( t ) .  L'âge 

de chaque machine et  son taux d'envoi en entretien préventif seront remplacés 

respectivement par a, et ;i à la section 3.4.2 consacrée au problème de commande 

limite. 

L'ensemble des commandes admissibles K ( z ) ,  avec z = ZC ( t  ). est donné par: 

ou 7, est le t,emps de traitement du produit de type j sur chaque machine et w,, 

est le taux d'envoi en entretien préventif maximal des machines. 

Soient x = (xl, - - - . z,)' et a = (ai, - - , a,)' les variables d'état du système 

correspondant respectivement aux vecteurs de stocks e t  d'âges des machines. Ces 

variables sont décrites par le système d'équations différentielles suivant: 

oit k,, sont des constantes telles qu'à Léquation ( 3 . 6 ) .  Notons que x, a et d désignent 

respectivement le vecteur des stocks, d'âges des machines et des taux de demande 

des produits finis. 

Soit G ( a .  a, x, u, w )  le coût instantané défini comme suit: 

ou ci et c- sont respectivement des coûts encourus par unité de pièce 

produite dans le cas d'inventaire et  dans le cas d e  manque de pièces. De plus, 



x+ = (max(0. x i ) .  . . . rnax(0, x,))', x- = (max(-xi, O ) ,  , max(-x,, O))'. Les 

constantes c" permettent de pénaliser le séjour des machines dans un mode a. 

Soit 5 = (x. a) et ü = ( u . w ) .  La fonction G ( a , x . u )  satisfait les hypothèses 

suivantes: 

(A3.2) : JG(û. 2, ü)-G(û.  y, Ü)( 5 C(1 + I y J c r ) ) I - y /  sz I x - Y ~  5 b 

pour des constantes C. cr ,  b 2 O appropriées. 

Remarque 3.2 Les hypothèses (A3.1) et (A3.2) montrent que le coût instantané 

G(a .  x. 6 )  est convexe. positif e t  borné à droite par rapport à x et admet un taux de 

croissance p~l~ynomial. Ces hypothèses sont généralement utilisées pour établir les 

conditions d'optimalité du problème de commande posé (voir Lou et Sethi (1994) 

et Sethi et Zhang (1994)). 

L'objectif du problème de commande est de contrôler le vecteur des taux de 

production u(t ) et celui des taux d'envoi des machines en entretien préventif w ( t )  

de façon à minimiser le coût moyen actualisé donné par: 

a ( O )  = a, ZC(0) = a!) 

sous les contraintes données par le système d'équations (3.15) - (3.16). 

Soit vC(cr, 5) le scalaire désignant le minimum du coût actualisé, c'est-à-dire: 

v C ( a , b )  = inf JC(a , t ,ü )  Va! E E (3.19) 
' Ü c K ( ~ )  

Le scalaire uL(a. 5) est appelé fonction valeur du problème d'optimisation posé. 

Dans les sections suivantes, nous présentons quelques propriétés élémentaires 

de la fonction valeur u t ( . )  et la méthodologie d'obtention du problème limite. 



3.4 Conditions d'optimalité 

3.4.1 Problème stochastique initial 

Dans cette section. nous présentons les propriétés de la fonction valeur uL(cr, x) du 

problème de commande stochastique initial perturbé par le paramètre E .  Si Q I C ( - )  

est la matrice des taux de transition de Z C ( t ) ,  nous avons: 

où (.) désigne (a, w ). 

Yous montrons que uE(cr, 2) est solution des équations d7HJB suivantes: 

où f (.) = (U - d,  x;=l k j ~ l j 7 .  , x;=L kjumj)' et v&(a,  2) est le gradient de  vE(.)  

par rapport à x. Comme la différentiabilité de vL(. ) n'est pas en  général garantie. 

nous utilisons la méthode des solutions de viscosité "viscosity solution", telle que 

dans Fleming et  Soner (1992), dans Kenne et  Boukas (1997b) et dans Lehoczky 

et al. (1991) pour établir les propriétés d'une telle fonction. Nous reprenons dans 

cette section les définitions des solutions de type viscosité pour bien illustrer leurs 

utilisations dans cette thèse. 

Soit une classe de solutions du système d'équations aux dérivées partielles 

(3.20) de la forme: 

F ( I ,  vC(@, s),  v&(& b)) = 0 



où C c En posant 

F ( . )  = pcC(a, 3) - min {f ( . )v&(a,  5 )  + G ( a .  5. ii) 
ÜG K(Q)  

nous pouvons noter que les équations (3.20) et (3.21) sont équivalentes. 

L'équation (3.2 1) est une combinaison des deux relations suivantes: 

où po E IR"-m tel que DzlL(., 50) = po E IRn'". Pour obtenir les relations (3.22) et 

(3.23). nous avons supposé que la fonction vC( . )  est différentiable au point Io E L. 

ce qui nous permet d'écrire : 

ut(.. X )  = ve( . ,  Io) + po - (2 - ta) + 0(l5 - Zol) (3.24) 

ou a - b est le produit scalaire euclidien de a et b et O ( * )  est tel que 

Les équations (3.22) et (3.23) sont équivalentes aux relations utilisées dans les 

définitions des ensembles D (. , x) et D -v  (. , 5 )  donnés par les conditions (a) et 

(b) de la définition 2.4. 

NOUS avons noté au chapitre 2 que la fonction valeur d'un tel problème est 

continue (voir théorème 2.3) et continûment différentiable, mais en considérant 

les équations (3.22) e t  (3.23), la dérivée de v L ( - )  n'existe pas toujours pour tout 

so E IRnCm. Il est donc nécessaire d'étendre la définition 2.4 à D+u(-,  5 )  et à 



D - u ( - .  x) qui sont des ensembles fermés et convexes. Pour la notation et la forme 

des systèmes d'équations aux dérivées partielles considérées dans ce chapitre, nous 

avons la définition suivante: 

Définition 3.1 Une solution de  type viscosité de F ( 5 .  vc(4. x), D v L ( f l ,  x)) = O 

dans t est une fonction ut($, I) qui satisfait: 

. ( j ,  x ) )  O V I  E L, V r  E D-v( . ,  3, j E & (3.26) 

Ce concept de solution de type viscosité d'une équation sera utilisé ultérieurement 

pour montrer le théorème suivant: 

Théorème 3.1 Si v L ( a l  5 )  satisfait la condition de Lipschitz pour chaque a E E ,  

alors il existe une  constante C telle que: 

V a , ,  E E e t  x # y satisfaisant 12 - y1 5 b ,  ou  ck et 6 sont les m ê m e s  q u ' a u  

hypothèses (A3.1) et (A3.2). De plus, la fonction valeur u C ( û ,  x), a E E, est 

l ' z m i p e  solution de uiscosité de l'équation de la programmation dynamique (3.20) 

si u C ( . )  est dzgérentiable. Au point de non-dzfférentiabilité, nous avons: 

1 
p C ( a .  5) - min {f(*) p + ~ ( c * ,  X, Ü) + - x &(.)v'(D~ 5))s O (3.28) 

U E K ( ~ )  &O 

pour tout p E 6'vL(a!, 5 )  

Preuve: Avec G(.) 2 O et vt(.) 2 O, nous pouvons choisir ü ( t )  = O et utiliser 

l'hypothèse (A3.1) pour obtenir: 



Dans un mode a E E, considérons des conditions initiales x # y E IRmCn telles que 

II - y1 < b .  Pour 9 supérieur à zéro donné, soit une commande ii telle que: 

Jf ( a ,  5 ,  ü )  <_ vL(a1 5 )  + TJ (3.30) 

Si ii est admissible pour la condition initiale (a, y),  alors l'équation (3.30) peut être 

utilisée pour obtenir: 

Avec l'hypothèse (A3.2), nous pouvons écrire: 

En observant que l i j ( t )  - x ( t ) l  = II - y1 et que Io e-Ptdt  = p - ' ,  nous obtenons: 

D'après la relation (3.30), nous obtenons : 

En combinant cette dernière expression avec (3.29), nous obtenons: 

pour une constante C2 donnée. Nous complétons ainsi la preuve que vL(a, -) satisfait 

la condition de Lipschitz. Pour compléter la preuve de (3.2?'), nous devons d'abord 



montrer que (3 .28)  est vraie. En effet. le fait que v L ( a l  .) satisfait la condition de 

Lipschitz permet de déduire ( 3 . 2 8 )  du principe de la programmation dynamique 

(voir Flemming et al. (1987)). 

Si xo est un point où vt(a, .) est différentiable pour chaque a E E ,  

alors l'équation (3.20) est vérifiée. Nous avons supposé que x0 est un point de 

différentiabilité pour v L ( û ,  x). L'ensemble des points xi> est dense à cause de la 

continuité de v L ( a .  x). Notons ici que l'irréductibilité de Q(- )  implique que son 

noyau est un sous-espace généré par le vecteur 1 = (1, 1, . 1)' E IRm". Pour 

chaque a. 3 E &. on peut trouver une constante Cj telle que: 

V50 E C (3.32) 

En combinant l'équation (3 .32)  avec (3 .29)  et ( 3 . 3 1 ) ,  nous obtenons l'inégalité (3 .27)  

pour un choix approprié de C. 0 

En utiiisant le concept de solution de type viscosité de la programmation 

dynamique. nous pouvons établir que vC(a.  x)  est une solution de type viscosité 

de (3.20).  En effet, uC(<rT 5 )  est différentiable dans la direction x. pour a E E. si 

  a. 2) et D - v L ( a ,  5 )  sont tous égaux à un singleton. Dans ce cas. ce singleton 

correspond au gradient u&(a, 5) .  De plus, avec l'existence de la loi de commande 

optimale (voir le théorème de vérification établi au chapitre 2 ) ,  D'uC(al 5 )  est un 

ensemble vide, excepté au point 2 où u C ( )  est différentiable et D -vC(a, 5 )  coïncide 

avec l'ensemble de sous-différentiels de u L ( - )  tel que dans la définition 2.5.  11 se 

déduit du théorème 3.1 que u C ( . )  est la solution de type viscosité de ( 3 . 2 0 ) .  



3.4.2 Problème de commande limite 

Yous formulons dans cette section le problème déterministe équivalent associé 

au problème de commande stochastique initial présenté à la section précédente. 

Rappelons ici qu'en supposant l'existence de In dérivée de la fonction valeur, les 

conditions d'optimalité de notre problème d'optimisation associées au processus 

Z Z ( t )  sont les suivantes: 

1 5, = min { f  ( . ) v ~ ( a ,  2) + ~ ( < r ,  2, ü) + - c & ( * i ~ ' ( ~ ~  x)) (3.33) 
ÜE K ( a )  f3=0 

En remplaçant respectivement l'âge et le taux de maintenance préventive dans le 

modèle par a, et par 2 (c'est-à-dire que 5 = (r, a,) E EtntL et ü = (u. 3) E IR"-') 

et en multipliant les deux membres de l'équation (3.33)' au mode a = i. par pi et 

en sommant sur tous les modes de Z L ( t ) ,  nous obtenons: 

où p,  est la probabilité limite d'être au mode i pour le processus Zt(t)  et ü' 

représente la loi de commande u au mode i. En observant que les probabilités 

limites du processus cL(t)  sont reliées à la matrice des taux de transition Q'(.), 

nous avons: 

La matrice Q I ( - )  étant une matrice stochastique, nous avons p ( - ) Q f ( - )  = 0- 

L'équation (3.34) devient alors: 

pvC(ilb) = min { ,ui (IL' - d)v& (i, 5 )  
G c K ( ~ )  i=o 



Définissons une loi de commande déterministe U ( t )  dans l'espace de commande A' 

donné par: 

où ut = (u;. - - - . u;I. - - - , uk) et y p  désignent respectivement le vecteur des taux de 

production au mode i et le temps de traitement d u  produit p. Notons ici que nous 

avons considéré que est un paramètre fixé (autrement dit 2' = 2' = - . - .  - 

-4 partir des expressions (3.36) et (3.37). définissons le problème de commande 

optimale, P O .  suivant: 

m 

min JO(*. u ( - ) )  = E { /r e-"< p i ~ ( i ,  % ( t ) .  i i 2 ( t ) ) d t  / 
O i = O  

oii x = (2. a M  j E IR"". Les équations d'état sont les suivantes: 

La fonction valeur du problème P O  est donnée par: 

~ ( x )  = inf ~ ' ( 5 ,  hl(.)) 
o(.)€Ao 

Lorsque e tend vers O, alors vL (a, 2) tend vers u (Z), c'est-à-dire: 

v (2) = lim vL(a , x) 
e-O 

La fonction valeur v ( . ) , indépendante de a, est celle du problème déterministe limite 

associé a u  problème de commande stochastique initial. 



La structure de l'équation (3.36) nous suggère une formulation plus simple du 

problème limite. En effet. en utilisant l'hypothèse de linéarité de f (. ) par rapport à 

u. si nous remplaqons le nombre de machines opérationnelles Z C ( t )  (ou i E E), par 

un nombre moyen de machines donné par : 

et posons 

nous pouvons écrire encore l'équation (3.36) comme suit: 

Remarque 3.3 Le taux de maintenance préventive moyen 2 est 

(3.42) 

choisi comme 

paramètre et est supposé connu lors de la recherche du taux de production optimal. 

De plus. la fonction coût instantané que nous avons choisie est indépendante du 

taux de production u (voir équation (3.17)). Par abus de notation, nous désignons 

ce coût par G ( a .  5. W )  pour tout a E E dans le reste du développement. 

.Avec les remarques 3.1 et 3.3, l'équation (3.42) peut s'écrire comme suit: 

Par identification, nous notons que l'équation (3.43) correspond aux conditions 

d'optimalité de type H JB d'un problème déterministe équivalent à P O .  Ce problème 

- O 
dénoté P se formule comme suit: 

00 

min jo(5, a ( - ) )  = / ë P t G ( 5 ( t ) ,  ~ ) d t  
O 



sous les équations d'état suivantes: 

avec une fonction vaieur donnée par: 

ü ( 5 )  = inf j0(5, U ( . ) )  
GEAO 

- O 
ou A est l'ensemble des lois de commande déterministe défini comme suit: 

ou O = ( ü I 1  - - - .  6,). En utilisant le théorème 3.1. il en résulte que ü(x) est une 

solution de type viscosité de l'équation (3.43). Le théorème 3.2 ci-après établit que 

- O 
les formulations P O  et P sont équivalentes. 

Théorème 3.2 ( i )  v ( 5 )  = Ü(5) 

(ii) si ( = (a0(-), - . , um(- ) )E  A' est optimal pour PO: alors us(-) = 
- O 

U t ( )  est optimal pour P . 

(iii) si u' E A' est optimal p u r  P O ,  alors il ezis te U * ( - )  = (uo(-) .  . - . um(-))  E A' 

pi satisjait: 

De plus, u'(-) est optimal pour P O .  



Preuve: La  preuve de ce théorème est présentée dans Sethi et Zhang (1994). O 

11 est intéressant de remarquer que le problème de commande déterministe 

limite obtenu ne dépend pas directement de Q'(+ Il dépend seulement de k ( a M ,  W )  

qui est le nombre moyen de machines opérationnelles correspondant à a, et 3 

donnés. Comme 2 est une variable de commande du problème d'optimisation 

original considéré. nous devons trouver la valeur optimale de w (. ) et celle du taux de 

production optimale u'(-) associé. Pour ce faire, nous devons résoudre le problème 

d'optimisation suivant: 

p.(x) = 
1 

min { - m i ~  [(û - d)vz(*)] +-(C k jd j )uaM (x) 
o<W~kwmoI U E K ( k ( . ) )  rn j = l  

Cette structure rend le problème limite facile à résoudre car il est caractérisé par 

une dimension réduite comparée au problème stochastique initial. 

En résolvant l'équation (3.50), nous obtenons la loi de rétroaction u ( x )  du 

problème limite et la fonction valeur v(x) associée. Notons que la solution obtenue 

est indépendante des âges des machines (le vecteur des âges a a été remplace par 

l'âge moyen a,). En nous basant sur la structure de la loi de commande optimale 

du problème original, telle que présentée aux annexes A et C ou dans les travaux 

de Boukas (voir Boukas et Haurie (1990) par exemple), nous décrivons ci-après une 

méthode heuristique qui fait dépendre la loi de commande du problème limite des 

âges des machines. 

1. Définir un âge moyen équivalent 

Considérons un âge moyen équivalent à l'âge d'une machine dans le cas d'un 

système constitué d'une seule machine. Soit a, cet âge. 



2. Définir un voisinage de l'âge moyen équivalent 

Définir à partir de la valeur de l'âge moyen un voisinage à partir duquel une 

machine est supposée jeune ou vieille. Soit V ce voisinage: 

pour une constante 6 donnée. 

3. Taux de maintenance préventive 

(a) Si l'âge moyen équivalent n'atteint pas le voisinage V (c'est-à-dire aaW < 

a . ~  - 6 ) .  alors le taux de maintenance préventive est nul. 

(b) Si l'âge moyen équivalent est dans le voisinage V (c'est-a-dire ab, - 6 5 

iiw 5 a~ + 6 ) ,  alors assigner le taux d e  maintenance préventive du 

problème limite à la machine équivalente en considérant le fait que la 

maintenance préventive ne doit avoir lieu que lorsque le niveau de stock 

est significatif. 

( c )  Si l'âge moyen équivalent dépasse le voisinage V (c'est-à-dire aM > 

a.91 + 6). alors assigner le taux maximal de maintenance préventive a la 

machine équivalente pour des valeurs non nulles des taux de maintenance 

préventive du problème limite. 

4. Taux de production 

(a) Si l'âge moyen équivalent n'atteint pas le voisinage V (c'est-à-dire 6~ < 

a~ - 6)' alors la production doit se faire aux taux de demande des 

différents produits. 



(b) Si l'âge moyen équivalent est dans le voisinage V (c'est-à-dire aM - 6 5 

a.+, 5 a M  + 6 )  ou dépasse le voisinage V (c'est-à-dire a~ > aM + 6), alors 

on doit bâtir un stock avec un niveau de stock qui croit avec l'âge moyen 

de la machine équivalente (c'est-à-dire lorsque a, augmente). 

Le lien entre l'âge de la machine équivalente et les âges de machine se fait 

en comparant le maximum des âges des machines avec l'âge de cette machine 

équivalente. Nous établissons un tel lien au chapitre 4 en appliquant la méthode 

heuristique proposée sur deux exemples de systèmes de production. Sous présentons 

ci-après l'approche numérique de résolution des équations d ' W B  déterministes 

associées au problème limite. 

3.5 Méthodes numériques 

L'idée de l'approche basée sur les méthodes numériques consiste à utiliser les 

différences finies pour approximer les dérivées partielles de la fonction valeur v(x) à 

h h l'intérieur des maillages CI et GU associés respectivement au vecteur d'état 2. au 

vecteur de commande u et au vecteur des pas de discrétisation h.  Cette approche 

va nous permettre de transformer le problème de commande déterministe associé 

à (3.50) en un problème de décision markovien. Pour plus de détails concernant 

une telle transformation, nous invitons le lecteur à se référer aux travaux de Boukas 

(1987) et (1997). Nous utilisons par la suite la méthode d'itérations de la commande 

pour résoudre le problème d'optimisation de décision markovien tel que développé 

par Boukas (1987) et (1997). 

h h Le problème d'optimisation construit dans le maillage GX x Gu a la forme 



suivante: 

Les expressions de Q h. Ph(x, a,, x'. u )  et Pk(x, a,, am. u )  seront données au 

chapitre 4 reservé à l'expérimentation des méthodes numériques et de l'approche de 

commande proposée. La technique d'approximation utilisée nous a ainsi permis de 

transformer le problème de commande déterministe à résoudre en un problème 

de décision markovien avec espaces d'état et de commande finis. Ce problème 

d'optimisation approximé satisfait toutes les hypothèses et les propriétés relatives à 

l'existence et à l'unicité de la solution optimale. Pour obtenir une approximation de 

cette solution. nous allons utiliser la technique d'itérations de la commande. i Y ous 

présentons ci-après l'algorithme de la technique d'itérations de la commande. 

Pour une politique Y, soient deux opérateurs Tc et T*, appliqués sur v h ( - )  et 

qui sont définis comme suit: 

T4(Vh(%))  = min mi% {T. (vh (5 ) ) )  
O ~ i ~ k w - ,  

(3.54) 
?&Gu 

Pour un vecteur h donné, l'algorithme d'itération de la commande (policy iteration) 

est le suivant: 



h 1. Initialisation: Choisir p E IRC, poser k := 1 et  u i ( x )  := O, V x  E GI. 

h Supposer une commande stationnaire ük E Gu. 

h 2. Évaluation de la commande: Avec la commande stationnaire uk E Gu et 

O 5 2% ku-, calculer la fonction valeur correspondante v h ( - )  en utilisant 

l'équation (3.53). 

3. Raffinement de la commande: Obtenir une nouvelle commande 

stationnaire uk+l E GE, O 5 G*+' 5 kw,, en utilisant 17équation (3.54). 

4. Test de la convergence: 

- 
c := min { v i ( j . )  - uh1(5)) 

X E C ~  

Si !cm,, - c-l 5 7, alors arrêter l'exécution et  poser ù' = u'; sinon 

incrémenter k (c'est-à-dire k = k + 1) et retourner à l'étape 2. 

L'utilisation de cet algorithme donne une approximation de la solution au problème 

de décision markovien que nous avons formulé précédemment. Cette solution 

approximée converge vers la solution optimale pour des faibles valeurs de  h (voir 

Bertsekas (1987)). Sous présentons à la section suivante une approche heuristique de 

construction de la loi de rétroaction stochastique ü(a, 5 )  du problème de commande 

initial pour tout a f E. 



3.6 Construction de la loi de commande 

stochastique 

Dans cette section. nous présentons une méthode heuristique de construction de 

la loi de  commande du problème stochastique initial à partir de la solution du 

problème de commande limite. L'approche proposée étend les méthodes classiques 

(basées sur des chaînes de Markov homogènes) de construction de telles lois au cas 

ou la dynamique des modes d'une machine dépend de son àge. Le lecteur est invité 

à se référer aux travaux de Lehoczky et  al. (1991) et de Sethi et  Zhang (1994), 

dans lesquels la construction du taux de production du problème de commande 

initial. à partir du taux de production optimal du problème limite. est décrite par 

le théorème suivant: 

Théorème 3.3 Si fi'(.) est le taux de production optimal d u  problème limite 

relatzj Q une chaine de Markov homogène, nous pouvons approzirner le taux 

de production optimal relatif au problème d'optimisation stochastique initial par 

l equation suivante: 

C* ( -1  
u( - . a )  = a 7  a E E - {O) (3.55) 

où a est le nombre de machines opérationnelles e t  k t  est le nombre moyen  de 

machines opérationnelles pour ce formalisme. Les a machines étant identiques. le 

taux de production de chacune d'elle est donné par: 

Preuve: La preuve de ce théorème est présentée par Lehoczky et al. (1991). 

Ce théorème stipule que le taux de production du système doit être distribué 

uniformément aux différentes machines opérationnelles (voir équation (3.56)). Ce 



théorème ne peut pas être appliqué directement dans cette recherche car le modèle 

proposé est basé sur une dynamique des pannes de machine qui dépend de l'âge. 

Il est évident que les trajectoires des âges des machines, initialement identiques, 

deviennent différentes au cours du temps. Ces machines ne sont donc plus identiques. 

Le théorème 3.3 ne s'applique donc plus directement. 

Pour construire la loi de commande du problème d'optimisation initial, nous 

allons nous baser sur les caractéristiques des lois de  commande stochastiques des 

systèmes de faible dimension modélisés par des chaînes de Markov non homogènes 

telles que dans cette recherche. Nous avons présenté à l'annexe A la loi de 

rétroaction stochastique obtenue à l'aide d'une résolution numérique directe du 

système d'équations (3.20) pour m = 2 et n = 1. La capacité des systèmes de 

production considérés dans cette thèse est teile que l'ensemble des rn machines est 

requis pour satisfaire la demande. -4vec cette considération. la loi de commande 

issue de la méthode directe de résolution des équations d'HJB est représentée par 

les figures A.1 à -4.10. Les points suivants caractérisent une telle loi de commande: 

1. Lorsque le stock est négatif (c'est-à-dire lorsque x ( t )  c O ) ,  les taux de 

production des machines sont fixés à leurs valeurs maximales et les taux 

de maintenance préventive sont fixés à zero (car on ne doit pas envisager 

d'entretien préventif dans cette situation). 

2. Lorsque le stock est nul (c'est-à-dire quand x ( t  ) = O ) ,  le taux de production 

global du  FMS est soit égal au taux de demande, soit supérieur au taux de 

demande. Il est égal au taux de demande lorsque les machines sont neuves 

(faibles valeurs des âges). Pour des grandes valeurs des âges, les machines sont 

\leilles et  la nécessité de stocker des pièces s'impose. Les taux de maintenance 



préventive restent fixés à zéro. 

3. Lorsque le stock est positif e t  que les âges des machines sont différents, nous 

devons exploiter les vieilles machines selon un taux de production maximal. 

Par contre. nous remarquons que le domaine de maintenance préventive se 

rétrécit lorsque les machines deviennent de plus en plus vieilles et que le stock 

demeure non significatif. 

De ces observations, issues de la méthode directe de résolution des équations 

d'HJB dans ce cas simple, nous présentons ci-après la méthode heuristique de 

construction de la loi de commande sous-optimale du problème stochastique initial. 

Cette méthode heuristique est constituée des étapes 1, 2 et 3 suivantes: 

Étape 1: Soit une partition finie constituée de g + 1 ensembles Co, Cl, - - - . C, 
correspondant aux classes d'âges d'une machine. La dynamique de l'âge d'une 

telle machine est telle que son âge se déplace de C, à Cl+ 1 et de Cc,  (k # O) 

à Co après chaque intervention sur la machine (réparation ou maintenance 

préventive). Cette partition est définie comme suit: 

où h ={ai : ai = (i - 1) ha}, i = 1, , Na, pour Na et ha donnés. Notons que 

i l  est un maillage a une dimension généré par Na et ha. La figure 3 -2 illustre un 

exemple de partition pour q = 1 (partition à deux classes). Cette illustration 

correspond à un système de deux machines. La combinaison des classes Ci ,  

i = 0, 1. des deux machines donne les quatre cases (1), (II), (III) et (IV) où 

a,, désigne l'âge maximal de chaque machine. Le choix de la partition étant 



Figure 3.2 : Différentes classes d'âges des machines opérationnelles 

arbitraire. nous allons montrer plus loin l'effet d'une telle partition sur la loi 

de commande heuristique obtenue. 

Étape 2: .i chaque instant, regrouper les machines opérationnelles en classes 

et appliquer le théorème 3.3 (équations (3.55) et (3.56)) lorsque les machines 

appartiennent à une même classe. Dans le cas de la figure 3.2. les cases (1) 

et (III) correspondent aux cas où les machines appartiennent à une même 

classe. De telles machines sont supposées identiques. Le taux de maintenance 

préventive de chacune des machines opérationnelles est donné dans ce cas par: 

oii a désigne toujours le nombre de machines opérationnelles et w i ( 5 ,  a)) le 

taux de maintenance préventive de Ia machine i au mode a. L'équation (3.58) 

nous permet de définir le taux de maintenance préventive du système à partir 



du  taux de maintenance préventive du problème limite. L%quation (3.59) 

stipule que le taux de maintenance préventive du système doit être distribué 

uniformément aux a machines opérationnelles (a 2 1). 

Étape 3: Exploiter les machines plus âgées au maximum et assigner des 

valeurs a u  taux de production des autres machines telle que la somme 

des taux de production des machines opérationnelles soit égale au taux de 

production du système (défini par la solution du problème limite). Les taux 

de production u(cr,I) et de maintenance préventive w ( a ,  x) du FMS sont 

respectivement donnés par (3.55) et  (3.58). Si x ( t )  > O, 6(.) # O ou w(.) # O, 

alors nous pouvons distribuer u(a,  x) et w(a, P), a E &, aux machines 

opérationnelles en suivant les étapes ci-après: 

( i )  Pour chaque mode a du système, classifier l'ensemble des machines 

opérationnelles par rapport à un ordre décroissant des iiges (autrement 

dit. commencer par la machine la plus vieille. suivie de la moins vieille. 

ainsi de suite jusqu'à la plus jeune). Soit O cet ensemble ordonné de 

machines. 

(ii Pour le taux de production? assigner le taux maximal de production 

à la plus vieille des machines (qui correspond au premier élément de 

l'ensemble 0). Assigner par la suite et de façon séquentielle une valeur 

égale au  taux maximal de production ou au taux de demande aux taux 

de production des autres machines, en suivant l'ordre établi dans 

jusqu'à ce que la somme des t a u  assignés atteigne u(a, 5). Assigner 

enfin la valeur zéro au taux de production des machines restantes. 



(iii) Pour la maintenance préventive, suivre l'ordre établi dans 6 pour 

assigner des valeurs au taux de maintenance préventive dans chaque 

mode. Assigner séquentiellement le taux d'envoi en entretien préventif 

maximal au taux de maintenance préventive de chaque machine. en 

commençant par le premier élément de O jusqu'à ce que la somme 

des taux assignés atteigne w (a, 5). Comme précédemment, assigner par 

la suite zéro aux taux de maintenance des jeunes machines restantes. 

Notons ici que lorsque la capacité du système est telle que l'ensemble 

des m machines soit requis pour satisfaire la demande. le taux de 

maintenance préventive est nul pour tout mode 0 < m. 

(iv j Répéter les étapes (i), (ii) et (iii) pour tout a E E = { 1. - - . . m } .  

.lu chapitre suivant. nous appliquerons l'approche proposée dans cet te  section sur 

des exemples numériques et nous comparerons, pour fin de validation. Ies résultats 

obtenus à ceux issus d'une résolution directe des équations d'H J B stochastiques. 

3.7 Conclusion 

Dans ce chapitre, nous avons proposé un modèle de commande des systèmes de 

production basé sur une approche de commande hiérarchisée. En considérant une 

structure particulière du système, dans laquelle des événements arrivent à des 

échelles de temps différents, nous avons établi qu'une hiérarchie à deux niveaux 

peut être utilisée pour approximer la loi de commande d'un système de production. 

En remplaçant la capacité du système de production par une capacité moyenne, nous 

avons formulé au niveau 1 de la hiérarchie un problème de commande déterministe 

et nous avons utilisé le fait que la solution au problème de commande stochastique 



initial converge vers celle d'un problème déterministe équivalent. La solution à 

ce problème limite nous a permis de faire une planification à long terme des 

activités du système de production. Au niveau 2 de la hiérarchie. correspondant 

a une planification à court terme, nous avons présenté une méthode heuristique 

de construction de la loi de commande stochastique à partir de la planification du 

niveau 1. Sous avons par la suite développé des méthodes numériques permettant de 

résoudre les conditions d'op timalité du problème limite en formulant un problème 

de décision markovien. Nous avons enfin présenté l'algorithme de résolution du 

problème d'optimisation approximé ainsi obtenu. 

Le chapitre suivant sera consacré à l'application de l'approche de commande 

hiérarchisée proposée dans ce chapitre à deux exemples numériques. l'aide des 

modèles de simulation. nous allons valider la méthodologie proposée en comparant 

les performances du système avec celles issues de la commande générée par la 

méthode directe de résolution des équations d'HJB dans des cas simples. 



Chapitre 4 

Expérimentation de l'approche de 

commande hiérarchisée 

4.1 Introduction 

Le but de ce chapitre est d'expérimenter l'approche de commande hiérarchisée sur 

des exemples de systèmes de production. Les systèmes considérés sont caractérisés 

par l'existence de deux échelles de temps associées respectivement aux événements 

lents et rapides. Pour faciliter la présentation et la validation de l'approche, nous 

étudions dans un premier temps le cas d'un système de production constitué de deux 

machines qui produisent un seul type de pièce. Avec cet exemple. nous présentons 

en détail une validation de l'approche de commande proposée en comparant les 

résultats obtenus avec ceux issus de La résolution numérique directe des équations 

d7HJB. Nous appliquons par la suite l'approche de commande hiérarchisée au 

problème de commande d'un FMS constitué de deux machines qui produisent 

deux types de pièces. Comme dans le premier exemple, une seconde validation 

de l'approche est présentée en utilisant ce dernier exemple. 

Nous reprenons de façon succincte la formulation du problème de commande 

optimale stochastique sur horizon infini pour chacun des deux systèmes considérés. 



Nous établissons par la suite les conditions d'optirnalité des problèmes de commande 

relatifs à ces systèmes en nous basant sur les résultats des chapitres 2 et  3. 

Les perturbations singulières sont enfin appliquées à ces problèmes d'optimisation 

stochastique pour réduire la complexité de la résolution des conditions d'optimalité. 

Pour valider l'approche de commande proposée au chapitre 3, nous utilisons 

des modèles de simulation pour évaluer les performances des FMS considérés sous 

une des deux lois de commande suivantes : 

1. loi de commande obtenue en appliquant l'approche de commande hiérarchisée; 

2. loi de commande issue de la résolution directe des équations d'HJB à l'aide 

des rnét hodes numériques. 

Les seuils critiques du stock et les coûts moyens encourus associés à ces 

deux politiques seront comparés pour évaluer les pourcentages d'écart entre les 

performances des deux approches. Nous allons nous baser sur Ies résultats de cette 

comparaison pour valider la méthodologie proposée et discuter par la suite de la 

structure des lois de commande dans le cas des systèmes plus larges. 

Le plan que nous adoptons dans ce chapitre est le suivant: a la section 2. nous 

traitons le problème de commande d'un système de production constitué de deus 

machines qui produisent un seul type de pièce. La section 3 est consacrée à l'étude de 

la commande d'un système de production similaire produisant deux types de pièces. 

Dans la section 4, nous discutons de la structure générale de la loi de commande qui 

se dégage de nos résultats et  qui peut être étendue à des systèmes plus complexes- 



4.2 Système de production à deux machines et 

un seul produit 

Les deux machines considérées. montées en parallèle, sont spécialisées dans la 

production d'un seul type de pièce. Le problème de commande à résoudre consiste 

à contrôler simultanément les taux de production du système et de maintenance 

préventive des machines dans le but de satisfaire un taux de demande constant 

tout en minimisant le coût total encouru. Le système de production a contrôler est 

illustré à la figure 4.1. 

Machine 2 1 
Figure 4.1: Système de production à deux machines et un seul produit 

Le système est constitué principalement des deux machines, d'un ou de 

plusieurs systèmes de transport servant pour le cheminement des pièces du stock 

en amont vers les machines et de celles-ci vers le stock en aval. Les pièces produites 

sont stockées e t  seront écoulées selon un taux de demande donné. 



4.2.1 Dynamiques des pannes et de production 

La dynamique des pannes de chacune des deux machines est modélisée par un 

processus stochastique continu Ci(t), i = 1.2. à espace d'état fini Bi = { l ,  2 '3) dont 

les modes sont définis par l'équation (2.12). Le processus global < ( t )  = Cl ( t  ) x C2(t ) 

est également un processus stochastique continu à espace d'état fini B = { 1 ,  - - - : 3'1. 

Le lien entre chacun des neuf modes du processus i ( t )  avec les modes des processus 

c i ( t ) .  i = 1.2. est défini par le tableau 2.1. Si à un instant donné t .  < ( t )  est au mode 

a E B. avec une usure des machines a = ( a l ,  a2 )  et que la loi de commande '11 = 

(u l .  u2, 21, d2j est employée. alors deux événements possibles peuvent se produire à 

l'instant t + S t :  

Le système saute vers un autre mode 0 avec une probabilité donnée par: 

Le système reste au mode u avec la probabilité suivante: 

où les taux de transition X a o ( - ) ,  a, 4 E B remplissent les conditions (2.10)-(2.11) et 

o ( W  lim - = O 
at-O 6t  

Avec la présence 

paramètre E < 1 

de deux échelles de temps, nous supposons qu'il existe un 

qui nous permet de passer d'une échelle de temps à l'autre 

comme décrit au chapitre 3. Rappelons ici qu'en multipliant les taux de transition 

du processus ~ ( t ) ,  (taux relatifs à l'échelle de temps des phénomènes rapides) par 

E ,  nous obtenons les taux de transition d'un processus lent noté Ct ( t )  (taux relatifs 



à l'échelle de temps des phénomènes lents). Notons que le processus C L ( t )  est une 

représentation du processus initiai < (t ) dans I'échelle de temps des phénomènes 

lents. 

Si Q(-) = { Arno(-)} est la matrice des taux de transition du processus ( ( t  ). alors 

Q C ( . )  = c-l(q,o(-)} est la matrice des taux de transition de < ' ( t )  avec Aao(- )  = 

r - ' q a s ( ) .  D'où : 

Notons enfin que C L ( t )  et ~ ( t ) ,  asociés respectivement à Q L ( . )  et à Q( . ) ,  expriment 

tous les deux le même processus dans deux échelles de temps différents. 

La  dynamique du vecteur d'état x ( t )  = ( ~ ( t ) ,  a i ( t ) ,  a 2 ( t ) ) '  est décrite par 

le système d'équations (2.1)-(2.2). Rappelons que x ( t  ), a l  ( t  ) et a 2 ( t )  désignent 

respectivement le stock de pièces en aval des machines, !'âge de la première machine 

et l'âge de la seconde machine. L'hypothèse suivante définit la relation entre le taux 

de panne de chaque machine et son usure ou âge : 

Pour chaque machine i, le taux de transition Ai2(.  ) du  mode opérationnel au 

mode panne ou réparation est donné par l'expression: 

où Ab et  K i  sont des constantes réelles positives données et a i ( t )  désigne l'âge 

de la machine i au temps t .  

Les deux machines étant supposées identiques. leurs caractéristiques probabilistes 

sont égales. Nous posons pour le reste de ce chapitre qLB(.)  = q a B ( - ) ,  A; = Ag et 

K: = Ka. Avec ces notations, la matrice des taux de transition associée à Cc@) est 



donnée par: 

oY ( . )  représente (5. ii) e t  

Le processus ZL (f ) , correspondant au nombre de machines opérationnelles au temps 

t . est tel que ses modes appartiennent à l'ensemble E = {O, 1. 2}. Si ZC(t ) = O (c'est- 

à-dire qu'aucune machine n'est opérationnelle) alors les taux de production et de 

maintenance préventive sont nuls. Dans le cas contraire, l'ensemble des commandes 

admissibles. pour ZL(t ) = z , est donné par : 

En utilisant les taux de transition qLD1 c r J  E E ,  associés à Z L ( t ) ,  la matrice des 

t a u  de transition de ce processus est donnée par : 

où (.) désigne ( a l ,  ao, wl, w2) et 

Nous présentons ci-après le problème de commande optimale associé à ces 

dynamiques et  les conditions d'optimalité correspondantes. 



4.2.2 Commande optimale et conditions d'optimalité 

Le coût instantané est donné par: 

Le problème d'optimisation considéré consiste à déterminer. dans l'ensemble des 

commandes admissibles K (. ) , une stratégie de pilotage des deux machines qui 

minimise le coût suivant: 

sous les contraintes données par les équations d'état. 

Si v C ( û .  x) est la fonction valeur associée à la loi de commande admissibIe 

ü(.) et. aux conditions initiales (a. x),  alors les conditions d'optimalité sont données 

par des équations d'HJB similaires à celles présentées à l'équation (3.20). Sous 

présentons ci-après les conditions d'optimaiité du problème déterministe limite 

issu du problème de commande précédent par application des méthodes des 

perturbations singulières. 

4.2.3 Problème de commande limite 

Le problème de commande limite consiste à trouver une loi de commande u = ( u .  2)' 

qui minimise J ( .  ) défini comme suit: 



avec la probabilité limite d'être au mode cr qui est désignée par p,. La commande ü 

est définie par l'équation (3.42) et le taux de maintenance préventive 2 est considéré 

comme paramètre. La valeur optimale de ce paramètre e t  le taux de production 

associé constituent la loi de commande recherchée. 

La  minimisation de (4.7) est soumise aux contraintes d'état données par les 

équations suivantes: 

où nous avons posé ~ ( t )  = d. Notons que kl est une constante donnée. L'équation 

de la programmation dynamique pour ce problème est donnée par: 

+ ~ ( z ,  a,, y))) (4.10) 

où K ( . ) et k sont définis de la même manière qu'aux sections 3.3 et 3.4. 

L'équation (4.10) est une équation hyperbolique aux dérivées partielles dont la 

résolution permet de trouver la fonction valeur v ( 5 )  et la loi de commande (ü: 5) 

associée. Par contre, les équations d'HJB du problème de commande stochastique 

initial se traduisent par un système hyperbolique de neuf équations aux dérivées 

partielles. Nous observons donc qu'une seule équation (c'est-à-dire l'équation (4.10) ) 

permet de décrire les conditions d'optimalité du problème limite associé à l'exemple 

considéré. Cette observation nous permet d'illustrer la réduction de la complexité de 

résolution d'un problème de commande lorsqu'on utilise l'approche de commande 

proposée. Cette approche est essentiellement basée sur la transformation d'un 

problème stochastique initial en un problème déterministe équivalent. 



Comme nous l'avons mentionné au chapitre 3, a u  lieu de chercher à 

résoudre l'ensemble des neuf équations, nous allons plutôt résoudre les conditions 

d'optimalité du problème limite, données par l'équation (4.10). À partir de la 

solution obtenue. correspondant à la loi de commande du problème déterrninis te 

équivalent. nous allons présenter plus loin la méthode de construction de Ia loi de 

commande stochastique associée au problème d'optimisation initial (voir section 

4.2.5). Nous présentons ci-après la résolution numérique de l'équation (4.10). 

4.2.4 Méthodes numériques 

Le problème de décision markovien relatif à l'exemple de FMS constitué de deux 

machines qui traitent un type de pièce est décrit par la condition d'optimalité 

suivante : 

C-Z'C-2- 2 + C d ,  k c P  
ah(t.am) = min { min.{ + 

05G<bnar  ü€Gk Q h ( N  + +l l [ r i  + +I 

où h, et ha désignent les pas de discrétisation associés respectivement aux variables 

d'état x et a ~ .  D e  plus, nous avons: 

kld l f i - d l  
Q h ( 4  = 2h, +- 

hz 
6-d 

hZQh(.) 
s i u - d  2 0  

O ailleurs 



h Remarque 4.1: GL est un maillage de commande dépendant du  nombre moyen de 

machines opérationnelles k. Par exemple. si les machines ont une capacité maximale 

h égale à h n i t é  (c'est-à-dire u,, = l ) ,  alors Gk est tel que O < û 5 k.  Dans ces 

conditions. la faisabilité du problème de commande exige que k 2 d. 

L'algorithme d'itération de la commande. présenté à la section 3.6.2, a été 

programmé en utilisant Matlab avec des données de simulation fixées. Ces données 

sont choisies telles que le système de production considéré soit en mesure de 

satisfaire la demande sur un horizon infini. Ces données ne correspondent donc 

pas à un système réel donné et sont présentées ci-après: 

1. Variables d'état et de commande. 

Soit h, = ha = 0.2. Pour x E 1-2.21 et a~ E [O ,  61 nous avons: 

lorsque u,, = 1 et w,, = 0.04. 

2. Taux d'actualisation et de demande 

3. Caractéristiques probabilistes 

- Taux de panne 

qi2(ai( t ) )  = A. + K,ai(t), i = 1,2 

avec A. = 0.0001 et K,  = 0.005 



- Taux de réparation et  de retour d'entretien préventif 

Les taus de transition q;.@ du processus ZC(t ), a'. 9' E {O, 1,2}. se déduisent 

des q , ~ .  a. 3 E {1, - - - .9), en considérant les différents modes du processus 

équivalent < ' ( t ) .  

4. Coût instantané 

Les différents paramètres du coût instantané sont représentés dans le tableau 

4.1. 

Tableau 4.1: Constantes du coût instantané (deux machines. un seul produit) 

Les eo' j = 1. - - - !  9. sont associés à ct(t) et les c", <r = 0, 1,2, sont définis 

comme suit: 

.Avec ces données, nous obtenons les résultats présentés aux figures 4.2 et  4.3 

correspondant respectivement aux taux de production et de maintenance préventive 

du problème limite. D'après la figure 4.2, le taux moyen de production est maximal 

lorsque le niveau de stock est inférieur ou égal à 0.8 (c'est-à-dire x(t ) 5 0.8). Ce 

taux est égal au taux de demande lorsque z ( t )  = 1. De plus, aucune production ne 



stock (x) 

Figure 4.2: Taux de production ~ ( x )  du problème limite 

doit être envisagée lorsque ~ ( t )  > 1. La loi de commande limite stipule également 

que le tau- de maintenance préventive moyen doit être égal à zéro lorsque x ( t }  5 1 

(voir figure 4.3) .  Dans le cas contraire. le taux de maintenance préventive moyen 

doit être égal au taux maximal de maintenance préventive. 

En appliquant la méthode heuristique présentée à la section 3.4.2, relative à la 

construction d'une loi de commande du problème limite qui dépend de l'âge. nous 

obtenons les taus de production et de maintenance préventive illustrés aux figures 

4.4 et 4.5. Ces résultats montrent que la loi de commande du problème limite est 

une loi de commande de type "bangbang" dépendant d'un âge moyen équivalent à 

l'âge d'une machine dans le cas d'un système de production constitué d'une seule 

machine. De ces figures? il ressort clairement que la politique de planification à 

long terme (taux de production et de maintenance préventive) doit être choisie 

en fonction des valeurs des âges des machines (comparées à l'âge de la machine 



Figure 4.3: Taux de maintenance préventive g(2) du problème limite 

0.07 d 

Figure 4.4: Taux de production du problème limite en fonction de l'âge 

de  la machine équivalente 
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Figure 4.5: Taus de maintenance préventive du  problème limite en 

fonction de l'âge de la machine équivalente 

équivalente) et du niveau de stock. Nous résumons la description de cette loi de 

commande à travers les observations suivantes: 

Lorsquhne des deux machines opérationnelles est neuve (.Cl2 par exemple 

avec a? = 2.8). la politique de production du problème limite prévoit une 

production au taux de la demande si l'autre machine est également neuve 

(c'est-à-dire !LII avec par exemple a l  < 3) et le niveau de stock est positif et 

faible. Ln taux de production maximal est assigné à la politique de production 

lorsqu'une des machines vieillit (Ad1 par exemple). La  loi de commande dans 

ce cas maintient un niveau de stock significatif tel qu'illustré par la figure 4.4. 

Si une des deux machines opérationnelles est vieille (hl2 par exemple avec 

a? = 5).  la politique de production du problème limite prévoit une production 

au taux maximal, non seulement en présence d'un manque de pièces produites 



mais aussi dans le cas d'inventaire. La région où le taux de production est 

non nul. pour x j t  ) > 0, dépend de l'âge de la machine équivalente e t  est bien 

illustrée. Cette région croit avec l'âge telle que le montre la figure 4.4. 

Pour la politique de maintenance préventive. il est intéressant de noter qu'on 

doit envisager de faire de la maintenance préventive seulement si l'âge de 

chacune des machines atteint une certaine valeur. Si le maximun des âges des 

deux machines atteint la valeur de 3 pour x(t)  = 1.6 (voir figure 4 5 ) ,  on doit 

faire de la maintenance préventive. Par contre, si x(t)  < O (c'est-à-dire qu'il 

y a une rupture de stock), aucun entretien préventif ne doit être envisagé tel 

qu'illustré par la figure 4.5. 

Pour ressortir la réduction de la complexité issue de l'application de la méthode 

des perturbations singulières, nous comparons ci-après deux grandeurs associées 

respectivement à l'approche proposée e t  à une méthode directe de résolution des 

équations d'HJB. Nous avons ainsi choisi de comparer les ordres de grandeur 

des dimensions des problèmes de commande et les temps de résolution relatifs a 

l'dgori t hme de résolution des conditions d'optimalité. 

1. Dimension du problème de commande 

Dans I'exemple du systéme constitué de deux machines qui traitent un seul 

type de pièce, nous avons résolu numériquement le problème de commande 

dont la dimension peut être approximée par: 



où U,, = {O, d ,  u-) et Ue = (O,  kw-} dénotent respectivement les 

ensembles des taux possibles de production et de maintenance préventive. 

La dimension du problème stochastique équivalent est card(B) x c a r d ( ~ , ) ~  x 

c a r d ( ~ ; ) ~  x dim. Pour des systèmes de production de grande taille, la 

réduction obtenue pour le problème de commande considéré est significative. 

2. Temps de résolution 

Pour le maillage décrit précédemment. le temps de résolution relatif à 

l'approche de commande hiérarchisée est de 20 minutes environ lorsque 

nous utilisons l'algorithme d'itération de la commande. Par contre, le même 

algorithme de résolution, lorsqu'il est appliqué directement aux équations 

dTHJB, converge après cinq jours. 

?ious présentons, à la section 4.2.6.2, un tableau de comparaison des approches 

basées respectivement sur la commande hiérarchisée et la résolution directes des 

équations d'HJB. Notons pour le moment qu'une comparaison des dimensions des 

deux problèmes de commande et les temps de résolution associés montre les limites 

des méthodes numériques classiques et l'utilité de l'approche de commande que 

nous proposons dans cette recherche. 

4.2.5 Construction de la loi de commande stochastique 

Dans cette section, nous appliquons la méthode heuristique de construction de la loi 

de commande stochastique du problème initial à l'exemple du système de production 

constitué de deux machines avec un seul type de produit. Nous avons présenté à la 

section précédente la loi de commande du problème limite à partir de laquelle cette 

loi de commande stochastique ou planification à court terme doit être construite. 



Figure 4.6: Ensemble des neuf régions issues du regroupement des machines 

Dans cette application. nous suivons de façon séquentielle les étapes 1? 2 et 3 de la 

méthodologie heuristique présentée à la section 3.5. 

1. Partition des âges des machines 

A titre d'exemple. considérons une partition de trois classes Co, Cl et Ç2 tel 

que: 

La figure 4.6 illustre la partition considérée. Notons que Co = (0: 21, Cl = [2,41 

et C2 = [4.61. En combinant les classes C,, j = 0, 1 , 2  pour ha = 0.2, nous 

obtenons l'ensemble des régions R*j, i, j = 1'2'3. 

2. Regroupement des machines en classes 

La dynamique des âges des machines permet de passer d'une région à l'autre. 



La structure de la figure 4.6 permet ainsi de regrouper les machines en 

régions ou classes d'âges. Lorsqu'à un instant donné la dynamique des ages 

des machines est telle que ces dernières sont toutes les d e u  dans une région 

Rzi. i = 1 . 2 . 3 ,  nous devons appliquer le théorème 3.3 pour déterminer le taux 

de production de chaque machine. Pour illustrer cette procédure. considérons 

1 'exemple suivant . 

Exemple 4.1: Pour la région Rm (par exemp!e al = 5.2  et  a2 = 

5 avec max(al, az)  = 5.2 qui doit être comparé à l'âge de la machine 

équivalente). si x = 0.4. alors ii = k et W = O (voir figures 4.4 et 4.5) .  

Comme les deux machines sont identiques. nous avons. d'après (3.55) et 

(3.56). le taux de production suivant: 

D'après les équations (3.58) et (3.59). le taux de maintenance préventive 

est donné par: 

3. Machines dans des classes différentes 

Lorsque les machines appartiennent à des régions différentes, les taux de 

production et de maintenance préventive du  système sont toujours donnés 

respect ivement par: 

Comme les deux machines ne sont 

OU de w (x, a l ,  ap, 2) entre les deux 

plus identiques, le partage de u(x, ai, az, 2) 

machines ne se fait plus de façon uniforme. 



Figure 4.7: Classification des machines par ordre décroissant par rapport à l'âge 

La méthode heuristique proposée consiste à classifier les deux machines selon 

un ordre décroissant par rapport à l'âge. La figure 4.7 présente l'ensemble 

ordonné ( M t ,  M 2 )  ou ( M ? ,  Mi) associé à la région R,, i # j lorsque Mc,  k = 

1 .2  représente la machine k .  Dans la notation (Mi, M 2 ) ,  la machine Ml est 

plus vieille que ML>. Suite a cette classification, nous devons exploiter la vieille 

machine au maximum et choisir le taux de production de la machine jeune en 

conséquence. 

Pour illustrer ce concept, considérons l'exemple sui v a t :  

Exemple 4.2: Pour la région R3? (par exemple al = 3.8 e t  a* = 5 avec 

rnax(al, as)  = 5 qui doit être comparé à l'âge de la machine équivalente), 
- 

si x = 2, alors ü = O et W = kw,, (voir figures 4.4 et 4.5). Comme les 

deux machines sont différentes, l'équation (3.56) n'est plus valide. Le 



taux de production du système est le suivant: 

u ( x . a l , a 2 , 2 )  = O avec u j ( z . a i , a 2 ,  2) = 0. j = 1 . 2  

De même. l'équation (3.59) n-est plus valide. Le taux de maintenance 

préventive du système est toujours donné par: 

Le taux de maintenance préventive de  la vieille machine ( c'est-a-di re 

.CI2) est w z ( x ,  a l .  as! 2 )  = w,, et celui de M L  est tel que w 2 ( x .  a l ,  a*, 2 )  + 
q ( x .  a l ,  a?. 2 )  5 ~ ( z ,  al. az, 2 )  

En appliquant cette méthode heuristique de construction de la loi de commande 

stochastique. nous obtenons une approximation de la loi de commande optimale 

du problème d'optimisation initial. Les figures 4.8 à 4.11 représentent les taux de 

production et de maintenance préventive associés aux figures 4.2 à 4.5, relatives au 

problème limite. 

Nous présentons ci-après la validation de la méthode heuristique proposée en 

comparant les performances du système lorsqu'il est soumis à loi de commande 

développée ultérieurement (commande hiérarchisée). avec les performances relatives 

à la loi de commande issue de la résolution numérique directe des équations d'HJB. 

4.2.6 Validation de l'approche de commande hiérarchisée 

L'approche de validation que nous proposons consiste à suivre de façon séquentielle 

les étapes suivantes: 

1. développer des modèles de simulation qui permettent de décrire le 

comportement d'un système de production sous une loi de commande donnée; 



Figure 4.8: Taux de production des deux machines relatifs au problème 

original (mode 1) pour a? = 1 

Figure 4.9: Taux de production des deux machines relatifs au problème 

original (mode 1) pour a? = 5 



Figure 4.10: Taux de maintenance préventive des deux machines relatifs 

au problème original (mode 1 ) pour a2 = 1.6 

Figure 4.11: Taux de maintenance préventive des deux machines relatifs 

au problème original (mode 1) pour a? = 5 



2. déterminer. pour une partition donnée. les performances du système sous la 

loi de commande hiérarchisée: 

3. simuler le même système de production en considérant la loi de commande 

issue de la méthode directe et comparer les performances obtenues avec celles 

de l'étape 2: 

4. étudier l'effet de la partition (nombre de classes) sur le raffinement de la loi 

de commande approximée par l'approche de commande hiérarchisée. 

4.2.6.1 Approche de simulation proposée 

Xous présentons dans cette section une approche de simulation basée sur une 

combinaison d'événements, d'activités et de circulation d'entités associés à ces 

événements. Nous supposons que les changements relatifs à la dynamique globale 

du système arrivent à des intervalles de temps discrets pour des règles d'opération 

définies à I'avance. Ces règles sont définies en utilisant une loi de commande donnée 

(par exemple celle issue de l'approche de commande hiérarchisée). 

Sans perte de généralité de l'approche, nous adoptons la modélisation par 

simulation de type réseaux. Les réseaux représentent saphiquement le système 

considéré à l'aide de symboles (noeuds ou branches) interconnectés avec des sous- 

programmes usagers si nécessaire. Pour décrire le comportement du système, nous 

utilisons un modèle qui consiste en une séquence d'événements ordonnés dans le 

temps alternés avec plusieurs noeuds, activités et branches orientées. Pour plus 

d'informations sur ce concept. le lecteur est invité à se référer à Kenne et al. (1997a) 

et à Gharbi et Kenne (1997). 

Pour simuler l'arrivée des pannes d'une machine, nous utilisons une distribution 



de probabilités de  panne P ( a i ( t ) ) ,  i = 1 . 2 .  pour générer une entité qui retire la 

machine i de la production. Une telle machine est aussitôt envoyée en réparation 

pour une durée distribuée selon une Loi exponentielle de moyenne rnt = AC;;'. La 

distribution P (ai  ( t  ) ) est telle que: 

Pour différentes fonctions 7(. ), nous présentons à la figure 4.12 la forme de P (a ( t  j ) 

correspondante (courbes cl à c4). Les courbes cc, k = 1, - - .  . 4 .  sont telles que: 

f M t )  pour la courbe cl 
k 2 ( a ( t  ))' pour la courbe cn 

= { k 3 ( o ( t  ))j pour la courbe cr 
( k4 (a ( t  ) ) 4  pour la courbe c4 

Les constantes k, , j = 1 . - - - , 4 ,  sont choisies telles que les machines soient très 

vieilles à a , ( ! )  = 6 (autrement dit pour P(6) suffisamment grand). Pour k l  = 

5 x 1 0 - ~  . k2 = IO-'. k3 = 10-%et k4 = 10-ll. nous obtenons les courbes de 

Ia figure 4.12. Yotons que les courbes cs et ca sont généralement utilisées pour 

modéliser la dynamique des pannes des machines dites à taux de panne croissant 

(machines outils telles que tour, fraiseuse. etc.). 

Pour envoyer une machine en entretien préventif, une entité générée après 

un temps Tc( . ) .  ayant une distribution exponentielle de moyenne w -'(.), retire la 

machine de la production. Une telle machine est aussitôt envoyée en maintenance 

préventive pendant une durée exponentielle de moyenne ~ 3 ~ ' .  NOUS présentons 

ci-après l'algorithme de simulation de la dynamique du système de production 

considéré sur un horizon de planification Ph donné. L'algorithme de simulation 

utilisé est le suivant: 

1. Initialisation et définitions des paramètres 



Age de machine 

Figure 4.12: Distribution des probabilités de pannes d'une machine 

*(O) := 0; al(()) := O: an(0) := O: temps := O. Définir 

G?. G$. P ( a i ( t ) ) ,  rt .  mt. Ph. 

2. Définition de la loi de commande 

h V x  E G I  . définir le taux de production et de maintenance à partir des figures 

1.8 à 4.11 (commande hiérarchisée) ou des figures A. 1 à A. 10 (méthode directe 

de résolution numérique des équations dlHJB). 

3. Envoi d'une machine i en entretien préventif 

(a) Si q(.) # O alors envoyer la machine i en entretien préventif après un 

temps exponentiel de moyenne w-'(.) unités de temps, poser ai(.) = 

O (nous supposons que la machine est remise à neuf après chaque 



intervention), satisfaire la demande. faire la mise à jour du coût et passer 

à l'étape (b) ; sinon passer à l'étape 4. 

(b) Faire de la maintenance préventive sur la machine i pendant un temps 

exponentiel de moyenne mt unités de temps et passer à l'étape 5. 

4. Panne d'une machine i 

Générer de façon probabiliste la panne de la machine i en utilisant P ( a i ( t ) ) .  Si 

l'entité de panne de la machine i est présente, envoyer la machine en réparation 

pendant une durée exponentielle de moyenne rt unités de temps. poser ai(.) = 

O. satisfaire la demande et faire la mise a jour du coût; sinon passer à l'étape 

5. 

5 -  Production avec la machine i 

(el)  Si ili(.) = O ,  attendre T, unités sans produire et passer à l%tape (e3). 

(e2) Si u,(.) # O, occuper la machine pendant une unité de temps, poser 

temps = temps + 1, ~ ( t e m p s )  = ~ ( t e m p s )  + il*(.) 

ai( temps) = ai(temps) + ~ i ( . )  

et passer à l'étape (e3). 

(e3) Incrémenter le temps de simulation T,, comme suit: 

et passer à l'étape (e4). 

(e4) Faire la m i s e  à jour du coût et du stock et passer à l'étape 6. 



6. Tester l'arrêt de la simulation 

- Si T,, 5 Ph, poser time := O et retourner à l'étape 3.: sinon arrêter la 

simulation. 

Nous avons implanté cet algorithme en utilisant le langage de simulation SLAM II 

développé par Pntsker (1986). Ce langage est associé à différents sous-programmes 

FORTR-4X. Par exemple, nous avons défini la loi de commande dans un sous- 

programme en utilisant une variable à trois dimensions (ces dimensions étant 

rattachées successivement à x(t), a l ( t ) ,  a n ( t ) ) .  

Nous présenterons plus en détail à l'annexe B les différents sous-programmes 

interconnectés aux réseaux SLAM II. A la section suivante, nous comparons les 

performances du  système de production considéré (deux machines, un seul produit) 

lorsqu 'il est soumis à plusieurs stratégies de planification. Nous montrons également 

dans cette section l'effet du nombre de classes de la partition des âges des machines 

sur les performances du  système. 

4.2.6.2 Étude comparative 

Nous allons utiliser le niveau de stock optimal approximé et le coût moyen à long 

terme associé comme critères de comparaison pour valider la méthode de commande 

hiérarchisée proposée au chapitre 3. En utilisant la loi de commande hiérarchisée 

et celle issue de la méthode directe dans le modèle de simulation. nous obtenons 

deux trajectoires de stock (voir figure 4.13) issues de trois réplications. Chaque 

point de la figure 4.13 est une moyenne des trois réplications faites en variant les 

nombres sources? pour la génération des nombres aléatoires, utilisés par SLAM II 
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Figure 4.13: Trajectoires des stocks avec des seuils cri tiques = 1.19 

et s$ = 1.003 pour les méthodes heuristique et directe (avec ai et a? 

fxés 1 

pour générer des distributions de probabilité. 

La loi de commande hiérarchisée construite à la section 4.2.5 avec une partition 

de cinq classes (c'est-à-dire q = 4)  donne un seuil critique de stock x&, zz 1.2 tandis 

que celle issue de la méthode directe donne un seuil critique x&, 2 1 (pour nl = 

an = 5) .  Le coût moyen encouru obtenu, illustré à la figure 4.14. est évidemment 

plus faible lorsque nous utilisons la loi de commande issue de la méthode directe. 

Il est intéressant de noter que la déviation du coût moyen encouru associée à 

la méthode heuristique par rapport à celui du coût relatif à la méthode directe est 

de l'ordre de 47% pour q = 2. Nous avons approximé cet ordre de grandeur par la 
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Figure 4.14: CoYts moyens associés à la méthode directe et à la 

méthode heuristique pour différentes partitions (q = 2 .3 .4 )  

relation suivante: 

où C& et c'& désignent respectivement les coûts moyens approximés, associés aux 

méthodes directe et heuristique. 

Pour étudier l'effet du nombre de classes de la partition sur la loi de commande 

hiérarchisée. nous avons simulé la dynamique de production du système considéré 

avec des lois de commande relatives à des partitions de trois, quatre et cinq classes 

(c'est-à-dire q = 2, q = 3 et q = 4).  Il ressort des résultats obtenus que le coût moyen 

encouru diminue lorsque le nombre de classes de la partition augmente. Nous notons 

par conséquent que l'ordre de grandeur de la déviation od, issu de l'application de 



l'expression (4.18). décroît avec le nombre de classes de la partition. L'ordre de 

grandeur de la déviation passe de 47% pour q = 2 à 32% et 14% pour q = 3 e t  q = 4 

respectivement (c-est-à-dire pour des partitions de 4 et 5 classes respectivement ) . 

L'augmentation du nombre de classes de la partition permet ainsi de rapprocher la 

loi de commande hiérarchisée de la loi de commande issue de la méthode directe 

et de raffiner ainsi la politique sous-optimale obtenue. Le tableau 4.2 récapitule les 

résultats de l'étude comparative des approches basées sur la commande hiérarchisée 

et sur la résolution numérique directe des équations d'H J B. 

Tableau 4.2: Étude comparative des approches basées sur la commande 

hiérarchisée (pour une partition de cinq classes) et la méthode directe 

de résolution des équations d'HJ B 

/ Approche [ dimension 1 temps 1 coût 1 seuil 1 
1 1 du maillage 1 de résolution 1 moyen 1 critique 1 

1 - 

1 Commande hiérarchisée 1 3.9 x lo3 
1 

1 0.33313 1 0.61 1 1.19 1 
1 Méthode directe 

I I 

1 2 7 . 3 ~  106 ( 120h 1 0.43 1 1.00 

Cette comparaison nous permet de conclure que l'approche de commande 

hiérarchisée proposée donne de bons résultats et  peut être utilisée pour des systèmes 

de production de grande taille pour lesquels une résoiution directe des équations 

d'HJB est difficile. Yous appliquons ci-après la méthode de commande hiérarchisée à 

la planification des activités d'un système de production constitué de deux machines 

qui traitent deux types de pièce. 



4.3 Systèmes de production à deux machines, 

deux produits 

Les d e n  machines considérées, montées en parallèle, sont spécialisées dans la 

production de deux types de pièce. Le problème de commande que l'on se pose 

consiste à contrôler simultanément le taux de  maintenance préventive et le taux 

de production de chacun des produits dans le but de satisfaire des taux de 

demande constants des deux produits tout en minimisant le coût total encouru. Le 

système de production à contrôler est illustré à la figure 2.1. Nous allons montrer 

que l'application de Ia méthode de commande hiérarchisée à la résolution de ce 

problème d'optimisation stochastique, difficile à résoudre, permet d'obtenir une 

bonne approximation de la loi de commande optimale stochastique. 

4.3.1 Dynamiques des pannes et de production 

La dynamique des pannes des machines Ml e t  M2 est la même que celle de la 

section 4.2. De même, les processus stochastiques c C ( t )  et ZL( t )  sont les mêmes 

qu'à la section 4.2 et ne seront pas repris dans cette section. En ce qui concerne 

la dynamique de production, nous allons écrire les équations d'état qui décrivent 

les variations de l'usure de chacune des deux machines et des stocks en aval. La 

d-mamique du  vecteur d'état I ( t )  = (x i@) ,  x2(t),  a l ( t ) ,  a2(t)) '  est donnée par: 



où kllo kizT kZl et  kE sont des constantes données. De plus, uij et d j ,  i, j = 1.2. 

désignent respectivement le taux de production de la machine M i  du produit j et 

le taux de demande du produit j supposé constant. 

4.3.2 Commande optimale et conditions d90ptimalit& 

L'ensemble des commandes admissibles relatives à chaque mode t du processus 

Z C ( t )  est donné par: 

2 

où rj est le temps de traitement du produit de type j sur chaque machine et  w,, 

est le taux d'envoi en entretien préventif maximal des machines. 

Soit G(a .  X. J) le coût instantané. payé quand le système est a u  mode a et à 

l'état x = ( x L ( t ) .  x 2 ( t ) .  a l ( t ) ,  an ( t ) ) ,  donné par: 

où C- = (c; c c ) ' ,  C- = (CF, CS)' et CO sont des constantes réelles positives qui 

permettent de pénaliser toute déviation d'un stock de la valeur zéro et le séjour des 

machines dans les modes a. 

Le problème d'optimisation considéré consiste à déterminer, dans l'ensemble 

des commandes admissibles K (.), une stratégie de pilotage des deux machines qui 

minimise le coût suivant: 



sous les contraintes données par les équations d'état. Comme à la section 4.2, 

si u'(a. 2) est la fonction valeur associée à loi de commande admissible ü(.) et 

aux conditions initiales (a. 5 ) .  alors les conditions d'optimalité sont similaires aux 

équations d'H J B présentées à l'équation (3.20). 

Nous présentons à l'annexe C la loi de commande issue d'une résolution 

numérique directe des conditions d'optimalité associées à cet exemple. Nous allons 

comparer. comme à la section 4.2, les performances du système sous cette loi de 

commande avec celles issues de la loi de commande hiérarchisée correspondante. 

4.3.3 Problème de commande limite 

Le problème de commande limite consiste à trouver une loi de commande ü = 

(ul. h, 2 ;;j qui minimise le coût actualisé J ( . )  défini comme suit: 

00 

J(b. Ü) = 1 ë " ~ ( o ( t ) ,  5 ) d t  

avec la probabilité limite d'être au mode a qui est désignée par p,. Les commandes 

fi1 et ù2 sont définies comme à l'équation (3.42) et la commande W est choisie dans 

un premier temps comme paramètre. Ensuite, une minimisation par rapport au 

paramètre permet de trouver les valeurs optimales des taux de production des 

différents produits et du taux de maintenance préventive des machines (probième 

limite). 

La minimisation de (4.26) est soumise aux contraintes d'état données par les 



équations suivantes: 

où a, désigne l'âge moyen des machines et ki et k2 sont des constantes données. 

L'équation de la programmation dynamique pour ce problème est donnée par: 

pv(x) = min { -min- {(cl - dl)v,, (5 )  + (ü2 - dn )vz2 ( I )  
d<GlkwmP, U E K ( k )  

1 
f 5 ( k l d  1 + k2d2)v., (5 )  + G ( X ?  a ~ ,  2 ) ) )  (4.30) 

La résolution de cet te équation hyperbolique ailx dérivées partielles permet de 

trouver la fonction valeur v ( 5 )  et la loi de commande optimale (61. u z ,  2 )  associée. 

4.3.4 Méthodes numériques 

En introduisant les approximations des dérivées partielles dans l'équation (4.30) et 

après quelques manipulations, nous obtenons: 

c 7 x - c - x -  + poco 
uh (x i .  22. a,) = min { min { + 

o<c;lgw,, U E C ~  Qh(->P + @I Il + *J 7 



où h,, ,  h,, et ha désignent les pas de discrétisation associés respectivement aux 

variables d'état xl. x2 et a,. De plus. nous avons : 

k l d l + k z d 2  l u r - d i l  Iü;!-d21 Qh(4 = + + 
2 h a  h,, hx2 

si ü1 - d l  3 O 

O ailleurs 
U2 -d2 

hz2Qh( . i  
si 212 - d2 > O 

O ailleurs 
di - t i r  

h z l Q R ( . )  
si ü1 - d l  < O 

O ailleurs 

Les données de simulation dans ce cas sont les suivantes: 

2 .  Variables d'état et de commande. 

soit h,, = h ,  = ha = 0.2. Pour x I ,  x? E [-2.21 et ab, E [O. 61, nous avons: 

lorsque UL = 1. 

2. Coût instantané 

Les différents paramètres du coût instantané sont représentés dans le tableau 

4.3. 



Tableau 4.3: Constantes du coût instantané (deux machines. deux produits) 

Les ES. 3 = 1. . ,9. sont définis en fonction des ce. ci = 0.1.2. tel que dans 

l'exemple de la section 4.2. 

3. Taux d'actualisation et de demande 

4. Caractéristiques probabilistes 

- Taux de panne 

q12(ai(t)) = A. + K,ai(t) ,  i = 1 . 2  

avec A. = 0.0001 et Ka = 0.005 

- Taux de réparation et de retour d'entretien préventif 

Notons que les t a u  de transition du processus ZL(t) sont les mêmes que dans 

l'exemple de la section 4.2. 

.Avec ces données, nous obtenons les taux de production ül et ü2 des deux produits 

et le taux de maintenance préventive G du problème limite qui sont présentés aux 

figures 4.15, 4.16 et  4.17. 

Analyse des résultats: 



Figure 4.15: Taux de production û l  (q. z?) du produit 1 

Figure 4.16: Taux de production ü2(x1, x2) du produit 2 



Figure 4.17: Taus de maintenance préventive G(xl: 5 2 )  du problème limite 

Désignons par Pl et P2 les types de produits 1 et 2. La politique de production 

pour les deus produits Pi et Pz, relative au problème limite. est présentée aux figures 

1.15 et 4.16. Lorsqu'une priorité est accordée à PZ (avec c > c c  et c c  > CF),  nous 

ne devons produire PI que lorsque z2 2 O en maintenant un niveau de stock faible 

(voir figure 4.15). D'après la figure 4.16- la production de Pz est maximale pour 

X? < O. quelle que soit la valeur de XI. Dès que 2 O? une production au taux 

maximal est envisagée au voisinage de x2 = 0, x1 > O dans le but de maintenir 

un niveau de stock donné. La production de P2 se fait par la suite au taux de la 

demande de Pz Lorsque xl  2 1 et x- = 0.2. Pour a, = 3.2 et 2 = 0.04, la capacité 

maximale moyenne du système pour chaque produit est 1.84. 

La figure (4.17) montre que le taux de maintenance préventive du problème 

limite est différent de zéro pour des niveaux de stock significatifs (c'est-à-dire lorsque 

X I  > 0.6 et xi > 0.6). En appliquant la méthode heuristique présentée à la section 



Figure 4.18: Taus de production ül(xl, 2 3 ,  1) du produit 1 pour un âge 

de la machine équivalente fixé à 1 

3.4.2. relative à la construction d'une loi de commande du problème limite qui 

dépend de l'âge, nous obtenons les taux de production et de maintenance préventive 

illustrés aux figures 4.18 à 4.23. 

Lorsque les deux machines sont relativement jeunes (al = 1 et a? = 1 par 

exemple). les figures 4.18 et 4.19 montrent que dans ces conditions. nous devons 

stocker très peu de pièces (c'est-à-dire que le t a u  de production de chaque produit 

est nul lorsque son niveau de stock est significatif). Par contre. lorsque les machines 

vieillissent (par exemple a i  = 3 et a? = 5 ) ,  la politique optimale de production 

exige de stocker d'avantage de pièces. L'effet des âges des machines sur la politique 

de production est ainsi bien illustré par l'augmentation du niveau de stock optimal 

lorsque les machines vieillissent. Nous résumons l'analyse de ces résultats par la 

schématisation de la figure 4.24 dans le cas où les machines sont relativement jeunes. 



Figure 4.19: Taux de production ü 2 ( x  1 .  xz: 1 )  du produit 

de la machine équivalente h é  à 1 

- 1 

2 pour un âge 

Figure 4.20: Taux de production ül  (xi, x?, 5) du produit 1 pour un âge 

de la machine équivalente h é  à 5 



Figure 4.2 1: Taux de production ü2(xl. r?. 5)  du produit 2 pour un âge 

de la machine équivalente fké à 5 

Figure 4.22: Taux de maintenance préventive W(xi, x-, 1 )  du problème 

limite pour un âge de la machine équivalente fixé à 1 



Figure 4.23: Taus de maintenance préventive i ; ( x  l. xo, 5 )  du problème 

limite pour un âge de la machine équivalente fixé à 5 

Quant a la politique de maintenance préventive. la figure 4.22 donne un taux 

d'envoi en entretien préventif nul lorsque les machines sont neuves (a 1 = 1. a- = 1 ) . 

Pour al = 3. a2 = 5 .  une maintenance préventive doit être envisagée lorsque q > 

0.8 et 11 > 0.6 (voir figure 4.23). Nous reprenons brièvement ci-après la procédure 

de construction de la loi de commande stochastique présentée à la section 4.2.5. 

4.3.5 Construction de la loi de commande stochastique 

Le problème de commande considéré dans cette section est caractérisé par un 

vecteur d'état à quatre composantes q(.), ( )  a, ( . )  et  a?(.). Ceci complique 

la représentation graphique de la loi de commande du problème d'optimisation 

considéré. Cependant, à partir de l'illustration des figures 4.15 à 4.23, limitée à 



Figure 4.24: Schématisation des taux de production du problème limite 

dans le plan (xi, z2) lorsque l'âge de la machine équivalente est fixé à 1 

quelques combinaisons des âges des machines (obtenues en comparant le maximum 

des âges des deux machines avec l'âge de la machine équivalente comme dans 

l'exemple de la section 4.2) ,  nous ressortons l'effet du  vieillissement des machines 

sur la loi de commande hiérarchisée. La procédure de construction de la loi de 

commande stochastique à partir de celle du problème limite est identique a celle 

présentée à la section 3.5 et appliquée aisément à l'exemple de la section 4.2.5. 



Figure 4.25: T a u  de production des deux machines au mode 1 pour 

al = 1 et a? = 3  (produit 1) 

Pour appliquer la méthode de construction de la section 3 .5 .  il suffit tout 

simplement de garder en mémoire de l'ordinateur les vecteurs iiI(x). ü 2 ( x )  et 

Y(I) et d'appliquer les étapes 1: 2 et 3 de la méthode présentée au chapitre 3. 

La loi de commande heuristique obtenue. illustrée pour quelques variations d'iiges 

de machines. est représentée par les figures 4.23 à 4-30. Cette loi de commande est 

une désagrégation de celle du problème Limite représentée par les figures -1.18 à 4 .Y3. 

.A l'aide de la simulation, nous avons déterminé le coût total moyen encouru et 

le seuil critique de stock associés à une partition de six classes. Les performances 

du système sous cette loi de commande sont comparées ci-après à celles relatives 

à la loi de commande issue de l'application directe des méthodes numériques aus  

équations d'HJB. 



Figure 4.26: Taux de production des deux machines au  mode 1 pour 

al = 1 et a:! = 3 (produit 2) 

Figure 4.27: Taux de production des deux machines au mode 1 pour 

al = 3 et a? = 5 (produit 1) 



Figure 4.28: T a u  de production des deux machines au mode 1 pour 

a l  = 3 et a? = 5 (produit 2) 

Figure 4.29: Taux de maintenance préventive des deux machines au 

mode 1 pour al = 1 et a3 = 3  



Figure 4.30: T a u  de maintenance préventive des deux machines au 

mode 1 pour al  = 3 et a:! = 5 

4.3.6 Étude comparative 

Il ressort des résultats de la simulation que la loi de commande hiérarchisée. pour 

h une partition de six classes, donne des seuils critiques x:, = 0.94 et 2,- = 1.12 

associés aux stocks des produits P l  et P2 respectivement. La figure 4.31 montre que 

le coût total moyen encouru! associé à la méthode directe, demeure inférieur à celui 

généré par la loi de commande hiérarchisée. Il est à noter ici que la déviation du  coût 

moyen de la méthode hiérarchisée par rapport au coût moyen de la méthode directe 

est de l'ordre de 18% seulement. Ce niveau de déviation, relativement Faible, est dû 

principalement au fait que nous avons utilisé une partition raffinée de 6 classes: ce 

qui nous rapproche de la méthode directe. 

Cette seconde comparaison permet de conclure que l'approche de commande 

hiérarchisée que nous proposons peut être utilisée pour des systèmes de production 



MBthode directe 
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Figure 4.31: Coûts moyens associés aux méthodes directe et 

hiérarchisée pour q = 5 (partition de six classes) 

plus larges pour lesquels la résolution numérique des équations d'HJB. pendant un 

temps de simulation raisonnable! n'est possible qu'avec des maillages très réduits. 

Nous présentons ci-après une structure générale et  heuristique des stratégies de 

planification des systèmes de production qui se dégage des caractéristiques des 

résultats obtenus. 

4.4 Structure générale des lois de commande 

Les résultats obtenus montrent que les lois de commande optimales sont de ty-pe 

"bang-bang" et sont caractérisées par des seuils critiques dépendant des âges des 

machines. La structure générale que nous pouvons retenir de ces lois de commande 

est donc de type "hedging point" dépendant de l'âge (le seuil critique pour chaque 

produit dépend de la dynamique des âges). Pour un seuil critique donné, la politique 



classique du "hedging point'' s'applique. 

Comme l'usure d'une machine ne fait qu'augmenter tant qu'on n'intervient pas 

sur elle (réparation ou maintenance préventive qui remet la machine à neuf), il est 

clair qu ï l  n -existe pas une poli tique de planification qui maintient l'usure cons tante 

tout en produisant. C'est ainsi que la loi de commande optimale ne peut être 

caractérisée que par des seuils critiques sur les stocks. Par contre, il est intéressant de  

noter que ces seuils critiques dépendent de la politique de maintenance préventive, 

basée sur le concept des taux de transition variables (fonction des âges et de la 

commande). 

Soit X, le seuil critique du produit j .  j = 1, . - , n où n est le nombre de types 

de  pièces. Le taux de production u j ( . )  du produit de type j est donné par: 

où u3- = xzl uLI avec u, qui désigne le taux maximal de production sur la 

machine i du produit j. 

La politique de maintenance préventive, dépendant essentiellement des âges 

des machines. ne peut pas être exprimée comme a l'équation (4.33) car il n'existe 

pas un seuil critique sur l'âge d'une machine. Cependant, en observant de près nos 

résultats, nous pouvons noter que le taux d'envoi en entretien préventif de toute 

machine. selon la politique optimale, doit être égal à zéro s'il existe xj, j = 1, - . n, 

tel que xj < Xj- C'est quand le seuil critique est atteint pour tous les produits que 

nous pouvons envisager de faire de  ia maintenance préventive. 

En nous basant sur ces observations, nous pouvons associer à la loi de 

commande de type seuil critique des paramètres caractéristiques correspondant 

respectivement au seuil critique de chaque produit et à la valeur d'âge à partir 



de laquelle les machines doivent être envoyées en entretien préventif lorsque le seuil 

critique est atteint. Un exemple d'une telle paramétrisation peut être trouvé dans 

Kenne et Gharbi (1997) où une combinaison d'approches analytiques, de simulation 

e t  de méthodes statistiques ont permis de  trouver une bonne approximation de 

chacun des paramètres utilisés. 

4.5 Conclusion 

Dans ce chapitre, nous avons appliqué la méthode de commande hiérarchisée et 

les méthodes numériques au problème de commande d'un système de production 

constitué de deux machines qui produisent un seul type de pièce. Pour valider 

l'efficacité de la méthode heuristique proposée. nous avons comparé les performances 

de la loi de commande obtenue à celle d'une loi de commande issue d'une résolution 

directe des équations d7HJB. Il ressort de cette étude comparative que la loi de 

commande obtenue se rapproche de la loi de commande optimale approximée par 

les méthodes numériques lorsque le nombre de classes de la partition auomente. 

Sous avons par la suite étendu l'application de l'approche proposée au cas 

d 'un système de production constitué de deux machines qui traitent deux t-ypes de 

pièces. La résolution d'un tel problème de commande nous a permis d'illustrer la 

contribution de cette recherche car la résolution directe des équations d'HJB pour 

cet exemple n'est pas évidente. De plus, nous avons dégagé des résultats obtenus 

e t  des conclusions de certaines de nos études (non présentées dans cette thèse mais 

citées en référence) que la loi de commande optimale pour les types de systèmes 

considérés est de type hedging point dépendant des âges des machines. 



Conclusions générales 

L'objectif global de cette thèse était de trouver une politique optimale de 

planification de la production et de la maintenance d'un système de production 

constitué de plusieurs machines spécialisées dans la production de plusieurs types 

de pièces. Pour résoudre ce problème, nous avons, sur une base théorique, présenté 

une approche de commande hiérarchisée basée sur la méthode des perturbations 

singulières. Sous avons par la suite appliqué cette approche de commande sur deux 

exemples de systèmes de production. 

Du point de vue théorique, nous avons contribué à l'extension de l'approche de 

commande hiérarchisée: basée sur la méthode des perturbations singulières, au cas 

où le processus de saut est commandé et au cas où les taux de transition dépendent 

de l'état du système. Nous avons utilisé le fait que la solution au problème de 

commande optimale stochastique initial converge de façon asymptotique vers celle 

d'un problème de commande déterministe équivalent lorsque les taux de transition 

des phénomènes rapides tendent vers l'infini. Les conditions d'optimali té obtenues, 

aussi bien pour le problème de commande stochastique initial que pour le problème 

de commande déterministe équivalent, sont une extension de celles obtenues dans 

la littérature. 

Pour résoudre les conditions d'optimalité du problème déterministe, nous 

avons utilisé l'approximation de Kushner pour formuler un problème de décision 

markovien à événements discrets. Après avoir établi le lien entre ce formalisme 

et celui proposé initialement, nous avons utilisé un algorithme numérique pour 



résoudre les conditions d'optimalité obtenues. Une méthode de construction de la 

loi de commande stochastique du problème initial à partir de la solution numérique 

du problème limite a par la suite été proposée. 

AU niveau des applications, nous avons considéré deux systèmes de production. 

Nous avons dans un premier temps déterminé la loi de commande d'un système 

de production constitué de deux machines produisant un seul type de pièce. En 

suivant les principales étapes de l'approche proposée, nous avons montré. à l'aide 

des modèles de simulation, que lorsque le nombre de classes de la partition des âges 

des machines augmente, nous obtenons un raffinement de la loi de commande. Les 

performances du système obtenues avec une telle politique se rapprochent de celles 

que procure une loi de commande sous-optimale issue de l'application directe des 

méthodes numériques aux équations d'HJB stochastiques. 

La loi de commande hiérarchisée obtenue qui fixe les taux de production du 

système et de maintenance préventive de chaque machine dans chaque mode du 

processus stochastique décrivant la dynamique des machines est une commande 

de type "bang-bang". Pour la planification de la production, la loi de commande 

obtenue est de type "hedging point" modifié, caractérisée par un seuil critique 

qui dépend de la dynamique des âges des machines. La politique de maintenance 

préventive dépend elle aussi du seuil critique et est telle qu'aucun entretien préventif 

ne doit être envisagé lorsque te seuil critique n'est pas atteint. 

Comme extension de l'approche de commande proposée dans cette thèse, nous 

pensons qu'il serait souhaitable: 

1. d'introduire la maintenance corrective dans le modèle et de résoudre le 

problème de planification de la production, de la maintenance préventive et de 



la maintenance corrective des systèmes de production en utilisant l'approche 

de commande hiérarchisée, basée sur les méthodes des perturbations 

singulières: 

2. d'appliquer l'approche de commande hiérarchisée, comme dans cet te thèse. a 

la commande des systèmes en tandem (machines en série) lorsque le processus 

de saut est commandé et dépend des âges des machines; 

3. d'étendre l'approche proposée au cas des systèmes de production qui 

produisent plusieurs types de pièces en présence du setup; 

4. d'associer des paramètres à La structure générale de la loi de commande de 

type hedging point modifié et dhtiliser l'approche basée sur la combinaison 

des modèles de simulation et des méthodes statistiques pour obtenir une 

bonne approximation de  la loi de commande. Cette méthode est basée sur 

le fait qu'on n'aura pas à résoudre au préalable les conditions d'optimalité du 

problème de commande considéré. 
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Annexe A 

Système de production à deux 

machines traitant un seul type de 

L'objet de cette annexe est de présenter brièvement la loi de commande issue 

d'une résolution numérique des conditions d'optimalité stochastiques du problème 

de planification de la production et  de la maintenance préventive. Nous considérons 

le cas d'un système constitué de deux machines spécialisées dans la production 

d'un seul type de pièce. Pour plus d'information sur les équations qui décrivent 

le problème de décision markovien associé aux équations doHJB stochastiques 

développées aux chapitres 2 ou 3 (voir équation (2.19)), nous renvoyons le lecteur 

aux travaux de Boukas (1987) et (1997). Nous présentons dans cette annexe la loi 

de commande issue d'une résolution numérique du système d'équations qui décrit 

les conditions d'optimalité du problème de décision markovien associé au problème 

considéré. 

Nous avons résolu le problème de décision markovien obtenu en utilisant les 

mêmes données qu'à la section 4.2. Les figures A. 1 à A. 10 représentent les taux de 

production et de maintenance préventive de chaque machine dans le mode où toutes 



Figure A . l :  Tacx de production de Ml pour a2 = 1 

les deus machines sont opérationnelles. Ces figures. limitées à quelques combinaisons 

des variables d'état . illustrent Ia loi de commande associée à la méthode dite directe 

dans cette thèse. 

Comme nous pouvons le constater? il ressort de cette politique de planification 

que nous devons exploiter plus fréquemment les machines les plus vieilles et utiliser 

les machines plus jeunes en cas de nécessité. Cette stratégie garantit une réserve 

de capacité car les vieilles machines doivent tomber incessamment en panne et la 

production ne pourra se faire qu'avec celles qui restent opérationnelles (c'est-à-dire 

les machines jeunes). Cette remarque est bien illustrée par une comparaison des 

figures A. 1 à A.4. De plus, il est intéressant de remarquer, d'après les figures A.5 à 

A.10. que la zone oh la  maintenance préventive doit être envisagée diminue lorsque 

les machines vieillissent (c'est-à-dire lorsque leur âge augmente). 

Les méthodes numériques nous ont ainsi permis de résoudre le problème de 



Figure A.2: Taux de production de Ad2 pour a2 = 1 

Figure A.3: T a u  de production de M l  pour a2 = 5 
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Figure A.4: Taux de production de 1bI2 pour a? = 3 

Figure A.5: Taux de maintenance préventive de M pour a l  = 1 



Figure A.6: Taux de maintenance préventive de Ad2 pour a? = O 

al 0 -2 x 

Figure A.7: Taux de maintenance préventive de M l  pour a? = 3 
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Figure A.8: Taux de maintenance préventive de M 2  pour a? = 3 

Figure A.9: Taux de maintenance préventive de M l  pour a? = 6 



Figure A. 10: Taux de maintenance préventive de Mo pour a? = 6 

commande optimale du système de production constitué de deux machines qui 

produisent un seul type de pièce. Malheureusement, l'application de ces méthodes 

à la résolution des conditions d'optimalité associées à des systèmes plus larges se 

heurte à leur grande dimension. Cette dimension croit exponentiellement avec la 

taille du problème tel que nous l'avons précisé au chapitre 2. 



Annexe B 

Modèles simulation des 

systèmes de production 

L'objet de cette annexe est de présenter une approche de simulation des systèmes 

de production basée sur un ensemble de réseaux. Chaque réseau est un ensemble 

de noeuds qui représentent graphiquement et de façon spécifique une partie de la 

dynamique du système. Cette dvnamique est décrite par un ensemble d'événements 

discrets. d'activités et  de branches. Le programme de simulation que nous proposons 

est constitué principalement de trois réseaux associés respectivement aux modes 

opérationnels des machines, aux modes d'arrêt des machines et  à la boucle de 

simulation. 

B. 1 Modes opérationnels des machines 

C'est dans un mode opérationnel que chaque machine produit selon un rythme de 

production défini à l'avance. Ce rythme de production peut correspondre soit à la 

loi de commande hiérarchisée ou à celle issue de la méthode directe de résolution des 

équations d'HJB stochastiques. La loi de commande U(a ,  5 )  = (u(a,  5) ,  w ( a ,  x)) 

est d'abord initialisée, pour chaque mode a du processus stochastique, dans 



Figure B. 1: Machines opérationnelles avec ET=, TSk  = ül(. ) et k = A ( 1 ) 

un tableau de dimension appropriée. Pour simplifier ia présentation et la 

compréhension, nous considérons le cas d'un système de production constitué de 

rn machines identiques (m > 2) et produisant un seul type de pièce. La figure 

B.1 présente le réseau qui modélise La production des pièces par les machines 

opérationnelles. 

Les m machines sont modélisées par des RESOURCES (MACi), i = 1,. . , rn, qui 

sont considérées comme des postes de travail ayant un seul serveur. Un service au 

niveau d'une RESOURCE i correspond à la production d'une pièce par la machine 

correspondante. Initialement, une entité fictive représentant l'ordre de production 

est créée au noeud (Ci) au temps t o  = O. Cette entité est dirigée au noeud ( A S l )  où 

m est assigné à son attribut A ( 2 ) .  L'attribut A ( 2 )  de l'entité fictive est ensuite 

utilisée? avec le noeud UNBATCH désigné par (CI B I ) ,  pour introduire rn entités 

identiques dans le réseau. Les m entités résultantes sont successivement dirigées au 

noeud (AS. )  où x l  (avec xi  = 1, . . , m )  est assigné à leur attribut A (1). Chacune de 

ces entités représente une machine décrite par un numéro donné par XI. Les entités 

sont par la suite dirigées a u  noeud (GI) où un aiguillage est prévu. Un maximum 

d'une branche est choisi pour diriger ces entités en fonction du taux de production 

actuel. Les deux cas suivants peuvent se produire: 



1. Si u ( . )  = O. (c'est-à-dire que la production n'est pas nécessaire). alors les 

entités sont retournées au noeud (G1) par une activité de très faible durée To. 

2. Si u ( .  ) # O. (c'est-à-dire que l'on doit produire au taux de demande ou au 

taux maximal), alors les entités sont dirigées vers le noeud ( A i )  où l'entité 

i doit attendre que la RESOURCE (MACi) soit disponible. Lorsque (MACi) est 

disponible. l'entité le capture pour une durée de TSk  unités de temps telle 

que : 

.\près cette activité, la machine (MACi) est libérée au noeud (FI) et devient 

disponible pour la production d'une autre pièce. 

Par la suite. I'entité est dirigée au noeud (E l ) ,  où l'appel d'un sous-programme 

FORTRAX fait la mise à jour du  stock, de la demande cumulative et du coùt de 

stockage. .\près le noeud ( E l ) ,  l'entité est retournée au noeud (G I )  pour un autre 

cycle de production. 

B.2 Pannes et maintenances préventives des 

machines 

Lorsquoune machine n'est pas opérationnelle, elle est soit en panne ou en 

maintenance préventive. Nous présentons à la figure B.2 le réseau qui modélise 

les pannes et les envois en entretien préventif des machines. Les arrivées des pannes 

et des maintenances préventives sont générées par une entité initialement créée au 

noeud (C2) au temps to = O. Cette entité est dirigée au noeud (AS3) où m est 

assigné à son attribut A ( 2 ) .  L'entité est ensuite dirigée au noeud UNBATCH dénoté 



Figure B.2: Pannes et maintenances des machines avec T, = l /  A i l ,  
Tm = l/X;,, Tl = l /w i ( . ) ,  T2 = 0.1 

par ( U B ? )  afin de pouvoir introduire m entités identiques dans le réseau. Les m 

entités sont dirigées successivement au noeud (AS4)  où les attributs A ( 1 ) , A(2 )  et 

-4 (3)  de chacune d'elles prennent les valeurs z2, x2 + m et + 2m. Chaque entité 

est ensuite dirigée vers le noeud ( A S 5 )  où la probabilité de panne P(a,( . ) )  de la 

machine xz est assignée à l'attribut 4 3 ) .  Quand l'entité arrive au noeud (G?), une 

branche sur trois doit être choisie en fonction de la probabilité de panne A (3) et du  

taux d'envoi en entretien préventif. Une des trois conditions suivantes doit être par 

conséquent valide. 

1. Si A(3)  ou P(a,(.)) est telle qu'une panne de machine doit avoir lieu. alors 

l'entité est dirigée au noeud (PA) où la RESOURCE (MJ!C~(~)) est capturée. Si 

la machine correspondante était entrain de produire une pièce, cette opération 

est interrompue. L'activité de réparation de la machine commence aussitôt et 



Figure B .3: Boucle de simulation avec T ,  = d -' 
dure T, unités de temps. Après l'activité de réparation. (MACA(L)) est libéré 

par l'entité au noeud (F3). L'entité de panne de chaque machine est par la 

suite retournée au noeud ( A S 5 )  pour la génération de la prochaine panne. 

2.  S'il n'y a pas panne de machine et que l'entretien préventif est envisagé (c'est- 

à-dire lorsque w ( .  ) # O) ,  alors l'entité doit capturer la RESOURCE (MACa(i) 

comme dans le cas précédent. Après l'activité de maintenance qui dure Tm 

unités de temps, est libéré au noeud (F4) et l'entité est retournée au 

noeud (.4S5) pour une autre génération. 

3. S'il n'y a pas panne de machine et aucune activité de maintenance n'est 

planifiée. alors l'entité est retournée au  noeud (AS5) après T2 unités de temps. 

S'otons que T2 est généralement négligeable par rapport au temps d'usinage 

d'une pièce. 

B.3 Boucle de simulation 

Cette boucle génère la demande des produits finis, fait la mise à jour du stock et 

du coût à chaque arrivée de demande et contrôle l'arrêt de la simulation. Le réseau 

correspondant est représenté à la figure B.3. 

Une entité correspondant à une simulation est initialement créée au noeud (C3) 



au temps to  = O. Cette entité est dirigée au noeud ( A S 5 )  où le temps de production 

Ph (OU temps de simulation dans ce cas) prend la valeur 10000 unités de temps. 

L'entité est ensuite dirigée au noeud (Gr)  et par la suite au noeud (E2) après Td 

unités de temps correspondant au temps d'interamvées de la demande (c'est-à-dire 

que nous avons Td = d - l ) .  La demande cumulative. le stock et le coût sont révisés 

au noeud (E2) par l'appel d'un sous-programme FORTR..\N. En retournant par la 

suite l'entité au noeud ( G 3 ) .  ce sous-programme est appelé à chaque Td unités de 

temps. Si le temps de simulation courant T,, demeure inférieur à la durée totale 

de simulation Ph, alors l'entité est retournée au noeud CS; sinon il faut arrêter la 

simulation. 

Le programme de simulation du système de production constitué de deux 

machines traitant un type de pièce est constitué des réseaux présentés aux figures 

B.1. 8.2 et 8.2. Nous avons présenté aux figures 4.13 et 4.14 les performances 

de ce système lorsqu'il est simulé sous deux types de loi de commande (loi de 

commande hiérarchisée et loi de commande issue de la méthode directe de résolution 

des équations d'HJB) . 



Annexe C 

Système de production à deux 

machines traitant deux types de 

piëces 

L'objet de cette annexe est de présenter brièvement la loi de commande issue 

d'une résolution numérique des conditions d'optimalité stochastiques du problème 

de planification de la production et de la maintenance préventive. Nous considérons 

le cas d'un système constitué de deux machines spécialisées dans une production 

simultanée de deux types de pièces. Comme dans l'annexe A, nous demandons au 

lecteur de se référer aux travaux de Boukas (1987) et (1997) pour plus de détails 

sur le problème de décision markovien associé à cet exemple. 

La résolution du problème de décision markovien associé au problème 

d'optimisation considéré dans cette annexe est difficile à cause de la dimension 

du problème. Nous avons cependant tenu à résoudre ce problème dans le but 

d'illustrer la réduction de complexité de résolution que nous offre l'approche de 

commande hiérarchisée. En utilisant les mêmes données qu'à la section 4.3, nous 

avons résolu numériquement les conditions d'optimalité relatives à ce problème à 

l'aide de l'algorithme d'itération de la commande. Nous présentons aux figures C.1 



Figure C . l :  T a u  de production du produit 1 sur la machine pour 

al = 1. a2 = 3 

à C.14 la loi de commande obtenue, correspondant a u  mode où toutes les machines 

sont opérationnelles. 

Pour représenter cette loi de commande. nous nous sommes limités à quelques 

combinaisons des variables d'état. Les combinaisons retenues nous permettent 

d'illustrer la dépendance de la loi de commande obtenue vis-à-vis des âges des 

machines. La loi de commande représentée par les figures C. 1 à C. 14 confirme le fait 

que les âges des machines influencent de facon significative les taux de production 

du système et de maintenance préventive des machines. L'exploitation des machines 

(production) et la stratégie de maintenance préventive des machines sont telles que 

la commande d'une machine jeune se distingue nettement de celle d'une machine 

vieille. 



Figure C.2: Taux de production du produit 1 sur la machine Ad2 pour 

al = 1. a? = 3 



Figure C.3: Taux de production du produit 2 sur la machine !CI1 pour 

ai = 1. a2 = 3 



Figure C.4: Taux de production du produit 2 sur la machine M 2  pour 

a l  = 1. an = 3 



Figure C.5: Taux de production du produit 1 sur la machine 121 pour 



9 pour Figure C.6: Taux de production du produit 1 sur la machine iCI_ 



Figure C .7: Taux de production du produit 2 sur la machine MI pour 

a l  = 1. a- = .5 



Figure C.8: Taus de production du produit 2 sur la machine ,If2 pour 

ai = 1. a:! = 5 



xl -2 -2 
x2 

Figure C.9: Taus de maintenance de la machine MI pour a l  = 1. a? = 3 

xl -2 -2 x2 

Figure C. 10: Taux de maintenance de la machine M2 pour al = 1, a:! = 3 



Figure C. 11: Taux de maintenance de la machine hll pour a i  = 1. a l  = 5 

Figure C.12: Taux de  maintenance de la machine hl2 pour al = 1, an = 5 



xl -2 -2 x2 

Figure C.13: T a u  de maintenance de la machine M l  pour al = 3' a? = 5 

xl -2 -2 x2 

Figure C. 14: Taux de maintenance de la machine M2 pour al = 3, an = 5 
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