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RESUME

Ce mémoire présente une approche fondée sur la vision pour améliorer I'interaction homme-
robot dans des environnements industriels collaboratifs, en s’appuyant sur un systéme multi-
caméras RGB-D. Réalisée dans une cellule cobotique de parachévement, équipée de six camé-
ras Intel RealSense D455 synchronisées, 1’étude aborde trois défis principaux : la calibration
des caméras, I'estimation robuste de la pose de 'opérateur humain, et la sélection adaptative

des vues de caméras.

Premierement, un cadre de calibration a été mis en place en utilisant une mire pour effectuer
la calibration intrinseque et extrinseque stéréo. La précision du calibrage a été évaluée a I’aide
de l'erreur quadratique moyenne de reprojection (MSE), apreés une optimisation non linéaire.
Les résultats obtenus ont permis de dégager des pistes d’amélioration avant une utilisation

de ces matrices pour la reconstruction 3D.

Deuxiemement, I’estimation de la pose humaine a été étudiée a travers une comparaison entre
les frameworks OpenPose et MediaPipe sur un petit jeu de données en haute résolution. Bien
que MediaPipe fournisse une structure de points clés plus détaillée, sa complexité computa-
tionnelle plus élevée limite son utilisation en traitement temps réel multi-caméras. La version
allégée d’OpenPose propose un meilleur compromis entre efficacité et précision des points

clés, ce qui en fait le modele le plus adapté pour cette application.

Troisiemement, une stratégie de sélection de caméras a été mise en ceuvre a l'aide d'un
classifieur Random Forest. En extrayant des caractéristiques de confiance a partir des points
clés détectés, le modele a permis de sélectionner efficacement 1’ensemble de caméras le plus
informatif sur la pose de I'opérateur, pour chaque image. L’évaluation en validation croisée
leave-one-out a montré d’excellentes performances, avec une précision moyenne de 94,99 %,

une précision de 92,3 %, et un rappel parfait de 100 %.

Dans I’ensemble, le systeme proposé offre une chaine de perception évolutive et réactive pour
les systemes robotiques collaboratifs. Ce travail propose une méthodologie robuste pour la
calibration multi-caméras et la sélection de vues basée sur la pose de l'opérateur, avec des

applications potentielles dans des environnements industriels réels.
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ABSTRACT

This thesis presents a vision-based approach for enhancing human-robot interaction in col-
laborative industrial environments using a multi-camera RGB-D system. Conducted within
a cobotic part-finishing cell equipped with six synchronized Intel RealSense D455 cameras,
the research addresses three main challenges: precise camera calibration, robust human pose

estimation, and adaptive camera view selection.

First, a calibration framework was developed using checkerboard-based intrinsic and stereo
extrinsic calibration procedures. The accuracy of the calibration was evaluated through
mean squared reprojection error (MSE), after non-linear optimization. This setup ensured a

consistent coordinate system for 3D reconstruction.

Second, for pose estimation, a comparative study between OpenPose and MediaPipe was
carried out on a small high-resolution dataset. While MediaPipe provided a richer keypoint
structure, its higher computational overhead made it less viable for real-time multi-camera
processing. OpenPose’s lightweight configuration offered an optimal trade-off between effi-

ciency and keypoint accuracy, making it the preferred model for this application.

Third, a camera selection strategy was implemented using Random Forest classification. By
extracting confidence-based features from detected keypoints, the model effectively selected
the most informative subset of cameras for each frame. Evaluation through leave-one-out

cross-validation showed excellent performance, with an average accuracy of 94.99

Overall, the proposed system delivers a scalable and real-time perception pipeline for col-
laborative robotic systems. The work contributes a robust methodology for multi-camera
calibration, pose-based camera selection, and vision-guided interaction, with applications

extending to real-world industrial deployments.
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CHAPITRE 1 INTRODUCTION

1.1 Context

With the increasing integration of collaborative robotic systems (cobots) in industrial
settings, ensuring precise environmental perception is essential for enhancing human-robot
interaction. Unlike traditional industrial robots, which operate in isolation, cobots are desi-

gned to collaborate with human operators within shared workspaces.

This research is conducted in collaboration with the Aerospace Manufacturing Technologies
Center (AMTC) at the National Research Council of Canada (NRC), where a prototypical
cobotic platform is made available for our experiments. The cobotic cell, illustrated in Figure
1.1, consists of a Universal Robots UR10 mounted on a finishing table, surrounded by six

RGB-D cameras placed at different locations to provide a complete view of the workspace.

This cobotic cell is specifically designed for part-finishing operations such as polishing and
sanding. In this setup, the operator interacts with the workpiece in a highly intuitive and
contactless manner. The entire interaction is achieved solely through vision-based systems
and there is no need for physical contact with any interface or control device. This vision-
driven workflow enables seamless and efficient human-robot collaboration while maintaining

a natural and ergonomic environment for the operator.

FIGURE 1.1 1 :cobot arm, 2 :table, 3 :work piece 4 :one of the six installed RGB-D cameras.

The work of Corentin Hubert, within our research team, conducted in the same cobotic cell
at the National Research Council of Canada, focused on the development of a robust, multi-

view gesture recognition framework and resulted in the creation of the publicly available



MuViH dataset. The dataset was designed to enable vision-based, contactless communica-
tion between an operator and a collaborative robot by interpreting predefined static hand
gestures. To support this, a comprehensive data acquisition campaign was carried out invol-
ving 20 different participants. Each participant was instructed to perform a sequence of ten
predefined static hand gestures across three spatial zones around a downdraft table, which
serves as the central work surface in the cobotic cell. These gestures were selected based on
ergonomic constraints and relevance to industrial part-finishing tasks. In this work, camera
calibration was conducted independently for each camera using single-view images, without
employing any multi-view fusion techniques. Each RGB-D camera captured its own sequence
of checkerboard images, and intrinsic parameters were estimated individually using standard
single-camera calibration methods. Although multiple cameras were used in the setup, all
calibration processing was performed on an image-by-image basis rather than through joint
or stereo calibration involving simultaneous multi-view data. Also, data collection was per-
formed using six synchronized Intel RealSense D455 RGB-D cameras placed at two different
height levels and distributed around the workspace to maximize visibility while minimizing
the risk of occlusion from the operator or the robot. During the acquisition sessions, the
configuration of the UR10 cobot was varied between recordings to introduce realistic levels of
occlusion and simulate operational variability. All gesture sessions were recorded with precise
synchronization among the six RGB-D streams, resulting in a highly redundant multi-view
representation of each action. Following the acquisition phase, a large-scale annotation pro-
cess was undertaken to generate accurate 2D bounding boxes around the hands for each
camera stream and frame, facilitating hand gesture recognition. These annotations were used
to train a YOLOvS8-based hand detector, followed by a gesture classification pipeline using
a ResNet-inspired neural network. This extensive dataset and experimental design provide a
robust foundation for subsequent research, including the current thesis, which expands the
perception pipeline by focusing on calibration accuracy, camera view selection, and human

pose estimation to further enhance multi-camera collaboration in the cobotic cell.

One of the key challenges in deploying cobots in industrial environments is ensuring that
their visual perception is both accurate and computationally efficient. In a multi-
camera system, three major problems must be addressed : cameras calibration, human

pose estimation, and camera view selection.

Camera calibration is a fundamental process that retrieves cameras intrinsic and extrinsic
parameters which allow metric understanding of the 3D scene in a unified coordinate system.
In cobotic applications, where precise object localization and human tracking are essential,
improper calibration can lead to misalignment, inaccurate depth estimation, and poor

pose estimation of the operator. Given the complexity of a cobotic environment rich in



visual occlusions and cluttered background, calibrating a network of 6 cameras to provide a

unified and accurate 3D representation of the workspace is a non-trivial challenge.

Human pose estimation (HPE) is another essential component for tracking an opera-
tor’s movements. HPE involves detecting keypoints on the human body and reconstructing
their 3D positions in space. This functionality is crucial for monitoring operator safety, en-
suring proper task execution, and providing real-time feedback to the robotic system. Ho-
wever, achieving robust human pose estimation in an industrial setting is challenging due
to occlusions, varying lighting conditions, and the presence of dynamic elements within the

workspace.

Camera view selection focuses on dynamically determining which subset of cameras
should be active at any given time. In fact, keeping all six cameras active simultaneously
introduces significant challenges, including redundant data collection, increased pro-
cessing time, and unnecessary computational load. Selecting the most informative
subset of cameras based on the operator’s location, pose visibility, and the current task is

critical to optimizing system efficiency.

This research focuses on developing an intelligent camera calibration, human pose es-
timation, and view selection strategy that enhances human-robot collaboration by
ensuring that only the most relevant cameras are active while maintaining precise spatial

alignment across all viewpoints.

1.2 Problem Statement

Although cobots have been successfully integrated into industrial environments, their effec-
tiveness heavily depends on their perception capabilities. Multi-camera vision systems
provide a comprehensive view of the workspace, allowing for better tracking and monitoring

of human operators. However, using multiple cameras introduces several challenges.

The first challenge is camera calibration. In a multi-camera setup, each camera has its
own intrinsic and extrinsic parameters, including focal length, lens distortion, position, and
orientation. To obtain a unified 3D representation of the environment, all cameras must be
carefully calibrated so that their individual frames align within a common coordinate system.
Calibration errors can lead to unreliable skeleton tracking, which can negatively impact

robotic decision-making.

The second challenge is human pose estimation (HPE). In industrial applications, accu-
rately determining the posture and movements of an operator is essential for improving cobot

response mechanisms. However, occlusions, lighting variations, and the presence of multiple



objects in the scene complicate the accurate reconstruction of human poses in 3D. Advanced
deep learning-based HPE techniques must be integrated into the multi-camera system to

ensure robust tracking.

The third challenge is camera view selection. While having multiple cameras enhances
visibility, not all cameras provide useful data at all times. Certain cameras may have
an obstructed view due to the robot’s position, the operator’s movement, or the workspace
layout. Moreover, activating all cameras continuously leads to unnecessary computational
overhead, reduced real-time performance, and increased data redundancy. A key
challenge is developing an adaptive camera selection strategy that dynamically activates
the most relevant subset of cameras based on the operator’s location, task requirements, and

visibility constraints.

Without addressing these challenges, a cobotic system may suffer from inefficient data
processing, misaligned depth estimation, poor human pose tracking, and increa-
sed operational latency, all of which hinder real-time human-robot collaboration. This
thesis aims to develop an effective calibration, human pose estimation, and camera

selection framework to optimize perception in multi-camera cobotic environments.

1.3 Thesis Structure

This thesis is organized into six chapters :

Chapter 2 - Literature Review : This chapter presents an overview of existing research
on multi-camera calibration techniques, human pose estimation methods, and
camera view selection strategies. It highlights the strengths and limitations of current

approaches and identifies gaps that this research aims to address.

Chapter 3 - Research Objectives : This chapter defines the specific objectives of the
thesis, providing the rationale for why camera calibration, human pose estimation, and
camera view selection are essential for improving human-robot collaboration in industrial

cobotic environments.

Chapter 4 - Methodology : This chapter details the experimental setup, dataset
acquisition process, calibration methodology, pose estimation techniques, and
camera selection models. It also explains how data is processed, labeled, and used for

training and evaluation.

Chapter 5 - Results and Discussion : The results obtained from experimental validation
are presented and analyzed in this chapter. The system’s performance is assessed based on

calibration accuracy, human pose tracking precision, camera selection efficiency,



and computational optimization.

Chapter 6 - Conclusion and Future Work : This chapter summarizes the key contribu-
tions of the research, discusses its limitations, and suggests directions for future improvements
in multi-camera calibration, human pose estimation, and adaptive camera selec-

tion.



CHAPITRE 2 LITERATURE REVIEW

Human-computer interaction (HCI) or human-machine interaction (HMI) examines the scien-
tific implications and practices of interfaces between people and computers or intelligent
agents. This term was first used in 1976. According to [4], there have been five stages in the
development of HCI : manual, interactive command language, graphical user interface (GUI),
network user interface, and natural HCI. Human-computer interaction deals with methods
and tools for designing and evaluating human-computer interfaces and assessing computer
usability, as well as broader human-centric issues such as computer interaction with people [5].
As machine technology advances, augmented reality (AR) is a rapidly developing area of HCI
because it allows humans to interact with computers and allows them to interact visually
with computing devices in a variety of ways, particularly through gestures. Gestures consist
of movements made by parts of the human body, such as the face, body, hands, legs, and feet,
to convey information. In augmented reality-based applications that involve human-computer
interaction, the hand is usually used to recognize gestures more than other body parts, which

makes hand gestures very important as an interactive medium [6] .

Perception and interpretation of human behavior, including body language, and hand, and
pose estimations, via image-based and non-image-based methods, is a fundamental necessity
to enable industrial cobots to be capable of detecting human presence, thereby realizing a
secure and intuitive human-robot interaction in the era of the new industrial revolution,

namely, industry 4.0.

This section provides a literature review organized as follows : first, an overview of the sensors
used for gesture recognition is provided, second, methods for pose estimation and whole body
gesture recognition are reviewed, third, some occlusions handling strategies are presented, and

finally, methods for camera selection in multiple-camera settings are reviewed.

2.1 Sensors

The development of gesture interfaces, touch screens and augmented and virtual reality have
resulted in new usability concerns that need to be studied in a natural environment in an
unobtrusive manner. The location of the hand and fingers can be measured with high accu-
racy with several robust approaches, such as data gloves with electromechanical, infrared, or

magnetic sensors.



2.1.1 RGB-D Cameras

The use of image-based solutions enables natural interaction with technology and enables

human movement to be tracked and studied without being intrusive.

In recent years, various affordable 3D active imaging systems have been introduced to the
market. These systems capture and record information about visible 3D surfaces, including
their geometry and appearance. Typically, these technologies are aimed at consumers and
embedded in consumer-oriented products. An active 3D imaging system is often referred
to as a range camera or RGB-D camera. Structured-light, time-of-flight and active stereo
vision are the three fundamental measurement principles that underpin most RGB-D cameras
available today [7]. Structured-light involves projecting a pattern of light onto the scene and
analyzing the deformation of the pattern to determine depth. Time-of-flight measures the
time it takes for a light pulse to travel to the scene and return to the camera to calculate
depth. Active stereo vision uses two cameras at different angles to calculate depth and projects
a light pattern onto the scene to artificially enhance its texture and thus to facilitate stereo
matching. Each of these methods has its own advantages and disadvantages, and the choice
of which to use depends on the specific application and environmental conditions. The range
of commoditized structured-light systems with temporal encoding is more limited than active
stereo sensors. Moreover, in a multiple cameras setting, time-of-flight sensors are sensitive to
interference, resulting in erroneous depth measurement. On the opposite, active stereo vision
does not rely on light reflected to the sensor, it only projects lights to enhance the texture of
the scene and facilitate the stereo matching. Used in a multiple camera setting, each sensor
will provide even more texture and thus depth information, which can improve the accuracy
and robustness of the 3D reconstruction. This is especially useful in complex scenes with
occlusions or reflective surfaces, where multiple camera views can provide different angles

and viewpoints to capture the scene more completely.

Depth information is an essential aspect of 3D imaging and computer vision. It provides
information about the distance between objects in a scene, allowing for the reconstruction of
3D models and the detection of objects and their movements. With the advancements in depth
sensing technology, more accurate and reliable depth information can be obtained, leading to
improvements in various fields such as robotics, augmented reality, and autonomous vehicles.
In the context of cobotic, a comparison is made between Kinect vl and Kinect v2 [8]. A
Kinect v1 infrared emitter projects infrared dots into the environment, which are deformed
by the environment to calculate depth. With its ToF camera, the Kinect v2 projects infrared
light into the environment and measures the speed of that infrared light back and forth to

calculate the depth of a scene. Kinect v1 sensors have a larger range, but are less accurate



than Kinect v2.

There is also a comparison between a version of Intel’s RealSense called the D415 and the
Kinect v2. D415 raw data significantly reduces probing form errors, probing size errors, sphere
spacing errors, and flatness errors compared to Kinect v2. Intel RealSense D415 was found

to be a low-cost device in [9].

Leap Motion and Microsoft Kinect, two commercially available solutions, restrict hand mo-
vement to a relatively small area, do not capture all the nuances of rapid hand movements,

and are not precise enough to measure finger movement accurately [10].

Depth sensing has shown great potential in the recognition of pose estimation in a cobotic cell
and hand tracking for pointing out the part being processed. Some of the studies use a Kinect
depth sensor [11] [12]. This is because it offers a cheaper and easier solution as compared
with other methods mentioned in [13]. In [14], the authors provide a comprehensive review of
the current state-of-the-art in gesture recognition techniques for human-robot collaboration.
They discuss various gesture recognition methods, such as vision-based, sensor-based, and
hybrid approaches, and their advantages and limitations. They also highlight the challenges
and future directions in this field. In the paper , the authors provide a detailed review of the
Microsoft Kinect sensor and its applications in computer vision. They discuss the hardware
and software components of the Kinect sensor and the various features it provides, such as
depth sensing, skeleton tracking, and voice recognition. They also review the applications
of the Kinect sensor in various fields, such as healthcare, entertainment, and robotics, and
discuss the advantages and limitations of the sensor. Additionally, they highlight the future

directions and potential advancements in this field.

Intel’s RealSense D455 is a compact stereo RGB-D camera purpose-built for real-time three-
dimensional sensing. It couples a 1280 x 720 pixel RGB module with two infrared imagers
that project and capture structured light ; the on-board processor then computes dense depth
maps at up to 90 frames s~*. With a 95 mm baseline and an 86°x57° field of view, the camera
achieves sub-millimetre depth precision from roughly 0.4 m to 6 m. Automatic dynamic
calibration maintains accuracy under changing illumination or vibration, and rolling-shutter
compensation limits motion artefacts. The unit is USB-powered, draws little current, and fits

easily into mobile robots, handheld scanners, or fixed industrial stations.

A single D455 positioned above the workspace observes the entire arm, the surrounding envi-
ronment, and the robot simultaneously, enabling multi-person tracking, collision monitoring,
gesture recognition, and ergonomic analysis without requiring any wearables. Its centimetre-
scale depth accuracy and higher spatial resolution offer more reliable hand-pose estimation

for applications such as augmented reality or task-level supervision.



Overall, using the Intel RealSense D455 is a good choice because it is well suited for a multi-
camera setting, allowing the capture of highly accurate and detailed 3D models of the scene
with high texture information. Compared to other sensors such as the Kinect v1, Kinect v2,
and Leap Motion, the Intel RealSense D455 has been found to have significantly fewer errors
and a higher level of precision in its depth sensing capabilities, making it a more reliable
and accurate option. Additionally, the D455 has a wider field of view and can capture data
at higher resolutions than some of the other sensors mentioned [15]. Overall, the D455’s
combination of high accuracy, precision, and versatility make it a strong choice for a range

of computer vision and depth sensing applications.

2.2 Human Pose Estimation (HPE)

Human Pose Estimation (HPE) is a fundamental component in facilitating intuitive human-
robot interaction, particularly within collaborative industrial environments. The objective of
HPE is to accurately determine the spatial configuration of human joints, enabling machines
to interpret and respond to human actions effectively. Over the years, HPE methodologies
have evolved significantly, transitioning from traditional model-based approaches to sophis-

ticated deep learning techniques.

2.2.1 Early Model-Based Approaches

The early stages of Human Pose Estimation (HPE) were shaped by model-based techniques
that relied heavily on handcrafted features and predefined representations of the human body.
These methods were designed to identify individual body parts and reconstruct the overall

pose using a set of structural assumptions.

One category of these approaches, known as appearance-based models, focused on using visual
cues such as texture, color, and gradients to detect body parts. These models generally lacked
flexibility and were sensitive to background clutter and occlusion. To improve robustness,
deformable or structural models were introduced, which captured the relationships between

body parts through spatial constraints.

A foundational contribution to this line of research was the Pictorial Structure Model [16].
This model represented the human body as a set of parts connected in a graph structure,
where each connection encoded the expected spatial relationship between joints. The model
balanced local appearance cues with global spatial configurations, making it more resilient
to partial occlusions and detection noise. Its formulation allowed an efficient inference using

dynamic programming, which was an important step toward practical implementation.
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Subsequent developments, such as a research [17], extended this framework specifically for
human pose estimation. They incorporated improved part detectors and more expressive spa-
tial models, which allowed for more accurate and flexible pose recovery in real-world images.
Their work also addressed people detection in crowded scenes and improved articulation

modeling, laying the groundwork for the transition to more data-driven approaches.

Although these early methods provided valuable insights and theoretical foundations, they
were often limited by their reliance on hand-crafted features and simplistic appearance mo-
dels. Their performance degraded significantly in the presence of complex poses, lighting
variations, and real-world backgrounds. These limitations became a driving force behind the
emergence of deep learning-based approaches, which soon redefined the state of the art in
HPE.

2.2.2 Emergence of Deep Learning Techniques

The advent of deep learning marked a significant turning point in HPE. Convolutional Neu-
ral Networks (CNNs) demonstrated remarkable capabilities in learning hierarchical feature
representations directly from data, leading to substantial improvements in pose estimation

accuracy and robustness.

DeepPose was among the pioneering works that applied deep learning to HPE, formulating
the task as a regression problem to predict joint coordinates directly from images. This ap-
proach showcased the potential of DNNs in capturing complex spatial dependencies inherent

in human poses [18].

Building upon this foundation, the Stacked Hourglass Network introduced a multi-scale ar-
chitecture that processed features at various resolutions, allowing for iterative refinement
of pose predictions. This design facilitated the capture of both local and global contextual

information, enhancing the model’s ability to handle diverse poses and occlusions [19].

2.2.3 Advancements in Lightweight and Real-Time Models

As the demand for real-time HPE applications grew, researchers focused on developing models

that balanced accuracy with computational efficiency.

A novel architecture incorporating a channel attention mechanism, PixelShuffle up-sampling,
and a Cross-Stage Heatmap Fusion method. Their approach achieved high accuracy while
significantly reducing the number of model parameters, making it suitable for real-time ap-

plications [20].
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Similarly, another research designed a lightweight image scaling network utilizing a non-
local convolution operator. Their model demonstrated remarkable improvements in scale
invariance and overall accuracy, further contributing to the development of efficient HPE

systems [21].

2.2.4 Contemporary Frameworks : OpenPose and MediaPipe

Modern human pose estimation frameworks have advanced significantly by offering robust,
real-time, and multi-person tracking capabilities. Two prominent examples such as OpenPose
and MediaPipe are widely used across research and industry. Each takes a distinct approach
and exhibits trade-offs in computational complexity, runtime speed, and granularity of key-

point representation.

OpenPose, developed by researchers at Carnegie Mellon University, employs a bottom-up
approach based on Part Affinity Fields (PAFs). The method first detects all body parts
independently and then associates them into individual skeletons. This architecture supports
multi-person tracking and delivers highly accurate 2D keypoint estimation. However, its
real-time performance is heavily reliant on powerful hardware. On systems equipped with a
high-end GPU such as the NVIDIA GTX 1080 Ti, OpenPose can reach approximately 22
frames per second. On CPU-only systems, performance drops significantly, often below one
frame per second, rendering it impractical for embedded or mobile applications. The full
OpenPose model is roughly 209 megabytes in size, with computational demands reflecting its

detailed architecture and comprehensive coverage of body, hand, and facial keypoints [22].

In contrast, MediaPipe, developed by Google, is designed for human pose estimation. It em-
ploys a two-stage detector-tracker architecture : the first stage detects the region of interest
(ROI) containing the person, and the second stage estimates 33 pose landmarks within this
ROI. While this architecture enables real-time performance on devices like smartphones and
laptops, it is not devoid of computational demands. The framework indicates that higher
accuracy comes at the cost of increased computational load. Moreover, the two-stage pro-
cess introduces additional latency and memory usage, particularly when handling continuous
video streams. Therefore, although MediaPipe is optimized for performance, its computatio-
nal requirements can be significant, especially in applications demanding high accuracy or

processing multiple video streams concurrently [23].

Figure 2.1 illustrates the keypoint configurations used by both frameworks. OpenPose ty-
pically relies on an 18-keypoint structure for full-body pose, whereas MediaPipe employs
a more detailed 33-keypoint layout. This includes additional joints for hands, feet, and fa-

cial landmarks, making it more suitable for fine-grained motion tracking and gesture-based
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interaction.

F1GURE 2.1 Keypoint configuration of the two models. Left : OpenPose with 18 keypoints
[1]. Right : MediaPipe with 33 keypoints, including fine-grained facial and hand joints [2].

2.2.5 Application in Human-Robot Interaction

In the context of our project, which focuses on enhancing human-robot collaboration within a
cobotic part-finishing cell, the selection of the pose estimation framework plays a critical role.
The system must detect human poses in real time, with sufficient accuracy and robustness

to support smooth cooperation with the robot.

By combining these insights, we aim to select and tailor the pose estimation method to the
real-time requirements and industrial constraints of our cobotic system. The goal is to achieve

reliable and seamless human-robot interaction.

HPE

2D HPE 3D HPE
View View
MPPE SPPE
Bottom- Model- Model- Bottom-
rop-down] (270" ) (“ee ) (Ubmsen ) (Tepoown) (P°02™)
[ op-Down Up Free Top-Down i

Regression

FIGURE 2.2 Taxonomy of 2D and 3D human pose estimation (SPPE refers to single person
pose estimation and MPPE to multiple persons pose estimation) [3]

While the choice of pose estimation framework plays a critical role in determining overall sys-

tem responsiveness and keypoint resolution, real-world deployments introduce further chal-



13

lenges beyond model architecture and computational constraints. One of the most persistent
and difficult problems in human pose estimation, especially in collaborative workspaces like
cobotic cell is occlusion. Whether caused by tools, robot arms, or the operator’s own body
parts, occlusions can significantly degrade keypoint detection accuracy and continuity. The
effectiveness of a pose estimation system in industrial environments therefore depends not
only on speed and precision, but also on its robustness to partial visibility. The following
section explores the techniques that have been developed to mitigate these occlusion-related

challenges and maintain reliable skeletal tracking under complex visual conditions.

2.3 Occlusion-Handling

In human pose estimation and hand tracking fields, occlusion handling refers to the ability
of a system to accurately detect and track the position and movement of human body parts
even when they are partially or completely obscured from view. This is a common challenge
in many applications, such as sports analysis, healthcare monitoring, and human-robot inter-
action, where people may move behind objects or other people. Effective occlusion handling
requires the use of sophisticated algorithms that can infer the position and movement of
occluded body parts based on contextual information from the visible parts of the body, as
well as the ability to recover from tracking failures when body parts are temporarily lost

from view.

In [24], the authors evaluate the occlusion handling capability of a 3D human pose estimation
framework. The paper proposes a novel metric, called the Occlusion Handling Capability
(OHC) score, to quantify the performance of a 3D human pose estimation framework in
handling occlusions. To evaluate the OHC score, the authors first define the occlusion status
of each joint in the ground truth 3D pose, where a joint is considered occluded if it is not
visible in the image. Next, they introduce a noise model to simulate occlusions in the input
image, which is used to generate a set of synthetic images with varying degrees of occlusion.
In another study [25], The authors propose using machine learning algorithms to predict
occlusion, along with advances in tracking, depth sensing, and 3D reconstruction. They also
suggest using multiple cameras and sensors to enhance occlusion handling and improve the
user’s perception of the virtual content. Additionally, the paper highlights the potential of
using natural interactions and user-generated content to mitigate occlusion issues. In [26], the
authors use feature masking to distinguish between static and dynamic parts of the scene and
separate the foreground from the background. The foreground is further split into occluding
and occluded regions based on the depth value. The proposed method then uses a deep

neural network to predict the motion of the foreground regions and the static background.
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The authors evaluate the proposed method on several benchmark datasets, and the results
show that it achieves state-of-the-art performance in scene flow estimation while effectively
handling occlusions. In [27], the authors propose a robust online visual tracking algorithm that
handles occlusions. The algorithm consists of two main components : an object appearance
model and an occlusion handling mechanism. The object appearance model is constructed
by using a kernelized correlation filter (KCF) and is updated online to account for changes
in the object’s appearance. The occlusion handling mechanism is based on a combination of
a long short-term memory (LSTM) network and a particle filter. The LSTM network is used
to predict whether the object is occluded or not, and the particle filter is used to track the
object’s state when it is occluded. Thus one way to handle occlusion and to have a larger

coverage of a scene, is to have multiple cameras

2.4 Multi-camera setups(Multi-camera calibration)

In our research requiring comprehensive scene coverage, such as human-robot interaction wi-
thin cobotic cells, deploying multiple cameras is essential. However, achieving accurate spatial
alighment among these cameras necessitates precise calibration of both intrinsic (internal)
and extrinsic (external) parameters. Intrinsic calibration focuses on the internal characte-
ristics of each camera, including focal length, optical center, and lens distortions. Extrinsic
calibration, conversely, determines the relative positions and orientations between cameras,

ensuring a unified coordinate system for accurate 3D reconstruction [28].

[29] introduced OpenPTrack, a free and open-source software tool for calibrating RGBD
camera networks and tracking people. Their method involved simple steps with real-time
feedback, which allowed them to estimate camera poses accurately and track people. OpenP-
Track utilized a novel method that aligned people detections from all sensors in an z-y-time
space to refine camera poses. The authors demonstrated a considerable improvement in people
tracking performance compared to Kinect v1, Kinect v2, and Mesa SR4500, making it useful

for interactive arts, education, and culture sites to interact with humans and robots.

Traditional calibration methods often rely on reference objects such as checkerboard patterns
placed within overlapping fields of view. While effective, these methods are often labor-
intensive and not feasible in environments with limited view overlap. As a result, recent
studies have introduced more flexible calibration strategies suitable for dynamic or cluttered

environments.

One such approach uses human body tracking data to establish initial pose alignment between

multiple RGB-D cameras. For example, the Azure Kinect’s built-in body tracking system can
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provide a coarse global registration, which is subsequently refined through feature matching

to achieve accurate extrinsic calibration [30].

An alternative method leverages spherical calibration objects instead of planar ones. Spheres
provide visibility from a wide range of angles and distances, making them especially useful
when cameras are positioned with limited overlap. By observing a sphere from different views,

the system can infer spatial relationships between cameras more effectively [31].

In situations where placing physical targets is impractical, researchers have proposed tar-
getless calibration techniques. These methods analyze environmental features such as lines
or edges and apply convergence voting algorithms to infer camera poses. This target-free

approach allows for efficient calibration, especially in unstructured environments [32].

These developments contribute to more adaptable and scalable multicamera calibration fra-
meworks, enabling robust 3D reconstruction and pose estimation in real-world cobotic sys-

tems.

2.5 Camera selection

The use of camera networks is common in various visual analytics applications, such as
video surveillance and crowd behavior analysis. These applications track the location of
targets across multiple cameras to determine the position of a target. Automated tracking
has become an essential component of visual analytics, especially with the increasing number
of cameras at airports, train stations, malls, etc. In [33], DQN reinforcement learning was
employed to make camera selection decisions. The action history was encoded using an LSTM-
based Auto-Encoder (AE) to learn the policy faster and achieve better performance. They
also demonstrated that their method optimizes camera selection and tracking performance
on large datasets such as DukeMTMC and CityFlow. A semi-supervised method was later

shown to produce comparable results and train in a semi-supervised manner.

In multi-camera systems, such as those used for broadcasting sports, education, concerts, or
meetings, a camera is chosen automatically based on the action in the scene. A camera selec-
tion method is specific to a particular event. In [34], the authors propose a knowledge-based
method to model the functionalities of automatic editing systems based on the analysis of the
state of the art, which allows them to propose an automatic camera selection method. Their
purpose is to represent the specification and formalization of context-specific knowledge. The
proposed model has been successful in the case of municipal council broadcasts, resulting in
a context event ontology for the municipal council, consisting of Persons Of Interest (POIs)

and Actions Of Interest (AOIs). Moreover, a new method of speaker detection is proposed
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to offer live broadcasting with an accuracy greater than 98%.

The summary of what has been done as a literature review is shown in table 2.1. If the paper’s
primary focus is on recognizing hand gestures or movements, we marked it as "Yes" in the
"Gesture-Based" column. If the paper’s primary focus is on computer vision techniques such
as object detection, image segmentation, or pose estimation, we marked it as "Yes" in the
"Vision-Based" column. If a paper does not have a primary focus on either gesture recognition
or vision-based techniques, we marked it as "No" in both columns. The table shows that RGB-

D and multi-camera were used more recently.

The literature review identified several limitations in the current research on human-robot
interaction using RGB-D sensors. One limitation is that studies conducted in a laboratory
setting may not fully capture the challenges and complexities of real-world industrial en-
vironments. Another limitation is the use of sensors like the Microsoft Kinect, which is no
longer available. Additionally, some studies were only evaluated on a small dataset, which
may limit the generalizability of the results. Furthermore, some methods may not be suitable
for all types of RGB-D data or images/videos. The lack of accuracy, specifically in real-time
scenarios, was also noted as a limitation. Other limitations include addressing occlusion, dea-
ling with complex backgrounds. It is important to consider these limitations in our proposed
method.



Paper | Gesture-based | Vision-based | single/multiple-cameras | Addressing Occlusion | Type of camera
1 Yes No Multiple Yes RGB-D
2 Yes No Single yes RGB
3 Yes No Multiple Yes RGB
4 Yes No Single Yes RGB
5 Yes No Single No RGB-D
6 Yes No Single Yes RGB
7 Yes No Single Yes RGB
8 Yes No Single No RGB
9 Yes No Single No RGB
10 Yes No Multiple Yes RGB-D
11 Yes NO Multiple No RGB-D
12 No Yes Multiple Yes RGB-D
13 Yes No Single Yes RGB
14] Yes No Multiple Yes RGB-D
15 No Yes Multiple No RGB-D
16 No Yes Multiple Yes RGB-D
17 Yes No Single Yes RGB
18 Yes No Single Yes RGB
19 No Yes Single No RGB
20 No Yes Multiple Yes RGB-D
21 No Yes Single Yes RGB
22 No Yes Single Yes RGB
23 Yes No Single Yes RGB
24] No Yes Single No RGB
25 Yes No Single Yes RGB
26 Yes No Single Yes RGB
27 Yes No Multiple Yes RGB-D
28] No Yes Single Yes RGB
29] Yes No Single No RGB
30 Yes No Multiple Yes RGB-D
31 No Yes Multiple Yes RGB-D
32 No Yes Single Yes RGB
33 Yes No Single Yes RGB
34 Yes No Single Yes RGB
35 Yes No Single No RGB
36 Yes No Single Yes RGB
37 Yes No Multiple No RGB-D
38 Yes No Multiple No RGB-D
39] Yes No Single No RGB
40] Yes No Single Yes RGB
41 Yes No Single Yes RGB-D
42 Yes No Single No RGB
43] No Yes Multiple Yes RGB
44 Yes No Single Yes RGB

TABLEAU 2.1 Comparison of literature reviews

17
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CHAPITRE 3 OBJECTIVES

3.1 Rationale

To ensure reliable pose estimation in complex industrial environments, this work adopts a
multi-camera RGB-D setup. This configuration provides a wider coverage of the operator’s
body, significantly reducing the risk of losing key points due to occlusion. In cobotic cells,
where occlusions are frequently caused by tools, robotic arms, or the operator’s own limbs, re-
lying on a single viewpoint can lead to interruptions in tracking. A multicamera arrangement
ensures that multiple perspectives are available at all times, allowing the system to maintain
visibility of essential body joints from at least one angle. Moreover, combining depth informa-
tion from different viewpoints enhances the accuracy of 3D keypoint localization and enables
more robust spatial reconstruction. This is particularly important in real-time applications

that depend on consistent tracking for safe and seamless human-robot collaboration.

In modern industrial environments, especially within cobotic cells, enabling intuitive and
reliable communication between human operators and robots is a key challenge. While exis-
ting literature has proposed various vision-based solutions using RGB-D sensors and machine
learning algorithms, many of these approaches still face limitations in terms of robustness, ac-
curacy, and real-time performance under practical working conditions. Specifically, challenges
such as occlusion, background complexity, and limited adaptability to new environments of-

ten compromise system effectiveness.

The proposed work aims to address these gaps by developing a real-time, vision-based system
for human-robot interaction that is both accurate and flexible. Instead of relying on intrusive
wearable devices such as data gloves or force sensors, the system utilizes RGB-D cameras
that provide both color and depth information, allowing for a more holistic understanding
of the operator’s position, posture, and gestures. This non-intrusive approach enhances user

comfort and is better suited to unstructured industrial settings.

Moreover, the project incorporates deep learning algorithms rather than traditional machine
learning methods. Deep learning enables automatic feature extraction and hierarchical repre-
sentation learning, which improves performance in high-dimensional, noisy data scenarios.
These models also offer superior generalization capabilities and scalability, making them ap-

propriate for industrial deployment where adaptability and precision are essential.

The experimental context of this work is a part-finishing cobotic cell developed in collabora-

tion with the National Research Council (NRC). This environment offers a realistic platform
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to implement and validate the proposed techniques and investigate their applicability in an

actual industrial use case.

It is good to mention that the present work extends two prior research efforts conducted
on the same cobotic platform. First, in the study led by Nathan Odic, the focus was on
monitoring the minimal distance between the human operator and the robot to ensure safe
collaboration. Achieving accurate and reliable distance measurements in such a multi-camera
environment requires precise camera calibration. This thesis addresses that requirement by
developing a sub-pixel reprojection-error-based calibration pipeline that aligns all camera
views into a unified coordinate system, thereby enabling accurate spatial measurements across

the workspace.

Second, in the work of Corentin Hubert, the objective was robust hand gesture recognition
under realistic industrial occlusion conditions. In that study, the selection of camera views
for recognition was performed manually, based on prior knowledge of optimal viewpoints.
While effective in controlled experiments, this manual selection is not feasible in real-world
industrial settings where operator position and occlusions change dynamically. This thesis
proposes an automatic, human-pose-driven camera view selection framework that adaptively
identifies the most informative camera views in real time, improving robustness and reducing

reliance on manual configuration.

3.2 Specific Objectives

The primary goal of this thesis is to develop a vision-based system capable of localizing
the human operator within the collaborative workspace and dynamically determining the
most informative subset of RGB-D cameras based on the operator’s position and pose. This
enables continuous monitoring and gesture interpretation while minimizing computational
overhead. By identifying which cameras provide the clearest and most complete view of
the operator at any given time, the system ensures reliable keypoint estimation even in the
presence of occlusions and workspace constraints. This objective supports real-time human-
robot interaction by adapting visual perception to the operator’s spatial context. It is realized

through three specific and interconnected tasks.

3.2.1 Calibration

The first step is to accurately calibrate the network of six RGB-D cameras installed in the
cobotic cell. Both intrinsic and extrinsic calibration are required to create a shared 3D coordi-

nate system that ensures the spatial alignment of data captured from different perspectives.



20

Intrinsic calibration accounts for camera-specific parameters such as focal length and dis-
tortion, while extrinsic calibration aligns all cameras to a common world reference frame.
This is essential for integrating depth information and ensuring consistent pose estimation

regardless of the operator’s position in the workspace.

3.2.2 Pose Estimation

Once the cameras are calibrated, the second objective is to estimate the full-body pose of the
human operator. This is achieved using a lightweight deep-learning-based pose estimation
tool that processes RGB images. The goal is to achieve a balance between accuracy and
real-time performance, allowing the system to track the operator’s body continuously and

reliably during task execution.

3.2.3 Camera Selection

Running all six RGB-D cameras at high frame rates can create computational bottlenecks. Se-
lecting a subset of cameras, rather than using all six simultaneously, offers several advantages
beyond the reduction of computational load. First, it can significantly improve recognition
accuracy by prioritizing cameras that currently have the clearest, most unobstructed view
of the operator’s relevant body parts. In a collaborative cell, visual occlusions caused by the
robot, tools, or the operator’s own movements can lead to noisy or misleading detections;
selecting cameras with optimal viewpoints reduces the impact of such occlusions. Second,
it minimizes the influence of perspective distortion and extreme viewing angles, which can
degrade pose estimation and downstream decision-making. Third, camera selection enables
adaptive reconfiguration of the sensing strategy, focusing resources on the most informative
viewpoints for the task at hand and the operator’s location, thereby improving system ro-
bustness in dynamic industrial conditions. Finally, reducing the number of active cameras
in processing can lower data bandwidth requirements, ease network synchronization, and

simplify system scaling for larger workcells.

To address this, the final objective is to develop a camera selection strategy that dynami-
cally identifies the most informative views at any given moment. This selection is guided
by a confidence-based metric that evaluates the visibility and clarity of detected keypoints.
By selecting only two cameras with the highest cumulative visibility scores, the system si-
gnificantly reduces processing load while maintaining high tracking fidelity. This module is
essential for making the system scalable and suitable for real-time deployment in industrial

scenarios.
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CHAPITRE 4 METHODS

4.1 Camera Calibration

For the camera calibration phase, data were collected with a checkerboard pattern moving
intentionally throughout the cobotic workspace. The goal was to ensure that the checkerboard
entered the field of view of at least one of the six RGB-D cameras across a variety of angles,
distances, and spatial positions, thereby capturing a broad range of poses and transitions.
To construct a high-quality calibration dataset, a post-processing step was carried out to
synchronize the frames and remove those in which the checkerboard was either occluded or
not sufficiently visible. Only frames where the checkerboard could be robustly detected and
its corners accurately extracted using standard calibration algorithms were retained. This
filtering process resulted in approximately 200 usable frames per camera per participant.
From these, about 100 high-quality calibration frames were selected for each camera pair,
yielding a robust and diverse dataset suitable for accurate intrinsic and extrinsic calibration of
the multi-camera system. Camera selection is a crucial step in the cobotic platform, ensuring
that only the most informative and least occluded camera views are used for human pose
estimation and gesture recognition. The goal is to reduce computational overhead, improve

accuracy, and dynamically adapt to operator movement in real-time.

4.1.1 Synchronized Set of Images

A synchronized set of images consists of frames captured by multiple cameras at the same
timestamp or within a short temporal window (60ms). This ensures that corresponding points

in different views represent the same moment in time, minimizing discrepancies due to motion.

For calibration purposes, data were collected from four users, each holding a checkerboard
and moving it throughout the cobotic cell at various angles and positions to ensure broad
coverage across all camera viewpoints. For intrinsic calibration, a total of 250 cleaned (visible
checkboard) frames were selected per camera per user. Following synchronization and cleaning
across camera pairs, approximately 100 high-quality frames were retained for each pair to
perform extrinsic calibration. These frames were specifically chosen for their visual clarity,
ensuring that the checkerboard was distinctly visible and its corners reliably detectable across

all relevant views.

Camera calibration is a crucial step for reconstructing 3D points accurately in a multi-

camera system. The goal is to determine both intrinsic and extrinsic parameters to improve
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pose estimation. Each step in this calibration process is necessary to ensure accurate depth

estimation and synchronization of multiple cameras.

4.1.2 Checkerboard-Based Calibration

Calibration is performed using a checkerboard pattern, which provides known world coordi-
nates for accurate estimation of camera parameters [35]. A checkerboard is used because it
provides well-defined corner points that can be accurately detected and used for geometric

transformations.

Checkerboard Specifications : The checkerboard used for calibration consisted of four
rows and seven columns of black-and-white squares, forming a total of twenty-eight internal
corners. Each square covered a surface area of 625 square millimeters, providing a known phy-
sical scale for the calibration process. This metric dimension is essential for computing accu-
rate intrinsic and extrinsic camera parameters. The checkerboard’s size and contrast enabled

robust corner detection even under varied perspectives, distances, and lighting conditions.

An example of a calibration frame is shown in Figure 4.1. The checkerboard is clearly visible
and well-positioned within the field of view, ensuring precise corner extraction and reliable

multi-camera calibration.

FIGURE 4.1 Example frame used for calibration showing a user holding the checkerboard
visible to the camera. Multiple such frames were selected per user across different angles and
positions to ensure accurate calibration.
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4.1.3 Intrinsic Camera Calibration
Each camera’s intrinsic parameters are computed to correct for lens distortions and to un-
derstand how the camera maps 3D points to a 2D image.

Each camera has unique internal characteristics, such as focal length and distortion, which

must be accounted for to accurately reconstruct 3D geometry.

The intrinsic matrix is :

feo 0 ¢,
K=10 f, ¢ (4.1)
0 0 1

where :
— [, f, are the focal lengths in = and y, expressed in pixels.

— g, ¢y are the  and y coordinates of the optical center.

Stereo Calibration

Stereo calibration is the process of determining the geometric relationship between two ca-
meras in a multi-camera setup. This involves estimating both the intrinsic and extrinsic
parameters that define how the cameras are positioned and oriented relative to each other.
The goal is to establish a common coordinate system for reconstructing 3D information from

multiple viewpoints.

The resulting R aligns the orientation of the two optical centres while ¢ encodes their baseline
in the left-camera frame, thereby defining a common stereo coordinate system [35]. These pa-
rameters provide the initial guess for the particle-swarm global refinement ; a concise overview

is also given in the OpenCV documentation ®.
The calibration yields two quantities that fully describe the relative pose of the cameras :

— Rotation matrix Re€R3*3, expressing the orientation of the secondary camera with
respect to the reference sensor.
— Translation vector t € R?, giving the baseline displacement between the two optical

centres (in the reference frame).

These elements are concatenated to form the homogeneous extrinsic transform

R t
0" 1

: (4.2)

1. https://docs.opencv.org/master/d9/d0c/group__calib3d.html
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Extrinsic Transformation of the Reference Camera Camera 1 (¢) is selected as the
origin of the global coordinate frame. In computer-vision literature the extrinsic parameters
are usually written as the 3x4 matrix [R |¢], while in robotics the same pose is embedded in
a 4x4 homogeneous transform. For the reference camera we have no rotation (R = Is) and

no translation (¢ = 03), giving

[R]|t], = (4.3)

o o =
o = O
= O O
o o O

If a full homogeneous matrix is required, for instance, when chaining with robotic kinematic

transforms, we append the row [000 1] :

T., = [I3 03] , (4.4)

0; 1

Note that R (a pure rotation) must not be premultiplied by an existing 4x4 transform ;

instead, R and t are concatenated as shown above to form a valid rigid-body transformation.

Computing the Transformations Between Cameras Instead of calibrating each ca-
mera directly to Camera 1, intermediate transformations are used to propagate the relation-
ship between cameras step by step. Concatenating transformation matrices offers a practical
advantage when the number of stereo image pairs available for direct calibration is limited.
Instead of requiring explicit calibration between every camera pair, transformations can be
chained through intermediate cameras, effectively linking their coordinate systems. This ap-
proach enables geometric alignment across the entire multi-camera network, even when some
camera pairs have insufficient or no overlapping field of view for traditional stereo calibration.
The transformation from Camera 1 to Camera 3 is computed using the transformation from

Camera 1 to Camera 2 and Camera 2 to Camera 3 :

TClHCS = Tc1~>02 : T024>03 (45)

where T'4_, g is the transformation matrix between cameras A and B. This method extends

iteratively to all cameras :

Tasen =Tease2 Teasez Tc(n—l)—>cn (46)
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By applying this method iteratively, all cameras in the setup can be aligned with the reference

coordinate frame without requiring direct pairwise calibrations with Camera 1.

Importance of Stereo Calibration Stereo calibration is essential for :
— Establishing a unified coordinate system for all cameras.
— Enabling accurate 3D depth estimation across multiple views.
— Reducing alignment errors and improving multi-camera synchronization.
This hierarchical calibration method ensures that extrinsic parameters are consistently pro-

pagated while minimizing calibration complexity.

4.1.4 Stereo Triangulation

Once the intrinsic matrices K; and extrinsic poses [R; | t;] of the stereo pair are known, each

camera’s projection matrix is obtained as

P = K;[R;| ], i€ {1,2}. (4.7)

Linear triangulation. Given matched image points z; = (uq, vy, 1)T and z9 = (ug, vy, 1)T7

their 3-D position is recovered by intersecting the two back-projected rays. OpenCV’s call is
cv::triangulatePoints(P, P, x1,x2), (4.8)

which internally builds the linear system

3,: 1,:
WP~ Pt
P(3,:) (2,)

G 1
;. NE 4.9
1y P _ p) (4.9)

'UQPQ(&:) . 2(2,:)

A:

and solves
AX =0 (4.10)

via singular-value decomposition. The resulting homogeneous vector X is normalised to ob-

tain the world-frame coordinates (X,Y, Z)".
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4.1.5 Non-linear Global Refinement

Even after Zhang’s checkerboard calibration [28], residual errors remain because of lens
distortion, asynchronous triggering, and partial field-of-view coverage. We therefore run a
particle-swarm optimisation (PSO) that adjusts the six extrinsic poses simultaneously so as

to minimize the mean—squared reprojection error measured in pixels.

Cost function Let X; € R? be the i*" checkerboard corner (in millimetres) expressed in
the world frame and let p; = (u;, v;)" denote its detected image coordinates (in pixels). For a
candidate parameter set the predicted pixel location is p; = (4, ©;)" . Finally, the optimisation

target is

2

Pi — Pi 9 (4-11)

1 N
MSEpiX == N Zl‘

where N is the total number of corner observations across all calibration images : N =

Sy, for M images containing ny points each.

Interpretation of symbols.

— p; = (w;,v;) — measured 2-D pixel coordinates.
— pi = (4, v;) — re-projected pixel coordinates under the current camera model.

— Index 7 iterates over every detected corner in every stereo image pair ; it does not refer
to different cameras.
PSO Parameters :
— Particles : 100
— Max iterations : 100
— Inertia weight (w) : 0.7
— Cognitive factor (¢q) : 1.5
— Social factor (¢3) : 1.5

PSO iteratively updates the rotation and translation matrices to improve accuracy.

4.1.6 Metrics for Calibration Accuracy

Calibration accuracy is evaluated using key error metrics that quantify the alignment of

detected features with real-world positions. The following metrics are used :
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— Mean Squared Error (MSE) : Measures the projection accuracy in pixels by com-

puting the average squared difference between the expected and projected points.

The Mean Squared Error (MSE) is used to measure the accuracy of the corners of the che-
ckerboard correspondences between two different cameras. It maps points from one image to
another and computes the projection error. A lower MSE indicates better alignment between

detected points across images, ensuring more accurate stereo matching.

On the other hand, Root Mean Square Error (RMSE), is the reprojection error computed for
a single camera, using only its intrinsic parameters. It quantifies how accurately 3D points
are mapped back to the image plane after camera calibration. A lower RMSE means the

estimated intrinsic parameters provide a more precise projection of real-world points.

While MSE assesses the accuracy of multi-camera alignment, RMSE evaluates the internal
calibration quality of a single camera. Both metrics are crucial for ensuring reliable depth

estimation and robust 3D reconstruction.

4.1.7 Synchronization and Image Cleaning

Synchronization ensures that images from different cameras are captured at the same times-

tamp. This is essential for accurate stereo calibration.

The synchronization process finds pairs of images where the timestamps differ by less than
a defined threshold (e.g., 60 ms) :

‘tl — tg’ < 60ms (412)

This allows the correct association of frames across cameras.

Image cleaning ensures that only images with a detected checkerboard pattern are kept. This

removes outlier frames that could negatively impact calibration accuracy.

In the cleaning step :
— The presence of a checkerboard is verified
— Images without detectable patterns are discarded.
This step ensures that only high-quality images are used for calibration, improving overall

precision.
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4.2 Pose Estimator

4.2.1 Benchmark Data and Scope of our Evaluation

Our primary contribution is a complete pose—guided camera—view—selection pipeline for co-
botic finishing, validated on our proprietary multi-view industrial dataset (MuViH). A pre-
liminary comparison of two off-the-shelf human-pose estimators, OpenPose and MediaPipe
Pose, was necessary to decide which backbone to embed in that pipeline. We supplemented

the internal quantitative study with a small, open image set.

We therefore curated fifteen full-resolution photographs from iStockPhoto? depicting adults

in varied upright poses (e.g. pointing, leaning, arms raised).

We manually labelled the standard joints corresponding to each application. The Percen-
tage of Correct Keypoints normalised by head length (PCK};) was computed with a 0.2h
threshold :

1 N

PCK,, = N > [IP; — pjll2 < 0.2head len]. (4.13)

j=1
4.2.2 Comprehensive Analysis

To evaluate the performance of OpenPose and MediaPipe, two metrics were considered. The
first was PCKh, or Percentage of Correct Keypoints with respect to head size. This metric
considers a keypoint correct if it falls within a threshold distance from the ground truth,
normalized by the subject’s head length. This normalization makes the metric scale invariant,
making it especially appropriate for evaluating models under varying human proportions and

camera perspectives.

The second metric was runtime per frame, which measures the time required for the model
to process a single image. This directly reflects the model’s suitability for integration into
real time systems, particularly in environments such as cobotic cells, where pose estimation

must operate efficiently across multiple camera views without introducing latency.

4.2.3 Operator Selection Strategy :

Since OpenPose detects multiple human skeletons in the scene, the system must determine
which skeleton belongs to the operator. To achieve this, the framework selects the closest
person to the camera as the operator based on the neck keypoint’s y-coordinate.

The detected person with the lowest y-value (i.e., highest vertical position in the image) is

2. https://www.istockphoto.com


https://www.istockphoto.com

29

chosen, while all other skeletons are ignored.

4.3 Camera Selection

4.3.1 MuViH Dataset

This study utilizes the Multi-View Hand Gesture Dataset (MuViH) [36], developed by Co-
rentin Hubert et al. The MuViH dataset is specifically designed for human-robot interaction
within a cobotic platform and features multi-view hand gesture recognition with occlusion
challenges. It has been collected in the cobotic platform at the NRC. In this work, camera
visibility was encoded using binary labels, where a value of 1 indicated that a camera had a
clear view of the participant performing a gesture, and 0 denoted that the view was obstruc-
ted or not informative. These labels were determined based on the known zone in which the
gesture was performed and the fixed spatial arrangement of the cameras around the works-
pace. During data collection, each gesture sequence was associated with one of four predefined
zones in the cobotic cell. A zone-to-camera visibility matrix, constructed empirically, defined
which cameras had effective viewpoints for each zone. This binary visibility information was
used as the ground truth in training the camera view selection model, enabling the system to
learn which camera views to prioritize for each gesture occurrence without requiring manual

labeling or pose-based supervision.

4.3.2 Subset dataset

For the camera selection part, a representative subset of the MuViH dataset was selected to
facilitate focused and efficient analysis of camera view selection in a realistic human-robot
interaction scenario. The full MuViH dataset comprises multi-view recordings of twenty par-
ticipants performing predefined pointing gestures around a collaborative robot, resulting in a
large volume of high-resolution RGB-D data. Processing the entire dataset would significantly

increase computational cost and introduce unnecessary redundancy.

To ensure diversity while maintaining tractability, a subset was curated from recordings of
thirteen participants. This subset was chosen to provide sufficient variability in user height,
gesture style, occlusion conditions, and workspace zones. In total, 1300 synchronized frames
were extracted, each comprising image pairs captured from selected camera viewpoints, ma-

king it well-suited for evaluating camera ranking metrics and view selection strategies.

— Visibility and confidence scores : help determine which camera views provide the

best pose estimation.
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— Handles Occlusions & Partial Visibility : Low confidence scores signal occlusions,
helping the model select a better camera.
— Standardized Representation : Following the COCO format ensures compatibility

with machine learning-based models.

4.3.3 Features

To effectively determine the best camera views, a set of features is extracted from each
camera’s input. These features facilitate the ranking of cameras based on their ability to

accurately capture human pose data and contribute to reliable pose estimation.

1. Pose Representation : Each camera detects an 18-keypoint human pose, represented
as an 18 x 3 matrix containing the (x,y) coordinates and confidence scores. This
standardized format ensures consistent representation of body joints across different

camera views, forming the foundation for camera selection.

2. Feature Vector Transformation : The extracted pose matrix is converted into a 54-
dimensional feature vector, which serves as input to the camera selection model. This
transformation enables machine learning models to process pose-related information

efficiently in a structured numerical format.

3. Confidence-Based Camera Ranking : The model prioritizes cameras based on
the confidence scores of detected keypoints. Lower confidence scores indicate potential
occlusions or poor visibility, helping to filter out unreliable camera views.

4. Occlusion Detection and Handling : By analyzing missing keypoints or low-
confidence detections, the system identifies occlusions and assigns lower rankings to
obstructed cameras. Cameras capturing occluded body parts provide limited pose
information.

5. Random Forest-Based Feature Learning : The Random Forest model conti-
nuously learns the significance of each feature, refining the camera ranking process
across multiple decision trees. Over time, the model adapts, enhancing its capability
to select the most suitable camera views based on past data.

6. Balanced Learning Strategy : To prevent class imbalance, a Random Under-
Sampler (RUS) is applied, ensuring fair representation of all camera views. This tech-
nique mitigates dataset bias, preventing the model from favoring specific cameras and

improving its generalization capability.

By leveraging these features, the system dynamically selects the most effective camera subset

for real-time pose estimation, reducing redundancy, improving computational efficiency, and
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minimizing occlusion effects.

4.3.4 Model : Random Forest (RF)

A Random Forest (RF) classifier is used to predict the best camera subset in real-time.
The RF model is selected because :

— High interpretability allows analysis of the importance of the features.

— Fast inference is suitable for real-time applications.

— Robustness to nonlinearity, important for handling occlusions and varying viewpoints.

Training Process :

For training the random forest model for camera view selection, the dataset was constructed
and annotated using the MuViH zone-to-camera mapping derived from the physical layout
of the cobotic cell. Based on the picture 5.1 the cell is divided into four distinct areas (Area
1 to Area 4) based on operator position around the table. Each area has a predefined set
of cameras that provide optimal coverage, determined from the multi-camera geometry and
occlusion analysis conducted in the MuViH study. This mapping is stored as a zone_map
dictionary, for example : Zone 1 — {C4, C6}, Zone 2 — {C2, C4, C5}, Zone 3 — {C2, C3,
C5}, Zone 4 — {C1, C3}.

Ground-truth labels for training were generated automatically by linking the operator’s anno-
tated zone (sourced from column 3 of the MuViH annotation CSV file) to the corresponding
optimal camera set in the zone_map dictionary. For each annotated frame, a binary visibility
vector was created, indicating for each of the six cameras whether it belonged to the optimal
set for that zone (value 1) or not (value 0). This binary encoding served as the target output

for the random forest classifier.

1. Input Features : The RF model actually takes six synchronized skeletons, extracted
from six synchronized images, as input. These skeletons are represented as (18 x 3)
keypoint matrices, which are then transformed into a 54-dimensional feature vector per
image before training. The final input to the RF model consists of concatenated feature
vectors from all six images, ensuring that the model evaluates multiple viewpoints

simultaneously to select the optimal camera.

2. Target Output : The model produces two outputs to optimize camera selection.
First, it ranks cameras based on their predicted probabilities using the predict_proba
function, ensuring that the most relevant views are prioritized. Then, it performs
binary classification using the predict function, where a probability threshold of 0.5

is applied : if the predicted probability for a camera is greater than 0.5, it is assigned
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a label of 1 (indicating that it should be used); otherwise, it is assigned a label of 0
(indicating that it should be ignored). This dual-output approach enables the system
to not only select the best camera but also quantify the confidence level of each

prediction, enhancing the robustness of the camera selection process.

3. Hyperparameters Optimized : The Random Forest model is optimized using the

following parameters, explicitly set in the implementation :

— Number of Trees (n_estimators = 100) : Defines the number of decision trees
in the forest, ensuring stable and robust predictions.

— Maximum Tree Depth (max_depth = None) : Allows trees to expand fully un-
less limited by other stopping criteria, enabling the model to capture complex
relationships in the data.

— Feature Selection Strategy (max_features = "sqrt") : Selects a subset of
features (square root of total features) for each split, balancing computational

efficiency and predictive accuracy.
These hyperparameters are selected to enhance model performance, prevent overfit-
ting, and ensure computational efficiency in real-time camera selection.

4. Real-time Processing : At each frame, all cameras extract features, and the RF
model ranks cameras based on their feature importance. The top-ranked cameras
remain active while others are ignored, ensuring computational efficiency and reducing

redundant views.

4.3.5 Split of the Data
The dataset for camera selection consists of frames collected from multiple cameras capturing
the same scene. Data is split into training and testing sets as follows :

— Dataset Composition : Multi-view images from six cameras, labeled based on the
best subset of cameras.

— Train-Test Split (80-20%) :
— 80% Training : Used to train the RF model.

— 20% Testing : Used to evaluate performance on unseen data.

4.3.6 Leave-One-Out Cross-Validation (LOOCYV)
To ensure generalization, we use Leave-One-Out Cross-Validation (LOOCV) :

1. Consider N=13 users. Remove one user from the dataset and use it as the test set.
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2. Train the model on the remaining N — 1 users.
3. Test the model on the removed user.

4. Repeat for all users and compute the average performance.

LOOCV is chosen because it is ideal for small datasets with limited participants and ensures
robust performance evaluation across different users.

4.3.7 Metrics

To evaluate the performance of the camera selection model, multiple metrics are used :

— Accuracy : Measures the proportion of correctly selected cameras.

Correct Camera Selections

Accuracy = (4.14)

Total Camera Selections
— Precision and Recall :

True Positives
Precision = 4.15
True Positives + False Positives ( )

True Positives
Recall = 4.16
e True Positives 4 False Negatives ( )

— Normalized Discounted Cumulative Gain (nDCG) : Evaluates how well the

model ranks the best cameras.

DCG
IDCG

nDCG = (4.17)

where DCG scores the ranked camera subset and IDCG represents the ideal ranking.
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CHAPITRE 5 RESULTS AND DISCUSSIONS

5.1 Calibration Accuracy

The calibration process was evaluated in terms of both intrinsic and extrinsic accuracy. Intrin-
sic parameters were obtained through single-camera calibration, while extrinsic parameters
were computed using stereo calibration between Camera 1 (reference camera) and each of the
other five cameras. Calibration accuracy was assessed using the mean squared reprojection

error (MSE) before and after optimization.
Intrinsic Parameters

The intrinsic matrices for each of the six RGB-D cameras, as estimated through calibration,
are as follows. These matrices represent the internal geometry of the cameras, including focal

lengths and principal points :

595.80  0.00 649.19)] (001.24  0.00 651.67)

Ki=| 000 53355 36442 Ky=| 000 987.37 352.56
0.00 000  1.00 0.00  0.00  1.00

53093 0.00 636.63] (54157 0.00 656.17)

Ks= | 0.00 53521 366.10| Ks=| 0.00 572.17 369.52
0.00 000 1.00 0.00  0.00  1.00

(60819 0.00  618.02] 653.53  0.00 641.93]

K:=| 0.00 61568 36842 Ks= | 0.00 604.52 399.10

| 000 0.00 100 | | 000 0.00 100 |

To validate the calibration process, we compared these results with the factory-provided
intrinsic parameters from the RealSense D455 devices. These manufacturer-reported matrices

are derived from internal calibration during production :

644.618  0.00  656.458 638.667  0.00  645.022
Jpanfactwrer 1 0 643,832 358.013|  Kyemectwer — 00 637.174  363.420
000  0.00  1.00 0.00  0.00  1.00
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645.000  0.00  645.841] (644.817  0.00  637.674]
JCpamfacturer | 00 643.521 362.563|  KPemetwer — g 00 643,132 358.101
| 0.00 000 100 | 000 0.00 100
642.836 0.00  650.272] 644.283  0.00  649.796]
Kpenufacturer —_ 1 00 641.204 357.739|  Krenvfacturer — 000 642.607 362.962
| 0.00 000 100 | 000 0.00 100

When comparing the calibration results to the manufacturer’s values, it is evident that the
estimated focal lengths and principal points are reasonably close for most cameras, validating
the reliability of the checkerboard-based calibration procedure. However, some discrepancies,
particularly in Camera 2 and Camera 3, suggest slight deviations due to limited frame cove-
rage or insufficient angle diversity during calibration. These variations remain within accep-
table tolerances for RGB-D applications and are further minimized during stereo calibration

and reprojection error optimization.
Extrinsic Calibration and Reprojection Error

Stereo calibration was performed between Camera 1 and each of the remaining cameras. The
rotation matrices R;; and translation vectors ¢;; express the spatial transformation from
Camera 1 to Camera j, for j = 2 to 6. The calibration accuracy was evaluated by computing
the mean squared reprojection error (MSE), which measures the squared distance between
the original and reprojected checkerboard corners in pixel space. Table 5.1 summarizes the
initial and optimized MSE values for each stereo camera pair. The results show a significant

decrease in error after optimization, indicating strong geometric consistency across views.

TABLEAU 5.1 Initial and final mean squared reprojection error (MSE) for each stereo cali-
bration pair involving Camera 1.

Camera Pair | Initial MSE(pixel) | Final MSE(pixel)
1-2 123.58 0.32
1-3 2600.59 4.46
1-4 15.81 0.48
1-5 174.70 0.46
1-6 4.17 0.04

The variation in stereo calibration accuracy observed across different camera pairs can be

attributed in part to the physical layout of the camera setup within the cobotic cell.

Figure 5.2 presents a visual example of the reprojection result obtained for one of the image
pairs used in the stereo calibration process, specifically between Camera 1 and Camera 2.

In this image, the detected true corners of the checkerboard are marked in blue, while the
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FiGure 5.1 Camera layout used in the MuViH dataset, adapted from Hubert et al. The
cameras are distributed asymmetrically around the collaborative robot at two height levels
to optimize workspace visibility.

reprojected corners based on the estimated camera parameters are shown in red. This overlay
demonstrates a high degree of alignment between the true and reprojected points. The mean
squared reprojection error (MSE) for this camera pair was calculated to be only 0.046 pixels,
highlighting the effectiveness and precision of the calibration framework. Both qualitatively,
in terms of visual alignment, and quantitatively, in terms of low reprojection error, the result
confirms that the calibration method produces geometrically consistent projections suitable

for accurate stereo vision applications in the cobotic cell.

The following matrices show the estimated rotations and translations between Camera 1 and

the other five cameras :

—-0.75 —0.30 0.59 —54.19
Rip=1033 060 0.73 t1p = |—92.79
—-0.57 0.74 —-0.35 376.40
—-0.19 —0.28 0.94 —164.75
Riz=1073 060 033 tiz=| —4.84
—-0.65 0.75 0.09 167.37
—-0.80 —0.56 0.23 —173.32
Ry4s= 1003 036 093 t14= | —H7.87

—-0.60 0.74 —-0.29 280.44
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F1GURE 5.2 Blue dots represent the true corners in Camera 2’s frame, while red dots represent
the reprojected corners based on the estimated calibration parameters (from Camera 1’s
frame). MSE is 0.046 pixels.

—-0.34 —-0.82 0.46 —27.63
Rys=10.68 011 0.73| t15=|—63.46
—-0.65 0.56 0.51 432.31
—-0.79 —-0.539 0.37 —48.06
Rig= 1040 0.07 091 t6=[—107.10
—-0.46 0.87 0.13 312.19

5.1.1 Stereo-Triangulated Distance Validation

To assess the accuracy of the stereo triangulation process, each camera pair was evaluated
using annotated points corresponding to two circular holes on the cobotic cell’s tabletop. The
real-world center-to-center spacing between these circles was obtained from the engineering

drawing shown in Figure 5.4, which specifies a distance of 50.8 mm between adjacent holes.
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This dimension was used as the ground truth for error computation.

After executing the calibration code, the intrinsic and extrinsic parameters of each stereo
pair were applied to a stereo triangulation procedure. This produced the three-dimensional
coordinates of the annotated points in each image pair. The Euclidean distance between the
reconstructed 3D points was then computed and compared to the ground truth to yield the

absolute error in millimeters.

The stereo-triangulation evaluation was carried out on five different stereo pairs, each com-
posed of Camera 1 and one of the other cameras in the setup (Co—Cg). Figure 5.3 shows these
camera pairs : the top row displays the first camera’s view for each pair, while the bottom row
displays the corresponding second camera’s view. In each image, a checkerboard calibration
target is present to ensure adequate coverage for accurate calibration. The tabletop with its

circular holes is also visible, serving as the reference object for the triangulation validation.

The results, summarized in Table 5.2, indicate that the absolute distance error for all pairs
lies between approximately 5 mm and 9 mm. Considering the inherent depth noise of RGB-D
sensors, residual calibration imperfections, and manual point selection uncertainty, this range
represents a robust level of accuracy. In practice, achieving a sub-centimeter error in a multi-

camera RGB-D setup is a strong indication that the calibration process was successful [?].

Pair 1 (Cy, C,) Pair 2 (C,, C5) Pair 3C,, C,),

Pair 5 (Cy, Cg)
/

First
Camera

Second
Camera

FIGURE 5.3 Stereo image pairs used in the triangulation validation. Each column represents
one stereo pair composed of Camera 1 and another camera in the system (Pairs 1-5 : C;—Cy,
C1—C3, C1—-Cy4, C1—Cs, and C;—Cg). The top row shows the first camera’s view, and the
bottom row shows the corresponding second camera’s view for each pair.
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FIGURE 5.4 Engineering drawing of the cobotic cell tabletop, indicating the precise 50.8 mm
hole spacing used as the ground truth for stereo-triangulation validation (adopted from NRC
team).

5.2 Pose Estimator Selection

In the context of real-time camera view selection within a collaborative robotic (cobotic) cell,
the choice of pose estimation framework plays a critical role in system responsiveness and
reliability. To identify the most suitable solution, we conducted a comparative evaluation
between two widely used frameworks : OpenPose and MediaPipe. Both were tested using
the same small high-resolution dataset manually assembled from royalty-free images on the
iStockPhoto platform. This dataset contains fifteen full-body images of individuals captured
in varied standing poses, such as reaching, pointing, leaning, or with one or both arms raised.
The subjects include both male and female adults, dressed in different clothing styles and
captured under well-lit conditions. All images were saved in JPEG format at resolutions
of approximately 1500 x 2000 pixels, allowing detailed keypoint analysis. This dataset was
designed to provide a controlled, diverse testbed for visual inspection and keypoint evaluation

in pose estimation frameworks.

OpenPose, evaluated in its lightweight configuration trained on the COCO dataset, detects
eighteen human keypoints corresponding to major joints and body extremities. This version
is specifically optimized for applications where speed is a priority, offering a favorable ba-

lance between keypoint accuracy and computational efficiency. In our tests, the lightweight
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TABLEAU 5.2 Stereo-triangulated distance between annotated table circles for each camera
pair, with ground truth 50.8 mm. Errors of 5-9 mm indicate high calibration accuracy for this
multi-camera RGB-D system.

Camera pair Measured distance (mm) Abs. error (mm) MSE (mm?) Best pixel MSE (px?*)

C1xCs 56.377 2.577 31.1029 0.434
Cy1xCs 44.865 5.935 35.2242 20.320
CyxCy S7.715 6.915 47.8172 5.117
C1xCs 45.201 2.599 31.3488 286.693
C1xCg 56.123 5.323 28.3343 0.234

OpenPose model achieved a PCKh (Percentage of Correct Keypoints with respect to head
size) of approximately 83.2 percent on the small dataset and maintained an average infe-
rence runtime of about 0.08 seconds per frame on a standard GPU. This PCKh score was
computed based on manual annotation of keypoints in the dataset(ground-truth), which was
carried out to enable objective evaluation of model accuracy. Therefore, the evaluation in
this work is not only qualitative, but also includes quantitative comparison using annotated
ground truth. OpenPose’s ability to preserve pose consistency under partial occlusion and
its robustness to lighting variations make it well suited for the industrial conditions found in

our cobotic environment.

MediaPipe, on the other hand, uses a top down architecture and detects a denser skeletal
structure composed of thirty three keypoints. This allows for finer localization of hand, foot,
and facial landmarks, which is particularly useful for detailed gesture analysis. However, this
increased granularity comes with a computational cost. MediaPipe’s average runtime was
measured at 0.19 seconds per frame on the same hardware, which is significantly slower than
OpenPose and introduces latency that can affect the timeliness of camera view decisions.
While its PCKh was slightly higher at 85.4 percent, the performance gap in runtime presents
a challenge for camera systems where inference speed must remain consistently low to avoid

processing bottlenecks.

Figure 5.5 presents a qualitative comparison between the two frameworks. As shown, Media-
Pipe provides a more detailed skeletal output, while OpenPose offers a structurally coherent

pose with noticeably faster inference.

Given the demands of our system, including synchronized camera input, robustness to occlu-
sion, and strict real time processing requirements, OpenPose was selected as the more appro-
priate framework. While MediaPipe’s detailed skeletal output may benefit certain fine grained
tracking applications, its increased inference time and GPU load reduce its practicality for

fast, cycle accurate camera view decisions in our application. The lightweight OpenPose
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FIGURE 5.5 Qualitative comparison between OpenPose (top row) and MediaPipe (bottom
row) on the same test images. MediaPipe yields a higher number of keypoints but requires
more computation, whereas OpenPose provides structurally consistent poses with lower la-
tency.

configuration, by contrast, enables low latency multi stream processing while maintaining
competitive accuracy, making it ideal for integration with our camera selection module in

the cobotic cell.

5.2.1 Qualitative Results of selected Pose Estimator

Figure 5.6 illustrates the skeleton predictions produced by the lightweight OpenPose model for
a single gesture observed simultaneously by six different RGB-D cameras placed around the
cobotic cell. The person is performing a pointing gesture, and the model successfully detects
all major joints including shoulders, elbows, wrists, hips, knees, and ankles. Despite changes in
viewpoint, occlusions, and lighting conditions, the keypoints are consistently localized across
views, confirming the robustness of the lightweight OpenPose configuration. In particular, the
system retains anatomical coherence in estimating joint connections even when the operator’s
limbs are partially obscured by the robot structure or appear foreshortened due to camera
angle. This strong spatial coherence across multiple views further supports the viability of
this model for downstream tasks such as triangulation and camera view selection in cobotic

environments.

5.3 Camera Selection Results

The camera selection model was trained and evaluated on pose-derived features from thirteen
users, with the aim of identifying the most informative set of camera views per frame in a
cobotic environment. A Random Forest classifier was employed to make these predictions

based on extracted features, including per-joint confidence scores, positional coordinates,
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FIGURE 5.6 Pose skeleton outputs from six different RGB-D camera views using lightweight
OpenPose. Despite varying angles and partial occlusions, all major joints are accurately
detected, preserving the structure and gesture of the human operator.

and the number of visible keypoints.

Among these, the feature importance analysis revealed that the confidence values of de-
tected keypoints were the most influential predictors in the model. This aligns with the
intuition that frames where joints are confidently detected are more informative for spatial
reasoning and gesture interpretation. High-confidence keypoints allow the model to reliably
determine operator posture, which in turn makes it easier to identify which camera views are

best suited for coverage.

The number of visible keypoints was also found to be a highly significant feature. Since
occlusions and viewpoint changes frequently affect visibility in multi-camera systems, the
presence of more visible joints in a given frame increases the likelihood that the camera has a
clear, unobstructed view of the operator. Therefore, frames with a greater number of detected

keypoints serve as stronger candidates for selection.

Together, these two features—keypoint confidence and keypoint visibility—played a dominant
role in the camera selection decision process. Their significance underlines the importance
of pose estimation quality as a prerequisite for intelligent view selection in cobotic systems.
This observation also provides further motivation for our choice of a pose estimator that

prioritizes both detection accuracy and real-time efficiency.

5.3.1 Qualitative Results

To better illustrate how our model selects the most informative camera views, we present

a qualitative example5.5 involving a set of six synchronized frames captured from different
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angles in the cobotic workspace. For each of these views, a skeleton was extracted from the
operator’s pose, and a set of features was derived. These features were then passed through
a trained Random Forest classifier, which estimated the probability of each camera being

the most relevant view.

In this specific example, the model assigned the following probabilities to each camera : 0.78
(Camera 1), 0.03 (Camera 2), 0.13 (Camera 3), 0.90 (Camera 4), 0.59 (Camera 5), and 0.90
(Camera 6). The selection framework uses a threshold of 0.5 to determine which camera views
should be selected or excluded based on their predicted probabilities. As a result, Camera
4, Camera 5, Camera 6, and Camera 1 were selected. This decision corresponds to a binary
activation vector of [1, 0, 0, 1, 1, 1], where ’1” indicates a selected view and 0’ denotes an

excluded one.

The selected views provide rich visual coverage of the scene. Camera 1, Camera 4, camera 5
and Camera 6 capture the operator from different angles, both offering clear visibility of the

operator’s skeleton for interpreting interactions in a cobotic cell.

This example confirms the model’s ability to assign probabilistic relevance scores and intelli-
gently activate up to four camera views with the highest probabilities exceeding a threshold

of 0.5, ensuring efficient and context-aware visual monitoring in real time.

(d) Camera 4

FIGURE 5.7 Six synchronized camera views from a single frame. Based on predicted pro-
bability, the model selected Cameras 1 (0.78), 4 (0.90), 5 (0.59), and 6 (0.90) as the most
informative. Cameras 2 (0.03) and 3 (0.13) were excluded due to lower predicted probability.
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5.3.2 Quantitative Results

To evaluate the effectiveness of the proposed camera view selection strategy, we conducted
a quantitative analysis using a Leave-One-Out Cross-Validation (LOOCV) approach. The
dataset consisted of 13 users, each performing the same collaborative task under the same
camera setup. In each fold of LOOCV, the model was trained on data from 12 users and
evaluated on the one remaining user. This process was repeated until every user had been
used once as the test subject. The final performance metrics were computed as the average

across all 13 folds.

5.4 Camera Selection Results

The camera selection model was evaluated across thirteen users to verify its consistency
and generalizability in dynamic cobotic environments. Each input frame was represented by
confidence scores extracted from 18 human keypoints, and a Random Forest classifier was
used to predict which camera views were most informative. The model was configured to

activate up to three cameras whose predicted probabilities exceeded a 0.5 threshold.

The camera selection model was evaluated across thirteen users to verify its consistency
and generalizability in dynamic cobotic environments. Each input frame was represented by
confidence scores extracted from 18 human keypoints, and a Random Forest classifier was
used to predict which camera views were most informative. The model was configured to

activate up to three cameras whose predicted probabilities exceeded a 0.5 threshold.

The results, summarized in Table 5.3, demonstrate that the system performs consistently
and accurately across different users. The average precision achieved was 92.3%, meaning
that when the system predicted a camera view as optimal, it was correct in the vast majority
of cases. The recall was even more impressive, reaching 100%, indicating that the model
successfully captured all the relevant views without missing any important frame—a critical

requirement in cobotic environments where safety and visibility are essential.

In addition to precision and recall, we also evaluated the ranking quality using the Norma-
lized Discounted Cumulative Gain (NDCG), which assesses the system’s ability to not
just identify the best view but also rank other views based on relevance. The NDCG score

averaged 0.9938, confirming that the system’s predicted rankings were nearly perfect.

Lastly, the overall accuracy of the classifier was measured at 86.4%, reinforcing the re-
liability of using pose-based features combined with machine learning for dynamic camera
selection. These metrics collectively highlight the strength of our approach : high perfor-

mance across multiple dimensions, generalizability across users, and suitability for real-time
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deployment in collaborative human-robot workspaces.

TABLEAU 5.3 Camera selection performance metrics per user

User Precision | Recall | Accuracy | NDCG
User 1 0.928 1.000 0.940 0.847
User 2 0.922 1.000 0.941 0.878
User 3 0.929 1.000 0.947 0.858
User 4 0.938 1.000 0.945 0.864
User 5 0.921 1.000 0.951 0.858
User 6 0.921 1.000 0.945 0.907
User 7 0.939 1.000 0.943 0.870
User 8 0.931 1.000 0.957 0.849
User 9 0.918 1.000 0.949 0.886
User 10 0.928 1.000 0.950 0.846
User 11 0.918 1.000 0.943 0.874
User 12 0.918 1.000 0.947 0.831
User 13 0.925 1.000 0.950 0.843

Average 0.923 1.000 0.950 0.864

To further support the system’s applicability in real-time cobotic environments, we measured
the total runtime of the camera selection pipeline, from pose estimation to final ranking deci-
sion. Using the lightweight configuration of OpenPose, the average inference time per frame
for pose extraction was approximately 0.08 seconds on a standard GPU. The subsequent
feature extraction and Random Forest, based camera ranking step introduced negligible ad-
ditional overhead, with an average runtime of less than 0.01 seconds per frame. As a result,
the entire camera selection process completes in approximately 0.09 seconds per frame,

confirming that the system is well suited for real-time operation at frame rates
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CHAPITRE 6 CONCLUSION

6.1 Summary of Works

This thesis explored the development of a vision-based system for enhancing human-robot
interaction in a collaborative industrial setting. Within a cobotic part-finishing cell equip-
ped with six Intel RealSense D455 RGB-D cameras, the work addressed three key research

challenges : camera calibration, human pose estimation, and adaptive camera view selection.

The first objective was to establish a reliable calibration pipeline to align all camera views
into a unified coordinate system. A checkerboard-based approach was implemented to esti-
mate the intrinsic and extrinsic parameters of each camera. Calibration accuracy was assessed
through the reprojection error metric. The most mean squared reprojection errors (MSE) is
appropriate. These results indicate successful geometric alignment and validate the calibra-

tion process across a multi-camera RGB-D setup.

The second objective involved applying human pose estimation using a method that offers
both accuracy and computational efficiency. A comparative study led to the selection of
a lightweight OpenPose model, which proved more suitable than MediaPipe for real-time,
multi-camera deployment. OpenPose provided robust joint detection even under occlusion,

with acceptable latency and resource usage.

The third objective focused on intelligent camera view selection to ensure that the system
continuously prioritized the most informative viewpoints with regards to the operator while
minimizing processing redundancy. A Random Forest classifier was trained using pose-related
confidence features and evaluated across annotated samples. The resulting model achieved
94.99% accuracy, 92.3% precision, and 100% recall in identifying the best subset of camera

views per frame.

Altogether, the proposed system met its goals by delivering a scalable and responsive solution
for operator monitoring in industrial environments. It offers accurate pose detection, real-time

adaptability, and efficient use of multi-camera data.

6.2 Limitations

While the system performed well in controlled settings, several limitations should be noted.
One key limitation concerns the generalization of the calibration results. Although repro-

jection errors on checkerboard images were significantly reduced, applying the calibration
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parameters to general scenes occasionally led to projection inconsistencies. This suggests
that while the calibration was sufficient for geometric alignment, it may not fully capture all

scene-level distortions.

In addition, the use of 2D keypoint estimators with triangulation introduces sensitivity to
occlusion, synchronization offsets, and viewpoint disparity. Although the camera selection
module helped reduce such issues by focusing on informative views, the system’s accuracy

still depended on the visibility of keypoints in at least two camera perspectives.

6.3 Future Research

To address these limitations and extend the capabilities of the system, several research di-

rections are recommended.

First, while the current stereo calibration approach yielded satisfactory reprojection errors, its
accuracy in non-checkerboard scenes can be improved. Future work should explore alternative
calibration methods such as bundle adjustment, which jointly optimizes camera parameters
and 3D scene geometry across all views. This could improve consistency in more complex

and dynamic environments.

Second, further enhancements in the pose estimation pipeline could involve depth-guided
refinement, hybrid RGB-D models, or learning-based fusion techniques to boost precision

during occlusion or partial visibility.

Third, the view selection strategy could benefit from temporal coherence and higher-level
reasoning. Sequence-based learning models or reinforcement learning agents could learn po-
licies that anticipate occlusions and proactively select camera combinations that maintain

joint visibility over time.

Finally, deploying the system in an operational industrial environment would allow for assess-
ment of its long-term robustness and usability. Feedback from real operators and integration
with robotic control systems would also support the transition from experimental prototype

to production-ready application.
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