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RÉSUMÉ

Ce mémoire propose une approche novatrice pour relever les défis critiques de la génération
de résumés cliniques qui soient à la fois précis, pertinents et adaptés au domaine médical.
Utilisant les grands modèles de langue (LLMs), cette méthode vise également à réduire
les "hallucinations", c’est-à-dire la production d’informations factuellement incorrectes. Le
point de départ de cette recherche est le constat que les note cliniques actuelles de patients
contiennent une grande quantité de données que les médecins doivent examiner en détail.
L’objectif est d’automatiser ce processus afin de diminuer l’épuisement professionnel des
médecins et d’améliorer l’efficacité des soins de santé.

Bien que les LLM présentent un potentiel considérable pour la synthèse de textes, leur ten-
dance à générer des informations erronées et leurs difficultés à traiter des données spécifiques
à un domaine, surtout dans le contexte médical où la confidentialité est primordiale, posent
des risques importants. L’objectif central de cette recherche est d’utiliser les ontologies médi-
cales, des représentations structurées de connaissances factuelles, pour guider les LLM afin
de produire des résumés plus fiables et spécifiques à une spécialité. L’hypothèse est que
l’intégration de ces ontologies dans le processus de génération des LLM améliorera la préci-
sion et la pertinence des résumés cliniques.

La méthodologie s’articule autour de plusieurs axes, en commençant par une analyse d’adaptation
au domaine médical via une annotation basée sur les ontologies pour identifier les concepts
clés. Par la suite, une stratégie d’extraction d’informations s’appuie sur ces ontologies pour
créer une représentation structurée des notes cliniques. Finalement, un nouveau processus de
décodage contraint et guidé par l’ontologie est appliqué, utilisant une approche qui favorise
le contenu aligné sur les relations ontologiques et permet de minimiser les incohérences. Les
résultats expérimentaux, obtenus notamment avec le jeu de données MIMIC-III, montrent
des améliorations significatives dans la génération de résumés adaptés et une réduction des
hallucinations. Ces conclusions indiquent que le fait de contraindre la génération des LLMs
à l’aide d’ontologies diminue efficacement la génération d’informations erronées.

De plus, ce mémoire introduit aussi MedHal, un nouvel ensemble de données conçu spé-
cifiquement pour l’évaluation de la détection des hallucinations dans les textes médicaux.
MedHal surmonte les limites des jeux de données actuels en intégrant diverses sources et
tâches médicales et en fournissant un volume important d’exemples. Ces exemples sont
également annotés avec des explications indiquant les incohérences factuelles. Ceci permet
un entraînement et une évaluation plus robustes des modèles de détection d’hallucination.
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Les retombées de cette recherche pour le secteur de la santé sont considérables. Ce travail
contribue de manière significative à l’avancement de la synthèse de textes assistée par les
modèles de langue dans le domaine médical en apportant des solutions concrètes aux défis
de la factualité et de l’adaptation au domaine. Enfin, nous apportons également une solu-
tion pour alléger la charge de travail des docteurs, améliorer la qualité des soins, accélérer
la recherche en IA médicale et faciliter un déploiement plus sûr des LLMs dans le domain
médical.
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ABSTRACT

This thesis presents an innovative approach to address the critical challenges of generating
accurate, relevant, and domain-adapted clinical summaries using Large Language Models
(LLMs), while simultaneously mitigating hallucinations. Recognizing that Electronic Health
Records (EHRs) contain vast amounts of structured and unstructured data, which clinicians
must review thoroughly, this research aims to automate this process to reduce burnout and
improve healthcare efficiency.

While LLMs offer significant potential for summarization, their inherent tendencies to halluci-
nate and their limitations with out-of-distribution data, particularly in the privacy-sensitive
medical domain, pose substantial risks. The core objective of this research is to leverage
medical ontologies, structured representations of factual domain knowledge, to guide LLMs
towards generating more grounded, domain-relevant, and specialty-specific summaries (e.g.,
tailored for radiologists versus oncologists). The underlying hypothesis is that integrating
ontologies into the LLM generation process will enhance the factual accuracy and relevance
of clinical summaries.

The methodology encompasses several key components: an initial domain adaptation analy-
sis using ontology-based annotation to identify and prioritize relevant concepts; an ontology-
based prompting strategy for information extraction, leading to a Concept-Structured Repre-
sentation (CSR) of clinical notes; and a novel ontology-guided constrained decoding process.
This decoding mechanism utilizes a beam search approach, incorporating hierarchy, property,
and similarity scores to favour content that aligns with ontological relationships and reduces
factual inconsistencies. The experimental results demonstrate significant improvements in
generating domain-adapted summaries of clinical notes and in hallucination reduction, par-
ticularly through the application of the proposed methods on the MIMIC-III dataset. The
findings indicate that constraining LLM output with ontological knowledge effectively reduces
the generation of erroneous information.

Furthermore, the thesis introduces MedHal, a new large-scale dataset specifically designed
for evaluating hallucination detection in medical texts. MedHal addresses the limitations
of existing smaller, single-task datasets by incorporating diverse medical text sources and
tasks, providing a substantial volume of annotated samples with explanations for factual
inconsistencies. This allows for more robust training and evaluation of medical hallucination
detection models. The MedHal dataset proves valuable for developing more effective medical
hallucination detection systems.
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The implications of this research are considerable for healthcare, as it offers a way to reduce
clinician workload by providing precise and relevant information, enhance the quality of
patient care through domain-adapted data, accelerate medical AI research by providing a
standardized evaluation framework, and facilitate the safer deployment of LLMs in clinical
settings by mitigating the critical issue of hallucinations. This work makes a contribution to
advancing LLM-assisted text summarization in the medical field by offering concrete solutions
to challenges of factuality and domain adaptation through ontology integration and robust
evaluation tools.
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CHAPTER 1 INTRODUCTION

Electronic Health Records (EHRs) document every aspect of a patient’s stay during a hos-
pital admission. Containing an overwhelming amount of unstructured (e.g. lab reports,
progress notes) and structured (vital signs, lab results) information, these documents must
be reviewed by clinicians prior to the point of care, since a thorough analysis of all this
data needs to be made before making a formal decision about a patient’s diagnosis. This
process is time-consuming and can lead to clinicians burnout [1]. Large Language Models
(LLMs), which have shown major improvements in language understanding in recent years,
can automate this process [2] and help reduce clinician burnout. Automating the summariza-
tion process of clinical notes could not only ease the burden currently placed on healthcare
systems, but also improve the work quality of doctors. However, this process hinges on two
critical requirements. The summary must be factually grounded, containing only information
explicitly present in the original clinical note. Additionally, the summarization process must
be tailored to the doctor’s specialty as it must only retain the relevant information needed
by the clinician reading the summary. Since the information needed by radiologists differs
significantly from that needed by oncologists, different summaries should be generated for
different areas of focus. However, while LLMs have improved a lot on tasks like summa-
rization and information extraction since the original Transformer paper [3], they still show
certain limitations in some areas. Indeed, major limitations of LLMs include their inherent
tendency to hallucinate information [4–6] and their inability to handle out-of-distribution
data. These limitations are particularly important as a single value or word hallucinated
can lead to disastrous consequences for the patient. Plus, classical LLMs have limited ex-
posure to medical data during training due to privacy restrictions, which further diminishes
their performance when applied to healthcare domains. To address these issues, this research
aims to leverage ontologies in conjunction with LLMs to create domain-adapted summaries
of clinical notes. Ontologies are a structured representation of the knowledge of a specific
domain (in our case, the medical domain). The information present in ontologies is known
to be factual and relevant to the domain and thus can be used to guide LLMs towards more
grounded and domain-relevant generations.
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1.1 Definitions

1.1.1 Ontologies

Definition : An ontology is a formal, explicit specification of a shared conceptualisation [7].

More precisely, an ontology is a structured representation of the knowledge linked to a specific
field. This field can be as precise as quantum mechanics or as broad as the medical domain.
This structure is created through three types of objects with specific goals :

• Classes: Abstract representations of domain-specific concepts that constitute the fun-
damental categorical units within the ontological framework

• Properties: Attributes that characterize and define the intrinsic nature of classes, fa-
cilitating their formal specification within the knowledge domain

• Relationships: Formal associations that establish semantic connections between classes,
enabling the expression of complex inter-dependencies within the ontological structure

Figure 1.1 Example of ontology representing a small portion of the medical domain

For instance, an ontology of the medical domain could contain classes representing concepts
like "Treatments", "Medication" and "Medical condition". As shown in Figure 1.1 , the "Treat-
ments" class can be linked to the "Medication" class through a relation of type subClassOf
(shown by the arrows in Figure 1.1). This research is focused on ontologies representing the
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medical domain as it aims to use them on clinical notes. More precisely, it focuses on medical
ontologies that encompass all aspects of healthcare and medicine. This preference for general
medical ontologies originates from the need to consolidate all possible information relevant
to process clinical notes in a single structure for simplicity.

1.1.2 Large Language Models

Large Language Models are neural architectures based on the Transformer architecture [3].
They work by utilizing the attention mechanism which allows them to attend to every part
of a sequence at once. Contrary to the original Transformer architecture which depicted
an "encoder-decoder" architecture, recent LLMs usually follow a "decoder-only" architecture.
Encoder-decoder models compress the input sequence using an encoder and use a decoder
to generate the output sequence. However, decoder-only models directly predict the next
sub-word (called token) that should follow the input sequence. Through rigorous training,
these models achieve remarkable performance only using this single paradigm. For example,
given the input sequence "The capital of France is ", the next tokens generated for a well
trained model would be Pa-ris (the dash separating the tokens generated). More precisely,
for a single inference step, the model not only outputs the next token, but also the probability
distribution of all tokens in its vocabulary. While the most probable token is usually chosen
as the next token, some algorithms prefer to rely on another metric to choose which token
should be selected in the distribution. More information is given about this in Section 2.4.

1.2 Medical Domain

This section examines the unique constraints within the medical field. It provides a brief
overview of patient admission procedures and explores the difficulties encountered when using
LLMs to analyze clinical notes.

1.2.1 Admission Procedure

An admission is the acceptance of a patient to a hospital’s care unit for the purpose of receiv-
ing medical care. It is associated with a single patient and encompasses a lot of information
required by healthcare providers. While an admission corresponds to a single patient, a pa-
tient may have multiple admissions to a hospital over time, reflecting different episodes of
care. During the point of stay, multiple clinical notes can be authored by various health-
care professionals about the patient including nurses, radiologists, oncologists, and other
specialists. These notes detail information like medical history, diagnostics and treatment
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plans. When the patient is discharged from the hospital, a comprehensive document called
the discharge summary is written detailing every aspect of the patient’s stay.

1.2.2 Clinical notes

Clinical notes contain extensive patient information, but present significant challenges in
interpretation due to their heterogeneous format and content. They range from structured
laboratory results in tabular format to detailed narrative reports. The variability in these
notes stems from multiple sources: different specialists have distinct documentation require-
ments, and even within the same specialty, clinicians may employ different documentation
styles based on their training and preferences. This structural heterogeneity persists despite
attempts at standardization through frameworks such as SOAP (Subjective, Objective, As-
sessment, Plan) [8] and PICO (Population, Intervention, Comparison, Outcome) [9]. While
some healthcare institutions implement standardized documentation protocols, the challenge
of format variability remains significant. This is particularly evident in the context of Large
Language Models (LLMs), where models trained on clinical notes from one institution often
demonstrate poor generalization when applied to notes from different institutions.

1.3 Problem Statement

This section details the different aspects of the problem of clinical summarization as tackled
by this research.

1.3.1 Summarization

In Natural Language Processing (NLP), the summarization task is defined to be the process
of transforming an input sequence (or source) I of arbitrary size into a shorter sequence of
text O [10]. This transformation T (x) is guided by a criterion C(I, O) which measures the
mutual information that needs to be conserved between I and O. This criterion is maximized
to obtain O. More formally,

O = max
T

C(I, T (I)) (1.1)

such that Length(O) < Length(I). Following this definition, we aim to reduce Length(O) as
much as possible, leading to more dense summaries, to save doctors as much time as possible.
Moreover, we aim to generate a structured representation that encompasses all the essential
details needed by a specialist for easy querying.
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1.3.2 Domain Adaptation

As mentioned in Section 1, the content required by different medical specialties varies sig-
nificantly. Given multiple clinical notes associated to a patient, it is important to carefully
select the information that is the most relevant to the specialist reading the final summary.
While a nurse might not look at MRI results when analyzing electronic health records, they
will carefully analyze patient responses to treatments in the clinical notes as that informa-
tion is important for them. This aspect of domain adaptation is particularly crucial, as the
effectiveness of a summarization system cannot be measured solely by its ability to preserve
information. Even if a summary is grounded by its source, it becomes ineffective if it fails to
prioritize the information relevant to the healthcare professional reading it. Following Equa-
tion 1.1, we adjust the definition of C to incorporate the medical specialty D in the criterion
leading to C(xi, xo, D). The ability to precisely determine and control what information is
included in summaries for different medical specialties is a central component of this research.
In this sense, we define a domain as a set of ontology classes of interest related to a specific
medical field. This definition operates under the assumption that a comprehensive medical
ontology that encompasses the broader medical field exists.

Definition: Let O be an ontology that encompasses an entire field (e.g. medicine). A domain
is defined to be a set of ontology classes S of interested related to a specific sub-field (radiology,
nursing, etc).

Therefore, we define domains specifically in relation to medical fields, rather than using the
traditional definition of domains (law, medicine, mathematics, etc). This domain-specific
approach directly influences a fundamental aspect of clinical summarization that is often
overlooked in the literature : summary relevance.

Definition: Summary relevance measures the degree to which the information provided in a
summary is important to the reader.

This aspect is particularly important when the ground truth summary is not accessible as
we have no way of measuring if the information that was used to generate the summary is
the one that was crucial given the clinical notes. We propose measuring summary relevance
by assessing how well a summary covers the most important concepts to the reader. In our
case, the reader is linked to a specific domain (radiology, nursing, etc) and we measure if the
concepts covered in the summary are consistent with those of the domain.
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1.3.3 Groundedness

While the domain-adaptation part is important, it is also crucial that summaries generated
from clinical notes remain grounded. By grounded, we mean that every single piece of
information mentioned in the summary must be backed by a statement in the original clinical
notes.

Definition: A summary is grounded if and only if each statement it contains can be directly
traced back to and verified against the source text.

The importance of groundedness in clinical summarization cannot be overstated. Incorrect
information in summaries of clinical notes can lead to serious medical errors and potentially
compromise patient safety. These summaries may propagate misunderstandings or introduce
artificial facts that could influence clinical decision-making. The literature often uses "factu-
ality" interchangeably with "groundedness," but we distinguish them here. Groundedness is
context-dependent, while factuality is not.

Definition: A text is factual if and only if each statement it contains can be directly traced
back to and verified against a source text (context) or general knowledge.

Both groundedness and factuality can be indirectly measured through hallucination metrics.
Further details regarding these two terms and their measurement will be provided in Sections
2.3 and 2.5.2.

1.3.4 Hallucinations in the Medical Domain

While in certain domains, hallucinations of LLMs do not have a direct impact on people, this
risk is particularly concerning in healthcare settings as it directly impacts patient outcomes.
Recent research has made progress in summary groundedness by reducing LLM hallucinations
through various approaches [11,12] and evaluation metrics [13,14], but significant challenges
remain. The fundamental difficulty lies in the lack of a formal, consistent methodology for
detecting ungrounded statements as it depends heavily on concept definitions and linguistic
formulations. While this research does not propose a method for completely preventing hallu-
cinations, it aims to improve the groundedness of clinical text summarization, thus reducing
LLM hallucinations. Finally, this research also focuses on creating a benchmark for evaluat-
ing different methods on factuality in medical text generation. The current state-of-the art
methods for evaluating summary groundedness mainly rely on large-scale language models,
which require substantial computation resources and infrastructure - a significant barrier to
accessibility for many researchers and institutions. Plus, these models often lack specialty in
the medical domain, which hurts their performance when given clinical documentation.
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1.3.5 Structured Summarization

While textual summaries effectively reduce the mental load of reviewing multiple docu-
ments, healthcare professionals might require specific data points rather than a compre-
hensive overview of the patient’s stay. A nurse, for instance, may need to quickly access
a patient’s weight to determine appropriate medication dosage - a task that still remains
time-consuming even with well-crafted summaries, as it requires parsing through narrative
text to locate the specific information. This limitation originates from the underlying nature
of textual summaries : they cannot be queried easily. While current state-of-the-art meth-
ods [2, 15] for clinical summarization mainly focus on narrative generation, few have tried
structuring the summaries using certain formats [16–19]. However, these summaries can usu-
ally only be queried based on the clinical section, not by medical concepts. To address this
constraint, we aim to incorporate the structure of ontologies into the summarization process.
This structure could help organize information according to medical concepts or proper-
ties (e.g. weight, procedures, treatments) while maintaining semantic relationship with the
clinical note. This structured format offers multiple benefits: it enhances information acces-
sibility through direct queries, improves document readability, and provides a standardized
interface between different clinical note formats. Since note formats such as SOAP and PICO
are defined based on sections containing different medical concepts, an easy mapping can be
defined if the granularity of the method is at the concept level. This standardization could fa-
cilitate information exchange across different medical specialties and healthcare institutions,
effectively bridging documentation gaps in clinical communication.

1.3.6 Infrastructure Constraints

Healthcare institutions face significant constraints that must be considered in the devel-
opment of clinical summarization systems. While large language models with hundreds of
billions of parameters demonstrate superior performance, their deployment in healthcare set-
tings is often impractical. First, most healthcare institutions lack the specialized hardware
infrastructure necessary to host and operate such large models effectively, and the substan-
tial operational costs (energy consumption, maintenance, etc) make these solutions financially
unsustainable. Plus, healthcare providers are bound by strict privacy regulations and data
protection requirements. The transmission of sensitive clinical documentation to external
data centers thus becomes impossible. This problem is even more complicated by data lo-
cality requirements, as many governmental institutions require patient data to be processed
and stored within the same region as the healthcare institution, some even requiring that
the data remains in the physical premise of the facility. This makes cloud-based solutions
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unsuitable regardless of their performance.

1.4 Research Questions

Our study aims to enhance multiple aspects of automatic clinical text generation. We focus on
two primary areas: improving the generation process itself and developing better evaluation
methods for clinical text.

1.4.1 Improving Generation Process

We investigate the following research questions:

1. How can large language model (LLM) generated clinical summaries be effectively adapted
across different medical domains ?

2. What strategies enable the integration of medical ontologies to constrain and guide
LLM text generation ?

3. What mechanisms can be implemented to reduce hallucinations in LLM-generated clin-
ical content ?

1.4.2 Advancing Evaluation Methods

Recognizing the limitations of current evaluation metrics in clinical settings, particularly for
hallucination detection, we also explore these questions:

1. What constitutes an efficient and reliable hallucination detection metric specifically
designed for clinical text ?

2. How can hallucination detection approaches be unified across diverse medical NLP
tasks, including question answering, summarization, and information extraction ?

1.5 Thesis Outline

This thesis is structured into five chapters, each addressing a critical aspect of our research.
Chapter 2 lays the groundwork with a detailed literature review, exploring five essential
topics: the fundamentals of summarization, the specific challenges of clinical text summa-
rization, the phenomenon of hallucinations in generative models, various decoding strategies,
and relevant evaluation metrics. Chapter 3 introduces our novel approach for generating
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domain-adapted clinical summaries, a method initially presented at the EKAW conference.
This chapter highlights our key innovations: an ontology-constrained decoding strategy that
enhances relevance and mitigates hallucinations, and a new ontology-driven domain-aware
summarization process. Chapter 4 details our work on developing a dedicated large-scale
medical hallucination detection dataset. This dataset serves a dual purpose: to evaluate the
performance of current models in detecting medical hallucinations and to act as a valuable
training resource. Concluding the thesis, Chapter 5 provides a concise summary of our con-
tributions, discusses the inherent limitations of our work, and outlines promising avenues for
future research.
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CHAPTER 2 LITERATURE REVIEW

This literature review is about summarization, clinical text summarization, domain adapta-
tion, hallucinations, constrained generation, and evaluation metrics.

2.1 Summarization

As mentioned in Chapter 1, summarization is the process of transforming an input sequence
into a shorter sequence of text. Its main objective is to grasp as much information as possible
contained in the input text in the output text. The input sequence is a text sequence of
arbitrary size and the criterion is a measure of the mutual information preserved between the
input and output sequences according to a formal definition of what needs to be conserved.
This transformation is guided by the type of inputs and processes.

The literature distinguishes three main categories of summarization tasks based on the na-
ture of the input sequence. When processing a single document, the task is referred to
single-document summarization (SDS) [20, 21]. In scenarios involving multiple documents
as input, the task becomes multi-document summarization (MDS) [22, 23]. The third cate-
gory, query-focused summarization (QFS) [24–27] extends these approaches by incorporating
an additional query component in the input sequence. A notable distinction between these
approaches lies in how their information criterion is defined. In SDS and MDS, the crite-
rion for what information should be preserved is typically implicit in the model architecture
and training process, leading to potential variations in information selection across differ-
ent approaches. In contrast, QFS provides an explicit, sample-specific criterion through its
query component, offering clearer guidance on what information should be prioritized in each
summary.

While these categories define how input is structured and information is selected, the actual
mechanism for generating summaries falls into three main paradigms: extractive, abstractive,
and hybrid summarization [10,21].

2.1.1 Extractive Summarization

Extractive summarization relies on directly retrieving parts of the input text to put them
into the output text. This means that every part of the summary is directly copied from
the input text. Extractive summarization is usually a two step process, where the first
step consists of finding the important information and the second step involves joining the
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retrieved information to generate the final summary [10]. Different kinds of methods can
be used to do these tasks. They are regrouped into two categories : statistical methods and
neural methods

Statistical Methods

Statistical methods in extractive summarization employ various heuristic approaches that
leverage both custom-designed features and frequency-based metrics of words and sentences.
Fundamental techniques such as Term Frequency-Inverse Document Frequency (TF-IDF)
[28–30] evaluate the significance of text segments by analyzing their lexical composition while
accounting for the diminishing impact of commonly occurring terms across the document (or
multiple documents in the case of MDS). These approaches have then been further enhanced
by incorporating structural and semantic features, including sentence position, sentence rele-
vance, and topic coverage metrics mainly through optimization techniques [31–33]. Another
branch of statistical methods transforms documents into graph-based representations, where
sentences are depicted as nodes and their semantic relationships as weighted edges [34–36].
This transformation enables the application of graph-based algorithms to identify central
nodes, which theoretically correspond to the most salient sentences in the source document.
These methods vary mainly in how they construct the graph and in what types of graph they
construct (directed, undirected).

Neural Methods

Neural methods encompass a diverse range of approaches based on deep neural networks
and their variants. The foundation of these methods was established through word embed-
ding techniques like Word2Vec [37] and Glove [38], which enabled the representation of text
sequences as dense vector embeddings. These representations demonstrated remarkable ef-
fectiveness in sentence classification and facilitated sentence clustering and selection based
on relevance and meaning. The integration of these embeddings with sophisticated archi-
tectures such as Recurrent Neural Networks [39], Long Short-Term Memory networks [40],
Convolutional Neural Networks and Graph Neural Networks [41, 42] further enhanced the
capability of extraction summarization systems. However, the field underwent a paradigm
shift with the introduction of the Transformer architecture [3]. Due to their attention mech-
anism, Transformers enabled the creation of contextual representations that surpassed previ-
ous methods in terms of accuracy and versatility. This breakthrough led to the development
of Pre-trained Language Models (PLMs), including BERT, RoBERTa, Sentence-BERT and
DeBERTa. These models have been successfully employed in various approaches, focusing
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on inter-sentence relationships [20], sentence hierarchy [43, 44], and graph-based representa-
tions [43]. Recent innovations have expanded the methodological landscape, incorporating
reinforcement learning by reformulating summarization as a ranking task [45, 46]. Addi-
tionally, the emergence of diffusion models has introduced novel approaches to generating
summary sentence representations, which are then utilized to extract relevant sentences from
the source document [24]

Granularity

The granularity of the extraction must be defined prior to the retrieval. Depending on the
size of the input text, multiple granularities can be used, the main one being at the sentence-
level [20]. However, other avenues have been explored by researchers like using sections
instead of sentences [17, 47, 48] . In the case of MDS, the granularity can even be extended
to the document level if the task involves multiple documents of small sizes.

Limitations

Extractive summarization represents the most reliable approach for maintaining complete
groundedness, as it constructs summaries exclusively from verbatim excerpts of source docu-
ments. However, this methodology presents several challenges. One significant limitation lies
in the granularity of extraction—individual sentences, when isolated from their surround-
ing context, may lead to a change in semantic meaning. In clinical settings, this can be
particularly problematic. For example, consider a statement noting "patient’s condition has
improved" appearing in the source document after documentation of medication A admin-
istration. If this statement is extracted and placed in the summary following a mention of
medication B administration, it creates a misleading causal relationship. While the original
document clearly attributed the improvement to medication A, the restructured summary
incorrectly suggests that medication B was responsible for the patient’s improvement.

Furthermore, extractive summarization often struggles with maintaining natural flow and
cohesion in the summaries. Since sentences are extracted from different sections of the
source documents, the final summary may appear fragmented. This can result in summaries
that, while factually accurate, are less engaging and potentially more difficult for healthcare
providers to quickly comprehend in time-sensitive clinical settings.
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2.1.2 Abstractive Summarization

While extractive summarization builds a summary by combining multiple sequences in the
input text, abstractive summarization generates summaries by synthesizing new text based
on the input information using a language model - the summary is written from scratch. The
evolution of abstractive summarization can be traced through distinct technological phases
with a significant transformation occurring with the emergence of LLMs.

Before LLMs

The introduction of pre-trained encoder-decoder architectures, notably BART [49] and T5
[50], marked a pivotal advancement in abstractive summarization. These Pre-trained Lan-
guage Models (PLMs), leveraging extensive pre-training corpora, demonstrated remark-
able efficiency in task-specific fine-tuning with minimal data requirements. This capabil-
ity boosted the development of various enhancement techniques, which can be categorized
into three main approaches: architectural modifications, training methods, and processing
techniques.

Architectural Methods : Architectural innovations focus on creating summarization-fitted
architectures to better suit summarization tasks [51]. Significant advances include enhanced
self-attention mechanisms that expand token processing capacity, which is particularly bene-
ficial for Multi-Document Summarization (MDS) [52–54]. Researchers have also incorporated
hierarchical structures within attention mechanisms [55–58]. A notable innovation involves
the integration of guidance signals into PLM encoders, improving output faithfulness and
relevance [2, 59]. These guidance signals effectively direct the model’s attention to relevant
tokens during inference.

Training Methods : Training-focused approaches aim to optimize the fine-tuning pro-
cess to enhance models’ summarization capabilities. Contrastive learning techniques [60–63]
address this by training models to discriminate between multiple candidate summaries, effec-
tively identifying optimal outputs. These methods particularly target exposure bias, a phe-
nomenon where autoregressive models’ outputs vary between training and inference phases
due to their reliance on ground truth summaries during training [64]. Additional innova-
tions include specialized pre-training strategies, such as importance-based denoising [65] and
n-gram prediction, which further refined the summarization process.

Processing methods : The third category encompasses both pre-processing and post-
processing techniques. Pre-processing methods [66] focus on input optimization and data fil-
tering, while post-processing approaches [67–69] include error correction and constrained gen-
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eration strategies, which ensure higher quality outputs. More details about post-processing
techniques are given in section 2.4.

After LLMs

The emergence of instruction-tuned LLMs like GPT-3.5, Claude, and Llama [70], has funda-
mentally transformed text summarization research. As models grow increasingly large and
get computationally intensive to train, the research community has pivoted from traditional
fine-tuning approaches to developing techniques that better leverage the knowledge already
embedded within these LLMs. While these models already demonstrate strong summariza-
tion capabilities in their base form, researchers have developed various approaches to extract
and enhance their abilities. These approaches can be broadly categorized into two main
directions : prompting techniques, multi-agent systems and constrained generation. While
constrained generation is more deeply explained in section 2.4, we detail here the two other
directions.

Prompting techniques : Prompting techniques aim to optimize how tasks are presented
to LLMs by providing specific instructions, examples or possible reasoning paths. Notable
innovations include few-shot prompting, which helps LLMs better understand desired output
formats and content through examples, and chain-of-thought (CoT) prompting, which en-
hances LLMs’ reasoning capability leading through better summarization performance. The
reasoning process, usually called element-aware summarization, helps the model better dis-
tinguish which elements must be present in the final summary [46, 71–73]. Soft prompting,
which uses trainable continuous vectors instead of fixed text templates (discrete prompts),
has also surfaced as a technique to improve summarization capabilities of LLMs [74,75].

Multi-agent systems : Multi-agent systems, on the other hand, leverage the interaction
between multiple LLMs to improve summary quality. In a vast majority of these systems,
some LLMs generate summaries or summary components, while others act as evaluators of
the generated content [76]. Through iterative feedback loops, summaries are progressively
refined until they meet the evaluators’ quality criteria. This approach has proven particularly
effective in detecting and correcting inaccurate information [77].

Limitations

Abstractive summarization generates cohesive summaries with natural flow by producing
new text rather than extracting existing passages. However, this approach faces a significant
challenge: LLMs can hallucinate, introducing facts or details not present in the source text.
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This limitation is particularly problematic in production environments, especially in critical
domains like medicine where accuracy is crucial. While current LLMs demonstrate strong
summarization capabilities due to their extensive training on summarization tasks, their
tendency to hallucinate remains a barrier to their deployment in contexts where even a
single factual error could have serious consequences.

2.1.3 Hybrid Methods

Hybrid methods combine extractive and abstractive approaches to achieve performance su-
perior to either methods applied independently. These techniques typically implement a
multi-stage pipeline [78, 79] where extractive models identify, cluster or filter relevant seg-
ments of the input text, and abstractive models process these segments to generate the final
summary [80]. The prompting techniques discussed in Section 2.1.2 can be applied to either
or both models to further enhance the pipeline’s overall performance. This hybrid architec-
ture can be implemented in two main ways. In the first approach, the extractive component
is directly integrated into the abstractive model’s architecture [81–83]. In the second method,
a traditional pipeline approach is adopted where the output of the extractive model is sent to
the abstractive model without the two models being interlinked. The most popular method
in this sense is based on Retrieval-Augmented Generation (RAG), which has emerged as the
predominant hybrid method in recent years. In RAG systems, a retriever model identifies
and extracts important portions of the input text, which are then processed by an abstractive
model [84, 85]. Modern RAG architectures have been enhanced with additional components
such as re-ranking mechanisms [86, 87] and query refinement techniques [88]. The effective-
ness of hybrid approaches, particularly RAG, can be attributed to their ability to mitigate
the hallucination problems commonly associated with LLMs processing large inputs. More
details are mentioned about RAG in section 2.3.3. By using the extractive components to
reduce the input size, these systems produce more concise and factually accurate summaries
while maintaining the natural flow characteristics of abstractive methods.

2.2 Clinical Text Summarization

Clinical text summarization represents a unique challenge in the broader field of natural lan-
guage processing. While general text summarization has experienced significant advances in
recent years, the development of clinical text summarization has progressed at a slower pace,
primarly due to the absence of reference summaries. This limitation stems from the strict pri-
vacy regulations surrounding clinical records, which creates a substantial barrier to research
advancement in this domain. The research community has found some workarounds with syn-
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thetics clinical notes, but these are limited in terms of applicability. It is important to clarify
that our focus specifically addresses the summarization of clinical notes to improve efficiency
for healthcare professionals. While the broader field of medical summarization encompasses
various tasks, including medical dialogue summarization, research paper summarization, and
patient health question summarization [89], our research specifically concentrates on clinical
note summarization. State-of-the-art methods are detailed in Section 2.2.4.

2.2.1 Challenges

The challenges in clinical text summarization extend beyond bare data accessibility. Several
inherent characteristics of medical records make this task particularly complex compared
to other domain-specific summarization tasks. These challenges include the considerable
length of medical records [90], their hybrid nature requiring both extractive and abstractive
summarization approaches [91], and the substantial variation in writing styles across different
healthcare providers. Furthermore, the requirement for absolute factual accuracy poses a
significant challenges for LLMs, which are prone to hallucinations. All generated statements
must be strictly factual and traceable to their original source for healthcare professionals’
verification. Additionally, the specialized medical terminology presents a notable challenge
[91], as LLMs typically have limited exposure to such domain-specific vocabulary during
training.

2.2.2 Generating Discharge Summaries

While the majority of research efforts in medical summarization have centered on research
papers and medical dialogue [89,92], there has been a growing attention to electronic health
record summarization. While most clinical note datasets with corresponding summaries
remain private [91], some public resources have emerged to support research in this field.
Among these is MIMIC-III [93], a semi-public dataset containing over 45,000 de-identified
patient admissions, though access requires completion of privacy training. This dataset has
spawned several research directions, particularly focusing on discharge summary prediction
and its components [94, 95]. The generation of the Brief Hospital Course section, which
summarizes a patient’s entire hospital stay, has received particular attention [2,15,96]. Addi-
tional research has explored generating chief complaint sections [97] and histories of present
illness [95]. A key challenge with generating discharge summaries is that they tend to be
too general. This broad scope often fails to capture the domain-specific information that
specialists require, thus limiting this task’s application in the real world.
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2.2.3 Radiology Reports

A parallel stream of research has emerged around radiology report summarization, utilizing
the MIMIC-CXR dataset [98]. These reports typically contain three sections: Background,
Findings, and Impressions. The task involves summarizing the detailed Findings section,
using the Impressions section as ground truth, as it represents a condensed version of the
findings [99–101].

2.2.4 State-of-the-art Methods

State-of-the-art approaches to clinical note summarization primarily employ hybrid method-
ologies based on medical entity annotators [2, 15, 102], specialized prompting techniques
[15, 100] or reinforcement learning [94, 101]. Our research diverges from conventional ap-
proaches that generate unstructured output text. Instead, we aim to produce structure re-
ports customized to specific medical specialists needs. This approach addresses the significant
variation in how clinical documents are usually structured and presented [103], enabling clini-
cians to efficiently query specific patient attributes while maintaining access to comprehensive
information when needed. The domain of structured summarization in clinical settings re-
main relatively unexplored as research mainly focused on generated structured summaries
(SOAP/PICO) from patient-doctors conversations [19,104]. Limited work has addressed the
transformation of existing clinical notes into structured, queryable summaries [105]. State-
of-the-art methods on structured summarization is mainly based on extractive approaches
that classify utterances into sections of the structured summary [17, 19, 104–106]. Plus, our
research specifically addresses the need to adapt these summaries for different medical spe-
cialties, as different specialists require distinct types of information [107]. This represents a
novel direction in the field, as currently, to the best of our knowledge, there exists no dataset
containing ground truth summaries tailored to different medical domains based on the same
clinical notes.

2.3 Hallucinations

Hallucinations represent a significant concern in LLMs, particularly regarding their applica-
tion in critical fields like medicine. Following [108], we define a hallucination as a span s of
generated tokens wi...wi+j, j ≥ i that is not supported from either user-provided context or
factual data. Informally, hallucinations are defined as generated content that is nonsensical
or unfaithful to the provided source content [108,109].
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2.3.1 Open-Domain vs Closed Domain Hallucinations

The literature distinguishes between hallucinations based on the type of knowledge accessed
by LLMs during generation [110]. During pre-training and supervised fine-tuning, knowledge
is embedded within the LLM’s parameters. This is referred to as parametric knowledge [111].
LLMs consistently utilize this knowledge when responding to user queries. The second form,
contextual knowledge, derives from user input (called prompts) [111]. For example, when
prompting a model to summarize clinical notes using domain-specific important elements,
parametric knowledge guides the selection of domain-relevant information, while contextual
knowledge enables the generation of summaries specific to the provided clinical document.
This distinction has led to the categorization of hallucinations based on these two knowledge
types [110]. Open-domain hallucinations relate to parametric knowledge or training data
[112]. If a model has learned during training that bananas are yellow, it should consistently
output this information. If it generates that bananas are blue, this constitutes an open-
domain hallucination (if the information is not provided in the user prompt).Closed-domain
hallucinations, on the other side, relate to contextual knowledge [4]. In our context, closed-
domain hallucinations are essentially the inverse of groundedness. When a generated text is
free from closed-domain hallucinations, it is, by definition, grounded, as per Definition 1.3.3.
These types of hallucinations are further categorized into intrinsic and extrinsic types.

2.3.2 Intrinsic vs Extrinsic Hallucinations

The literature defines intrinsic hallucinations as outputs that directly contradict the provided
context [4,6]. In contrast, extrinsic hallucinations are statements in the generation that seem
plausible, but cannot be verified by the original context provided [4, 6, 108]. For example,
if a source document indicates low blood pressure, but the model generates that the blood
pressure is high, this qualifies as an intrinsic hallucination. However, if the source document
contains no blood pressure information, but the model generates a statement saying that
blood pressure is high, this represents an extrinsic hallucination.

2.3.3 Solutions

Researchers have developed various approaches to mitigate hallucinations in LLMs, which
can be systematically categorized into four distinct solution types : design-time solutions in-
volving architectural modifications, training-time solutions that enhance learning paradigms,
generation-time solutions that optimize inference procedures, and external tools that aug-
ment model capabilities through external systems.
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Design-time solutions

Design-time solutions encompass architectural modifications to the original Transformer ar-
chitecture [3], specifically aimed at reducing hallucinations. These changes primarly focus on
three key areas : copy mechanisms, softmax redefinition and parametric memories.

Copy mechanisms enables models to directly duplicate text from the input rather than gen-
erating new tokens [113,114]. This approach has proven effective in tasks requiring minimal
closed-domain hallucinations, such as summarization, as it eliminates the need for models to
regenerate sequences that already exist in the input document, thereby reducing hallucinated
content through direct sequence copying. While these architectural modifications predated
the emergence of LLMs and became close to obsolete due to LLMs being better and better
at copying text from the input sequence due to their large training phase, recent research
has improved factual accuracy by integrating these mechanisms into LLMs without requiring
any fine-tuning [115,116].

Softmax function modification is a also a technique used to prevent hallucinations which
focuses on the Softmax function, a fundamental component of LLMs’ autoregressive prop-
erty. Recent work has identified the Softmax function as a significant constraint on LLMs’
expressiveness and faithfulness [117, 118]. To address this limitation, researchers have pro-
posed various modifications to the Softmax function, primarily centered around implementing
mixtures of Softmax functions [117,118].

Parametric memories involve modifying the classical architecture of LLMs in order to
integrate a new neural memory module whose goal is to store knowledge [119–121]. This
memory system can be modified post-training to correct hallucinated content. It primar-
ily targets closed-domain hallucinations by attempting to separate the model’s capacity for
natural language generation from its learned world knowledge.

Training-time solutions

Training-time solutions aim to modify the traditional training paradigms of LLMs to enhance
factuality, though this approach often presents a trade-off where models become overly cau-
tious to avoid potential inaccuracies.

Reinforcement learning has emerged as a prominent technique for improving LLM re-
sponse accuracy. Specifically, Reinforcement Learning from Human Feedback (RLHF) [122]
has shown significant potential in improving factual generation. This approach involves sam-
pling multiple generations for a given prompt, ranking these generations using human eval-
uators, training a reward model based on these evaluations and training the original model
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with the reward model. Established algorithms in this domain include Proximal Policy Opti-
mization (PPO) [122], Direct Preference Optimization (DPO) [123], and Kahneman-Tversky
Optimization (KTO) [124]. Recent advancements have introduced variations of reinforcement
learning approaches that provide fine-grained feedback on specific elements within genera-
tions [125, 126]. While these methods require more extensive annotations, it offers more
precise guidance by directly identifying which parts of the generated content are incorrect
according to specific criteria such as factuality or toxicity. Additionally, researchers have ap-
plied reinforcement learning reasoning hallucinations by penalizing models when reasoning
steps lead to incorrect conclusions [127,128].

Loss function adjustement techniques aim to reduce hallucinations by modifying the
convential fine-tuning paradigm. Traditional fine-tuning relies on negative log-likelihood
minimization represented by the following loss function :

L = −
N∑

i=0
log pθ(yt|xiy<t) (2.1)

Where:

• N represents the number of samples

• yt is the next token to be considered at time t

• pθ is the model’s probability of generating token yt

• xi is the input sequence; y<t is the generated sequence up to time t

This conventional loss function focuses solely on predicting the next token, lacking mecha-
nisms to verify factual accuracy. Given that LLMs are trained on massive internet-sourced
corpora, next-token prediction does not inherently prevent hallucinations. Research has
shown that this training objective may potentially increase hallucination rates [129–131].
While current advances in the field focus on using LLMs for data filtering when gathering
the training data [132], researchers have explored various improvements to this loss func-
tion [131,133], including approaches based on contrastive learning [60,134,135].

Latent space understanding methods seek to explore the underlying representational
space generated during LLM training. These approaches often leverage weight interpolation
[136], based on the observation that the final latent space from optimization exhibits linear
connectivity [137]. A key concept in this field is the task vector. Given a pre-trained model
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θbase and a fine-tuned model θfine−tuned on a specific task t. A task vector is defined as :

v = θfine−tuned − θbase (2.2)

This approach allows for steering model attention towards specific capabilities [138]. Ini-
tially developed for domains outside the field of NLP [139], these techniques have shown
effectiveness for LLMs [140–142]. By identifying the task vector associated with hallucinated
content, researchers can potentially develop intervention strategies that steer the model away
from generating inaccurate information by generating anti-hallucination vectors [143]. It is
important to note that this technique is really sensible to the task t and the architecture used
as it depends on the latent space generated when training a certain architecture on a task.

Generation-time solutions

Generation-time solutions include techniques that modify the classical inference pipeline to
improve task accuracy. These can be categorized into pre-generation and post-generation
techniques.

Pre-generation techniques aim to reformulate and augment the context given to LLMs
to enhance model accuracy and reduce hallucinations. These techniques include zero-shot
prompt engineering, few-shot prompting, and chain-of-thought reasoning. Zero-shot prompt
engineering involves formulating the problem with precise context for the LLM. This includes
several approaches:

• Role prompting: Assigns a specific role to the LLM to establish the perspective from
which it should respond ("You are a doctor whose role is", "You are a mathematician",
etc) [144,145].

• Style prompting: Specifices the desired output style or tone ("Write in a poetic
manner", "Write in a professional manner", etc) [146].

• Emotion prompting: Incorporates emotional elements to emphasize the importance
of the question ("This is important to me", "My career depends on it") [147,148].

• Format prompting: Defines the required output format (json, yaml, list, etc) [149,
150].

While seemingly straightforward, these techniques have demonstrated improved performance
and reduced hallucinations in specific tasks. Few-shot prompting involves presenting the LLM
with n examples of a task before requesting it to perform the same task [151]. This technique
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is particularly effective when similar examples are available and the same process needs to
be applied to new cases. For instance, LLMs can easily transform statements into questions
when provided with a few examples without requiring fine-tuning. The main problems with
this technique lies in determining the optimal value of n and selecting appropriate exam-
ples. While increasing the number of examples generally improves performance [151], it also
increases token usage. Several approaches have been proposed for example selection, some
based on example similarity to the input [152–154] and other more sophisticated methods
based on filtering and generated samples [155,156]. Chain-of-Thought (CoT) prompting en-
courages LLMs to articulate their reasoning process before providing an answer [157]. This
technique has shown to improve performance and reduce hallucinations in tasks requiring rea-
soning capabilities. CoT can be combined with few-shot prompting to demonstrate possible
reasoning paths for solving problems. More advanced CoT-based techniques have incorpo-
rated decoding methods [158, 159] and contrastive learning to validate reasoning paths and
enhance performance [160, 161]. More sophisticated pre-generation techniques include prob-
lem decomposition [162, 163], which decomposes the problem into smaller simple problems,
and ensemble techniques, which use multiple prompts on the same task or sample multiple
reasoning paths [164, 165] in order to average their predictions. While these pre-generation
techniques can be effective in certain use cases, they all come with a significant trade-off:
increase token usage, resulting in longer inference times and higher memory requirements.

Post-generation techniques involve multiple inference passes with the model to verify,
modify or critique its initial response. While these additional passes increase the latency
until the final output is generated, they enable the model to improve its answer through
self-reflection. Methods like Self-Check [166] and Chain-of-Verification (COVE) [167] gener-
ate feedback based on the original input and the model’s initial answer, using this feedback
to identify and correct potential hallucinations. These approaches have demonstrated im-
provements in summarization tasks, where summaries can be broken down into individual
statements for the LLM to validate or invalidate. Alternative methods [168, 169] generate
multiple possible outputs and task the LLM with evaluating these alternatives, leading to
reduced hallucinations as the model selects the most factually accurate version. The feedback
in these approaches can be generated by the LLM itself [170,171], other LLMs [172,173], and
templated questions [166, 167]. Some researchers have also taken a preventive approach by
attempting to stop the model before hallucination occurs. For instance, self-familiarity [174]
evaluates the model’s familiarity with the concepts in the input instruction and withholds
response generation when encountering unfamiliar concepts. Similarly, Self-Ask [175] de-
termines whether additional questions need to be asked before providing an answer. While
these methods have demonstrated improvements in text generation tasks, they still face some
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limitations:

• Computational overhead: The requirement for multiple inference passes signifi-
cantly increases computational requirements per sample. This creates a trade-off be-
tween speed and accuracy: researchers and users must choose between a faster response
that might contain hallucinations or a slower, more accurate response. Essentially, fac-
tuality must be traded for speed. More recently, work has been done to remove that
trade-off [176]

• Reliability of self-evaluation: These methods rely on the assumption that LLMs
can accurately identify hallucinated content in their own outputs. However, there is no
guarantee that LLMs won’t hallucinate during their evaluation process. While recent
research suggest that LLMs may have some awareness of when they are hallucinating
[112], these studies have been limited to open-ended hallucinations and specific use-
cases.

External tools

Hallucination mitigation strategies increasingly leverage external tools to ground LLMs’ gen-
erations. These tools include a broad range of resources external to the LLM’s parameters,
including databases, web search engines, knowledge bases, and code execution environments.

Retrieval Augmented Generation (RAG) emerges as the most promising approach, utilizing
external vector databases to enhance model performance [86, 177]. RAG transforms how
LLMs access and utilize information by supplementing parametric knowledge with contex-
tual retrieval. LLMs can thus use their contextual knowledge on par with their parametric
knowledge in order to respond to a query. The RAG process involves several key steps:

1. Document Encoding: An embedding model transforms documents into vector repre-
sentations. Documents can include various information types such as text or knowledge
graph triplets

2. Database Creation: Encoded documents are stored in a vector database.

3. Query Retrieval: During inference, the input query is embedded using the same
embedding model

4. Context Augmentation: The most similar k documents (a configurable hyperpa-
rameter) are retrieved and integrated into the prompt.
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5. Generation: The LLM generates the answer to the query using the provided context.

For example, when queried "What is the age of the patient ?", RAG might retrieve and
append the admission note of a patient containing such information to provide contextual
grounding. This approach has demonstrated significant hallucination reduction, particularly
in question-answering and up-to-date knowledge-dependent tasks [177]. Researchers have
developed numerous improved versions of RAG including:

• Re-ranking mechanisms: these mechanisms take as an input the k most relevant
documents and re-ranks the documents. This step is more accurate than the classical
retrieval method as it does not rely on pre-computed embeddings. The query is directly
compared to each document through a re-ranking model [86, 87].

• Query routing and refinement techniques: These techniques aim to get a better
understanding of the query leading to improved vector representation [88,178,179].

• Optimized document chunking: This steps aims to filter out irrelevant information
in documents to optimize how documents are chunked in the vector database [180].

• Context optimization: This step aims to reduce the size of the retrieved content
while filtering out the irrelevant information through data filtering and summarization
[181].

Despite its effectiveness, RAG is not infallible in terms of hallucinations. Two primary
challenges persist [6]:

• Retrieval Failure: When retrieved content fails to relevantly match the query, it can
increase hallucination as it introduces a lot of irrelevant information [182].

• Generation Bottleneck: The model may struggle to effectively utilize or extract
information from the retrieved context [183]. This is especially the case if the context
is noisy or conflicting [184].

Alternative approaches to hallucination mitigation using external tools extend beyond RAG.
Web search integration represents a promising avenue, enabling LLMs to query internet re-
sources through APIs and retrieve up-to-date, factual information in real time [185]. Code
execution environments offer another strategy for hallucination mitigation, particularly in
technical domains like mathematics and software development. By allowing LLMs to exe-
cute code and receive immediate runtime feedback, these environments provide a concrete
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verification mechanism [185–187]. Researchers have observed significant reductions in hallu-
cinations in problems that require precise calculation or algorithmic problem-solving, where
the gap between generated text and executable logic can be bridged.

2.4 Decoding strategies

Decoding strategies represent modifications to the classical inference process that lead to
generations satisfying specific constraints. Modern Large Language Models (LLMs) generate
text from left to right, one token at a time. At each time step t, the LLM outputs not just
the next token, but a probability distribution over its entire vocabulary. This provides access
to each token’s probability of being the next in the sequence. Formally, given the input X

and the generated tokens y1...yt, LLMs output the probability of token t given the generated
sequence and the input :

P (yt|x, y1...yt−1) = LLM(x, y1...yt−1) (2.3)

Traditionally, the most probable token is selected as LLMs are trained to maximize the
probability of the next token in the sequence. This approach is known as Greedy Decoding.
Using equation 2.3, greedy decoding is defined as :

yt = argmax
j

P (yt|x, y1...yt−1) (2.4)

While this technique can sometime lead to close-to-optimal generations, numerous alterna-
tives have been proposed to modify this decoding process. Notably, the process isn’t limited
to tracking only one token at a time. It is possible to track multiple tokens simultaneously
- for instance the k most probable - leading to multiple possible generations at each time
step. This approach, known as Beam Search [188], tracks multiple possible generation paths
concurrently. These generation paths are referred to as beams. Recent state-of-the-art de-
coding strategies vary in their application level: either at the token level or the beam level.
Token-level strategies modify the model’s probability distribution at each time stamp, while
beam-level strategies alter beam selection criteria to meet constraints.

2.4.1 Token-level Decoding Strategies

Token-level decoding strategies serve multiple purposes, including generation diversification
and structure incorporation. For instance, when requiring the model to output valid JSON,
constraints must be applied at the token level. Key token-level algorithms include :
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• Temperature Sampling adjusts the token probability distribution using a hyper-
parameter τ that controls the distribution’s skewness [189]. The next token is then
sampled from the adjusted probability distribution. In practice, the implementation
involves modifying the Softmax function :

eyi∑n
k=1 eyk

−→ e
yi
τ∑n

k=1 e
yk
τ

(2.5)

• Top-k Sampling only considers the k most probable tokens during the sampling pro-
cess [190].

• Top-p Sampling considers only the most probable tokens whose cumulative probabil-
ity meets or exceeds p during sampling [191].

• η-Sampling discards tokens whose entropy falls below a specified threshold, with the
next token sampled from the remaining candidates [192].

• Contrastive Search adjusts token probability distribution using a degeneration penalty
to enhance diversity while maintaining coherence [193].

• Contrastive Decoding modifies the probability distribution using the distribution
from a smaller LLM to enhance generation quality [194]. It uses the mistakes a smaller
LLM would make to improve the generations of a bigger one.

Attribute-based discriminators

Researchers have developed methods to condition generation on desired attributes [195–197].
These attributes could be topics the model should address during the generation or tone
that should be incorporated into the output sequence. These approaches employ a Bayesian
factorization trick and a discriminator model that predicts attribute satisfaction given the
generated sequence.

LLMfine-tuned on a(x, y1...yt − 1) = P (yt|x, y1...yt − 1, a) (2.6)

Given the attribute a, rather than conditioning through fine-tuning as in equation 2.6, they
utilize this factorization trick :

P (yt|x, y1...yt−1, a) ∝ P (a|x, y1...yt) ∗ P (yt|x, y1...yt−1)

P (yt|x, y1...yt−1, a) ∝ Discriminator(a|x, y1...yt) ∗ LLM(x, y1...yt−1)
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Structure-based discriminator

A significant branch of decoding strategies focuses on imposing format constraints on gener-
ation. This is particularly valuable when integrating LLM outputs with APIs or tools (see
Section 2.3.3). Researchers have employed finite-state machines to constrain LLM decoding
processes, ensuring generations conform to predefined regular expressions [198–202]. [203] ex-
tended this approach using formal representations based on logic and code. Further advances
have established a general framework allowing any grammars to be included with the input
through an incremental token-level parser [204]. These grammars can be input-dependent,
allowing per-sample grammar variation, which is particularly useful for tasks like entity link-
ing and extractive summarization. These algorithms utilize token pruning, where certain
token probabilities are set to zero to prevent invalid token generation. These methods can
be summarized by the algorithm below:

1. Generate probability distribution of tokens :
P (yt|x, y1...yt−1) = LLM(x, y1...yt−1)

2. Process the probability distribution through a parser :
P ∗(yt|x, y1...yt−1) = Parser(P (yt|x, y1...yt−1), x, y1...yt−1, G)

3. Select the next token based on the adjusted probability distribution :
yt = argmax

j
P ∗(yj|x, y1...yt−1)

2.4.2 Beam-based Decoding Strategies

Beam-based decoding strategies operate at the beam level, maintaining multiple possible
generations simultaneously based on the beam search algorithm [188]. This approach mit-
igates the risk of missing high-probability token sequences that might be obscured by low-
probability tokens at intermediate steps. The final output typically selects the most probable
beam, though the k most probable sequences could also be considered. Beam search has
proven particularly effective in tasks with variable output lengths, such as summarization
and translation [205,206]. Current state-of-the-art beam-based decoding strategies include:

• Diverse Beam Search organizes the k most probable sequences into n groups and
incorporates a diversity term to generate more diverse beams [207].

• Grid Beam Search extends beam search to accommodate lexical constraints in gen-
eration, such as required words or text sequences in the final output [208].
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• Best-first Beam Search enhances beam search efficiency through priority queue im-
plementation [209].

• Improved Beam Search for Hallucination Mitigation employs an NLI model to
re-rank beam probabilities, reducing hallucinated content in generations [210].

2.5 Evaluation Metrics

Evaluation metrics assess LLMs’ performance on specific tasks. In the context of this work,
we focus on two categories of metrics: those evaluating summarization capabilities and those
measuring hallucination levels in model generations.

2.5.1 Summarization Evaluation Metrics

The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [211] stands as the field’s
standard metric for summarization evaluation. Given a reference summary and the ground
truth summary, ROUGE measures the n-gram overlap between the two summaries, where
n determines the level of textual similarity required (in practice n is usually 1 or 2). For
example, ROUGE-1 and ROUGE-2 measure unigram and bigram overlap respectively. Plus,
ROUGE supports multiple ground truth summaries. The metric supports multiple ground
truth summaries and is formally defined as:

ROUGE-N(C) =
∑

S∈R |G(C, N) ∩G(S, N)|∑
S∈R |G(S, N)| (2.7)

where R represents the set of reference summaries, and G(S, n) returns the set of n-grams
in summary S. Variants like ROUGE-L and ROUGE-W incorporate longest common sub-
sequence (LCS) approaches [211]. However, ROUGE’s reliance on exact n-gram matching
presents a significant limitation. It penalizes semantically equivalent summaries that use
different wordings, potentially favoring summaries with matching words but conflicting in-
formation over those expressing identical information through different wording. METEOR
is another metric that improves ROUGE by considering word stems [212]. It calculates the
harmonic mean of unigram precision and recall, incorporating exact word matches and stem-
ming to account for morphological variations. Additionally, METEOR considers synonyms,
making it more flexible in assessing the semantic accuracy of translations. However, it is
still limited in terms of word formulations. This limitation led to the creation of context
similarity metrics.

Context Similarity Metrics. Context similarity metrics leverage pre-trained encoder mod-
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els to evaluate summary quality. These metrics utilize the encoder’s ability to map text se-
quences into a high-dimensional latent space where contextually similar content are closer to
each other. BERTScore [213], based on the BERT model, has emerged as the standard metric
in this category. Alternatives include BARTScore, which evaluates text likelihood using the
BART model [49], MoverScore [214], which enhances BERTScore with soft alignments, and
SynWMD [215], which incorporates syntactic awareness. While effective at measuring sum-
mary relevance (see 1.3.2), these metrics may assign high similarity scores to contradictory
statements about the same topic, such as conflicting patient age descriptions. For example,
the sentences "The patient is 70 year old" and "The age of the patient is 60 years old" will
have a high BERTScore as the sentences detail the same topic (Age). However, they detail
contradictory statements.

Reference-free Metrics. A fundamental challenge in summarization evaluation lies in the
absence of a definitive "gold" summary. Reference summaries provided in datasets serve as
examples of acceptable summaries rather than comprehensive solutions. This inherent limi-
tation makes it difficult to assess similarity between summaries. In addition, this challenge
is compounded by the fact that the ground truth used for metric computation represents
just one of many possible valid summaries. To address these challenges, researchers have
developed reference-free automatic metrics, focusing primarily on factual detection:

• SummaQA evaluates summary quality by quantifying its ability to answer questions
automatically generated from the source text [216].

• SUPERT assesses summaries by measuring their semantic similarity to pseudo-reference
summaries, which are constructed from salient sentences in the source text [23].

• QuestEval builds upon SummaQA’s framework, leveraging pre-trained language mod-
els to compute quality scores [217].

2.5.2 Hallucination Evaluation Metrics

While reference-free metrics inherently assess hallucination, researchers have also developed
specialized metrics specifically targeting hallucination detection in generated content:

• SRLScore evaluates factual consistency by comparing fact tuples extracted from the
input document and the generated summary [218].

• FACTSCORE decomposes generated content into atomic facts and calculates the
percentage supported by reliable knowledge sources [219].
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• FEQA quantifies hallucinations by assessing the summary’s ability to accurately an-
swer questions derived from the source text [220].

Another significant approach utilizes Natural Language Inference (NLI) models to detect
factual inconsistencies. These models assess whether a given premise entails a hypothesis by
computing an entailment score. Metrics such as SummaC [221], FactCC [222], and DAE [223]
leverage this capability by treating the input text as premises and decomposed summary
statements as hypotheses. However, these metrics are still pretty limited as the models are
not entirely 100% accurate.

2.5.3 LLM-as-a-Judge

A recent development in evaluation methodology known as LLM-as-a-Judge involves using
LLMs themselves as judges [224, 225]. This approach typically employs larger models to
evaluate smaller ones, as using models of comparable size would raise questions about eval-
uation reliability. Research has shown that LLM-based evaluation correlates more strongly
with human judgment, particularly in tasks like summarization where multiple valid answers
exist [226]. Most common LLMs used as evaluators are usually general closed large lan-
guage models like GPT4 [227], Claude and Gemini [228]. However, some alternatives have
been proposed by the open source community like the Prometheus models [229] which are
specifically fine-tuned for evaluation.
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CHAPTER 3 ONTOLOGY-CONSTRAINED GENERATION OF
DOMAIN-SPECIFIC CLINICAL SUMMARIES

This chapter is based on the paper Ontology-Constrained Generation of Domain-Specific
Clinical Summaries by Gaya Mehenni and Amal Zouaq published in the 24th International
Conference on Knowledge Engineering and Knowledge Management, on November 26th 2024
[230]. It also incorporates subsequent research and developments stemming from that work.

3.1 Introduction

In the past few years, large language models (LLMs) have demonstrated significant advance-
ments in their extraction and summarization capabilities [75, 89, 95, 231], offering poten-
tial to automate the processing of complex medical information, such as Electronic Health
Records (EHRs) and clinical notes [2]. These records, regrouping overwhelming amounts
of information, are known to significantly contribute to clinician burnout [1]. Generating
domain-specific summaries, which would efficiently encapsulate the information needed by
each specialist could ease this task. However, applying LLMs to medicine presents several
challenges: clinical documentation uses specialized terminology, lacks standardized structure.
Plus, LLMs tend to hallucinate content, which, in this setting, is particularly problematic.
These issues get even worse when the generated content must be tailored to different med-
ical contexts, as information priorities vary substantially between medical specialties. For
instance, oncologists require a different set of information as radiologists. Medical ontolo-
gies offer a solution to these problems by providing structured knowledge representations
that can be used to identify key concepts and relationships within particular fields aka do-
mains. These can guide the extraction process of relevant information from clinical notes,
enabling domain-adapted summarization, while reducing hallucinations. A remaining chal-
lenge involves constraining LLM generation to specific domain concepts and properties to
avoid producing non-factual, ungrounded information.

3.2 Methodology

Our research explores the potential of using ontologies to guide a language model towards
relevant information using prompting and constrained generation. By imposing contraints
on the generation process using ontological structures, we aim to enhance the extraction and
summarization capabilities of language models while mitigating the risk of hallucinations.
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35 year old woman presents with 3-​day R-​
sided throbbing headache, photophobia, 
nausea. No recent triggers. Exam: VSS (BP 

118/76, HR 72, RR 16, ...
  Sumatriptan : 50mg 

...

  Diagnosis : Acute migraine ...

Ontology-​guided prompting and 
decoding

  Follow-​up : Scheduled in 2 ...

  CT Brain Constrast : Negative ...

  ECG waveform : Regular ...

Nursing Physiology Radiology ECG

Pruning 
+ 

Verbalizer CT scan of the patient's 
brain with contrast ...

ECG waveform: Regular 
rhythm.

35-​year-​old woman with 
acute migraine ...

A 35-​year-​old woman 
without aura 

experiences nausea ...

Figure 3.1 General overview of how our method generates domain-adapted clinical summaries

To achieve this, we propose a methodology that leverages the structured knowledge encoded
within ontologies to guide models generations in an informative and grounded manner. At
the heart of our methodology lies the concept of ontology-guided beam search. We utilize
the ontology in conjunction with the diverse beam search algorithm [207] to evaluate the
relevance and factual accuracy of potential beam candidates in relation to the input context.
By iteratively assessing the alignment of candidate generations with ontological knowledge,
we expect to enhance the overall groundedness (see Section 1.3.3) and relevance (see Section
1.3.2) of the generated text, ensuring that it aligns more closely with the knowledge repre-
sented in the ontology. To further enhance the groundedness and relevance of generations,
we incorporate an evaluation of beam paths based on their resemblance to the clinical note.
This ensures that the information extracted by LLMs is not only aligned with the ontological
knowledge but also reflective of the specific details and nuances present in the source clin-
ical document. Figure 3.2 illustrates how, from multiple clinical notes for a given patient,
our method generates both a textual (unstructured) summary and a structured summary
defined by ontology concepts. This structured representation allows for adaptation of the
final summary to various medical domains, such as cardiology and oncology. Furthermore,
our approach is model-agnostic, requiring only token probabilities for its application.

As shown in figure 3.2, our methodology is based on five main steps: domain adaptation
analysis, information extraction, constrained decoding, pruning and verbalization.
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Figure 3.2 Overall architecture of our method: Structured and unstructured summaries
can be generated from multiple clinical notes about the same patient

3.2.1 Domain Adaptation Analysis

As mentioned in section 1.3.2, we define a domain to be a set of ontology concepts of interest
related to a specific medical field. While the domain can be defined by medical experts, we
define it based on clinical notes related to specific medical fields. Given texts that are linked
to a certain domain D, we aim to identify the most important concepts in each text. We
start by annotating each text using an ontology-based annotator. In our case, we utilized
the MedCAT annotator [232]. We then create a set S based on a minimum occurrence
threshold. We presume that the annotator can detect different formulations of the same
concept (abbreviations, plurals, etc). Then, using the ontology, we retrieve all ancestors of
each concept and add the ancestors to S. This step aims to filter out overly specific concepts
tied to individual patient notes, as our goal is to capture a general overview of domain-relevant
concepts. Figure 3.3 provides an example illustrating the importance of this filtering process
in achieving such a broad understanding of key domain concepts. Subsequently, the frequency
of each class in S is computed and stored in a class-to-frequency dictionary. We define this
dictionary as the Domain-Class-Frequency (DCF) dictionary. Its goal is to store the most
relevant concepts in a domain to later guide the generations towards these concepts. Then,
each DCF is normalized according to the average DCF, computed by averaging the class
frequencies across all domains. This normalizing step ensures that each DCF only contain
relevant concepts to the domain and reduces the weight of general medical concepts that are
higher in the ontology hierarchy. Finally, only the top k most frequent concepts are kept.
Here, k controls how precise we want our definition of a domain to be. This methodology is
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Figure 3.3 Domain Adaptation Analysis: By retrieving all ancestors of each concept, we
get a broad understanding of general concepts present in the domain. In this case, we only
showed two concepts for the domain, but this algorithm should be computed with multiple
concepts.

presented in algorithm 1. As shown in Figure 3.2, the DCF dictionary is used in the pruning
phase to perform domain adaptation.

3.2.2 Information Extraction using Ontology-based Prompting

Building upon the domain definition through ontological concepts established in the previous
step, we now focus on extracting concept-specific information from clinical notes. Draw-
ing inspiration from [71], we introduce a summarization process guided by ontology-based
prompting. This approach aims to generate structured representations of clinical notes,
enabling doctors to efficiently query concept-based information while facilitating domain-
specific summarization through integration with the DCF dictionary (see Section 3.2.1). The
process begins with the annotation of multiple clinical notes from a patient using a medi-
cal ontology to identify relevant medical concepts. For each clinical note, we identify the k

most frequent concepts using the same process defined in Section 3.2.1 minus the normal-
ization stage. These concepts serve as the basis for subsequent steps. Capping the number
of concepts to k helps us balance computational efficiency with the amount of information
extracted. While including all concepts would yield more exhaustive data, it would incur
significant computational overhead, and infrequent concepts are often harder for models to
reliably extract due to their limited mentions. The extraction process involves prompting the
model to extract information about individual concepts on the same clinical note through
multiple inference passes. This architecture allows for efficient parallelization, as each note
and concept can be processed independently. Following a RAG-like methodology, we enhance
the prompt by incorporating ontological information associated with each concept, specifi-
cally derived from the concept’s restriction properties. The prompt template and an example
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Algorithm 1 Domain Adaptation Analysis
function domainAdaptationAnalysis(domainTexts, ontology, annotator, k)

concepts ← []
for all text in domainTexts do

textConcepts ← annotator(text)
for all textConcept in textConcepts do

ancestors ← ontology.getAllAncestors(textConcept)
for all ancestor in ancestors do

concepts.append(ancestor)
end for

end for
end for
frequencies ← getFrequencies(concepts)
averageFrequencies ← getAverageFrequencies(frequencies)
return getMostCommon(frequencies - averageFrequencies, k)

end function

are illustrated in Figure 3.4.

Our hypothesis is that this ontological augmentation provides the model with richer context
about the concepts. Including a concept’s ontological characteristics improves the model’s
extraction capabilities by providing a comprehensive understanding of the concept’s meaning
and significance. The final output for each clinical note is a concept-structured representation
(CSR), which maps detected ontology concepts to their corresponding extracted summaries
from the notes. These summaries, referred to as "extracted values," are generated by the
model using the specified prompt template. An example of a CSR is shown in Table 3.1.

Concept Extracted Value
Laboratory test Non-diagnostic repolarization abnaormalities on tracing

#1.
Pain / sensation finding The patient has an inferior myocardial infarction of in-

determinate age.
Finding of heart rhythm A regular supraventricular rhythm of indeterminate

mechanism.

Table 3.1 Example of concept-structured representation associated to a clinical note

3.2.3 Constrained Decoding

During the information extraction phase, the model is prompted to extract information
related to a specific concept. To ensure the relevance and factual accuracy of the generated
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Here is a clinical note about a patient
——————
[Clinical Note]
——————
In a short sentence, extract the information that is related to the "[concept]" medical
concept from the clinical note. "[concept]" is characterized by "[restriction properties]"
If the concept is not mentioned in the note, respond with ’N/A’. Only output the
extracted information.

Figure 3.4 Prompt template used to extract information

Here is a clinical note about a patient
——————
John Doe, 68 y/o M, presents with dyspnea and mild chest discomfort. Vitals: BP
110/70, HR 98, SpO2 92%. Lungs show crackles. Electrocardiogram (ECG) performed:
Sinus tachycardia with ST depression in leads II, III, aVF. Plan includes labs, CXR,
O2, and cardiology consult.
——————
In a short sentence, extract the information that is related to the "electrocardiogram"
medical concept from the clinical note. "electrocardiogram" is characterized by
"Evaluation - action AND Heart Structure and Electrocardiographic monitor and
recorder, device". If the concept is not mentioned in the note, respond with ’N/A’.
Only output the extracted information.

Figure 3.5 Example of prompt used in the case of the "Electrocardiogram" concept (as a real
note from MIMIC can’t be shown, a synthetic note was generated to illustrate the prompt)

responses, a novel decoding strategy is employed. This strategy leverages the knowledge
embedded within the ontology to guide the model towards more relevant answers (see Section
1.3.2) and minimize hallucinations, ensuring groundedness with the clinical notes (see Section
1.3.3). Figure 3.6 illustrates the overall decoding process.

Our constrained decoding algorithm utilizes diverse beam search [207], incorporating grouped
beam search to generate more diverse results during decoding. The algorithm prioritizes
beams that exhibit textual similarity to the clinical note and contain concepts related to
the target concept through various ontological relations (hierarchical, restriction properties).
However, the challenge of detecting concepts from individual tokens is not trivial as concepts
might include several tokens. For instance, in the sentence The patient displayed signs of acute
respiratory distress syndrome, the respiratory disease mentioned is spread out throughout
multiple words (acute respiratory distress syndrome). To address this, the beam score is
computed after generating a specific number of tokens, denoted as the generation window
(W ). Every W tokens, the generated tokens are analyzed, and the beams are re-ranked
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Figure 3.6 Constrained decoding process: Each beam (represented by a rectangle) cor-
responds to a generation window. Concepts highlighted in green indicate membership in a
child concept of the base concept (e.g., "Drug or medicament") within the ontology. The
presence of such concepts enhances the hierarchy score, increasing the likelihood of the beam
being selected as a final output. The similarity score is calculated using the ROUGE-2 score
between the generation window and the clinical notes.

based on a new computed score described below. The same annotator used for concept
identification during the extraction phase (Section 3.2.2) is employed for the analysis of W .

Our new beam score comprises three sub-scores: hierarchy score (H), property score (P ),
and similarity score (S). For all scores, we define B to be the base class used to create the
prompt. This corresponds to the concept designated by the "[concept]" tag in the prompt
template. For instance, in Figure 3.5, the base concept is electrocardiogram. T denotes
the newly generated tokens within the generation window, C represents the set of concepts
detected in T , and A(c) signifies the set of ancestors for concept c according to the ontology.
Overall, our objective is to favor beams that include concepts linked to the base concepts
through relations in the ontology and that are textually similar to the clinical note. These
relationships can be hierarchical or restriction-based.

Hierarchy Score

The hierarchy score (H) quantifies the presence of descendants of the base class within the
generated beam:

H = Hbf
1
|C|

∑
c∈C

1{b ∈ A(c)} (3.1)

Here, Hbf represents the hierarchy boost factor, a hyperparameter that controls the influence
of the hierarchy score on the final beam score. H is calculated based on the subClassOf
property of concepts in the ontology. The intuition behind this score is that, when query-
ing about the patient’s diseases for instance, we expect the model’s generations to contain
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ontology concepts which inherit from the "disease" class, like "infectious diseases" or "respi-
ratory diseases". The hierarchy sub-score guides beams towards relevant concepts within the
ontology’s hierarchy.

Property Score

The property score (P) assesses the relevance of a beam to the base concept based on its
associated concepts through restriction properties. While applicable to any class property,
we focus on restriction properties in this context. This score enables the decoding process to
incorporate knowledge inferred from the ontology. Beams that mention concepts present in
the restriction property objects are favored as they theoretically should be more relevant since
they are related in the ontology. For example, when prompted about the "Fever" concept,
we would prefer the answer to mention that this diagnosis was made because the patient has
a body temperature above the normal range. We would then favor beams that mention the
"Body Temperature" class. The property score is calculated as:

P = Pbf
∑

c∈C 1{c ∈ P (b)}
|C||P (b)| + R2(T, P

′(b))

where Pbf , similar to Hbf , is the property boost factor and R2 is the ROUGE-2 score. P (x)
is the set of concepts related to x through restriction properties and P

′(x) is a natural
language formulation of P (x). In practice, we only consider And and Or restrictions. Given
a class property restriction of the form { property1 : value1, ... }, to compute P

′(x), we
simply concatenate all values in the case of an And restriction. For example, if P (Fever) =
AND(Interprets: Body Temperature, Has Interpretation: Above Reference Range), we have
P

′(Fever) = Body Temperature Above Reference Range. In the case of an Or restriction,
we add or between every value. We compute the ROUGE-2 score between the natural
language formulation of the restrictions and the newly generated tokens in order to address
the annotator’s limitations when detecting concepts. This phenomenon mainly happens
when the generation window cuts in half certain concepts that contain multiple words. For
example, without the ROUGE-2 score, a beam containing Body temperature above reference
won’t be favoured as the annotator might not correctly identify the Above Reference Range
concept. Adding the ROUGE-2 score allows the beam to still be favoured even though the
word range was not included in the generation window.
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Similarity Score

The similarity score (S) measures the textual similarity between a beam and the clinical notes.
Given that model answers for a class should be concise and extract information directly from
the notes, we hypothesize that the ROUGE-2 score effectively captures this similarity based
on n-gram overlap:

S = Sbf R2(T, N)

where Sbf is the similarity boost factor, N is the clinical note and T the tokens generated
in that generation window. This score favors beams that closely resemble the clinical note,
reducing the risk of hallucinations due to model paraphrasing. Furthermore, the similarity
score is crucial for improving factuality in generations that contain specific values, such as
a patient’s vital signs (e.g., blood pressure, heart rate, temperature) mentioned in a clinical
note. In such cases, other scores like the hierarchy or property scores might not help the
model identify the correct numerical values, as these are not typically linked to ontology
concepts. The similarity score addresses this by favoring beams that contain the accurate
n-grams corresponding to these specific values in the original note.

Final Score

A beam’s score Boursi
is computed from its hierarchy score Hi, its property score Pi and

similarity score Si and converted to a probability with a softmax function applied across all
beam scores.

Boursi
= Softmax(Hi + Pi + Si) (3.2)

To merge each beam scores with the original beam probability Bi, we linearly interpolate
between Boursi

and Bi using the following formula

B′
i = w0 ∗Bi + w1 ∗Boursi

(3.3)

where w0, w1 ∈ [0, 1] are hyper-parameter controlling how much we want the ontology-based
decoding process to have an effect on the generation such that w0 + w1 = 1. It is important
to note that current LLM implementation usually work in log space for the probabilities.
Thus, a conversion to linear space is needed before interpolating between the probabilities.
Beams are then re-ranked based on this B′

i to control the LLM’s generation process.
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3.2.4 Pruning

After the information extraction phase (Section 3.2.2), each clinical note is represented by
a Concept-structured representation (CSR). To tailor the generated summary to a specific
domain, we prune the CSR to retain only the information relevant to that domain. This
pruning process leverages the Domain Concept Frequency (DCF) of the target domain (see
Section 3.2.1). The pruning step works as follows: Given a domain’s DCF and a clinical
note’s CSR, we iterate through the CSR and, for each ontology concept in the CSR, we
check if it is present in the DCF. If that’s the case, we keep it and its associated information
in the pruned CSR. Additionally, we also consider related concepts. Since concepts in the
DCF and CSR might not match perfectly (e.g., the DCF might have "Cardiomyopathy",
while the CSR has the more specific concept "Dilated Cardiomyopathy"), we incorporate a
level of generalization. We keep a concept from the CSR if it’s within α "child" nodes (in the
ontology hierarchy) of a concept that is present in the DCF. For instance, if α=1, and the
DCF contains "Cardiomyopathy," we would keep "Dilated Cardiomyopathy" (a direct child of
"Cardiomyopathy"), even though it is not an exact match. This allows us to capture relevant
information even when the extracted concepts are more specific than the domain concepts in
the DCF. The result of this pruning process is a domain-specific CSR, containing only the
information deemed relevant to the target domain. This pruned CSR then serves as the basis
for generating the final domain-adapted summary.

3.2.5 Verbalization

The verbalization stage transforms the structured summary from the pruning phase into
a textual format with an LLM. This conversion enables us to evaluate our methods using
classical summarization metrics, which are designed to compare texts. Additionally, this
step serves clinicians who prefer reading a conventional text rather than a concept-structured
summary.

3.3 Experiments

This section details the experiments conducted to evaluate the proposed methodology, in-
cluding the data used and the preprocessing steps applied. Our evaluation focuses on three
key aspects: the effectiveness of generating domain-adapted summaries and the impact of
our constrained decoding approach on relevance and groundedness.
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3.3.1 Data

Experiments were performed using the Medical Information Mart for Intensive Care (MIMIC-
III) dataset [93]. MIMIC-III comprises over 45,000 de-identified patient admissions to critical
care units, containing 1.4 million clinical notes spanning 15 medical specialties. Table 3.2
describes the key columns of the dataset relevant to our experiments. The CATEGORY

Column name Description
ROW_ID Id of the row

SUBJECT_ID Id of the patient
HADM_ID Id of the hospital stay (admission)

CHARTDATE Date at which the clinical note was written
CHARTTIME Date and time at which the clinical note was written
CATEGORY Type of note

DESCRIPTION Description of the note (report, progress note)
TEXT Note text

Table 3.2 Description of the main columns in the MIMIC-III dataset

column plays a crucial role in defining our domains, as further elaborated in Section 3.3.1.
This column specifies the type of recorded note, enabling a clear classification of the clinical
data. Possible values for this column are : Case Management, Consult, Discharge summary,
ECG, Echo, General, Nursing, Nursing/other, Nutrition, Pharmacy, Physician, Radiology,
Rehab Services, Respiratory, Social Work.

Pre-processing

MIMIC-III clinical notes underwent three preprocessing stages to prepare the data for our
experiments. These steps were applied consistently across all evaluation tasks to maintain a
unified dataset.

BHC Filtering

As the BHC task (see Section 2.2.2) clearly contains a set of clinical notes related to each
other through an admission id, we first filter the data to retain only notes suitable for this
task. This involves the following steps:

1. Remove all notes that have a NaN value in these columns : TEXT, HADM_ID,
CHARTDATE, CATEGORY, DESCRIPTION

2. Remove all admissions that do not contain a discharge summary



42

We perform this step in order to easily identify clinical notes linked to the same admission.
These clinical notes can afterwards be used as context for information extraction and domain-
adapted summarization.

Length Filtering

To manage computational resources, we filter admissions based on the length and number of
associated clinical notes. Specifically, we remove any admissions that:

• Contain more than 10 clinical notes in total.

• Contain any individual clinical note exceeding 2048 tokens in length (token counts are
determined using the Llama-3 tokenizer [132]).

These two criteria are applied in conjunction; an admission is removed if either condition is
met.

Subset Selection

Finally, to further control the dataset size for processing, we cap the total number of clinical
notes to approximately 5000. We achieve this by iterating through the admissions and keeping
all notes associated with each admission until we reach the 5000-note limit. To ensure that
complete admissions are retained (as information might be spread across multiple notes), we
include all notes from the final (partially processed) admission, even if this results in a total
slightly exceeding 5000. This is important because removing notes from the last admission
could leave out relevant information for a certain domain.

Data Overview

Following the pre-processing steps described above, we analyze the resulting dataset to under-
stand its characteristics and diversity. Table 3.3 summarizes the impact of each preprocessing
step, showing the number of clinical notes and admissions remaining after each stage. We
observe a significant reduction in data size, particularly after the length filtering and subset
selection stages, which were implemented to manage computational resources. All main ex-
periments are done using the final subset of 5005 clinical notes regrouping 775 admissions.
To understand the dataset’s composition, we examine the distribution of clinical notes across
different medical domains. Figure 3.7 illustrates the distinct values in the CATEGORY col-
umn of the MIMIC-III dataset, representing the various medical specialties covered in our
study. We observe that the dataset encompasses a wide range of medical domains, including
"Nursing", "Radiology", and "ECG" among others. This diversity allows us to evaluate the
domain adaptation capabilities of our proposed methodology.
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Step # Clinical notes left after step # Admissions left after step
Initial data 2,083,180 58,362
BHC Filtering 1,528,004 47,006
Length Filtering 28,551 4,489
Subset Selection 5005 775

Table 3.3 Number of clinical notes and admissions left after each pre-processing steps

Figure 3.7 Proportions of domains present in our subset of MIMIC-III

Next, we analyze the length of the clinical notes, measured in both words and characters.
Figure 3.8 presents the distribution of these lengths. We observe that the majority of clinical
notes have less than 2000 characters and 500 words. Figure 3.9 presents these distributions,
broken down by medical domain. We find that the length of clinical notes varies considerably
across domains. For example, ECG notes tend to be shorter, while radiology reports are
generally longer, reflecting the different nature of the information captured in these note
types.

Finally, we investigate the medical diversity of the dataset. To quantify this, we calculate
the ratio of medical terms to the total number of words in the clinical notes. Medical terms
are identified using the same concept annotation tool described in Section 3.2.2. This metric
provides an indication of the concentration of medical knowledge within the text. Table
3.4 shows the overall medical diversity of the dataset, as well as the diversity within each
medical domain. We find that the average medical diversity is around 0.23, meaning that
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(a) Character distribution (b) Word distribution

Figure 3.8 Distributions of clinical notes in our subset of MIMIC-III

roughly 23% of the words in the dataset are identified as medical terms. Some domains, such
as "Echo" or "ECG" might exhibit higher medical diversity (around 0.30), while others, like
"Social Work," may have lower diversity (around 0.13).

Domain Medical Diversity
Echo 0.30
ECG 0.28

Radiology 0.26
Respiratory 0.26
Physician 0.24

Discharge Summary 0.23
Nursing 0.21

Nursing/other 0.21
General 0.16

Social Work 0.13
Average 0.23

Table 3.4 Medical diversity of clinical notes per domain

Models & Ontology

As we planned to compare the performance of general models and domain-specific models on
clinical extraction and summarization, we conducted experiments across models that were
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Figure 3.9 Character distribution of clinical notes per domain

fine-tuned on different corpora to evaluate our method’s effectiveness. We began with the
Llama-3-8B-Instruct model [132], known for its strong performance. We then utilized models
trained on medical data like medicine-Llama3-8B [233] and Llama3-OpenBioLLM-8B [234],
the latter being one of the best medical models [234], outperforming GPT3.5 Turbo and
Meditron-70B [235] on various medical QA datasets. We then evaluated the Llama-3.2-
3B model [132], a smaller variant with 3 billion parameters, to understand how model size
influences our methodology’s effectiveness. As our ontology-based decoding method relies on
beams, it might perform worse when beam candidates are bad in general.

For the medical terminology, we leveraged SNOMED-CT [236], a comprehensive ontology
spanning diverse medical fields. This ontology contains 374673 concepts with over 1.7 mil-
lion axioms. We employed the MedCAT annotator [232] to detect SNOMED-CT concepts
within the text. It performs Named Entity Recognition (NER) and linking to any concept
vocabulary like SNOMED-CT. Trained on electronical health records, it achieves state-of-
the-art performance on NER datasets like MedMentions [237].
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Domain Adaptation

To adapt our method to specific medical domains, we followed the methodology outlined in
Section 3.2.1 and extracted the 100 most frequent concepts for each domain within MIMIC-
III (defined by the CATEGORY column). Figure 3.10 displays the top five most frequent
concepts for each domain, illustrating the significant variation in concept representation
across different medical specialties. Prior to this analysis, we pruned irrelevant branches of
the SNOMED-CT ontology (e.g., Linkage concepts, Qualifier values) to focus on clinically
relevant concepts.

Domain Adaptation Test Set

While our domain adaptation analysis was performed across all domains, for evaluation, we
focused on only four. This selection was based on domains that ensured sufficiently distinct
conceptual representations, and maintained a challenging evaluation set. The domain con-
sidered are : Nursing, ECG, Physician and Radiology. As we aim to generate one summary
per domain per admission, our original test set of 775 admissions leads to a final 3100 pair
dataset (admission, domain-adapted summary). We define this set as the domain adaptation
test set.

3.3.2 Evaluation

We evaluate the performance of our method using multiple metrics. First, we assess the
impact of our constrained decoding method compared to traditional methods on information
extraction using a pairwise comparison metric. We perform this evaluation based on two
criteria: groundedness (see Definition 1.3.3) and relevance (see Definition 1.3.2). Moreover,
we also perform an extrinsic evaluation of our methodology by generating domain-adapted
summaries of admissions and evaluating how clinically relevant the summaries are to each
domain.

Groundedness and Relevance of Extracted Information

We evaluate the impact of our proposed constrained decoding process on the groundedness
and relevance of generated extractions. Specifically, we assess how constrained decoding
enhances the model’s ability to extract accurate and relevant information. Since absolute
ground truth for extraction from clinical notes is unavailable for the MIMIC dataset, we
employ a pairwise comparison approach to assess the relative effectiveness of the different
decoding strategies using an evaluator model. A win rate is then computed for each method
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Figure 3.10 Top 5 most frequent concepts of each domain in MIMIC-III after performing a
domain adaptation analysis

based on how often the evaluator model selects it as the most effective. We compare three
distinct generation methods during the extraction phase: (1) standard (greedy) search, (2)
diverse beam search, and (3) our constrained decoding approach. We leverage the state-of-
the-art Prometheus-8x7b-v2.0 model [229] for evaluation. Prometheus acts as an evaluator,
receiving as input: (1) the original prompt; (2) a rubric detailing quality criteria (on a scale
of 1 to 5); and (3) two response variants.
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Based on the rubric, Prometheus determines the superior response. We evaluate the ex-
tractions of the 5 most frequent concepts of clinical notes, leading to 25025 extractions per
approach. These concepts are chosen using the same approach described in Section 3.2.2. For
every single clinical note and each of the 5 concepts, we obtain three distinct extractions (one
from each method). We then form all possible pairs from these three extractions, ensuring
each pair consists of extractions generated by two methods from the same clinical note and
targeting the same concept. However, we noticed that Prometheus was occasionally incon-
sistent in its judgments; swapping the order of responses sometimes changed its preference.
To mitigate this inconsistency, we compute all permutations of the three methods, leading
to six pairwise comparisons per extraction. We send all possible pairs to Prometheus to
compute the win rate of each method against each other. Given M the number of samples
comparing method A and method B, T the number of ties and E the number of samples
where Prometheus’ answer could not be parsed, we compute the win rate of method A with
the following formula:

Win Rate(A) = WA

M − T − E
(3.4)

Where WA represents the number of samples where method A was judged superior by
Prometheus versus method B. In our case, M = 25025× 2 = 50050.

Groundedness Groundedness accuracy is assessed using a rubric from the original authors
of Prometheus presented in Figure 3.12.

Table 3.13 presents the groundedness win rates between all pairs for all models. These win
rates correspond to the percentage of samples that a technique has won over another tech-
nique. For example, for Llama-3B-Instruct, our constrained decoding approach won 58% of
the time against greedy generation. The results show a clear advantage of our constrained
decoding approach over greedy generation and diverse beam search for most models tested.
For Llama-3B-Instruct, constrained decoding achieved a 3.7% higher win rate against greedy
generation compared to diverse beam search. Similarly, for Llama-8B-Instruct, the improve-
ments was 5.8%. Llama-OpenBioLLM-8B showed the most improvement with an 81% win
rate against greedy search.

Relevance Similar to the groundedness evaluation, we compute a relevance win rate score
in order to evaluate how relevant the extractions are based on the concepts. This score is
computed using a custom rubric which is present in Figure 3.14.

Table 3.15 presents the relevance win rates between all pairs for all models. Similar to
groundedness evaluation, the results in Table 3.15 show an advantage of our method in the
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You are a fair judge assistant tasked with providing clear, objective feedback based on specific
criteria, ensuring each assessment reflects the absolute standards set for performance.

###Task Description:
An instruction (might include an Input inside it), a response to evaluate, and a score rubric
representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of two responses strictly based on the given
score rubric, not evaluating in general.
2. After writing a feedback, choose a better response between Response A and Response B. You
should refer to the score rubric.
3. The output format should look as follows: "(write a feedback for criteria) [RESULT] (A or
B)"
4. Please do not generate any other opening, closing, and explanations.

###Instruction:
Here is a clinical note about a patient :
——————-
{Clinical note}
——————-
In a short sentence, extract the information that is related to the "Social context" medical
concept from the clinical note. If the concept is not mentioned in the note, respond with ’N/A’.
Only output the extracted information.

###Response A:
Family declined to pronounce.

###Response B:
Family will not revisit.

###Score Rubric:
Are the model’s responses factually correct and well-supported by evidence?
Score 1: The model’s responses are mostly incorrect or based on unfounded information.
Score 2: The model sometimes provides factually correct responses, but inaccuracies are
common.
Score 3: The model generally provides factually correct information, though some errors occur.
Score 4: The model often provides factually accurate information with only occasional minor
errors.
Score 5: The model consistently provides responses that are factually correct and well-supported
by evidence.

###Feedback:
Both Response A and Response B accurately convey the social context according to the given
clinical note. However, Response B, "Family will not revisit.", captures the intent of the family
better than Response A’s "Family declined to pronounce.". Response A can be misinterpreted as
the family taking an active role in the death declaration, when in reality they wish to avoid any
further contact with the medical facility. Therefore, Response B provides a more comprehensive
understanding of the family’s situation. In conclusion, both responses are factually correct, but
Response B provides a clearer and more accurate representation of the social context.
[RESULT] B

Figure 3.11 Example of prompt given to Prometheus using the factuality rubric (the original
clinical note from MIMIC was omitted)
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[Are the model’s responses factually correct and well-supported by evidence?]
Score 1: The model’s responses are mostly incorrect or based on unfounded information.
Score 2: The model sometimes provides factually correct responses, but inaccuracies
are common.
Score 3: The model generally provides factually correct information, though some errors
occur.
Score 4: The model often provides factually accurate information with only occasional
minor errors.
Score 5: The model consistently provides responses that are factually correct and well-
supported by evidence.

Figure 3.12 Groundedness rubric used to compare extracted values with Prometheus-2

GS DBS OCD

GS - 45 42
DBS 55 - 46
OCD 58 54 -

(a) Llama-Instruct-3B

GS DBS OCD

GS - 46 40
DBS 54 - 43
OCD 60 57 -

(b) Llama-3-8B-Instruct

GS DBS OCD

GS - 38 40
DBS 62 - 52
OCD 60 48 -

(c) medicine-Llama3-8B

GS DBS OCD

GS - 27 19
DBS 73 - 37
OCD 81 63 -

(d) Llama-OpenBioLLM-8B

Figure 3.13 Win rates of each model on groundedness (GS: Greedy search, DBS: Diverse
Beam Search, OCD: Ontology-Constrained Decoding) using Hbf = 3, Pbf = 1 and Sbf = 10.
The number of ties and parsing errors are indicated in A.1

majority of cases.

Analysis Our results shown in Figures 3.13 and 3.15 demonstrate the effectiveness of con-
strained decoding in improving both groundedness and relevance across models. Interestingly,
the improvement appears to be more pronounced in the larger Llama-3-8B-Instruct model,
potentially due to the richer set of beam candidates available in larger models, which our
constrained decoding can effectively leverage. A similar trend was observed for relevance.
Furthermore, we noted that the magnitude of improvement was remarkably similar for both
groundedness and relevance. This suggests a possible correlation between the two, where
focusing on relevant information may inherently come with more grounded extractions, and
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[Are the model’s responses relevant to the medical concept mentioned?]
Score 1: The model’s answer is irrelevant to the medical concept and completely misses
information that is related to the medical concept.
Score 2: The model’s short summary is mainly irrelevant, but mentions one or two
things related to the medical concept mentioned.
Score 3: The model’s short summary is somewhat irrelevant, but contains key elements
related to the concept mentioned.
Score 4: The model’s short summary is mainly relevant, but contains some elements
that are not linked to the medical concept.
Score 5: The model’s short summary mentions everything related the the medical
concept perfectly without missing any detail.

Figure 3.14 Relevance rubric used to compare extracted values with Prometheus-2

GS DBS CD

GS - 45 42
DBS 55 - 46
CD 58 54 -

(a) Llama-Instruct-3B

GS DBS CD

GS - 47 40
DBS 53 - 43
CD 60 57 -

(b) Llama-3-8B-Instruct

GS DBS CD

GS - 38 39
DBS 62 - 52
CD 61 48 -

(c) medicine-Llama3-8B

GS DBS CD

GS - 26 20
DBS 74 - 37
CD 80 63 -

(d) Llama-OpenBioLLM-8B

Figure 3.15 Win rates of each model on relevance (GS: Greedy search, DBS: Diverse Beam
Search, OCD: Ontology-Constrained Decoding) using Hbf = 3, Pbf = 1 and Sbf = 10. The
number of ties and parsing errors are indicated in A.1

vice-versa.

When examining medical models, we observe seemingly contradictory performance patterns.
For Llama-Medicine-8B, our proposed method unexpectedly decreases the performance of
diverse beam search in both groundedness and relevance. In contrast, OpenBioLLM demon-
strates dramatically different results. With this model, our method substantially outperforms
both alternative decoding strategies with a 63% win rate against diverse beam search. This
strong improvement suggests that the model’s beam candidates are inherently good but of-
ten hidden because the model prioritizes less optimal choices with higher probabilities. The
contradictory performance of Llama-Medicine-8B presents an interesting case for analysis as
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it is the only model that lead to worse performance after applying our decoding strategy. We
hypothesize that these results may be attributed to the unique training paradigm employed
for this model, which may have led to less optimal beam candidates. Another possible expla-
nation might be that the new training paradigm allows the model to generate accurate beam
likelihoods leading to optimal beam selection by the model itself. As for non-medical models,
we see consistent improvements of our method. When analyzing extractions across various
models, it is surprising to find that medical models aren’t inherently better at extracting
medical information compared to their non-medical counterparts.

Concept Extractions

Clinical Finding

GS : No acute intracranial hemorrhage or mass effect
DBS : No acute intracranial hemorrhage or mass effect
OCD : No acute intracranial hemorrhage or mass effect, no significant
interval change since the prior exam, and no sign of fracture or bone
destruction.

Electrocardiogram
abnormal

GS : Non-specific lateral ST segment depression compatible with is-
chemia.
DBS : Non-specific lateral ST segment depression compatible with
ischemia.
OCD : Normal sinus rhythm, rate 75. Non-specific lateral ST seg-
ment depression compatible with ischemia.

Disease

GS : N/A
DBS : N/A
OCD : Low-grade fever, incision site infections (CDI) at right buttock
and right breast

Physical Object

GS : A stent to the left anterior descending (LAD) artery
DBS : Right groin site CD+I (central line) and Foley catheter.
OCD : Right groin site CD+I, Ecchymotic, Pulses palpable distal,
IVFs dc’d.

Table 3.5 Example of extractions of all methods (blue text is not relevant to the concept and
red text is not factual to the clinical note)

Upon inspecting individual samples to evaluate cases where the proposed method performed
better or sub-optimally, we found multiple key examples showing the ups and downs of our
method. Table 3.5 details these results. The first observation that can be made is that
our proposed approach generally generates longer responses, which is consistent with its
objective of incorporating more concepts into the beams. However, these longer responses
can sometimes lead to less relevant information. For instance, in the "Electrocardiogram
abnormal" concept, the proposed method (OCD) included "Normal sinus rhythm, rate 75",
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which is not indicative of an abnormality, although it is related to electrocardiograms. How-
ever, these longer responses can also lead to better extractions as with the Clinical Finding
concept. Plus, our method improves factuality when compared to greedy search (GS) and
diverse beam search (DBS) when the model chooses to not answer even though the concept is
present in the clinical note. For example, the Disease shows an example where GS and DBS
returned N/A while OCD provided Low-grade fever, incision site infections (CDI) at right
buttock and right breast which is both factual and relevant to the clinical note. However, this
can also lead the model to generate irrelevant answers when the concept is not present in
the note, because abstention is not prioritized by our algorithm. The last example in Table
3.5 shows how our decoding process improves factuality both compared to greedy search and
diverse beam search by prioritizing formulations that resemble the clinical note.

Ablation Study

We also perform an ablation study on the effect of each score (hierarchy, property and similar-
ity) on the model’s performance. To do this, we create a subset of 100 clinical notes derived
from our original test set selected randomly and run the extraction process with every com-
bination of scores on Llama-8B-Instruct and OpenBioLLM on all concepts in each domain.
We then evaluate the extractions using the same method as before using Prometheus-2-8x7B
and report the win rates on groundedness and relevance for all combinations. Additionally,
we also perform an ablation on the impact of using ROUGE in the property score. Figure
3.16 shows the results on groundedness and Figure 3.17 shows the results on relevance.

Figures 3.16 and 3.17 show that combining all three scores (Hierarchy, Property, and Sim-
ilarity) generally yields the most consistent performance improvements. The H+P+S com-
bination achieves the highest overall win rate across all models and configurations tested,
demonstrating the value of this comprehensive approach. Interestingly, according to the
Prometheus evaluation, the full combination doesn’t always outperform more selective ap-
proaches. For instance, with Llama-8B-Instruct, the H+P+S combination only wins against
the H+S combination 47% of the time. For OpenBioLLM, the primary competition comes
from using the hierarchy score alone. The hierarchy score appears to have the most signifi-
cant impact on improving generations both for groundedness and relevance, which validates
the core premise that ontology guidance effectively steers language model outputs in the in-
tended direction. This aligns with our hypothesis that leveraging ontological structures can
meaningfully constrain generation.

The property score shows a more modest effect on performance. This limited impact likely
stems from the structural characteristics of the SNOMED ontology itself, where restriction
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(a) Llama-8B-Instruct (b) Llama3-OpenBioLLM-8B

Figure 3.16 Ablation study of performance on groundedness (H=Hierarchy score, P=Property
score, S=Similarity score, P*=Property score without ROUGE)

properties are relatively rare compared to hierarchical relationships. While all concepts
(except the root) have ancestors, only a small portion possess restriction properties, meaning
this score isn’t consistently applicable during the generation process.

The similarity score demonstrates a positive influence overall, but surprisingly, it appears
to have a stronger effect on relevance than on groundedness. This suggests that textual
similarity with input clinical notes helps keep generations topically appropriate, even if it
doesn’t always guarantee factual accuracy to the same degree.

Medical vs Non-Medical Models

Our prior analysis involved internal comparison of extractions within the model, meaning
we compared our ontology-constrained approach against diverse beam search and greedy
search within a single model and observed this method’s application across different models.
To further assess the quality of extractions between medical and non-medical models, we
apply the same evaluation criteria across different models. Specifically, we report the win
rates of Llama-3-8B-Instruct against Llama-OpenBioLLM-8B when taking the extractions of
the same decoding strategy for each model. These two models were selected, because they
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(a) Llama-8B-Instruct (b) Llama3-OpenBioLLM-8B

Figure 3.17 Ablation study of performance on relevance (H=Hierarchy score, P=Property
score, S=Similarity score, P*=Property score without ROUGE). We set the boost factors
for all scores to 1.0 when considered and to 0 when not considered. This is performed with
a beam size of 10 and a group beam size of 2.

are respectively the best performing general and medical models in our set of models. This
evaluation will allow us to evaluate which types of models are better at extracting information
from medical texts and assess the effect our ontology-constrained decoding strategy across
models. Results are shown in Table 3.6.

Decoding Strategy Groundedness Relevance
Diverse Beam Search 69.50 69.00

Ontology-Constrained Decoding 52.91 54.33

Table 3.6 Win rates of Llama-3-8B-Instruct against Llama-OpenBioLLM-8B

As detailed in Table 3.6, extractions from Llama-3-8B-Instruct are more grounded and rel-
evant than those from Llama-OpenBioLLM-8B according to Prometheus. This aligns with
studies indicating that medical fine-tuning doesn’t necessarily enhance a model’s informa-
tion extraction and summarization on medical texts [238]. However, when our constrained-
decoding strategy is applied, the win rate of Llama-3-8B-Instruct drops significantly. This
means that Llama-3-8B-Instruct, initialy considered superior to Llama-OpenBioLLM-8B by
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Prometheus is considered equally performant when our constrained decoding method is ap-
plied to both models. This shows that the best generations of medical models are not
necessarily leveraged with classical decoding strategies.

Relevance evaluation of domain-adapted summaries

We then evaluated the domain-adaptation capabilities of both general and medical instruction-
tuned LLMs, both in their baseline performance and when utilized in our proposed method
(see Section 3.2). In order to evaluate the relevance of generated summaries to a specific do-
main, we would ideally need a per sample ground truth summary for each domain. However,
because no such ground truth exists, we trained a BERT-based classifier [239] to classify
whether a generated summary is relevant for a domain. This model served as the evaluator
for the domain-adaptation task. Denoted as the evaluator model, it predicts the domain of
a given clinical note using the CATEGORY column from MIMIC-III as the target label. We
focused on four main domains: Nursing, ECG, Physician and Radiology. To train the do-
main evaluator model, we constructed a dataset disjoint from the test set using the following
strategy:

1. Initialized with all clinical notes from MIMIC-III.

2. Removed all notes belonging to our held-out test set (5005 notes).

3. Filtered the remaining notes, keeping only those associated with the Nursing, ECG,
Physician and Radiology domains.

4. Subsampled each domain to a maximum of 100,000 notes.

5. Generated summaries for 50% of clinical notes using Llama-8B-Instruct and used those
summaries instead of the clinical notes for training.

The process resulted in a 400,000-sample dataset, with each of the four domains contributing
100,000 clinical notes. Within each domain, half of the notes were original, and the other
half were generated summaries. This final summarization step was crucial to prevent the
evaluator model from relying on formatting cues to predict the domain. As illustrated in
Figure 3.9, the format and length of notes vary considerably across domains (e.g., Nursing
vs. ECG). By also training on summarized notes, we ensure that the evaluator focuses on the
semantic content rather than superficial formatting differences, which is essential because the
generated domain-adapted summaries do not follow the individual domain formats. We opted
for an 8-billion parameter model for generating summaries primarily due to computational
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efficiency. Models of this size are already quite capable of basic summarization tasks. We
didn’t need perfectly accurate, clinically validated summaries as the task was only to predict
the domain from a task. Instead, our goal was to capture the main domain concepts of
a note. For this purpose, an 8B model was more than sufficient, allowing us to avoid the
higher computational demands of a larger model. We compute a domain score D to quantify
how well each generated summary aligns with its target domain. It can be interpreted as
the percentage of information in a text that can be associated to the expected domain, thus
relevant to the domain. The score is calculated as the average probability score assigned by
the evaluator model to the expected domain:

D = 1
N

N∑
i=0

EVALUATOR(d(xi))[di] (3.5)

where d(xi) is the domain adapted summary of the admission xi, di is the expected domain
and N is the number of samples.

Results To evaluate the effectiveness of our domain adaptation approach, we compared
multiple methods. First, given an LLM, we evaluated the performance of prompting the
model for a domain-adapted summary using standard (greedy) generation and diverse beam
search. We then applied our method on the same model to generate domain-adapted sum-
maries. For greedy and diverse beam search, we augmented the input prompt with a prefix
specifying the target domain. Our method, in contrast, directly uses the pruned CSR (see
Section 3.2.4) as input to the verbalizer, without explicit domain specification.

Here are multiple clinical notes associated to the hospital course of a patient ordered
by the time they were recorded:

[Clinical Notes]

Summarize the hospital course of the patient only using the information related to the
"domain" medical domain in a text. Only output the summary without any additional
text.

Figure 3.18 Prompt format used for generating domain-adapted summaries of clinical notes
for Greedy Search and Diverse Beam Search

Both prompts are shown in Figures 3.18 and 3.19. We then passed the summaries generated
by each method through our evaluator model. This comparison allows us to assess the relative
effectiveness of our method in generating domain-tailored summaries without explicit prompt
engineering. Our baseline corresponds to simply prompting the model to summarize the
clinical notes according to the specified domain. We evaluated these methods on the domain
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Sentences were extracted from multiple clinical notes based on a medical concepts.
For each clinical note, we have a dictionary where the keys are the concepts and the
values are the sentences that were extracted linked to those concepts. The clinical
notes are ordered by the time they were recorded. Here are the clinical notes’ extractions:

[Clinical Notes]

Summarize the clinical notes of the patient based on the extractions of each clinical note
in a text. Only output the summary without any additional text.

Figure 3.19 Prompt format used for generating domain-adapted summaries of clinical notes
for our method

adaptation test set (see Section 3.3.1). The domain adaptation results are shown in Table
3.7.

Model Greedy Diverse Ours
Search Beam Search α = 4 α = 2 α = 1

Llama-3B-Instruct 0.62 0.63 0.67 0.68 0.70
Llama-8B-Instruct 0.62 0.64 0.69 0.69 0.70
Llama-8B-medicine 0.35 0.36 0.66 0.67 0.67

Llama3-OpenBioLLM-8B 0.35 0.36 0.53 0.56 0.54

Table 3.7 Domain scores of each method on generating domain-adapted summaries. Each
domain score, can be interpreted as, on average, the amount of information in a text, that
can be linked to the expected domain as judged by the evaluator model.

We also report in Table 3.8 the domain score of each model and method by domain in order
to evaluate whether certain methods are more efficient for certain domains.

Analysis The results presented in Table 3.7 show the effectiveness of our domain adap-
tation method in enhancing the ability of LLMs to generate domain-adapted summaries of
clinical notes, with a peak increase of 32% observed for Llama-8B-medicine. Our approach
outperforms simply prompting the model for domain-specific summaries, highlighting its
practical value. These results also suggest that relevant domain concepts can be effectively
derived directly from the data through our initial domain adaptation analysis. Furthermore,
these findings implicitly validate our ontology-based decoding process, as the efficacy of the
pruning step depends heavily on the extracted values. While all tested alpha values for the
pruning phase yielded improvements, the optimal performance was generally achieved with
α = 1 (except in the case of Llama3-OpenBioLLM-8B). This finding aligns with expecta-
tions, as a lower alpha prioritizes the most frequent concepts in the domain, minimizing the
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Method ECG Nursing Radiology Physician

Llama-3B-Instruct

Greedy Search 0.68 0.70 0.78 0.34
Diverse Beam Search 0.69 0.71 0.78 0.35
α = 4 (Ours) 0.88 0.74 0.68 0.39
α = 2 (Ours) 0.88 0.74 0.69 0.42
α = 1 (Ours) 0.89 0.77 0.78 0.38

Llama-8B-Instruct

Greedy Search 0.68 0.71 0.76 0.34
Diverse Beam Search 0.69 0.72 0.78 0.35
α = 4 (Ours) 0.90 0.79 0.67 0.39
α = 2 (Ours) 0.90 0.78 0.68 0.42
α = 1 (Ours) 0.89 0.78 0.72 0.38

Llama-8B-medicine

Greedy Search 0.26 0.36 0.33 0.46
Diverse Beam Search 0.25 0.36 0.34 0.48
α = 4 (Ours) 0.90 0.90 0.64 0.21
α = 2 (Ours) 0.93 0.90 0.61 0.22
α = 1 (Ours) 0.93 0.90 0.61 0.23

Llama3-OpenBioLLM-8B

Greedy Search 0.26 0.36 0.33 0.46
Diverse Beam Search 0.26 0.37 0.34 0.47
α = 4 (Ours) 0.76 0.60 0.46 0.29
α = 2 (Ours) 0.76 0.64 0.49 0.33
α = 1 (Ours) 0.70 0.65 0.49 0.30

Table 3.8 Domain scores of each method on based on the domain

inclusion of less relevant terms. Beyond performance gains, our method significantly im-
proves the interpretability of the summarization process by decoupling the extraction and
adaptation phases. This modularity and transparency facilitate verification and validation
of the generated content. Critically, the separation of these steps allows the pruning step to
be applied to any domain without requiring a repeated extraction phase.

The analysis of Table 3.8 reveals that our domain adaptation method exhibits varied effec-
tiveness across different medical domains. The approach demonstrates strong performance in
the ECG and Nursing domains, consistently having higher domain scores across all models.
This suggests the initial domain analysis is highly effective in extracting relevant concepts in
these contexts, leading to more relevant summaries. However, our method encounters greater
challenges with the Radiology and Physician domains, where improvements are generally
lower. For the Radiology domain, our approach unexpectedly decreases the domain score for
non-medical models (Llama-3B-Instruct and Llama-8B-Instruct) compared to their baseline
Greedy and Diverse Beam Search performances. Conversely, it significantly increases the per-
formance of medical models (Llama-8B-medicine and Llama3-OpenBioLLM-8B) in the same
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domain. The opposite trend is observed for the Physician domain: our method improves the
domain score for non-medical models, while it leads to a decrease in performance for medical
models. This discrepancy likely stems from the fact that medical concepts within Radiology
and Physician notes often encompass multiple domains, alongside less standardized documen-
tation. This characteristic may make it more difficult for the ontology-guided pruning step
and extraction step to consistently extract and prioritize the most critical domain-specific
information. Therefore, while our method offers general improvements, its efficacy is most
pronounced in domains with more precise and consistently structured conceptual frameworks.

Medical vs Non Medical Models Interestingly, specialized medical models (Llama-
8B-medicine and Llama3-OpenBioLLM-8B) show lower baseline domain adaptation scores
(0.35-0.36) compared to general-purpose models (0.62-0.64). This counterintuitive result
may originate from their training approach: medical models are fine-tuned to prioritize com-
prehensive coverage across all medical domains simultaneously, rather than domain-specific
specialization. This broad medical focus may obstruct their ability to distinguish between
specific medical subdomains when explicitly prompted, while general-purpose models may
rely more on surface-level formatting cues that correlate with domain categories. Despite
their poor baseline performance, medical models demonstrate a better responsiveness to our
ontology-based approach, with Llama-8B-medicine showing the largest improvement (32%
increase). This suggests that while these models struggle with explicit domain prompting,
they can still be leveraged for domain adaptation. The consistent improvement across both
model types validates the robustness of our approach, though the varying optimal alpha
values indicate that different models may require tailored configurations to achieve peak
performance.
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CHAPTER 4 AUTOMATIC HALLUCINATION EVALUATION OF
MEDICAL TASKS

4.1 Introduction

As demonstrated in Chapter 3, Large Language Models (LLMs) continue to be susceptible
to hallucinations [6]. Results in Section 3.3.2 have shown that the groundedness and rele-
vance of generations are not optimal even after implementing various enhancement strategies.
This underscores the critical importance of robust hallucination detection mechanisms. Cur-
rent evaluation metrics exhibit accuracy limitations in certain scenarios [13, 211, 220, 231],
as outlined in Section 2.5.2. The most promising approach appears to be the use of neural
models as evaluators, given their stronger correlation with human judgment [226]. In Section
3.3.2, we used this approach with Prometheus-2-8x7B, a general-purpose evaluator, to show
how our constrained decoding method improved groundedness on information extraction.
This persistent lack of optimality in groundedness and relevance directly contributes to the
challenge of mitigating hallucinations, as ungrounded or irrelevant information is a primary
characteristic of such model fabrications. However, this evaluation approach still has limita-
tions. As Prometheus wasn’t fine-tuned for the medical domain, its evaluation capabilities
may be suboptimal in clinical contexts. Its creators only evaluated it on general tasks rather
than medical-specific ones [229]. Additionally, it performs best when comparing generated
answers against a ground truth, creating challenges when no reliable ground truth exists
for clinical tasks. Currently, medical model performance assessment relies heavily on expert
evaluation [2,240], which is both expensive and time-consuming for healthcare professionals.
This shows the need for a dedicated medical hallucination evaluation dataset that could not
only allow researchers to assess which models are better as evaluators in a clinical setting,
but also allow us to train an evaluator.

In fact, currently available medical datasets often assess LLM hallucinations by focusing
narrowly on single tasks such as Question Answering (QA) or Natural Language Inference
(NLI), limiting their applicability across diverse medical text generation scenarios [240–245].
Furthermore, even current medical hallucination datasets typically only contain hundreds of
examples, making them unsuitable for training LLMs [240]. To the best of our knowledge, the
MedNLI dataset [246] appears to be the only resource that could potentially evaluate LLMs’
capabilities as evaluators in clinical settings. However, MedNLI samples are not well-suited
for large-scale medical hallucination evaluation due to their typically short length. Further-
more, since MedNLI is designed to determine whether a hypothesis entails a premise, it has



62

limited utility for training a medical judge to assess factual accuracy in LLM-generated con-
tent. This limitation arises because LLM generations commonly contain a mixture of factual
and non-factual information, whereas MedNLI samples are binary in nature. Consequently, in
tasks such as clinical summarization, where a single sentence or even a portion of a sentence
might contain inaccuracies within an otherwise accurate summary, an LLM fine-tuned on
MedNLI would likely struggle to identify these isolated errors. The model might classify the
entire summary as accurate because the majority of the content is correct, overlooking small
but potentially critical inaccuracies. Some researchers have attempted to address this issue
by decomposing generations into atomic facts or individual sentences [13] before evaluation
by a judge model. However, this decomposition approach introduces significant computa-
tional costs and requires careful hyper-parameter tuning (as we cannot predict in advance
whether an entire sentence or just a portion contains the hallucination). Moreover, the de-
composition process itself might rely on LLMs themselves which would introduce additional
opportunities for hallucinations during the fact extraction phase.

To address these limitations, we create MedHal, a medical hallucination evaluation dataset
[247]. Our work differs from traditional hallucination medical datasets in several key aspects:

1. We incorporate a diverse range of sources including clinical notes, clinical trials, and
medical questions to assess hallucinations in more complex settings.

2. Our dataset is designed to train a medical evaluator capable of efficiently detecting
hallucinated content.

3. We provide explanations for why statements are factual or not, creating a valuable
guiding signal for LLM fine-tuning.

4.2 Methodology

This study introduces MedHal, a new dataset and benchmark created for evaluating medical
hallucination detection models. MedHal contains a wide range of medical text, including
clinical notes, scientific articles, and patient communication, annotated with various exam-
ples of factual errors and medical hallucinations. These hallucinations are produced through
multiple strategies customized to specific task modalities, including answer replacement in
question-answering (QA) and the incorporation of contradictory statements in natural lan-
guage inference (NLI). MedHal’s effectiveness is shown through the development of baseline
models and the comparative evaluation of its performance against state-of-the-art models
on the proposed benchmark as well as other benchmarks. This resource aims to support
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the creation of more precise and reliable medical evaluators by offering a standardized and
clinically relevant assessment framework.

The following sections outline the development of MedHal, explain the associated benchmark,
and present experimental outcomes demonstrating its value in evaluating medical hallucina-
tion detection models. The approach involves converting existing medical datasets across
various tasks (QA, Summarization, NLI, Information Extraction) into a unified hallucina-
tion detection task. This is accomplished by structuring the task as binary classification of
a given statement as factual or non-factual, potentially based on a provided context. Addi-
tionally, we provide an explanation when a statement is not factual, a guiding indicator that
can be utilized when fine-tuning LLMs. We define factuality here according to the definition
given in Section 1.3.3 which states that a statement is factual only if it is backed by its
context or general medical knowledge.

4.2.1 Unified Task Formulation

To create this dataset, we unified several common medical tasks, such as question-answering
and summarization, into a single task. This approach allows us to leverage samples from
existing datasets as a foundation for our own. The unified task begins with a statement
that can be either factual or non-factual. This statement might relate to general medical
knowledge or refer to a specific context. For instance, the statement "the patient has suffered
from myocardial infarction" most likely refers to a specific context, such as the patient’s
clinical notes. Contrarily, the statement "aging causes an increase in blood pressure" refers to
general medical knowledge. In our dataset, each sample includes a label indicating whether
the statement is factual. For non-factual statements, an explanation is provided to detail
the inconsistency. A statement is considered factual if all the information it contains can be
verified either through the provided context or through general medical knowledge. Thus,
each sample in the MedHal dataset is structured as follows:

• Statement: An assertion about a specific context or general medical knowledge.

• Context (Optional): Relevant contextual information pertaining to the statement.

• Label (Binary): Indicates whether the statement is factual or not.

• Explanation: One or more sentences clarifying why the statement is non-factual.

Table 4.1 presents examples illustrating how statements are generated from existing datasets.
The following sections detail the transformation of various tasks (question-answering, infor-
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mation extraction, natural language inference, and summarization) to align with our unified
task.

Task Datasets Sample (Input → Output) Generated State-
ment

Information
Extraction

Augmented-
Clinical Notes
(ACM) [248]

A 10-year-old girl first noted
a swollen left knee and un-
derwent repeated arthrocente-
sis. She underwent arthro-
scopic surgery and was diag-
nosed with ... → age: 10
years old

The patient is 10 years
old.

Summarization SumPubMed
[92]

the large genotyping studies
in the last decade have revo-
lutionize genetic studies. our
current ability to ... → ge-
netic admixture is a com-
mon caveat for genetic as-
sociation analysis. these
results...

genetic admixture is a
common caveat for ge-
netic association analy-
sis. these results...

NLI MedNLI [246]

Labs were notable for Cr 1.7
(baseline 0.5 per old records)
and lactate 2.4. → Patient
has normal Cr

Patient has normal Cr

QA
MedQA [249]
, MedMCQA
[250]

Which of the following med-
ications is most commonly
used as first-line treatment
for newly diagnosed type 2
diabetes mellitus in patients
without contraindications? →
Metformin

Metformin is most
commonly used as
first-line treatment for
newly diagnosed type
2 diabetes mellitus
in patients without
contraindications.

Table 4.1 Example of samples are used to generate statements for each task

4.2.2 Question Answering Dataset Transformation

Question-answering (QA) datasets are structured around the presentation of a question fol-
lowed by a set of potential responses, including binary (yes/no) and multiple-choice (A, B,
C, ...) formats. While they are usually used to evaluate LLMs’ knowledge on a certain topic
or domain, we use them here to create factual and non-factual samples. To generate factual
samples from QA datasets, the question and its corresponding correct answer are transformed
into a declarative statement using a large language model. Conversely, non-factual samples
are produced by pairing the question with incorrect answer options and subsequently con-
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verting these combinations into statements via the same large language model. While a single
sample from the original dataset could theoretically generate as many examples as there are
possible choices, we specifically generate only a single factual and a single non-factual sample
per question to ensure the dataset remains balanced. Table 4.2 illustrates an example of
a multiple-choice question converted into such a statement. For this generation process, a
consistent prompt template is employed for both factual and non-factual sample creation.
One-shot prompting is utilized to guide the large language model in accurately converting
question-answer pairs into coherent statements. The precise prompt format used is provided
in Figure 4.1.

[System prompt] Given a medical text, a question about the text and the associated
answer, your role is to transform the question into a statement by incorporating the an-
swer with it. Do not add any details that is not mentioned in the question or the answer.

[User] Question: Which of the following is the best treatment for this patient?
Answer: Nitrofurantoin

[Assistant] Nitrofurantoin is the best treatment for this patient.

[User] Question: {question}
Answer: {answer}

Figure 4.1 Prompt format to generate samples for MedHal from a QA dataset

Regarding the explanations for these statements, certain QA datasets sometimes provide
an explanation for why a particular answer is incorrect. In these specific instances, we
directly utilize the dataset’s provided explanation for our generated non-factual statements.
However, in cases where the original dataset does not offer an explicit explanation for an
incorrect answer, we generate an explanation for the non-factual statement by simply using
its corresponding factual statement. For example, if a non-factual sample asserts "Insulin is
primarily produced by the thyroid gland," its explanation would be the factual statement:
"Insulin is primarily produced by the pancreas." This approach clarifies why the non-factual
statement is incorrect, as the factual statement presents the true biological fact.

4.2.3 Information Extraction Dataset Transformation

Information Extraction (IE) datasets comprise a source document along with a set of text
sequences, known as "extractions," that represent specific concepts or attributes within that
document. For example, in a clinical setting, an extraction might represent a patient’s reason
for a visit, linked to the concept "visit motivation." Our work specifically utilizes clinical IE
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Sample Type Question Answer Generated Statement

Factual Which of the following
medications is most
commonly used as
first-line treatment for
newly diagnosed type 2
diabetes mellitus in
patients without
contraindications?

Metformin

Metformin is most com-
monly used as first-line
treatment for newly di-
agnosed type 2 diabetes
mellitus in patients with-
out contraindications.

Non-Factual Insulin

Insulin is most com-
monly used as first-line
treatment for newly di-
agnosed type 2 diabetes
mellitus in patients with-
out contraindications.

Table 4.2 Example of Question-Answering Dataset Transformation

datasets, where each clinical note is accompanied by a structured summary detailing various
patient and admission attributes.

Sample Type Source
Document

Extraction Statement Explanation

Factual A 10-year-old
girl first noted
a swollen left
knee and
underwent
repeated
arthrocentesis...

age: 10 years old The patient is
10 years old

-

Non-Factual A 10-year-old
girl first noted
a swollen left
knee and
underwent
repeated
arthrocentesis...

age: 16 years old The patient is
16 years old

The patient is
10 years old

Table 4.3 Example of Information Extraction Dataset Transformation (the extraction from
the non-factual statement is taken from another original sample)

To generate factual samples, we use the clinical note as the contextual basis, and its cor-
responding extractions are treated as declarative statements. For non-factual samples, we
introduce fabricated information. This is achieved by randomly interchanging extraction val-
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ues of the same concept type between different documents. For instance, medication names
are swapped between different patient records. For each individual extraction within a clini-
cal note, we generate both a factual and a non-factual sample, both of which are linked to the
same original clinical note as their context. Similar to how explanations are handled for QA
datasets, the explanation for a non-factual statement derived from an IE dataset is provided
by its corresponding factual statement. For example, if a non-factual statement asserts "The
patient’s medication is Ibuprofen" but the correct medication was "Aspirin," the explanation
would be the factual statement "The patient’s medication is Aspirin.".

[System prompt] You are tasked with transforming structured medical data into
natural language statements about a patient.
Each input will contain 4 elements:
- concept: The type of information being described (e.g., dosage, age, symptoms)
- value: The specific information or measurement
- category: The broad medical category this information belongs to (e.g., treatment,
patient information, symptoms)
- concept_reference: The specific element that the value refers to (e.g., a specific
medication, a specific symptom)

Your task is to generate a clear, grammatically correct sentence that conveys
this information in a medical context. Follow these rules:
1. Use appropriate verbs based on the concept:
- For treatments: ’takes’, ’receives’, ’is prescribed’
- For symptoms: ’experiences’, ’reports’, ’presents with’
- For measurements/states: ’is’, ’has’, ’shows’
- For time-related concepts: ’has been’, ’started’, ’continues’
2. Incorporate the concept_reference when it adds clarity
3. Use present tense
4. Maintain medical terminology as provided
5. When the concept_reference is ’None’ or does not add clarity, don’t include it in
the statement
6. The statement should be a single sentence.
Do not include any other information in the statement aside from the concept and the
extraction. Only output the statement and nothing else.

[User] ’category’: ’medical examinations’,
’value’: ’Severe gait disturbance secondary to hip pain’,
’concept_reference’: ’Physical examination’

[Assistant] Physical examination showed severe gait disturbance secondary to hip pain.

[User] ’category’: {category},
’value’: {value},
’concept_reference’: {concept_reference}

Figure 4.2 Prompt format to generate samples for MedHal from an IE dataset

In cases where attributes have limited value diversity (e.g., "sex" with typically "Male" or
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"Female"), we ensure that the swapped non-factual value is genuinely distinct from the orig-
inal factual value by comparing the value swapped. If a random swap yields the same value,
we re-attempt the swap until a different value is found, thereby guaranteeing the non-factual
nature of the generated sample. In practice, given extractions from a clinical note that are
structured as key-value pairs (e.g., "visit motivation: Lower back pain"), a large language
model transforms this pair into a coherent statement (e.g., "The patient’s visit motivation
is lower back pain"). This is performed using the prompt template shown in the Figure
4.2 within a one-shot prompting framework. The one-shot example is adapted based on
the extraction’s concept to further improve the model’s faithfulness on generating factual
statements. An example of generated statement is shown in Table 4.3.

4.2.4 Natural Language Inference Dataset Transformation

Given the strong parallel of our task with the Natural Language Inference (NLI) task, we’ve
found NLI datasets to be a natural fit for the MedHal benchmark. For these datasets,
our factual samples are created from hypotheses entailing their premise, while non-factual
samples are generated from hypotheses leading to a contradiction. The premise component of
the NLI example serves as the context and the hypothesis as the statement. We filter out and
ignore any samples that result in a neutral label during dataset construction, and no further
preprocessing is applied to the NLI datasets beyond this filtering. It’s important to note
that, in this specific case, we do not provide explanations for the non-factual samples. This
is because, unlike samples we generate ourselves, these NLI samples are simply transformed
from existing data. Our usual method for generating explanations involves deriving them
from an associated factual sample, which is not available when directly transforming NLI
contradiction examples. An example of an NLI sample is shown in Table 4.4.

Premise (Context) Hypothesis (Statement) Label
Labs were notable for Cr 1.7
(baseline 0.5 per old records) and
lactate 2.4.

Patient has elevated Cr Entailment

Table 4.4 Example of NLI sample from MedNLI

4.2.5 Summarization Dataset Transformation

For the summarization task, we create factual samples directly from original text-summary
pairs using the original text as the context and the summary as the statement. To generate
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non-factual samples, we choose a sentence from an original summary and modify it using an
LLM to introduce contradictory information. This altered sentence is then reinserted into
the summary at its initial position. The source text that was originally summarized serves as
the context, and the entire modified summary is treated as the statement for our task. The
original sentence from which the non-factual version was derived serves as the explanation for
the non-factual statement. When selecting sentences for modification, we ensure they are at
least 100 characters long to provide sufficient context for the LLM during the hallucination
generation process. Table 4.5 provides a detailed example of a sample generated through this
method, while the specific prompt used for generating contradictory sentences can be found
in Figure 4.3.

You will be given a text and a sentence that was extracted from the text. Your task
is to transform the sentence by introducing a deliberate inaccuracy. Strategies can
include:
- Changing numerical values
- Inverting the meaning
- Using antonyms
- Negating the original statement

Text: {text}
Sentence: {sentence}

Ensure the new sentence remains grammatically correct but semantically differ-
ent from the original. Only output the transformed sentence without any additional
text.

Figure 4.3 Prompt format to generate samples for MedHal from a Summarization dataset

The primary goal of this task is to evaluate whether models can effectively detect subtle errors
embedded within longer text sequences. Unlike classical tasks such as NLI, where the entire
answer is typically binary (either entirely factual or entirely non-factual), our task derived
from summarization samples specifically challenges LLMs because only a small portion of the
statement might be false. This localized falsity can significantly trick many models, making
detection much more difficult.

4.2.6 Dataset Description

To make sure our dataset is balanced, we’ve made sure to include an equal number of factual
and non-factual samples. We achieved this by generating one non-factual sample for every
factual one. Since our dataset draws from various sources and tasks, Table 4.6 provides
a complete breakdown of all datasets used for this benchmark, alongside the number of
samples contributed by each. Preprocessing steps were also applied to specific datasets. For
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Sample Type Source
Document

Summary Statement Explanation

Factual a central
feature in the
maturation of
hearing is a
transition in
the electrical
signature of
cochlear hair
cells from
spontaneous
calcium...

cochlear hair
cells are
high-frequency
sensory
receptors...

cochlear hair
cells are
high-frequency
sensory
receptors...

-

Non-Factual cochlear hair
cells are
low-frequency
sensory
receptors...

According to
the source
document,
cochlear hair
cells are
high-frequency
sensory
receptors...

Table 4.5 Example of Summarization Dataset Transformation

instance, in the ACM dataset, we only kept extractions that led to a valid JSON structure, as
some original samples contained malformed JSON. Similarly, for Question Answering (QA)
datasets, we used regular expressions to remove original dataset options or references (e.g.,
"Answer is c)") from explanations. This transformation was necessary because we repurposed
these samples outside their original QA context. For example, an explanation like "Answer is
c), Metformin is most commonly used as a first-line treatment, because..." would be modified
to "Metformin is most commonly used as a first-line treatment, because...".

Dataset Task Synthetic Content Type # Samples # Generated

MedMCQA [250] QA ✗ Medical Content 183,000 70,730
MedNLI [246] NLI ✗ Clinical Notes 11,232 7,488
ACM [248] IE ✓ Clinical Notes 22,000 73,040
MedQA [249] QA ✗ Medical Content 12,723 18,906
PubMedSum [251] Sum ✗ Clinical Trials 33,772 178,657

Table 4.6 Description of datasets used to generate the MedHal benchmark

Several factors account for the variation between the initial sample counts from source
datasets and the final number of samples included in our benchmark. Firstly, for tasks such
as information extraction, a single sample from a source dataset can yield multiple derived
samples for our benchmark. This occurs because one source text might contain numerous
pieces of information, each becoming a distinct extraction in our unified task. Secondly, to
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optimize computational efficiency, we intentionally limited the overall number of potential
statements that could have been created from certain datasets. This reduction was achieved
by generating only a random subset of the total possible samples. Thirdly, after all samples
were initially prepared, any resulting token sequences exceeding 8192 tokens, as determined
by the Llama3 tokenizer [132], were excluded. This threshold aligns with the typical context
window of current "small" LLMs. Finally, only the training set of each individual dataset
was used to create MedHal. This approach allows models trained on MedHal to be fairly
assessed on the test sets of those original datasets.

The MedHal dataset is also divided into training, validation, and test sets with an 80/10/10
ratio, resulting in 313,920 samples in the training set, 17458 samples in the validation set
and 17443 samples in the test set.

4.2.7 Statement Generation

To generate samples of the MedHal dataset, we leveraged the Llama-3-70B model [132]. We
chose this model due to its state-of-the-art performance across a wide range of benchmarks
[252]. For nearly all tasks, we employed a one-shot prompting strategy to create our samples.
The exception was the summarization task. Our initial tests revealed that a one-shot setup
offered no improvement over the baseline for summarization. This was likely due to the
increased prompt length required as document-summary pairs are pretty large. However, for
other tasks, the one-shot framework greatly improved the quality of generation, as creating
statements primarily involved simple rephrasing.

4.3 Experiments

4.3.1 General Evaluation

To assess how well current models detect medical hallucinations, we evaluate their perfor-
mance on MedHal’s test set. This evaluation helps us understand which models are more
effective at identifying hallucinated content in a medical context, and, more importantly,
provides insights into whether specific fine-tuning strategies enhance performance in medical
hallucination detection. Our study investigates on the performance of different categories of
models :

• General models : General-purpose models

• Medical models : Models fine-tuned on medical datasets
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• Evaluator models : Models fine-tuned on hallucination detection datasets (regardless
of domain)

We aim to evaluate whether a specific category of models demonstrate superior performance
on medical hallucination detection.

### Task Description
- You will evaluate whether a medical statement is factually accurate.
- The statement may reference a provided context.
- Respond with "YES" if the statement is factually correct or "NO" if it contains
inaccuracies.
- In order to answer YES, everything in the statement must be supported by the
context.
- In order to answer NO, there must be at least one piece of information in the
statement that is not supported by the context.
- You must also provide an explanation of why you think the statement is factual or
not. If it is factual, put "The statement is factual" as your explanation.
- Your answer should follow the following format :
Factual: [YES/NO]
Explanation: [Your explanation]

### Context
{context}

### Statement
{statement}

### Factual

Figure 4.4 Prompt format used to evaluate models on MedHal

We detail two types of metrics: factuality metrics and explanation metrics. Factuality metrics
gauge a model’s accuracy in correctly identifying factual and non-factual content. These
metrics only consider the label (factual or non-factual) of a sample, not the explanation
associated to it. To compute these metrics, we simply use the ground truth label and the
class the sample was categorized into by the model. We then compute precision, recall, and F1
scores. Explanation metrics are designed to evaluate the validity of explanations provided by
models for non-factual statements. These metrics specifically assess whether a model, upon
detecting non-factual content, accurately pinpoints the erroneous portion of the statement.
To compute these, we only consider samples where both the prediction and the ground
truth label indicate a non-factual statement. This ensures that both a true explanation
exists and that the model generated one. Explanation metrics include the ROUGE-1 (R1),
ROUGE-2 (R2) [211] and BLEU [253] score which measure the n-gram overlap between the
generated explanation and the real explanation. All results are presented in Table 4.7. Given
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that models, when prompted using the format in Figure 4.4, do not consistently follow the
specified output structure, we restrict the computation of factuality metrics only to samples
where an answer could be extracted via regular expressions. The number of such samples
corresponds to N in Table 4.7.

Type Model Factuality Explanation
P R F1 BLEU R1 R2 N

General Llama-3.2-1B 0.51 0.18 0.26 0.01 0.08 0.03 7488
Llama-3-8B 0.53 0.50 0.52 0.01 0.12 0.04 4600

Medical
BioMistral-7B 0.56 0.43 0.49 0.03 0.22 0.11 2011
MedLlama-8B 0.52 0.59 0.55 0.03 0.21 0.08 19251

Llama3-OpenBioLLM-8B 0.52 0.77 0.62 0.04 0.21 0.10 910

Evaluator Prometheus-2-8x7B 0.62 0.37 0.47 - - - -
HallOumi-8B 0.59 0.54 0.56 - - - -

Table 4.7 Performance of models on MedHal’s test set (for general-purpose and medical
models, we use the prompt template detailed in Figure 4.4, while for Prometheus-2-8x7B
and HallOumi-8B, we adhere to the prompt formats recommended by their original authors,
as these formats are optimized for their performance given how they were fine-tuned )

4.3.2 Impact of Fine-Tuning

Next, we fine-tune several of these models on MedHal’s training set to evaluate their per-
formance after specialization. The primary goal of this experiment was to determine if
fine-tuning a medical model specifically for medical hallucination detection, or specializing
a hallucination detection model on medical data, yields better performance. Additionally,
we investigate whether simply fine-tuning a general-purpose model could achieve comparable
results, potentially skipping the need for more specialized initial training. For this purpose,
we fine-tune Llama-3-8B, Llama-3-OpenBioLLM-8B, and HallOumi-8B on MedHal. Further-
more, driven by our focus on reducing the computational power needed to detect hallucinated
content in medical texts, a crucial consideration for medical facilities with limited computing
infrastructure, we also fine-tune a Llama-3.2-1B model to assess the impact of a reduced
model size on detection performance. The prompt used during training is shown in Figure
4.5. We fine-tune all models using the same QLora configuration. We detail the same metrics
shown in Table 4.7 as well as the difference in F1 score between fine-tuned and non fine-tuned
versions of each model. Results are shown in Table 4.8.
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### Task Description
- You will evaluate whether a medical statement is factually accurate.
- The statement may reference a provided context.
- Respond with "YES" if the statement is factually correct or "NO" if it contains
inaccuracies.
- In order to answer YES, everything in the statement must be supported by the
context.
- In order to answer NO, there must be at least one piece of information in the
statement that is not supported by the context.

### Context
{context}

### Statement
{statement}

### Factual
{label}

### Explanation
{explanation}

Figure 4.5 Prompt format used when to fine-tune a model on MedHal

Base Model Factuality Explanation ∆F1P R F1 BLEU R1 R2

Llama-3.2-1B 0.75 0.77 0.76 0.45 0.70 0.59 +0.50
Llama-3-8B 0.82 0.73 0.77 0.45 0.73 0.61 +0.25

Llama3-OpenBioLLM-8B 0.77 0.80 0.78 0.10 0.22 0.17 +0.16
HallOumi-8B 0.79 0.77 0.78 0.45 0.72 0.61 +0.22

Table 4.8 Performance of models on MedHal’s test set after fine-tuning (∆F1 is the difference
in F1-score between the fine-tuned and non fine-tuned version)

4.4 Downstream Task Evaluation

In order to assess the validity of the data used in our dataset and its potential for bench-
marking models on medical hallucination detection, we evaluate the downstream capabilities
of models trained using MedHal.

4.4.1 Evaluation on MedNLI

We first focus on the MedNLI dataset [246] by evaluating multiple models on its test set.
It’s important to note that MedHal was built only using samples from the training portion
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of MedNLI, ensuring fair comparisons on the MedNLI test set without data leakage. We
established baseline performance for various models and then compared these baselines to
their multiple versions. First, we compare the models to their counterpart fine-tuned solely
on MedNLI to predict whether a hypothesis is factual or not based on a premise versus
models fine-tuned on MedHal. We fine-tune each model on MedNli for 5 epochs. Second, we
also compare them to their counterpart that were fine-tuned on 1 epoch of MedHal.

Fine-Tuning Base Model F1-Score

None

Llama-3.2-1B 0.64
Llama-3-8B 0.65

BioMistral-7B 0.56
MedLlama-3-8B 0.66
OpenBioLLM-8B 0.64

Prometheus-2-8x7B 0.62
HallOumi-8B 0.89

MedNLI

Llama-3.2-1B 0.70
Llama-3-8B 0.95

OpenBioLLM-8B 0.97
HallOumi-8B 0.97

MedHal

Llama-3.2-1B 0.89
Llama-3-8B 0.96

OpenBioLLM-8B 0.96
HallOumi-8B 0.97

Table 4.9 F1-Score on the MedNLI dataset of models that have gone through fine-tuning on
different datasets

This comparison, detailed in Table 4.9, helps us assess whether the additional tasks within our
MedHal benchmark, such as information extraction, summarization, and question answering,
contribute to a performance boost on MedNLI. Given that our evaluation framework produces
only binary labels, we restrict our analysis to the subset of MedNLI’s test set containing
only entailment (classified as factual) and contradiction (classified as non-factual) samples,
excluding all neutral samples.

4.4.2 Evaluation on Hallucination Dataset

We also evaluate several models on a more specialized hallucination detection dataset [254].
This dataset, based on MIMIC-III, contains samples with BHC sections and correspond-
ing summaries generated by frontier models such as GPT-4 [227]. Medical students then
annotated these summaries to identify hallucinated content. Sentence portions flagged as
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containing hallucinated content were categorized using more specific labels: ’Unsupported
Name’, ’Fact Contradicted’, ’Unsupported Procedure’, ’Unsupported Other’, ’Unsupported
Medication’, ’Unsupported Number’, ’Unsupported Time’, ’Unsupported Location’, ’Unsup-
ported Word’, ’Unsupported Condition’, and ’Incorrect Fact’. As we define factuality in
the MedHal dataset as information that can be supported by context or general medical
knowledge, we flag summaries containing at least one of these labels as not factual, thereby
creating a hallucination detection dataset. Although this dataset contains only 210 samples
(152 of which contain hallucinated content), we consider this evaluation particularly valu-
able because the dataset is both recent and relatively unknown in the medical community.
Consequently, the models we are evaluating likely were not trained on this dataset, avoiding
potential bias that could occur with MedNLI, which is a mainstream dataset in the medical
NLP field and may have been encountered during training. To evaluate the impact of fine-
tuning on our dataset, we take a base Llama-3-8B model [132] and fine-tune it on MedHal,
then compare its performance against other high-performing models. We specifically chose
the base Llama-3-8B rather than models that have been fine-tuned on medical text to iso-
late the effect of our dataset. We report the precision, recall, and F1-score of each model
for detecting hallucinated content in Table 4.10. As models not fine-tuned on a specific an-
swer format consistently flagged summaries as factual in 0-shot settings, we report only their
1-shot performance.

Model Precision Recall F1
Llama-3.2-1B (1 shot) 0.81 0.32 0.45
Llama-3.1-8B (1 shot) 1.00 0.13 0.22

OpenBioLLM-3-8B (1 shot) 0.85 0.60 0.70
Prometheus-2-8x7B 0.77 0.75 0.76

HallOumi-8B 0.91 0.61 0.73
MedHal-Llama-3-8B 0.73 0.87 0.79

Table 4.10 Evaluation of different models on an Hallucination Dataset

4.5 Discussion

4.5.1 General vs Medical vs Evaluator models

A clear trend emerges from Table 4.7 indicating that models specifically fine-tuned on medi-
cal text generally outperform their general-purpose counterparts. Notably, OpenBioLLM-8B
demonstrates superior performance, achieving an F1-score of 0.62 for factuality detection,
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which is 10 points higher than Llama-3-8B (0.52). This improved performance of medical-
tuned models extends to the explanation metrics (BLEU, R1, R2) as well, suggesting a
more robust understanding of factual nuances within medical contexts. Despite their lower
adherence to specific formats, a tendency reflected in generally low N values (except for
MedLlama), medical models still outperform general-purpose models on explanation metrics.
Interestingly, models designed as dedicated evaluators do not consistently surpass medical
or general-purpose models in factuality detection. For instance, Prometheus-2-8x7B un-
derperforms Llama-3-8B in F1-score, despite having significantly more parameters. A key
distinction lies in the classification strategies adopted by different model types: evaluator
models, such as Prometheus-2-8x7B and HallOumi-8B, exhibit a consistent pattern of higher
precision than recall. Prometheus-2-8x7B, while achieving the highest precision (0.62) for
identifying factual content, demonstrates a comparatively low recall (0.37). This indicates a
tendency for these models to be highly confident when classifying a statement as factual, but
they are also prone to missing many truly factual statements, classifying them as non-factual.
In essence, they are "skeptical" about accepting a statement as factual. This behavior aligns
with a cautious approach, where it’s preferable to be on the side of caution by classifying un-
certain factual content as non-factual. In contrast, medical models generally display a higher
recall than precision. This suggests they are more adept at identifying a greater proportion
of truly factual statements, even if it comes at the cost of occasionally misclassifying some
non-factual content as factual. These findings suggest that while general medical fine-tuning
is crucial for achieving higher overall factuality detection performance (as evidenced by the
F1-score of medical models), fine-tuning for hallucination detection (which is inherent to the
evaluator models’ design) appears to instill a more cautious, precision-oriented classification
strategy. This skepticism in factual classification, while leading to lower recall, could be
a desirable characteristic in high-stakes medical contexts where misclassifying non-factual
content as factual carries greater risks.

4.5.2 Fine-tuning on MedHal

As expected, when models are fine-tuned on MedHal, we observe a substantial improvement
in their performance on the test set. However, there is no significant difference in overall per-
formance whether the base model is a medical, general-purpose, or evaluator model before
being fine-tuned on MedHal. For instance, Llama-3-8B, OpenBioLLM-8B and HallOumi-
8B all achieve strong F1-scores for factuality. However, a specific anomaly appears with
OpenBioLLM-8B. Fine-tuning it on MedHal leads to lower performance in explanation met-
rics compared to other fine-tuned models. In fact, a fine-tuned Llama-3.2-1B even outper-
forms OpenBioLLM-8B in explanation metrics (BLEU score of 0.45 vs. 0.10). Our analysis
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suggests that while specialized pre-training offers advantages, its combination with subse-
quent fine-tuning on the MedHal dataset for explanation generation may lead to suboptimal
results. Specifically, we observed that the model tends to produce an excessive number of
tokens, frequently leading to gibberish after an initial coherent output. An example of this
behaviour is shown in Table 4.11. However, this behaviour could be specific to this model.

Statement Explanation Model Output
MRI at 32 weeks of
gestation showed a
left-sided cyst increased to
27 cm in diameter, and the
right-sided multilocular cyst
became very close to the
left monocytic cyst.

The MRI at 32 weeks of
gestation shows an
unremarkable result.

The MRI at 32 weeks of
gestation showed complete
resolution. <|re-
served_special_token_233|>
.ci_ail treatment. <|re-
served_special_token_75|>
a 2-dose iv mannitol
treatment and an infusion
...

Table 4.11 Example of sample where OpenBioLLM-8B generates gibberish after an initial
coherent output.

4.5.3 Downstream Performance

Evaluation on MedNLI

The evaluation on the MedNLI dataset provides insights into the effectiveness of our MedHal
dataset for medical hallucination detection. Results from Table 4.9 show that models fine-
tuned on MedHal achieve F1-scores between 0.89 and 0.97, showing improvement over both
baseline performance (0.56-0.89) and MedNLI-only fine-tuning (0.70-0.97). This comparison
is valid given that MedHal was constructed using only the training portion of MedNLI,
ensuring no data leakage in our evaluation.

The comparable, and often superior, performance difference between MedHal fine-tuned mod-
els and MedNLI-only fine-tuned models suggests benefits from multi-task learning in medical
hallucination detection. It’s important to note that while the performance of 8B models fine-
tuned using MedHal is similar to their MedNLI-only fine-tuned counterparts, the MedNLI-
only versions have seen the dataset more times (5 epochs). In contrast, MedHal incorporates
samples from MedNLI, but the MedHal fine-tuned versions have only processed these specific
MedNLI samples one time as part of a broader, multi-task dataset. Despite this difference in
exposure frequency to the MedNLI data, the MedHal-tuned models achieve competitive re-
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sults. A possible explanation for the similar top scores achieved by the 8B models, regardless
of whether they were fine-tuned on MedNLI or MedHal, is that the MedNLI dataset might
be saturated for models of this size. However, for Llama-3.2-1B, a smaller model for which
the dataset might not be as saturated, the jump in performance when fine-tuned on MedHal
is significant, increasing from 0.70 (MedNLI only fine-tuning) to 0.89 (MedHal fine-tuning).
This 1B parameter model, when exposed to MedHal’s multi-task training, achieves an F1-
score that matches the baseline performance of HallOumi-8B (0.89), a model eight times its
size and specifically fine-tuned with for hallucination detection.

The diverse range of tasks incorporated in MedHal, including information extraction, sum-
marization, and question answering, appears to provide complementary learning signals that
support the models’ ability to distinguish between factual and non-factual medical state-
ments. This indicates that exposure to various medical reasoning tasks during training
contributes to more robust representations for factuality assessment.

Notably, our MedHal fine-tuning approach enables models to exceed the performance of
HallOumi-8B, a model specifically designed for hallucination detection, improving from its
baseline F1-score of 0.89 to 0.94. This result highlights the importance of domain-specific
training data, as our medically-focused dataset appears more effective than general hallucina-
tion detection training for medical contexts. The improvements are observed across different
model architectures, from the smaller Llama-3.2-1B to the larger 8 billion parameter models.

Evaluation on Specialized Hallucination Dataset

The evaluation on the MIMIC-III-based hallucination dataset provides validation of our ap-
proach’s generalization capabilities. The MedHal-fine-tuned Llama-3-8B model achieves an
F1-score of 0.79 and demonstrates recall of 0.87, indicating capability in identifying halluci-
nated content. The model’s performance on this unseen and doctor curated dataset suggests
generalization emerges from training on MedHal. It is important to mention that the dataset’s
class imbalance, with 152 out of 210 samples containing hallucinated content, influences the
precision-recall characteristics observed across models. This imbalance naturally leads to
apparently high precision scores for models that tend to classify most samples as containing
hallucinations. However, our MedHal fine-tuned model is the only one achieving high recall
(0.87), demonstrating superior ability to identify the minority class of factual content while
maintaining competitive precision.
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CHAPTER 5 CONCLUSION

In this section, we summarize the work done in this study, indicate limitations with the
developed methodology and give possible research directions for future work.

5.1 Summary of Works

We introduced a novel approach for generating domain-adapted clinical summaries using
Large Language Models (LLMs). Our methodology leveraged ontologies to address two key
challenges in clinical summarization: adapting summaries to specific clinical domains (e.g.,
radiology, nursing) and hallucination reduction. Our process began with comprehensive do-
main analysis to identify critical ontological concepts specific to each clinical domain. We
then structured clinical notes around these concepts by systematically extracting relevant
information. This extraction operated in conjunction with an ontology-guided decoding pro-
cess that prioritized outputs aligned with both the input notes and ontological knowledge.
Using these domain-specific extractions, we selectively retrieved values pertinent to the tar-
get domain to generate customized summaries. The innovation in our approach stemmed
from two key components: the ontology-constrained decoding process and the automatic
domain-adaptation methodology, which together enabled the generation of both structured
and unstructured domain-adapted summaries. During our evaluation, we identified signif-
icant limitations in existing methods for assessing hallucinations. To address this gap, we
developed a new dataset derived from multiple clinical tasks that effectively measured model
reliability in detecting medical hallucinations. Additionally, we fine-tuned evaluator models
on this dataset to facilitate clinical evaluation for the broader research community and eval-
uate the impact of different specialized LLMs (medical, evaluator) on medical hallucination
detection.

5.2 Limitations

Our research is subject to several important constraints and limitations. Regarding our con-
strained decoding method, the computational overhead associated with multiple inference
passes presents a primary challenge. While these processes can be parallelized across clin-
ical notes and ontology classes, the beam search requirements create substantial obstacles
for scalability and deployment in practical settings. The method’s sensitivity to hyperpa-
rameters (including prompt format, k value, and α) further complicates optimization efforts.
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Additionally, our approach depends heavily on ontology annotators, which, while available
for SNOMED-CT, may not exist for other ontologies. Finally, a notable limitation is also the
absence of human expert assessment and domain-specific gold standards for the generated
summaries.

Concerning our medical hallucination detection benchmark, our samples lack formal expert
review despite being derived from authentic content. The modification process, which uti-
lized a large language model, might have introduced potentially false statements due to
hallucinations. Consequently, our evaluator, while demonstrating improved performance on
non-synthetic data, may exhibit diminished effectiveness in real-world applications. Further-
more, since the evaluator was fine-tuned from an existing model rather than trained from
scratch, it may perpetuate inherent biases from the original model.

5.3 Future Research

To enhance the applicability of our domain adaptation method, future efforts should prioritize
eliminating the reliance on an ontology annotator. This would allow for seamless integration
across various ontologies and domains. Furthermore, given that current evaluation metrics
are human-agnostic, it’s crucial to assess the impact of ontology-constrained decoding directly
with medical professionals.

Regarding the development of a medical hallucination detection benchmark, we propose in-
corporating a validation step after statement generation to minimize dataset errors. This
could be augmented with a human validation step on a subset of samples to estimate data
validity. More importantly, the dataset could be expanded to include additional tasks such as
text classification, token classification, and text retrieval. Ontologies could also be leveraged
to generate factual and non-factual statements by randomly swapping relationships between
classes. For model training, future work could involve conducting ablation studies to under-
stand the effect of different tasks and the impact of using samples from existing synthetic
datasets on model performance. Furthermore, studying the effect of balancing the dataset,
both by task and by label, could be a valuable area of future work.
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APPENDIX A TIES AND PARSING ERRORS OF EVALUATIONS WITH
PROMETHEUS

Model Rubric GS vs OCD GS vs DBS OCD vs DBS

Llama-3B-Instruct Factuality 2493 / 1217 3598 / 1333 2874 / 1167
Relevance 2534 / 1656 3124 / 1135 2840 / 1638

Llama-8B-Instruct Factuality 2008 / 5176 4703 / 4183 2228 / 5204
Relevance 2122 / 1511 5163 / 1564 2378 / 1609

Llama-8B-medicine Factuality 2813 / 7300 3093 / 6828 3045 / 7282
Relevance 3019 / 1616 3301 / 1703 3449 / 1644

Llama3-OpenBioLLM Factuality 4286 / 1222 1711 / 1437 3613 / 1334
Relevance 3511 / 1856 1603 / 1804 2997 / 1859

Table A.1 Ties and parsing errors of different methods when evaluated with Prometheus
(format in a cell is "Ties / Parsing Errors")
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