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RESUME

Nous étudions, dans un premier temps, les équilibres extrémes des jeux bima-
triciels. Les équilibres de Nash sont des équilibres corrélés et par conséquent appar-
tiennent au polytope des distributions d'équilibres corrélés. Notre étude du polyedre
des équilibres corrélés met en évidence deux polytopes (P;) et (FP2). Ces derniers sont
respectivement satisfaits par chacune des stratégies mixtes formant un équilibre de
Nash. L’étude de ces deux polytopes nous permet d’établir certaines des propriétés
des équilibres de Nash extrémes. Nous présentons une preuve alternative et originale
du théoréme de S. Evangelista et T.E.S. Raghavan (1996), & savoir les équilibres
de Nash extrémes sont des équilibres corrélés extrémes. Nous montrons de plus que
les jeux ayant un nombre différent de stratégies pour les deux joueurs ne possédent
pas d’équilibre de Nash extréme complet. D’autres propriétés sont présentées ainsi

qu'une classe de jeux ne possédant pas d’équilibre de Nash complet.

Dans un deuxiéme temps, nous énumérons les distributions des équilibres de
Nash et corrélés extrémes pour des jeux générés aléatoirement dont les paiements
sont des réels compris entre 0 et 1. Pour ce faire, nous avons utilisé le logiciel cdd
de K. Fukuda pour I’énumération des points extrémes d'un polyedre et le logiciel
bimatriz de C. Audet et al. pour I’énumération des équilibres de Nash extrémes.
Les équilibres de Nash sont présentés suivant leur nature (purs, complets, mixtes et
efficaces). Nous avons également énuméré les équilibres corrélés efficaces. Ces plans
d’expériences ont pour objet de déterminer I’efficacité relative des équilibres de Nash

et de comparer leur nombre par rapport au nombre des équilibres corrélés efficaces.



Des résultats surprenants sur le nombre des équilibres sont observés et se traduisent

par des conjectures.



ABSTRACT

We first study extreme equilibria of bimatrix games. Nash equilibria are correla-
ted equilibria and thus belong to the correlated equilibria distribution polytope. Our
study of this polyhedra leads to two polytopes (P;) and (P.). These are respectively
satisfied by each player’s mixed strategy in a Nash equilibrium. We then study this
two polytopes in order to study properties of extreme Nash equilibria. We give an
alternative and self-contained proof of Evangelista and Raghavan Theorem (1996),
1.e. extreme Nash equilibria are extreme correlated equilibria. Furthermore, we show
that games with different numbers of strategies for each player have no completely
mixed extreme equilibria. Some further properties are presented as well as a class of

games which have no completely mixed equilibrium.

We also study by computer the distributions of extreme Nash and correlated
equilibria of random games with real payoffs between 0 and 1. To this effect, we com-
pute correlated equilibria with cdd software of F'. Fukuda for the vertex enumeration
of polyhedra and Nash equilibria with bimatriz software of C. Audet et al.. Particular
Nash equilibria such as completely mixed, pure or efficient ones are identified, as well
as efficient correlated equilibria. This experimental design is built in order to deter-
mine the relative efficiency properties of Nash equilibria as well as their number in
comparison with the number of efficient correlated equilibria. Some surprising results

on the numbers of equilibria are observed and several conjectures derived from them.
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INTRODUCTION

“Qui cherche la vérité doit étre prét a l’inattendu, car elle est difficile @ trouver et,

quand on la rencontre, déconcertante.”

Héraclite

Ce projet de maitrise est né d'une collaboration entre le professeur R. Nau
de Duke University et le professeur P. Hansen des Hautes Etudes Commerciales de
Montréal. Cette collaboration traduit une des applications de la Recherche Opération-
nelle 3 la théorie des jeux. Imaginons un jeu a deux joueurs et placons nous du c6té du
joueur 1. Ce dernier a le choix entre trois stratégies et avant d’arréter son choix il se
demandera quelle stratégie son adversaire est susceptible de choisir. Le joueur 1 peut
alors résoudre son probléme de choix par un simple programme linéaire permettant
de maximiser son gain étant donné ses croyances sur les stratégies de son adversaire.
Bien entendu, le joueur 2 adoptera une démarche similaire. Les deux joueurs auront
donc intérét a batir un modeéle en fonction de leurs différentes croyances lesquelles
peuvent aboutir & une situation d’équilibre.

Nous avons briévement décrit ce que !'on appelle un jeu bimatriciel et ce qui pourrait
étre une situation d’équilibre. Nous présentons au chapitre 1 une introduction a la
théorie des jeux. Celle-ci ne couvre que les jeux bimatriciels et présente deux solutions
d’équilibres : les équilibres de Nash et les équilibres corrélés.

John F. Nash a obtenu en 1994 conjointement avec John C. Harsanyi et Reinhard
Selten le prix Nobel d’Economie pour leurs contributions novatrices en analyse des

équilibres dans le domaine des jeux non coopératifs.



Si les équilibres de Nash représentent un des concepts universels de la théorie des jeux,
il y a cependant de nombreux problémes qui leur sont associés tant dans leur calcul
et leur nombre que dans les hypothéses de jeux qu’ils requiérent. Si un jeu posséde
plusieurs équilibres de Nash, le critére d’équilibre ne peut pas étre utilisé afin de
prédire directement le résultat du jeu. De plus, chaque joueur est supposé détenir
I'information compléte sur la situation des autres joueurs. De nombreux raffinements
ont été développés par la suite afin de pallier & I'un ou 'autre de ces problémes.
R.J. Aumann en 1974 introduit le concept d’équilibre corrélé, plus large que celui
de J.F. Nash et qui du point de vue du calcul est plus simple & résoudre. En effet,
les équilibres corrélés correspondent a un polytope dont la caractérisation algébrique
sera énoncée en 1987 par R.J Aumann.

Si le probléme de calcul semble étre résolu, celui du nombre d’équilibres s’agrave.
Cependaiit, un équilibre de Nash est un équilibre corrélé. Nous étudions au chapitre
2, les équilibres de Nash du point de vue des équilibres corrélés en utilisant la théorie
polyédrale. Cette approche nous permet d’analyser les propriétés des équilibres de
Nash. De nouveaux résultats ont été démontrés et des preuves alternatives et plus
courtes sont données pour des résultats existants. L'originalité de notre approche
réside en la linéarisation des équations définissant un équilibre de Nash & 1'aide du
polytope des équilibres corrélés.

Des études empiriques sont présentées au chapitre 3 sur le nombre et la nature des
équilibres de Nash et des équilibres corrélés auxquels nous ajoutons les équilibres
corrélés efficaces ou de Pareto. Entre 200 et 500 jeux sont générés aléatoirement pour
différentes situations. Pour chacun des jeux sont calculés les équilibres corrélés, les
équilibres de Nash complets, purs, mixtes et efficaces, ainsi que les équilibres corrélés

efficaces. Ces études sont menées afin de déterminer quel pourrait étre ’intérét pour



les joueurs de jouer un équilibre plutét qu'un autre. Enfin, certains de nos résultats

numériques se traduisent par des conjectures.



CHAPITRE 1

Une introduction a la théorie des

jeux

1.1 Les jeux bimatriciels

Avant d’entamer la partie, essayons de comprendre les régles du jeu. Un jeu peut
se définir de différentes fagons, en particulier comme la description d’une interaction
stratégique entre plusieurs joueurs. Cette description inclut les stratégies que les
différents joueurs peuvent choisir ainsi que leurs intéréts dans la partie, mais ne
spécifie pas les stratégies que les joueurs devraient adopter. Avant de donner une
définition plus formelle d’un jeu, un certain nombre d’hypothéses sont nécessaires.
Les intéréts des joueurs dans les différentes situations du jeu sont supposés étre
quantifiables. L’ensemble des stratégies de chacun des joueurs est fini et il est possible
d’énumeérer chacune d’entre elles. Prenons ’exemple d'un jeu auquel nous avons tous
joué au moins une fois: “Pierre, Feuille et Ciseaux”. Les deux joueurs ont chacun
le choix parmi trois stratégies possibles. Le choix simultané d’une stratégie par les
Jjoueurs conduit un joueur a la victoire et I'autre a la défaite. Les gains des joueurs

peuvent alors étre quantifiés de la manieére suivante : celui qui perd paye une certaine



Tableau 1.1 — Jeu “Pierre, Feuille, Ciseauz”

Pierre Feuille Ciseaux

Pierre 0 -10 10
Feuille 10 0 -10
Ciseaux | -10 10 0

somme d’argent a celul qui gagne. Les gains, pour un joueur donné, sont spécifés

dans la matrice du tableau 1.1.

Il est trés important dans ce jeu que le choix des stratégies par les deux joueurs
se fasse de fagon simultanée. Il est clair que la connaissance par un des joueurs du
choix de l’adversaire lui confére une victoire assurée. Toute communication entre
les joueurs est formellement interdite. soit parce que les régles du jeux sont ainsi
définies, soit parce que les intéréts des différents joueurs sont inconciliables. Nous

nous intéressons aux jeux dits non coopératifs.

Dans le cas qui nous préoccupe, les jeux a deux joueurs, un jeu est défini par une
paire de matrices réelles m x n dites matrices de paiements, soit (A4, B) ol A = (ai;)
et B = (b;;). On fait correspondre les lignes au joueur 1 et les colonnes au joueur
2. Ainsi, le paiement du joueur 1 dans la situation ou il choisit la stratégie 7 et son
adversaire la stratégie j est a;;, celui du joueur 2, b;;. On distingue deux classes de
jeux bimatriciels: les jeux & somme nulle et les jeux 2 somme non nulle. Les jeux a
somme nulle sont tels que les paiements de chacun des joueurs sont opposés, c’est &
dire que A = —B. Ces jeux sont donc strictement compétitifs. L’autre classe de jeux,
que 'on peut aussi définir comme les jeux non strictement compétitifs, ne vérifie donc

pas cette condition.



1.1.1 Un exemple: le dilemme du prisonnier

Nous allons illustrer les jeux non strictement compétitifs par un exemple qui
est devenu aujourd’hui un classique en théorie des jeux et qui est du & A. W. Tucker

(de nombreuses variantes du jeu ont été formulées, on peut se référer A [8]).

Tableau 1.2 — Dilemme du prisonnier

ne pas

avouer avouer

ne pas avouer | (1,1) | (10, 0)
avouer | (0, 10) | (3, 3)

La formalisation matricielle du jeu est donnée au tableau 1.2. On peut in-
terpréter le jeu comme suit: deux suspects sont arrétés par la police et mis dans
deux piéces séparées. Le procureur est persuadé de leur culpabilité, mais n’a aucune
preuve. Il va donc dire a chacun des suspects qu’ils ont deux alternatives possibles:
avouer ou ne pas avouer. Si les deux suspects n’avouent pas, ils seront incarcérés cha-
cun pour un an. Si I'un deux avoue et l'autre non, celui qui avoue sera utilisé comme
témoin contre 'autre, auquel cas il sera libéré et ’autre incarcéré pour dix ans. Enfin,
st les deux avouent, ils seront incarcérés chacun pour trois ans. Les suspects devront
donc choisir entre avouer ou non. Dans les conditions de I'interrogatoire tel qu’il est
précisé par l'avocat général, un suspect a tout intérét & avouer quoi que fasse son
complice. On voit ici que I'issue du jeu serait complétement différente si les deux sus-

pects pouvaient communiquer. Ils choisiraient alors conjointement de ne pas avouer.



1.1.2 Les hypothéses de rationalité

L’exemple précédent illustre d’une certaine maniére les choix des comporte-
ments humains : la rationalité individuelle ou bien la démarche collective. Nous n’en-
trerons pas dans les débats quelque peu philosophiques sur ces thémes, qui ont suscité
de nombreuses discussions en théorie des jeux. Néanmoins, il nous parait important

de définir le cadre dans lequel sont placés nos deux joueurs.

Nous considérons donc les jeux olt toute communication est interdite. Chaque
joueur choisit sa stratégie indépendamment des autres. Chaque joueur agit de fagon a
maximiser ’espérance de son gain. Les joueurs sont donc rationnels au sens de Bayes
(se référer & [3]). Enfin, un joueur est conscient de son propre objectif mais aussi de
celui de l'autre joueur, qu'il suppose lui aussi rationnel. On dit que la rationalité est
une connaissance commune : le premier joueur sait que ’autre est rationnel, il sait
que ’autre le sait rationnel, etc...

Ajoutons toutefois une derniére hypothése qui nous permettra de définir le concept
d’équilibre corrélé. On supposera qu'un joueur forme des croyances, exprimées sous
forme de loi de probabilité, sur tout ce qui est inconnu, croyances compatibles avec
son information a priori. En d’autres termes, les joueurs sont conformes a la théorie

de Savage (se référer a [3]).

1.2 Stratégie pure - Stratégie mixte

Jusqu’a présent, chaque joueur choisit simultanément une stratégie parmi un

ensemble dénombrable de stratégies: S* pour le joueur i. Supposons maintenant que



le joueur ¢ puisse choisir comme stratégie non seulement un point de I’ensemble S%,
mais aussi une distribution de probabilité sur cet ensemble. Une telle distribution
est appelée une stratégie mizte. De nombreuses interprétations ont été formulées au
sujet des stratégies mixtes et font toujours ’objet de nombreux débats tant théoriques
qu’empiriques. Certains diront qu’il s’agit d’une idée due & Borel pour éliminer la ruse
dans certains jeux, mais cette notion repose surtout sur une axiomatique des choix
dans l'incertain développée par Von Neumamm et Morgenstern. L'ouvrage de M.J.
Osborne et A.Rubinstein [19] présente les différentes interprétations et sur certains
points les auteurs ne partagent pas le méme avis. Nous ne considérerons les stratégies

mixtes que sous leur aspect purement mathématique.

Définition 1.1 Une stratégie mizte du joueur i est une distribution de probabilité

sur Uensemble S* de ses stratégies.

Si |S'] = m et |S?| = n, on note alors z = (Ti)icicm €t ¥ = (Yj)icj<n
deux stratégies mixtes du joueur 1 et du joueur 2 respectivement. De méme, z

m
et y sont des éléments des simplexes E™ = {z € R™| Zx,- = letz; > 0} et

i=1
E" = {y e R"| iyj = 1 et y; > 0} respectivement. Remarquons qu’'un point de
I’ensemble S1 corjrze;pond 2 une stratégie mixte particuliére ou la distribution de pro-
babilité z est telle que: Jip € {1,2,...m} tel que z;, = 1 et z; = 0 pour 7 # i,.
Autrement dit, la stratégie numérotée 7y est choisie avec une probabilité de 1 par le
joueur 1 . Par abus de langage, on parlera de la stratégie ¢o du joueur 1. Il en va de
méme si 'on considére ’ensemble S? des stratégies du joueur 2. Les stratégies de S*

sont appelées stratégies pures.

Le jeu initial vient d’étre étendu par prolongement mixte. Nous verrons plus loin



I'intérét d’un tel prolongement. Néanmoins, remarquons d’ores et déja que le prolon-
gement mixte du jeu nous permet de disposer d’un ensemble convexe de stratégies

pour chacun des joueurs.

Reprenons notre partie, mais cette fois en jouant des stratégies mixtes. Nous
avons vu que le résultat d'un jeu était symbolisée par une case (7,j) des matrices
de paiements. Le résultat du jeu en stratégie mixte correspond cette fois au couple
(z,y) défini précédemment. Le paiement des joueurs est alors associé & un résultat

aléatoire et est égal 2 son espérance. Soient respectivement pour les joueurs 1 et 2,

m n m n
les paiements z; = Y Y a;;z;y; et zp = Y _ Y bijz;y;. Si chaque joueur tire au sort
=1 j=1 =1 j=1

sa stratégie indépendamment des autres, I’issue (7, 7) se réalise avec une probabilité

Y.

Choisir une stratégie mixte revient pour un joueur & attribuer une probabilité
non nulle & certaines de ses stratégies pures. Celles ci constituent alors le support de

la stratégie mixte considérée.

Définition 1.2 On appelle le support d’un joveur pour une stratégie mizte z, l'en-

semble d’indices 6(z) = {i|z; > 0}.

Le support du joueur 1 sera noté M(z), celui du joueur 2 N(y).
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1.3 Les équilibres de Nash

Supposons que chaque joueur ait fait son choix de stratégie mixte de sorte
qu’aucun des deux joueurs n’ait intérét & changer son choix si I’autre ne le fait pas.
En d’autres termes, toute déviation unilatérale de stratégie d’un joueur ne lui apporte
aucun gain supplémentaire. Chaque joueur a donc choisi une stratégie comme étant la
meilleure réponse possible a celle de ’autre. Une telle situation peut se définir comme
une situation d’équilibre stable. On ne s’intéresse pas ici 4 la fagon d’atteindre cette
situation d’équilibre, mais aux propriétés de cette situation privilégiée. Ceci nous

conduit & une définition plus mathématique de 1’équilibre de Nash.

Définition 1.3 Le couple (T,7y) de stratégies miztes d’un jeu bimatriciel défini par

une paire (A, B) de matrices réelles m x n est appelée un équilibre de Nash si:

TtAY > £'AY pour toute stratégie mizte T et

Z'BY > T'By pour toute stratégie mizte y.

Dans le cadre des jeux & n joueurs, et sous certaines conditions, en particulier
de convexité sur les ensembles de stratégies des joueurs, 'existence d’un équilibre est
assurée par un célébre théoréme de J.F. Nash [17]. Le prolongement mixte d'un jeu
satisfait les hypothéses du théoréme de Nash. Ainsi, tout jeu fini admet un équilibre
de Nash en stratégies mixtes. Il n’en est pas de méme si 'on considére uniquement les
équilibres en stratégies pures comme le montre le jeu du tableau 1.3. Ce jeu n’admet
pas d’équilibres en stratégies pures, mais un unique équilibre en stratégies mixtes.
Notons x; (resp. y1) la probabilité que le joueur 1 (resp. 2) choisisse Pile. D’aprés la

définition d’un équilibre de Nash, on doit calculer les meilleures réponses du joueur



Tableau 1.3 — Pile ou face

Pile Face
Pile | (1,-1) | (-1, 1)
Face | (-1, 1) | (1, -1)

11

1 (resp. 2) étant donné y; (resp. z;). En regroupant les termes en z; on obtient le

paiement espéré du joueur 1:

z1(y1) = argmazz, e y{z1(4yr — 2) — 2y + 1},

ou encore:

1 siy >1/2
zi(y1) =1 [0,1] siy =1/2 -
0 sty < 1/2

On obtient de méme le paiement espéré du joueur 2:

1 sizy >1/2
z(z1) =14 [0,1] siz i =1/2 -
0 siz;<1/2

Ce jeu admet donc un unique équilibre de Nash ot z = (1/2,1/2) et y = (1/2,1/2).

Remarquons que 'introduction de stratégies mixtes dans ce jeu a permis, d’une part

d’assurer !'existence d’un équilibre de Nash, et d’autre part d’éliminer la ruse. En

effet, la connaissance par 'un des joueurs de la stratégie mixte de I'autre joueur ne

lui apporte plus aucun avantage. I1 ne sait pas quelle stratégie pure ce joueur va

privilégier.
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Parmi les équilibres de Nash, on distingue les équilibres dits complets dans
lesquels aucune stratégie pure, pour chacun des deux joueurs, ne se voit attribuer
une probabilité nulle. L’équilibre de ’exemple précédent est un équilibre de Nash

complet.

1.4 Propriétés des équilibres de Nash

La définition d'un équilibre de Nash peut s’interpréter comme suit: toute
stratégie pure utilisée avec une probabilité non nulle par un des joueurs & 1'équilibre
est une meilleure réponse a la stratégie mixte de I'autre. Les stratégies pures dans le
support du joueur lui rapportent chacune le méme paiement étant donné la stratégie
mixte de l'autre joueur. Le paiement pour une stratégie pure iy dans le support du

n
joueur 1 a I’équilibre s'écrit donc Z ai,;Y;- Le joueur est donc indifférent entre toutes

les stratégies pures du support q;il utilise a I’équilibre, mais aussi entre toutes les
combinaisons convexes de ces stratégies. Cependant, il doit choisir une combinaison
particuliére, sinon l'autre joueur aura intérét a dévier. La sélection de cette stratégie
mixte dépend donc de la matrice des paiements de l'autre joueur et non pas de celle
du joueur considéré. C'est cette particularité qui rend difficile le calcul des équilibres
de Nash - ce “partenariat” qui lie z et y & 'équilibre. Nous verrons au chapitre 2
ou se situe ce lien. Bien sur, I’énumération de tous les supports possibles des joueurs

permet de calculer les équilibres du jeu. Pour un jeu bimatriciel m x n, le nombre de

supports possibles est de I'ordre de 2"+™.
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1.5 Ensemble de Nash maximal

Un jeu bimatriciel posséde au moins un équilibre de Nash en stratégies mixtes,

mais il peut aussi en avoir une infinité. Examinons attentivement le jeu 4x2 suivant:

[ 3,1) (0,1)
(2,0) (1,1)
(1L,1) (2,3)

| (1L2) (21

et considérons les stratégies mixtes:

b = (0,0,1,0) ? = (0’01%:§ 3 = (0,%,0,%) = (110!010)
1
2

vyt = (0,1) y? = (1,0 v = (3

Alors, ce jeu a pour équilibres de Nash tout couple de stratégies mixtes (z,y) appar-

tenant aux ensembles suivants:

St = conv{z?, 2%} x {y*},
5% = conv{z?, 23, z} x {y'},
S% = {z*} x conv{y*,y%} , et

St = {22} x conv{y?, ¥3}.

Nous venons d’introduire la notion d’ensemble de Nash. Nous verrons au chapitre
3 un algorithme nous permettant de calculer I’ensemble E(A, B) des équilibres de
Nash d'un jeu bimatriciel (4, B).

Avant de définir de maniére formelle un ensemble de Nash, nous allons introduire la
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notion d’'interchangeabilité des équilibres.

Toutes les définitions sont données pour un jeu bimatriciel défini par la paire (A, B)

de matrices réelles m x n.

Définition 1.4 Soit S C E(A, B). On dit que deuz équilibres de Nash (z',y') et

(z2,y?) sont S-interchangeables si (z*,y%) € S et (z%,y*) € S.

D’une maniére générale, on dit qu'une paire d’équilibres est interchangeable si elle

est E(A, B)-interchangeable.

Définition 1.5 On appelle ensemble de Nash, un ensemble S C E(A, B) dont toute

paire d’équilibres est S-interchangeable.

Remarquons que si la relation d’interchangeabilité entre deux équilibres est une
relation reflexive et symétrique, elle n’est pas pour autant transitive. L’exemple
précédent nous le confirme. Considérons les trois équilibres suivants: (z!, y%), (z?%, ¥?)
et (z2,y®). Sil'on note par ~ la relation d’interchangeabilité, on a: (z1, %) ~ (2%, ¥?)
et (z2,y%) ~ (z2,4?). Néanmoins, (z!,%°®) n’est pas un équilibre de Nash, la relation

(=1, y?) ~ (=%, y¥®) n’est donc pas vérifiée.

G.A. Heuer et C.B. Millham [11] ont été les premiers & explorer certaines pro-
priétés des ensembles de Nash. IIs ont introduit, en particulier, le concept d’ensemble

de Nash maximal, maximal étant pris au sens de l'inclusion.
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Définition 1.6 Un ensemble de Nash est dit mazimal s’il n’est pas strictement inclus

dans tout autre ensemble de Nash.

Les ensembles de Nash donnés pour l'exemple précédent représentent les ensembles
de Nash maximaux du jeu. On constate que ceux-ci forment des ensembles convexes
et fermés et que certains ont en commun des points extrémes. Ceci nous conduit au

théoréme de G.A. Heuer et C.B. Millham [11] suivant:

Théoréme 1.7 (Heuer et Millham). Les ensembles de Nash mazimauz sont des

sous-ensembles convezes et fermés de E™ x E™.

Considérons a nouveau les résultats de notre jeu 4x2. Remarquons que chacun
des ensembles de Nash maximaux posséde un nombre fini de points extrémes et
que la réunion des ces ensembles permet de déterminer 1’ensemble des équilibres
du jeu. En fait, quelque soit le jeu bimatriciel considéré, les ensembles de Nash
maximaux présentent toujours cette méme structure, & savoir le produit cartésien
de deux polytopes et leur réunion constitue l'ensemble des équilibres du jeu. Ces
résultats sont dus & M.J.M. Jansen [12]. Citons en particulier celui qui permet de

caractériser I’ensemble des équilibres de Nash d'un jeu bimatriciel.

Théoréme 1.8 (Jansen) L’ensemble des points d’équilibres d’un jeu bimatriciel est
l'union (non nécessairement disjointe) d’un nombre fini d’ensemnbles de Nash mazi-

mauz.

Notons qu’on peut facilement montrer que les équilibres d’un jeu bimatriciel

appartiennent toujours a un ensemble de Nash maximal.
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En effet, soit (z,y) € E(A, B), alors 'ensemble {(z,y)} est un ensemble de

Nash. Si celui-ci n’est pas maximal, alors il est contenu dans un ensemble de Nash

maximal.

1.6 Equilibres de Nash extrémes

Les résultats de la section précédente montrent que la connaissance d'un nombre
fini d’équilibres de Nash permet de caractériser I’ensemble des équilibres du jeu. Ces
équilibres sont appelés équilibres extrémes. Bien sir, il faut avant tout reconstituer
les ensembles de Nash maximaux. Pour ce faire, on utilise les propriétés d’'interchan-

geabilité des équilibres d’'un méme ensemble de Nash.

Définition 1.9 Un équilibre de Nash d’un jeu bimatriciel est appelé un équilibre
extréme st il est un point extréme d’un ensemble de Nash mazimal pour le jeu con-

sidéré.

Précisons cette définition par rapport au produit cartésien des deux polytopes P; et
P, constituant un ensemble de Nash maximal. Alors, (z,y) est un équilibre extréme,
si z et y sont les points extrémes de P, et P, respectivement. Nous verrons au chapitre

2, quelles sont les inégalités qui définissent les polytopes P; et Ps.

Les équilibres de Nash extrémes sont propres aux jeux bimatriciels et les résultats
précédents ne peuvent étre étendus pour les jeux a plus de 2 joueurs. En effet, un
exemple de jeu de poker de J.F. Nash {18] montre I’existence d’un unique équilibre de

Nash qui se trouve étre irrationnel. Par ailleurs, H. Chin, T. Parthasarathy et T.E.S.
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Raghavanan [4] présentent un jeu 2 trois joueurs dont I’ensemble des équilibres est

la réunion d’'un nombre infini d’ensembles de Nash maximaux.

1.7 Les équilibres corrélés

Quittons momentanément les équilibres de Nash, pour introduire une nouvelle

notion d’équilibre, due & R.J. Aumann [2].

1.7.1 Stratégie corrélée

Nous avons jusqu’ici évoqué le concept de stratégie mixte comme étant une
distribution de probabilité sur ’ensemble des stratégies d’un joueur. Qu’adviendrait-
il si les deux joueurs se basaient sur la méme variable aléatoire pour choisir leur
stratégies? On obtiendrait alors une stratégie corrélée. Afin de mieux comprendre
cette notion, imaginons un espace de probabilité fini I'. On définit alors une stratégie
corrélée comme étant une fonction f dont I’ensemble de départ est I' et ’ensemble
d’arrivée est S x 52, c’est-i-dire que f = (f1, f2) est une variable aléatoire dont les
valeurs correspondent a des couples de stratégies pures.

La notion de stratégie corrélée comme le souligne R.J. Aumann [3] est une notion plus
large que la notion de stratégie mixte. En fait, il s’agit d’obtenir d’'une maniére ou
d’une autre une certaine distribution de probabilité sur I’ensemble des stratégies d’'un
Joueur. Dans les deux cas, les joueurs basent leur choix de stratégie pure sur 1’observa-
tion d’un événement aléatoire, en stratégie mixte les observations sont indépendantes,

alors qu'en stratégie corrélée cette condition n’est pas nécessaire. Il est alors aisé de
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voir qu'une stratégie mixte est une stratégie corrélée particuliére. En effet, si I'on
considére I'espace de probabilité I'¥ associé & la stratégie mixte du joueur %, alors I’

correspond au produit cartésien de I'! et I'2.

Reprenons notre exemple de jeu “le dilemme du prisonnier” définit au tableau 1.1.
Nous avons vu que l'issue du jeu correspond au couple de stratégies (avouer, avouer).
Si les deux prisonniers observent cette fois-ci simultanément une piéce de monnaie
qui est lancée et jouent (avouer, ne pas avouer) si c'est pile ou bien (ne pas avouer,
avouer) si c’est face, on obtient deux stratégies corrélées qui ne se réduisent pas a
des produits de stratégies mixtes.

Dans le cas des stratégies corrélées, les joueurs choisissent une stratégie pure qui
leur est suggérée par la réalisation de I'événement qu’ils observent, ils ne doivent
pas choisir une distribution de probabilité sur leur ensemble de stratégies. La nature
probabiliste des stratégies est due a la méconnaissance d’un joueur sur le choix de

stratégie de ’autre joueur.

1.7.2 Distribution d’équilibre corrélé

Nous allons 4 présent, pour des raisons pratiques, associer une stratégie corrélée
(f1, f2) avec sa distribution de probabilité sur S' x S2. En d’autres termes, étant
donné un élément s € S x S2, on associe une stratégie corrélée avec le nombre
Prob{f~!(s)}. Cette association nous permet de définir plus simplement un équilibre
corrélé. Considérons un jeu bimatriciel (4, B). Notons Af le i-éme vecteur ligne de
A et Bj; le j-éme vecteur colonne de B. Le mn-tuple (p;;) désigne une distribution

de probabilité sur S* x S2. Nous utilisons une proposition de R. J. Aumann [1] pour



19
définir une distribution d’équilibre corrélé.

Proposition 1.10 (Aumann): Une distribution de probabilité (p;;) définit une dis-

tribution d’équilibre corrélé pour le jeu bimatriciel (A, B) st et seulement si

(A;i — A)fpi. >0 ieM, keM (1.1)

p;(Bj—By) 20 jEN, LeN. (1.2)

Ces inégalités sont communément appelées les contraintes d’incitation. Si on leur
m n
associe les contraintes liées aux distributions de probabilité, soit > > p; = 1 et

i=1 7=1
pi;j = 0, on obtient le polytope des équilibres corrélés.

Afin de mieux comprendre la définition d’un équilibre corrélé, imaginons une tierce
personne, disons un arbitre, qui annonce a nos deux joueurs quels sont I' et f. Un
événement se produit, w € I'. L'arbitre calcule f(w) et révéle seulement f;(w) au
Joueur z. Un équilibre corrélé se produit alors, si aucun des joueurs n’a intérét a
dévier de la recommandation de I’arbitre, en supposant bien siir que ’autre joueur

ne changera pas non plus la stratégie qui lui a été recommandée.

L’existence des équilibres corrélés est assurée par celle des équilibres de Nash.
En effet, I’ensemble des équilibres de Nash est inclus dans celui des corrélés. Etant
donné un équilibre de Nash (z, y) celui-ci induit une distribution d’équilibre corrélé en
posant p;; = z;y;. Les équations définissant un équilibre de Nash ont été en quelque

sorte linéarisées.

L’ensemble des équilibres corrélés correspond a un polytope, la connaissance

de ses points extrémes est donc suffisante pour déterminer tous les équilibres corrélés
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du jeu. Il est beaucoup plus facile de reconstituer ce polytope que les ensembles de

Nash maximaux.

Définition 1.11 Un équilibre corrélé d’un jeu bimatriciel est appelé un équilibre
corrélé extréme si il est un point extréme du polytope des équilibres corrélés pour le

jeu considére.
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CHAPITRE 2

Les équilibres extrémes

2.1 Propriétés des équilibres de Nash extrémes

Nous savons que I’ensemble des équilibres de Nash est inclus dans ’ensemble
des équilibres corrélés. Nous allons donc considérer les équilibres de Nash extrémes du
point de vue des équilibres corrélés et appliquer la théorie polyédrale afin d’étudier les
propriétés de ces équilbres. Notre premier résultat a été établi de facon indépendante
des travaux de M.W. Cripps [6] en 1995 et de S. Evangelista et T.E.S. Raghavan
[7] en 1996. Ces auteurs montrent en effet le méme résultat de maniére différente.
Néanmoins, notre approche difféere en de nombreux points de celle de ces auteurs. Qui

plus est, elle nous a permis, comme nous allons le voir, d’obtenir d’autres résultats

originaux.

Théoréme 2.1 Les équilibres de Nash extrémes d’un jeu bimatriciel sont des équi-

libres corrélés extrémes.

Démonstration Soit (z,y) € F(4, B) un équilibre de Nash extréme. Alors la
distribution (p;; = =z;y;) satisfait les inégalités du polytope des équilibres corrélés,
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c’est-a-dire :
n
Z(A, — Ak)j TiY5 >0 ieEM, keM (21)
j=1
Zziyj (B —Bgi >0 jEN, e N. (2.2)
=1

Si 'on divise la premiére inégalité par z; et la seconde par y;, pour les indices

¢ et j appartenant respectivement & M(z) et N(y), il s’ensuit que z et y satisfont a:

ixi(Bf—Be)e =0 j€ N(y),L€ N(y)

i=1

(P) S w(Bi—B) > 0  jeN)leN\NQ)

i=1 m
Zfl)i = 1
=1
zi = 0 ieEM\ M(z)
z; > 0 i=12,....m
et n
ST(Ai— Ak)jy; = 0 i€ M(z), k € M(z)
j=1
(P2) D(Ai—A)jy; > 0 i€ M(z), ke M\ M(z)
Jj=1
Doy =1
j=1
yp = 0 JEN\N(y)
y; = 0 i=12,...,n

Suite & ces préliminaires, la démonstration comprend deux étapes. Dans un
premier temps, nous montrons que z et y sont des points extrémes des polytopes
P, et P, respectivement. Dans un second temps, nous montrons que la distribution
(pi; = z;y;) est en conséquence un point extréme du polytope des équilibres corrélés.
Pour ce faire, il suffit de trouver mn vecteurs lignes linéairement indépendants dans

le systeme d’inégalités définissant ce polytope qui sont satisfaites & égalité.
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Supposons que z ne soit pas un point extréme de (P;). Il s’ensuit que z
peut s’écrire comme une combinaison convexe des points extrémes de (P;), soient
(ZP)peezt(py)- Chacun des points extrémes z? est tel que M(zP) C M(z). Si I'on mul-
tiplie chacune des lignes de (P;) par z¥ et chacune des lignes de (P;) par y;, alors
la distribution de stratégie corrélée définie par (zfy;) satisfait les inégalités (2.1) et

(2.2), et par conséquent (zPy) correspond & un équilibre de Nash.

D’aprés ce qui précéde l'ensemble S = conv{(zP)peezt(p,) } X {v} définit un ensemble
de Nash. Donc (z, y) s’écrit comme une combinaison convexe d’éléments de S, ce qui
contredit le fait que (z,y) est un équilibre de Nash extréme. On en conclut donc que
T est un point extréme de (P;) et ’'on montre de fagon similaire que y est un point

extréme de (B,).

1 existe alors m — 1 inégalités de (P;) excepté 1f,z = 1 qui forment m — 1
vecteurs lignes linéairement indépendants et qui sont vérifiées a égalité par z. Notons
alors B*, la matrice (m — 1) x m obtenue a partir de ces m — 1 vecteurs lignes
linéairement indépendants. De fagon similaire, on obtient une matrice (n — 1) x n,
notée A* constituée A partir des n — 1 vecteurs lignes de (P,) excepté 1ty = 1 qui

sont des inégalités de (P,) vérifiées a égalité par y.

Multiplions chaque ligne de A*y par z; pour tout 7 appartenant 2 M. Nous obtenons
alors, une structure diagonale par blocs dans I'espace des p;;, ol il y a exactement
m blocs tous égaux a A*. Il s’ensuit que nous avons mn — m vecteurs lignes corres-
pondant a des inégalités du polytope des équilibres corrélés qui forment des vecteurs
linéairement indépendants. Ces mn — m inégalités sont vérifiées a égalité par (p;;).

Il nous reste donc & trouver m vecteurs lignes additionnels, afin d’obtenir un systéme
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de mn équations de rang mn. Si nous multiplions chaque ligne de z!B* par y;, nous
obtenons m — 1 vecteurs lignes de (1.2) linéairement indépendants. Nous allons mon-

trer que ces m — 1 vecteurs sont linéairement indépendants des mn — m précédents.

Ainsi, nous disposons de m — 1 vecteurs lignes dont la structure est la suivante:

(B40...0B}0...0B;,0...0) £=1,...,m~1 (2.3)

Considérons un des vecteurs lignes de (2.3) et supposons que (Bj;0... 0) correspond
a un de ses blocs non nul. Etant donné que rg(A*) = n — 1, supposons sans perte de
généralité que le vecteur unitaire e; et les vecteurs lignes de A* forment un systéme
linéairement indépendant. Il s’ensuit que le 7éme bloc correspondant ne peut générer
le vecteur non nul (B 0... 0). Ceci étant vrai pour tous les vecteurs de (2.3).

Le dernier vecteur ligne nécessaire pour compléter notre systéme nous est fourni par

m n
> > p=1

i=1j=1
Finalement, si (z,y) est un équilibre de Nash extréme, alors (p;; = z;y;) est

une distribution d’équilibre corrélé extréme. =

Remarque 2.2 Un équilibre de Nash, soit (z,y), qui induit un équilibre corrélé
extréme est un équilibre de Nash extréme. En effet, supposons que tel n’est pas le
cas. Il s’ensuit que cet équilibre peut s’écrire comme une combinaison convexe de
certains équilibres de Nash extrémes. Ainsi, 1’équilibre corrélé correspondant, soit
(pij = z:iy;), peut s’écrire comme une combinaison convexe des équilibres corrélés

définis par les équilibres de Nash extrémes, ce qui est une contradiction.
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Remarque 2.3 Le théoréme 2.1 ne peut étre généralisé au cas des jeux a plus de
deux joueurs, pour les raisons que nous avons évoqué au chapitre 1, & savoir, ’exis-

tence d’un jeu a trois joueurs ou ’unique équilibre de Nash est irrationnel.

L’approche de M.W. Cripps, pour prouver le résultat précédent est également
une approche directe, faisant néanmoins intervenir un jeu intermédiaire appelé jeu
dérivé. Celui-ci est du & S. Hart et D. Schmeidler [9]. Ils construisent un jeu a somme
nulle & partir des paiements du jeu initial. Le jeu dérivé est donné par la matrice G

décrite comme suit:

G = [G:|G,]



( 11 — a1 Q11 — Qm
Q12 — Q12 ... Q12 —Qm2
. 0

Qin —Qin ... Qip — Qmp

Qm1 — Q11

Qm2 — Q12

0 .
Qmp — Qin

Qm1 — Am

Qm2 — Qm2

Amn — Qmnp |

26
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et
- -
by —buy ... biy—bin 0 0
0 - 0 bio—b11 ... b2 —bi, 0
0 0 bz — by
b21 - b21 .. b21 - b2n
b 0 bao —boy ... bay — boy 0
0 0 bz — b
G2 - 23 21
blm-bml see bml_bmn 0 .- 0
0 0 bm2'_bm1 bm2""bmn
i |

Le jeu dérivé est tel que les distributions d’équilibres du jeu initial (A4, B) sont
des stratégies optimales du joueur en colonne dans le jeu (G, —G). Cripps utilise

également le théoréme de L.S. Shapley et R.N. Snow [22] sur les jeux & somme nulle.

Evangelista et Raghavan proposent une preuve par contradiction. IIs supposent

qu'un équilibre de Nash extréme n’induit pas un équilibre corrélé extréme et font
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appel a certains des résultats de M.J.M.Jansen [12], T. Parthasarathy et T.E.S.
Raghavan [20].

Notre approche est une approche directe et courte qui met en évidence deux
polytopes (P;) et (P,). Ceci est du a la division des contraintes d’incitation par les
composantes du support des stratégies mixtes des deux joueurs. Ces deux polytopes,
dont la structure est particuliére nous ont permis dans différentes situations de mettre

en évidence certaines propriétés des équilibres de Nash extrémes ou non.

La proposition suivante révele une caractéristique importante des équilibres de

Nash extrémes, en particulier si le jeu n’est pas carré, i savoir, si m > n.

Proposition 2.4 Si (z,y) € E(A, B) est un équilibre extréme, alors |M(z)| < n.

Démonstration Soit (z,y) € F(A, B), un équilibre extréme. Il s’ensuit, d’apres la
démonstration du théoréme 2.1, que z est un point extréme du polytope défini par
(P1). A partir des trois ensembles de contraintes de (P;), on ne peut obtenir plus
de n vecteurs lignes linéairement indépendants. Par conséquent, chacun des points

extrémes de (P;) a au moins m — n composantes nulles. .

Dans le cas ol m > n, chaque stratégie mixte extréme du joueur 1 a 'équilibre a au
moins m — n composantes nulles. En d’autres termes, m — n stratégies pures ne sont

pas choisies. Ceci nous conduit au résultat suivant:

Corollaire 2.5 Sim > n, ou st m > n et rg(B) < n — 1, alors il n'eziste pas

d’équilibre de Nash extréme complet.
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Démonstration Le cas ou m > n se déduit de la proposition 2.4. Sim > n et si
rg(B) < n—1, on ne peut obtenir a partir des trois ensembles de contraintes de (P;)
plus de n — 1 vecteurs lignes linéairement indépendants. Il s’ensuit que chacun des

points extrémes de (P,) posséde au moins une composante nulle. =

Une condition supplémentaire s’ajoute & ce corollaire pour garder comme hy-

pothése rg(B) <n —1.

Corollaire 2.6 Sim >n, rg(B) =n —1 et si un des vecteurs colonnes de B est tel
que la somme des coefficients de sa combinaison linéaire des autres vecteurs colonnes

est égale a 1, alors il n’existe pas d’équilibre de Nash exiréme complet.

Démonstration Supposons sans perte de généralités que les n — 1 premiers vec-

n--1
teurs de B sont linéairement indépendants. On a alors B, = Z o By et d’aprés
k=1
n-~1
les hypotheéses Z o = 1. Il s’ensuit qu’on ne peut obtenir plus de n — 2 vecteurs
k=1

linéairement indépendants a partir des deux premiers ensembles de contraintes de

(P;). En effet, considérons la combinaison linéaire suivante:

n—-1

n—1
B, - B; + Z(B, — Bk) = B,(z Qo — 1).
k=1 k=1

Celle-ci conduit, d’aprés les hypothéses, au vecteur nul. .

Des résultats similaires peuvent étre obtenus en considérant le polytope défini

par (P,) et le rang de la matrice A.
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2.2 Les ensembles de Nash maximaux

Nous avons vu au chapitre 2 que les ensembles de Nash extrémes correspondent
au produit cartésien de deux polytopes. Nous allons dans ce qui va suivre expliciter
les inégalités qui définissent ces polytopes a partir d'un point de l'intérieur relatif d’un
ensemble de Nash maximal. Le résultat suivant généralise un théoréme de M.J.M.

Jansen [12].

Théoréme 2.7 Soient S C E(A, B), un ensemble de Nash mazimal et (Z, 13) un
point de lintérieur relatif de S. Alors S est donné par le produit cartésien des poly-

topes sutvants :

S ni(Bj—B)i = 0 jeN(), Le N

=1
(Pymaz) > zi(Bj—Bg): = 0 jEN®), L€ N\NQ)
=1 m
Z:‘L‘i = 1
=1
z; = 0 i€ M\ M(z)
z; > 0 i=1,2,...,m
et
S(Ai— Ax)jy; = 0 i € M(z), k € M(z)
j=1
(Pymaz) ST(Ai—Ag)jy; = O i€ M(z), ke M\ M(z)
j=1
oy =1
j=1
y; = 0  jEN\N(
Y5 > 0 j=1,2,...,n.
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Démonstration  Soient (zP)pcezt(Pimaz) €6 (¥?)geert(Pimaz)- Considérons un point
extréme (z, y) de S. Etant donné que (z, fl) est dans l'intérieur relatif de S, il s’ensuit
que M(z) C M(z) et N(y) C N (?:’I) Puisque tous les équilibres de S sont interchan-
geables, z est en équilibre avec Y et d’aprés ce qui précéde satisfait les contraintes
de (Pymaz). De facon similaire, y satisfait les contraintes de (P,maz). D’apreés la
démonstration du théoréme 2.1, z et y sont des points extrémes respectivement de
(Pymacz) et (Pmaxz). Ainsi, tous les points extrémes de S sont des points extrémes du
produit cartésien de (Pymaz) et (Pymacz). En utilisant la méme approche que pour la
démonstration du théoréme 2.1, conv{(z)peezt(Pymaz) } X CONV{(Y?)qeezt(Pymaz) } définit
un ensemble de Nash. S étant un ensemble de Nash maximal, il n’est pas strictement
inclus dans tout autre ensemble de Nash. Ainsi, S est donné par le produit cartésien

des polytopes (P;maz) et (Pomaz). "

Remarque 2.8 Tous les équilibres dans l'intérieur relatif de S définissent les deux

meémes polytopes (Pymaz) et (P,maz).

Remarque 2.9 Nous avons vu lors de la démonstration du théoréme 2.1, qu’un
équilibre de Nash extréme définissait deux polytopes (P;) et (P,). Ceux-ci ne peuvent
constituer un ensemble de Nash. Les points extrémes de (P;) ne sont pas tous en
“partenariat” avec ceux de (P,). Ce partenariat est assuré, si ’on considére un point
dans l'intérieur relatif de S qui garantit que son support est maximum par rapport

aux points extrémes de S.
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2.3 Les jeux faiblement complets

Nous nous intéressons ici, a une classe de jeux bimatriciels ayant certaines

propriétés.

Définition 2.10 Un jeu bimatriciel (A, B) est dit faiblement complet si il eziste un
ensemble de Nash mazimal S C E(A, B) tel que tous les équilibres de S sont des

équilibres complets.

Nous utilisons la technique de preuve du théoréme 2.1 pour donner une démons-
tration alternative et plus courte du théoréme 3 de A.P. Jurg et al. [13] incluant

également le résultat de leur Proposition 1.

Nous supposerons sans perte de généralité que les coefficients des matrices A
et B sont strictement positifs. En effet, I’addition d’une constante & tous les coef-
ficients des matrices A et B ne modifie pas le polytope des équilibres corrélés et
par conséquent les équilibres de Nash. Pour une matrice M, on notera par abus

de notation M > 0, lorsque les coefficients de la matrice M sont tous strictement

positifs.

Théoréme 2.11 (Jurg et al.). Soient A > 0 et B > 0. Alors, le jeu (A, B) est

faiblement complet si et seulement si:

(i) A et B sont des matrices carrées n X n;

(ii) A et B sont de rang plein;



33

(17i) tous les coefficients des vecteurs 1B~ and A~' 1, sont positifs.

Démonstration (1) Soit (A4, B) un jeu faiblement complet et soit S € E(A, B)
un ensemble de Nash maximal complet. D’apres le corollaire 2.5 et son dual, nous
avons que m =n et que rg(A) > n —1 et rg(B) > n ~ 1. Soit (z,y) € S, alors z et

y satisfont les égalités suivantes:

Y zi(Bi—Bi= 0 jEN LeN (2.4)
i=1
ifz= 1 (2.5)
et
S (Ai— Ar)jy;j= O ieN,keN (2.6)
Jj=1
Ly= 1 (2.7)

Supposons que rg(B) = n — 1, d’apres le corollaire 2.6 et sa démonstration, le
systeme (2.4) est équivalent & z!B = 0, ce qui est impossible avec = et B strictement

positifs. Ainsi, rg(B) = n et on a de facon similaire rg(4) = n.

Chaque stratégie dans le support du joueur 1, lui rapporte le méme paiement
A, Cest-a-dire que z'B = A1%. L’équation (2.7) devient alors A(1fB~'1,) = 1. Fina-

1Bt . .
——=————. Il s’ensuit que tous les coefficients du vecteur
1,B-11,
ATl1,

1! B~! sont strictement positifs. On montre de fagon similaire que y = AL
n n

lement, nous avons que z*t =
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(2) Supposons que les conditions (z), (i) et (4iZ) sont remplies. Les équations
(2.4) & (2.7) doivent étre satisfaites par n'importe quel équilibre de Nash complet.
Etant donné les hypothéses, les systémes définis par (2.4) & (2.7) ont une solution

unique. Il s’ensuit qu'un jeu faiblement complet posséde un unique équilibre complet.

Remarque 2.12 Supposons que la matrice B est une matrice singuliére avec rg(B) =

n—1 et n’ayant pas tous ses coefficents strictement positifs, les conditions du théoréeme

2.11 peuvent alors étre remplacées pour la matrice B par:

(i) B est une matrice carrée n X n;
(i) rg(B) =n—1;

(iii) B posséde un vecteur propre associé & la valeur propre 0 strictement positif et

qui n'est pas perpendiculaire & 1.

n—1 n—-1
Par ailleurs, on a B, = 3 oxBy et ) ax # 1. Ces mémes conditions peuvent
k=1 k=1

s’appliquer a la matrice A.

2.4 Les équilibres de Nash complets

Nous présentons ici une étude sur les équilibres de Nash complets, extrémes ou
non. Nous nous intéressons en particulier aux jeux ot un des joueurs a au moins une

stratégie de plus que I'autre. Dans ce contexte, nous introduisons une classe de jeux
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n’ayant pas d’équilibre de Nash complet. Par ailleurs, ’approche présentée, a savoir
I’étude des équilibres de Nash du point de vue des corrélés, nous permet de généraliser
et de fournir des démonstrations alternatives aux résultats de T.E.S. Raghavan [21]

et G. A. Heuer [10].

Nous supposerons sans perte de généralité, que lorsque rg(A) = n, les n pre-
miers vecteurs lignes de A sont linéairement indépendants. Nous notons donc, A,
la matrice carrée n x n, obtenue & partir de la matrice A en éliminant les m — n

derniéres lignes.

Proposition 2.13 Soit m > n et rg(A) = n. Si il existe une stratégie ip € {n +
1,...,m} telle que AL AJ'1 # 1, alors le jeu (A, B) ne posséde aucun équilibre de

Nash complet.

n
Démonstration Posons u® = A% A;!. On a alors, d’aprés les hypothéses > ux # 1.

k=1
Supposons qu'il existe un équilibre de Nash complet (z,y). Il s’ensuit que y doit

satisfaire les égalités suivantes:

n
> (Ai— Ay =0 ieM, keM.
—~
Afin de déterminer le rang de ce systéme linéaire, considérons la combinaison

linéaire suivante:

Aio - A; + Z p,k(A,-—Ak) = A{(Zﬂk—l).
k=1k#i k=1

Ce systéme est donc de rang n et est équivalent & A,y = 0 dont l'unique solution est

y = 0. Ceci contredit donc notre hypothése sur I’existence d’un équilibre complet. g



36

Cette derniére proposition nous permet de généraliser le dual du théoréme 2 de

G.A. Heuer [10}, en particulier dans le cas o m > n.

Théoréme 2.14 Soit (z,y) € E(A,B) et rg(A) = n. Si ¢ est une stratégie mizte

compléte, alors

(i) y est l'unique stratégie mizte en équilibre avec z;

(i) AiA;'1=1pouri=n+1,...,m.

Par ailleurs, y est donné par le systéme d’équations suivant:

Z(Ai—Ak)jyj= 0 iGN,kEN

=t
I'y= 1.

Démonstration Considérons le cas m > n pour lequel (i) s’applique. D’aprés la
proposition 2.13, nous avons A!A 1, = 1 pour i = n + 1,...,m. Il s’ensuit que ¥

doit satisfaire le systéme d’équations suivant:

Z(Af—Ak)jyjz 0 ieN,kEN
j=1
y= 1,
lequel est de rang n, et donc admet une solution unique. s
Ajll,

Remarque 2.15 y = satisfait le systéme précédent et par conséquent

LLADL,
nous pouvons ajouter que les coefficients de A1, sont tous positifs ou nuls.
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Nous avons mentionné précédemment l'existence de stratégies extrémes pour
les joueurs, comme étant les points extrémes des polytopes (Pymaz) et (P;maxz)
définis au paragraphe 2.2. Ceci nous permet de préciser le théoréme 3 de G.A. Heuer

[10].

Théoreme 2.16 Soit (z,y) € E(A, B). Alors, il existe une stratégie extréme T en

équilibre avec y telle que |M(Z)| < n.

Démonstration Si (z,y) est un équilibre extréme, alors le résultat est donné par
la proposition 2.4. Si tel n’est pas le cas, alors il existe un équilibre extréme (T, 7)
appartenant au méme ensemble de Nash maximal que (z,y). Il s’ensuit que (Z,7)

vérifie la proposition 2.4 et de plus T est en équilibre avec y. "

L’existence d’une stratégie compléte pour I'un des joueurs augmente le nombre
de contraintes vérifiées & égalité dans 'un des polytopes définissant les stratégies
extrémes de l'autre joueur. Ceci confére des propriétés intéressantes quant aux stra-

tégies de 'autre joueur qui forment un équilibre.

Théoréme 2.17 Soit (z,y) € E(A, B) tel que = n'est pas une stratégie eztréme et

soit l'ensemble S(y) = {z : (z,y) € E(A, B)}.

(i) Sty est une stratégie miste compléte, alors S(y) contient au moins deuz stra-

tégies extrémes z' et 2 non complétes;

(it) Si y posséde une seule composante nulle, alors S(y) contient au moins une

stratégie mizte non compléte.
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(i) Supposons que y est une stratégie mixte compléte. Il s’ensuit que S(y) est inclus

dans le polytope suivant:

i z; (Bj — Be):

=1

t
1,z

Z;

>

0 jJEN,feN
1
0 i€ M.

Puisque z n’est pas une stratégie extréme, ce polytope posséde au moins deux
q g1 ; 1Y Pe P

points extrémes z! et z? en équilibre avec y. De plus ces deux stratégies sont

telles que z; = z; = 0 pour j # k.

(i) Supposons sans perte de généralité que y, = 0. Alors S(y) est inclus dans le

polytope suivant :

D>z (Bj — By)i =
i=1

zxi (Bj - Bn)i >
i=1

1z =

z; 2>

o

o

1
0

je N\ {n}, e N\{n}

jE€ N\ {n}

i€ M.

Supposons que z est une stratégie mixte compléte. D’aprés la démonstration

du (2), ce polytope posséde au moins deux points extrémes z! et z2 en équilibre

avec y. Les contraintes d’égalités forment au plus un systéme de rang n — 1. Si

une des contraintes d’incitation est vérifiée a égalité, alors elles le sont toutes.

Ainsi, pour que les deux points extrémes different, un des deux & au moins une

composante nulle.
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Remarque 2.18 Ce théoréeme est une généralisation du thécréme 4 de G.A. Heuer
[10]. Les hypothéses avancées par Heuer sur S(y) sont différentes de celles énoncées
ci-dessus. Celui-ci suppose que S(y) n’est pas un singleton alors que nous supposons
que z est une stratégie non extréme. Remarquons que si S(y) n'est pas un singleton

dans (z) alors nous avons m > n ou encore rg(B) < m — 1.
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CHAPITRE 3

Etudes empiriques

Cette partie est consacrée au calcul des équilibres corrélés, des équilibres de
Nash et des équilibres efficaces. Un plan d’expériences a été établi en vue de faire
ressortir certaines particularités des jeux bimatriciels. En particulier, nous étudions
la nature des équilibres de Nash, complets, purs et efficaces, le nombre des équilibres
corrélés et des équilibres efficaces. Nous faisons au préalable une bréve étude du
polyédre des équilibres corrélés et donnons une description des algorithmes utilisés

pour le calcul des différents équilibres.

3.1 Propriétés du polyedre des équilibres corrélés

Il s’agit en fait du polytope des équilibres corrélés. En effet, I’ensemble des
équilibres corrélés forme un ensemble compact. La définition de la distribution des

équilibres corrélés, donnée au chapitre 1, est la suivante:

(A,' - Ak)tp;_ >0 ieM, keM (31)

2% (Bi— By) 2 0 jEN, LeN (32)
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2.2 py=1 (33)
i=1 j=1
p;jZO ieM, j€N. (3.4)

Une interprétation géométrique peut se définir comme suit: I’ensemble des
équilibres corrélés correspond a l'intersection d’un cdne ayant pour point extréme
I'origine et d’'un simplexe. Le cOne est défini par les contraintes d’incitation. On
peut également y inclure les contraintes de non négativité. Il est aisé de voir que
ce polyédre ne présente pas de rayon extréme. En effet, ceux-ci sont définis par le

systéme suivant :

(Ai — Ag)ri 20 i€EM, keM (3.5)

r; (Bj—By) >0 jEN,LeEN (3.6)
m n

22y =0 (3.7)
1=171=

Ti; 2 0 t€EM, jEN. (3.8)

Ce systéme a pour solution unique le vecteur nul. Nous avons vu au chapitre
1 que 'ensemble des équilibres corrélés n’est pas vide. Chaque équilibre corrélé cor-

respond a !’'intersection des rayons extrémes du cone précédemment défini avec 'hy-

m n
perplan Z Zp,-j =1.

La struc&:z;(]:ciu polytope des équilibres corrélés est assez particuliére. Une représen-
tation matricielle des contraintes d'incitation fait apparaitre une structure diagonale
par blocs pour les contraintes issues du joueur 1. Si ’on consideére la matrice pour les

contraintes d’incitation issues du joueur 2, on retrouve une structure de contraintes

couplantes. La premiére série de contraintes d’incitation est donnée par la matrice



t t
AI_ 2

Al — AL
A A
Ay — A
AL — At
Cr= AL — A

AL - 4
At~ At
i U

Figure 3.1 — Matrice des contraintes d’incitation issue du joueur I

m(m — 1) x mn notée C; (voir figure 3.1).

La deuxiéme série de contraintes d’incitation est donnée par la matrice n(n —1) x mn

C, représentée par la figure 3.2.



b1 — b2
b11 — b13

b11 — b1n
0
0

Cor =

0

0
biz —bu

812 ~b13

b12 — b1n

(=T~

0

b1n ~ b1

bin —b12

bin — by(n—1)

b1 —bma2 0

bml - bm:! 0

bml. - bmn 0
0 bmz - bml

o bm? - bma

0 bm? - bmn

0

0 bmn ~ bm1
0 bmn - bm2

0 bmn—bm(n-n_j

Figure 3.2 ~ Matrice des contraintes d’incitation issue du joueur 2

3.2 Calcul des équilibres corrélés extrémes
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Nous avons utilisé le logiciel cdd de K. Fukuda [14] pour énumérer ’ensemble

des points extrémes du polytope des équilibres corrélés. Le programme cdd est une

implantation en langage C de la méthode de double description de T.S. Motzkin

et al. [16] qui permet de traiter des problémes fortement dégénérés. Si l'on con-

sidére le nombre et la structure des contraintes d'incitation, on voit que le polytope

des équilibres corrélés peut étre trés dégénéré. En particulier, un équilibre de Nash

extréme complet vérifie & égalité I’ensemble des contraintes d’incitation.



3.2.1 La méthode de double description: version standard

La méthode de double description permet I’énumération de tous les rayons
extrémes d’'un cone polyédral. Nous verrons par la suite comment adapter cette
méthode afin d’énumérer 'ensemble des points extrémes et des rayons extrémes d’un

polyédre. Rappelons au préalable le théoréme pour un céne polyédral de Minkowski.

Théoréme 3.1 (Minkowski, 1911) Pour chagque systéme défini par Az > 0 oi A est
une matrice réelle m x d, il eziste une matrice réelle d x n notée R ayant la propriété
sutvante : un vecteur x* satisfait le systéme Az* > 0 si et seulement si

z* = RA

pour A donné positif ou nul.

Par souci de simplification, nous utiliserons le terme céne pour désigner un céne
polyédral. Ainsi, le cone défini par {z € R? : Az > 0} est simultanément représenté
par {z € R :z = R\, XA > 0}. Le couple (4, R) est une double description du cdne.
Les vecteurs colonnes de R représentent les rayons extrémes du cone. La matrice R

est une représentation minimale du céne, lorsqu’aucune sous-matrice issue de R ne

peut représenter le cone.

Nous supposerons que l'origine est un point extréme du céne et que le systéme
Az > 0 n’est pas redondant. Considérons alors le sous-ensemble K des indices de
lignes de A et notons Ag la matrice issue de A ne contenant que les lignes dont les
indices appartiennent & K. Supposons alors que 'on a déja trouvé une matrice R
représentant le cone défini par Ag. Si A = Ag, le probleme est résolu. Sinon, choisis-

sons une ligne d’indice 7 n’appartenant pas a K. L’idée consiste en la construction de
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la matrice R’ représentant le céne défini par Ax. ) a partir de I'information fournie

par le couple (Ag, R).

Considérons les trois partitions de R? définies comme suit :

Hf ={z € R%: Aiz > 0} (3.9)
H? = {z e R*: Ajz =0} (3.10)
H = {z € R%: Aiz < 0} (3.11)

ou A; correspond 2 la ligne de A précédemment mentionnée. Notons par J I’ensemble

des indices des colonnes de la matrice R et considérons cette fois-ci les trois partitions

suivantes:

Jt={jeJ:r;e H}} (3.12)
J'={jeJ:r;e H} (3.13)
J ={jeJ:r;eH} (3.14)

ou r; (7 € J) sont les vecteurs colennes de R. Pour construire la matrice R’ & partir
de la matrice R, il suffit de générer |J*| x |J~| nouveaux rayons extrémes satisfaisant
HY? en considérant une combinaison adéquate des rayons r; (j € J*) et rj (§' € J7)
et en éliminant les rayons de H; . Le Lemme principal de la méthode de double

description [16], nous assure que la matrice R’ représente le céne défini par Ax(i}-

Lemme 3.2 Soit (Ag,R) une double description du cone défini par Ag et soit i

Uindice d’une ligne de A n’appartenant pas ¢ K. Alors le couple (A iy, R') est une
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double description du cone défini par Ag. gy, ot R' est une matrice réelle d x |J'|

dont les vecteurs colonnes r; (j € J') sont définis comme suit :

J=JtuJu(Jt xJ7), et

iy = (Airj)rir — (Airp)T; pour (5,5') € J+ x J—.

L’algorithme de la méthode de double description peut alors s’énoncer comme

suit :

début
Déterminer un couple initial (A, R);
tant que K # {1,2,...,m} faire
début
Choisir un indice 7 € {1,2,...,m} \ K;
Construire la matrice R’ en utilisant le Lemme 3.2;
R =R K == K + {i};
fin;
Donner R;

fin.

Reste cette fois a déterminer le couple (Ag, R) initial. Nous avons supposé au départ
que le rang de la matrice A était maximal. Il suffit donc de choisir d vecteurs lignes
de A linéairement indépendants pour former Ag. Il s’ensuit que R est donnée par

AR, puisque Agz > 0 est équivalent 3 z = Ag*A, A>0.

Le logiciel cdd de K. Fukuda est une implantation de la méthode de double des-

cription révisée, de sorte & améliorer le temps d’exécution et & éviter la génération
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de rayons redondants. Le logiciel met également a profit certaines structures parti-

culiéres de la matrice A, comme les matrices diagonales par blocs.

3.2.2 Calcul des points et des rayons extrémes

Considérons le polyédre défini par P = {z € R? : Az < b}. Le logiciel cdd
permet de calculer les points et les rayons extrémes de ce polyédre tout en utilisant
la méthode de double description décrite précédemment. Rappelons au préalable le

théoreme sur le nombre de bases fini de Minkowski.

Théoréme 3.3 (Minkowski 1896) Pour chague systéme défini par Az < b, il eziste

2

des vecteurs colonnes v*,v?, ..., v™ et i, 72,...,™V tels que: un vecteur = satisfait le

systéme Az < b si et seulement si:

M N
= Z akvk + Zﬂgrl
=1

=1

M
ot a>0,Y ax=1et3>0.
k=1

Ainsi, un vecteur z appartient & P si et seulement si:

(:) E“me{(vll) (v:{) (7;) (r:)} (3.15)

D’aprés le théoréme inverse de 3.1, le cone défini par 3.15 est équivalent au

. systéme suivant :



48

{ (f/) Az +by > 0} : (3.16)

pour une matrice A et un vecteur b donnés. Il suffit donc d’appliquer la méthode
de double description au systéme 3.16 pour obtenir les points et les rayons extrémes

d'un polyédre défini par P = {z € R?: Az < b}.

3.3 Calcul des équilibres de Nash

Nous utilisons le programme bimatriz de C. Audet et al., afin d’énumérer les
équilibres de Nash extrémes. Celui-ci est une implantation en langage C de lal-
gorithme EFE (Enumération des Equilibres Extrémes) de C. Audet et al. [1]. La
définition d'un équilibre de Nash est reformulée 4 'aide de deux programmes linéaires
et de leurs programmes duals respectifs. Ainsi, le couple (z*,y*) est un équilibre de

Nash si et seulement si il existe a* et 8* tels que:

(z*,8*) e X ={(z,8) : B < p1f, z1=1, =z >0},
(yho')eY ={(y,0) : Ay < Lo, 1'y=1, y=>0}

et les conditions des écarts complémentaires sont satisfaites.

L’algorithme EEF propose une énumération de I’ensemble des points extrémes de X
et de Y satisfaisant les conditions de complémentarité de la programmation linéaire,

soient z!(la — Ay) =0 et (61* — z!B)y = 0.

Pour ce faire, considérons les programmes linéaires paramétrisés suivants:
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P(y) = tAy — B et
(v) ex, oAy Be

_ ¢
= max z'By — a.
Q(x) y.a)eYz y—

Ceux-ci correspondent 4 une addition des fonctions objectives des programmes
primals et duals. L’algorithme génére une séquence de sous-problémes P(y) et Q(z)
identiques a P(y) et Q(z) a ceci prés que certaines des contraintes sont vérifiées a
égalité. A chaque nceud de I’arbre de recherche formé par les sous-problémes peuvent

se présenter les trois cas suivants:

(i) Un des deux sous-probléemes P(y) ou Q(z) est irréalisable;

(ii) Les deux sous-problémes P(y) et Q(z) sont réalisables et 1’on peut définir un

point extréme;

(iii) Les deux sous-problémes P(y) et Q(z) sont réalisables, mais I’on ne peut pas

définir un point extréme.

Dans le premier cas le nceud est sondé. Dans les deux autres cas, on ouvre de

nouvelles branches par ’ajout d’une nouvelle contrainte vérifiée a égalité.
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L’algorithme EFFE peut alors s’ennoncer comme suit :

Etape a. Initialisation
L’ensemble des nceuds T = {(z, P(-), Q(-)} est initialisé & partir d’une valeur arbi-

traire de z comme par exemple (£,2,... L) Aller 4 I'étape b.

n'n’

Etape b. Sélection d’un nceud
Si ’ensemble T est vide, arréter. Sinon, choisir un nceud N. Si N = {(z, P(-), (")}
aller I'étape c. Si N = {(y, P(-), Q(-)} aller & I'étape d.

Etape c. Test de faisabilité (Q(-))
Si Q(z) est irréalisable aller & ’étape b. Sinon, choisir (y, &) € argmazQ(z), mettre

a jour (z, B) € argmazP(y) et aller & I’étape e.

Etape d. Test de faisabilité (P(-))
Si P(y) est irréalisable aller & I'étape b. Sinon, choisir (z, ) € argmazP(y), mettre

a jour (y, @) € argmazQ(z) et aller a I’étape e.

Etape e. Branchement

Soit ¢ I'indice pour lequel le produit z;(a — Aly) est le plus grand et ot la variable z;
n’est pas égale & 0. La contrainte Aty < o de Q(:) n’est pas nécessairement satisfaite
a égalité. De méme, soit j l'indice pour lequel le produit (8 — z'B;)y; est le plus
grand et ot la variable y; n’est pas égale & 0. La contrainte z'B; < B de P(-) n'est

pas nécessairement satisfaite a égalité.
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Si de tels indices 7 ou j n’existent pas, alors (z,y) est un équilibre de Nash. Mettre
a jour la liste des équilibres. Ouvrir de nouvelles branches a partir de cet équilibre
comme suit: Mettre z; =0siz; > 0,ou Aiy=asidiy<a,ouy; =0siy; >0et
ou z'B; = 3 si ' B; < .

Si z;(a— Azy) > (B — z'B;)y; (si les indices ¢ et j existent), ou si 'indice j n'existe
pas, alors brancher suivant z; = 0 et 4;y = a.

Si z:(a — A;y) < (B — z*B;)y; (si les indices ¢ et j existent), ou si I'indice 7 n’existe

pas, alors brancher suivant y; = 0 et £'B; = 3.

L’efficacité de cet algorithme réside dans 'utilisation des conditions de complé-
mentarité. Les jeux résolus par cet algorithme ont des tailles pouvant aller jusqu’a

29 x 29.

3.4 Les équilibres efficaces ou de Pareto

Le terme équilibre efficace s’emploie pour distinguer une sous-classe d’équilibres
parmi les équilibres corrélés. Nous nous intéressons aux équilibres efficaces et aux

éventuels équilibres de Nash appartenant a cette classe d’équilibres.

Un équilibre corrélé est dit efficace si il n'existe pas d’autre équilibre rappor-
tant au moins le méme paiement a4 chaque joueur et un paiement supérieur a au
moins un des deux joueurs. Pour illustrer la notion d’équilibre efficace, considérons
la répartition des paiements d’un jeu 3 x 3 représentée sur la figure 3.3. Les équilibres
efficaces correspondent & I’enveloppe non nécessairement convexe de la répartition

des paiements. Leur calcul peut se faire en considérant la programmation linéaire
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7 -
équilibres efficaces ® corrélés
6.5 1 .- @l pareto
6 - ‘ x Nash
& 5.5
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Paiements du joueur 1

Figure 3.3 — Jeuz 3 x 3 - Répartition des paiements

multi-objectifs. Les deux fonctions objectifs correspondent & la maximisation des
paiements des deux joueurs sous les contraintes du polytope des équilibres corrélés.
Cette approche présente néanmoins des inconvénients dans le cas des jeux bimatriciels
et demanderait la création d’un programme spécifique. En effet, la plus part des al-
gorithmes de programmation linéaire multi-objectifs ne considérent que 1’enveloppe
convexe de la répartition des paiements et ne sont pas stables pour les problémes
dégénérés. Le polytope des équilibres corrélés, comme nous I’avons vu précédemment
correspond 4 'intersection d’un céne avec un simplexe, le céne pouvant étre fortement
dégénéré. Nous avons donc déterminé les équilibres efficaces & partir des équilibres

corrélés calculés par énumération des points extrémes d’un polytope.
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3.5 Résultats numériques

L’étude porte sur un ensemble de jeux bimatriciels générés aléatoirement dont
les paiements sont compris entre 0 et 1. La distribution adoptée est uniforme. Pour
chaque jeu, nous avons énuméré les équilibres de Nash et leur structure (complet,

pur, efficace et complet efficace), les équilibres corrélés et les équilibres efficaces.

<

3.5.1 Les jeux bimatriciels 2 x 2

Les résultats suivants portent sur un ensemble de 500 jeux 2 x 2. Les figures

3.4, 3.5 et 3.6 nous montrent la répartition des différents types d’équilibres.

nombre de jeux

nombre d'équilibres corrélés

Figure 3.4 — Répartition des équilibres corrélés sur 500 jeux 2 X 2

Observons que les jeux ayant un unique équilibre de Nash ont ici un unique

. équilibre corrélé. Nous verrons pourtant que ce n’est pas toujours le cas lorsque le
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500 -
450 1
400 -
350 1
300 -
250 1
200 1
150 1
100 1
50 -

nombre de jeux

nombre d'équilibres efficaces

Figure 3.5 — Répartition des équilibres efficaces sur 500 jeuz 2 x 2

nombre de jeux

nombre d'équilibres de Nash

Figure 3.6 — Répartition des équilibres de Nash sur 500 jeuz 2 x 2
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nombre de stratégies pour les deux joueurs est supérieur ou égal & 3. Néanmoins cette
régle peut se vérifier pour les jeux 2 x 2. Prenons le cas d'un jeu 2 x 2 ayant un unique
équilibre de Nash en stratégies pures. Le polytope des équilibres corrélés peut alors

s’écrire comme suit :

api1 +bp2 = 0 (3.17)
—apa1 —bp > 0 (3.18)
cpu +dpa = 0 (3.19)
—cp12 —dpn > 0 (3.20)

2 2
>3 py =1 (3.21)

=1 j=1
pij = 0 (3.22)

Supposons, sans perte de généralité, que le seul équilibre de Nash en stratégies
pures est p;; = 1. Cette condition est assurée si a et ¢ sont strictement positifs et si
b ou d est négatif. En effet, si a ou ¢ prend une valeur nulle il apparait un équilibre
de Nash en stratégies mixtes ou pures. La vérification est simple en énumérant les
différents cas de figure. Considérons le casolic =0, a > 0, b < 0 et d quelconque,
alors Iéquilibre de Nash {(1,0), (3%, 7=%)} est un équilibre extréme.

Examinons alors la possibilité qu'un autre équilibre corrélé puisse exister. Si il existe,
il ne peut pas avoir la structure d’un équilibre de Nash. Les seules possibilités sont
alors (p11,P22), (P12, P21), (P11, P21, P22) et enfin (pi2, P21, pa2)- Or, chacune de ses pos-
sibilités ne satisfait pas au moins une des contraintes du polytope des équilibres
corrélés. Ainsi, les jeux 2 x 2 ayant un unique équilibre de Nash en stratégies pures

ont un unique équilibre corrélé.
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Avant d’analyser plus en détail la nature des équilibres de Nash, remarquons
que les jeux possédant plus d’un équilibre corrélé en ont au moins 5. Cette ca-
ractéristique intéressante se retrouve, comme nous le verrons, dans les essais de jeux
ol le nombre de stratégies est supérieur a deux. Il faut cependant ajouter que 1’en-
semble des jeux générés ont tous un nombre d'équilibres de Nash qui est impair. On
peut donc se demander si les 500 jeux sont réellement représentatifs de ce qui se passe

dans la nature. En fait, les jeux générés sont tous des jeux que ’on nomme des jeux

non-dégénérés.

Définition 3.4 Un jeu bimatriciel est dit non-dégénéré si le nombre de meilleures
réponses en stratégies pures a une stratégie mirte ne dépasse pas la taille de son

support.

Tous les jeux que nous avons générés ont cette particularité. C.E. Lemke et J.T.
Howson [15] ont montré que le nombre d’équilibres de Nash pour les jeux bimatriciels
non-dégénérés est impair. Les résultats trouvés confirment donc cette propriété. Les
observations que nous faisons ne sont donc valables que dans le cas de jeux non-
dégénérés. Prenons comme contre-exemple au nombre minimum d’équilibres corrélés,

soit 5 si il y a plus d'un équilibre, le jeu dégénéré donné au tableau 3.1.

Tableau 3.1 — Ezemple de jeu 2 x 2 dégénéré

(2,1) | (1,1)
(1,3) | (2,1)
‘ Ce jeu a exactement 2 équilibres corrélés correspondant a deux équilibres de

Nash. Soient les équilibres extrémes (z!, y') et (z2, 3?) définis comme suit:
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=t =(1,0) y'=(1,0)

22 =(1,0) y*=(%,1

On voit ici que la stratégie mixte z2 qui n’a qu'un élément dans son support &
deux meilleures réponses en stratégies pures données par le support de y2. Ceci nous

conduit au résultat suivant:

Lemme 3.5 Les jeuz bimatriciels 2x2 non-dégénérés ne possédent que des équilibres

en stratégies pures ou complets.

La démonstration est immeédiate, d’aprés ce qui précéde.
q

Les tableaux 3.2, 3.3 et 3.4 montrent la nature des équilibres de Nash pour
I’ensemble des 500 jeux. Ces résultats nous permettent d’affiner les observations
précédentes et illustrent le lemme 3.5. Lorsqu'’il y a un unique équilibre de Nash,

celui-ci est, soit en stratégies pures, soit complet.

Tableau 3.2 — Répartition des équilibres de Nash en stratégies pures - 500 jeuz 2 X 2

Nombre de jeux équilibres purs

Nombre de Nash | 0 1 2 | Total
1 66 | 372 438
3 62 62

Total 66 [ 372 { 62 | 500




Tableau 3.3 -~ Répartition des équilibres de Nash complets - 500 jeuz 2 x 2

Nombre de jeux | équilibres complets

Nombre de Nash | 0 1 Total

1 372 | 66 438
3 62 62
Total 372 | 128 500

Tableau 3.4 — Répartition des équilibres de Nash efficaces - 500 jeuz 2 x 2

Nombre de jeux | équilibres efficaces

Nombre de Nash | 1 2 Total

1 372 | 66 438
3 62

Total 434 | 66 500
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Les jeux ayant plus d'un équilibre de Nash possédent tous deux équilibres en
stratégies pures et un équilibre complet. Cette configuration n'est pas unique lorsque
le jeu est dégénéré. Prenons le cas d’un jeu oi le polytope des équilibres corrélés est
donné par les équations 3.17 a 3.22. Nous avons vu que ce jeux posséde un équilibre
en stratégies mixtes {(1,0), (z7%,=2)}, danslecas ol c = 0, @ > 0,b < O et d
quelconque. Lorsque ¢ = 0, le jeu devient dégénéré. La probabilité d’obtenir un jeu
généré aléatoirement ayant une redondance dans deux paiements adjacents est trés

faible.

Le meilleur concept d’équilibre d’un jeu devrait entre autre assurer 'unicité de
la solution. Les raffinements des équilibres de Nash ou corrélés visent a réduire le
nombre des solutions pour un jeu. Le nombre d’équilibres efficaces est ici inférieur au
nombre d’équilibres de Nash. Néanmoins, chaque jeu posséde au moins un équilibre
de Nash efficace. Si cet équilibre n’est pas unique, alors on observe qu’il n'est jamais
complet. Les équilibres de Nash complets ne sont donc pas de “bons candidats” en

termes de paiements.

3.5.2 Les jeux bimatriciels 3 x 3

Les résultats suivants portent sur un ensemble de 500 jeux 3 x 3. Les figures 3.7,
3.8 et 3.9 nous montrent la répartition des différents types d’équilibres. Le nombre
d’équilibres corrélés atteint 211. Pour des raisons de clarté, nous avons regroupé dans

une méme catégorie les jeux possédant plus de 16 équilibres corrélés.
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Figure 3.7 — Répartition des équilibres corrélés sur 500 jeuzr 3 x 3
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Figure 3.8 — Répartition des équilibres efficaces sur 500 jeuz 3 x 3
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Tableau 3.5 — Ezemple de jeu 3 x 3 dégénéré

(2,1) | (1.4) | (2.2)
(1,3) ] (2,3) | (2.1)
(1,1) | (2.3) | (3:2)

Nous retrouvons 2 nouveau un nombre d’équilibres de Nash impair. En effet,
les 500 jeux sont des jeux non dégénérés.Il s’agit plus particuliérement de jeux dits
génériques. Un jeu générique est tel que chacun des paiements est généré aléatoirement
et de facon indépendante & partir d’une distribution continue. Les jeux génériques
sont des jeux non dégénérés avec une probabilité de 1. On observe également que si
le jeu ne posséde pas un unique équilibre corrélé, alors il en posséde au moins 5. A
nouveau, cette situation n’est pas garantie dans le cas d’un jeu dégénéré. Considérons
le jeu donné au tableau 3.5. Ce jeu dégénéré posséde exactement 3 équilibres corrélés
correspondant 3 trois équilibres de Nash, paradoxalement un nombre impair. Les

trois équilibres sont les suivants:

! = (0,0,1) ¥'=(0,1,0)
2 =(0,1,0) y*>=(0,1,0)
2 =(0,1,0) ¥*=(3.30)

En relation avec le lemme 3.5, nous pouvons ajouter pour les jeux non-dégénérés
que tout équilibre de Nash en stratégie mixte (z, y) est tel que les supports M (z) et

N(y) ont méme cardinalité.
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Tableau 3.6 — Répartition des équilibres de Nash complets - 500 jeuz 3 x 3

Nombre de jeux { équilibres complets
Nombre de Nash | 0 1 Total
1 333 | 11 344
3 129 | 18 147
5 5 | 3 8
7 1 1
Total 467 | 33 500

Par ailleurs, remarquons que le nombre de jeux ayant un unique équilibre corrélé
est inférieur au nombre de jeux ayant un unique équilibre de Nash. Comme nous
I’avons souligné, les jeux ayant un unique équilibre de Nash n’'ont pas forcement un
unique équilibre corrélé dés lors que le nombre de stratégies pour les joueurs est
supérieur & 3. Il serait intéressant de vérifier par contre si les jeux dégénérés carrés
partagent le méme nombre d’équilibres de Nash et corrélés. Nous avons généré une
dizaine de jeux dégénérés carrés et ils possédent tous le méme nombre d’équilibres

de Nash que de corrélés.

Considérons a présent les équilibres de Nash complets dont la répartition est
donnée au tableau 3.6 et leur nature en terme d’efficacité donnée au tableau 3.7. Si le
nombre d’équilibres de Nash est supérieur a 1, aucun équilibre complet n’est efficace.
Par ailleurs, le nombre de jeux possédant un équilibre de Nash complet est passé de
128 pour les jeux 2 x 2 & 33 pour les jeux 3 x 3. Plus le nombre de stratégies pour
chacun des joueurs est élevé, moins nous avons de chance d’obtenir un équilibre de

Nash complet. En effet, ’laugmentation du nombre de stratégies, augmente le nombre
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Tableau 3.7 —~ Répartition des équilibres de Nash complets et efficaces - 500 jeuz 3 x 3

Nombre de jeux | équilibres complets efficaces
Nombrede Nash | 0 |1 Total
1 337 | 7 344
3 147 147
) 8 8
7 1 1
Total 493 | 7 500

de contraintes d’incitation qui doivent toutes étre vérifiées i égalité par 1’équilibre

complet, ce qui réduit considérablement les chances d’existence. Nous verrons que

sur 200 jeux 4 X 4, seulement deux jeux possédent un équilibre de Nash complet.

Si le nombre de jeux possédant un unique équilibre efficace est de 399, soit

supérieur au nombre de jeux possédant un unique équilibre de Nash, il existe néan-

moins des jeux qui présentent jusqu’a 11 équilibres efficaces. Plus le nombre d’équili-

bres corrélés est élevé, et pour des points extrémes “proches”, plus le nombre d'équili-

bres efficaces a des chances d’étre élevé. Enfin, la répartition des équilibres de Nash

efficaces est donnée au tableau 3.8. Le nombre de jeux ayant un équilibre de Nash

efficace unique reste élevé et supérieur par contre au nombre de jeux ayant un unique

équilibre efficace.
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Tableau 3.8 — Répartition des équilibres de Nash efficaces - 500 jeur 3 x 3

Nombre de jeux | équilibres efficaces
Nombre de Nash | 0 1 2 | Total
1 10 | 334 344
3 7 | 84 |56 | 147
5 4 | 4 8
7 1 1
Total 17 | 423 | 60 | 500

3.5.3 Les jeux bimatriciels 4 x 4

Le nombre d’équilibres corrélés pour des jeux 4 x 4 peut atteindre 107.533
équilibres, I’énumération des point extrémes du polytope des équilibre corrélés est
alors d’autant plus longue. Nous avons donc limité notre étude & un ensemble de
200 jeux 4 x 4. Les répartitions des différents types d’équilibres sont données par les

figures 3.10, 3.11 et 3.12.
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Figure 3.10 — Répartition des équilibres corrélés sur 200 jeur 4 X 4
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Figure 3.11 — Répartition des équilibres efficaces sur 200 jeuz 4 x 4
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Les jeux 4 x 4 présentent les mémes caractéristiques que les jeux 3 x 3. Le
nombre maximum d’équilibres de Nash semble se stabiliser & 7, alors que le nombre
maximum d’équilibres efficaces augmente jusqu’a atteindre 22. Soit deux fois plus
que pour les jeux 3 x 3. Proportionnellement le nombre de jeux ayant un unique
équilibre de Nash efficace reste élevé comme le montre le tableau 3.9. On constate
que le nombre maximum d’équilibres de Nash efficaces est passé de 2 pour des jeux
2x2et 3x32a3 pour des jeux 4 X 4. Aucun des équilibres de Nash complets n’est

efficace et comme nous I’avons déja mentionné leur nombre est trés faible.

Tableau 3.9 — Répartition des équilibres de Nash efficaces - 200 jeuz 4 x 4

Nombre de jeux équilibres efficaces
Nombrede Nash | 0 | 1 | 2 | 3 | Total
1 5] 98 103
3 8 | 47 |20 75
5 18 |7 16
7 2 131 6
Total 14 1 155 (30| 1| 500

3.5.4 Les jeux bimatriciels non-carrés

Nous présentons ici différents résultats concernant des ensembles de 500 jeux
3% 2,4x 3 et 200 jeux 5 x 3. Nous sommes intéressés par le comportement des
équilibres efficaces et des équilibres de Nash efficaces. Les équilibres complets ne

peuvent étre des équilibres extrémes, comme nous ’avons démontré au chapitre 2.
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Figure 3.13 —~ Répartition des équilibres efficaces sur 200 jeuz 5 X 3

Tous les jeux générés, s’ils possédent plus d’un équilibre corrélé en possédent
au moins cing. Encore une fois, cette caractéristique semble étre liée aux jeux non-
dégénérés. En reprenant un des exemples de jeux dégénérés précédents, on peut
facilement construire un jeu 4 X 3 possédant 4 équilibres corrélés. Les figures 3.13,
3.14 et 3.15 nous montrent la répartition des équilibres efficaces pour les différents
jeux non-carrés. Leur nombre augmente en fonction du nombre d’équilibres corrélés,

soit en fonction du nombre de stratégies des deux joueurs.
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Figure 3.14 — Répartition des équilibres efficaces sur 500 jeuz 4 x 3
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Figure 3.15 — Répartition des équilibres efficaces sur 500 jeuz 3 x 2
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Tableau 3.10 — Répartition des équilibres de Nash efficaces - 200 jeuz 5 x 3

Nombre de jeux | équilibres efficaces
Nombrede Nash | 0 | 1 | 2 [ Total
1 7 | 105 112
3 3 (583 (23| 79
5 4 |2 6
7 2 |1 3
Total 10 | 164 | 26 | 200

En comparaison avec les équilibres de Nash efficaces, le nombre de jeux possé-
dant un unique équilibre de Nash efficace est toujours plus élevé que celui des jeux
possédant un unique équilibre efficace (voir tableau 3.10, 3.11 et 3.12). Plus le nombre
de stratégies pour les deux joueurs est élevé, plus le concept d’équilibre de Nash
efficace peut s’avérer étre intéressant. Il faut cependant garder & l’esprit que leur
calcul devient alors d’autant plus complexe. En effet, il s’agirait alors de résoudre un
probléme a deux fonctions objectifs sous des contraintes quadratiques. De ce point
de vue, le calcul des équilibres efficaces, malgré les contraintes pratiques liées a la

dégénérescence est plus aisé.



Tableau 3.11 — Répartition des équilibres de Nash efficaces - 500 jeuz 4 x 3

Nombre de jeux équilibres efficaces
Nombrede Nash | 0 | 1 | 2 | 3| Total
1 11 | 311 322
3 9 | 103 |49 161
5 8 |5 13
7 1 211 4
Total 201423 |56 (1| 500

Tableau 3.12 — Répartition des équilibres de Nash efficaces - 500 jeuz 3 x 2

Nombre de jeux | équilibres efficaces

Nombre de Nash | 1 2 Total

1 407 407

3 58 | 35 93

Total 465 | 35 500
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CONCLUSION

L’analyse des équilibres de Nash et des équilibres corrélés se réduit a celle des
équilibres extrémes qui, nous ’avons vu au chapitre 2, sont les points extrémes d’un
méme polytope. Ce résultat nous permet de donner une nouvelle définition pour les
équilibres de Nash extrémes: on appelle équilibre de Nash extréme, un équilibre de
Nash ne pouvant s’écrire comme combinaison convexe de deux autres équilibres de
Nash. De plus, ce résultat permettrait de penser qu’un équilibre de Nash extréme peut
se calculer a l'aide de la programmation linéaire. La difficulté demeure néanmoins
quant a la recherche de la ou des fonctions objectifs pour déterminer I'ensemble des
équilibres de Nash extrémes. Cependant, nous avons vu que lorsque le jeu est non
carré, soit m > n, le joueur 1 a pour chaque équilibre m — n stratégies non choisies.
Ces stratégies peuvent étre trouvées par la programmation linéaire. Pour chacune

n

des stratégies 7 du joueur 1, on cherche & minimiser Z pi; sous les contraintes du
polytope des équilibres corrélés. =

Plusieurs cas de figures peuvent se présenter:

1. La solution optimale est telle que la fonction objectif & une valeur non nulle.

On peut dans ce cas aisément conclure que la stratégie i sera dans n’importe lequel
des équilibres de Nash choisie avec une probabilité non nulle;

2. La fonction objectif a une valeur nulle et la solution optimale correspond & un
équilibre de Nash.

Nous avons alors déterminé dans ce cas au moins un équilibre de Nash extréme et
les stratégies m — n non choisies correspondantes;

3. La fonction objectif a une valeur nulle et la solution optimale ne correspond pas a
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un équilibre de Nash.
On doit dans ce cas résoudre un ou plusieurs programmes linéaires auxquels on ajoute

a la fonction objectif les variables p;; qui sont positives et qui empéchent la structure

d’un équilibre de Nash.

L’ensemble des résultats théoriques présentés au chapitre 2, comme nous ve-
nons de le faire ci-dessus, ouvre de nouvelles perspectives pour le calcul et I'étude
des équilibres de Nash extrémes ainsi que des ensembles de Nash maximaux. Par ail-
leurs, la connaissance d'un équilibre de Nash non extréme permet la caractérisation
immédiate de ’ensemble de Nash maximal auquel il appartient. On pourrait par
exemple rechercher '’ensemble de Nash ayant en son intérieur relatif des équilibres
complets. Ceci étant fait exception des jeux n’ayant aucun équilibre complet comme

décrit au chapitre 2.

En paralléle, les différentes études empiriques sur des jeux de tailles diverses,
nous ont montré que les équilibres de Nash restent toujours une solution avanta-
geuse. Leur nombre pour les jeux non dégénéres reste faible et il semble que de
nombreux jeux possédent un unique équilibre de Nash efficace. Il serait par ailleurs
intéressant d’étudier les classes de jeux ayant le méme nombre d’'équilibres corrélés
que d’'équilibres de Nash. Une classe de jeux répondant a ce critére est obtenue en
considérant pour un des joueurs une matrice de paiements répétant le méme vecteur
ligne ou colonne si 'on considére respectivement le joueur 1 ou le joueur 2. Ceci

réduit au simplexe '’ensemble des stratégies mixtes du joueur en question.

La Recherche Opérationnelle a un role important a jouer en théorie des jeux.

L’approche polyédrale nous a permis d’analyser les équilibres de Nash plus aisément.
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La génération aléatoire de jeux et leur résolution a l'aide d’algorithmes de la pro-
grammation mathématique ont mis en évidence certaines tendances qui se traduisent

par des conjectures.
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