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RÉSUMÉ 

Nous étudions, dans un premier temps, les équilibres extrêmes des jeux bima- 

triciels. Les équilibres de Nash sont des équilibres corrélés et par conséquent appar- 

tiennent au polyt ope des distributions d'équilibres corrélés. Notre étude du polyèdre 

des équilibres corrélés met en évidence deux polytopes (Pl) et (P'). Ces derniers sont 

respectivement satisfaits par chacune des stratégies mixtes formant un équilibre de 

Nash. L'étude de ces deux polytopes nous permet d'établir certaines des propriétés 

des équilibres de Nash extrêmes. Nous présentons une preuve alternative et originale 

du théorème de S. Evangelista et T.E.S. Raghavan (l996), à savoir les équilibres 

de Nash extrêmes sont des équilibres corrélés extrêmes. Nous montrons de plus que 

les jeux ayant un nombre différent de stratégies pour les deux joueurs ne possèdent 

pas d'équilibre de Nash extrême complet. D'autres propriétés sont présentées ainsi 

qu'une classe de jeux ne possédant pas d'équilibre de Nash complet. 

Dans un deuxième temps, nous énumérons les distributions des équilibres de 

Nash et corrélés extrêmes pour des jeux générés aléatoirement dont les paiements 

sont des réels compris entre O et 1. Pour ce faire, nous avons utilisé le logiciel cdd 

de K. Fukuda pour l'énumération des points extrêmes d'un polyèdre et le logiciel 

bimatria: de C. Audet et al. pour l'énumération des équilibres de Nash extrêmes. 

Les équilibres de Nash sont présentés suivant leur nature (purs, complets, mixtes et 

efficaces). Nous avons également énuméré les équilibres corrélés efficaces. Ces plans 

d'expériences ont pour objet de déterminer l'efficacité relative des équilibres de Nash 

et de comparer leur nombre par rapport au nombre des équilibres corrélés efficaces. 



Des résultats surprenants sur le nombre des équilibres sont observés et se traduisent 

par des conjectures. 



ABSTRACT 

We first study extreme equilibria of bimatrix games. Nash equilibria are correla- 

ted equilibria and thus belong to the correlated equilibria distribution polytope. Our 

study of this polyhedra leads to two polytopes (Pl) and (Pz).  These are respectively 

satisfied by each player's mked strategy in a Nash equilibrium. We then study this 

two polytopes in order to study properties of extreme Nash equüibria. We give an 

alternative and self-contained proof of Evangelista and Raghavan Theorem (1996), 

Le. extreme Nash equilibria are extreme correlated equiiibria. Fùrthermore, we show 

that games with different nurnbers of strategies for each player have no completely 

mixed extreme equilibria. Some further properties are presented as well as a class of 

games which have no completely mixed equilibrium. 

We also study by cornputer the distributions of extreme Nash and correlated 

equilibria of random games with real payofEs between O and 1. To this effect, we corn- 

pute correlated equilibria with cdd software of F. Fukuda for the vertex enurneration 

of polyhedra and Nash equilibria with b z m a f k  software of C. Audet et al.- Particular 

Nash equilibria such as completely mixed, pure or efficient ones are identified, as well 

as efficient correlated equilibria. This experimental design is built in order to deter- 

mine the relative efficiency properties of Nash equilibria as well as their number in 

cornparison with the number of efficient correiat ed equifibria. Some surprising results 

on the numbers of equilibria are observed and several conjectures derived from thern. 
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INTRODUCTION 

"Qui cherche la vérité doit être prêt à l'inattendu, car elle est dificile à trouver et, 

quand on  la rencontre, déconcertante. " 

Héraclite 

Ce projet de maîtrise est né d'une collaboration entre le professeur R. Nau 

de Duke University et le professeur P. Hansen des Hautes Études Commerciales de 

Montréal. Cette collaboration traduit une des applications de la Recherche Opération- 

nelle à la théorie des jeux. Imaginons un jeu à deux joueurs et plaçons nous du côté du 

joueur 1. Ce dernier a le choix entre trois stratégies et avant d'arrêter son choix il se 

demandera quelle stratégie son adversaire est susceptible de choisir. Le joueur 1 peut 

alors résoudre son problème de choix par un simple programme linéaire permettant 

de maximiser son gain étant donné ses croyances sur les stratégies de son adversaire. 

Bien entendu, Ie joueur 2 adoptera une démarche similaire. Les deux joueurs auront 

donc intérêt à bâtir un modèle en fonction de leurs différentes croyances lesquelles 

peuvent aboutir à une situation d'équilibre. 

Nous avons brièvement décrit ce que l'on appelle un jeu bimatriciel et ce qui pourrait 

être une situation d'équilibre. Nous présentons au chapitre 1 une introduction à la 

théorie des jeux. Celle-ci ne couvre que les jeux bimatriciels et présente deux solutions 

d'équilibres : les équilibres de Nash et les équilibres corrélés. 

John F. Nash a obtenu en 1994 conjointement avec John C. Harsanyi et Reinhard 

Selten le prix Nobel d'Économie pour leurs contributions novatrices en analyse des 

équilibres dans le domaine des jeux non coopératifs. 



Si les équilibres de Nash représentent un des concepts universels de la théorie des jeux, 

il y a cependant de nombreux problèmes qui leur sont associés tant dans leur calcul 

et leur nombre que dans les hypothèses de jeux qu'ils requièrent. Si un jeu possède 

plusieurs équilibres de Nash, le critère d'équilibre ne peut pas être utilisé afin de 

prédire directement le résultat du jeu. De plus, chaque joueur est supposé détenir 

l'information complète sur la situation des autres joueurs. De nombreux rafhements 

ont été développés par la suite afin de pallier à l'un ou l'autre de ces problèmes. 

R-J. Aumann en 1974 introduit le concept d'équilibre corrélé, plus large que celui 

de J.F. Nash et qui du point de vue du calcul est plus simple à résoudre. En effet, 

les équilibres corrélés correspondent à un polytope dont la caractérisation algébrique 

sera énoncée en 1987 par R.J Aumann. 

Si le problème de calcul semble être résolu, celui du nombre d'équilibres s'agave. 

Cepedzzt ,  un équilhre de Nash est un équilibre corrélé. Nous étudions au chapitre 

2, les équilibres de Nash du point de vue des équilibres corrélés en utilisant la théorie 

polyédrale. Cette approche nous permet d'analyser les propriétés des équilibres de 

Nash. De nouveaux résultats ont été démontrés et des preuves alternatives et plus 

courtes sont données pour des résultats existants. L'originalité de notre approche 

réside en la linéarisation des équations définissant un équilibre de Nash à l'aide du 

polyt ope des équilibres corrélés. 

Des études empiriques sont présentées au chapitre 3 sur le nombre et la nature des 

équilibres de Nash et des équilibres corrélés auxquels nous ajoutons les équilibres 

corrélés efficaces ou de Pareto. Entre 200 et 500 jeux sont générés aléatoirement pour 

dinérentes situations. Pour chacun des jeux sont calculés les équilibres corrélés, les 

équilibres de Nash complets, purs, mixtes et efficaces, ainsi que les équilibres corrélés 

efficaces. Ces études sont menées aiin de déterminer quel pourrait être l'intérêt pour 



les joueurs de jouer un équilibre plutôt qu'un autre. Enfin, certains de nos résultats 

numériques se traduisent par des conjectures. 



CHAPITRE 1 

Une introduction à la théorie des 

jeux 

1.1 Les jeux bimatriciels 

Avant d'entamer la partie, essayons de comprendre les régies du jeu. Un jeu peut 

se définir de différentes façons, en particulier comme la description d'une interaction 

stratégique entre plusieurs joueurs. Cette description inclut les stratégies que les 

différents joueurs peuvent choisir ainsi que leurs intérêts dans la partie, mais ne 

spécifie pas les stratégies que les joueurs devraient adopter. Avant de donner une 

définition plus formelle d'un jeu, un certain nombre d'hypothèses sont nécessaires. 

Les intérêts des joueurs dans les différentes situations du jeu sont supposés être 

quantifiables. L'ensemble des stratégies de chacun des joueurs est fini et il est possible 

d'énumérer chacune d'entre elles. Prenons l'exemple d'un jeu auquel nous avons tous 

joué au moins une fois: "Pierre, Feuille et Ciseaux". Les deux joueurs ont chacun 

le choix parmi trois stratégies possibles. Le choix simultané d'une stratégie par les 

joueurs conduit un joueur à la victoire et l'autre à la défaite. Les gains des joueurs 

peuvent dors être quantifiés de la manière suivante : celui qui perd paye une certaine 



Tableau 1.1 - Jeu "Pierre, Feuille, Ciseam" 

Pierre Feuille Ciseaux 

Pierre 

somme d'argent à celui qui gagne. Les gains, pour un joueur donné, sont spécifés 

dans la matrice du tableau 1.1. 

Ciseaux 

Il est très important dans ce jeu que le choix des stratégies par les deux joueurs 

se fasse de façon simultanée. Il est clair que la connaissance par un des joueurs du 

choix de l'adversaire lui confere une victoire assurée. Toute communication entre 

les joueurs est formellement interdite. soit parce que les règles du jeux sont ainsi 

définies, soit parce que les intérêts des différents joueurs sont inconciliables. Nous 

nous intéressons aux jeux dits non coopératifk. 

O 

Dans le cas qui nous préoccupe, les jeux à deux joueurs, un jeu est défini par une 

paire de matrices réelles m x n dites matrices de paiements, soit (A,  B) où A = (ai j )  

et B = (b i j ) .  On fait correspondre les lignes au joueur 1 et les colonnes au joueur 

2. Ainsi, le paiement du joueur 1 dans la situation où il choisit la stratégie i et son 

adversaire la stratégie j est aij, celui du joueur 2, bij- On distingue deux classes de 

jeux bimatriciels : les j e u  à somme nulle et les jeux à somme non nulle. Les j e u  à 

somme nulle sont tels que les paiements de chacun des joueurs sont opposés, c'est à 

dire que A = -B. Ces jeux sont donc strictement compétitifs. L'autre classe de jeux, 

que l'on peut aussi définir comme les jeux non strictement compétitifs, ne vérifie donc 

pas cette condition. 

-10 

-10 10 

10 O 



1.1.1 Un exemple : le dilemme du prisonnier 

Nous allons illustrer les jeux non strictement compétitifk par un exemple qui 

est devenu aujourd'hui un classique en théorie des jeux et qui est du à A. W. Tucker 

(de nombreuses variantes du jeu ont été formulées, on peut se référer à [BI) .  

TabIeau 1.2 - Dilemme du prisonnier 

ne pas 

avouer avouer 

ne pas avouer 

La formalisation matricielle du jeu est donnée au tableau 1.2. On peut in- 

terpréter le jeu comme suit: deux suspects sont arrêtés par la police et mis dans 

deux pièces séparées. Le procureur est persuadé de leur culpabilité, mais n'a aucune 

preuve. Il va donc dire à chacun des suspects qu'ils ont deux alternatives possibles : 

avouer ou ne pas avouer. Si les deux suspects n'avouent pas, ils seront incarcérés cha- 

cun pour un an. Si l'un deux avoue et l'autre non, celui qui avoue sera utilisé comme 

témoin contre l'autre, auquel cas il sera libéré et l'autre incarcéré pour dix ans. E d n ,  

si les deux avouent, ils seront incarcérés chacun pour trois ans. Les suspects devront 

donc choisir entre avouer ou non. Dans les conditions de l'interrogatoire tel qu'il est 

précisé par l'avocat général, un suspect a tout intérêt à avouer quoi que fasse son 

complice. On voit ici que l'issue du jeu serait complètement différente si les deux sus- 

pects pouvaient communiquer. Ils choisiraient alors conjointement de ne pas avouer. 



1.1.2 Les hypothèses de rationalité 

L'exemple précédent illustre d'une certaine manière les choix des comporte- 

ments humains : la rationalité individuelle ou bien la démarche collective. Nous n'en- 

trerons pas dans les débats quelque peu philosophiques sur ces thèmes, qui ont suscité 

de nombreuses discussions en théorie des jeux. Néanmoins, il nous parait important 

de définir le cadre dans lequel sont placés nos deux joueurs. 

Nous considérons donc les jeux où toute communication est interdite. Chaque 

joueur choisit sa stratégie indépendamment des autres. Chaque joueur agit de façon à 

mxümiser l'espérance de son gain. Les joueurs sont donc rationnels au sens de Bayes 

(se référer à [3]). Enfin, un joueur est conscient de son propre objectif mais aussi de 

celui de l'autre joueur, qu'il suppose lui aussi rationnel. On dit que la rationalité est 

une connaissance commune : le premier joueur sait que l'autre est rationnel, il sait 

que l'autre le sait rationnel, etc.. . 

Ajoutons toutefois une dernière hypothèse qui nous permettra de définir le concept 

d'équilibre corrélé. On supposera qu'un joueur forme des croyances, exprimées sous 

forme de loi de probabilité, sur tout ce qui est inconnu, croyances compatibles avec 

son information a priori. En d'autres termes, les joueurs sont conformes à la théorie 

de Savage (se référer à (31). 

1.2 Stratégie pure - Stratégie mixte 

Jusqu'à présent, chaque joueur choisit simultanément une stratégie parmi un 

ensemble dénombrable de stratégies : Si pour le joueur i. Supposons maintenant que 



le joueur i puisse choisir comme stratégie non seulement un point de I'ensemble Si, 

mais aussi une distribution de probabilité sur cet ensemble. Une telle distribution 

est appelée une stratégie mixte. De nombreuses interprétations ont été formulées au 

sujet des stratégies mixtes et font toujours l'objet de nombreux débats tant théoriques 

qu'empiriques. Certains diront qu'il s'agit d'une idée due à Borel pour éliminer la ruse 

dans certains jeux, mais cette notion repose surtout sur une axiomatique des choix 

dans l'incertain développée par Von Neumarnm et Morgenstern. L'ouvrage de M.J. 

Osborne et A.Rubinstein [19] présente les différentes interprétations et sur certains 

points les auteurs ne partagent pas le même avis. Nous ne considérerons les stratégies 

mixtes que sous leur aspect purement mathématique. 

Définition 1.1 Une stratégie mtzte du joveur i est une dktn'bution de p~obabilité 

sur l'ensemble Si de ses stratégies. 

Si ISII = m et lS21 = n, on note alors x = ( x ~ ) ~ ~ ~ +  et y = ( Y ~ ) ~ < ~ ~ ~  

deux stratégies mixtes du joueur 1 et du joueur 2 respectivement. De même, x 
m 

et y sont des éléments des simplexes Em = {x E .Rml x x i  = 1 et xi 2 O) et 
i=1 

n 

En = {y E 7Zml yj = 1 et yj 2 0) respectivement. Remarquons qu'un point de 
j=l 

l'ensemble S1 correspond à une stratégie mixte particulière où la distribution de pro- 

babilité x est telle que: 3io E {1,2, ..m) tel que sio = 1 et xi = O pour i # io. 

Autrement dit, la stratégie numérotée io est choisie avec une probabilité de 1 par le 

joueur 1 . Par abus de langage, on parlera de la stratégie io du joueur 1. Il en va de 

même si l'on considère l'ensemble S2 des stratégies du joueur 2. Les stratégies de Si 

sont appelées stratégies pures. 

Le jeu initial vient d'être étendu par prolongement mixte. Nous verrons plus loin 



l'intérêt d'un tel prolongement. Néanmoins, remarquons d'ores et déjà que le prolon- 

gement mixte du jeu nous permet de disposer d'un ensemble convexe de stratégies 

pour chacun des joueurs. 

Reprenons notre partie, mais cette fois en jouant des stratégies mixtes. Nous 

avons VU que le résultat d'un jeu était symbolisée par une case (il j )  des matrices 

de paiements. Le résultat du jeu en stratégie mixte correspond cette fois au couple 

(x, y )  défini précédemment. Le paiement des joueurs est alors associé à un résultat 

aléatoire et est égal à son espérance. Soient respectivement pour les joueurs 1 et 2, 

les paiements = C C aijxiyj et ~2 = C C bijxiyj- Si chaque joueur tire au sort 

sa stratégie indépendamment des autres, l'issue (i, j) se réalise avec une probabilité 

Choisir une stratégie mixte revient pour un joueur à attribuer une probabilité 

non nulle à certaines de ses stratégies pures. Celles ci constituent alors le szcpport de 

la stratégie mixte considérée. 

Définition 1.2 On appelle le support d ' lm  joueur pour une stratégie mixte x, l'en- 

semble d 'indices b(x) = {il xi > 0). 

Le support du joueur 1 sera noté M ( x ) ,  celui du joueur 2 N ( y ) .  



Les équilibres de Nash 

Supposons que chaque joueur ait fait son choix de stratégie mixte de sorte 

qu'aucun des deux joueurs n'ait intérêt à changer son choix si l'autre ne le fait pas. 

En d'autres termes, toute déviation unilatérale de stratégie d'un joueur ne lui apporte 

aucun gain supplémentaire. Chaque joueur a donc choisi une stratégie comme étant la 

meilleure réponse possible à celle de l'autre. Une telle situation peut se définir comme 

une situation d'équilibre stable. On ne s'intéresse pas ici à la façon d'atteindre cette 

situation d'équilibre, mais aux propriétés de cette situation privilégiée. Ceci nous 

conduit B une définition plus mathématique de l'équilibre de Nash. 

Définition 1.3 Le couple (z, y) de stratégies mixtes d'un jeu bimatriciel défini par 

une paire (A, B)  de matrices réelles m x n est appelée un équilibre de Nash si : 

Z ' A ~  2 X'AQ pour toute stratégie mixte x et 

Z'BY 2 ztBy pour toute stratégie mixte y. 

Dans le cadre des jeux à n joueurs, et sous certaines conditions, en particulier 

de convexité sur les ensembles de stratégies des joueurs, l'existence d'un équilibre est 

assurée par un célèbre théorème de J.F. Nash [17]. Le prolongement mixte d'un jeu 

satisfait les hypothèses du théorème de Nash. Ainsi, tout jeu fhi admet un équilibre 

de Nash en stratégies mixtes. Ii n'en est pas de même si l'on considère uniquement les 

équilibres en stratégies pures comme le montre le jeu du tableau 1.3. Ce jeu n'admet 

pas d'équilibres en stratégies pures, mais un unique équilibre en stratégies mixtes. 

Notons XI (resp. yl) la probabilité que le joueur 1 (resp. 2) choisisse Pile. D'après la 

définition d'un équilibre de Nash, on doit calculer les meilleures réponses du joueur 



Tableau 1.3 - Pile ou face 

Pile Face 

1 (resp. 2) étant donné yl (resp. xI). En regroupant les termes en XI on obtient le 

paiement espéré du joueur 1 : 

OU encore : 

On obtient de même le paiement espéré du joueur 2 : 

Ce jeu admet donc un unique équilibre de Nash où x = (1/2,1/2) et y = (1/2,1/2)- 

Remarquons que l'introduction de stratégies mixtes dans ce jeu a permis, d'une part 

d'assurer l'existence d'un équilibre de Nash, et d'autre part d'éliminer la ruse. En 

effet, la connaissance par l'un des joueurs de la stratégie mixte de l'autre joueur ne 

lui apporte plus aucun avantage. Il ne sait pas quelle stratégie pure ce joueur va 

privilégier. 



Parmi les équilibres de Nash, on distingue les équilibres dits complets dans 

lesquels aucune stratégie pure, pour chacun des deux joueurs, ne se voit attribuer 

une probabilité nulle. L'équilibre de l'exemple précédent est un équilibre de Nash 

complet. 

1.4 Propriétés des équilibres de Nash 

La définition d'un équilibre de Nash peut s'interpréter comme suit: toute 

stratégie pure utilisée avec une probabilité non nulle par un des joueurs à l'équilibre 

est une meilleure réponse à la stratégie mixte de I'autre. Les stratégies pures dans le 

support du joueur lui rapportent chacune le même paiement étant donné la stratégie 

m i x t e  de l'autre joueur. Le paiement pour une stratégie pure io dans le support du 
n 

joueur 1 à I'équilibre s'écrit donc C ai,jYj- Le joueur est donc indifférent entre toutes 
j=l 

les stratégies pures du support qu'il utilise à l'équilibre, mais aussi entre toutes les 

combinaisons convexes de ces stratégies. Cependant, il doit choisir une combinaison 

particulière, sinon l'autre joueur aura intérêt à dévier. La sélection de cette stratégie 

mixte dépend donc de la matrice des paiements de l'autre joueur et non pas de celle 

du joueur considéré. C'est cette particularité qui rend difficile le calcul des équilibres 

de Nash - ce "partena.riat" qui lie x et y à l'équilibre. Nous verrons au chapitre 2 

où se situe ce lien. Bien sur, l'énumération de tous les supports possibles des joueurs 

permet de calculer les équilibres du jeu. Pour un jeu bimatriciel m x n, le nombre de 

supports possibles est de l'ordre de 2"+ m. 



1.5 Ensemble de Nash maximal 

Un jeu bimatriciel possède au moins un équilibre de Nash en stratégies mixtes, 

mais il peut aussi en avoir une infinité. Examinons attentivement le jeu 4x2 suivant : 

et considérons les stratégies mixtes : 

Alors, ce jeu a pour équilibres de Nash tout couple de stratégies mixtes (x, y) appar- 

tenant aux ensembles suivants : 

Nous venons d'introduire la notion d'ensemble de Nash. Nous verrons au chzpitre 

3 un algorithme nous permettant de calculer l'ensemble E(A, B) des équilibres de 

Nash d'un jeu bimatriciei (A,  B). 

Avant de définir de manière formelle un ensemble de Nash, nous allons introduire la 



notion d'interchangeabilité des équilibres. 

Toutes les définitions sont données pour un jeu bimatriciel défini par la paire (A, B) 

de matrices réelles m x n. 

Définition 1.4 Soit S C E(A, B)  . On dit que deux équilibres de Nash (x', y') et 

(x2, y*) sont S-interchangeables si (xl, y2) E S et (x2, y') E S. 

D'une manière générale, on dit qu'une paire d'équilibres est interchangeable si elle 

est E(A, B)-interchangeable. 

Définition 1.5 On appelle ensemble de Nash, un ensemble S C E(A, B )  dont toute 

paire d'équilibres est S-interchangeable. 

Remarquons que si la relation d'interchangeabilité entre deux équilibres est une 

relation re%exive et symétrique, elle n'est pas pour autant transitive. L'exemple 

précédent nous le confirme. Considérons les trois équilibres suivants : (xl, Y ~ ) ,  (x2, y2) 

et (x2, y3). Si Ilon note par - la relation d'interchangeabilité, on a : (xl, y2) - (x2, y2) 

et (x2, y2) - (x2, y3). Néanmoins, (xl, y3) n'est pas un équilibre de Nash, la  relation 

(x', y2) - (x2, y3) n'est donc pas vérifiée. 

G.A. Heuer et C.B. Millham [ll] ont été les premiers à explorer certaines pro- 

priétés des ensembles de Nash. Ils ont introduit, en particulier, le concept d'ensemble 

de Nash maximal, maximal étant pris au sens de l'inclusion. 



Définition 1.6 Un ensemble de Nash est dit maximal s'il n'est pas strictement inclus 

dans tout autre ensemble de Nash. 

Les ensembles de Nash dom& pour l'exemple précédent représentent les ensembles 

de Nash maximaux du jeu. On constate que ceux-ci forment des ensembles convexes 

et fermés et que certains ont en commun des points extrêmes. Ceci nous conduit au 

théorème de G.A. Heuer et C.B. Millham [Il] suivant : 

Théorème 1.7 (Heuer et Millham). Les ensembles de Nash maximaux sont des 

sou-ensembles convexes et fermés de E" x En. 

Considérons à nouveau les résultats de notre jeu 4x2. Remarquons que chacun 

des ensembles de Nash maximaux possède un nombre fini de points extrêmes et 

que la réunion des ces ensembles permet de déterminer l'ensemble des équilibres 

du jeu. En fait, quelque soit le jeu bimatriciel considéré, les ensembles de Nash 

maximaux présentent toujours cette même structure, à savoir le produit cartésien 

de deux polytopes et leur réunion constitue l'ensemble des équilibres du jeu. Ces 

résultats sont dus à M.J.M. Jansen [12]. Citons en particulier celui qui permet de 

caractériser l'ensemble des équilibres de Nash d'un jeu bimatriciel. 

Théorème 1.8 (Jansen) L'ensemble des points d'équilibres d'un jeu bimatriciel est 

1 'union (non nécessairement disjointe) d'un nombre fini d'ensembles de Nash maxi- 

maux. 

Notons qu'on peut facilement montrer que les équilibres d'un jeu bimatriciel 

appartiennent toujours 2 un ensemble de Nash maximal. 



En effet, soit (2, y) E E(A, B), alors l'ensemble {(x, Y)) est un ensemble de 

Nash. Si celui-ci n'est pas maximal, alors il est contenu dans un ensemble de Nash 

maximd. 

1.6 Equilibres de Nash extrêmes 

Les résultats de la section précédente montrent que la connaissance d'un nombre 

fini d'équilibres de Nash permet de caractériser l'ensemble des équilibres du jeu. Ces 

équilibres sont appelés équilibres extrêmes. Bien sûr, il faut avant tout reconstituer 

les ensembles de Nash maximaux. Pour ce faire, on utilise les propriétés d'interchan- 

geabilité des équilibres d'un même ensemble de Nash. 

Définition 1.9 Un équilib~e de Nash d'un jeu bimatn'ciel est appelé un équilibre 

extrême si il est un point extrême d 'un  ensemble de Nash maximal pour le jeu con- 

sidéré. 

Précisons cette définition par rapport au produit cartésien des deux polytopes Pl et 

P2 constituant un ensemble de Nash maximal. Alors, (x ,  y) est un équilibre extrême, 

si x et y sont les points extrêmes de Pl et P2 respectivement. Nous verrons au chapitre 

2, quelles sont les inégalités qui définissent les polytopes Pl et P2. 

Les équilibres de Nash extrêmes sont propres aux jeux bimatriciels et les résultats 

précédents ne peuvent être étendus pour les jeux à plus de 2 joueurs. En effet, un 

exemple de jeu de poker de J.F. Nash [18] montre l'existence d'un unique équilibre de 

Nash qui se trouve être irrationnel. Par ailleurs, H. Chin, T. Parthasarathy et T.E.S. 



Raghavanan [4] présentent un jeu à trois joueurs dont l'ensemble des équilibres est 

la réunion d'un nombre infini d'ensembles de Nash maximaux. 

1.7 Les équilibres corréles 

Quittons momentanément les équilibres de Nash, pour introduire une nouvelle 

notion d'équilibre, due à R. J. Aumann [2]. 

1.7.1 Stratégie corrélée 

Nous avons jusqu'ici évoqué le concept de stratégie mixte comme étant une 

distribution de probabilité sur l'ensemble des stratégies d'un joueur. Qu'adviendrait- 

il si les deux joueurs se basaient sur la même variable aléatoire pour choisir leur 

stratégies? On obtiendrait alors une stratégie corrélée. A h  de mieux comprendre 

cette notion, imaginons un espace de probabilité fini r. On définit alors une stratégie 

corrélée comme étant une fonction f dont l'ensemble de départ est r et l'ensemble 

d'arrivée est S1 x S2, c'est-à-dire que f = (fi, f2) est une variable aléatoire dont les 

valeurs correspondent à des couples de stratégies pures. 

La notion de stratégie corrélée comme le souligne R.J. Aumann [3] est une notion plus 

large que la notion de stratégie mixte. En fait, il s'agit d'obtenir d'une manière ou 

d'une autre une certaine distribution de probabilité sur l'ensemble des stratégies d'un 

joueur. Dans les deux cas, les joueurs basent leur choix de stratégie pure sur l'observa- 

tion d'un événement aléatoire, en stratégie mixte les observations sont indépendantes, 

alors qu'en stratégie coaélée cette condition n'est pas nécessaire. Il est alors aisé de 



voir qu'une stratégie mixte est une stratégie corrélée particulière. En effet, si l'on 

considère l'espace de probabilité ri associé à la stratégie mixte du joueur i, alors I' 

correspond au produit cartésien de r1 et r2. 

Reprenons notre exemple de jeu "le dilemme du prisonnier" définit au tableau 1.1. 

Nous avons vu que l'issue du jeu correspond au couple de stratégies (auouer, avouer). 

Si tes deux prisonniers observent cette fois-ci simultanément une pièce de m o ~ a i e  

qui est lancée et jouent (avouer, ne pas avouer) si c'est pile ou bien (ne pas avouer, 

avouer) si c'est face, on obtient deux stratégies corrélées qui ne se réduisent pas à 

des produits de stratégies mixtes. 

Dans le cas des stratégies corrélées, les joueurs choisissent une stratégie pure qui 

leur est suggérée par la réalisation de l'événement qu'ils observent, ils ne doivent 

pas choisir une distribution de probabilité sur leur ensemble de stratégies. La nature 

probabiliste des stratégies est due à la méconnaissance d'un joueur sur le choix de 

stratégie de l'autre joueur. 

1.7.2 Distribution d'équilibre corrélé 

Nous allons à présent, pour des raisons pratiques, associer une stratégie corrélée 

(fl, f2) avec sa distribution de probabilité sur S1 x S2. En d'autres termes, étant 

donné un élément s E S1 x S2, on associe une strategie corrélée avec le nombre 

~ r o b {  f -'(s)}. Cette association nous permet de définir plus simplement un équilibre 

corrélé. Considérons un jeu bimatriciel (A, B). Notons Af le i-ème vecteur ligne de 

A et Bj le j-ème vecteur colonne de B. Le mn-tuple (p,) désigne une distribution 

de probabilité sur S' x S2. NOUS utilisons une proposition de R. J. Aumann [l] pour 



définir une distribution d'équilibre corrélé. 

Proposition 1.10 ( A u m a m ) :  Une distribution de probabilité (p,) définit une dis- 

tribution d'équilibre corrélé pour le jeu bzmatn'ciel (A, B)  si et  seulement si 

Ces inégalités sont communément appelées les contraintes d'incitation. Si on leur 
rn n 

associe les contraintes liées aux distributions de probabilité, soit x p ~  = 1 et 
i-1 j=l 

p~ 3 O, on obtient le polytope des équilibres corrélés. 

Afin de mieux comprendre la définition d'un équilibre corrélé, imaginons une tierce 

personne, disons un arbitre, qui annonce à nos deux joueurs quels sont r et f .  Un 

événement se produit, w E r. L'arbitre calcule f (w) et révèle seulement fi(w) au 

joueur i. Un équilibre corrélé se produit alors, si aucun des joueürs n'a intérêt à 

dévier de la recommandation de l'arbitre, en supposant bien sûr que l'autre joueur 

ne changera pas non plus la stratégie qui lui a été recommandée. 

L'existence des équilibres corrélés est assurée par celle des équilibres de Nash. 

En effet, l'ensemble des équilibres de Nash est inclus dans celui des corrélés. Etant 

donné un équilibre de Nash (x, y) celui-ci induit une distribution d'équilibre corrélé en 

posant pij = X i Y j  Les équations définissant un équilibre de Nash ont été en quelque 

sorte linéarisées. 

L'ensemble des équilibres corrélés correspond à un polytope, la connaissance 

de ses points extrêmes est donc suffisante pour déterminer tous les équilibres corrélés 



du jeu. Il est beaucoup plus facile de reconstituer ce polytope que les ensembles de 

Nash maximaux. 

Définition 1.11 Un équilibre corrélé d'un jeu bimatriciel est appelé un équilibre 

corrélé eztrême si il est un point extrême du polytope des équilz'bres corrélés pour le 

jeu considéré. 



CHAPITRE 2 

Les équilibres extrêmes 

2.1 Propriétés des équilibres de Nash extrêmes 

Nous savons que l'ensemble des équilibres de Nash est indus dans l'ensemble 

des équilibres corrélés. Nous d o n s  donc considérer les équilibres de Nash extrêmes du 

point de vue des équilibres corrélés et appliquer la théorie polyédrale afin d'étudier les 

propriétés de ces équilbres. Notre premier résultat a été établi de façon indépendante 

des travaux de M.W. Cripps [6] en 1995 et de S. Evangelista et T.E.S. Raghavan 

[7] en 1996. Ces auteurs montrent en effet le même résultat de manière différente. 

Néanmoins, notre approche differe en de nombreux points de celle de ces auteurs. Qui 

plus est, elle nous a permis, comme nous allons le voir, d'obtenir d'autres résultats 

originaux. 

Théorème 2.1 Les équilibres de Nash extrêmes d'un jeu binatriciel sont des équi- 

Zzbres corrélés extrêmes- 

Démonstration Soit (2, y) E E(A, B) un équilibre de Nash extrême. Alors la 

distribution O>, = xiyj) satisfait les inégalités du polytope des équilibres corrélés, 



c'est-à-dire : 

Si l'on divise la première inégalité par xi et la seconde par yj, pour les indices 

i et j appartenant respectivement à M ( x )  et N(y), i1 s'ensuit que x et y satisfont à : 

Suite à ces préliminaires, la démonstration comprend deux étapes. Dans un 

premier temps, nous montrons que x et y sont des points extrêmes des polytopes 

Pl et P2 respectivement. Dans un second temps, nous montrons que la distribution 

(p, = zigj) est en conséquence un point extrême du polytope des équilibres corrélés. 

Pour ce faire, il suffit de trouver m n  vecteurs lignes linéairement indépendants dans 

le système d'inégalités définissant ce polytope qui sont satisfaites à égalité. 



Supposons que x ne soit pas un point extrême de (Pl). Il s'ensuit que x 

peut s'écrire comme une combinaison convexe des points extrêmes de (Pl), soient 

(xp)pCczt(pib Chacun des points extrêmes x p  est tel que M(xP)  C M ( I ) .  Si l'on mul- 

tiplie chacune des lignes de (Pz) par 4 et chacune des lignes de (Pi) par yj, alors 

la distribution de stratégie corrélée définie par ( 4 ~ ~ )  satisfait les inégalités (2.1) et 

(2.2)' et par conséquent (xpy) correspond à un équilibre de Nash. 

D'après ce qui précède l'ensemble S = ~ a v { ( x P ) ~ ~ ~ ~ ~ ~ ~ ~ )  x {y) définit un ensemble 

de Nash. Donc (x, y) s'écrit comme une combinaison convexe d'éléments de S, ce qui 

contredit le fait que (x, y) est un équilibre de Nash extrême. On en conclut donc que 

x est un point extrême de (Pl) et l'on montre de façon similaire que y est un point 

extrême de (Pz). 

Il existe alors m - 1 inégdités de (Pl) excepté I ~ X  = 1 qui forment m - 1 

vecteurs lignes linéairement indépendants et qui sont vérifiées à égalité par x. Notons 

alors B*, la matrice (m - 1) x m obtenue à partir de ces m - 1 vecteurs lignes 

linéairement indépendants. De façon similaire, on obtient une matrice (n - 1) x n,  

notée A* constituée à partir des n - 1 vecteurs lignes de (P2) excepté lny = 1 qui 

sont des inégalités de (P2) vérifiées à égalité par y. 

Multiplions chaque ligne de A*y par xi pour tout i appartenant à M. Nous obtenons 

dors, une structure diagonale par blocs dans l'espace des p,, où il y a exactement 

rn blocs tous égaux à A*. Il s'ensuit que nous avons mn - m vecteurs lignes corres- 

pondant à des inégalités du polytope des équilibres corrélés qui forment des vecteurs 

linéairement indépendants. Ces mn - m inégalités sont vérifiées à égalité par (pu). 

II nous reste donc à trouver rn vecteurs lignes additionnels, afin d'obtenir un système 



de mn équations de rang mn. Si nous multiplions chaque ligne de xtB* par yl , nous 

obtenons m - 1 vecteurs lignes de (1.2) linéairement indépendants. Nous d o n s  mon- 

trer que ces m - 1 vecteurs sont linéairement indépendants des mn - m précédents. 

Ainsi, nous disposons de m - 1 vecteurs lignes dont la structure est la suivante : 

Considérons un des vecteurs lignes de (2.3) et supposons que (Bii O .  . . O) correspond 

à un de ses blocs non nul. Etant donné que rg(A*) = n - 1, supposons sans perte de 

généralité que le vecteur unitaire el et les vecteurs Lignes de A* forment un système 

linéairement indépendant. Il s'ensuit que Ie ième bloc correspondant ne peut générer 

le vecteur non nul (Bf.  O . . . O). Ceci étant vrai pour tous les vecteurs de (2.3). 

Le dernier vecteur ligne nécessaire pour compléter notre système nous est fourni par 
m n 

Finalement, si (2, y) est un équilibre de Nash extrême, alors (pq = z i g j )  est 

une distribution d'équilibre corrélé extrême. rn 

&marque 2.2 Un équilibre de Nash, soit (x, y), qui induit un équilibre corrélé 

extrême est un équilibre de Nash extrême. En effet, supposons que tel n'est pas le 

cas. Il s'ensuit que cet équilibre peut s'écrire comme une combinaison convexe de 

certains équilibres de Nash extrêmes. Ainsi, l'équilibre corrélé correspondant, soit 

( p ,  = zigj)) peut s'écrire comme une combinaison convexe des équilibres corrélés 

définis par les équilibres de Nash extrêmes, ce qui est une contradiction. 



Remarque 2.3 Le théorème 2.1 ne peut être généralisé au cas des jeux à plus de 

deux joueurs, pour les raisons que nous avons évoqué au chapitre 1, à savoir, L'exis- 

tence d'un jeu à trois joueurs où l'unique équilibre de Nash est irrationnel. 

L'approche de M.W. Cripps, pour prouver le résultat précédent est également 

une approche directe, faisant néanmoins intervenir un jeu intermédiaire appelé jeu 

dérivé. Celui-ci est du à S. Hart et D. Schmeidler [9]. Ils construisent un jeu à somme 

n d e  à partir des paiements du jeu initial. Le jeu dérivé est donné par la matrice G 

décrite comme suit : 





Le jeu dérivé est tel que les distributions d'équilibres du jeu initial (A,  B) sont 

des stratégies optimales du joueur en colonne dans le jeu (G, 4). Cripps utilise A 

également le théorème de L.S. Shapley et R.N. Snow [22] sur les jeux à somme nulle. 

Evangelista et Raghavan proposent une preuve par contradiction. Ils supposent 

qu'un équilibre de Nash extrême n'induit pas un équilibre corrélé extrême et font 



appel à certains des résultats de M-J.M.Jançen [12], T. Parthasarathy et T.E.S. 

Raghavan [20]. 

Notre approche est une approche directe et courte qui met en évidence deux 

polytopes (Pl) et (f i ) .  Ceci est du à la division des contraintes d'incitation par les 

composantes du support des stratégies mixtes des deux joueurs. Ces deux polytopes, 

dont la structure est particulière nous ont permis dans ciifErentes situations de mettre 

en évidence certaines propriétés des équilibres de Nash extrêmes ou non. 

La proposition suivante révèle une caractéristique importante des équilibres de 

Nash extrêmes, en particulier si le jeu n'est pas carré, à savoir, si m > n. 

Proposition 2.4 Si (x, y )  E E(A, B)  est un équilibre extrême, alors 1 M ( x )  1 5 n. 

Démonstration Soit (x, y) E E (A,  B), un équilibre extrême. Il s'ensuit, d'après la 

démonstration du théorème 2.1, que x est un point extrême du polytope défini par 

(Pl). A partir des trois ensembles de contraintes de (P-), on ne peut obtenir plus 

de n vecteurs lignes linéairement indépendants. Par conséquent, chacun des points 

extrêmes de (Pl) a au moins m - n composantes nulles. 

Dans le cas où m > n,  chaque stratégie mixte extrême du joueur 1 à l'équilibre a au 

moins rn - n composantes nulles. En d'autres termes, rn - n stratégies pures ne sont 

pas choisies. Ceci nous conduit au résultat suivant : 

Corollaire 2.5 Si rn > n, ou si rn 3 n et r g ( B )  < n - 1, alors i l  n'existe pas 

d'équilibre de Nash extrême complet. 



Démonstration Le cas où m > n se déduit de la proposition 2.4. Si m 2 n et si 

r g ( B )  < n - 1, on ne peut obtenir à partir des trois ensembles de contraintes de (Pl) 

plus de n - 1 vecteurs lignes linéairement indépendants. Il s'ensuit que chacun des 

points extrêmes de (Pl) possède au moins une composante nulle. 

Une condition supplémentaire s'ajoute à ce corollaire pour garder comme hy- 

pothèse r g ( B )  5 n - 1. 

Corollaire 2.6 Si m 2 n, r g ( B )  = n - 1 et si un des vecteurs colonnes de B est tel 

que la somme des coeficients de sa combinaison linéaire des autres vecteurs colonnes 

est égale à 1, alors il n'existe pas d'équilibre de Nash extrême complet. 

Démonstration Supposons sans perte de généralités que les n - 1 premiers vec- 
n-1 

teurs de B sont linéairement indépendants. On a alors & = akBk et d'après 

n-1 

les hypothèses crk = 1. O 
k z l  

linéairement indépendants à 

(Pl). En effet, considérons la 

s'ensuit qu'on ne peut obtenir plus de n - 2 vecteurs 

partir des deux premiers ensembles de contraintes de 

combinaison héa i r e  suivante : 

Celle-ci conduit, d'après les hypothèses, au vecteur nul. rn 

Des résultats similaires peuvent être obtenus en considérant le polytope défini 

par (Pz) et le rang de la matrice A. 



2.2 Les ensembles de Nash maximaux 

Nous avons vu au chapitre 2 que les ensembles de Nash extrêmes correspondent 

au produit cartésien de deux polytopes. Nous allons dans ce qui va suivre expliciter 

Ies inégalités qui définissent ces polytopes à partir d'un point de l'intérieur relatif d'un 

ensemble de Nash maximal. Le résultat suivant généralise un théorème de M.J.M. 

Jansen [12]. 

Théorème 2.7 Soient S c E(A, B),  un ensemble de Nash rnaxinzal et (g, Y) un 

point de 2 'intérieur relatif de S.  Alors S est donné par le prodvit cartésien des poly- 

topes suivants : 



Démonstration Soient (xP),EM(pimo+) et ( ~ q ) , ~ , ~ p ~ - )  - Considérons un point 

extrême (2, y )  de S.  Etant donné que (g, 5)  est dans l'intérieur relatif de S, il s'ensuit 

que M(x)  C M(E) et N(y)  E IV@). Puisque tous les équilibres de S sont interchan- 
O 

geables, x est en équilibre avec Y et d'après ce qui précède satisfait les contraintes 

de (Plmax). De façon similaire, y satisfait les contraintes de (Pzmax). D'après la 

démonstration du théorème 2.1, x et y sont des points extrêmes respectivement de 

(Plmax) et (P2max). Ainsi, tous les points extrêmes de S sont des points extrêmes du 

produit cartésien de (Plmax) et (P2max). En utilisant la même approche que pour la 

démonstration du théorème 2.1, c m v  { ( x * ) ~ ~ ~ ~ ( ~ ~ ~ ~ ) )  x c m v  ( ( Y ' ) ~ ~ ~ ~ ~ ~ ~ ~ - ~ }  définit 

un ensemble de Nash. S étant un ensemble de Nash maximal, il n'est pas strictement 

inclus dans tout autre ensemble de Nash. Ainsi, S est donné par le produit cartésien 

des polytopes (Pimax) et (P2max). I 

Remarque 2.8 Tous les équilibres dans l'intérieur relatif de S définissent les deux 

mêmes polytopes (Plmas) et (P2rnax). 

Remarque 2.9 Nous avons vu lors de la démonstration du théorème 2.1, qu'un 

équilibre de Nash extrême définissait deux polytopes (P l )  et (Pz). Ceux-ci ne peuvent 

constituer un ensemble de Nash. Les points extrêmes de (P l )  ne sont pas tous en 

'partenariat" avec ceux de (P2)- Ce partenariat est assuré, si l'on considère un point 

dans l'intérieur relatif de S qui garantit que son support est maximum par rapport 

aux points extrêmes de S. 



2.3 Les jeux faiblement complets 

Nous nous intéressons ici, à une classe de jeux bimatriciels ayant certaines 

propriétés. 

Définition 2.10 Un jeu bimatriciel (A, B)  est dit faiblement complet si il existe u n  

ensemble de Nash maximal S c E(A,  B)  tel que tous les équilibres de S sont des 

équilibres complets. 

Nous utilisons la technique de preuve du théorème 2.1 pour donner une démons- 

tration alternative et plus courte du théorème 3 de A.P. Jurg et al. [13] incluant 

également le résultat de leur Proposition 1. 

Nous supposerons sans perte de généralité que les coefficients des matrices A 

et B sont strictement positifs. En effet, l'addition d'une constante à tous les coef- 

ficients des matrices A et B ne modifie pas le polytope des équilibres corrélés et 

par conséquent les équilibres de Nash. Pour une matrice M, on notera par abus 

de notation M > O, lorsque les coefficients de la matrice M sont tous strictement 

positifs. 

Théorème 2.11 (Jurg et al.). Soient A > O et B > O.  Alors, le jeu (A, B )  est 

faiblement complet si et seulement si: 

(i) A et B sont des matrices carrées n x n; 

(ii) A et B sont de rang plein; 



(iii) tous les coeficients des vecteurs diB-l and A-'8, sont positifs. 

Démonstration (1) Soit (A, B) un jeu faiblement complet et soit S E E(A, B) 

un ensemble de Nash maximal complet. D'après le corollaire 2.5 et son dual, nous 

avons que m = n et que rg(A) 2 n - 1 et rg(B) 2 n - 1. Soit (x, y) E S, alors x et 

y satisfont les égalités suiMntes : 

Supposons que rg(B) = n - 1, d'après le corollaire 2.6 et sa démonstration, le 

système (2.4) est équivalent à xtB = O, ce qui est impossible avec x et B strictement 

positifs. Ainsi, rg(B)  = n et on a de façon similaire rg(A) = n. 

Chaque stratégie dans le support du joueur 1, lui rapporte le même paiement 

A, c'est-à-dire que xtB = XI;. L'équation (2.7) devient alors A(1; B-'1,) = 1. Fina- 
1;w 

lement, nous avons que xt = . Il s'ensuit que tous les coefficients du vecteur 
~ ; B - l l ,  . - 

A-'1, 
1;B-l sont strictement positifs. On montre de façon similaire que y = 

l;A-'l, ' 



(2) Supposons que les conditions (i), (ii) et (iii) sont remplies. Les équations 

(2.4) à (2.7) doivent être satisfaites par n'importe quel équilibre de Nash complet. 

Etant donné les hypothèses, les systèmes définis par (2.4) à (2.7) ont une solution 

unique. Il s'ensuit qu'un jeu faiblement complet possède un unique équilibre complet. 

I 

Remarque 2.12 Supposons que la matrice B est une matrice singulière avec rg (B)  = 

n- 1 et n'ayant pas tous ses coefficents strictement positifs, les conditions du théorème 

2.11 peuvent alors être remplacées pour la matrice B par : 

(i) B est une matrice carrée n x n; 

(ü) rg(B) = n - 1; 

(iiï) B possède un vecteur propre associé à la valeur propre O strictement positif et 

qui n'est pas perpendiculaire à 1 

n-1 n-1 

Par ailleurs, on a B, = C ak& et C ak # 1. Ces mêmes conditions peuvent 
k=l k=l 

s'appliquer à la matrice A. 

2.4 Les équilibres de Nash complets 

Nous présentons ici une étude sur les équilibres de Nash complets, extrêmes ou 

non. Nous nous intéressons en particulier aux jeux où un des joueurs a au moins une 

stratégie de plus que l'autre. Dans ce contexte, nous introduisons une classe de jeux 



n'ayant pas d'équilibre de Nash complet. Par ailleurs, l'approche présentée, à savoir 

l'étude des équilibres de Nash du point de vue des conélés, nous permet de généraliser 

et de fournir des démonstrations alternatives aux résultats de T.E.S. Raghavan [21] 

et G. A. Heuer [IO]. 

Nous supposerons sans perte de généralité, que lorsque rg(A) = n, les n pre- 

miers vecteurs lignes de A sont linéairement indépendants. Nous notons donc, A, 

la matrice carrée n x .a, obtenue à partir de la matrice A en éliminant les m - n 

dernières lignes. 

Proposition 2.13 Soit m > n et  rg(A) = n. Si il existe une stratégie ia E {n + 
1, . . . , m) telle que A:o A;'P # 1, alors le jeu (A, B)  ne possède aucun équilibre de 

Nash complet. 

n 

Démonstration Posons = AiOAi1. On a alors, d'après les hypothèses pi; # 1. 
k= l  

Supposons qu'il existe un équilibre de Nash complet (x, y). Il s'ensuit que y doit 

satisfaire les égalités suivantes : 

f f in  de déterminer le rang de ce système linéaire, considérons la combinaison 

linéaire suivante : 

Ce système est donc de rang n et est équivalent à A,y = O dont l'unique solution est 

y = O. Ceci contredit donc notre hypothèse sur l'existence d'un équilibre complet. 



Cette dernière proposition nous permet de généraliser le dual du théorème 2 de 

G.A. Heuer [IO], en particulier dans le cas où m > n. 

Théorème 2.14 Soit (x, y )  E E(A, B) et T ~ ( A )  = n. Si x est une stratégie mixte 

complète, alors 

(i) y est l'unique stratégie mixte e n  équilibre avec x; 

(ii) A;A;'d = 1 pozlr i = n+ 1,. . . ,m. 

Par ailleurs, y est donné par le système d'équations suivant : 

Démonstration Considérons le cas m > n pour lequel (fi) s'applique. D'après la 

proposition 2.13, nous avons A;&'P, = 1 pour i = n + 1,. . . ,m. Il s'ensuit que y 

doit satisfaire le système d'équations suivant : 

lequel est de rang n, et donc admet une solution unique. I 

A;' P, 
Remarque 2.15 y = satisfait le système précédent et par conséquent 

i;&-li,, 

nous pouvons ajouter que les coefficients de -&-'ln sont tous positifs ou nuls. 



Nous avons mentionné précédemment l'existence de stratégies extrêmes pour 

les joueurs, comme étant les points extrêmes des polytopes (Plmax) et (Pzmax) 

définis au paragraphe 2.2. Ceci nous permet de préciser le théorème 3 de G.A. Heuer 

Pol - 

Théorème 2.16 Soit (x, y )  E E(A, B). Alors, il existe une stratégie eztrême t en 

équilibre avec y telle que IM(5)l n. 

Démonstration Si (x, y) est un équilibre extrême, alors le résultat est donné par 

la proposition 2.4. Si tel n'est pas le cas, alors il existe un équilibre extrême (35 ,~ )  

appartenant au même ensemble de Nash maximal que (2, Y). Il s'ensuit que (T, y) 

vérifie la proposition 2.4 et de plus est en équilibre avec y. I 

L'existence d'une stratégie complète pour l'un des joueurs augmente le nombre 

de contraintes vérifiées à égalité dans l'un des polytopes définissant les stratégies 

extrêmes de l'autre joueur. Ceci confêre des propriétés intéressantes quant aux stra- 

tégies de l'autre joueur qui forment un équilibre. 

Théorème 2.17 Soit (x, y )  E E(A, B)  tel que x n'est pas une stratégie extrême et 

soit l'ensemble S(y) = {x : (x, y) E E(A, B)}.  

(i) Si y est une stmtégie rnMe complète, alors S(y) contient au moins de= stra- 

tégies extrêmes x1 et x2 non complètes; 

(ii) Si  y possède une seule composante nulle, alors S ( y )  contient au  moins une 

stratégie mixte non complète. 



Démonstration 

(i) Supposons que y est une stratégie mixte complète. Ii s'ensuit que S(y) est inclus 

dans le polytope suivant : 

Puisque x n'est pas une strategie extrême, ce polytope possède au moins deux 

points extrêmes x1 et x2 en équilibre avec y. De plus ces deux stratégies sont 

telles que xi = x: = O pour j # k. 

(ü) Supposons sans perte de généralité que y,, = O. Alors S(y) est inclus dans le 

polytope suivant : 

Supposons que x est une stratégie mixte complète. D'après la démonstration 

du (i), ce polytope possède au moins deux points extrêmes x1 et x2 en équilibre 

avec y. Les contraintes d'égalités forment au plus un système de rang n - 1. Si 

une des contraintes d'incitation est vérifiée à égalité, alors elles le sont toutes. 

Ainsi, pour que les deux points extrêmes different, un des deux à au moins une 

composante d e .  I 



Remarque 2.18 Ce théorème est une généralisation du théorème 4 de G.A. Heuer 

[IO]. Les hypothèses avancées par Heuer sur S(y) sont Mérentes de celles énoncées 

ci-dessus. Celui-ci suppose que S(y) n'est pas un singleton alors que nous supposons 

que x est une stratégie non extrême. Remarquons que si S(y) n'est pas un singleton 

dans (i) alors nous avons m > n ou encore rg(B) 5 m - 1. 



CHAPITRE 3 

Etudes empiriques 

Cette partie est consacrée au calcul des équilibres corrélés, des équilibres de 

Nash et des équilibres efficaces. Un plan d'expériences a été établi en vue de faire 

ressortir certaines particularités des jeux bimatriciels. En particulier, nous étudions 

la nature des équilibres de Nash, complets, purs et efficaces, le nombre des équilibres 

corrélés et des équilibres efficaces. Nous faisons au préalable une brève étude du 

polyèdre des équilibres corrélés et donnons une description des algorithmes utilisés 

pour le calcul des différents équilibres. 

3.1 Propriétés du polyèdre des équilibres corrélés 

Il s'agit en fait du polytope des équilibres corrélés. En effet, l'ensemble des 

équilibres corrélés forme un ensemble compact. La déhition de la distribution des 

équilibres corrélés, donnée au chapitre 1, est la suivante : 

(Ai - A k )  pi. 1 O 

P; (Bj - Bt) 1 0 



Pij 1 0 

Une interprétation géométrique peut se définir comme suit: l'ensemble des 

équilibres corrélés correspond à l'intersection d'un cône ayant pour point extrême 

l'origine et d'un simplexe. Le cône est défini par les contraintes d'incitation. On 

peut également y inclure les contraintes de non négativité. Il est aisé de voir que 

ce polyèdre ne présente pas de rayon extrême. En effet, ceux-ci sont définis par le 

système suivant : 

Ce système a pour solution unique le vecteur nul. Nous avons vu au chapitre 

1 que l'ensemble des équilibres corrélés n'est pas vide. Chaque équilibre corrélé cor- 

respond à l'intersection des rayons extrêmes du cône précédemment défini avec l'hy- 
m n 

perplan Pij  = 1- 
i=i j=l 

La structure du polytope des équilibres corrélés est assez particulière. Une représen- 

tation matricielle des contraintes d'incitation fait apparaître une structure diagonale 

par blocs pour les contraintes issues du joueur 1. Si l'on considère la matrice pour les 

contraintes d'incitation issues du joueur 2, on retrouve une structure de contraintes 

couplantes. La première série de contraintes d'incitation est donnée par la matrice 



Figure 3.1 - Matrice des contraintes d'incitation issue d u  joueur 1 

m(m - 1) x mn notée Cl (voir figure 3.1). 

La deuxième série de contraintes d'incitation est donnée par la matrice n(n - 1) x m n  

C2 représentée par la figure 3.2. 



Figure 3.2 - Matrice des contraintes d'incitation issue du joueur 2 

Calcul des équilibres corrélés extrêmes 

Nous avons utilisé le logiciel cdd de K. Fukuda [14] pour énumérer l'ensemble 

des points extrêmes du polytope des équilibres corrélés. Le programme cdd est une 

implantation en langage C de la méthode de double description de T.S. Motzkin 

et al. [16] qui permet de traiter des problèmes fortement dégénérés. Si l'on con- 

sidère le nombre et la structure des contraintes d'incitation, on voit que le polytope 

des équilibres corrilés peut être très dégénéré. En particulier, un équilibre de Nash 

extrême complet vérifie égalité l'ensemble des contraintes d'incitation. 
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3.2.1 La méthode de double description : version standard 

La méthode de double description permet l'énumération de tous les rayons 

extrêmes d'un cône polyédral. Nous verrons par la suite comment adapter cette 

méthode a h  d'énumérer l'ensemble des points extrêmes et des rayons extrêmes d'un 

polyèdre. Rappelons au préalable le théorème pour un cône polyédral de Minkowski. 

Théorème 3.1 (Minkowski, 1911) Pour chaque système défini par Ar 2 O OU A est 

une matrice réelle m x d ,  il existe une matrice rkelle d x n notée R ayant la propn'été 

suivante: un vecteur x* satisfait le système Ax* 2 O si et seulement si 

x* = RA 

pour X donné positif ou nul. 

Par souci de simplification, nous utiliserons le terme cône pour désigner un cône 

polyédral. Ainsi, le cône d é h i  par {x E Rd : Ax 2 O} est simultanément représenté 

par (x E Rd : x = RA, X 2 0). Le couple (A, R) est une double description du cône. 

Les vecteurs colonnes de R représentent les rayons extrêmes du cône. La matrice R 

est une représentation minimale du cône, lorsqu'aucune sous-matrice issue de R ne 

peut représenter le cône. 

Nous supposerons que l'origine est un point extrême du cône et que le système 

Ax > O n'est pas redondant. Considérons alors le sous-ensemble K des indices de 

lignes de A et notons AK la matrice issue de A ne contenant que les lignes dont les 

indices appartiennent à K. Supposons dors que l'on a déjà trouvé une matrice R 

représentant le cône défini par AK. Si A = AK, le problème est résolu. Sinon, choisis- 

sons une ligne d'indice i n'appartenant pas à K. L'idée consiste en la construction de 



la matrice R' représentant le cône défini par AK+{i3 à partir de hformation fournie 

par le couple (AK,  R). 

Considérons les trois partitions de Rd définies comme suit : 

où Ai correspond à la ligne de A précédemment mentionnée. Notons par J l'ensemble 

des indices des colonnes de la matrice R et considérons cette fois-ci les trois partitions 

suivant es : 

OÙ T j  ( j  E J)  sont les vecteurs colcmes de R. Pour construire la matrice R' à partir 

de la matrice R, il suffit de générer 1 J+I x 1 J-1 nouveaux rayons extrêmes satisfaisant 

H: en considérant une combinaison adéquate des rayons T j  (j E JC)  et T j ,  (j' E J - )  

et en éliminant les rayons de Hz:. Le Lemme principal de la méthode de double 

description [16], nous assure que la matrice h!' représente le cône défini par AKii). 

Lemme 3.2 Soit (AK,R)  une double description du cône défini par AK et soit i 

l'indice d'une ligne de A n'appartenant pas à K.  Alors le couple (AK+{il, RI) est une 



double description du cône défini par AK+<i), où Rf est une matrice réelle d x 1 J f  1 
dont les vecteurs colonnes rj ( j  E JI) sont définis comme suit: 

J' = J+ U J O  u (JC x J - ) ,  et 

~ j j r  = (Airj)rj. - (&rjf)rj POUT ( j ,  jf) E J+ x J-. 

L'algorithme de la méthode de double description peut alors s'énoncer comme 

suit : 

début 

Déterminer un couple initial (Aki  R); 

tant que K # {1,2, ..., m) faire 

début 

Choisir un indice i E (1'2, . . ., m) \ K; 

Construire la matrice RI en utilisant le Lemme 3.2; 

R := R'; K :== K + {i); 
fin; 

Donner R; 

nin. 

Reste cette fois à déterminer le couple ( A K ,  R) initial. Nous avons supposé au départ 

que le rang de la matrice A était maximal. II suffit donc de choisir d vecteurs lignes 

de A linéairement indépendants pour former AK. Il s'ensuit que R est donnée par 

A& puisque AKx 2 O est équivalent à x = A;;'x, X 2 0. 

Le logiciel cdd de K. Fukuda est une implantation de la méthode de double des- 

cription révisée, de sorte à améliorer le temps d'exécution et à éviter ta génération 



de rayons redondants. Le logiciel met également à profit certaines structures parti- 

culières de la matrice A, comme les matrices diagonales par blocs. 

3.2.2 Calcul des points et des rayons extrêmes 

Considérons le polyèdre défini par P = {x E Rd : Ax 5 b). Le logiciel cdd 

permet de calculer les points et les rayons extrêmes de ce polyèdre tout en utilisant 

la méthode de double description décrite précédemment. Rappelons au préalable le 

théorème sur le nombre de bases fini de Minkowski. 

Théorème 3.3 (Minkowski 1896) Pour chaque système défini par Ax 5 6 ,  il esciste 

des vecteurs colonnes v1,v2,  ..., v M  et rl, r2, ..., rN tels que: un vecteur x satisfait le 

système Ax 5 b si et seulement si : 

Ainsi, un vecteur x appartient à P si et seulement si : 

D'après le théorème inverse de 3.1, le cône défini par 3.15 est équivalent au 

système suivant : 



pour une matrice A et un vecteur b donnés. Il suffit donc d'appliquer la méthode 

de double description au système 3.16 pour obtenir les points et les rayons extrêmes 

d'un polyèdre d é h i  par P = {x E 72d : Ax 5 b) .  

3.3 Calcul des équilibres de Nash 

Nous utilisons le programme bimatrix de C. Audet et al., af in  d'énumérer les 

équilibres de Nash extrêmes. Celui-ci est une implantation en langage C de I'al- 

gorithme EEE (Enumération des Equilibres Extrêmes) de C. Audet et al. [l]. La 

définition d'un équilibre de Nash est reformulée à l'aide de deux programmes linéaires 

et de leurs programmes duals respectifs. Ainsi, le couple (x*, y*) est un équilibre de 

Nash si et seulement si il existe a* et ,û* tels que: 

(x*, O*) E x = {(x, p) : X ~ B  5 ,mt, xtn = 1, 2 O), 

(y*, a') E Y = {(y, a) : Ay Ic r ,  l'y = 1, y 2 0) 

et les conditions des écarts complémentaires sont satisfaites. 

L'algorithme EEE propose une énumération de l'ensemble des points extrêmes de X 

et de Y satisfaisant les conditions de complémentarité de la programmation linéaire, 

soient xt(Pru - Ay) = O et (01' - xtB)y = 0. 

Pour ce faire, considérons les programmes linéaires pararnétrisés suivants : 



P(y) max xtAy - ,û et 
(z,B)€X 

Q(x) = max xtBy- a. 
u , 4 f  Y 

Ceux-ci correspondent à une addition des fonctions objectives des programmes 

primals et duals. L'algorithme génère une séquence de sous-problèmes p(y) et Q(Z) 

identiques à P ( y )  et Q ( x )  à ceci près que certaines des contraintes sont vérifiées à 

égalité. A chaque nœud de l'arbre de recherche formé par les sous-problèmes peuvent 

se présenter les trois cas suivants : 

(i) Un des deux sous-problèmes P(y) ou Q ( X )  est irréalisable; 

(ii) Les deux sous-problèmes P(y) et Q(X) sont réalisables et l'on peut définir un 

point extrême; 

(iii) Les deux sous-problèmes P(y) et Q ( X )  sont réalisables, mais l'on ne peut pas 

définir un point extrême. 

Dans le premier cas le noeud est sondé. Dans les deux autres cas, on ouvre de 

nouvelles branches par l'ajout d'une nouvelle contrainte vérifiée à égalité. 



L'algorithme EEE peut alors s'ennoncer comme suit : 

Etape a. Initialisation 

L'ensemble des nœuds T = ((z, P( . ) ,  Q(-)) est initialisé à partir d'une valeur arbi- 

traire de x comme par exemple ($, . . . g). mer à l'étape b. 

Etape b. Sélection d'un nœud 

Si l'ensemble T est vide, arrêter. Sinon, choisir un nœud N. Si N = {(x, P(-), Q(-)) 
d e r  l'étape c. Si N = {(y, p(-) ,  Q(-)) aller à l'étape d. 

Etape c. Test de faisabilité (Q( - ) )  

Si Q ( X )  est irréalisable aller à l'étape b. Sinon, choisir (y, a) E a r g m a z ~ ( z ) ,  mettre 

à jour (x, ,8) E a r g m a z ~ ( y )  et aller à L'étape e. 

Etape d. Test de faisabilité (P(-)) 

Si H(y) est irréalisable aller à l'étape b. Sinon, choisir (z, P )  E a~grnazP(y) ,  mettre 

à jour (y, a) E argmazg(z) et aller à l'étape e. 

Etape e. Branchement 

Soit i l'indice pour lequel le produit xi(a - Aiy) est le plus grand et où la variable xi 

n'est pas égale à O. La contrainte A:y 5 a de O(-) n'est pas nécessairement satisfaite 

à égalité. De même, soit j l'indice pour lequel le produit (P  - xtBj)yj est le plus 

grand et où la Mnable yi n'est pas égale à O. La contrainte zLBj 5 /3 de p(-)  n'est 

pas nécessairement satisfaite à égalité. 



Si de tels indices i ou j n'existent pas, alors (x, y) est un équilibre de Nash. Mettre 

à jour la liste des équilibres. Ouvrir de nouvelles branches à partir de cet équilibre 

comme suit: Mettre xi = O si xi > O, OU Aiy = a si Aiy < a, ou yj = O si yj > O et 

OU xtBj  = /3 si xtBj < p. 

Si xi(a - Aiy) 2 (P - X ' B ~ ) ~ ~  (si les iodices i et j existent), ou si l'indice j n'existe 

pas, alors brancher suivant xi = O et Aiy = a- 

Si xi(a - Aiy) < (0 - x ~ B ~ ) ~ ~  (si les indices i et j existent), ou si l'indice i n'existe 

pas, alors brancher suivant yj = O et xtBj  = P .  

L'efficacité de cet algorithme réside dans L'utilisation des conditions de complé- 

mentadé. Les jeux résolus par cet algorithme ont des tailles pouvant aller jusqu'à 

29 x 29. 

3.4 Les équilibres efficaces ou de Pareto 

Le terme équilibre efficace s'emploie pour distinguer une sous-classe d'équilibres 

parmi les équilibres corrélés. Nous nous intéressons aux équilibres efficaces et aux 

éventuels équilibres de Nash appartenant à cette classe d'équilibres. 

Un équilibre corrélé est dit efficace si il n'existe pas d'autre équilibre rappor- 

tant au moins le même paiement à chaque joueur et un paiement supérieur à au 

moins un des deux joueurs. Pour illustrer la notion d'équilibre efficace, considérons 

la répartition des paiements d'un jeu 3 x 3 représentée sur la figure 3.3. Les équilibres 

efficaces correspondent à l'enveloppe non nécessairement convexe de la répartition 

des paiements. Leur calcul peut se faire en considérant la programmation linéaire 



corrélés 

Pareto 

x Nash 

2 / 1 1 1 1 1 

2 3 4 5 6 7 

Paiements du joueur 1 

Figure 3.3 - Je= 3 x 3 - Répartition des paiements 

multi-ob jectifs. Les deux fonctions objectifs correspondent à la maximisation des 

paiements des deux joueurs sous les contraintes du polytope des équilibres corrélés. 

Cette approche présente néanmoins des inconvénients dans le cas des jeux bimatrïciels 

et demanderait la création d'un programme spécifique. En effet, la plus part des al- 

gorithmes de programmation linéaire mdti-objectifs ne considèrent que l'enveloppe 

convexe de la répartition des paiements et ne sont pas stables pour les problèmes 

dégénérés. Le polytope des équilibres corrélés, comme nous l'avons vu précédemment 

correspond à l'intersection d'un cône avec un simplexe, le cône pouvant être fortement 

dégénéré. Nous avons donc déterminé les équilibres efficaces à partir des équilibres 

corrélés calculés par énumération des points extrêmes d'un polyt ope. 



3.5 Résultats numériques 

L'étude porte sur un ensemble de jeux bimatriciels générés aléatoirement dont 

les paiements sont compris entre O et 1. La distribution adoptée est uniforme. Pour 

chaque jeu, nous avons énuméré les équilibres de Nash et leur structure (complet, 

pur, efficace et complet efficace), les équilibres corrélés et les équilibres efficaces. 

d." 

3.5.1 Les jeux bimatriciels 2 x 2 

Les résultats suivants portent sur un ensemble de 500 jeux 2 x 2. Les figures 

3.4, 3.5 et 3.6 nous montrent la répartition des différents types d'équilibres. 

nombre d'équilibres corrélés 

Figure 3.4 - Répartition des équilibres comélés sur 500 jeuz 2 x 2 

Observons que les jeux ayant un unique équilibre de Nash ont ici un unique 

équilibre corrélé. Nous verrons pourtant que ce n'est pas toujours le cas lorsque le 



nombre d'équilibres efficaces 

Figure 3.5 - Répartition des équilibres eficaces sur 500 jeux 2 x 2 

1 3 

nombre d'éqnilibres de Nash 

Figure 3.6 - Répartition des équilibres de Nash sur 500 jeux 2 x 2 



nombre de stratégies pour les deux joueurs est supérieur ou égal à 3. Néanmoins cette 

règle peut se vérifier pour les jeux 2 x 2. Prenons le cas d'un jeu 2 x 2 ayant un unique 

équilibre de Nash en stratégies pures. Le polytope des équilibres corrélés peut alors 

s'écrire comme suit : 

Supposons, sans perte de généralité, que le seul équilibre de Nash en stratégies 

pures est pl1 = I. Cette condition est assurée si a et c sont strictement positifs et si 

b ou d est négatif. En effet, si a ou c prend une valeur nulle il apparaît un équilibre 

de Nash en stratégies mixtes ou pures. La vérification est simple en énumérant les 

différents cas de figure. Considérons le cas où c = O, a > 0, b < O et d quelconque, 

alors l'équilibre de Nash ((1, O), (A, E)) est un équilibre extrême. 

Examinons alors la possibilité qu'un autre équilibre corrélé puisse exister. Si il existe, 

il ne peut pas avoir la structure d'un équilibre de Nash. Les seules possibilités sont 

dors (Pll, ~ 2 2 ) '  (Pl21 ~ 2 1 )  1 (Pl11 P21' ~ 2 2 )  et ( ~ 1 2 ,  P21i ~22)-  Or, cbcune de ses POS- 

sibilités ne satisfait pas au moins une des contraintes du polytope des équilibres 

corrélés. Ainsi, les jeux 2 x 2 ayant un unique équilibre de Nash en stratégies pures 

ont un unique équilibre corrélé. 



Avant d'analyser plus en détail la nature des équilibres de Nash, remarquons 

que les jeux possédant plus d'un équilibre corrélé en ont au moins 5. Cette Ca- 

ractéristique intéressante se retrouve, comme nous le verrons, dans les essais de jeux 

où le nombre de stratégies est supérieur à deux. Il faut cependant ajouter que l'en- 

semble des jeux générés ont tous un nombre d'équilibres de Nash qui est impair. On 

peut donc se demander si les 500 jeux sont réellement représentatifs de ce qui se passe 

dans la nature. En fait, les jeux générés sont tous des jeux que l'on nomme des jeux 

non-dégénérés. 

Définition 3.4 Un jeu binatriciel est dit non-dégénéré s i  le nombre de meilleures 

réponses en stratégies pares à vne  stratégie mixte ne dépasse pas la taille de son 

sapport. 

Tous Ies jeux que nous avons générés ont cette particulazité. C.E. Lemke et J.T. 

Howson [15] ont montré que le nombre d'équilibres de Nash pour les jeux bimatriciels 

non-dégénérés est impair. Les résultats trouvés confirment donc cette propriété. Les 

observations que nous faisons ne sont donc valables que dans le cas de jeux non- 

dégénérés. Prenons comme contre-exemple au nombre minimum d'équilibres corrélés, 

soit 5 si il y a plus d'un équilibre, le jeu dégénéré donné au tableau 3.1. 

Tableau 3.1 - Exemple de jeu 2 x 2 dégénéré 

Ce jeu a exactement 2 équilibres corrélés correspondant à deux équilibres de 

Nash. Soient les équilibres extrêmes (xl, y') et (x2, y2) définis comme suit : 



On voit ici que la stratégie mixte xZ qui n'a qu'un élément dans son support à 

deux meilleures réponses en stratégies pures données par le support de y2. Ceci nous 

conduit au résultat suivant : 

Lemme 3.5 Les jeux birnat7iciels 2 x 2 non-dégénérés ne possèdent qzle des équilibres 

en  stratégies pures ou complets. 

La démonstration est immédiate, d'après ce qui précède. 

Les tableaux 3.2, 3.3 et 3.4 montrent la nature des équilibres de Nash pour 

l'ensemble des 500 jeux. Ces résultats nous permettent d'afIiner les obsemtions 

précédentes et illustrent le lemme 3.5. Lorsqu'il y a un unique équilibre de Nash, 

celui-ci est, soit en stratégies pures, soit complet. 

Tableau 3.2 - Répartition des équilibres de Nash en stratégies pures - 500 jeux 2 x 2 

1 Nombre de jeux 1 équilibres purs 1 
1 Nombre de Nash 1 O 1 1 1 2 1 Total 1 

I I 4 

Tot al 66 372 62 500 



Tableau 3.3 - Répartition des équilibres de Nash complets - 500 jeux 2 x 2 

1 Nombre de jeux 1 équilibres complets 1 

1 Total 

Tableau 3.4 - Répartition des équilibres de Nash eficaces - 500 jeux 2 x 2 

1 Nombre de jeux 1 équilibres efficaces ( 
1 Nombre de Nash 1 1 1 2 1 Total 1 

Total 



Les jeux ayant plus d'un équilibre de Nash possèdent tous deux équilibres en 

stratégies pures et un équilibre complet. Cette configuration n'est pas unique lorsque 

le jeu est dégénéré. Prenons le cas d'un jeu où le polytope des équilibres corrélés est 

donné par les équations 3.17 à 3.22. Nous avons vu que ce jeux possède un équilibre 

en stratégies mixtes ((1, O), (&, E)), dans le cas où c = O, a > 0,b < O et d 

quelconque. Lorsque c = O, le jeu devient dégénéré. La probabilité d'obtenir un jeu 

généré aléatoirement ayant une redondance dans deux paiements adjacents est très 

faible. 

Le meilleur concept d'équilibre d'un jeu devrait entre autre assurer l'unicité de 

la solution. Les raffinements des équilibres de Nash ou corrélés visent à réduire le 

nombre des soiutions pour un jeu. Le nombre d'équilibres efficaces est ici inférieur au 

nombre d'équilibres de Nash. Néanmoins, chaque jeu possède au moins un équilibre 

de Nash efficace. Si cet équilibre n'est pas unique, alors on observe qu'il n'est jamais 

complet. Les équilibres de Nash complets ne sont donc pas de "bons candidats" en 

termes de paiements. 

3.5.2 Les jeux bimatriciels 3 x 3 

Les résultats suivants portent sur un ensemble de 500 jeux 3 x 3. Les figures 3.7, 

3.8 et 3.9 nous montrent la répartition des différents types d'équilibres. Le nombre 

d'équilibres corrélés atteint 211. Pour des raisons de clarté, nous avons regroupé dans 

une même catégorie les jeux possédant plus de 16 équilibres corrélés. 



1 5 11 16 et plus 

nombre d'équilibres corrélés 

Figure 3.7 - Répartition des équilibres cowélés sur 500 jeux 3 x 3 

nombre d'équilibres eficaces 

Figure 3.8 - Répartition des équilibres eficaces sur 500 jeux 3 x 3 



U I 1 T- - 1 , 

1 3 5 7 

nombre d' équilibres de Nash 

Figure 3.9 - Répartition des équilibres de Nash sur 500 jeux 3 x 3 



Tableau 3.5 - Exemple de jeu 3 x 3 dégénéré 

Nous retrouvons à nouveau un nombre d'équilibres de Nash impair. En effet, 

les 500 jeux sont des jeux non dégénérés-Il s'agit plus pa,rticulièrement de jeux dits 

génériques. Un jeu générique est tel que chacun des paiements est généré aléatoirement 

et de façon indépendante à partir d'une distribution continue. Les jeux génériques 

sont des jeux non dégénérés avec une probabilité de 1. On observe également que si 

le jeu ne possède pas un unique équilibre corrélé, alors il en possède au moins 5. A 

nouveau, cette situation n'est pas garantie dans le cas d'un jeu dégénéré. Considérons 

le jeu donné au tableau 3.5. Ce jeu dégénéré possède exactement 3 équilibres corrélés 

correspondant à trois équilibres de Nash, paradoxalement un nombre impair. Les 

trois équilibres sont les suivants : 

x1 = (0, O,  1) y' = (O, 1,o) 

x2 = (0,1,0) y2 = (O, 110) 

x3 = (0,1,0) y3 = (i, f, O) 

En relation avec le lemme 3.5, nous pouvons ajouter pour les jeux non-dégénérés 

que tout équilibre de Nash en stratégie mixte (x, y) est tel que les supports M ( x )  et 

N(Y ) ont même cardinalité. 



Tableau 3.6 - Répartition des équilibres de Nash complets - 500 jeux 3 x 3 

1 Total 1 467 1 33 1 500 1 

Nombre de jeux 

Nombre de Nash 

Par ailleurs, remarquons que le nombre de jeux ayant un unique équilibre corrélé 

est inférieur au nombre de jeux ayant un unique équilibre de Nash. Comme nous 

l'avons souligné, les jeux ayant un unique équilibre de Nash n'ont pas forcement un 

unique équilibre corrélé dès lors que le nombre de stratégies pour les joueurs est 

supérieur A 3. Il serait intéressant de vérifier par contre si les jeux dégénérés carrés 

partagent le même nombre d'équilibres de Nash et corrélés. Nous avons généré une 

dizaine de jeux dégénérés carrés et ils possèdent tous le même nombre d'équilibres 

de Nash que de corrélés. 

Considérons à présent les équilibres de Nash complets dont la répartition est 

donnée au tableau 3.6 et leur nature en terme d'efficacité donnée au tableau 3.7. Si le 

nombre d'équilibres de Nash est supérieur à 1, aucun équilibre complet n'est efficace. 

Par ailleurs, le nombre de jeux possédant un équilibre de Nash complet est passé de 

128 pour les jeux 2 x 2 à 33 pour les jeux 3 x 3. Plus le nombre de stratégies pour 

chacun des joueurs est élevé, moins nous avons de chance d'obtenir un équilibre de 

Nash complet. En effet, I'augmentation du nombre de stratégies, augmente le nombre 

équilibres complets 

O 1 Total 



Tableau 3.7 - Répartition des équilibres de Nash complets et  eficaces - 500 jeux 3 x 3 

Nombre de jeux 

1 Total 1 493 1 7 1 500 1 

équilibres complets efficaces 

Nombre de Nash 

de contraintes d'incitation qui doivent toutes être vérifiées à égalité par l'équilibre 

complet, ce qui réduit considérablement les chances d'existence. Nous verrons que 

sur 200 jeux 4 x 4, seulement deux jeux possèdent un équilibre de Nash complet. 

Si le nombre de jeux possédant un unique équilibre efficace est de 399, soit 

supérieur au nombre de jeux possédant un unique équilibre de Nash, il existe néan- 

moins des jeux qui présentent jusqu'à 11 équilibres efficaces. Plus le nombre d'équili- 

bres corrélés est élevé, et pour des points extrêmes "proches", plus le nombre d'équili- 

bres efficaces a des chances d'être élevé. Enfin, la répartition des équilibres de Nash 

efficaces est donnée au tableau 3.8. Le nombre de jeux ayant un équilibre de Nash 

efficace unique reste élevé et supérieur par contre au nombre de jeux ayant un unique 

équilibre efficace. 

O 1 Total 



Tableau 3 -8 - Répadition des équilibres de Nash efieaces - 500 jeux 3 x 3 

1 Nombre de jeux 1 équilibres efficaces 1 
( Nombre de Nash 1 O 1 1 1 2 ( Total 1 

3.5.3 Les jeux bimatriciels 4 x 4 

Le nombre d'équilibres corrélés pour des jeux 4 x 4 peut atteindre 107.533 

équilibres, l'énumération des point extrêmes du polytope des équilibre corrélés est 

alors d'autant plus longue. Nous avons donc limité notre étude à un ensemble de 

200 jeux 4 x 4. Les répartitions des différents types d'équilibres sont données par les 

figures 3.10, 3.11 et 3.12. 



1 5 7 11 +de 16 

nombre d'équilibres corrélés 

Figure 3.10 - Répartztion des équilibres corrélés s w  200 jeux 4 x 4 

nombre d'équilibres efficaces 

Figure 3.11 - Répartition des équilibres eficaces sur 200 jeux 4 x 4 



nombre d' équilibres de Nash 

Figure 3.12 - Répartition des éqailibres de Nash sur 200 jeux 4 x 4 



Les jeux 4 x 4 présentent les mêmes caractéristiques que les jeux 3 x 3. Le 

nombre maximum d'équilibres de Nash semble se stabiliser à 7, alors que le nombre 

maximum d'équilibres efficaces augmente jusqu'à atteindre 22. Soit deux fois plus 

que pour les jeux 3 x 3. Proportionnellement le nombre de jeux ayant un unique 

équilibre de Nash efficace reste élevé comme le montre le tableau 3.9. On constate 

que le nombre maximum d'équilibres de Nash efficaces est passé de 2 pour des jeux 

2 x 2 et 3 x 3 à 3 pour des jeux 4 x 4. Aucun des équilibres de Nash complets n'est 

efficace et comme nous l'avons déjà mentionné leur nombre est très faible. 

Tableau 3.9 - Répartition des équzlibres de Nash eficaces - 200 je= 4 x 4 

1 Nombre de jeux ( équilibres efficaces ( 

3.5.4 Les jeux bimatriciels non-carrés 

Nombre de Nash 

Nous présentons ici différents résultats concernant des ensembles de 500 jeux 

3 x 2, 4 x 3 et 200 jeux 5 x 3. Nous sommes intéressés par le comportement des 

équilibres efficaces et des équilibres de Nash efficaces. Les équilibres complets ne 

peuvent être des équilibres extrêmes, comme nous l'avons démontré au chapitre 2. 

O 1 2 3 Total 



Figure 3.13 - Répartition des équilibres eficaces sur 200 jeux 5 x 3 

Tous les jeux générés, s'ils possèdent plus d'un équilibre corrélé en possèdent 

au moins cinq. Encore une fois, cette caractéristique semble être liée aux jeux non- 

dégénérés. En reprenant un des exemples de jeux dégénérés précédents, on peut 

facilement construire un jeu 4 x 3 possédant 4 équilibres corrélés. Les figures 3.13, 

3.14 et 3.15 nous montrent la répartition des équilibres efficaces pour les différents 

jeux non-carrés. Leur nombre augmente en fonction du nombre d'équilibres corrélés, 

soit en fonction du nombre de stratégies des deux joueurs. 



nombre d équilibres efficaces 

Figure 3.14 - Répartition des équilibres eficaces sur 500 je= 4 x 3 

nombre d'équilibres efficaces 

Figure 3.15 - Répartition des équilibres eficaces sur 500 jeux 3 x 2 



Tableau 3.10 - Répartition des équilibres de Nash eficaces - 200 jeux 5 x 3 

Nombre de jeux 

En comparaison avec les équilibres de Nash efficaces, le nombre de jeux possé- 

dant un unique équilibre de Nash efficace est toujours plus élevé que celui des jeux 

possédant un unique équilibre efficace (voir tableau 3.10,3.11 et 3-12). Plus le nombre 

de stratégies pour les deux joueurs est élevé, plus le concept d'équilibre de Nash 

efficace peut s'avérer être intéressant. Il faut cependant garder à l'esprit que leur 

calcul devient alors d'autant plus complexe. En effet, il s'agirait alors de résoudre un 

problème à deux fonctions objectifs sous des contraintes quadratiques. De ce point 

de vue, le calcul des équilibres efficaces, malgré les contraintes pratiques liées à la 

dégénérescence est plus aisé. 

équilibres efficaces 

Total 

Nombre de Nash 

1 

3 

10 

O 

7 

3 

164 

1 

105 

53 

26 200 

2 

23 

Total 

112 

79 



Tableau 3.11 - Répartition des équilibres de Nash e&aces  - 500 jeux 4 x 3 

Nombre de jeux équilibres efficaces 

Nombre de Nash 

1 

Tableau 3.12 - Répartition des équdib~es de Nash eficaces - 500 jeux 3 x 2 

7 

Total 

O 

11 

1 Nombre de Nash 1 1 ( 2 1 Total 1 

20 

Nombre de jeux 

/ Total 1 465 1 35 1 500 1 

1 

311 

équilibres eficaces 
1 I 

. 

423 

2 

- - 

1 2 1  

56 

3 Total 

322 

- -- . 

1 

4 

500 



CONCLUSION 

L'analyse des équilibres de Nash et des équilibres corrélés se réduit à celle des 

équilibres extrêmes qui,'nous l'avons vu au chapitre 2, sont les points extrêmes d'un 

même polytope. Ce résultat nous permet de donner une nouvelle définition pour les 

équilibres de Nash extrêmes : on appelle équilibre de Nash extréme, un équilibre de 

Nash ne pouvant s'écrire comme combinaison convexe de deux autres équilibres de 

Nash. De plus, ce résultat permettrait de penser qu'un équilibre de Nash extrême peut 

se calculer à l'aide de !a programmation linéaire. La difficulté demeure néanmoins 

quant à la recherche de la ou des fonctions objectifs pour déterminer l'ensemble des 

équilibres de Nash extrêmes. Cependant, nous avons vu que lorsque le jeu est non 

carré, soit m > n, le joueur 1 a pour chaque équilibre rn - n stratégies non choisies- 

Ces stratégies peuvent être trouvées par la programmation linéaire. Pour chacune 
n 

des stratégies i du joueur 1, on cherche à minimiser Cpij sous les contraintes du 
j=l 

polytope des équilibres corrélés. 

Plusieurs cas de figures peuvent se présenter: 

1. La solution optimale est telle que la fonction objectif à une valeur non nulle. 

On peut dans ce cas aisément conclure que la stratégie i sera dans n'importe lequel 

des équilibres de Nash choisie avec une probabilité non nulle; 

2. La fonction objectif a une valeur nulle et la solution optimale correspond à un 

équilibre de Nash. 

Nous avons alors déterminé dans ce cas au moins un équilibre de Nash extrême et 

les stratégies m - n non choisies correspondantes; 

3. La fonction objectif a une valeur nulle et la solution optimale ne correspond pas à 



un équilibre de Nash. 

On doit dans ce cas résoudre un ou plusieurs programmes linéaires auxquels on ajoute 

à la fonction objectif les variables pij qui sont positives et qui empêchent la structure 

d'un équilibre de Nash. 

L'ensemble des résultats théoriques présentés au chapitre 2, comme nous ve- 

nons de le faire ci-dessus, ouvre de nouvelles perspectives pour le calcul et l'étude 

des équilibres de Nash extrêmes ainsi que des ensembles de Nash maximaux. Par ail- 

leurs, la connaissance d'un équilibre de Nash non extrême permet la caractérisation 

immédiate de l'ensemble de Nash maximal auquel il appartient. On pourrait par 

exemple rechercher l'ensemble de Nash ayant en son intérieur relatif des équilibres 

complets. Ceci étant fait exception des jeux n'ayant aucun équilibre complet comme 

décrit au chapitre 2. 

En parallèle, les différentes études empiriques sur des jeux de tailles diverses, 

nous ont montré que les équilibres de Nash restent toujours une solution avanta- 

geuse. Leur nombre pour les jeux non dégénéres reste faible et il semble que de 

nombreux jeux possèdent un unique équilibre de Nash efficace. Il serait par ailleurs 

intéressant d'étudier les classes de jeux ayant le même nombre d'équilibres corrélés 

que d'équilibres de Nash. Une classe de jeux répondant à ce critère est obtenue en 

considérant pour un des joueurs une matrice de paiements répétant le même vecteur 

ligne ou colonne si l'on considère respectivement le joueur 1 ou le joueur 2. Ceci 

réduit au simplexe l'ensemble des stratégies mixtes du joueur en question. 

La Recherche Opérationnelle a un rôle important à jouer en théorie des jeux. 

L'approche polyédrale nous a permis d'analyser les équilibres de Nash plus aisément. 



La génération aléatoire de jeux et leur résolution à l'aide d'algorithmes de la pro- 

grammation mathématique ont mis en évidence certaines tendances qui se traduisent 

par des conjectures. 
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