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RÉSUMÉ

L’imagerie par résonance magnétique (IRM) à très bas champ magnétique représente une
modalité prometteuse en neuroimagerie pédiatrique, notamment en raison de son accessibil-
ité et de son coût plus faible par rapport aux systèmes conventionnels. Toutefois, sa qualité
d’image réduite présente des défis importants pour la segmentation des structures cérébrales,
ce qui limite son utilité dans les études neurodéveloppementales qui reposent sur des mesures
morphométriques précises et longitudinales. Ce projet vise à évaluer si la reconstruction
d’images IRM de très bas champ magnétique en images de plus haute résolution permet
d’améliorer la qualité des segmentations, et de proposer une méthode de validation longitu-
dinale capable de mesurer la cohérence des résultats avec les trajectoires développementales
attendues.

Une base de données synthétique de 844 cartes T1 pédiatriques simulant une IRM à 64mT
a été générée à partir du Baby Connectome Project (BCP), en utilisant un échantillonnage
gaussien basé sur des valeurs de T1 issues de la littérature, puis dégradée pour reproduire
les caractéristiques réalistes du très bas champ. Malgré un accès limité aux données réelles,
la base synthétique a réussi à reproduire des contrastes et des résolutions typiques du très
bas champ magnétique. Un U-Net 3D optimisé a ensuite été entraîné pour reconstruire des
images de haute résolution à partir de ces images dégradées. Les reconstructions ont montré
des améliorations notables de la segmentation pour la matière grise corticale et les ventricules,
ainsi que des performances stables pour la matière blanche et la matière grise profonde.

Au-delà de la segmentation, une méthode de validation longitudinale a été développée afin
d’évaluer si les volumes tirés des segmentations suivent les trajectoires neurodéveloppemen-
tales attendues. Appliquée aux images reconstruites et aux images synthétiques de très bas
champ magnétique, cette méthode révèle que les données synthétiques suivent plus fidèlement
les tendances développementales, malgré une précision de segmentation légèrement inférieure.
Ces résultats soulignent l’importance d’évaluer les méthodes de reconstruction non seulement
à l’aide de métriques voxel par voxel, mais aussi en fonction de leur impact sur les tendances
longitudinales.

Des travaux complémentaires seront nécessaires pour généraliser ces résultats à des données
réellement acquises à très bas champ, notamment par l’acquisition d’images additionnelles
et l’exploration de modèles de reconstruction plus avancés. Néanmoins, cette étude propose
une approche prometteuse pour améliorer la qualité des segmentations en neuro-imagerie
pédiatrique à très bas champ. La méthode de validation introduite constitue par ailleurs
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un outil pertinent pour évaluer la fiabilité des segmentations longitudinales et guider leur
interprétation dans les études de neurodéveloppement. Ensemble, ces contributions appuient
le potentiel de l’IRM à très bas champ magnétique pour les études populationnelles pé-
diatriques, en particulier lorsqu’elle sont couplées à des stratégies de reconstruction et de
validation adaptées aux défis spécifiques de l’imagerie cérébrale en développement.
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ABSTRACT

Ultra-low-field (ULF) MRI is emerging as a promising modality in neuroimaging, particularly
in pediatric populations where accessibility and cost are key considerations. However, its
lower image quality presents significant challenges for structural brain segmentation, limiting
its utility in neurodevelopmental studies that require accurate morphometric measurements
over time. This project aims to evaluate whether reconstructing high-resolution pediatric
brain images from synthetic ULF MRI can improve segmentation accuracy and to propose
a longitudinal validation framework capable of assessing whether segmentation results align
with expected developmental trajectories.

To support this goal, a synthetic dataset of 844 pediatric 64mT T1 maps was generated
based on the images from the Baby Connectome Project (BCP), using a Gaussian sampling
approach informed by literature-derived T1 values and further degraded to simulate realis-
tic ULF characteristics. Despite limited data availability, the resulting dataset successfully
replicated key features of ultra-low-field imaging. A 3D U-Net model optimized for this
task was trained to reconstruct high-resolution images from the synthetic ULF inputs. The
reconstructed images showed improved segmentation accuracy for cortical grey matter and
ventricles, with stable performance for white matter and deep grey matter structures.

Beyond segmentation accuracy, a longitudinal validation framework was developed to assess
whether the segmentation outputs follow known neurodevelopmental trajectories. When
applied to both the reconstructed and the synthetic ULF datasets, the framework revealed
that the synthetic ULF data more closely adhered to expected developmental trends, despite
exhibiting slightly lower segmentation accuracy. These findings highlight the importance of
evaluating reconstruction methods not only through voxel-wise metrics, but also in terms of
their impact on longitudinal patterns.

While additional work is needed to generalize these results to real ULF data, including
age-diverse acquisitions and more advanced models architecture, this study demonstrates a
promising approach for improving segmentation in pediatric ULF neuroimaging. The pro-
posed validation framework further provides a valuable tool for assessing the longitudinal
reliability of segmentation outputs and guiding interpretation in growth-based analyses. To-
gether, these contributions support the potential of ULF MRI for population-scale pediatric
imaging, particularly when paired with reconstruction and validation strategies that account
for the challenges of early brain development.
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CHAPTER 1 INTRODUCTION

1.1 Problem Statement

Understanding how the human brain operates remains a central question in neuroscience.
Despite major advances, many aspects of brain development and activity are still not fully
understood. From just a few cells, the brain develops into a highly complex organ responsi-
ble for coordinating thoughts, behaviors, and actions. Understanding this development can
shed light not only on how the brain functions, but also on how and when developmental
abnormalities arise. One way to study these processes is by acquiring precise anatomical in-
formation throughout the different phases of development and tracking how these structures
evolve over time. Collecting this data from a large number of individuals allows for robust
datasets and can lead to more reliable patterns and hypotheses to emerge. Various imaging
modalities can provide such data, but in pediatric populations, the non-invasive nature of the
technology becomes critical, especially when imaging large cohorts. While modalities such
as CT and ultrasound are available, they either expose subjects to ionizing radiation or lack
sufficient soft tissue contrast. In contrast, magnetic resonance imaging (MRI) is non-ionizing
and offers excellent soft tissue contrast, making it particularly well suited for studying the
developing brain. However, conventional MRI remains expensive and logistically demanding.
It requires advanced infrastructure, specialized personnel, and remains largely inaccessible
in low-resource settings. These limitations restrict the diversity of sampled populations and
the scale of longitudinal studies, introducing potential biases and reducing generalizability.

In recent years, portable ultra-low-field (ULF) MRI scanners such as the Hyperfine Swoop [1]
have become commercially available. They are substantially more affordable than standard
MRI units, require minimal installation infrastructure, and are designed for ease of use.
However, this promising technology comes with trade-offs. To achieve portability, they use
a much lower magnetic field strength of 64 mT compared to the 1.5 T or 3T of conventional
clinical scanners, which results in reduced image quality. This in turn limits the amount
of information that can be reliably extracted for neurodevelopmental studies. Despite these
challenges, technology continues to evolve, and new methods are being developed to address
these limitations.

One area of particular interest is image segmentation; the process of delineating different
brain tissues, which then enables the extraction of region-specific metrics. Segmentation can
be done manually by expert radiologists, but this approach is time-consuming and impractical
for large-scale datasets. As a result, automated segmentation tools are commonly used, but
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most have been developed and optimized for adult brains, which differ significantly from
pediatric anatomy. In addition, existing tools often struggle with the low image quality
typical of ULF scans, limiting their reliability in downstream analyses. Improving image
quality prior to segmentation is one strategy to mitigate these limitations. However, with a
wide range of available tools, with their own strengths and weaknesses, it remains difficult to
determine which approaches are most suitable for longitudinal studies, and how segmentation
errors may influence derived metrics over time.

This thesis addresses these challenges by investigating whether the reconstruction of high-
quality images from synthetic ULF scans can enhance segmentation performance in pediatric
brain MRI. It also proposes a longitudinal validation framework to assess how segmentation
quality influences neurodevelopmental trajectory analyses, providing a means to compare
and interpret methods more effectively in long-term studies.

1.2 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides an overview of the
key concepts related to this project, including relevant aspects of brain anatomy, neurode-
velopmental changes during early childhood, and fundamental principles of MRI physics. It
also includes a literature review covering existing segmentation and reconstruction methods
adapted for pediatric and ultra-low-field imaging. In addition, this chapter briefly reviews
neurodevelopmental analysis techniques and discusses existing validation strategies, particu-
larly in the context of longitudinal studies. Chapter 3 begins by outlining the three main
objectives of this project and describes the methodology used to address each one. Chap-
ter 4 presents the results corresponding to each objective. Chapter 5, also structured
around the three objectives, discusses the results in greater detail, highlights the limitations
of the methods used, and proposes potential improvements and future directions. Chapter
6 concludes the thesis with a brief summary of the overall project.
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CHAPTER 2 LITERATURE REVIEW

2.1 Brain Anatomy

The brain is commonly divided into three main components: grey matter, white matter, and
cerebrospinal fluid (CSF). In neurodevelopmental studies [2–4], brain structures are often
grouped according to these categories, as they share common anatomical and functional
characteristics. Grey matter is mostly composed of neuronal cell bodies, dendrites, and
unmyelinated axons [5], and can be divided into two sub-categories; cortical grey matter,
and deep grey matter. Cortical grey matter is located in the outer regions of the brain, such
as the cerebral cortex. In contrast, deep grey matter refers to subcortical regions located
beneath the cortex, including structures such as the thalamus and basal ganglia. While
both are composed of similar tissue types, they are anatomically distinct in location and
organization. White matter, located more centrally, consists mainly of the myelinated axons
of the neurons [6]. CSF, a clear fluid mostly composed of water, fills the space between the
brain and the skull and also occupies internal cavities known as ventricles. An overview
of the anatomical positions of all four brain structures and the composition of a neuron is
provided in Figure 2.1.

2.2 Neurodevelopment

The human brain undergoes major structural changes during early development. By the age
of two, it reaches approximately 80% of its adult volume and around 90% by age five [3, 7].
This growth, however, is not uniform across all brain regions. As illustrated in Figure 2.2, grey
matter and white matter follow distinct developmental trajectories, each peaking at different
stages. Grey matter volume increases rapidly during early childhood, after which it gradually
declines. In contrast, white matter volume continues to grow throughout adolescence and
into midlife [2].

Other morphometric features also follow unique developmental patterns. Surface area ex-
pands rapidly during early childhood, following a trajectory similar to grey matter volume,
whereas cortical thickness peaks much earlier, around two years of age, and then steadily
decreases as white matter continues to expand [7]. These overlapping but non-identical
trajectories underscore the importance of considering multiple morphometric metrics when
studying brain development.
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Figure adapted from Servier Medical Art https://smart.servier.com/, licensed under CC BY 4.0.

Figure 2.1 Coronal brain section showing cortical grey matter, white matter, deep grey matter
structures, and ventricles. On the left, an illustration depicts the composition of a neuron.

Within the deep grey matter, growth is also heterogeneous across structures during child-
hood. Some regions, such as the pallidum, show rapid volumetric increases shortly after
birth, followed by a pronounced decline. Others, like the amygdala, grow more slowly and
decrease at a slower rate. The putamen, caudate, thalamus, and hippocampus follow similar
developmental patterns, with fast growth after birth followed by a gradual decline, though
the timing and rate differ slightly across structures [8].

In addition to volume changes, tissue properties also evolve over time. Among these, myeli-
nation is particularly relevant to this project. It progresses rapidly in the first two years
of life [9–12] and has a major influence on how brain tissue appears on MRI. These mi-
crostructural changes contribute to the evolving appearance of brain images over time and
are essential to consider in studies using imaging-based markers of development. Overall,
early brain development is a highly dynamic process in which different tissues and struc-
tures mature at their own pace. This variability must be considered when analyzing growth
trajectories or interpreting developmental brain images.

https://smart.servier.com/
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Figure adapted from [7]

Figure 2.2 Developmental trajectories of key brain metrics from birth to adulthood, expressed
as percentage of maximum change. MRI images illustrate developmental stages and their
corresponding percentages of total brain volume.

2.2.1 Growth Curves

Given these multiple and complex changes, and the importance of studying brain growth,
not only from a research perspective to better understand the developing brain, but also from
a clinical perspective to help diagnose or monitor neurological conditions, various techniques
have been developed to track brain development over time. One commonly used approach
is the creation of growth curves [2,8,13–15], which makes it possible to evaluate whether an
individual is following a typical developmental trajectory or showing significant deviations
that may require further investigation. These charts can be applied to a range of metrics,
including weight, height, and head circumference, as well as brain-specific measures such as
total brain volume [16].

A widely used reference for brain growth is Brain charts for the human lifespan [2], which
provides normative centiles and rates of change across the lifespan and identifies the timing
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of developmental milestones. Another study by Alex et al. [8] focuses on early childhood
and aggregates multi-cohort data from birth to six years to model subcortical volumes and
their associations with demographic and cognitive factors. As with most growth curve stud-
ies, these analyses are based on large, high-quality datasets and primarily emphasize cross-
sectional rather than longitudinal analysis. Furthermore, they do not directly address the
potential impact of image processing choices, such as segmentation pipelines, on the derived
developmental trajectories.

Fitting and Modeling Approaches

An important aspect of growth curves is the type of fit used to model the data, as it directly
impacts the shape of the curve and any analysis derived from it. The choice of fitting
method can influence how developmental trends are interpreted, particularly when identifying
deviations or estimating normative trajectories. A variety of fitting approaches are used in
neurodevelopmental studies, depending on the nature of the data and the research objectives.

These methods can be broadly grouped into parametric, semi-parametric, and non-parametric
models. Parametric models assume a specific functional form (e.g., polynomial, exponential),
which makes them easier to interpret but potentially less flexible. Semi-parametric models
represent a balance between maintaining some structure in the curve shape and allowing
flexibility. Non-parametric models offer maximum flexibility but may require larger sample
sizes and are more sensitive to noise. Semi-parametric models have generally been shown
to perform best for brain development data. This is due to their ability to capture the
complex, non-linear trajectories typical of neurodevelopment, while still providing stable
estimates when sample sizes are small or data is unevenly distributed [17]. Large studies such
as [2,14] employed a Generalized Additive Model for Location, Scale and Shape (GAMLSS)
for this purpose. Simplified versions, such as Generalized Additive Mixed Model (GAMM)
or Generalized Additive Model (GAM) can also produce robust results, as demonstrated
respectively by [15] and [18].

2.3 Magnetic Resonance Imaging

To monitor brain anatomy and its changes over time with accuracy, magnetic resonance
imaging (MRI) is widely regarded as the modality of choice for generating large datasets
suitable for longitudinal neurodevelopmental studies. Its ability to provide excellent soft
tissue contrast without the use of ionizing radiation makes it particularly advantageous for
pediatric populations. The physics underlying MRI is highly complex, therefore a simplified
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overview will be presented in this section to introduce the key concepts that will be used
throughout this thesis.

2.3.1 MRI Basics

Magnetic Resonance Imaging (MRI) in medical applications leverages the abundance of hy-
drogen protons in biological tissues, and their intrinsic property to posses a spin. When a
subject is placed in the scanner, the application of an external magnetic field (B0) tends to
align the spins of hydrogen protons with the direction of the field, resulting in the formation
of a net magnetization vector. A radiofrequency (RF) pulse tuned to the resonance frequency
of these spins (the Larmor frequency) is then applied perpendicular to the magnetic field,
tipping the net magnetization away from its alignment. This process, illustrated in Figure
2.3, produces the magnetic resonance effect: as the magnetization relaxes back toward equi-
librium, it induces a change in magnetic flux, which generates an electromotive force detected
by a receiver coil tuned to the same frequency [19].

The amplitude of the resulting signal is proportional to the strength of the external magnetic
field, as stronger fields induce a larger net magnetization. At lower magnetic field strengths,
reduced magnetization leads to a lower signal-to-noise ratio (SNR), resulting in noisier im-
ages and decreased overall image quality [20]. Spatial localization of the signal is achieved by
applying controlled magnetic field gradients, which cause systematic variations in spin fre-
quency and phase. Using this information, the signal can be reconstructed into a volumetric
image of the subject [21].

2.3.2 Image Constrast

Building on the basic principles of signal generation, MRI enables the acquisition of different
image contrasts by exploiting the fact that the resonance properties of protons vary according
to the molecular environment in which they are bound. These differences can be quantified
by measuring the time it takes for the net magnetization to return toward equilibrium after
an RF excitation pulse. Two main relaxation time constants are defined: the longitudinal
relaxation time (T1) and the transverse relaxation time (T2). T1 corresponds to the time
required for the longitudinal component of the magnetization to recover to approximately
63% of its equilibrium value, whereas T2 corresponds to the time required for the transverse
component to decay to about 37% from its initial value [19]. These relaxation times vary
across tissue types and depend strongly on the magnetic field strength.

The measured MRI signal, however, is not determined by relaxation time alone. It is heavily
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Figure adapted from [22], licensed under CC BY.

Figure 2.3 (A) Structure of the hydrogen molecule. (B) Alignment of proton spins with and
without an external magnetic field. (C) Tipping phenomenon induced by a radiofrequency
pulse.

influenced by acquisition parameters such as the repetition time (TR) and echo time (TE),
as well as by scanner hardware, field inhomogeneities, and the type of RF coil used [21]. As a
result, voxel intensity values in MRI images can be difficult to reproduce consistently, even in
the same subject. For the purposes of this study, the T1-weighted (T1w) contrast acquisition
sequence is particularly relevant. This sequence uses specific TR and TE parameters to
enhance the contribution of the T1 signal to the final image. T1w imaging is commonly used
as the contrast of choice for structural imaging of the brain due to its high tissue contrast and
anatomical detail [23]. However, in young infants, the ongoing process of myelin maturation
alters the relaxation properties of brain tissues, reducing the T1w contrast between white
and gray matter. As a result, T2w imaging often provides better differentiation of tissue
types than T1w imaging in subjects under six months of age. [24].

2.3.3 Quantitative MRI

As outlined above, conventional MRI images such as T1w scans are qualitative in nature
and therefore difficult to reproduce. A growing field of research, known as quantitative
MRI (qMRI), concentrates on leveraging the link between the measured MRI signal and the
biophysical characteristics of the tissues [25]. This field is particularly relevant to the present
study, as it enables the generation of more reproducible MRI images. Within this framework,
a T1 map can be viewed as the quantitative equivalent of a T1w image. By acquiring multiple
T1w images with varying acquisition parameters, T1 values can be fitted and mapped into
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an image [26]. This process minimizes the undesired variability of the T1w images, leaving
mostly the intrinsic T1 values of the tissues [27]. An example of a T1w image with its derived
T1 map is shown in Figure 2.4.

Figure reproduced from https://qmrlab.org/t1_book/01/ir_blog/IR_DataFitting.html

Figure 2.4 Example of a structural T1w MR image and its corresponding quantitative T1
map. The T1w image represents one of the acquired images used for the fitting process,
shown here with an inversion time of 1030 ms. The color bar indicates T1 values of the T1
map in milliseconds.

2.4 Segmentation

Another central aspect of this project is the segmentation of MRI images. In this context,
segmentation is used to delineate the boundaries between different brain structures, such as
white matter, grey matter, or smaller regions like the hippocampus. Manual segmentation,
while considered the gold standard, requires the expertise of a trained radiologist and is
extremely time-consuming, particularly for large datasets. This limitation has motivated
the development of numerous automatic segmentation methods [28], which can generally be
grouped into three main categories: atlas-based, voxel-based, and deep learning [29].

Most existing brain segmentation methods were developed for adult brains and often perform
poorly on pediatric data because of differences in brain anatomy and tissue properties dur-

https://qmrlab.org/t1_book/01/ir_blog/IR_DataFitting.html
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ing development [30, 31]. Pediatric brains introduce additional challenges, including smaller
structures that are harder to identify and lower contrast between white and grey matter in
early childhood. The use of ULF MRI introduces additional complexity, with its lower image
quality and distinct signal characteristics. Only a few methods have begun to address these
challenges, with deep-learning approaches generally reporting the best performance [32, 33].
The specific limitations associated with each approach are discussed in the following sections.
Given the focus of this project on ULF pediatric segmentation, atlas-based and voxel-based
methods are reviewed briefly, with particular emphasis placed on deep learning approaches.

2.4.1 Voxel-Based and Atlas-Based

The first category is voxel-based segmentation, where each voxel is assigned a probability
of belonging to a tissue class based on its intensity, and often incorporating spatial priors.
Most widely used voxel-based pipelines, such as ANTs Atropos [34] and FSL FAST [35],
were developed for adult brains and generalize poorly to pediatric populations [36], as the
underlying intensity models may not accurately reflect the changing signal characteristics
seen in younger populations. While these methods are sometimes simpler to implement and
do not require large training datasets, their performance deteriorates further on ultra-low-
field (ULF) images, where lower SNR and increased artefacts make tissue classes less distinct
and segmentation less reliable.

The second category, atlas-based segmentation, relies on a reference atlas, which is a tem-
plate brain annotated with labeled regions of interest representing the average anatomy of a
particular population. The subject image is registered to the atlas, and the anatomical labels
are then propagated to the subject space to produce the segmentation [37]. In adult cohorts,
atlas-based pipelines often employ multi-atlas registration with label fusion to derive robust
segmentations, as implemented in AutoSeg [38]. However, these methods typically do not
translate well directly to pediatric data, as the rapid anatomical changes during early brain
development necessitate age-specific atlases covering small age ranges to maintain accuracy.
To address this limitation, pediatric pipelines such as dHCP [39,40], Infant Free Surfer [36],
ChildMetrix [41] and MANTiS [42] incorporate age-specific atlases and use a combination of
atlas-based and voxel-based approaches to address more effectively the unique challenges of
developing brains. However, even with pediatric pipelines, atlas-based segmentation meth-
ods are limited by their reduced flexibility in the presence of anatomical anomalies or when
the subject’s brain diverges from the atlas [37]. These challenges increase with ULF images,
where poor image quality can result in propagated labels reflecting the atlas more than the
individual subject, reducing segmentation accuracy.
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2.4.2 Deep Learning Methods

The third approach is based on deep learning models, which have become increasingly com-
mon for segmentation in recent years. These methods typically rely on convolutional neural
networks (CNNs), a type of deep learning architecture designed for image analysis [43]. A
simplified overview of how a CNN works is shown in Figure 2.5. In short, convolution layers
first detect image patterns such as edges or textures. Pooling layers then reduce the size
of the resulting feature maps, making the model less sensitive to small variations. When
combined, these layers enable the network to learn more complex features that can be used
for segmentation. As a result, deep learning–based segmentation methods go beyond simple
voxel intensities and are able to capture sophisticated anatomical patterns. When trained
with realistic data augmentation, they can be robust to noise and variations in image con-
trast [44]. However, their performance often declines when applied to data that differ from
the domain used during training.

Figure 2.5 Schematic representation of the functioning of a Convolutional Neural Network.

Several deep learning approaches have been developed specifically for pediatric brain seg-
mentation [45–47]. Notable examples include iBEAT [48] and BIBSNet [49], which have
demonstrated strong performances on high-field pediatric datasets by leveraging large, age-
specific training sets and incorporating preprocessing steps and model architectures designed
for early brain anatomy. These methods, however, are generally limited in their applicability
to ULF MRI, as they have not been trained on images acquired at these lower magnetic field
strengths. While recent work has begun to incorporate ULF images into training [50, 51],
these pipelines are typically optimized for adult populations, which limits their ability to
generalize to the unique characteristics of pediatric ULF data.
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Despite these limitations, deep learning methods remain the most effective approach for
segmenting ULF MRI images, as they can be highly specialized when trained on data that
closely match the target acquisition characteristics. A major constraint, however, is their
reliance on large, well-labeled datasets that closely resemble the images the pipeline aims
to segment, which are particularly difficult to obtain at ultra-low field strengths. ULF MRI
has only recently gained popularity, resulting in much smaller available datasets compared
to more commonly used magnetic field strengths such as 1.5T or 3T [52]. Moreover, the
reduced image quality at ultra-low field makes manual segmentation more challenging and
less reliable. To address this lack of data, some pipelines have adopted the strategy of
generating synthetic images for training, which is the approach taken in this project. The
use of synthetic data as a form of data augmentation has already shown promising results in
many pipelines, both for brain imaging and for other types of applications [53–55].

The algorithm SynthSeg [56] illustrates these principles well. Rather than relying on con-
ventional training datasets, it generates a large number of synthetic images directly from
label maps, with varying image contrast, resolution, field of view, and anatomical character-
istics. These synthetic images are then highly deformed to increase the model’s robustness to
anatomical variability and scanner differences. This training strategy allows SynthSeg to gen-
eralize well across diverse imaging conditions, including pediatric datasets, which motivated
its selection for specific steps in this project. However, since the model is not specifically
trained on pediatric or ULF images, its performance on directly ULF pediatric data remains
suboptimal. This limitation, present on most available segmentation methods, leads to the
need for an additional step to improve the quality of ULF images before using existing seg-
mentation methods, which is the goal of the reconstruction approach described in the next
section.

2.5 Reconstruction

Recent progress in deep learning, particularly in image-based applications, has further facil-
itated the generation of images in medical imaging. Many methods have been developed to
reconstruct higher-field MRI images either to compensate for the lack of available data or to
enhance the quality of existing data [57,58]. Unlike deep learning models used for segmenta-
tion, which are classification tasks that assign a discrete label to each voxel, models for image
reconstruction are formulated as regression tasks that estimate the continuous intensity at
each voxel. Several generative model frameworks are well suited for this task, and the most
common are summarized below.

Generative Adversarial Networks (GANs) consist of two models trained jointly: a generator,
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which produces synthetic images, and a discriminator, which learns to distinguish real images
from generated ones. This adversarial loop iteratively improves the realism of the generated
images. GANs are widely used for image generation but can be unstable during training,
making them more complex to use than simpler models [59]. Diffusion models represent
another popular approach. They generate images by learning to progressively remove noise,
starting from pure noise. They can produce highly detailed images but are computationally
demanding to train and use at inference [60]. Variational Autoencoders (VAEs) learn a
latent space representation of the input images and can generate new images by sampling
from this distribution. While VAEs are generally easier to train and useful for modeling
the variability of the data, their outputs can sometimes be blurrier than those generated by
GANs or diffusion models [61].

Finally, the U-Net, a CNN architecture, is among the most widely used models for image
segmentation because of its flexibility and simplicity. Although initially designed for seg-
mentation tasks, it can also be effectively adapted for image generation. As shown in Figure
2.6, it follows a U-shaped encoder–decoder design with skip connections between the two
paths. These skip connections allow the model to recover fine details lost during the down-
sampling process in the encoder, making the U-Net particularly effective at preserving global
trends while maintaining local details [62]. U-Nets are often used as the backbone within
the generative frameworks discussed above or as standalone models. They offer a simple yet
flexible architecture that can be adapted and refined to improve performance, making them
well suited for the reconstruction task addressed in this project.

Reconstruction pipelines developed to approximate images of higher MRI field strength vary
widely in their complexity and objectives. Some methods focus only on super-resolution
[63, 64], which essentially increases the resolution of the input images without addressing
other characteristics of the images. While this approach is simpler, it overlooks important
aspects of MRI physics. Lower-field MRI images typically exhibit lower SNR, increased
artifacts, and altered intensity distributions, as magnetic field strength directly influences
the measured signal. Since images acquired at lower magnetic field strengths are not simply
low-resolution versions of higher-field images, the potential of these approaches to ultimately
generalize to real ULF data is limited. Other methods rely on generative models to learn
mappings between images acquired at different field strengths, such as LoHiResGAN [51]
who employs a GAN trained on paired 64 mT– 3T adult data to synthesize high-field quality
images from ultra-low-field inputs. These methods attempt to correct differences in contrast
and noise properties but typically require access to large datasets in which each subject has
been scanned at both field strengths, a type of data that is difficult and costly to acquire.
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Figure reproduced from Mehrdad Yazdani, Wikimedia Commons,
https://commons.wikimedia.org/wiki/File:Example_architecture_of_U-Net_for_producing_k_

256-by-256_image_masks_for_a_256-by-256_RGB_image.png, licensed under CC BY-SA 4.0.

Figure 2.6 U-Net architecture showing the downsampling and upsampling paths with skip
connections.

The SynthSR algorithm proposed by Iglesias et al. [65] addresses these limitations by gen-
erating synthetic data that accounts for MRI characteristics beyond differences in spatial
resolution. The synthetic images are created with the basis of the intrinsic values of the
target image contrast, thereby eliminating the need for paired datasets. It has been shown
to reconstruct more realistic images across different types of contrasts and to improve seg-
mentation accuracy when applied to adult ULF data [32]. For these reasons, this algorithm
was chosen as the foundation for the present study.

2.6 Validation Methods

Validating the reliability of the processing methods used is a critical step in neuroimaging
studies. This section focuses on three types of validation implemented in this project. The
first is image reconstruction validation, which ensures that the reconstructed images accu-
rately represent those they are intended to simulate. The second is segmentation validation;
since all analyses rely on metrics derived from segmentation, it is essential to understand
both the accuracy and the limitations of the method employed. Finally, longitudinal valida-
tion evaluates the extent to which the processing pipeline affects the final results and their
interpretation, a necessary component in longitudinal studies.

https://commons.wikimedia.org/wiki/File:Example_architecture_of_U-Net_for_producing_k_256-by-256_image_masks_for_a_256-by-256_RGB_image.png
https://commons.wikimedia.org/wiki/File:Example_architecture_of_U-Net_for_producing_k_256-by-256_image_masks_for_a_256-by-256_RGB_image.png
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2.6.1 Reconstructed Images Validation

As mentioned by [66], there is currently no standardized procedure to evaluate the quality and
accuracy of reconstructed neuroimages. For images generated using deep learning approaches,
metric such as mean squared error (MSE) is often used during training to guide the model
toward a more accurate representation of the images [67]. However, this metric only assess
voxel-level intensity differences and does not capture the overall fidelity of the reconstructed
image. Complementary metrics such as the structural similarity index (SSIM) or the peak
signal-to-noise ratio (PSNR), as used by [64], can also be employed to evaluate perceived
image quality or key MRI characteristics such as SNR.

The validation of deep learning models can be performed in several ways but typically involves
the use of both a validation set and a test set. The validation set is used to fine-tune the
model’s hyperparameters, while the test set, which contains data never seen during training,
is used for the final evaluation. This setup allows the assessment of the model’s ability
to generalize to unseen data. In practice, the dataset can be split directly into training,
validation, and test sets. However, this approach may be suboptimal for limited datasets
as it reduces the number of samples available for training. In such cases, cross-validation
is often preferred [68]. This technique divides the dataset into k folds and trains the model
k times, each time using a different fold as the validation set and the remaining k–1 folds
for training. The final performance metric is obtained by averaging the results across all
folds, providing a more robust estimate than a single train–validation split. This ensures
that validation is consistently performed on unseen data while maximizing the use of the
entire dataset. The quality of reconstructed images is often further assessed by examining
their impact on downstream tasks, such as segmentation accuracy.

2.6.2 Segmentation Validation

Several segmentation validation metrics exist to compare the predicted segmentation to the
ground truth, either from the method itself or from the reconstructed image. Some metrics
are boundary-based, such as the Hausdorff Distance, which measures the maximum distance
from a point on the predicted boundary to the closest point on the ground truth boundary.
However, overlap-based metrics are more commonly used [69]. The Jaccard Index, also
known as the Intersection over Union (IoU), measures the ratio between the intersection and
the union of the predicted and ground truth labels. The most widely used metric is the
Dice–Sørensen coefficient [70], commonly referred to as the Dice Score. This metric ranges
from 0 to 1, where 0 indicates no overlap and 1 indicates a perfect match, and is computed
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as follows:
Dice = 2|A ∩ B|

|A| + |B|

where A is the set of predicted voxels and B is the set of ground truth voxels. As it is
both widely adopted and easily interpretable, the Dice score is a strong metric for comparing
methods across studies.

2.6.3 Longitudinal Validation

The metrics presented in the previous sections evaluate each image independently and there-
fore do not capture longitudinal changes that may occur when a subject is scanned at multiple
time points. Yet, assessing the impact of image processing on longitudinal measures is essen-
tial to neurodevelopment studies, as it provides an understanding of the method’s reliability
over time. This type of evaluation can also serve as a basis for comparing different methods
and determining which are best suited for studies that rely on repeated measurements. To
my knowledge, very few validation approaches address these challenges, and those that do
are not widely used in the field. Most studies focus on evaluating the results in a cross-
sectional manner, as [71] who uses a test-retest evaluation. While this approach is useful for
confirming that the method is consistent when no biological change is expected, it does not
assess whether the changes measured by the method reflect true longitudinal patterns. Other
methods [72,73] aim to improve consistency across time points through joint registration and
segmentation, but they do so without a clear validation framework to support their longitu-
dinal reliability. Alternatively, a study by Long et al. [74] assesses the biological plausibility
of longitudinal metrics using spaghetti plots, providing a qualitative overview of individual
trajectories. However, this approach lacks quantitative measures of deviation at the subject
level, limiting its ability to capture subtle inconsistencies in longitudinal accuracy.

2.7 Research Gap

Ultra-low-field (ULF) MRI holds great promise for imaging large pediatric populations, mak-
ing it a practical and scalable choice for neurodevelopmental studies. However, its lower
image quality poses challenges for segmentation accuracy, which is essential for extracting
brain volumes and deriving metrics to track brain growth. Although progress has been made,
most existing segmentation methods are not optimized for the combined challenges of pe-
diatric brain anatomy and the unique characteristics of ULF MRI, thereby limiting their
performance. Furthermore, very few frameworks address the need to evaluate segmentation
methods from a longitudinal perspective and ensure that their outputs align with expected
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developmental trajectories, an essential consideration as segmentation approaches continue
to be developed and applied in neurodevelopmental studies. These considerations form the
foundation of my research objective, which is to develop a method for pediatric brain volume
extraction from ULF MRI with a validation based on neurodevelopmental growth trajecto-
ries.



18

CHAPTER 3 METHODOLOGY

A review of the literature showed that improvements in ultra-low-field (ULF) brain pediatric
segmentation methods are still needed to allow for accurate analysis. One way to improve
segmentation accuracy is to first enhance the quality of the images before applying the
segmentation method. This project adapts the framework proposed by Iglesias et al. [65] to
the pediatric population, using a deep learning approach on synthetic images to reconstruct
higher quality images prior to segmentation, and extends it with a novel validation method
based on neurodevelopmental growth trajectories. To achieve this goal, the project was
divided into three sub-objectives:

• O1 : Generate a synthetic ultra-low-field pediatric brain MRI dataset

• O2 : Develop and validate a reconstruction method for high-field images from the
synthetic ultra-low-field dataset

• O3 : Create a longitudinal validation framework based on neurodevelopmental growth
trajectories

A summary of the steps included in each sub-objective and the overall project workflow is
shown in Figure 3.1.

Figure 3.1 Overview of the main steps of the project, organized according to the three ob-
jectives.
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3.1 O1 : Generation of a Synthetic Dataset

The creation of the synthetic ULF dataset lays the foundation for the rest of the project
as it will be used all throughout the second and third objectives. With limited ULF data
available, a choice was made to create a dataset of synthetic 64 mT T1 map images, as the
values of quantitative MRI images could be more easily adapted to the needs of the task.
However, a similar approach could be used with a different contrast, provided the availability
of more data. An overview of the steps taken in the generation of the dataset are shown in
Figure 3.2.

Figure 3.2 Workflow diagram illustrating the main steps of Objective 1, shown for a single
image and applied consistently across the entire dataset.

The brain morphometrics of multiple subjects are extracted from a real qualitative T1w
dataset by segmenting their images. T1 values are then extracted from three public stud-
ies and applied to these segmentations in order to create a synthetic high-field T1 map
dataset. This dataset is then degraded to a 64mT field strength. Although magnetic field
strength affects several factors of image formation, the degradation of the images was cen-
tered around three key factors: spatial resolution, signal-to-noise ratio (SNR), and field
strength–dependent variations in T1 relaxation times. The details of these steps are ex-
plained in the following section.

3.1.1 Data

The Baby Connectome Project (BCP) dataset [75] was chosen as the high-field T1w dataset
used in this project to generate the synthetic images and subsequently reconstruct them
into high-field images. The images were acquired on a 3T Siemens Prisma MRI scanner for
371 subjects across multiple time points, covering an age range from 2 weeks to 81 months.



20

The majority of scans were obtained before 24 months of age. As part of this project, all
images underwent quality control to assess the presence of artefacts or abnormalities. 40
images were removed from the initial dataset after this inspection, leaving the total number
of images available at 903. A summary of the characteristics of this dataset can be found in
Table 3.1.

Despite the changing contrast in infant brain MRI, in this study, only T1w images were used
across all age groups. This choice was made to ensure consistency across sessions, as T1w
typically show better contrast for segmentation for subjects older than 6 months old [24], and
also to reduce the risk of registration errors and to focus the evaluation on the performance
on the training pipeline instead of these potentially introduced biases.

Table 3.1 Characteristics of the Baby Connectome Project (BCP) dataset

BCP dataset

Number of subjects 371

Age range 2 weeks – 81 months

Number of images removed with QC 40

Number of images left after QC 903

Average number of sessions per subject 2.53

Average age of sessions 17 months

% Female 51.88 %

% Male 47.85 %

A T1w image acquired from a 2-month-old infant at Sainte-Justine’s hospital, in Montréal,
Canada, with the 64mT MRI Swoop scanner from Hyperfine [1] was also used as a reference
for the noise found in MRI images at this field strength. The details of the acquisition
protocol used can be found in Appendice A.

In order to create a T1 map dataset, data from three public studies were combined to derive
T1 values across the entire age range: (i) the first dataset [76] contained the T1 values for the
entire age range but only for a subset of the regions of interest, (ii) the second dataset [77]
contained the images in which the values for all the regions of interest could be extracted but
covered only part of the age range, (iii) the third study [9] presented the T1 values for the
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cortical maturation in infants up to 6 years old. Each study contributed a different portion
of the data and, together with some extrapolation described in more detail in Section 3.1.3,
provided the necessary T1 values. A summary of the regions and age ranges corresponding
to each study is presented in Table 3.2.

Table 3.2 Summary of the data available from the three datasets used for T1 extrapolation
within the selected age range for this study.

Dataset i ii iii

Age Range 3 months–6 years 3–6 years 1–6 years

Number of Subjects 94 5 215

Data Type Values Images Values

Regions Available Brainstem,
Thalamus,

Putamen, White
Matter, Caudate

Brainstem,
Thalamus,

Putamen, White
Matter, Caudate,
CSF, Ventricles,

Ventral DC,
Pallidum,

Hippocampus,
Amygdala,

Accumbens Area

Cortex

3.1.2 Image Segmentation

Segmentation of the BCP dataset is the first step necessary in generating the synthetic
dataset. The resulting segmentation labels are also used later on as the ground truths in the
analysis of the validation method. The segmentation was performed on all 903 images using
SynthSeg [56], followed by quality control on all outputs. Eight segmentations were excluded
due to major errors, and another eight were manually corrected to address minor errors after
the automatic segmentation. Segmentation was unsuccessful for subjects aged 2 months
and younger because of significant anatomical differences at this age. Other segmentation
methods [39,78] were tested on these images but produced subpar results, so these cases were
ultimately excluded from the dataset. After curation of the images and their corresponding
segmentations, the total number of images was reduced from 903 to 844.
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3.1.3 Synthetic Image Generation Process

With the initial segmentations completed and curated, the next step was the creation of
the synthetic images. The method used for generating these images was adapted from the
method proposed by the SynthSR algorithm [65]. The concept behind the approach resembles
a simplified version of a gaussian mixture model. The voxel intensities in each label in the
segmented image are assumed to follow their own gaussian distribution. Therefore, a mean
and standard deviation are attributed to each label and following this gaussian distribution,
random values are assigned to each voxel in the segmented image. This ensures the preser-
vation of the specific morphological characteristics of the subject’s brain, while allocating
intensity values closer to the aimed image contrast. The intensity ranges were extrapolated
from T1 values reported in the literature, then adjusted to simulate the expected T1 values at
lower magnetic field strengths. After applying these values to the segmentation, the images
are degraded to match the lower resolution and signal-to-noise (SNR) ratio typically found
in 64mT images, resulting in synthetic ULF images that depict more accurately what would
be found in real acquisitions. Further details of these steps are provided in the following
sections.

T1 Values Extrapolation

As T1 values change with age in developing children and ULF images were not available
for every age range, it was not possible to simply extract T1 values from a real ULF image
and apply their mean and standard deviation to the Gaussian model to generate the entire
dataset. In addition, voxel intensity values of T1w images are qualitative and do not represent
the intrinsic properties of the tissues, making it impossible to extract values directly from the
BCP dataset. Instead, quantitative T1 maps, which more closely reflect the required tissue
properties, were chosen as the reference contrast for creating the synthetic ULF dataset.
Although this method could be adapted to other contrasts if ULF images of those contrasts
were available, for this project the required values had to be extrapolated from the literature
to construct the dataset.

The dataset 1 [76] directly contained the T1 values for the entire age range for a subset of the
regions of interest. The dataset 2 [77], included 73 subjects aged 3 to 17 years, with 5 subjects
falling within the target age range of this study (3 to 6 years). This dataset contained the
full brain images and was segmented using the same method described in Section 3.1.2. The
third study [9] contained the information for the region of the cortex.

In order to fill the missing information, a two-step smoothing fit was first applied to the
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data of each label to model the developmental trajectories. A sliding window was applied
to reduce noise, followed by penalized B-spline smoothing using Scipy’s Univariate Spline
function [79]. The labels present in the two datasets were then evaluated to confirm that
similar regions would show similar age-related trends across datasets. They were found to
have similar intensities, confirming that assumption. Labels of certain deep grey matter
regions (ventral DC, pallidum, hippocampus, amygdala, accumbens area) were absent from
the dataset containing the full age range. A Pearson coefficient test found a perfect correlation
between the spline-based growth curves of the three grey matter regions present. One region
was then selected as a representative to model the trajectories for the missing deep grey
matter values. Although the regions may approximately follow similar trends, their absolute
values can differ. To account for this, an offset was computed between the two available
datasets and added to the fitted values for the missing regions.The third study was used to
directly derive the values for the cortex for the target age range and fit a univariate spline.

Figure 3.3 shows the final trajectories of all the regions modeled in the synthetic images for
the entire age range. A change in contrast between white and grey matter is visible around
3 months, consistent with the findings of [7] that T1w images can appear isointense between
3 and 6 months postnatal age.

Figure 3.3 Fitted T1 values for the pediatric brain across time, derived from literature data.
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Intra-Tissue Variability

As a lot of variability is present even among the same tissue type in a real brain, modeling this
variability aids the realism of the synthetic images. The standard deviation of these values
is an indicator of the amount of variability found in each label and can then be imputed into
the gaussian distribution.

As only dataset 2 [77] contained the full images, the standard deviation of voxel intensities
within each label was computed across its five subjects in the desired age range. The mean
of these five standard deviations was computed and found to be relatively constant with age.
The age-specific mean and the standard deviation values were then used to generate synthetic
images by assigning voxel intensities sampled from the corresponding Gaussian distributions
to all the segmentations of the BCP dataset.

T1 Relation to B0

T1 values are intrinsically linked to the strength of B0, and this dependence must be taken
into account when defining voxel values for synthetic images at a specific field strength. The
T1 values extrapolated in the previous section correspond to a B0 of 3T. A relationship
therefore needs to be applied to adjust these values to match a B0 field of 64mT. This
relationship can be modeled by the following equation described in [80]:

T1 = C · (γB0)β (3.1)

Where γ is the gyromagnetic constant, and C and β are constants approximated using values
from [81]. The computed constants for each region can be found in Table 3.3. Starting from
the T1 values across ages at a field strength of 3T, the scaling ratio was applied to estimate
the corresponding T1 values at 64 mT and applied on the synthetic dataset. As T1 values
were unavailable for certain deep grey matter regions, another ratio between their known
intensity values and those of regions with defined constants was applied to the scaling ratio.

Noise Addition

To better simulate one of the essential characteristics of real MRI images, their signal-to-
noise ratio (SNR), noise was added to the synthetic images to approximate the SNR typically
observed at ultra-low field strengths. The noise level in an ULF image was estimated by
computing the standard deviation within a background region of an image acquired with
the Hyperfine 64mT scanner. The same procedure was then applied to each image in the
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Table 3.3 T1 relaxation time as a function of magnetic field strength for each ROI

ROIs T1 model

Caudate nucleus T1 = 0.954(B0)0.325

Globus pallidus T1 = 0.664(B0)0.367

Putamen T1 = 0.855(B0)0.352

Brainstem T1 = 0.459(B0)0.508

Thalamus T1 = 0.817(B0)0.357

White matter T1 = 0.583(B0)0.376

Cerebral cortex T1 = 0.857(B0)0.376

Cerebellum WM T1 = 0.583(B0)0.376

Cerebellum cortex T1 = 0.857(B0)0.376

Hippocampus T1 = 0.817(B0)0.357

Amygdala T1 = 0.817(B0)0.357

Accumbens area T1 = 0.817(B0)0.357

Ventral DC T1 = 0.817(B0)0.357

Ventricles T1 = 4.322(B0)−0.006

CSF T1 = 4.322(B0)−0.006

synthetic BCP dataset. To replicate the noise expected at 64mT, Gaussian noise was added
to the synthetic images based on the difference in background standard deviation between
the two datasets.

However, unlike qualitative MRI sequences such as T1w images, T1 map images do not
directly reflect raw signal intensity. Instead, their voxel intensities represent estimated T1
relaxation times derived from multiple acquisitions. As such, the metric referred to as SNR in
this thesis is not a true signal-to-noise ratio, but rather a derived approximation, computed
in a way that mirrors conventional SNR estimation (Equation 3.2). For each of the 15 regions
of interest, the mean T1 value within the region was divided by the standard deviation of a
uniform region, used as an estimate of the image’s noise level. Given that T1 maps reflect
relaxation properties rather than signal amplitude, this derived SNR cannot be directly
compared to that of a 64mT T1w image. Instead, the derived SNR values from the synthetic
64mT T1 maps were compared to those of the available 3T T1 maps to assess whether the
overall range of values was consistent with lower field strength and whether the expected
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variation across regions was preserved.

SNR = µROI

σbackground
(3.2)

Downsampling

The resolution of the synthetic image was downsampled using linear interpolation to match
the typical resolution of images acquired with the Hyperfine scanner (2.0 x 2.0 x 2.0 mm). The
image was then resampled back to its original resolution to facilitate the remaining processing
steps, while preserving the loss of information introduced during the downsampling process.

3.1.4 Visual Validation

In the absence of access to real 64mT T1 map MRI images, a qualitative evaluation of the
synthetic images was performed by visually comparing them to a real ULF T1 map image.
Padormo et al. [82] presented a newborn T1 map image acquired with a 64mT Hyperfine
scanner, which was used as a reference for this comparison. The visual assessment focused
on prominent image characteristics, including the intensity of major structures, the ability
to delineate boundaries between white and grey matter, levels of noise, blurring and general
visual resemblance.

3.2 O2 : Reconstruction of High-Field T1w Images from Synthetic Ultra-Low-
Field Images

This second objective focuses on reconstructing the synthetic dataset created in the first
objective to high-resolution T1w images.

First, the synthetic dataset and the BCP dataset are preprocessed and used to train a 3D U-
Net model. The validation of the model is achieved with a cross-validation, which enables the
reconstruction and evaluation of the whole dataset. Segmentations are performed and serve,
in this objective, as the basis for the evaluation of the reconstruction. A visual representation
of the workflow is shown in Figure 3.4.

3.2.1 Pre-processing

Prior to training the U-Net model, a few pre-processing steps were applied to the images to
optimize model performance. The ground truth images, consisting of the initial BCP dataset,
were skullstripped by applying their corresponding segmentation masks to ensure the images
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Figure 3.4 Workflow diagram illustrating the main steps of Objective 2.

used in training contained exactly the same structures. The synthetic dataset, which was
generated from these same segmentations, by design did not contain the skull.

Both the ground truth and synthetic images were cropped around the brain to a fixed size of
192 x 192 x 160. This cropping step was performed to reduce computational demands during
training and ensured that all images had a uniform size to facilitate the training process.

3.2.2 Data Augmentation

To enhance the performance of the model, data augmentation was performed on the synthetic
images to increase the size and variability of the training dataset. New synthetic images were
created to augment the quantity of data the model was trained on. This process involved
generating additional synthetic images by introducing slight variations in the intensity values,
allowing the model to better generalize and adapt to a wider range of cases while focusing
on the main task of reconstructing brain images from synthetic ULF MRI. Specifically, four
new sets of images were created by multiplying the mean intensity of each region by a factor
of its standard deviation, as demonstrated in Equation 3.3

µ = [µa + c · σa, µb + c · σb, µc + c · σc, . . .] , c ∈
{
−1, −1

2 , 0, 1
2 , 1

}
(3.3)

This multiplied the number of available images for training by 5 and brought the total number
of training images to 4220.
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3.2.3 Model Architecture

In addition to the training dataset, the choice of model and its architecture is another deciding
factor in the reconstruction performance. For this project, a model similar to SynthSR [65]
was selected as a starting point as it has proven to yield good results in reconstructing
similar types of images. The model’s hyperparameters were then adjusted to match the
characteristics of the data used and optimize the reconstruction quality.

The final 3D U-Net architecture retained the initial five levels, with each level consisting of
two convolutional layers. This depth was sufficient to reconstruct the level of detail required
for this type of image. A batch size of 2 was selected as a compromise between the available
computational resources and the need to support generalization. A dropout rate of 0.1 was
added after the layers to reduce overfitting tendencies. Each convolution used 3x3x3 kernels,
followed by group normalization and a ReLU activation. Group normalization was chosen
instead of batch normalization due to the small batch size and the presence of dropout. After
testing, ReLU activation was found to perform better in this context than the eLU used in the
original architecture and was therefore adopted as the final activation function. The number
of feature channels started at 24 and increased by 12 at each level of the encoder, then
decreased by 12 per level in the decoder. These values were optimized through testing and
provided sufficient detail in the reconstructed images. The final layer applied a convolution
with a linear activation, as is standard practice. The model was optimized with the Adam
optimizer and compiled using a mean squared error loss function, which is commonly used
in regression tasks such as image reconstruction. The U-Net was implemented in Keras with
a TensorFlow backend and trained on an RTX A6000 GPU.

3.2.4 Validation

Validation is a crucial step following the training of a deep learning model to assess whether
the model is able to generalize to unseen data and evaluate its accuracy. For this study,
the training was validated using a five-fold cross-validation as it allows for the subsequent
analysis to be done on all the dataset. Subjects were evenly distributed across folds to ensure
balanced representation of all age groups within each fold. All sessions belonging to the
same subject were assigned to a single fold, to avoid the risk of testing data from subjects
the model has already seen and introduce bias in the performance metrics. The resulting
distribution of subjects across the folds is illustrated in Figure 3.5.

For each fold, predictions were generated on the subset of images that were not used during
training. Final results were aggregated across all folds to cover the entire dataset for analysis.
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Figure 3.5 Distribution of subjects from the BCP dataset across the five folds used for training
and validating the reconstruction model.

The performance of the model was evaluated using the Dice score computed over the regions of
interest. Statistical analysis was performed to determine whether the reconstruction method
significantly improved segmentation accuracy compared to the synthetic ULF images.

3.3 O3 : Growth Trajectories Validation Method

As the third objective of this project is to create a validation method, the reconstructed
images created in the previous section will be used to introduce this validation and show
how accurately the previously reconstructed images reflect individual growth trajectories.
The method is separated into populational and subject-specific metrics. Each of the metrics
measures a different characteristic that is believed to be important in the evaluation of
segmentation methods from a neurodevelopmental standpoint. They are separated as follow:

• Populational metrics:

– Growth curves: Assess the impact of the method on the overall population growth
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trajectories of the four main brain structures.

– Sub-cortical volume ratios: Evaluate the ability of the method to capture differ-
ences in growth rates on smaller structures.

• Subject-specific metrics:

– Z-score differences: Measure the extent to which the method alters each subject’s
deviation from its expected trajectory.

– Percentile differences: Quantify the change in percentile position resulting from
the method for each subject.

3.3.1 Growth Curves

Growth curves are often used to portray how brain structures evolve across age at a popu-
lation level. In this study, growth curves are used to model the trajectories of the cerebral
volumes for 4 structures of interest. The labels provided by the segmentation method Synth-
Seg [56] have been aggregated into these structures as follows:

• White Matter: cerebral white matter, brain stem, cerebellum white matter, and ventral
DC

• Deep Grey Matter: thalamus, caudate, putamen, pallidum, accumbens area

• Cortical Grey Matter: cerebral cortex, cerebellum cortex, hippocampus, amygdala

• Ventricles: lateral ventricle, inferior lateral ventricle, 4th ventricle, 3rd ventricle

The CSF was excluded from the analysis due to low segmentation performance, which could
have introduced bias and affected the reliability of the results.

The volumes of all images corresponding to these regions were plotted as a function of
age and modeled using a Generalized Additive Model (GAM) to characterize the growth
trajectories. This model was chosen as it was more robust to the limited amount of data and
was found to best capture the growth trends compared to interpolated splines, polynomial
fits, or rolling means. The same methodology was applied to generate the growth curves from
the segmentation results of the predicted images. The growth trajectories derived from the
initial high-field dataset is then used as the reference standard against which the performance
of the proposed method is evaluated.
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3.3.2 Sub-Cortical Regions Growth

A similar approach was applied to subcortical regions of interest to evaluate the performance
of the method on specific regions. This was done to determine whether the reconstructions
allowed the segmentations to capture region-specific changes in volume as the structures grow,
rather than simply applying a uniform scaling of the brain labels. The regions included in this
analysis were chosen because their growth rates differ both from one another and from the
overall brain volume. Their volumes were normalized by the total brain volume to assess how
regional growth deviates from total volume growth. The analysis focused on the putamen,
caudate, hippocampus, thalamus, pallidum, and amygdala, following [15].

3.3.3 Z-score

To quantify subject-specific trajectories, a modified version of the Z-score was developed.
This metric represents the deviation of an individual subject relative to the expected growth
trajectories of the studied population and can be used to evaluate the performance of a model
in relation to these trajectories. It relies on the volume of a given brain region for a subject at
a specific age and the GAM population fit described in Section 3.3.1. The standard deviation
for each age group was calculated across the entire population and then fitted using a sliding
window approach. The fit was performed using only non-zero standard deviations to avoid
biased estimates and used a window size of 15. This step was applied to preserve the overall
trend while reducing fluctuations caused by the small sample sizes in certain age groups. The
relationship can be expressed using the following equation for a subject i at age j:

Zscorei,j = volumei,j − µpopulation fit,j

σpopulation fit,j
(3.4)

Where volumei,j is the volume of the desired region for the subject i at the time point j,
µpopulationfitj

represents the volume interpolated from the GAM fit at this specific age and
σpopulationfitj

represents the fitted standard deviation of the population at the age j.

Z-Score Difference

After computing the Z-score for all subjects, the resulting values are compared to the Z-scores
derived from the ground truth to evaluate the deviation of each subject’s metrics from its own
expected developmental path. Since the ground truth is assumed to reflect both intra-subject
variability and the variability introduced by the segmentation method, comparing the two
Z-scores provides an estimate of the additional deviation caused by the method.



32

Figure 3.6 Visual representation of the variables defined in Equation 3.4.

Another important consideration in the analysis is that each subject follows its own growth
trajectory. As a result, the observed variation must be interpreted relative to this individual
trajectory. A subject’s Z-score can naturally change between two time points, as growth is
not constant throughout development. This needs to be taken into account because directly
measuring the difference between the Z-scores at two time points does not accurately repre-



33

sent the deviation of interest; what is desired is the added deviation from the subject’s natural
trajectory. This natural trajectory, similar to the percentile that is often used in clinical prac-
tice, was estimated by averaging the subject’s Z-scores across all sessions. This provides an
estimate of the subject’s general position relative to the population growth curves, indicating,
for example, whether they consistently fall within a higher or lower range in terms of brain
volume. The complete formulation of this metric, incorporating all these considerations, is
presented in Equation 3.5.

∆ Zi = [(Zi,recon − µi,GT) − (Zi,GT − µi,GT)] (3.5)

Figure 3.7 provides a visual representation of the intended variation in the Z-score trajectories
for an example subject, and illustrates how the mean Z-score estimation is used.

Figure 3.7 Definition of the variable representing the Z-score difference, illustrated with data
from subject 011228.

This difference in Z-scores can also be used on the synthetic ULF data. This allows for a
comparison of the influence of the reconstruction compared to the deviation that is expected
directly from the ULF data.

3.3.4 Percentile Change

In the previous section, the concept of mean Z-score was introduced to represent the individ-
ual position of the subject along the growth curve, similar to the percentile used in clinical
neurodevelopmental evaluation. Since Z-scores can be directly converted into percentiles,
this measure can offer a more intuitive understanding of a subject’s developmental position.
Comparing the percentile obtained from the reconstruction method to that derived from the
ground truth can provide insight into how the method may influence this clinical indicator.
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Additionally, comparing this difference to the percentile derived from ULF data can help
evaluate how the reconstruction has influenced meaningful growth patterns. The mean Z-
scores were directly converted into percentiles using the Gaussian cumulative distribution
function (CDF). The difference between the percentiles is shown in the form of the mean
Euclidean difference as given in Equation 3.6:

Da = 1
Na

∑
i∈Sa

√
(xi − yi)2 (3.6)

The Euclidean distance between each pair of corresponding points from the ground truth
and the reconstructed dataset is first computed for the four regions of interest. Then, for
each age range, the mean distance across all subjects within that range is calculated. This
approach accounts for the unequal number of subjects across age ranges and avoids the bias
that could be introduced by simply aggregating distances without considering the size of
each group. The same method is applied to the synthetic ULF dataset to enable a direct
comparison between the two sets of results.
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CHAPTER 4 RESULTS

This chapter presents the results of the objectives of this project. First, the synthetic ultra-
low-field (ULF) dataset is presented along a comparison to key metrics previously identified
from real ULF MRI images. Next, the reconstructed high-resolution images are introduced,
and their corresponding segmentations are evaluated against the ground truth. Finally, these
findings are used to support the proposed neurodevelopmental validation method.

4.1 Synthetic Images

Figure 4.1 illustrates the progression of synthetic images across multiple time points for the
same subject. Visually, the images preserve the morphometric characteristics of the brain as
it grows, with the overall shape, sulcal patterns, and volume changes remaining consistent
at each developmental stage, highlighting the ability of the synthetic dataset to accurately
capture structural growth trends over time. Padormo et al. [82] presented a T1 map image
of a newborn acquired on a 64mT scanner, which shows visual characteristics very similar
to the images in Figure 4.1, including the hyperintensities of the CSF and the difficulty
in distinguishing the structures and the boundaries between white and grey matter. For
this reason, the change in contrast that occurs in young infants cannot be easily discerned
visually in this figure. Nevertheless, these contrast changes are captured in the voxel intensity
values, even if they are not perceptible to the naked eye. The images were downsampled to
a resolution of 2x2x2 mm, which matches the typical acquisition resolution of a 64 mT ULF
scanner. This explains the reduced sharpness and the blurred tissue boundaries observed,
which are consistent with real ULF acquisitions.

4.1.1 T1 Values

A critical aspect in generating the synthetic database is accurately modeling the evolution
of T1 relaxation times across age. As the brain develops, microstructural changes influence
these relaxation times, which are reflected in MRI signal intensities. To produce realistic
longitudinal images, it is essential that these age-related variations are properly captured.
Figure 4.2 illustrates how the intensities in the synthetic T1 map images evolve with age
within the same subject. A closer examination reveals that white matter exhibits more rapid
changes over time compared to grey matter, consistent with the trends identified in Section
3.1.6.1. However, the degradation process simulating 64mT acquisition introduces a more
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Figure 4.1 Evolution of synthetic images over time for subject 231205 from the BCP dataset.
Pixel intensities represent synthetic T1 values, ranging from 0 (black) to 2.5 s (white).

Figure 4.2 Evolution of T1 values across three time points for the synthetic 64 mT T1 map
images of subject 011228.

subtle variation of contrast between the two structures. The ventricles show the highest
intensities of the four regions, which matches what we see in Figure 4.1, where they appear
much brighter than the other structures. Even though their imputed values stayed the same
with age, partial volume effects in the segmentations could explain the slight changes in
values over time.
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4.1.2 SNR Values

A commonly used metric to characterize MRI images is the signal-to-noise ratio (SNR). Unlike
qualitative MRI images such as T1-weighted scans, T1 map images do not represent raw signal
intensity. The metric computed in this section approximates the SNR by taking the ratio of
the T1 relaxation time to the noise present in the image. Figure 4.3 compares the derived
SNR between the synthetic ULF images and the original high-field T1 map images across
the 15 regions defined earlier. As expected, the synthetic ULF images exhibit substantially
lower SNR values than their high-field counterparts, in line with the observations reported
in the literature [51]. The ventricular region shows the highest SNR, which is consistent with
their notably higher intensity values in both datasets.

Figure 4.3 Comparison of derived SNR between the synthetic 64 mT dataset and the original
3T T1 map across the 15 regions of interest.

4.2 Reconstructed Images

This section presents the reconstructed images generated by the deep learning model using
the synthetic ULF dataset introduced in the previous section. Figure 4.4 shows the recon-
structed images for the same subject presented in Figure 4.1. For the younger ages, the
reconstructions have more difficulty clearly defining the boundaries between white and grey
matter. This is partly due to the naturally reduced contrast between these tissues in early
brain development, which already poses a challenge in the original high-field images. The
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effect is further amplified by the Gaussian method used to create the synthetic images. This
method tends to homogenize tissue intensities, making it even more difficult to distinguish
between structures, particularly for the subjects aged closer to the point of contrast inversion.
As a result, the reconstructed images deviate more from the original images at these early
time points, which is the case for other subjects in the same age range in the dataset. For
older subjects, the reconstructed images better preserve the structural characteristics of the
original images and show a closer match in contrast. The cerebellum and occipital cortex,
however, appears less detailed and can introduce slight variations in the sulcal pattern, as
shown in the figure. These differences may influence the subsequent analysis of this region
in the reconstructed images.

Figure 4.4 Comparison of reconstructed and ground truth images across multiple time points
for subject 231205 from the BCP dataset.
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4.2.1 Segmentations

To assess how well the reconstructed images reproduce neurodevelopmental metrics, the
synthetic and reconstructed datasets were segmented using the same approach as the original
images. As shown in Figure 4.5, and in accordance with the observations from figure 4.4,
segmentation performance for the reconstructed images is lower in younger subjects. This
effect can be attributed in part to the reduced contrast at this age, which already affects the
segmentation accuracy for the ground truth images and also slightly more the reconstructed
images as discussed in the previous section. The discrepancy can also be attributed to
the morphological differences of younger brains which are underrepresented in the training
data used by the segmentation method. Visually, it is clear the performance of the model
improves as subject age increases. A quantitative evaluation of the segmentation performance
is described in the following section, using the dice score as the metric.

Figure 4.5 Segmentation results for subject 231205 from the BCP dataset at 3, 12, and 24
months, comparing reconstructed images, synthetic ultra-low-field images, and ground truth
segmentations.
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4.2.2 Dice Scores

The dice score measures the overlap between the predicted segmentation and the reference
segmentation, providing a value that reflects the accuracy of the prediction. Values range
from 0 to 1, with higher scores indicating a greater degree of overlap. To quantitatively
compare the segmentations of the reconstructed images and the synthetic ULF images, dice
scores were computed for the segmentations of both datasets across the four structures of
interest, as shown in Figure 4.6.

A Shapiro-Wilk test confirmed that the distributions of dice scores were not normally dis-
tributed. Consequently, a Wilcoxon test was used to compare the two distributions, revealing
statistically significant differences for all four structures, even after applying a Bonferroni cor-
rection to control for family-wise error. Overall, the reconstructed images yielded higher seg-
mentation accuracy for white matter, cortical grey matter, and ventricles, while the synthetic
ULF images performed slightly better for deep grey matter. However, despite the statistical
significance, the median dice score differences for deep grey matter and white matter were
relatively small, below 0.0006 and 0.008 respectively, suggesting limited impact between the
methods for these structures.

Among the four structures analyzed, cortical grey matter achieved the highest segmentation
accuracy, with a mean dice score of 0.90, representing a slight improvement over the 0.87
obtained with the synthetic images. White matter showed comparable performance to the
synthetic images, with both achieving a dice score of 0.84. Deep grey matter was the only
structure to perform slightly worse than the synthetic images, with a dice score of 0.87
compared to 0.88. In contrast, the ventricles demonstrated a substantial improvement, with
an overall dice score of 0.88 compared to 0.78 for the synthetic dataset. These results suggest
that performing reconstruction prior to segmentation can improve segmentation accuracy for
cortical grey matter and ventricles, while producing relatively similar outcomes for white
matter and deep grey matter. Figure 4.6 also shows that dice scores are slightly lower for
subjects under 12 months of age, then remain relatively stable across the rest of the age
range. This decrease in performance for younger subjects is consistent with the reduced
tissue contrast discussed in the previous section.

Since the analysis of the reconstructed images was conducted using cross-validation, Table 4.1
presents the dice scores for each fold to assess the variability introduced by the fold division.
While the folds were designed to be evenly distributed by age, the results also indicate a
relatively uniform distribution of segmentation performance across folds.
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Figure 4.6 Comparison of Dice scores for white matter, deep grey matter, cortical grey
matter, and ventricles between segmentations from the reconstructed (purple) and synthetic
ULF (orange) datasets.
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Table 4.1 Dice scores for each structure across the five folds, along with the overall Dice score
for the full dataset and the synthetic ULF images.

White Matter
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total Synthetic

Mean 0.8382 0.8387 0.8518 0.8489 0.8438 0.8443 0.8406

Std 0.0353 0.0312 0.0291 0.0308 0.0301 0.0313 0.0203

Deep Grey Matter
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total Synthetic

Mean 0.8704 0.8669 0.8817 0.8805 0.8743 0.8748 0.8812

Std 0.0477 0.0506 0.0465 0.0361 0.0415 0.0445 0.0243

Cortical Grey Matter
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total Synthetic

Mean 0.8960 0.8938 0.9008 0.8985 0.8980 0.8974 0.8652

Std 0.0224 0.0149 0.0117 0.0168 0.0179 0.0167 0.0144

Ventricles
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total Synthetic

Mean 0.8837 0.8757 0.8922 0.8840 0.8853 0.8842 0.7827

Std 0.0339 0.0242 0.0283 0.0204 0.0229 0.0259 0.0339
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4.3 Validation of Neurodevelopmental Trajectories

This section presents the results of the reconstructed images discussed in the previous sec-
tion, now evaluated in terms of their alignment with neurodevelopmental trajectories. As
the final objective of this project was to develop a trajectory-based validation method, the
results shown here demonstrate how the proposed validation method operates when applied
to this concrete example. At the same time, this provides an additional assessment of the
reconstructed images based on their ability to reflect meaningful developmental patterns.

4.3.1 Growth Curves

The first step in this validation method is to directly compare the growth trajectories of the
reconstructed images to those of the ground truth. As can be visually observed in Figure
4.7a, the reconstruction tends to under-segment grey matter and over-segment white matter
relative to the ground truth, while ventricular volumes remain relatively stable. Despite
these discrepancies, the overall age-related trends for both male and female subjects are well
preserved across all four structures. This analysis provides a rapid way to assess whether
the reconstruction method captures the major developmental patterns present in the ground
truth trajectories. However, as illustrated in Figure 4.7b, the amount of data available
for analysis significantly drops after 24 months, which may explain some of the deviations
observed, particularly in regions where the fitted trajectories appear less representative of
expected developmental trends.

4.3.2 Sub-Cortical Regions Growth Curves

After examining the trends in the four main brain structures, it is valuable to take a closer
look at the smaller deep grey matter structures, which are often of particular interest in
neurodevelopmental studies [15]. These structures are noteworthy not only for their de-
velopmental relevance, but also because their growth does not necessarily follow the same
trajectory as overall brain volume. Since segmentation and reconstruction methods may rely
on global scaling and fail to account for regional differences in growth rates, this analysis
serves to validate whether the reconstruction method accurately reflects the development
patterns of these specific regions.

To this effect, Figure 4.8 presents the growth rate across age for each structure, normalized
by the total brain volume, to better capture how the method represents regional growth
differences in comparison to overall brain growth. These growth rates are then compared to
those of the synthetic ULF images to evaluate whether the synthetic reconstruction offers
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Figure 4.7 (a) Growth curve comparison for the four structures of interest, showing recon-
structed images versus ground truth, with results separated by sex. (b) Data distribution of
the original dataset, highlighting limited data availability after 24 months.
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improvements in this intricate aspect. As shown in Figure 4.8, the reconstructed images
(purple) follow the expected growth trends (green) more closely than the synthetic ULF
images (orange) for subjects under 24 months of age in the caudate, putamen, hippocampus,
and amygdala, and show similar improvements for the putamen, while performing worse for
the pallidum. After 24 months, however, the reconstructed images tend to perform more
poorly than the synthetic ULF images. Overall, while the reconstructed images provide
a closer approximation to the ground truth for certain structures and age ranges, notable
discrepancies in growth rates remain, indicating that further refinement of the reconstruction
process is needed.

Figure 4.8 Subcortical region growth ratios, normalized by total brain volume, for the ground
truth (green), reconstructed images (purple), and synthetic ULF images (orange).

4.3.3 Z-Score Analysis

The quantitative metric used to evaluate how much each reconstructed image deviates from
its expected trajectory is the specialized Z-score described in Section 3.3.3. Figure 4.9 illus-
trates the deviation of reconstructed images from the expected trajectories for each subject
who has at least two acquisitions at different time points. Since the ground truth incorpo-
rates the subject-specific intra-subject variability in development, this Z-score reflects the
additional deviation introduced by the reconstruction process. While segmentation accuracy
also contributes to this deviation, this factor is mitigated by applying the same segmentation
method to both the ground truth and reconstructed images. Since the Z-scores reflect the
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deviation from the fitted trajectories, it is important to note that a mean deviating from zero
reflects limitations in the fitting method itself. As shown in Figure 4.9, the mean Z-scores
are furthest from zero in the deep grey matter regions, suggesting that the model fit was
less representative for these structures. Deep grey matter also exhibits the widest spread of
values, indicating greater variability in their deviations. In contrast, the ventricles show both
a mean and a distribution of values closest to zero, suggesting that the reconstructed images
do not introduce significant additional deviations beyond those already present in the ground
truth. Cortical grey matter and white matter display similar distributions, with moderate
deviation and variability, indicating a more consistent performance of the fitting method for
these tissues and that the reconstruction introduced a moderate level of additional deviation.

Figure 4.9 Distribution of Z-score differences for the four regions of interest, representing the
additional deviations introduced by the reconstruction method from the expected growth
trajectories, for subjects with at least two time points.
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Comparison with Synthetic Ultra-Low-Field Data

Building on the previous analysis, applying the same approach to the synthetic ULF dataset
reveals similar trends across the four regions of interest, as shown in Figure 4.10. The
means of all structures are closer to zero, indicating that the ground truth fit better captures
the variability in this type of data. Additionally, the standard deviations are slightly smaller
across all structures, suggesting, based on this metric, that the segmentations of the synthetic
images introduce less deviation from the expected developmental trajectories than those from
the reconstructed images.

Figure 4.10 Distribution of Z-score differences for the four regions of interest, representing
the additional deviations of the synthetic ultra-low-field data from the expected growth tra-
jectories, for subjects with at least two time points.

4.3.4 Variations in Percentiles

The final metric used to quantify discrepancies between the reconstructed data, the ground
truth, and the synthetic ULF data is the variation in subjects’ percentiles. Since percentiles



48

are widely used in clinical settings, understanding how these methods affect percentile changes
provides valuable insight. Previously, the mean Z-score of each subject across multiple time
points was approximated as their intrinsic Z-score, representing the trajectory they would
follow in the absence of intra-subject variability. As Z-scores can be easily converted into
percentiles, these mean Z-scores were transformed, and the differences between the computed
percentiles for each subject were compared to those of the ground truth with a mean euclidean
distance for each age.

The distribution of these differences for the four regions of interest is presented in Figure
4.11. Overall, the synthetic ULF dataset exhibits a lower mean Euclidean distance, indi-
cating that its values follow the expected developmental trends more closely than those of
the reconstructed images, consistent with the findings of the previous section. However, a
more detailed examination reveals that, for subjects under 24 months, the ventricles from
the reconstructed images perform slightly better than those from the synthetic dataset. Ad-
ditionally, the variability in performance across age ranges appears to increase beyond 24
months. In summary, the relative longitudinal performance of each dataset varies depending
on the structure and the age range under study. Nonetheless, based on the current metric,
the synthetic ULF dataset demonstrates a more consistent alignment with the ground truth
growth trajectories.
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Figure 4.11 Comparison of percentile changes for the four structures of interest between the
reconstructed images (purple) and the synthetic ULF data (orange).
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CHAPTER 5 DISCUSSION

The main contributions of this project are the development of a method for enhancing ultra-
low-field (ULF) brain MRI to facilitate segmentation and the introduction of a validation
framework based on longitudinal growth trajectories. To achieve this, a complete pipeline
was implemented, covering three objectives: (1) the creation of a synthetic dataset that
reproduces the main characteristics of ULF pediatric brain MRI, (2) the reconstruction of
these images into high-resolution images to enable more accurate segmentation, and (3)
the development of a trajectory-based validation framework to evaluate performance in a
longitudinal context. The results, limitations, and potential improvements for each objective
are presented in the following section.

5.1 Synthetic Dataset Creation

A synthetic dataset of 64 mT T1 maps was generated from the BCP T1w 3T images using a
Gaussian-based approach. The resulting images were then further degraded to replicate the
noise characteristics typically observed in ULF acquisitions. The synthetic dataset showed in-
tensity patterns consistent with lower field images while preserving the morphometric growth
of the subjects. A visual validation comparing the synthetic images to a real 64mT T1 map
image supported their plausibility as ULF synthetic images. However, several limitations
related to their creation remain. The T1 values used to generate the images were fitted and
approximated from publicly available images and values reported in the literature. These
estimates may not accurately reflect true T1 values, as the fitting process introduces errors
and represents a simplified version of the tissue properties within an image. Due to limited
data availability, additional estimations had to be made for several regions, which could affect
the accuracy of the contrast and reduce the overall realism of the synthetic images.

The Gaussian-based method used to generate the synthetic images also entailed significant
limitations, especially regarding contrast inversion. As voxel intensities are assigned based
on Gaussian distributions within anatomical labels, any overlap in mean values between
structures, such as grey and white matter near the age of contrast inversion, makes those
structures harder to distinguish. In real MRI images, subtle signal differences often remain
detectable even at low contrast, but in synthetic images generated through this method, the
tissue distributions become nearly indistinguishable. The results indicate that the Gaussian
method, when paired with fitted T1 values, is poorly suited to model contrast inversion
and contributes to the lower performance observed for younger subjects. Furthermore, the
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intra-tissue variability introduced by the method, by modeling a Gaussian distribution with
a fixed standard deviation, does not accurately reflect the variability observed in real images.
In real data, variability is influenced by surrounding structures and exhibits a degree of
spatial coherence, whereas this method introduces random variability within each structure
independently.

In addition, the overall degradation process, involving the adjustments of the T1 values to
the desired magnetic field strength, downsampling and adding noise, represent a simplified
version of the complex physics that underlie real MRI acquisition. The strength of the
magnetic field influences directly the signal that is captured by the MRI scanner and then
translated into an image. The influence of magnetic field strength on image contrast and
signal is not easily replicable using post-processing alone. The method does not fully replicate
noise patterns, inhomogeneities and motion artefacts, typically present in ULF acquisitions,
which makes the synthetic images appear cleaner than real ULF data and simplifies the
subsequent reconstruction task. This simplification poses challenges when generalizing the
results of the reconstruction model to real ULF data.

Furthermore, the visual validation was conducted only on one newborn image and not across
the full age range of the dataset, limiting the ability to assess whether age-related changes
in brain growth and tissue contrast were accurately reproduced. In addition, due to the
lack of access to real ULF T1 maps and limited information available in the literature,
the approximated SNR and the evaluation of T1 values could not be directly compared to
expected values. Only the overall trends could be assessed, reducing the strength of these
comparisons.

Despite these limitations, the pipeline developed in this study provides a valuable tool for
use in the absence of paired ULF/high-field MRI data and can serve as a foundation for
further analysis and testing of image-processing pipelines. As more data becomes available,
the approach can also be refined to produce more realistic synthetic datasets. Overall, the
dataset successfully reproduces key information such as brain morphometrics and major ULF
image characteristics and was sufficient to assess the performance of the pipeline when applied
to data resembling ULF MRI.

One possible improvement would be to acquire images of subjects across different age ranges
using the portable ULF scanner. These acquisitions could then serve as more representative
priors for the Gaussian-based synthetic image generation method. This approach would still
avoid the need for a fully paired dataset but would significantly improve the realism of the
resulting contrast, which would be based on actual ULF image characteristics rather than
simulated T1 values. Producing synthetic images that more closely reflect the contrast of
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actual ULF acquisitions would bring the pipeline closer to the level of realism required for
generalization to real-world data. Access to such data could also support more accurate
refinement of image metrics, such as SNR, and provide a more realistic basis for compar-
ison. Furthermore, incorporating a broader range of deformations during image synthesis
could further enhance realism by better modeling the variability typically observed in ULF
acquisitions.

5.2 Image Reconstruction

The synthetic 64 mT T1 map images were reconstructed into 3T T1w images using a 3D
U-Net specifically optimized for this task. The resulting reconstructions showed strong sim-
ilarities with the ground truth high-field images. They produced visually comparable con-
trasts and preserved the overall morphometrics, achieving dice scores above 0.84 for the main
structures, with cortical grey matter reaching the highest score of 0.90. The ventricles also
benefited from the reconstruction step, with the dice score improving to 0.88 compared to
0.78 for the synthetic images. These results are promising, especially given the clinical rele-
vance of cortical grey matter in neurodevelopmental research. However, the reconstructions
reproduced fewer fine details, particularly in the anterior regions and deep grey matter. Re-
construction quality was also lower in younger subjects, which can be explained in part by
the reduced tissue contrast of the Gaussian synthesis method, but can also be caused by
the deep learning strategy used in this study. No separation by age was implemented in
the training data or the hyperparameter optimization, despite the age-related differences in
brain morphology. Incorporating age-specific considerations could be an important avenue
for future work.

The main limitations of the reconstruction method stem from its strong dependence on the
synthetic dataset. The model was trained on a single dataset, which limited the anatomical
variability it was exposed to and may reduce its ability to generalize beyond the original
images. The analysis of the performance of the reconstructions is also influenced by the seg-
mentation method used, as all the segmentations were performed using SynthSeg [56]. While
SynthSeg proved reliable overall, inaccuracies and biases were still observed, especially for
younger subjects, which could have impacted the reported performance despite the inclusion
of a visual quality control step. Another important limitation is that the synthetic images
follow a fixed pattern because of the way they are generated. This homogeneity makes the
reconstruction task easier for the U-Net model since the degraded and high-resolution images
share predictable mappings. Real ultra-low-field images are much more variable in terms of
quality, noise, and artifacts.



53

Overall, the reconstruction method showed promising results in preserving key brain struc-
tures and improving segmentation accuracy for several regions, but its dependence on syn-
thetic data and reduced performance in younger subjects highlight the need for refinements.
Future work could explore the use of more advanced model architectures to further improve
reconstruction performance, in combination with the proposed improvements to the synthetic
dataset. Approaches such as generative adversarial networks (GANs), diffusion models, or
combinations of multiple models have shown promising results in generating realistic medical
images and could be worth investigating in this context. Another avenue would be to inves-
tigate whether training age-specific models yields better performance compared to a single
model trained across all age groups. Additionally, acquiring real ULF MRI images would be
an important next step to assess the validity of both the synthetic image generation process
and the quality of the reconstructed images.

5.3 Longitudinal Validation Method

A longitudinal validation framework integrating both population-level and subject-specific
metrics was developed and applied to the reconstructions obtained with the proposed method.
Analysis of growth curves derived from the reconstructed images revealed a tendency to
slightly undersegment deep and cortical grey matter, while oversegmenting white matter and
ventricles compared to the ground truth. By highlighting these systematic segmentation pat-
terns introduced by the reconstruction process, the subsequent analysis deriving from these
metrics can be adapted accordingly. For the subcortical volume ratios, the caudate, puta-
men, hippocampus, and amygdala showed improvements compared to the synthetic images
for subjects under 24 months of age, while the improvement was less apparent beyond this
age range. This suggests that the reconstruction method may be more effective at segmenting
certain small regions that do not follow the same growth patterns as overall brain volume.
In contrast, the pallidum and thalamus did not show any improvement over the synthetic
images. The analysis of z-score deviations confirmed that the reconstructed images generally
followed the expected population growth trends, but not more so than the direct synthetic
images. In fact, the percentile change metric suggests that the synthetic images deviated
less from the ground truth trajectories than the reconstructed ones. In addition, greater
variability was observed in the deep grey matter, indicating that the reconstructed images
introduced more fluctuations in the expected growth patterns for this structure compared to
the population model.

While the longitudinal validation approach provides a valuable framework for assessing how
well the reconstructed images preserve neurodevelopmental trajectories, it has two major
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limitations. The first is its dependence on population-based growth models. The approach
assumes that the reference population accurately represents typical growth patterns, which
may not always be the case. As a result, subjects might be considered outliers even if they
have valid anatomical variations, therefore potentially biasing the analysis. For this project,
the BCP dataset was used as the reference for the populational growth. However, subjects
over 24 months of age are underrepresented in this dataset, which may reduce the accuracy
of the results for this age range, as there is insufficient data to fully generalize growth trends.
Additionally, the dataset provides longitudinal time points that vary in number and in the
exact ages across subjects. This inconsistency can bias the comparisons for subject-specific
analysis, as the quantity and distribution of data are not uniform between individuals.

The second major limitation is the method’s sensitivity to segmentation accuracy. While
all images are segmented using the same method, which helps reduce the impact of global
segmentation bias when comparing to the ground truth, differences in performance across
image types, such as synthetic or reconstructed images, can still influence the validation
metrics. For example, consistent over or under segmentation in one image type but not the
other could introduce bias into the longitudinal analysis. To better understand and mitigate
this effect, the pipeline could be tested with multiple segmentation methods to evaluate how
performance varies across datasets and adjust the analysis accordingly.

To further strengthen the approach, it would be valuable to involve clinical and neurode-
velopmental researchers in identifying which metrics are most relevant to track in practice.
The current framework was developed from an analytical perspective and would benefit from
clinical input to ensure its relevance and applicability in real-world contexts.
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CHAPTER 6 CONCLUSION

6.1 Summary of works

The main objective of this project was to evaluate whether reconstructing high-resolution
pediatric brain MRI images from synthetic ultra-low-field (ULF) data could enhance segmen-
tation accuracy, and to develop a validation method capable of assessing this improvement
from a longitudinal perspective. To support this goal, a synthetic dataset of pediatric ULF
T1 map images was successfully created. Although the limited availability of data posed chal-
lenges, the resulting dataset replicates key characteristics of ULF imaging, making it suitable
for evaluating the proposed pipeline on synthetic ULF data. Using this dataset, a deep learn-
ing model specifically optimized for reconstruction was applied to generate high-resolution
images. The reconstructed images improved segmentation accuracy for cortical grey matter
and ventricles, and maintained performance for deep grey matter and white matter. While
further work is needed to confirm generalization to real ULF data, these findings suggest
a promising approach to improving segmentation accuracy in pediatric ULF neuroimaging
studies. Finally, a longitudinal validation framework was proposed to evaluate the ability of
segmentation methods to capture expected neurodevelopmental trajectories. When applied
to both the synthetic ULF and reconstructed datasets, the validation framework revealed
that, overall, the synthetic ULF images more closely preserved developmental trends than
the reconstructed images, despite lower segmentation accuracy. However, this advantage
varied depending on the specific age range and brain structure examined. These findings
demonstrate the utility of the proposed framework for interpreting segmentation results and
assessing the impact of image processing on longitudinal analyses.

6.2 Limitations

A major limitation in this project lies in the generation of the synthetic dataset, which served
as the foundation for both the reconstruction process and the subsequent analysis. Although
a preliminary evaluation of the synthetic images was performed, the absence of real ULF data
limited the ability to fully assess their realism. The synthetic generation method, and conse-
quently the reconstruction, was also limited at the point of contrast inversion, an important
factor in pediatric brain imaging. In addition, the model was trained on a single dataset
without age group separation, potentially reducing its ability to reconstruct age specific fea-
tures. In terms of validation, all metrics were derived from segmentation volumes produced



56

by a single method. While this ensured consistency across datasets, it may have introduced
bias into the analysis. Furthermore, the longitudinal validation framework relied heavily on
these segmentation outputs, and the results assumed that the studied population accurately
reflected typical neurodevelopmental trends, which may not be fully representative.

6.3 Future Research

To address these limitations, future work should begin by acquiring a small number of ULF
images across different age ranges. This would support the generation of more accurate syn-
thetic images and provide a stronger basis for evaluating their realism. With more diverse
and representative training data, more advanced model architectures could also be explored
to improve reconstruction quality and better capture anatomical detail. Using age specific
models could further improve performance by accounting for developmental variability. Ad-
ditionally, acquiring paired ULF and high-field images would enable more direct evaluation of
anatomical accuracy and allow segmentation performance and developmental metrics to be
interpreted relative to real ground truths. Finally, integrating clinical input into the design
and selection of validation metrics would help ensure that the outcomes remain relevant and
interpretable in real world clinical settings.

Overall, this work presents a promising pipeline for improving segmentation from pediatric
brain ULF MRI and introduces a novel longitudinal validation strategy grounded in develop-
mental trajectories. With further refinement and access to real data, this approach has the
potential to support more accessible pediatric neuroimaging while ensuring that processing
methods remain aligned in neurodevelopmental trajectories.
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APPENDIX A ACQUISITION PARAMETERS

Table A.1 Acquisition parameters for the Hyperfine Unity neonatal T1w sequence.

Parameter Value
Sequence Hyperfine Unity Neonatal T1w
Resolution (mm) 2×2×2
FOV (mm) 220×180×180
Matrix size 110×90×90
Bandwidth (Hz) 32 000 / 64 000
Flip RF 180/90/180/30/90/90/90
TE (s) 0.00764
TI (s) 0.5
TR (s) 1.25
Sampling Path Radial
Scan Plan XYZ
Total duration (s) 893.9
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