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Résumé

Ce mémoire s'intéresse i l'optimisation de problémes de routage par 'utilisa-
tion de la méthode de décomposition par génération de colonnes. Cette méthode
décompose un probléme donné en deux nouveaux problémes: le probléme maitre
et le sous-probleme. Depuis 15 ans, la recherche effectuée au GERAD sur cette
méthode de décomposition a surtout porté sur la résolution du sous-probleme, lais-
sant la résolution du probléme maitre & un optimiseur externe utilisant la méthode du
simplexe. Ce mémoire innove en s’attaquant 3 la résolution du probléme maitre. L’ob-
jectif est de réduire les temps de résolution du probléme maitre, qui sont en général
les plus importants pour les probléemes de grande taille. Plus particulierement, nous
nous intéressons a deux méthodes heuristiques pour résoudre le probléme dual associé
au probléme maitre. Ces deux méthodes, un algorithme de sous-gradient et un
algorithme de stabilisation des variables duales, sont analysées, implantées et
testées en détail. L'implantation de ces algorithmes s'intégre A un optimiseur nommé
GENCOL, qui est développé au GERAD. Cet optimiseur est basé sur une approche

de génération de colonnes.

L’algorithme de sous-gradient est basé sur celui proposé par Fisher et Kedia (1990)
pour la résolution duale d'un probléme de recouvrement / partitionnement de taches.

Cet algorithme tire profit de la relaxation de toutes les contraintes du probléme primal

dans la fonction objectif.
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L’algorithme de stabilisation des variables duales a été développé par Du Merle,
Villeneuve, Desrosiers et Hansen (1997). Cet algorithme part de I'hypothese que si les
variables duales peuvent étre stabilisées pendant la résolution du probléme maitre,
leur convergence sera plus rapide, et la résolution accélérée. Ceci vient de I'observation
du comportement des valeurs des variables duales an cours de la résolution d'une re-
laxation linéaire: celles-ci oscillent beaucoup, de maniére assez chaotique, avant de se
stabiliser vers leurs valeurs définitives. L’algorithme de stabilisation parvient a borner

les valeurs des variables duales en utilisant des variables primales de perturbation.

Des tests sur la relaxation linéaire de problémes de m-voyageurs de commerce
avec fenétres de temps (m-TSPTW) ont montré que l'algorithme de sous-gradient
permet de réduire les temps de résolution de 28% en moyenne. Quant a ’algorithme
de stabilisation, les premiers résultats obtenus avec cette méthode sont mitigés. Il
semble que le temps sauvé par une convergence plus rapide des valeurs des variables
duales soit contrebalancé par une résolution plus lente du probléme maitre, due au
surplus de variables primales. Curieusement, la combinaison des deux algorithmes
donne une réduction du temps de résolution moyen de 29,7% par rapport au temps
de résolution standard (c’est-a-dire avec 1’algorithme du simplexe utilisé seul). Ceci
est légérement meilleur que lorsque 'algorithme de sous-gradient est utilisé seul. De
plus, I'utilisation des deux algorithmes semble induire une convergence plus rapide de

la valeur de 'objectif.

Ce mémoire a montré la pertinence d’utiliser des heuristiques duales dans le con-
texte de la méthode de génération de colonnes. Les algorithmes implantés dans le cadre

de ce mémoire sont utilisables directement dans le cadre de I'optimiseur GENCOL.
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Abstract

The subject of this thesis is the optimization of routing problems using the column
generation method. This method breaks up a given problem into two new problems: a
master problem and a subproblem. For 15 years, the research at GERAD has focused
on the subproblem, leaving the master problem’s resolution to an extern optimizer.
This work innovates by considering the master problem. We want to accelerate the
master problem’s time, generally greater than the subproblem’s in large problems.
More precisely, we are interested in two heuristic methods for the dual problem as-
sociated to the master problem. These two methods, a subgradient algorithm and
a dual variable stabilization algorithm, are analyzed, implemented and tested.
These implementations are integrated to an optimizer, called GENCOL, developed

at the GERAD, which uses the column generation algorithm.

The subgradient algorithm is based upon an algorithm proposed by Fisher and
Kedia (1990), for the dual resolution of a set covering / set partitioning problem. This
algorithm takes advantage of the relaxation of all primal constraints in the objective

function.

The dual variable stabilization algorithm has been developped by Du Merle, Vil-
leneuve, Desrosiers and Hansen (1997). This algorithm starts with the hypothesis
that if the dual variables are stabilized during the master problem resolution, they

converge faster, and the resolution is accelerated. This comes from the observation of



the dual variables’ behavior within the resolution of a linear relaxation: they oscillate
a lot, in quite a chaotic manner, before stabilizing around their definitive value. The
stabilization algorithm manages to bound the dual variables by using supplementary

primal variables, the perturbation variables.

The tests are made on the first linear relaxation of some problems. Tests on the
subgradient algorithm show an average resolution time that is 28% faster. As for the
stabilization algorithm, the first results obtained by this method are not very good.
It seems that the time saved by a quicker convergence of the dual variables is lost by
a slower resolution of the master problem, this being due to the addition of primal
variables. Curiously, the combination of both algorithms reduces the average solution

time by 29,7% which is better than when the subgradient algorithm is used alone.

This dissertation showed the pertinence of using dual heuristic methods within
a column generation context. The algorithms implemented in the context of this

research project are usable directly within the GENCOL optimizer.
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Chapitre 1

Introduction

Ce chapitre constitue une introduction générale au probleme traité dans ce mé-
moire. La section 1.1 introduit le genre de problémes a résoudre dans le cadre de ce
mémoire, ainsi que leurs difficultés. La section 1.2 donne une idée de la maniere dont
ces probléemes peuvent étre résolus a l'aide d'une méthode de génération de colonnes
(cette méthode sera décrite plus en détails dans le chapitre 2). L'objectif du mémoire,

suivi du plan du mémoire, sont exposés dans la section 1.3.

1.1 Types de problémes étudiés: les problémes de
routage

Les problémes de routage sont des problemes logistiques rencontrés couramment
en optimisation. Il peut s’agir, par exemple, de planifier des itinéraires de camions
dans un réseau routier ou de transporter de la marchandise de chez des fournisseurs
vers des clients. Ce type .de problémes survient aussi en dehors des compagnies de
transport comme, par exemple, dans les usines ou sur les chantiers: il s’agit alors de
transporter de la marchandise entre les différentes parties de 1'usine ou du chantier.
Enfin, certains problémes de confection d’horaires peuvent étre modélisés comme des

problemes de routage sur un graphe d’états.



La résolution d’un probléme de routage augmente avec le nombre de variables.
Ce nombre est d’autant plus grand que les possibilités de solutions sont nombreuses.
Ces possibilités se trouvent multipliées lorsqu’il s'agit d’établir une planification sur
une semaine ou sur un mois type. D’autre part, les contraintes nombreuses (pouvant
étre induites par des régles de convention collective détaillées) contribuent elles aussi
3 compliquer le probléeme. Ces problemes sont souvent trop complexes pour étre ef-
ficacement résolus a la main. Méme avec un ordinateur, ils deviennent rapidement
trop gros pour étre résolus avec les algorithmes standards: soit I’espace mémoire
manque, soit le temps de calcul est trop long. C'est pourquoi de nouvelles méthodes
sont constamment développées, pour permettre de résoudre de plus gros problemes

plus rapidement.

1.2 Les problémes de routage résolus a I’aide d’une
méthode de génération de colonnes

Une approche classique pour la résolution des problemes de grande taille est la
décomposition mathématique du probléme initial en un probléme maitre et un sous-
probleme, & la maniére de Dantzig et Wolfe (1961). Une structure de réseau sous-
jacente aux problemes de routage peut étre mise en évidence. Dans cette structure,
les taches & couvrir sont associées a des noeuds ou & des arcs du réseau. Une solution
d’un probléme est alors représentée par un ensemble de chemins sur le réseau, tel que

chacune des taches soit couverte par un des chemins.

Lors de la résolution, deux procédures se partagent le travail. D'une part, le sous-

probleme détermine les chemins intéressants dans le réseau sous-jacent, c’est-a-dire



ceux dont le coiit est avantageux par rapport aux chemins déja trouvés. D’autre part,
le probléme maitre construit une solution globale réalisable avec ces chemins. Le réle
du probléeme maitre est également de calculer les variables duales qui serviront a

générer de nouveaux chemins.

La méthode de décomposition de Dantzig-Wolfe est utilisée au GERAD! depuis
1981. Cette méthode, aussi connue sous le nom de méthode de génération de co-
lonnes, consiste a construire par un processus itératif le probleme maitre en générant
au besoin les colonnes. ou variables, de celui-ci. Elle est mise en pratique dans le
logiciel GENCOL, avec des succes toujours grandissants. Beaucoup d’efforts ont été
mis pour accélérer le processus de résolution de cette méthode. Jusqu'a maintenant,
la plupart de ces efforts ont porté sur la résolution du sous-probléme (algorithmes
de programmation dynamique de plus court chemin avec contraintes, heuristiques
de résolution approximative, stratégies de résolution). Pour le probléme maitre, un
optimiseur externe utilisant 1'algorithme du simplexe a toujours été utilisé. CPLEX
est actuellement le troisieme logiciel commercial utilisé, apres les logiciels LANDP et

XMP.

Le logiciel CPLEX utilise 'algorithme du simplexe (primal ou dual) pour résoudre
un probléme linéaire général. Il est tres rapide pour de petits problemes. Mais lorsque
confronté & de gros problemes (1000 taches et plus), il est ralenti par la dégénérescence
trés fréquente de ces problemes et les nombreuses réoptimisations a effectuer. Etant
donné que le probléme maitre, essentiellement un probléme de recouvrement ou de

partitionnement de taches, est plus simple qu'un probléme linéaire général, I'utilisa-

lLe Groupe d’Etudes et de Recherche en Analyse des Décisions (GERAD) est un centre pluri-
universitaire montréalais affilié a 1'Ecole Polytechnique, I'Ecole des Hautes Etudes Commerciales,
I’Université McGill et 'Université du Québec a Montréal.



tion de méthodes de résolution plus spécifiques au probleme traité pourrait accélérer
les temps de calcul. D’autre part, le probleme maitre de la méthode de génération
de colonnes n'a pas besoin d’étre résolu jusqu'a 'optimalité & chaque fois que des
colonnes sont générées: des méthodes heuristiques pourront donc remplacer 1’algori-

thme du simplexe pour certaines itérations de la méthode de génération de colonnes.

1.3 Objectifs du mémoire

Comme il a été vu a la section précédente, il semble intéressant d’accélérer la
résolution du probléeme maitre dans le cadre d’une méthode de génération de colonnes.
Du méme coup, si tout va bien, le temps total de résolution sera accéléré. Dans le
cas des problémes de routage. le probleme maitre est essentiellement un probléme de
recouvrement/partitionnement de taches. L'approche utilisée sera donc basée sur des

algorithmes spécifiques pour ce genre de probléme.

Un réle important du probléme maitre est de calculer les variables duales di-
rigeant, au niveau du sous-probléme, la recherche de nouveaux chemins permettant
d’améliorer la solution courante. Une facon de s’attaquer au probléme maitre est donc
d’observer comment se comportent les variables duales tout au long de la résolution
d'un probléme par une méthode de génération de colonnes. Un exemple de ce com-
portement est illustré a la figure 1.1, ot1 les valeurs prises par les variables dualzs sont
données en fonction de l'itération de la méthode de génération de colonnes. Une telle
itération est constituée par la résolution successive du sous-probléme et du probléme

maltre.
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Figure 1.1: Comportement des variables duales pendant la résolution d’une relaxation
linéaire par la méthode de génération de colonnes

Dans cette figure, il est possible d’observer que les valeurs des variables duales
varient beaucoup avant de se stabiliser et de se rapprocher de leur valeur finale (va-
leur finale pour la résolution optimale de la relaxation linéaire du probléme maitre).
Donc il pourrait étre intéressant de tenter de lisser les courbes de ce graphe, c’est-a-
dire de limiter ’amplitude du mouvement des variables d'une itération a 'autre. Les
variables duales se rapprocheraient ainsi plus rapidement de leur valeur finale, ce qui
pourrait réduire le nombre d’itérations de la méthode de génération de colonnes pour

la résolution de la relaxation linéaire, et rendre ainsi la résolution plus rapide.

L’objectif de ce mémoire est donc de résoudre le probléme maitre avec de nouvelles
méthodes qui seront intégrées a la méthode de génération de colonnes par I’entremise
du logiciel GENCOL. Ces méthodes peuvent &tre heuristiques (pour plus de rapidité),

en autant que le résultat final demeure exact. Nous nous attaquerons au dual du




probléme en essayant de mieux contréler les variables duales.

Le chapitre 2 présente quelques méthodes classiques mathématiques de décompo-
sition utilisées pour des problémes de routage semblables a ceux décrit dans la section
1.1. La relaxation lagrangienne (Geoffrion 1974) et la décomposition de Dantzig-Wolfe
(1961) y sont décrites. Ce chapitre traite aussi de 'ajustement des variables duales
par la méthode de sous-gradient. Suivent les caractéristiques de I'implantation de la
méthode de décomposition de Dantzig-Wolfe (aussi connue sous le nom de méthode de
génération de colonnes) dans le logiciel GENCOL. Enfin, les stratégies de résolution en
nombres entiers sont abordées. Le chapitre 3 décrit plus spécifiquement les problémes
utilisés pour tester les algorithmes implantés dans le cadre de ce mémoire. Le cha-
pitre 4 présente un algorithme de sous-gradient, permettant de résoudre de maniere
heuristique le probléme maitre dans le contexte d’une méthode de génération de co-
lonnes. Les résultats de 'implantation de cet algorithme dans le logiciel GENCOL
sont également présentés. Le chapitre 5 expose un second algorithme utilisant des
stratégies de perturbation permettant de borner les variables duales du probleme
maitre dans le contexte d'une méthode de génération de colonnes. La maniere dont
cet algorithme est implanté dans le logiciel GENCOL, et les résultats de cette 1m-
plantation, sont présentés par la suite. Enfin, une courte conclusion fait le point sur
les algorithmes étudiés et implantés dans le cadre de cette maitrise, sur les résultats

trouvés et sur les nouvelles directions de recherche intéressantes.



Chapitre 2

Méthodes de décomposition

Plusieurs méthodes de décomposition peuvent étre employées pour résoudre un
probléme de grande taille. Les méthodes de décomposition de Dantzig-Wolfe (utilisant
la programmation linéaire), de la relaxation lagrangienne (utilisant I'algorithme de
sous-gradient), de faisceaux (utilisant la programmation quadratique) et du centre

analytique (utilisant la méthode de points intérieurs) sont parmi les plus connues.

Ce chapitre décrit premiérement la méthode de la relaxation lagrangienne (sec-
tion 2.1), puis la méthode de décomposition de Dantzig-Wolfe, aussi connue sous le
nom de méthode de génération de colonnes (section 2.2). La section 2.3 décrit |’algo-
rithme de sous-gradient qui sera intégré par la suite a la méthode de génération de
colonnes. Les caractéristiques de I'implantation de la méthode de génération de co-
lonnes dans 'optimiseur GENCOL sont données a la section 2.4. Enfin, la section 2.5

explique l'utilité d'un algorithme d'évaluation et de séparation progressive.

Dans les deux prochaines sections portant sur les méthodes de décomposition,

nous considérons I P, un programme linéaire en nombres entiers, défini comme suit:

Z[p =mian,~X]- (21)
jed



sujet d Z a,-jXJ- = b,’, viel (22)
JjeJ

ot Z;p dénote la valeur optimale de IP; X = (X;|j € J ) est le vecteur des variables
de décision; 4 = (4;;]z € I,j € J) est la matrice des coefficients des contraintes;
b = (bi]i € I) est le vecteur des membres de droite; et xg est l’ensemble des points
entiers d'une région convexe bornée y définie par un ensemble de contraintes linéaires.
Le probléme obtenu par la relaxation linéaire des contraintes d’intégrité, et défini sur

{X : X € x}, est dénoté LP; sa valeur optimale est notée Zp.

2.1 La relaxation lagrangienne

La méthode de relaxation lagrangienne appliquée au probleme (2.1)-(2.3) con-
siste & introduire les contraintes (2.2) dans 'objectif de P et de profiter ainsi de la

structure particuliére de I’ensemble x&-.

Associant les multiplicateurs 7 = (m; € R|i € I) aux contraintes de (2.2) dans le
probléeme I P, la fonction lagrangienne est définie comme suit:

L(X,Tl’) = chXj + Zﬂ',‘(bi - Za,’ij).

jed iel jeJ
La minimisation de L(X, ) sur ’ensemble xg donne la fonction duale:

Lp(r) = ;ggtr;L(X,vr)

= Zbiﬂ'i + J?élxriz Z(cj - Zaijﬂ'i)xj.

i€l Jj€J iel



1l a été montré par Geoffrion (1974) que Lp(m) constitue une borne inférieure a
la valeur Z;p, c’est-a-dire Lp(w) < Zp pour tout vecteur 7. La meilleure borne est

donc donnée par la solution du probléme dual lagrangien:

Zip = max Lp(m) < Zip.
e
L'inégalité précédente est généralement stricte, mais le fait de conserver des con-
traintes d’intégrité dans yg permet de s’approcher de la valeur de Z;p. Lorsque I'op-
timisation de la fonction lagrangienne sur xg donne le méme résultat que sur X,
c’est-a-dire lorsque

min L(X, ) = min L(X, ),
Xexe Xex

le probleme posséde la propriété d’intégrité. Dés lors, la borne inférieure calculée
par la relaxation lagrangienne ne donne pas une meilleure valeur que la relaxation

linéaire de (2.1)-(2.3), i.e. Zrr = Z.p. D'olt le résultat suivant:

Zip < Zrp < Z1p-

Si le gap Zip — ZLgr est petit, le choix des contraintes & dualiser importe peu
au niveau de la valeur de la borne: la relaxation qui facilite le calcul de Lp(m) est
donc choisie. Par contre, si Z;p — Zrg est grand, le choix de I'ensemble yg formant
les contraintes du probléme lagrangien est important. L’utilisation adéquate des con-
traintes d'intégrité de yg permet souvent de déterminer une borne lagrangienne Zrr
tres proche de Z;p. Dans les deux cas et pour la plupart des applications, un arbre

de branchement est nécessaire pour l’obtention de solutions entiéres.

La résolution du probléme dual lagrangien passe par la détermination d'une suite

de vecteurs des multiplicateurs 7 de fagon a déterminer la meilleure borne inférieure.
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Cette recherche (ou cet ajustement) des multiplicateurs est controlée par un probléme

maitre. L'optimisation ‘r{réin L(X,r) pour un vecteur de multiplicateurs donné est
AEXE

appelée sous-probléme et requiert généralement 'utilisation d’un algorithme profi-

tant de la structure de xg.

L’optimisation du probléme maitre peut se faire de diverses fagons. L'ajustement
des multiplicateurs 7 peut se faire par programmation linéaire: c’est la méthode
de Dantzig-Wolfe (1961), décrite a la section 2.2. La méthode la plus connue est
certainement celle de sous-gradient popularisée par Held, Wolfe et Crowder (1974)
pour le probléme du voyageur de commerce. Cette méthode est décrite a la section
2.3. Enfin, des méthodes non linéaires peuvent étre utilisées, telles la méthode des
faisceaux utilisant la programmation quadratique (Lemaréchal 1989) ou encore la
méthode ACCPM (Analytic Center Cutting Plane Method) des centres analytiques
(Vial et Goffin 1992, Du Merle 1995) faisant appel a un algorithme de points intérieurs.

Ces deux derniéres méthodes ne sont pas décrites dans ce mémoire.

2.2 La décomposition de Dantzig-Wolfe

Le processus de décomposition de Dantzig-Wolfe peut étre décrit de la fagon sui-
vante. Tout point de l'intersection des contraintes (2.2)-(2.3) peut s’exprimer comme
combinaison convexe des points de I’enveloppe convexe de Xk, soit Conv(xg). Ici I'hy-
pothése non restrictive en pratique sera faite que xg est un ensemble borné. Notons
par X, = (Xjp|j € J) chacun des points extrémes de Conv(xg) et par Q I'ensemble
de ces points extrémes. Tout point X € x satisfaisant (2.2) peut donc s'exprimer par

X = Zerp
pe
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o, =1

peN

6, > 0, VpeQ.

En faisant la substitution dans (2.1) et (2.2), le probléeme maitre suivant est ob-

tenu: )
min Z Cj( 2 gp/Yjp)
jeJ pEN
sujet @ T aij( X 0,X5) = bi, Vi€ I
jeJ peEN
v6, =1
peQR

6, > 0, VvpeQ

oil les poids 8, p € §, associés aux points extrémes dans la combinaison convexe

correspondent aux nouvelles variables de décision.

Aprés réorganisation des sommations, le probleme maitre se présente sous la

forme: '
min ¥ (¥ ¢jXip)bp
peEN jeJ
sujet a Z ( z ai]-ij)Gp = b,’, Viel
pEQ jEJ
T, =1
peQ

6, > 0, Vpe Q.

L’ajustement du vecteur 7 des multiplicateurs m; € R, Vi € [ associés aux con-
traintes indicées par 1, ainsi que du multiplicateur A € IR associé a la contrainte de
combinaison convexe, passe par la résolution du programme linéaire précédent. Ces
multiplicateurs (, A), vont servir a déterminer si un nouveau point extréme X,,p € Q
peut améliorer la solution courante, i.e., s'il existe une variable 6,, p € §2 de cout mar-
ginal négatif. Pour ce faire, le sous-probleme suivant doit étre résolu:

I;]éi(IIIZCjXJ’p - Zﬂ','(z a,-ijp) - A

jeJ i€l jEJ
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qui s’écrit également comme

—A+ min > (¢ - > aiimi) X
XExE joj il
Ce sous-probléme est, & une constante pres, le sous-probléme lagrangien. Il permet
d’une part de calculer une borne inférieure sur la valeur de Z;p et, d’autre part, de
cesser le processus de génération si le résultat de 'optimisation précédente ne donne

pas de variables de colt marginal négatif.

Ainsi, I'ajustement des multiplicateurs = se fait de maniére équivalente, qu'il
s'agisse du probleme dual lagrangien dans la méthode de la relaxation lagrangienne,
ou d’un probléeme de programmation linéaire dans la méthode de Dantzig-Wolfe. Ces

deux méthodes sont équivalentes.

2.3 L’algorithme de sous-gradient

La fonction duale Lp(w) vue dans la section 2.1 est continue, concave et linéaire
par morceaux. Elle n’est pas dérivable partout, ce qui la rend difficile & maximiser.

Pour tout vecteur de direction d donné, elle a comme dérivée directionnelle

Lp(r +td) — Lp(r)
- :

plria) = Jim

Si Lp(m) était dérivable partout, un extremum se trouverait en un point ou la diffé-
rentielle ‘ﬂ‘—;é"—) — 0. Mais, dans le cas présent, le maximum risque d’étre en un point
singulier ou il existe plusieurs dérivées directionnelles valides. Heureusement, la notion

de différentiabilité d’une fonction est étendue pour nous donner ce dont nous avons

besoin.
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Le sous-gradient est une extension de la notion de dérivée pour les fonctions non
différentiables. Le vecteur u de dimension n, ou n est la dimension de I’ensemble des
contraintes (2.2), est un sous-gradient en m € IR™ de la fonction concave Lp(m)
définie sur R" si

Lp(y) — Lp(m) S u-(y—m)
pour tout y € R". L’ensemble de tous les sous-gradients en m est |'ensemble compact
et convexe 9L p(r), appelé le sous-différentiel en 7. Dans le cas o le sous-différentiel
en 7 est réduit 2 un seul élément, la fonction Lp(w) est dérivable et ALp(7) est sa
dérivée: de maniere plus générale, L'y(w:d) € dLp(m), Vd. Une condition nécessaire
et suffisante pour que m maximise Lp(m) est que Lp(m; d) < 0, Vd, ou de maniére

équivalente, que 0 € dLp().

Un sous-gradient en un point donné indique donc une bonne direction a suivre
pour atteindre le maximum d’une fonction. C’est cette propriété qui est utilisée par
I’algorithme de sous-gradient pour trouver le maximum de Lp(7). L'idée de cet algo-
rithme est de suivre itérativement les directions données par un sous-gradient jusqu’'a

étre assez proche du maximum de Lp(m).

Le vecteur de départ n° est souvent donné par un algorithme glouton (Fisher et
Kedia 1990, Toth 1996). Intuitivement, la direction d sera choisie de maniere a ce
que L'p(m,d) > 0, de telle sorte qu'en avangant d’un pas assez petit 6 (c’est-a-dire
en changeant 7 a4 7 + 6d) la valeur de Lp(r) augmente, se rapprochant donc de son

maximum. Un sous-gradient en 7 se calcule par

max Zb, - zZa,—ij.

X€xe jer iel jeJ
Cependant, par optimisme, cette direction sera choisie méme si Lp(w,u) < 0 (Held,

Wolfe et Crowder, 1974).
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Pour calculer le pas 6, l'idéal serait de calculer la valeur maximale que prend
Lp(n) dans la direction %(—"1, mais ce calcul est tres long. Une procédure heuristique
de Held, Wolfe et Crowder (1974) est préférée afin de réduire le temps de calcul. Le
pas dépend avant tout. de fagon proportionnelle, de I'éloignement de m avec la valeur
optimale 7* qui maximise Lp(7): plus 7 est loin de 7*, plus le pas devra étre long.
Evidemment, la valeur de 7* n’est pas connue et c’est pourquoi une borne supérieure
Z g sur Lp(w*) est nécessaire. Plus Z g est proche de Lp(m*), plus I'algorithme de
sous-gradient sera performant. Dans l'approche classique utilisée dans ce mémoire, le

pas est aussi fonction de l'inverse du carré de la norme de la direction.

Enfin, le pas contient un facteur multiplicateur p*. Cette suite de parametres
{p*} (k indiquant l'indice de I'itération de l'algorithme de sous-gradient) assure la
convergence de ’algorithme vers 7*, si kl-l;galo pF=0et g:o p*¥ = oco. La série ki::O p* peut
aussi étre convergente. Dans ce cas, la résolution est plus rapide que si la série {p*}
diverge. La suite des vecteurs {m*} pourrait alors converger vers une autre valeur que
la valeur optimale 7*, mais les résultats sont quand méme trés bons, comme dans
Toth (1996), et dans Held, Wolfe et Crowder (1974), ou une convergence de type

géométrique est présente.

Ainsi, a partir d'une valeur duale 7° donnée, un sous-gradient u® proposant une
direction de déplacement intéressante est calculé, de méme qu'un pas §° correspondant
3 la distance & faire dans cette direction. Cela donne un vecteur de valeurs duales
! avec lequel sont recommencés les calculs d'un sous-gradient ul et d’un pas 8'. Le

processus se poursuit jusqu’a ce qu'un critére d’arrét soit vérifié.

Il y a plusieurs critéres d’arrét pour ’algorithme de sous-gradient:
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1. la valeur de la fonction duale, Lp(w*) & I'itération k a atteint la valeur de la

borne supérieure Z g, au gap admissible prés choisi au départ;

2. le nombre d’itérations de l'algorithme de sous-gradient a atteint un maximum

donné;

3. le paramétre p* & l'itération k est devenu tellement petit que le pas 6% est
pratiquement nul et qu'il n’est plus intéressant de poursuivre la résolution par

I’algorithme.

2.4 L’algorithme de Dantzig-Wolfe dans le logiciel
GENCOL

Le logiciel GENCOL est une implantation informatique de l’algorithme de dé-
composition de Dantzig-Wolfe, aussi connu sous le nom de méthode de génération de
colonnes. Dans ce logiciel, il y a alternance entre la résolution du probléme maitre et
celle du sous-probleme (voir figure 2.1). Le probléme maitre comprend [’objectif ainsi
que les contraintes liantes. Les contraintes liantes sont celles qui portent sur plus d’un
chemin 2 la fois. Dans le contexte étudié, le sous-probléme comprend les contraintes
de flot et toutes les autres contraintes internes a la définition d’un chemin. Le sous-
probléme se modélise en probléme de plus court chemin avec variables de ressources
dans le graphe sous-jacent au probléme originel et se résout par programmation dy-
namique. La résolution du sous-probléme donne un ensemble de chemins réalisables,
et les variables de flot associées aux chemins ayant un coit marginal négatif (donc
plus intéressants que les chemins trouvés précédemment) sont ajoutées au probleme

maitre. Les chemins sont représentés par des colonnes de la matrice du probleme



16

variables duales w

sous-probléeme

probléme maitre e
( génération de

colonnes )

colonnes colonnes

critére

d’arrét?

FIN

Figure 2.1: Processus itératif de résolution par une approche de génération de colonnes

maitre, d’ott le nom de “génération de colonnes”.

Le probleme maitre trouve une combinaison des chemins retenus qui satisfait les
contraintes liantes  coiit minimum. Un chemin n’est pas forcément choisi un nombre
entier de fois: par exemple, une tiche devant étre couverte une fois peut étre couverte
3 moitié par un chemin et & moitié par un autre chemin. Le probléme maitre est un

probléeme de programmation linéaire qui est résolu, dans la méthode de génération
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de colonnes et plus particuliérement dans l'optimiseur GENCOL, par l'algorithme
du simplexe. Il est représenté par une matrice dont chaque colonne représente un
chemin possible, et chaque variable le nombre de fois que le chemin correspondant
est utilisé. Dans une approche duale comme la relaxation lagrangienne, le probléeme
maitre peut étre résolu par un algorithme dual telle la méthode de sous-gradient (vue

a la section 2.3).

Les valeurs duales 7 trouvées a l'optimalité du probléme maitre sont envoyées au
sous-probléme pour modifier les couts. A chaque tache i (du graphe sous-jacent au
sous-probleme) correspond une variable duale ;. Le coiit ¢;; d’un arc (¢, j) supportant
la tache i est modifié en posant ¢;; := c¢;j — m;. Plus la variable duale m; est grande,

plus la tache i est attrayante, et moins il coute cher d'utiliser 1'arc (¢, j).

Le sous-probléeme est de nouveau résolu, en tenant compte des nouveaux couts,
et la boucle probléeme maitre - sous-probléme est répétée jusqu'a ce qu'un critere
d’arrét soit atteint. Etant donné que le nouveau probleme maitre est le méme que
celui de l'itération précédente, avec un plus grand choix de variables grace aux nou-
veaux chemins générés, la valeur de I'objectif obtenu par chaque résolution d'un
nouveau probléeme maitre s’améliore & chaque itération. Pour une résolution opti-
male du probléme maitre, le processus itératif s'arréte lorsqu’aucune nouvelle colonne
ne peut étre générée. Autrement, un critere d’arrét heuristique peut étre employé:
par exemple lorsqu’une solution duale de valeur assez proche d’une borne supérieure

prédéterminée est trouvee.

A ce moment, si la derniére solution obtenue est exacte et entiére, c’est une solution

de valeur optimale Z;p. Sinon, elle permet d’obtenir une borne inférieure sur la valeur
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de la solution optimale qui sera déterminée par un algorithme d’évaluation et de

séparation progressive.

2.5 Recherche d’une solution entiere

Les méthodes de la relaxation lagrangienne et de Dantzig-Wolfe, vues dans les
sections 2.1 et 2.2, résolvent des problémes linéaires. Or, bien souvent, le probléme
d’optimisation considéré est en nombres entiers, donc bien plus difficile a résoudre.
Dans ce cas, des décisions de branchement, qui different selon le contexte, doivent

&tre prises dans le cadre d'un algorithme d’évaluation et de séparation progressive.

Dans le cas de la relaxation lagrangienne, malgré que la résolution soit duale, le
branchement se fait sur les variables primales. Une solution primale réalisable est
donc nécessaire. En général, celle-ci est déterminée par une heuristique primale. La

valeur de la solution duale sert alors & limiter le nombre de noeuds explorés.

Dans le cas de la décomposition de Dantzig-Wolfe, une solution primale possible-
ment fractionnaire est disponible 2 la fin de la résolution de la relaxation linéaire. La
valeur de cette solution procure une borne inférieure a la solution optimale entiére. Les
décisions de branchement sont souvent prises sur la valeur des flots entre les taches. De
telles décisions sont imposées au niveau du sous-probléme. Le branchement ne peut
se faire sur les variables du probleme maitre étant donné que les variables violant les

décisions prises peuvent toujours étre générées de nouveau, A ’aide du sous-probléme.



19

Chapitre 3

Probléemes tests

Les problémes de routage ont été présentés de fagon générale a la section 1.1. Dans
ce chapitre, un type précis de probléme de routage est décrit: le probleme des m-
voyageurs de commerce avec fenétres de temps, dénoté m-TSPTW (multi-Traveling
Salesman Problem with Time Windows). Ce type de probléme consiste & déterminer
les itinéraires d'un groupe de véhicules devant visiter a colit minimum un certain
nombre de clients. Chaque client posséde une fenétre de temps déterminée pendant

laquelle la visite doit avoir lieu.

Tous les tests effectués sur les implantations informatiques dans le cadre de ce
mémoire seront faits sur ce type de problémes. Deux raisons motivent ce choix. La
premiére est que ce type de problemes est suffisamment représentatif de la classe
des problémes de routage de véhicules et d’horaires d’équipages, sans faire intervenir
toute la complexité des conventions de travail. La seconde provient du fait que, dans
une méthode de décomposition comme celle de Dantzig et Wolfe, la majeure partie
du temps de résolution pour ce type de problémes se situe au niveau du probléme
maitre. Le but du mémoire étant de réduire les temps de calcul du probléeme maitre,

les problemes de type m-TSPTW constituent donc des candidats de choix.

La section 3.1 décrit en détails le m-TSPTW et introduit la notation utilisée dans
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la section suivante, soit la section 3.2 qui présente un modeéle mathématique pour le
m-TSPTW. Enfin, la section 3.3 expose la formulation du probléme maitre obtenue en

décomposant ce modéle mathématique selon le principe de Dantzig et Wolfe (1961).

3.1 Un probleme de routage: le m-TSPTW

De maniére générale, le modéle du m-TSPTW s'applique & des problémes ol un
ensemble de taches doivent étre effectuées une fois chacune. De plus, chaque tache
doit étre effectuée dans un intervalle de temps précis. Plusieurs ressources identiques

sont disponibles pour effectuer les taches.

Pour donner une idée plus concréte du probléme a résoudre, considérons que les
taches i effectuer sont des clients a visiter. Chaque client doit étre visité a l'intérieur
d'un intervalle de temps précis appelé fenétre de temps. Pour ce faire, des véhicules
tous identiques sont disponibles, regroupés dans des dépéts. L'utilisation d'un véhicule
entraine un cout fixe prédéterminé. L'objectif du probleme consiste a minimiser une

somme pondérée du cott total de la solution et du nombre de véhicuies utilisés.

Ce probleme de multi-flots avec fenétres de temps se modélise comme suit. L’en-
semble des clients & visiter est noté N et les || clients sont associés a | N| noeuds-
taches. Par abus de notation, cet ensemble de noeuds est aussi noté N. L’ensemble
des dépéts est noté K. Un dépét k € K contient v¥ véhicules. Il est représenté par une
paire de noeuds: un dépét-source o(k) et un dépot-puits d(k). N* = NU {o(k), d(k)}

est donc l'ensemble des noeuds relatifs au dépét k.

La fenétre de temps du client i € N est notée par I'intervalle [a;, b;]. Un véhicule
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peut arriver chez un client i € V avant le temps a; et attendre jusqu'a a; sans couts
additionnels; par contre, il doit absolument arriver avant le temps b;. De maniere
similaire pour les dépéts. un véhicule du dépot A doit partir de ce dépot entre les
temps ag(k) €t o), €t y revenir entre aqx) et byk). Comme c’est souvent le cas en

pratique, I’heure de départ du dépot est fixée, i.e. aox) = bo(k) VK € K.

Le temps de parcours du client i € NV au client j € N est noté ¢;; et comprend la
durée de la visite chez le client i. De méme, le temps de parcours du dépot k € K au
client i € N est noté t,):, et le temps de parcours du client : € N au dépét k € K est
noté t;qx), et comprend la durée de la visite chez le client i. Un véhicule provenant du
dépot-source o(k) peut aller chez le client i € N si le temps le permet, c'est-a-dire si
Qo(k) +Eok)i < b;. De méme, aprés avoir visité le client i, le véhicule peut servir le client
j sia; +t;; < bj, ou revenir au dépét-puits d(k) si a; + tigr) < ba()- Il y a donc pour
chaque dépét k € K. un sous-ensemble A* d’arcs, avec 4F € N* x Nk L’ensemble
de tous les arcs est noté A (i.e. A = Uker AF). Notons que les fenétres de temps
ne compliquent pas nécessairement le probléme. Elles peuvent méme le simplifier,
car elles limitent le nombre total d’arcs et réduisent donc le nombre de chemins a

comparer.

Le coiit ¢;; d’un arc (i, j) est le cout réel de déplacement du client i € N au client
j € N pour un véhicule quelconque. Les cotits co(x); des arcs dépot-tache et cig) des
arcs tache-dépot sont définis de fagon similaire. De plus, les coiits co(x)i comprennent
le coiit fixe d’utilisation d’un véhicule. Pour minimiser le nombre de véhicules utilisés,

il suffit de rendre ce cott fixe trés grand.

Les variables du probleme sont de deux types. Une variable binaire X, ,‘J est associée



22

a chaque arc (i, j) € A*, k € K. Elle indique le flot sur l'arc (i, j) € AF. Cette variable

est égale a 1 si I'arc (¢, j) est choisi dans la solution pour le dépét k, a 0 sinon. Une

variable de temps TF est associée & chaque noeud i € N*,k € N.Sii € N, elle spécifie

I'heure effective de début de service chez le client i € N d’un véhicule provenant du

dépét k € K; sinon elle indique I’heure du premier départ du dépot k (i = o(k)) ou

I'heure de la derniére arrivée a ce dépot (i = d(k)).

3.2 Un modeéle mathématique pour le m-TSPTW

Etant donné la notation définie 2 la section précédente, le m-TSPTW peut s’écrire

comme le probleme de multi-flots avec fenétres de temps suivant:

min Z z Cij .YZ

keK (ij)e Ak

sous les contraintes:

DPIECE

keK jeNk
ko _ k k
> Xswi = 2 Xiagy SV
JENKk i€eNk
> Xh- Y Xk =0,
JENk JENE

XE(TF+1; - TF) <0,
a; < TF < b,

k
X;; € {0,1},

Vie N

Yk € K

vke K,Vie N

vk € K,Y(i,j) € A
Vk € K,Vi e N*¥

vk € K,V(i,j) € A*.

(3.1)

(3.2)
(3.3)
(3-4)
(3.5)
(3.6)

(3.7)

e L'objectif (3.1) est de minimiser le coit total, incluant les coiits fixes des

véhicules utilisés.
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e Les contraintes (3.2) spécifient que chaque tache doit étre couverte exactement
une fois, par un véhicule provenant de I'un des |K| dépdts. Il est a noter que ces
contraintes de partitionnement (= 1) peuvent étre transformeées, sans perte de
réalisabilité ni d’optimalité, en contraintes de recouvrement (> 1) (i-e. chaque
tache doit étre couverte au moins une fois) si l'inégalité du triangle est satisfaite
pour les coiits et les temps de parcours associés aux arcs. En effet, si la tache
n est couverte deux fois dans la version avec contraintes de recouvrement, alors
un des deux chemins la recouvrant contient disons les arcs (i,n) et (n,j); or,
par l'inégalité du triangle, cij < Cin + Cnj €t tij < tin + tnj, et il n’est donc pas

avantageux de couvrir n plus d’une fois.

e Les contraintes (3.3) assurent qu'il y ait autant de véhicules partant du dépot
que de véhicules y revenant et limitent le nombre de véhicules utilisés a chaque

dépot k € K au nombre de véhicule disponibles vk

e Les contraintes (3.4) obligent la conservation du flot en tout noeud i de N:
tout le flot entrant en un de ces noeuds doit en sortir, i.e. tous les véhicules qui

arrivent chez un client doivent en repartir.

e Les contraintes (3.5) assurent qu'il y ait suffisamment de temps disponible pour
effectuer le déplacement entre les noeuds i et j et, s'il y a lieu (i.e. sii € N),
la tiche au noeud i. Par conséquent, une telle contrainte indique que, si I'arc
(i,j) € A* fait partie de la solution pour un véhicule provenant du dépét k € K
(i-e. si X!‘j > 0), alors le temps de début de service au noeud j (ou d’arrivée au
dépot k si j = d(k)) doit étre supérieur ou égal au temps de début de service

au noeud i (ou de départ du dépét k si ¢ = o(k)) plus le temps de parcours t;;

entre ces deux noeuds.
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e Les contraintes (3.6) représentent les fenétres de temps pour chaque noeud.

o Finalement, les contraintes (3.7) sont les contraintes d’intégrité des variables de

flot.

3.3 Formulation du probléme maitre

Comme illustré a la figure 3.1, la matrice des coefficients des contraintes du modele
proposé pour le m-TSPTW (3.1)-(3.7) a une structure angulaire de blocs. En fait, sans
la présence des contraintes liantes (3.2) définissant un partitionnement des taches, il
y aurait |K| petits problémes a résoudre, un par dépot. Cette structure particuliere
incite & utiliser la décomposition de Dantzig-Wolfe ou la relaxation lagrangienne
(méthodes vues dans les sections 2.1 et 2.2) pour résoudre le probléeme. Pour cha-
cun des dépéts k € K, un sous-probléme est défini comme un probléme de plus court
chemin avec fenétres de temps. Le probléme maitre consiste a sélectionner parmi les
solutions trouvées par les sous-problémes, celles qui ménent a une solution optimale

globale.

Soit P* I'ensemble des chemins réalisables & partir du dépét k € K. Dénotons par
¢p le coiit du chemin p € P*, et par a;,, un paramétre binaire qui prend la valeur 1
lorsque le chemin p € P* visite le client i € N, et 0 sinon. Finalement, définissons,
pour chaque dépét k € K et chaque chemin p € P* une variable 6§ qui indique le flot
de véhicules provenant du dépét k sur le chemin p. Ces variables de chemin peuvent
atre restreintes a des valeurs binaires puisque chaque chemin contient au moins une

visite chez un client et qu'il n’est pas avantageux de visiter deux fois le méme client.



Objectif: minimiser les coiits

25

contraintes de couverture des tiches liant les | K| dépdts

contraintes de

chemins

. our le dépot k =1
contraintes de } P P

temps

contraintes de

chemins

. pour le dépot k = 2
contraintes de

temps

contraintes de

chemins

pour le dépét k = |K| {

contraintes de

temps

Figure 3.1: Structure de blocs de la matrice des coefficients

En utilisant cette notation, le probleme maitre peut se formuler ainsi:

min 3 3 cpf;

keK pepPk

sous les contraintes

viel

Z Z a,-pﬂs =1

keK pepPk

(3.8)

(3.9)
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S t<Y* vVkekK (3.10)
pepP*
g c {0.1} VkeK, Vpe P*. (3.11)

e L’objectif (3.8) consiste a minimiser les couts totaux.

e Les contraintes (3.9) spécifient que chaque client doit étre visité exactement une

fois.

e Les contraintes (3.10) limitent le nombre de véhicules disponibles & chaque

dépot.

e Finalement, les contraintes (3.11) indiquent que les variables de chemin doivent

prendre des valeurs binaires.

Il s’agit donc essentiellement d'un probleme de partitionnement, avec pour con-

traintes supplémentaires liantes les limites sur le nombre de véhicules par dépot.

Le fait que ce probléme en soit principalement un de partitionnement, ou de
recouvrement selon la formulation, invite  utiliser un algorithme spécialisé dans la
résolution de ce type de problémes, comme cela sera fait a la section 4.1. Dans ce cas,
les contraintes liantes qui font que le probleme n’est pas tout a fait un probleme de
partitionnement pourront étre traitées 3 part. Cette maniére de procéder est efficace

dans un cas comme celui-ci out I'effet des contraintes supplémentaires est limité.



27

Chapitre 4

Intégration d’un algorithme de
sous-gradient a D’algorithme de
génération de colonnes

Le premier algorithme intégré a l'algorithme de génération de colonnes et pou-
vant remplacer 1'algorithme du simplexe pour la résolution du probléme maitre est
un algorithme de sous-gradient inspiré de I'algorithme de Fisher et Kedia (1990).
L algorithme de Fisher et Kedia est décrit dans la section 4.1. La section 4.2 explique
pourquoi seul 1'algorithme de sous-gradient a été retenu de I'algorithme de Fisher et
Kedia, et comment il a été implanté dans le logiciel GENCOL, qui utilise la méthode
de génération de colonnes. Enfin la section 4.3 donne les résultats numériques des

tests effectués pour cette implantation.

4.1 L’algorithme de Fisher et Kedia

Cette section décrit 'algorithme proposé par Fisher et Kedia (1990). Tout d’abord,
le contexte dans lequel cet algorithme s’applique est présenté. Ensuite, deux procédures
heuristiques de l'algorithme de Fisher et Kedia, soit une procédure de type glouton

et une procédure de type 3-opt, sont décrites en détail. Enfin, les étapes finales de
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I'algorithme de Fisher et Kedia sont exposées.

4.1.1 Le contexte

L'algorithme de Fisher et Kedia (1990) a été congu pour résoudre le probléme
mixte de recouvrement et de partitionnement de tiches. De fagon générale, ce type
de probléme consiste & déterminer un ensemble de groupes de taches de maniére a ce
que chacune des tiches considérées soit contenue, dépendamment de son type, dans
au moins un des groupes (type recouvrement) ou dans exactement un groupe (type
partitionnement). Le regroupement des taches est régi par certaines régles, invalidant
ainsi certains groupes de taches. Chaque groupe de taches valide induit un cout,
et I'objectif du probléme consiste a minimiser le cout total pour le recouvrement

/ partitionnement des taches.

De facon mathématique, un tel probléme se définit comme suit. Soit It = {1,..,n}
I'ensemble des tiches de type recouvrement, I? = {1, .., n,} I'ensemble des taches de
type partitionnement et J = {1,.., m} l'ensemble des groupes de taches valides. Une
variable de décision binaire X; est associée a chaque groupe de taches valide j € J
de coiit ¢;. Cette variable prend la valeur 1 si le groupe associé est choisi et 0 sinon.
Finalement, notons par I 1'union des ensembles I et I 2 (j.e. [ = I'UI?), J; 'ensemble
des groupes valides contenant la tache : € I et I I’ensemble des taches contenues dans
le groupe j € J. Le probléme mixte de recouvrement et partitionnement des taches

se formule alors:
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minz c; X; (4.1)
jed
sous les contraintes
Y X;>1 vie I (4.2)
Jj€
S X;=1 Viel (4.3)
JjeJd;
X; e{0,1} Vj € J (4.4)

L’objectif (4.1) consiste & minimiser le cott total. Les contraintes (4.2) et (4.3)
assurent respectivement que les taches de type recouvrement soient contenues dans
au moins un groupe valide, et celles de type partitionnement dans exactement un
groupe valide. Finalement, les contraintes (4.4) restreignent les variables de décision

a prendre des valeurs binaires.

Il est & noter que pour un groupe j donné, si [; C I', il peut étre supposé sans
perte de généralité que ¢; > 0. En effet, si ¢; < 0, alors X; = 1 dans toute solution
optimale puisque le probleme en est un de minimisation. Ainsi, en posant X; =1 a
priori, la taille du probléme peut étre réduite. De méme, il peut étre supposé sans
perte de généralité que I; # @, Vj € J. En effet, dans le cas contraire, il existe un
groupe j donné tel que I; = @. Par conséquent, la valeur de la variable X; peut étre
déterminée 3 I'avance et celle-ci peut étre éliminée du probléme. Ces deux hypothéses
(i.e. ¢; > 0 Vj tel que I; € I'et I; # @, Vj € J) seront retenues pour le restant du

chapitre.

Pour les applications qui nous intéressent, I peut représenter un ensemble de

parcours d’autobus a effectuer, de clients A servir, ou de vols d’avion nécessitant un
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pilote, et J un ensemble d’itinéraires réalisables pour un autobus ou un véhicule,
ou d’horaires valides pour un pilote, ou plus généralement, un ensemble de chemins
pouvant couvrir les taches de I. I; est alors I’ensemble des taches accomplies au cours
du chemin j et ¢, est le cotit de ce chemin. Le probléme est donc de choisir un ensemble
de chemins & coiit minimum tels que chaque tache i soit couverte au moins une fois
si i € I'. ou exactement une fois si i € [2. Dans la suite de ce texte, la terminologie
“chemin couvrant des tiches” sera employée au lieu de “groupe de téches”, afin de se

rapprocher des applications considérées.

Le probléme mixte (4.1)-(4.4) a pour cas particuliers les problémes de recouvre-
ment de taches (4.1),(4.2) et (4.4) et de partitionnement de taches (4.1),(4.3) et (4.4).
L'algorithme de Fisher et Kedia semble étre le premier a4 présenter un traitement
unifié pour ces deux problemes. Plusieurs algorithmes ont déja été développés pour le
probleme de recouvrement de taches, utilisant notamment la relaxation lagrangienne
et la méthode de sous-gradient (Balas et Ho, 1980). Pour le probleme de partitionne-

ment de taches, le meilleur algorithme semble étre celui de Marsten (1974).

Marsten remarque que tous les algorithmes pour résoudre des problémes de parti-
tionnement de tiches de grande taille commencent par résoudre la relaxation lagran-
gienne du probléme, et c'est ce qui les ralentit. Cela est dii au fait que la relaxation
lagrangienne d’un tel probléeme est tres dégénérée, et donc difficile a résoudre. La
solution de la relaxation lagrangienne est souvent entiere, ou sinon, elle donne une
borne inférieure assez serrée pour trouver facilement une solution au probléme par un
algorithme d’évaluation et de séparation progressive ou par une méthode de coupes.
Etant donné la difficulté du calcul, il serait intéressant d’utiliser une alternative a la

solution optimale de la relaxation lagrangienne pour trouver de bonnes solutions aux
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problémes de partitionnement ou de recouvrement de taches.
L’alternative proposée par Fisher et Kedia est d'utiliser plusieurs heuristiques pour

trouver une solution optimale ou presque optimale au probléme dual (4.1)—(4.4). Ce

probléme dual s’énonce:

el
sous les contraintes
Z 3 S Cj V] € J (46)
icl,
>0 Viel (4.7)

o T, est la variable duale correspondant & la contrainte ¢ € I du probléme primal.

La borne supérieure de 1 sur les variables X; peut étre omise dans la relaxation

du probléme. En effet. soit la condition
X;>0,VjeJ, (4.8)

et soit X* = (X;|j € J) une solution optimale de (4.1)-(4.3) et (4.8). Supposons qu'il
existe un chemin j donné tel que X; > 1. Alors la variable X; associée a ce chemin
ne peut étre incluse dans les contraintes de partitionnement (4.3) et se retrouve donc
uniquement dans les contraintes de recouvrement (4.2). En remplagant X; = X par
X; = 1, une nouvelle solution réalisable de coiit inférieur (puisque c; > 0) est obtenue.
Comme il s’agit d’un probléme de minimisation, cela démontre que X* ne peut étre

une solution optimale de (4.1)-(4.3) et (4.8) & moins que X7 <1, Vj € J.

L’algorithme de Fisher et Kedia commence par une procédure de type glouton

qui trouve une solution initiale pour le probleme dual (4.5)-(4.7). Cette solution est
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ensuite améliorée par une heuristique 3-opt, qui procéde au changement des valeurs
de trois variables duales m; & chaque itération. Eventuellement, si la valeur de la solu-
tion duale obtenue n'est pas satisfaisante comparativement a la valeur d’une solution
primale trouvée de fagon heuristique, une méthode de sous-gradient est utilisée pour
trouver une meilleure solution duale. Finalement, une solution entiere est obtenue
3 I'aide d'un processus d’'évaluation et de séparation progressive. Tout au long de
I'algorithme, des tests logiques simples sont effectués pour vérifier la réalisabilité du

probléme et en réduire la taille.

Dans les sections qui suivent, la partie duale heuristique de l'algorithme sera
décrite, c’est-a-dire la procédure de type glouton (section 4.1.2) et la procédure de
type 3-opt (section 4.1.3), et un apergu de la fin de l'algorithme (section 4.1.4) sera
donné. Bien que partie intégrante de ’algorithme de Fisher et Kedia, la méthode de
sous-gradient ayant déja été décrite a la section 2.3, la description de cette méthode
ne sera pas reprise. Son intégration a une méthode de génération de colonnes sera
toutefois discutée plus loin a la section 4.2. Le lecteur intéressé a une description plus
compléte de cet algorithme peut consulter 'article de Fisher et Kedia (1990) ou la

these de Kedia (1985).

Les deux prochaines sections présentent en détail les procédures de type glouton
et 3-opt de l'algorithme de Fisher et Kedia. Ces procédures ont été implantées et
testées par l'auteur, sans toutefois étre retenues pour I'intégration & une méthode de

génération de colonnes, comme il est justifié a la section 4.2.1.
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4.1.2 La procédure de type glouton

La procédure de type glouton a pour but de trouver une solution initiale pour le

probléme dual (4.5)-(4.7). La présentation de cette procédure requiert les définitions

suivantes:
A(r) = min(e; = 3 m) (4.9)
I& lel,
I(m) = {i € I| Ai(m) > 0} (4.10)

ot # = (m|i € I) est une solution duale réalisable. Pour un vecteur de variables
duales 7 donné, la fonction A;(w) retourne la valeur minimale des cotuts réduits des
variables associées aux chemins couvrant la tache i, tandis que [ () donne |'ensemble
des taches pour lesquelles A;(7) retourne une valeur strictement positive, c’est-a-dire
'ensemble des tiches couvertes uniquement par des chemins dont la variable associée

a un coft réduit strictement positif.

La procédure de type glouton s’énonce ainsi:

1. - Poser # = 0.

2. - Pour chaque chemin j = 1,..,m, calculer

min{0,¢; — ¥ i}
i€l

Ty

o=
et pour toutes les taches i de I; N I?, poser m; := m; + 0. (Noter que o < 0).

3. - Choisir une tache i* € I{r) tel que le nombre de chemins couvrant cette tache
|J;| soit minimisé. S’il y a plusieurs taches candidates pour i*, choisir celle qui

maximise A;(). S’il y a encore plusieurs candidates, choisir I'une d’entre elles
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arbitrairement.
Poser ;e 1= m- + Qe ().

Mettre a jour A;(w), Vi € I, et I(m).

4. - Arréter si I(r) = O. Sinon, recommencer I’étape 3.

L'étape 1 est une simple initialisation des variables duales m; 4 0. Etant donné
que le cott ¢; de certains chemins j € J peut étre négatif lorsque I; N [ 2 £ Q, cette
étape d’initialisation ne garantit pas la validité de cette solution pour le probleme
dual (4.5)-(4.7). Par conséquent, l'étape 2 permet de vérifier si cette solution duale
est réalisable et, si ce n’est pas le cas, d’en construire une qui le soit. Le processus de
construction consiste 3 satisfaire de fagon séquentielle chacune des contraintes duales
violées en abaissant les valeurs de certaines variables duales m;,i € I?, ces variables

n’étant pas bornées.

Soit j le chemin associé a une des contraintes duales. Cette contrainte duale est

satisfaite si

> (m+o)+ X m S G
ie(I,n1?) ie(I,nIt)
= S o < ¢i— 2T
ie([;nI?) i€l,
=4 |Ijﬂ[2|0' < cj — Z 3
i€l,
c;j— 2 i
- ” i€l
- | NI? ’

ol o = oj(m) est une quantité, possiblement négative, a additionner a la valeur
courante de chacune des variables duales 7;,i € I; N[ 2. Puisque cette contrainte est
déja satisfaite lorsque c; — 3 m; = 0 et que I'ajout d’une quantité positive & la valeur

i€l,
des variables duales m;,i € I; NI 2 pourrait entrainer la violation d’une des contraintes
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duales traitées précédemment i cette étape, la quantité o;(m) choisie est donnée par:

min{0,¢c; ~ ¥ m}
i€l

Y (4.11)

g;i(m) =

ol certaines valeurs ;,7 € I ont pu avoir été modifiées précédemment par des calculs

antérieurs de o;.

Ainsi, ce choix permet de réduire le moins possible la valeur de la fonction objectif

dual tout en assurant la satisfaction de la contrainte duale associée au chemin j.

Il est & noter que l'étape 2 n’est nécessaire que si l'un des coiits ¢; est négatif.
Ainsi, si I2 = 0, alors I; C I' et c; >0Vj € J: 1'étape 2 peut donc étre omise.
A la fin de I'étape 2 (i.e. aprés avoir traité séquentiellement chacune des contraintes
duales (4.6)), les valeurs attribuées aux variables duales m; constituent une solution

réalisable pour le probléme dual (4.5)-(4.7).

L'étape 3 tente d’améliorer la valeur de la fonction objective duale en augmentant
le plus possible la valeur de certaines variables duales sans toutefois violer les con-
traintes. La valeur maximale qui peut étre ajoutée a la valeur courante de la variable
duale ; sans violer les contraintes associées aux chemins j € J; est donnée par la
valeur A;(r) telle que définie par I'équation (4.9). Les autres contraintes duales (i.e.
celles associées aux chemins j € J \ J;) ne seront pas violées de toute facon car elles

ne contiennent pas la variable ;.

La tache i*, associée a la variable duale m; qui sera augmentée, est choisie parmi
les taches de I’ensemble I(r) tel que défini par (4.10), de fagon a minimiser le nombre
de contraintes duales |J;| contenant cette variable. Ce premier critére de sélection

permet d’espérer une plus grande augmentation globale de la valeur de la fonction
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objectif duale, étant donné que I'augmentation de chaque variable duale a un impact
sur un nombre restreint de contraintes duales et qu’ainsi, un plus grand nombre
d’augmentations individuelles sera possiblement effectué. En cas d’égalité pour ce
critére, la tache correspondant au A;(r) maximal est choisie, de maniere a augmenter
le plus possible la variable ;.. Suite & l'ajustement de la valeur de la variable duale
7;-, les valeurs de Ay(w), Vi € I, et 'ensemble I(7) sont mis & jour a l'aide des

formules (4.9) et (4.10).

Le critere d’arrét de la procédure de type glouton est testé a I’étape 4. S’il n’est pas
satisfait, l'étape 3 est recommencée jusqu’a ce que I(r) = @, c’est-a-dire jusqu’a ce
qu’aucune des variables duales m; ne puisse étre augmentée. Une solution heuristique

pour le probléeme dual (4.5)-(4.7) est ainsi obtenue.

4.1.3 La procédure 3-opt

La procédure heuristique 3-opt est une procédure d’amélioration locale de I'objec-
tif qui commence avec la solution duale réalisable trouvée par la procédure de type
glouton. Si m;,, m;, et m; sont trois variables duales, alors m;, sera diminuée d’une
certaine quantité A (A > 0), tandis que m;, et T, seront augmentées de cette méme
quantité A. Ainsi 'objectif dual (4.5) sera amélioré de A. Cette procédure vise a
augmenter la valeur de I'objectif en changeant a chaque itération la valeur de trois

variables 4 la fois, tout en préservant la validité de la solution.

Le changement de la valeur des variables duales n’est possible que lorsque cer-
taines conditions sont satisfaites. En partitionnant I’ensemble J des chemins associés

aux contraintes du probléeme dual (4.5)-(4.7) en deux sous-ensembles, soit: le sous-
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ensemble des chemins associés aux contraintes actives
Ja={j€J| Z?T,'=Ci},
i€l,
et le sous-ensemble des chemins associés aux contraintes inactives
1‘ .
J ={]€J| Zﬂ',’ <Ci},
i€l,

le changement est possible pour une quantité A > 0 lorsque:

m, >0, sii €I, (4.12)
(J,'.2 U Jig) nJe g Jil et (413)
Jo,NJyNJ*=0. (4.14)

En effet, la condition (4.12) signifie que m;, peut étre diminuée d'une certaine
quantité 3 déterminer A > 0, sans violer la contrainte (4.7); la condition (4.13)
indique que, si m;, ou m;, se retrouve dans une contrainte active, alors m;, y est aussi,
et ainsi l’augmentation de m;, ou m;; pourra étre compensée par la diminution de
m;,; et la condition (4.14) implique que toute contrainte active ne peut contenir a
la fois m;, et mi, car, dans ce cas, la diminution de m;, ne pourrait compenser pour

I'’augmentation simultanée de m;, et mi;.

Ces conditions sont suffisantes pour que la réassignation désirée des valeurs (c’est-
a-dire m;, 1= m, — A, Ty 1= Ty + A, m, = iy + A) puisse étre effectuée, car m;, peut
atre diminuée, et m;, et m;, augmentées, toutes les contraintes du probléme (4.5)-(4.7)
restant satisfaites. Il est 4 noter que certaines contraintes inactives peuvent devenir
actives. Il reste donc a décrire la fagon de choisir un triplet de variables duales 7;,, i,
et m;, satisfaisant (4.5)-(4.7) et a déterminer quelle est la plus grande quantité A

applicable pour ce triplet.
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Pour que la recherche d’un triplet de variables duales m; , 7, et m; satisfaisant
aux conditions (4.12), (4.13) et (4.14) soit efficace, certaines structures de données
sont utilisées. En particulier, les ensembles de chemins J; sont mis sous la forme de
listes chainées pour permettre de traverser facilement chaque ensemble J;. D’autre
part, des tests spécifiques peuvent etre utilisés afin de ne pas avoir a examiner tous
les éléments (i1, 42,43) € I x I x I. Certains de ces tests sont étroitement associés
a la procédure heuristique primale ou a I'algorithme d’évaluation et de séparation
progressive qui sont décrits a la section 4.1.4. Comme expliqué a la section 4.2.1,
cette procédure et cet algorithme n’ont pas été retenus dans notre implantation de
I’algorithme de Fisher et Kedia. C’est pourquoi les tests qui leur sont associés ne sont

pas décrits ici.

D’apres Fisher et Kedia, la fouille de I x I x I est plus rapide si les conditions

(4.12), (4.13) et (4.14) sont vérifiées dans l'ordre, et si le test
lJisza%'*'lJistal S I‘Iilm‘]al (415)

est inséré entre les tests (4.12) et (4.13). Ce test indique que le nombre de fois que
les variables duales m;, et m;, se retrouvent dans les contraintes actives ne doit pas
dépasser le nombre de fois que la variable 7;, se retrouve dans celles-ci. Ainsi l’augmen-
tation globale de m;, et m;; sur I'ensemble des contraintes actives peut étre compensée
par la diminution globale de m;, sur cet ensemble de contraintes. Le test (4.15) est

toutefois redondant avec les conditions (4.13) et (4.14) puisque

(_Jig U Jis) nJe Q ng [condition (413)]
= (Jiquis)ﬂJ°§ (Jilﬂ.]a) [car (JiQUJiS)ﬂJ“ - Ja]
= (J,-:,ﬂJ")U(JisﬂJ“) Q(Jilﬂ-]a)

= |J,'._, N Jal + |Ji3 M Jal - I(Ji2 N Ja) M (Ji3 ﬂJa)I < |J,'1 M Jal
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[les éléments comptés deux fois sont soustraits]
= |y, 0T+ | Sy, NI = [T, 0Ty N T <, 0T
= lJ,-,ﬂJ°|+[J,-3r‘lJ°| < IngﬂJal

[car Ji, N Jiy N J® = O par (4.14)].

Malgré cette redondance, ce test est intéressant car il est plus rapide a effectuer que
les tests (4.13) et (4.14), et que dans le cas ou il n’est pas satisfait, les tests (4.13) et

(4.14) n’ont pas besoin d’étre effectués.

Quand un triplet de variables duales m;,, 7, et m;, satisfaisant les conditions (4.12),
(4.13) et (4.14) est choisi, les valeurs de ces variables sont modifiées en utilisant la
plus grande valeur A possible telle que la solution reste réalisable. Pour trouver cette
quantité A, il est nécessaire d’identifier les contraintes duales inactives associées a un
chemin j € J* dont la valeur du membre de gauche ( ¥ m;) augmente a mesure que

i€l,
7;, diminue et que 7;, et m;; augmentent.

Dénotons par a;j, pour i € fet j € J, les éléments de la matrice A du probleme

(4.1)-(4.4):

1 Si ] = [j
g ) 4.16
%ij {0 sinon. ( )

De plus, dénotons par b la valeur maximale pouvant étre soustraite de m;, sans violer

aucune contrainte duale, plus spécifiquement sans violer la contrainte (4.12):

sid e I
b= {n,l sii € 4.17
o sii €I (4.17)

Cette valeur est donc un majorant de A. Finalement, soit
JU = {] € J‘I Qiqj + Qizj — Qiyj > 0} (418)

I’ensemble des chemins associés aux contraintes duales inactives qui menacent d’étre
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violées si A est trop grand. La contrainte associée & un tel chemin j € J " sera violée

si Z w > Cj.
i€l

Lorsque T;, et m;, sont augmentées de A et que m;, est diminuée de A, le membre de
gauche de la contrainte associée au chemin j € J " augmente de (aiy; + @i — @i;)A.
Afin que cette contrainte ne soit pas violée, il faut donc que

Z T + (@iyj + Gigj — ai;)A < ¢
i€l,

= AL

T Qipj T Qigj — Giyj

Puisque cette condition doit étre vérifiée pour toutes les contraintes duales inactives

associées aux chemins j € J*, la quantité A est définie par:

cj— 2 i
€L bY. (4.19)

A = min { min
JEIT | Qigj F Qigj T Qinj

Par la mise & jour des valeurs des variables m;,, 7, et ;-

Ty, = i — A (4.20)
T, = T, + A (4.21)
Miy = Tiy + A, (422)

une nouvelle solution duale réalisable de meilleur cout est obtenue. Ce processus
itératif d’amélioration local est recommencé jusqu'a ce qu'il n'y ait plus de triplet de

variables duales ;,, m;, et m;, satisfaisant les conditions (4.12), (4.13) et (4.14).

La procédure heuristique 3-opt se résume donc ainsi:
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1. Trouver un triplet de variables duales m;,, mi, et mi;, (iy,i9,13) € I x I x I, tel
que les conditions (4.12), (4.15) (qui est redondante avec les deux suivantes),

(4.13) et (4.14) soient vérifiées dans I'ordre;

2. S'il n'existe pas de tel triplet, arréter I’heuristique 3-opt. Si (i1, iz, i3) existe tel

que spécifié, calculer b, J*" et A a l'aide des formules (4.17), (4.18) et (4.19).

3. Mettre a jour les valeurs de m;,, m;, et m;, selon les formules (4.20)-(4.22) et

retourner a l'étape 1.

4.1.4 Etapes finales de 'algorithme de Fisher et Kedia

Les étapes finales de l'algorithme de Fisher et Kedia consistent en une procédure
heuristique primale, un algorithme de sous-gradient et un algorithme d’évaluation et

de séparation progressive.

A partir de la solution produite par la procédure 3-opt, une approche heuris-
tique est utilisée pour déterminer une solution au probleme primal (4.1)-(4.4). Si la
différence entre la valeur de la solution primale heuristique et la borne inférieure
trouvée par la procédure heuristique 3-opt est grande (supérieure a 1%), cette borne
est améliorée en appliquant une méthode de sous-gradient basée sur celle de Held,
Wolfe et Crowder (1974). Cette méthode ne sera pas décrite ici car elle est similaire a
celle présentée dans la section 2.3. Il s’agit en fait de la méme méthode, restreinte au
cas plus simple du recouvrement / partitionnement de taches. La borne supérieure a
la valeur de la solution du probléme, nécessaire a une telle méthode de sous-gradient,

est donnée par la solution de I’heuristique primale.
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L’heuristique primale est basée sur la procédure de type glouton proposée par
Chvatal (1979) pour le probleme de recouvrement de taches, mais ot la sélection des
variables est basée sur les couts réduits ¢&; = ¢; — ig} m; plutot que sur les couts
¢j, @ = (m]i € I) étant la solution duale trouvée par le]s procédures heuristiques de
type glouton et 3-opt. L'intégration d'une solution duale dans le calcul d'une solution

primale a pour but de mieux calibrer I'impact des contraintes dans la sélection des

variables duales.

La procédure heuristique primale commence en posant le vecteur des variables
primales X = (X; € R|j € J) égal a 0. Le principe de cette procédure sera d'aug-
menter successivement les valeurs de variables primales de 0 a 1, tout en vérifiant
que les contraintes primales de recouvrement ne soient pas violées. Le choix de la
variable primale X; & changer se fait comme suit. D’abord, une contrainte primale
est choisie de maniére 3 maximiser I'impact du changement, en maximisant la valeur
de la variable duale correspondante ainsi que le nombre de variables primales actives
de cette contrainte. Parmi les variables actives de la contrainte primale choisie, celle
dont le coiit réduit est le plus petit et qui est dans le plus grand nombre de contraintes
primales est augmentée de 0 4 1. Des variables primales sont ainsi sélectionnées suc-
cessivement, jusqu’a ce qu’aucun nouveau changement ne soit possible sans violer
les contraintes primales de recouvrement. Il est possible que les valeurs des variables
primales 2 la fin de la procédure heuristique primale ne donnent pas une solution

réalisable au probleme primal (des contraintes de partitionnement pourraient ne pas

étre satisfaites).

Lorsque le gap entre les solutions primale et duale dépasse 1 %, 'algorithme

de sous-gradient est utilisé afin de trouver une meilleure solution heuristique duale.
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Dans ce cas, la procédure primale heuristique est ensuite recommencée dans le but

de trouver une meilleure solution primale.

Si les valeurs des solutions primale et duale trouvées sont égales, la résolution du
probléme est terminée. et une solution optimale est donnée par la solution primale.
Dans le cas contraire, un algorithme d’évaluation et de séparation progressive est

appliqué afin de trouver la solution optimale au probleme.

L’algorithme d’évaluation et de séparation progressive utilisé prend une décision
de branchement sur une tache i € I. Pour chaque chemin j € J; couvrant cette tache,
un noeud de branchement est créé. Ces noeuds sont ordonnés par ordre croissant du

coitt réduit et explorés dans cet ordre.

La décision de branchement dépend du type de la tache i € I pour laquelle le
branchement a été fait. Si i appartient a I’ensemble des taches devant étre couvertes
exactement une fois, soit I'ensemble I ! la décision de branchement pour le noeud
défini par le chemin j € J; est de poser la valeur de la variable X; = 1 et toutes les
autres variables X, 1 € J; précédentes, c'est-a-dire dont le coit réduit ¢ est inférieur
au colt réduit ¢, prennent la valeur 0. Dans le cas ou la tache i appartient a [/ 2
'enseinble des tiches devant étre couvertes au moins une fois, la décision de branche-
ment pour le noeud défini par le chemin j € Ji est de poser la valeur de la variable

X; =1, et les autres X, valent tous 0, pour tous les autres le J;.

Les contraintes imposées pour un noeud de branchement définissent un nouveau
probléme de recouvrement / partitionnement de taches de taille réduite. Toute la série
de procédures heuristiques duales et primale est appliquée a ce nouveau probléme.

Si I’heuristique primale produit une meilleure solution que toutes les autres solutions
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primales trouvées précédemment, la valeur de cette solution est retenue et correspond

3 une borne supérieure sur la valeur de la solution du probléme initial.

L'arbre de branchement est exploré selon une stratégie “meilleur d’abord” (“best-
first”). Quand tous les noeuds de branchement ont été résolus ou éliminés selon le

cas, lalgorithme de Fisher et Kedia termine et la meilleure solution primale trouvée

est optimale.

4.2 Intégration au logiciel GENCOL

Cette section présente l'intégration de I'algorithme de Fisher et Kedia au logiciel
GENCOL. Ce logiciel est une implantation informatique de la méthode de génération
de colonnes. La section 4.2.1 indique la seule partie de l'algorithme de Fisher et Ke-
dia & avoir été retenue pour implantation dans le logiciel GENCOL, soit l'algorithme
de sous-gradient. Les raisons expliquant ce choix y sont aussi énoncées. La section
suivante énumere et décrit les nouveaux parametres qui permettent de choisir 1’algo-
rithme de sous-gradient au lieu de I'algorithme du simplexe pour certaines itérations
de la méthode de génération de colonnes. Finalement, la section 4.2.3 décrit 1'im-
plantation de l'algorithme de sous-gradient dans le logiciel GENCOL ainsi que les

nouveaux parameétres propres a cet algorithme.

4.2.1 Ce qui a été retenu de ’algorithme de Fisher et Kedia

Dans une approche de génération de colonnes, la résolution d'une relaxation

linéaire consiste en une suite d’itérations composée chacune de la résolution du sous-
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probléme (génération de colonnes), puis de la résolution d’'un probléme maitre res-
treint {(obtenu par I'addition des nouvelles variables, associées aux colonnes généreées,
au probléme maitre restreint de l'itération précédente). Dans la version du logi-
ciel GENCOL utilisée dans le cadre de ce mémoire (la version 4.1b), le probleme
maitre restreint est résolu par le logiciel CPLEX, qui est basé sur I'algorithme du
simplexe. Dans la majorité des applications considérées dans le domaine du trans-
port, ce probleme maitre restreint est trés proche d’un probléme de recouvrement /
partitionnement de taches. C’est pourquoi une adaptation de l'algorithme de Fisher
et Kedia pourrait possiblement remplacer I'algorithme du simplexe pour résoudre de
facon heuristique certaines résolutions du probleme maitre restreint de la méthode
de génération de colonnes, afin de réduire le temps total de résolution. Cette section
indiquera comment la substitution de 'algorithme du simplexe par I'algorithme de

Fisher et Kedia est faite.

La premiére résolution du probleme maitre restreint sera toujours faite par l'al-
gorithme du simplexe. Pour les itérations suivantes de la méthode de génération de
colonnes, le probléeme maitre restreint sera résolu au choix par l'algorithme du sim-
plexe ou par l'algorithme de Fisher et Kedia modifié. De cet algorithme n’est gardé
que l'algorithme de sous-gradient. En effet, la procédure de type glouton n’est plus
nécessaire car une solution duale de départ pour le probléme maitre restreint est dis-
ponible. Cette solution duale est donnée par les variables duales trouvées a I'itération
précédente de la méthode de génération de colonnes, dont le probléme maitre restreint
a été résolu soit par l'algorithme du simplexe, soit par I'algorithme de sous-gradient.
De plus, des tests préliminaires sur 'algorithme de Fisher et Kedia ont démontré
que le temps requis par la procédure 3-opt était beaucoup trop long pour la rapidité

demandée 3 une heuristique, ceci malgré les efforts qui ont été mis sur la qualité
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de 'implantation. Ce résultat contredit les conclusions de Fisher et Kedia qui attri-

buaient la rapidité de leur algorithme a cette procédure 3-opt!

L’heuristique primale proposée par Fisher et Kedia, déterminant une solution
primale, n'est plus nécessaire non plus. La valeur de cette solution fournit une borne
supérieure utilisée par l'algorithme de sous-gradient. Or, une telle borne est déja
disponible: elle est donnée par la derniere solution primale trouvée par l'algorithme
du simplexe dans les itérations précédentes de la méthode de génération de colonnes.
Si les coefficients de toutes les variables dans la fonction objectif ne changent pas
durant la résolution, comme c’est le cas en général, cette solution est alors la meilleure
trouvée jusque la. Par contre, lorsque I'algorithme utilisé fait varier les coefficients
de certaines variables dans la fonction objectif (tel I'algorithme décrit au chapitre 5),
la derniére solution primale trouvée par l'algorithme du simplexe ne procure plus
nécessairement une borne valide. Cette borne potentiellement non valide sera tout de
méme employée lorsque l'algorithme de sous-gradient sera combiné a une stratégie de

perturbation au chapitre 5, puisque les perturbations considérées seront négligeables.

Enfin, l'algorithme d’évaluation et de séparation progressive proposé par Fisher
et Kedia est aussi écarté, car son but est de trouver une solution optimale entiére
3 partir de la solution trouvée par I'heuristique duale. Puisque la présente étude se
limite & la résolution de la relaxation linéaire du probleme, cet algorithme n’est pas

nécessaire dans notre cas.

De l'algorithme de Fisher et Kedia, il ne reste donc que l'algorithme de sous-
gradient, généralisé comme il a été vu 3 la section 2.3. Cet algorithme s’intégre

aisément 3 la méthode de génération de colonnes, en particulier pour le logiciel
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GENCOL. A une itération donnée de la méthode de génération de colonnes, le
probléme maitre restreint est résolu en utilisant soit 'algorithme du simplexe (primal
ou dual), soit I'algorithme de sous-gradient. Le choix de I'algorithme & utiliser est régi
par différents parameétres, décrits dans la section suivante. D’autres paramétres, dont
il est question a la section 4.2.3, permettent d’ajuster la méthode de sous-gradient

meéme.

Notons que les contraintes de disponibilité des véhicules (contraintes 3.10) du
probleme maitre restreint sont traitées a part dans 'implantation proposée. L’algo-
rithme de sous-gradient étant valide pour un probléme maitre général, et non seule-
ment un probléme de recouvrement / partitionnement de taches, il peut s’appliquer
aisément au cas considéré. Mais ayant constaté que les variables duales associées a
ces contraintes particuliéres s'ajustaient beaucoup plus rapidement que les autres et
demeuraient stables par la suite, nous avons décidé de ne pas faire agir l’algorithme
de sous-gradient sur ces variables (seul l'algorithme du simplexe peut réajuster leurs

valeurs).

4.2.2 Les paramétres de choix de I’algorithme de sous-gra-
dient

Les paramétres de choix de I'algorithme de sous-gradient permettent de déterminer,
3 chaque itération de la méthode de génération de colonnes, si le probleme maitre
restreint sera résolu avec l’algorithme du simplexe (approche standard) ou avec 'al-
gorithme de sous-gradient (nouvelle approche). Ce choix dépendra entre autres du
type d'itération (I'itération est dite en phase II si une solution primale réalisable a

déja été trouvée, sinon elle est dite en phase I), de la méthode choisie pour résoudre
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le probléme maitre des itérations précédentes, et du nombre de colonnes générées a
l'itération courante. La présente section donne la liste des parametres régissant ce

choix.

Le premier paramétre, SgUse, est booléen et indique si I’algorithme de sous-
gradient peut étre employé pour le probleme donné. Lorsque SgUse = 0, tous les
problémes maitres restreints sont résolus par l'algorithme du simplexe, comme dans
la version standard de l'optimiseur GENCOL. Dans le cas contraire, I'algorithme de
sous-gradient peut étre appelé a remplacer I'algorithme du simplexe selon le processus

de résolution et les valeurs des autres parametres. La valeur par défaut du parametre

SgUse est 1.

Le paramétre booléen SgPhasel spécifie si 'algorithme de sous-gradient peut
étre utilisé (SgPhasel = 1) ou non (SgPhasel = 0) pour les itérations de la phase
I de la résolution du probleme, c’est-a-dire avant d’avoir trouvé une solution primale
réalisable. La valeur par défaut de ce paramétre a été fixée a 0. Quelques tests ont
en effet montré qu'il était avantageux d’éviter I'utilisation de l'algorithme de sous-
gradient pendant la phase L Ce résultat pourrait toutefois étre di au fait que la
premiére itération est toujours accomplie avec l'algorithme du simplexe. En général,
dans les premiéres itérations de la méthode de génération de colonnes a l'intérieur du
logiciel GENCOL, les solutions obtenues comportent des variables artificielles de tres
grand colit, qui disparaissent assez rapidement en cours de résolution. Ces cotits tres
grands induisent des valeurs de départ trées grandes pour les variables duales. Dans
un tel contexte, l'algorithme de sous-gradient s’avere peu performant étant donné
que l'information duale initiale est peu pertinente. Pour pallier a cette difficulté,

il faudrait fournir au logiciel GENCOL des valeurs de départ plausibles pour les
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variables duales. Comme la recherche de telles valeurs initiales constitue lui-méme un

probléme complexe, cette avenue n’a pas été explorée dans ce projet.

Le parameétre entier SglterConsMax donne un maximum sur le nombre d’ité-
rations consécutives de la méthode de génération de colonnes pour lesquelles l'algo-
rithme de sous-gradient est utilisé. En d’autres mots, lors de la résolution, si I’al-
gorithme de sous-gradient a été utilisé pour résoudre le probleme maitre restreint
des SgIterConsMax derniéres itérations, le probléeme maitre restreint de la présente
itération sera résolu avec l'algorithme du simplexe. Ceci a pour but d’assurer un cer-
tain contréle sur les valeurs prises par les variables duales a 'aide de l'algorithme
du simplexe. En effet, puisque l'algorithme de sous-gradient est heuristique, il n'y
a aucune raison de croire qu'en utilisant cet algorithme 4 chaque résolution d'un
probléme maitre restreint, la solution du probléeme maitre convergera vers la solution
optimale de la relaxation linéaire. De plus, la résolution primale du probléeme maitre
restreint permet de remettre a jour la borne supérieure utilisée dans ’algorithme de

sous-gradient. Par défaut, le parametre SglterConsMax vaut 12.

Quand de nouvelles colonnes sont générées, des variables primales associées a ces
colonnes sont ajoutées au probléme maitre restreint. Or, afin de réduire le temps re-
quis pour calculer les coiits réduits des variables hors base (resp. un sous-gradient)
lorsque l’algorithme du simplexe (resp. I'algorithme de sous-gradient) est employé,
une limite sur le nombre de variables considérées par le probléme maitre restreint
peut étre imposée dans le logiciel GENCOL. Lorsque cette limite est atteinte (c’est-
a-dire lorsque trop de colonnes ont été générées), certaines variables doivent étre
éliminées: cette opération est surnommeée “faire le ménage” . Il est a noter que cette

stratégie d’accélération ne compromet pas 'optimalité de la méthode de résolution,
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étant donné que les colonnes associées aux variables rejetées peuvent étre générées
3 nouveau dans les itérations subséquentes. Le paramétre booléen SgMenageUse
sert & imposer I'utilisation de 1'algorithme du simplexe quand le ménage vient d’étre
fait (SgMenageUse = 1), ou a laisser les autres parameétres choisir entre cet algo-
rithme et I'algorithme de sous-gradient dans un tel cas (SgMenageUse = 0). Dans
ce dernier cas, beaucoup de colonnes peuvent étre éliminées avant qu’'une nouvelle
résolution du probléme maitre restreint par I’algorithme du simplexe survienne. Dans
notre implantation, éliminer un trop grand nombre de variables primales paralysait
I'algorithme du simplexe. Pour remédier & cette situation, il devient nécessaire que
I’algorithme du simplexe recalcule une nouvelle base  partir des variables disponibles,
lorsque le paramétre SgMenageUse = 0. C’est pourquoi la valeur par défaut de Sg-
MenageUse est 1. Sinon, si l'algorithme de sous-gradient est utilisé trop souvent, le
temps gagné A éviter l'algorithme du simplexe est repris dans des calculs plus lourds

lorsque 1'algorithme du simplexe est appelé.

Le parameétre entier SgMinColGen donne une limite inférieure sur le nombre de
colonnes générées a l'itération courante a partir de laquelle I'utilisation de l'algorithme
de sous-gradient est permise pour résoudre le probleme maitre restreint. En effet,
il a été observé en général que l'algorithme du simplexe est plus rapide que celui
de sous-gradient lorsque peu de colonnes sont générées. Dans ce cas il n’y a donc
aucun intérét i choisir l'algorithme de sous-gradient. Le parametre SgMinColGen
est aussi utile en fin de résolution de la relaxation linéaire, lorsque peu de colonnes
sont générées a chaque itération: la méthode de sous-gradient n’étant pas optimale,
il est nécessaire de terminer la résolution a l'aide de l'algorithme du simplexe. En
particulier, méme si les variables duales fournies par 1'algorithme de sous-gradient ne

permettent pas de générer des variables a cout réduit négatif, le processus de résolution
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ne doit pas s'arréter a cette itération et le dernier probléme maitre restreint doit étre
résolu & nouveau en utilisant une méthode optimale telle I'algorithme du simplexe.
SgMinColGen doit donc étre au moins égal a 1. Le paramétre SgMinColGen vaut

6 par défaut.

Enfin, le parametre entier SgNblterGenMax indique un nombre maximum
d’itérations de la méthode de génération de colonnes pour lesquelles le probléme
maitre restreint est résolu par l'algorithme de sous-gradient: a partir de l'itération
SgNblterGenMax+1 de la méthode de génération de colonnes, le probleme maitre
restreint est toujours résolu avec l'algorithme du simplexe. Par défaut, SgNblter-

GenMax = 0: dans ce cas, ce paramétre est désactivé.

Pour une itération donnée de la méthode de génération de colonnes dans le logiciel
GENCOL, le probléme maitre restreint n’est résolu avec I’algorithme de sous-gradient
que si tous les parameétres venant d'étre décrits le permettent. Sinon, l'optimiseur
standard pour le probleme maitre restreint sera utilisé, soit 'optimiseur CPLEX dans

la version courante du logiciel GENCOL.

4.2.3 L’algorithme de sous-gradient dans le logiciel GENCOL

Cette section décrit comment l’algorithme de sous-gradient, présenté dans la se-
ction 2.3, est implanté dans le logiciel GENCOL. Elle introduit aussi les divers pa-

ramétres spécifiques & cet algorithme.

La description de I'implantation de I'algorithme de sous-gradient dans le logiciel

GENCOL s'inscrit dans le contexte suivant. Soit g le numéro d'une itération de la
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méthode de génération de colonnes du logiciel GENCOL pour laquelle de nouvelles
colonnes de coit réduit négatif viennent d’étre générées, et de nouvelles variables
associées i ces colonnes ajoutées au probléme maitre restreint. Etant donné les va-
leurs attribuées aux parameétres de choix, ce nouveau probléme maitre restreint doit
atre résolu en utilisant 1'algorithme de sous-gradient, afin d’ajuster les valeurs des
variables duales trouvées a l'itération précédente (g — 1) de la méthode de génération

de colonnes.

Pour résoudre le probléeme maitre restreint de l'itération g, S, itérations de l'al-
s —

gorithme de sous-gradient seront effectuées. Le vecteur des variables duales, m; =

(mg

210 ), est initialisé a Tl’g au début de l'algorithme de sous-gradient, et

7(;2, ey ﬁ‘;'n
d’une itération s a l'itération suivante s+ 1 de cet algorithme, ce vecteur passe de L
a 7r;+1. Lorsqu’il n'y aura aucun risque de confusion, le vecteur des variables duales
sera simplement noté w°. D’une itération g 3 Ditération suivante g + 1 de la méthode
de génération de colonnes, le vecteur des variables duales m passe de m; a g4 avec

— 0 Sy — 0
Tg = Ty et 7rgg = Mgs1-

Le vecteur de départ % = 1r3 pourrait étre trouvé par une procédure de type
glouton similaire a celle employée par Fisher et Kedia (1990), ou & celle de Toth et
al. (1996). Mais la procédure de type glouton de Fisher et Kedia n’est plus nécessaire
car une solution duale de départ est donnée par les variables duales trouvées a
I'itération précédente de la méthode de génération de colonnes. Pour la méme raison,
la procédure de Toth et al. n’a pas été implantée ni testée. Le vecteur de départ pro-
vient donc de la résolution du probléme maitre restreint de l'itération précédente de
la méthode de génération de colonnes (soit par I'algorithme du simplexe, soit par 'al-

gorithme de sous-gradient). Ce vecteur de départ est non réalisable pour le probléme
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dual associé au nouveau probleme maitre restreint car les nouvelles contraintes, celles
associées aux variables de cott réduit négatif ajoutées au probleme maitre restreint,
sont nécessairement violées par cette solution duale. Or, d’apreés Held, Wolfe et Crow-
der (1974), les solutions obtenues par la méthode de sous-gradient varient peu selon
les valeurs du vecteur de départ de 1'algorithme, tant que celles-ci ne sont pas trop

mauvaises.

A chaque itération s de l'algorithme de sous-gradient, la direction d* (vers ou 7*
doit se diriger) et le pas ° (la longueur du déplacement dans la direction d*) doivent
atre calculés. La borne supérieure Zpr nécessaire au calcul du pas est donnée par la
valeur de la meilleure solution primale trouvée par 'algorithme du simplexe dans les
itérations précédentes de la méthode de génération de colonnes. Comme décrit dans
la section 2.3, 8* dépend d'un parameétre p* qui assure la convergence de l'algorithme.
La valeur initiale p° est 1. La valeur de ce parametre peut varier en cours de résolution
et est déterminée & I'aide de deux paramétres du logiciel GENCOL: le nombre entier
SgNbItDivRho et le nombre réel SgFactDivRho. A toutes les SgNbItDivRho
itérations de l'algorithme de sous-gradient, p° est divisé par SgFactDivRho. Par

défaut, ces parametres valent 20 et 2, respectivement.

Dans le logiciel GENCOL, la résolution du probleme maitre restreint de I'itération
g par l'algorithme de sous-gradient se termine lorsqu’un des critéres d’arrét suivants

est satisfait:

1. la valeur de la fonction duale, L D(Tl';), a atteint la valeur de la borne supérieure
Z Lr, au gap admissible prés donné (en %) par le parameétre réel SgMinGap,

qui vaut par défaut 0,5;
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2. le nombre d’itérations de I'algorithme de sous-gradient S, a atteint une borne
supérieure donnée par le parametre entier SgNblterMax qui, par défaut, vaut

400;

3. le parameétre p° est devenu tellement petit que le pas 6° est pratiquement nul

(p* < € pour le € donné par le paramétre du logiciel GENCOL MpEpsOpt

valant par défaut 107°).

4.3 Résultats

Une batterie de tests sur les paramétres de I'algorithme de sous-gradient ont per-
mis de vérifier l'efficacité de l'intégration de cet algorithme dans une méthode de
génération de colonnes. Ces tests ont porté sur la résolution de la relaxation linéaire
de problemes de type m-TSPTW tel que décrits au chapitre 3, et comportant jusqu'a
600 taches. Les tests ont été effectués sur un ordinateur de type hp9000/715, a I'aide

de la version 4.1b de l'optimiseur GENCOL.

Le tableau 4.1 présente des résultats numériques sur un ensemble de 25 problémes.
La premiére colonne identifie le probleme. Le premier nombre de l'identificateur in-
dique le nombre de taches considérées dans le probleme. Le deuxiéme nombre de cet
identificateur est un numéro donné au probléme. Les deuxiéme et troisiéme colonnes
indiquent les temps totaux de résolution (en secondes) obtenus en utilisant la version
standard de GENCOL et la version modifiée de GENCOL intégrant l’algorithme de
sous-gradient, respectivement. Cette version modifiée utilise les valeurs par défaut des
nouveaux parameétres. Finalement, la derniere colonne donne 1’amélioration relative

(en pourcentage) obtenue par la version modifiée, soit Iﬁ;—STM, ou Ts et Ty représentent
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les temps de résolution des versions standard et modifiée, respectivement.

Ces résultats montrent que pour des problémes de petite taille (100 ou 150 taches),
l'algorithme de sous-gradient n’est pas avantageux. Sur les 8 problémes résolus, 1'a-
mélioration observée varie de -24.6 % a 10,2 %. En moyenne, le temps de résolution
est 9,5 % plus rapide avec la version standard. Ces résultats sont imputables au fait

que pour des problemes de petite taille, I'algorithme du simplexe est tres performant.

Par contre, dés que la taille des problémes devient plus importante (500 ou 600
tiches), I’algorithme de sous-gradient devient utile. C’est qu'en comparaison, 1’algo-
rithme du simplexe perd beaucoup de temps dans de trop fréquentes réoptimisations.
Du temps est perdu A résoudre des problemes maitres restreints jusqu’a l'optimalité,
alors que la solution de la relaxation linéaire est si éloignée qu'une solution heuristique
serait amplement suffisante. Sur les 17 problémes traités, le temps de résolution avec
la version modifiée est de 12,0 % & 41,7 % plus rapide qu’avec la version standard.

En moyenne, il est de 28,0 % plus rapide sur les problémes étudiés.

Des tests ont été faits plus spécifiquement sur l'ajustement des parametres de
I’algorithme de sous-gradient. Cette étude de la sensibilité des nouveaux parametres

se divise en trois tableaux.

o Le tableau 4.2 porte sur des variations de parametres qui augmentent la fréquence
d'utilisation de |'algorithme de sous-gradient pour résoudre le probléeme maitre

restreint.

e Le tableau 4.3 porte sur des variations de parametres qui diminuent la fréquence

d’utilisation de cet algorithme.



Tableau 4.1: Temps de résolution avec ou sans 1'algorithme de sous-gradient

probléme temps temps avec amélioration
standard (s) | sous-gradient (s) (%)
150-4 25,2 31,4 -24,6
100-2 6.5 7.9 -21,5
100-3 7.1 8,6 -21,1
100-4 7,5 9,0 -20,0
100-1 8,9 9,3 -4,5
150-2 30,6 30.8 -0,7
150-3 29,9 28,0 6.4
150-1 42,3 38,0 10,2
600-2 1265,0 1112,8 12,0
600-3 1416,2 1109,6 21,6
600-1 1834,0 1423,6 22,4
600-7 1661,1 12749 23,2
600-12 2001,0 1516,1 24,2
500-5 936,4 699,8 25,3
600-5 1772,9 12834 27,6
600-10 1730,3 12211 29.4
600-6 1673,6 1174,6 29,8
600-4 1815,9 12374 31,9
600-8 1748,2 11777 32,6
600-11 1827,2 1220,6 33,2
500-4 895.3 595,1 33,5
500-3 1093,1 696,0 36,3
500-2 1190,6 730,1 38,7
600-9 2306,5 1385,2 39,9
500-1 1344,0 783,3 41,7
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e Enfin, le tableau 4.4 porte sur des variations de parametres qui controélent dire-

ctement l’algorithme de sous-gradient.

Les tableaux 4.2 4 4.4 sont tous structurés de la méme fagon. Chaque ligne de
résultats donne les temps de résolution minimum et maximum (en secondes) obtenus
pour 10 problémes de 600 taches, ainsi que la moyenne et l'écart-type de ces temps

de résolution.

Chacun de ces tableaux comprend d'abord les résuitats de la résolution sans l'al-
gorithme de sous-gradient. Il comprend ensuite les résultats pour une résolution de
ces problémes utilisant l'algorithme de sous-gradient, avec les valeurs de défaut des
paramétres associés a cet algorithme. Ce sont de bonnes valeurs pour les parametres,
qui ont été choisies aprés de nombreux essais. Les résultats associés a ces valeurs de

défaut constituent donc une référence valable.

Finalement, chaque tableau comprend les résultats obtenus en modifiant la valeur

d’un parametre, tandis les autres gardent leur valeur par défaut.

Dans les tests du tableau 4.2, la valeur de certains parametres a été modifiée de
facon a ce que l'algorithme de sous-gradient soit utilisé plus souvent pour résoudre le
probléeme maitre restreint. Le nombre maximum d'itérations consécutives de l'algo-
rithme de génération de colonnes utilisant 1’algorithme de sous-gradient, est passé de
12 4 24, en changeant la valeur du parametre SglterConsMax. Le nombre minimum
de colonnes demandé pour permettre I’application de I'algorithme de sous-gradient,
SgMinColGen, fut diminué de 12 a 3. L’algorithme de sous-gradient a été appliqué

durant la phase I (avant qu'une solution fractionnaire ne soit disponible) grace au
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paramétre SgPhasel. Enfin, 'algorithme de sous-gradient fut utilisé plus souvent
en permettant son utilisation méme dans les cas ou le ménage vient d'étre fait, en
donnant la valeur 0 au parametre SgMenageUse. Dans ce dernier cas, lorsqu’une
résolution du probléme maitre restreint avec l'algorithme du simplexe survient apres
une suite de résolutions utilisant 1'algorithme de sous-gradient, lors desquelles au
moins un ménage des variables duales a été fait, 'algorithme du simplexe recompile

une nouvelle base.

Tableau 4.2: Temps de résolution avec une utilisation plus fréquente de l'algorithme
de sous-gradient

parametres min max | moyenne | écart-type
Sans sous-gradient || 1265,0 | 2306,5 1722,4 259,8
Valeurs par défaut || 1109,6 | 1423,6 1240,0 99,8
SglterConsMax = 24 1088.5 | 1464,7 1242.6 117,7
SgMinColGen = 3 1113,9 | 1467,0 1252,7 116,0
SgPhasel =1 1157,3 | 1569,6 1400,1 126,4
SgMenageUse = 0 1074,0 | 8666.4 2110,6 2202,2

L'augmentation de la valeur du parametre SglterConsMax ou la diminution
de la valeur du parameétre SgMinColGen ne font que ralentir trés légérement la
résolution. L'application du paramétre SgPhasel ralentit la résolution de maniere
plus marquée. Enfin, en n’appliquant pas le paramétre SgMenageUse, le temps
gagné par l'application plus fréquente de l'algorithme de sous-gradient est perdu
au prochain appel de l'algorithme du simplexe, lors duquel une nouvelle base doit
généralement étre calculée, ce qui consomme beaucoup de temps. De maniere générale,
malgré 'efficacité de 'algorithme de sous-gradient, il semble bon de ne pas I'utiliser
plus fréquemment que ce que permettent les valeurs par défaut des parameétres cor-

respondants.

Les valeurs de parametres testées pour le tableau 4.3 diminuent la fréquence d’uti-
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lisation de l'algorithme de sous-gradient par rapport A 'algorithme du simplexe, pour
la résolution du probléme maitre restreint de chaque itération de génération de co-
lonnes. Cette fois-ci, le nombre minimum exigé de colonnes générées pour permettre
I'utilisation de l'algorithme de sous-gradient (parametre SgMinColGen) passe de 6
3 20. Dans le test suivant, le nombre maximum d’itérations consécutives de génération
de colonnes utilisant 'algorithme de sous-gradient, donné par le parametre Sglter-
ConsMax, est diminué de 12 a 3.

Tableau 4.3: Temps de résolution avec une utilisation plus rare de l'algorithme de
sous-gradient

parametres min max | moyenne | écart-type
Sans sous-gradient {| 1265,0 | 2306,5 1722,4 259,8
Valeurs par défaut || 1109,6 | 1423,6 1240,0 99.8
SgMinColGen = 20 1042,3 | 1465,5 1236,9 129,5
SglterConsMax = 3 1107,6 | 1622,0 1361,5 150,1

L’augmentation de SgMinColGen accéléere un tout petit peu la résolution par
rapport aux valeurs par défaut. De son coté, le test effectué en diminuant le pa-
ramétre SglterConsMax ralentit la résolution par rapport aux valeurs standard.
Ceci confirme que les valeurs par défaut des parametres déterminant la fréquence
d’utilisation de I'algorithme de sous-gradient par rapport a 'algorithme du simplexe

sont raisonnables.

Dans le tableau 4.4, les parameétres qui touchent la maniére dont est appliqué
I'algorithme de sous-gradient lors de la résolution d’un probléme maitre restreint
sont testés. Il s'agit, d'une part, des parametres contrélant la convergence de l'algo-
rithme de sous-gradient pendant son application. Rappelons que cette convergence est
accélérée par le biais du facteur p, celui-ci étant divisé par la valeur SgFactDivRho

3 chaque SgNbItDivRho itérations de I'algorithme de sous-gradient. Cette conver-
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gence sera accélérée en diminuant la valeur du parametre SgNbItDivRho de 20 a

8.

D’autre part, il s’agit de parametres indiquant des criteres d’arrét de l'algorithme
de sous-gradient. Le nombre maximum d'itérations de I'algorithme de sous-gradient
pendant la résolution d’un probléeme maitre restreint est réduit de 400 & 200 par le biais
du paramétre SgNbIterMax. Le gap en-dessous duquel I'algorithme de sous-gradient
est arrété, gap (en %) entre la valeur de I'objectif dual trouvée par l'algorithme de
sous-gradient, et sa borne supérieure connue, est donné par la valeur du parametre
SgMinGap. La valeur par défaut de ce parametre est 0,5, et les valeurs testées 1 et 0.
Ces valeurs correspondent dans le premier cas a un arrét plus rapide de I'algorithme,
dans le deuxiéme cas a un algorithme de sous-gradient poussé a I'optimalité (si les
autres critéres d’arrét ne sont pas atteints).

Tableau 4.4: Temps de résolution selon les paramétres internes a I'algorithme de sous-
gradient

parametres min max | moyenne | écart-type
Sans sous-gradient || 1265,0 | 2306,5 1722,4 259,8
Valeurs par défaut | 1109,6 | 1423,6 1240,0 99,8
SgNblterMax = 200 1049,5 | 1375,7 12229 105,2
SgNbItDivRho = 8 1064,2 | 1386,4 1225,2 98,6
SgMinGap = 1 1052,4 | 1576,2 1297,1 148,7
SgMinGap = 0 1901,2 | >44000 | ~14045,5 | ~13749,4

La réduction du paramétre SgNbIterMax accélére légerement la résolution. De
méme, la diminution du paramétre SgNbItDivRho accélére aussi la résolution par
rapport aux valeurs par défaut. Lorsque le paramétre SgMinGap vaut 1, ’algorithme
de sous-gradient s’arréte plus rapidement, avec une moins bonne solution duale. Cette
solution ne doit pas étre assez bonne pour permettre de générer de bonnes colonnes,

car le temps de résolution total est alors diminué. Au contraire, quand le parametre
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SgMinGap vaut 0, I'algorithme de sous-gradient ne s’arréte que s’il trouve une so-
lution duale de méme valeur que la borne supérieure donnée, ou si un autre critére
d’arrét est atteint. L'algorithme perd alors beaucoup de temps a préciser une solution
qui n’a qu'une valeur heuristique, et les temps de résolution deviennent démesurés
(certains tests ont méme du étre arrétés avant leur résolution compléte). Cette valeur
est 2 déconseiller pour ce paramétre. En résumé, il peut étre avantageux de faire
converger l'algorithme de sous-gradient plus rapidement par |'entremise du facteur p
et des paramétres SgNbIterMax et SgNbItDivRho. Au contraire, le parametre

SgMinGap est trés sensible, et sa valeur par défaut semble adéquate.

Il est intéressant de noter que dans tous les tests sur les parametres sauf pour
le cas trés mauvais ou le parametre SgMinGap vaut 0, I'écart-type des temps de
résolution est plus petit lorsque l'algorithme de sous-gradient est utilisé qu’avec la
résolution par défaut. Les temps de résolution sont donc plus homogénes lorsque

l'algorithme de sous-gradient est utilisé.

En résumé pour I'ajustement des parametres, il est avantageux d’utiliser I’algo-
rithme de sous-gradient, modéré d’une intervention réguliere de l'algorithme du sim-
plexe. Il est efficace que cette intervention soit faite & chaque fois qu'un ménage est
effectué au niveau des variables primales du probléme maitre restreint. La combinai-
son idéale d’algorithmes est d’utiliser souvent I'algorithme de sous-gradient au début
de la résolution, lorsque des valeurs heuristiques sont suffisantes et beaucoup plus ra-
pides a obtenir. A la fin de la résolution, lorsque le gap entre la valeur de la solution
duale donnée par l'algorithme de sous-gradient et la valeur de la meilleure solution
primale connue devient petit, il devient avantageux de n'utiliser que I'algorithme du

simplexe.
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Figure 4.1: Comportement des variables duales avec l'algorithme de sous-gradient

La figure 4.1 représente l'évolution des valeurs des variables duales pendant la
résolution d'un probléme a l'aide de l'algorithme de sous-gradient. Cette résolution
utilise les valeurs par défaut des parametres de sous-gradient. Dans cette figure, le
numeéro de l'itération est en abscisse, et les valeurs des variables duales en ordonnée.
Notons que ce type de graphe n’est pas une bonne indication de l’évolution des va-
riables duales au cours du temps, car une itération résolue & l'aide de I'algorithme de
sous-gradient est généralement beaucoup plus rapide qu'une itération résolue a I'aide
de I'algorithme du simplexe. Il est intéressant de comparer I'évolution de la résolution
avec la figure 1.1 du chapitre 1, représentant la résolution du méme probléme sur la
méme échelle (valeurs des variables duales en fonction de l'itération de génération de

colonnes), avec l'algorithme standard de résolution.

Comment 'application de l'algorithme de sous-gradient influence-t-il 1'évolution

de la convergence des variables duales? Cette évolution se fait en plusieurs parties.
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D’abord a lieu la phase I, pendant laquelle des variables artificielles sont encore actives
dans le probléeme maitre restreint. Rappelons que les variables artificielles ont un cout
trés grand, ce qui rend les variables duales elles-mémes tres grandes (de 'ordre de
10%°). Pendant cette phase, l’algorithme de sous-gradient n’est pas appliqué, soit lors

des itérations 1 & 7 pour l’exemple considére.

En deuxiéme lieu, des itérations 8 & 32, a lieu une phase tres chaotique lors de
laquelle les valeurs des variables duales varient énormément d’une itération a l'autre.
Puis, des itérations 33 a 105, les variables duales sont plus proches de leurs valeurs
finales et ne font que s’ajuster légérement. L’algorithme de sous-gradient est appliqué
entre les itérations 8 et 70 inclusivement, en moyenne 5 itérations sur 6 (notamment
a chaque fois qu'un “ménage” est fait parmi les variables gardées pour le probleme
maitre restreint). Par la suite, seul 'algorithme du simplexe est utilisé pour résoudre
le probléme maitre restreint, car le gap entre la solution duale et la borne supérieure
donnée par la derniére solution primale trouvée est toujours plus petit que le gap

permis par le paramétre SgMinGap.

Les itérations dans lesquelles I'algorithme du simplexe est utilisé se reconnaissent
bien par rapport aux itérations dans lesquelles I’algorithme de sous-gradient est utilisé,

par les soubresauts qu’elles impriment au graphe.

Il semble que l'algorithme de sous-gradient ait le plus d’influence pendant la
période dite “chaotique”, qui va des itérations 8 a 32. C'est pendant cette période
que la résolution avec l'algorithme de sous-gradient prend le plus d’avance sur la
résolution standard, en termes de valeur de l'objectif par rapport au temps total de

résolution (voir la figure 4.2). Pendant cette période, il importe peu de résoudre le
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probléme maitre restreint jusqu’a ’optimalité, car la solution partielle est encore tres
loin de la solution optimale. Par la suite, moins de colonnes sont générées et 1’algo-

rithme du simplexe n’a plus besoin de l'aide de l'algorithme de sous-gradient car les
réoptimisations sort tres rapides.
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Figure 4.2: Comparaison de la valeur de la solution primale en fonction du temps,
avec ou sans l'algorithme de sous-gradient

La figure 4.2 représente 1'évolution de la valeur de la solution primale du probleme
maitre restreint au cours du temps, pendant la résolution d’un probléme de maniere

standard (trait plein) et & l'aide de l'algorithme de sous-gradient (trait pointillé).

Dans cette figure, le temps en secondes est en abscisse, et la valeur de la solution

primale en ordonnée.

Les points indiqués sur chacune des deux courbes correspondent aux itérations
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pour lesquelles le probléme maitre restreint est résolu par l'algorithme du simplexe.
Les itérations pour lesquelles le probleme maitre restreint est résolu par l'algorithme
de sous-gradient ne donnent pas une nouvelle valeur a 'objectif primal et ne peuvent

donc étre représentées sur ce graphe.

Pour se repérer sur cette figure, il suffit de savoir que les itérations 8 a 32, pen-
dant lesquelles les variables duales prennent des valeurs chaotiques, et ou l'algorithme
de sous-gradient semble étre le plus efficace, correspondent 2 la période de 73 a 455
secondes pour l’algorithme de sous-gradient. En comparaison, pour la résolution stan-
dard la période de variables duales chaotiques correspond aux itérations 8 a 31 et aux

temps de 72 a 560 secondes.

Il est clair d’apres cette figure que I'utilisation de l'algorithme de sous-gradient
accélere la résolution. Les deux courbes finissent avec des pentes similaires, ce qui
suggere que l'influence de l'algorithme de sous-gradient est particuliérement utile au

début de la résolution.

Le prochain chapitre décrit une autre facon d’améliorer les temps de résolution.
Cette nouvelle méthode, qui utilise la perturbation, pourra se combiner avec la méthode

de sous-gradient, en espérant que cela donne des résultats encore meilleurs.
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Chapitre 5

Intégration d’un algorithme de
stabilisation des variables duales a
’algorithme de génération de
colonnes

Aprés 'algorithme de sous-gradient tel que décrit dans le chapitre précédent, le
deuxieme algorithme heuristique dual implanté et testé pour la résolution du probleme
maitre dans un algorithme de génération de colonnes est un algorithme de controle des
variables duales basé sur I'utilisation de variables de perturbation dans le probléme
primal. Cet algorithme est décrit dans la section 5.1; la section 5.2 explique son im-
plantation dans un algorithme de génération de colonnes; enfin la section 5.3 présente
des résultats numériques permettant d’évaluer l'efficacité d’une telle implantation,

avec ou sans l'aide de l'algorithme développé au chapitre 4.

5.1 Les concepts théoriques

Cette section décrit ’algorithme de stabilisation des variables duales proposé par
Du Merle, Villeneuve, Desrosiers et Hansen (1997). Cet algorithme s’applique a des

problémes linéaires résolus par une méthode de génération de colonnes. Considérons
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le programme linéaire suivant:

minc? X
(P) sc.AX = b
X >0
et le probléeme dual associé:
max b7

(D) sc. ATm < ¢

ot X est le vecteur des variables de décision primales, c le vecteur des cotts de ces
décisions, A la matrice des coefficients des variables de décisions dans les contraintes, b
le vecteur des valeurs des membres droits des contraintes, et 7 le vecteur des variables

duales.

Tl est bien connu que la convergence d’'une méthode de génération de colonnes est
souvent lente lorsque P comporte un grand nombre de contraintes. Un moyen de stabi-
liser cette méthode est d’ajouter une perturbation aux contraintes de P, par le biais
d'un vecteur de variables de surplus y_ > 0 et d’un vecteur de variables d’écart
y. > 0. Ces variables sont bornées respectivement par les valeurs non négatives des
vecteurs e_ et e.. Elles ont pour but de perturber légéerement les contraintes primales,
de maniére 3 éviter la dégénérescence primale. En d’autres mots, le membre de gauche
A; X d’une contrainte A;X = b;,i € I (ol pour chaque ¢ € I, A; représente la rangée
i de la matrice A, et b; I'élément i du vecteur b) peut étre légerement supérieur a son
membre de droite b;, en posant A; X — y;— = b;, ou légerement inférieur a celui-ci en
posant A; X +yi; = b; (ol pour chaque i € I, y;_ représente '’élément ¢ du vecteur y_,

et y;+ I’élément i du vecteur y.). Ainsi, P se transforme en un nouveau probléme:

minc? X
sc. AX —y_+ys = b
(Pe) Y+ S €4
y- < e-
Xv Y- U+ Z 0.
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Un autre moyen de stabiliser la méthode de génération de colonnes est d’utili-
ser, comme en programmation non linéaire, la méthode de pénalités exactes en
norme l;, ot la norme [; pour un vecteur X est définie par [|X[l;, = X | X;|. Dans

i€l
cette méthode, la contrainte AX = b est transférée dans I’objectif en lui associant
une pénalité (constante) § > 0. Dans ce cas, le probleme P se reformule comme suit:
Ps) minc'X — AX|l, = minc’. — A X
(Ps) minc +48|[b — AX|},, ng'Y+5é;h A X
En utilisant les variables de surplus et d'écart y- > 0 et y, > 0, et en posant
b; — 4, X = yiy — yi_, Vi € I, le probleme FPj se réécrit:
o T
ne! X +46 iv — Yie
pinc X + I_EZIIyw yi-|

s.c. i X —yi- +yir = b;, Viel
‘Yv Yiv, Yi- 2 07 Vi € I

Mais |yis — ¥i—| = yi+ + yi—, car de par la nature de ces variables, pour chaque
i € I une seule des deux variables y;, et y;— peut faire partie de la base, alors que
1’autre vaut 0. Donc Ps se réécrit:
inel X . u:
minc X + 6 g{(yﬁ + yi-)

S.C. .AiX —Yi- tYiv = b,‘, Viel
‘Yv Yi+, Yi- 2 Oy Vl € I

Nous utiliserons par la suite des vecteurs d_ et 0., au lieu d'une constante é comme
dans la méthode de pénalités exactes en norme l;. Montrons que cette approche est
équivalente. Définissons un nouveau probléme:

mincT X + a¥(b — AX)
(P) s.c. AX
X

AV
o

ol fi est un vecteur de multiplicateurs de dimension |I|. Puisque b — AX = C pour

toute solution réalisable de P, P est équivalent a P.
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En appliquant la méthode de pénalités exactes en norme [; 3 P, le probléme P,

équivalent a Pj, est obtenu comme suit (ou /; dénote I’élément i du vecteur f):
(Ps) min X +af(b—- AX) +4l|b — AX ||,

= I}(I%%CTX + Z 2i(yiv — yi-) + JZ(yH, + yi_)

icl i€l
= min X + S0+ fi)yir + (0 = f1i)yi--
o= i€l el

Ceci démontre que des vecteurs §. = (§ + fi;lt € I) et 6_ = (0 — ;|2 € I) peuvent

&tre utilisés a la place de la constante & dans le probleme Fs.

La méthode de stabilisation qui sera utilisée ici combine les deux stratégies de P,
et P5: le membre de gauche de la contrainte 4;X = b;,i € I peut étre inférieur ou
supérieur au membre de droite correspondant, mais ce, & un certain cout d;+ ou d;_

et jamais par plus de €;. ou €;_ respectivement. Cela donne le probléeme (P):

min ¢TX —6_y_ + 0.y (5.1)
sc. AX—y_+y. = b (5.2)

y- < e (5.3)

yr < & (5.4)

X.y_,y. 20. (5.5)

Le signe “moins” devant le vecteur de coefficients §_ dans 'objectif entrainera une
simplification de la notation par la suite. En associant les vecteurs de variables duales
7, —w_ et —w, (ot —w_ < 0 et —w, < 0) aux contraintes (5.2), (5.3) et (5.4) de P,

le probiéme dual D associé & P est donné par:

max bTF —w_€_ —wi €y (5.6)

sc. ATd < ¢ (5.7)
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—F—w. < —4_ (5.8)
w_,wy > 0 (5.10)

L'avantage de cette formulation est que le vecteur = des variables du probléeme
dual perturbé D est borné. En effet. les deux derniéres contraintes (5.8) et (5.9) de
D se réécrivent §_ — w_ < & < §, + wy. Les variables duales 7;,¢ € I, qui ne sont
pas dans l'intervalle [§_.d.] sont pénalisées par un facteur €, ou €;,. Il serait donc
intéressant d’utiliser ces faits pour mieux contrdler les variables duales en cours de

résolution et les faire converger plus rapidement.

Proposition: P est équivalent & P (i.e. y* = y5 = 0, ot le symbole * indique la
valeur du vecteur & l'optimalité) si l'une des conditions suivantes est satisfaite:
(i)e- =€+ =0,

(i) 6 < 7* < 82

Preuve: Le résultat est évident lorsque la premiére condition €. = €, = 0 est
satisfaite. En effet, dans ce cas, les contraintes (5.3) et (5.4) de P s'écrivent y_ < 0
et y, < 0. Jumelant ces contraintes aux contraintes de non négativité, les valeurs

y* = 0 et y; = 0 sont obtenues.

Maintenant, supposons que la condition (ii) est satisfaite, i.e. 0 <7 <d;. Etant
donné que le probléme D doit maximiser bT# — w_€e_ — wi €+, et que €—, €+, w_ et
w. doivent avoir des valeurs positives, il est facile de constater que w® = w? = 0. Or,

les conditions de complémentarité associées aux contraintes (5.3) et (5.4) de D
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se réécrivent:
(-7 +6")y- = 0

(

-0y, = 0.

Puisque §_ < #* < §.. les valeurs y- = 0 et y. = 0 sont obtenues. O

5.2 Intégration au logiciel GENCOL

L’algorithme de stabilisation des variables duales décrit a la section précédente
s'implante facilement dans un algorithme de génération de colonnes. Il suffit de ra-
jouter les variables de perturbation désirées au probléme maitre. A chaque itération
de génération de colonnes. avant que le probléeme maitre restreint ne soit résolu, il est
possible de modifier les bornes et les couts de ces nouvelles variables, de maniére a
contréler les valeurs des variables duales. Nous avons effectué une telle implantation

dans le logiciel GENCOL.

Pour cette implantation de l'algorithme de stabilisation, nous avons décidé, pour
une itération donnée de la méthode de génération de colonnes, de borner les variables
duales par un intervalle basé sur les valeurs des variables duales obtenues a l'itération
précédente. De cette fagon, nous disposons de valeurs intéressantes pour borner les
variables duales. De plus, nous espérons atténuer le comportement chaotique des
variables duales en début de résolution. Enfin, cette méthode assure a la fois une

continuité et un dynamisme dans la variation des variables duales.

Un algorithme de perturbation existait déja dans ce logiciel avant d’y implan-
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ter I'algorithme de stabilisation des variables duales. Cet algorithme de perturbation
ne permettait pas d’appliquer la théorie vue dans la section 5.1: les composantes
des vecteurs _ et . y étaient toutes égales et, tout comme les vecteurs e_ et €,
restaient fixes tout au long du processus de génération de colonnes. Cet algorithme
de perturbation a été modifié pour que §_ et 4, deviennent des vecteurs, a com-
posantes possiblement différentes, et qu'ils puissent prendre de nouvelles valeurs a
chaque itération de génération de colonnes. Les premiers tests modifiant les valeurs
des vecteurs e_ et €, a chaque itération de génération de colonnes ont donné des
temps de résolution trop longs, cette option n'a donc pas été conservée. Enfin, pour
une solution duale initiale, la possibilité de lire individuellement les composantes de
vecteurs 6_ et &, initiaux a été mise en place, pour les cas ou une approximation des

valeurs des variables duales serait connue.

5.2.1 Les paramétres de ’algorithme de stabilisation des va-
riables duales

Pour utiliser I’algorithme de stabilisation des variables duales tel qu'implanté dans
le logiciel GENCOL, il faut tout d’abord que le parameétre booléen déterminant l'uti-
lisation de la perturbation SbbPerturbationUse soit égal a 1, alors que sa valeur
par défaut est 0. Il faut aussi que le parametre booléen déterminant 'utilisation de
I’algorithme de stabilisation des variables duales SppPertAjUse = 1 (c’est sa valeur

par défaut).

De plus, I'ajustement des variables de perturbation peut n’avoir lieu qu’a partir
d'une certaine itération de génération de colonnes, déterminée par le parametre entier

SppPertAjltr, qui par défaut vaut 10. Ce parameétre permet d’éviter 'ajustement
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inutile des variables duales lors des premiéres itérations de génération de colonne,
étant donné que les valeurs des variables duales sont souvent peu significatives dans
ces itérations. Ceci est dit au fait que des variables artificielles de coiit tres grand
sont utilisées. Comme l'algorithme de stabilisation des variables duales se base sur
les valeurs des variables duales trouvées A l'itération précédente de génération de
colonnes pour ajuster les cotts des variables de perturbation, il vaut mieux commencer
a appliquer cet algorithme lorsque les variables duales commencent a prendre des

valeurs plus raisonnables.

Pour démarrer l’algorithme de stabilisation des variables duales avec des vec-
teurs d_ et &, a composantes égales, il suffit d'utiliser les parameétres déja implantés
dans le logiciel GENCOL, soit les sept quadruplets SppPertTaskStrong, SppPert-
SetPart, SppPertSetCov, SppPertFlow, SppPertGUB, SppPertCut et Spp-
PertDef. Chacun de ces parametres permet de perturber un type particulier de
contraintes. Un tel quadruplet donne, dans l'ordre, le cout des variables d’écart; une
limite maximum aux variables d’écart; le colt des variables de surplus; et une limite
maximum i ces variables. Pour chaque variable d’écart, la limite sera donnée par une
valeur choisie au hasard entre 0 et la limite maximum donnée par le parameétre, selon
une loi uniforme. Il en est de méme pour les variables de surplus. Les valeurs €;_ et

€.+,1 € I, utilisées dans l'algorithme de stabilisation découleront de ces valeurs.

Notons qu'il vaut mieux que les valeurs ¢;_, i € I ne soient pas trop grandes, sinon
tout le probléme sera résolu en sous-recouvrant les taches, solution qui est trés loin
de la solution recherchée. Cette remarque est aussi valable, a plus faible instance,
pour les valeurs €;;,7 € I et le sur-recouvrement des taches. Il faut malgré tout que

les composantes €;_ et €;.,1 € I soient différentes de O car, dans le cas contraire, les
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colonnes de perturbation correspondantes ne seraient pas créées et l'algorithme de

stabilisation des variables duales ne pourrait étre utilisé.

Pour démarrer I'algorithme de stabilisation des variables duales avec des vecteurs
5_ et 5, de départ a composantes différentes, il faut fournir au logiciel GENCOL
un fichier contenant une valeur approximative pour chaque variable duale. Le nom
de ce fichier sera donné par le paramétre SppPertAjDebut. Les parameétres réels
SppPertAjCoefUnderDeb (valant 1 ou plus, par défaut 1,2) et SppPertAjCoef-
OverDeb (valant entre 0 et 1, par défaut 0,8) seront des coefficients multiplicateurs
pour calculer l'intervalle [-6i1,8;-] bornant la valeur de la variable duale m;,t € I a

partir des valeurs données dans le fichier.

En dénotant par 7 la i-éme valeur donnée par le fichier d’entrée, l'intervalle

correspondant pour limiter la valeur de m; est calculé ainsi:

[~6:ir.6i-] = [Overx 70, Under = 7] sim >
= [-Under, Under] si —1<7a)<1;
= [Under *7?, Over x 7] sim < -1

(ou pour plus de clarté les noms SppPertAjCoefOverDeb et SppPertAjCoef-

UnderDeb ont été remplacés simplement par “Over” et “Under”).

Pendant la résolution, au début d’une itération g de génération de colonnes, les
valeurs &;_ et 8;. se réajustent a l'aide des parametres SppPertA jCoefUnder et
SppPertAjCoefOver, valant par défaut 1,2 et 0,8 respectivement, de maniére simi-

laire a I’ajustement précédent:

[—6ir,0i-] = [Overx 77!, Under * N sind™ >
= [-Under * {"', Under * a7 s —1<alT <L
= [Under *7{"!, Over * L sindl < -1

ou encore une fois, pour plus de clarté, les noms SppPertAjCoefOver et SppPert-

AjCoefUnder ont été remplacés simplement par “Over” et “Under”.
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Tout au long de la résolution, les vecteurs d_ et &, devraient borner de mieux en
mieux «. Idéalement, il arrive une itération de génération de colonnes pour laquelle
5_ < m < 4§, et les variables de perturbation deviennent inactives. La résolution
se continue alors normalement. Dans le cas contraire, une solution optimale de la
relaxation linéaire ayant recours aux variables de perturbation est trouvée. Deux

choix s'offrent alors pour poursuivre la rechercher d’une solution entiere.

Premiérement, les variables de perturbation peuvent étre toutes retirées et la
résolution se poursuit alors normalement. Lorsque la solution perturbée est trés mau-
vaise, le processus de résolution prend beaucoup de temps a récupérer et peut méme
revenir en phase I (avec des variables artificielles actives de cout trés grand). Au-
trement, seulement quelques itérations supplémentaires sont nécessaires pour obtenir

une solution optimale au probléme non perturbé.

Deuxiemement, une borne inférieure peut étre calculée a partir de la solution
perturbée et les stratégies de branchement standard peuvent étre invoquées. Dans ce
cas, la borne inférieure peut tout simplement correspondre & la valeur primale de la
solution perturbée, soit

TR —w_e_ —wi €y
Toutefois, la valeur bT# procure une meilleure borne valide. En effet, il est facile de
vérifier que si (#,w_,w4) est une solution réalisable pour le probleme D, alors 7 est
aussi une solution réalisable pour le probleme dual associé a P qui, rappelons-le, se

formule
(D) max bTn
sc. ATr < ¢

De plus, comme —w_e_ — wi€4 < 0, pour toute solution réalisable (7,w_,wy) de D,

bl >b 7 —w_ €. —wies.
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5.3 Résultats

Une batterie de tests sur les parameétres de l’algorithme de stabilisation des va-
riables duales ont permis de juger de l'efficacité de cet algorithme. Comme dans la
section 4.3, ces tests ont porté sur la résolution de la relaxation linéaire de problémes
de type m-TSPTW tel que décrits au chapitre 3, et comportant 600 taches. Les tests
ont été effectués sur un ordinateur de type hp9000/715, a I'aide de la version 4.1b de

GENCOL.

Les résultats de 'implantation de I’algorithme de stabilisation des variables duales
dans le logiciel GENCOL sont mitigés, comme le montre le tableau 5.1. Ce tableau
présente des valeurs obtenues pour un ensemble de 10 problémes. Les trois premieres
colonnes indiquent les parameétres d’ajustement des variables duales utilisés pour la
résolution des 10 problémes. La premiére colonne (“Coefs de Début”) indique les
valeurs des paramétres SppPertA jCoefOverDeb et SppPertA jCoefUnderDeb
s’ils sont actifs, c'est-a-dire dans le cas ol un fichier de valeurs duales initiales est
disponible. Le cas échéant, ces valeurs ont été trouvées par une résolution antérieure
du méme probléme. La deuxiéme colonne (“Itr”) donne la valeur du parametre Spp-
PertAjlItr (indiquant l'itération a partir de laquelle I’algorithme de stabilisation des
variables duales est appliqué). La troisiéme colonne (“Coefs”) contient les valeurs
des coefficients permettant de borner les variables duales par rapport aux valeurs
trouvées A l'itération précédente, soit les valeurs des parametres SppPertAjCoef-

Over et SppPertAjCoefUnder.

Les quatre colonnes suivantes du tableau indiquent, pour chacune des variations

de ces parameétres, le meilleur et le pire temps de résolution (en secondes) pour les
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10 problémes considérés, ainsi que la moyenne et I'écart-type des temps de résolution

obtenus pour la résolution de ces problémes.

Quelles que soient les valeurs de ces parametres, pour 'algorithme de stabilisation
le temps de résolution moyen est meilleur sans I'utilisation de la perturbation. Méme
dans le meilleur cas, une détérioration du temps de résolution moyen de 2,4 % est
observée par rapport au temps de résolution moyen obtenu avec la version standard.

Tabieau 5.1: Temps de résolution selon les parametres d’ajustement des coiits de
perturbation

Coefs de Début | Itr | Coefs min (s) | max (s) | moyenne (s) | écart-type (s)
sans stabilisation 1265,0 | 2306,5 1722,4 259,8

10 | (0,9; 1,1) 1476,1 | 21550 1764,2 187,7

(12, 16) |10 |(09; 1,1) | 14950 21279 17726 200,3
20 | (0,9; 1,1) 1442,1 | 22155 1798,2 216,8

30 | (0,8; 1,2) 1334,7 | 2316,6 1826,9 269,4

30 | (0,9; 1,1) 1356,4 | 2420,3 1840,2 274,1

10 | (0,9; 1,1) 1378,8 | 23583 1854,8 253,2

20 | (0,8; 1,2) 1354,0 | 2379,2 1861,1 264,2

(1,2; 1,6) 30 | (0,8; 1,2) 1603,3 | 23574 1910,9 234,5

Des résultats légérement meilleurs ont pu étre obtenus dans le cas ol une borne
inférieure i la valeur de chaque variable duale était donnée des le début. Une telle
borne peut étre calculée par le “détour” minimum d'une tache: c’est le colit minimum
3 payer pour qu'un chemin couvre la tache en question. La valeur d(k) du détour pour

la tache k est donné par

{cie + ey — e}

d(k) = m

= 1n
(i.k),(k.5).(i.5)eA

Malheureusement, les valeurs des détours sont longues a calculer et, méme quand elles

sont disponibles, les meilleurs améliorations aux temps de résolution sont seulement

de ’ordre de 10 %.
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1l est intéressant de noter que pour les ajustements de parameétres donnant les
temps de résolution moyens les plus proches du temps de résolution standard (c’est-
a-dire les meilleurs parametres pour l'algorithme de stabilisation), 'écart-type des
temps de résolution est un peu plus petit avec I’algorithme de stabilisation qu’avec
I'algorithme résolution standard. De bons ajustements des parametres de 1'algorithme

de stabilisation permettent donc des temps de résolution plus homogénes.

L’algorithme de stabilisation et 'algorithme de sous-gradient développé au cha-
pitre 4 n’agissent pas sur les mémes composantes du probléme maitre restreint et
peuvent étre utilisés simultanément sans conflit. Cette combinaison d’algorithmes a
donc elle aussi été testée. De maniére un peu surprenante, l'utilisation simultanée de
I'algorithme de stabilisation et de l’algorithme de sous-gradient peut donner de meil-
leurs résultats que lorsque chacun de ces algorithmes est utilisé seul. Les résultats des
tests de cette combinaison d’algorithmes sont présentés dans le tableau 5.2. Pour ces
tests, nous avons utilisé les valeurs des parametres qui correspondaient aux deux meil-
leurs résultats en terme de temps moyen de résolution, pour chacun des algorithmes.
Ces valeurs ont été trouvées a la section 4.3 pour l'algorithme de sous-gradient et a
la présente section pour l'algorithme de stabilisation des variables duales. Les temps
de résolution pour les quatre combinaisons possibles de ces ensembles de parametres
ont été évalués. La premieére colonne du tableau 5.2 indique I’ensemble de parametres
utilisé pour I'algorithme de sous-gradient: “meilleur” si le meilleur ensemble de pa-
rametres est utilisé, “2éme” si c'est le deuxiéme meilleur ensemble de paramétres
qui est utilisé, “non” si 'algorithme de sous-gradient n’est pas utilisé. De méme, la
deuxiéme colonne indique l’ensemble de paramétres utilisé pour 'algorithme de sta-
bilisation des variables duales. Enfin, tel que pour le tableau 5.1, les quatre derniéres

colonnes indiquent les temps de résolution le plus rapide et le plus lent, la moyenne
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et I'écart-type, en secondes, obtenus avec chaque combinaison de parameétres pour un

ensemble de 10 problémes.

Tableau 5.2: Temps de résolution selon les parametres d'ajustement des coits de
perturbation et les paramétres de l’algorithme de sous-gradient combinés

sous-gradient | stabilisation || min (s) | max (s) | moyenne (s) | écart-type (s)
meilleur 2éme 1053,9 1516,2 1210,5 1214
meilleur non 1109,6 | 1423.6 1240,0 99,8

2eme 2eme 1112,5| 15454 1240,6 119,6
2eme non 1081,0 | 1480,8 1260,0 123.3
meilleur meilleur 1115,9 1851,9 1344,3 196,2
2éme meilleur 1173,6 | 1804,7 1403,5 175,1
non non 1265,0 | 2306,5 1722,4 259,8
non meilleur 1476,1 2155,0 1764,2 187,7
non 2éme 1495,0 | 21279 1772,6 209,3

Le tableau 5.2 indique que les meilleurs résultats ont été obtenus en combinant les
meilleurs parametres pour l'algorithme de sous-gradient avec la deuxiéme meilleure
série de parameétres pour l'algorithme de stabilisation des variables duales. Ces pa-
rametres correspondent tous aux parametres par défaut. Ce résultat correspond a une
ameélioration totale de 29,7 % du temps de résolution moyen de la relaxation linéaire
du probléme maitre, comparativement a une amélioration de 28 % lorsque l'algo-
rithme de sous-gradient est utilisée sans l'algorithme de stabilisation. La différence
n'est pas frappante, mais elle est tout de méme étonnante. Puisque 1’algorithme de
sous-gradient accélére la résolution, mais que I’algorithme de stabilisation la ralentit,
I'effet de la combinaison des deux algorithmes aurait pu étre une valeur intermédiaire

entre les deux résultats.

Comme lorsque chacun des algorithmes est utilisé seul avec des paramétres as-
sez bons, la combinaison des deux algorithmes donne un I’écart-type des temps de

résolution plus petit que pour la résolution standard. Les temps de résolution sont



80

15000 ]
3

2 410000 -
3
e
[0}

Q2 5000 -
Q
.8

g 0 B
/2]
)]
o

5 -5000 -
Qo
(G
>

-10000 -

1 1 1 1
0 20 40 60 80 100

Itération de génération de colonnes

Figure 5.1: Comportement des variables duales avec l'algorithme de stabilisation

donc plus homogenes lorsque les deux algorithmes sont utilisés ensemble que lors-
qu'aucun de ces deux algorithmes n’est utilisé. Par contre, il est difficile de dire si
I'utilisation combinée des deux algorithmes donne un meilleur écart-type que 'utili-

sation d’un seul de ces algorithme.

La figure 5.1 permet d’apprécier l'influence de l'algorithme de stabilisation sur
I'évolution des valeurs des variables duales. Cette figure représente les valeurs des
variables duales en fonction de 'itération, & la méme échelle que les figures 1.1 et 4.1.
Dans cette résolution, la perturbation est appliquée de maniére classique (c’est-a-dire
sans ajustement des cotlts) dés la premiére itération. Cette premiére perturbation est
tres grossiére (elle limite les variables duales entre -10000 et 10000) et n'existe que
dans le but d’obliger le logiciel GENCOL 4 créer des variables de perturbation et a
les ajouter au probléme (autrement elles ne seraient pas créées). Des variables artifi-

cielles sont actives pendant les trois premiéres itérations, ce qui rend les valeurs des
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variables duales trés grandes. L'ajustement des coiits des variables de perturbation
ne commence a se faire qu’a l'itération 10. Le nombre de variables de perturbation
actives varie tout au long de la résolution. Entre les itérations 10 et 20, il est de
'ordre de 400 & 500 (pour 609 variables duales). Puis, il baisse doucement jusqu’a
I'itération 69, a partir de laquelle plus aucune variable de perturbation n’est utilisée.
L’analyse du nombre de variables de perturbation utilisées (i.e., de valeur non nulle)
par rapport au graphe des variables duales indique qu’entre les itérations 10 et 20, la
perturbation est trés utilisée mais peu influente sur l'évolution des variables duales.
Apparemment, d’autres décisions sont plus intéressantes pour améliorer la solution
que d’arréter d’utiliser des variables de perturbation. L’action des variables de per-
turbation commence 2 se faire sentir a l'itération 20, et jusque vers l'itération 45 les
coiits des variables de perturbation guident les variables duales vers des valeurs jugées
optimales. Mais au lieu d’encadrer les variables duales vers la bonne valeur, les cotuts
des variables de perturbation ont plutét U'effet contraire de retenir les variables duales
vers leur valeur précédente (valeur sur laquelle ces couts sont basés), et cela ralentit
la résolution. Vers l'itération 45, il reste déja moins de 100 variables de perturbation
actives et elles n'ont que peu d’influence sur le contrdle des variables duales. C’est
pourtant A ce moment que leur action doit étre la plus utile, car les bornes qu’elles
définissent sont enfin bonnes. Pour les variables duales qui convergent vers de petites
valeurs (entre 1000 et 3000), la largeur de I'intervalle défini par les cotits des variables
de perturbation est de 200 a 600. Pour les variables duales qui comprennent un cout
fixe et qui convergent vers des valeurs élevées (entre 10500 et 12000), cette largeur
est de 2100 a 2500 environ. La maniére dont l’algorithme est appliqué fait que les
variables duales les plus petites, qui dans notre cas sont aussi les plus nombreuses,

sont bornées plus finement.
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Figure 5.2: Comportement des variables duales avec 1'algorithme de stabilisation et
I’algorithme de sous-gradient combineés

La figure 5.2 représente I’évolution des valeurs des variables duales, lorsque les
deux algorithmes implantés sont utilisés, soit l'algorithme de sous-gradient et 1'algo-
rithme de stabilisation des variables duales. Cette figure représente les valeurs des
variables duales en fonction de I'itération, pour le méme probléme qu’aux figures 1.1,

4.1 et 5.1 et & la méme échelle (valeurs des variables duales en fonction de l'itération

de génération de colonnes).

L’évolution des variables duales au cours de cette résolution se fait comme suit.
Entre les itérations 1 et 3 des variables artificielles sont actives, ce qui rend les variables
duales trés grandes. L’algorithme de sous-gradient est utilisé entre les itérations 4 et
49 pour environ quatre problémes maitres restreints sur cinq de ces itérations. Par
la suite, seul l'algorithme du simplexe est utilisé pour résoudre le probleme maitre

restreint car le gap entre la solution duale et la borne supérieure, donnée par la
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derniére solution primale trouvée, est toujours plus petit que le gap permis par le

parametre SgMinGap.

Comme dans le cas ot l'algorithme de stabilisation est utilisé seul, les variables
de perturbation sont trés utilisées au début, puis leur utilisation décroit tout au long
de la résolution. Dans '’exemple présent, les cotts des variables de perturbation sont
ajustés selon l'algorithme de stabilisation dés le début de la résolution. Entre les
itérations 10 et 20 environ, de 300 a 400 variables de perturbation sont utilisées. Ce
nombre baisse en-dessous de 100 a partir de l'itération 30 et, des 'itération 52, plus

aucune variable de perturbation n’est active.

Des caractéristiques des figures 1.1, 4.1 et 5.1 se retrouvent dans la figure 5.2. Les
variables duales restent chaotiques pour les premieres itérations, soient les itérations
1 a 22 dans ce cas-ci. Comme c’était le cas lorsque l'algorithme de stabilisation des
variables duales est utilisé seul, les variables duales restent pendant plus d’itérations
3 des valeurs moyennes avant de se séparer et de converger vers leur valeur finale.
Ceci s’observe particulierement pendant les itérations 16 a 22, et continue jusqu’a

Iitération 52 ot plus aucune variable de perturbation n'est active.

D’autre part, ce graphe arbore les soubresauts déja observés lorsque l'algorithme
de sous-gradient est utilisé seul. Ces soubresauts correspondent 2 l'ajustement plus
précis et plus brutal des variables duales par I’algorithme du simplexe suite a plusieurs
itérations pendant lesquelles le probléme maitre restreint a été résolu par l'algorithme

de sous-gradient.

L'évolution des variables duales lorsque les deux algorithmes de sous-gradient et de

stabilisation des variables duales sont utilisés comporte les caractéristiques des deux
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algorithmes. L’accélération promise par l'algorithme de sous-gradient pourrait étre
ralentie par l'algorithme de stabilisation des variables duales, qui a plutot tendance,
tel qu'il est appliqué. & empécher les variables duales de converger vers leurs valeurs
optimales. Au contraire, en moyenne, le temps d’exécution est légérement accéléré
par rapport au temps de résolution du meéme probleme lorsque I'algorithme de sous-
gradient est utilisé seul. Paradoxalement, les variables duales dans la résolution uti-
lisant les deux méthodes convergent beaucoup plus lentement, en fonction du temps,

que lorsque la méthode de sous-gradient est utilisée seule.

La figure 5.3 représente |'évolution de I'objectif primal par rapport au temps en
secondes. pour les quatre algorithmes de résolution considérés dans ce mémoire. La
résolution standard y est représentée par un trait plein, et les autres résolutions par
différents types de traits pointillés, avec des ‘x’ pour I'algorithme de sous-gradient,
des ‘+' pour l'algorithme de stabilisation, et des ‘O’ pour la résolution a l'aide des
deux algorithmes combinés de stabilisation et de sous-gradient. Dans cet exemple, la
résolution a l'aide de l’algorithme de stabilisation a été un peu plus rapide que la
résolution standard, tandis que la résolution utilisant l'algorithme de sous-gradient
fut bien plus rapide, et celle utilisant les deux algorithmes de stabilisation et de sous-
gradient, encore plus rapide. Dans les cas ou l'algorithme de stabilisation est utilisé,
les coiits des variables de perturbation changent tout au long de la résolution, ce
qui explique le fait que la valeur de l'objectif puisse augmenter. Comme ces couts,
qui bornent les variables de perturbation, s’ajustent tout au long de la résolution, a
la fin de la résolution les variables de perturbation sont toutes a 'intérieur de leurs
bornes respectives. Dans ce cas aucune variable de perturbation n’est utilisée donc le

probléme n’a pas besoin d'étre déperturbé.



85

Pour l'algorithme de stabilisation, la valeur de I'objectif primal varie longtemps
autour de la valeur optimale avant de l’atteindre. Dans le cas ou les deux algorithmes
de stabilisation et de sous-gradient sont utilisés conjointement, 'objectif rejoint treés

vite une valeur presqu'optimale et prend ensuite un peu de temps a ajuster cette

valeur.
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Figure 5.3: Rapidité de convergence avec I'algorithme de stabilisation et ’algorithme
de sous-gradient combinés par rapport a l'algorithme standard

La comparaison de la convergence des variables duales par rapport au temps de
résolution pour l'algorithme de stabilisation utilisé seul (figure 5.4), comparative-
ment a Dutilisation conjointe des deux algorithmes (figure 5.5), indique clairement
I’avantage de combiner les deux algorithmes en terme de temps. La raison pour la-

quelle cette combinaison d’algorithmes est avantageuse sur chacun des algorithmes
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utilisés seuls n'est pas facile & identifier. Une explication possible est que I'algo-
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Figure 5.4: Comportement des variables duales avec |’algorithme de stabilisation, par
rapport au temps
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Figure 5.5: Comportement des variables duales avec 'algorithme de stabilisation et
I'algorithme de sous-gradient combinés, par rapport au temps

rithme de sous-gradient permet de réduire considérablement le temps de résolution
du probleme lorsque celui-ci est résolu a I'aide de 'algorithme de stabilisation. Tout
le temps qui était perdu & optimiser des problémes maitres restreints, devenus tres

lourds par I'ajout de nombreuses variables de perturbation, est maintenant sauvé
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grace a l'algorithme de sous-gradient, ce qui permet & l'algorithme de perturbation
d’avoir lui-méme une certaine utilité. Mais d’autres analyses doivent étre faites afin

d’expliquer le comportement de ces deux algorithmes.

La théorie derriére 1'algorithme de stabilisation des variables duales reste intéres-
sante et la recherche se poursuit afin d’obtenir de meilleurs résultats a partir de cet

algorithme ou d’algorithmes similaires.
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Conclusion

Dans ce mémoire de maitrise, nous avons vu l'implantation de deux algorithmes
heuristiques pour la résolution du probléme maitre dans un contexte de génération

de colonnes.

Le premier algorithme heuristique, l'algorithme de sous-gradient, permet de ré-
soudre le probléme maitre restreint de maniére beaucoup plus rapide que I’algorithme
du simplexe, mais non optimale. Cette résolution duale fournit une bonne approxi-
mation des variables duales qui sont transférés au sous-probléme. Réguliérement, la
résolution du probléme maitre restreint est faite jusqu’a 'optimalité par l'algorithme
du simplexe. Cette alternance d’algorithmes heuristique et optimal permet de perdre
moins de temps & calculer 'optimalité de problemes intermédiaires moins significatifs,

ce qui en définitive se traduit par une résolution 28% plus rapide en moyenne.

Le deuxiéme algorithme heuristique, l'algorithme de stabilisation des variables
duales, permet de stabiliser les variables duales au cours des itérations de génération
de colonne, en utilisant pour cela des variables de perturbation. En effet, les cotts de
variables de perturbation peuvent borner les variables duales. En ajustant ces couts se-
lon les valeurs des variables duales d’une itération précédente, les variables duales de-
viennent bornées et oscillent moins que dans le processus standard de résolution, con-
vergeant donc plus rapidement vers leurs valeurs optimales. Malheureusement, malgré

que les variables duales convergent un peu plus rapidement, en terme d’itérations, le
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probléme maitre restreint, alourdi par toutes les variables de perturbation, prend
beaucoup plus de temps & résoudre et en définitive la résolution est en moyenne
toujours plus lente que dans l'algorithme standard sans perturbation. Néanmoins, la

recherche se poursuit dans cette direction.

Ces deux algorithmes donnent des temps de résolution plus homogenes, qu’ils
soient utilisés seuls ou combinés ensemble. D’un autre coté, la combinaison de ces
deux algorithmes crée une synergie qui rend la résolution jusqu'a 29,7% plus rapide
que l'algorithme standard en moyenne (ce qui est 2,4% plus rapide que 'algorithme
de sous-gradient seul). En particulier il est tres intéressant de constater que cette

combinaison fait converger le probleme plus rapidement vers la solution optimale.

Ces deux algorithmes marquent le début au GERAD de la recherche pour 'accé-
lération de la résolution du probléme maitre restreint et, espérons-le, ouvrent la voie a
de nombreuses nouvelles méthodes toutes plus efficaces, rapides et optimales les unes

que les autres.



90

Bibliographie

[1]

2]

3]

BALAS E. et HO., A. (1980). Set Covering Algorithms Using Cutting Planes,
Heuristics and Subgradient Optimization: A Computational Study. Mathemati-

cal Programming Vol. 12, 37-60.

BEASLEY, J.E. (1992). Lagrangean Relazation. The Management School, Im-

perial College, Londres, Royaume-Uni.

CAPRARA, A.. FISHETTI, M. et TOTH, P. (1996). A Heuristic Algorithm for

the Set Covering Problem. Document de travail.

CHVATAL, V. (1979). A Greedy Heuristic for the Set-Covering Problem. Ma-
thematics of Operations Research Vol. 4, No. 3, 233-235.

DANTZIG, G.B. et WOLFE, P. (1961). Decomposition Principle for Linear Pro-

grams. Operations Research Vol. 8, 101-111.

DESROSIERS. J., DUMAS, Y., SOLOMON, M.M., et SOUMIS, F. (1995). Time
Constrained Routing and Scheduling. In M.O. Ball et al. (eds.), Network Routing,
Handbooks in Operations Research and Management Science 8. Elsevier Science,

Amsterdam, 35-139.

DESROCHERS, M., DESROSIERS, J., et SOLOMON, M. (1992). A New Opti-
mization Algorithm for the Vehicle Routing Problem with Time Windows. Ope-

rations Research Vol. 40, 342-354.



8]

[10]

[11]

[12]

[16]

91

DESROSIERS, J., SOUMIS, F., e¢ DESROCHERS, M. ( 1984). Routing with
Time Windows by Column Generation. Networks Vol. 14, 545-565.

DESROSIERS, J., SAUVE, M. et SOUMIS, F. (1988). Lagrangian Relaxation
Methods for Solving the Minimum Fleet Size Multiple Traveling Salesman Pro-

blem with Time Windows. Management Science Vol. 34, 1005-1022.

DESROSIERS. J.. DUMAS, Y., SOLOMON. M.M.. et SOUMIS, F. (1992). Time

Constrained Routing and Scheduling.

DU MERLE, O. (1995) Interior Point and Cutting Plane Method: a New Algo-
rithm for Conver Optimization and Large Scale Structured Linear Programming.

Thése de Doctorat, Université de Genéve, Hautes Etudes Commerciales, Suisse.

DU MERLE, O., VILLENEUVE, D., DESROSIERS, J. et HANSEN, P. (1997).
Stabilisation dans le cadre de la génération de colonnes. Cahiers du GERAD

G-97-08, Ecole des HEC, Montréal, Canada.

FISHER, M.L. (1981). The Lagrangian Relaxation Method for Solving Integer

Programming Problems. Management Science Vol. 27, No 1, 1-18.

| FISHER, M.L. (1985). An Application Oriented Guide to Lagrangean Relaxa-

tion. Interfaces Vol. 15, 10-21.

FISHER, M.L., JAIKUMAR, R. e¢ VAN WASSENHOVE, L. (1986). A Multi-
plier Adjustment Method for the Generalized Assignment Problem. Management

Science Vol. 32, No 9, 1095-1103.

FISHER, M.L. et KEDIA, P. (1990). Optimal Solution of Set Cove-
ring/Partitioning Problems Using Dual Heuristics. Management Science Vol. 36,

No 6, 674-688.



[17]

18]

[19]

[20]

[21]

92

GEOFFRION, A.M. (1974). Lagrangian Relaxation and Its Uses in Linear Pro-

gramming. Mathematical Programming Study Vol. 2, 82-114.

GOFFIN, J.-L. (1977). On the Convergence Rate of Subgradient Optimization.
Mathematical Programming Vol. 13, 329-347.

GOFFIN, J-L., HAURIE, A. et VIAL, J.-P. (1992). Decomposition and Non-
differentiable Optimization with the Projective Algorithm. Management Science

Vol. 38, No. 2, 284-302.

GUIGNARD, M. et SPIELBERG, K. (1979a). A Direct Dual Method for the
Mixed Plant Location Problem with Some Side Constraints. Mathematical Pro-

gramming, Vol. 17. 198-228.

GUIGNARD, M. et SPIELBERG, K. (1979b). 4 Direct Dual Approach to Trans-
shipment Formulation for Multi-Layer Network Problems with Fized Charges.
Rapport Technique #43, Department of Statistics, University of Pennsylvania,

Etats-Unis.

HELD, M., WOLFE, P. e¢t CROWDER, H.D. (1974). Validation of Subgradient

Optimization. Mathematical Programming Vol. 6, 62-88.

KEDIA, P. (1985). Lagrangian Multiplier Adjustment Method for Solving Certain
Combinatorial Problems. Thése de Doctorat, University of Pennsylvania, Etats-

Unis.

KOHL, N. (1994). An Improvement of the Subgradient Method. Rapport Tech-
nique IMM-REP-1994-20, Institute of Mathematical Modelling, The Technical

University of Denmark, DK-2800 Lyngby, Danemark.



25}

[26]

27]

28]

[29]

[30]

[31]

[32]

93

KOHL, N. (1995). Ezact Methods for Time Constrained Routing and Related
Scheduling Problems. Thése de Doctorat, The Technical University of Denmark,

DK-2800 Lyngby, Danemark.

KOHL, N. et MADSEN, O.B.G. (1997). An Optimization Algorithm for the
Vehicle Routing Problem with Time Windows based on Lagrangean Relaxation.

Operations Research Vol. 45, 395-406.

KOLEN, A.W.J., RINNOOY KAN, AHG., et TRIENEKENS, HW.J.M.
(1987). Vehicle Routing with Time Windows. Operations Research Vol. 35, 266-
273.

LAVIGNE, J. (1996). Le probléme de tournées de véhicules avec fenétres de temps

et dépéts multiples. Mémoire de Maitrise, Ecole Polytechnique, Montréal, Ca-

nada.

LEMARECHAL, C. (1989). Non Differentiable Optimization. Handbooks of Ope-
rations Research and Management Science, volume I1: Optimization, ed. G.L.

Nemhauser, A.G.H. Rinnooy Kan and M.J. Todol, North-Holland, Amsterdam,

529-572.

MAHEY, P. (1982). Decomposition of Large-Scale Linear Programs by Subgra-

dient Optimization. Matemdtica Aplicada e Computacional Vol. 1, No 2, 121-134.

MAHEY, P. (1986). Méthodes de décomposition et décentralisation en program-

mation linéaire. R.A.I.R.O. Recherche Opérationnelle Vol. 20, No 4, 287-306.

MARSTEN, R.E. (1974). An Algorithm for Large Set Partitioning Problems.

Management Science Vol. 20, 770-787.




94

(33) NEMHAUSER, G.L. et WOLSEY, R.A. (1988). Integer and Combinatorial Op-

timization. Wiley-Interscience, New York. Etats-Unis.

[34] SOLOMON, M.M. (1987) Algorithms for the Vehicle Routing and Scheduling

Problem with Time Window Constraints. Operations Research Vol. 35, 254-265.

[35] SOLOMON. M.M. et DESROSIERS. J. (1988). Time Window Constrained Rou-

ting and Scheduling Problems. Transportation Science Vol. 22, 1-13.

[36] ZOWE, J. (1985). Nondifferentiable Optimization. Computational Mathematical
Programming Vol. F15, ed. Schittkowski, K., NATO ASI Series, Springer-Verlag,

Berlin, Allemagne.



IMAGE EVALUATION
TEST TARGET (QA—23)

PR

ddaa

K EEFEPPER

=l

I

i3

[
I

= IMAGE . Inc

14

150mm
6II

Q

125

—
——

I
I

~@ow 5





