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RÉSUMÉ 

L’acide polylactique, abrégé PLA, est un polymère biodégradable, provenant de sources 

renouvelables, avec une structure semi-cristalline ou amorphe. Bien que ces caractéristiques 

fassent du PLA un candidat approprié à l'emballage alimentaire, il y a cependant quelques 

problématiques importantes qui devraient être surmontées comme la faible stabilité thermique, la 

résistance mécanique faible et des propriétés barrière au gaz limitées. En s’appuyant sur les 

résultats énoncés dans la littérature, l’ajout de charges (argiles) de taille nanométrique peut 

améliorer les propriétés mécaniques et barrières de manière significative à condition qu'elles 

soient bien dispersées dans la matrice et forment une structure exfoliée. D'autre part, ce travail 

montre que l'incorporation d'argile organique modifiée dans le PLA augmente la vitesse de 

dégradation et alors, diminue manifestement la stabilité thermique des nanocomposites obtenus. 

Donc, le contrôle de la dégradation thermique du PLA est un autre défi dans le développement 

des nanocomposites PLA/argile. 

Dans la première partie du projet de maîtrise, des nanocomposites PLA/argile contenant 

différents allongeurs de chaîne ont été préparés. Le polycarbodiimide (PCDI), le tris 

(nonylphenyl) phosphite (TNPP) et le Joncryl ® ADR 4368 ont été utilisés comme allongeurs de 

chaîne dans ce travail. L'effet de l’incorporation des allongeurs de chaîne sur le contrôle de la 

dégradation thermique, sur les propriétés rhéologiques et thermo-physiques et sur la structure 

moléculaire a été examiné. Les résultats ont révélé que l'incorporation de PCDI (2 % en poids), 

TNPP (1 % en poids), ou Joncryl (1 % en poids) avait un profond effet sur la dégradation. De 

telles concentrations ont non seulement stabilisé la viscosité et le module avec le temps, mais ont 

aussi augmenté leurs valeurs. Le mécanisme de stabilisation est fort probablement l'extension des 

chaînes. L'extension des chaînes a conduit à la formation de chaînes linéaires plus longues dans 

les nanocomposites à base de PCDI et de TNPP, et à une structure de longues chaînes ramifiées 

(LCB) dans les nanocomposites à base de Joncryl. L'analyse thermogravimétrique (TGA) a 

révélé que l’ajout d'argile dans le PLA a diminué sa stabilité thermique, tandis qu’une 

augmentation de la température de début de dégradation a été observée après l'incorporation des 

allongeurs de chaîne. Le Joncryl est finalement l’allongeur de chaîne le plus efficace dans les 

conditions de mise en forme parmi ceux utilisés dans cette étude. 
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Dans la deuxième partie du projet, des nanocomposites à base de Joncryl ont été préparés en 

utilisant différentes stratégies. L'effet de l’allongeur de chaîne et des conditions de mise en forme 

sur le degré de dispersion de l'argile, sur les propriétés barrières et mécaniques des 

nanocomposites obtenus ont été examinés. Les nanocomposites à base de Joncryl ont été préparés 

selon cinq stratégies différentes et comparées à un  nanocomposite de référence. L’incorporation 

de 2 % en poids de Cloisite®30B (nano argile) et de 1 % en poids de Joncryl dans la matrice de 

PLA a conduit à une réduction significative de la perméabilité à l'oxygène et à l'amélioration des 

propriétés mécaniques comme le module en traction, l’allongement à la rupture et la ténacité des 

nanocomposites de PLA préparés selon la deuxième stratégie basée sur un mélange-maître de 

PLA/argile. 
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ABSTRACT 

Poly (lactic acid), abbreviated PLA, is a biodegradable polymer, made from renewable sources, 

with either a semi-crystalline or amorphous structure. Although these features make PLA an 

appropriate candidate for food packaging there are, however, some important issues that should 

be overcome such as poor thermal stability, low mechanical resistance, and limited gas barrier 

properties. Based on results reported in the literature, the addition of nano-sized fillers (clays) can 

efficiently improve the mechanical and barrier properties provided that they are well dispersed in 

the matrix and form an exfoliated structure. On the other hand, this work shows that the 

incorporation of organically modified clay into PLA enhances the rate of degradation and hence 

markedly decreases the thermal stability of the resulting nanocomposites. Therefore, control of 

PLA thermal degradation is another challenge in developing PLA-clay nanocomposites.  

In the first step of this Master’s project, PLA-clay nanocomposites containing different chain 

extenders were prepared. Polycarbodiimide (PCDI), tris (nonylphenyl) phosphite (TNPP), and 

Joncryl ®ADR 4368 were used as chain extenders in this work. The effect of incorporating chain 

extenders on controlling the thermal degradation, the rheological and thermo-physical properties 

and the molecular structure has been investigated.  The results revealed that the incorporation of 

PCDI (2 wt. %), TNPP (1 wt. %), or Joncryl (1 wt. %) had a profound effect on controlling the 

degradation. Such concentrations not only stabilized the viscosity and modulus with time but also 

increased their magnitudes in some cases. The mechanism of stabilization is most likely chain 

extension.  The chain extension led to the formation of longer linear chains in the PCDI and 

TNPP based nanocomposites, and to a long chain branched (LCB) structure in Joncryl-based 

nanocomposites. Thermal gravimetric analysis (TGA) revealed that the addition of clay into PLA 

decreased its thermal stability, whereas an increase in the temperature for the onset of 

degradation was observed after the incorporation of the chain extenders. Joncryl was found as the 

most efficient chain extender under processing conditions among the ones used in this study. 

In the second part of this project, Joncryl-based nanocomposites were prepared using different 

strategies. The effect of chain extender and processing conditions on the degree of clay 

dispersion, mechanical, and barrier properties of the resulting nanocomposites were investigated.  
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The Joncryl-based nanocomposites were prepared using five different strategies, and compared to 

a benchmark nanocomposite. Incorporating 2 wt. % Cloisite®30B (nanoclay) and 1 wt. % 

Joncryl into the PLA matrix led to a significant reduction in oxygen permeability and 

improvement of the mechanical properties such as tensile modulus, strain at break and toughness 

of PLA nanocomposites prepared by the second strategy based on the master batch of PLA/clay.  
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INTRODUCTION 
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Introduction 

Polylactide (PLA) is a rigid thermoplastic polyester with a semicrystalline or completely 

amorphous structure depending on the stereopurity of the polymer backbone. PLA has gained a 

considerable interest due to its bioresorbability, biodegradability, and biocompatibility. 

Furthermore, its ability to be crystallized under stress, thermally crystallized, filled, and 

copolymerized, turn it into a polymer with a wide range of applications.  The principal drawbacks 

of such a biodegradable polymer in terms of industrials application like food packaging are its 

poor thermal resistance, low mechanical and limited gas barrier properties. These drawbacks 

could be overcome by improving the thermomechanical properties through copolymerization, 

blending, and filling techniques. However, the use of fillers appears to be the most attractive 

approach because of lower cost.  There are different approaches for the preparation of PLA 

nanocomposites: in-situ polymerization, solution intercalation, and melt intercalation. Since melt 

intercalation provides more advantages as compared to others, this technique has been used as a 

standard method to develop polymer-layer silicate nanocomposites.  

Depending on the specific interactions between the polymeric matrix and the clay, different 

structures such as intercalated and exfoliated may be obtained. The clay layers may be well 

dispersed provided that a strong interaction can be developed between the clay and the polymeric 

matrix. Moreover, an increase in clay-PLA interactions can influence the mechanical properties.  

The lack of thermal stability of PLA at high temperature is another main problem. It has been 

found that hydrolysis, random main-chain scission reaction, oxidative reaction, and 

transesterification are the main undesirable reactions, strongly affecting the physical and 

mechanical properties of PLA. 

The main objective of this Master’s project is to develop PLA-clay nanocomposites, where 

control of PLA thermal degradation is achieved using chain extenders. Specific objectives are 

aimed at determining the influence of chain extenders on clay dispersion, and mechanical and 

barrier properties of the final extruded products.  

The organization of this Master’s thesis is as follows: Chapter 2 provides a literature review on 

the PLA and PLA nanocomposites covering the following subjects: the methods used to 
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synthesize PLA, the preparation of PLA nanocomposites, the effect of clay on the mechanical 

and barrier properties of the resulting nanocomposites and the degradation mechanisms of PLA.  

The objectives of this work are presented in Chapter 3. Chapter 4 briefly explains the 

organization of the two papers reported in this thesis (Chapters 5 and 6). 

In Chapter 5, the effect of different chain extenders on controlling the degradation of the PLA 

nanocomposites, the molecular structure and thermo-physical properties is investigated using 

rheometry, thermogravimetric analysis (TGA), FT-IR spectroscopy, and gel permeation 

chromatography (GPC). The morphological, mechanical, and barrier properties of PLA and 

Joncryl-based nanocomposites prepared by different strategies are discussed in Chapter 6. In 

Chapter 7, a general discussion includes a full review regarding the most important factors 

affecting the preparation and properties of the resulting PLA nanocomposites. Finally, Chapter 8 

summarizes the most important conclusions of this thesis and outlines some recommendations for 

future work in this field. 
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Literature Review 

2.1 Biodegradable Polymers  

A huge volume of produced plastics have been consumed in the packaging industry since the last 

decade of the twentieth century. The substitution of plastics for other alternative materials in the 

packaging industry reduces the cost of packaging while meeting convenience, safety, softness, 

good aesthetic qualities, lightness, and transparency (Ray, 2005). Recently, 41% of such plastics 

have been consumed in packaging applications among which 47% are being used for packaging 

foodstuffs (Fomin, 2001). These plastics are usually fabricated from polyolefins such as: 

Polypropylene (PP), Polystyrene (PS), Polyethylene terephthalate (PET) and Polyethylene (PE) 

that are fully petrochemical-based materials.  

PP can be used for hot-fill liquids due to its high distortion temperature. PS is generally utilized 

in protective packaging, food service packaging, bottles, and food containers.  

PET is a transparent, tough polymer with an excellent barrier to oxygen, water, and carbon 

dioxide. Moreover, its high impact and tensile strength makes it ideal for using in beverage 

bottles like soft drinks, water, juices, sport drinks and alcoholic beverages. However, as most 

polymers traditionally used in packaging, the manufacture of PET starts from raw materials 

derived from petroleum refining (Amano, 2004).  Using this durable polymer for disposable 

items leads to serious ecological problems. 

Polyethylene (PE) is another common polymer used in lightweight packaging. PE is available in 

many different grades (linear low density, low density, high density) with a wide range of 

performance characteristics. Low density polyethylene (LDPE) is predominately used in film 

applications due to its toughness, flexibility and relative transparency, while high density 

polyethylene (HDPE) is employed to make different types of bottles. Furthermore, its relative 

good barrier properties and good chemical resistance make HDPE well-suited for packaging 

products with a short shelf life such as milk (Patel, 2008). Polyethylene is a non-biodegradable 

polymer, and harms the plant life when it is disposed in the soil since the toxic substances of 

polyethylene get blocked among the soil particles.  
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Using such petrochemical-based polymers, which are generally not degradable, in the field of 

disposable items leads to a fast growth of plastic wastes and thus pollution of the environment. 

To keep the environment free from such plastic wastes different approaches have been found. 

The first one is the disposing of the plastic wastes in a landfill site. The use of landfill sites is not 

the best solution, since the society is quickly developing and thus there is a limitation for such 

sites. Furthermore, burial of waste materials only partly solves the problem for a short term and 

postpones it upon new generations (Ray, 2005). A better proposed solution is to re-use these 

materials. The reutilization can be done through incineration of these materials, leading to heat 

generation that could be used to produce hot water and electricity, or recycling. The incineration 

of waste materials generates carbon dioxide and, occasionally, toxic by-products, resulting in 

global warming and global pollution, respectively. On the other hand, although recycling could in 

some way solve the problem, however, expensive costs should be expended for further 

processing such as the removal of plastic wastes, separation based on plastic type, washing, 

drying, grinding. In spite of this, the quality of the recycled materials is poor in comparison with 

the original ones (Ray, 2005).  

Therefore, the exponential growth of plastic wastes and nonexistence of an appropriate solution 

have incited a search for alternative materials that are environmentally benign.  Hence, many 

attempts have been made to substitute the petrochemical-based plastics by the biodegradable ones 

(Alexandre, 2000; Ray, 2005; Siracusa, 2008; Yang, 2007). 

Biodegradable polymers are being employed increasingly in mass-production applications such 

as packaging, paper coating, fibers, films, and for other disposable materials (Theinsathid, 2009). 

Additionally, biocompatibility and biodegradability of such biopolymers make them favor for 

biomedical applications such as resorbable surgical sutures, implants, and controlled drug 

delivery devices (Soppimath, 2001; Theinsathid, 2009).  

2.1.1 Definition and Categories of Biodegradable Polymers 

The biodegradability, defined as the degree to which microbes use organic compounds, is directly 

correlated to the chemical structure of materials. Indeed, the microbes could attack the polymer 

chains and degrade the chemical bond or link in the chemical structure, leading to mineralization 
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backbone (Lima, 2008). According to stereochemical structure, PLA can be categorized into L- 

lactic acid (PLLA), and D-lactic acid (PDLA), among which PLLA is the natural and most 

common form and PDLA is usually incorporated into PLLA stereo-structure to optimize the 

crystallization kinetics for specific fabrication and application (Amar, 2005). PLA can be 

produced by direct polycondensation of lactic acid (Achmad, 2009; Nagahata, 2007  ; Wang, 

2009) or ring-opening polymerization of a cyclic dimer of lactic acid called lactide in the 

presence of a catalyst such as tin (II) octoate (Hrkach, 1995; Kim, 1992). These two synthesis 

approaches are briefly explained in the following sections. 

2.2.1.1 Polycondensation Polymerization  

Direct polycondensation (DP) is an approach of polymerization where the end groups of 

monomers, oligomers or polymers reacts with each other, leading to forming polymer having 

relatively low molecular weight.  For the sake of reducing the financial cost, polycondensation of 

PLA can be conducted  in the absence of catalyst, solvent, and initiator (Achmad, 2009). This 

process can be performed by distilling-out water from 90 % aqueous solution of lactic acid at 

high temperatures and reduced pressure. During the process, the temperature is gradually raised 

up to target point, while the pressure continuously decreases. The pressure reduction occurring 

during polymerization leads to further distilling-out water from the reactor, with the result that 

the condensation reaction of lactic acid is accelerated and forms the viscous lactic acid oligomers. 

The synthesis of PLA through direct polycondensation is schematically shown in Fig. 2-2.  

 

 

 

 

Figure  2-2: Polycondensation polymerization process of polylactic acid (Amar, 2005). 

 

Since polycondensation is an equilibrium reaction, eliminating the trace amounts of water in the 

last stages of polymerization is difficult, hence low molecular weight polymer chains are 

obtained (Amar, 2005). Accordingly, it can be concluded that direct polycondensation is an 
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appropriate approach to synthesize low molecular weight PLA with high biodegradation rate 

which are good candidate for drug delivery purposes (Bamford, 1976; Hyon, 1997). 

2.2.1.2 Ring-opening Polymerization (ROP) 

Since the ultimate molecular weight obtained by direct polycondensation is restricted, ring-

opening polymerization of PLA has gained most interest. Ring-opening polymerization is a type 

of addition polymerization, where the terminal end of polymer acts as a reactive center. In ROP, 

cyclic monomers attach together by ionic propagation to form longer polymer chains. The 

treatment of some cyclic compounds with catalyst results in a cleavage of the rings followed by 

polymerization that produces high molecular weight polymer chains. In this approach, a cyclic 

lactide (dimer) is synthesized from lactic acid, and the ring-opening polymerization is carried out 

using the lactide monomer.  

A continuous process of PLA production by a new technology developed by Cargill Dow LLC 

has decreased its production cost and enlarged its range of applications. In addition to economic 

advantages resulting from PLA synthesis in the melt rather than solution state, the substantial 

environmental benefits arising from the absence of solvent is also considered in this approach. 

The solvent-free synthesis of PLA is depicted in Fig. 2-3.  
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Figure  2-3: Solvent-free process of preparing polylactic acid (Amar, 2005). 
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The lactic acid obtained from fermentation of plant substances is used as a feed to synthesize 

PLA. Then, a continuous condensation reaction of aqueous lactic acid is carried out in order to 

provide the PLA prepolymer having a low molecular weight. This mechanism is illustrated in 

Fig. 2-4 (Amar, 2005; Drumright, 2000; Ndreopoulos, 1999). 

A catalyst (tin (II) octoate) is incorporated into the polymerization system to convert such low 

Mw oligomers into a mixture of lactide stereoisomer, leading to an increase in the rate and 

selectivity of the intramolecular cyclization reaction. The resulting molten lactide mixture is then 

distilled and purified by vacuum distillation. The ring-opening lactide polymerization in the melt 

leads to high Mw PLA at the end of this process. After the polymerization is complete, the 

remaining monomer is removed from the polymer by vacuum and recycled to the lactic acid 

vessel located at the beginning of the process (Amar, 2005; Drumright, 2000; Hyon, 1997; 

Schwach, 1997). 

 

 

Figure  2-4: PLA production via prepolymer and lactide (Amar, 2005). 

 

Ring-opening polymerization is carried out in the presence of a catalyst. Numerous catalyst 

systems have been so far developed for the ROP such as complex of aluminum, zinc, tin, and 

lanthanide. Among them, tin compound, especially tin (II) bis-2-ethylhexanoic acid (tin-octoate) 

is usually preferred for the bulk polymerization of lactide due to their solubility in molten lactide, 
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manufacturing with nanoscale dimensions thereby providing an increased surface area 

(Fukushima, 2009b; Sperling, 2006). 

2.4.1 Clay  

The most commonly used layered silicates in nanocomposites belong to the phyllosillicates 

structural family. Its structure is shown in Fig.2-24. Their crystal lattice is made of two 

dimensional layers in which a central octahedral sheet of either alumina or magnesia is inserted 

between two external tetrahedron silicon atoms so that the oxygen ions of the octahedral sheet 

also belong to the tetrahedral sheets. The thickness of the layers is around 1 nm and the other 

dimensions of these layers vary from 30 nm to several microns or even larger depending on the 

particulate layered silicate. They are organized in layers with a regular van der Waals gap 

between layers termed gallery or interlayer spacing. There are alkali or alkaline earth cations 

inside these galleries, which can be counterbalanced by generated negative charge through  

isomorphous substitution within the layers (for instance, Al 3+ replaced by Mg 2+ or Fe 2+) 

(Alexandre, 2000; Ray, 2005). 

To enhance the affinity between the clay minerals and the polymer matrix, modification of their 

surface chemistry through ion-exchange reactions with organic and inorganic cations have been 

considered (Alexandre, 2000). 

The natural clay is hydrophilic, thus,  makes the intercalation of hydrophobic polymer chains into 

the gallery difficult and prevents clay delamination (Paul, 2003). Therefore, clay modification 

with a surfactant is required to make it organophilic and compatible with common hydrophobic 

polymers. To achieve such hydrophobic surface characteristic, a cationic surfactant like 

alkylammonium or alkylphosphonium should be substituted for the hydrated cations of the 

interlayer (Alexandre, 2000; Ray, 2005). 

The most commonly used layer silicates are montmorillonite, hectorite, and saponite, having two 

types of structure including tetrahedral-substituted and octahedral-substituted. Contrary to the 

octahedral-substituted structure, the negative charges are located on the silicate layer surface in 

the tetrahedral-substituted structure, leading to enhanced polymer-clay interaction in comparison 

with the octahedral-substituted one. Clays are usually characterized by a moderate negative 
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2.4.3.1  In-situ Intercalative Polymerization 

In this approach, the layered silicates are swollen by a liquid monomer or a monomer solution so 

that the polymerization can take place mainly in the gallery space. To initiate the polymerization 

process, the mixture is exposed to either heat or radiation. Diffusion of a suitable initiator or 

attachment of an organic initiator or catalyst to the clay surface through cation exchange before 

the swelling step leads to a polymerization reaction inside the galleries, and consequently to clay 

delamination (Paul, 2003; Urbanczyk, 2009). Despite the fact that this method is the most 

efficient technique to achieve an exfoliated structure, this is not the most practical approach for 

the industry (Alexandre, 2000; Paul, 2003; Ray, 2005). 

2.4.3.2 Intercalation of Polymer and Pre-polymer from Solution 

This approach is based on a solvent system where the polymer or pre-polymer is soluble, while 

the layered silicates are swellable. First, the layered silicates are swollen in a solvent suitable for 

the polymeric matrix. Then, a mixing step is carried out after the addition of the polymer.  During 

mixing, the dissolved polymer chains diffuse within the interlayer of the swelled silicate sheets. 

Finally, a polymer-clay nanocomposite is obtained upon solvent removal through evaporation or 

precipitation of the mixture (Krikorian, 2003; Ogata, 1997). This approach usually results in the 

production of an intercalated-type nanocomposite for favored polymer-solvent pairs. It should be 

noted that this technique is usually performed to intercalate slightly polar or apolar polymers into 

the layered silicate, but the frequent use of harmful solvents restricts its range of applications to 

water-soluble polymers (Alexandre, 2000; Ray, 2005). 

2.4.3.3 Melt-Intercalation Techniques 

The melt intercalation technique is a method where the molten polymer is blended with the 

layered silicate at a temperature above the polymer melting point. During the blending, the 

polymer chains may diffuse from the bulk polymer melt into the interlayer gallery of the clay, 

depending on the amount of interaction between the polymer matrix and the clay (Chen, 2005a, 

2005b). Nowadays, the technique has been used as the most practical method for polymer-layered 

silicate nanocomposites development since it has some advantages as compared to other 

approaches. For instance, the high shear applied during mixing can promote the diffusion of the 

polymer chains from the bulk to the gallery spacing, leading to further clay delamination. 
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Moreover, the absence of solvent and compatibility with current industrial mixing and processing 

techniques make this technique environmentally friendly and economical.  

The thermodynamics involved in polymer melt intercalation differ from those in solution 

intercalation. For the overall process where oligomers or polymer molecules are exchanged with 

the previously intercalated solvent in the gallery, a negative variation in the Gibbs free energy is 

required. For the solution state, the driving force for the polymer chain confinement into the 

gallery spacing is the increased entropy resulting from desorption of the solvent molecules. 

However in melt-intercalation, the outcome of polymer intercalation is determined by an 

interplay of enthalpic and entropic factors (Shen, 2002). Indeed, the energy required to confine 

the polymer chains to the layered silicates is supplied by an increased conformational freedom of 

tethered alkyl surfactants as the inorganic layers separate.  Since the increase in gallery spacing is 

too small to strongly affect entropy change, the change in the total enthalpy determines whether 

intercalation occurs or not.  The mixing enthalpy can be broadly classified into two contributions: 

the first contribution is apolar, resulting from the interaction between polymer and surfactant 

aliphatic chains, which is generally unfavorable. The second contribution, which is favorable, is 

the polar interaction, originating from an interaction of polymer chains with polar layered 

silicates (Giannelis, 1999). A favorable enthalpy change is accentuated by maximizing the 

number of desirable polymer-clay interactions, while minimizing the number and magnitude of 

unfavorable apolar polymer-aliphatic chains interactions (Alexandre, 2000; Giannelis, 1999). 

Successful melt intercalation process involves blending of the polymer and the layered silicate 

above the polymer melting point, leading to penetration of the polymer chains from the bulk into 

the gallery spacing. Depending on the degree of polymer diffusion in the clay gallery, an 

intercalated or exfoliated structure may be obtained. The degree of polymer diffusion is 

significantly dependent on the silicate functionalization and constituent interactions. Moreover, it 

was found that in addition to processing conditions such as temperature, level of shear field, and 

the processing residence time, there are two other parameters which have a strong impact on the 

structure of resulting nanocomposites. These parameters are: an optimal interlayer structure on 

the organically modified clay (number of surfactant chains per unit area and their size), and the 

existence of polar interactions between the layered silicates and the polymeric matrix (Ray, 2005; 

Vaia, 1997).  
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Accordingly, to achieve an exfoliated structure the undesirable interactions between the aliphatic 

chains and the polymer should be minimized by increasing the polarity or hydrophilicity of the 

polymer, and making shorter the chain length of the functional groups present in the modified 

layered silicates (Alexandre, 2000; Ray, 2005; Shen, 2002). 

Although the mechanical and barrier properties of PLA could be potentially improved by adding 

the organically modified clays into the polymeric matrix, however, the thermal degradation of 

PLA may be intensified after clay incorporation, resulting in a molecular weight Mw decrease 

(Fukushima, 2009a; Hwang, 2009), as explained in the previous chapter. 

2.5 Summary of Literature Review 

Based on the literature review, the principal drawbacks of polylactide in terms of industrial 

application like packaging are its poor thermal and mechanical resistance, and limited gas barrier 

properties. These drawbacks could be overcome by improving the thermomechanical properties 

through filling techniques. There are different techniques for nanocomposites preparation, 

however, melt intercalation has advantages as compared to others. For example, it is solvent free 

and compatible with common polymer processing methods.  

Depending on the specific interactions between the polymeric matrix and clay, different 

structures such as intercalated or exfoliated can be formed in the nanocomposite. The addition of 

nano-sized fillers (clays) can improve the mechanical and barrier properties provided that they 

are well dispersed in the matrix. It is however hard to achieve such a structure since the 

thermodynamic interactions between the nano-fillers and the polymeric matrix is relatively weak. 

Hence high thermo-mechanical stress is required and may contribute to matrix degradation, 

especially in the case of PLA. 

In addition, clay loading in PLA promotes the matrix degradation and consequently leads to a 

reduction of the mechanical and barrier properties of PLA-based nanocomposites. Consequently, 

the main problems in producing PLA-clay nanocomposites which are the thermal instability of 

the matrix and the difficult dispersion of the clay particles in the PLA matrix, are addressed in 

this study.  
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Objective 

The literature reviewed in Chapter 2 indicates that the thermal stability of PLA-based 

nanocomposites and dispersion of clay present major challenges. 

The main objective of this work is to control the thermal degradation of PLA nanocomposites 

and improve their thermo-mechanical and barrier properties. To meet this goal, the 

following specific objectives are considered: 

Step 1: To control the thermal degradation of PLA nanocomposites during processing by 

using chain extenders; 

 

Step 2: To achieve a well dispersed and exfoliated structure of nanoclay into PLA 

nanocomposites to gain increased mechanical properties, through control of the degradation 

and processing conditions.  

In the scope of these specific objectives, different chain extenders are used and their ability to 

control the degradation, improve the thermal and rheological behavior are examined. Then, the 

most efficient chain extender is used further to study the strategy of chain extender incorporation 

into nanocomposites on clay dispersion, mechanical and barrier properties. 



32 

CHAPITRE 4  

ORGANIZATION OF ARTICLES 
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 Organization of Articles 

Chapters 5 and 6 present the main scientific findings of this work and represent the core of this 

Master's thesis. Each of these chapters consists of an article that has been submitted to a peer 

reviewed journal. The following is a brief description of each chapter: 

The results of the first part of this study are presented in an article presented in Chapter 5. The 

effect of the organically modified clay and different chain extenders on the thermal degradation, 

rheological properties and molecular structure of the resulting nanocomposites are investigated 

using rheometry, thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and 

Fourier transform infrared spectroscopy (FT-IR). Based on the results obtained in this first part, it 

can be stated that that the incorporation of a chain extender into the nanocomposite has a 

profound effect on controlling the degradation and even increasing the molecular weight in some 

cases. Thermogravimetric analysis shows an increase in the onset temperature of thermal 

degradation of the nanocomposite after chain extender loading. The reported rheology data and 

FT-IR spectroscopy reveals that the mechanism of stabilization is most likely chain extension.  

The chain extension results presumably in the formation of longer linear chains in the PCDI and 

TNPP-modified nanocomposites, and long chain branching (LCB) structure in Joncryl-based 

nanocomposites.  The change of molecular structure caused by LCB strongly influences the 

linear viscoelastic response such as the zero shear viscosity and loss angle behavior. It is found 

that Joncryl is the most efficient chain extender among the ones used in this study, properly 

controlling the thermal degradation over a wide range of processing temperatures. 

In the second part of the work, the effect of processing conditions on the degree of clay 

dispersion in the presence of a chain extender (Joncryl® ADR) are investigated. The results are 

presented in the form of a second article in Chapter 6. Different strategies are used to promote the 

degree of clay dispersion. The morphology, thermal, barrier and mechanical properties of the 

resulting nanocomposites are discussed in details. Morphological observations as well as 

quantification of clay dispersion show that the incorporation of the chain extender can enhance 

the degree of clay dispersion provided that it is judiciously added to the nanocomposites.  An 

investigation of the oxygen permeability of PLA and PLA nanocomposites with and without 

chain extender is also conducted. The corresponding results reveal that the Joncryl-based 

nanocomposites, where nanoclay platelets were well-dispersed, provide a significantly reduced 
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permeability as compared to others.  The mechanical properties of the neat PLA, the PLA and 

Joncryl-based nanocomposites were also examined.  The increased molecular weight in Joncryl-

based nanocomposites causes a significant increase in the mechanical properties of the samples. 
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Article 1: Control of thermal degradation of polylactic acid (PLA)-clay 
nanocomposites using chain extenders1*

 

 

  N. Najafi C.a, M.C. Heuzeya, P. J. Carreaua, Paula M. Wood-Adamsb 

 
Center for Applied Research on Polymers and Composites, CREPEC 

a-Ecole Polytechnique, Department of Chemical Engineering, Montreal, QC, Canada 

b- Concordia University, Department of Mechanical and Industrial Engineering, Montreal, QC, 
Canada 

Abstract:  

The control of thermal degradation of polylactide (PLA) during processing is still a challenge for 

the industry.  In addition, the presence of an organically modified clay intensifies the rate of PLA 

degradation and molecular weight (MW) reduction. In this work, three different chain extenders: 

polycarbodiimide (PCDI), tris (nonyl phenyl) phosphite (TNPP) and Joncryl® ADR 4368, were 

incorporated into PLA and PLA-based nanocomposites containing 2 wt% clay (Cloisite ®30B) in 

an effort to control thermal degradation. The thermal and rheological properties of the PLA and 

PLA nanocomposites with and without chain extender were investigated. Thermogravimetric 

analysis showed an increase in the onset temperature for thermal degradation after the 

incorporation of PCDI (2 wt. %), TNPP (1 wt. %), or Joncryl (1 wt. %) into the nanocomposite. 

The rheological results revealed that the addition of such a concentration of chain extender had a 

profound effect on the degradation and even increased the molecular weight in some cases. The 

mechanism of stabilization is most likely chain extension that results in the formation of longer 

linear chains in the PCDI and TNPP-modified nanocomposites, and a long chain branched (LCB) 

structure in Joncryl-based nanocomposites.  It was found that Joncryl was the most efficient 

chain extender among the ones used in this study.  

                                                 

1 - Submitted to Polymer Degradation and Stability in August 2011. 
* The title is changed from Polylactic acid to Polylactide in new version of submitted article 
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5.1 Introduction 

The use of non-degradable petrochemical-based polymers for disposable items has considerably 

disturbed the ecosystem. A large portion is discarded into the environment after use and there are 

limitations on what can be put in landfills. Incineration of these materials leads to increased 

carbon dioxide emission and, subsequently, global warming. Hence, many attempts have been 

made to substitute petrochemical-based plastics by environmentally benign products. Recently, 

increasing attention has been paid to biodegradable and biocompatible polymers originating from 

renewable sources. Among the renewable source-based biodegradable plastics, polylactide (PLA) 

has attracted the most attention since it is a thermoplastic, biocompatible, bioresorbable and 

biodegradable material, while it has good processability and transparency after processing [1]. 

Polylactide is a linear, aliphatic thermoplastic polyester that can either be semi-crystalline or 

amorphous depending on the stereopurity of the polymer backbone. PLA can be synthesized from 

100 % renewable resources such as fermentation products of corn and sugar beets [2]. It can be 

produced by direct polycondensation of lactic acid [3], but higher molecular weights are achieved 

by ring-opening polymerization of a cyclic lactide dimer [4]. Initially, the high production cost of 

PLA had confined its applications to biomedical areas; however, a new technology has decreased 

the production cost and enlarged its range of applications, especially in packaging [1, 2]. Despite 

all the advantages of PLA, there are, however, some difficult issues that make PLA unsuitable for 

some end uses. PLA suffers from poor thermal stability, low mechanical resistance, limited gas 

barrier properties and low melt strength [5]. To overcome these drawbacks, copolymerization, 

blending and filling techniques can be used. Indeed, the incorporation of organically modified 

nano-scale particles into PLA to produce nanocomposites is attractive due to its lower cost in 

comparison with other techniques [5-10]. 

 Polymer nanocomposites based on thermoplastic matrices can be mainly prepared by three 

different methods: in-situ polymerization where the dispersed nanoclay is incorporated to the 

monomer followed by polymerization [8]; solution intercalation where nanoclay is mixed with 

the polymer in solution followed by solvent evaporation [11, 12]; and melt compounding in 

which the nanoclay is blended with the polymer in the molten state [13, 14]. Melt compounding 
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is the simplest and most common method for industrial applications due to the absence of solvent 

and its compatibility with current industrial mixing and processing techniques. In this approach, 

the polymer and nanoparticles are generally blended using a twin-screw extruder at a temperature 

above the polymer melting point. Under the right conditions, the stress applied during mixing 

may result in the diffusion of the polymer chains from the bulk into the gallery spacing of the 

clay, and formation of an intercalated or exfoliated structure, depending on the degree of polymer 

penetration [15].  

Although the mechanical and barrier properties of PLA can potentially be improved by adding 

the organically modified clays into the polymeric matrix, thermal degradation of PLA appears to 

be intensified  with clay incorporation, resulting in a loss of molecular weight [6, 7]. It is well 

known that PLA degrades upon thermal processing due to several undesirable reactions that 

occur during processing. These reactions include hydrolysis, inter-chain transesterification and 

depolymerization by back-biting (intramolecular transesterification) [16]. Hydrolysis is a water-

based degradation mechanism of PLA in which a chain is split into two sub-chains. The 

molecular weight reduction of polyesters is primarily caused by the hydrolysis of the ester 

linkage, randomly taking place in the polymer. As for transesterification, there are of two types: 

intramolecular and intermolecular. Intramolecular transesterification, or "back-biting", leads to 

polymer degradation and the formation of cyclic polylactide oligomers. On the other hand, 

intermolecular transesterification affect the sequence of different polymeric segments [17]. As a 

result of such reactions, the molecular weight, and hence the mechanical properties decrease. 

Considering that the rate of thermal degradation increases after clay loading, controlling the 

thermal degradation of PLA nanocomposites is a major challenge that we address in this work. 

The control of the degradation of neat PLA using chain extenders such as tris (nonyl-phenyl) 

phosphite (TNPP), polycarbodiimide (PCDI) and Joncryl has been previously considered [18-20].  

Based on reported results, the addition of 0.35 wt. % of TNPP, 0.7 wt. % PCDI or < 1.5% of 

Joncryl as a stabilizer has a profound influence on the melt stability of neat PLA. The 

mechanisms proposed to explain the increased thermal stability was chain extension and the 

consumption of small molecules such as lactic acid and moisture, which are known to accelerate 

thermal degradation. However, to our knowledge no report has been published on controlling the 

degradation of PLA nanocomposites using chain extenders. In this work, we analyze the 

rheological and thermophysical properties of PLA nanocomposites containing different chain 
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5.2.2 Nanocomposite Preparation 

Before mixing, PLA and clay were dried at 70 ºC in a vacuum oven for 48 h. Mixing of PLA 

with clay and chain extender was, in most cases, carried out in a counter-rotating Brabender 

Plasti-Corder® internal mixer. In addition, to investigate further the role of the Joncryl chain 

extender on controlling the degradation at different processing temperatures, a twin-screw 

extruder described below was used to prepare some of the nanocomposites.  

Internal Mixer 

The previously dried PLA was blended in the molten state with 2 wt. % dried clay and chain 

extender in the internal mixer. The mixing was conducted under a nitrogen atmosphere at a 

rotation speed of 100 rpm for 11 min, while the temperature was set to 190 ºC. After mixing, the 

nanocomposites were immediately immersed in liquid nitrogen to avoid thermo-oxidative 

degradation during cooling. The processed materials were placed in a vacuum oven (70 ºC) for at 

least 24h. Disks of 25 mm diameter and 1.5 mm thickness were produced by compression 

molding under a nitrogen atmosphere at 190 ºC using a pressure of 20 MPa during 8 min.  The 

molded samples were dried again in the vacuum oven at 70 ºC before rheological 

characterization. 

Twin-screw extruder 

The dried PLA, 2 wt. % clay and 1 wt. % Joncryl were initially dry-mixed. The mixture was then 

melt-extruded in a closely intermeshing co-rotating 18 mm twin-screw extruder (CICO-TSE) 

from Leistritz with an L/D ratio of 40, at a rotation speed of 150 rpm. The extruder was operated 

using the temperature profiles presented in Table 5-1, respectively called low, medium and high 

temperature profiles. After exiting the die, the material was immediately cooled in an ice-water 

bath. The cooled extrudate was then pelletized and placed in a vacuum oven (70 ºC) for at least 

24h. Disks of 25 mm diameter and 1.5 mm thickness were prepared and stored as stated above. 

 

Table  5.1: Temperature profiles for different processing conditions. 

 
 
 

  TSE zones 1 2 3 4 5 6 7 8 

Low temperature  profile (LT) (in °C) 172 175 178 180 185 185 185 185 

Medium temperature  profile (MT) (in °C) 172 185 190 195 200 200 200 200 

High temperature  profile (HT) (in °C) 172 205 210 215 220 220 220 220 
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5.2.3 Characterization 

The weight average molecular weight (MW), polydispersity index, and the intrinsic viscosity (IV) 

of PLA before and after processing, as well as PLA containing 1 wt. % Joncryl were measured 

using gel permeation chromatography (GPC, Varian, analysis done by Polymer Source, 

Montreal, QC).  The samples were initially dissolved in chloroform and then eluted. Polystyrene 

standards were used to generate calibration curve. These tests were conducted using 

tetrahydrofurane (THF) as a carrier solvent at 35 ºC with a flow rate of 0.5 mL/min. 

Fourier transform infrared absorption spectra were collected in the IR range from 4000 to 500 

cm-1 using a Perkin Elmer FT-IR spectrometer in attenuated total reflectance (ATR) mode.  The 

beam was polarized by means of a Spectra-Tech zinc selenide wire grid polarizer from Thermo 

Electron Corp. Samples (4 g) were dissolved in chloroform (10 mL), and tests were conducted in 

the solution state at a spectral resolution of 4 cm-1 and a scanning speed of 32 kHz. The spectra 

were acquired after subtraction of the chloroform absorption obtained under the same conditions.   

Thermal gravimetric analysis (TGA) was performed using a TGA-Q500 thermogravimetric 

analyzer from TA Instruments. Samples of 10-15 mg were heated from 100 to 700 ºC with a 

heating ramp of 10 ºC /min in an inert (N2) atmosphere. Only data in the temperature range from 

280-440 ºC were collected. 

Dynamic rheological measurements of the PLA, PLA containing chain extender and PLA-based 

nanocomposites, excluding Joncryl-enriched PLA, were carried out using a strain-controlled 

ARES rheometer (Rheometric Scientific Inc.) with a 25 mm parallel plate flow geometry. Strain 

amplitude was fixed at 0.08, large enough to give a reliable signal while keeping the 

measurement in the linear viscoelastic region. To consider the thermal stability of the 

nanocomposites, the storage modulus and complex viscosity were monitored as a function of 

time. The time sweep measurements were conducted under a nitrogen atmosphere, at 190 ºC, a 

frequency of 6.28 rad/s and a gap size of 1-1.3 mm. Frequency sweep tests over a frequency 

range of 0.1-100 rad/s were also performed from low to high frequencies under the same 

conditions as stated above, during which the contribution of thermal degradation was less than 

10% and considered to be negligible.  Dynamic rheological measurements of Joncryl-enriched 

PLA were performed using a controlled stress rheometer, AR-2000 (TA Instruments) from low to 

high frequencies, over a frequency range of 0.06-100 rad/s. These measurements were performed 
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at an applied stress of 800 Pa, at 190 ºC and under a nitrogen atmosphere to minimize thermal 

degradation. In addition, for these specific samples the zero-shear viscosity was obtained from 

creep tests using the controlled stress rheometer, AR 2000, at an applied stress of 50 Pa and at 

190 ºC. 

5.3 Results and discussion 

5.3.1 Gel permeation chromatography (GPC) 

According to Yang et al. [20], the molecular weight of PLA generally decreases during melt 

processing, and also with increasing processing temperature.  The GPC data obtained from the 

sample processed in the internal mixer (Table 5-2) show that the molecular weight and intrinsic 

viscosity of PLA are decreased and the MWD also becomes narrower after melt processing. 

These changes can be related to the cleavage of the long chains to shorter ones via the 

degradation mechanisms that favor the longer chains (hydrolysis and intermolecular 

transesterification). The incorporation of Joncryl into PLA during processing however 

significantly increases the MW and the breadth of the molecular weight distribution as expected 

for chain extension [22]. In the case of chain extenders of functionality greater than 2, such as 

Joncryl, the formation of branched structures is expected which will lead to an increase in 

average molecular weight and polydispersity index [23], consistent with the GPC results. 

. 

Table  5.2: GPC analysis of neat PLA, processed PLA and PLA treated by Joncryl. 

 
 
 
 
 
 
 
 

5.3.2 Fourier-transform infrared spectroscopy (FT-IR) 

In order to detect any reaction that may have occurred between the matrix and chain extender, we 

have used FT-IR to compare the processed PLA-chain extender systems with their physical 

 Mw (g/mol) PD IV (dL/g) 

Neat PLA 100900 1.86 1.78 

Processed PLA 95400 1.53 1.77 

Processed PLA with 1 wt%  Joncryl  668000 2.85 2.68 
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mixtures having the same composition and their two pure components. The physical mixtures 

were produced by mixing PLA and the chain extender in chloroform at room temperature, 

conditions under which a reaction is unlikely.  

The results for the PCDI systems are shown in Fig. 5-2. The reactive functional group of PCDI, 

carbodiimide (-N=C=N-) exhibits a characteristic infrared bond at 2130 cm-1 in the FT-IR spectra 

of PCDI. This peak also exists in the FT-IR spectrum of the physical mixture of PLA and PCDI.   

 

Figure  5-2:   FT-IR spectra of PCDI, PLA, physically mixed PLA-PCDI, and PLA treated by PCDI. 

 

The absence of this peak in the FT-IR spectrum of PLA treated by PCDI indicates that the 

carbodiimide groups have been consumed by reaction. Yang et al [20] have identified two 

possible reactions between the terminal groups of PLA and carbodiimide (Fig. 5-3).  The first 

reaction implies incorporation of the PCDI into the backbone of the chain.  Since the PCDI 

contains more than one carbodiimide group, Reaction I is expected to produce a nonlinear 

polymer chain.  In Reaction II, the carbodiimide acts as an intermediary to facilitate 

transesterification and the joining of two PLA chains. This reaction is expected to produce 

longer, linear chains. Both of the reactions produce similar amide groups (N-C), with a peak 

between 1000-1250 cm-1. Because of this, it is not possible to determine from the PLA-PCDI 

spectrum which of these reactions occur.  We will show later that our rheological results are not 
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According to the reaction mechanisms presented by Cicero et al. [24], the phosphate groups of 

TNPP react with the hydroxyl end groups of the PLA chains to produce a chain with a phosphited 

end group and nonylphenol (Reaction I in Fig. 5-5).  Since the boiling point of nonylphenyl (180-

181 C [25]) is lower than the processing temperature (190 C), it is expected to evaporate as it is 

produced. The phosphited PLA chain then under goes transesterification with a carboxyl 

terminated chain (Reaction II), resulting in the production of the longer PLA chain and 

bis(nonylphenyl) phosphite. The two remaining active groups on this substance can then proceed 

to react with another terminal hydroxyl group.  If all of the active groups in TNPP are reacted in 

this manner then the final product is expected to be free of aromatic and phosphate groups, as in 

our treated PLA-TNPP system. 

 

 

 

Figure  5-5: Potential reactions in the PLA -TNPP system [24]. (I) Reaction between terminal hydroxyl 
groups of PLA with TNPP, and (II) Transesterification between a phosphited PLA end group and a 

carboxylic acid PLA end group. 
 

The FT-IR spectra of the PLA containing Joncryl are presented in Fig. 5-6. The peaks at 842 cm-

1, 908 cm-1, and 1255 cm-1, found in the spectra of Joncryl and the physical mixture of PLA and 

Joncryl, are attributed to the C-O stretching modes of the epoxy groups. These peaks do not occur 
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in the spectrum of the treated PLA-Joncryl, indicating that all of the epoxide groups have been 

consumed.  

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  5-6: FT-IR spectra of Joncryl, PLA, physically mixed PLA-Joncryl, and PLA treated by Joncryl. 

 

Figure  5-7: Reaction scheme of Joncryl-PLA end groups and possible long chain branching structures. 
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The epoxy groups of Joncryl can theoretically react with both hydroxyl and carboxyl groups of 

the polyester although the reaction with electrophilic groups such as epoxide is more favorable in 

the case of carboxyl groups [26]. Bikiaris and Karayanndis [27] have demonstrated that epoxide 

groups on chain extenders react with the carboxyl end groups on polyesters.  They also concluded 

that excess epoxide groups likely react with terminal hydroxyl groups and with the new hydroxyl 

groups formed from the joining of the epoxide and carboxyl groups. The reaction between the 

epoxy-based chain extender and carboxylic acid end group of polyester is  shown schematically 

in Fig. 5-7. We note that gelation is possible in the case of more than 2 epoxide groups per chain 

extender molecule if both the hydroxyl and carboxyl groups react with the epoxide.  

5.3.3 Thermal gravimetric analysis (TGA)  

 TGA was carried out to investigate the effect of clay and chain extenders on the thermal 

degradation behavior of PLA under nitrogen, and the results are displayed in Fig. 5-8.  The onset 

temperature for thermal degradation decreases with the addition of clay, consistent with the data 

of  Wu et al. [10].  To explain this behavior, we propose that the clay promotes chain-scission 

(hydrolysis) of the PLA during processing, leading to the presence of shorter polymer chains and 

an increase in the number of chain ends per mass. Chain ends then promote the depolymerization 

by back-biting (chain end scission or intramolecular transesterification) during the TGA test 

considering that it is the dominant degradation pathway of PLA at the temperature range of  270-

360 °C [28]. 

 

 

 

 

 

 

 

 

 

 

Figure  5-8:  Effect of clay and different chain extenders on thermal degradation of PLA nanocomposites. 
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Since this degradation reaction occurs due to the presence of active sites on the chain ends, an 

increased number of chain ends per mass is expected to lead to an enhanced rate of degradation.  

An increase in the temperature for the onset of degradation is observed after the incorporation of 

two of the chain extenders, TNPP and PCDI (Fig. 5-8). This improvement in the thermal stability 

can be attributed to the longer polymer chains in the nanocomposites containing these chain 

extenders and hence the reduced number of chain ends per mass. A comparison between the 

nanocomposites treated by TNPP and PCDI shows that TNPP increases the onset of degradation 

temperature more than PCDI. This suggests that TNPP is more efficient at extending the 

molecular weight of PLA than PCDI under the conditions considered here. Later in this work, we 

will show that our rheological data support this conclusion. Interestingly, Joncryl is not as 

efficient at increasing the temperature for the onset of degradation of the nanocomposites as 

compared to the other two chain extenders. This could indicate a significantly branched structure, 

having an increased number of ends per chain (and overall) than the linear systems produced by 

the use of TNPP and PCDI. Our rheological results will also support this conclusion. 

5.3.4 Rheological characterization of PLA and PLA nanocomposites 

The complex viscosity as well as the storage modulus at a frequency of 6.28 rad/s, normalized by 

their initial values at t = 0, are presented as a function of time for PLA and PLA nanocomposites 

with and without chain extender in Fig. 5-9. The initial complex viscosity and storage modulus 

values are presented in Table 5-3.  It is evident that the neat PLA and PLA nanocomposite 

without chain extender exhibit significant reductions in viscosity and storage modulus over time, 

with the PLA nanocomposite having by far the fastest rate of decrease (complex viscosity and 

storage modulus drops by 17 and 30 %, respectively, over 30 min). According to the literature [9, 

29, 30], the decrease in viscosity corresponds to a loss in molecular weight. Shear mixing at high 

temperature and presence of the clay intensify the hydrolysis of the PLA matrix, leading to a 

faster loss of molecular weight in the nanocomposites without chain extenders in comparison 

with the neat PLA.  In fact, the interaction between the hydroxyl groups of Cloisite® 30B and the 

carboxylic groups of PLA may result in  scission of the polymer backbone into shorter chains 

[31].  
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Figure  5-9:  Normalized complex viscosity (a) and storage modulus (b) of neat PLA and PLA 
nanocomposites with and without chain extender as a function of time at ω =  6.28 rad/s and T=190 °C. 

The initial values used for normalization are reported in Table 5-3. 

 

To compensate for such chain scission reactions, a chain extender is incorporated as suggested by 

Yang et al. [20]. They showed that 0.7 wt. % of PCDI should be added to neat PLA to achieve a 

reasonable thermal stability during processing at 190 to 210 °C. However, our preliminary 

studies showed that this concentration is not sufficient to compensate for chain scission reactions 

in PLA nanocomposites (data not shown). Further studies demonstrated that 2 wt. % of PCDI 
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was required to control to an acceptable level the degradation in PLA nanocomposites containing 

2 wt. % clay, as shown in Fig. 5-9. 

 

Table  5.3: Initial values of the complex viscosity and storage modulus, at t=0, ω=6.28 rad/s and the 
crossover frequency of the neat PLA and PLA nanocomposites containing various chain extenders used 

for normalization. All tests conducted at T=190 ºC. 

* The crossover frequency of these samples is out of range of the frequency covered during the experiments and 
predicted by Akima cubic spline interpolation [38]  

 

At this concentration of PCDI, the complex viscosity and storage modulus decreases by just 7 

and 8%, respectively, over 30 min. The need for a larger concentration of chain extender in clay-

containing systems is likely related to the accelerated hydrolysis rate of PLA in the presence of 

clay. In the nanocomposite with no chain extender, hydroxyl and carboxylic acid terminal groups 

may be left during the polymerization of PLA and/or produced by any hydrolysis reaction [32], 

leading to further depolymerization by back-biting (intramolecular transesterification) [20] and 

chain-scission mechanisms. In addition, carboxylic acid end groups may act as a catalyst in the 

hydrolysis reaction and bring about self-catalyzed degradation of PLA [20]. However, the 

addition of PCDI to the nanocomposites reduces the rate of degradation, thereby reducing the 

production of small molecules such as water, lactic acid monomer and acetic acid.  These small 

molecules normally increase the rate of degradation leading to a self-catalyzed degradation 

scheme [20].      

TNPP is known to stabilize polyesters by taking part in complex reaction sequences that strongly 

preclude hydrolytic degradation and ester exchange reactions [33]. Lehermrier et al. [18] showed 

that 0.35 wt. % of TNPP yielded an acceptable stability of the complex viscosity of PLA at 160 

to 200 °C over 30 min. However, in our work this concentration was found to be inadequate for 

 η* (Pa.s) G' (Pa) (G'/ G")  Crossover frequency, ωc, 
(rad/s)  

PLA 1320 1100 0.83 - 

PLA-2% C30B 1050 750 0.71 ~300 * 

PLA-2% C30B-2% PCDI 1400 1740 1.24 ~300 * 

PLA-2% C30B-1% TNPP 2480 7600 3.1 ~100  

PLA-2% C30B-1% Joncryl 8570 35740 4.2 ~12  
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PLA nanocomposites, and even in some cases to promote viscosity reduction. For example a 

complex viscosity reduction of 35 % over 30 min was observed for PLA-2 wt. % clay containing 

0.35 wt. % TNPP, as opposed to 17 % for the same nanocomposite without chain extender (Fig. 

5-9a). As shown in Fig. 5-9, at 190 °C the addition of 1 wt. % of TNPP considerably improves 

the melt stability of the PLA nanocomposite (the decrease in viscosity and storage modulus over 

30 min is limited to 1.5 and 2%, respectively). According to Cicero et al. [24], the incorporation 

of TNPP into neat PLA causes a rapid reaction between the hydroxyl groups of PLA and TNPP. 

Then, the resulting phosphited end groups can react with any carboxylic acid terminated PLA, 

leading to chain extension through transesterification [24].  

Joncryl is another chain extender designed to reverse the degradation of condensation polymers. 

The results of rheological tests, shown in Fig. 5-9, demonstrate that a stable viscoelastic response 

could be obtained by adding 1 wt. % of Joncryl to the PLA nanocomposite containing 2 wt. % of 

clay (the decrease in complex viscosity and storage modulus over 30 min is identically 1.5%).  

The linear viscoelastic functions,  and G’, of nanocomposites containing various chain 

extenders are plotted as a function of frequency in Fig. 5-10. Since the frequency sweep tests 

were completed in 10 min, the thermal degradation was considered to be negligible, except for 

the PLA nanocomposite without chain extender for which a 10% decrease of the storage modulus 

(Fig. 5-9b) should be taken into account. The complex viscosity gradually decreases with 

increasing frequency, which is a typical shear-thinning behavior. As shown in Fig. 5-10a, the 

complex viscosity of the nanocomposite with no chain extender is lower than that of the neat 

PLA. This behavior is even observed in the high frequency range, where the response of the 

nanocomposite should be dominated by the matrix properties. This reduction can be explained by 

a decrease of the matrix molecular weight due to thermal degradation, which is slightly more 

pronounced in the presence of the organomodifed clay (Fig. 5-9a, at 600s). The storage modulus 

(G') of these composites is also presented in Fig. 5-10b. As expected for a polymer melt, the 

storage modulus of PLA monotonically increases with increasing frequency. However, the 

incorporation of clay into PLA leads to a pronounced change in G'. In the low frequency range 

the PLA nanocomposites display higher G' than the neat PLA due to a spatially-linked structure 

and geometric constraints as a result of clay loading, while a contrary trend is observed in the 

high frequency range where the neat PLA has a higher G' value than the PLA nanocomposite 

without chain extender. This is evidently caused by the degradation occurring over the frequency 
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test for the PLA nanocomposite without chain extender (Fig. 5-9b, at 600 s), as discussed above. 

Strong differences in the rheological response of the nanocomposites containing a chain extender 

(especially TNPP and Joncryl) in comparison with that of the neat PLA and the nanocomposite 

containing no chain extender are observed in Fig. 5-10a and 5-10b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5-10:  Complex viscosity (a) and storage modulus (b) of neat PLA and PLA nanocomposites 
containing different chain extenders, as functions of frequency(T=190 ºC). 

 

 Using a chain extender not only stabilizes the viscosity and modulus with time (Fig. 5-9) but also 

increases their magnitudes (see also Table 5-3), facilitating further processing since high melt 

viscosity and elasticity are required in processes such as blow molding, thermoforming and 
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foaming. The viscosity and modulus enhancement of the nanocomposites containing a chain 

extender can be attributed to an increased molecular weight, resulting from a reattachment of 

cleaved polymer chains or branching as discussed later. 

The crossover frequency (ωc) of the storage and loss moduli, where the transition from liquid-like 

to solid-like behavior takes place, is also reported in Table 5-3. As shown, the magnitude of the 

crossover frequency shifts toward lower frequencies in TNPP and Joncryl-based nanocomposites, 

consistent with an increase in matrix molecular weight or the addition of long chain branching. 

Since chain extenders allow for the possible formation of nonlinear chains, it is important to 

consider the likelihood of gelation or the formation of local microgels. It is obvious from the ratio 

of the storage modulus to the loss modulus at low frequency (Table 5-3) that the elasticity of the 

nanocomposites increases with the addition of chain extenders, especially Joncryl. A gel content 

test was therefore performed using chloroform as a solvent on all of the nanocomposites 

containing chain extenders. All samples were completely dissolved in the solvent after 1.5 h 

suggesting that we are far from the gelation threshold in all cases. We may also estimate the 

critical mole fraction of chain extender, C, for gelation from Eq. 1. 

 

 

where f is the functionality of the chain extender [34]. Joncryl [19] has a functionality of f ~ 4 and 

C ~ 0.33. Since Joncryl has MN = 3 000 g/mol and the virgin PLA has MN = 54 000 g/mol, this 

corresponds to a critical weight fraction of 2.7%, which is higher than the contents used here.  

This confirms that we are below the gelation threshold with all of our Joncryl-based systems. The 

formation of branched structures leading to gelation is not expected with TNPP and PCDI since 

these chain extenders have an effective functionality of two, which leads to longer, but still linear 

chains. In the case of TNPP, the active phosphite groups simply act to form intermediate 

compounds facilitating the joining of two PLA chains by transesterification and do not remain in 

the backbone of the resulting chain [24]. The carbodiimide groups in PCDI [20] act similarly to 

the phosphate groups in TNPP. 

To observe the effect of a chain extender on controlling the degradation over a large range of 

processing temperatures, the PLA nanocomposite, Joncryl-PLA based nanocomposite and PLA 

                                                                     (1) 
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containing Joncryl were processed in a twin-screw extruder using three different temperature 

profiles, and subsequently rheological measurements were conducted at 190 C. The temperature 

profiles used are listed in Table 5-1 and abbreviated by LT, MT, and HT, for low, medium and 

high temperature profiles, respectively. The resulting complex viscosity and storage modulus are 

plotted as a function of frequency in Fig. 5-11. For nanocomposites without chain extender, the 

viscosity decreases with processing temperature at all frequencies (Fig. 5-11a). This indicates that 

the processing-induced degradation increases with processing temperature, as expected. In 

comparison, for the Joncryl-based nanocomposites the properties of the nanocomposites 

produced at LT and MT overlap over the entire frequency range, while they differ slightly from 

the properties of that processed at HT in the low frequency range (Fig.  5-11b). This may indicate 

a slightly enhanced PLA degradation in this nanocomposite at HT or a poorer clay dispersion 

relating to the degradation of the organic clay modifier [12, 35].  

For comparison, the viscosity and storage modulus of PLA containing 1 wt. % Joncryl is also 

considered under the same three processing conditions. As shown in Fig. 5-11c, the rheological 

functions are independent of the processing temperature over the entire frequency range, 

indicating that no degradation occurred during processing at any temperature. Based on the 

results in Fig. 5-11, we can conclude that the rate of thermal degradation of PLA-nanocomposites 

is increased with increasing temperature and that Joncryl effectively maintains the molecular 

weight in PLA nanocomposites. 

To gain further understanding of the polymer molecular structure after the incorporation of the 

chain extender, the examination of the linear viscoelastic behavior (LVE) is refined. To create a 

weight average molecular weight, MW, independent plot, the complex viscosity is shifted on both 

axes using the zero-shear viscosity as illustrated in Fig. 5-12. The zero-shear viscosities of the 

PLA systems containing PCDI and TNPP were observed in the range of frequency covered 

during the dynamic experiments; however, the zero-shear viscosity of PLA containing Joncryl 

was not observed in these tests and therefore was determined by a creep test. The values of the 

zero- shear viscosities are reported in Table 5-4. It is interesting to note that the addition of a 

chain extender beyond a certain value results in a viscosity reduction. The reason for this 

decrease is discussed later.   
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Figure  5-11:  Complex viscosity and storage modulus of samples processed at LT, MT, and HT (Table 1): 
a) PLA nanocomposite, b) Joncryl-enriched nanocomposite, c) PLA containing 1 wt. % Joncryl. The 

rheological measurements are conducted from low to high frequencies at 190 ºC. 
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Plots such as Fig. 5-12 show the effect of molecular weight distribution (MWD) and long chain 

branching (LCB) on the rheological properties, independent of MW. Narrow molecular weight 

distributed polymers tend to exhibit a broad Newtonian plateau, followed by a narrow transition 

to the power-law region. A narrower Newtonian plateau and a broad transition region can be 

caused by broadening of the MWD or branching. The results in Fig. 5-12 therefore indicate that 

there is a significant difference between the molecular structure (MWD and LCB) of the Joncryl-

enriched PLA and those of the other samples. Since the curves for the neat PLA, PLA containing 

PCDI, and PLA containing TNPP superpose even though the materials have different zero shear 

viscosities, we can assume that these three materials have the same shaped molecular weight 

distribution and no LCB.  Their different zero shear viscosities indicate however that they have 

different MW. The curves for the Joncryl-enriched PLA are consistent with either a very broad 

MWD and/or long chain branching.   

 

 

 

 

 

 

 

 

 

 
 

Figure  5-12:  Shifted complex viscosity curves of neat PLA and PLA containing different chain extenders 
(T=190 ºC). 

 
Another useful plot to consider is the loss angle as a function of frequency (Fig. 5-13) which 

clearly illustrates the differences between our materials. As in Fig. 5-12, the materials are clearly 

segregated into two classes: those with =90° at low frequency and those with lower  at all 

frequencies.  The first class consists of our linear systems (the neat PLA and the systems with 
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TNPP and PCD), and the second consists of the Joncryl systems which we believe to be 

branched.  The nature of these data is consistent with previous studies of the effect of molecular 

structure on LVE properties [36].  

 

Table  5.4: Zero-shear viscosity of neat PLA and PLA containing different chain extenders. 

 

 

 

 

 

 

 For linear chains, the frequency at which elasticity starts to play an important role decreases as 

the molecular weight increases, leading to a more pronounced decrease in the loss angle with 

increasing frequency. Based on this and the zero shear viscosities in Table 5-4, it can be 

concluded that the incorporation of 0.35 wt. % of TNPP and 2 wt.  % of PCDI into the neat PLA 

leads to an increase of the PLA molecular weight. However, further addition of TNPP to the neat 

PLA decreases the molecular weight (see Table 5-4 and the curves related to PLA containing 1 

and 2 wt. % TNPP). This behavior is in good agreement with the observations  of Jacques et al. 

for TPP-enriched PET/PBT blends [37]. These authors propose that the reduction in the 

molecular weight and subsequent viscosity in the polyester containing a chain extender could be 

explained by condensation-hydrolysis mechanisms, taking place in polycondensates. The 

molecular weight of polyesters is usually determined by an equilibrium between ester groups and 

chain ends [37].  

 

 

 

 

The equilibrium constant can be written as Eq. 2 

 

 

 Zero-shear Viscosity (Pa.s)

PLA 1300 
PLA-0.35% TNPP 2300 

PLA-1% TNPP 400 
PLA-2% TNPP 100 
PLA-2% PCDI 1700 

PLA-1% Joncryl 242000 
PLA-2% Joncryl 83100 

k1 

k -1 
[–OH] + [–COOH] [–COO] + [–H2O] 

                                                            (2) 
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Once the chain extender, TNPP, is added, a reaction takes place between the phosphite groups of 

the chain extender and the hydroxyl groups of the PLA chain ends, leading to a reduction of the 

active chain end concentration in the polyester. Accordingly, incorporation of more TNPP than 

required to react with all of the hydroxyl groups results in a large displacement away from the 

condensation equilibrium [37].  To compensate and put the system back into equilibrium, new 

hydroxyl groups are released by the cleavage of ester bonds in the polymer backbone, decreasing 

the polymer molecular weight.  

 

 

 

 

 

 

 

 

 

Figure  5-13:  Effect of molecular structure on loss angle of neat PLA and PLA containing different chain 
extenders (T=190 ºC). 

 

A similar mechanism may also be responsible for the reduction in zero shear viscosity when 

increasing from 1% to 2% Joncryl (Table 5-4).  We note that since LCB is present, it is not 

possible to unequivocally ascribe the reduction in zero shear viscosity to a reduction in molecular 

weight because of the presence of LCB, which can have a non-monotonic effect on zero shear 

viscosity. We can replot the data in Fig. 5-13 as in Fig. 5-14 to emphasize the impact of long 

chain branching (LCB). Due to the presence of relaxation modes at long times related to the 

branched chains, the shape of the loss angle curve changes completely in long chain branched 

systems [36].  
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Figure  5-14:  Shifted loss angle curves of neat PLA and PLA containing different chain extenders (T=190 
ºC). 

 

The shape of the curves for both Joncryl containing systems is consistent with LCB.  Fig. 5-14 

confirms that TNPP and PCDI systems are linear with the same shape of MWD since these 

curves also superimpose. We recall that these observations are consistent with the functionality of 

2 for TNPP and PCDI (producing longer, linear chains) and the functionality of 4 for Joncryl 

(producing longer linear and branched chains). 

5.4 Conclusion  

In the present study, the thermal stability of PLA-clay nanocomposites was investigated through 

rheometry and thermal gravimetric analysis. Rheological data revealed a rapid thermal 

degradation of PLA in the presence of an organo-modified clay (Cloisite® 30B). It has been 

found that the incorporation of a chain extender into the nanocomposites, at an appropriate 

concentration for a given temperature, had a profound effect not only on controlling the 

degradation but also on increasing the MW, resulting in an increase of the polymer viscosity. 

Based on the rheological data and an FT-IR spectroscopic study of the reaction products, the 

mechanism of stabilization is most likely chain extension.  The chain extension led to the 
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formation of longer linear chains in the PCDI and TNPP based nanocomposites, and long chain 

branched (LCB) structure in Joncryl-based nanocomposites.  The LCB strongly influenced the 

linear viscoelastic response such as the zero-shear viscosity and loss angle. Thermal gravimetric 

analysis revealed that the addition of clay into the PLA decreases its thermal stability, whereas 

the incorporation of a chain extender increased the onset temperature for thermal degradation for 

a PLA containing 2 wt. % of the organoclay. Joncryl was found to be the most efficient chain 

extender under the studied processing conditions, which strongly influenced the rheological 

properties of PLA and properly controlled the degradation over a wide range of processing 

temperatures. 
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CHAPITRE 6  

POLYLACTIC ACID (PLA)-CLAY NANOCOMPOSITES PREPARED BY 

MELT COMPOUNDING IN THE PRESENCE OF A CHAIN EXTENDER 
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Article 2: Polylactic acid (PLA)-clay nanocomposites prepared by melt 

compounding in the presence of a chain extender1*2
 

 

  N. Najafi C., M. C. Heuzey, P. J. Carreau 
 
Center for Applied Research on Polymers and Composites, CREPEC 
 Ecole Polytechnique, Department of Chemical Engineering, Montreal, QC, Canada 

 

Abstract:  

Polylactide -layered silicate nanocomposites with and without a chain extender were prepared by 

melt mixing using a twin-screw extruder. An organo-modified clay, Cloisite® 30B, and a chain 

extender Joncryl®-ADR 4368F were employed in this study. The effect of the chain extender and 

processing conditions on the properties of the PLA-clay nanocomposites were investigated for 

different strategies of mixing. The resulting nanocomposites were characterized by X-ray 

diffraction (XRD), while their morphology was observed by SEM and TEM. The incorporation 

of the chain extender could enhance the degree of clay dispersion provided that it is judiciously 

added to the nanocomposite.  The corresponding results revealed that the Joncryl-based 

nanocomposites, where nanoclay platelets were well-dispersed, exhibited a significantly reduced 

permeability as compared to others.  The mechanical properties of the neat PLA, the PLA and 

Joncryl-based nanocomposites were also examined.  The increased molecular weight in Joncryl-

based nanocomposites caused a significant increase in the modulus, drawability and toughness of 

the samples. 

 

Keywords:  A Nano composites; Polymer-matrix composites (PMCs) 

B Mechanical properties 

D Rheology; X-ray diffraction (XRD) 

                                                 

1 - Submitted to Composite Science and Technology in August 2011 
* The title is changed from Polylactic acid to Polylactide in new version of submitted article 
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6.1  Introduction 

A significant attention has been devoted to biodegradable and biocompatible polymers in recent 

years, both from ecological and biomedical perspectives. The predominant biopolymers are 

polycaprolactone (PCL), polylactic acid (PLA), polyglycolic acid (PGA) and 

polyhydroxyalkanoate (PHA), among which PLA is the most promising candidate since it is 

made from renewable agricultural sources and can keep its transparency after processing [1-3]. 

Although biocompatibility, biodegradability, and bioresorbability of PLA make it an appropriate 

candidate for packaging end-use applications, there are, however, some issues such as a low 

drawability [1, 4, 5], insufficient toughness [6, 7] and limited gas barrier properties [8, 9] that 

should be properly overcome.  Copolymerization, blending and filling techniques are generally 

used to prevail over these drawbacks [10]. However, the incorporation of a filler into the PLA 

matrix has attracted the most attention since it pairs low cost with good results. Recently, there 

have been several attempts to broaden the end-use properties of PLA by developing PLA/clay 

nanocomposites [1, 5-7, 9, 11]. Three main techniques can be distinguished for nanocomposites 

preparation based on thermoplastic matrices: in-situ polymerization, solution intercalation and 

melt intercalation. The melt intercalation method is the most useful approach for industrial 

applications due to the absence of solvent, and compatibility with current industrial compounding 

and processing techniques [12].  

The delamination of natural hydrophilic clay in the hydrophobic polymer matrix is a crucial issue 

[13]; hence, the modification of the clay surface with a surfactant is required to make it 

organophilic and compatible with common hydrophobic polymers. Cloisite® 30B is an organo-

modified montmorillonite having two hydroxyl groups. The reaction occurring between its 

hydroxyl groups and the carboxyl groups of PLA makes this clay favorable for producing PLA-

clay nanocomposites [1].  On the other hand, many attempts have been made to enhance PLA 

physical and mechanical properties through modification of the polymer and increased molecular 

weight [14, 15]. It has been shown that using a chain extender could make the molecular weight 

increase and improve properties [14, 16]. The effect of different chain extenders such as 

polycarbodiimide (PCDI), tris (nonylphenyl) phosphite (TNPP) and Joncryl ®ADR 4368F on the 

thermal degradation of PLA and PLA-clay nanocomposites was investigated in our previous 
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work [17]. Joncryl was found to be the most efficient chain extender, strongly influencing the 

molecular weight of PLA and rheological properties of PLA and PLA/clay nanocomposites. 

The aim of the present work is to investigate the effect of processing conditions on clay 

dispersion in the presence of the chain extender Joncryl. The impact on the resulting morphology, 

rheological, mechanical, and barrier properties of PLA/clay nanocomposites is examined. 

Different strategies for the incorporation of the chain extender into the PLA nanocomposites are 

investigated.  

6.2 Experimental 

6.2.1 Materials 

The polylactide (PLA) used in this study was purchased from NatureWorks Co. (USA). The 

selected grade, PLA 4032 D, is a semi-crystalline material in pellet form with an L-lactide: D-

lactide ratio of 98:2. The glass transition temperature Tg and the melting point Tm are 60 and 170 

ºC, respectively, as reported by the manufacturer. The organo-modified nanoclay used was 

Cloisite® 30B (Southern Clay Products Inc.). Finally, Joncryl® ADR-4368F, an epoxy-based 

chain extender supplied by BASF, was used as a chain extender. It is a modified acrylic 

copolymer with epoxy functions. 

6.2.2 Nanocomposite Preparation 

Before compounding, the polylactide (PLA) and clay were dried at 70 ºC in a vacuum oven for 

48 h. To prepare a benchmark nanocomposite (without chain extender), dried PLA and 2 wt. % 

clay were initially mixed. The mixture was then extruded using a corotating twin-screw extruder 

(CICO-TSE) of Leistritz Corp. with an L/D ratio of 40 (L = 720 mm), at a rotation speed of 150 

rpm. The extruder was operated using the temperature profile set at 175, 180, 185, 190, 195, 195 

°C (for the different zones from hopper to die).  To examine the effect of chain extender and 

processing conditions on clay dispersion, the Joncryl-based nanocomposites were prepared using 

five different strategies. In the first strategy (S1), the nanocomposite was prepared by direct 

mixing of PLA, 2 wt. % clay and 1 wt. % Joncryl and subsequently extruded using the conditions 

stated above. In the second strategy (S2), the nanocomposite was prepared using a master batch 

approach: pre dry-mixed PLA and 4 wt. % clay were fed into the extruder operated under the 
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same conditions.  The obtained master batch was dried in a vacuum oven (70 ºC) for 24 h. The 

master batch, PLA and Joncryl were then used to prepare the nanocomposite for a nominal 

content of 2 wt. % clay and 1 wt. % Joncryl. In the third strategy (S3), PLA and Joncryl were 

blended in the extruder, and then dried in a vacuum oven (70 ºC) for 24 h. Afterwards, the 

nanocomposite was prepared by extruding a mixture of this blend, along with PLA and 2 wt. % 

clay. To further investigate the effect of residence time on clay dispersion, two other strategies 

were also used. In the fourth and fifth strategies (S4 and S5, respectively), first the benchmark 

nanocomposite (PLA and 2 wt. % clay) was passed through the extruder two or four times, 

respectively, and put in the vacuum oven. Then, these nanocomposites and 1 wt. % Joncryl were 

compounded in twin-screw extrusion to prepare the final nanocomposites.  After each processing, 

the materials were cooled in an ice-water bath right after emerging from the extrusion die, 

pelletized and then dried in a vacuum oven (70 ºC) for at least 24h. The characteristics of the 

strategies considered in this study are summarized in Table 6-1 

 

Table  0.1: Characteristics of the compounding strategies considered in this study 
 

 

 

 

 

 

 

 

 

6.2.3 Characterization 

The nanoclay interlayer spacing (d001) was determined by X-ray diffraction (XRD) measurements 

performed on a Philips X’Pert X-ray diffractometer using Cu-K radiation ( = 0.1542 nm), 

while the generator was set up at 50 kV and 40 mA. The data was collected over a range of 

scattering angles (2) of 1 to 10. The morphology of the disk-shaped nanocomposites was 

investigated by scanning and transmission electron microscopy (SEM and TEM, respectively) at 

Strategy Composition Ext. 
proc. 
times 

Procedure 

Benchmark 
nanocomposite (S0) 

PLA-2 wt% C30B 1 PLA and clay were extruded simultaneously 

S1 PLA-2 wt% C30B-1wt% Joncryl 1 PLA, clay and Joncryl were extruded simultaneously 

S2 PLA-2 wt% C30B-1wt% Joncryl 2 PLA and 4 wt% clay were blended in the first extrusion pass, while 
Joncryl was added to the nanocomposite in the second pass 

S3 PLA-2 wt% C30B-1wt% Joncryl 2 PLA and Joncryl were blended in the first extrusion pass, while 
clay was added to the nanocomposite in the second pass 

S4 PLA-2 wt% C30B-1wt% Joncryl 3 PLA and clay were  extruded  two times, Joncryl was added in the 
third extrusion pass 

S5 PLA-2 wt% C30B-1wt% Joncryl 5 PLA and clay were  extruded four times, Joncryl was added in the 
fifth extrusion pass 
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room temperature.  A high resolution Hitachi S-4700 microscope operated at 2 kV accelerating 

voltage was employed for SEM to observe nanofiller agglomeration and distribution. The 

specimens were prepared using an ultramicrotome equipped with a diamond knife and then 

coated with platinum vapor. Finally, TEM images were obtained using a JEOL JEM-2100F 

microscope at a 200 kV accelerating voltage. TEM was done on ultramicrotomed samples using a 

diamond knife at temperature -100 C.   

In order to characterize the rheological properties, disks of 25 mm diameter and 1.5 mm thickness 

were produced by compression molding at 190 ºC and a pressure of 20 MPa under a nitrogen 

atmosphere. Dynamic rheological measurements of PLA nanocomposites were performed using a 

strain-controlled ARES rheometer (Rheometric Scientific) equipped with a 25 mm parallel plate 

flow geometry. The strain amplitude was set at 8 %, strain large enough to provide a reliable 

signal while keeping the measurements in the linear viscoelastic region. All the time sweep tests, 

at a frequency of 6.28 rad/s, and frequency sweep tests, over a frequency range of 0.1-100 rad/s 

(from high to low frequency), were carried out under a nitrogen atmosphere, at 190 ºC and using 

a gap size of 1-1.3 mm.  The contribution of thermal degradation during the frequency sweep 

tests was less than 10% and considered to be within experimental error.  

Differential scanning calorimetry (DSC) tests were carried out using a TA Instruments 

calorimeter (DSC-Q 1000) under a nitrogen atmosphere. Samples were heated at a scanning rate 

of 10 ºC /min from 30 to 250 ºC. To investigate the effect of processing conditions on the degree 

of crystallinity of the resulting nanocomposites, crystallization enthalpy (ΔHc), melting enthalpy 

(ΔHm), and degree of crystallinity were determined from the first heating cycle. 

The oxygen permeability of PLA and PLA nanocomposites was measured using the methodology 

described in standard ASTM 1434-82S, using an Ox-Tran Model 2/21 apparatus (Mocon Inc.) at 

25 C.  The samples were compression molded, at 190 C and a pressure of 20 MPa under a 

nitrogen atmosphere, into films with a thickness of approximately 400 m for this purpose.  The 

permeability values reported in this work have been normalized by the film thickness. All the 

presented values are averages of at least three films for each specimen.  

Dog-bone-shaped specimens of 150 mm in total length, with a gage section of 12 mm wide by 4 

mm thick and 80 mm long, type I based on standard ASTM D638, were prepared by compression 

molding at 190 ºC and a pressure of 25 MPa and subsequent cooling down to 5 ºC to avoid 
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sample shrinkage. An Instron tensile machine (model 4400R) was used to measure the tensile 

strength, tensile modulus, elongation at break and toughness according to standard ASTM D638. 

All tests were carried out under ambient conditions using a cross-head speed of 5 mm/min. In 

order to accurately measure the strain, an Instron extensometer was employed. All the reported 

values were obtained by averaging over four specimens for each processing condition. 

6.3 Results and Discussion 

6.3.1 Morphology 

The structure of the nanocomposites obtained using the various compounding strategies (Table 6-

1) was first characterized on the compression molded samples using X-ray diffraction. The XRD 

patterns of Cloisite 30B, PLA and Joncryl-based nanocomposites are presented in Fig. 6-1.  

 

Figure  0-1:  XRD pattern of PLA and Joncryl-based nanocomposites prepared by different compounding 
strategies. The intensity axis has been shifted for clarity. 

 

The diffraction pattern of the organo-clay (Cloisite 30B) reveals a sharp reflection peak at 2 = 

4.73 that corresponds to a mean interlayer space of 1.86 nm. The insertion of polymer chains 

inside the clay gallery in the nanocomposites leads to an increase in the d001 basal spacing and 
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hence shifting of the peak towards a lower diffraction angle (around 2.2o). Moreover, a second 

diffraction peak also appears at a higher angle (around 5-5.5 o). The second observed peak may 

result from clay gallery collapsing and/or the d002 reflection. Most of these results represent a 

combination of both mechanisms, except in the nanocomposite prepared by S1 and S2 strategies, 

where the second peak position and intensity correspond to the d002 reflection. The first direct 

comparison between the PLA benchmark nanocomposite and Joncryl-based nanocomposites 

prepared by the S1 and S2 strategies shows that both the first peak shifts towards a lower 

diffraction angle (from 2.4 to 2.2) when the chain extender is incorporated into the 

nanocomposites, which corresponds to a slight increase of the gallery spacing. Note that although 

the basal d-spacing and peak position of the Joncryl-based nanocomposites prepared by the third 

strategy (S3) are similar to those of the PLA benchmark nanocomposite, its second peak is more 

intense and sharper in comparison with the benchmark nanocomposite, indicating a more ordered 

silicate layer structure. For the Joncryl-based nanocomposites prepared by the fourth (S4) and 

fifth (S5) strategies significant increases in intensity of the second peak suggest an important 

collapse of the gallery due to thermal degradation of the organo component of the clay. As 

expected the formation of clay aggregates due to silicate layer collapse is more pronounced upon 

increasing the residence time due to multiple extrusion passes encountered in S4 and S5 

strategies. However, the Joncryl-based nanocomposites prepared by the third strategy, where the 

chain extender was first added to the matrix, also exhibits a poor clay dispersion even though it 

was prepared in a single extrusion pass. The reason for the poor result of the S3 strategy is 

explained below. To study the morphological details of the nanocomposites prepared by the best 

strategies, i.e. S1 and S2, SEM and TEM are employed. 

The SEM micrographs for samples prepared using the first and second strategies are presented in 

Fig. 6-2. The bright spots represent clay particles. The micrographs of the nanocomposite without 

the chain extender (Fig. 6-2a) reveal a fairly uniform distribution of clay particles, whereas there 

are some aggregates in the Joncryl-based nanocomposite processed by the first strategy (S1) (Fig. 

6-2b). However, the incorporation of the chain extender in the second strategy (S2) results in a 

good level of clay dispersion since clay aggregates have almost disappeared (Fig. 6-2c).  
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Such a competing effect is also responsible for the poor clay dispersion in Joncryl-based 

nanocomposites developed by the third strategy (S3) where clay is incorporated into the blend of 

PLA and Joncryl. The addition of the chain extender to PLA prior to clay loading consumes most 

of the carboxyl end groups present in the polymer.  Consequently, no more compatibility reaction 

can be carried out between the PLA chains and the modified clay surface. Moreover, increasing 

the polymer molecular weight in the early stage of compounding makes it difficult for the 

penetration of polymer chains into the clay gallery spacing. In contrast, in the case of Joncryl-

based nanocomposite prepared by the second strategy (S2) a more homogeneous clay dispersion 

is obtained (see Fig. 6-3c) as a result of the reaction occurring between clay and PLA during melt 

blending and the increased shear force provided by the higher molecular weight matrix in the 

following extrusion step.  

The clay dispersion can be quantified using the method proposed by Luo et al. [19], called free-

path spacing measurement (FPSM). It is based on the free-path spacing, xi, which is defined as 

the distance between clay platelets, and the dispersion parameter, D0.1, given by Eq.3:
 

 
where,  and σ are the mean free-path and standard deviation, respectively. Based on this 

approach, an exfoliated structure is achieved when the dispersion factor D0.1 is over 8%, while an 

intercalated structure has a dispersion factor between 4 and 8% [19]. This factor has been 

calculated for the benchmark PLA (S0) and Joncryl-based nanocomposites prepared by the first 

and second strategies using approximately 100 measurements. The obtained values for D0.1 are 

6.84, 5.72 and 7.86 % for nanocomposite prepared by S0, S1 and S2 strategies, respectively, 

suggesting that the degree of clay dispersion is slightly decreased in Joncryl-based 

nanocomposite prepared by the first strategy (S1) as compared to the one containing no Joncryl. 

On the contrary, in the Joncryl-based nanocomposite prepared by the second strategy, the 

dispersion factor is very close to that corresponding to an exfoliated structure (~ 8%). Therefore, 

this statistical study confirms what was observed by XRD, SEM and TEM. 

                 (3) 
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6.3.2 Rheological properties 

The embedding of nano-size clay particles into polymeric matrices changes their rheological 

properties [20-22]. The filler-polymer and filler-filler interactions lead to an increase in the 

complex viscosity, particularly at low frequencies, and to a more pronounced shear-thinning 

behavior. The molecular weight of the matrix and the degree of clay dispersion strongly affect the 

rheological properties of the nanocomposites. Based on time sweep measurements performed to 

evaluate the thermal stability of various PLA nanocomposite melts [17], the incorporation of 1 

wt. % Joncryl seems to hinder the chain scission reaction, leading to thermal stability during 

processing. The complex viscosity and storage modulus of the PLA and Joncryl-based 

nanocomposites prepared by various strategies in this work are plotted as functions of frequency 

in Fig. 6-4.  

 

 

 

 

 

 

Figure  0-4:  Complex viscosity (a) and storage modulus (b) as a function of angular frequency of PLA and 
Joncryl-based nanocomposites prepared using different compounding strategies. The rheological 

measurements have been conducted from high to low frequencies at 190 ºC. 

 

As observed the nanoclay can have a significant effect on the rheological behavior of PLA 

nanocomposites provided that the PLA degradation is controlled. The Joncryl-based 

nanocomposite prepared by the second strategy exhibits the highest values of the complex 

viscosity and storage modulus in the low frequency region, indicating the finest clay dispersion, 

which was confirmed by the direct morphology observation. In fact, well-dispersed clay platelets 

have a much larger surface area that results in stronger interactions between the polymer and clay 
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in exfoliated structures. Such interactions in nanocomposites impede the motion of 

macromolecular chains and are reflected by an increase in viscosity and elasticity. The Joncryl-

based nanocomposite prepared by the first strategy provides the second highest complex viscosity 

and storage modulus, even though less clay delamination occurred as compared to the benchmark 

PLA nanocomposite. This can be attributed to the degradation of the PLA matrix in the 

nanocomposite without chain extender, leading to a significant decrease of the matrix molecular 

weight that negatively impacts the rheological properties [17]. As expected the rheological 

properties of the nanocomposites prepared by the third strategy are lower than those for the S1 

and S2 strategies. 

6.3.3 Oxygen permeability 

The permeation of gases through a polymeric film is a complex phenomenon that is governed by 

four processes: the sorption of gas molecules on the film surface; the dissolution of the gas in the 

polymer, the diffusion of the gas through it and, at last, desorption of the gas from the other 

surface of the film [20]. The gas permeation proceeds mainly in the amorphous phase of 

polymers. By this account, a semi-crystalline polymer is composed of a nearly impermeable 

crystalline phase dispersed in a permeable amorphous phase. Therefore, any increase in 

crystallinity leads to a decrease of the gas permeability due to a diminished contribution of the 

permeable amorphous phase and to an enhanced tortuosity of the diffusion path. The gas 

permeation mechanism in a nanoclay reinforced polymer is similar to that in a semi-crystalline 

polymer. The nanoclay platelets are considered as an impermeable phase dispersed in a semi-

permeable polymeric phase. In addition to crystallinity, there are some other factors affecting the 

permeability, such as the fractional free volume (FFV), volume fraction of the nanoclay, its 

aspect ratio and orientation. Therefore, a reduction of gas permeability is expected in 

nanocomposites due to the decreased polymer phase volume fraction and mainly to the increased 

tortuous path. Since the reduction of the matrix volume fraction as a result of clay addition is 

small, tortuosity is the major factor influencing the barrier properties besides crystallinity. 

Consequently, clay delamination and orientation could have a profound impact on the barrier 

properties considering that the tortuosity is generally controlled by the shape, dispersion level and 

orientation of the nano-platelets. The oxygen gas permeability (P) for the neat PLA, PLA 
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containing 1 wt. % Joncryl, and PLA- and PLA-Joncryl-based nanocomposites is presented in 

Fig 6-5.  

As shown, the incorporation of the chain extender into the neat PLA increases the oxygen 

permeability of the corresponding blend (P/PPLA=1.4). To explain this higher gas permeability, 

the crystallinity of the films used in these studies is considered. The first heating DSC 

thermogram data of PLA, PLA-Joncryl blend, and related nanocomposites are reported in Table 

6-2. The degree of crystallinity (Xc) was determined from DSC analysis according to Eq. 4, where 

Hm, Hc and  are the measured melting enthalpy, crystallization enthalpy and weight fraction 

of PLA, respectively. 

 

 

 

An enthalpy of fusion (Hºm) of 93.6 J/g [11] was used for the perfectly crystalline PLA phase. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure  0-5:  Oxygen permeability of the neat PLA, PLA- and PLA-Joncryl-based nanocomposites 

prepared using different compounding strategies. 
 
 

As shown in Table 6-2, the addition of the chain extender to the neat matrix leads to a decrease in 

crystallinity of the PLA from 7.7 to 1.4 %, due to the formation of a long chain branching 

structure in the Joncryl-PLA blend [17] that is not easily incorporated into the crystal lattice. 
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Table  0.2: Degree of crystallinity of the neat PLA, PLA-Joncryl blend and nanocomposites prepared by 
different strategies. These data are obtained from the first heating cycle in DSC thermograms. 

Furthermore, a long chain branched structure hinders the packing of the main chains, leading to a 

considerable increase in the fractional free volume of the PLA chains that reacted with the chain 

extender [21]. The free volume plays an important role in the gas solubility and diffusion through 

polymers. Based on the free volume theory, the diffusion coefficient exponentially increases with 

the fractional free volume (FFV) [22]. Therefore, as a result of increased FFV as well as 

decreased crystallinity, the oxygen permeability is enhanced in the PLA-Joncryl blend.  On the 

other hand, the formation of a tortuous path and also slightly increased crystallinity resulting 

from nanoclay loading diminishes the permeability of the PLA nanocomposites containing no 

Joncryl (P/PPLA= 0.68).  The decreased crystallinity and poorer clay dispersion in the 

nanocomposites prepared by the first strategy (S1) in the presence of the chain extender is 

responsible for the slightly lower barrier properties (P/PPLA= 0.72) in comparison with the PLA 

nanocomposite containing no Joncryl (P/PPLA= 0.68). However, further delamination and a better 

distribution of clay in the Joncryl-based nanocomposites produced by the second strategy (S2) 

provide a higher tortuosity, hence yielding the lowest permeability in comparison with the other 

samples (P/PPLA= 0.64). 

 

6.3.4 Mechanical properties 

Typical stress-strain curves of the PLA and Joncryl-based nanocomposites are plotted in Fig. 6-6, 

while their mechanical properties are summarized in Fig. 6-7.  PLA is found to be very brittle 

(failing without necking) while having a high modulus and a high tensile strength. A general 

increase in the tensile modulus and strength is observed in the Joncryl-PLA system due to the 

increased molecular weight and formation of a long chain branching structure [17].  The long 

chain branching increases the entanglement density of the polymer structure [23, 24] and thus 

Composition  Hc   Hm  Xc (%) 

PLA 27.1 34.3 7.7 
PLA-1% Joncryl 25.5 26.8 1.4 
PLA-2% C 29.3 36.6 8.0 
PLA-2% C-1% Joncryl (S1) 27.2 29.3 2.3 
PLA-2% C-1% Joncryl (S2) 

26.5 28.6 2.3 
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further hinders the slippage and orientation of the chains upon elongation. A similar behavior was 

also observed by Yim et al. [25] for ultra high molecular weight polyethylenes. Accordingly, the 

strain at break of the PLA containing the chain extender decreases, as shown in Fig.6- 6, leading 

to a reduced toughness despite increased tensile strength.    

 
 
 

 

 

 

 

 

 

 

 

 

Figure  0-6:  Typical stress-strain behavior of dog-bone shaped samples for the neat PLA, PLA- and PLA-
Joncryl-based nanocomposites prepared using different compounding strategies. 

 

The Young modulus of the PLA nanocomposites increases after clay addition (see Fig. 6-7), 

while the tensile strength decreases as compared to the neat PLA. A reduction of the tensile 

strength in PLA nanocomposites was also reported by other authors [7, 9].  The reduction of 

molecular weight resulting from thermal degradation during processing may be responsible for 

such a strength reduction. The increase of ductility of PLA nanocomposites is clearly evident on 

the stress-strain curve shown in Fig. 6-6. The incorporation of Cloisite® 30B improves the 

deformation behavior of nanocomposites and causes the samples to experience significant 

necking, leading to an increased strain at break.  

Generally, polymeric materials yield when shear yielding or crazing takes place during 

deformation [26]. Jiang and coworkers’ study [6] indicates that micro-voiding and subsequent 

massive crazing are responsible for yielding in neat PLA exposed to uniaxial tension. The 
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incorporation of nanoclay platelets into PLA may play a dual role: the first role is providing 

micro-void nucleating sites due to interfacial debonding. The formation of micro-voids release 

strain constraint and induce local shear deformation, and hence brings about early material 

fracture. The second role is preventing the micro-voids from coalescing and forming cracks [6]. 

Since a favorable interaction occurs between the organo-modified clay and PLA, the clay 

platelets form a strong barrier between the micro-voids, leading to the inhibition of the micro-

void coalescence and the craze propagation. As a consequence, a higher drawability is observed 

in PLA nanocomposites, resulting in an increase of the toughness despite a reduction of the 

tensile strength. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  0-7:  Effects of Joncryl and compounding strategy on a) Young’s modulus, b) tensile strength, c) 
strain at break and d) toughness of the neat PLA, PLA- and PLA-Joncryl-based nanocomposites prepared 

using different compounding strategies. 

 

 The results presented in Figs.6- 6 and 6-7 reveal that the tensile modulus and tensile strength 

increase in the Joncryl-based nanocomposites prepared by the first strategy (S1), in comparison 

with the PLA nanocomposite containing no chain extender (S0). This can be related to the 
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increased molecular weight due to chain extension and the formation of a long chain branching 

structure [14, 27]. Nevertheless the nanocomposite toughness is decreased as a result of a 

reduction of the strain at break. Note that the strain at break is very sensitive to the dispersion of 

inclusions. As explained earlier, the simultaneous incorporation of clay and chain extender into 

the PLA decreased the clay dispersion and clay aggregates appeared (Fig. 6-2). These aggregates 

act as material flaws [6] around which a high stress is concentrated promoting PLA-clay 

debonding and material fracture. However, besides the enhanced Mw of the matrix in the case of 

Joncryl-based nanocomposites prepared by the second strategy (S2), the increased degree of clay 

dispersion promotes the formation of a larger interfacial area and subsequent interfacial 

interaction between clay and PLA. Therefore, the stress transfer from the polymeric matrix to the 

inorganic phase increases, leading to a high tensile strength and modulus for the Joncryl-based 

nanocomposites. Furthermore, the lack of aggregates in these nanocomposites decreases craze 

density due to less interfacial debonding, and hence increases the polymer drawability and 

subsequent toughness (Fig. 6-7d). Based on the above findings, it can be concluded that the 

incorporation of the chain extender can significantly improve the mechanical properties provided 

that it is judiciously added to the nanocomposites. 

6.4 Conclusion 

In this work, the effects of a chain extender (Joncryl) and processing conditions on the clay 

dispersion and the final properties of PLA-clay nanocomposites were examined. PLA-nanoclay 

without Joncryl and Joncryl-based nanocomposites were prepared by melt compounding using 

different strategies. The morphological observations and quantification of clay dispersion 

revealed that an increased and homogeneous dispersion of clay was achieved in Joncryl-based 

nanocomposites prepared by the second strategy, based on a master batch of PLA/clay. In 

addition, the clay dispersion strongly affected the rheological properties of nanocomposites 

particularly in the low frequency region. The nanocomposites prepared by the second strategy 

also provided the highest complex viscosity and storage modulus at low frequencies despite the 

fact that it was processed twice. The measured oxygen permeability also indicated that the 

incorporation of the clay and chain extender into the nanocomposites using the second strategy 

provided the lowest permeability. The mechanical properties of the neat PLA, the PLA and 

Joncryl-based nanocomposites were also considered.  The semi-crystalline PLA exhibited a high 
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tensile modulus and strength while it had a very low elongation at break and toughness. 

However, a good dispersion and distribution of clay platelets and an increased molecular weight 

in Joncryl-based nanocomposites led to significant increases in the modulus, drawability and 

toughness compared to the neat PLA. 
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General Discussion 

Different types of petrochemical-based thermoplastic polymers such as polyolefins, polystyrene, 

and polyamide have been widely used as packaging materials. In many cases, the recycling of 

these materials is not economically reasonable, while the disposal of such non-degradable plastic 

materials has seriously disturbed the ecosystem. As such, the development of biodegradable 

“green polymeric materials”, has gained a great interest. Nowadays several biodegradable 

polymers such as poly (butylene succinate) (PBS), poly (ε-caprolactone) (PCL), poly (lactic acid) 

(PLA) and poly (vinyl alcohol) (PVOH) are commercially produced.  

Among them, PLA can be made from renewable sources such as starch from corn or sugar beets, 

and decompose into non-toxic components in the environment. Moreover, the remarkable 

properties such as biodegradability, biocompatibility, high processability, transparency after 

processing and organoleptic characteristic of PLA makes it as a good candidate for food 

packaging (Amar, 2005; Schwach, 1997).  Although these features make PLA an appropriate 

candidate for massive production, there are however some important issues which should be 

considered for industrial applications. PLA suffers from poor thermal stability, low mechanical 

resistance, and limited gas barrier properties. These problems were addressed in this project and 

methods for producing PLA-clay nanocomposites with improved properties were developed. 

Our findings in the first step of this project indicated that the incorporation of a chain extender 

into the nanocomposites, at an appropriate concentration for a given temperature, had a profound 

effect on controlling the thermal degradation and increasing the molecular weight, leading to an 

increase of the polymer viscosity.   

Chain extension leads to the formation of longer linear chains in the PCDI- and TNPP-based 

nanocomposites, and to a long chain branching (LCB) structure in Joncryl-based 

nanocomposites.  The LCB strongly influences the linear viscoelastic response such as the zero-

shear viscosity and loss angle. Thermogravimetric analysis showed that the clay loading in PLA 

decreases its thermal stability, whereas the incorporation of the chain extender increased the 

onset temperature of thermal degradation.  Based on the obtained results, Joncryl was found the 

most efficient chain extender under the present processing conditions over a wide range of 

temperatures.  
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In the second step of this study, the most efficient chain extender under processing conditions, 

Joncryl, is used further to study the strategy of chain extender incorporation into PLA 

nanocomposites on promoting the degree of clay dispersion, rheological, mechanical and barrier 

properties. PLA/nanoclay without Joncryl and Joncryl-based nanocomposites were prepared by 

melt compounding using different strategies. The morphological observations, using XRD, SEM 

and TEM, and quantification of clay dispersion revealed that an increased and homogeneous 

dispersion of clay was achieved in Joncryl-based nanocomposites prepared by the second 

strategy, based on a master batch of PLA-clay. The chemical reaction occurring between 

carboxylic acid groups of the PLA chains and hydroxyl groups of the organically modified clay, 

as well as increased Mw, were responsible for the further delamination of clay platelets in the 

nanocomposites prepared by the second strategy. These samples provided the highest complex 

viscosity and storage modulus at low frequencies, despite the fact that they were processed twice.  

The measured oxygen permeability also indicated that the incorporation of the clay and chain 

extender into the nanocomposites using the second strategy provided the lowest permeability. 

This finding could be well explained by an increase in the tortuosity path. The mechanical 

properties of the neat PLA, the PLA and Joncryl-based nanocomposites were also considered.  

Semi-crystalline PLA exhibited a high tensile modulus and strength while it had a very low 

elongation at break and toughness. However, a good dispersion and distribution of clay platelets 

and an increased molecular weight in Joncryl-based nanocomposites led to a significant increase 

in the mechanical properties of the PLA nanocomposites in comparison with the neat PLA. 

Although the incorporation of the chain extender into the nanocomposites slightly increase the  

final cost of the resulting filled product (less than $1 per kg), it is still found to be more cost 

efficient than other alternatives.  

Considering the fact that its level of crystallinity is usually low, PLA is a transparent polymer, 

and this is undoubtedly advantageous for food packaging applications and other consumer 

products. However, there is a risk that PLA-based nanocomposites loose this essential 

characteristic. Photographs of neat PLA and a PLA-based nanocomposite prepared in this work 

are presented in Figure 7-1.  It is evident that the nanocomposite sheet retains a good 

transparency, and that the sample color is only slightly affected by the presence of the additives. 
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Conclusion 

Based on the literature review, the thermal stability of PLA-based nanocomposites and clay 

dispersion are the major challenges in the development of PLA-clay nanocomposites with 

improved mechanical and barrier properties. Hence, in the first step of this work, control of the 

thermal degradation of PLA nanocomposites was aimed for. In the scope of this objective, 

different chain extenders were used and their ability to control the degradation was examined. 

The rheological and thermal properties of PLA nanocomposites containing different chain 

extenders were comprehensively investigated.  Rheological data revealed a rapid thermal 

degradation of PLA in the presence of an organo-modified clay (Cloisite® 30B). It has been 

found that the incorporation of a chain extender into the nanocomposites, at an appropriate 

concentration, had a profound effect on controlling the degradation by increasing the Mw. The 

mechanism of stabilization was most likely chain-extension.  The chain extension led to 

formation of longer linear chains in the PCDI and TNPP based nanocomposites, and long chain 

branching (LCB) structure in Joncryl-based nanocomposites.  Thermogravimetric analysis 

revealed that the addition of clay into the PLA decreases its thermal stability, whereas the 

incorporation of the chain extender increased the onset temperature of thermal degradation due to 

a decreased number of chain tails per mass. 

In the second step, the most efficient chain extender, Joncryl, was used to increase the degree of 

clay dispersion, leading to enhanced mechanical and barrier properties. To achieve this target, 

PLA-nanoclay without Joncryl and Joncryl-based nanocomposites were prepared using different 

strategies. The effect of chain extender, Joncryl, and polymer processing conditions on the clay 

dispersion and the final properties of nanocomposites were examined. The morphological 

observation and quantification of clay dispersion revealed that an increased and homogeneous 

dispersion of clay was achieved in Joncryl-based nanocomposites prepared by the master batch of 

PLA-clay (S2 strategy), while those prepared by the direct mixing (S1strategy) showed the worst 

morphology. This nanocomposite also provided the highest complex viscosity at low frequencies 

despite the fact that its matrix was processed twice. The measured oxygen permeability and 

mechanical properties also indicated that the incorporation of the clay and chain extender into the 

nanocomposites using the S2 strategy provided the lowest permeability and the highest 

mechanical properties. 
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Consequently, in addition to control the thermal degradation of the nanocomposite and enhance 

Mw, the opportune addition of the chain extender resulted in further clay dispersion, and 

subsequently improved mechanical and barrier properties. 

8.1 Originality of the work 

As mentioned in Chapter 2, control of the degradation of neat PLA using chain extenders such as 

tris (nonyl-phenyl) phosphite (TNPP) and polycarbodiimide (PCDI) have been previously 

considered. Based on the reviewed literature and our own results, the incorporation of an 

organically modified clay intensifies the degradation of PLA during processing, resulting in 

decreased mechanical and even barrier properties.  

To our knowledge no report has been published on controlling the degradation of PLA 

nanocomposites using chain extenders. This dissertation was aimed at the study of the rheological 

and thermophysical properties of PLA nanocomposites containing different chain extenders with 

a special attention being paid to their effect on the molecular structure of the polymeric matrix. In 

addition, different strategies for the incorporation of the chain extender into the nanocomposites 

were considered. 

8.2 Recommendations for future work 

The following unexplored topics are recommended for future research: 

 Considering that melt compounding was selected as a preferred technique to prepare 

polymer-clay nanocomposites, the twin-screw configuration used during extrusion and the 

geometry of the mixing elements such as their staggering angle, the use of forward/backward 

transport elements and the width of kneading blocks should be optimized for the sake of 

increasing the degree of clay dispersion. 

  Considering that the crystallinity and orientation of the clay platelets reduce the volume 

fraction of the gas permeable amorphous phase and increase the tortuosity path, respectively, 

post-processing conditions such as draw ratio and cooling rate could be investigated in the 

preparation of PLA nanocomposite films.  
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