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 a b s t r a c t

The handling of topology changes in two-phase flows, such as breakup or coalescence of inter-
faces, with front tracking is a well-known problem that requires an additional effort to perform 
explicit manipulations of the Lagrangian front. In this work, we present an approach that al-
lows to perform topology changes with interfaces made of connected triangular elements. The 
methodology consists of replacing the fluid entities that undergo breakup/coalescence with the 
iso-surface corresponding to the indicator function value  = 0.5, which automatically returns the 
shape of the bodies after topology changes. The generation and triangulation of such surface is 
obtained by exploiting the marching cubes algorithm. Since we perform the reconstruction of the 
interface only for the bodies that experience breakup/coalescence, the increase in computational 
cost with respect to a classic front tracking scheme without topology changes is small. Using val-
idation cases, we show that the proposed reconstruction procedure is second-order accurate for 
volume conservation and able to capture the physics of several two-phase flow configurations 
undergoing topology changes. The validation cases include the breakup of a droplet in simple 
shear flow and two rising bubbles in different regimes (peripheral and central breakups). Coales-
cence is tested by modelling the binary collision between two droplets. For the selected validation 
cases, an excellent agreement between the numerical results and experiments is observed. The 
proposed methodology is able to capture the details of such interfacial flows, by predicting ac-
curately the coalescence/breakup dynamics, as well as the number, size and shapes of satellite 
droplets/bubbles after topology changes.

1.  Introduction

The numerical modelling of interfacial flows poses several challenges due to complex phenomena that occur at the interface 
between two different fluids. Such difficulties include the accurate representation of the interface and its transport within the domain, 
the computation of interfacial effects (e.g., surface tension force, mass transfer) and the changes in the topology of the interface due to 
breakup or coalescence of fluid entities (e.g., droplets, bubbles) or ligaments (e.g., atomization of liquid jets). Several methodologies 
have been developed to address the above difficulties, and can be classified into front capturing and front tracking techniques.

The first class of methods relies on the transport of an Eulerian field, such as the colour field for the volume of fluid (VOF) 
approach [1,2] and the distance function in the level set (LS) method [3], and, in both cases, the interface is implicitly captured by 
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\begin {align}\label {eq:continuity} &\nabla \cdot \mathbf {u} = 0\end {align}
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transporting a corresponding field on the Eulerian mesh. The VOF method exhibits excellent mass conservation properties, but the 
computation of the interface curvature is not always straightforward, leading to the well-known effect of spurious currents [4]. The 
LS method offers greater accuracy in computing the curvature but does not perform as well as the VOF in terms of mass conservation. 
The second class of methodologies, i.e., front tracking, uses an auxiliary surface mesh to describe the interface [5–8]. Such mesh 
consists of a triangular (in 3D) front, where each vertex (also referred to as marker) is advected in a Lagrangian fashion with the 
underlying velocity field computed on the Eulerian grid. Front tracking usually comes with additional memory requirements to store 
the connectivity of the front (i.e., the connections between vertices, edges and triangles of the Lagrangian mesh) and computational 
cost for the remeshing of the front. Since the markers are advected with the flow velocity field, they can accumulate or their density 
can decrease in specific regions of the front (e.g., bottom and top sides of a rising bubble, respectively). Such events can lead to 
wrinkles in the surface (accumulations of markers) or to under-resolved interfaces in the opposite scenario. Remeshing is necessary 
to avoid these phenomena and ensure a good quality of the Lagrangian mesh. However, remeshing can introduce shape and volume 
errors, and specific vertex repositioning algorithms for front tracking have been developed to mitigate these effects [9]. Despite the 
additional complexity of front tracking, this methodology is widely used for the modelling of two-phase flows. The main strengths 
of front tracking come from the explicit representation of the interface, which allows to reach higher accuracy in the computation of 
the properties of the front (e.g., normal vector and curvature) and greatly simplifies the treatment of surface scalar fields, such as the 
concentration of insoluble surface-active substances [10,11].

Research on both classes of numerical methods has mainly focused on the development of schemes for the advection of the 
interface or the computation of surface tension effects [12], whilst advances in the modelling of topology changes has lagged far 
behind. Front capturing and front tracking schemes behave in a very different way with regards to topology changes. In the VOF 
or LS methods without special treatments, coalescence or breakup occur numerically whenever the distance between two interfaces 
becomes smaller than the grid size. This happens because the Eulerian field that implicitly represents the interface cannot distinguish 
multiple interfaces within the same computational cell. Although this comes with the advantage that no additional effort is required to 
obtain a change in the topology of the interface, the eventual breakup/coalescence is a numerical artefact, i.e., it depends solely on the 
grid resolution and does not take into account the physics of the problem. Ad hoc techniques have been proposed to handle topology 
changes for specific configurations with front capturing methods. A simple approach consists of using multiple colour functions for 
each fluid particle. In this way, when two different interfaces come closer than one cell, they do not merge because each interface 
is represented by a different field [13,14]. To reduce the number of fields necessary to track all the fluid particles (which can be 
prohibitive when a large number of bubbles/droplets is simulated), a multilayer VOF method is presented by Karnakov et al. [15]. 
In the case of thin ligaments that undergo breakup, a novel algorithm is proposed by Chirco et al. [16], that allows to detect thin 
structures and perforate them before their thickness reaches the grid size threshold. Recently, extension to classic VOF schemes have 
been proposed that allow to describe two planar interfaces in the same computational cells, paving the way towards the modelling 
of sub-grid films [17].

Front tracking methods behave in the opposite way, i.e., coalescence or breakup of interfaces do not occur spontaneously, re-
gardless of the distance between the fronts and the resolution of the Eulerian mesh. Therefore, topology changes must be taken into 
account explicitly by performing a reconstruction of the Lagrangian front. The methodologies available can be classified into grid-
based or grid-free approaches, depending on whether they rely on an auxiliary (Eulerian) mesh [18]. Grid-free approaches consist of 
manipulating the front elements close to the region where breakup or coalescence occur, which, therefore requires an algorithm to 
identify such areas. A simple implementation for droplets collision is presented by Nobari et al. [19] and Nobari and Tryggvason[20] 
for 2D and 3D simulations, respectively. Their approach consists of removing triangular elements from both fronts when they are 
close to each other and nearly parallel. The holes generated in both droplets are then reconnected in order to form a single surface. 
Resolutions of intersections between fronts that lead to changes in the front topology are achieved by Glimm et al. [21] with an un-
tangle algorithm in a grid-free framework. This algorithm consists of finding the cross points (in 2D) of the two fronts and removing 
the non-physical regions between the curves. Extension to 3D is presented in Glimm et al. [22].

More recent advancements in grid-free approaches are presented by Razizadeh et al. [23] and Regnault [18]. The former presents 
a methodology that consists of identifying pairs of triangular elements with normal vectors pointing towards opposite directions and 
distance below a threshold value. Such elements are then collapsed by replacing each pairs of vertices with their mid point. In this 
way, a region of dual elements is created and, after their removal, the change in the front topology is achieved. The methodology 
has been successfully tested for breakup and coalescence of droplets. A similar approach is developed by Regnault [18], where two 
different algorithms for breakup and coalescence are presented. Two coalescence regions on the fronts that undergo merging are 
obtained through projection of the triangle vertices that are closer than a threshold distance. The polygonal regions are then adapted 
on both interfaces so that they can be merged halfway between the fronts. The algorithm is tested for breakup and coalescence, 
however the author reports that the hypotheses behind the model limit its application to simple topological changes.

Grid-based methods employ an auxiliary grid to perform changes in the topology of the interface. Glimm et al. [22] propose 
a methodology based on three steps to resolve overlapping interfaces: computation of the intersection between the fronts and the 
auxiliary grid edges, removal of invalid intersections and reconstruction of the front into a topologically valid interface. Reconstruction 
is performed adopting a marching cubes scheme [24], i.e., based on the phase indicator function values stored at the grid vertices. 
The auxiliary grid is the same as the one used to solve the governing equations. Glimm et al. [22] also combine their grid-free and 
grid-based methods into an hybrid approach that shows better performance. In a similar way, Du et al. [25] and Bo et al. [26] propose 
a locally grid-based method, where the front is mainly handled in a grid-free way, and grid-based reconstruction is limited to regions 
of the front where triangles form a topologically inconsistent surface. The main advantage of such hybrid approaches consists of 
combining the best features of both methods. The grid-free approach provides high-quality reconstructed fronts but it is not robust 
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enough to handle complex topological cases. On the other hand, grid-based approaches always return a valid interface but are prone 
to interpolation errors and result in an excessively smoothed interface.

Front tracking methods without connectivity, i.e., the logical connections between the vertices, edges and triangles of the La-
grangian front, have been introduced to reduce the memory requirements necessary to store the connectivity information and ease 
the complexity of remeshing algorithms [27,28]. Such methods have also been employed to model topology changes in two-phase 
flows. Torres and Brackbill [27] develop the point-set method, a front tracking algorithm that uses unconnected interfacial markers 
to represent the interface. The authors derive a procedure to compute surface properties (e.g., normal vector and area) and spread the 
indicator function from the Lagrangian front to the Eulerian mesh via an iterative solver that comes with an additional cost compared 
to classic front tracking schemes. To maintain a uniform distribution of the markers, a regeneration of the interface is periodically 
executed. Such regeneration consists of projecting the cell centres of a Cartesian mesh onto the interface and retaining only those 
projected points that lie within the same cell as the centre they originate from. Such procedure allows to model coalescence or breakup 
by projecting points from cells outside or inside the interface respectively. In the generic case of a front undergoing both types of 
topology changes, a more complex regeneration procedure is required.

Another connectivity-free technique that combines front tracking and level set methods to handle topology changes is the level 
contour reconstruction method (LCRM) [28,29]. This approach uses a Cartesian grid to perform periodic (e.g., every 100 time steps) 
reconstruction of the entire Lagrangian front. Similar to the approach of Torres and Brackbill [27], such reconstruction is needed to 
maintain a good quality of the surface mesh. The indicator function () is computed at the vertices of the auxiliary mesh and the 
intersections between the new front and the grid edges are computed through linear interpolation from the vertex values and located 
where  = 0.5. When all the intersection points are found, the old front is discarded and entirely replaced by the new one.

Several improvements to the LCRM method have been proposed in the literature. A high-order interpolation kernel is adopted 
in Shin and Juric[30] to improve the redistribution of mass in the reconstructed front that occurs between regions with different 
curvatures. A methodology that relies on the LCRM method only to deal with topology changes is presented by Singh and Shyy[31]. 
Their method uses a classic front connectivity to perform remeshing operations, such as edge splitting and collapsing. A hybrid 
approach that combines LCRM and LS methods is proposed by Shin and Juric[32], where a LS-like distance function (𝜙) is explicitly 
computed on the Eulerian grid from the vector distance between each front elements and the neighbouring cell centres. This enhances 
the accuracy of the curvature and, therefore, reduces spurious currents effects. The distance field can be used instead of the indicator 
function to reconstruct the front by locating the intersections at 𝜙 = 0. The original LCRM method suffers from ambiguities in the 
reconstruction procedure whenever each edge of a cell is cut by the reconstructed interface (in 3D this applies to a face of the 
auxiliary grid). A tetra-marching procedure is adopted in Yoon and Shin[33] to resolve such ambiguities and consists of splitting 
each face of the grid used for reconstruction along one of the diagonals. The reconstruction on a triangular face is non-ambiguous, 
however the result in terms of interface topology depends on the direction of the split, i.e., on which of the two diagonals is used. The 
consequence of this is that breakup/coalescence depend on the direction used for the splitting. To minimise this effect, the direction of 
the diagonals can be swapped periodically during the simulation. Using a zig-zag pattern of such diagonals ensures continuity across 
cell boundaries of the reconstructed front. A significant improvement to the LCRM algorithm is the local front reconstruction method 
(LFRM) [34]. This approach does not rely on an Eulerian field, but reconstructs instead directly from the Lagrangian front. The 
intersection points between the front and the auxiliary grid edges are computed geometrically from the front and the reconstruction 
operation is performed within each cell in a way that ensures local mass conservation. The handling of topology changes is equivalent 
to the LCRM method and suffers as well of the same non-uniqueness feature, depending on the direction of the diagonal cut. Both 
methodologies (LCRM, LFRM) can naturally handle coalescence/breakup of interfaces and return a result similar to front capturing 
methods (e.g., VOF, LS). Recent advancements in connectivity-free approaches include the edge-based interface-tracking (EBIT) 
method [35,36], where the Lagrangian front consists of markers that are allowed to move exclusively along the edges of the Eulerian 
grid. Markers are advected with a split method and topology changes occur when two markers reach the same cell edge aligned to the 
advection component. Such points are then removed and the front is reconnected accordingly. The drawback of this approach is that 
breakup/coalescence do not occur when the fronts approach each other with a direction not aligned to the advection component.

The problem of dealing with triangular surface meshes that represent interfaces undergoing topology changes is not exclusive to 
computational fluid dynamics simulations. Several algorithms were also developed by researchers in computer graphics to render 
realistic fluid animations, and front tracking techniques have proven effective in this field. Both grid-based [37–40] and grid-free 
[41–43] approaches have been successful in computer graphics simulations. Grid-based methods often rely on the marching cubes 
algorithm to reconstruct the iso-surface corresponding to the interface, whereas specific approaches are devised to preserve sub-
grid features [37], confine the mesh modifications to the parts affected by breakup/coalescence [38] and reduce errors between the 
Lagrangian mesh and the corresponding iso-surface [40]. An alternative to the marching cubes approach is presented by Wojtan 
et al. [39], where the interface to be reconstructed is replaced by the corresponding convex-hull shape, limiting the loss of sub-grid 
details. The criteria that drive the design of computer graphics applications are based on computational efficiency, ease of paralleli-
sation and preservation of thin features for realistic renderings. However, an accurate representation of the interfacial phenomena is 
not a priority and validation of these algorithms against real cases (e.g., experiments) is missing in the literature.

From the literature review presented above, it emerges that several non-trivial issues still need to be addressed when dealing 
with the modelling of topology changes with front tracking methods. In this work, we present a grid-based numerical framework 
based on the marching cubes algorithm for the reconstruction of the front, where the interface after breakup/coalescence is obtained 
by a reconstruction of the iso-surface corresponding to the indicator function value  = 0.5. Contrary to the LCRM/LFRM methods, 
where the topology of the interface is not determined a-priori, the marching cubes algorithm is based on a list of 256 pre-computed 
topological configurations, which limits the amount of reconstruction operations at run time and makes the algorithm efficient. 
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Furthermore, we retain the front connectivity between the Lagrangian elements that allows us to limit the reconstruction of the front 
only to instances of topology changes, whilst volume-conserving remeshing operations [9] are performed to maintain a good quality 
of the triangles. Each Lagrangian body is unambiguously identified by an integer number and a breakup/coalescence algorithm is 
introduced to quickly identify the fronts that undergo topology changes based on a distance threshold. In this way, only the selected 
bodies for breakup/coalescence are reconstructed, whilst the rest of the front remains unaltered. The main goal of our approach is to 
provide a framework to handle complex topology changes and, at the same time, reduce volume and shape errors that are inevitably 
introduced when the front is entirely reconstructed. It is finally noted that a further benefit of limiting front reconstructions to the 
necessary minimum consists of avoiding excessive smoothing of surface scalar fields (e.g., surfactants), which require a two-way 
(front-to-grid and grid-to-front) communication whenever the interface is reconstructed [44].

The following sections are organised as follows. The one-fluid formulation of the Navier–Stokes equations and the main ingredients 
of front tracking are presented in Section 2, whilst the core of the reconstruction procedure (i.e., marching cubes and the detection 
algorithm for breakup/coalescence) is presented in Section 3. Finally, several test cases and validation against previous experimental 
works are discussed in Section 4.

2.  Governing equations and numerical framework

In this work we perform direct numerical simulations of incompressible two-phase flows. The system of governing equations is 
given by the Navier–Stokes equations, which are solved here in the corresponding one-fluid formulation: 

∇ ⋅ 𝐮 = 0 (1)

𝜌
( 𝜕𝐮
𝜕𝑡

+ ∇ ⋅ (𝐮⊗ 𝐮)
)

= −∇𝑝 + ∇ ⋅ (2𝜇𝐃) + 𝜌𝐠 + 𝐟𝜎𝛿𝑆 (2)

where 𝐮 is the fluid velocity, 𝜌 and 𝜇 are the phase density and viscosity, respectively, 𝐃 is the deformation tensor 𝐃 =
[

∇𝐮 + (∇𝐮)𝑇
]

∕2, 
𝑝 is the pressure field, 𝐠 is the gravitational acceleration and 𝐟𝜎 is the surface tension force per unit area of the interface. This term is 
converted into a volumetric source term via the interfacial delta function 𝛿𝑆 , which is the surface-equivalent of the Dirac 𝛿-function 
concentrated on a point. Eq. (1) represents the continuity equation, whilst the conservation of momentum is given by Eq. (2). The 
system of governing equations is solved in a finite-volume framework with a coupled and pressure-based solver, where the primary 
variables are stored in a collocated arrangement [45,46]. The terms Eulerian and fixed grid will be used interchangeably in the rest 
of the work to refer to the mesh used for the discretization of Eqs. (1) and (2). Although the methodology presented in this work can 
be used with any kind of Eulerian grid (i.e., structured and unstructured), only Cartesian meshes are considered here. The accuracy 
of the numerical schemes is second-order in space and time for the discretisation of Eqs. (1) and (2) [46].

Front tracking algorithms use a Lagrangian description of the interface that consists of a triangular mesh. The position of each 
vertex, 𝐱𝑖, is updated at every time step by solving the following transport equation:

d𝐱𝑖
d𝑡

= 𝐮̄(𝐱𝑖) (3)

where the advection velocity, 𝐮̄, represents the interpolation of the velocity field, 𝐮, from the Eulerian grid to the position of the 𝑖th 
Lagrangian vertex. The divergence-preserving interpolation scheme [47] is adopted in the present work on the basis of the results 
presented by Gorges et al. [9], who shows a significant reduction in volume errors compared to other approaches commonly used in 
front tracking simulations. The velocity is first computed on the Eulerian cell faces (from the cell centres) and then interpolated to 
the Lagrangian vertices. Correction terms are applied to the interpolation scheme in order to preserve exactly the discretised value 
of the divergence of the velocity field.

The one-fluid formulation consists of a single set of governing equations that is valid in the entire domain. The scalar fields 
representing the fluid properties (e.g., density, viscosity) are generally discontinuous across the interface, i.e., they assume different 
values in each phase, and are computed through a volume-based weighted average. For density, this reads:

𝜌(𝐱) = 𝜌a + (𝐱)(𝜌b − 𝜌a) (4)

and an analogous equation is used for viscosity. The variable  is the indicator function that identifies the regions (Ω𝑎,Ω𝑏
) of phases 

(𝑎, 𝑏) in the two-phase system under consideration:

(𝐱) =
{

0, if 𝐱 ∈ Ωa

1, if 𝐱 ∈ Ωb
(5)

Contrary to the VOF method, the indicator function is not directly advected on the Eulerian grid. Instead, it is obtained by spreading 
the indicator gradients from the Lagrangian front. This procedure is accomplished by solving the following Poisson equation on the 
fixed grid [48]:

∇2(𝐱, 𝑡) = ∇ ⋅ (∇) ≈ ∇ ⋅

(

∑

𝐸
Δ𝐧𝐸𝐷(𝐱 − 𝐱𝐸 )

𝐴𝐸
𝑉

)

(6)

where the summation term on the RHS represents the (discretized) contribution of each triangle 𝐸 (with area 𝐴𝐸 , normal vector 𝐧𝐸
and centre coordinates 𝐱𝐸) for the Eulerian cell with centre coordinates 𝐱 and volume 𝑉 . The jump value of the indicator function 
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between the phases is (∇) = −1, according to Eq. (5). The distribution function 𝐷(𝐱 − 𝐱𝐸 ) ensures that the contribution of each 
triangle 𝐸 is spread only to the neighbouring cells. This is achieved in the present work by adopting the Peskin weighting approach 
[49,50] in a 5 × 5 × 5 stencil centred on the Eulerian cell that contains the centre of the generic front triangle:

𝑑(𝑟) =

⎧

⎪

⎨

⎪

⎩

1
4

(

1 + cos
(

1
2𝜋𝑟

))

, |𝑟| < 2

0, |𝑟| ≥ 2
(7)

The weighted contribution of the triangle is then computed by multiplying the one-dimensional weights from Eq. (7), i.e., 𝐷(𝐱 −
𝐱𝐸 ) = 𝑑(𝑟𝑥)𝑑(𝑟𝑦)𝑑(𝑟𝑧), where 𝑟𝑥 is the non-dimensional distance, i.e., 𝑟𝑥 = (𝑥 − 𝑥𝐸 )∕Δ𝑥. When the contributions from all the elements 
of the Lagrangian front are computed, the gradient of the indicator function at the generic Eulerian location 𝐱 can be computed 
according to the RHS of Eq. (6), which is then integrated with a standard second-order centred finite difference scheme. A similar 
treatment is adopted for the surface tension force, where the corresponding term on the RHS of the momentum equation is spread 
from the Lagrangian front to the Eulerian mesh [48]:

𝐟𝜎𝛿𝑆 =
∑

𝐸
𝐟𝜎,𝐸𝐷(𝐱 − 𝐱𝐸 )

𝐴𝐸
𝑉

(8)

where 𝐟𝜎,𝐸𝐴𝐸 is the surface tension force on the generic front triangle 𝐸. Such term is computed with a line integral over the triangle 
perimeter 𝑒 as 𝐟𝜎,𝐸𝐴𝐸 = 𝜎

∑

𝑒
𝐩𝑒𝑙𝑒. The planar vector 𝐩𝑒 is obtained by the cross product between the front normal vector at edge 𝑒 and 

the tangential vector at the same edge. The length of the generic edge 𝑒 is 𝑙𝑒.

3.  Front reconstruction due to topology changes

In front tracking simulations, topology changes (e.g, breakup of bubbles, coalescence of colliding droplets) must be addressed 
explicitly by performing geometrical operations on the Lagrangian front. If no action is undertaken, the connectivity between the 
front elements remains unchanged and no modifications in the front topology are possible.

In this work, a front reconstruction approach based on the indicator function (stored on the Eulerian grid) is proposed and the 
main idea is illustrated in Fig. 1.

We consider the case of two adjacent spheres that undergo coalescence. Fig. 1a shows the initial configuration, where the contact 
region between the particles is (ideally) limited to one point. The corresponding indicator scalar field is shown in Fig. 1c, where phase 
Ω𝑎 (Eq. (5)) is assumed to be the disperse phase (i.e., the two fluid particles). The topology of the interface can be reconstructed 
based on the information provided by the indicator field. Since  is bounded between 0 <  < 1, the interface consists of the points 𝐱
that belong to the iso-surface 𝑆=0.5. For the example under consideration, a slice of the iso-surface is represented by the black line in 
Fig. 1c. As can be immediately seen, the indicator-based reconstructed front automatically provides a single merged front. This result 
is not surprising, as it is the same mechanisms that occurs in VOF simulations, where the indicator function is explicitly advected and 
topology changes occur numerically whenever the distance between the fronts is approximately equal to the grid spacing. For the 
same reason, the reconstructed front results in a single body only if the distance between the initial spheres is smaller than grid size 

Fig. 1. Overview of the reconstruction procedure: (a) original configuration, (b) reconstructed body after coalescence and (c) contours of the 
indicator function with the iso-surface 𝑆=0.5 (black line).
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where  is stored, otherwise the two original spheres would be recovered. Despite the similarities with the front capturing methods 
mentioned above, it is important to point out that the front tracking approach can provide a better control over the topology change 
process, since the decision to trigger the reconstruction is based on user-defined criteria. It is possible, for instance, to reconstruct the 
front when the distance between two interfaces is arbitrary smaller than the grid size (which is generally not possible in standard front 
capturing methods, since a single cell cannot handle more than one interface), or introduce a physically-consistent model to predict 
the coalescence/breakup time (e.g., film rupture model for the coalescence of a binary droplet collision [51]). Another remarkable 
advantage of front tracking consists of the separate (Lagrangian) mesh used for the description of the front, which allows to obtain 
the indicator function using Eq. (5) on an auxiliary grid (different from the one used to solve the Navier–Stokes equations). In this 
way it is possible to increase the accuracy of the reconstructed front without affecting the computational cost of the solution of the 
governing equations. This feature is particularly relevant when it is essential to capture regions with strong curvatures and will be 
properly discussed later in Section 3.1.

The last step of the reconstruction procedure consists of recreating a fully-connected Lagrangian front from the iso-surface 𝑆=0.5. 
This requires the computation of the coordinates of the new vertices and the corresponding connectivity between edges and triangles. 
This is achieved in the present work by exploiting the marching cubes algorithm (Section 3.1). The result of the reconstructed topology 
is shown in Fig. 1c, where a small “bridge” is created between the particles around the merging point.

3.1.  Marching cubes algorithm

Marching cubes is a robust and fast algorithm for surface reconstruction from an indicator function field and was originally 
proposed by Lorensen and Cline[24] for medical applications (e.g., computed tomography, magnetic resonance). Let 𝑓 (𝑥, 𝑦, 𝑧) = 0 be 
a (known) continuous surface (a sphere in the example of Fig. 2) that we wish to approximate with a discrete triangular mesh.

The first step consists of creating an equidistant Cartesian mesh (independent of the Eulerian grid used for the governing equations) 
that fully overlaps the region occupied by the surface 𝑓 (𝑥, 𝑦, 𝑧) = 0 (Fig. 2a). For each vertex  of the grid with coordinates (𝑥 , 𝑦 , 𝑧 ), 
it is possible to compute the value of 𝑓 at the corresponding location, i.e., 𝑓 = 𝑓 (𝑥 , 𝑦 , 𝑧 ). The intersections between the surface 
and the edges of the Cartesian grid can be simply obtained by looping over each edge of the mesh (delimited by the generic vertices  ′

and  ′′) and check for the product 𝑓 ′𝑓 ′′ . When such a quantity is negative, it means that there is a change in the sign of 𝑓 between 
 ′ and  ′′ and an intersection (i.e., where 𝑓 = 0) occurs accordingly in between (Fig. 2b). The coordinates of the intersection point 
() are readily obtained with a linear interpolation scheme (high-order approaches are obviously possible [52]):

 ′ =
(

𝑓 ′

𝑓 ′ − 𝑓 ′′

)

 ′ ′′ (9)

where  ′ is the distance between the first edge vertex and the intersection point. This procedure is repeated in a loop over the whole 
mesh and, once all the edges have been traversed, the intersection points are connected to form a triangular mesh (Fig. 2c). This 
procedure ensures that each vertex  is always the same (i.e., same coordinates) for the four adjacent cubes that share edge  ′ ′′, 
since the values 𝑓 ′ , 𝑓 ′′  are the same. However, this is not sufficient to ensure a full continuity of the triangular front, as there could 
be configurations where a triangular edge is not shared by two adjacent triangles. This scenario leads to the formation of holes in the 
reconstructed front and will be discussed in Section 3.1.1. In the case of a free-surface flow, all the peripheral edges are connected to 
one triangle only and, therefore, such elements must be excluded when performing checks for holes in the reconstructed interface. 
In the limit case of 𝑓 = 0 at one cube vertex, a triangle with collapsed vertices and null area would be reconstructed. To avoid such 
a degenerate configuration, we check for the value of 𝑓 at each cube vertex and, if |𝑓 | < 10−6, we increase 𝑓  by ±10−3, where 
the sign is the same as the sign of 𝑓 . Such an increase in the value of 𝑓 guarantees that the methodology is robust and capable 

Fig. 2. Main steps of marching cubes triangulation. Auxiliary Cartesian mesh (a). Compute intersection points  from linear interpolation between 
values at vertices  ′ (outside the interface),  ′′ (inside the interface) and assemble triangular elements (b). Final triangulated body (c).
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of handling complex interface reconstructions. An advantage of the marching cubes algorithm consists of the ease of parallelisation 
because only local information is needed. Indeed, only the values of 𝑓 at the vertices are needed and the reconstruction of the triangles 
is performed locally within each cell without any communication required from the neighbouring elements. This is true as long as 
the intersection points are computed with a first-order scheme (e.g., linear interpolation of Eq. (9)), whilst high-order approaches 
would require larger stencil and read access to data from the neighbouring cells.

The procedure discussed above illustrates the discretization of a surface for which the equation is known. In the case of topology 
changes in two-phase flows, the resulting shape of the interface is not known a-priori and the analytical formula that describes the 
shape cannot be obtained. However, in order to reconstruct the interface after topology changes, the analytical representation of 
its shape is not necessary. As is illustrated in Fig. 1, it is possible to derive the shape of the interface by computing the iso-surface 
𝑆=0.5 of the indicator function. The Poisson equation, Eq. (6), is solved on the Cartesian grid used for front reconstruction with 
marching cubes and the values of  are stored at the cell centres. Such values are then interpolated at the vertices  by means of 
a simple arithmetic average, which leads to the definition of the vertex scalar field  . At this point, we can apply the procedure 
illustrated above for the reconstruction of the analytical function 𝑓 (𝑥, 𝑦, 𝑧), with the only difference that the intersection points belong 
to the set of points  ∶  = 0.5, i.e., 𝑓 =  − 0.5. Reconstructing the iso-surface for  = 0.5 is therefore equivalent to searching for 
the points belonging to 𝑓 = 0. In the following we assume a point to be inside (outside) the interface if the corresponding indicator 
value is  > 0.5 ( < 0.5). The indicator function is not the only possible choice to reconstruct the interface. The same marching cubes 
procedure can be used to find the iso-surface 𝜙 = 0, where 𝜙 is a signed distance function that can be derived from the Lagrangian 
front [32]. One distinguished feature of the marching cubes reconstruction method is that it is possible to reach a high level of 
accuracy in the discretization of the iso-surface. The Cartesian mesh used for the reconstruction is not necessarily the same as the one 
used for the solution of the Navier–Stokes equations. This allows us to decouple the reconstruction procedure from the solution of 
the governing equations, which can then be solved on any kind of mesh, e.g., unstructured grids. It is therefore possible to use a very 
fine grid for marching cubes without affecting the computational cost of the governing equations. This feature is particularly relevant 
when the interface exhibits a strong curvature. The under-resolution of such regions would lead to cases where multiple intersections 
occur for one or more edges of the marching cubes grid, leading to loss of information in this area, since only one intersection per 
edge can be captured by the algorithm. An example (2D) of an under-resolved reconstruction is shown in Fig. 3a, where the front 
intersects twice with the  ′ ′′ edge.

Since 𝑓 ′𝑓 ′′ > 0, the algorithm returns no intersection. This issue is readily fixed by refining the marching cubes grid (Fig. 3b). The 
edge between vertices  ′ and  ′′ is now split in two smaller edges with opposite boundary values (i.e., 𝑓 ′𝑓 ′′′ < 0 and 𝑓 ′′′𝑓 ′′ < 0) 
with one intersection each. Due to the very strong curvature of the proposed example, the bottom right cell of the refined mesh is 
under-resolved too and would require further refinement (e.g., the purple grid in Fig. 3b). The choice of the marching cubes grid 
resolution is therefore a compromise between accuracy and computational cost. Interfaces with highly-curved regions are naturally 
more demanding in terms of resolution. Once the appropriate size of the marching cubes grid is chosen, the same spacing is applied 
everywhere, i.e., the reconstruction grid is a uniform Cartesian mesh. It is possible to combine adaptive mesh refinement techniques 
with marching cubes (see, for example, the work of Shu et al. [53]), but this approach is not implemented in the present work. The 
use of a different, highly-resolved grid clearly comes with the cost of solving twice Eq. (6), since the indicator function is still needed 
on the Eulerian grid for the one-fluid formulation of the Navier–Stokes equations. It is finally reminded here that Peskin spreading 
for the indicator gradients ∇ is based (in 3D) on a 5 × 5 × 5 stencil. When refining the mesh for marching cubes, it could happen 
that the front triangles before topology changes are too large compared to the cell size of the auxiliary mesh and their contributions 
(in terms of ∇) reach cells not included in the spreading stencil. To avoid this, the Lagrangian front is first refined to be consistent 
with Peskin spreading.

The marching cubes algorithm is implemented by listing all the possible cubes configurations in a lookup table. Since each vertex 
can be either inside ( > 0.5) or outside ( < 0.5) the iso-surface, the total amount of possible configurations is 28 = 256. However, 
the authors in Lorensen and Cline[24] make use of symmetries to show that the number of entries in the lookup table can be reduced 
to only 15 unique cases (Fig. 4). Since all the possible topological configurations are pre-computed, the marching cubes algorithm is 
extremely efficient.

Fig. 3. Reconstruction of a highly-curved interface. Under-resolved (a) and refined (b) grids.
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Fig. 4. Lookup table of the unique 15 cases as identified in Lorensen and Cline [24]. The vertices where  > 0.5 are identified with a red circle. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Once the specific cube configuration is identified, the number of triangles (up to four) and their arrangement within the cell is 
known a-priori from the lookup table. For each edge that owns a triangle vertex, the coordinates of the vertex are computed with 
Eq. (9) and stored in a hash list. In a similar way, lists are also created for edges and triangles. The connectivity among these elements 
is then ensured by linking each edge to the corresponding two vertices and two triangles that share it. Finally, for each element in 
the list of triangles, the links to the three vertices and edges owned by the triangle are populated. The connectivity among the front 
elements is sketched in Fig. 5.

At the beginning of a simulation, each single body (i.e., a connected Lagrangian front representing, for example, a bubble or 
droplet) is initialised with the data structure shown in Fig. 5. To distinguish among multiple bodies, a unique id is assigned to each 
of them as soon as they are initialised.

3.1.1.  Marching cubes ambiguities
A known issue of the marching cubes algorithm is the existence of ambiguities in the arrangement of triangles for some of the 

15 cases [54–59]. Such ambiguities are generally distinguished based on whether they occur on the face (face ambiguities) or inside 
of the cubes (internal ambiguities). Face ambiguities affect each case where all the four edges of a face are cut by the iso-surface 
𝑆=0.5. This happens when, for each set of two adjacent vertices 

(

 ′, ′′), one is inside and the other one outside the interface, i.e., 
(

 ′ − 0.5
)(

 ′′ − 0.5
)

< 0. Such ambiguity can lead to a hole in the reconstructed front on the ambiguous face and affects cases 3, 
6, 7, 10, 12 and 13 of the lookup table. An example is shown in Fig. 6a, where the inconsistency occurs on the face shared by cube 6 
and the complementary configuration of case 3 (referred to as 3̄).

Fig. 5. Connectivity of the triangular front. Each triangle has links to its vertices and edges. Each edge is connected to the corresponding two 
vertices and triangles that share the edge itself.
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Fig. 6. (a) Face ambiguity that leads to the formation of a hole on the face shared between cube 6 (left) and the complementary configuration of 
case 3 (right). (b) Internal ambiguity for the reconstruction of a cylinder (left). Cube configuration 4 (right) only takes into account one topological 
reconstruction, which is not consistent with the original surface.

The other type of ambiguities arises inside the cube whenever the reconstructed front is topologically inconsistent. An example 
of such inconsistency is shown in Fig. 6b for the reconstruction of a circular cylinder. The configuration under investigation is case 
4 from the original lookup table, which leads to two disconnected triangles. Marching cubes, without knowledge of the ambiguity, 
clearly produces a wrong result as it can be easily seen by looking at the dotted line that connects the lower-left-front vertex with the 
upper-right-rear one, where any point that belongs to this line is inside the original surface (i.e., 𝑓 > 0, indicated with a ‘+ ’ symbol). 
However, in the reconstructed configuration, the same line intersects the triangular front twice, leading to a set of points (between 
the two triangles) that lies outside the iso-surface (‘−’ symbol). Since marching cubes processes each cube independently, a natural 
approximation of the indicator function (̄) follows from the trilinear interpolation:

̄ = 000 (1 − 𝑞)(1 − 𝑟)(1 − 𝑠)

+ 100𝑞(1 − 𝑟)(1 − 𝑠)

+ 010 (1 − 𝑞)𝑟(1 − 𝑠)

+ 110𝑞𝑟(1 − 𝑠)

+ 001 (1 − 𝑞)(1 − 𝑟)𝑠

+ 101𝑞(1 − 𝑟)𝑠

+ 011 (1 − 𝑞)𝑟𝑠

+ 111𝑞𝑟𝑠 (10)

where (𝑞, 𝑟, 𝑠) is the cube coordinate system and 000,100,…,111  are the corresponding vertex values. Internal ambiguities may arise in 
marching cubes because the cases listed in the original lookup table only consider vertex values and, for the same set of indicator 
values at the cube vertices, multiple topologies are possible, i.e., the shape inside the cube is not uniquely defined. However, the 
topological correct front is the only configuration that has the same topology of the one resulting from the trilinear interpolation of 
the indicator function [58]. In the ambiguous cases, the lookup table only provides one possible topology, which does not necessarily 
match the one from the trilinear interpolation, leading to the presence of ambiguities. Internal ambiguities can affect cases 3, 4, 6, 7, 
10, 12 and 13, i.e., the same inconsistent configurations for face ambiguities (plus cube 4).

Several works have addressed the issue of ambiguities in marching cubes. Face inconsistencies are treated in Nielson and 
Hamann[54] and Montani et al. [56]. The former introduces an asymptotic decider algorithm to chose the correct edge pattern 
on ambiguous faces, whilst the latter proposes new complementary configurations for the ambiguous cases in order to avoid the 
formation of holes. The asymptotic decider algorithm introduced by Nielson and Hamann[54] is based on the assumption of bilinear 
variation of  over a plane (the two-dimensional equivalent of Eq. (10)) and ensures that the reconstructed front is continuous (𝐶0). 
This work is extended in Natarajan[57] and Chernyaev[58] to include internal ambiguities as well. Natarajan[57] checks for the 
value of the interpolated indicator function at the saddle point of the trilinear surface to decide whether two regions with the same 
sign of  are connected or disconnected. Chernyaev[58] uses bilinear variation of  on internal planes, parallel to one of the cube 
faces, to identify the correct topological configuration and proposes a new version of marching cubes with a lookup table of 33 cases 
with no ambiguities. This work is further optimised and extended in Lewiner et al. [60], Custodio et al. [61], Vega et al. [62]. For 
a review on the marching cubes algorithm and the several techniques that can be adopted to avoid inconsistencies, the reader is 
referred to the work of Newman and Yi[59].

Face and internal ambiguities lead to non-continuous and topologically inconsistent triangular fronts that do not have a physical 
meaning. It is important to note that the ambiguous cases are the configurations that contain multiple disconnected triangles (i.e., 
cases 3, 4, 6, 7, 10, 12 and 13 of the lookup table). Face ambiguities that lead to holes in the interface are never encountered in any 
of our simulations. In the following we assume to deal with closed interfaces and, according to the front topology shown in Fig. 5, 
each edge is linked to the two adjacent triangles that share the edge itself. In the case of a hole, there would be some edges linked 
to one triangle only (Fig. 6a). After each reconstruction, we check for edges connectivity and, if a triangle is missing, the simulation 
is interrupted. It is noted here that the marching cubes algorithm does not distinguish between closed or free surfaces and can be 
applied to both cases. In the case of free surfaces, the peripheral triangles must be excluded from this check. Internal ambiguities do 
not lead to crashes and can actually occur in our methodology. However, the occurrence of ambiguous configurations is generally 
very limited, owing to the way the indicator function is computed on the Eulerian grid. The spreading of the indicator gradient ∇
(Eq. (6)) produces a scalar field  that varies smoothly between the limit values (0 <  < 1) across approximately three layers of cells 
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Table 1 
Frequencies (%) of marching cubes cases. Configuration 𝐶0, where the cube is empty, is not relevant and has been excluded from 
the statistics. The ambiguous cases are highlighted in bold.

 Config.  Single sphere (4.1) Droplet breakup 
in shear 
flow(4.2)

Droplet-droplet 
collision (4.3)

Rising bubble 
(peripheral 
breakup - 4.4)

Rising bubble 
(central breakup 
- 4.4)

𝐶1  27.2 19.5 26.5 29.05 28.6
𝐶2  34.0 38.4 33.5 29.89 31.8
𝐂𝟑  0 0.0005 0 0.53 0
𝐶4  0 0 0 0.04 0
𝐶5  16.7 15.8 18.5 18.63 18.7
𝐂𝟔  0 0 0 0.33 0
𝐂𝟕  0 0 0 0 0
𝐶8  16.9 24.4 17.5 16.49 15.9
𝐶9  5.2 1.9 4.0 4.95 5.0
𝐂𝟏𝟎  0 0 0 0.02 0
𝐶11  0 0 0 0.03 0
𝐂𝟏𝟐  0 0 0 0.01 0
𝐂𝟏𝟑  0 0 0 0 0
𝐶14  0 0 0 0.03 0

(Fig. 1c). The result resembles the indicator function field obtained with an algebraic volume of fluid method and the corresponding 
interface (represented by the iso-surface 𝑆=0.5) generally does not have two separate parts in the same Eulerian cell. This happens 
since the indicator function only provides the relative amount of the primary phase volume, but not the number of interfaces that are 
present inside the cell. Therefore, even for cases that before front reconstruction have multiple interfaces inside the same marching 
cubes cell, after solving Eq. (6) for  and interpolating the values at the cube vertices, the corresponding configurations from the 
lookup table are generally non-ambiguous cases. Table 1 anticipates the occurrence of the ambiguous configurations for the validation 
cases presented in Section 4.

For each of the 256 cases that can occur during the reconstruction procedure in each cube, the corresponding configuration from 
the lookup table is found and its frequency monitored during the simulation (the cases that are either completely inside or outside 
the interface are excluded). The results show that the ambiguous configurations (highlighted with a red font colour) represent a very 
limited number of cases among all the possible cases (only the rising bubble with peripheral breakup exhibits some occurrences, 
but less than 1% globally). It is finally reminded that an ambiguous case does not necessarily leads to a topologically inconsistent 
reconstruction, i.e., not all the ambiguous cubes in Table 1 necessarily represent a wrong interface. From the above considerations, 
it follows that the error induced by topologically inconsistent reconstruction has a marginal effect on the evolution of the entire 
interface. Despite the different approach, a similar conclusion applies to the LCRM/LFRM methods. The issue of ambiguities is 
treated by splitting the reconstruction cubes into tetrahedral cells, which return only one possible topology. However, an ambiguity 
still persists as the direction of the splitting is arbitrary and different choices lead to different topologies (e.g., it can prevent or induce 
topology changes). To mitigate this effect, the orientation of the tetrahedral cells is periodically switched. Regardless of the specific 
orientation choice, these methodologies have proven to be effective in handling topology changes, proving that ambiguities do not 
have a central role in this type of simulations.

3.2.  Detection of topology changes

The marching cubes based reconstruction algorithm is only needed for topology changes. It is therefore important to guarantee that 
only the bodies undergoing breakup/coalescence are actually reconstructed. From an algorithmic point of view, before generating the 
marching cubes grid, it is necessary to detect and flag all the front objects that experience breakup and/or coalescence. This represents 
one of the main differences of the proposed methodology compared to other works that exploit grid-based reconstruction approaches, 
such as LCRM [28–30,33] and LFRM [34]. This aspect has two advantages: not all the tracked interfaces need to be reconstructed, 
thus saving accuracy by avoiding unnecessary reconstruction errors, and marching cubes is executed only at the time steps where 
breakup and/or coalescence are detected. The first point brings a significant reduction in the computational cost of the reconstruction 
procedure since the grid used for marching cubes can potentially be much smaller than the computational domain occupied by the 
entire set of fronts. The second advantage has a strong impact on the cost as well, since the occurrences of breakup/coalescence 
events are generally smaller than the total number of time steps of the simulation. Therefore, marching cubes is executed only a few 
times during the simulation, as opposed to front reconstruction operations in LCRM/LFRM, which occur periodically with a rough 
estimate of one reconstruction every 100 time steps [34].

Detection of topology changes essentially includes two types of interfacial configurations: breakup (Fig. 7a), where a single body 
develops a thin filament that can lead to the formation of two separated interfaces, and coalescence (Fig. 7b), where multiple interfaces 
close to each other can be merged into a single object.

In both cases, detection is based on a threshold distance (𝛿 in Fig. 7). In principle, for each triangle of a single front, it is possible 
to loop over the other triangles of the same body (breakup) or of another object (coalescence) and check the distance between each 
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Fig. 7. Detection of breakup of a fluid ligament (a) and coalescence of two droplets (b). The identification of topology-changing bodies is based on 
the minimum distance 𝛿 between two triangular elements with opposite normal vectors.

pair of triangle centres. If such a distance is below the threshold value 𝛿, we check the orientation of the two triangles and, if the 
normal vectors have opposite direction (i.e., 𝐧𝑇1 ⋅ 𝐧𝑇2 < 0, where 𝑇1 and 𝑇2 refer to two generic triangles), the object (breakup) or 
pair of objects (coalescence) are flagged as topology-changing bodies. It can be immediately seen that the computational cost of such 
an algorithm is (𝑛2𝑇 ) for breakup, where 𝑛𝑇  is the number of triangles of the single object, and (𝑛1,𝑇 𝑛2,𝑇 ) for coalescence, where 
the subscripts 1 and 2 refer to two different bodies with ids 1 and 2, respectively. For interfaces with a large number of triangles, 
the execution of the detection algorithm can be expensive. To reduce the cost of such operation, we use a hierarchical structure of 
bounding boxes, which allows to perform fast rejection tests for a large group of elements without looping over all the triangles of a 
front.

3.2.1.  Bounding boxes
We adopt the tree structure of oriented bounding boxes presented by Gottschalk et al. [63]. An example of bounding boxes for a 

2D front is shown in Fig. 8.
The first box (root) encompasses the entire set of triangles (segment lines in 2D) and is the largest box in the tree. The root box 

must contain the object entirely and, at the same time, fit the triangulated surface as tightly as possible. This is achieved by computing 
the covariance matrix 𝐂 defined as:

𝐶𝑖,𝑗 =
1

3𝑛𝑇

𝑛𝑇
∑

𝑘=0
(𝑥̄𝑘0,𝑖𝑥̄

𝑘
0,𝑗 + 𝑥̄𝑘1,𝑖𝑥̄

𝑘
1,𝑗 + 𝑥̄𝑘2,𝑖𝑥̄

𝑘
2,𝑗 ) (11)

Fig. 8. Bounding boxes tree structure for a 2D front. Each box is split along the largest principal axis and contains the front elements from the 
parent node whose centre lies on the same side of the cut (e.g., box L owns the two elements of the root node with centres on the left side of the 
cut).
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where 𝑛𝑇  is the number of triangles. The vector 𝐱̄𝑖 is computed as 𝐱̄𝑖 = 𝐱𝑖 − 𝜉, with the coordinates of the 𝑖th vertex (𝑖 = 0, 1, 2) of the 
generic triangle represented by 𝐱𝑖. The mean value 𝜉 follows from:

𝜉 = 1
3𝑛𝑇

𝑛𝑇
∑

𝑘=0
(𝐱0 + 𝐱1 + 𝐱2) (12)

Two out of the three eigenvectors of the covariance matrix 𝐂 represent the maximum and minimum variance and tend to align the 
bounding box with the triangulated object. The box is therefore oriented with the orthogonal basis given by the eigenvectors of 𝐂, 
and the size is determined by the intersections between the vectors and the body, ensuring that the object is entirely contained within 
the bounding box. The next tree level is obtained by splitting the root box along the largest principal axis and consists of two children 
boxes with two elements each for the example shown in Fig. 8. A generic box contains all the front elements owned by the parent 
node whose centre lies on the same side of the cut. The procedure is repeated until only one element per box is left. The last boxes 
of each path in the tree are also referred to as leaf nodes. Each box can be identified by its path from the root level, which consists 
of a sequence of L (left) and R (right) characters, according to the direction of each split. When the bounding box tree is created, the 
coordinates of the centre and dimensions of each box as well as the list of triangular elements contained within are computed and 
stored in the hierarchical structure.

When looking for breakup, once we reach a bounding box with one of the principal dimension smaller than 2𝛿, the distance 
between each pair of triangles contained within the same box is computed and, if it is smaller than 𝛿 and the scalar product between 
the normal vectors is negative, the body is flagged and we interrupt the loop. If the smallest distance is still larger than 𝛿, we keep 
iterating over the remaining bounding boxes of similar size. This approach reduces the computational cost of the algorithm, since the 
list of triangles to loop over is significantly smaller compared to the entire front. A 3D representation of the bounding boxes with one 
of the dimensions smaller than 2𝛿 is shown in Fig. 9 for a deforming droplet in a planar shear flow.

It is finally noted that there might be a configuration in which a pair of triangles with centre to centre distance smaller than 𝛿
is not detected by the breakup algorithm if the two elements belong to two adjacent bounding boxes. However, the breakup event 
is generally anticipated by the formation of a thin filament with several triangles close to each other, and it is necessary to identify 
only one pair of these elements to trigger the breakup of the filament. In front tracking simulations of realistic two-phase systems, the 
filaments that undergo breakup must be resolved with enough triangular elements. Using bounding boxes with size 2𝛿 is expected to 
be accurate enough to guarantee that topology changes are executed consistently with the chosen breakup criterion.

A similar approach is used for the detection of merging interfaces, where two bodies, which we identify with ids 0 and 1, approach 
each other and merge into a single continuous front (coalescence). The algorithm is based on the work of Gottschalk et al. [63], 
who developed a methodology to compute the intersections between two bodies. We first introduce the original algorithm (for 
intersections) and then discuss the necessary modifications for coalescence. The first step consists of creating the bounding boxes 
trees for both bodies and check if the two root boxes overlap. Two boxes (A and B in Fig. 10a) do not overlap if the following 
condition is true: 

|𝐓 ⋅ 𝐋| > |𝑟𝐴| + |𝑟𝐵| (13)

The above inequality is tested by performing 15 tests with different directions 𝐋 and, if in all cases the inequality is not satisfied, the 
boxes overlap each other. The choice of the 15 tests is based on the separating axis theorem for a three-dimensional space, which 
follows as a corollary of the separating plane theorem (the reader is referred to Gottschalk[64] for more details). If there is an overlap, 
some of the triangles contained inside the root box of body 0 may intersect some of the elements owned by body 1; otherwise the 
two boxes are completely disjointed with no intersections. In the event of an overlap, the test is repeated by navigating through the 
bounding box tree of body 0 until we reach one of the leaf nodes that still overlaps the root box of the other body (the boxes that do 
not overlap are discarded). At this point, we loop over the tree structure of body 1 discarding all the boxes that do not overlap the 

Fig. 9. Bounding boxes used for detection of breakup of a droplet in a shear flow. The distance between pairs of triangle centres is tested only 
within the corresponding box. The threshold value 𝛿 has been increased (compared to realistic values) and some of the bounding boxes removed to 
improve the readability of the figure.
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Fig. 10. (a) Overlapping test for two bounding boxes (A, B) based on inequality (13). (b) The overlapping test returns two bounding boxes leaves 
(red and green for fronts 0 and 1 respectively). The distance between the triangles contained inside the boxes is checked against the threshold value. 
If 𝑑 ≤ 𝛿, the two bodies are flagged as merging. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

leaf node. At the end of this step, we are left with one leaf node of body 0 and one leaf (or more) of body 1. The intersection between 
these triangles can then be computed. The whole algorithm is repeated until all the possible configurations of overlapping leaf nodes 
from both bodies are found. In our case, instead of intersections, we look for pairs of triangles with a centre to centre distance below 
the threshold value 𝛿. The same algorithm illustrated above can be used by relaxing the overlap condition:

|𝐓 ⋅ 𝐋| > |𝑟𝐴| + |𝑟𝐵| + 5𝛿 (14)

In this way, we do not restrict the search to overlapping boxes but we keep into consideration the boxes with a distance between 
elements compatible with the length 𝛿 (the value 5𝛿 is used as a safety factor). The output of the algorithm consists of a set of triangle 
pairs with a distance between their centres potentially smaller than 𝛿, as illustrated in Fig. 10b where also the corresponding leaf 
boxes are shown. We then check each triangle pair and, if 𝑑 < 𝛿, both bodies are flagged for topology changes. In the case where the 
two bodies are far apart from each others, inequality (14) is satisfied (for at least one of the 15 tests) and the searching algorithm is 
immediately aborted, since no further traversal of the children bounding boxes is required.

Both algorithms for detection of breakup and coalescence considerably decrease the size of triangle sets that need to be tested, thus 
reducing significantly the overall computational cost. A front can be flagged for breakup, coalescence (with, at least, another object) or 
both. The specific criterion that flags the body is not relevant, since the marching cubes algorithm relies on the indicator function only 
and the object is entirely reconstructed, regardless of the specific topology change event. It is finally noted that combining classical 
remeshing with the detection algorithm allows us to avoid undesired topology changes. This is especially relevant for breakup, where 
two triangular elements (of the same front) with opposite normals are allowed to coexist inside the same cell, provided the threshold 
𝛿 is small enough. The triangular elements can still be regularised via remeshing without enforcing topology changes. On the other 
hand, if the front regularisation is based on the reconstruction of the interface, a breakup would occur as soon as the distance between 
the elements is smaller than the cell size.

3.2.2.  Assignment of unique ids
After all the bodies are tested for topology changes, we temporarily remove those that are not flagged and we proceed with front 

reconstruction with marching cubes. The main steps are:

1. Compute the minimum and maximum 𝑥, 𝑦, 𝑧 coordinates from all the flagged bodies. Build a Cartesian mesh that spans from 
(𝑥min, 𝑦min, 𝑧min) to (𝑥max, 𝑦max, 𝑧max).

2. Compute the indicator function on the newly created Cartesian mesh by solving Eq. (6).
3. Interpolate the indicator function at the Cartesian vertices  .
4. Execute marching cubes.

As explained in Section 3.1, the output of marching cubes consists of three lists of connected elements, i.e., vertices, edges and 
triangles. During the reconstruction step, it is not possible to identify the elements that form each single body. For example, if we 
reconstruct a droplet that breaks into two children droplets, the front that we obtain after marching cubes has a unique id, although 
two different ids should be used (one per droplet after breakup). The assignment of unique ids to each individual object is performed 
after the reconstruction step, using the breadth first search algorithm, as illustrated in Fig. 11.
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Fig. 11. Breadth First Search algorithm for the assignment of unique ids to bodies after reconstruction.

In this example we obtain two bodies after reconstruction that we want to distinguish with front ids 0 and 1. The first step of 
the algorithm consists of creating two lists (visited vertex and queued vertex lists) and populate both with the first vertex in the 
list obtained from marching cubes (i.e., vertex 0). Exploiting the connectivity between vertices, edges and triangles, we look for the 
vertices directly connected to vertex 0 (i.e., those that share one edge - in this example these are vertex 1 and 8) and add them to 
both lists. When no more connected vertices are found, vertex 0 is deleted from the queued list. The algorithm is repeated for each 
element in the queued list until this list is left empty. All the traversed vertices belong to the same front and are assigned to the same 
id. If there are still vertices that have not been visited (e.g., vertex 9), the procedure is repeated until all the vertices are traversed. 
After the last iteration of the algorithm is executed, we obtain unique ids for each reconstructed body. Since the bodies that were 
not flagged for topology changes already had their id, we ensure that the ids assigned by the breadth first search algorithm are not 
duplicates. The computational cost of the breadth search algorithm is (𝑛𝑉 + 𝑛𝐸 ), where 𝑛𝑉 , 𝑛𝐸 are the number of vertices and edges, 
respectively.

When the assignment of unique ids is concluded, the non-flagged bodies (i.e., the non topology-changing bodies) are inserted 
back in the list of tracked interfaces. The indicator function is then solved on the Eulerian mesh and used for the solution of the 
Navier–Stokes equations.

3.3.  Mesh quality of reconstructed fronts

A good mesh quality of the Lagrangian front is necessary to ensure accurate results in terms of curvature and normal vector 
computation and, therefore, surface tension effects. However, the mesh obtained from the marching cubes reconstruction step is 
usually characterised by a non-even distribution of the vertices, which leads to the formation of highly-skewed triangles and non-
uniform area distribution (i.e., large area ratio between two adjacent triangles). An example of reconstructed mesh for a spherical 
interface is shown in Fig. 12a.

In order to ensure a good quality of the front mesh, each reconstructed body is remeshed after the marching cubes step. Such 
remeshing consists of smoothing the distribution of vertices (through a relaxation scheme applied along the tangential direction 
[65]) and performing operations on triangle edges (e.g., split, merge and swap) as usually done in front tracking [9]. The result after 
remeshing is shown in Fig. 12b, where a good quality front with a uniform element distribution is obtained.

Fig. 12. Reconstructed sphere with marching cubes before (a) and after (b) remeshing.
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3.4.  Parallel implementation

The parallelisation of front tracking algorithms is notoriously difficult, but extremely important when large-scale systems are 
simulated. The proposed framework uses domain decomposition and message-passing to parallelize the operations on the Lagrangian 
front, including the marching cubes based reconstruction. Since a detailed discussion on parallelisation is beyond the scope of this 
work, only the main steps are discussed below. The generic Lagrangian structure shown in Fig. 5 is distributed across the processors. 
Each processor stores the lists of elements (i.e., vertices, edges and triangles) that it owns. A vertex is owned by a processor if its 
coordinates are inside the corresponding sub-domain. Since edges and triangles may cross the domain decomposition boundaries, it 
is important to ensure that the adjacent processors have access to these elements, by either owning them or as ghost elements. A 
processor stores all the edges and triangles for which it owns at least one vertex. Each edge and triangle are linked to an ordered 
list of two and three vertices, respectively, and they are owned by a processor if the same processor owns the first vertex of the list. 
Otherwise, they are stored as ghost elements. Domain decomposition is performed in a Cartesian way (i.e., with cuts along the 𝑥-, 𝑦
and 𝑧-directions) of an orthogonal box that fits the Lagrangian front. Such decomposition is decoupled from the parallel management 
of the Navier–Stokes grid, allowing for flexibility in the choice of the computational mesh (e.g., structured or unstructured). An 
example of domain decomposition is shown in Fig. 13.

The main steps of the reconstruction procedure are also parallel. The Poisson Eq. (6) is solved with a parallel biconjugate gradient 
stabilized method (BiCGSTAB) incorporated in the open source PETSc library [66,67]. The absolute tolerance is set to 10−8 and the 
solver generally converges in less than 200 iterations. Once the indicator function is interpolated at the cubes vertices, marching cubes 
can be easily parallelised, since the reconstruction is performed within each cube and no additional information from the neighbours 
is needed. Detection of topology changes, as well as assignment of unique ids, are performed in parallel, following the decomposition 
of the Lagrangian front. A scalability benchmark is reported in Fig. 14 for the marching cubes and id assignment routines, where 
multiple spherical droplets are initialised in a cubic domain and the total number of triangular elements is approximately 3 × 105. 
Both algorithms scale up to almost 300 processors. It is finally noted that the Cartesian domain decomposition is not load balanced 
and the overall efficiency depends on the specific configuration.

3.5.  Overview of the algorithm for topology changes

Algorithm 1: Front tracking algorithm with topology changes.
Input: Initialisation of front tracking structures: list of bodies and front connectivity (vertices, edges and triangles)
/* Start time loop  */

1 while 𝑡 < 𝑡end do
2 Velocity interpolation from the Eulerian mesh to the Lagrangian vertices;
3 Front advection (Eq. (3));
5 Front remeshing;

/* Topology changes  */
6 Breakup/Coalescence detection (Section 3.2);
7 if topology changes are detected then
8 Remove the non topology-changing bodies from the fronts list;
9 Create a Cartesian mesh for marching cubes that overlaps the bodies;
10 Solve the indicator function on the new mesh (Eq. (6));
12 Interpolate the indicator function from the cell centres to the vertices;
13 Execute marching cubes;
14 Front remeshing;
15 Assign a unique id to the reconstructed bodies (Section 3.2.2);
16 Move back the non topology-changing bodies into the fronts list;
17 end 

/* One-fluid formulation of the governing equations  */
18 Solve the indicator function (Eq. (6)) on the Eulerian mesh used for the discretization of the Navier–Stokes equations;
20 Compute surface tension term (Eq. (8));
22 Update fluid properties 𝜌, 𝜇 (Eq. (4));
24 Solve Navier–Stokes equations;
25 end 

4.  Validation

In this section, the presented methodology is tested against several benchmarks that include breakup and coalescence of fluid 
particles (e.g., droplet, bubbles). The two-phase system under consideration is a disperse flow and we use the subscript 𝑑, 𝑐 for the 
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Fig. 13. Domain decomposition of a Lagrangian data structure. Each colour represents the elements owned by a different processor. The red planes 
show the cuts along the 𝑥-direction for the decomposition of the orthogonal box around the object. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Parallel scalability benchmark for the marching cubes and assignment of unique ids routines. Time is made non-dimensional with the 
corresponding execution time (𝑡ref ) from the case with the lowest number of processors.

disperse and continuous phases, respectively. For example, in the case of a bubble (gas) rising in a large tank filled with liquid, 𝜌d is 
the density of the gaseous phase, whilst the liquid has density 𝜌c.

4.1.  Volume error due to front reconstruction

In this benchmark, we quantify the error and its order of convergence when the front is reconstructed with marching cubes. We 
initialise the Lagrangian front with a unit size sphere (i.e., the diameter is 𝐷 = 1) and reconstruct the interface with the procedure 
discussed above. We perform five test cases where we progressively refine the Cartesian mesh (with size Δ𝑥) used for reconstruction, 
whilst the Eulerian grid for the solution of the governing equations stays always the same. Since the focus is on the reconstruction error, 
we perform one iteration only. The qualitative results are presented in Fig. 15, where slices of the reconstructed sphere are compared 
for resolutions varying between 0.015625𝑅 < Δ𝑥 < 0.25𝑅 (𝑅 is the radius of the sphere). The reconstructed shape converges with the 
refinement of the Cartesian grid and the effect of decreasing Δ𝑥 becomes almost negligible at large resolutions, e.g., Δ𝑥 < 0.0625𝑅. 
The reconstruction error is based on the volume of the sphere and is computed as:

𝜖𝑉 =
𝑉reconstructed − 𝑉ref

𝑉ref
(15)

where 𝑉ref is the volume of the Lagrangian front as is initialised, whilst 𝑉reconstructed is the volume of the object returned by marching 
cubes. The volume of the triangulated front is computed as:

𝑉 =
𝑛𝑇
∑

𝑘=0

[1
6
𝑁𝑘

𝑥 (𝑥
𝑘
0,𝑥 + 𝑥𝑘1,𝑥 + 𝑥𝑘2,𝑥)

]

(16)

where 𝑛𝑇  is the number of triangles. For the generic 𝑘th triangle, 𝑁𝑘
𝑥  is the x-component of the cross-product of the edge vectors 

(𝐱1 − 𝐱0), (𝐱2 − 𝐱0), whilst (𝐱0, 𝐱1, 𝐱2) are the coordinates of the vertices. The formula inside the summation operator returns the volume 
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Fig. 15. Slices of reconstructed spheres at different resolutions. Δ𝑥 is the grid size used for marching cubes, whilst the Eulerian mesh remains 
unchanged.

Fig. 16. Relative volume error for the reconstruction of a single sphere. The volume is computed with Eq. (16) and evaluated right after the 
marching cubes step and after the following remeshing operation.

between the 𝑘th Lagrangian triangle and its projection onto the 𝑥 = 0 plane. The corresponding order of convergence is shown in 
Fig. 16, where the volume is monitored right after the marching cubes step as well as after the remeshing step that follows (see 
Section 3.3). The plot shows second-order convergence for both quantities, consistently with the numerical schemes involved in the 
marching cubes reconstruction procedure. The solution depends on the accuracy with which the indicator function is obtained on the 
Cartesian mesh used for reconstruction. This involves two steps (see Algorithm 1):

1. Lagrangian to Eulerian spreading of the indicator gradient via Peskin weighting approach.
2. Solution of the Poisson equation.

The first step involves the weighting defined in Eq. (7), which is second-order accurate when interpolating smooth functions [49]. 
The second step consists of solving an elliptic equation with a standard second-order centred finite difference scheme. The marching 
cubes error is therefore consistent with the errors introduced in the above steps.

4.2.  Droplet breakup in simple shear flow

This test case models the breakup of a droplet in a planar shear flow. The computational domain consists of a channel of length 
𝐿𝑥 and cross section with dimensions 𝐿𝑦 × 𝐿𝑧 (Fig. 17)a.

The extension along the 𝑦-direction is the height of the channel and is referred to with the symbol ℎ. The upper (𝑦 = ℎ) and bottom 
(𝑦 = 0) walls move with opposite velocity but same magnitude 𝑈𝑤, i.e., −𝑈𝑤 𝐢̂ and 𝑈𝑤 𝐢̂ respectively. Symmetry boundary conditions 
are applied to the side walls (𝑧 = 0, 𝑧 = 𝐿𝑧), whilst the faces at 𝑥 = 0, 𝑥 = 𝐿𝑥 are periodic. For laminar flows, the velocity field within 
the channel has a steady-state solution, with analytical form:

𝐮 = 𝑈w

(

1 − 2
ℎ
𝑦
)

𝐢̂ (17)

The contour of the 𝑥-component of 𝐮 on a plane is shown in Fig. 17b. The droplet is initialised as a sphere with diameter 𝐷 and placed 
at the centre of the channel, which has dimensions 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 24𝐷 × 10𝐷∕7 × 4𝐷 and a diameter to height ratio of 𝐷∕ℎ = 0.7.

The problem is governed by four non-dimensional numbers. The properties of the two-phase system are compared by the density 
and viscosity ratios:

𝜌r =
𝜌d
𝜌c

, 𝜇r =
𝜇d
𝜇c

(18)
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Fig. 17. Setup of a droplet in a shear flow.

The Reynolds number is computed as:

Re =
𝜌c𝛾̇𝑅2

𝜇c
(19)

where 𝑅 is the (initial) droplet radius and 𝛾̇ is the shear rate inside the channel, i.e., 𝛾̇ = 2𝑈𝑤∕ℎ. The ratio between viscous and surface 
tension forces is given by the capillary number:

Ca =
𝜇c𝛾̇𝑅
𝜎

(20)

We reproduce one of the examples introduced in Sibillo et al. [68], where the authors perform experiments at low Re, in a two-
phase system with 𝜌r = 𝜇r = 1 and capillary number equal to Ca = 0.46. The exact Reynolds number is not reported, but we found the 
value Re = 0.5 a good compromise between the numerical cost of the simulation (the lower the Re, the longer it takes to reach the 
breakup point) and the modelling of a flow regime dominated by viscous forces. The problem of a droplet deforming in a simple shear 
flow has been investigated in the literature for a long time [69–72] and the capillary number has been used to identify the critical 
state where breakup occurs, i.e., for Ca > Cacr. For the two-phase system under consideration, the critical capillary number in an 
unbounded flow (i.e., 𝐷∕ℎ << 1) is Cacr = 0.43. In the present case, there is a confinement effect (due to the large diameter to height 
ratio, 𝐷∕ℎ = 0.7) that leads to a slight increase in the critical value. Nonetheless, we are still in a super-critical regime (Ca > Cacr)
where breakup is observed [68]. The Eulerian mesh has a uniform resolution (Δ𝑥) with approximately 33 cells per droplet diameter, 
whilst Δ𝑡 is limited by the capillary time step constraint [73]. A mesh sensitivity analysis is performed with resolutions up to 45 cells 
per diameter and shows that no significant improvements are achieved for grid sizes Δ𝑥 < 𝐷∕33. The Cartesian mesh for marching 
cubes has a grid spacing of Δ𝑥∕2 and the threshold value for breakup is set to the same resolution, i.e., 𝛿 = Δ𝑥∕2. The characteristic 
parameters that define the problem are reported in Table 2.

The time evolution of the deforming droplet is shown in Fig. 18, where time is made non-dimensional with the reference time 
1∕𝛾̇, i.e., 𝑡∗ = 𝑡𝛾̇.

The snapshots in the background are taken from the experiments of Sibillo et al. [68], whilst the red profiles represent the numerical 
results obtained with the proposed methodology. The droplet develops into an elongated body that resembles an ellipsoid with the 
two ends that point towards the closest moving wall. The orientation angle between the flow direction and the main dimension 
of the ellipsoid decreases over time and becomes almost null (i.e., the droplet is aligned horizontally) for 𝑡∗ ≈ 26. The maximum 
elongation is reached at 𝑡∗ ≈ 47, where interfacial instabilities, in the form of waves, appear in the central part of the droplet. The 
competition between surface tension and shear forces lead to the formation of three main parts connected by two thin liquid filaments 
(𝑡∗ = 56.55) that then break up. The algorithm for topology changes (Section 3.2) detects breakup between 56.55 < 𝑡∗ < 57.82. After 
breakup, we observe three children droplets with the lateral ones oriented along the direction of the shear flow and the central 
one aligned horizontally. At a later time, the central droplet aligns to the flow direction as well. As observed in Sibillo et al. [68], 
the central droplet is larger than the lateral ones, which is a consequence of the confinement effect. Overall, a good comparison 
is observed between experiments and numerical simulations. The front tracking methodology is able to accurately reproduce both 
elongation and orientation of the droplet, whilst the topology changes algorithm effectively captures the breakup point. Details of the 

Table 2 
Non-dimensional governing parameters for a droplet in simple shear flow.

𝜌r 𝜇r Re Ca 𝐿𝑥 𝐿𝑦 𝐿𝑧  Eulerian grid (Δ𝑥)  Marching cubes grid 𝛿

 1  1  0.5  0.46 24𝐷 10𝐷∕7 4𝐷 𝐷∕33 Δ𝑥∕2 Δ𝑥∕2
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Fig. 18. Droplet breakup in a simple shear flow with Ca = 0.46, Re = 0.5, 𝜌r = 𝜇r = 1 and 𝐷∕ℎ = 0.7. The background is from the experiments of 
Sibillo et al. [68], the red profiles represent the simulation. Time is made non dimensional with 𝑡∗ = 𝑡𝛾̇. Figure adapted with permission from Sibillo 
et al. [68]. Copyrighted by the American Physical Society. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 19. Details of the Lagrangian mesh near one of the breakup points.

Lagrangian mesh before and after breakup are shown in Fig. 19, where a good quality of the mesh is maintained during the breakup 
process, owing to the remeshing of the front after the execution of the marching cubes algorithm.

4.2.1.  Effect of varying the marching cubes grid resolution and breakup threshold
The choice of the resolution of the reconstruction grid, as well as the breakup and coalescence thresholds, are critical aspects of the 

proposed methodology and are expected to influence the results. In this section we investigate the effect of varying these parameters 
for the breakup of a droplet in simple shear flow. The cases for the sensitivity analysis are reported in Table 3, where the first case 
corresponds to the one already discussed in Section 4.2.

Compared to this simulation, the second and third cases employ a factor of 2 and 4, respectively, to refine the marching cubes 
grid and breakup threshold 𝛿. The results are shown in Fig. 20, where several slices on the 𝑥 − 𝑦 plane are compared.

As expected, decreasing the threshold 𝛿 leads to a delay in the breakup event. This can be easily observed by monitoring the 
detachment of the right droplet satellite, which occurs at 𝑡∗ ≈ 56.93, 𝑡∗ ≈ 57.11 and 𝑡∗ ≈ 57.35 for 𝛿 = Δ𝑥∕2, 𝛿 = Δ𝑥∕4 and 𝛿 = Δ𝑥∕8, 
respectively. A similar mechanism is observed for the left satellite. The main consequence consists of a longer elongation of the three 
detached droplets as 𝛿 decreases. However, such differences are relatively minor and the global dynamics of the droplet, in terms of 
number of satellites, their orientation and shape, is not significantly affected by the value of 𝛿. By decreasing the size of the marching 
cubes grid, the volume error introduced by the reconstruction procedure decreases as well (with a second-order convergence rate, 
as shown in Fig. 16). However, the larger error that we introduce in the case where the resolution of the MC grid is the lowest (i.e., 
Δ𝑥∕2), does not affect significantly the accuracy of the solution, since the reconstruction step is executed only when it is strictly 
necessary. For many disperse flow simulations, such events occur with a low frequency and accurate results can be obtained without 
refining the MC grid excessively compared to the Eulerian grid.

Table 3 
Setup for the sensitivity analysis to the marching cubes grid resolution and breakup threshold for a droplet in simple shear flow.

𝜌r 𝜇r Re Ca 𝐿𝑥 𝐿𝑦 𝐿𝑧  Eulerian grid (Δ𝑥)  Marching cubes (MC) grid 𝛿

 1  1  0.5  0.46 24𝐷 10𝐷∕7 4𝐷 𝐷∕33 Δ𝑥∕2 Δ𝑥∕2
 1  1  0.5  0.46 24𝐷 10𝐷∕7 4𝐷 𝐷∕33 Δ𝑥∕4 Δ𝑥∕4
 1  1  0.5  0.46 24𝐷 10𝐷∕7 4𝐷 𝐷∕33 Δ𝑥∕8 Δ𝑥∕8
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Fig. 20. Sensitivity analysis to the marching cubes grid resolution and breakup threshold for a droplet in simple shear flow. The profiles correspond 
to slices of the Lagrangian front on the 𝑥 − 𝑦 plane.

4.3.  Droplet-droplet collision

This validation case models the collision of two liquid droplets, which results in the merging of the interfaces [74,75]. Two equal 
spherical droplets (with diameter 𝐷) are accelerated towards each other until the interfaces collide. A sketch of the problem setup is 
shown in Fig. 21.

The droplets travel along the horizontal direction and the vertical distance between their centre is 𝑏. The velocity 𝑈 (𝑡) is time 
dependent, since both particles are accelerated from rest. In the following, we will omit the time dependence to refer to the velocity 
at the collision point, i.e., 𝑈 (𝑡) = 𝑈 , where ̃𝑡 is the time instant where collision occurs.

The two-phase system under consideration is defined by the density and viscosity ratios (Eq. (18)). The problem is further described 
by the following non-dimensional numbers. The impact parameter is used to describe off-centre collisions and is defined as:

I = 𝑏
𝐷

(21)

For 𝐼 = 0, the droplet centres are aligned to the direction of relative motion and a head-on collision takes place. The ratio between 
inertial and surface tension forces is quantified by the Weber number:

We =
𝜌d𝐷

(

𝑈rel
)2

𝜎
(22)

where 𝑈rel = 2𝑈 is the relative velocity between the droplets. Viscous and surface tension effects are compared in the Ohnesorge 
number:

Oh =
𝜇d

√

𝜌d𝐷𝜎
(23)

Here we replicate one of the experiments performed in the work of Finotello et al. [75], where a milk solution with total solid 
(TS) content of 20% is used for the droplets. For solutions below 30% TS, the milk phase can be treated as a Newtonian fluid. The 
computational domain is a box with dimensions 15𝐷 × 10𝐷 × 10𝐷 (the droplets are accelerated along the 𝑥-direction) and the Eulerian 

Fig. 21. Setup of two colliding droplets.
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mesh has a resolution (Δ𝑥) of 32 cells per droplet diameter. Such a large domain is chosen to avoid confinement effects due to the 
presence of walls, which are treated with symmetric boundary conditions. A mesh sensitivity analysis is performed with resolutions 
up to 42 cells per droplets diameter and shows that no significant improvements are achieved for grid sizes Δ𝑥 < 𝐷∕33. The Cartesian 
mesh for marching cubes has the same resolution as the Eulerian one, whilst the threshold distance for topology changes detection is 
𝛿 = Δ𝑥∕10. A summary of the characteristic parameters are reported in Table 4.

A small value of the impact parameter 𝐼 is used here, which corresponds to an (almost) head-on collision.
In our numerical model, we use a body force along the 𝑥-component to accelerate the droplets and initialise their motion [20,23]:

𝑓𝑥 = 𝐶(𝜌 − 𝜌c) (24)

The value of 𝑓𝑥 is non null only inside the disperse phase (i.e., the droplets), whilst it takes a null value in the rest of the domain. 
The constant 𝐶 is adjusted here to set the acceleration of the droplets so that the relative velocity (2𝑈) at the collision point gives 
the desired Weber number. The time evolution of We is shown in Fig. 22, which shows a quadratic profile (being 𝑈 ∝ 𝑡 for a constant 
acceleration) until the maximum value of We ≈ 60 is reached.

The deceleration that follows is due to the proximity effect between the droplets when they are very close to each other. In this 
work we consider as the reference Weber number for collision the maximum value reached by We before deceleration. The body 
force 𝑓𝑥 is switched off as soon as coalescence takes place. The initial distance (measured along the horizontal direction) between 
the droplet centres is 4𝐷.

The comparison between the work of Finotello et al. [75] and our simulations is shown in Fig. 23, where the background pictures 
come from the experimental investigation and the red profiles are the numerical results.

After the droplets merge, a transient dynamics with continuous changes in the shape characterises the motion. The effect of the 
offset (𝑏) between the two original centres is visible after the merging at 𝑡∗ = 0.0194, with the right side slightly shifted upwards with 
respect to the left one. The droplet then deforms into a shape that resembles a disk (𝑡∗ = 0.0249), before changing its orientation and 
relaxing into an elongated ellipsoidal body. Interfacial undulations appear on the droplet at 𝑡∗ = 0.0456, which lead to the formation 
of a liquid bridge between the two spherical caps. A contraction mechanism can be observed for 𝑡∗ > 0.0503, where the spherical 
ends begin to move towards each other. The amount of kinetic energy put into the system before collision is enough to break the 

Table 4 
Non-dimensional governing parameters for droplet-droplet collision.

𝜌r 𝜇r I We Oh 𝐿𝑥 𝐿𝑦 𝐿𝑧  Eulerian grid (Δ𝑥)  Marching cubes grid 𝛿

 864.6  237.2  0.05  59.2  0.022 15𝐷 10𝐷 10𝐷 Δ𝑥 = 𝐷∕33 Δ𝑥 Δ𝑥∕10

Fig. 22. Plot of Weber number vs time.

Fig. 23. Droplet-droplet collision with We = 60, Oh = 0.022 and 𝑏∕𝐷 = 0.05. The background is from the experiments of Finotello et al. [75], the red 
profiles represent the simulation. Time is made non-dimensional with 𝑡∗ = 𝑡𝜇d∕

(

𝜌d𝐷
)

. Figure adapted from Finotello et al. [75] (CC BY 4.0). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 5 
Setup for the sensitivity analysis to the coalescence/breakup threshold for a droplet-droplet collision.

𝜌r 𝜇r I We Oh 𝐿𝑥 𝐿𝑦 𝐿𝑧  Eulerian grid (Δ𝑥) Marching cubes 
(MC) grid

𝛿

 864.6  237.2  0.05  59.2  0.022 15𝐷 10𝐷 10𝐷 Δ𝑥 = 𝐷∕33 Δ𝑥 Δ𝑥
 864.6  237.2  0.05  59.2  0.022 15𝐷 10𝐷 10𝐷 Δ𝑥 = 𝐷∕33 Δ𝑥 Δ𝑥∕5
 864.6  237.2  0.05  59.2  0.022 15𝐷 10𝐷 10𝐷 Δ𝑥 = 𝐷∕33 Δ𝑥 Δ𝑥∕10

Fig. 24. Sensitivity analysis to the coalescence/breakup threshold for a droplet-droplet collision. The profiles correspond to slices of the Lagrangian 
front on plane of the relative motion.

liquid bridge in two points near the end caps, creating a small satellite droplet in between. Such a collision regime is called reflexive 
separation (due to the breakup after collision) and the good agreement between experiments and simulations shows that the proposed 
methodology is able to resolve the physics of the problem.

4.3.1.  Effect of varying the breakup and coalescence threshold
We investigate here the effect of varying the threshold parameter 𝛿 for topology changes in the complex scenario of colliding 

droplets, where both coalescence and breakup take place. The marching cubes grid is kept constant, with a resolution equal to 
Δ𝑥. The cases for the sensitivity analysis are reported in Table 5, where the last case corresponds to the one already discussed in 
Section 4.3.

The results, in terms of slices of the Lagrangian front on the plane of the relative motion, are reported in Fig. 24.
As expected, an increase in the threshold 𝛿 anticipates the first coalescence, which occurs at 𝑡∗ ≈ 0.0168 for the case with 𝛿 ≈ Δ𝑥. 

However, such a difference does not significantly affect the solution until 𝑡∗ ≈ 0.0308, where a second topology change event takes 
place for the 𝛿 = Δ𝑥 case only. A breakup is responsible for the formation of a central hole, which connects the external sides of the 
interface. On the other hand, the cases with 𝛿 = Δ𝑥∕5,Δ𝑥∕10 show the formation of two highly-curved regions, where a strong surface 
tension force locally changes the momentum of the fluid. This interfacial effect is then responsible for the different dynamics that the 
gas-liquid interfaces exhibit for the remaining part of the simulation. A counter-intuitive effect is shown in Fig. 24 for 𝑡∗ = 0.0607, 
where the breakup of the right satellite is delayed for the largest threshold case (i.e., 𝛿 = Δ𝑥). This is a consequence of the previous 
interfacial dynamics, which deviates significantly from the other two cases for 𝑡∗ > 0.0308. The simulations with 𝛿 = Δ𝑥∕5,Δ𝑥∕10
produce a very similar behaviour, where no appreciable differences are observed. The differences among these plots and those where 
we compare against the results of Finotello et al. [75] (Fig. 23) occur because, in the latter, we project the front on the plane (in order 
to obtain consistent visualisations with the experimental images) whilst, in the former, we perform slices that allow to visualise the 
region inside the interface.

It is finally noted that, in the proposed framework, it is sufficient to refine the threshold distance 𝛿 to achieve a solution that 
matches the experimental results, whilst both the Eulerian and marching cubes grid resolutions are kept constant. On the other hand, 
traditional VOF/LS methods, which use the same numerical grid for the solution of the Navier–Stokes equations and transport of 
the interface, would require a finer mesh resolution to achieve a more accurate description of topology changes, resulting in a less 
efficient approach.
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4.4.  Breakup of a rising bubble

In this section we present two cases of three-dimensional rising bubbles that undergo central and peripheral breakup [76,77]. A 
spherical bubble (with diameter 𝐷) is initially placed at the bottom of a large domain with dimensions 10𝐷 × 30𝐷 × 10𝐷 and gravity 
is applied along the 𝑦-direction, i.e., 𝐠 = −𝑔𝐣. The bubble centre coordinates at 𝑡 = 0 are (0, 𝐷, 0). As usual, the gas-liquid system 
is characterised by its density (𝜌r ) and viscosity (𝜇r ) ratios. Two additional non-dimensional numbers are necessary to describe the 
problem. In this work, we adopt the Galilei number:

Ga2 =
𝑔𝐷3

𝜈2c
(25)

which describes the ratio between gravitational and viscous forces, and the Bond number:

Bo =
𝜌c𝑔𝐷2

𝜎
(26)

which compares gravitational and surface tension effects. Tripathi et al. [76] present a numerical study on the behaviour of rising 
bubbles in a gas-liquid system with 𝜌r = 10−3, 𝜇r = 10−2 and different sets of (𝐺𝑎,𝐵𝑜). The authors identify five different regimes in 
terms of shapes, rising trajectory and, eventually, breakup. Two different mechanisms that lead to topology changes are observed, 
namely peripheral and central breakup. In the first regime, the bubble develops a spherical cap followed by an elongated skirt. As 
the bubble rises, the skirt structure becomes thinner and breaks up releasing downstream satellite bubbles/ligaments. In the central 
breakup case, the bottom side of the bubble moves upwards faster than the top side and breaks through. A central hole is formed and 
the bubble deforms into a toroidal shape. Here, we model both breakup mechanisms and a summary of the parameters used in our 
simulations is shown in Table 6.

According to Tripathi et al. [76], the selected configurations in terms of Galilei and Bond numbers covers both types of breakup 
regimes (note that the authors in Tripathi et al. [76] use the bubble radius instead of the diameter for Ga and Bo).

The results of our simulations are shown in Fig. 25 for peripheral (left) and central (right) breakup. The figure shows slices of the 
fronts on the 𝑥 − 𝑦 plane (along with the corresponding three-dimensional visualisations) at different times (made non-dimensional 
with the reference time 

√

𝐷∕𝑔). Peripheral breakup occurs after the bubble has developed an elongated axi-symmetric skirt structure 
that fluctuates as the bubble rises. At 𝑡∗ = 10.0, the skirt thickness reaches a minimum located halfway between the spherical cap and 
the bottom of the bubble. The topology changes algorithm detects breakup and applies marching cubes for front reconstruction. This 
results into two separated bodies, a main front at the top and a toroidal structure at the bottom, which is unstable and can eventually 
undergo further breakups. The reconstructed topology of the interface after breakup is consistent with the experimental investigations 
reported by Sharaf et al. [77] for the peripheral regime. Central breakup occurs during the first stages of the simulation (𝑡∗ ≈ 1.0) as 
the bottom side of the bubble approaches the top side quickly and the distance between the two is smaller than the threshold 𝛿. This 
behaviour agrees well with the numerical simulations reported in Tripathi et al. [76]. However, such a central breakup mechanism, 
is not observed in the experimental study of Sharaf et al. [77]. The authors discuss possible reasons behind this discrepancy, such as 
the initial bubble shape (which is not perfectly spherical in the experiments), different density and viscosity ratios as well as liquid 
contamination.

4.4.1.  A more complex scenario
The two-phase systems analysed in Sections 4.2–4.4 are relatively simple configurations where only a few topology change events 

occur. Although such scenarios do occur in several applications, (e.g., microfluidics [78] or surfactant-laden flows [79]) and are 
therefore relevant from a practical point of view, we test here the proposed methodology against a more general case where multiple 
breakup/coalescence events occur and lead to very complex interfacial configurations. The selected test case is the same as the rising 
bubble with central breakup proposed in Section 4.4 (see Table 6) for the setup, but it is let run for more iterations. The results of this 
simulation are shown in Fig. 26. A second breakup event occurs at 𝑡∗ ≈ 3.15 and resembles a peripheral breakup, where the interface 
is split into a main cap (on top) and a toroidal structure at the bottom. The shape deviates from an axisymmetrical configuration at 
𝑡∗ ≈ 4.53, where the bottom structure rises faster than the top one and breaks through it. The following dynamics is characterised by 
a very complex arrangements of multiple breakups and coalescences that lead to a disperse flow with several satellites. This test case 
shows the robustness of the proposed framework and its ability to deal with very complex scenarios in two-phase flows with topology 
changes.

It is finally reminded that, in the presented validation test cases, the threshold distance 𝛿 is set to a variable fraction of the 
Eulerian grid Δ𝑥. However, the proposed methodology allows for a seamless implementation of different physics-informed criteria 
for breakup/coalescence, according to the specific problem under investigation.

Table 6 
Non-dimensional governing parameters for droplet-droplet collision.

 Breakup 𝜌r 𝜇r Ga Bo 𝐿𝑥 𝐿𝑦 𝐿𝑧  Eulerian grid (Δ𝑥) Marching cubes 
grid

𝛿

 Peripheral 10−3 10−2  56.6  339.0 10𝐷 30𝐷 10𝐷 Δ𝑥 = 𝐷∕32 Δ𝑥 Δ𝑥
 Central 10−3 10−2  339.4  400.0 10𝐷 30𝐷 10𝐷 Δ𝑥 = 𝐷∕32 Δ𝑥 Δ𝑥∕2
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Fig. 25. Breakup of a rising bubble with Ga = 56.6, Bo = 339 (left) and Ga = 339.4, Bo = 400 (right). Time is made non-dimensional with 𝑡∗ = 𝑡
√

𝑔∕𝐷. 
The opacity of the three-dimensional visualisations is decreased to ease the visualisation of the inner interface.

Fig. 26. Multiple breakups/merging of a rising bubble following an initial central breakup regime. The opacity of the rendering is decreased to 
ease the visualisation of the inner interface.

5.  Conclusions

We have presented a numerical method for topology changes (breakup and coalescence of interfaces) in three-dimensional two-
phase flows with a front tracking framework. The proposed approach is based on the marching cubes algorithm for triangulation of 
the iso-surface corresponding to the indicator function value  = 0.5. Breakup and coalescence are obtained by replacing the fluid 
entities with the corresponding shape as is given by the indicator function field, thus resulting in automatic topology changes in 
a front capturing way. However, compared to standard VOF or LS methods, the proposed approach offers a better control over the 
breakup/coalescence of interfaces, as the distance at which these occur is an input of the algorithm that, in principle, can be set to any 
user-defined criteria and is not necessarily constrained to the resolution of the mesh used to solve the governing equations. To reduce 
the computational effort of the module for topology changes, marching cubes is executed only for the bodies that potentially undergo 
topology changes. Fundamental to this is the detection algorithm for breakup/coalescence that uses bounding boxes to perform fast 
search operations on the triangular fronts.

The proposed methodology has been tested on several validation cases for topology changes in two-phase disperse flows: droplet 
in a simple shear flow, droplet-droplet collision and rising bubbles. The breakup of a spherical droplet in a shear flow at low Reynolds 
number is compared against an experimental work and a good accuracy is found in terms of droplet shapes and size distribution 
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after breakup. The rupture of the interface is also observed in the rising bubble cases, where the two regimes described in the 
literature (i.e., central and peripheral breakups) are correctly reproduced. Finally, the collision between two equal droplets is used as 
a validation case for coalescence of two separated interfaces. We have replicated a reflexive separation regime, where the interface 
breaks up again after the first coalescence and generates three different droplets. Such interfacial flow is characterised by a complex 
transient dynamics with continuous changes in shapes and orientations. Comparison against experiments shows a very good accuracy 
in predicting the evolution of the interface. The proposed methodology is second-order accurate for volume conservation, consistently 
with the numerical schemes adopted to spread the indicator function from the Lagrangian front to the Eulerian mesh. The marching 
cubes grid resolution as well as breakup/coalescence threshold 𝛿 have a central role in the proposed framework and an accurate choice 
of these parameters is a crucial aspect. This emphasises the importance of coupling numerical frameworks for topology changes with 
physics-informed criteria to obtain accurate results.

In the context of front tracking simulations for two-phase flows with topology changes, the proposed methodology offers a robust 
approach to model very complex changes in the shape of interfaces. In this way, we overcome the limitations of grid-free methods 
that operate only on the front elements that are close to the area affected by topology-changes and are not robust when large 
portions of the front undergo breakup/coalescence. Compared to other grid-based approaches (e.g., LCRM, LFRM), our methodology 
offers the advantage of restricting front reconstruction operations only for those bodies that undergo topology-changes, reducing 
the computational cost and, at the same time, mitigating the error introduced by front reconstruction operations. The proposed 
methodology provides a robust framework for front tracking simulations of complex two-phase flows with topology changes and 
paves the way towards a better, physics-based, modelling of interfacial flows undergoing breakup and coalescence.
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