POLYPUBLIE e |

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o3

The Challenges of Learning Representations for Reinforcement
Learning Without Experience Replay

Antoine Clavaud

2025
Mémoire ou these / Dissertation or Thesis

Clavaud, A. (2025). The Challenges of Learning Representations for
Reinforcement Learning Without Experience Replay [Mémoire de maitrise,

Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/67120/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: ) -
PolyPublie URL: https://publications.polymtl.ca/67120/

Directeurs de
recherche: Sarath Chandar Anbil Parthipan

Programme

Advisors:

' Génie informatique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/67120/
https://publications.polymtl.ca/67120/

POLYTECHNIQUE MONTREAL

affiliée a "Université de Montréal

The Challenges of Learning Representations for Reinforcement Learning

Without Experience Replay

ANTOINE CLAVAUD

Département de génie informatique et génie logiciel

Mémoire présenté en vue de 'obtention du diplome de Maitrise és sciences appliquées

Génie informatique

Juillet 2025

© Antoine Clavaud, 2025.



POLYTECHNIQUE MONTREAL

affiliée a "Université de Montréal

Ce mémoire intitulé :

The Challenges of Learning Representations for Reinforcement Learning

Without Experience Replay

présenté par Antoine CLAVAUD
en vue de 'obtention du dipléome de Maitrise és sciences appliquées

a ¢té diiment accepté par le jury d’examen constitué de :

Christopher J. PAL, président

Sarath Chandar ANBIL PARTHIPAN, membre et directeur de recherche
Frangois RIVEST, membre et codirecteur de recherche

Amir-Massoud FARAHMAND, membre



1ii

ACKNOWLEDGEMENTS

I would first like to thank the members of my jury, Christopher Pal and Amir-Massoud
Farahmand, for accepting to evaluate my thesis and oral defense. I would like to thank my
supervisor, Sarath Chandar who accepted to let me join his lab, guided me through my two
years of master and gave me insights and feedback so that I could become a better researcher.
I would also like to thank Francgois Rivest, my co-supervisor, for the time and effort he gave
me so that my work could be at its finest. Mathieu Reymond also played a major role in
my master, always being available to help and guide my projects, sharing his experience and
cluster priority with me. I would also like to thank Pranshu Malviya for his insights that
helped me design better experiments for the paper. Finally I would like to thank all my

friends at the Chandar Research Lab who made my time there so enjoyable!

Je souhaite aussi remercier les équipes du département de Génie Informatique et Génie Logi-
ciel de Polytechnique Montréal pour leur accompagnement et aide précieuse pour naviguer

les aspects administratifs de ma maitrise.



iv

RESUME

Ce mémoire aborde la question de 'apprentissage de représentations appliqué a ’apprentis-
sage par renforcement, dans le cas particulier ou ’on ne s’autorise pas a stocker les expériences
rencontrées par I'agent. L’apprentissage par renforcement, aussi appelé Reinforcement Lear-
ning (RL), a pour but de résoudre optimalement un probleme de décision séquentiel. Ce
dernier prend place dans un environnement dans lequel évolue un agent qui peut interagir
avec I’environnement au travers d’actions. L’apprentissage par renforcement consiste a trou-
ver une politique d’actions a prendre compte tenu des observations de ’environnement faites
par 'agent et qui maximise les récompenses obtenues par celui-ci. Nous nous intéressons ici
plus particulierement au cas dans lequel le stockage d’expériences pour réutilisation future
n’est pas autorisé. Une telle contrainte est dénommée Apprentissage par Renforcement sur un
Flux d’Expériences, ou Streaming Deep Reinforcement Learning dans la littérature. Bien qu’a
ses origines 'apprentissage par renforcement (alors compleétement dépourvu d’apprentissage
profond et de réseaux neuronaux) a été étudié dans le contexte de flux d’expériences, ce n’est
que tres récemment que ce contexte a été ré-introduit dans le paradigme de ’approxima-
tion de fonctions par réseaux de neurones. Ce nouveau paradigme permet de se débarrasser
de la nécessité d’avoir acces a des ressources informatiques importantes, car sans stockage
d’expériences 'entrainement n’a plus besoin d’avoir lieu sur une carte graphique, ou Graphi-
cal Processing Unit (GPU). Cependant, le stockage et I'agrégation d’expériences constituent
I'une des techniques principales pour réduire 'instabilité rencontrée lors de l’entrainement
d’agents via des réseaux de neurones. Aussi, en interdisant le stockage d’expériences, 'insta-
bilité due a I'inhérente non-stationnarité de I’apprentissage par renforcement est fortement

exacerbée, ce qui limite les performances des agents.

L’apprentissage de représentations est I'un des domaines majeurs de la recherche en intel-
ligence artificielle. Le but de telles méthodes est d’obtenir des plongements (représentation
d’un objet comme une image, un graphe, du texte, etc. sous forme d’un vecteur) de bonne
qualité, au travers d’algorithmes et architectures spécifiques, afin de faciliter I’entrainement
de réseaux de neurones et d’en améliorer les performances. Ces taches nécessitent bien sou-
vent d’avoir a disposition des quantités considérables de données, pas forcément étiquetées,
et d’avoir acces a d’importantes ressources informatique pour les traiter. Dans le cadre de
I’apprentissage par renforcement, de telles techniques ont été utilisées et de nombreux travaux
montrent qu’elles augmentent les performances des agents qui les incorporent. L’apprentissage
par renforcement se préte particulierement bien notamment aux méthodes d’apprentissage

non-supervisé basées sur la prédiction de la dynamique de ’environnement, c¢’est a dire basées



sur la prédiction des états futurs de 'environnement étant donnée une séquence d’actions.

Ces méthodes sont bien documentées dans la littérature, mais pas dans le cadre de 'appren-
tissage par renforcement sur un flux d’expériences. Or, ce cadre étant encore plus instable
que 'apprentissage par renforcement profond classique, ajouter de telles méthodes d’appren-
tissage de représentations semble essentiel a stabiliser davantage I’apprentissage et améliorer
les performances des agents. Peu de travaux étudient I’apprentissage de représentations sur
un flux de données, et aucun n’est appliqué a ’apprentissage par renforcement. Devant cette
situation, nous choisissons d’investiguer dans quelle mesure I'apprentissage de représentations
peut étre appliqué a 'apprentissage par renforcement sur un flux d’expériences dans le but

d’améliorer les performances des agents entrainés dans un tel contexte.

Afin de traiter ce sujet, nous avons décidé de partir d’'un agent d’apprentissage par renforce-
ment augmenté par un objectif d’apprentissage de représentations déja existant et performant,
puis de I'adapter au contexte de 'apprentissage par renforcement sur un flux d’expériences.
Cette approche consiste a combiner 'architecture appelée Self-Predictive Representations
(SPR) a un agent entrainé sur un flux d’expériences. Etant donné que SPR n’a pas été concu
pour ce contexte d’apprentissage par renforcement, nous nous attentdions a ce que la forte
non-stationnarité du probleme soit un obstacle important au succes de notre méthode. Pour
cette raison, nous avons décidé de rendre le probleme de plus en plus stable au travers d’expé-
riences successives, afin de déterminer quelles seraient les conditions nécessaires de stabilité
de cette approche. Surprenamment, nous avons constaté qu’en imposant que la politique soit
apprise uniquement sur un flux d’observations, peu importe le niveau de stabilité de la tache
d’apprentisage de représentations les performances des agents sont toutes moins bonnes que
notre base de comparaison (agent entrainé sur un flux de données, sans tache auxiliaire).
Nous avons également confirmé que sans cette contrainte d’apprentissage sur un flux d’expé-
riences, la méme tache secondaire mene a l'apprentissage de représentations riches et utiles
aux agents. Aussi, nous concluons que bien que dans le cadre classique de 'apprentissage par
renforcement ajouter une tache secondaire d’apprentissage de représentations est bénéfique
pour les performances, ce n’est pas le cas lorsque 'on se restreint a entrainer des agents
sur des flux d’expériences. En effet, nos résultats suggerent que l'optimisation jointe des
deux taches interfere négativement avec les performances de l'agent. Ce mémoire présente
également les différentes stratégies d’optimisation ayant été considérées, sans pour autant

qu’aucune n’amene de meilleures performances.



vi

ABSTRACT

This thesis tackles the problem of learning representations for Reinforcement Learning (RL),
in the specific case where we constrain ourselves to not store experiences for later re-use. The
goal of RL is to find the optimal solution to a sequential decision problem. Sequential decision
problems involve an environment in which an agent can evolve and interact through actions.
RL then consists in finding a policy that gives the best action to take given any observation
of the environment’s state, so that the reward received by the agent is maximized when it
follows the policy. Here, we focus more specifically on the case where storing experiences
is prohibited, thus making experience replay forbidden. Such a constrained setting is called
Streaming Deep Reinforcement Learning. Even though in its beginnings RL was studied in
this setting as deep neural networks were not part of the field yet, it was only very recently
that the streaming setting was reconsidered for modern deep reinforcement learning. This
new paradigm makes it possible to train deep RL agent without relying on costly Graphical
Processing Units (GPUs) capable of handling large batch sizes and storing large amounts of
agent experiences. However, storing and replaying experiences is one of the main methods
used to mitigate RL’s inherent non-stationary training. Therefore, prohibiting the use of

experience replay will lead to less stable training and thus poorer performances.

Representation learning is one of the core aspects in Artificial Intelligence (AI) research. The
goal of such methods is to derive good quality embeddings (vectors in a high dimensional
space representing objects like images, graphs or words) through algorithms and specific
network architectures so that the downstream task learned by a neural network is easier
and faster to learn. Representation learning tasks often require large quantities of data to be
available, possibly not labeled, as well as large amounts of compute. Many papers have shown
that including representation learning tasks to RL objectives yields better performing agents.
Reinforcement learning is especially well suited for dynamics prediction-based unsupervised
learning tasks. These tasks consists in predicting the next states of the environment given a

current state and a sequence of next actions.

These methods are well documented in the literature, but not for streaming deep reinforce-
ment learning. However, the streaming context being even less stable than its regular coun-
terpart, adding unsupervised representation learning objectives to it seems like a necessary
measure to mitigate instability during training and further improve the field of streaming
deep RL. Few works study how to learn representations from a stream of data, and none

are specifically focused on RL. Given this rather empty current state of the literature on the



vii

matter, we decided to investigate how we can add unsupervised representation learning tech-
niques from the standard RL literature to the streaming deep RL setting, so as to improve

downstream performances.

In order to tackle this question, we decided to use an existing well-performing representation
learning augmented RL agent and use it in the streaming setting of reinforcement learning.
This approach consists in combining the Self-Predictive Representations (SPR) architecture
with a streaming agent. Because SPR was not originally designed to be used in the streaming
setting of RL, we expected non-stationarity to be a major obstacle to this method’s success.
Thus, we designed experiments with increasing levels of stability in order to determine what
would be the minimal conditions required for a stable representation learning task to be ben-
eficial for the agents. Surprisingly, we found that imposing that the policy be learned in the
streaming setting, no amount of stability is ever enough for the representation learning task
to help the agent reach better performances than our streaming agent baseline (without any
auxiliary task). We also confirmed that without this streaming constraint, having the same
representation learning objective helped agents learn better representations, leading them to
reach better performances. As such, we concluded that although in standard reinforcement
learning having a secondary representation learning objective improves performances, it is
not the case for streaming agents. Indeed, our results suggest that jointly optimizing both
tasks gives rise to interference that hinders the performance of the agents. We also present
the many considerations we had regarding the optimization part of the problem, although

none of the ones we tried helped getting better performance.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . .. .. e

RESUME . . . .

ABSTRACT . . o o e

LIST OF TABLES . . . . . . e

LIST OF FIGURES . . . . . . . e

LIST OF SYMBOLS AND ACRONYMS . . . . . .. ... ... . ... .. ...

LIST OF APPENDICES . . . . . . . . . e

CHAPTER 1 INTRODUCTION . . ... ... o

1.1
1.2
1.3
1.4

Definitions and main concepts . . . . . . . .. ...
Problem statement . . . . . . . . ... ...
Objectives of the research . . . . . . . . . .. ... L
Plan of the thesis . . . . . . . . . . ..

CHAPTER 2 LITERATURE REVIEW . . . .. .. .. ... ... ... ...,

CHAPTER 3 GLOBAL APPROACH OF THE RESEARCH AND GENERAL OR-

GANIZATION OF THE DOCUMENT . . . . . . ... .. ... ... . ....

CHAPTER 4 ARTICLE 1 : THE CHALLENGES OF LEARNING STREAMING

REPRESENTATIONS FOR REINFORCEMENT LEARNING . . . . ... .. ..

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8

Abstract . . . . . .
Introduction . . . . . . ..
Related work . . . . . . . ..
Background . . . . ...
Method . . . . . . . .
Experiments . . . . . . . ...
4.6.1 Impact of the non-stationarity on SPR . . . . ... .. ... .. ...
4.6.2 Investigating SPR representations . . . . . . . ... ... L.
Discussion . . . . . . ...

Conclusion . . . . . . .

viii

iii

v

vi

X1

Xii

S Ot s ==



X

4.9 Technical Appendix . . . . . . . . . .. 33
4.9.1 Experimental details . . . . . . .. ... 0oL 33

4.9.2 The Stream-Q agent . . . . . . ... 37

4.9.3 SPR Hyperparameter search . . . . . . . ... ... ... ... .... 38

4.9.4 Optimization experiments . . . . . . . . .. .. .. ... .. ... .. 39

4.9.5 Additional results . . . .. ..o 42

4.9.6 Plots on all optimizers . . . . . . . . ... ... L 50
CHAPTER 5 GENERAL DISCUSSION . . . . .. .. .. ... ... .. ... .. 56
CHAPTER 6 CONCLUSION . . . . . .. e 57
6.1 Summary of the work done . . . . . . . .. ... 57
6.2 Limitations . . . . . . . . .. 58
6.3 Future directions . . . . . . . ... 58
REFERENCES . . . . . . . 59

APPENDICES . . . . . e 67



Table 4.1
Table 4.2
Table 4.3
Table 4.4

LIST OF TABLES

SPR specific hyperparameters . . . . . . . . .. ... ... ... ... 33
Optimizer specific hyperparameters . . . . . . . . . . ... ... ... 34
Other hyperparameters . . . . . . . . . . . ... ... ... ...... 34

Optimizer pairings . . . . . . . . .. .o 37



Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13

Figure 4.14

Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21

Figure A.1
Figure A.2

xi

LIST OF FIGURES

Comparison Stream-Q / Fully-Streaming SPR (1M frames) . . . . . . 25
Comparison Stream-Q / Fully-Streaming SPR (20M frames) . . . . . 26
Distillation experiment results . . . . . . . .. ... ... 28
Pre-trained encoder experiment results (Stream-Q) . . . ... .. .. 29

SPR Performance comparison depending on the setting (10 environments) 30

Justification of the choice K =5 . . . .. ... ... ... ... ... 39
Experiment results with gradient accumulation . . . .. .. ... .. 40
Gradient similarity between SPR and Q-learning objectives . . . . . . 41
“Shrink and Perturb” experiment results . . . . . . .. ... ... .. 43
“Encoder only” experiment results . . . .. ... ... ... ... .. 44
Pre-trained encoder experiment results (DQN) . . . .. ... ... .. 45
Frozen pre-trained encoder experiment results (Stream-Q) . . . . . . 46
Pre-trained encoder experiment (Stream-Q + SPR) IQM for all opti-

MIZETS . . . . o o e e 47
Pre-trained encoder experiment (Stream-Q + SPR) Effective rank for

all optimizers . . . . . . . .. 48

SPR Performance comparison depending on the setting (15 environments) 49

Inter-Quartile Mean score for streaming SPR.. . . . . . ... .. ... 50
Effective encoder ranks for streaming SPR . . . . . ... .. ... .. 51
Distillation experiment - IQM for all optimizers . . . . . . . . .. .. 52
Distillation experiment - Effective rank for all optimizers . . . . . . . 53
Pre-trained encoder experiment (Stream-Q) IQM for all optimizers . 54

Pre-trained encoder experiment (Stream-Q) Effective rank for all opti-

IMIZETS . . . . o oo e e 55
High-level network architecture (K =1) . . .. ... ... ... ... 67
Detailed network architecture . . . . . . ... ... 0000 68



RL
GPU
SPR
Al
MDP
BYOL
MSE
SimCLR
ii.d.
ObGD
SAC
DDPG
TD3
CURL
A-GEM
DQN
QM
FS-SPR
EMA
SAM

LIST OF SYMBOLS AND ACRONYMS

Reinforcement Learning

Graphical Processing Unit

Self-Predictive Representations

Artificial Intelligence

Markov Decision Problem

Bootstrap Your Own Latents

Mean Squared Error

Simple Contrastive Learning of Representations
Independent and Identically Distributed
Overshooting-bounded Gradient Descent

Soft Actor-Critic

Deep Deterministic Policy Gradient

Twin Delayed Deep Deterministic Policy Gradient

Contrastive Unsupervised representations for Reinforcement Learning

Averaged Gradient Episodic Memory

Deep Q-Networks

Inter-Quantile Mean

Fully-Streaming Self-Predictive Representations
Exponential Moving Average

Sharpness Aware Minimization

xii



xiii

LIST OF APPENDICES

Appendix A Network architecture . . . . . . . . . . .. ... ... ... 67



CHAPTER 1 INTRODUCTION

The last decade has seen deep learning revolutionize many fields, from natural language pro-
cessing [1] to image processing [2] and new crystalline material generation [3]. Reinforcement
Learning (RL) has also majorly benefited from the deep learning wave, for instance in its
ability to solve games and tasks with an ever-increasing complexity [4,5]. This leap in abi-
lities was made possible by the advent of deep reinforcement learning which leverages deep
neural networks to learn intricate policies. Unfortunately, using deep neural networks with
reinforcement learning introduces instability and requires dedicated methods such as the use
of replay buffers and target networks to deal with them. Along with the use of deep neural
networks, these methods have a heavy computational footprint as they require dedicated
hardware (Graphical Processing Units or GPUs). This is however a strong requirement that
is not met for all tasks RL can be applied to, such as on-device training for robotics where
the robots themselves have to run RL algorithms on their limited hardware, making learning

very slow.

This is the motivation that recently led researchers to study streaming deep reinforcement
learning [6, 7], which does not require any GPU to run. Indeed, streaming RL adds the
requirement that RL algorithms cannot store experiences to reuse them later, getting rid of
large memory requirements and large batch sizes for gradient updates. However, the speed
benefits come at the cost of a drastically increased instability of the training process. A
common method used in standard reinforcement learning to alleviate part of the instability
is to add a secondary unsupervised learning task for learning better representations. This
has however never been applied in the case of streaming deep RL, where it could be greatly
beneficial as it could improve stability and sample efficiency (agents learn faster). Adding a
secondary, unsupervised, learning task to the context of streaming RL is not an easy feat as
very few methods are designed for learning from a stream of inputs, and none are applied
to streaming RL. Through this thesis, we aim to fill this gap and further our knowledge of

streaming representation learning applied to (streaming) reinforcement learning.

1.1 Definitions and main concepts

Let us first introduce in more details the specific setting of reinforcement learning in which we
base all of our work. This section contains high-level overviews of the main concepts required
to understand our problem and contributions. It covers the topics of RL and representation

learning and how the later can be used in the context of the former. A deeper dive into the



mathematical formulations of both RL and representation learning will be provided in the

literature review (Chapter 2) as well as in the background section of the paper (section 4.4).

Reinforcement Learning Reinforcement learning, or RL, is one of the many fields of Al
research. Reinforcement learning tackles the problem of solving sequential decision problems
optimally. The usual mathematical framework used to describe such problems is that of the
Markov Decision Problem (MDP) [8]. Sequential decision problems involve an environment,
in which an agent evolves. The agent can interact with the environment through actions. Once
an action has been taken by the agent, the state of the environment is updated to reflect the
result of that action. For instance, in a grid-like world where the agent can be in any cell of
the grid, after taking the action to “move to the right”, the environment state is updated so
that the agent now occupies the cell on the right of its previous location. Each transition of
the environment also comes with a reward signal. This reward is a relative feedback on the
new state reached by the agent, but the agent has no knowledge of whether it used the best
action (the one leading to the maximum reward) nor even of which previously taken actions
contributed to the observed reward and to what extent. This makes the problem much harder
to solve. In this context, the agent is trained to learn an action policy which, when followed
by the agent, maximizes the cumulative (possibly discounted) reward the agent gets along

its trajectory.

Thus, contrary to supervised learning, reinforcement learning consists in solving a task wi-
thout having access to the “correct” answers (best actions, equivalent to the label of a data
point in supervised learning). This task is also a non-stationary one, partly because the ex-
periences collected by the agent depend of the actions it takes. Since the policy dictating the
actions to take is learned as the experiences are collected, the distribution induced by this col-
lection of training data varies through time. Moreover, the regression objective used by most
so-called value-based methods (methods that predict the discounted sum of future rewards
from a given state) is recursively defined as a function of the prediction of the value of the
next states. Therefore, the training objective depends on the current agent parameters, which

are updated after each training step, thus making the regression objective non-stationary.

Representation Learning Representation learning is a very broad term that can techni-
cally be used to describe any deep learning method. Indeed, representation learning refers to
any process that produces a mapping from a “real-world object” like an image, a graph or
text to a high-dimensional vector space. However, in recent years, more effort has been put
towards learning such embeddings so that they also preserve some form of semantic structure.

This can be achieved through both the loss function and the network architecture. For ins-



tance, the famous Bootstrap Your Own Latents (BYOL) [9] method uses a clever architecture
to impose that similar inputs will yield similar representations, namely this method trains
a network fy such that if two inputs x; and x5 are semantically similar (they describe very
similar objects, or the same object in slightly different ways), their representations should be
close too according to a similarity metric of our choice. Such a metric can for instance be the
Mean Squared Error (MSE) or the cosine similarity, which consists in computing the angle
between two vectors regardless of their magnitude. In the case of BYOL, the authors choose
to maximize the cosine similarity between two slightly modified (augmented) versions of the
same input. In the case of images, an augmentation can be a small random translation or
rotation, adding gaussian blur, slightly transforming the colors of the image, or any other
transformation that modifies the pixel content of the image without altering its semantic
content. Another famous technique, called Simple Contrastive Learning of Representations
(SimCLR) [10], makes use of a different loss function to achieve similar results. In SimCLR’s
case, the authors use a contrastive loss, meaning they want to maximize the similarity of the
representations of a pair of similar examples, just like BYOL does, as well as to minimize
the similarity between examples of this pair and negative examples. Negative examples are
usually a set of inputs corresponding to objects unrelated to the target positive example. In
both cases, the representations learned have the added benefit that inputs that are close in
the input space should have representations that are relatively close in the learned latent
space. Both methods require very large batch sizes, especially in the case of SimCLR, which

also requires a large memory buffer of negative examples.

Representation Learning for Reinforcement Learning In the case of reinforcement
learning, both representation learning approaches described in the previous paragraph have
been applied in different papers [11,12], presented in more details in the literature review.
However, the BYOL approach is more widely used as it does not rely on providing negative
examples, which makes the algorithm more adaptable. In both cases, an interesting idea to
exploit is the temporal consistency of representations along a trajectory. Indeed, given that for
successive actions the state of the environment should not drastically change, we can exploit
this property in the observation space and enforce it in the latent space of the representations
learned. This implies that one must first learn a model to predict the next states the agent
might encounter after taking given actions. This is also known as learning a model of the
dynamics of the environment and is an important part of model-based RL [4,13]. We can
then use this dynamics model to predict the future states the agent will encounter and train
our unsupervised representation learning objective to push the representation of each state to
be close to that of the next predicted states. This is the main idea behind the Self-Predictive



Representations (SPR) paper [11], which is the representation learning method that we use

in the experiments performed in the paper.

1.2 Problem statement

As explained in the previous section, reinforcement learning is a hard optimization problem
to solve in of itself as the distribution of inputs used for training is not Independent and

Identically Distributed (i.i.d.), and the regression objective is non-stationary.

Dealing with the Instability These two assumptions about the i.i.d. nature of the inputs
and the stationarity of the regression objective are critical for supervised learning to perform
well. To get around them, the RL community came up with target networks and replay
buffers. Target networks deal with the non-stationarity of the regression target by keeping
a copy of the network weights that is updated much less frequently, or by a much smaller
amount through Polyak averaging. This target network is used exclusively to compute the
regression target during each training step of the agent. Since the target network’s weights
evolve at a much slower pace than that of the agent’s network, the regression target also
changes at a slower rate, effectively making the regression task appear more stable, at the
price of an agent reacting slower to changes. Replay buffers tackle the non-i.i.d. nature of the
training input distribution by storing a large number of previous transitions. Agents are then
trained from transitions sampled from the replay buffer rather than the highly correlated last
transitions it encountered. Since the buffer can be quite large (usually containing between
10° and 10° elements), states encountered from a larger number of different trajectories will
be sampled, making the training input distribution more i.i.d. Moreover, using a batch rather
than a single transition to perform learning updates improves the stability of the estimated

gradient.

Streaming Reinforcement Learning Unfortunately, the streaming setting of reinforce-
ment learning, such as described by [6] prohibits the use of both replay buffers and target
networks. This forces us to get rid of all the aforementioned instability mitigation strategies.
Although the authors introduce new stabilization mechanisms through the use of Layer-
Norm [14], eligibility traces [8], observation and reward normalization, as well as through
the use of their custom optimizer, Overshooting-bounded Gradient Descent (ObGD), the
problem setting is still unstable. ObGD and the algorithmic details of the streaming agent
we based our work on are described in greater details in the literature review (section 2) and

technical appendix of the paper (sections 4.9.1 and 4.9.2). Figure A.2 presents the detailed



architecture of the network used, divided into the SPR part and the Q-learning part. Mo-
reover, getting rid of the replay buffer hinders sample efficiency as each newly experienced

transition is only used once for training before being discarded.

Streaming Representation Learning Many works have shown that adding an unsu-
pervised representation learning task helps standard RL agents achieve better performance
[11,12,15-19]. This has been especially tested on the Atari benchmark that we are using.
As such, it is our intuition is that the same should hold true in the streaming setting.
Additionally, better representations should help make the problem more stable as seman-
tically similar states would share similar representations, therefore reducing the impact of
the non-i.i.d. characteristic of the training input data, at least in the latent space. However,
as explained in the previous section, unsupervised learning tasks usually require very large
batch sizes to average gradients over a large number of input augmentations, so as to reduce
noise in the updates. Not only is this not possible in the streaming setting, the gradients used
at each update are also highly correlated since they come from temporally close transitions.
Translating standard representation learning tasks to the realm of streaming RL is thus not

a straightforward process and may not even be suited for this harder setting.

Optimization Problem Finally, a very important part of this process is the consideration
given to the optimization problem. Indeed, in our architecture (see Figure A.1 in Appendix
A), the parameters from the Q-learning part of the network are updated using eligibility
traces, which can be interpreted as a first order momentum of the previous gradient updates,
whereas the parameters from the representation learning part of the network are updated
using Adam-like [20] updates. Since our architecture uses shared parameters between the two
parts of the network, the question of how to combine these two different sources of update
arises. Multiple aspects must be considered : the relative norm of each updates, the potential
interference caused if the gradients are not orthogonal and finally the optimizers to use for

each part of the network.

1.3 Objectives of the research

Objectives The main goal of the research presented in this thesis is to fill the current gap in
the literature on using representation learning in the context of streaming deep reinforcement
learning. To do so, our first objective is to benchmark the performance of a straightforward
translation of the SPR paper to the streaming RL setting. This benchmark should come with

a detailed analysis of the successes or failures of this first attempt at combining representation



learning and streaming deep RL. Another important focus of this research was to determine
the most adapted way to define the optimization problem, and study the impact of the

different strategies used on performance.

Contributions Our contributions are two-fold. First we propose the first empirical study
of the question of learning streaming representations for reinforcement learning. To that end,
we performed a series of experiments in which we gradually removed some of the instability
of the problem to determine the minimally stable setting in which we can still learn repre-
sentations. After realizing that whenever a streaming RL agent was used, adding a secondary
representation learning objective always led to poorer performances, we also decided to de-
termine the reasons why learning streaming representations was so detrimental to streaming
RL. Second, we will release the code we wrote for the benchmark so that the community can
build upon this first work and develop better streaming representation learning algorithms

for RL.

Most of the contributions in this thesis stem from our paper, The Challenges of Learning

Streaming Representations for Reinforcement Learning :

o Authors : Antoine Clavaud, Mathieu Reymond, Frangois Rivest, Sarath Chandar.

o Submitted at The Thirty-Ninth Annual Conference on Neural Information Processing
Systems, NeurIPS 2025.

o Contributions : I led the project from the literature review to the writing of the code
for experiments as well as the writing of the paper. Mathieu closely followed the project
through our biweekly meetings, helping me to come up with interesting experiments
ideas, run experiments on his cluster allocation and improve my writing for the paper
through multiple proof-reading sessions. Frangois and Sarath provided valuable gui-
dance and higher-level planning for the project during our weekly meetings, as well as

a rich feedback to improve the writing of the paper and the overall submission process.

1.4 Plan of the thesis

To answer these questions, we propose to start by presenting the relevant background and
existing papers to better understand the theoretical roots of our work. This literature review
is meant as both a background as well as an extension of the literature review present
in the paper, as it goes into more details for each presented paper. Then, we present our

methodology and results through our paper named The Challenges of Learning Streaming



Representations for Reinforcement Learning. This paper focuses on showing that learning
streaming representations does not help streaming RL agents reach better performances, and
understanding why that is. Finally, we go over the limitations of our approach and discuss
potential directions that would be interesting to explore to deepen our understanding of
learning streaming representations for RL. The appendix only contains visuals of our network

architecture for easier understanding.



CHAPTER 2 LITERATURE REVIEW

This section will first cover RL related background needed to understand Chapter 4. The RL
part of this background is very similar to the one in section 4.4. Second, this literature review
will expand on the one present in our paper. It will delve into the most important methods
to provide a clear understanding of either the core concepts and scientific background our

work is based upon or the future directions our work proposes.

Moreover, this section assumes that the reader already has an understanding of neural net-
works and how they are trained. However, no preliminary knowledge about reinforcement

learning or representation learning is needed.

Background As mentioned in the introduction, Reinforcement Learning tackles solving
sequential decision problems, usually framed as Markov Decision Problems (MDPs) [8]. A
MDP is described as a tuple (S, A, P,R,7). S represents the set of all environment states
and A the set of all actions that are available to the agent. P : S, A — S encompasses the
(stochastic) transition dynamics of the environment, R : S, 4 — R is the reward function
and v is the discount factor. The agent can interact with the environment through a policy
m: S, A — [0,1] which gives the probability of taking each available action in any given
state. At each time step t, the agent receives the current state as input s; € S and takes
the action a; ~ m(-|s;). The environment state is updated following the transition function
Sir1 ~ P(|st,a;) and gives a feedback to the agent in the form of a reward r, = R(s;, ay).
We can define the episodic return G; as the summation of the discounted rewards obtained
by an agent along a trajectory following a policy 7 and starting from timestep t. G; =
S, A*try., where T' denotes the time step at which the episode terminates. We can further
define the value function V,(s) = E,[G;|s; = s] which evaluate the value of being in a specific
state based on the expected return an agent should get when following its policy 7 starting
from state s. Thus, the goal of RL to find the optimal policy can be defined as finding
m* = argmax_{V;(so)}, where sy follows the initial state distribution of the environment, Dy.

Usually, we define J(0) = Ey,p,[Vz(s0)] as the performance of a policy .

Deep Q-Learning uses Deep Q-networks (DQN) [21] to solve this optimization problem in
the following way. First let us define the state-action value function, or Q-value Q.(s,a) =

E.[Gi|s: = s,a; = a]. The Q-value obeys the Bellman optimality equation [8] :

Qw* (Sta at) = ESNP(~|St,at) Ty + Vmgx{QW*(sv a)} (2'1)



Deep Q-Learning exploits this fixed-point equation to learn an approximation of the Q-
function, Qg ~ @), parameterized by a neural network with weights #. DQN then simply
consists in updating the parameters 6 in the direction of the semi-gradient of the following

loss function, where SG denotes the Stop Gradient operation :

£00) = (Qu(su00) = re — - SG(max{Quls, @}))2 (2.2)

This training process can be very unstable because of the non-stationarity of RL, as explai-
ned in the introduction. To stabilize training, it is very common to use experience replay
through the use of a replay buffer and target networks. A target network is a slowly evolving
copy 0,1 = 70, + (1 — 7)0; of the main network’s weights 6, that is used to compute the
bootstrapped Q-Learning objective. Its slower dynamics help stabilize the training process
as the regression objective doesn’t change so drastically through time. 7 is a hyperparameter
defining the update rate of the target network. DQN also uses a replay buffer that stores
every transition encountered by the agent (up to a size of 10° to 10° before overwriting the
first transitions stored). Gradients are then computed on batches of transitions, sampled from
the replay buffer, that are much less correlated than if they were sequentially generated. This
helps reduce the non-stationarity of the input distribution of the deep Q-network. The loss

resulting from these two optimizations is the following :

£000) = 5 2 (@00l = =7 - selmelQy (hh) 2

Streaming Deep RL This section is very similar to its counterpart in the technical ap-
pendix of our paper (section 4.9.2). Before introducing the streaming RL agent that we have
been using throughout this thesis, it is worth mentioning that at its origin, RL was framed in
a purely streaming fashion. The first RL algorithms [8], SARSA, Temporal Difference Lear-
ning (TD) and Q-Learning were indeed designed without replay or target. However, these
algorithms were not designed with deep neural networks in mind. As such, let us introduce
the streaming deep RL agent that we used throughout this thesis : the Stream-Q) agent from
FElsayed et al. [6]. We also used their definition of the streaming setting of RL. As explained
previously, the streaming setting of reinforcement learning definition we used mandates that
any transition be discarded before the next one is experienced by the agent. This prohibits the
use of replay-buffers and the authors further choose to not use target networks either. This
setting of RL is much harder as it a lot less stable. The streaming agent Stream-() proposed

by Elsayed et al. [6], which we used as our streaming baseline, combines several architectural



10

and algorithmic choices carefully selected to improve sampling efficiency as well as training
stability (through both normalization techniques and better optimization). To that end, the
Stream-Q agent uses eligibility traces (see background in section 4.4), which can be seen as
a first order momentum of gradients. Eligibility traces allow to perform credit assignment
faster through a clever alternative type of returns called the A-return. Stream-(Q also uses a
sparse initialization as it has been shown to reduce forgetting and to be beneficial for RL [22].
This initialization means that 90% of the agent’s weights are initialized to zero, which can
help the agent learn different behaviors for different situations with minimal interference
from updating any of them. Stream-Q computes the running averages and standard devia-
tions of both observations and rewards so as to normalize (and center) them before feeding
them to the agent’s network. The architecture of Stream-QQ’s network also makes extensive
use of parameter-free LayerNorm [14] (see equation 4.2) as all pre-avtications are first pas-
sed through a parameter-free LayerNorm. Finally, one of the most significant contributors
to Stream-Q’s success is the custom optimizer introduced by its authors : Overshooting-
bounded Gradient Descent (ObGD). This optimizers dynamically lowers the learning rate of
an update if it is too large from the standpoint of a stability criterion. In the case of ObGD,
the stability criterion used is the effective step-size defined by [23] as :

0(st) — 01(81)

S T

(2.4)
where 0(s;) is the TD-error and 6 (s;) is the TD-error on the same state after having updated
the network parameters according to d(s;). The effective step size measures the amount
of error that has been corrected by an update. As such, having & > 1 means that the
agent over-corrected itself, which could lead to unstable behavior if this happened often.
Therefore, an update is considered unstable if £ > 1 as it is preferable to avoid this situation.
FElsayed et al. [6] then come up with the following upper bound for the stability criterion :
¢ < akdy||z||1, where a is the step size, x > 1 is an hyperparameter of ObGD, acting as
a security coefficient. 0, = max(1, |§(s¢)|) and z, is the eligibility trace used in the update.
From this, they derive the following maximum learning rate value that satisfies the stability
condition : apax = (55t||zt]|1)_1. For a target step-size o, ObGD computes the highest
stable learning rate using the update rule in equation (2.5). In the best case scenario, the
target learning rate a* is used, otherwise the learning rate is down-scaled to ensure the update

is stable.

1

0, < 0; + min <a*, —_
K0y 2¢ |1

) - 8(s0)2 (2.5)



11

The adaptive step-size mechanism provided by ObGD is especially useful in the streaming
setting since gradients are much noisier because of the absence of batches, making large

updates in the wrong direction all the more likely.

However, Stream-Q) is not the only deep streaming RL method. Indeed, Vasan et al. [7]
propose a policy-based deep streaming agent that can be seen as a more stable version of
a modified streaming Soft Actor-Critic (SAC) agent [24]. The Actor-Critic family of policy
gradient methods is characterized by the fact that instead of training one agent, we train one
actor (the policy network) and one critic (regular value- or Q-network) together. The actor
takes actions based on the state and the critic is used to evaluate the choice of the actor and
sway it towards taking better valued actions during the parameter update phase. The ap-
proach from Vasan et al. [7] is based on the reparameterization gradient theorem that gives an
expression of the gradient the policy must follow to guarantee improvements in performances.
Unlike the policy gradient theorem, stated as VyJ(0) x Ega, ar, [Volog mo(A|S) G, (S, A)]
where d, represents the stationary state distribution of the policy my, the reparameterization
gradient theorem provides another unbiased estimate of Vy.J(6) through a different sampling
procedure. Indeed, the reparameterization gradient theorem consists in defining the following
action sampling procedure for training the actor network : A = fp(g(§)) where & ~ N(0,1) is
independent of § and g maps & to a more complex probability distribution. This streaming
policy-gradient method also includes an entropy regularization term to its gradient in order
to improve exploration and smoothen the loss landscape in some cases [25], giving the follo-
wing update rule : Vo J(0) < Eg a, ar, [Vofo(&;5)V a(qr, (S, A) — nlog me(A|S))]. Similarly
to the Stream-Q agent, this paper makes use of observation normalization, but normalizes the
TD-errors rather than the rewards and uses penultimate normalization [26] instead of Layer-
Norm [14]. Penultimate normalization simply consists in normalizing the features produced

by the penultimate layer of a network as such : Uy(z) = tg(x)/||e(x)]|

Representation Learning for RL The representation learning technique we used throu-
ghout this thesis is called Self-Predictive Representations (SPR) [11]. SPR is based on the
Bootstrap Your Own Latents (BYOL) architecture from unsupervised learning. It also in-
volves learning a model of the dynamics of the environment to be able to iteratively predict
the next K = 5 states of a trajectory given a current state and the next K actions taken.
It is important to note that this prediction is performed in the latent space, meaning the
dynamics model predicts a latent representation of the next states, not the states directly.
This is important since forcing the model to learn to predict the entirety of the next states
makes it learn how to predict features of the observations that are irrelevant to the agent

(noise, aesthetic user interface elements, etc.). Thus, the dynamics model learns to predict



12

Zitir1 = dp(Zitr, arer) where Z; = fo(s¢) (for k = 0) is the actual latent representation of the
state s;. Since SPR is based on BYOL, every observations (states consisting of stacked images
of game frames) are augmented with simple transformations such as small translations and
light intensity rescaling. Then, following the BYOL architecture, two linear layers p and ¢
(respectively called prediction and projection layers) are applied to these latent states, such
that we have Z;y; = q(p(Zi1)). Finally, through a cosine similarity loss, SPR attempts to
bring closer together the representations of the predicted next latent states and their associa-
ted ground truth. In other words, SPR tries to minimize the following loss where SG denotes

the Stop Gradient operation :

uTV

K

Lspr = — Y sim(Ze 1k, SG(p(24+1))) where sim(u,v) = Tall- vl is the cosine similarity
= ul| - ||v

(2.6)

It is important to note that the computation of the p(z; ;) term are performed without
propagating gradients. In the SPR paper, the authors also propose a version of SPR without
image augmentations, but a target encoder network instead, updated via an exponential
moving average operation. Since the streaming setting of RL does not allow target networks,

we stuck to the SPR version with image augmentations and no target networks.

SPR is not the only representation learning method applied to RL using a dynamics model.
Indeed, several other papers [15,17,19] build and improve on the SPR architecture. Each one
of these paper uses a very similar representation learning objective based on maximizing the
cosine similarity of the representations of temporally close states. Zhao et al. [15] focus on
applying the SPR’s representation learning objective to a Deep Deterministic Policy Gradient
(DDPG) [27] agent for state-based environments from the DeepMind Control suite [28]. In
addition to predicting the next latent representations, they also predict the next rewards
associated to these next transitions. Scannell et al. [17] tackle a similar problem but choose to
use a quantized latent space to prevent representation collapse, as well as the Twin Delayed
Deep Deterministic Policy Gradient (TD3) [29] algorithm. Fujimoto et al. [19] introduce
Mr.QQ and use a similar approach to learn both state and state-action representations with
the difference that they use an MSE loss rather than a cosine similarity and that they also
predict the next rewards and terminations. For stability purposes, the authors also normalize
the rewards in their update equations and use a categorical loss for the reward prediction
task. If all these methods are so similar in their representation learning objective, it is because
the main requirement for representation learning tasks applied to RL is that the learned

encoder should be self predictive [18], meaning that it should be able to predict its next



13

latent states. [18] show that even the simplest possible self-predictive representation learning

framework delivers great performances for RL.

However, BY OL-based self predictive representations is not the only method used as a secon-
dary objective in RL tasks. Indeed, some methods are based on the SimCLR method, which

uses the following contrastive loss :

N
Z (2k — 1,2k) + 1(2k, 2k — 1)] (2.7)
N
C N exp(sim(z;,z;)/7) L
where  1(i,j) = —log <Zigl,k;ﬁi exp(sim(zi,zk)/7)> ,  sim(u,v) = Tl TVl (2.8)

and z; is the representation of the i-th state in the batch. Here, the similarity function is also
the cosine similarity, just as in BYOL. The “positive” example pair consists of two different
augmentations of the same image, and the negative examples are the other images in the
batch. In this case, we consider that the positive examples from a pair are placed next to
one another in the batch, leading to their indexes being 2k and 2k — 1 in the general case.
Contrastive Unsupervised representations for Reinforcement Learning (CURL) [12] adapts
this loss function to the realm of reinforcement learning, and the images being augmented
are the states of the environment sampled from a replay buffer. Since the states are sampled
from a large enough replay buffer, every state should have low similarity with each other,
guaranteeing the required property of negative examples. However, CURL does not harness
the temporal consistency property of states and their representations along agent trajectories

as it does not learn a model of the dynamics of the environment.

Another interesting way to learn representations for RL is through learning successor repre-
sentations [30-33]. Successor representations are based on the assumption that the rewards
can be decomposed as a linear function of (non-linear) state representations, or features,
d¢(s¢) and a task-specific vector w, such that R; = ¢¢(s;) "w. This can be used to define the Q-
value function as Q(s;, a;) = ¥(ss, a;) " w where (s, a;) can be interpreted as the discounted
occupancy measure of all future state features : (s, a) = E, [Zz‘;t Vet Pe(s1) |5 = s, a0 = a}.
In practice, we learn a parameterized approximation 1y (s, a) of 1 (s, a) in addition to the state
features ¢¢(s). Fortunately, ¢ and ¢ verify a Bellman equation, which makes learning their
approximations through deep neural networks possible, but not stable. Indeed, this type of
technique is often subject to representation collapse, as ¢(.) = (1 — 4)i(.) = constant is a

valid solution. Thus, as is the case with BYOL, some tricks must be used to prevent collapse.



14

In the case of successor features, this can be done by adding a secondary objective based on

the prediction of the reward.

Learning Streaming Representations Until now, we have presented representation lear-
ning techniques that were designed to learn from large batches of data sampled from an even
bigger replay buffer. Since this is not allowed in the streaming context, representation learning
techniques must be designed consequently. This can range form the design of the architecture
to the optimization method used during training. Not many works study this very challenging

problem.

We can first look at Continual Learning methods designed to learn better representations in
more challenging non-stationary prediction tasks. Continual learning consists in training a
network without interruption on different changing tasks, meaning that the agent must be
able to learn new tasks as they come and remember its training as these tasks may not come
back before a long time. The two main challenges of continual learning are as follows : the
agent must be able to learn new tasks no matter how many tasks it has previously learned.
Moreover, the agent must remain good at solving every task it has seen so far. Learning a
new task should not make it lose performance on previous tasks. These two challenges are
respectively known as loss of plasticity [34] and catastrophic forgetting [35]. Although the
paradigm of continual learning is closer to the streaming setting of reinforcement learning,
it is not constrained to discarding replay buffers. Indeed, one of the main methods used to
solve continual learning tasks is the use of replay buffers [36]. Recently, generative replay
has been used to tackle the streaming setting of continual learning [37] and of reinforcement
learning [38]. This type of replay uses a generative network to produce realistic examples

following the distribution of the last encountered data.

Another interesting continual learning technique is to project the gradient from the current
training step (g;) orthogonally onto the gradient computed on an assortment of tasks sampled
from a replay buffer (g). This method is called Averaged Gradient Episodic Memory (A-
GEM) [39] and is defined as such :
T_
. g:8 _ . _
g =g— >-g if gg<o0 (2.9)
1=
The intuition behind this method is that this projection step should prevent the current
gradient updates to make the model become worse at the first tasks it encountered. This idea
of orthogonal projection of gradients has been re-used by [40] to learn video representations

from a stream of data. Given that in this context, two consecutive frames from a video should



15

be very similar, the gradients induced by these images will also be very correlated. These
gradients are then used to update weights of the network and their high correlations can
lead to overfitting and poor performances more generally. The authors argue that since in
the i.i.d. setting, gradients are usually not very correlated, using equation 2.9 with g =g;
and disregarding the condition on the sign of g, g should bring the learning dynamics of the
streaming representation learning task closer to the dynamics in the i.i.d. case. In practice,
if successive gradients are very aligned, their projections will get gradually smaller, until
they lead to negligible updates, thus avoiding to overfit to a single over-represented example.
Conversely, in the i.i.d. setting, the projection correction does not change the gradients by a

lot and the learning dynamics are preserved.

Learning good representations from a stream of data is not an easy task, but through ca-
reful optimization choices, it can be made more achievable. However, our current streaming
representation learning techniques are not good according to [41]. Indeed, this paper shows
that random, fixed, representations match the performance of state of the art continual re-
presentation learning methods, even outperforming them in some cases. Even though their
“learned” representations are random and not trained, the choice of architecture has been
carefully studied to provide a pipeline that allows to linearly separate most classes efficiently,
explaining the success of their method. This final paper of the literature review illustrates
very well the current state of the research on streaming representation learning : we are still
at the very beginning and there are no “magic” methods that work well in most cases as is
the case for supervised learning. Many factors such as network architecture or optimization
technique to use have to be considered to devise a new streaming representation learning
method.

Conclusion As such, the state of learning streaming representations specifically tailored
for reinforcement learning is very dire and under-explored. To our knowledge we are the first
ones to study the adaptation of representation learning techniques to the realm of streaming
deep reinforcement learning. It is however essential for streaming deep reinforcement learning
applications as it could provide a way to improve training stability and sampling efficiency

as has been the case for standard deep reinforcement learning.



16

CHAPTER 3 GLOBAL APPROACH OF THE RESEARCH AND
GENERAL ORGANIZATION OF THE DOCUMENT

As mentioned in the introduction, the main contributions of this thesis are the ones contai-
ned in our paper, The Challenges of Learning Streaming Representations for Reinforcement
Learning. This thesis extends on the literature review from said paper since the conference
page limit didn’t let us delve in enough details in the papers most relevant to our research.

Moreover, Chapter 5 is meant as an extension of the discussion part of our paper.

It is important to mention that we decided to include the full version of the paper, along
with its technical appendix. The paper and technical appendix both contain some background
elements that are redundant with the introduction and literature review sections of this thesis.
Namely, some of the paragraphs in the background (section 4.4) as well as the Stream-Q

overview in the appendix (section 4.9.2) can be skipped for a smoother reading experience.



17

CHAPTER 4 ARTICLE 1 : THE CHALLENGES OF LEARNING
STREAMING REPRESENTATIONS FOR REINFORCEMENT LEARNING

This paper was submitted to the NeurIPS 2025 conference on the 10* of May 2025.

Authors : Antoine Clavaud, Mathieu Reymond, Francois Rivest, Sarath Chandar.

4.1 Abstract

An interesting feature of adaptive systems is their ability to learn in real time from a conti-
nuous stream of experiences and update their behavior as they interact with their envi-
ronment. Deep Reinforcement Learning (RL) aims to mimic this ability using deep neural
networks and representation learning techniques, but is inherently unstable and does not
perform well in streaming settings. Recently, new works have shown that it is possible to
adapt deep RL to the streaming context borrowing plasticity tricks from the continual lear-
ning literature. Their focus is mostly on the optimization part of the problem and leave
leveraging representation learning or unsupervised signals mostly unexplored. In this paper,
we investigate how representation learning can be integrated in a streaming RL pipeline in
order to increase sample efficiency. We find that naive approaches do not work and perform
thorough experiments isolating non-stationarity from other sources of instability. We show
that the increased non-stationarity induced by the streaming setting is not the sole factor
preventing good streaming representations to be learned. Rather, we show that self-predictive

representations are fundamentally incompatible with the streaming context.

4.2 Introduction

At its beginning, Reinforcement Learning (RL) was theorized in a streaming and tabular
setting [8]. An agent would store its value estimates in a table the size of the state-action
space and would be able to infer the optimal policy given enough samples. This paradigm
works relatively well for small problems like grid worlds, but completely breaks for more
complex environments, where storing values for the whole state-action space is impossible. To
tackle more realistic and challenging environments with exponentially large state and action
spaces, ranging from controlling actuators in a simulated robot to playing Atari games from
pixel input, the next innovation was to harness the generalization capabilities of deep neural

networks [42] and use them to approximate Q-functions, value-functions and policies.



18

However, with great representational power comes great instability. Training deep Q-networks
(DQN) [21] for instance can be very unstable and requires a number of tricks (double Q-
learning [43], target networks, replay buffers, batch updates) to make the process smoother
and less hyperparameter-dependent. Other methods like Rainbow [44] or Soft Actor-Critic
(SAC) [24] greatly improve on vanilla DQN at the cost of making the problem further away
from the streaming setting as they rely on big replay buffers and large batch sizes. Throughout
this paper, we consider as streaming RL the setting used by [6], in which no transition can
be stored to be exploited later (meaning no replay buffer or batches of size greater than
one), and no target networks are used. Classical RL methods can also be more sensitive
to hyperparameter tuning (PPO famously requires 37 implementation tricks to work well
across multiple benchmarks [45]) and sadly tend to perform rather poorly when trained in
a streaming setting. This is problematic because it makes current RL algorithm dependent
on powerful and costly hardware to be trained successfully, which is not compatible with

on-board learning or systems with resource constraints.

Recently, deep streaming RL has been proven to be a possible alternative [6,7] to some tradi-
tional algorithms, like DQN or PPO, while not relying on batch updates or replay buffers. To
achieve a similar range of performances without the usual mitigations for non-stationarity, the
Stream-X family of algorithms relies on careful architectural and optimization considerations
designed to improve training stability. They also use eligibility traces to improve sampling
efficiency. Nevertheless, this new deep streaming RL paradigm does not take advantage of

the recent deep, non-streaming, RL methods, based on learning better representations for
RL.

The core idea of representation learning techniques for deep RL [18] inspired by model-based
RL is to draw a maximum of information from each transition to build more expressive repre-
sentations of the states, hopefully leading to an easier learning process for the downstream
policy. Weight sharing and learning auxiliary, potentially unsupervised, tasks [46] is a good
way to drastically increase sampling efficiency, which is one the the core weaknesses of strea-
ming RL since each transition must be discarded immediately after having been processed
by the learning algorithm. Yet, learning such representations often involves learning a model
of the environment’s dynamics, which even in the standard RL setting is a challenging task,
and self-supervised objectives usually rely on very large batch sizes. Learning rich and useful

representations in the streaming context can therefore be a very difficult task to achieve.

In this paper, we investigate what makes learning representations in a streaming fashion so
unstable. We use the framework of Self-Predictive Representations [11] for the representation

learning aspect of our study and first show that naively plugging it in the streaming context



19

results in policies that do not improve beyond random behavior. We proceed to analyze the
role played by non-stationarity in SPR’s failure in the streaming setting. Our results suggest
that although increased non-stationarity can explain part of the reasons why SPR does not
translate well to the streaming setting, SPR may be more fundamentally incompatible with
the streaming context. We hope that the insights we provide will help future work design

new representation learning methods tailored for the streaming setting.

4.3 Related work

Representation Learning for RL Model-free RL is inherently sample inefficient. It often
requires each transition to be stored in a replay buffer so that it can be used to be trained
on multiple times. One way to improve sample efficiency is to learn auxiliary tasks [46]. A
common set of auxiliary tasks is to predict some part of the dynamics of the environment
[11,15,17,19,47]. Usually, these methods add a secondary objective, such as predicting the
next observation(s), next latent state(s), next reward(s), action(s) used (inverse dynamics)
or a combination of these, and use the weight sharing in the encoder to boost the policy’s
performances. [18] give a good overview of such methods, showing that what matters is to
have some form of self predictive representations. Tasks relying on self-supervised contrastive

objectives have also been tried [12,16].

Another way to learn representations for RL is to use successor features [31-33]. These emerge
from the linear decomposition of the Q-value as the product of a (non-linear) representation
of the states and a (learned) task vector. The key difference between successor features and
self predictive representations is that only the former verify a Bellman optimality equation,
meaning they induce a fixed point which can be easier to optimize towards. Nevertheless, a
unifying characteristic of most representation learning techniques in RL is the use of large
replay buffers to try and overcome non-stationarity. Not many works study representation

learning in a streaming fashion [40], and none do for streaming RL. It is an open challenge.

Continual Learning Continual learning usually consists in training an agent on multiple
tasks sequentially in such a way that the agent is still good at solving the first tasks it
was trained on, while still presenting a good ability to learn new ones. These challenges are
respectively known as catastrophic forgetting [35] and loss of plasticity [34]. Common practice
to alleviate these is to use replay buffers [36], sparse representations [48] or layer normalization
[14] among others. Continual learning deals more broadly with learning representations from
a stream of data, which is generally seen as a very hard task [41]. Most of these representation

learning methods are inspired by the supervised learning (i.i.d.) literature and do not translate



20
well to streaming, non-i.i.d. settings, or RL [49].

Deep Streaming RL Even though the first reinforcement learning algorithms to have been
created, TD(A), Q(A) and AC()) [8] to name a few, were designed for the streaming tabular
case, they have since widely been adapted to use non-linear value function approximation
while replacing the streaming setting with a replay-buffer-based setting, closer to the i.i.d.
setting. Taking Deep RL algorithms back to the streaming context is a much more recent
achievement [6,7], and is still an under-studied area of RL, apart from some previous works
[50]. Deep streaming RL suffers from very high non-stationarity which makes the optimization
problem much harder to solve. To our knowledge, no other papers have tried to combine

representation learning and deep streaming reinforcement learning.

4.4 Background

Reinforcement Learning Reinforcement Learning aims to solve a sequential decision
problem, which can be modeled as a Markov Decision Problem (MDP) [51] (S, A, P,R,7). S
represents the set of all environment states and A the set of all actions that are available to the
agent. P : S, A — S encompasses the (stochastic) transition dynamics of the environment,
R : S, A — R is the reward function and ~ is the discount factor. The agent can interact
with the environment through a policy 7 : S, A — [0, 1] which maps a state to a probability
distribution over the action space conditioned on the state. At each time step t, the agent
receives the current state as input s; € S and takes the action a; ~ 7(-|s;). The environment
state is updated following the transition function s;yq ~ P(-|s:, a¢) and gives a feedback to

the agent in the form of a reward r; = R (s, ay).

We define the episodic return G, as the summation of the discounted rewards obtained
by an agent along a trajectory following a policy 7 and starting from timestep t. G; =
S 4% tr, where T denotes the time step at which the episode terminates. We further
define the value function V,(s) = E;[G;|s; = s] which evaluate the expected episodic return
of an agent following policy 7 and starting at a specific state s;. The goal of RL is to find
the optimal policy 7* = argmax_{V,(so)} where sy follows the initial state distribution of

the environment.

To do so, we define the state-action value function, or Q-value Q.(s,a) = E;[Gi|s; =
s,a; = a| and notice that it obeys the Bellman optimality equation [8] Q.+ (s¢, ar) = 7 +
ymax,{Qr(si+1,a)}. Deep Q-Learning exploits this fixed-point equation to learn an ap-
proximation of the Q-function, QQy ~ ), parameterized by a neural network with weights 6.

The DQN algorithm then simply consists in updating the parameters 6 in the direction of the



21

semi-gradient of the following loss function, where SG denotes the Stop Gradient operation :

L(8) = (Qe(sm ap) =T = SG<m§X{Q0(St+1, a)})>2

Streaming RL The problem statement of RL does not change in the streaming context.
However, the set of tools used to solve said problem is restricted : in this paper, we use [6]’s
definition of the streaming setting of Reinforcement Learning. It mandates that any element of
the transition (s;, as, 74, S¢+1) must be discarded right before the next transition. Any learning
can only happen on the immediately available data (from the current time step). By definition,
this prohibits the use of replay buffers. Another restriction is that no target networks are
allowed. This means that we cannot keep a fixed or slowly evolving version of the Q-network
for update stability purposes, which makes approaches like double Q-Learning prohibited. We
can however aggregate any running statistic of the past transitions that we want. For instance,
observation and reward normalization are allowed because these operations can be performed
online, without storing any transition. This is one of the methods used by [6] in their Stream-
() algorithm, of which we give a more detailed explanation in Appendix 4.9.2. They also use
layer normalization [14] before each activation function across the entire network, eligibility
traces and a custom optimizer, Overshooting-bounded Gradient Descent (ObGD). ObGD
performs a one-step approximation of a backtracking line-search algorithm [52] which finds
the highest learning rate that still leads to stable gradient update, according to a stability

criterion [23] based on the TD-error before and after updating the network’s parameters.

Eligibility traces To improve sampling efficiency in a Q-network we can use n-step returns.
Instead of just considering the next step in the computation of the return, we consider a higher
bootstrapping depth, thereby defining Q«(s:, a;) = Sp= V¥rewr + v max,{ Q- (s¢4m,a)} as
the Bellman optimality equation. This however is not allowed in the streaming setting, due
to the need to store a small buffer of the n previous transitions. Instead, we can use A-
returns, which combine n-step returns for all possible values of n, weighted by A. A-returns
provide a way to use a “backward-view” algorithm which only needs a running statistic of the
previously seen states to perform a learning update in the current one. This running statistic

is called the eligibility trace and is defined as such :

Z():O

Zir1 = \YZe + VoQo(St, ar)

Eligibility traces are reset between episodes, and in the case of e-greedy exploration whenever



22

the action taken is not the greedy one. This leads to the parameter update rule 6 < 0+ ad,z;,
where ¢§; is the TD-error (difference between the current estimate of the Q-value and its

bootstrapped estimate).

Self-Predictive Representations (SPR) In a broader setting, self predictive represen-
tations are a representation learning technique inspired from model-based RL. They are
designed to learn rich state representations z; = f¢(s;) through a secondary objective, relying
on learning a model of the dynamics of the environment, usually such that dy(z, a;) = z41.
This prediction can also happen in the observation space rather than the latent space, but
this has been show to be less effective as the learned representation must also be able to be
used to reconstruct irrelevant details of the image [11,53]. The encoder is shared between
the representation learning and the Q-value parts of the overall network, effectively sharing
weights to improve the Q-network’s representations. A loss function (e.g. Mean Squared Er-
ror (MSE) or cosine similarity) is then applied between the predicted next latent state and
the actual next latent state Lgpp = loss(dy(fe(st)), fe(si+1)) so that by learning to predict
the dynamics of the environment, the shared encoder learns a good representation of the
states. [11] build upon this idea and sequentially predict the next K latent states and use a
cosine similarity loss rather than a reconstruction-oriented MSE loss. We use this approach
with K = 5 as our representation learning baseline in this paper and for the rest of the paper,
this is the method we will refer to as SPR. While we realize that predicting the next K > 1
steps violates the streaming RL setting, we find it offers improved learning capabilities in
harder environments (see Figure 4.6 in Appendix 4.9.3) and consider that having a replay
buffer of size 5 is still very close to a fully streaming setting. Ideally future works would get

rid of this requirement.

4.5 Method

The goal of this paper is to study the dynamics of representation learning in the streaming
RL setting, and provide an understanding of what makes it such a difficult task to learn.
To address this question, we conduct two sets of experiments. In the first one, we gradually
decrease the level of non-stationarity of our experimental setup, starting from a naive integra-
tion of SPR in the streaming setting. This allows us to isolate the impact of non-stationarity
on SPR’s performances. In the second set of experiments, we analyze the quality of the re-
presentations learned by a non-streaming SPR agent and their effect on Stream-Q agents.
Finally, we discuss potential research directions to hopefully improve learning streaming re-

presentations for RL.



23

We conduct our analysis on 10 Atari environments, using ten seeds per environment unless
stated otherwise. We train our agents for one million frames (250k steps). This shorter setting
is much harder than what Stream-Q was originally designed for. However, it is very close to
the setting used in SPR, where agents are trained for 400k frames but updated twice per
environment step. Since our goal is to analyze SPR-based agents, we choose this 1M frame
setting as it is close to the Ataril00k setting SPR uses, while not being as short on the
training time (250k steps instead of 100k).

We use the Stream-Q agent from [6] as our streaming baseline and a slightly modified version
of [11]’s SPR agent, where the main difference is that we use a DQN agent with SPR instead
of a Rainbow one. We keep image augmentations and K = 5 as the next latent state predic-
tion window in SPR. As is done in Stream-Q’s original setting we used parameter-free (no
scaling or bias parameter is learned) layer normalization on all the pre-activations and used
normalized observations and rewards. We give a more complete overview of our experimental

setup, hyperparameter values and implementation choices in Appendix 4.9.1.

A core aspect of the streaming setting is the optimization. The ObGD optimizer was one of
the key elements in the success of Stream-Q). In this paper, we also faced critical optimizer
design choices as Stream-() uses eligibility trace-based parameter updates by default and
SPR uses Adam-based updates [20]. Combining these two separate sources of update for the
shared parameters is not obvious and we investigated two distinct directions. On a one hand,
we tested different strategies to merge these updates (more details in Appendix 4.9.4) which

led to choosing the following update mechanism for shared parameters :

Wshared €~ Wshared + ,UsharedaObGD(StZt - (1 - ,ushared)CVSPR)\SPRADAMIFY(VESPR(wshared)) (4 1)

where fighareq 1S @ mixing coefficient that was set to 0.5 by default and Agpg is the SPR loss
coefficient. Here, ADAMIFY means transforming the gradients following the Adam update,
using the corrected first and second momentums of the gradient). Unless specified otherwise,
every experiment involving SPR uses Agpr = 2. On the other hand, we assessed different
optimization methods such as shrink and perturb [54], orthogonal gradient projection [39]
and two-step optimization. We also decided to use different optimizer combinations for the
Q-learning and SPR parts of the network (see Table 4.4 in Appendix 4.9.1) to see if having
updates of similar type (Adam momentums) in both parts of the network improved perfor-
mance. One noteworthy choice for AdamW [55] specifically is that we excluded bias terms

from being decayed.

We use noisy networks [56] for exploration for all agents. However, with streaming agents
using ObGD and SGD as their optimizers for the Q-network, we found that the standard



24

deviation of weights in the noisy layers barely decreased, effectively never exiting the initial
random exploration phase. For that reason, agents using ObGD or SGD use a very short

e-greedy exploration schedule instead, going from € = 1 to € = 0.05 in 100k frames.

Finally, we evaluate the quality of the representations learned through the Inter-Quantile
Mean (IQM) with a confidence interval of 95% (corresponding to the shaded area in the IQM
plots) and use the Rliable [57] library. We also rely on the effective rank [58] of the output of
the encoder on large batches which gives a clear indication of whether the representations have
collapsed as well as an intuition about their quality. Although a high effective rank does not
necessarily mean that the representations are good (random matrices have very high ranks),
our experiments on SPR (see Figure 4.5b) show that better algorithms lead to increasing high
effective ranks. As such, we consider it is a good proxy to infer representation quality in our

setting. The shaded area around the effective rank plots represents their standard deviation.

4.6 Experiments

4.6.1 Impact of the non-stationarity on SPR

In the first three experiments, we aim to isolate the role played by non-stationarity in the
ability of streaming SPR agents to learn representations. Each experiment following the first
will remove some level of non-stationarity. The goal is to see if and when the problem setup
becomes stationary enough for streaming agents augmented by a SPR objective to perform
better than the Stream-Q baseline.

From Stream-Q to Fully-Streaming SPR This first experiment acts as a control. It
is the most non-stationary setting as every part of the network is trained in the streaming
context. By Fully-Streaming SPR (also denoted FS-SPR in the legend of the figures), we
mean that both the QQ-learning objective and the SPR objective are trained without replay.
The goal of this experiment is to diagnose the potential shortcomings of Fully-Streaming
SPR, as well as get a base effective rank level for both Stream-Q and Fully-Streaming SPR.
This experiment was the result of a hyperparameter search, the details of which are further

discussed in Appendix 4.9.3.

In our short 1M frames training setting, experiments with ObGD (Figure 4.1) show that
training SPR in a purely streaming fashion does not improve on the baseline as Stream-(Q
mostly has better performance compared to Fully-Streaming SPR, both IQM- and effective
rank-wise. We also tried different optimizers like SGD, as it is known to be better suited

when dealing with non-stationary problems [59] and AdamW, as it has better generalization



25

capabilities than Adam [55]. Although Figures 4.16 and 4.17 in Appendix 4.9.5 show that
Fully-Streaming SPR agents using Adam, AdamW and SGD match their streaming equivalent
without SPR both IQM- and effective rank-wise, they are at most on par with Stream-Q with
ObGD.

The aforementioned longer setting, uses a 10M frame long e-decay period, identical to what
was originally used in the Stream-(Q paper. In this setting, Stream-Q with ObGD performs at
its best and we observe an clearer trend in Figure 4.2. There is a direct negative correlation
between the SPR loss coefficient and the performances : lowering SPR’s effect through smaller
loss coeflicient consistently improves performances. This suggests that Fully-Streaming SPR
is harmful for Stream-Q and confirms that Fully-Streaming SPR is not failing solely because

of our more challenging shorter training duration.

Due to the fact that learning representations for reinforcement learning is a famously difficult
task, even when not being restricted to the streaming setting, we hypothesize that the poor
performances mostly come from the exacerbated non-stationarity of the problem. To confirm
this hypothesis, the next two experiments were designed to alleviate and even get rid of the

non-stationarity.

—— Stream-Q (OBGD)

v 0.015| — stream-q (0BGD) 1500 FS-SPR(0.0001)
o " v
o FS-SPR(0.0001) r —— FS-SPR(0.01)
2 —s— FS-SPR(0.01) & 1250 j\ —— FS-SPR(2.0)
9 0.010| —=— Fs-SPR(2.0) o I\
= 2 1000

(9]
£ iz

=
g 0.005 u: 750
5 3
E 0.000 g 500
2 &
= 250
© —0.005

0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Number of Frames (in millions) Frames %106

(a) Comparison of the IQM. No clear trend
between loss coefficient values but Stream-
Q performs slightly better without any auxi-

(b) Comparison of the effective rank. No
clear trend between loss coefficient values but
smaller values of Aspr seem to provide better

liary SPR objective. representations.

FIGURE 4.1 Comparison of a) the IQM and b) the effective rank of the representations
produced by the encoder between the Stream-() baseline and Fully-Streaming SPR, FS-
SPR(Aspr), for different values of the SPR loss coefficient in our default 1M frame setting.
All agents use the ObGD optimizer for the Q-learning part of the network and Adam for the
SPR-part.



0.12
g —e— Stream-Q (OBGD)
§ 0.10 FS-SPR(0.0001)
s —e— FS-SPR(0.01)
g 0.08 —e— FS-SPR(2.0)
©
£ 0.06
=]
=
c 0.04
£
S 0.02
I
2 0.00

0 5 10 15 20
Number of Frames (in millions)

(a) Comparison of the IQM. The lower the
value of Agpr the better the performance of

the agent : Fully-Streaming SPR hurts per-
formances IQM-wise.

26

1750 —— stream-Q (OBGD)
FS-SPR(0.0001)

< 1500 | — Fs-sPR(0.01)
K —— FS-SPR(2.0)
1250
:g 1000
fia]
— 750
S
8 s00 L/’_/————"\
&

250

0
0.0 0.5 1.0 1.5 2.0

Frames x107

(b) Comparison of the effective rank. The lo-
wer the value of Agpgr the better the quality of
the learned representations : Fully-Streaming
SPR hurts performances effective rank-wise.

FIGURE 4.2 Comparison of a) the IQM and b) the effective rank of the representations
produced by the encoder between the Stream-Q baseline and Fully-Streaming SPR, for 20M
frames. All agents use the ObGD optimizer for the Q-learning part of the network and Adam
for the SPR-part.

From Fully-Streaming SPR to Stream-Q + SPR This second experiment addresses
the non-stationarity in Fully-Streaming SPR by adding a replay buffer to the SPR part of
the network. To do so, the SPR loss is computed as the average SPR loss on a batch of size
32 sampled from a replay buffer of size 10°. This is a big step toward a more stable problem
setting, nevertheless the Q-network is still learning from a stream of observations and is ulti-
mately the determining factor when it comes to performance. Since we are improving training
stability compared to the previous experiment, we expect Stream-(QQ + SPR to perform at

least as well as the fully streaming version.

This is however not what we observe empirically. Indeed, Figure 4.16 in Appendix 4.9.5 shows
that uniformly across all optimizers except ObGD, even with a replay buffer Stream-Q + SPR
does not perform better than Stream-Q or Fully-Streaming SPR. The effective ranks of the
learned representations (Figure 4.17 in Appendix 4.9.5) are however higher on average when
using SPR with replay, albeit with a slightly higher variance. This suggests that although
removing the non-stationarity helped the SPR task (we get higher effective representation
ranks), the downstream performances of the agent are worse. This seems to hint at the fact
that Stream-Q may try to learn different representations from the ones learned by SPR. It is
possible that even though individually Stream-Q and SPR learn good representations, when

learned conjointly their updates interfere in a counter-productive way. This could explain



27

the drop in performance, even though the encoder seems to still be learning representations

without collapse.

Distillation objective In this third experiment we go even further in removing the non-
stationarity of the SPR task by training a Stream-Q + SPR agent with a distillation loss from
a teacher network (pre-trained non-streaming SPR agent). The Q-learning part of the agent
is trained in the Stream-(Q fashion while the SPR objective is trained with a replay buffer,
according to the mean squared error between the teacher SPR network’s and the agent’s SPR
network prediction. This removes the non-stationarity in the target of the representation
learning task as the new SPR target does not change through the training, but heavily relies
on the teacher being good enough. We delve deeper into this last point in the second set of
experiments. Another way to get rid of the non-stationarity is to use a completely random
fixed policy. However, we tried this approach as discussed in Appendix 4.9.5 and it doesn’t

result in better results.

Our results (Figures 4.3a and 4.18 in Appendix 4.9.6) show that even though we removed
all the non-stationarity beyond sample distribution in the training objective of the SPR
part of the network, the performance of the agent have not changed from the Stream-Q
baseline, if not worsened. However, we observe once more that the average effective rank
of the encoder representations is equal or higher (Figures 4.3b and 4.19 in Appendix 4.9.6)
when adding the distillation objective to the SPR part of the agent. This consistent trend
further raises the question of the compatibility between the Q-updates and the SPR-updates.
Indeed, the more stationary we have made the SPR learning objective, the better the rank
of the encoder representations has been. This seems to indicate that SPR is indeed learning
better representations the more stationary the setting is, these representations just happen

to not help, and actually hinder the task of learning the Q-values.

4.6.2 Investigating SPR representations

Now that we have a clearer understanding of the role of non-stationarity in the failure of
Fully-Streaming SPR and Stream-Q + SPR to learn, another question emerges : is the cause
of the deteriorated performances of streaming-SPR due to the representations learned by
SPR not being good representations for Stream-Q or to the joint learning of both tasks?
This second set of experiment attempts to address this question by investigating deeper the

representations learned by SPR agents.



£ 0.015| — StreamC (0BGD)
A —e— StreamQ (OBGD) + SPR
2 —e— StreamQ (OBGD) + SPR (Distillation)
g o.010

T

E

S 0.005

=

c

£

£ 0.000

T

=

9 —0.005

00 02 04 06 08 10
Number of Frames (in millions)
(a) Comparison of the IQM. No version of
Stream-Q 4+ SPR beats the Stream-Q base-
line : non-stationarity is not the only factor
causing Stream-Q + SPR to fail.

28

—— StreamQ (OBGD)
1500 —— StreamQ (OBGD) + SPR
é —— StreamQ (OBGD) + SPR (Distillation)
S 1250
g
5 1000
(ol
Q£
ih 750
o}
g 500
(o]
&
250
0
0.0 0.2 0.4 0.6 0.8 1.0

Frames x10°

(b) Comparison of the effective rank. As op-
posed to the IQM, increasing the stability
of the SPR task leads to equal (or higher
with other optimizers) effective ranks : non-
stationarity is detrimental to the SPR ob-
jective in the quality of the representations
learned.

FIGURE 4.3 Comparison of a) the IQM and b) the effective rank of the representations
produced by the encoder between Stream-(Q) and Stream-Q + SPR with a distillation loss for
the SPR objective. All agents use the ObGD optimizer for the Q-learning part of the network
and Adam for the SPR-part.

Pretrained encoders This first experiment studies the impact of non-streaming SPR’s
learned representations on a Stream-(Q agent. We use the same pre-trained SPR agent as in
last experiment, but rather than using it as a teacher model, we initialize the encoder weights
of a Stream-(Q agent with those of the pre-trained agent. Given that the goal of SPR is to
learn good representations through the encoder, such an initialization of a Stream-Q agent
should result in better performances. We run two versions of this experiment : one where the
initialized encoder weights of the streaming agent are frozen and a second one in which the

agent is free to update the encoder weights.

Figure 4.4 confirms our hypothesis that Stream-Q with pre-trained weights performs (slightly)
better than the Stream-(Q baseline, although only when the weights of the encoder are not
frozen (see Figure 4.12 in Appendix 4.9.5). We also observe that the average effective rank of
the encoder representations is higher when the encoder has been initialized with the weights
of the pre-trained SPR agent, and stays relatively high throughout the training when they
are not frozen. These trends are verified for all optimizers as shown by Figures 4.20 and 4.21
in Appendix 4.9.6.This indicates that the representations learned by the SPR agent are good

enough to make Stream-(Q) learn faster. We further ran a control experiment in Appendix



29

4.9.5 where we replaced the Stream-Q agent by a DQN agent (Figure 4.11) and observe the
same trends when the encoder weights are not frozen. This confirms that the representations
learned by our expert model are good enough. Therefore, this experiment shows that the

representations learned by SPR are valuable and useful to Stream-Q.

We also conducted the same pre-training experiment on Stream-Q + SPR in Appendix 4.9.5
and interestingly, the results we observed are opposite to that of Stream-Q alone. Adding the
SPR task in addition, even with good starting pre-trained representations, completely promp-
ted Stream-Q (ObGD) + SPR to fail, whereas Stream-Q (Adam) and Stream-Q (AdamW)
saw their performance increase by a lot. This further hints at the unaligned nature of Q-
learning and SPR based updates and highlights the importance of the design of the optimi-

zation problem.

—— StreamQ (OBGD)
1500 —— StreamQ (OBGD) + SPR
© 0.030] — streamo (0BGD) % 5o —— StreamQ (OBGD) (Pre-trained)
§ 0.025| —* StreamQ (OBGD) + SPR =
8 —e— StreamQ (OBGD) (Pre-trained) E 1000
g o0.020 o
= b=
£ 0015 w750
5 ]
Z 0.010 8 500
© e
£ 0005 W
T 0.000
= 0
9 -0.005 0.0 02 0.4 0.6 0.8 1.0
6
00 02 04 06 08 10 Frames x10
Number of Frames (in millions . .

( ) (b) Comparison of the effective rank. The
(a) Comparison of the IQM. A Stream- Stream-Q agent initialized with pretrained
Q agent initialized with pretrained encoder encoder weights maintains the effective rank
weights visibly outperforms the Stream-Q of its encoder’s representations high : the re-
baseline : the representations learned by SPR presentations learned by SPR are valuable to
are valuable to Stream-Q. Stream-Q.

FIGURE 4.4 Comparison of a) the IQM and b) the effective rank of encoder representations
between Stream-Q, Stream-Q + SPR and a Stream-(Q agent whose encoder weights have been
initialized from a pretrained agent. All agents use the ObGD optimizer for the Q-learning
part of the network and Adam for the SPR-part.

Original SPR setting As mentioned earlier, the quality of the teacher in the distilla-
tion experiment is crucial for the student network to perform well. Therefore, as our last
experiment, we analyze the impact of our simplified choice of hyperparameters for SPR, (dis-
carding the Rainbow improvements over DQN), on the learned representations of our teacher

network. We compare the performances of DQN and SPR in our setting to their counterparts



30

in the original SPR setting, both with and without the Rainbow improvements. Figure 4.5b
shows that, in the original SPR setting, the representations learned by Rainbow have a higher,
but noisier, average effective rank than SPR, beating it by a non-negligible margin. As for
their streaming-friendlier versions, DQN and our hyperparameter choice for SPR both have
very similar performances rank-wise and IQM-wise, well below that of SPR although they
perform better in our setting. We can draw two conclusions from these results. First, even
though SPR performs worse IQM-wise (Figure 4.5a) when we remove the Rainbow improve-
ments (in both settings), the difference in effective rank (Figure 4.5b) is much lower with our
setting, thereby further confirming the quality of the representations learned by our teacher
network. Second, these results suggest that part of SPR’s success lies in the improvements
provided by Rainbow over DQN. It opens an interesting followup question of whether an
equivalent of Streaming-Rainbow would perform better with SPR. Figure 4.15 in Appendix
4.9.5 also shows the same experiment results extended for 15 environments to better capture

the extent of SPR’s capabilities.

—— Rainbow SPR
— DQN —— SPR (original, our hps)
DQN (ours) SPR (ours)
g —e— Rainbow SPR A:é 1200
5 0.15 —e— DON —e— SPR (original, our hps) 2 1000
- Y DQN (ours) SPR (ours) ©
7] >
N / = 800
© b1 {
£ 0.10 ,/ £ 600
2 4 £ 400
T 0.05 S
E & 200
I
= 0,00 d et 0
=4 00 02 04 06 08 10

00 02 04 06 08 10 Frames x10°

Number of Frames (in millions)

(a) Comparison of the IQM. While SPR and

(b) Comparison of the effective rank. Rain-
bow learns the representations with the hi-

Rainbow perform much better than DQN
and SPR without any Rainbow improve-
ments in our setting, our versions of DQN
and SPR perform better than their equiva-
lent in the original setting. This confirms the
quality of our teacher networks.

ghest rank, closely followed by both the ori-
ginal and our SPR settings, as well as our
DQN setting. Dead last are DQN and SPR
equivalents to ours in the original setting.
This confirms the quality of the representa-
tions learned by our teacher networks.

FIGURE 4.5 Comparison of a) the IQM and b) the effective rank of encoder representations
between our and SPR’s original setting on our 10 chosen environments. “ours” refers to
agents ran in our setting, while “original, our hps” refers to agents trained in the original
SPR setting, with a replay ratio of 2 and no Rainbow improvement.



31

4.7 Discussion

Limitations In this paper, we took K = 5 for the prediction depth of SPR because it
gives better learning dynamics, instead of K = 1 to respect the streaming setting to the
letter. Another choice we made was to not consider the use of target networks, as they only
affect the Q-network, not the SPR-part of the network. Such a choice however excludes trying
the Exponential Moving Average (EMA) setup of SPR without image augmentation, which
may provide more stable training dynamics. We also made two simplifying choices in our
hyperparameter selection for SPR for ease of implementation purposes. Namely, we did not
use Rainbow’s categorical loss nor its dueling architecture. These could improve the stability
of the training as categorical loss for RL has been shown to be better for scaling [60] and
learning representations [61]. We leave investigating if these benefits are transferrable to the

streaming setting for future works.

Future directions Our results suggest that the main issue of learning streaming repre-
sentations stems from the difficulty of the optimization problem. The ObGD optimizer was
also one of the key elements of the success of Stream-Q. For this reason, we think that inves-
tigating adaptive learning rates based on the TD-error of the Q-network for the SPR part
of the network, in a way reminiscing of ObGD, would be an interesting direction to follow.
In the same spirit, Sharpness Aware Minimization [62] could be another interesting alter-
native optimization strategy to use, as its goal is to keep the parameters in a flatter region
of the loss landscape. This could help reconcile the parallel optimization of the Stream-Q
and SPR objectives as small changes in the parameter vector should not lead to drastically
different losses. Another interesting avenue is using orthogonal gradients based optimiza-
tion [40]. This optimization strategy consists in orthogonally projecting the gradients at step
t on the gradients at step t — 1 and has been specifically designed for learning representations
in a streaming setting (albeit not RL related). The idea is that for highly time-correlated gra-
dients, this method will de-emphasize successive updates that are heavily correlated but leave
unchanged new gradient directions. We also have not analyzed the role of dormancy [63] in
the results we observe and believe this could give valuable insights as to why representations

are not learned properly.

4.8 Conclusion

In this paper, we investigated the effects of adding a secondary representation learning

task to a deep streaming RL pipeline to boost its sampling efficiency. Not only did we not



32

find that adding this secondary task helped, in part because of the increased non-stationarity
of the problem, we also found that the nature of the task may itself be a problem. Through
an ablation study in which we progressively removed the non-stationarity of the problem,
we found that even though when the non-stationarity is lower SPR yields representations
with higher effective ranks, the agent’s downstream performances remain below that of the
streaming baseline. We then confirmed that the representations ultimately learned by SPR
are not harmful to streaming agents. Thus, we concluded that in addition to the increased
non-stationarity of the problem, learning the SPR objective conjointly with the Q-learning

bootstrapping objective causes the streaming SPR agents to fail.



4.9 Technical Appendix

4.9.1 Experimental details

33

This section goes over the hyperparameter choices, architectural choices and implementation

details in more depth to allow for better understanding of our setup and easier reproduction

of our results.

Hyperparameters We provide the details of all our hyperparameter choices in Tables 4.1,

4.2 and 4.3.
TABLE 4.1 SPR specific hyperparameters
Parameter SPR (original setting) SPR (our setting)
Training steps 100k 250k
Replay factor 2 1
Dueling architecture True False
Categorical loss True False
n-step returns 10 1
Replay PER Standard
Replay warm-up 2000 2048
Replay capacity N/A 10°
Update mixing coefficient N/A thshared = 0.5
Batch size 32 32
Q-target network False False
. Intensity (o = 0.05 Intensity (o = 0.05
Augmentations Random shifts (3:4 pixelsg Random shifts (2:4 pixelsg
EMA parameter 7T=0 7T=0
Noisy nets parameter 0.5 0.5
Dynamics prediction depth K=5 K=5
SPR loss coefficient Aspr = 2 Agpr = 2
Learning rate 104 See Table 4.2

Atari environments All agents evaluated with our SPR settings are trained on the fol-

lowing 10 environment from the Arcade Learning Environment (ALE) [64] : Alien, Asterix,

BankHeist, Breakout, Enduro, Freeway, Frostbite, MsPacman, Pong and Qbert. This list was

designed to contains a mix of environments where both Stream-Q and SPR reportedly per-

form well (e.g. Frostbite) or rather poorly (e.g. Qbert), as well as environments where only

one of the two algorithms performs very well (e.g. Breakout, Asterix).



34

TABLE 4.2 Optimizer specific hyperparameters

Parameter ObGD SGD Adam AdamW
Learning rate 1 1074 1074 1074
Update type Traces Gradients Gradients Gradients
k (ObGD) 2 N/A N/A N/A
f1 (Adam) N/A N/A 0.9 0.9
P2 (Adam) N/A N/A 0.999 0.999
¢ (Adam) N/A N/A 0.999 0.999
Weight decay (AdamW) N/A N/A N/A 0.01

TABLE 4.3 Other hyperparameters used

Parameter All experiments
Discount factor 0=10.99
Eligibility trace decay A=0.28

In order to get closer results to the ones from the original SPR paper, we assessed SPR’s
original performances with its original settings (Figure ??) on the following 15 environments :
Alien, Asterix, BankHeist, BattleZone, Breakout, DemonAttack, Enduro, Freeway, Frostbite,
Kangaroo, MsPacman, Pong, Qbert, RoadRunner and UpNDown.

We use the same setup as [6] regarding the Atari environments. Each environment frame is
down-sampled to a shape of 84 x 84 and converted to grayscale. Frames are then stacked by
4 (to deal with partial observability) and this constitutes the (unnormalized) state returned
by the environment. At the beginning of each episode, the agent is forced to take a random
number of no-op actions (up to 30). For environments where the game starts after the firing
action has been taken, the agent is forced to take a random action at the start. Episodes are
terminated when the agent loses all of its lives and each action taken by the agent repeated
4 times. Finally, we normalize the observations and rewards before giving them as input to

the agent, according to [6].

LayerNorm It is important to note that throughout this paper, when we mention using
layer normalization we refer to the parameter-free layer normalization used by [6]. Meaning
the LayerNorm we use does not have the usual two learnable parameters of re-scaling and

bias. For a given input x € R"”, it corresponds to the following formula :



35

i — 1 &
Vi € [1,n], LAYERNORM(x); = XK where ==Y x; and 0 =
n

1 & 9
A /0-2 + € = n kz::l( k :u)
(4.2)

Epsilon is a small quantity added for numerical stability and in our case we use the default

pytorch value of € = 1075,

Architecture design (Q-network) We use the default encoder architecture for Atari
consisting of three convolutional layers. This architecture differs from that of [6] as they use
a smaller 256-dimensional bottleneck for the output of their encoder. However, in order to
have meaningful comparisons of effective rank with the original SPR setting, we decided to
extend the output of our encoder to have the default 64 x 7 x 7 shape (dimension of 3136).
Thus, the first convolutional layer has a kernel of size 8 x 8, a stride of 4 and outputs 32
channels. The second one has a kernel of size 4 x 4, a stride of 2 and outputs 64 channels.
The last one has a kernel of size 3 x 3, a stride of 1 and outputs 64 channels. The output
of each convolution layer is passed through a LayerNorm and we use LeakyReLU(0.01) as
the activation function. We then have two fully-connected layers computing the Q-values
per action from the state representation. We use a hidden dimension of 256, so the layers
have respective shapes of 3136 x 256 and 256 x |.A|. The output of the first fully-connected
layer is passed through a LayerNorm and a LeakyReLU(0.01) activation. The last layer has
no bias term and directly outputs the Q-values. These fully connected layers are replaced
with equivalent noisy layers when using noisy networks [56] for exploration. We also apply
the same sparse initialization scheme as [6] to all the layers used in the Q-network (encoder
and fully-connected layers). This effectively sets all biases to zero and initializes 90% of each

layer’s weights to zero while the 10% left follows the LeCun initialization scheme [65].

Architecture design (SPR-network) The SPR part of the network shares the encoder
with the Q-learning part of the network. A difference between our architecture and the one
from [11] is that we use layer normalization before each activation (as opposed to batch
normalization after some of the layers). For this reason, we drop the renormalization of
the encoder and dynamics network outputs, as we already use LayerNorm everywhere. The
dynamics network consists of two convolutional layers, both using kernel sizes of 3x 3, padding
of type "same" and padding mode of type "reflect". The first convolutional layer also takes
a one-hot encoding of the action as input, concatenated in the channel dimension. Again, all
pre-activations are passed through a LayerNorm and a LeakyReLU(0.01) activation. Then
follows the prediction layer, a potentially noisy fully-connected layer. By default, this layer



36

is shared with the Q-network. As such, it is exactly the same as the first fully-connected
layer of the Q-network (also sharing the same noisiness). Finally the projection layer is a
fully-connected layer of shape 256 x 256. None of these two last layers use LayerNorm or
activation functions. The predicted next latents are iteratively computed via the dynamics
model : 2,111 = dp(Zi4, ary;) for 0 < j < K and 2, = 2. These prediction are then passed
through the prediction and projection layers. Their targets are computed from the encoder
directly applied to the next states in the trajectory, followed by the prediction layer and no

gradients are propagated through these operations.

Optimizer As mentioned in the method section, because Stream-(Q with the ObGD opti-
mizer uses eligibility traces-based updates and SPR uses Adam-based updates, weight sharing
could not be implemented as easily as back-propagating the sum of the two losses directly.
The update process of non-shared parameters is unchanged and is performed using the gra-
dients or eligibility traces deriving from the relevant loss. For shared parameters, we perform
two separate phases of back-propagation (one per loss). We compute the updates induced by
each one of them, either with eligibility traces or gradient momentums, and apply the final
update to each shared parameter as the weighted sum of the updates induced by the SPR
objective and the Q-learning objective. This approach entails the two following observations :
First, the optimal learning rate computation in the ObGD optimizer only considers the L
norm of the update coming from the Q-learning objective and disregards any update coming
from the SPR objective. This overestimation of the maximum stable learning rate should
however be accounted for by the x coefficient, taken to be equal to 2 as in [6], as well as
our mixing coefficient pispareq = 0.5. Second, when using the Adam optimizer for both the
Q-learning and SPR part of the network, the shared parameters will be updated according
to ADAM(V L) + ADAM(V Lgpgr) which is different from ADAM(V (Lo + Lspr)). In prac-
tice, our experiments comparing the results of SPR between our setting and [11]’s setting
show that both lead to SPR agents learning meaningful representations, even though our
setting uses the aforementioned Adam computation. Additionally, for the case of AdamW,
we excluded bias terms from the decayed parameters. Finally, we used the optimizer pairings
described in Table 4.4 for the Q-learning and SPR parts of the networks.

Compute resources To run these experiments, we mostly used Nvidia L40S, RTX8000
and V100 GPUs, with 8GB RAM requirements for the experiments without a replay buffer
and 64GB otherwise. Our Stream-(Q) agents complete a 1M frames training in roughly 3 to 4
hours. Our Fully-Streaming SPR agents and other agents using a replay buffer run in around

1 day on the same task. In the original SPR codebase, 400k frames experiments take from 2



37

TABLE 4.4 Optimizer pairings

Q-learning objective SPR objective
ObGD with Adam
SGD with SGD
Adam with Adam
AdamW with AdamW

to 6 hours to complete depending on the algorithm.

4.9.2 The Stream-(Q agent

This section goes over a detailed explanation of the Stream-Q agent from [6]. In the streaming
setting, the non-stationarity of the RL framework is exacerbated due to the fact that updates
are performed on highly correlated gradients. The idea behind the design of the Stream-(Q
agent is to address the instability factors that are the most affected by the streaming setting,
namely the decreased sampling efficiency, the learning instability due to highly correlated

gradients and the poor learning dynamics induced by improper scaling of data.

The authors address sampling efficiency in two ways. First, by using eligibility traces rather
than regular gradients for their updates as they provide better and faster credit assignment.
Second, they use a sparse initialization scheme in order to promote sparse representations,

as they have been shown to reduce forgetting and be beneficial for RL [22].

Because gradients between successive updates are highly correlated, the resulting parame-
ter updates may vary a lot in magnitude. The authors propose a new optimizer, named
Overshooting-bounded Gradient Descent (ObGD). As mentioned in the background section,
the ObGD optimizer performs a one-step approximation of a backtracking line-search algo-
rithm [52]. In other words, ObGD gives a good candidate value for the highest achievable
learning rate such that a stability criterion is verified. In the case of SPR, the stability

criterion considered is the effective step size defined by [23] as :

5(st) = 0 (s2)

S T

(4.3)

where 0(s;) is the TD-error and ¢ (s;) is the TD-error on the same state after having updated
the network parameters according to d(s;). An update is considered unstable if £ > 1. Usually,
a backtracking line-search algorithm would iteratively reduce the learning rate until it finds

a value that verifies the stability criterion. ObGD approximates this process by performing



38

only one iteration, and without computing 0 (s;) as this can be a costly operation. [6] come
up with the following upper bound for a the stability criterion : ¢ < akd;||z¢||1, where a
is the step size, k > 1 is an hyperparameter of ObGD, acting as a security coefficient.
6 = max(1,]d(s;)|) and z is the eligibility trace used in the update. This combined with
the stability criterion gives the following condition on the stability of the learning rate :
o < (kd||z¢|[1)~". For a desired maximum step-size a*, ObGD is thereby defined by the

following update rule :

1

W; < W; + min (a*, —_
K| |2 |1

) . 5(St)zt (44)
The adaptive step-size offered by ObGD allows to efficiently deal with highly correlated
updates by ensuring that the behavior of the network after update will be close to its behavior
before the update. In order to provide more stability to the network, the authors also use
layer normalization before every activation function. They use parameter-free LayerNorm as

explained in the previous section of the Appendix.

Finally, the authors normalize the rewards and observations of the agent, keeping a running
average and standard deviation of all states and rewards encountered so far. This is a known

method to improve training stability [66].

4.9.3 SPR Hyperparameter search

First search Given the exponentially large number of possible hyperparameter combina-
tion, we performed the first part of this hyperparameter search over a smaller set of environ-
ments, namely Asterix, Breakout, Frostbite and Qbert. We exclusively ran experiments in a
longer setting, where agents are trained for 50M frames give or take. In this setting, we use
the same e-greedy exploration scheme as [6], which involves a linear decay of € from 1 to 0.01
in 10M frames. Most of these experiments were ran using the Stream-Q’s encoder architecture
in which the encoder output has a dimension of 256 instead of 3136. We also used K =1
in these experiments. These experiments were performed on Fully-Streaming SPR agents.
Unfortunately, this first search was rather inconclusive as we did not find any hyperpara-
meter combination that gave better or even similar performances to Stream-(Q. Indeed, as
we have shown in the paper, Fully-Streaming SPR agents never achieve better performances
than the Stream-Q) baseline, at least in terms of IQM. This makes it very tricky to determine
which values of hyperparameters work better and is one of the main reason we decided to
measure the effective rank of the learned representations in the following searches and later

experiments, in order to have a better understanding of the performance of our agents.



39

Role of A\spr  We studied the impact of the SPR loss coefficient, as it plays a very important
role in scaling the magnitude of the updates coming from the SPR part of the network in the
shared parameters. We tried different orders of magnitude for Agpr to cover a large range
of SPR contribution scales. Our results have already been presented in our first experiment
(Figures 4.1 and 4.2). They show that no value of Agpg is fundamentally better than the
other as even very small values reach lower performances than the baseline and decreasing
Aspr as close to 0 as possible seems to be the only way to not lose performance. We concluded

that for Fully-Streaming SPR, the added self-predictive objective hurts the performance.

Choice of K =5 In section 4.4 we mentioned that we ultimately chose K = 5 because it
offered improved learning capabilities in harder environments. We indeed noticed that using
K =5 instead of K =1 led to SPR agents being able to learn in the Enduro environment as
shown in Figure 4.6a. Overall, the two variants of SPR have very close IQMs (Figure 4.6b),
with K = 1 having a higher variance because of a smaller number of random seeds being
ran. However, using K = 5 consistently yields representations with higher effective rank than

when using K = 1 (Figure 4.6¢).

— SPR(K=5)
120 SPR (K =1)

100
—e— SPR(K=5) — SPR(K=5)
SPR (K = 1) 1200 SPR (K = 1)

o
N
o

80

60 1000

Episode Return

=]
=
ul

40 800

600

400
/ 200 |
(a) Episode return on Enduro. %0 02 04 05 08 10 o7 97 05 o5 o
K — 1 doeS HOt lead tO any lear— Number of Frames (in millions) Frames x10°
ning while K = 5 does. Shaded (b) Comparison of the IQM. (c) Comparison of the effective
area corresponds to the stan- Both choices of K lead to very rank. K = 5 leads to higher ef-

dard deviation. similar performance. fective ranks than K = 1.

20

ol —
0.0 0.2 0.4 0.6 0.8 1.0
Frames x10°

o
o
%l

IQM Human Normalized Score
o
=
S
Encoder Effective Rank

o
o
o

FIGURE 4.6 Comparison of a) the episode return on the Enduro environment, ) the IQM
and c¢) the effective rank of encoder representations between two versions of SPR, one using
K =1 (2 seeds) and the other K =5 (5 seeds).

4.9.4 Optimization experiments

Gradient accumulation Since adding SPR updates to Stream-() seems to hinder per-

formance and that the SPR task is sensitive to non-stationarity, we studied the impact of



40

accumulating SPR gradients, only updating the SPR part of the network every other step.
To do so, we kept a running average of the SPR updates that should have been applied to
the network and only apply the average of the last 32 updates once every 32 steps. The
updates from the Q-network are still applied every step, even to the shared parameters. It
is important to note that this experiment was conducted in the setting described in the first
paragraph of section 4.9.3 and as such, the effective ranks have completely different values.
Figure 4.7a shows that although the Stream-Q baseline is still better than any of the Fully-
Streaming SPR agent configurations we tried, using a gradient accumulation of 32 steps
seemed to help agents achieve better performance IQM-wise, as well as better effective ranks
(Figure 4.7b). This further builds our argument that SPR updates in the streaming setting
seem harmful to the Q-learning objective. An interesting followup would be to investigate if
these improvements are due to less correlated updates of the SPR part of the network or to
the lower frequency of these updates. We did not end up using gradient accumulation in our
1M frames setting because of the decreased sampling efficiency. Indeed updating the SPR
network only once every 32 steps seemed too little to learn good representations early enough
in the training. After all, we want to add an SPR objective specifically to help the Stream-Q

agent learn better representations faster.

—e— Stream-Q (Baseline)
FS-SPR (SGD, 1)

—e— FS-SPR (SGD, 32)
FS-SPR (ADAM, 1)

—e— FS-SPR (ADAM, 32)

o
)

C
=]

120 FS-SPR (SGD, 1)

—— FS-SPR (SGD, 32)
FS-SPR (ADAM, 1)

—— FS-SPR (ADAM, 32)

=
o
o

co
[=]

o o
o )
Encoder Effective Rank

[}

(=]
3

P

IQM Human Normalized Score
(@]
B

P = —

0 10 20 30 40 40
Number of Frames (in millions) 20
(a) Comparison of the IQM. Although None 0
of the Fully-Streaming SPR optimizer confi- 0 1 2 3 4
. . Frames x107
guration beat the Stream-Q baseline, we ob-
serve that gradient accumulation of 32 steps (b) Comparison of the effective rank. Agents
lead to slightly better performances than wi- using gradient accumulation of 32 steps have
thout gradient accumulation. representations with higher effective ranks.

FIGURE 4.7 Comparison of a) the IQM and b) the effective rank of encoder representations
between different Fully-Streaming SPR agents using different gradient accumulation values
and the Stream-Q baseline (2 seeds per experiment).



41

Gradient projection One of our concerns when coming up with a merging strategy for
the updates of the shared parameters was that the two tasks may give updates that would
be too dissimilar and would end-up interfering destructively. Following the ideas from the
A-GEM [39] method for continual learning, we decided to project the updates from the SPR
objective orthogonally onto the updates coming from the Q-learning objective. This should
reduce the interferences caused by learning a task on learning the other. In practice, we did
not observe much difference between this method and the simple averaging of the updates.
We realized that the updates coming from the Q-learning objective and the SPR objective
were already relatively orthogonal without any intervention (with a cosine similarity hovering
between -0.02 and 0.05) as shown on Figure 4.8. This can explain why we did not see a
difference when using gradient projection instead of averaging the updates. Interestingly, the
results reveal that the updates are slightly more correlated when the Q-learning objective

and the SPR objective are both trained from the same distribution (replay or stream).

w
3
o 0.02
pe)
o
3
S
g 0.01
Z
(0]
fe)
> 0.00
kS
g -0.01
o — SPR
g Stream-Q + SPR
o —0.02 —— FS-SPR
I
0.0 0.2 0.4 0.6 0.8 1.0

Frames x10°

FIGURE 4.8 Average similarity between the updates coming from the SPR-objective and
the Q-learning objective across all Fully-Streaming SPR, Stream-Q + SPR and SPR agents
trained on the 10 environment we considered for the 4 optimizer combinations we considered.
The similarity is very low (which could explain why projecting these gradients didn’t have
noticeable effect), even more so when both objectives are not trained from the same distri-
bution (stream vs. replay).

Two step optimization We also considered applying updates to the shared parameters
from only one source of updates (Q-learning of SPR) and change which source every few
steps. This is also known as two step optimization and it allows each task to be learned
without interference while still being trained together. However, since this experiment was
run in the setting used to perform the first hyperparameter search (defined in section 4.9.3),

we did not get meaningful results.



42

Shrink and perturb We noticed that the parameter norm in the SPR parts of the network
grew to very large values before stabilizing, which can decrease the effective learning rate by
a lot, effectively slowing training in the SPR part of the network. This is a consequence
of using layer normalization [67] before every activation function, even in the SPR part
of the network. Indeed, LayerNorm introduces parameter-scale invariance which causes its
gradients to be inversely proportional to the parameter norm. This means that in order to
get more meaningful parameter changes, we should enforce lower parameter norms. Thus,
in addition to trying AdamW, we investigated if shrink and perturb [54] could help improve
performances. We chose to only apply shrink and perturb in the encoder and dynamics model
of the SPR agent and excluded biases, as shrinking the parts of the Q-network responsible
for predicting the Q-values affected the performances of our agents in a bad way in our
experiments, preventing them to learn Q-values high enough to beat random policies. The
shrink and perturb update consists in scaling down each parameter by a factor A €0, 1[ and
adding a gaussian noise € ~ N(0, 0?), giving the following update : w < A(w + aAw) + e.

For this experiment, we used a value of 0.99 for A and 1073 for o2.

Figure 4.9a shows that no agent subjected to a shrink and perturb update manages to beat
the Stream-Q + OBGD baseline. They all seem to have rather similar performances IQM-
wise. Unfortunately adding shrink and perturb does not seem to have helped the optimization
problem. Effective rank-wise, Figure 4.9b shows what appears to be the rank of an almost
random encoder. Indeed, even though the perturbation part of the process has the benefit
of moving the parameter vectors around slightly, thus allowing them to stumble on better
regions of the weight space that they would otherwise not have reached, if this perturbation is
too important the network may not be able to learn at all and be mostly random. Particularly,
random matrices are known to have very high ranks as their rows/columns are not correlated.
The high effective ranks we observe seem too high to be coming from a good encoder. We
would however need to use a smaller value of o2 to confirm that shrink and perturb does not

help our streaming agents get better performances.

4.9.5 Additional results

Getting rid of the non-stationarity In addition to experimenting with the effect of
replacing SPR’s objective by a distillation loss, we ran an alternative experiment to get rid
of the non-stationarity in a different way. Indeed, in this experiment, a Fully-Streaming SPR
agent learns representations from a completely random stationary policy. This corresponds to
setting appap to zero in equation 4.1 and using an e-greedy exploration scheme with e = 1 for

the entirety of the training. With such a setting, not only do we get rid of the non-stationarity



43

g —e— Stream-Q (Baseline) é 2000
t% 0.04 FS-SPR (OBGD) g Lc:m
—e— FS-SPR (ADAM) v I
-OS} 0.03] —e— stream-Q + SPR (OBGD) % 15001 ¢
T Stream-Q + SPR (ADAM) & ‘
£ 002 "2 1000
g g —— Stream-Q (Baseline)
o FS-SPR (OBGD)
c  0.01 /\ o ‘
© = f= e = ¥
£ ;:// % w 500 — ;f SPR (ADAM)
=] &~ ream-Q + SPR (OBGD)
T 0.00 Stream-Q + SPR (ADAM)
= 0
© o1 0.0 02 04 06 08 1.0
6
00 02 04 06 08 10 Frames x10
Number of Frames (in millions . .
( ) (b) Comparison of the effective rank. All
(a) Comparison of the IQM. Every agent agents have much higher effective ranks than
seems to behave very similarly IQM-wise, re- the baseline. However, this seems to indicate
gardless of the optimizer used, with a ten- that the perturbation is too large, thereby
dency to under-perform compared to the inducing more random representations which
Stream-Q baseline. will have higher rank.

FIGURE 4.9 Comparison of a) the IQM and b) the effective rank of encoder representations
between different agents subjected to a shrink and perturb update and the Stream-(Q baseline
(no shrinking or perturbation of the weights) on 2 random seeds.

of the input observations given to SPR as the policy is not updated over time, but we also
get rid of any possible interference between the Q-updates and the SPR-updates. However,
since the policy is random, it is likely to span only a restricted subset of the state-space,
and as such it is more likely that training a SPR agent would enter an overfitting regime.
Moreover, [11] state that the SPR objective is prone to representation collapse but that the
Q-learning objective should act as a regularizer preventing said collapse. Therefore, although
this experiment does get rid of most of the non-stationarity, the learning dynamics it induces
are potentially not suitable for training. To assess the quality of the representations learned,
we compare the effective rank of the Fully-Streaming SPR agent to the effective rank obtained
from the original SPR setting in a similar setting (we use a regular replay buffer instead of

PER because the policy is not updated, and thus the TD-errors never change).

The results of this experiment are shown on Figure 4.10. We can see that the effective rank of
the learned representations collapses slowly in the case of SGD, but both Adam and AdamW
seem to perform similarly, with a mediocre but increasing effective rank. However, in its
original setting, SPR does not seem to learn any meaningful representations as the effective
rank of the encoder’s outputs stays constant at a relatively low value. This indicates that

even though Fully-Streaming SPR with stationary inputs and without interferences from the



44

Q-network seems to be stable enough and does not collapse, our concerns about the poor
learning dynamics are confirmed. This experimental setup is not the most meaningful way
to get rid of the non-stationarity. For this reason we ran our distillation experiment to get a

clearer picture.

1500 FS-SPR (SGD)
—— FS-SPR (ADAM)
-~
1250 —— FS-SPR (ADAMW)
5 2000 g
G>J 1000 SPR (our hyperparameters)
3 <
o S 150
£ 750 «
- =
0] ]
T 500 2 100
2 pv
250 o
3
0 £ 50
0.0 02 0.4 0.6 0.8 1.0
Frames x108
0
(a) Results using our SPR setting. Although 0 2 4 6 8
.. Frames x10°
every optimizer seems to undergo some sort
of representation collapse at the very begin- (b) Results using SPR’s original setting.
ning, the rank stabilizes and slowly increases Here, no matter the setting, SPR didn’t learn
afterwards (except for SGD), showing that any meaningful representations. This high-
streaming SPR can learn representations wi- lights the poor learning dynamics induced by
thout collapse, but not very good ones. this experiment.

F1GURE 4.10 Comparison of the effective ranks of the representations produced by the en-
coder of a SPR agent using both a) our setting and b) the original SPR setting. Here, only
the SPR-part of the agent’s network is updated and the policy is random (¢ = 1) (2 seeds
per experiment).

Pretrained encoders for DQN As mentioned in section 4.6.2, we further verify that the
representations learned by our teacher network (non-streaming SPR agent using our setting)
are of good quality. We run the same experimental setup as in our Pretrained encoders
experiment, except that we train a DQN agent instead of a Stream-Q + SPR agent. Both
the baseline and the agent initialized with pretrained weights are trained with replay and a
target network. Figure 4.11 confirms the quality of the representations learned by our teacher
network as the DQN agent initialized with pretrained weights performs better than its vanilla

version.

Additional pre-training experiments First, Figure 4.12 presents the results of the same

pre-trained encoder experiment as described in section 4.6.2 (except for only 2 random seeds),



45

L —e— DQN (Baseline)
§ 0.20 DQN (Pre-trained) 1400 _—_ DON (Baseline)
ko] DQN (Pre-trained)
8 ~ 1200
HNp.15 c
e = 1000
S 0.10 =
= g 800
] pir
€ 0.05 . 600
= S 400
= 2
< 0.00 .

0.0 0.2 0.4 0.6 0.8 1.0 0

Number of Frames (in millions) 00 03 04 0% 08 1o
. Frames x108
(a) Comparison of the IQM. The DQN agent
initialized with (unfrozen) pretrained enco- (b) Comparison of the effective rank. Simi-
der weights learns faster than its trained from larly to what we observe for the IQM, the
g y )

scratch version, confirming the quality of the effective rank of the model using pretrained
representations learned by our teacher net- weights is higher, further confirming the qua-
work. lity of our teacher network.

FIGURE 4.11 Comparison of a) the IQM and b) the effective rank of encoder representations
between regular DQN and a DQN agent whose encoder weights have been initialized from
the same pretrained agent as in our distillation experiment. Both algorithms were ran with
replay and a target network (hard updates every 4000 steps) on 2 random seeds.

but where we also run an experiment where the encoder weights are frozen after being
initialized to that of a pre-trained SPR agent. We observe that representations keep a rather
high rank (Figure 4.12b), as one could expect since the encoder is frozen, but the performance
IQM-wise are pretty bad (Figure 4.12a). This shows that although representations learned by
SPR are useful to a streaming agent, the learning dynamics to get them is just as important,

if not more.

Second, as mentioned in section 4.6.2, in addition to trying to run a Stream-Q agent with
pre-trained encoder weights, we also ran this experiment using pre-trained encoder weights
from SPR agents on Stream-Q + SPR agents, effectively adding a representation learning
task to the pre-trained Stream-(Q) experiment. Figure 4.13 shows that adding this SPR task
completely nullified the performance gained by using pre-trained representations for ObGD
and SGD (Figure 4.20). Adam and AdamW on the other hand greatly benefit from adding the
SPR objective on top of pre-trained representations. Rank-wise, we can see on Figure 4.21 that
while for ObGD and SGD, the effective rank of the agents using pre-trained representations
are overall higher than (or equal to) both other baselines, this rank stays constant and does

not increase like it did as shown on Figure 4.21. Again, the opposite situation occurs for



46

Adam and AdamW for which the effective rank benefits from the added SPR objective. All
in all, these trends further show that Q-Learning and SPR are incompatible in the streaming

setting under some conditions, seemingly dictated by the way the optimization problem is

framed.
L 0.10] —e— streamQ (Baseline)
S StreamQ + SPR
g 0.08 —e— StreamQ + SPR (Pre-trained)
ﬁ ’ —e— StreamQ + SPR (Pre-trained, Fixed)
T
e 0.06
-
o
Z 0.04
[
©
» ﬁ_ﬁug
I i
& 0.00

0.0 0.2 0.4 0.6 0.8 1.0
Number of Frames (in millions)

(a) Comparison of the IQM. Although a
Stream-Q + SPR agent initialized with fized
pretrained encoder weights does not improve
on the Stream-Q baseline, the same agent
with unfrozen weights outperforms the base-
line : the representations learned by SPR are
valuable to Stream-Q but Stream-Q needs to
be able to alter the initial representations in
order to work properly.

1400 —— StreamQ (Baseline)
StreamQ + SPR

é 1200 —— StreamQ + SPR (Pre-trained)
2 —— StreamQ + SPR (Pre-trained, Fixed)
o 1000 a—
=
=
‘§ 800
pim
~ 600
: e
k=]
S 400
c
i}

200

0 =
0.0 0.2 0.4 0.6 0.8 1.0
Frames x 108

(b) Comparison of the effective rank. Stream-
Q + SPR agents initialized with pretrained
encoder weights maintain the effective rank
of their encoder’s representations high : the
representations learned by SPR are valuable
to Stream-Q.

FIGURE 4.12 Comparison of a) the IQM and b) the effective rank of encoder representations
between Stream-(Q) and a Stream-(Q) agent whose encoder weights have been initialized from
a pretrained agent. Specifically, we are interested in the case where these weights are then
frozen. All agents use the ObGD optimizer for the Q-learning part of the network and Adam

for the SPR-part. 2 random seeds were used.



47

0.04
v —e— StreamQ (OBGD) —e— StreamQ (SGD)
8 —e— StreamQ (OBGD) + SPR —e— StreamQ (SGD) + SPR
¥ 0.03| —— streamq (0BGD) + SPR (Pre-trained) —e— StreamQ (SGD) + SPR (Pre-trained)
8
© 0.02
£
-
2
- 0.01
[(+]
g
2 0.00
=
o
- -0.01

0.04
I —e— StreamQ (ADAM) —e— StreamQ (ADAMW)
3 —e— StreamQ (ADAM) + SPR —e— StreamQ (ADAMW) + SPR
D 0.03] —— StreamQ (ADAM) + SPR (Pre-trained) —e— StreamQ (ADAMW) + SPR (Pre-trained)
8
© 0.02
IS
e
2
= 0.01
©
g
2 0.00
=
o
- -0.01

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

F1GURE 4.13 Comparison of the IQM across multiple optimizer configurations between the
Stream-(QQ baseline, Stream-( + SPR and a Stream-Q + SPR agent whose encoder weights
have been initialized from a pretrained agent. In this setting, adding the SPR objective to
a Stream-(Q agent initialized with pre-trained encoder weights kills all performance gains
from the pre-trained representations for both ObGD and SGD. For Adam and AdamW this
greatly benefits performance, showcasing the importance of the role played by the choice of
optimizers and how more “aligned” setups can benefit streaming SPR.



48

1600 —— StreamQ (OBGD) 1600 —— StreamQ (SGD)
—— StreamQ (OBGD) + SPR —— StreamQ (SGD) + SPR

. 1400 —— StreamQ (OBGD) + SPR (Pre-trained) 1400 —— StreamQ (SGD) + SPR (Pre-trained)
[=4
& 1200 1200
[
% 1000 1000
% 800 800
o
3 600 600
S
£ 400 400

200 200

0 0
1200 —— StreamQ (ADAM) —— StreamQ (ADAMW)
—— StreamQ (ADAM) + SPR —— StreamQ (ADAMW) + SPR

x 1000 —— StreamQ (ADAM) + SPR (Pre-trained) _____ 1000 —— StreamQ (ADAMW) + SPR (Pre-trained) _____
©
o
o 800 800
=
1
o
£ 600 600
w
o
[
g 400 400
o
C
w

200 200

0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Frames x10° Frames x10°

F1GURE 4.14 Comparison of the effective rank of the representations produced by the encoder
across multiple optimizers between the Stream-(Q baseline, Stream-Q + SPR and a Stream-
Q + SPR agent whose encoder weights have been initialized from a pretrained agent. Most
optimizers show a clear trend in which Stream-Q + SPR agents with pretrained weights learn
representations with higher ranks than those without pre-trained weights, regardless of the

optimizer (except for SGD).



—e— Rainbow SPR
—e— DON —e— SPR (original, our hps)
DQN (ours) SPR (ours)

o
N
U

o
N
=)

o
=
=]
2

o
o
(6]
-~

R\

IQM Human Normalized Score
o
[
(6]

0.0 0.2 0.4 0.6 0.8 1.0
Number of Frames (in millions)

(a) Comparison of the IQM. While SPR and
Rainbow perform much better than DQN
and SPR without any Rainbow improve-
ments in our setting, our versions of DQN
and SPR perform better than their equiva-
lent in the original setting. This confirms the
quality of our teacher networks.

49

—— Rainbow SPR
— DQN —— SPR (original, our hps)
DQN (ours) SPR (ours)

1200
1000

800

—

600

400

Encoder Effective Rank

200

0.0 0.2 0.4 0.6 0.8 1.0
Frames x10%

(b) Comparison of the effective rank. Rain-
bow learns the representations with the hi-
ghest rank, closely followed by both the ori-
ginal and our SPR settings, as well as our
DQN setting. Dead last are DQN and SPR
equivalents to ours in the original setting.
This confirms the quality of the representa-
tions learned by our teacher networks.

FIGURE 4.15 Comparison of a) the IQM and b) the effective rank of encoder representations
between our and SPR’s original setting on 15 chosen environments. “ours” refers to agents
ran in our setting, while “original, our hps” refers to agents trained in the original SPR
setting, with a replay ratio of 2 and no Rainbow improvement.



20

4.9.6 Plots on all optimizers

Y 0.020 —e— StreamQ (OBGD) —e— StreamQ (SGD)
S FS-SPR (OBGD) FS-SPR (SGD)
2 0.015 —e— StreamQ (OBGD) + SPR —e— StreamQ (SGD) + SPR
N
< 0.010
£
5
S 0.005
8
= 0.000
T
s —0.005
o4

-0.010
Y 0.020 —e— StreamQ (ADAM) —e— StreamQ (ADAMW)
8 FS-SPR (ADAM) FS-SPR (ADAMW)
2 0.015| —e— StreamQ (ADAM) + SPR —e— StreamQ (ADAMW) + SPR
I
T 0.010
E
g 0.005
5
£ 0.000
£
= —0.005
(=4

—0.010

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

F1GURE 4.16 Comparison of the IQM across multiple optimizer configurations between the
Stream-(Q baseline, Fully-Streaming SPR and Stream-Q + SPR, with a loss coefficient Agpr =
2. Although Adam and AdamW seem to lead to improvements when adding a streaming SPR
objective, none of them beat Stream-Q + ObGD. Stream-Q + SPR seem to provide very
marginal, if any, improvements over FS-SPR performances.



51

1600 —— StreamQ (OBGD) 1600 —— StreamQ (SGD)
FS-SPR (OBGD) FS-SPR (SGD)
1400 —— StreamQ (OBGD) + SPR 1400 —— StreamQ (SGD) + SPR

1200 1200

1000 1000

800

600

Encoder Effective Rank
©
o
o

—— 400

—— StreamQ (ADAM) —— StreamQ (ADAMW)
FS-SPR (ADAM) FS-SPR (ADAMW)
—— StreamQ (ADAM) + SPR 800 —— StreamQ (ADAMW) + SPR

600

400

Encoder Effective Rank

200

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Frames x10° Frames %108

F1GURE 4.17 Comparison of the effective rank of the representations produced by the encoder
across multiple optimizers between the Stream-(Q baseline, Fully-Streaming SPR and Stream-
Q 4+ SPR, with a loss coefficient Aspr = 2. Most optimizers show a clear trend in which
more stable SPR objectives lead to representations with higher ranks. Exceptions are noted
for SGD, in which Stream-Q + SPR does not improve representations, and ObGD in which
FS-SPR gives worse representations than Stream-(Q alone and Stream-Q + SPR is only better
at the beginning of the training.



52

0.020
v —e— StreamQ (OBGD) —e— StreamQ (SGD)
8 0.015 —e— StreamQ (OBGD) + SPR —e— StreamQ (SGD) + SPR
_Lg ) —e— StreamQ (OBGD) + SPR (Distillation) —e— StreamQ (SGD) + SPR (Distillation) 4:
]
N 0.010
£
S 0.005
=2
§ 0.000
E
T —0.005
S
— —0.010

0.020
v —e— StreamQ (ADAM) —e— StreamQ (ADAMW)
§ 0.015| —* Streama (ADAM) + SPR —e— StreamQ (ADAMW) + SPR
o . —e— StreamQ (ADAM) + SPR (Distillation) —e— StreamQ (ADAMW) + SPR (Distillation)
O
N 0.010
£
5 0.005
=2
g 0.000
§
T —-0.005
&
— —0.010

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

F1GURE 4.18 Comparison of the IQM across multiple optimizer configurations between the
Stream-(Q baseline, Stream-Q + SPR and Stream-Q + SPR with a distillation loss for the
SPR objective. Although Adam and AdamW seem to lead to improvements when adding a
streaming SPR objective (regardless of the distillation objective), none of them beat Stream-

Q + ObGD.



93

1600 —— StreamQ (OBGD) 1600 —— StreamQ (SGD)
——— StreamQ (OBGD) + SPR —— StreamQ (SGD) + SPR
~ 1400 —— StreamQ (OBGD) + SPR (Distillation) 1400 —— StreamQ (SGD) + SPR (Distillation)
c
& 1200 1200
o
£ 1000 1000
9]
£ 800 _—~—— 800
3 600 600
o
2 400 400
200 200
0 0
1000
—— StreamQ (ADAM) —— StreamQ (ADAMW)
—— StreamQ (ADAM) + SPR —— StreamQ (ADAMW) + SPR
~ 800 —— StreamQ (ADAM) + SPR (Distillation) ——__— 800 —— StreamQ (ADAMW) + SPR (Distillation) —
g
g
2 600 600
()
{9}
=
'~ 400
5 400
el
o
2
uwi 200 200
0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Frames x10°8 Frames x10°

FI1GURE 4.19 Comparison of the effective rank of the representations produced by the encoder
across multiple optimizers between the Stream-Q baseline, Stream-Q + SPR and Stream-Q +
SPR with a distillation loss for the SPR objective. Most optimizers show a shy improvement
the rank of representations when the SPR objective becomes more stable. Stream-Q (ObGD)
+ SPR does not benefit from the increased stability of the distillation objective.



o4

L 0.03| —e— streamQ (OBGD) —e— StreamQ (SGD)
8 —e— StreamQ (OBGD) + SPR —e— StreamQ (SGD) + SPR
2 —e— StreamQ (OBGD) (Pre-trained) —e— StreamQ (SGD) (Pre-trained)
o 0.02
=
E
© 0.01
=
c
©
5 0.00
T
S
= -0.01
Y 0.03] —e— streamQ (ADAM) —e— StreamQ (ADAMW)
8 —e— StreamQ (ADAM) + SPR —e— StreamQ (ADAMW) + SPR
2 —e8— StreamQ (ADAM) (Pre-trained) —e— StreamQ (ADAMW) (Pre-trained)
o 0.02
©
£
o 0.01
=
c
©
£ 0.00
T
5
= —=0.01
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

F1GURE 4.20 Comparison of the IQM across multiple optimizer configurations between the
Stream-(Q baseline, Stream-( + SPR and a Stream-Q + SPR agent whose encoder weights
have been initialized from a pretrained agent. A Stream-(Q agent initialized with pretrained
encoder weights visibly outperforms the Stream-(Q) baseline : the representations learned by
SPR are valuable to Stream-Q. More importantly, for ObGD and SGD, Stream-Q with pre-
trained encoder outperforms Stream-QQ + SPR, highlighting the detrimental nature of SPR
for Stream-(Q with certain optimizers.



95

1600 —— StreamQ (OBGD) 1600 —— StreamQ (SGD)
—— StreamQ (OBGD) + SPR —— StreamQ (SGD) + SPR
~ 1400 —— StreamQ (OBGD) (Pre-trained) 1400 —— StreamQ (SGD) (Pre-trained)
& 1200 1200
[
£ 1000 1000
(9]
& 800 800
3 600 600
o
2 400 400
200 200
0 0
—— StreamQ (ADAM) —— StreamQ (ADAMW)
—— StreamQ (ADAM) + SPR —— StreamQ (ADAMW) + SPR
~ 800 —— StreamQ (ADAM) (Pre-trained) 800 —— StreamQ (ADAMW) (Pre-trained)
5
o
2600 600
9]
(1]
&
+ 400 400
7]
o
o
2
w 200 200
ol — 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Frames x10°8 Frames x10°

FI1GURE 4.21 Comparison of the effective rank of the representations produced by the encoder
across multiple optimizers between the Stream-Q baseline, Stream-Q + SPR and a Stream-Q
+ SPR agent whose encoder weights have been initialized from a pretrained agent. Stream-
Q agents initialized with pretrained encoder weights maintain the effective rank of their
encoder’s representations high : the representations learned by SPR are valuable to Stream-

Q.



o6

CHAPTER 5 GENERAL DISCUSSION

The research presented in this paper is an empirical study of the learning dynamics of unsu-
pervised learning objectives in the streaming RL setting. We used a notorious representation
learning method for reinforcement learning, SPR [11], that we combined with the recent
streaming RL agent from [6]. To our knowledge, no other papers focused on adapting re-
presentation learning methods to the realm of deep streaming RL. We used optimization
ideas from the continual learning literature [39,54] and presented several others that were
not tested in the paper [40,62,63].

As for our contribution, through a series of carefully crafted experiments, we attempted to
determine what were the root causes of our failed attempts at learning streaming represen-
tations for reinforcement learning. The non-stationarity of the problem, although it was the
first culprit we had in mind, appeared to not be the only cause preventing the agent to
learn anything beyond random exploration. Instead, the very essence of the representation
learning task, learned jointly with the streaming Q-learning objective seems to be the is-
sue. Unfortunately, our analysis cannot provide an explanation of what causes this divergent
learning dynamics, although it highlights the issue at hand where future works will need
to investigate further. It is also important to note that most works tackling representation
learning for RL are empirical papers, and very few [68,69] analyze the theoretical reasons
that make adding an unsupervised learning task to RL such a beneficial endeavor. We did
not tackle the optimization problem from a theoretical perspective in this research, but our
results strongly suggest that such an analysis is needed to progress further in the domain. We
believe that such a contribution would be very helpful not only to the field of deep streaming
reinforcement learning but of continual learning as well. As such, we recommend looking into

optimization methods designed to improve plasticity in the continual learning literature [70].



o7

CHAPTER 6 CONCLUSION

6.1 Summary of the work done

In this thesis, we presented the work we did on investigating the reasons why learning strea-
ming representations for streaming deep reinforcement learning does not work when directly
translating existing representation learning methods to the streaming setting of RL. This
work led to the submission of our article The Challenges of Learning Streaming Representa-
tions for Reinforcement Learning. As such, this article constitutes the core of the thesis. We
also expanded our literature review to cover the most relevant papers in more details than

in the paper.

Our main contribution is a detailed empirical analysis of the reasons why directly translating
the Self-Predictive Representation (SPR) method from [11] to the streaming context fails. We
started by investigating the role of non-stationarity in this failure, as streaming RL prevents
the use of standard mitigation measures, such as replay buffers and target networks. Through
a series of experiments, gradually removing some level of non-stationarity, we showed that
although non-stationarity plays a role in the bad performance we observed, it is not the
sole factor. Indeed, our results suggest that this failure to learn stems from the optimization
problem itself : learning the unsupervised task along with the Q-learning task in of itself
seems to be a cause of the poor performance of our agents. We confirmed this through two
sets of experiments, one showing that an agent learning its representation learning objective
through a distillation loss from a pre-trained agent does not improve its performance. Second,
we showed that when removing the representation learning objective, a streaming agent
using the pre-trained encoder weights from the same teacher network as the one used in
the distillation experiment performs better than its baseline. Thus, our results suggest that
even though we removed an important amount of non-stationarity and verified that the
representation learning task learns representations that are good for streaming agents too,
the two objectives interfere in a detrimental way for the agent when trained jointly. In other
words, learning self-predictive representations from a stream of transitions requires more
sophisticated optimizations techniques and requires a better understanding of the how the

learning dynamics of each task interacts with the other’s.



o8

6.2 Limitations

Several limitations in our work were described in the paper as well as the general discussion.
We summarize them in this section. First, we chose to take a next-latent state prediction
depth of K = 5 for the SPR task, which requires storing the last 5 transitions and is therefore
not in complete agreement with the strict streaming RL requirements of discarding every
transition right after they have been used. The reasons behind this choice have been addressed
in the background section of the paper (section 4.4) and figure 4.6 in Appendix 4.9.3. We also
did not study the impact of using target networks as a relaxation of the streaming setting
and leave this for future works. Finally, we chose to use the standard DQN architecture as
our base for SPR, thus not considering the use of a dueling architecture or of a categorical
loss. Finally, as mentioned in the general discussion, our approach is entirely empirical, and
a followup, theoretical, analysis of the learning dynamics of representations in the streaming

setting would be greatly beneficial.

6.3 Future directions

As mentioned through this thesis, optimization is at the core of the issue of learning streaming
representations for RL. As such, we strongly recommend that this be the main focus of future
works on the matter. Two main directions can be explored in parallel : expanding adaptive
learning rates, in an ObGD fashion, to the representation learning part of the network,
and investigating new optimizers, better suited for streaming updates. The first idea could
improve the dynamics of the joint training of both the representation learning and Q-learning
tasks as with such real-time control of the learning rate of the whole network, updates from
the SPR-part of the network that would harm the Q-learning performances could be down-
scaled, and conversely when the updates from the two parts of the network are more aligned.
As for the study of other optimizers, we suggest looking at Sharpness Aware Minimization
(SAM) [62] to promote flatter regions of the loss surface, and investigate if this leads to
easier joint learning dynamics as there would be more room for interference without exiting
the local minimum. Another promising optimizer idea is to use orthogonal gradients [40] to
de-emphasize highly correlated updates being performed one after the other, as is often the
case in RL, especially in the streaming setting. This very recent work has the added benefit of
having been designed specifically for learning streaming representations. Finally, we have not
studied the impact of neuron dormancy on our results. We believe that this added analysis

layer could give valuable insights on the learning dynamics of the problem.



1]

29

REFERENCES

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al., “Attention is All
you Need,” in Advances in Neural Information Processing Systems, vol. 30. Curran
Associates, Inc., 2017. [Online]. Available : https://papers.nips.cc/paper_ files/paper/
2017 /hash/3f5ee243547dee91fbd053c1c4a845aa- Abstract.html

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss et al., “Zero-shot text-to-image
generation,” in Proceedings of the 38th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139. PMLR, 1824 Jul 2021, pp. 8821-8831. [Online]. Available
https://proceedings.mlr.press/v139/ramesh21a.html

C. Zeni, R. Pinsler, D. Ziigner, A. Fowler, M. Horton et al., “A generative model
for inorganic materials design,” Nature, vol. 639, no. 8055, pp. 624-632, Mar. 2025.
[Online]. Available : https://doi.org/10.1038/s41586-025-08628-5

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre et al., “Mastering Atari,
Go, chess and shogi by planning with a learned model,” Nature, vol. 588, no. 7839, pp.
604-609, Dec. 2020. [Online]. Available : https://doi.org/10.1038/s41586-020-03051-4

OpenAl, C. Berner, G. Brockman, B. Chan, V. Cheung et al., “Dota 2 with
Large Scale Deep Reinforcement Learning,” Dec. 2019. [Online]. Available
https://arxiv.org/abs/1912.06680v1

M. Elsayed, G. Vasan, and A. R. Mahmood, “Streaming Deep Reinforcement Learning
Finally Works,” Dec. 2024. [Online]. Available : https://arxiv.org/abs/2410.14606

G. Vasan, M. Elsayed, A. Azimi, J. He, F. Shariar et al., “Deep Policy Gradient
Methods Without Batch Updates, Target Networks, or Replay Buffers,” in Advances
in Neural Information Processing Systems, A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet et al, Eds., vol. 37. Curran Associates, Inc., 2024, pp.
845-891. [Online|. Available : https://proceedings.neurips.cc/paper_files/paper/2024/
file/019ef89617d539b15ed610ce8d 1b76el-Paper-Conference.pdf

R. S. Sutton and A. G. Barto, Reinforcement Learning : An Introduction, the mit
press ed., 2018.


https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.mlr.press/v139/ramesh21a.html
https://doi.org/10.1038/s41586-025-08628-5
https://doi.org/10.1038/s41586-020-03051-4
https://arxiv.org/abs/1912.06680v1
https://arxiv.org/abs/2410.14606
https://proceedings.neurips.cc/paper_files/paper/2024/file/019ef89617d539b15ed610ce8d1b76e1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/019ef89617d539b15ed610ce8d1b76e1-Paper-Conference.pdf

[9]

[10]

[11]

[12]

[13]

[14]

[15]

60

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond et al., “Bootstrap Your Own

)

Latent - A New Approach to Self-Supervised Learning,” in Advances in Neural Infor-
mation Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and

H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 21 271-21 284.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A Simple Framework
for Contrastive Learning of Visual Representations,” in Proceedings of the 37th
International Conference on Machine Learning. PMLR, Nov. 2020, pp. 1597-1607,
iSSN : 2640-3498. [Online|. Available : https://proceedings.mlr.press/v119/chen20j.html

M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville et al., “Data-efficient
reinforcement learning with self-predictive representations,” in International Conference

on Learning Representations, 2021. [Online]. Available : https://openreview.net /forum?

id=uCQfPZwRaUu

M. Laskin, A. Srinivas, and P. Abbeel, “CURL : Contrastive Unsupervised Representa-
tions for Reinforcement Learning,” in Proceedings of the 37th International Conference
on Machine Learning. PMLR, Nov. 2020, pp. 5639-5650, iSSN : 2640-3498.

D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering diverse control tasks
through world models,” Nature, vol. 640, no. 8059, pp. 647-653, Apr. 2025. [Online].
Available : https://doi.org/10.1038 /s41586-025-08744-2

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” Jul. 2016. [Online].
Available : https://arxiv.org/abs/1607.06450

Y. Zhao, W. Zhao, R. Boney, J. Kannala, and J. Pajarinen, “Simplified temporal
consistency reinforcement learning,” in Proceedings of the 40th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato et al., Eds.,
vol. 202. PMLR, 23-29 Jul 2023, pp. 42227-42246. [Online]. Available
https://proceedings.mlr.press/v202/zhao23k.html

R. Zheng, X. Wang, Y. Sun, S. Ma, J. Zhao et al., “TACO : Temporal latent
action-driven contrastive loss for visual reinforcement learning,” in Thirty-seventh
Conference on Neural Information Processing Systems, 2023. [Online]. Available :

https://openreview.net /forum?id=ezCsMOy1w9

A. Scannell, K. Kujanpad, Y. Zhao, M. Nakhaei, A. Solin et al., “Quantized

representations prevent dimensional collapse in self-predictive RL,” in ICML Workshop


https://proceedings.mlr.press/v119/chen20j.html
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu
https://doi.org/10.1038/s41586-025-08744-2
https://arxiv.org/abs/1607.06450
https://proceedings.mlr.press/v202/zhao23k.html
https://openreview.net/forum?id=ezCsMOy1w9

[18]

[19]

[21]

[22]

23]

[24]

[25]

[20]

61

on Aligning Reinforcement Learning FEzperimentalists and Theorists (ARLET), 2024.
[Online|. Available : https://openreview.net/forum?id=XYayXLuTXe

T. Ni, B. Eysenbach, E. SeyedSalehi, M. Ma, C. Gehring et al., “Bridging state
and history representations : Understanding self-predictive RL,” in The Tuwelfth
International Conference on Learning Representations, 2024. [Online]. Available :

https://openreview.net /forum?id=ms0VgzSGF2

S. Fujimoto, P. D’Oro, A. Zhang, Y. Tian, and M. Rabbat, “Towards general-purpose
model-free reinforcement learning,” in The Thirteenth International Conference on

Learning Representations, 2025. [Online]. Available : https://openreview.net/forum?
id=R1hIXdST22

D. P. Kingma and J. Ba, “Adam : A Method for Stochastic Optimization,”
International Conference on Learning Representations, 2015. [Online]. Available :
https://arxiv.org/abs/1412.6980

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015.

Q. Lan and A. R. Mahmood, “Elephant Neural Networks : Born to Be a Continual
Learner,” Oct. 2023. [Online|. Available : http://arxiv.org/abs/2310.01365

A. K. Kearney, “Letting the Agent Take the Wheel : Principles for Constructive and Pre-
dictive Knowledge,” Ph.D. dissertation, University of Alberta, 2023. [Online]. Available :
https://era.library.ualberta.ca/items/7Teaa9f9a-4e72-40a1-8dd6-0939d6cd3112

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic : Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor,” in Proceedings of the
35th International Conference on Machine Learning. PMLR, Jul. 2018, pp. 1861-1870,
iSSN : 2640-3498.

7. Ahmed, N. L. Roux, M. Norouzi, and D. Schuurmans, “Understanding the Impact of
Entropy on Policy Optimization,” in Proceedings of the 36th International Conference
on Machine Learning. PMLR, May 2019, pp. 151-160, iSSN : 2640-3498. [Online].

Available : https://proceedings.mlr.press/v97/ahmed19a.html

J. Bjorck, C. P. Gomes, and K. Q. Weinberger, “Is high variance unavoidable
in RL? a case study in continuous control,” in International Conference on
Learning Representations, 2022. [Online]. Available : https://openreview.net/forum?
id=9xhgmsNVHu


https://openreview.net/forum?id=XYayXLuTXe
https://openreview.net/forum?id=ms0VgzSGF2
https://openreview.net/forum?id=R1hIXdST22
https://openreview.net/forum?id=R1hIXdST22
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2310.01365
https://era.library.ualberta.ca/items/7eaa9f9a-4e72-40a1-8dd6-0939d6cd3112
https://proceedings.mlr.press/v97/ahmed19a.html
https://openreview.net/forum?id=9xhgmsNVHu
https://openreview.net/forum?id=9xhgmsNVHu

[27]

28]

[29]

[32]

[33]

[35]

62

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez et al., “Continuous
control with deep reinforcement learning,” in Jth International Conference on Learning
Representations, ICLR 2016, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available :
http://arxiv.org/abs/1509.02971

S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez et al., “dm__control : Software
and tasks for continuous control,” Software Impacts, vol. 6, p. 100022, 2020. [Online].
Available : https://www.sciencedirect.com/science/article /pii/S2665963820300099

S. Fujimoto, H. Hoof, and D. Meger, “Addressing Function Approximation Error in
Actor-Critic Methods,” in Proceedings of the 35th International Conference on Machine
Learning. PMLR, Jul. 2018, pp. 1587-1596, iSSN : 2640-3498. [Online|. Available :
https://proceedings.mlr.press/v80/fujimoto18a.html

P. Dayan, “Improving generalization for temporal difference learning : The successor

representation,” Neural Computation, vol. 5, no. 4, pp. 613-624, 1993.

A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul et al., “Successor Features
for Transfer in Reinforcement Learning,” in Advances in Neural Information Processing
Systems, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus et al., Eds., vol. 30.

Curran Associates, Inc., 2017.

C. Ma, D. R. Ashley, J. Wen, and Y. Bengio, “Universal Successor Features
for Transfer Reinforcement Learning,” Jan. 2020. [Online]. Available : https:
//arxiv.org/abs/2001.04025

R. Chua, A. Ghosh, C. Kaplanis, B. A. Richards, and D. Precup, “Lear-
ning Successor Features the Simple Way,” in Advances in Neural Informa-
tion Processing Systems, A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet et al., Eds., vol. 37. Curran Associates, Inc., 2024, pp. 49957—
50030. [Online]. Available : https://proceedings.neurips.cc/paper_files/paper/2024/
file/597254dc45be8c166d3ccf0ba2d56325-Paper-Conference.pdf

S. Dohare, J. F. Hernandez-Garcia, ). Lan, P. Rahman, A. R. Mahmood et al., “Loss
of plasticity in deep continual learning,” Nature, vol. 632, no. 8026, pp. 768-774, Aug.
2024, publisher : Nature Publishing Group.

M. McCloskey and N. J. Cohen, “Catastrophic Interference in Connectionist Networks :
The Sequential Learning Problem,” in Psychology of Learning and Motivation, G. H.
Bower, Ed. Academic Press, Jan. 1989, vol. 24, pp. 109-165.


http://arxiv.org/abs/1509.02971
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://proceedings.mlr.press/v80/fujimoto18a.html
https://arxiv.org/abs/2001.04025
https://arxiv.org/abs/2001.04025
https://proceedings.neurips.cc/paper_files/paper/2024/file/597254dc45be8c166d3ccf0ba2d56325-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/597254dc45be8c166d3ccf0ba2d56325-Paper-Conference.pdf

[36]

[38]

[40]

[42]

[43]

[44]

63

S. Purushwalkam, P. Morgado, and A. Gupta, “The challenges of continuous self-
supervised learning,” in Computer Vision — ECCV 2022, S. Avidan, G. Brostow,
M. Cissé, G. M. Farinella, and T. Hassner, Eds. Cham : Springer Nature Switzer-
land, 2022, pp. 702-721.

A. Krawczyk, B. Bagus, Y. Denker, and A. Gepperth, “Continual Reinforcement Lear-
ning Without Replay Buffers,” in 202/ IEEE 12th International Conference on Intelli-
gent Systems (IS), Aug. 2024, pp. 1-9, iSSN : 2767-9802.

D. Levenstein, A. Efremov, R. H. Eyono, A. Peyrache, and B. Richards, “Sequential
predictive learning is a unifying theory for hippocampal representation and replay,”
bioRziv, 2024. [Online]. Available : https://www.biorxiv.org/content/early/2024/06/
04/2024.04.28.591528

A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learning
with a-GEM,” in International Conference on Learning Representations, 2019. [Online].
Available : https://openreview.net/forum?id=Hkf2 sC5FX

T. Han, D. Gokay, J. Heyward, C. Zhang, D. Zoran et al., “Learning from streaming

2

video with orthogonal gradients,” in Proceedings of the Computer Vision and Pattern

Recognition Conference (CVPR), June 2025, pp. 13651-13 660.

A. Prabhu, S. Sinha, P. Kumaraguru, P. H. Torr, O. Sener et al., “RanDumb : Ran-
dom Representations Outperform Online Continually Learned Representations,” in Ad-
vances in Neural Information Processing Systems, A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet et al., Eds., vol. 37. Curran Associates, Inc., 2024, pp. 37 988-38 006.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou et al., “Playing Atari
with Deep Reinforcement Learning,” Dec. 2013, nIPS Deep Learning Workshop 2013.
[Online]. Available : https://arxiv.org/abs/1312.5602

H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double Q-
Learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1,
Mar. 2016.

M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski et al., “Rainbow : combi-
ning improvements in deep reinforcement learning,” in Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Ar-
tificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances


https://www.biorxiv.org/content/early/2024/06/04/2024.04.28.591528
https://www.biorxiv.org/content/early/2024/06/04/2024.04.28.591528
https://openreview.net/forum?id=Hkf2_sC5FX
https://arxiv.org/abs/1312.5602

[46]

[48]

[50]

[53]

64

in Artificial Intelligence, ser. AAAT'18/TAAT'18/EAAT’'18. New Orleans, Louisiana,
USA : AAAI Press, 2018, pp. 3215-3222.

S. Huang, R. F. J. Dossa, A. Raffin, A. Kanervisto, and W. Wang, “The 37
Implementation Details of Proximal Policy Optimization,” 2022. [Online]. Available :
https://iclr-blog-track.github.io/2022/03 /25 /ppo-implementation-details/

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo et al., “Reinforcement
learning with unsupervised auxiliary tasks,” in International Conference on

Learning Representations, 2017. [Online]. Available : https://openreview.net/forum?
id=SJ6yPDb5xg

M. Tomar, U. A. Mishra, A. Zhang, and M. E. Taylor, “Learning Representations for
Pixel-based Control : What Matters and Why ?” Transactions on Machine Learning
Research, 2023. [Online]. Available : https://openreview.net/forum?id=wIXHG8LZ2w

E. J. Meyer, A. White, and M. C. Machado, “Harnessing discrete representations for
continual reinforcement learning,” Reinforcement Learning Journal, vol. 2, pp. 606628,

2024.

B. Bagus and A. Gepperth, “A Study of Continual Learning Methods for Q-Learning,”
in 2022 International Joint Conference on Neural Networks (IJCNN), Jul. 2022, pp.
1-9, arXiv :2206.03934 [cs].

K. Javed, A. Sharifnassab, and R. S. Sutton, “SwiftTD : A Fast and Robust Algorithm
for Temporal Difference Learning,” Reinforcement Learning Journal, vol. 2, pp. 840-863,
2024.

M. L. Puterman, Markov Decision Processes : Discrete Stochastic Dynamic Program-
ming, 1st ed. USA : John Wiley & Sons, Inc., 1994.

L. Armijo, “Minimization of functions having Lipschitz continuous first partial deriva-
tives.” Pacific Journal of Mathematics, vol. 16, no. 1, pp. 1-3, Jan. 1966, publisher :

Pacific Journal of Mathematics, A Non-profit Corporation.

A. Zhang, R. T. McAllister, R. Calandra, Y. Gal, and S. Levine, “Learning
invariant representations for reinforcement learning without reconstruction,” in
International Conference on Learning Representations, 2021. [Online]. Available :
https://openreview.net /forum?id=-2FCwDKRREu


https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=wIXHG8LZ2w
https://openreview.net/forum?id=-2FCwDKRREu

[54]

[55]

[56]

[58]

[59]

[60]

[61]

[63]

65

J. Ash and R. P. Adams, “On Warm-Starting Neural Network Training,” in Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 3884-3894.

Y

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International

Conference on Learning Representations, 2019. [Online]. Available : https://openreview.

net /forum?id=Bkgb6RiCqY7

M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel et al., “Noisy networks for

Y

exploration,” in International Conference on Learning Representations, 2018. [Online].

Available : https://openreview.net/forum?id=rywHCPkAW

R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G. Bellemare, “Deep
Reinforcement Learning at the Edge of the Statistical Precipice,” Advances in Neural
Information Processing Systems, 2021, original-date : 2021-08-20T00 :41 :06Z. [Online].
Available : https://github.com/google-research /rliable

O. Roy and M. Vetterli, “The Effective Rank : a Measure of Effective Dimensionality,”
in 15th European Signal Processing Conference, 2007, pp. 606-610.

P. Zhou, J. Feng, C. Ma, C. Xiong, S. C. H. Hoi et al., “Towards Theoretically Unders-
tanding Why Sgd Generalizes Better Than Adam in Deep Learning,” in Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 21 285-21 296.

J. Farebrother, J. Orbay, Q. Vuong, A. A. Taiga, Y. Chebotar et al., “Stop regressing :
training value functions via classification for scalable deep rl,” in Proceedings of the 41st
International Conference on Machine Learning, ser. ICML’24. JMLR.org, 2024.

A. Kumar, R. Agarwal, D. Ghosh, and S. Levine, “Implicit under-parameterization
inhibits data-efficient deep reinforcement learning,” in International Conference on
Learning Representations, 2021. [Online]. Available : https://openreview.net/forum?
id=09bnihsF{XU

P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware minimization for
efficiently improving generalization,” in International Conference on Learning Repre-

sentations, 2021. [Online]. Available : https://openreview.net /forum?id=6TmlmposlrM

G. Sokar, R. Agarwal, P. S. Castro, and U. Evci, “The Dormant Neuron Phenomenon

Y

in Deep Reinforcement Learning,” in Proceedings of the 40th International Conference

on Machine Learning. PMLR, Jul. 2023, pp. 32 145-32 168, iSSN : 2640-3498.


https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=rywHCPkAW
https://github.com/google-research/rliable
https://openreview.net/forum?id=O9bnihsFfXU
https://openreview.net/forum?id=O9bnihsFfXU
https://openreview.net/forum?id=6Tm1mposlrM

[64]

[65]

[66]

[68]

66

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learning
Environment : An Evaluation Platform for General Agents,” vol. 47, 2013, pp. 253-279.
[Online|. Available : https://ale.farama.org/

Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller, Efficient BackProp. Berlin,
Heidelberg : Springer Berlin Heidelberg, 2012, pp. 9-48.

M. Andrychowicz, A. Raichuk, P. Stanczyk, M. Orsini, S. Girgin et al.,
“What matters for on-policy deep actor-critic methods? a large-scale study,” in
International Conference on Learning Representations, 2021. [Online]. Available :

https://openreview.net /forum?id=nlAxjsniDzg

C. Lyle, Z. Zheng, K. Khetarpal, J. Martens, H. van Hasselt et al., “Normalization and

Y

effective learning rates in reinforcement learning,” in Advances in Neural Information
Processing Systems, A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet et al.,

Eds., vol. 37.  Curran Associates, Inc., 2024, pp. 106 440-106 473.

Y. Tang, Z. D. Guo, P. H. Richemond, B. Avila Pires, Y. Chandak et al.,
“Understanding self-predictive learning for reinforcement learning,” in Proceedings of
the 40th International Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato et al.,
Eds., vol. 202. PMLR, 23-29 Jul 2023, pp. 33632-33656. [Online]. Available :
https://proceedings.mlr.press/v202/tang23d.html

C. A. Voelcker, T. Kastner, I. Gilitschenski, and A.-m. Farahmand, “When does self-
prediction help ? understanding auxiliary tasks in reinforcement learning,” Reinforce-
ment Learning Journal, vol. 4, pp. 1567-1597, 2025.

H. Ghallab, M. Nasr, and H. Fahmy, “Mitigating catastrophic forgetting in continual
learning using the gradient-based approach : A literature review,” International
Journal of Advanced Computer Science and Applications, vol. 16, no. 4, 2025. [Online].
Available : http://dx.doi.org/10.14569/1JACSA.2025.0160414


https://ale.farama.org/
https://openreview.net/forum?id=nIAxjsniDzg
https://proceedings.mlr.press/v202/tang23d.html
http://dx.doi.org/10.14569/IJACSA.2025.0160414

67

APPENDIX A NETWORK ARCHITECTURE

) P Traces
~
s N
Q-head LQ
Enc.
S z
t t
fE
SPR Leon
—
Y Gradients

F1GURE A.1 High-level representation of the global network architecture, showcasing the two
sources of parameter updates and the shared parameters (encoder). This figure shows what
is referred to as the @Q-learning part of the network (updated with eligibility traces) and the
SPR part of the network (updated with regular gradient updates). The shared parameters
which are affected by both sources of updates lie in the encoder. It is important to note that
in our experiments, a projection layer from the Q-learning head is also shared with the SPR
part of the network.



T e

[ S, [ S.., \ Encodere, / \ Encodere, /
\ Encoderee / Encoderee S
V4 4

(= ] 3 o F

~—
~—

!

3 g
Dynamics d .
§ Q(s, a) Q(s,,,, a)

o i S

Zt+1 i i E
- o L, Lo Bellman o

- Cosine similarity Update
(a) Architecture of the SPR part of the net- (b) Architecture of the Q-learning part of the

work network

FIGURE A.2 Visual representation of the architecture of what we refer to as the a) SPR
part of the network, updated with the BYOL-like cosine similarity loss and the b) Q-learning
part of the network, updated through the (streaming) DQN loss. The snowflake icon indicates
parameters that don’t participate in the gradient backpropagation. This figure only describes
what happens when K = 1 (SPR predicts only the immediate next state). In practice we use
this architecture to iteratively predict the K = 5 next states as described in the literature
review (Chapter 2) and sum the SPR-losses.



	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ACRONYMS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Definitions and main concepts
	1.2 Problem statement
	1.3 Objectives of the research
	1.4 Plan of the thesis

	2 LITERATURE REVIEW
	3 GLOBAL APPROACH OF THE RESEARCH AND GENERAL ORGANIZATION OF THE DOCUMENT
	4 ARTICLE 1 : THE CHALLENGES OF LEARNING STREAMING REPRESENTATIONS FOR REINFORCEMENT LEARNING
	4.1 Abstract
	4.2 Introduction
	4.3 Related work
	4.4 Background
	4.5 Method
	4.6 Experiments
	4.6.1 Impact of the non-stationarity on SPR
	4.6.2 Investigating SPR representations

	4.7 Discussion
	4.8 Conclusion
	4.9 Technical Appendix
	4.9.1 Experimental details
	4.9.2 The Stream-Q agent
	4.9.3 SPR Hyperparameter search
	4.9.4 Optimization experiments
	4.9.5 Additional results
	4.9.6 Plots on all optimizers


	5 GENERAL DISCUSSION
	6 CONCLUSION
	6.1 Summary of the work done
	6.2 Limitations
	6.3 Future directions

	REFERENCES
	APPENDICES

