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 A B S T R A C T

This study investigates the dispersion and self-sorting dynamics of bidisperse particles, i.e., a mixture of two 
distinct particle sizes, during the evaporation of ethanol droplets on a heated substrate, focusing on the 
influence of surface wettability, Marangoni stresses, and relative particle density. To this end, numerical 
simulations are carried out using a two-stage numerical approach: the first stage simulates the gas-liquid 
flow along with the heat and vapor distribution, while the second stage models the particle behavior using 
Lagrangian particle tracking. The results reveal that for an ethanol droplet evaporating with a constant contact 
angle in the absence of thermocapillary Marangoni stresses, the flow induced by the receding motion of the 
contact line supersedes the capillary flow, moving the fluid from the contact line to the apex of the droplet. 
This flow moves the particles from the bulk of the droplet to the apex of the droplet and suppresses size-based 
self-sorting of the particles. However, in the presence of Marangoni stresses, a flow along the interface near 
the apex of the droplet promotes the self-sorting of particles based on their size, whereby smaller particles 
concentrate near the droplet apex and larger particles form an outer shell around them.
1. Introduction

Sessile droplets are encountered in many industrial and techno-
logical applications (Zang et al., 2019), such as inkjet printing (Yoo 
and Kim, 2015), spray cooling, and medical diagnostics (Chen et al., 
2016). Even though sessile droplets frequently occur, describing them 
accurately is a complex process, as they involve mass and heat transfer, 
as well as the motion of the three-phase contact line. In addition, 
Marangoni convection resulting from temperature and solutal gradients 
as well as the wettability of the substrate affects the motion of the 
contact line, which in turn affects the flow within the droplet (Snoeijer 
and Andreotti, 2013). In the literature, two main evaporation modes 
of sessile droplets are often distinguished (Gelderblom et al., 2022): 
droplets with a constant contact radius and varying contact angle, often 
referred to as constant contact radius (CCR) mode, and droplets with 
a varying contact radius and constant contact angle, often referred to 
as constant contact angle (CCA) mode. In reality, depending on the 
receding contact angle for a given solid–liquid combination and on 
self-pinning due to deposits, a droplet either evaporates in the CCR 
mode or CCA mode (Larson, 2014). The substrate properties can, as is 
done in many engineering applications, be tailored to achieve a desired 
motion of the contact line, thereby steering the flow inside the droplet 
and, consequently, the particle deposition on the substrate (Iqbal et al., 
2022).

∗ Corresponding author.
E-mail address: berend.van.wachem@multiflow.org (B. van Wachem).

To understand the nature of the deposition, it is important to 
understand the heat, mass, and momentum transport within the droplet 
during evaporation, the behavior of the three-phase contact line, and 
the interaction of particles with the interface of the droplet and sub-
strate (Larson, 2014; Erdem et al., 2024). The deposition pattern can 
be of several forms, with the most common being a ‘‘coffee ring’’ 
deposit (Deegan, 2000) along with the coffee-eye, concentric rings, 
cracks, or wrinkling (Mondal et al., 2023). Usually, these non-uniform 
deposits are regarded as defects in industrial processes and efforts 
are made to obtain a uniform deposition, which requires an in-depth 
understanding of the phenomenon related to sessile droplet evaporation 
and particle dispersion.

In the case of the evaporation of a sessile droplet on a heated 
substrate, the flow inside the droplet is primarily affected by ther-
mal Marangoni stresses and the contact line motion. In our previous 
work (Jain et al., 2024), we show that for a pinned ethanol droplet 
evaporating on a heated substrate, the flow inside the droplet, the 
temperature distribution, and the particle dispersion are significantly 
affected by the presence of thermal Marangoni stresses. Generally, 
when a droplet evaporates, the CCR mode dominates the evaporation 
process until the receding contact angle is reached (Hu and Larson, 
2002). As a result, the CCR evaporation mode has been extensively 
studied. However, it is possible to ‘‘choose’’ or engineer the solid 
https://doi.org/10.1016/j.ijmultiphaseflow.2025.105382
Received 1 April 2025; Received in revised form 20 June 2025; Accepted 27 July 2
vailable online 7 August 2025 
301-9322/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/ijmulflow
https://www.elsevier.com/locate/ijmulflow
https://orcid.org/0000-0002-5101-9700
https://orcid.org/0000-0001-5812-061X
https://orcid.org/0000-0002-5399-4075
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
https://doi.org/10.5281/zenodo.15114147
mailto:berend.van.wachem@multiflow.org
https://doi.org/10.1016/j.ijmultiphaseflow.2025.105382
https://doi.org/10.1016/j.ijmultiphaseflow.2025.105382
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2025.105382&domain=pdf
http://creativecommons.org/licenses/by/4.0/


A.K. Jain et al. International Journal of Multiphase Flow 193 (2025) 105382 
surface properties such that droplets evaporate in CCA mode to obtain 
a deposit pattern other than a coffee ring (Wang and Wu, 2013). Dash 
and Garimella (2013) experimentally show that droplets evaporating 
in CCA mode on a super-hydrophobic substrate require a longer time 
to evaporate as predicted by a classical diffusion model. The reason 
for this observation is a reduced evaporation rate caused by evapo-
rative cooling at the droplet interface, leading to a longer thermal 
resistance path, and the low effective conductivity of the substrate 
owing to the relatively small solid–liquid contact area. For a droplet 
evaporating in CCA mode or with a moving contact line, along with the 
capillary and Marangoni flows, an additional inward flow away from 
the contact line is introduced because of the receding motion of the 
contact line (Berteloot et al., 2008). These three types of flow inside an 
evaporating droplet with moving contact line play a dominant role in 
the dispersion and deposition of particles inside the droplet.

Nguyen et al. (2013) describe the experimental observation that 
the evaporation of a water droplet containing silica particles and with 
a moving contact line on a smooth hydrophobic surface results in an 
inner coffee ring deposit, containing different dendrite deposit patterns 
with a radius smaller than the initial contact radius. Similarly, Das 
et al. (2017) experimentally show that coating a glass substrate with 
silicone causes water droplets to evaporate in the CCA mode 75% of 
the time, which suppresses the coffee-ring deposition of silica particles 
and promotes ordered crystal growth at the center of the droplet. 
They also suggest that a low evaporation rate of the droplet favors the 
formation of more ordered structures in the final aggregate. Yang et al. 
(2020) show that the hydrophobicity of the substrate can be altered 
by coating silicon wafers with alkysilane to experimentally study the 
colloidal deposition of silica particles from a water droplet evaporating 
in the depinned mode. They show that the particle concentration near 
the contact line required for the pinning of the contact line depends 
linearly on the receding contact angle of the surface, irrespective of 
the substrate material and initial particle concentration. Furthermore, 
they report that the required particle concentration decreases with 
increasing particle size and that the large particles of bidisperse silica 
suspensions dominate the self-pinning process. Another experimental 
study by Gupta et al. (2023) of water droplets with polystyrene par-
ticles on a hydrophobic PDMS surface, show that for a monodisperse 
particle population, the initial pinning stage is higher for smaller 
particles than for larger particles, and that the depinning of droplets 
containing bidisperse particles is delayed compared to monodisperse 
particles. They also investigated the effect of substrate heating and 
showed that, as the substrate temperature increases, the initial pinning 
stage is extended due to the combined action of thermal Marangoni 
and outward-driven radial evaporative flows at elevated temperatures, 
and the number of particles near the contact line increases, thereby 
promoting self-pinning.

Often, physical processes involving particle deposition from sessile 
droplets contain particles that vary in size (Zolotarev and Kolegov, 
2022), and the particles may be segregated or classified during the 
dispersion and deposition inside the droplet. Chhasatia and Sun (2011) 
experimentally describe the deposition behavior of a mixture of micro- 
and nano-particles in a water droplet onto a glass substrate with differ-
ent wettabilities. Their experiments show that the CCA mode dominates 
the evaporation process on a hydrophobic substrate, such that the 
particles do not deposit until the later stages of the droplet evaporation, 
at which point only little carrier liquid is left to facilitate particle 
classification. However, increasing the surface wettability improves 
particle sorting, particularly near the contact line when the droplet 
evaporates in the CCR mode.

Several numerical studies have been conducted with the aim of 
understanding the behavior of evaporating sessile droplets with a mov-
ing contact line (Paul and Dhar, 2023; Shang et al., 2024; Zhu et al., 
2021; Bhardwaj, 2018; Erdem et al., 2024). Paul and Dhar (2023) 
applied the finite-element method to study the transients of the Stefan 
and Marangoni advection during the evaporation of both pinned and 
2 
depinned sessile droplets. They report that for droplets evaporating in 
depinned mode, the temperature and velocity fields at the intermediate 
stages remained qualitatively similar to those of the initial conditions, 
and in the later stages, evaporative cooling dominates, due to the lower 
conductivity from the smaller solid–liquid contact area and enhanced 
evaporative mass flux from liquid-vapor interface, which is inversely 
proportional to the droplet contact radius. The prevailing challenges in 
modeling the flow inside evaporating sessile droplets are highlighted 
in the studies of Petsi and Burganos (2008) and Bhardwaj (2018). 
Assuming the flow inside an evaporating sessile droplet is accurately 
described as a two-dimensional Stokes flow, the results reported in Petsi 
and Burganos (2008) suggest that for contact angles less than 90◦ the 
flow is directed towards the center of the droplet, whereas for contact 
angles larger than 90◦ the flow is directed towards the contact line of 
the droplet. In Bhardwaj (2018), an expression for the evaporation mass 
rate for a hydrophobic surface using a scaling analysis to estimate the 
direction and magnitude of the characteristic evaporation-driven flow 
velocity inside the droplet is proposed, suggesting that for a contact 
angle less than 90◦ the flow is directed towards the contact line of the 
droplet, whereas for contact angles greater than 90◦ the flow is directed 
towards the center of the droplet. These studies mainly focus on the 
evaporation flux and the flow inside the droplet, which eventually 
affects the dispersion of the particles in the droplet.

In this study, we investigate the behavior of bidisperse particles, i.e., 
a particle mixture with two distinct particle sizes, in sessile droplets 
with a moving contact line as they evaporate. To this end, we use a 
finite-volume method to model the gas-liquid fluid flow, in conjunction 
with Lagrangian particle tracking to model the particle behavior, based 
on our previous work (Jain et al., 2024). Considering three different 
contact angles of the droplet and two different particle sizes, our study 
focuses primarily on the influence of the thermocapillary Marangoni 
stresses and the contact angle on the fluid flow inside an ethanol 
droplet evaporating on a heated substrate, as well as the resulting 
dispersion and size-based sorting of particles inside the droplet and at 
the gas-liquid interface.

The remainder of this paper is organized as follows. In Section 2, 
we discuss the volume of fluid (VOF) and the discrete element model 
(DEM) frameworks which are used in this study. In Section 3, we 
detail the configuration of various simulation cases and the different 
physical parameters governing the problem are given. In Section 4, 
we validate the employed numerical framework and chosen mesh 
resolution for the evaporating sessile droplets with a moving contact 
line by comparing the numerical results to analytical solutions and 
experimental measurements. Subsequently, we investigate the flow 
and temperature distribution inside the droplet (Section 5) as well 
as the particle dispersion and self-sorting (Section 6), considering or 
neglecting the Marangoni stresses, and varying the relative density of 
the particles compared to the density of the fluid. Section 7 presents 
the conclusions of this study.

2. Methodology

In this study, we consider bidisperse particle populations varying in 
size that are simulated in sessile droplets evaporating with a moving 
contact line on a heated substrate. To facilitate this, our existing model 
for pinned sessile droplets with monodisperse particles (Jain et al., 
2024) is modified to account for a moving contact line and bidisperse 
particles.

For an evaporating ethanol droplet with a constant contact angle of 
𝜃𝑐 ∈ {60◦, 90◦, 120◦} and an initial radius of 𝑅𝑐 = 0.5 mm, the Bond 
number varies from Bo = 0.049 − 0.1475 ≪ 1, suggesting that the 
droplet maintains a spherical shape throughout the simulation. Similar 
to our previous work (Jain et al., 2024), it can be shown that the Péclet 
number for vapor transport in the gaseous phase is less than 1; thus, 
we can assume that vapor transport in the gas phase is dominated by 
diffusion. However, the Péclet number for heat transport in the liquid 
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phase due to Marangoni convection is larger than 10, suggesting that 
heat transport due to convection inside the liquid cannot be neglected. 
The total volume fraction of the particles inside the droplet is less than 
1% and we, thus, assume that the particles have a negligible influence 
on the fluid flow. This allows us to reduce the computational cost by 
applying one-way coupling, where the fluid influences the motion of 
the particles, but the particles do not influence the fluid flow.

2.1. Gas-liquid flow model

To simulate the gas-liquid system of an evaporating sessile droplet 
and its surrounding fluid, a second-order finite-volume method is 
employed (Denner and van Wachem, 2014b). This model comprises 
three key elements: the equations that govern the two-phase flow 
(Section 2.1.1), the volume of fluid (VOF) method (Denner and van 
Wachem, 2014b) to capture the behavior of the gas-liquid interface 
(Section 2.1.2), and a model for the heat and mass transfer (Sec-
tion 2.1.3).

2.1.1. Fluid flow equations
The gas-liquid flow in and around the droplet is modeled using the 

one-fluid formulation of the incompressible continuity and momentum 
equations, given as 

∇ ⋅ 𝒖 = −𝑚̇
(

1
𝜌l

− 1
𝜌v

)

, (1)

𝜌
( 𝜕𝒖
𝜕𝑡

+ ∇ ⋅ (𝒖⊗ 𝒖)
)

= −∇𝑝 + ∇ ⋅ (𝜇(∇𝒖 + ∇𝒖𝑇 )) + 𝒇 s, (2)

where 𝒖 is the fluid velocity vector, 𝑚̇ is the fluid mass flux due to evap-
oration, 𝜌 is the fluid density, 𝑝 is the pressure, 𝜇 is the fluid viscosity, 
and 𝒇 s is the volumetric force representing the surface tension. Due to 
the low Bond number of the considered droplet, gravity is neglected 
when solving the fluid flow. The volumetric force representing surface 
tension in the presence of temperature variations is given as (Brackbill 
et al., 1992; Kothe et al., 1996) 
𝒇 s = 𝜎𝜅∇𝛼 + ∇s𝜎|∇𝛼|, (3)

where 𝛼 is the liquid volume fraction (see Section 2.1.2), 𝜅 is the 
interface curvature, and ∇s𝜎 is the gradient of the surface tension 
coefficient tangential to the interface. The surface tension coefficient 
𝜎 is assumed to vary linearly with the temperature and is defined as 
𝜎 = 𝜎0 + 𝜎T(𝑇 − 𝑇0), such that 
∇s𝜎 = 𝜎T[∇𝑇 − (∇𝑇 ⋅ 𝒏)𝒏], (4)

where 𝑇  is the temperature, 𝜎0 is the surface tension coefficient at 
the reference temperature 𝑇0, 𝜎T is the temperature coefficient of the 
surface tension, and 𝒏 is the normal vector of the interface.

2.1.2. Gas-liquid interface
The gas-liquid interface is described using the VOF method, where 

the liquid volume fraction 𝛼 is defined as 

𝛼 =

{

1 in the liquid phase,
0 in the gas phase, (5)

with 0 < 𝛼 < 1 signifying the presence of the gas-liquid interface. 
The value of 𝛼 is used to define the local fluid properties, such as the 
density, viscosity, specific heat capacity, thermal diffusivity, and the 
mass diffusion coefficient. In our work, the volume fraction evolves 
only as a result of the evaporative mass flux, such that 
𝜕𝛼
𝜕𝑡

= − 𝑚̇
𝜌l
. (6)

It should be noted that in this equation the advection term is neglected, 
since considering the evaporative flux for the interface advection di-
rectly eliminates the need for any special treatment of the Stefan 
flux (Jain et al., 2024). To maintain the spherical shape of the droplet, 
regular re-initialization is carried out.
3 
2.1.3. Heat and mass transfer
The evaporation model combines solving for the vapor concentra-

tion and the thermal energy of the fluid. Based on the compressive con-
tinuous species transfer model (C-CST) (Haroun et al., 2010; Marschall 
et al., 2012; Deising et al., 2016; Zanutto et al., 2022), the temperature 
𝑇  and vapor mass concentration 𝑐 are calculated using a one-field 
energy equation,

𝜌𝐶p

( 𝜕𝑇
𝜕𝑡

+ 𝒖 ⋅ ∇𝑇
)

= ∇ ⋅ (𝑘∇𝑇 ) − 𝑚̇𝐿, (7)
𝜕𝑐
𝜕𝑡

= ∇ ⋅ (𝐷∇𝑐 + 𝝓), (8)

where 𝑘 represents the thermal conductivity, 𝐶p the specific heat 
capacity, 𝐿 is the latent heat of vaporization, and 𝐷 represents the 
effective diffusion coefficient of the vapor. The term 𝝓 represents 
the flux that results from the concentration jump at the fluid/fluid 
interface. Neglecting the advection term in Eq. (8) is justified because 
the Péclet number of the vapor transport is less than 1, suggesting 
that diffusion is the dominant transport mechanism of the vapor (Jain 
et al., 2024). The calculation of the effective diffusion coefficients 𝐷
and 𝝓 has been detailed in our previous work (Zanutto et al., 2022; 
Jain et al., 2024). The calculation of the mass flux due to evaporation, 
𝑚̇, is approximated by Fick’s law, as explained by Zanutto et al. (2022) 
and Maes and Soulaine (2020), where 𝑚̇ is defined as 

𝑚̇ =
(𝐷∇𝑐 − 𝝓)

1 − 𝛼
⋅ ∇𝛼, (9)

2.2. Discrete element method

Newton’s second law of motion is applied to describe the particle 
motion and the discrete element method (DEM) is employed to simulate 
interactions between particles and the substrate (Cundall and Strack, 
1979). The translational and rotational motion of each particle is 
determined by 

𝑚p
d𝒗𝐩
d𝑡

= 𝑚p

(

1 −
𝜌f
𝜌p

)

𝒈 + 𝒇 c + 𝒇 f + 𝒇 adh + 𝒇 cap + 𝒇 pp−cap, (10)

and 
̄̄𝑰𝝎p = 𝑻 c, (11)

where 𝑚p is the mass of the particle, 𝒗p is the velocity of the particle, 
and 𝝎p is the rotational velocity of the particle. The first term on the 
right-hand side of Eq. (10) represents the forces associated with gravi-
tational acceleration 𝒈, where 𝜌p and 𝜌f  are the densities of the particles 
and fluid, respectively. 𝒇 c represents the forces acting on the particle 
arising from particle–particle and particle-substrate interactions, 𝒇 f  is 
the drag force resulting from particle-fluid interactions, 𝒇 adh accounts 
for the adhesive van der Waals forces between multiple particles, 𝒇 cap
represents the capillary force on a particle at the gas-liquid interface, 
and 𝒇 pp−cap describes the force between two particles at the gas-liquid 
interface. Eq. (11) defines the rotational acceleration of the particle, 
where ̄̄𝑰 is the moment of inertia and 𝑻 c is the sum of external torques 
acting on the particle due to particle–particle and particle-substrate 
interactions.

2.2.1. Forces acting on the particles
The interactions between particles and the substrate generate forces 

that can be modeled using a nonlinear spring-dashpot-slider system. 
This system is based on the physical characteristics of the particles and 
the degree of deformation that occurs during their interactions. The 
total force exerted during a collision is calculated by combining the 
normal and tangential components, 
𝒇 c = 𝒇 c,n + 𝒇 c,t , (12)

which are determined using the physical properties of the particles and 
the extent of their deformation. For a collision with an overlap of 𝛿 , a 
n
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relative particle velocity 𝒗pp, and a normal contact vector 𝒏, the normal 
force is given by Tsuji et al. (1992)

𝒇 c,n =
(

𝐾n𝛿
3
2
n − 𝜂n𝒗pp ⋅ 𝒏

)

𝒏, (13)

𝐾n =
4𝑅∗

3𝐸∗ , (14)

𝜂n = 𝛼d(𝑚∗𝐾n)
1
2 𝛿

1
4
n , (15)

where 𝑅∗, 𝐸∗ and 𝑚∗ are the reduced radius, the Young’s modulus, and 
the mass of the particles, respectively, calculated as

𝑅∗ =
𝑅1𝑅2

𝑅1 + 𝑅2
(16)

𝐸 ∗ =
𝐸1𝐸2

𝐸1(1 + 𝜈22 ) + 𝐸2(1 + 𝜈21 )
(17)

𝑚 =
𝑚1𝑚2

𝑚1 + 𝑚2
(18)

where the subscripts 1 and 2 indicate each of the two particles consid-
ered during their collision. Following Tsuji et al. (1992), the damping 
coefficient 𝛼d is empirically related to the coefficient of restitution of 
the particle material.

The tangential contact forces resulting from particle–particle and 
particle-substrate interactions are determined as (Mindlin and Dere-
siewicz, 1953) 

𝒇 c,t =

{

−𝐾t𝜹t − 𝜂 ⋅ 𝒗s  if |𝒇 c,t | < 𝜇f |𝒇 c,n|,
𝜇f |𝒇 c,n|𝒕 otherwise, (19)

with the tangential spring constant 
𝐾t = 8

√

𝑅∗𝛿n𝐺
∗, (20)

where 𝜹𝐭 denotes the cumulative tangential displacement projected 
onto the plane perpendicular to the collision normal, 𝒗s denotes the slip 
velocity between the two particle surfaces at the point of contact, 𝜇f
denotes the friction coefficient, 𝒕 denotes the tangential contact vector 
(normal to the normal contact vector), and 𝐺∗ denotes the reduced 
shear modulus. The tangential spring constant can be directly related 
to the material properties (Mindlin and Deresiewicz, 1953), where the 
shear modulus of a particle is calculated from the Young’s modulus and 
the Poisson ratio.

The dominant force acting on a particle from the fluid phase is 
the drag force, 𝒇 d, which depends on the relative velocity between 
the particle and the surrounding fluid. In this work, the drag force is 
modeled using the expression by Wen and Yu (1966), where the drag 
force is expressed as 

𝒇 d = 𝛽
𝑉p

(1 − 𝜖f )
(𝒗f − 𝒗p), (21)

where 𝑉p is the volume of particle with diameter 𝑑p, 𝜖f  is the local fluid 
volume fraction, 𝒗f  is the velocity of the fluid at the particle, and 𝒗p
is the velocity of the particle. 𝛽 is the momentum transfer coefficient, 
given as (Wen and Yu, 1966) 

𝛽 = 𝐶d
3𝜖f (1 − 𝜖f )𝜌f |𝒗f − 𝒗p|

4𝑑p
𝜖−2.65f . (22)

The drag coefficient is defined as 

𝐶d =

⎧

⎪

⎨

⎪

⎩

24
𝜖fRe

(

1 − 0.15(𝜖fRe)0.687
)

if 𝜖fRe < 1000,

0.44 if 𝜖fRe > 1000,
(23)

based on the particle Reynolds number 

Re =
𝜌f𝑑p|𝒗f − 𝒗p|

𝜇f
. (24)

The adhesion force due to van der Waals effects between particles 
as well as between the particles and the substrate is described using the 
4 
Dejarguin-Muller-Toporov (DMT) model (Derjaguin et al., 1975), with 
the adhesion force given as 
𝒇 adh = −2𝜋𝑅∗𝛥𝛾𝒏, (25)

where 𝛥𝛾 is the work of adhesion or the energy per unit area required 
to pull two infinite planar surfaces apart, and 𝒏 is the normal contact 
vector. The DMT model offers a straightforward framework to be 
applied in DEM simulations (Wilson et al., 2016).

The capillary interaction between particles and the interface exerts 
a force on the particles, as a result of which the particles adsorb at 
the interface. The capillary force on the particle due to the interface is 
given as (Lebedev-Stepanov and Vlasov, 2013; Jain et al., 2024) 

𝒇 cap =

{

2𝜋𝑟l 𝑓 𝒏 if 𝑟l < 𝑅,
𝟎 otherwise,

(26)

where 𝑟l is the distance between the particle center and the interface, 
𝑅 is the radius of the particle, 𝑓 is the surface free energy or the inter-
facial tension at the liquid-particle interface, obtained experimentally. 
The deformation of the surrounding interface causes particles situated 
on it to generate an inter-particle force, a phenomenon referred to as 
the ‘‘Cheerios effect’’ (Vella and Mahadevan, 2005). In this study, the 
force is modeled as a simplified version of the expression proposed 
by Vassileva et al. (2005), as Li et al. (2011) 

𝒇 pp−cap = −𝜋𝜎
(

𝑅∗2

2
sin2(𝛽0) tan2(𝛼c − 𝛽0)

𝒏
𝑑

)

, (27)

where 𝑑 is the distance between the two particle centers, and 𝛽0 and 
𝛼𝑐 are the central cone angle of the contact point and contact angle 
between the fluid and the particle, respectively (Vassileva et al., 2005).

A rotating particle experiences a torque which opposes its rotating 
motion (van Wachem et al., 2017; Tomas, 2007). The opposing torque 
is comprised of two components: 𝜏𝜃 which relates to the total angle 
rolled, and a dissipative term, 𝜏𝑑 , which is proportional to the angular 
velocity of rotating and is given by 

𝝉𝒅 = −𝜇𝑑 |𝒇 𝐜,𝐧|

(

𝝎
|𝝎|

)

, (28)

where 𝝎 is the relative angular velocity of the particle and 𝜇𝑑 is the 
coefficient of rotating friction with units of length. The first component, 
𝜏𝜃 , bears a strong resemblance to the Mindlin-Deresiewicz model of fric-
tion (Mindlin and Deresiewicz, 1953). For a two-dimensional system, 
in each time step the angle rolled between two particles is determined 
by their respective angular velocities:
𝛥𝜃r = 𝛥𝑡(𝜔1 − 𝜔2) (29)

𝜃𝑛r = 𝑚𝑖𝑛(𝜃𝑛−1r + 𝛥𝜃𝑛r , 𝜃0) (30)

where 𝜔𝑖 is the angular velocity of particle 𝑖, and 𝛥𝑡 is the time step of 
integration. The total angle rolled can then be calculated incrementally, 
by summing the contribution in each time step. Up until a critical angle 
𝜃0, the torque is proportional to 𝜃r . This critical angle is an empirical 
parameter of the model. If the particle starts to roll back in the opposite 
direction, i.e., if 𝜃r < 0, the torque should fall linearly back to 0 such 
that the particle may roll a distance before coming to a halt. It is 
therefore useful to limit the magnitude of 𝜃r to 𝜃0, resulting in the 
required behavior for 𝜏𝜃 with no further modification. The torque is 
thus related to 𝜃r by the relationship 

𝜏𝜃 =

{

−𝑘r𝜃r  if |𝜃r | < 𝜃0,
−𝜏0

𝜃r
|𝜃r |

otherwise, (31)

where 𝑘r and 𝜏0 are proportionality constant given as
𝜏0 = 𝜇0𝑅

∗𝑓c,n (32)

𝑘r =
𝜏0
𝜃0

, (33)

where 𝜇0 is the coefficient of rotating resistance, which is an empirical 
parameter. 
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2.2.2. Integration of the particle trajectories
Once the forces on each particle are determined, the position vector 

for every particle is updated at each time interval using the Verlet 
algorithm (Allen and Tildesley, 1989), 

𝒙p(𝑡 + 𝛥𝑡) = 2𝒙p(𝑡) − 𝒙p(𝑡 − 𝛥𝑡) + 𝛥𝑡2
𝒇 p(𝑡)
𝑚p

+ (𝛥𝑡4), (34)

where 𝒇 p(𝑡) is the sum of all forces acting on the particle and 𝛥𝑡 is the 
applied numerical time step. The velocity of the particle is computed 
as 

𝒗p(𝑡) =
𝒙p(𝑡 + 𝛥𝑡) − 𝒙p(𝑡 − 𝛥𝑡)

2𝛥𝑡
+ (𝛥𝑡2). (35)

2.3. Numerical procedure

In this study, a two-stage simulation procedure, described in detail 
in our previous work (Jain et al., 2024), is used. In the first stage, the 
gas-liquid flow is simulated without accounting for the particles, while 
in the second stage, the behavior of the bidisperse particles is simulated 
and analyzed using the results from the gas-liquid flow simulations of 
the first stage.

In stage 1, the governing equations of the gas-liquid flow are solved 
using a finite-volume algorithm (Denner and van Wachem, 2014b; 
Denner et al., 2020), combined with an algebraic VOF method (Denner 
and van Wachem, 2014a) to capture the gas-liquid interface. In stage 
2, the flow data from stage 1 is used to simulate the particle behavior 
using a Lagrangian particle tracking method. The forces acting on the 
particles are computed based on the fluid flow and interface properties.

The fluid flow simulations in stage 1 are performed with a time step 
of 𝛥𝑡 = 5×10−6 s, with the results stored at intervals of 𝑡out = 5×10−4 s. 
In stage 2, the Lagrangian particle-tracking algorithm operates with a 
smaller time step of 𝛥𝑡 = 5 × 10−8 s. The storage interval in stage 1 
is chosen such that the interface movement due to evaporation during 
each time step is significantly smaller than the smallest diameter of the 
particles.

3. Case setup

This study investigates the dispersion of bidisperse particles in 
evaporating sessile droplets with a moving contact line, focusing on the 
roles of surface wettability, Marangoni stresses, and the relative density 
of the particles compared to the fluid. Ethanol is selected as the solvent 
for the sessile droplet in all the simulations due to its higher volatility 
compared to water, which results in a higher evaporation rate (Gurrala 
et al., 2019). In the first simulation stage, the contact angle is varied 
and the effect of considering the Marangoni stresses is investigated. In 
the second stage, also the relative density of the particles compared 
with the density of the fluid is varied.

3.1. Considered cases

The first stage involves six simulations of depinned ethanol sessile 
droplet evaporation, with initial contact angles of 𝜃 = {60◦, 90◦, 120◦}. 
For each contact angle, two simulations are performed: in one sim-
ulation the Marangoni stresses are considered, while in the other 
simulation the Marangoni stresses are neglected. These six cases are 
labeled as C1, C2, C3, C4, C5 and C6. Cases C1 and C2 involve a 
droplet with a contact angle 𝜃 = 60◦, C3 and C4 involve a droplet 
with a contact angle 𝜃 = 90◦, and C5 and C6 involve a droplet 
with a contact angle 𝜃 = 120◦. Marangoni stresses are considered 
in the even-numbered cases and are neglected in the odd-numbered 
cases. The droplet is placed in air at an ambient pressure of 101325Pa
and an ambient temperature of 25 ◦C, with the fluid properties de-
tailed in Table  1, and the substrate temperature is kept fixed at
𝑇 = 50 ◦C.
s

5 
Table 1
Properties of the liquid-gas system (ethanol-air) used for all the simulations in stage 1
 Parameters Ethanol Air  
 Density (kg/m3) 750 1.23  
 Viscosity (Pa s) 0.65 × 10−3 1.78 × 10−5 
 Thermal conductivity (W/m K) 0.165 0.046  
 Specific heat capacity (J/kg K) 2750 1000  
 Latent heat of vaporization (J/kg) 0.9 × 106 –  
 Molar mass (kg/mol) 0.029 0.046  
 Boiling temperature (K) 351 –  
 Surface tension coefficient (N/m) 0.022 –  
 Temperature coefficient of surface tension (N/m K) −1.2 × 10−4 –  

Table 2
Properties of the particles used for all the simulations 
in stage 2.
 Parameters Value 
 Density (kg/m3) 2650  
 Young’s modulus (MPa) 1.0  
 Poisson’s ratio 0.15  
 Friction coefficient 0.3  
 Coefficient of restitution 0.8  
 Volume fraction of particles 0.5  
 Number of particles 607  

Table 3
The simulation cases carried out in this work, where C1 - C6 have variation in substrate 
temperature and in taking into account the Marangoni stresses, or neglecting them. The 
heavier silica particles are denoted with suffix S and the neutrally buoyant particles 
are denoted with suffix N.
 Stage 1 Stage 2
 Cases Properties Cases Properties  
 C1 𝜃 = 60◦ C1S Silica particles  
 No Marangoni stresses C1N Neutrally buoyant particles 
 C2 𝜃 = 60◦ C2S Silica particles  
 Marangoni stresses C2N Neutrally buoyant particles 
 C3 𝜃 = 90◦ C3S Silica particles  
 No Marangoni stresses  
 C4 𝜃 = 90◦ C4S Silica particles  
 Marangoni stresses  
 C5 𝜃 = 120◦  
 No Marangoni stresses  
 C6 𝜃 = 120◦  
 Marangoni stresses  

In the second stage, bidisperse particles with radii 𝑅p = {1.5 μm,
2.5 μm} are randomly distributed within the droplet. Particles of both 
sizes are added until the volume fraction associated with each particle 
size is 0.1%. The properties of the silica particles simulated in this 
study are given in Table  2. Using the data from a number of cases 
from stage 1, simulations with particles are carried out to examine 
the influence of the contact angle and the Marangoni stresses on the 
particle dispersion inside the droplet. The two-stage model also enables 
the examination of the impact of the particle density using the same 
fluid flow results. In this context, we also evaluate neutrally buoyant 
particles (𝜌p = 𝜌f), maintaining all properties listed in Table  2, except 
for the particle density. For the second-stage simulations, case names 
from the corresponding first-stage simulations are extended with a 
suffix: standard silica particles are identified by the suffix S, while 
neutrally buoyant particles are designated with the suffix N. The case 
names for both the stages are summarized in Table  3.

To analyze the fluid velocity and temperature fields inside the 
droplet, four specific time instances are discussed below, corresponding 
to times when 90%, 75%, 50% and 25% of the initial volume of the 
droplet is left, for three different contact angles.
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Fig. 1. A cross-section of the simulation geometry, showing the mesh refinement near the droplet and the initialization of the color function for stage 1, (a) 𝜃𝑐 = 60◦ (b) 𝜃𝑐 = 90◦

(c) 𝜃𝑐 = 120◦. (d) The initialization of bidisperse particles inside the droplet in stage 2. The particle size depicted in the figure is significantly enlarged for visualization purposes.
Fig. 2. Validation and mesh sensitivity study for an evaporating droplet with moving 
contact line, comparing the numerical results of the evaporation of an isothermal sessile 
droplet with three mesh resolutions against the analytical solution given in Eq. (36).

3.2. Boundary and initial conditions

Given the axisymmetric nature of the evaporation dynamics of a 
sessile droplet on a heated substrate, only a quarter of the droplet 
is simulated to create a three-dimensional domain for the particle 
simulations in stage 2. In stage 1, the lower boundary in the 𝑧-direction,
i.e., 𝑧 = 0, represents the substrate at a fixed temperature, 𝑇s, a no-
slip condition (𝒖 = 0), and no penetration of the vapor mass, that is, 
𝒏z ⋅∇𝑐 = 0. A Neumann-type boundary condition is applied to the liquid 
volume fraction to facilitate a moving contact line. The movement of 
contact line has been simulated by regularly re-initializing the droplet, 
which not only maintains the spherical shape of the droplet but also 
6 
corrects the position of the contact line. The movement of the contact 
line has been validated against experimental results as described in 
Section 4. The study deliberately avoids the prevalent model of contact 
angle implementation (Afkhami et al., 2009), i.e., by fixing the normals 
of the interface at the contact line, to avoid the issues of spurious 
currents. Applying the no-slip boundary condition for a moving contact 
line may cause a singularity in the stress and a logarithmic singularity 
in the energy dissipation rate at the contact line. This was first pointed 
out by Huh and Scriven (1971), and is usually referred to as the Huh-
Scriven paradox. However, most interface-capturing techniques, such 
as the VOF method used in this work, utilize the velocity normal 
to the mesh faces to advect the volume fraction field, which implies 
that the methodology includes an ‘‘implicit’’ slip length at the no-
slip boundary (Afkhami et al., 2009). To further analyze the effect of 
different slip lengths, a study of fluid flow and temperature distribution 
evolution is presented in Appendix  B, which suggests that with the 
given model, the no-slip boundary condition is an adequate choice. 
This choice of boundary condition is also consistent with other studies 
simulating sessile droplets with moving contact lines (Paul and Dhar, 
2023; Shang et al., 2024; Zhu and Shi, 2021; Zhu et al., 2021). A 
symmetry boundary condition is used in the lower 𝑥- and 𝑦-directions,
i.e., 𝑥 = 0 and 𝑦 = 0.

Earlier studies opted for a large gas-phase domain Hu and Larson 
(2002), Chen et al. (2017), typically ranging from 20 to 50 times the 
droplet radius, using Dirichlet boundary conditions for both temper-
ature and vapor concentration to ensure that the vapor distribution 
surrounding the droplet was not influenced by the far-field boundary 
conditions. To reduce the size of the computational domain with-
out adversely impacting the simulation results, the assumption of a 
diffusion-dominated distribution of the vapor concentration and tem-
perature in the gas away from the interface (𝛥𝑐 = 0 and 𝛥𝑇 = 0) is 
employed (Diddens et al., 2017). For the vapor concentration and the 
temperature, boundary conditions at the upper limits of the domain 
(𝑥, 𝑦, 𝑧 = 𝐿, where 𝐿 represents the domain size) are established by 
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Fig. 3. Validation and mesh sensitivity study for the n-hexane evaporating droplet, comparing the numerical results of the contact radius evolution with three mesh resolutions 
with the experimental solution given by Zhu and Shi (2019).
Fig. 4. The simulated normalized droplet volume (a) and the contact radius of the droplet (b) as a function of time for all 6 cases.
assuming a constant gradient of values perpendicular to the boundary. 
The vapor concentration field is obtained by solving the Laplace equa-
tion. This approach enables the reduction of the domain size to four 
times the droplet contact radius (𝐿 = 4𝑅𝑐), as confirmed in Section 4.

The computational cost is further reduced by using an adaptively 
refined mesh in and around the droplet to simulate the flow in stage 
1, as shown in Figs. 1(a)-1(c). For the initialization of the droplet, 
the liquid volume fraction and vapor concentration are initialized as a 
spherical cap. Inside the droplet, the liquid volume fraction is 1 and the 
vapor mass concentration is the liquid density (Zanutto et al., 2022). 
The initial temperature and velocity are set to 25 ◦C and 0, respectively, 
throughout the domain and the pressure is set to atmospheric pressure. 
In stage 2, bidisperse particles are randomly placed inside the droplet 
as shown in Fig.  1(d).

4. Validation

Various aspects of the employed model have been extensively vali-
dated in our previous study (Jain et al., 2024). We validate the model 
for the evaporation of a sessile droplet with a moving contact line using 
the analytical solution of the volume evolution during the evaporation 
of an isothermal sessile droplet with a contact angle of 90◦ (Erbil, 
2012). Fig.  2 shows a comparison between the numerical results of the 
volume evolution of an isothermal sessile droplet with a moving contact 
7 
line and with an initial contact angle of 𝜃 = 90◦ and the analytical 
solution, 

𝐷2
droplet,i −𝐷2

droplet =
8𝐷(𝑐s − 𝑐∞)

𝜌l
𝑡, (36)

where 𝑐s is the vapor concentration at the sphere surface, 𝑐∞ is the 
vapor concentration at infinity, 𝐷droplet,i is the initial diameter of the 
spherical droplet, and 𝐷droplet is the instantaneous droplet diameter. 
The sensitivity of the results with respect to the mesh resolution is as-
sessed using three different mesh resolutions, where the initial contact 
radius of the droplet is resolved by 24, 32 and 40 cells. As depicted in 
Fig.  2, the results from all the numerical resolutions agree well with 
the analytical solution, demonstrating that the results from stage 1 are 
independent of the mesh resolution.

Further validation of the model is carried out with the experimental 
results of Zhu and Shi (2019), wherein an n-hexane droplet evaporating 
in CCA mode with contact angle 𝜃𝑐 = 27.47◦ and initial contact radius 
𝑅𝑐 = 2.1 mm on a heated substrate with 𝑇𝑠 = 35.33 ◦C is considered. Fig. 
3 shows the evolution of the contact radius predicted by the simulations 
at three different resolutions, compared against the experimental mea-
surements of Zhu and Shi (2019). The simulation results are in good 
agreement with the experimental results. Thus, for subsequent analyses, 
the lower mesh resolution, where the contact radius is resolved by 24 
cells, is used. To validate the mesh independence of the fluid flow in 
the presence of Marangoni stresses, case C4 is simulated with different 
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Fig. 5. Velocity vectors and temperature plots at four different time instances of the cases with a contact angle of 𝜃c = 60◦ without taking into account the Marangoni stresses, 
C1 (left column), and with Marangoni stresses, C2 (right column). Velocity vector plots are shown on the left, where the color indicates the velocity magnitude. Contour plots of 
the temperature are shown on the right. (a) C1, 𝑡90, (c) C1, 𝑡75, (e) C1, 𝑡50, (g) C1, 𝑡25. (b) C2, 𝑡90, (d) C2, 𝑡75, (f) C2, 𝑡50, (h) C2, 𝑡25.
mesh resolution, where the contact angle is 𝜃𝑐 = 90◦ and Marangoni 
flow is present. The results, presented in Appendix  A, demonstrate that 
the flow is independent of the mesh resolution even in the presence 
of Marangoni stresses. The validation of the volume evolution through 
these analytical solutions, and of the contact radius evolution through 
experimental results, indirectly confirms the accuracy of the velocity 
and temperature fields, since the velocity, temperature, and species 
distributions collectively govern the droplet’s evaporation dynamics. 
Furthermore, this study is focussed on the role of Marangoni stresses, 
which has been validated in our previous work (Jain et al., 2024).

5. Results of stage 1: Flow inside the droplet

In the first stage of this study, the focus is on analyzing the evolution 
of the contact radius and the fluid flow inside the droplet, as well as the 
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spatial distribution of the temperature and vapor concentration. The 
temporal evolution of the droplet volume, normalized by the initial 
droplet volume, is shown in Fig.  4(a). It is observed that increasing 
the contact angle results in a lower evaporation rate, resulting from the 
larger initial droplet volume. The presence of Marangoni flow enhances 
the evaporation rate for cases C1 and C2 (𝜃𝑐 = 60◦), whereas it reduces 
the evaporation rate for cases C3-C6 (𝜃𝑐 = {90◦, 120◦}). The evolution 
of the contact radius is shown in Fig.  4(b), exhibiting an almost linear 
reduction and a trend similar to the volume of the droplet.

5.1. Contact angle of 𝜃𝑐 = 60◦

For case C1, where the contact angle is 𝜃𝑐 = 60◦ and the Marangoni 
stresses are neglected, the figures showing the velocity on the left 
and the temperature distribution inside the droplet on the right are 



A.K. Jain et al. International Journal of Multiphase Flow 193 (2025) 105382 
Fig. 6. Velocity vectors and temperature plots at four different time instances of the cases with contact angle 𝜃c = 90◦ without taking into account the Marangoni stresses, C3 
(left column), and with Marangoni stresses, C4 (right column). Velocity vector plots are shown on left, where the color indicates the velocity magnitude. Contour plots of the 
temperature are shown on the right. (a) C3, 𝑡90, (c) C3, 𝑡75, (e) C3, 𝑡50, (g) C3, 𝑡25. (b) C4, 𝑡90, (d) C4, 𝑡75, (f) C4, 𝑡50, (h) C4, 𝑡25.
presented for four different time instances in Figs.  5(a), 5(c), 5(e), 
and 5(g). The development of the fluid flow inside the droplet is 
determined by solving the continuity and momentum conservation 
equations, and is a complex interplay of evaporation dynamics, contact 
line movement and the effect of the Marangoni stresses. A return flow 
or vortex development inside a droplet is only seen in the case when 
the Marangoni stresses are present, whereas for the case of capillary 
9 
flow and the flow induced by the moving contact line a return flow 
inside the droplet is absent. The receding motion of the contact line 
pushes the fluid from the contact line to apex of the droplet, opposite 
to the capillary effect of fluid traveling from apex to the contact line to 
account for the evaporated liquid at the contact line. A flow from the 
contact line to the apex of the droplet is observed, which is different 
from the well-known capillary flow pattern (Hu and Larson, 2005; 
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Fig. 7. Velocity vectors and temperature plots at four different time instances of the cases with contact angle 𝜃c = 120◦ without taking into account the Marangoni stresses, C5 
(left column), and with Marangoni stresses, C6 (right column). Velocity vector plots are shown on the left, where the color indicates the velocity magnitude. Contour plots of the 
temperature on shown on the right. (a) C5, 𝑡90, (c) C5 𝑡75, (e) C5, 𝑡50, (g) C5, 𝑡25. (b) C6, 𝑡90, (d) C6, 𝑡75, (f) C6, 𝑡50, (h) C6, 𝑡25.
Barmi and Meinhart, 2014) observed in the absence of Marangoni flow 
in pinned droplets, with fluid flowing from the apex of the droplet 
towards the contact line. The fluid motion from the contact line towards 
the apex of the droplet is attributed to the movement of the contact 
line. This inference is supported by comparison with a previous study 
on pinned ethanol droplet evaporation, in which, under the absence 
of Marangoni stresses, only capillary-driven flow from the apex to 
10 
the contact line is observed in order to maintain a constant contact 
radius (Jain et al., 2024). The competing effects of capillary flow and 
contact-line-induced flow are clearly visualized in Fig.  5(h), where a 
portion of the liquid is seen moving from the apex towards the contact 
line, while another portion moves in the opposite direction, from the 
contact line towards the apex. As evaporation continues and the contact 
radius decreases, the flow from the contact line to the apex remains 
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Fig. 8. Temperature distribution along the interface for different time instances. (a) 𝜃c = 60◦, neglecting the Marangoni stresses, C1 (solid lines), and including the Marangoni 
stresses, C2 (dashed lines). (b) 𝜃c = 90◦, neglecting the Marangoni stresses, C3 (solid lines), and including the Marangoni stresses, C4 (dashed lines). (c) 𝜃c = 120◦, neglecting the 
Marangoni stresses, C5 (solid lines), and including the Marangoni stresses, C6 (dashed lines).
consistent, with a higher velocity magnitude near the contact line and 
along the interface compared to the interior bulk of the droplet. The 
temperature distribution on the right shows that the temperature along 
the interface increases towards the contact line. The velocity and tem-
perature distributions inside the droplet for case C2, where the contact 
angle is 𝜃𝑐 = 60◦ and the Marangoni stresses are taken into account, 
are presented in Figs.  5(b), 5(d), 5(f), and 5(h). The flow velocity inside 
the droplet has a magnitude that is approximately ten times larger than 
that in case C1 (in which the Marangoni stresses neglected), driven by 
the Marangoni stresses. The Marangoni stresses move the liquid from 
the contact line to the apex of the droplet along the interface, forming 
a vortex inside the droplet. As evaporation continues and the contact 
radius decreases, the influence of the Marangoni flow reduces as the 
temperature difference along the interface reduces. A stagnation point 
is formed at the base of the droplet, which is slightly offset from the 
contact line. This is a result of the Marangoni flow pushing the liquid 
inside the droplet, whereas the opposing capillary flow pushes the 
liquid outward towards the contact line. As the evaporation progresses, 
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the distance of the offset from the contact line decreases. The results 
in Fig.  5 show that, as a result of Marangoni flow, the temperature of 
the liquid in case C2 is larger along the interface near the contact line 
than in the droplet center.

5.2. Contact angle of 𝜃𝑐 = 90◦

In Fig.  6, similar plots as in the previous section are shown for 
cases C3 and C4, for four different time instances, in which the contact 
angles are 𝜃𝑐 = 90◦. The figures showing the fluid velocity field for 
case C3, where the Marangoni stresses are absent, show similar flow 
patterns as for case C1; the fluid flows from the contact line to the apex 
of the droplet and the magnitude of the flow remains approximately 
constant. In addition, the temperature profiles observed in case C3 
show a consistent distribution over time, with the lowest temperature 
at the apex of the droplet and a higher temperature in the interior of 
the droplet than near the interface.
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Fig. 9. Evolution of the average temperature of the droplet for all the 6 cases. Time 
is normalized by the time when half of the droplet has evaporated.

Fig. 10. Localized evaporative mass flux when the droplet has reached 50% of its 
initial volume for all 6 cases. The solid lines represent the cases where Marangoni 
stress is included and dashed lines are for cases without Marangoni stresses.

The figure showing the velocity field for the first depicted time 
instance for case C4 (Fig.  6(b)), shows that the Marangoni flow is 
stronger than the capillary flow and the flow induced by the receding 
contact line, resulting in a branching of the flow. A part of the flow 
moves towards the bottom bulk of the droplet, while the other part 
moves towards the apex of the droplet. This branching effect of the 
Marangoni flow is absent in the case of smaller contact angle in case C2, 
as seen in Fig.  5(b). As the evaporation progresses, the magnitude of the 
Marangoni stresses and the resulting magnitude of the Marangoni flow 
reduce as a result of the decreasing temperature difference along the 
interface. Unlike in case C2, the vortex formed by the Marangoni flow 
is much closer to the contact line of the droplet and does not exhibit a 
stagnation point near the substrate.

The figures showing the temperature for case C4 shows a lower tem-
perature at the apex of the droplet than the bulk of the droplet owing 
to evaporative cooling. The Marangoni flow enhances convective heat 
transfer and mixing considerably, increasing the temperature along the 
interface compared to the bulk of the droplet. Contrary to case C2, 
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the temperature in the bulk of the droplet decreases, as evaporative 
cooling dominates, and the Marangoni-driven convective mixing affects 
the heat transfer. This is due to the fact that for a droplet with larger 
contact angle, the thermal resistance is higher and the solid–liquid 
contact area is smaller.

5.3. Contact angle of 𝜃𝑐 = 120◦

Fig.  7 shows the velocity and temperature fields for cases C5 and 
C6, at four different time instances, in which the contact angles are 
𝜃𝑐 = 120◦. The figures showing the fluid velocity for case C5, where 
the Marangoni stresses are absent, show similar flow patterns as are 
observed in case C3. The fluid flows from the contact line to the apex of 
the droplet. However, the magnitude of the fluid flow increases during 
the course of the evaporation process. In addition, the temperature 
distribution of case C5 exhibits a monotonic distribution along the 
interface, with the lowest temperature at the apex of the droplet. The 
temperature in the interior of the droplet is higher than in the proximity 
of the interface, similar as is observed in cases C1 and C3.

Comparing the velocity fields of cases C5 and C6 suggests that the 
Marangoni flow is stronger than the capillary flow and the flow induced 
by the receding contact line, resulting in a branching of the flow in case 
C6, similar to the branching observed in case C4. The vortex formed by 
the Marangoni flow is close to the interface and does not show any 
stagnation point near the substrate. The temperature distribution in 
case C6 is similar in nature to case C4, showing a lower temperature at 
the apex of the droplet as a result of evaporative cooling and the large 
distance of the apex from the heated substrate.

5.4. Discussion

Marangoni stresses play a crucial role for the fluid flow and temper-
ature distribution inside the droplet. For cases in which the Marangoni 
stresses are neglected, irrespective of the contact angle, the flow in-
duced by the moving contact line dominates the capillary flow, with 
the fluid flowing from the contact line to the apex of the droplet. This 
stands in contrast to the explanation provided by Bhardwaj (2018), 
in which it is suggested that the fluid flows from the contact line 
to the apex of droplets with moving contact if the contact angle is 
𝜃𝑐 > 90◦. Bhardwaj (2018) also suggests that the evaporation at the 
apex of the droplet is higher than at the contact line. However, our 
results demonstrate that, irrespective of the contact angle, the flow 
inside a droplet resting on the heated substrate and evaporating in 
the CCA mode is dominated by the contact line motion rather than 
by evaporation. If Marangoni stresses are present, the flow induced 
by these Marangoni stresses dominates the flow inside the droplet, 
leading to a classical single-vortex flow.  The velocity field in a pinned 
water droplet is studied in Kazemi et al. (2021), and a mathematical 
model is shown to overpredict the results relative to the experimental 
measurements. However, to the best of our knowledge, experimental 
data for the internal velocity field in an ethanol droplet evaporat-
ing under constant contact angle conditions are not available in the 
literature. As a result, the predictive accuracy of the present model 
under such conditions cannot be directly assessed. Nevertheless, the 
implementation of Marangoni stresses in the model is independently 
validated against analytical solutions to ensure physical consistency 
and to avoid unphysical results. 

The temperature distribution along the interface is shown in Fig.  8. 
Fig.  8(a) shows the interface temperature for cases C1 and C2, where 
the contact angle is 60◦. The interface temperatures are shown for 
four different time instances with droplet volumes of 90%, 75%, 50%, 
and 25% of the initial volume of the droplet. For case C1, in which 
the Marangoni stresses are neglected, the interface temperatures are 
lower compared to those in case C2, which takes into account the 
Marangoni stresses. This suggests that the convective mixing due to 
Marangoni flow increases the interface temperature. Fig.  8(b) illustrates 
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Fig. 11. Evolution of surface concentration of particles adsorbed at the interface (dashed lines, right 𝑦-axes) and deposited at the substrate (solid lines, left 𝑦-axes), for cases 
without the Marangoni stresses and the contact angle 𝜃c = 60◦. (a) Small silica particles of case C1S, (b) large silica particles of case C1S, (c) small neutrally buoyant particles of 
case C1N, and (d) large neutrally buoyant particles of case C1N.
the interface temperature for cases C3 and C4, where the contact 
angle is 90◦. The overall interface temperature for case C4, considering 
the effect of the Marangoni stresses, is lower than that for case C3, 
where the effect of the Marangoni stresses is neglected, unlike the cases 
where the contact angle is 60◦. In case C3, the interface temperature 
converges towards a constant value at the apex. However, for case 
C4, the temperature at the apex continuously decreases, with a lower 
temperature than in case C3. Similar results are obtained for cases C5 
and C6, shown in Fig.  8(c), where the presence of Marangoni stresses 
result in a lower interface temperature in case C6 compared to the 
interface temperature of case C5. In addition, the apex temperature 
continuously decreases in case C6, whereas in case C5, the interface 
region near the apex maintains a constant temperature.

Further analysis of the average temperature of the droplet account-
ing for both the bulk and interface temperatures is shown in Fig. 
9. In cases C1 and C2, where the contact angle is 60◦, the average 
temperature reaches almost the same equilibrium temperature and 
is maintained for the later stages of evaporation. In case C2, the 
equilibrium temperature is reached earlier than in the case without 
Marangoni stress, case C1, due to effective thermal mixing. For cases 
in which Marangoni stresses are absent and where the contact angles 
are 90◦ and 120◦, the droplet reaches an equilibrium temperature and 
maintains it for the later stages of the evaporation process. For cases 
without Marangoni stresses, droplets with larger contact angles exhibit 
smaller average temperatures, owing to a higher thermal resistance 
and a smaller solid–liquid contact area. For cases with Marangoni 
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stresses and contact angles 90◦ and 120◦, the average temperature of 
the droplet decreased over time, with case C6 having a comparatively 
lower average temperature than case C4. This is due to the fact that 
as the evaporation progresses, the solid–liquid contact area decreases. 
Thus, evaporative cooling dominates for droplets with contact angles 
𝜃𝑐 ≥ 90◦ for cases with Marangoni stresses. Similar observations were 
reported by Paul and Dhar (2023), where the authors numerically 
showed that for water droplets evaporating in a depinned state with the 
Marangoni flow, the evaporative cooling dominates for large contact 
angles, leading to a smaller average temperature of the droplet. 

The localized evaporative mass flux along the droplet interface is 
presented in Fig.  10 for all cases, corresponding to the moment when 
the droplet volume has decreased to 50% of its initial value. Cases C1 
and C2, characterized by a contact angle of 𝜃𝑐 = 60◦ and shown by 
black lines, exhibit a maximum mass flux near the contact line due to 
the influence of the heated substrate. Additionally, a local maximum is 
observed near the apex of the droplet. For cases C3 and C4, shown by 
blue lines, a similar behavior is observed: the mass flux peaks near the 
contact line and a secondary local maximum is present near the apex. 
In cases C5 and C6, indicated by green lines, the distribution of mass 
flux varies depending on the presence of Marangoni stresses. For the 
case without Marangoni stress (C5), the maximum mass flux occurs at 
the apex, with a local maximum near the contact line. In contrast, for 
the case with Marangoni stress (C6), the maximum mass flux is located 
at the contact line, with a local maximum near the apex. The local 
maximum near the apex, observed in all cases, drives an internal flow 
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Fig. 12. Evolution of surface concentration of particles adsorbed at the interface (dashed lines, right 𝑦-axes) and deposited at the substrate (solid lines, left 𝑦-axes) for cases with 
the Marangoni stresses and the contact angle 𝜃c = 60◦. (a) smaller silica particles of case C2S (b) larger silica particles of case C2S (c) smaller neutrally buoyant particles of case 
C2N (d) larger neutrally buoyant particles of case C2N.
from the contact line towards the apex, contributing to the maintenance 
of the droplet’s spherical cap shape.

6. Results of stage 2: Dispersion of particles in the evaporating 
droplet

In the second simulation stage, multiple simulations with particles 
are carried out based on the flow fields resulting from the simulations 
carried out in stage 1. The location of the particles is analyzed for four 
different time instances, corresponding to the volume of the droplet left 
being 90%, 75%, 50% and 25% of the initial volume of the droplet, for 
three different contact angles.

6.1. Contact angle of 𝜃𝑐 = 60◦

In Fig.  11, the surface concentrations of the small and the large 
particles that are adsorbed at the interface or deposited on the sub-
strate are shown for case C1, where the contact angle is 60◦ and 
Marangoni stresses are absent. Figs.  11(a) and 11(b) show the surface 
concentrations of silica particles, Figs.  11(c) and 11(d) show the surface 
concentrations of neutrally buoyant particles. Both the small and the 
large particles occupy the central region of the droplet, whether they 
are deposited on the substrate or adsorbed at the interface. For the 
small particles, the surface concentration of the deposited particles is 
nearly three times larger than for the larger particles. We attribute this 
preferential deposition of small particles to the stronger influence of 
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the adhesive van der Waals forces. In addition, the surface concentra-
tion for the small particles adsorbed at the interface is nearly double 
the surface concentration of the large particles. The concentration of 
particles of both sizes gradually increases at the droplet apex. Similar 
observations can be made for both types of particles with the same 
density as the fluid, shown in Figs.  11(c) and 11(d). The only visible 
difference is that the surface concentration of the neutrally buoyant 
particles deposited on the substrate is higher for the large particles 
than for the small particles. The positions of both the small and the 
large particles are at the same location, suggesting that no significant 
segregation is seen.

Similar plots are shown in Fig.  12 for the surface concentrations of 
smaller and larger particles that are adsorbed and deposited in droplet 
in case C2, where the contact angle is 60◦ and the Marangoni stresses 
are taken into account. The small particles adsorbed at the interface 
of the droplet move towards the apex of the droplet forming a core, 
as observed in Figs.  12(a) and 12(b), while the larger particles are 
adsorbed around the core of the smaller particles. As the evaporation 
progresses, the concentration of particles adsorbed at the interface 
increases, and the segregation of the small and large particles becomes 
more prominent. The small particles are deposited on the substrate 
mostly near the stagnation point, which moves towards the center of 
the droplet as evaporation progresses. The surface concentration of 
the large particles on the substrate is nearly three times larger than 
the surface concentration of the small particles, and it can be seen 
that the majority of the large particles are deposited at the stagnation 
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Fig. 13. Evolution of surface concentration of particles adsorbed at the interface (dashed lines, right 𝑦-axes) and deposited at the substrate (solid lines, left 𝑦-axes), for cases with 
the contact angle 𝜃c = 90◦. (a) Small silica particles of case C3S, (b) large silica particles of case C3S, (c) small neutrally buoyant particles of case C4S, and (d) large neutrally 
buoyant particles of case C4S.
point, which later moves towards the center of the droplet. Similar 
observations can be made for both types of particles with the same 
density as the fluid of the droplet, as shown in Figs.  12(c) and 12(d).

Overall, we can summarize that the trend of particle adsorption and 
deposition is mostly affected by the presence of the Marangoni flow. In 
the presence of Marangoni flow, we observe a separation of small and 
large particles. The density of particles relative to the density of the 
fluid has, however, no significant influence.

6.2. Contact angle of 𝜃𝑐 = 90◦

Fig.  13 shows the results of the deposition and adsorption of the 
silica particle for cases C3 and C4, where the contact angle is 90◦ and 
Marangoni stresses are absent and present, respectively. Comparing the 
plots in Figs.  13(a) and 13(b) for case C3, where the Marangoni flow 
is absent and the fluid flows from the contact line to the apex of the 
droplet, both the small and the large particles are adsorbed at the apex 
of the droplet, where the surface concentration gradually increases. 
For the small particles that are deposited on the substrate, the surface 
concentration is higher at the center of the droplet for all four shown 
time instances. On the other hand, the large particles are only deposited 
near the contact line, which gradually moves towards the center of the 
droplet.

Figs.  13(c) and 13(d) shows the positions of the particles for case 
C4, where the Marangoni flow is present. A arrangement of particles 
similar to the one seen for case C2 can be observed in Figs.  13(c)
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and 13(d) for case C4: The small particles adsorbed at the apex of the 
droplet form a core and the large particles adsorbed at the interface 
surround the core of the small particles. The surface concentration of 
the adsorbed particles gradually increases as the evaporation proceeds. 
For the deposited particles, small particles are mainly found at the 
center of the droplet. In contrast, the large particles primarily occupy 
the region near the contact line and a few large particles surround the 
core of the small particles deposited on the substrate.

Overall, we see a similar scenario for cases C3 and C4 as for cases 
C1 and C2, where the Marangoni flow has a significant effect on the 
segregation of the small and large particles, with small particles moving 
towards the center, where they form a core of adsorbed and deposited 
particles, and the large particles surround them.

6.3. Self-sorting mechanisms

In most cases considered in this study, the particles classify at the 
interface; the smaller particles are sorted from the larger ones. This self-
sorting of the particles in an evaporating sessile droplet is governed 
by the flow inside the droplet. For a sessile droplet with a moving 
contact line, three types of flow together form the resulting fluid flow: 
(i) the flow induced by the moving contact line, (ii) the capillary 
flow, generated by evaporation, and (iii) the Marangoni flow, generated 
by the Marangoni stresses associated with a local change in surface 
tension due to the temperature gradient along the interface. While the 
capillary flow moves fluid from the apex of the droplet to the contact 
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Fig. 14. Dispersion of particles in an evaporating ethanol droplet with contact angle 𝜃r = 60◦, where Marangoni stresses are (a) neglected and (b) considered.
Fig. 15. Volume evolution for sessile droplet in case C4 with Marangoni flow and 
contact angle 𝜃𝑐 = 90◦ for three different resolutions.

line, where the evaporation rate is typically highest, the motion of the 
receding contact line drives fluid from the contact line to the apex. 
For the considered evaporating ethanol droplets, the flow induced by 
the receding motion of the contact line supersedes the capillary flow, 
leading to a resultant fluid flow from the contact line to the apex of 
the droplet in the absence of Marangoni stresses, as is observed in Fig. 
14(a). In contrast, in the presence of Marangoni stresses, the Marangoni 
flow dominates over the other two flows, resulting in a classical single 
vortex flow, as seen in Fig.  14(b).

In Fig.  14(a), the dispersion of particles in case C1 is shown, where 
the contact angle 𝜃𝑐 = 60◦ and Marangoni flow is neglected. The fluid 
flow induced by the receding motion of the contact line moves the 
particles from the bulk of the droplet to the apex of the droplet, where 
the particles adsorb to the interface. Since the flow in this droplet is 
oriented predominantly in the direction normal to the interface, the 
adsorbed particles retain their position at the interface. Hence, there 
is no mechanism present that promotes a size-dependent sorting of 
the particles adsorbed at the interface. In one of the cases presented 
by Liu et al. (2019), the deposition of bidisperse polystyrene particles 
in a D O solution evaporating under constant contact angle conditions 
2
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is investigated. The evaporation in their experiment proceeds isother-
mally and at a slower rate compared to ethanol droplet evaporation; 
as a result, the internal flow field and the resulting particle deposition 
arise from different mechanisms than those considered in the present 
study. It is shown that under fast evaporation conditions, capillary 
flow transports smaller particles towards the contact line due to their 
lower Stokes number, while larger particles tend to accumulate near the 
center of the droplet. In contrast, during slow evaporation as studied 
by Liu et al. (2019), the particles remain suspended in the liquid and 
are captured by the interface, leading to reduced segregation of the 
bidisperse particle population.  In contrast, if Marangoni stresses are 
considered, the resulting flow along the interface promotes particle 
interactions, which in turn creates gaps between the particles that are 
preferentially filled by the small particles, see Fig.  14(b). As a result, 
the small particles agglomerate near the stagnation point of the flow 
at the apex of the droplet, with the large particles gathering around 
this agglomeration of small particles. We can, therefore, conclude that 
the dominant flow contribution associated with the thermocapillary 
Marangoni stresses is responsible for the size-based sorting of particles 
adsorbed at the gas-liquid interface.

7. Conclusions

In this study, we have investigated the behavior of bidisperse par-
ticles in evaporating sessile droplets with a moving contact line. To 
this end, we have used a finite-volume method to model the gas-liquid 
fluid flow, in conjunction with Lagrangian particle tracking to model 
the behavior of the particles. Our study has focused on the influence of 
thermocapillary Marangoni stresses and the contact angle of the droplet 
on the fluid flow and the particle dispersion inside an ethanol droplet 
evaporating on a heated substrate.

Several interesting conclusions can be drawn from the results of 
this study. In the absence of Marangoni flow, the flow induced by the 
receding contact line moves the fluid from the contact line to the apex 
of the droplet and dominates the flow to the contact line driven by 
evaporation, irrespective of the contact angle of the droplet. The pres-
ence of Marangoni flow promotes evaporation when the contact angle is 
less than 90◦, due to thermal convective mixing and low thermal resis-
tance. However, when the contact angle exceeds 90◦, the impact of the 
Marangoni flow decreases, resulting in a slower evaporation rate. This 
happens because of the increased thermal resistance, which is caused 
by the tall shape of the droplet and the decrease in the liquid–solid 
contact area, leading to a diminished effective thermal conductivity. 
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Fig. 16. Velocity and temperature plots for the cases including the Marangoni stresses, C4, where 𝜃c = 90◦, with different mesh resolutions. The left side of each figure shows the 
velocity vectors, of which the lengths are scaled with the color function and the color of the vectors shows their magnitude. The right side of each figure shows the temperature.
(a) C4, 𝑅𝑐∕24, 𝑡90,(b) C4, 𝑅𝑐∕32, 𝑡90,(c) C4, 𝑅𝑐∕40, 𝑡90.
The Marangoni flow and the flow induced by the receding contact line 
both move the particles towards the apex of the droplet, although along 
different paths. With respect to the particles, the flow originating from 
Marangoni stresses has been identified as the mechanism driving the 
self-sorting of the bidisperse particles adsorbed at the interface. As a 
result of this self-sorting process, the small particles agglomerate at the 
apex of the droplet and the large particles surround this agglomeration 
of small particles.

These findings provide insights into controlling the dispersion and 
agglomeration of particles in evaporating sessile droplets by manipu-
lating the surface wettability, heating conditions, and particle charac-
teristics. This understanding has potential applications in fields such as 
inkjet printing, microfabrication, and coatings, where uniform or pat-
terned particle deposition is desired. Although the model provides in-
sightful results regarding the dispersion of particles in a sessile droplet, 
it should be noted that the model assumes one-way coupling of fluid 
and particles.
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Appendix A. Mesh-independence study

A mesh-independence study for case C4 with Marangoni flow, sub-
strate temperature 𝑇𝑠 = 50 ◦C and contact angle 𝜃𝑐 = 90◦ is carried 
out, by resolving the initial contact radius by 24, 32, and 40 cells. The 
results of the evolution of the droplet volume for the three different 
resolutions, shown in Fig.  15, exhibit excellent agreement, indicating 
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Fig. 17. Velocity and temperature plots for the cases including the Marangoni stresses, C2, where 𝜃c = 60◦, with different slip length. Velocity vector plots on left, where the color 
indicates the velocity magnitude. Contour plots of the temperature on the right. (a) C2, no-slip, 𝑡90,(b) C2, no-slip, 𝑡50,(c) C2, slip length = 20 μm, 𝑡90,(d) C2, slip length = 20 μm, 
𝑡50,(e) C2, slip length = 50 μm, 𝑡90,(d) C2, slip length = 50 μm, 𝑡50.
that the evaporation dynamics are mesh independent. In addition, 
Fig.  16 shows the velocity and temperature distribution inside the 
droplet. Both the velocity and temperature are in qualitatively very 
good agreement for the three mesh resolutions.

Appendix B. Slip length

To study the slip-length model used to simulate the moving con-
tact line for an evaporating sessile droplet, three different cases are 
considered for case C2 with a contact angle 60◦ and accounting for 
18 
Marangoni stresses: (i) a vanishing slip length (i.e. no slip), see Figs. 
17(a) and 17(b), (ii) a slip length of 20 μm, see Figs.  17(c) and 17(d), 
and (iii) a slip length of 50 μm, see Figs.  17(e) and 17(f). In general, 
we can observe in Fig.  17 that an increasing slip length suppresses the 
formation of the vortex ring in the droplet and increases the temper-
ature at the apex of the droplet. This stands in contrast to available 
experimental measurements (Zhu et al., 2021; Zhu and Shi, 2023) and 
other numerical studies (Paul and Dhar, 2023), which show that for a 
volatile sessile droplet evaporating with a freely moving contact line, 
the coldest region appears at the apex of the droplet. We, therefore, 
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conclude that a no-slip boundary condition is the most appropriate 
choice for our study.

Data availability

The data that support the findings of this study are reproducible 
and data is openly available in the repository with DOI 10.5281/zen-
odo.15114147, available at https://doi.org/10.5281/zenodo.15114147.
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