POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o3

PO'YtGChnique Montréal D'INGENIERIE

Titre:

Title: Workload Optimization for Swarm-Powered Ad-hoc Clouds

Auteur:
Author:
Date: 2021

Type: Mémoire ou thése / Dissertation or Thesis

Leandro Rochink Costa

Référence: Rochink Costa, L. (2021). Workload Optimization for Swarm-Powered Ad-hoc
" Clouds [Thése de doctorat, Polytechnique Montréal]. PolyPublie.

Citation: https://publications.polymtl.ca/6650

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/6650/

Directeurs de
recherche: Andrea Lodi, Daniel Aloise, & Luca Giovanni Gianoli
Advisors:

Programme:

P ' |Doctorat en mathématiques
rogram:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/6650/
https://publications.polymtl.ca/6650/

POLYTECHNIQUE MONTREAL

affiliée a "Université de Montréal

Workload optimization for swarm-powered ad-hoc clouds

LEANDRO ROCHINK COSTA

Département de mathématiques et de génie industriel

These présentée en vue de I'obtention du diplome de Philosophie Doctor

Mathématiques

Juin 2021

(© Leandro Rochink Costa, 2021.

POLYTECHNIQUE MONTREAL

affiliée a "Université de Montréal

Cette theése intitulée :

Workload optimization for swarm-powered ad-hoc clouds

présentée par Leandro ROCHINK COSTA
en vue de 'obtention du dipléme de Philosophie Doctor

a été diument acceptée par le jury d’examen constitué de :

Nadia LAHRICHI, présidente

Andrea LODI, membre et directeur de recherche

Daniel ALOISE, membre et codirecteur de recherche

Luca Giovanni GIANOLI, membre et codirecteur de recherche
Alejandro QUINTERO, membre

Brunilde SANSO, membre

Ilario FILIPPINI, membre externe

DEDICATION

1ii

To my family. . .

iv

ACKNOWLEDGEMENTS

The accomplishment of this thesis wouldn’t be possible without the support of numerous
people whose help had directly or indirectly contributed during my Ph.D. pursuit. For them,

I must give the most sincere gratitude.

My research advisers, professors Andrea Lodi, Daniel Aloise, and Luca G. Gianoli, I would like
to give my deepest thanks for giving me the opportunity to pursue the Ph.D. at Polytechnique
Montréal and for the many hours of guidance, teaching, and support. Your knowledge and
mentoring were crucial, and you inspired me to be a better researcher. I feel extremely

fortunate to have worked with you during my Ph.D.

This thesis wouldn’t be possible without the support and hard work of all staff from GERAD
and the Canada Excellence Research Chair in Data Science for Real-Time Decision-Making,
especially, Khalid Laaziri, Koladé Nourou, Mariia Kopach, and Mehdi Taobane. The staff
from Humanitas Solutions equally played an important part in this thesis, in particular, Abdo
Shabah, Abdel R. Barghout, Luca Bianchi, Maxime Colin, and Vincent Boyavalle.

The completion of this thesis would also be impossible without the professors Daniel Aloise
and Caroline Thennecy de Medeiros Rocha. Thanks for introducing me to the operations
research field, for mentoring me, and for offering my first opportunity as an undergraduate

research intern in 2010. You two have been a source of inspiration since then.

I would also like to thank the professors Nadia Lahrichi, Alejandro Quintero, Brunilde Sanso,

and Ilario Filippini for accepting being part of the jury of my thesis.

I'm also very thankful for all the great friends that I have made in Montreal. My officemates,
Federico and Jiaqi, thanks for all daily conversations and laughs. For sure, I cannot forget
all the Brazilians (and the Brazilians in the heart) friends whose presence had made this
journey joyful and closer to Brazil. To my friends in Brazil, I also extend my gratitude for

all these many years of friendship.

Lastly, it’s impossible to express the gratitude that I have for my parents, Eloise and Luis,
as for my siblings, Wagner, Kari, and Larissa, for being essential in my journey as a human

being.

RESUME

Les applications de détection modernes peuvent étre décomposées en phases de détection et
de calcul, ot les données sont généralement collectées par un systeme local dédié de I'internet
des objets dans la phase de détection pour étre traitées dans la phase de calcul. Compte tenu
de la quantité massive de données présentes dans ces applications, 1’étape de calcul peut
nécessiter des ressources de stockage et de calcul robustes dans le nuage. Cependant, les
infrastructures communes de l'informatique en nuage présentent des problémes (par exem-
ple, une latence élevée) qui sont inadmissibles pour les applications limitées dans le temps
comme les interventions d’urgence et les opérations de secours en cas de catastrophe. Les
paradigmes de l'informatique en périphérie de réseau et du nuage ad-hoc traitent ces prob-
lemes en fournissant des ressources de stockage et de calcul a proximité de leurs utilisateurs,
permettant ainsi aux applications de conserver leurs phases de calcul locales. Par conséquent,
ces paradigmes ont été largement utilisés dans des applications avec des restrictions de temps
et de réseau. Par exemple, un essaim de drones collectant des photos et des vidéos d'une
zone post-catastrophe peut créer une infrastructure de nuage ad-hoc sans fil pour traiter les
données collectées indépendamment de la connexion Internet. Par conséquent, 'optimisation
de la charge de travail supportée par un nuage ad-hoc local est cruciale pour stimuler le succes
des applications limitées dans le temps. Cette these étudie 1'utilisation optimale des nuages
ad-hoc créé par un essaim de drones tout en respectant les contraintes de groupement et de
mise en réseau. Afin d’illustrer I’applicabilité des contributions de cette theése, nous adoptons
une mission de cartographie 3D propulsée par des essaims pour des opérations d’intervention

d’urgence réelles comme cas d’utilisation.

La premiere contribution propose un nouveau probléme d’optimisation, nommé Covering-
Assignment Problem for swarm-powered ad-hoc clouds (CAPsac), pour la génération et I'exé-
cution efficaces de charges de travail de calcul multi-nceuds soumises a des contraintes de
géolocalisation et de groupement. Le CAPsac vise a minimiser le temps d’achévement global
des taches déchargées sur le nuage ad-hoc tout en tenant compte des délais de transmission
entre les drones. En plus de prouver que le probleme est NP-difficile, nous présentons deux
formulations combinatoires pour le résoudre. Les résultats sur la solution des formulations
montrent que 'une d’entre elles peut étre utilisée pour résoudre, dans la limite de temps
configurée, plus de 50% des instances réalistes considérées impliquant jusqu’a 200 images et

6 drones.

L’obtention rapide de charges de travail quasi-optimales est cruciale pour le cas d’utilisation

vi

adopté de la mission de cartographie 3D propulsée par essaim. Par conséquent, la deux-
ieme contribution présente une heuristique de programmation mathématique basée sur la
décomposition et une heuristique de recherche en voisinage variable pour résoudre le CAP-
sac. L’analyse expérimentale montre que les méthodes quasi-optimales proposées atteignent
rapidement 'optimalité ou améliorent les meilleures solutions connues pour presque toutes

les instances réalistes testées comprenant jusqu’a 1000 images et 15 drones.

Enfin, concernant notre troisieme contribution, nous décrivons et évaluons le swarm-powered
Optimized 3D Mapping Pipeline (OptiMaP) pour les missions de cartographie 3D d’interven-
tion d’urgence. L’OptiMaP est construit comme une application ROS embarquée qui est
connectée via un middleware de télécommunication ad-hoc (HEAVEN) fourni par notre
partenaire Humanitas Solutions. Les simulations comprenant jusqu’a 5 drones et 363 im-
ages ont révélé que les deux versions de I’OptiMaP peuvent réduire de maniere significative

le temps de réalisation des missions de cartographie 3D propulsée par essaim.

vii

ABSTRACT

Modern sensing applications can be decomposed into sensing and computing phases, where
data is typically collected by a dedicated local internet of things system in the sensing phase
to be processed in the computing phase. Given the massive amount of data present in such
applications, the computing step may require robust storage and computing resources in the
cloud. However, common cloud computing infrastructures present issues (e.g., high latency)
that are inadmissible for timely manner applications as emergency response and disaster
relief operations. The edge computing and ad-hoc cloud paradigms address those issues by
providing storage and computing resources close to their users, thus allowing applications
to keep their computing phases local. Consequently, those paradigms have been extensively
employed in applications with time and network restrictions. For instance, a swarm of drones
collecting photos and video over a post-disaster area can create a wireless ad-hoc cloud
infrastructure to process the collected data regardless of network connectivity. Therefore,
optimizing the workload carried by a local ad-hoc cloud is crucial for boosting the success
of timely manner applications. This thesis investigates the optimal use of swarm-powered
ad-hoc clouds while fulfilling clustering and networking constraints. In order to illustrate
the applicability of the contributions of this thesis, we adopt a swarm-powered 3D mapping

mission for real-life emergency response operations as our use case.

The first contribution proposes a new optimization problem, namely the Covering-Assignment
Problem for swarm-powered ad-hoc clouds (CAPsac), for the efficient generation and execu-
tion of multi-node computing workloads subject to data geolocation and clustering con-
straints. The CAPsac aims to minimize the overall completion time of the tasks offloaded
to the ad-hoc cloud while accounting for inter-drone transmission delays. Besides proving
that the problem is NP-hard, we present two combinatorial formulations to solve it. Com-
putational results on the solution of the formulations show that one of them can be used to
solve, within the configured time limit, more than 50% of the considered real-world instances

involving up to 200 images and 6 drones.

Obtaining near-optimal workloads quickly is crucial for the adopted swarm-powered 3D map-
ping mission use case. Therefore, the second contribution presents a mathematical program-
ming heuristic based on decomposition and a variable neighborhood search heuristic for solv-
ing the CAPsac. The experimental analysis shows that the proposed near-optimum methods
rapidly reach optimality or improve the best known solutions for almost all tested realistic

instances comprising up to 1000 images and 15 drones.

viii

Finally, in our third contribution, we describe and assess the swarm-powered Optimized 3D
Mapping Pipeline (OptiMaP) for emergency response 3D mapping missions. The OptiMaP is
built as an embedded ROS application that is connected through an ad-hoc telecommunica-
tion middleware (HEAVEN) provided by our partner Humanitas Solutions. The simulations
comprising up to 5 drones and 363 images revealed that the two versions of the OptiMaP

can significantly decrease the completion times of swarm-powered 3D mapping missions.

X

TABLE OF CONTENTS

DEDICATION e iii
ACKNOWLEDGEMENTS e iv
RESUME o v
ABSTRACT . . . e vii
TABLE OF CONTENTS e ix
LIST OF TABLES e xii
LIST OF FIGURES e xiv
LIST OF SYMBOLS AND ACRONYMS xvi
CHAPTER 1 INTRODUCTION
1.1 Research objectives Lo
1.2 Thesis outline
CHAPTER 2 LITERATURE REVIEW
2.1 Swarm robotics
2.1.1 Optimization for swarm robotics
2.2 Edge computing 12
2.3 Max-min fairness flow allocation 14
2.4 3D reconstruction based on images 16
2.4.1 3D reconstruction by unmanned vehicles platforms 18
CHAPTER 3 ORGANIZATION OF THE THESIS 21

CHAPTER 4 ARTICLE 1: THE COVERING-ASSIGNMENT PROBLEM FOR SWARM-
POWERED AD-HOC CLOUDS: A DISTRIBUTED 3D MAPPING USE-CASE . 23
4.1 Introduction L 23
4.2 Covering-Assignment Problem for Swarm-powered Ad-hoc Clouds - CAPsac 26
4.3 Mathematical programming formulations 31

4.3.1 Common definitions 31

4.4
4.5

4.6

4.3.2 Photo-based CAPsac 33
NP-Hardness of the CAPsac 39
Computational experiments L. 40
4.5.1 MILP technology 41
4.5.2 Tested instances and computational settings 42
4.5.3 pCAPsac experiments 43
4.5.4 Sensitivity of the pCAPsac formulation 50
Conclusion 54

CHAPTER 5 ARTICLE 2: HEURISTICS FOR OPTIMIZING 3D MAPPING MIS-

SIONS OVER SWARM-POWERED AD-HOC CLOUDS 60
5.1 Introduction 60
5.2 Swarm-powered 3D mapping mission as a CAPsac 63
5.2.1 Mathematical Formulation 66
5.3 Decomposition-based heuristic oL 69
5.4 Variable Neighborhood Search for CAPsac 71
5.4.1 Variable Neighborhood Search fundamentals 71
5.4.2 Spatial partition tree oL 72
5.4.3 Sub-tree reconstruction neighborhood 75
5.4.4 Splitting hyperplane reallocation neighborhood 75
5.4.5 Sub-region transfer neighborhood 76
5.4.6 Sub-region swap neighborhoodo 7
5.4.7 Computation of the processing time and transmission data 7
5.4.8 Proposed VNS heuristic 79
5.5 Computational experiments 0L 83
5.5.1 Instances and notation adopted 83
5.5.2 Effectiveness of the decomposition strategy 84
5.5.3 Effectiveness of the neighborhoods 86
5.5.4 Comparison of the proposed methods 89
5.6 Conclusions 99

CHAPTER 6 OptiMaP: SWARM-POWERED OPTIMIZED 3D MAPPING PIPELINE

FOR EMERGENCY RESPONSE OPERATIONS 101
6.1 Swarm-powered optimized 3D mapping pipeline 102
6.2 Waypoints generationo 103
6.3 Multi-UAV photo collection 105
6.4 Optimized workload generation and allocation according to CAPsac 106

xi

6.4.1 Greedy heuristic Lo 108

6.4.2 Variable neighborhood search-based heuristic 108

6.5 Distributed 3D reconstruction oo 110
6.6 Deployment of the 3D mapping mission via simulation 111
6.6.1 Simulation results L 112

6.7 Conclusions 115
CHAPTER 7 GENERAL DISCUSSION 118
7.1 Summary of Works 118
7.2 Limitations 120
CHAPTER 8 CONCLUSION AND RECOMMENDATIONS 122

REFERENCES e 124

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 5.1

Table 5.2
Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 5.7

Table 5.7

Table 5.8

xii

LIST OF TABLES

CAPsac parameters in the context of the 3D mapping use-case. . . . 32
Characteristics of the tested instances. 44
CPLEX results when solving unweighted instances for the “PB:BCy”,
the “PB:BCy”, and “PB:BCy+0Ord.” formulations. 45
CPLEX results when solving weighted instances for the “PB:BCy”,
the “PB:BCy", “PB:BCy+Ord.” formulations. 46
CPLEX results when solving unweighted instances for the “PB:BC,”,
“PB:BCy—b>y” and “PB:BCy—y>b" branching priority strategies. . 51

CPLEX results when solving weighted instances for the “PB:BCy”,
“PB:BCy — b>y” and “PB:BCy — y>b" branching priority strategies. 52
CPLEX results when solving unweighted instances for the PB formu-

lation with o € {1,...,|D| —1}. 53
CPLEX results when solving weighted instances for the PB formula-
tion with o € {1,...,|[D|—=1}.. 54
CAPsac parameters for a 3D mapping mission. Adapted (©)2020 IEEE
[124]. . . o 66
Characteristics of the tested instances. 84

Percentage deviations of the complete rC' APsac formulation and the
decomposition method when solving unweighted instances. 85
Percentage deviations of the complete rC'APsac formulation and the
decomposition method when solving weighted instances. 86
Percentage deviations of employing distinct neighborhoods in the VND
when solving unweighted instances. 87
Percentage deviations of employing distinct neighborhoods in the VND
when solving weighted instances. 88

Makespan(Ti.x) in seconds when solving unweighted instances and

VAryING 0. oo 90
Makespan(7T,.x) in seconds when solving unweighted instances and
varying o (Continued). Lo 91
Makespan(Ti.y) in seconds when solving unweighted instances and
varying o (End). 92

Makespan(Ti.x) in seconds when solving weighted instances and vary-

INg o, . . 93

Table 5.8

Table 5.8

Table 6.1

xiii

Makespan(Tinax) in seconds when solving weighted instances and vary-

ing o (Continued). 94
Makespan(Tinax) in seconds when solving weighted instances and vary-
ingo (End).o 95

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 5.1

Figure 5.2

Figure 5.3
Figure 5.4

LIST OF FIGURES

Explanatory instance of CAPsac problem accordingly to the 3D map-
PING USE-CASE.+« o o o i e e e e e e
Ordinary set and the respective convex hull.

Spatial-convex set and the respective convex hull.

Spatial-convex covering and its assignment optimizing the makespan
of a 3D mapping mission. Lo
Behavior of constraints (4.14) and (4.15) when the photo ps is not
assigned to a sub-region r. Lo
Performance profile w.r.t. the CPU times of the “PB:BCy” and “PB:
BCYy”.
Average CPU times when solving unweighted instances with 200 photos
according to “PB:BCy”, “PB:BCy”, and “PB:BCy+Ord.”.
Average CPU times when solving weighted instances with 200 photos
according to “PB:BC,”, “PB:BC,”, and “PB:BCy+Ord.”.. |
Average CPU times when solving unweighted instances with 400 photos
according to “PB:BCy”, “PB:BCy”, and “PB:BCy+Ord.”.
Average CPU times when solving weighted instances with 400 photos
according to “PB:BC,”, “PB:BC,”, and “PB:BCy+Ord.”.. |
Performance profile w.r.t. the CPU times of the “PB:BC,” and “PB:

Primal bound and dual bound on increasing o for unweighted instances.

Primal bound and dual bound on increasing o for weighted instances.
Number of nodes explored by CPLEX on varying 7' for the instance
u-P200D5%D70.
Number of nodes explored by CPLEX on varying T for the instance
w-P200D5%D170.
Swarm-powered 3D mapping mission as an instance of CAPsac. (¢)2020
[EEE [124].
Spatial-convex set and the respective convex hull.
IEEE [124].
Ordinary set and the respective convex hull. (©2020 IEEE [124].

Spatial-convex covering and its assignment optimizing the makespan
of a 3D mapping mission.(©2020 IEEE [124].

Adapted (©2020

xXiv

28

30

30

32

36

47

49

49

49

49

56

63

65
66

Figure 5.5
Figure 5.6

Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 6.1
Figure 6.2

Figure 6.3

Figure 6.4
Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

XV

[llustrative construction of a spatial-convex tree with four sub-regions. 74
Neighboring solution (right) obtained from a spatial partition tree (left)
in the sub-tree reconstruction neighborhood. 75
Neighboring tree (right) obtained from a spatial partition tree (left) in
the splitting hyperplane neighborhood. 76
Neighboring solution (right) obtained from a spatial partition tree (left)
in the sub-region transfer neighborhood foro=2. 76
Neighboring solution (right) obtained from a spatial partition tree (left)
in the sub-region swap neighborhood fore =2 7

Spatial-convex covering which cannot be represented by the adopted

spatial-partition tree data structure. 97
Percentage deviation achieved varying T for instances “u-P200D5%D70”

(top) and “w-P200D5%D70” (bottom). 98
OptiMaP pipeline. 104

Mlustrative solution obtained by CAPsac. 107

Spatial partition tree (left) and the respective spatial-convex covering

of waypoints (right).o L 110
Network topology employed in deployed scenarios. 113
Completion times when employing the centralized approach, the greedy
heuristic, and the VNS method. 114
Communication delays obtained by adopting the centralized approach,
the greedy heuristic, and the VNS method. 114

Completion time per drone when using the greedy and VNS heuristics

used within OptiMaP. 116
Total data exchanged (lines) and the data sent in the largest trans-
mission demand (dashed lines) by the centralized approach, the greedy
method and VNS heuristic. 116
Average throughput achieved by the centralized approach, the greedy
method and VNS heuristic. 00 117

AoA

BIS
CAPsac
CAPT
CPP
DoC
DSC
DTRP
EC

FOV
GPS
GTSP
HEAVEN
HXS
[oFT
IoT

IP

LNS

LP
MILP
MDLP
MMF
MMMT
MPC
MVS
NSA
OptiMaP
OR
pCAPsac
PPP
QoS
rCAPsac
ROS

LIST OF SYMBOLS AND ACRONYMS

Angle-of-Arrival

Block-Information-Sharing

Covering-Assignment Problem for swarm-powered ad-hoc clouds
Concurrent Assignment and Planning of Trajectories
Chinese Postman Problem

Degree of Completeness

Drone Small Cell

Dynamic Traveling Repairman Problem

Edge Computing

Field-of-View

Global Positioning System

Generalized Traveling Salesman Problem
Heterogeneous Embedded Ad-hoc Virtual Emergency Network
HyperXSpace

Internet of Flying Things

Internet of Things

Internet Protocol

Large Neighborhood Search

Liner Programming

Mixed-Integer Linear Programming

Mobile Drone Location Problems

Min-Max Fairness

Multi-MSA-Multi-Target

Model Predictive Control

Multi-View Stereo

Nash Seeking Algorithm

swarm-powered Optimized 3D Mapping Pipeline
Operations Research

Photo-based CAPsac

Persistent Patrolling Problem

Quality-of-Service

Region-based CAPsac

Robotic Operating System

xvi

RTT
RWP
SDLP
StM
SITL
SR
TCP
TEF
UAVs
uv
VND
VNS

Round-Trip-Time

Random Way-Point model
Static Drone Location Problems
Structure from Motion
Software-In-The-Loop

Swarm Robotics

Transmission Control Protocol
Task Error Function
Unmanned Aerial Vehicles
Unmanned Vehicles

Variable Neighborhood Descent
Variable Neighborhood Search

xvii

CHAPTER 1 INTRODUCTION

The progress on the capabilities of mobile devices formed the perfect environment for the
conception of the Internet of Things (IoT) [1] and smart cities [2]. Such paradigms yield
huge amount of data and processing demands [3]. Services providing dynamically scalable
and virtualized storage and computing resources as cloud computing [4] have been the main
force to deliver data storage and processing offload for such scenarios, but they may present

high latency and mobility support issues [5].

Similarly to cloud computing, the Edge Computing (EC) paradigm provides equivalent pool
of resources and allows computation and storage at the edge of the network, by exploit-
ing computer and storage resources laying along the communication path between the data
sources and remote data centers [6]. Naturally, EC emerged as a game-changing alternative
to traditional cloud computing systems since it addresses issues that are disruptive to timely

manner applications, e.g., high latency and lack of connectivity.

EC benefits from the deployment of Unmanned Aerial Vehicles (UAVs), also known as drones,
given their low-cost, mobility, and autonomous capabilities [7-11]. The EC capabilities are
enhanced when drones act as an autonomous swarm and cooperate to perform complex
tasks. In swarm robotics, simple embodied robots are coordinated in a decentralized manner
to perform complex collective tasks in such a way that their performance and resilience are
maximized [12]. Consequently, UAV swarming is employed in a wide range of applications as
target search and tracking, surveillance, and mapping [13]. In the context of EC applications,
a swarm of drones can establish a dedicated wireless network [14] and act as an ad-hoc cloud

from which processing and storage resources can be exploited [15-18].

Swarm robotics (SR) has drawn the attention of the Operations Research (OR) community as
well [19,20]. In fact, in terms of decentralized methods, OR researchers have investigated how
to improve UAV applications in search problems [21-26], target assignment problems [27—
37], covering problems [38,39], scheduling problems [40], and other [41-43]. In the context
of this thesis, we investigate the exploitation of a swarm-powered ad-hoc cloud through
the proposition of a new NP-hard optimization problem, namely the Covering-Assignment

Problem for swarm-powered ad-hoc clouds (CAPsac).

Given a collection of tasks that need to be carried by an ad-hoc cloud, let us define workload as
the division of those tasks into distinct groups, i.e., batches of processing tasks. The CAPsac
alms to minimize the completion time of processing tasks offloaded to a swarm-powered

ad-hoc cloud by jointly optimizing workload generation and workload assignment. This is

fundamentally different from the decompose-then-allocate and the allocate-then-decompose
paradigms [44], which are commonly found in the multi-robot task allocation literature. In
particular, we focus on applications with (i) clustering and (ii) network constraints, which
means that batch of tasks must be constructed based on their geographical position, and

that the data exchanges cannot exceed a given amount of time.

Digital photogrammetry [45,46] for applications as 3D mapping are commonly employed in
the UAV swarming context in which aerial images of a region of interest are captured in order
to construct its respective 3D model. That group of aerial images are typically collected by
a UAV swarm in cooperative fashion, but the 3D reconstruction process is performed in a
dedicated computer [47-53]. Consequently, such centralized approach is vulnerable to latency
and connectivity issues and does not exploit the computing and networking resources within

the swarm of drones.

The possibility of organizing the UAV swarm to establish an ad-hoc cloud infrastructure [15-
18] can highly boost the 3D reconstruction process for swarm-powered 3D mapping missions.
Naturally, the CAPsac can be used to optimally create and allocate the multi-node computing
workload that constitutes the 3D reconstruction process. Thus, an optimal solution for
the CAPsac describes how to minimize the total 3D reconstruction process by optimally i)
splitting the area of interest (aerial images) into various sub-regions, and then ii) allocating

each sub-region to a certain UAV.

In order to foster the use of the CAPsac by practitioners, we illustrate its potential and
applicability through a real-life emergency response application. We employ the CAPsac to
optimize the completion time of the 3D reconstruction phase of a swarm-powered 3D mapping
mission. Constructing 3D maps of the mission area boosts emergence response since they
improve the decision-making and situation awareness during the mission. For instance, those
3D twin models allow first responders to highlight hazards such as damage in roads and
buildings, or risk zones [54-57]. Time is precious for those missions and providing 3D maps

as quickly as possible despite internet connection is indeed critical.

1.1 Research objectives

The swarm robotics and the edge computing technology rise as relevant research topics given
their potential applicability, and the well-established techniques from operations research
are used to optimize a long list of drones applications, e.g., [19,20]. Unfortunately, the
literature contains few works combining OR with SR and EC, especially for distributed 3D

mapping missions. We focus on combining SR and EC in the context of optimizing the use of

swarm-powered ad-hoc clouds. Optimized workloads for swarm-powered ad-hoc clouds can
result in the reduction of their overall completion time and promote the success of real-life

applications. The objectives of this thesis are:

e To propose a new optimization problem to improve the workloads created for exploit-
ing swarm-powered ad-hoc clouds while respecting transmission delays, reliability, and

spatial convexity constraints.

e To develop solution methods, exact and heuristics, for the proposed problem. Exact
methods are crucial to gain insights from the problem which are in turn used to develop
fast near-optimal methods. Since time is precious in emergence response operations,

devising heuristic methods is crucial to foster effective operations.

e To deploy a UAV-based 3D mapping mission employing the proposed problem to opti-
mize the workload carried by real swarm-powered ad-hoc clouds. The deployment and
anticipated analysis of emergency response missions by simulations are key for coor-
dinating real life operations, since they permit evaluating different response protocols

without facing an actual crisis.

1.2 Thesis outline

The remainder of this document is organized as follows. Chapter 2 provides basic concepts
and notions to the development of this work. The organization of this thesis is presented
in Chapter 3. Chapter 4 describes our first contribution in which the CAPsac is formally
proposed. Furthermore, besides presenting the NP-hardness proof of the CAPsac, we also
present two Mixed-Integer Linear Programming (MILP) formulations to solve the CAPsac in
Chapter 4. Chapter 5 presents the proposed decomposition-based and the Variable Neighbor-
hood Search (VNS) heuristics for the CAPsac that were presented in our second contribution.
Chapter 6 consists of the deployment of a 3D mapping mission exploiting a swarm-powered
ad-hoc cloud via a distributed 3D mapping pipeline creates near-optimal workloads. Finally,
we provide a general discussion in Chapter 7 followed by our general remarks concerning the

contributions of this thesis in Chapter 8.

CHAPTER 2 LITERATURE REVIEW

In this chapter, we summarize relevant concepts and literature for exploiting swarm-powered

ad-hoc clouds as addressed by this thesis.

2.1 Swarm robotics

The terms Swarm Robotics and Swarm Intelligence have been broadly discussed in the spe-
cialized literature. The swarm concept has inspiration in the natural swarm behavior among
certain animal species, e.g., ants, birds, and bees [58]. Swarm robotics is defined as the
research field addressing how to coordinate, in a distributed and decentralized manner, a
large group of simple embodied robots to perform collective tasks and maximize the swarm

performance [12].
Moreover, a system of multi-robots can be denoted a swarm only if it respects some crite-
ria [12]:

1. The robots must be autonomous and able to interact with the world;

2. the number of robots within the swarm should be large enough to permit scalability.
Unfortunately, a minimal quantity isn’t well defined in the literature, and 10-20 robots
should be sufficient.

3. The swarm must comprise just a few homogeneous groups of robots. The objective is

to maximize the system homogeneity and to have simple multi-purpose robots.

4. The robots should be the most simple as possible. They should be designed in such a
way that an individual robot would hardly perform the demanded tasks by itself.

Finally, the robots should be restricted to limited sensing and local communication.
The main advantages of adopting swarm robotics — robustness, flexibility, and scalability

— lie on their simplicity and number of robots:

e Robustness, which is granted by the redundancy and decentralized control of the

swarm, allows the swarm to operate in a wide range of scenarios;

e Flexibility permits different robots to handle distinct tasks at the same time, since the
large number of robots creates a system that has massive parallel power for performing

both processing and concrete tasks;

e Scalability allows varying the size of the swarm without changing the whole system;

In addition, the simple design of the robots results on cheaper systems, concerning acquisition
and maintenance costs, since it has fewer components and there is no need to develop so-
phisticated operational algorithms. Finally, simple robots have smaller energy requirements.

Therefore, the swarms are likely to be efficient in terms of energy consumption.

Those advantages, especially robustness, parallel power, and flexibility, are significant factors
that make swarm robotics to overcome other multi-individual systems as multi-robots, sen-
sor networks, and multi-agent systems [58]. As a consequence, the swarming technology has
been extensively applied for different sorts of tasks and application domains: self-organized
aggregation; autonomous formation pattern; cooperative transport; clustering and storing
objects; navigation; target location; self-deployment; collaborative manipulation; and collec-

tive decision-making and task allocation [13,59].

2.1.1 Optimization for swarm robotics

Operations research techniques have already been applied to solve problems concerning un-
manned aerial vehicles. Most optimization methods handling UAVs are based on the central-
ized control paradigm. Both Otto et al. [19] and Coutinho et al. [20] present broad surveys
on optimization approaches for UAV applications. This section lists relevant studies that
focus on applying optimization techniques for a swarm of UAVs. Also, the listed studies are
grouped following our proposed taxonomy, which arranges the applications accordingly to the
addressed problem: Search Problem; Target Assignment Problem; Node Covering Problem;
Scheduling Problem; and other specific problems.

Search Problem

In a traditional search problem, a set of targets, which can be static or mobile, is searched
by the UAV(s). The objective may be either to minimize the time to locate all the targets
when their number is known in advance; or to minimize the uncertainty of data concerning
the targets’ location; or to maximize the probability to find the targets; or to minimize the

mission cost given a minimum acceptable probability of finding the targets.

Sujit and Ghose [21] aimed to solve a target search problem exploiting multiple cooperative
UAVs. The proposed method handles a discrete version of the region of interest and the
respective uncertainty map, which is based on the region’s previous knowledge. The proposed
decentralized algorithm is inspired by the k-nearest shortest path. Moreover, the paths

were built to maximize the uncertainty reduction in the uncertainty map. Multiple trips

are allowed, and both fully connected and partially connected drones are considered. The
authors go further on the topic in [60]. In this work, a g-step-looking-ahead planning game
model is proposed to explore different game strategies. Also, the UAVs are permitted to
refuel /recharge in distinct base stations. A two-agent game model is adopted and three
types of strategy — non-cooperative, security, and cooperative — are evaluated. Regarding
the non-cooperative strategy, the agents do not communicate their next actions, which are
decided according to their best payoff expectation, with each other. Also, no inter-agent
communications are implemented by security strategies, according to which each agent act
to guarantee a minimum payout. The cooperative strategy is characterized by agents that
collaborate to jointly select the set of actions that will maximize the collective payoff. The
simulation indicates that the non-cooperative and cooperative strategies have similar results
when a fully connected and ideal communication network is considered. In contrast, the
non-cooperative strategy has the best results when a non-ideal communication network is
used. Finally, a sector partitioning approach is proposed to decrease the computational time

for large g-looking-head steps cases.

Oh et al. [22] and Oh et al. [23] addressed their research to the road search problem with
multiple UAVs. The problem is modeled as a Chinese Postman Problem (CPP) that is
modified to handle various agents. The proposed approximative method is decentralized and
based on a combination of nearest insertion strategy and Dubins paths [61]. Road selection

conflicts are solved through a proposed auction algorithm.

Lanillos et al. [24] developed decentralized decision-making methods that address the single-
UAV and multi-UAV target search problem with static targets. The decentralized algorithms
rely on the gradient-descent method over a utility function that comprehends both short-term
and final expected rewards. The algorithms minimize a measure based on the non-detection
joint probability. In order to keep the problem tractable, only a solution, i.e., a vector of
actions, for N-ahead steps is created. Since the gradient-descent method is decentralized,
all drones should continuously communicate their estimated target location beliefs. Two
strategies are proposed for the multi-target scenario: the separated target location belief;
and the united target location belief. The former keeps a different location belief map for
each target. The latter merges all the target location belief maps into a single location belief
map. Finally, different simulation scenarios are used to compare the proposed methods with

another target search method [25] and to evaluate the two multi-target proposed strategies.

Ji et al. [26] developed a distributed framework for the cooperative search problem. The
objective is to find unknown targets in a predefined region the soonest possible. The drones

collect the local sensing information and update the probability and uncertainty maps in a

distributed way. Based on the updated maps and the objective function, the drones change

their flight direction in real time.

Target Assignment Problem

The target assignment problem aims to allocate targets to the set of drones in order to
visit all targets, whose location is known, while the mission cost is minimized or the mission
reward is maximized. Also, the objective can be to maximize the overall visit frequency of
the whole target set. Moreover, both the assignment and the path planning characterize a
solution to the problem. The problem can be denoted as a task assignment problem where
tasks are target locations that need to be visited by the UAVs.

Tang and Ozguner [27] proposed an online method for the cooperative multi-MSA-multi-
target (MMMT) problem that provides a target assignment and a surveillance motion plan
for each UAV to scout the targets. The authors consider mobile targets whose mobility is
dictated by a random walk procedure. The quality of a solution is given by the average
amount of time between two consecutive observations of the same target, and the objective
is to minimize this average. Moreover, the method has two steps: task decomposition and
individual path generation. The former is responsible to group the targets by the k-means
algorithm, where £ is equal to the number of available UAVs. Then, the k-best algorithm
is performed to designate each set of targets to a UAV. In the latter step, the surveillance
path of each drone is made by means of a suboptimal gradient-based algorithm. Finally, the
solution adjustment is triggered when predefined events occur: a UAV finishes its motion

plan; a drone makes a negotiation over a target allocation;

Karaman and Inalhan [28] solved the target assignment problem for a multi-UAV scenario.
The proposed method is exact and decentralized; the Dantzig-Wolfe decomposition and the
Column Generation strategy are explored in the enumeration. Each drone solves its specific
subproblem, and the column with the most negative reduced cost is added to the restricted
master problem. All data concerning the restricted master problem is kept updated in all

drones. Finally, the proposed method can handle the addition of new targets as well.

Niccolini et al. [29] presented a bio-inspired approach for the task assignment problem which
is performed by a swarm of agents. The Description Function Methodology is used. A set of
functions, denoted Agent Description Function (Agent DF), Current Task Description Func-
tion (current TDF), Desired Task Description Function (desired TDF), Task Error Function
(TEF), and Degree of Completeness (DoC), are used to coordinate the agents’ engagement
and task completion. Given an agent ¢ and a task k, the engagement of the agent i to the

task k is dictated by a threshold, i.e., a probability which is a function of the magnitude of

the stimulus signal of the task k£ and the capability of the agent i to perform the task k. In
this context, each agent has a different interest to perform each task. Moreover, the stimulus
of each task is a function of the task’s DoC through time. An agent chooses the task with
the highest probability of engagement.

In Viguria et al. [30], a distributed task-allocation framework is proposed. Different tasks
are considered and applied to fire detection and extinguish missions. Also, computational
and real simulations were done, and the concept of service is proposed as well. Services are
all complementary jobs that are necessary to perform a given task, e.g., to send images of a
point of interest while another drone is extinguishing the fire. The proposed tasks manager
perform the S+T algorithm which is a market-based auction algorithm. Moreover, robots
bid for a given task and the drone with lowest bid cost is assigned to perform it. Concerning
the bid cost computation, a robot considers if it needs complementary services to perform
the offered task.

Choi et al. [31] solved an online task assignment problem. The proposed method has two
stages: optimization order; and communication and negotiation; At first, an initial task
assignment is given to the drones. In the first stage, each drone performs a genetic algorithm
to minimize the costs of executing its tasks. In the second stage, the drones improve task
allocation by exchanging task designations among themselves. The task exchange procedure

follows a One-to-One strategy.

Barrientos et al. [32] proposed a platform to solve both task assignment and coverage path
planning problems for a given area of interest in the context of a precision agriculture appli-
cation. In real experiments, three UAVs must cooperatively take pictures of a given region in
order to construct its mosaic. Two main phases are proposed. First, the area is decomposed,
and the resulting sub-areas are allocated to the drones. Second, a covering path for each
sub-area is created to minimize the number of turns and mission time of each UAV. The area
decomposition and sub-area allocation are done following a negotiation protocol, which is an
extension of the alternate-offers protocol [62], and by considering their own characteristics.
As the task subdivision and the task allocation are done in the continuous domain, the area
of interest, the sub-areas, and the borders are converted to a discrete domain, which is repre-
sented by a grid, before the coverage path planning step. Finally, the coverage path planning

is based on the wavefront planner [63].

Moon et al. [33] and Moon et al. [34] proposed a hierarchical framework for the task assign-
ment and path planning problems. The objective is to minimize the total cost of the mission,
i.e., the summation of the costs of the assigned tasks. The task assignment is based on a

negotiation-based strategy, which makes each drone to execute its task with minimal cost.

If a conflict in the task assignment is detected, the UAV with the lowest cost takes the task.
The path planning problem is solved locally in the drones by an A* based algorithm, which
aims to decrease the distance from the drone to its task. Also, a collision avoidance algorithm
for non-expected obstacles is described. In [34], additional filtering procedures are applied

to improve the computed paths.

Turpin et al. [35] approached the Concurrent Assignment and Planning of Trajectories
(CAPT) problem, whose goal is to allocate a set of tasks to the drones and construct collision
free UAVs-tasks trajectories. Both centralized and decentralized methods are proposed. The
centralized algorithm is a two-phase method. First, the assignment problem is solved by the
Hungarian algorithm. If there are more tasks than drones, the problem is solved iteratively.
At each iteration, the task assignment is kept, and only the non-allocated tasks are consid-
ered in the next iteration. Afterward, the collision-free trajectories are created based on the
drones’ assignment. The decentralized version assumes that each drone already has a task to
perform at the beginning. Considering a given communication range, the drones exchange a
task when it is advantageous concerning the chosen objective function, which can be either

minimize the sum of traveled distances or minimize the square of velocities.

Enright et al. [36] summarized the current methods applied to UAV routing concerning
dynamic scenarios, in which new tasks are created on-the-fly following stochastic criteria.
The Dynamic Traveling Repairman Problem (DTRP) and the Persistent Patrolling Prob-
lem (PPP) are approached by Spatial Queueing Theory-based methods for the single and
multi-server cases. The algorithms for the multi-UAV scenarios exploit decentralized spatial
partition policies in order to apply the single UAV methods in each sub-region of the con-
structed spatial partition. Both Voronoi and Power Diagrams tessellations are considered
in the discussed partitioning policies. Also, motion, location, and sensing constraints are

addressed, and lower bounds are established.

Sadeghi and Smith [37] proposed a decentralized auction-based Large Neighborhood Search
(LNS-Auction) method for the task allocation problem. The tasks are points in the Cartesian
space, and the task allocation problem is converted to a Generalized Traveling Salesman
Problem (GTSP). Moreover, the robot’s tasks and scheduling are represented as a tour in
the GTSP. Given an initial feasible solution, a random robot starts an auction, and a subset
of its assigned tasks are deleted (destroy step) and offered to an aleatory subset of robots.
All the robots in the auction, i.e., auctioneer and chosen robots, place bids for subsets of the
offered tasks (repair step). For a subset of tasks, its bid value is computed by checking the cost
of inserting it in a robot’s tour. Nearest insertion, Cheapest insertion, and Farthest insertion

can be used in the bidding procedure. Finally, the auctioneer solves an auction problem

10

and communicates the winners which perform the changes in their assigned tasks. The
auctions are triggered until the stop criterion is reached. Also, computational experiments

are performed, and bounds on the tour cost are proposed.

Node covering problems

This class of problems focuses on persistent node covering where the nodes can be vehicles,
base stations, transmission stations, and ground and aerial targets. Given a set of drones,
the primary objective is to keep the nodes always covered by the footprint of at least a single
drone. It is useful for communication and tracking applications, for example. A solution for a
node covering problem can either the drones’ three-dimensional position or the drones’ path.
The objective function varies accordingly to the application. For instance, a communication

application could aim to maximize the Quality-of-Service (QoS) of a set of clients, i.e., nodes.

Zorbas et al. [38] formalized the Static and Mobile (dynamic) Drone Location Problems, de-
noted as SDLP and MDLP, and provide centralized methods for both problems. Accordingly
to the characteristics of the problems, only the MDLP has a decentralized online method.
The problems’ objective is to define the three-dimensional position of the drones in such a
way that all the targets are covered by a drone. Moreover, the covering must minimize the
number of active drones or minimize the total amount of energy necessary for the mission.
Besides needing an initial solution, the decentralized approach is divided into rounds. In
each round, the drones compute their new position locally based on the new location of the
nearby targets. If it is detected that a single drone can cover the targets of two drones in
such a way that the objective function is improved, one of the drones changes its state from
active to non-active and assigns their covered targets to the other drone. The opposite may

occur when it is better to have two drones handling a set of targets.

Ladosz et al. [39] tackled the positioning and path planning problem for a fleet of UAVs
that act as transmission nodes in a communication network, which has UAVs and mobile
ground nodes (vehicles). The objective is to maximize the transmission quality regarding the
restrictions and losses in an urban scenario. The optimization is done by a particle swarm
and genetic algorithms, and a decentralized approach is adopted. Furthermore, each drone
computes its trajectory and position based on the location and path of all other UAVs and

mobile ground nodes.

11

Scheduling Problems

Given a set of tasks, which can have precedence rules, this class of problems concerns to
find a task scheduling for a set of drones. The objective is to complete all tasks as soon as

possible, i.e., to minimize the makespan of the tasks.

Caraballo et al. [40] proposed a heuristic method for the Assembly planning problem [64].
The objective is to minimize the makespan of a task that can be decomposed in smaller sub-
tasks. In other to minimize the total completion time, the heuristic assigns sub-tasks to the
drones according to precedence rules. The developed method uses centralized local allocation

strategy, denoted Block-Information-Sharing (BIS), to define a decentralized algorithm.

Specific problems

Grancharova et al. [41] described a routine to optimize the communication network topology
while a trajectory planning problem is solved. Given a set of dynamic and static targets, a set
of UAVs, and a base station, the proposed Model Predictive Control (MPC) methods provide
a finite-horizon trajectory plan and a network topology which is updated continuously. The
trajectory plan is computed in a decentralized way while the loss in the transmission paths
of the current network topology is minimized. The network topology optimization routine
is performed at the base station at every given time interval. This routine solves a series
of maximum flow problems in order to define the best routing paths for transmission of
data between the base station and the targets. Also, velocity, acceleration, anti-grounding,
airspace, and radio loss constraints are considered. Finally, two simulation scenarios are

created to validate and to evaluate the proposed methods.

In Koulali et al. [42], a distributed game theory-based method is proposed, and a series of
simulations are used as validation. In the formulated non-cooperative game, drones search
for mobile users, which are spread in a given area, in order to serve them as a Drone Small
Cell (DSC). The UAVs need to transmit packets actively (beaconing) and wait to get the
user’s answers. A drone’s search is successful if it receives at least a predefined number of
answers from the users. The goal is to maximize the energy efficiency and the UAV-user
encounter probability by creating a beaconing schedule for each drone, i.e., by defining how
long each drone will actively search for users. Also, drones and mobile users move randomly
in the considered region following a Random Way-point model (RWP). Finally, the proposed
method, denoted Nash seeking algorithm (NSA), can reach the unique Nash equilibrium in
a small number of iterations and with good energy efficiency in comparison to the always

active search strategy.

12

Xu et al. [43] addressed the angle-of-arrival (AoA)-based target tracking problem whose goal
is to estimate the target’s location based on AoA data of the UAVs. The authors propose
a decentralized pseudo-linear Kalman filter for the 3D domain. Also, a gradient descent-
based and grid search-based optimization methods are described. Finally, collision avoidance

routines and a dynamic communication topology are considered.

Fotouhi et al. [65] aims to improve the spectral efficiency of a set of DronesCells, i.e., drone-
mounted base stations that are responsible for providing networking resources to mobile users
in the established geographical region (cell). Considering a given time interval, the proposed
methods act choosing the motion direction of all drones for the next time interval. Game
theory, exact and heuristic approaches are evaluated by simulations which show a small

difference between the results of the developed methods.

2.2 Edge computing

Cloud computing establish the concept of computing as a utility in which centralized compu-
tational resources are available as commodities. Formally, cloud computing is a service over
the Internet that provides dynamic scalable resources [4]. Its popularity lies in the possibil-
ity of outsourcing computing power, data storage, and services to third parties [66]. Cloud
computing is the backbone of many data and computational demanding paradigms as the
Internet of Things (IoT) [1], smart cities [2], and big data [3]. Nevertheless, issues as high

latency and mobility support are present in the cloud computing solutions [5].

Similarly to cloud computing, Edge Computing (EC) provides lightweight resource virtualiza-
tion on connected resource-constrained devices with moderate capabilities that are located at
the edge of the network, that is, along the path from the data source to the data center [67].
EC mainly differs from cloud computing by proving data storage and computing resources
closer to the end user [68]. That grants EC with low latency, small jitter, reduced network
load, better data security, and location awareness [67]. EC technology is complementary to
cloud computing since it allows data to be collected, processed, and analyzed locally before
being sent to a central data center for more complex tasks. Furthermore, EC can be divided
into three main paradigms: Cloudlets [69], Fog computing [70], and Mobile Edge comput-
ing [71]. We refer the interested reader to an extensive comparison between EC paradigms

and cloud computing in [67]

Unmanned Aerial Vehicles, also referred to drones, leverage the IoT resulting in the creation
of the Internet of Flying Things (IoFT) [72]. Naturally, EC also takes advantage of the low-

cost and aerial capabilities found in the drones. In the context of EC, drones can establish

13

a dedicated wireless network [14] and act as an ad-hoc cloud [15-18] whose processing and
storage resources can be exploited for processing task offloading — IoT devices with low
capabilities send computation tasks to be carried in the ad-hoc cloud instead of locally in

the device.

For instance, Jeong et al. [73] and Jeong et al. [8] addressed the bit allocation in upstream
and downstream transmissions and the path planning joint problem for a drone providing
computing resources for mobile users. The objective was to minimize the total mobile en-
ergy consumption in a system with one UAV. The authors proposed two non-convex models
that deal with orthogonal and non-orthogonal access scheme in the transmissions, respec-
tively. The computational experiments showed that the successive convex approximations
algorithms were able to improve the energy consumption in a system with one drone and
three mobile users. Similarly, in Hu et al. [10], the authors tackled the joint offloading and
path design non-convex problem minimizing the sum of the maximum delay among all ground
users that are served by a drone. However, they considered that tasks could be partially of-
floaded, i.e., the model decides the task ratio processed by the users and the task ratio carried
by the drone. Besides extending the problem to minimize the average delay over the users,
a penalty dual decomposition-based and a simplified {p-norm algorithms were proposed. A
UAV-powered resource allocation framework for partial and binary computation offloading is
devised in [74] in such a way that the weighted sum of the computed bits is maximized. Fur-
thermore, the framework jointly optimizes CPU frequencies, offloading times, UAV trajectory

and the wireless power transmitted to the users.

Multi-layer edge computing architectures that offload tasks for both EC servers and drones are
addressed in [7,9,75]. In Hu et al. [75], the weighted sum of energy consumption over a drone
and a set of users is minimized through jointly optimizing resource scheduling, bandwidth
allocation, and the UAV’s trajectory. Yu et al. [9] investigated the use of a drone exclusively
to provide connectivity to IoT devices offloading tasks to EC servers while minimizing the
weighted sum of the service delay of the devices and the drone energy consumption. That was
done by optimizing the drone position, communication and computing resource allocation,
and tasks splitting. In contrast, Wan et al. [7] adopts a three-layer EC system that addresses
both data collection and preprocessing by multiple UAVs, which act as edge servers and of-
fload tasks to a data center for further analysis. Besides designing a reinforcement learning
solution provides path planning to optimize the UAV coverage, the authors propose a net-
work scheduling algorithm that exploits the tradeoff between UAV processing and network

transmission.

Game theory approaches were employed by [76,77]. A game in which UAVs opt to process

14

computation tasks either locally, in a base station or in a data center was proposed by [76].
In such game, the drones aim to minimizing a combination of energy consumption and task
delay. A two-level hierarchical game involving computation tasks being offloaded to EC
servers and UAVs is designed in [77]: (i) EC servers and UAVs form coalitions to share
computing resources; (ii) each agent (EC servers or UAVs) take actions individually based
on their long-term payoff. That hierarchical approach models different service providers

operating in the same EC system.

Finally, Wang et al. [78] presents a two-layer optimization solution for multiple UAVs pro-
viding computation resources to a large number of mobile users. The first layer optimizes
the number of deployed UAVs and their positions. Given the deployment obtained in the
previous layer, a task scheduling integer programming problem minimizing system energy
consumption is addressed in the second layer. A greedy method is employed to tackle the

large scale in the scheduling problem and find near-optimal solutions.

2.3 Max-min fairness flow allocation

In most network scenarios, the amount of data load is much larger than the network capacity
even with optimal routing engineering [79]. As a result, when no traffic (flow) control is
done, long transmission delays occur which may violate maximum delay requirements from
the network users. Thus, a flow control mechanism is required whenever there exist any
capacity constraint between two points on the network. Besides limiting traffic within a
network, it is equally important to do it in a fair way such that distinct transmission session

priorities and service requirements are met [79].

The Max-Min Fairness (MMF') paradigm is typically employed to provide balanced distribu-
tion of resources that are disputed by a set of demands [80]. Naturally, the MMF paradigm
is relevant to the Internet Protocol (IP) networks since it provides traffic flow allocation
according to a fairness utility function [81]. For instance, the MMF is known to approximate
the transmission behavior in the transmission control protocol (TCP) well [82]. In brief,
given a set of (traffic) transmission demands, a transmission rate (flow) allocation solution
respects the MMF' paradigm when it is not possible to increase a transmission rate without

decreasing another.

Let us define as G(N, A) the network with a set of nodes N connected by the set of links A.
Denote by F' the set of all active (traffic) transmission demands, i.e., the set comprising all
demands with data to be exchanged. Given a f,; € F (i.e., an active transmission demand

from the source s € N to destination d € N), let V*¢ be the routing path from s to d in the

15

network GG, and denote by ¢4 the transmission rate allocated to fsq. For each link (i,7) € A,
let ¢;; be the capacity of the link from i € N to j € N and F}; the set of demands passing
through the link (i, j).

Formally, a set of transmission rates ® satisfies the MMF paradigm if and only if there is
at least one bottleneck link (i,) € A on the routing path V*¢ of each active traffic demand
f*4 € F [80]. A link (4,7) is considered as a bottleneck of traffic demand f*¢ if and only
if [80]:

(i) its capacity is saturated, i.e., > acp,, ¢® = ¢;j and

(ii) the transmission rate ¢*? of traffic demand f*? is the highest among those of the other
traffic demands routed over link (4,), i.e., ¢ > ¢® Vfb € F,;.

Given a demand f*! € F, let wfjd be the binary variable equal to one if the link (7,j) is a

bottleneck of f", as well as let u;; be the highest transmission rate among all the traffic

demands carried by a link (i,7) € A, ie., u; = max {¢?}. The following groups of
JOEF;

constraints are used to impose the MMF' paradigm for all transmissions F' in the context of a

MILP optimization problem [81,83]. For the sake of simplicity, the multiplicative parameters

introduced in [81,83] to cope with MMF deviations were all considered equal to 1.

3 w;’;’ > 1 V(s,d) € F (2.1)
(i,5)eVsd

Z P < Cij V(i,j) € A (2.2)
fabeFi;

S 6% > e V(i,j) € A, V[€ T, (2.3)
fabefij
uij > ¢ V(i,j) € A V[e Fy (2.4)
¢Sd Z U5 — Cij(]- — wf]d) V(Z,j) S A7Vf8d S Fzy (25)

Constraints (2.1) ensure that all the active demands have at least one bottleneck link on their
routing path. The capacity of each link (i,5) € A is respected through inequalities (2.2).
The first condition required to consider a link (i,j) to be a bottleneck is jointly handled
by constraints (2.2) and (2.3), which ensure that any bottleneck link (for at least one traffic
demand) is saturated. The second bottleneck condition is instead fulfilled via constraints (2.4)
and (2.5). Constraints (2.4) force u;; to be greater or equal to the highest transmission rate
among the demands that are flowing through link (4, j). Finally, constraints (2.5) guarantee
that ¢*? will not be exceeded by any other transmission rate of traffic demands routed over
link (i,j) € A when (4, j) is a bottleneck link of traffic demand f*?.

16

Additionally, both transmission rates ® and routing paths can be optimized according to a
utility function as presented in [81,83]. However, whenever the routing paths are already
defined, a simple polynomial algorithm can be used to obtain a MMF rate allocation: the
Water (or Proportional) filling algorithm [79]. Denote by A* the not saturated links at
iteration k, and let F* be the transmission demands not crossing a saturated link in the
beginning of the iteration k. Let us define n’C the number of transmission demands that
pass through (i,j) € A and do not cross a saturated link in the iteration k, and denote by
cfj the used capacity of the link (i,j) € A at iteration k. Given a rate allocation vector
F at iteration k, the rate increase added to all demand rates ¢*;, € ®* that do not cross a
saturated link in the iteration k is denoted by r*. Finally, according to [79], the water filling
algorithm is described in the Algorithm 1.

Algorithm 1 Water filling method

1: kzl;cgj:() V(i,j) € A; 9%y =0 VfgyeF;, F' =F; A' = A;

2: repeat
3: k_‘FUka’ V()EAk
4: k— i —
rt= min {(ey —cfj)/mij);
5: OF = Pk~ 1
6:];d_(b +T stdeFk
T: ZfsdEFu Sd7
8: A’“rl = {(1,7) € Alei; — ¢f; > 0};
9: FkHL = [, € F|f.q does not cross any saturated link (i, j) € A*1};

10: k=Fk+1;
11: until F* is empty

In the Algorithm 1, step 1 sets the initial values of k, Cw’ 0, F' and A'. At each iteration k
of the repeat loop (steps 2-11), the transmission rate of demands, which not passing thought
a saturated link, are equally incremented by r* until there none of such demands (i.e., F*
is empty). Furthermore, step 3 computes the number of demands in F* that pass through
the links (i,7) € AX. The value of r* is defined in step 4, and the steps 5 and 6 increase
the transmission rate of all demands in F* accordingly. Then, the capacity used by the
transmissions demands at each link is updated in the step 7. Finally, steps 8, 9, and 10

updates the A*1 F*1 and k, respectively.

2.4 3D reconstruction based on images

The goal of the 3D reconstruction based on images is to construct a 3D model of a given scene

or object which is described by a set of images, P, from different perspectives. In general,

17

the 3D reconstruction procedure consists of the combination of two techniques: Structure
from Motion (SfM) [84] and Multi-View Stereo (MVS) [85] techniques [86,87]. In sequence,

finishing steps as meshing and texturing are also performed.

Regarding the SfM [88], it computes the camera parameters and the sparse point cloud, i.e.,
the approximate positions of the key features in R? space given a set of images from different
viewpoints. For a specific photo, its camera parameters are the position and orientation (i.e.,
pose), the focal length, and the pixel sensor size at the moment the photo was captured.
Let a key feature be an image patch that identifies some important characteristic of the
picture (e.g., corners, edges, and blobs). The SfM-based algorithms are decomposed in feature
extraction, feature matching, geometric verification, image registration, triangulation, and
bundle adjustment [84,89]:

e Feature extraction: given a photo p € P, detects all key features K, in the image p.
The detection can be done by different methods, e.g., SIFT [90], PCA-SIFT [91], and
SURF [92].

e Feature matching: For a pair of photos (p;,p;) € P x P, the feature matching

identifies their mutual features K, = K,, N K, based only on their appearance.

e Geometric verification: This step removes the misleading elements in K pipj‘v’(pi, p;) €
P x P. Transformation maps between photos p; and p; are computed and used for the

task.

e Reconstruction Initialization: Computes the sparse point cloud and the camera
parameters taking into account only two photos which are carefully chosen and marked

as registered.

e Incremental Reconstruction: Performs image registration and triangulation steps

until there is no more p € P to register.

- Image registration: Given a registration metric (e.g., the largest number of
mutual features with the registered photos), a new non-registered image is registered

and camera parameters updated.

- Triangulation: Updates the sparse point cloud. This step adds new points,
which were identified in the newly registered photo to the sparse point cloud, and

improves all other feature locations.

e Bundle adjustment: Refines the sparse point cloud and the camera parameters by

minimizing the re-projection error.

18

The Multi-View Stereo algorithms can be different in terms of the scene representation,
photo-consistency measure, visibility model, shape prior, reconstruction algorithm, and ini-
tialization requirements [85]. To construct the 3D representation of a scene, the MVS methods
need the scene image set and the SfM output, i.e., camera parameters and sparse point cloud.
Given those inputs, the MVS algorithm performs the dense point cloud generation — from

the set of photos P and the SfM output, a detailed 3D structure of the scene is reconstructed.

Finally, after performing the SfM and MSV algorithms, meshing and texturing steps still

need to be performed to transform the dense point cloud into a complete 3D model:

1. Meshing: Given a dense point cloud as input, the 3D model surface is estimated (i.e.,

triangle meshes). Different methods can be applied to this step, e.g., [93,94].

2. Texturing: Based on the appearance of pixels in the input photos, characteristics like

color, illumination, and texture are added to the 3D model, e.g., [95].

The quality of the final 3D model is highly correlated with the quality of the set P concern-
ing resolution, viewpoint variety, and the number of images. Therefore, in the context of
3D reconstruction based on aerial images, generating adequate locations where the photos
need to be taken (i.e., waypoints) is crucial. When generating waypoints, parameters as
perspective, lens quality, overlap, coverage, and object geometry affect the number of photos
required to produce 3D maps with good resolution [87,96]. The same amount of waypoints
may be appropriate to regions of interest with different dimensions when adjusting those
parameters [57]. Among those parameters, the overlaps are important for the 3D reconstruc-
tion since they define how much the photo footprints (i.e., area captured by a photo) may
overlap between each other. Large overlaps improve the resulting 3D model but may require
more photos to capture the whole region of interest. Usually, good values of overlaps range
between 60% and 80% [96].

2.4.1 3D reconstruction by unmanned vehicles platforms

Considering the use of unmanned vehicles (UV), the 3D reconstruction has been applied to
several fields. Nex and Remondino [97] had identified applications including forestry [98—
100], archaeology and architecture [101-105], environmental monitoring [106-110], emer-
gency management [111-113] and precision agriculture [114-116]. Unfortunately, the current
applications use a centralized approach to perform the 3D reconstruction and do not take
advantage of the distributed processing power within the multi-drone platform. For instance,
Meyer et al. [47] applied 3D reconstruction to survey a heritage site in Mexico but the 3D

map is created offline by a computer in the base station.

19

Moreover, multiple unmanned vehicles are used commonly in the photo acquisition step.
Doherty et al. [48] proposed a collaborative task-delegation framework for a multiple-robot
platform, and a 3D reconstruction task is used as validation. In this context, the area selected
for the 3D reconstruction task is split, and each sub-area is assigned to an available UAV for
scanning. The delegation procedure does not apply any optimization method, and the 3D

reconstruction is done at the base station.

Loianno et al. [49] defined a collaborative online procedure which exploits a multi-smartphone-
based UAV system to explore and map an unknown environment. The proposed iterative
method generates 3D point clouds for indoor spaces. The UAV creates a local sparse point
cloud, and the base station is responsible for merging all the sparse point clouds. The base
station also generates and sends the next acquisition points to the UAVs at each iteration. To
guarantee a collision-free 3D trajectory for the UAVs, a centralized and a semi-decentralized

version of 3D path planning methods were proposed.

Schmiemann et al. [50] presented a distributed scanning procedure able to combine informa-
tion among ground and aerial agents. Their algorithm is centralized and needs a base station
to control the unmanned vehicles and to generate a mapping visualization. Real experiments

evaluated the proposed procedure and network architecture.

Kobayashi et al. [51] described how to create 3D reconstructions based on images from crowd-
sourcing. In this method, micro-tasks are proposed to the population which takes pictures or

videos of the demanded location, and the 3D reconstruction is done on a dedicated computer.

Golodetz et al. [52] performed a collaborative data acquisition with several different robots
and proposed an incremental online 3D reconstruction process. The robots (i) collects the
scene information, (ii) performs local pose scene tracking, and (iii) computes their approxi-
mate location; In addition, the base station improves the robots approximate location in the
unknown environment at each iteration. Finally, the base station (server) uses the data from
the robots to build the 3D model incrementally using a GPU.

Other authors focused on combing data from different sensing methods to generate more
data to the 3D reconstruction algorithm. For instance,Hinzmann et al. [53] presented a
way to fuse image and laser scanning data for the 3D reconstruction process. Surmann et
al. [117] proposed a change in the registration method to combine data from aerial and ground

unmanned vehicles, which are equipped with different sensors.

Regarding the 3D reconstruction process, changes in the procedure were proposed as well.
Roters et al. [118] developed a new 3D reconstruction pipeline which suits better in a multi-

UAV scenario. Faessler et al. [119] designed an autonomous single drone system able to follow

20

high-level commands and transmit the collected images to the base station. The proposed
UAV platform can be used for both indoor and outdoor spaces since the drone can locate itself
without the use of a GPS device. Finally, the base station uses an online 3D reconstruction

algorithm that allows visualizing the 3D model creation in real time.

In addition to those works, other studies related to the 3D reconstruction and UV were
performed. Huh et al. [120] described a way to simplify data in the drones. The data
reduction decreases the amount of information transmitted across the drones. As a result,
the battery autonomy of the UAVs is improved. Milani and Memo [121] analyzed how different
UAV formations, when scanning a region, affect the 3D reconstruction quality. Furthermore,
camera-in-view correction methods were proposed to remove drones inside of another drone’s
field-of-view (FOV). Finally, heuristic methods for path planning of the scanning step were
proposed by [122] and [123].

21

CHAPTER 3 ORGANIZATION OF THE THESIS

The main objective of this thesis is to improve the use of swarm-powered ad-hoc clouds by
optimizing the workload of tasks carried by such infrastructure. We illustrate the proposed
optimization problem as well as the developed near-optimum heuristics, and data processing
pipeline in the context of a 3D mapping mission for emergency response operations. In this
chapter, we present how the thesis is organized and detail the way each chapter supports
accomplishing the objectives listed in Chapter 1. The three main contributions of this thesis
are presented in chronological submission/implementation order in Chapters 4, 5, and 6,

respectively.

Chapter 4 presents the paper titled “The Covering-Assignment Problem for Swarm-powered
Ad-hoc Clouds: A Distributed 3D Mapping Use-case” and published in IEEE Internet of
Things Journal'. Swarm-powered missions are usually decomposed into the (a) photo col-
lection and (b) data processing (i.e., 3D reconstruction) phases. Most of the works in the
literature take advantage of the multiple drones only during the photo collection whereas the
data processing is performed in a dedicated server or workstation. In this contribution, we
aimed to efficiently exploit the computing power within of members (e.g., UAVs, unmanned
ground vehicles, and fixed computing resources) responsible for the decentralized data pro-
cessing phase of a mission. In order to optimize the use of swarm-powered ad-hoc clouds,
we proposed a new NP-hard optimization problem: the Covering-Assignment Problem for
Swarm-powered Ad-hoc Clouds (CAPsac). Given a set of processing tasks required by the
data-processing step, the CAPsac solution provides a workload that maps the tasks to swarm
members so as to minimize its completion time. That is done by jointly optimizing the work-
load creation and assignment. The workload creation comprehends the creation of batches
of processing tasks which must be performed all together according to clustering constraints.
The workload assignment maps batches of tasks to swarm members. In the context of a
swarm-powered 3D mapping mission, the workload creation splits the target region, i.e., the
region to be represented in the 3D model/map, into smaller convex sub-regions, which are
defined by sets of photos; the workload assignment defines how the sub-regions (set of photos)
will be reconstructed across the swarm members. Preceding the NP-hardness proof of the
CAPSac, we present two different Mixed-Integer Linear Programming (MILP) formulations
for the CAPsac: one photo-based CAPsac (pCAPsac) and another region-based CAPsac

(rCAPsac). We assessed the proposed formulations through computational experiments con-

! Available at [124]

22

ducted with a set of unweighted and weighted realistic benchmark instances, which are also
created in this first contribution.

Chapter 5 refers to the paper titled “Heuristics for optimizing 3D mapping missions over
swarm-powered ad-hoc clouds” and submitted to the Journal of Heuristics?. The CAPsac
optimizes the completion time of a set of tasks offloaded to a swarm-powered ad-hoc cloud,
for which exact methods to solve it were provided in our first contribution. However, given
the current state-of-art of the modern MILP solvers and the amount of offloaded processing
tasks, the time required to obtain the optimal workload creation and assignment (i.e., the
optimal solution for the CAPsac) may be impractical for timely manner applications as in the
case of an humanitarian emergency response use case. Thus, fast methods able to reach near-
optimum solutions for a large range of scenarios are crucial to improve the change of success
of such missions. In this contribution, we developed a mathematical programming heuristic
based on decomposition and a Variable Neighborhood Search (VNS) heuristic to minimize the
completion time of the 3D reconstruction process according to the CAPsac. Computational
experiments were conducted with the unweighted and weighted realistic instances proposed
in the first contribution to assess the performance of the proposed heuristic methods. They
demonstrated that both heuristics were able to either quickly achieve near-optimal solutions

or rapidly improve the best known completion times for a vast number of instances.

Chapter 6 presents the swarm-powered Optimized 3D Mapping Pipeline (OptiMaP) for emer-
gency response operations. The careful design of exact and near-optimal methods is crucial to
understand an application and provide relevant solutions. Nevertheless, even with highly ef-
fective techniques, there is still the challenge of ensuring that the proposed methods work well
after production. Hence, in our last contribution, we devised and deployed a distributed 3D
mapping pipeline for emergency response operations. We analyzed how much a distributed
3D mapping pipeline is improved by exploiting the CAPsac for optimizing the use of swarm-
powered ad-hoc clouds in real-life situations. In particular, we use the VNS-based method
of our second contribution for quickly solving the CAPsac instances within the OptiMaP.
The proposed pipeline was deployed through a simulator able to provide realistic physics and
visuals besides wireless multi-hop network emulation. We compared the VNS method with
a centralized approach and a baseline greedy heuristic to assess the advantages of adopting

the algorithm for workload generation and allocation step in realistic simulated scenarios.

Finally, Chapter 7 provides a summary of our work as well as a general discussion, whereas
Chapter 8 presents our concluding remarks and future directions for the research carried in
this thesis.

2Preprint available at [125]

23

CHAPTER 4 ARTICLE 1: THE COVERING-ASSIGNMENT PROBLEM
FOR SWARM-POWERED AD-HOC CLOUDS: A DISTRIBUTED 3D
MAPPING USE-CASE

Authors: Leandro R. Costa, Daniel Aloise, Luca G. Gianoli, and Andrea Lodi.
Published in IEEE Internet of Things, 2021*

Abstract: The popularity of drones is rapidly increasing across the different sectors of
the economy. Aerial capabilities and relatively low costs make drones the perfect solution
to improve the efficiency of operations that are typically carried out by humans. Besides
automating field operations, drones acting de facto as a swarm can serve as an ad-hoc cloud
infrastructure built on top of computing and storage resources available across the swarm
members and other elements. Even in the absence of Internet connectivity, this cloud can
serve the workloads generated by the swarm members and the field agents. By considering
the practical example of a swarm-powered 3D reconstruction application on top of such
cloud infrastructure, we present a new optimization problem for the efficient generation and
execution of multi-node computing workloads subject to data geolocation and clustering
constraints. The objective is the minimization of the overall computing times, including
both networking delays caused by the inter-drone data transmission and computation delays.
We prove that the problem is NP-hard and present two combinatorial formulations to model
it. Computational results on the solution of the formulations show that one of them can be
used to solve, within the configured time-limit, more than 50% of the considered real-world

instances involving up to two hundred images and six drones.

Keywords: Cloud Computing, Swarm, 3D Reconstruction, Workload Optimization

4.1 Introduction

An Unmanned Aerial Vehicle (UAV) — otherwise commonly known as drone — is a flying
vehicle whose weight can vary, according to the targeted applications, from a few hundreds
grams to hundreds of kilos. The popularity of drones is rapidly increasing across the different
sectors of the economy. Aerial capabilities and relatively low CAPEX/OPEX costs make
UAVs the perfect solution to improve the efficiency of those operations that are typically

carried out by humans, e.g., building inspection, photo collection, area surveillance, etc.

! Available at [124]

24

In normal operations, drones are remotely controlled by human pilots through wireless re-
mote controls. However, by setting the UAV autopilot in auto off-board mode, a drone can
operate in a fully autonomous manner by following the inputs generated by an on-board
flight computer directly connected to the autopilot. This capability can be leveraged to cre-
ate fleets of autonomous UAVs collaborating to fulfill the desired missions. This is achieved
by installing a collaborative drone application on each on-board flight computer of the fleet

and by connecting these latter on the same wireless network.

The possibility of organizing drones in fleets of autonomous and collaborating entities natu-
rally attracted the attention of swarm robotics scientists [58]. Swarm robotics studies how to
reproduce, with the help of artificial agents, those swarming behaviors typically observed in
nature — in ant colonies, bee swarms, bird flocks, etc. Swarm behaviors have the potential to
revolutionize the world of robotized applications — including UAV applications — because
of their promise of jointly achieving maximum performance and maximum resilience through

the power of distributed interactions that do not require any form of centralized supervision.

Swarming UAVs can be deployed to support operations in a long list of domains [97], including
forestry [98-100], archacology and architecture [101-105], environment monitoring [106-110],

emergency management [111-113] and precision agriculture [114-116].

Accordingly, the operations research community has been investigating approaches to improve
the efficiency of UAV-powered applications [19,20]. In particular, decentralized optimization
methods have fostered search problems [21-26], target assignment problems [27-37], node
covering problems [38,39], scheduling problems [40], and other cases [41-43].

In a complex mission, the UAV swarming component is typically dedicated to data collection
duties, e.g., taking pictures, producing video feeds, sniffing wireless signals. Other technolo-
gies are then involved in processing the collected data and producing the desired output.
For instance, digital photogrammetry algorithms [45,46], can be leveraged to elaborate the
images collected by the swarming UAVs, by extracting and displaying the relevant 2D /3D

geometric information.

The data-processing phase — 3D processing phase in the photogrammetry use-case [48-52,
121] — is typically executed in the cloud and in a centralized fashion [2,18,71]. However,
to mitigate Internet connectivity and network latency issues, the distributed power of the
UAV swarm can be leveraged to establish an ad-hoc cloud infrastructure 7,9, 77,126, 127].
In fact, such infrastructure can be exploited to execute the data processing phases of the
considered mission [10,15-18,128]. This approach aims to exploit the power of the many —
many embedded microcomputers of limited power are installed on the swarming UAVs —

to replace the computer power typically available in a powerful work station reserved in the

25

cloud.

This paper addresses the problem of optimizing the exploitation of a swarm-powered ad-hoc

cloud, by jointly dealing with two interrelated aspects of the data-processing stage:

e the workload generation, i.e., definition of the computing application elements and of

the corresponding set of data input.

e the workload scheduling/assignment, i.e., mapping of computing application elements

and physical swarm members.

In particular, we consider the generation and placement of workloads whose input data are

subject to geolocation/clustering constraints (e.g. [129, 130]).

Practically speaking, the collected data are bound to a location and must be processed in
batch of neighboring samples: in the 3D reconstruction use-case, this means that groups of
neighboring pictures have to be processed by the same computing element. This additional
constraint has a non-negligible impact when dealing with a swarm powered ad-hoc cloud:
due to the distributed nature of the swarm-powered data collection stage, the whole input
data-set may end up being completely scattered across the UAVs of the swarm. If not
properly dealt with during the workload generation/scheduling processes, this aspect may
severely deteriorate the whole process performance due to unnecessary data transmission

delays (input data must be received by the corresponding computing application element).

For the purpose of illustrating the applicability of our approach to a real-life application, we
adjust the proposed solution to a relevant use-case scenario from the emergency response field.
Our use-case is a perfect example of a real-life application subject to geolocation constraints
that highly benefits from swarm-powered ad-hoc cloud infrastructure [131]. In fact, the drone
swarm is able to perform 3D reconstruction of a region of interest — comprising five hundred

photos — on top of twenty Raspberry Pis [132] microcomputers [133].

In such context, the 3D map of a given region of interest is used to improve the decision mak-
ing process and the operator situational awareness through the availability of a 3D digital
twin of the operation area, where the elements of interest can be even selectively highlighted,
e.g., building or road damages, risky areas, etc. Producing the relevant 3D maps in a timely
manner (near real-time), even when the cloud connectivity is not available, is crucial to
increase the chances of success of an operation. To this purpose, we introduce a new op-
timization problem, namely the Covering-Assignment Problem for swarm-powered ad-hoc
clouds (CAPsac). Given a set of geo-positioned aerial pictures (data) that are physically

distributed across a set of UAVs (stored on the embedded microcomputers on the drones),

26

CAPsac minimizes the 3D mapping (data-processing phase) completion time by jointly com-

puting:

e the optimal workload configuration/the optimal covering of photos, i.e., splitting the

overall photographed region across multiple convex sub-regions, and

e the optimal workload scheduling/the optimal assignment of photographed sub-regions
to UAVs, i.e., deciding which drone (its embedded microcomputer) is responsible for

the 3D reconstruction of a photographed sub-region.

It is worth pointing out that, differently from the decompose-then-allocate and the allocate-
then-decompose paradigms [44] broadly adopted in (both the cloud computing optimization
and) the multi-robot task allocation literature, CAPsac is an integrated decision model that
handles workload generation (photo covering or sub-region splitting) and workload assign-
ment (sub-region to UAV assignment) at the same time. Other works employ similar principle
by jointly optimizing UAVs deployment and task/position allocation [78,134]. However, they
propose evolutionary heuristics which, by definition, cannot certify the optimality of the

obtained solutions.

The remainder of the paper is organized as follows. The next section formally introduces
the CAPsac problem, by clearly highlighting how the general problem designed for swarm-
powered ad-hoc clouds is naturally applied to optimize the execution of a distributed 3D
mapping application. Once the relationship between the general problem and the specific
3D mapping use-case will have been clearly proved through Section 4.2, it will be possible
to present the remainder of the paper by directly referring to the latter. We believe that
this editing approach will allow the reader to better grasp the details and the added value
of the proposed solution. Two mathematical programming formulations to solve the CAPsac
problem are described in Section 4.3 while Section 4.4 presents the NP-hardness proof for
the problem. Finally, Section 4.5 presents and discusses the computational results obtained
by experimenting with realistic 3D reconstruction instances, while Section 4.6 summarizes

our concluding remarks.

4.2 Covering-Assignment Problem for Swarm-powered Ad-hoc Clouds - CAP-

sac

A swarm-powered mission can be typically decomposed in two phases:

i Data collection: the UAVs of the swarm dynamically collaborate to collect all the

necessary information within the area of interest. In a swarm-powered 3D mapping

27

mission, this phase corresponds to the photo-collection process meant to shoot the
required aerial photos of the selected area. Note that the set of required pictures is
typically computed by a dedicated mapping software and is merely an input of the

mapping mission.

ii Data processing: the collected data are collaboratively processed by the ad-hoc cloud
built on top of the microcomputers installed on the UAVs to produce the desired out-
put. During this process, thanks to the swarm-powered ad-hoc cloud, the computing
workload can be parallelized over the available computing units. Furthermore, the col-
lected data can be transferred over the inter-drone wireless network to satisfy the input
requirements of the distributed processing tasks. In a swarm-powered 3D mapping
mission, this phase corresponds to the 3D-processing process meant to compute a 3D

point cloud and/or a 3D mesh of the selected area.

The proposed CAPsac problem deals with the optimization of the data (3D) processing phase
and has no direct control on the data (photo) collection strategy. Given the set of data (aerial
pictures) just collected by the UAVs, CAPsac aims at minimizing the overall processing time

required to compute the desired output (3D map).

An explanatory CAPsac problem instance involving a swarm of four drones performing a
3D mapping mission is represented in Fig. 4.1. The full lines delimit the area of interest
represented by the set P of aerial pictures just captured by the four drones during the photo
collection phase. Each photo p € P was taken by a specific drone (which also stores it in
memory). Furthermore, each picture must be processed during the 3D processing phase to
guarantee a proper reconstruction.

WA

In Fig. 4.1, the positions of the four drones are represented by the large symbols “x7, “47 “o”
and “o”. Not all drones may be equipped with microcomputers powerful enough to support
the 3D processing workload. In the example of Fig. 4.1, only two drones are considered

3D-capable, those represented by the 4+ and the x symbols.

Each photo is characterized by its shooting location, which is denoted by the small versions
of the symbols previously used to represent the UAVs: the pictures represented by a small +
were shot by the drone represented by the large 4, and so on. Note that, given the dynamic
nature of the decentralized decision-making process employed by the swarm of drones [44],

it is impossible to know a-priori which UAV will shoot which picture.

A solution of the CAPsac problem describes how to:

e Split the processing workload into multiple processing (application) components, each

28

4+ X 3D-capable drones O ¢ Ordinary drones - = = = Network

+ O X ¢ Photos(shot by respective larger symbols) Area selec.

Figure 4.1 Explanatory instance of CAPsac problem accordingly to the 3D mapping use-case.

responsible for dealing with a specific subset of the collected data, e.g., of the aerial
pictures. Note that in the 3D reconstruction use-case each 3D reconstruction sub-task
corresponds to a specific sub-region and requires as input all the aerial pictures that

belong to that sub-region.

e Assign each processing component and all its corresponding input data to at least
one of the computing elements available within the swarm-powered ad-hoc cloud, i.e.,
the microcomputers installed on the swarming-UAVs or on any other ground element

connected to the swarm itself.

The optimal solution of CAPsac minimizes the latest processing time among all the involved
computing elements, which corresponds to minimizing the makespan of the whole 3D recon-
struction process. Three main issues cannot be ignored when assigning the photos (and thus
the sub-regions) to the optimal 3D processing drones. Note that for sake of simplicity, we

consider the case of not more than one computing device available on each drone.

i A feasible region (workload) subdivision is characterized by the creation of a spatial-
convex covering: the union of the sub-regions corresponds to the whole region and
the photos associated to each sub-region must be a spatial-conver set. Accordingly, a
photo can be assigned to a drone if and only if it lies inside the convex hull of all the
photos assigned to that drone. Fig. 4.2 illustrates a set of photos which is not spatial-

convex. The assigned photos are represented by colored “e” symbols. The “o” symbols

29

represent photos that do not belong to the set, which are hence assigned to other drones.
Spatial-convex sets are crucial to perform the 3D mapping procedure since the presence
of non-overlapping photo footprints (represented by the dashed colored rectangles in
Fig. 4.2) makes the 3D reconstruction of the associated region impossible. Fig. 4.3
shows an example of a photo spatial-convex set assigned to one 3D-capable drone.
It is worth pointing out that the creation of a spatial-convex covering is required by
any workload operating over geo-located/clustered data to be processed in neighboring
batches.

ii As the sub-regions (and their corresponding pictures) are assigned to the 3D-capable
drones, a drone may need to require some input pictures (data) from the other swarm
members. The CAPsac considers a pre-defined single-tree network topology built by a
networking middleware running on the swarming drones [14]. Note that in Fig. 4.4, the
network links are represented by the pointed lines. Besides, in a single-tree network
topology, only one routing path exists to connect each pair of UAVs. A drone cannot
start the 3D reconstruction of the assigned sub-region until all the required photos
are received. The TCP communication protocol is widely applied in engineering to
achieve reliable transmissions and flow control, and it is adopted to model the swarm
communications in the CAPsac problem. According to [82], a good way to approx-
imate the transmission behavior concerning the TCP protocol is to assume that the
transmission rate allocation follows the Max-Min Fairness - MMF paradigm [79]. Thus,
minimizing the makespan of the 3D reconstruction requires that all the transmission
rates of the network follow the MMF paradigm. It is well known that, in multi-hop
wireless networks, the allocation behavior of TCP may deviate from the ideal MMF
paradigm [135]. However, when a traffic engineering problem involves elastic traffic
demands, i.e., the transmission rate is autonomously determined by a distributed end-
to-end congestion control scheme, the choice of considering even just an approximated
form of fairness plays a crucial role to avoid those poor routing solutions that would
be otherwise obtained by approximating the traffic demands as inelastic [83]. Fur-
thermore, note that sources of MMF deviations, such as round-trip-time variance and
multi-connection schemes [135], can be explicitly accounted for with the help of simple
multiplicative parameters added to a specific group of constraints [83]. Another more
complex source of deviation, i.e., the hidden node phenomenon, could be addressed by
means of robust optimization techniques [136, 137] that fall beyond the scope for this

work.

iii Finally, a reliability factor should be considered to immunize the CAPsac assignment

30

O Photo not assigned to the set @ Photo assigned to the set

==== Photo’s footprint Set’s convex hull

Figure 4.2 Ordinary set and the respective convex hull.

O Photo not assigned to the set @ Photo assigned to the set

==== Photo’s footprint Set’s convex hull

Figure 4.3 Spatial-convex set and the respective convex hull.

with respect to drone malfunctions. The reliability factor defines the minimum number

of drones (computing elements) that should process each sub-region.

Fig. 4.4 shows a feasible solution to the CAPsac problem optimizing the makespan of a 3D
mapping mission and considering a reliability factor equal to one. The dashed and the dashed-
and-pointed lines define a feasible spatial-convex covering. The number of sets comprising

the covering is equal to the number of 3D-capable drones. For instance, the covering in Fig.

31

4.4 has only two sets. The photos lying within the left sub-region are processed by drone +,

whereas those in the right sub-region are elaborated by drone X.

Given that the relationship between the general CAPsac and the swarm-powered 3D mission
use-case has been clearly established, we will present the remainder of the paper referring
directly to the specific use-case. Thus, it will be possible to the reader to better grasp the

details and the added value of our proposed optimization problem.

4.3 Mathematical programming formulations

4.3.1 Common definitions

Let us consider a swarm of drones D of different types which is responsible for the 3D
reconstruction of a region described by the set P of photos. Let D C D, with |D[=m,
be the set of 3D-capable drones that have enough computing power to support the 3D

reconstruction workloads. The location of all photos p € P are also known.

Given a photo p € P, let A\, and p, be the non-negative real parameters representing,
respectively, the estimated processing time of p and the storage space occupied by p (expressed
in megabytes). Also, for each drone d € D, let 64, be the binary parameter equal to 1 if photo
p € P is stored on drone d. The subset of photos processed by a drone directly corresponds
to a specific sub-region. Therefore, note that the number of sub-regions are hence equal to

the number of 3D-capable drones available in the swarm.

Some pictures may have to be transferred among different drones to respect the computed
sub-region assignment configuration. The picture transmission is supported by an undirected
transmission tree T=(N, A), where the nodes of set N correspond to the swarming drones
and the arcs of set A represent the device-to-device communication links (e.g., Wi-Fi links)
between the drone themselves. Furthermore, let F' be the set of traffic demands defined for
each pair of drones (h,d) € D x D, where f"¢ denotes the demand (possibly null) between
drones h and d. Also for each (i,j) € A, denote ¢;; the transmission capacity of the link
(2,7).

Finally, the maximum allowed time for transmitting the traffic demands through the network
is denoted by T'.

With the support of the notation just introduced — grouped in Table 4.1, we present
two different Mixed-Integer Linear Programming (MILP) formulations to optimize the 3D-

processing phase of 3D mapping missions with UAV swarms:

e The Photo-based CAPsac (pCAPsac), where each picture p € P is assigned to one

3
"
|
[
|
]
i

-
|
1
|
]
|
]
1

+ X 3D-capable drones O ¢ Ordinary drones - - - - Network
+ O X ¢ Photos(shot by respective larger symbols) Area selec.
===- Sub-region assigned to“+” —---- Sub-region assigned to“X”

32

Figure 4.4 Spatial-convex covering and its assignment optimizing the makespan of a 3D

mapping mission.

Table 4.1 CAPsac parameters in the context of the 3D mapping use-case.

Parameters

Description

Ap
Hp

Oap
F

Cij
Ehd

o
m

T

estimated processing time of a photo p

amount of data of a photo p in Mb

equal to 1 if drone d has the photo p stored in its memory
set of traffic demands between each pair of drones
transmission capacity of the link (i,5) € A

minimum ¢;; on the sole routing path of f"¢

reliability factor

number of drones (equiv. number of sub-regions) which
can perform 3D reconstruction

maximum allowed time for exchanging photos between
drones

sub-region, among a pre-defined set of initially empty sub-regions.

e The Region-based CAPsac (rCAPsac), where all the feasible rectangular sub-regions
are given; the formulation is responsible for selecting the optimal set of sub-regions
among those available (presented at the Appendix).

33

4.3.2 Photo-based CAPsac

In the pCAPsac formulation, the decision variables will be optimized to compose R =
{1,...,m} sub-regions (equiv. subsets of photos) to be reconstructed by the set of drones.

The formulation aims to jointly perform two assignment operations:

e cach picture p € P is assigned to one sub-region r € R,

e cach non-empty sub-region r € R is assigned to one 3D-capable drone d € D.

To this purpose, let y; and xy be the binary variables equal to 1 when, respectively, photo
p € P is assigned to sub-region r € R, and sub-region r € R is assigned to drone d € D.
Furthermore, let gy, be the binary variables equal to 1 if drone d € D is assigned to a

sub-region r € R that contains picture p € P.

Assignment constraints

To obtain a proper 3D-reconstruction, each photo must be processed at least one time, i.e.,

it must belong to at least one sub-region:

Yyp>1 VpelP. (4.1)
reR

Similarly, each sub-region must be assigned to at least o 3D-capable drones, with o repre-
senting the previously introduced reliability factor meant to immunize the system toward
possible drone failures:

Y aj>0 VreR (4.2)

deD

Finally, let us introduce the group of constraints necessary to correctly compute the g vari-

ables without introducing any non-linearity:

Jap < Tg Vp € P,Vr € R,¥d € D (4.3)
Yap < Yy Vp € P,Vr € R,¥d € D (4.4)
Jap = Yp g —1 Vp € P,Vr € R,¥d € D. (4.5)

That is, constraints (4.3)-(4.5) are the classical McCormick inequalities [138] such that gj, =
Tqy, Vp € P,Vr € R,Vd € D are represented in linear form.

34

Spatial-convexity constraints

To properly work, state-of-the-art 3D reconstruction algorithms [87] have to deal with convex
regions and /or sub-regions, which is also equivalent to work with spatial-convex sets of photos.
To this purpose, we approximate the convex hull of the set of photos assigned to a drone
by its smallest enclosing hyperrectangle. This is not a bad approximation since 3D mapping

missions often considers 50% to 80% of photo overlapping [96].

Since the GPS position of each photo shooting point is known, let C' be the set of distinct
picture longitudes and let L be the set of distinct photo latitudes. Note that the following
relations are always respected: 1 < |C| < |P| and 1 < |L| < |P|. For each sub-region, there
exists a finite set of photo latitudes and longitudes that represents the bounding rectangular

box, i.e. the approximated boundaries of the sub-region.

The boundary of a sub-region r is defined by its left ("), right (8"), bottom (7"), and top
(w") borders. Binary variables o, 87, v/, and wj are used to designate the latitudes and the

longitudes defining these borders:
e Binary variable o, is equal to one if longitude ¢ € C' delimits the left border of sub-
region r € R,

e Binary variable 3. is equal to one if longitude ¢ € C delimits the right border of

sub-region r € R,

e Binary variable 7; is equal to one if latitude ¢ € L delimits the bottom (inferior) border

of sub-region r € R,

e Binary variable wj is equal to one if latitude ¢ € L delimits the top (superior) border

of sub-region r € R.

Each sub-region r € R must be associated to a unique tuple of borders:

dal=1 VreR (4.6)
ceC
> B=1 Vre R (4.7)
ceC
d oyl =1 VreR (4.8)
teL
dwi=1 Vr € R. (4.9)

lel

35

To respect the sub-region convexity, a photo p € P can be assigned to sub-region r € R if
and only if p is contained within the boundary defined for r. Geometrically, such constraint
is fulfilled when (i) Ing,r < Ing, < Ings and (ii) lat,» < lat, < lat,r, where the lat stands
for the latitude and Ing for longitude. To capture this geometrical pattern, for each photo p,
the sets LP, L%, LP, LT are defined as:

o L ={ce Cling. <lng,}, ie., LP contains the longitudes on the left of Ing,,
o L} ={ce Cling. > Ingy}, i.e., L} contains the longitudes on the right of Ing,,
o [P ={l¢€ L|lat, <laty,}, i.e., L contains the latitudes below lat,,

o [P ={le Lllat, > lat,}, i.e., LP contains the latitudes above lat,.

Finally, the sub-region convexity is modeled by the Boundary Constraints - BC, expressed

as:

(BCY) y< 3 al Vp e PNr € R (4.10)
cell

(BCY) Yp < B Vpe PVreR (4.11)
ceﬁg

(BCY) Yy < D% VpE PVreR (4.12)
LeLh

(BCY) Yy < wy Vp € P,Vr € R. (4.13)
LeLk

Constraints (4.10) restrict the longitudes which can compose the left border o to the left of
the photo p’s longitude. Similarly, Constraints (4.11)-(4.13) impose restrictions on the right
(longitude), the bottom (latitude) and the top (latitude) borders, respectively.

However, a photo p is not assigned to sub-region r if and only if it lies outside the boundary
of r, i.e., if Ing, < Ingyr, or Ing, > Ingsr, or lat, < lat,-, or lat, > lat,r, which may be
expressed by either

(BC)) Yooal+ D B+ D> wt D, w>=l-y VpePVreR (4.14)

ceC—LY cé(]—ﬁg teL—LF teL—-LY,

or

(BCo) S al+ > B+ Y v+ Y wi<3+y, VpePVWreR (415)

cel?, cecg et eLt,

36

Given constraints (4.6)-(4.9), constraints (4.14) guarantee that at least one of left-side sum-
mations is equal to one when p is not assigned to the sub-region (i.e., y;, = 0). Consequently,
at least one boundary of r makes the photo p to lie outside r. In a complimentary way, con-
straints (4.15) force that at most three boundaries are satisfied when the photo p is not
assigned to the sub-region r. The Fig. 4.5 mathematically illustrates the behaviour of con-
straints (4.14) and (4.15) concerning a photo p* (represented by “e”) and a sub-region r

when the photo p* is not assigned to r.

Moreover, let us define valid inequalities (namely Ordering inequalities) to preemptively
remove the infeasible boundaries in the continuous space for any possible sub-region. For

instance, a boundary is infeasible if the right border is placed on the left side of the left

a, =1 6, =1
L- Lg*{zg o—o—o——o——o0— v, =1
cr Yy =0
12)) .* O O
L L— EZ* P .
A o O O O O Y, =1
v C—Lcr
:Cl C2 LC; i C4 Cs :
p* "
c-rh o
(BCp: >, et D, Bt >, Wt Y, wzl-y
ceC—LY ceC-Ll ten—L¥ teL—L?”
= 0 + 1 + 0 + 0 >1
(BCo)o: Y ar+ 3 B+ >+ Y wy<3+y
celt ceclﬂ’* et vec?

= 1 4+ 0 + 1 + 1 <3

Figure 4.5 Behavior of constraints (4.14) and (4.15) when the photo pg is not assigned to a
sub-region r.

37

border. Such boundaries are removed through the following set of ordering inequalities:

al < > B VYee C)Vr e R (4.16)
jeC:ing;>Ing.

B < > o YVee C,)Vr € R (4.17)
jeCilng;<ingc

<Y, W Vi€ LVreR (4.18)
j€L:lat;>lat,

wp <Y V{e L,VreR (4.19)

je€L:lat;<lat,

Photo transmission constraints

For the purpose of minimizing the 3D processing computation time, it cannot be ignored
that an additional delay is introduced any time a picture is transmitted by the drone where
it is currently stored, to the drone that is responsible for reconstructing the corresponding
sub-region. Given a demand f"¢ € F let " represent the minimum link capacity on the sole
routing path of f¢ and let z¢ be the binary variable equal to 1 if traffic demand f"? > 0 is
active, i.e., if at least one picture has to be transferred from drone h € D to drone d € D. In
this case, non-negative real variables ¢"¢ are used to represent the transmission rate achieved
by traffic demand f" on its routing path.

Given the demands f® € F, the following constraints are introduced to correctly activate

binary variables z"?:

2< N gy V(h,d) € D x D. (4.20)

reR,peP

That is, a demand f" is active if there exists a photo exchange between drones h and d.
Besides, the flow variables ¢ are forced to 0 when the corresponding traffic demands are idle,
or forced to the upper bound on the transmission rate otherwise. This is represented by

constraints:
oM < & V(h,d) € D x D. (4.21)

As mentioned in Section 4.2, the transmission times of the traffic demands are computed by
considering the MMF paradigm for computing the traffic demand transmission rates. A flow
(transmission rate) allocation vector is MMF if and only if there is at least one bottleneck
link (i,7) € A on the routing path V"¢ of each active traffic demand f"¢ € F [80]. In this
work, we adopt the constraints proposed in [81,83] to impose the MMF paradigm for all the

swarm communications (i.e., the photo transmissions) in pCAPsac. For the sake of simplicity,

38

the multiplicative parameters introduced in [81,83] to cope with MMF deviations were all

considered equal to 1.

In pCAPsac formulation, a maximum networking/transmission latency of T seconds is im-

posed for each activated traffic demand:

T-¢"> > gy 0wy Y(h,d) € DxD. (4.22)

reR,peP

The summation term 3-,¢ g ,e p ga,Onpity computes the overall amount of data to be transferred
from drone h € D to the drone d € D. Limiting the transmission times means to ensure
every drone receives all the photos belonging to the assigned sub-region within a maximum
prefixed time set by the domain expert. This constraint can be relaxed by setting T to a

suitable very high value.

Symmetry breaking constraints

Formulation pCAPsac suffers from symmetry in both photo-to-sub-region (i.e., 7) and sub-
region-to-drone (i.e., x7}) assignments. It is possible to partially break the symmetry of the
sub-region-to-drone assignments. Each sub-region can be assigned to one distinct drone in
advance. That is, m variables z; are fixed where the fixed pairs {(ry,d1),...,(rm,dn)} €
{R x D} have distinct indexes. Considering Fig. 4.1, the sub-region 1 could be assigned
to the drone “+” and the sub-region 2 to the drone “x” for instance. Note that setting
variables xy does not affect the variables y,. Consequently, just redundant integer solutions

are eliminated.

Complete formulation

Let Tihax be the 3D mapping completion time, i.e., the makespan, calculated as the maximum
processing time obtained from the swarm of drones. The variable T}, is computed by the

group of constraints
Toax = >, gty Vd€D (4.23)

reR,peP

where 3=, c g e p(gh,Ap) computes the required time to process all the photos assigned to drone
de D.

39

Finally, the pCAPsac formulation is expressed by the following MILP.

ngrcliyn Trax (4.24)

s.t. (4.1) — (4.23)
MMF constraints [81]

Ty, Yy 9ap € 10,1} Vr € R,Yp € P,Yd € D (4.25)
wit € {0,1} V(i,j) € A,¥(h,d) € D x D (4.26)
oM > 0,2 e {0,1} V(h,d) € D x D (4.27)
al, gl e {0,1} Vee C,Vr € R (4.28)
v, wyp € 40,1} Vle LVreR (4.29)
ui; > 0 V(i,5) € A. (4.30)

The objective function (4.24) minimizes the makespan of the whole 3D mapping procedure.
The domain constraints are given by (4.25)-(4.30). As |R| = |D|, the total number of

constraints in the model is O(|P| - |D|?) as well as the number of its variables.

4.4 NP-Hardness of the CAPsac

The proof comes from a reduction of the decision version of the unweighted Geometric Set-
Covering Problem - GSCP, whose objective is to assert, for a finite set of points P’ =
{p1,p2; .-, Pn € R?} and a finite collection S’ of subsets of P, if there exists a covering for
the points P’ composed by at most k < |S’| sets of &, i.e., if there exists a C C &’ such
that Ueecc = P’ and |C| < k. The collection &’ is induced by a fixed polytope T, that is, S’
is formed by the points covered by the distinct placements of T over the coordinates of the
points P’. The decision problem is NP-Complete even when 7T is a fixed square [139] or a

fixed circumference [140].

Proposition 1. Given an instance I’ of the GSCP, there exists a polynomial-time trans-

formation from I’ to an instance I of the C' APsac.

Proof. Consider an instance of the GSCP with P’ points, a collection &’ of subsets of P’
induced by a fixed square of length s, and a positive integer k < |S’|. The instance of the

rC APsac (see the Appendix) is created on polynomial-time as follows.

Let the set of photos P and their location be equal to the set of points P’ (i.e., P = P’),
and consider a set of k drones which can do the 3D reconstruction, i.e., |D| = |D| = k. The

communication network 7" = (N, A) is a random tree whose links (i,7) € A have infinite

40

capacity. Therefore, the transmission times, the transmission rates ¢"?, and the photos
storage location 0y, can be dismissed. Thus, the latest completion time 7}, is defined only
by the photo processing times of the drones. Concerning the reliability factor, it is made equal
to 1 (¢ = 1). Indeed, the collection &" does not have all possible rectangular spatial-convex
sets, being the § \ &’ missing spatial-convex sets obtained in polynomial-time by inspecting
the tuples in C' x C' x L x L. Finally, the photo processing times of the spatial-convex sets
will be either 1 or +00. For S € &', t° = 1, while for the remaining S € S\ &' t° = +00. O

Proposition 2. The CAPsac answers the GSCP.

Proof. Consider rC APsac(P,D,T,S) a routine which solves the C APsac by the rC APsac
formulation (see the Appendix). Let its optimal solution be comprised by the optimal set

Q* of variables ¢ and the optimal completion time T7* Given a solution of an instance

max’

of the CAPsac created from an instance of the GSC P, evaluating 77 is enough to answer

the GSCP. It T = 1, reply yes. Otherwise, reply no. For an optimal solution whose

max

T*.. = 1, the covering C of the P’, with |C| < k, can be extracted from Q*.]

max

Theorem 1. The CAPsac is NP-Hard.

Proof. Given the propositions 1 and 2, one can state that the GSCP is no harder than the
CAPsac. Since the GSCP is NP-complete, the CAPsac is NP-Hard. n

4.5 Computational experiments

Our experimental analysis assessed (i) the effectiveness of the ordering inequalities and the
branching strategies for the pCAPsac formulation; (ii) the performance of formulation pCAP-
sac; (iii) the sensitivity of the pCAPsac formulation with respect to both reliability factor
o and maximum allowed transmission time 7. We used CPLEX v12.8 as general-purpose
MILP solver. All experiments were carried exploiting a single core on a machine powered by
an Intel E5-2683 v4 Broadwell 2.1GHz with 20Gb of RAM, and running the CentOS Linux
7.5.1804 OS.

We do not present computational experiments for formulation rCAPsac (see the Appendix).
As demonstrated in the Appendix, the number of variables of that formulation is bounded by
O(|P|*), which can rapidly increase. Column Generation (CG) strategy has been extensively
applied to formulations with a massive number of variables [141]. The great advantage of
employing CG is to solve the Linear Programming (LP) continuous relaxation considering
only a relevant subset of variables. Such LP with reduced number of variables is called the

restricted master problem (RMP). The subset of relevant variables is iteratively created as

41

needed by solving the so-called pricing subproblem (PS). Usually, a CG iteration comprises:
i) solving the current RMP to obtain current primal optimal solution and its associated dual
variables, and ii) optimizing the PS to find new variables with negative reduced costs (when
considering minimization problems). The CG terminates when the PS does not find any
variable with negative reduced cost, i.e., when the optimality of the current RMP has been
proved. Preliminary experiments (restricted to ¢ = 1 and T = +00) were performed applying
a vanilla column generation on the rC APsac. Unfortunately, rC APsac has proved highly
degenerate requiring several CG iterations to prove optimality. Therefore, its performance for
solving CAPsac was largely inferior to that of using the pCAPsac formulation. Finally, note
that the above degeneracy is a common CG drawback that leads the resulting algorithms
(and codes) to be difficult to tune and somehow delicate, thus incompatible for the applied

context we deal with.

4.5.1 MILP technology

Whenever a new problem can be described by a compact MILP formulation, it is sensible (if
not necessary) to first assess the viability of solving it by a general-purpose MILP solver like
CPLEX. The reason is that MILP technology is very mature, with essentially all advances
in algorithmic discrete optimization now part of the arsenal of the main solvers [142]. In
other words, even the design of an ad-hoc exact or heuristic algorithm for a new discrete
optimization problem always needs to be accompanied by a thoughtful analysis of a MILP
solver performance on a possibly non-trivial formulation on the problem. This is the path
we have followed and in this section, we briefly describe the basic ingredients that make the

MILP technology so successful and mature.?

MILP solvers implement a sophisticated version of the divide-and-conquer algorithm called
branch and bound. The basic idea is to relax the complicated constraints of the problem,
namely the integrality requirements, and solve the continuous (or LP) relaxation to compute a
lower bound (in our minimization case) on the optimal solution value. If none of the removed
constraints is violated (in this case, all discrete variables are integer) in the LP solution, then
the solution is feasible and the problem is solved. Otherwise, one of the variables taking a
fractional value in the continuous relaxation is rounded up and down and two subproblems
are created by imposing either that the variable must be smaller or equal than the rounded-
down value or greater or equal than the rounded-up value, respectively. This step is called

branching and it is easy to see that for both subproblems the solution of the LP relaxation

2The interested reader is referred to [142] for more details and for all necessary references that we avoid
to add to the section to keep it compact.

42

is infeasible and that the optimal solution of the original problem must belong to one of the
two subproblems. It is easy to visualize the branching process by a tree in which the original
MILP is the “root” node and each subproblem is a “child" node. The algorithm iterates by
the selection (according to different policies) of one of the subproblems / nodes and a node
can be fathomed either because integer feasible, or because LP infeasible or, finally, because
the local lower bound is provably worse than the incumbent solution, i.e., the best upper

bound value found so far in the search.

This basic scheme clearly leads to potentially explore an exponentially-large search tree,
which is to be expected in the worst case (MILP is theoretically NP-hard) but obviously
undesirable. The quality of the formulation is measured with respect to the gap between
its LP relaxation and the optimal solution values,®> and MILP technology includes a number
of enhancements to this basic scheme to help avoid the tree growing too large. Namely,
(i) preprocessing and probing techniques are applied to simplify the formulation by fixing
variables and improving coefficients, (ii) redundant linear inequalities exploiting integrality of
the variables are added to improve the LP relaxation, (iii) effective rules to select, at every
node, the variable to branch on are used and (iv) heuristic methods are applied to compute

better and better incumbent solutions (and, consequently, fathom more nodes).

4.5.2 Tested instances and computational settings

The instances, which were constructed from realistic data, comprise two scenarios:

i Unweighted: all photos require the same amount of processing time .

ii Weighted: each photo p € P requires a certain amount of processing time \,,.

The A, are acquired from the equivalent unweighted case: [|P]x 0.1] groups of nine adjacent
photos are randomly selected, and then, for each of those groups, a single), is drawn from
a normal distribution (@ = 26.72 seconds and o = 5.0) and attributed to all photos of
that group. Changing the photo-processing time in that fashion allows to represent the 3D
reconstruction of distinct complex objects in the region of interest. The name of the instances
follows the notation X-PYYDZ%D WW where “X” is “u” for the unweighted instances and
“w” for the weighted instances, “ YY" stands for the number of photos in the instance, “Z”
specifies the number of drones in the swarm, and “ WW” informs the percentage of drones that

can do 3D reconstruction. The number of drones able to perform 3D reconstruction, called

3We specify and use the notion of gap extensively in the computational evaluation.
4Those inequalities are referred to as “cutting planes” or “cuts” and this is the reason the overall algorithm
is often referred to as “branch and cut” instead of “branch and bound".

43

| DI, is always equal to | Zx 43% |. The characteristics of the tested instances are listed in Table
4.2. Many factors directly impact the number of photos required to obtain 3D maps with
good resolution, e.g., perspective, lens quality, overlap, coverage, and object geometry [87].
In fact, the same number of photos is suitable to areas with different dimensions when varying
those parameters [96]. As an illustration, according to [133], an area surrounding a football
field of approximate size of 160m x 80m was reconstructed with about 200 pictures. Hence,

the number of photos used in our instances is comparable to those of real-world applications.

The tables presented hereafter report the instance employed at each row (column “Instance”),
the corresponding formulation (column “Form.”), the dual gap (in percentage) w.r.t. the
optimal solution found at the root node (column “gap,”), the number of cuts added by
CPLEX at the root node (column “cuts”), the number of nodes explored by the CPLEX’s
branch-and-cut method (column “Nodes”), and the dual gap (in percentage) w.r.t. the
optimal solution (best known, see below) at the end of the branch-and-cut enumeration
(column “gap”). CPU times spent in the solution of the root node and by the branch-and-

cut algorithm are also reported (column “sec.”).

Note that dual gaps are computed with respect to the best upper bound solution found
whenever the optimal solutions are not obtained by CPLEX within one day of execution.

These situations are represented in the tables by the symbol “x”.

4.5.3 pCAPsac experiments

This section evaluates the performance of the proposed pCAPsac formulation. It investigates
the effectiveness of valid inequalities (4.16)-(4.19), whose aim is, for any possible sub-region,
to clean the search space from all the infeasible boundary configuration. Also, the experiments
analyze how different branching priorities can influence the branch-and-cut method. All the

experiments of this section are for ¢ = 1 and T=+oc.

This section also reports the performance profiles [143] concerning the CPU times of the
formulations. Let us define I as the set of all instances and F as the set comprising all
formulations to be compared. Given an instance ¢ € I, the performance profile compares the
CPU time of a formulation form € F, denoted cpu; form, with the best CPU time obtained
across all formulations in F when solving that instance i. It is done by computing the

performance ratio r; form [143]

CPU;, form

;min f{czoui, form }

Viel, form e F.

Ti,form =

44

Table 4.2 Characteristics of the tested instances.

Photos(P) 200, 400
Drones(D) 5,7, 10
%3D-capable drones(%D) | 50%, 70%, 90%

Thus, the overall assessment of performance is captured by the cumulative distribution func-

ton {rform < i € 1}
Tiform > T\ S
pform(T) = f ‘[|

Finally, pform(7) is the probability for the formulation form that the ratio r; form is at most
7 of the best ratio found [143].

pCAPsac performance

The pCAPsac formulation using the BCj constraints (4.14), called “PB:BCy,”, and the
pCAPsac formulation using the BCj constraints (4.15), named “PB:BCy”, are compared
in Tables 4.3 and 4.4. For those tables, the dual gaps in the column “gap,” indicate how
strong is the formulation. Small dual gaps mean that the value of the optimal objective
function is close to the value of the optimal objective function obtained when solving the

Y

continuous relaxation of the formulation. Small “gap,” values lead to the exploration of

fewer nodes by the branch-and-cut method, reducing its overall computing time. As the dual
gaps “gapg’
time (column “sec”) and number of nodes explored (column “nodes”) of the whole branch-
and-cut method.® The results related to lines “PB:BCy+Ord.” are discussed in the following

section.

" are equal across the proposed formulations, one should focus on the execution

5Note that the time and nodes can vary even if the gap is initially equal because CPLEX evolves differently,
for example, because it adds different cutting planes (see, column “cuts").

45

Table 4.3 CPLEX results when solving unweighted instances for the “PB:BCy”, the
“PB:BCy”, and “PB:BCy+0Ord.” formulations.

Root Node Branch-and-Cut

Instance Form.
gapo cuts sec.||Nodes| gap sec.

PB:BCyl|| 4.76 28 1.47 182| 0.00 15.81
u-P200D5%D70 PB:BCyl|| 4.76 110 2.84 300/ 0.00 33.83
PB:BCo+0rd.|| 4.76 242 1.15 345/ 0.00 19.02

PB:BCyl|| 4.76 17 1.25 395| 0.00 27.48
u-P200D7% D50 PB:BCol| 4.76 62 1.14 383 0.00 19.70
PB:BCy+O0rd.|| 4.76 189 1.46 239| 0.00 11.45

PB:BCy|| 1.23 28 3.33 386| 0.00 87.16
u-P400D5% D70 PB:BCy|| 1.23 74 357 264| 0.00 57.94
PB:BCy+0rd.|| 1.23 183 3.38 500/ 0.00 91.56

PB:BCyl|| 1.23 27 3.42 556/ 0.00 156.15
u-P400D7% D50 PB:BCy|| 1.23 50 3.16|| 1178| 0.00 181.14
PB:BCy+Ord.|| 1.23 188 4.31 707| 0.00 133.70

PB:BCy|| 0.00 9 2.16 433| 0.00 24.73
u-P200D5% D90 PB:BCy|| 0.00 31 3.21 41| 0.00 13.98
PB:BCy+0rd.|| 0.00 227 1.99 359| 0.00 22.60

PB:BCy|| 0.00 23 2.14 371| 0.00 27.49
u-P200D7%D70 PB:BCy|| 0.00 22 4.07 175 0.00 24.74
PB:BCy+0rd.|| 0.00 226 2.33 699| 0.00 45.39

PB:BCy|| 0.00 4 594 631| 0.00 440.53
u-P400D5% D90 PB:BCy|| 0.00 81 4.09 121| 0.00 44.60
PB:BCy+0rd.|| 0.00 267 5.00 49| 0.00 35.02

PB:BCy|| 0.00 71 5.04 790| 0.00 141.43
u-P400D7%D70 PB:BCpl|| 0.00 84 5.06|| 1631 0.00 696.21
PB:BCy+0rd.|| 0.00 175 6.23|| 7011| 0.00 6665.71

PB:BCy|| 0.00 81 3.63|| 6591| 0.00 1036.81
u-P200D10% D50 PB:BCyp|| 0.00 95 2.72|| 18840| 0.00 3141.16
PB:BCo+0rd.|| 0.00 312 4.99|| 3546/ 0.00 556.97

PB:BCy|| 0.00 38 9.99|| 4363| 0.00 1737.28
u-P400D10% D50 PB:BCyl|| 0.00 127 10.64|| 16216| 0.00 7200.00
PB:BCy+0rd.|| 0.00 46 6.35 990| 0.00 219.40

PB:BCy|| 1.96 24 5.17|| 8448| 0.00 1354.41
u-P200D7% D90 PB:BCy|| 1.96 47 9.60|| 13835| 1.96 7200.00
PB:BCy+0rd.|| 1.96 130 8.80 521| 0.00 49.52

PB:BCy||*1.96 130 12.28|| 12362|*1.96 7200.00
u-P400D7% D90 PB:BCy|[*1.96 84 13.56|| 9063|*1.96 7200.00

PB:BCy+0rd.||*1.96 50 17.94|| 14897|*1.96 7200.00

46

Table 4.4 CPLEX results when solving weighted instances for the “PB:BC”, the “PB:BCj”,

“PB:BCy+0Ord.” formulations.

Instance Form. Root Node Branch-and-Cut
gapo cuts sec.|[Nodes| gap sec.
PB:BCy|| 3.36 28 1.40 226/ 0.00 19.13
w-P200D5% D70 PB:BCy|| 3.36 19 2.14 450| 0.00 45.84
PB:BCo+0Ord.|| 3.36 93 1.25 300{ 0.00 16.87
PB:BCy|| 3.67 22 1.34 961| 0.00 50.73
w-P200D7% D50 PB:BCyl|| 3.67 40 1.27 1057 0.00 65.62
PB:BCp+Ord.|| 3.67 111 1.49 549| 0.00 31.52
PB:BCy|| 0.86 9 2.57 483| 0.00 97.08
w-P400D5% D70 PB:BCy|| 0.86 45 3.19 910| 0.00 148.94
PB:BCo+Ord.|| 0.86 190 3.48 414| 0.00 79.99
PB:BCp|| 2.02 44 2.92 1008| 0.00 191.33
w-P400D7% D50 PB:BCyl| 2.02 22 3.47 930 0.00 121.78
PB:BCp+Ord.|| 2.02 264 3.40 974| 0.00 241.08
PB:BCo|| 2.96 13 2.37|| 5080 0.00 748.98
w-P200D5% D90 PB:BCy|| 2.96 42 4.76|| 24186| 0.00 5199.65
PB:BCo+Ord.|| 2.96 84 2.30|| 3427| 0.00 427.78
PB:BCy|| 2.69 58 2.55| 4227 0.00 453.18
w-P200D7% D70 PB:BCy|| 2.69 21 3.95|| 18204| 0.00 4191.87
PB:BCy+0rd.|| 2.69 87 3.01 3736/ 0.00 514.63
PB:BCy|| 1.26 19 4.85 3161| 0.00 1425.80
w-P400D5% D90 PB:BCy|| 1.26 51 5.29|| 18195 1.24 7200.00
PB:BCo+Ord.|| 1.26 442 6.14|| 3048| 0.00 1532.36
PB:BCy|| 0.68 34 4.97|| 4529| 0.00 1805.83
w-P400D7% D70 PB:BCy|| 0.68 13 4.63|| 19444| 0.68 7200.00
PB:BCy+O0rd.|| 0.68 628 6.68|| 9429| 0.00 6031.09
PB:BCy|| 1.65 15 5.42|| 32327| 1.65 7200.00
w-P200D10% D50 PB:BCy|| 1.65 63 3.62|| 42035 1.65 7200.00
PB:BCo+Ord.|| 1.65 80 5.55|| 19491| 1.65 7200.00
PB:BCy||*3.38 129 10.59|| 9416|*3.38 7200.00
w-P400D10% D50 PB:B(Cy||*3.38 82 8.88|| 7364(*3.38 7200.00
PB:BCy+0rd.||*3.38 194 7.03|| 10625[*3.38 7200.00
PB:BCy||*3.81 1 8.28|| 54078|*3.81 7200.00
w-P200D7% D90 PB:BCy||*3.81 71 6.17|| 19819(*3.81 7200.00
PB:BCy+0rd.||*3.81 57 10.48|| 23206(*3.81 7200.00
PB:BCy||*3.18 15 9.42|| 13316|*3.18 7200.00
w-P400D7% D90 PB:BCp||*3.18 83 17.06|| 10581|*3.18 7200.00

PB:BCy+0rd.

*3.18 226 13.09

9753

*3.18 7200.00

47

The results in both Tables 4.3 and 4.4 clearly show that the “PB:BC|” solves faster than
“PB:BCy” formulation (T=-2.877 and p-val=0.008 via “PB:BCy” vs. “PB:BC,” paired
t-test [144]). The performance profile in Fig. 4.6 confirms the better performance of the
“PB:BCy". In fact, “PB:BCy” has the largest probability (0.75) to have the best performance

ratio (point when 7 = 1).

We can observe that the dual gaps at the root node are equal to zero for the unweighted
instances whenever the number of photos is divisible by the number of drones that can do
the 3D reconstruction. Consequently, the objective function value of the optimum solution
coincides with the dual bound already at the root node for instances “u-P200D5%D90”, “u-
P200D7%D70”, “u-P400D5%D90”, “u-P400D7%D70”, “u-P200D10%D50” and “u-P400D10
% D507

Finally, based on tables 4.3 and 4.4, Figs. 4.7, 4.8, 4.9, and 4.10 present how the CPU time
(column “sec.”) is affected (on average) with the increase of the number of 3D-capable drones
in the unweighted and weighted instances. Figs. 4.7, 4.8, 4.9, and 4.10 group the average
CPU times — computed w.r.t. the collection of instances with the same number of 3D-
capable drones and number of photos — obtained by formulations “PB:BCj” (green lines),
“PB:BCy” (blue dashed lines), and “PB:BCy+Ord.” (orange dotted lines). We observe that
the average CPU time increases when the instances have more 3D-capable drones. Also, the

average CPU time of the instances with 200 photos tends to be shorter than the average

1.00
........ L]
0%+ - _/

0.90

0.85

0.80

p(ri, form. = T)

0.75

0.70

0.65 - —— PB:BC,
PB:BC,

0.60

Figure 4.6 Performance profile w.r.t. the CPU times of the “PB:BCy” and “PB:BC}".

48
CPU time of the instances with 400 photos.

Ordering inequalities effectiveness

The effect of adding all the ordering inequalities (4.16)-(4.19) into the “PB:BC)” formulation
is analyzed in Tables 4.3 and 4.4. The inclusion of the ordering inequalities is identified by

the “4+Ord.” in the formulation’s name.

The valid inequalities (4.16)-(4.19) eliminate infeasible boundaries in the continuous solution
space whereas not necessarily excluding the continuous optimum solution. Consequently,
these inequalities are not guaranteed to increase the dual bound obtained. In fact, gap, was
never improved in our experiments after adding the ordering inequalities. Nevertheless, the
insertion of (4.16)-(4.19) improved the CPU time required to reach the optimum solution
of 11 out to 19 instances solved to optimality (considering 2h of execution). In fact, paired
t-tests show significant improvements (T= 1.907 p-val= 0.034) by adding them into the
“PB:BC,” formulation, except for instances “P400D7%D70”. This is also confirmed by
the performance profile in Fig. 4.11 in which “PB:BCy+Ord.” has the best CPU times
approximately 75% of the times (7 = 1). However, when limited to weighted cases, there
is no significant improvement on reducing the enumeration CPU time. For these cases,
11 seconds of improvement is obtained when comparing the average computing CPU time
of non-inserting against inserting constraints (4.16)-(4.19). Finally, we observed that the
number of cuts added by CPLEX at the root node increased considerably when the ordering

inequalities were employed.

Branching priority

Different branching priorities for the selection of the boundary assignment (i.e., af, B, 77,
and wy) and the photo assignment (i.e., y;) variables were also explored in formulation
“PB:BCy+Ord.” (simply denoted “PB:BC,” at this section) and the results reported in
Tables 4.5 and 4.6. The distinct branching priorities are denoted as “b>y” and “y>b". The
default option of CPLEX is identified by the absence of those notations. The “b>y” is used
when the boundary assignment variables are given higher priority over the photo assignment
variables, which still have higher priority over the remaining variables. The “y>b" refers
to the opposite case, that is, when photo assignment variables are rather branched over
boundary assignment variables. Since the values in the column “gap” are equal in most
of the cases, the number of nodes explored (column “nodes”) and execution times (column
“gap”) should be used as the comparison metric. This means that smaller values in those

columns stand for more efficient enumeration performed by CPLEX.

Unweighted instances with |P| = 200

7000

6000

S
8 5000
£
= 4000
2
S
2 3000
[
o
2 2000
<
1000 . ; __
e --- PB:BG,
04 e PB : BCo+0rd.
T T T T T T T T
2 3 4 5 6 7 8 9

3D-capable drones

Weighted instances with |P| =200

7000

6000

c.)

5000

N
o
S
S
1

3000

Average CPU time (se

N
o
=3
=3
1

1000

—— PB:BC
--- PB:BCp
PB:BCo+0rd.
T T T T T
8 9

5 6 7
3D-capable drones

49

Figure 4.7 Average CPU times when solv- Figure 4.8 Average CPU times when solv-
ing unweighted instances with 200 photos ing weighted instances with 200 photos
according to “PB:BCy”, “PB:BC,”, and according to “PB:BC,”, “PB:BC,”, and
“PB:BCy+0Ord.”. “PB:BCy+Ord.”.

Weighted instances with |P| = 400

Unweighted instances with |P| = 400
7000 e 7000 ! @
/ /
6000 6000 !
— - !
S S /
& 5000 & 5000 !
2 g /
= 4000 - = 4000 !
2 o}]
S S !
» 3000 > 3000]
=} =)
S o]
£ 2000 £ 2000 !
< <
1000 — PBEG 1000 e
--- PB:BC, --- PB:BC,
0+ PB :BCo+0rd. 0 PB :BCo+0rd.
T T T T T T T T T T T T T T T T
5 6 7 8 9 2 3 4 5 6 7 8 9
3D-capable drones

3D-capable drones

Figure 4.9 Average CPU times when solv- Figure 4.10 Average CPU times when
ing unweighted instances with 400 photos solving weighted instances with 400 pho-

according to “PB:BCy”, “PB:B(C}”, and tos according to “PB:BCy”, “PB:BCjy”,
and “PB:BCy+Ord.”.

“PB:BCy+Ord.”.

The adoption of different branching priorities improves the CPU times to solve some in-
stances. In fact, the “y>b" strategy achieves better or equivalent CPU times in 10 out to
11 unweighted instances solved to optimality (within 2h of execution). Regarding weighted
cases, the “b>y” strategy results in better or equivalent CPU times in 5 out to 8 instances
solved to optimality (considering 2h of execution). However, paired t-tests do not show sig-
nificant improvement for both “o>y” (T= 0.889 p-val= 0.191) or “y>b" (T=1.295 p-val=

0.103) strategies considering overall cases.

20

0.95
0.90
T+ 0.85
Vi
g
S 0.80
=
Q
0.75
0.70
—— PB:BCy
0.65 PB : BCy+0rd.
T T T T
2 4 6 8 10

T

Figure 4.11 Performance profile w.r.t. the CPU times of the “PB:BC{” and “PB:BCy+0rd.”.

4.5.4 Sensitivity of the pCAPsac formulation

This section evaluates the sensitivity of pCAPsac formulation with respect to both reliability

factor o and to maximum transmission time allowed 7.

Reliability factor sensitivity

Tables 4.7 and 4.8 report results for various values of o, ranging from 1 to |D| — 1. The
subset of instances used in this experiment consists of those for which CPLEX was able to
solve within 2h of execution the associated problem with ¢ = 1. Besides, the communication
constraints concerning T were relaxed, i.e. T'=+00. For this analysis, one should concentrate
on how much varying o affects the initial dual gap (column “gap,”), which might lead to a

large number of explored nodes and execution times.

Tables 4.7 and 4.8 show that initial dual gaps are largely affected by o. Those large dual
gaps result from the increase of the optimum solution values with ¢ not accompanied by the
increase in the dual bounds obtained at the root node. This is illustrated in Fig. 4.12 and
Fig. 4.13, where the changes in the optimal objective function value (named “T},.,”) given the
increase of o are presented for unweighted instances “u-P200D7%D70”, “u-P200D10%D50”,
“u-P200D7%D90”, and for weighted instances “w-P200D7%D70”, “w-P200D10%D50”, “w-
P200D7%D90”. Those instances were selected to include distinct values of | D).

51

Table 4.5 CPLEX results when solving unweighted instances for the “PB:BCy”,
“PB:BCy—b>y” and “PB:BCy—y>b" branching priority strategies.

Instance Form. Branch-and-Cut
Nodes| gap sec.

u-P200D5% D70 PB:BC) 345 0.00 19.02
PB:BCo—b>y 529| 0.00 25.46

PB:BCo—y>b 178| 0.00 15.05

u-P200D7% D50 PB:BCy 239| 0.00 11.45
PB:BCo—b>y 744| 0.00 33.73

PB:BCo—y>b 232| 0.00 11.47

u-P400D5% D70 PB:BC) 500 0.00 91.56
PB:BCo—b>y|| 1993| 0.00 255.79

PB:BCo—y>b 179| 0.00 50.86

u-P400D7% D50 PB:BC) 707| 0.00 133.70
PB:BCo—b>y|| 1011| 0.00 207.03

PB:BCo—y>b 202| 0.00 68.28

u-P200D5% D90 PB:BC) 359| 0.00 22.60
PB:BCy—b>y 471] 0.00 41.63

PB:BCo—y>b 72| 0.00 7.06

u-P200D7% D70 PB:BC) 699 0.00 45.39
PB:BCo—b>y|| 1096| 0.00 110.24

PB:BCo—y>b 393 0.00 25.89

u-P400D5% D90 PB:BCy 49| 0.00 35.02
PB:BCo—b>y 812| 0.00 215.49

PB:BCo—y>b 49| 0.00 35.16

u-P400D7% D70 PB:BCy|| 7011| 0.00 6665.71
PB:BCo—b>y|| 1330| 0.00 235.25

PB:BCo—y>b 430| 0.00 59.71

u-P200D10% D50 PB:BCp|| 3546| 0.00 556.97
PB:BCo—b>y|| 2231| 0.00 217.96

PB:BCo—y>b|| 1328| 0.00 144.06

u-P400D10% D50 PB:BCy 990| 0.00 219.40
PB:BCo—b>y|| 1022| 0.00 107.68

PB:BCo—y>b 922| 0.00 199.24

u-P200D7% D90 PB:BC) 521| 0.00 49.52
PB:BCo—b>y|| 18419| 0.00 3891.44

PB:BCo—y>b|| 2466| 0.00 557.22

u-P400D7% D90 PB:BCy|| 14897|*1.96 7200.00
PB:BCo—b>y|| 30016|*1.96 7200.00

PB:BCo—y>b|| 7749|*1.96 7200.00

Maximum transmission time sensitivity

The sensitivity analysis of formulation “PB” to parameter T is performed by decreasing its
values progressively (the value of o is fixed to 1 in this set of experiments). The first value
of T' tested corresponds to the allocated communication time between the drones when no

time limit is imposed for their communication, i.e., T=+40c. From that value, T is decreased

52

Table 4.6 CPLEX results when solving weighted instances for the “PB:BCy”, “PB:BCy —
b>y” and “PB:BCy — y>b" branching priority strategies.

Branch-and-Cut
Nodes| gap sec.
w-P200D5% D70 PB:BC) 300 0.00 16.87
PB:BCo—b>y 620| 0.00 38.68
PB:BCo—y>b 279| 0.00 20.40
w-P200D7% D50 PB:BC) 549| 0.00 31.52
PB:BCo—b>y 600| 0.00 28.76
PB:BCo—y>b 327| 0.00 29.57
w-P400D5% D70 PB:BC) 414] 0.00 79.99
PB:BCo—b>y|| 1918| 0.00 330.83
PB:BCo—y>b 299| 0.00 80.89
w-P400D7% D50 PB:BC) 974| 0.00 241.08
PB:BCo—b>y 602| 0.00 94.42
PB:BCo—y>b 315 0.00 126.37

Instance Form.

w-P200D5% D90 PB:BCy|| 3427| 0.00 427.78
PB:BCo—b>y|| 4281| 0.00 409.38
PB:BCo—y>b|| 3833| 0.00 560.64
w-P200D7% D70 PB:BCy|| 3736| 0.00 514.63
PB:BCo—b>y|| 5879| 0.00 663.39
PB:BCo—y>b|| 4680| 0.00 679.89
w-P400D5% D90 PB:BCp|| 3048| 0.00 1532.36
PB:BCo—b>y|| 2189| 0.00 925.85
PB:BCo—y>b|| 3146| 0.00 2052.07
w-P400D7% D170 PB:BCy|| 9429| 0.00 6031.09
PB:BCo—b>y|| 1397| 0.00 605.48
PB:BCo—y>b|| 3341| 0.00 2097.93

w-P200D10% D50 PB:BCp|| 19491| 1.65 7200.00
PB:BCo—b>y|| 46502| 1.08 7200.00
PB:BCo—y>b|| 25588| 1.65 7200.00
w-P400D10%D50 PB:BCy|| 10625|*3.38 7200.00
PB:BCo—b>y|| 10981 |*3.38 7200.00
PB:BCo—y>b|| 8520|*3.38 7200.00

w-P200D7% D90 PB:BCp|| 23206|*3.81 7200.00
PB:BCo—b>y|| 33427|*3.81 7200.00
PB:BCo—y>b|| 29215[*3.81 7200.00
w-P400D7% D90 PB:BCy|| 9753|*3.18 7200.00
PB:BCo—b>y|| 20758|*3.18 7200.00
PB:BCo—y>b|| 9417|*3.18 7200.00

by 0.5 seconds until formulation “PB” becomes infeasible. Fig. 4.14 and Fig. 4.15 present
results for instances “u-P200D5%D70” and “w-P200D5%D70”. For them, the first value of
T is 48 seconds, being decreased down to 23.5 when both problems become infeasible. The
reported number of nodes explored by CPLEX branch-and-cut method and the optimum

objective function value are obtained within 2h of computing time.

93

Table 4.7 CPLEX results when solving unweighted instances for the PB formulation with
oe{l,...,|D|—1}.

Root Node Branch-and-Cut
gapg cuts sec.||Nodes| gap sec.
4.76 242 1.15 345/ 0.00 19.02
50.62 752 10.21|| 1113] 0.00 138.18
4.76 189 1.46 239] 0.00 11.45
50.62 1053 9.16 902| 0.00 101.71
1.23 183 3.38 500] 0.00 91.56
50.25 667 290/ 1912| 0.00 539.52
1.23 188 4.31 707 0.00 133.70
50.25 366 2.80|| 3070[0.001723.51

0.00 227 1.99 359 0.00 22.60
50.00 228 3.47| 14578 0.00 5685.71
66.67 194 2.46| 2392 0.001014.65

0.00 226 2.33 699 0.00 45.39

*50.00 119 3.71|| 16579*33.33 7200.00
66.67 402 3.52|| 2209/ 0.001150.97
0.00 267 5.00 49| 0.00 35.02
*50.00 349 6.82|| 3573|*33.33 7200.00
66.67 656 5.65|| 2631| 0.004593.69
0.00 175 6.23|] 7011] 0.006665.71
*50.00 403 6.59|| 3019[*49.50 7200.00
*66.67 749 7.69|| 3275/*11.11 7200.00

0.00 312 4.99| 3546/ 0.00 556.97
50.00 522 8.13]| 11659| 16.67 7200.00
*67.48 202 9.37|| 9759/*59.32 7200.00
75.00 2419 967.58|| 1145| 26.00 7200.00

Instance o

u-P200D5% D70

u-P200D7% D50

u-P400D5% D70

u-P400D7% D50

u-P200D5% D90

u-P200D7%D70

u-P400D5% D90

u-P400D7%D70

u-P200D10% D50

=~ W NN =W NN =R WD RWN WD RN =N RN =N

The decreasing of T tends to reduce the number of nodes explored in the branch-and-cut
enumeration whereas the objective function value increases until the problem becomes infea-
sible. For example, in Fig. 4.14, the optimum objective function value increases from 1870.4
to 2939.2 starting at T = 33.5. The problem becomes infeasible for T smaller than 24s.

o4

Table 4.8 CPLEX results when solving weighted instances for the PB formulation with

ocec{l,...,|D|—1}.

Instance o Root Node Branch-and-Cut

gapg cuts sec./|Nodes| gap sec.

w-P200D5%D70(1|| 3.36 93 1.25 300 0.00 16.87
2|l 50.71 831 9.81|| 1663, 0.00 172.46
w-P200D7%D50(1|| 3.67 111 149 549] 0.00 31.52
2|l 51.44 67011.53]| 4013} 0.00 665.60
w-P400D5%D70[1|| 0.86 190 3.48 414] 0.00 79.99
2|l 50.34 480 2.74|| 1652/ 0.00 891.45
w-P400D7%D50(1|| 2.02 264 3.40 974] 0.00 241.08
2|l 50.29 566 3.15|] 2819| 0.001557.25
w-P200D5%D90(1| 2.96 84 2.30| 3427| 0.00 427.78
2|l 50.00 293 3.73| 12045| 32.56 7200.00

3(*67.03 289 4.70| 20671 *1.09 7200.00
w-P200D7%D70(1| 2.69 87 3.01|| 3736| 0.00 514.63
2|l 50.00 428 3.89| 6632| 0.002647.32

3([*66.82 382 3.03| 25358| *0.46 7200.00
w-P400D5%D90(1|| 1.26 442 6.14| 3048 0.00 1532.36
2(1*50.01 381 4.95| 3415/*48.87 7200.00

3(/66.86 430 10.48|| 2994|*11.63 7200.00
w-P400D7%D70(1| 0.68 628 6.68| 9429 0.006031.09
2(1*50.00 387 7.68|| 2605*49.52 7200.00

3(/*66.78 650 6.11| 2089/*33.02 7200.00

4.6 Conclusion

A swarm of drones (UAVs) can be used to automate a wide range of missions, from surveil-

lance to search and rescue, from 3D mapping to telecommunication enhancement. While

UAVs are typically responsible for the mission phases related to data collection — thanks

to their flying capabilities and to the availability of embedded sensors — most of the data

processing is offloaded to dedicated machines (virtual or bare-metal) placed in the cloud.

However, when the communication bandwidth between the swarm and the cloud is limited,

an ad-hoc cloud established on top of the UAVs’ computing resources (and those of other

95

- Primal Bound --- Dual Bound

45004 — u-P200D7%D70
—— u-P200D10%D50
4000 4 —— Uu-P200D7%D90

3500 A

3000 A

Tmax

2500 A

2000 A

1500 A

1000 -

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Reliability Factor

Figure 4.12 Primal bound and dual bound on increasing o for unweighted instances.

- Primal Bound --- Dual Bound

50004 —— w-P200D7%D70
—— W-P200D10%D50
—— w-P200D7%D90
4000 -
£ 3000 1
=
2000 -
1000 A

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Reliability Factor

Figure 4.13 Primal bound and dual bound on increasing o for weighted instances.

elements available in the area) can be leveraged to replace the cloud and keep data processing

local.

For the purpose of optimizing the use of such ad-hoc cloud infrastructure powered by the

o6

u-P200D5%D70

400
Unfeasible

TMAX = 293920
TMAX = 187040

350 A

300 A

250 ~

200 ~

Nodes

150

100

50 4

24s 33.5s
25 30 35 40 45

7

Figure 4.14 Number of nodes explored by CPLEX on varying T for the instance u-
P200D5% D70.

w-P200D5%D70

700 - Unfeasible
TMAX = 298000
TMAX =1934.39
600 - Twax = 1886.98
500 A
3 400 A
el]
o
=4
300 A
200 A
100 A
0 24s 33.5s 36s
25 30 35 40 45

7

Figure 4.15 Number of nodes explored by CPLEX on varying T for the instance w-
P200D5% D70.

swarming UAVs, we introduced a new optimization problem, namely the Covering-Assignment

Problem for swarm-powered ad-hoc clouds - CAPsac, based on a real-life use-case in the emer-

o7

gency management field: swarm-powered distributed 3D reconstruction for humanitarian
emergency response. After having established the relationship between the general problem
and the specific use-case, we presented the NP-Hardness proof of the CAPsac and described

two MILP formulations for it.

Given a set of geo-positioned aerial pictures (data) that are subject to geolocation/clustering
constraints, CAPsac minimizes the 3D mapping (data-processing phase) completion time by
jointly computing: (i) the optimal covering of photos (workload configuration), and (ii) the
optimal assignment of photographed sub-regions (workload assignment) to UAVs (computing
elements). Besides being a way to provide optimal solutions for the problem, our integrated
decision model contrasts with the decompose-then-allocate and the allocate-then-decompose
paradigms usually seen in (both the cloud computing optimization and) the multi-robot task
allocation literature. Finally, modeling CAPsac in this way is flexible and amendable to take

into account any other additional ground computing elements connected to the swarm itself.

In order to assess the proposed formulations, a series of computational experiments was
conducted with a set of unweighted and weighted realistic benchmark instances available
online (https://github.com/ds4dm/CAPsac). The experiments revealed that the photo-
based formulation “PB” was more efficient by using ordering inequalities that remove from
the feasible continuous search space those sub-regions whose boundaries are not regular (e.g.
left boundary at the right of a right boundary). However, the different branching priority
strategies and row generation methods have not proven to yield a performance gain while
solving “PB”. Column Generation was employed in the region-based formulation “RB”, but

the presence of highly degenerate optimums led to long execution times.

Finally, the sensitivity analysis of the formulation “PB” showed that it becomes more difficult
to solve as the reliability factor o increases. Tests with varying values for the maximum
allowed transmission time 7" also presented a slight gain of performance as T approaches a

limit when the problem becomes infeasible.

Appendix: Region-based CAPsac

The CAPsac problem can be addressed by explicitly considering the set S of all feasible
rectangular subsets of photos, such that each element of S corresponds to a possible rectan-
gular sub-region to be 3D-reconstructed. It is important to remark that the cardinality of S
is polynomial and bounded by O(|C|?|L|?), which is O(|P|*) in the worst scenario:

Proposition 3. Let S be the set of all feasible rectangular sub-regions to a CAPsac instance.
Then, |S| is bounded by O(|C|*|L|?), which is O(|P|*) in the worst case.

o8

Proof. As in Section 4.3.2, any feasible hyperectangle S € S is defined by a tuple (a”, 3%,
7%, w?) of latitudes and longitudes corresponding to the left, right, bottom, and top borders
of S, respectively, with a”, 3% € C and v°,w® € L, and such that o® < 5% and 7 < w?.
Therefore, S = C x C' x L x L. Since 1 < |C| < |P| and 1 < |L| < |P|, |S| is bounded by
o(lPP). 0

In particular, the photos are commonly spread across the target region in a grid pattern to
fulfill photo footprint overlapping constraints [96]. Consequently, |C| and |L| are usually far

smaller than |P|, and hence, |C|? - |L|? is in practice usually significantly smaller than | P|?.

Let S, be the collection of rectangular subsets S € S that cover photo p € P. For each set
S € S, denote t° the photo processing time of S, and p%? the amount of data to transfer
from drone h € D to the drone d € D if S is selected. Let q5 be the binary variable equal
to 1 if S is allocated to drone d € D. Finally, let us denote 0¥ the auxiliary binary variable

that is equal to 1 if S is selected, and 0 otherwise.

The region-based formulation of the C APsac is expressed as follows:

rglion Tinax (4.31)
8.6 Toax > D t9q Vd € D (4.32)
SesS
T-¢" >3 ultqd ¥(h,d) € D x D (4.33)
Ses
> qi > 00° vSeS (4.34)
deD
> 0¥ >1 ¥p e P (4.35)
SeS,
Y o =m (4.36)
SesS
<N iy V(h,d) € D x D (4.37)
Ses
Phd < ¢chdzhd V(h,d) € D x D (4.38)
MMF constraints [81]
0°,q5 € {0,1} VS eS,Vde D (4.39)
wi € {0,1} Y(i,7) € A,¥(h,d) € D x D (4.40)
" >0, 2" € {0,1} V(h,d) € D x D (4.41)

The objective function (4.31) minimizes the makespan T},.,, which is computed by constraints

29

(4.32). Constraints (4.33) limit the networking delay for each photo transmission traffic
demand. Constraints (4.34) impose that the selected subsets in S are assigned to o drones
that can do the 3D reconstruction. The set of constraints (4.35) ensures that each photo
p € P is covered at least once, and constraint (4.36) defines the number of selected subsets
to m, i.e., the number of drones that can perform the 3D reconstruction. The transmission
rates are defined by (4.37) and the ones in [81], following MMF rate allocation, as explained

in Section 4.3.2. Finally, domain constraints are given in (4.39)-(4.42).

The cardinality of S is bounded by O(|P|*) (Proposition 3). Therefore, the number of
constraints in the formulation is bounded by O(|P|*) due to the amount of constraints (4.34).
The number of variables is bounded by O(| D] - | P|*) due to the number of variables ¢7.

60

CHAPTER 5 ARTICLE 2: HEURISTICS FOR OPTIMIZING 3D
MAPPING MISSIONS OVER SWARM-POWERED AD-HOC CLOUDS

Authors: Leandro R. Costa, Daniel Aloise, Luca G. Gianoli, and Andrea Lodi.
Submitted to the Journal of Heuristics'.

Abstract: Drones have been getting more and more popular in many economy sectors.
Both scientific and industrial communities aim at making the impact of drones even more
disruptive by empowering collaborative autonomous behaviors — also known as swarming
behaviors — within fleets of multiple drones. In swarming-powered 3D mapping missions,
unmanned aerial vehicles typically collect the aerial pictures of the target area whereas the 3D
reconstruction process is performed in a centralized manner. However, such approaches do
not leverage computational and storage resources from the swarm members. We address the
optimization of a swarm-powered distributed 3D mapping mission for a real-life humanitarian
emergency response application through the exploitation of a swarm-powered ad-hoc cloud.
Producing the relevant 3D maps in a timely manner, even when the cloud connectivity is
not available, is crucial to increase the chances of success of the operation. In this work,
we present a mathematical programming heuristic based on decomposition and a variable
neighborhood search heuristic to minimize the completion time of the 3D reconstruction
process necessary in such missions. Our computational results reveal that the proposed
heuristics either quickly reach optimality or improve the best known solutions for almost all

tested realistic instances comprising up to 1000 images and fifteen drones.

Keywords: Cloud Computing, Swarm, 3D Reconstruction, Workload Optimization

5.1 Introduction

Unmanned Aerial Vehicles (UAVs), which are also referred to as drones, are a remotely
operated aircraft. Their aerial capabilities and low cost made them an attractive option for
operations as building inspection, photo collection, and area surveillance. That explains their

popularity and adoption in a multitude of sectors of the economy.

Besides being remotely operated by pilots, drones can also operate autonomously when obey-

ing an on-board flight controller. This is handled by employing a collaborative intelligence

'Preprint available at [125]

61

program on each agent of the fleet while keeping them connected on the same wireless net-
work. This collaborative capability that simulates natural swarms [58] (e.g., ant colonies, bee
swarms, and bird flocks) is further leveraged by applying swarm robotics to conceive a fleet
of fully autonomous drones focusing on fulfilling a common mission. Swarm robotics studies
how to coordinate, in a distributed and decentralized manner, a large group of simple embod-
ied robots to perform collective tasks and maximize the swarm performance [12]. Such swarm
behavior is a powerful tool to foster UAV applications, given its capability to deliver both
performance and resilience without requiring any centralized control. Swarming UAVs are
deployed to support operations in a long list of domains [97], including forestry [98-100], ar-
chaeology and architecture [101-105], environmental monitoring [106-110], emergency man-

agement [111-113] and precision agriculture [114-116].

Likewise, the swarm robotics has drawn the attention of the operations research community
as an attractive opportunity to improve the efficiency of swarm-powered missions [19,20]. For
instance, decentralized optimization methods have been leveraging search problems [21-26],
target assignment problems [27-37], node covering problems [38,39], scheduling problems [40],

etc.

UAV swarming solutions are typically used in synergy with other technologies such as digital
photogrammetry [45, 46], which focuses on extracting and displaying the relevant 2D /3D
geometric information from the portrayed physical environment. Given a set of pictures that
are fairly distributed across the area of interest — multiple shooting points and shooting
perspectives should be considered for improved performances — it is possible to extract a
3D model of the region itself by performing a so-called three-dimensional reconstruction. In
terms of synergy between swarming and photogrammetry technologies, the 3D reconstruction
process is typically included in a swarm-powered mission pipeline where swarming UAVs are
responsible for collecting, as fast as possible, the set of aerial images required to properly
build the 3D map of the desired area.

Although the aerial photo collection is typically carried out in parallel by multiple agents,
current 3D mapping literature addresses the 3D-reconstruction process in a centralized man-
ner [48-52,121]. Meyer et al. [47] employed 3D reconstruction solutions which were conducted
in a centralized base-station to survey a heritage site in Mexico, while other authors focused
on multi-sensor data fusion to feed the 3D reconstruction algorithms with more accurate
data [53,117].

Such approaches are susceptible to internet connectivity and network latency issues. Thus,
the distributed power within the UAV swarm can be exploited establishing an ad-hoc cloud

infrastructure able to safely perform the 3D reconstruction of the considered 3D mapping

62

mission [15-18]. This strategy profits from the computational power in the microcomputers
installed on the swarming UAVs instead of the computational resources present in a powerful

computer (e.g. [145]).

The motivation of this paper arises from a real-life problem in the emergency response field.
The decision-making and situation awareness during a first response operation are highly
boosted by 3D maps of the affected region. Such 3D models allow the first responders to
detect relevant threats like damage in roads and buildings or insecure zones. Thus, creating
3D maps must be quickly done regardless internet connectivity to enhance the safety and

efficiency of the first responders.

In [124], the authors introduced the Covering-Assignment Problem for swarm-powered ad-
hoc clouds (CAPsac), whose objective, in the context of a 3D mapping UAV mission, is to
optimally generate and place the multi-node computing workload that will be responsible
for performing the 3D reconstruction process. Since each computing node is responsible for
reconstructing a specific sub-region on a specific drone, the optimal solution of the problem
describes how to minimize the processing time by optimally i) splitting the set of available

photos to form multiple sub-regions and then ii) assigning each sub-region to a specific UAV.

During emergency field operations, each minute counts and nearly optimal solutions of the
CAPsac problem must be computed as quickly as possible. In this way, 3D maps can be
promptly put in the hands of the emergency responders, while leaving the UAVs available
to perform additional critical tasks — including other 3D mapping missions. Furthermore,
a fast CAPsac solution allows the flying UAVs to preserve the battery life by limiting the
idle flying periods spent waiting for 3D processing instructions. Note that the autonomy of

typical commercial drones does not go beyond one hour.

In this paper, we propose a Variable Neighborhood Search (VNS) heuristic [146] based on
sub-tree reconstruction, splitting hyperplane reallocation, sub-region transfer, and sub-region
swap neighborhoods for quickly optimizing a swarm-powered 3D mapping mission accord-
ing to CAPsac. We also develop a mathematical programming-based heuristic, namely

Decomposition-based heuristic, to assess the performance of matheuristics.

The paper is organized as follows. The next section describes how to cast a swarm-powered
3D mapping mission as CAPsac problem. The proposed mathematical programming-based
heuristic is presented in Section 5.3. Likewise, the VNS fundamentals and the proposed
VNS-based heuristic are exposed in Section 5.4. Finally, Section 5.5 shows and analyzes
the computational results obtained over realistic instances, while Section 5.6 outlines our

concluding remarks.

63

5.2 Swarm-powered 3D mapping mission as a CAPsac
A swarm-powered 3D mapping mission is decomposed in two main phases [124]:

1. Photo collection: the UAVs of the swarm dynamically collaborate to collect all the
necessary aerial pictures of the area of interest. Note that the set of required pictures
is typically computed by dedicated mapping software and is merely an input of the

mapping mission [96].

2. 3D processing [87]: the collected pictures are collaboratively processed by the mi-
crocomputers installed on the UAVs to produce a 3D map. During this process, the
computing workload can be parallelized over the available computing units. Further-
more, pictures can be transferred over the inter-drone wireless network to satisfy the

input requirements of the distributed reconstruction tasks.

By casting a swarm-powered 3D mapping mission as a CAPsac, we aim to optimize the
3D processing phase only, with no direct control over the photo collection step. Therefore,
we consider that the set of photos taken by the drones as well as their locations are input
parameters for CAPsac solution. A swarm-powered 3D processing application employing a
swarm of four UAVs is illustrated in Figure 5.1 [124].

nnnnnnn

+ X 3D-capable drones O ¢ Ordinary drones ---- Network

+ O X ¢ Photos(shot by respective larger symbols) — Area selec.

Figure 5.1 Swarm-powered 3D mapping mission as an instance of CAPsac. (©2020
IEEE [124].

64

In that example, the large “x”7, “47, “o”, and “o” identify the drones. Only drones with
powerful microcomputers able to sustain the 3D reconstruction methods are considered 3D-
capable [124]. The 3D-capable drones are represented by the + and the x symbols. That is,
+ and X are responsible for performing the 3D processing stage. The region portrayed by
the set of photos P is bounded by the continuous lines. Further, the photos are represented
by the small “x”, “47, “¢” and “o”. Their symbols match with the UAV where the photo
is stored, for instance, pictures identified by a small 4 are stored in the UAV represented by
the large +.

A solution to the CAPsac problem describes how to parallelize optimally a massive 3D
reconstruction task into smaller 3D reconstruction sub-tasks to be distributed across the 3D-
capable drones. This means that a 3D reconstruction sub-task is associated with a specific
sub-region of the target region. Therefore, the optimal solution of CAPsac minimizes the
completion time (i.e., makespan) of the whole 3D reconstruction phase. When optimizing
the CAPsac, three constraints cannot be neglected [124]: the 3D reconstruction sub-regions
must be a spatial-conver covering; the communication delays follow the Max-Min Fairness
(MMF) paradigm [79]; the 3D reconstruction sub-tasks are distributed across the 3D-capable

drones according to a reliability factor.

More precisely, the sub-regions form a spatial-convex covering if and only if the union of
all sub-regions (subsets of photos) is equal to the target region and all sub-regions are a
spatial-convex set — all photos lying inside the set’s convex hull are allocated to that same
sub-region [124]. Figure 5.2 shows an example of a spatial-convex set, whereas Figure 5.3
illustrates a set of photos which is not a spatial-convex set. In those figures, photos allocated

to the set are represented by the filled “e” and the empty “o” represent photos not allocated
to the set.

The communication delays must be taken into account since the photo collection stage is not
optimized in the CAPsac, and the 3D reconstruction of a sub-region cannot start until its
assigned drone has in its hard disk all photos belonging to that sub-region, that is, all 3D
reconstruction input photos. Thus, a drone must request to the other drones the photos to
complete its designed sub-region. A single tree network topology (dotted lines in Figure 5.1),
on top of which establishing TCP sessions — one per photo transfer, is adopted as inter-drone
communication means. The MMF paradigm is considered to approximate the TCP-based
rate allocation for multiple photo transfer sessions occurring within the swarm communication
tree [82].

Finally, the sub-region (3D reconstruction sub-task) to drone assignments must be robust to

drone malfunction. This is addressed by introducing a reliability factor, which dictates the

65

©) O

O O#

Pavill /3

. S L gE o y
(@) Q
o o, o o
% X
, J
O Photo not assigned to set ® Photo assigned to set

Set’s convex hull

Figure 5.2 Spatial-convex set and the respective convex hull. Adapted (©2020 IEEE [124].

minimal number of drones each sub-region must be assigned. For instance, a solution for a
reliability factor equal to one is illustrated in Figure 5.4. There, the two spatial-convex sets
(the same number as the 3D-capable drones) are represented by the dashed (left) and the
dashed-and-dotted lines (right). The sub-region on the left is assigned to the UAV “+” and
the sub-region on the right is assigned to the UAV “x”.

Let us now define the notation for CAPsac. We consider the region photographed by the set
of photos P as the region targeted by the 3D processing stage. The CAPsac considers that
photo positioning was performed beforehand, and then, the locations of all captured photos
in P are fixed and known. Further, let A\, and p, be the estimated photo processing time
and the data size of photo p € P, respectively. Besides, a set of drones D is at disposal but
only a subset D C D, where |D| = m, is able to perform the 3D reconstruction. Therefore,
the number of sub-regions constructed by the CAPsac is equal to m. Given a drone d € D,

the binary parameter 4, indicates if d has the photo p € P in its hard disk.

The drones are disposed in an undirected tree topology T'= (N, A), in which N corresponds
to the set of nodes where each drone is located and A comprises the sets of arcs linking the
nodes in N. The set F is composed by all transmission demands across pairs of drones, such
that F' = {f"|(h,d) € D x D}, in which a specific transmission demand from the drone & to
the drone d is represented by f¥. For each demand f"? let V"¢ be the set of arcs (i,j) € A
in the unique routing path between h and d, and F;; the set of demands using the arc (4, j),
ie, Fyy = {f" € F|(i,j) € V"}. Given an arc (i,j) € A, let ¢;; be the capacity of the

arc (i, 7). Also, denote by " the minimum ¢;; in V. Finally, each transmission demand is

66

® J
&
5
g
F
(@) (@)
P Pavillon, g
e AN A |
AR O (@)
N
[S @
P, N
5
.
%, o
O Photo not assigned to set ® Photo assigned to set

Set’s convex hull

Figure 5.3 Ordinary set and the respective convex hull. (©2020 IEEE [124].

allowed within a time limit T, after which it is considered as infeasible.

All the notation of the presented parameters is presented in Table 5.1.

Table 5.1 CAPsac parameters for a 3D mapping mission. Adapted (©2020 IEEE [124].

Parameters Description

Ap estimated processing time of photo p

Lp amount of data of photo p

Oap equal to 1 if drone d has the photo p stored in its memory

F set of traffic demands between each pair of drones

yab routing path of a demand f® € F' from the drone a to the drone b
Cij transmission capacity of the link (i,7) € A

ceb minimum ¢;; for (i,7) € V®

Fij set of demands that use link (i,7) € A

o reliability factor

m number of 3D-capable drones (equiv. number of sub-regions)

T maximum allowed time for transmitting photos between drones

5.2.1 Mathematical Formulation

Mathematical formulations to solve the C'APsac were proposed in [124]. In this work, we
adopt the region-based formulation (rCAPsac) [124]. The rC APsac formulation minimizes

the completion time of the 3D processing stage Th.x, and it exploits the set S containing all

67

Biblio

&
2
o

4+ X 3D-capable drones O ¢ Ordinary drones ==--- Network
+ O X ¢ Photos(shot by respective larger symbols) — Area selec.
===+ Sub-region assigned to “ 4”7 =-=-= Sub-region assigned to “X”

Figure 5.4 Spatial-convex covering and its assignment optimizing the makespan of a 3D
mapping mission.(©2020 IEEE [124].

rectangular spatial-convex sets of photos in P. Given a photo p € P, the set S, comprises
all sub-regions S € S which contain photo p. The binary variables ¢5 indicate if S € S is
selected and its 3D reconstruction is allocated to the drone d € D. Remark that all selected
sub-regions must be assigned to at least o (reliability factor) drones. Also, for each S € S,
the binary variable o° indicates (i.e., 0 = 1) if the sub-region S is used in the solution; the
9 represents the time required to perform the 3D reconstruction of S; the ¢ expresses the

amount of data added into the transmission demand f¢ when S is selected.

Since 3D reconstruction cannot start until a drone has all its input pictures, the communi-
cation time required to exchange photos among the drones cannot be neglected. For each
f ¢ F, we denote by 2" the binary variable which indicates when the demand f¢ is active
— if there exists any data to be exchanged through f"¢. Accordingly, continuous variables

¢ correspond to the transmission rate performed by the demand f"<.

As mentioned, in the case of the CAPsac, the transmission rate allocation follows the MMF
paradigm. Such rate allocation attends the MMF if and only if there is at least one bottleneck
link (4,) € A on the routing path V"¢ of each active demand f* € F [80]. Furthermore, a
link (i, j) is a bottleneck of the demand f"? if and only if [80]

(i) its capacity is saturated, i.e., 3 faseT, ¢® = c;; and

68

(ii) the transmission rate ¢"® of traffic demand f is the highest among the traffic demands

routed over link (i, j), i.e., o"? > ¢ Vfo € F,;.

Given a demand f"?, let wl’-‘jd be the binary variable equal to 1 if the link (7, j) is a bottleneck

of f". We denote by u;; the highest transmission rate among the traffic demands carried by

the link (,7) € A, that is, u;; = max {¢"}.

fab GFZJ

The rC'APsac formulation of the C APsac is described by the following MILP [124].

min Thax
q,0

.6 Tonax > Y 5]
SeS

T > N phdgs
SeSs

> ¢i =00
deD

Zoszl

SES,

ZOS:m

SeS

hd hd S
2N g
SeSs

Qbhd < Ehd zhd

Z whd > hd
1] —
(4,5)eVhd

Z ¢ab < ¢ij

fab efij

b hd
Z Y 2 cijwi;

fobeFy;

Ujj > o

¢hd > Ui — Cij(l - wi};d)
0°,q7 € {0,1}

wfjd € {0,1}

o™ >0,2"" e {0,1}

U”ZO

Vd € D
vl e
VS eS

Vpe P

vVl e F

vl e B
vVl e

V(i,j) € A
V(i,j) € AV e Fy

V(i,j) € AV e Fy
V(i,j) € AV e Fy
VS e S,¥de D
V(i,j) € AV e F
vl e

V(i,j) € A.

The objective function (5.1) minimizes the makespan of the 3D processing phase, i.e., the

maximum processing time Ty, across all 3D-capable drones in the swarm. Accordingly,

69

Tiax is computed by the constraints (5.2), in which, the summation Y gegt%¢; determines
the processing time of a given drone d € D. Constraints (5.3) restrict the latency of all
transmission demands F up to 7. Constraints (5.4) enforce the reliability factor over all
selected sub-regions. That is, when a sub-region S is selected, it is assigned to at least o
3D-capable drones. The photos p € P are always covered given the constraints (5.5). The
constraint (5.6) establishes m (number of 3D-capable drones) as the number of sub-regions
being selected. The MMF transmission rate allocation is computed by the constraints (5.7)-
(5.13). Constraints (5.7) allow a transmission to be active only if there exist data to be sent
from drone h to drone d. Constraints (5.8) set the variables ¢"? to 0 when f is inactive. All
active demands have at least one bottleneck link in their routing path according to inequalities
(5.9). Constraints (5.10) ensure that all link capacities are respected. Constraints (5.10) and
(5.11) jointly force that all bottleneck links will be saturated. That covers the first condition
to a link (i,7) € A to be a bottleneck link. The second bottleneck link condition is ensured
by constraints (5.12) and (5.13). Constraints (5.12) make u;; greater or equal to the highest
transmission rate passing through the link (7,7). If (i,7) € A is a bottleneck link of the
demand f", constraints (5.13) ensure that ¢¢ will not be exceeded by any other transmission
rate passing thought link (7,7). The domain constraints are (5.14)-(5.17). The number of
variables of the rC APsac formulation can rapidly increase even though it is polynomial
bounded by O(|P[*).

The CAPsac was proved NP-hard in [124]. A straightforward lower bound for the CAPsac
is the perfect workload division among the available processing resources. In the context of
a 3D mapping mission by UAVs, this means to equally spread the photo processing time of
the whole target region by the number of 3D-capable drones. Given a set of photos P, a set
of 3D-capable drones D, and a reliability factor o, the lower bound Lb(P, D, o) is given by

= g ZpeP >‘P

Lb(P,D, o) = = (5.18)

5.3 Decomposition-based heuristic

The formulation given in the previous section can be used to devise heuristics for the CAPsac.
However, before that, let us define n as the perfect workload division w.r.t. the number of

photos per sub-region
__|P|
n=-——.
| D]
Inspired by the observation that good solutions have their workload w.r.t. the number of

photos per sub-region close to n, we decompose the problem by exploring first those solutions

70

whose sub-regions have cardinality close to n.

To that purpose, we restrict the solution space of rC'APsac to sub-regions whose photo
cardinalities lie inside an interval [n,, n,], which is iteratively increased. That interval is
initialized with n, = |n| and n, = [n]. As solving this restricted rCAPsac formulation
leads to possibly infeasible or suboptimal solutions, one can iteratively increase the interval
[10, 1], and solve the new restricted CAPsac until the objective function value (T1,.x) does not
change between two consecutive iterations. This stopping condition is indeed sub-optimal.
For example, in the presence of very contrasting photo-processing times A, among the photos
p € P, the optimal solution might contain sub-regions with small processing times and large

cardinalities.

Algorithm 2 summarizes the decomposition-based heuristic. It considers €2 the set of distinct
photo cardinalities from sub-regions in §, and a mapping function w (implemented as a

hash table) which maps the cardinalities in € to their respective sub-regions in S. Step 1

Algorithm 2 Decomposition-based heuristic

Enumerate rectangular sub-regions S;
Construct and sort €2;
Build w according to § and €2;
ne < |n] ;n, < [n]; S® + {o}; T2
repeat
141+ 1;
S S+ w(ng) + w(ny)
T .. < solve rCAPsac encompassing sub-regions S*;
decrease ny to its closest smaller n € §2;
increase n,, to its closest larger n € §2;
cuntil T L =T8 or S'=S8

max max

— 005 1+ 0

ax

—_ =
= O

enumerates the sub-regions S on O(| P|*) operations [124]. Step 2 constructs the sorted array

Q) whereas step 3 creates w. The values of ng, n,, S°, T°. , and i are properly initialized at

step 4. For each iteration (steps 5-11): i is incremented in step 6. Then, the set S* is updated
to include the sub-regions of cardinality equal to n, and n, in step 7. Then, step 8 solves the
restricted rC' A Psac formulation encompassing all sub-regions in S*. The new interval [ng, n,]
is obtained in steps 9-10 by updating n, and n,. The algorithm iterates (lines 5-11) until the
objective function value (7T.x) does not change between two consecutive iterations, or that
S’ contains all the sub-regions S. We remark that the algorithm also iterates (lines 5-11)
while no feasible solutions have been found yet. Accordingly, if the algorithm does not find a
feasible solution and S° = S, the problem is proven infeasible. As a result, the heuristic takes

at most O(|Q2]) iterations to finish in the worst case. In such worst scenario, the full problem

71

(i.e., the complete rC'APsac formulation) is solved once the interval [ng, n,] encompasses all
sub-regions in §. It is worth pointing out that the optimal solution in one iteration remains
feasible in the next one since increasing the interval [ng, n,| is equivalent to simply adding
new columns to the rC'APsac formulation. Consequently, it can be used as a feasible upper

bound solution for the next iteration.

5.4 Variable Neighborhood Search for CAPsac

Our VNS heuristic exploits a spatial partition tree as a spatial data representation to ensure
the spatial-convexity of sub-regions in a feasible solution. Furthermore, our proposed VNS
is based on four neighborhoods, namely: sub-tree reconstruction, splitting hyperplane reallo-
cation, sub-region transfer, and sub-region swap. They are explained together with the VNS
fundamentals and our VNS implementation in the following sections. Finally, we present

how the VNS heuristic ensures communication delays feasibility during its search.

5.4.1 Variable Neighborhood Search fundamentals

Variable Neighborhood Search is a stochastic search metaheuristic, i.e., a local optimal evad-
ing framework based on heuristics, which aims at reaching optimal or near-optimal solutions
for global combinatorial optimization problems. VNS has been successfully applied to a vast
range of NP-hard problems [147].

A generic combinatorial optimization problem can be formally defined as follows. Let N =
{1,...,n} be a finite set and let ¢ = {¢y,...,¢,} be an n-dimensional vector. Denote by
c(F) = Y ,cr ¢ the cost associated to the finite set ' C N. Given a collection of subsets F

of N, a binary combinatorial optimization problem C = (N, F,¢) can be expressed as

min{c(f): f € F} (5.19)

Let the n-dimensional binary vector X/ = {z7, ..., 2/} characterize a feasible solution such
that xfc = 1if 7 € N belongs to f € F, and x{ = 0 otherwise. Thus, C can be seen as

minimizing over a polytope, i.e.,

min {ch|x € conv {Xf c {0,1}V|f € .7-"}} (5.20)

A local minimum z* of (5.20) is defined as

et < cla, Vo € N(z%), (5.21)

72

where N () is the neighborhood of z. A neighborhood N (x) is defined as the set of neigh-
boring solutions z’ obtained from z by systematic changes in the components of = (e.g.,
complementing elements of z). Acknowledging that a local minimum w.r.t. a neighborhood
is not necessarily the local optimum for another neighborhood, VNS employs several differ-
ent neighborhoods to escape local minima and reach global optimality. Note that a global

minimum is a local minimum regardless of the considered neighborhood.

Likewise simulated annealing and tabu search [148], VNS keeps a single solution = during the
whole execution of the algorithm. However, if differs from other metaheuristics mainly by
its search mechanism that searches for better solutions in increasingly wider neighborhoods
of x, according to the parameters k € Z" and k.. € Z". Let us define the neighborhoods
adopted by the VNS as the set N' = {MNy,..., N, ..} such that neighborhoods N, € N
are sorted according to their size (i.e., cardinality of N (z)). First, starting with £ = 1, a
random neighboring solution x’ is obtained from neighborhood Ny (z). Then, a local descent
method is performed from z’ leading to another local minimum z”. If z” is worse than (or
equal to) z, it is dismissed and the local descent method starts from a new random neighbor
2’ concerning the next neighborhood of x, i.e., Ny 1(z). Otherwise, z” replaces x and the
algorithm resets k to 1, i.e., the search is resumed in the neighborhood N of the new best
solution. Every time the maximum neighborhood N, .. is reached (i.e.,k = kpax), VNS
restarts from the first neighborhood (k = 1). The VNS iterates until the stopping condition
(e.g., maximum CPU time) is met. Given the order of neighborhoods in N, the method
favors the exploration of solutions in small neighborhoods of z, increasing the size of the

neighborhood if necessary. The basic steps of VNS are given in Algorithm 3.

5.4.2 Spatial partition tree

The spatial partition tree allows the VNS to efficiently explore the solution space without
directly handling spatial-convexity constraints. Inspired by the k-dimensional trees [149], the
spatial partition tree is a (not necessarily complete) binary tree which recursively splits the
metric space under consideration. In this kind of tree, all nodes are directly associated with

a portion (sub-region) of the target region.

In the CAPsac context, the target region is discretized by the positions of the photos P.
Let us define L as the set of distinct photo latitudes and let C' be the set of distinct photo
longitudes, such that 1 < |C| < |P| and 1 < |L| < |P|. The sets C' and L offer a simple way
to partition the space into rectangular sub-regions, such that any rectangular sub-region r
can be represented by its left c. € C, right ¢. € C| inferior ¢, € L, and superior /5 € L

borders. As a result, constructing a spatial partition tree splits the target region and forms

73

Algorithm 3 Variable Neighborhood Search - VNS

Select a set of neighborhoods Ny, for k =1, ..., knas;
Find an initial solution z;
repeat
k<+1
repeat
(Diversification step): Choose a random neighboring solution x’ from N;
(Intensification step): Apply a local descent method from 2’; obtaining x”;
if cost(z") < cost(z) then
x < 2"
k <+ 1,
else
k<« k+1,;
end if
until k£ > k..
until a stopping criterion is met

a partition of rectangular sub-regions.

A spatial partition tree is successively constructed by splitting the region of interest into new
sub-regions as illustrated in Figure 5.5. At first, the spatial partition tree contains only the
root node corresponding to the whole target region as shown in Figure 5.5a. The photos P
(target region), identified by the “o”; are enclosed by a unique rectangular region r; (dashed
lines). All nodes in the tree (round-cornered rectangles) have (i) their associated enclosed
longitudes on axis C' (“C”); (ii) their associated enclosed latitudes on axis L (“L”); (iii) the
axis selected to guide the splitting (“Axis”); (iv) the index on the selected axis chosen to
define the splitting hyperplane (“Splitting index”). It is worth to mention that the leaf nodes
have the attributes (iii) and (iv) empty, and the photos inside a sub-region are implicitly
given by the lists C' and L.

In each successive iteration (splitting step), a leaf node (rectangular sub-region) is selected to
be split by means of an axis-aligned splitting hyperplane. The selected splitting hyperplane
(denoted by “0J” and represented by lines) is chosen from the location of the photos associated
with a sub-region being split. The splitting step is repeated |D| — 1 times, that is, until
|D| sub-regions are formed. For instance, starting from the root node in Figure 5.5a, the
construction of a partition with four sub-regions (i.e., |D| = 4) is done after three iterations
presented in Figures 5.5b, 5.5¢, and 5.5d, respectively. Finally, Figure 5.5d illustrates the
final spatial-partition tree and its respective partition and splitting hyperplanes, where the
photos P are split into the four rectangular sub-regions r1, ry, r3, and r4. This data structure

guarantees the creation of sub-regions that are always spatial-convex sets.

€:1,23458678 BIB_-O- 0T8T 0T O g
L: [1.,2, 3,4,5,6] . .
S;‘hsl.ling index: - 50 0 O O O O O G
r 1 1
‘o 0 0 0O 0O O O a
1 rq 1
30 0 0O 0 0 0 O O
1 1
2o 0 0 0 0o 0 o0 o:
1
T1'o_.o__o. Q.0.-0-.0 -Q
Lo 2 3 4 5 6 7 8
+c—>

(a) Initial step. Spatial-convex tree (left) and the
target region (right).

o

C:[1,2,3,4,5,6,7,8] ¢~ 0" 70, ©° oG

L:[1,2,3,4,5,6] ! 1 !

Axis: C 50 0 0O O O O O

Splitting index: 4 1 . \

4l
3} IO ? [o]] o O O O:
.23 [4.5.6,7.8] !] : 2

L [1,2,3,4,5,6] 11,234, %0 O o. © o o O:
Axis: -

S:Ilisllmg index: - 2:0 o of o o o d

r ' 1 1

1

fo_o. o' b o 0.0 o

L 2 3" 4 5 3 7 8

(b) Iteration 1. Spatial-convex tree (left) and its respective
partition (right).

C:[1,2,3,4,5,6,7,8] |I|

L:[1,2,3,4,5,6] - - - - -
Axis: C b [o] 6 6|
1

Splitting index: 4

- - _-Q_0_ O
5 6 7 8
(c) Tteration 2. Spatial-convex tree (left) and its respective partition (right).
607 0" "0, 00" O "0 "0
r
50 O O 0 O O O O
;
=40 00+
Cc:nt, 2,3 Ve e O
3
307 0O 70, =—O0—0O0—"0C—606—
r
20 O O O "O0O"0" O O
3
8 t s t I1oooooooo
C:[1,2, 3] C:[1,2,3] C:[4,5,6,7,8] C:[4,5,6,7,8] 1—01—> 2 3 4 5 6 7 8
L1, 2,3] L:[4,5, 6] L1, 2] L:3,4,5,6]

(d) Final iteration resulting in the spatial-partition tree (left) and its respective partition and
splitting hyperplanes (right).

Figure 5.5 Illustrative construction of a spatial-convex tree with four sub-regions.

75

5.4.3 Sub-tree reconstruction neighborhood

Given a spatial partition tree 7', denote by D(T) the maximum depth of the nodes of T.
Let N(d) be the set of all nodes at the depth d of T" where 0 < d < D(T). The sub-tree
reconstruction neighborhood randomly reconstructs (as explained in Section 5.4.2) a sub-tree
rooted at a non-leaf node n € N(d). Figure 5.6 illustrates a neighboring solution in the right
obtained from reconstructing the sub-tree rooted at the grey node (in depth 0) of the spatial

partition tree in the left.

C:[1,2,3,4,5,6,7,8]
L:[1,2,3,4,5,6]
Axis: C

Splitting index: 4

c:[1,2]

r
C:[4,5,6,7,8] :
L:[1,2] 3,

Figure 5.6 Neighboring solution (right) obtained from a spatial partition tree (left) in the
sub-tree reconstruction neighborhood.

5.4.4 Splitting hyperplane reallocation neighborhood

Given a spatial partition tree 7" and a node n that is a parent of a leaf node, this neighborhood
includes all feasible solutions obtained by reallocating the splitting hyperplanes of the non-
leaf nodes of the sub-tree rooted in n (named 7),). Furthermore, such reallocation is made
changing the splitting index (component “Splitting index”) and/or the axis orienting the
hyperplane (component “Axis”). Only feasible changes of the splitting index are allowed in
order to avoid nodes associated with empty portions of target region. Unlike the sub-tree
reconstruction neighborhood, the splitting hyperplane reallocation neighborhood does not
restrict n to be a node in a specific depth 0 < d < D(T). Moreover, it keeps the depth of
the resulting sub-tree rooted in n equal to that of the original sub-tree. Figure 5.7 illustrates
that procedure in which the splitting index of the (colored) node n (on the left) is changed
to originate the neighboring tree on the right.

76

C:[1,2,3,4,5,6,7,8]
L:[1,2,3,4,5,6]
Axis: C

Splitting index: 3

C:[3,4,5,6,7,8] C:[3,4,5,6,7, 8]

L:[1,2,3] r L:[1,2 3,4, 5] ra
Axis: C C:[3,4,5,6,7,8] Axis: © C:[3,4,5,6,7,8]
Splitting index: 2 | | [4 5, €] Splitting index: 2 | (L [6]
Hﬁ
rs I rs I
C: [3] C:[4,5,6,7,8] C:[3] C:[4,5,6,7,8]
L:[1,2,3] L:[1,2,3] L:[1,2,3,4,5] L:[1,2,3,4,5]

Figure 5.7 Neighboring tree (right) obtained from a spatial partition tree (left) in the splitting
hyperplane neighborhood.

5.4.5 Sub-region transfer neighborhood

This neighborhood encompasses all solutions obtained by transferring one sub-region assign-
ment (r;,d;) from a drone d; to a drone d; such that ¢ # j. In Figure 5.8, the transfer of the
sub-region r3 from drone d; to drone ds generates a neighboring solution according to the

sub-region transfer neighborhood for a reliability factor o equal to two.

dq: ra r r3 dq: r M

da: r da: r r3

Drones
assignments

Drones
assignments

dj: rs ra ds: r3 r2

A\ 4
A\ 4

Completion Completion
time time

Figure 5.8 Neighboring solution (right) obtained from a spatial partition tree (left) in the
sub-region transfer neighborhood for o = 2.

77

5.4.6 Sub-region swap neighborhood

Given a solution, its neighbors in the sub-region swap neighborhood are obtained by the
swap of sub-regions assignments (r¢,d;) and (7, d;) between drones d; and d;. Such swap
yields the sub-region assignments (74, d;) and (rp,,d;). An example of neighboring solution
(for 0 = 2) in the sub-region swap neighborhood is given in Figure 5.9, where the assignments

(re,ds) and (r1,dy) are swapped between drones d3 and dy.

dq: ra rs dq: r2 r3

Drones
assignments
Drones
assignments

d3: fy r2 d3: Ty r

d,: r3 r dy: r3 r2

A\ 4
A\ 4

Completion Completion
time time

Figure 5.9 Neighboring solution (right) obtained from a spatial partition tree (left) in the
sub-region swap neighborhood for o = 2

5.4.7 Computation of the processing time and transmission data

In order to efficiently explore the neighborhoods during VNS’ local descent, it is important
to adequately compute the photo processing time of a sub-region and the amount of data
involved in the data transfers between drones. Given the boundaries of a sub-region and
the drone d € D dealing with the reconstruction of that sub-region, this information can be

computed in constant time as follows.

The computation of the photo processing time of a sub-region is based on the sets of photos

78

Sleft - gright =GP - Gdown for ¢ € C' and ¢ € L. Thus,

St = {p € Pling(p) < Ing(c)}, (5.22)
S = {p € Pling(p) > Ing(c)}, (5.23)
S;? = {p € P|lat(p) < lat(¢)}, (5.24)
Sdown = L € Pllat(p) > lat(()}, (5.25)

where lat() and Ing() stand for the latitude and longitude respectively. Thus, S/* encom-
passes all photos on the left of ¢ whereas S”%9" contains the photos on the right of c¢. Similarly,

S,” groups the photos above £ and S%°*™ the photos below /.

We define T'(P) as the overall processing time of all photos in a set P C P such that

T(P)=>_\. (5.26)

pEP

Finally, let c., ¢, ¢y, £, represent, respectively, the left, the right, the bottom (inferior), and
the top (superior) boundaries of a sub-region r. The photo processing time 7" of a sub-region

r delimited by c., ¢s, ¢, and ¢, is then given by
T =T {p € P|ing(cc) <lng(p) <lng(cs) , lat(ly) < lat(p) < lat(fr)}).

Equivalently, one may subtract the processing times of the photos outside the sub-region r

from the overall processing time T'(P), i.e.,

T" =T(P) - T(S" U SI9"™ U sfom U Sg7). (5.27)

Now, for each pair (c,f) € C x L, let us define Ql,, Q%, Q3,, Q2 respectively, as the set of
photos lying in the first, second, third, and fourth quadrants concerning Ing(c) and lat({),

which are expressed as

QL = {p € P|Ing(p) > Ing(c),lat(p) > lat({)}, (5.28)
Q% = {p € P|Ing(p) < Ing(c),lat(p) > lat({)}, (5.29)
Q% = {p € P|Ing(p) < Ing(c),lat(p) < lat(¢)}, and (5.30)
QL =1{p € P|Ing(p) > Ing(c),lat(p) < lat({)} . (5.31)

79

Thus, it is possible to express equation (5.27) as

T — T(P) o T(sleft) o T(Sﬂ‘ight) . T(sdown) . T(Suf)

(5.32)
+T(QC>eA) +T(C<ZA) +T(C<£V) + T(QC>ev)

Given the boundaries of a sub-region r, equation (5. 32) allows to compute T" based only

on the processing times of S/, Sright = Ggown "GP Q1 , Q2 , . Q% , Qi and T(P).
By precomputing these values in time O(|C| - |L| - |P|) (equiv. O(|P]?), there is no need of

keeping in memory the index of photos belonging to r. Thus, the photo processing time of

any sub-region r can be computed by (5.32) in constant time O(1).

Likewise, the amount of data u/¢ on a certain data transmission f#¢ € F' concerning only the
sub-region r can be computed by a closed form expression. Given the transmission demand
f and a set of photos P , let u"¥(P) be the amount of data in P exchanged from drone h

to the drone d, where d is the photo-processing drone of P, which is expressed as
P = 3 Oyt (5.33)
pEP

Since the boundaries of the sub-region r and the transmission demand f"* are known, the

p can be computed by the equation

wt = " ({p € P|ing(cc) < Ing(p) < Ing(cs) , lat(ly) < lat(p) < lat((x)})
pht = phd(P) — i Siift Srzght U Sdawn U 527
M:«Ld — ,LLhd(P) . hd(Sleft) . hd(Smght> hd(Sdoum) hd(S;Ap)
+ pM(C>€/\) + 1" C<4A) + M C<zv) + C>zv) (5.34)

The terms within the equation (5.34) can all be precomputed in time O(|D|* - |C] - |L| - | P|)
operations (equiv. |D|?-|PJ?). Thus, given the boundaries of the sub-region r, the amount

of data exchanged in f" is obtained on constant time.

Note that both equations (5.32) and (5.34) are suited to the way sub-regions are represented
by a spatial partition tree. It only suffices to know the boundaries of a sub-region to query
the terms in (5.32) and (5.34).

5.4.8 Proposed VNS heuristic

According to Algorithm 3, we need to define how to create an initial solution as well as the

diversification and intensification steps. These are described in the following.

80

Initial solution

The initial solution is created by (i) randomly building a spatial-partition tree with D sub-
regions (as defined in Section 5.4.2); and by (ii) randomly assigning the obtained sub-regions
to the set of 3D-capable drones D according to the reliability factor o. Thus, each 3D-capable

drone has at least one sub-region to process.

Diversification step

The diversification step uses the sub-tree reconstruction neighborhood. The VNS parameter
k establishes the depth from which a node will be selected in the spatial-partition tree T
More precisely, a node from depth D(T') —k is randomly selected to be reconstructed. Finally,

we adopt a kg, equal to one and k4, equal to the D(T') of the current best solution.

Intensification step

Our local descent method is a Variable Neighborhood Descent (VND) [146]. The proposed
VND minimizes Ty, by sequentially exploring the sub-region transfer, sub-region swap, and
splitting hyperplane reallocation neighborhoods. In order to accelerate the local searches, we
limit neighborhood exploration to transfer/swapping/reallocation of sub-regions assigned to
the set of drones, named D, holding the incumbent longest total processing time. That
is, Dpax comprises the drones whose total photo-processing time is equal to the makespan
(Tmax)- By denoting Ry, as the set of all sub-regions assigned to drones d € D C D, the local

searches are implemented in such a way that

i N - sub-region transfer: switches sub-regions r € Rp___ to other drones d € D —
Dinax. The size of this neighborhood is bounded by O(|Rp....| X |D — Duae|).

ii N> - sub-region swap: only considers sub-region swaps (r;, r;) such that r; € Rp, ..

Consequently, this neighborhood has ©(|Rp,,...| X |Rp_p,,..|) neighboring solutions.

iii V3 - splitting hyperplane reallocation: for each n € Np where Np_, is com-

posed by the parent nodes of leaf nodes representing the sub-regions r € Rp, . , this
neighborhood reallocates the splitting hyperplanes (i.e., their positions and/or orien-
tations) of non-leaf nodes in the sub-tree rooted at n (denoted 7),). Let us define
L, and C,, as the set of enclosed latitudes on axis L and longitudes on axis C at
node n, respectively. In the worst case, the size of this neighborhood is limited by
O (Zne Npp ([L + |C’n|)‘NT"|), where N7, is the set of non-leaf nodes in the sub-tree

T,.

81

Employing such sequence of neighborhoods grants higher priority to adjustments in the sub-
region to drone assignments, which are encompassed in smaller neighborhoods that cause
less changes to solution’s structure.

Besides minimizing the latest processing time 7T,.x, the local searches seek solutions respect-

thd of all active

ing the maximum allowed transmission time 7. Thus, the transmission times
transmission demands f"¢ € F must be at most 7' (according to constraints (5.3)). This

means that we need to check whether
thd <7 vyfhdep (5.35)

in order to define if a neighboring solution is feasible. Further, the transmission times t"? are

computed by the equation
thd _ /fid _ Yrery M?d
- phd - hd

As described in Section 5.4.7, likewise the processing times T, it is possible to compute z"? in

(5.36)

constant time. However, computing ¢"¢ means solving an MMF rate allocation problem. Due
to the fixed tree topology, one can solve an MMF rate allocation problem in O(|D|?*x (| D|—1))
employing the water filling method [79].

Algorithm 4 describes the local search used in this paper. It uses a first improvement explo-
ration strategy, which pursues the first improvement direction in the local descent method.
Limited computational experiments revealed that a best improving strategy in which the local
descent used the best estimated improving direction was not better than its first improving
counterpart. The algorithm requires an initial solution x and a neighborhood N; as input and
return the local optimum w.r.t. NV;. Also, let us define ® as the hash table mapping a set of
active transmission demands F to its respective MMF rate allocation ¢. This data structure
accelerates the local search since it prevents the method from solving the same MMF rate
allocation problem more than once for the same set of active transmission demands. Finally,
let us define the function Ti,ax(+) to return the makespan (i.e., latest completion time) of a

solution in its argument.

Regarding Algorithm 4, step 1 initializes the flag Stop to false. While the local optimum
is not reached (steps 2-18), the local search explores the neighboring solutions o’ € N;(z)
(steps 4-17). If for neighboring solution &' Tiax(%') < Tmax(x) (steps 5-16), the algorithm
proceeds to checking whether 2’ has feasible transmission times associated with it according to
expression (5.35). First, it identifies the active demands I in 2’ (step 6). A demand between
a pair of drones is active if there exists any data to be exchanged between them (Section
5.2.1). Thus, step 6 checks whether p¢ = > oreRy phd > 0 for each f* € F. Then, it

82

Algorithm 4 Local search using first improvement search strategy.

Require: z and N,
1: Stop < false;
2: while not Stop do
3 Stop < True;
4 for all 2’ € NV (x) do
5 if Thax(2') < Tinax(z) then
6: identify the active demands F'(a');
7: if A ®(F(2')) then
8
9

O(F () < water filling algorithm(F(x');

: end if
10: T + compute communication delays (®(F(z')), u(z"));
11: if t"" <T V" € T then
12: Stop <+ False;
13: x <1
14: break;
15: end if
16: end if

17: end for
18: end while
19: return z;

computes the MMF rate allocation problem for F' (through the water filling algorithm) if
and only if F is not already a stored key of ® (steps 7-9). The set of communication
delays T = {t"|f"* € F'} is computed in step 10 according to the equation (5.36) given the
transmission rates ®(F(2')) and the amount of data pu = {u"?|f*4 € F} in solution 2’. If 2/
has all communication delays t"@ € T smaller or equal to 7' (steps 11-15), the local search (i)
marks = as sub-optimum (step 12); (ii) sets =’ as the new x (step 13), and (iii) breaks the
for loop to explore the neighborhood w.r.t. the new incumbent z (step 14). Once reached,

the local optimum concerning N; is returned in step 19.

Finally, the proposed VND is summarized in Algorithm 5. In the steps 2-5 of the algorithm,
we choose the initial value of ¢ according to the reliability factor (o) used. It is set to t = 1
for 0 > 1 and t = 2 otherwise. That is, the local search applying the sub-region transfer
neighborhood (N7) is used only for instances with o > 1 since it cannot find better solutions
for 0 = 1. This is due to the fact that each 3D-capable drone must have at least one sub-
region assigned to it. The VND proceeds by applying the local searches according to the
current neighborhood N; until it reaches the local optimum w.r.t. all neighborhoods in N
(steps 6-17). Each new solution z” (obtained at step 7 by Algorithm 4) with better Ti.x

than 2’ is kept and ¢ is reset likewise steps 2-5 (steps 8-13). Otherwise, t is increased by one

83

Algorithm 5 Variable Neighborhood Descend (VND) for the CAPsac

1: N = {sub-region transfer, sub-region swap, splitting hyperplane reallocation }
2: t+1

3: if 0 =1 then

4: t+ 2

5. end if

6: repeat

7: x” + perform LocalSearch(z’, V;);
8: if Thax (") < Thax(2) then

9: '« a”;

10: t+—1

11: if 0 =1 then

12: t<+ 2

13: end if

14: else

15: t+—t+1;

16: end if

17: until ¢ > 3

(steps 14-16), and the algorithm iterates.

5.5 Computational experiments

Our experimental analysis aims to evaluate (i) the effectiveness of the decomposition strat-
egy; (ii) the effectiveness of employing different neighborhoods in our variable neighborhood
method; and (iii) the performance of the proposed methods and sensitivity regarding both the
reliability factor o and the maximum transmission time allowed 7. We used CPLEX v12.10
as general-purpose integer linear programming solver and C++ as programming language
compiled with gece v5.4.0. All experiments were carried exploiting a single core on a machine
powered by an Intel E5-2683 v4 Broadwell 2.1GHz with 20Gb of RAM, and running the
CentOS Linux 7.5.1804 OS.

5.5.1 Instances and notation adopted

Our experimental analysis is carried on the instances proposed in [124] (available at https:
//github.com/ds4dm/CAPsac). All instances are based on realistic data and comprise two
scenarios: (i) one in which all photos are processed in the same amount of time A, named
unweighted; and (ii) another one in which each photo has a different processing time A,
named weighted. The name of the instances follows the notation X-PYDZ%D W where “X”

84

is “u” for the unweighted instances and “w” for the weighted instances, “Y” stands for the
number of photos in the instance, “Z” specifies the number of drones in the swarm, and
“W” informs the percentage of drones able to perform 3D reconstruction. Remark that the
number of 3D-capable drones (|D|) is always equal to {Z X %OJ. The characteristics of the
tested instances are listed in Table 5.2.

Optimal makespans are obtained by solving the CAPsac formulation [124] with CPLEX
within one day of execution. Whenever CPLEX is not able to prove optimality within this
time horizon, the best feasible solution obtained in [124] is reported instead, which is indicated
by an “x” in the tables. Average and best results are then computed according to that best

known solution.

5.5.2 Effectiveness of the decomposition strategy
This section assesses the effectiveness of the decomposition strategy exploited by the proposed
decomposition-based heuristic.

Tables 5.3 and 5.4 report for each instance (named under column “Instance”) the following

values regarding the optimal (or best known) solutions:

the smallest cardinality found among the sub-regions (column n;);

the largest cardinality found among the sub-regions (column 7});

the cardinality of the sub-region which yields the makespan (column n?,,.);

the associated makespan value (column OPT).

Further, we report the percentage deviations (columns “Dev.(%)”) achieved by the com-
plete 7C APsac formulation and the decomposition method with respect to the best known
makespan. We also report the total computing CPU times spent by both methods under
column (“sec”). Finally, concerning the decomposition-based heuristic, we report the last
interval [ng, n,] used before the algorithm is halted by its stopping condition. For all exper-

iments, we set a time limit of 2 hours for the MILP formulation solved by CPLEX in each

Table 5.2 Characteristics of the tested instances.

Images(P) 200, 400, 500, 750, 1000
Drones(D) ~15,7,10,15
%3D-capable drones(%D) | 50%, 70%, 90%

85

iteration of the decomposition-based heuristic, and 24 hours as maximum time for solving
rCAPsac by CPLEX. A trace (“—7) is reported whenever CPLEX is not able to find a feasible

solution within this time limit.

Table 5.3 Percentage deviations of the complete rC' APsac formulation and the decomposition
method when solving unweighted instances.

oc=1, T = 00, stop condition= 86400s rCAPsac Decomposition

Instance ny o onkonko opPT Dev.(%) sec. ng ny Dev. (%) sec.

uw-P200D5%D70 65 70 70 1870.40 0.00 179.37| 64 72 0.00 0.28
u-P200D7%D50 60 70 70 1870.40 0.00 548.55| 64 T2 0.00 0.50
u-P400D5%D70 132 135 135 3607.20 0.00 6996.32|128 140 0.00 1.04
u-P400D7%D50 130 135 135 3607.20 0.00 11355.80(128 140 0.00 1.55
u-P200D5%D90 50 50 50 1336.00 0.00 244.25| 49 51 0.00 0.11
u-P200D7%D70 50 50 50 1336.00 0.00 256.03| 49 51 0.00 0.23
u-P400D5%D90 100 100 100 2672.00 0.00 9346.54| 99 102 0.00 0.46
u-P400D7%D70 100 100 100 2672.00 0.00 45059.71| 99 102 0.00 0.55
u-P200D10%D50 40 40 40 1068.80 0.00 1838.53| 39 42 0.00 1.46
u-P400D10%D50 80 80 80 2137.60 0.00 43171.40| 78 81 0.00 5.44
u-P200D7%D90 30 34 34 908.48 0.00 1901.86| 28 38 0.00 8.00
u-P400D7%D90 60 68 68 *1816.96 32.35 86400.00| 64 70 1.47 13.28
u-P200D10%D70 24 30 30 *801.60 33.33 86400.00| 27 32 0.00 115.18
u-P400D10%D70 50 60 60 *1603.20| 300.00 86400.00| 54 63 -3.33 2013.98

u-P500D15%D50 70 72 72 1923.84 - 86400.00| 69 75 0.00 333.59
uw-P750D15%D50 108 117 117 *3126.24 - 86400.00/104 110 -7.69 262.73
u-P1000D15% D50 143 144 144 *3847.68 - 86400.00 (136 145 0.00 7434.67
u-P200D10%D90 18 24 24 *641.28 8.33 86400.00| 21 25 0.00 3366.98
u-P400D10%D90 42 45 45 1202.40 - 86400.00| 42 46 0.00 3262.06

The decomposition strategy proves effective and yields equivalent or better deviation values
than solving the complete rC' APsac formulation by CPLEX within the defined time limit. In
fact, it is able to find a best known makespan for several instances, as indicated by the neg-
ative deviations in the table. However, for a couple of instances, i.e., (“u—P400D7%D90”,
“w—P200D7%D50”, “w—P400D10%D50”, “w—P200D10%D707), the decomposition algo-
rithm is not able to attain the best known solutions obtained in [124]. For those cases — with
percentage deviation greater than zero, we observe that the intervals [ng, n,| must be increased
to allow subsets of photos whose cardinalities are out of the defined bounds. For example,
for instance u—P400D7% D90, the best known solution contains a sub-region with 60 photos
while the last iteration of the decomposition method was executed for [ng,n,| = [64,70].
Finally, the decomposition method demands significant smaller execution times than solv-
ing the complete rC'APsac formulation by CPLEX as well as, in general, the formulations
in [124].

86

Table 5.4 Percentage deviations of the complete rC' A Psac formulation and the decomposition
method when solving weighted instances.

o=1T= 00, stop condition= 86400s rCAPsac Decomposition

Instance ny nhonk . opT Dev.(%) sec. ng ny Dev. (%) sec.
w-P200D5%D70 65 70 70 1886.98 0.00 242.54] 64 72 0.00 0.36
w-P200D7%D50 60 70 70 1885.31 0.00 784.93] 64 72 3.26 0.39
w-P400D5%D70 130 135 135 3735.32 0.00 10209.88]128 140 0.00 1.21
w-P400D7%D50 130 135 135 3773.12 0.00 5987.39|128 140 0.00 1.93
w-P200D5%D90 50 50 50 1409.48 0.00 212.44| 49 51 0.00 0.30
w-P200D7%D70 50 50 50 1399.82 0.00 802.39| 49 51 0.00 0.56
w-P400D5%D90 100 100 100 2812.93 0.00 21189.45| 99 102 0.00 0.57
w-P400D7%D70 100 100 100 2791.66 0.00 40872.49| 99 102 0.00 1.49
w-P200D10%D50 40 40 40 1121.89 0.00 9106.51| 39 42 0.00 13.92
w-P400D10%D50 72 88 88 2290.48 0.00 40443.02] 78 81 1.15 34.01
w-P200D7%D90 30 35 35 944.06 0.00 8669.90| 28 38 0.00 17.77
w-P400D7%D90 60 75 75 *1909.18 19.17 86400.00| 63 72 -0.94 25.17
w-P200D10%D70 26 30 30 820.40 0.00 62142.01| 27 32 0.29 1086.76
w-P400D10%D70 56 63 60 *1671.12| 123.18 86400.00| 55 62 -2.30 7232.05
w-P500D15%D50 66 78 72 *2028.11 - 86400.001 69 75 -2.40 1791.89
w-P750D15%D50 96 119 117 *3138.73 - 86400.00(102 112 -4.91 2562.77
w-P1000D15%D50 132 160 160 *4343.26 - 86400.00(135 147 -9.80 7762.67
w-P200D10%D90 18 24 24 *665.54 20.03 86400.00| 19 27 -2.85 15655.03
w-P400D10%D90 40 50 50 *1302.82 - 86400.001 39 49 -2.89 9645.66

5.5.3 Effectiveness of the neighborhoods

To assess the sequence of neighborhoods in our proposed VND, we compare the performance
of distinct neighborhood configurations — Np, N7 + Ny, Ny + N3, N7 + Ny + N3 — within
our proposed VNS method, where N refers to the sub-region transfer neighborhood, N5
refers to sub-region swap neighborhood, and N refers to the splitting hyperplane reallocation
neighborhood.

Tables 5.5 and 5.6 report the results of the unweighted and weighted instances, respectively.

For each “Instance” and reliability factor “o”, the column “MIN.” presents the shortest
makespan found across all neighborhood configurations. The average percentage deviation

from “MIN.” achieved by each neighborhood configuration is reported in columns “Avg(%)”.

The results are computed for 20 executions of the VNS-based heuristics within 300s of CPU
execution time. These experiments are conducted over different reliability factors ¢ > 1
so as that the sub-region transfer neighborhood could be evaluated. Moreover, we do not
present results for instances with fewer than five 3D-capable drones since all neighborhood

configurations performed equivalently.

87

Table 5.5 Percentage deviations of employing distinct neighborhoods in the VND when solv-

ing unweighted instances.

A

T = o0, stop condition= 300s

VNS

Nl Nl +N2N1 +N3N1+N2+N3

Instance o MIN. Avg.(%) Avg.(%) Avg.(%) Avg. (%)
2 2137.60 0.00 0.00 0.00 0.00

u-P200D10%D50 3 3206.40 0.00 0.00 0.00 0.00
4 4275.20 0.00 0.00 0.00 0.00

2 4275.20 0.00 0.00 0.00 0.00

u-P400D10%D50 3 6412.80 0.00 0.00 0.00 0.00
4 8550.40 0.00 0.00 0.00 0.00

2 1790.24 0.00 0.00 0.00 0.00

u-P200D7%D90 3 2672.00 0.00 0.00 0.00 0.00
4 3580.48 0.00 0.00 0.00 0.00

2 3580.48 0.00 0.00 0.00 0.00

u-P400D7%D90 3 5344.00 0.00 0.00 0.00 0.00
4 7134.24 0.00 0.00 0.00 0.00

2 1549.76 0.86 0.09 0.00 0.00

u-P200D10%D70 3 2297.92 0.64 0.35 0.35 0.06
4 3072.80 0.04 0.17 0.09 0.04

2 3072.80 0.43 0.52 0.04 0.00

u-P400D10%D70 3 4595.84 0.52 1.98 0.23 0.12
4 6118.88 0.39 0.44 0.39 0.31

2 3847.68 0.42 0.62 0.00 0.00

u-P500D15%D50 3 5744.80 0.56 1.23 0.23 0.05
4 7641.92 0.89 0.77 0.70 0.61

2 5744.80 1.02 1.26 0.44 0.47

u-P750D15%D50 3 8630.56 1.24 0.46 0.26 0.20
4 11489.60 0.64 0.42 0.23 0.16

2 7641.92 1.17 1.01 0.65 0.52
u-P1000D15%D50 3 11462.88 1.42 0.65 0.37 1.25
4 15283.84 0.62 0.64 0.52 0.43

2 1202.40 0.56 0.11 0.00 0.11

u-P200D10%D90 3 1790.24 0.00 0.00 0.00 0.00
4 2378.08 1.12 1.01 1.12 0.96

2 2404.80 0.22 0.11 0.00 0.00

u-P400D10%D90 3 3580.48 0.00 0.00 0.00 0.00
4 4756.16 0.79 0.56 0.53 0.45

Average| 041] 038] 0.9 0.17

88

Table 5.6 Percentage deviations of employing distinct neighborhoods in the VND when solv-

ing weighted instances.

T = 00, stop condition= 300s VNS
Nl N1 +N2 Nl JrNg N1+N2+N3
Instance o MIN. Avg.(%) Avg.(%) Avg.(%) Avg.(%)
2 2212.64 0.18 0.16 0.11 0.06
w-P200D10%D50 3 3314.91 0.16 0.18 0.15 0.16
4 4436.74 0.03 0.02 0.02 0.02
2 4433.53 0.19 0.22 0.08 0.09
w-P400D10%D50 3 6648.11 0.22 0.24 0.13 0.15
4 8901.19 0.01 0.03 0.03 0.02
2 1816.30 0.14 0.16 0.04 0.03
w-P200D7%D90 3 2724.19 0.00 0.00 0.00 0.00
4 3632.45 0.06 0.06 0.03 0.02
2 3697.18 0.11 0.11 0.02 0.02
w-P400D7%D90 3 5545.48 0.00 0.00 0.00 0.00
4 7394.18 0.06 0.06 0.03 0.03
2 1577.87 0.97 0.84 0.40 0.30
w-P200D10%D70 3 2365.78 0.63 0.49 0.43 0.26
4 3155.85 0.66 0.40 0.34 0.33
2 3164.05 0.65 0.91 0.47 0.33
w-P400D10% D70 3 4747.60 0.52 0.35 0.37 0.18
4 6326.53 0.57 0.40 0.35 0.32
2 3902.67 0.79 0.68 0.27 0.27
w-P500D15%D50 3 5852.50 1.33 1.18 0.27 0.21
4 7801.65 0.72 0.54 0.31 0.22
2 5843.52 0.67 0.99 0.28 0.27
w-P750D15%D50 3 8762.21 0.58 0.44 0.32 0.24
4 11679.59 0.70 0.55 0.32 0.28
2 7724.25 1.08 1.04 0.34 0.37
w-P1000D15%D50 3 11590.54 0.58 1.11 0.32 0.21
4 15451.40 0.58 0.36 0.19 0.26
2 1230.42 1.10 1.08 0.66 0.74
w-P200D10%D90 3 1838.98 0.13 0.16 0.02 0.02
4 2454.44 0.51 0.28 0.42 0.22
2 2463.59 1.05 0.69 0.62 0.48
w-P400D10%D90 3 3688.59 0.10 0.13 0.01 0.01
4 4922.46 0.56 0.26 0.30 0.17
Average| 0.47| 043] 0.23] 0.19

89

We can observe that the splitting hyperplane reallocation neighborhood (Aj3) is an important
neighborhood for improving the quality of the solutions obtained by our VNS. This is not
surprising given that it is the only one able to change photo-processing times of sub-regions.
The best results are usually obtained when including the neighborhoods N; and N5 before N
(i.e., N1+ N+ N3 configuration). This happens since the N; + N3+ N3 configuration adjusts
both the sub-region to drone assignments and the sub-region’s photo processing times. In
fact, this configuration yields the best average deviations for 57 out of 66 cases (including
unweighted and weighted instances), i.e., 86.36% of the cases. Therefore, we will consider
hereafter the configuration N; + N5 + N3 within our VNS heuristic.

5.5.4 Comparison of the proposed methods

This section evaluates the performance of the proposed heuristics as well as their sensitivity
with respect to the reliability factor o and to the maximum allowed transmission time T. For
the decomposition-based heuristic (named “Decomposition”), we set a time limit of 2 hours
for the MILP formulation solved in each iteration and the overall execution time of the
decomposition is limited to 24 hours (i.e., 86,400s). In contrast, the VNS was allowed to run
for 300 seconds.

The makespan values in seconds (columns “Ty,.,”) obtained by the proposed methods for the
unweighted and weighted instances are reported in Tables 5.7 and 5.8, respectively. Results
are reported for each instance for various values of o, ranging from 1 to |D| — 1 (presented
under column labelled “o”). A trace (“—") is placed whenever a method cannot find a feasible
solution until before being halted. For this first series of experiments the communication
constraints were relaxed, i.e., T is set to a value sufficiently large. Both tables report the
instance employed at each row (column “Instance”), the optimal/best known makespan for
an instance configuration (column “opT”), the CPU time (in seconds) spent by CPLEX and
the decomposition heuristic when solving an instance (columns “sec.”), the best and average
makespan values found by the VNS heuristic out of 20 executions (column “Best T},.x” and
“AvgTinay”, respectively), and the average CPU time (in seconds) spent by the VNS heuristic

to reach the solution returned at the end of its execution (column “Avg.(s)”).

90

Table 5.7 Makespan(7Tp,.x) in seconds when solving unweighted instances and varying o.

. Decomposition VNS
parameters: T = oo
time limit = 86400s stop condition = 300s
Instance o OPT sec. Trnax sec. Best Tinax Ave. Tinax Avg.(s)
_ 1 1870.40 15.05| 1870.40 0.26/ 1870.40 1870.40 0.01
u-P200D5%D70
2 3607.20 112.83| 3607.20 0.31] 3607.20 3607.20 0.01
_ 1 1870.40 10.25| 1870.40 0.42| 1870.40 1870.40 0.01
u-P200D7%D50
2 3607.20 100.99| 3607.20 0.59] 3607.20 3607.20 0.01
_ 1 3607.20 41.22| 3607.20 1.03| 3607.20 3607.20 0.01
u-P400D5%D70
2 7214.40 539.52| 7214.40 1.14) 7214.40 7214.40 0.02
_ 1 3607.20 68.28| 3607.20 1.50] 3607.20 3607.20 0.02
u-P400D7%D50
2 7214.40 1637.54| 7214.40 1.54] 7214.40 7214.40 0.03
1 1336.00 7.06| 1336.00 0.10] 1336.00 1336.00 0.01
u-P200D5%D90 2 2672.00 1680.46| 2672.00 0.12] 2672.00 2672.00 0.01
3 4008.00 870.76| 4008.00 0.11| 4008.00 4008.00 0.50
1 1336.00 6.41| 1336.00 0.19] 1336.00 1336.00 0.04
u-P200D7%D70 2 2672.00 2296.34| 2672.00 0.26] 2672.00 2672.00 0.01
3 4008.00 1150.97| 4008.00 0.21] 4008.00 4008.00 0.71
1 2672.00 35.02| 2672.00 0.47| 2672.00 2672.00 0.04
u-P400D5% D90 2 *5344.00 86400.00| 5344.00 0.44| 5344.00 5344.00 0.01
3 8016.00 4593.69| 8016.00 0.46| 8016.00 8016.00 4.66
1 2672.00 59.71| 2672.00 0.58| 2672.00 2672.00 0.12
u-P400D7%D70 2 *5344.00 86400.00| 5344.00 0.76] 5344.00 5344.00 0.01
3 8016.00 5954.75| 8016.00 0.79] 8016.00 8016.00 6.29
1 1068.80 38.94| 1068.80 1.46] 1068.80 1068.80 0.08
_ 2 2137.6020602.10| 2137.60 0.71] 2137.60 2137.60 0.15
u-P200D10% D50
3 *3286.56 86400.00/3206.40 1.79/ 3206.40 3206.40 0.17
4 4275.20 56226.05| 4275.20 8.87| 4275.20 4275.20 2.21
1 2137.60 107.68| 2137.60 5.75| 2137.60 2137.60 0.14
_ 2%4275.2086400.00| 4275.20 2.87| 4275.20 4275.20 0.24
u-P400D10% D50
3*6519.68 86400.00/6412.80 3.64| 6412.80 6412.80 0.90
4*8550.40 86400.00| 8550.40 2.93| 8550.40 8550.40 5.27

The table continues on next page

91

Table 5.7 Makespan(T .y) in seconds when solving unweighted instances and varying o (Con-

tinued).

A

parameters: T' = oo

Decomposition

VNS

time limit = 86400s

stop condition = 300s

Instance o OPT sec. Trnax sec. Best Trnax AvE. Tinax Avg.(s)
1 90848 49.52| 908.48 8.12] 908.48 908.48 1.73
2 *1816.96 86400.00{1790.24 17.56| 1790.24 1790.24 (.12
uw-P200D7%D90 3 *2672.00 86400.00| 2672.00 14.76] 2672.00 2672.00 0.01
4 *3607.20 86400.00/3580.48 23.89| 3580.48 3580.48 0.46
5 *4542.40 86400.00|4488.96 444.98| 4488.96 4526.37 21.96
1 *1816.96 86400.00| 1843.68 13.32| 1816.96 1816.96 1.11
2 *3580.48 86400.00| 3580.48 14.69] 3580.48 3580.48 0.31
w-P400D7%D90 3 *5477.60 86400.00(5344.00 15.52| 5344.00 5344.00 0.01
4 *7748.8086400.00|7160.96 2449.49| 7134.24 7134.24 8.05
5 *10688.00 86400.00|8924.48 64.40, 8924.48 9018.00 63.95
1 *801.6086400.00] 801.60 108.54| 801.60 801.60 1.85
2 *1603.20 86400.00{1549.76 1136.86| 1549.76 1549.76 10.43
wP200D10%D70 3 - -| 2297.92 30.52| 2297.92 2299.26 74.77
4 - -| 3072.80 55.08/ 3072.80 3074.14 40.66
5 *4328.64 86400.00|3847.68 597.09| 3847.68 3847.68 17.27
6 *5718.08 86400.00|14595.84 184.89| 4649.28 4670.66 51.14
1 *1603.20 86400.00/1549.76 2183.17| 1549.76 1563.12 64.66
2 - -] 3072.80 16065.91] 3072.80 3072.80 56.34
L PA00DL0%DT0 3 - -| 4595.84 296.30] 4595.84 4602.52 70.87
4 - -| 6118.88 7915.51] 6118.88 6137.58 34.18
5 - -| 7668.64 21612.06] 7641.92 7686.01 62.77
6 - -1 9191.68 5877.11] 9218.40 9352.00 79.74
1 1923.8416185.19| 1923.84 329.20, 1923.84 1959.91 97.38
2 - -| 3847.68 14417.75| 3847.68 3847.68 13.77
L P500D15%550 3 - -| 5744.80 21621.88| 5744.80 5747.47 76.45
4 - -| 7641.92 14412.51] 7641.92 7688.68 36.03
5 - -| 9565.76 14413.03] 9565.76 9611.18 27.35
6 - -|11489.60 8106.20| 11489.60 11696.68 58.85

The table continues on next page

92

Table 5.7 Makespan (7T«) in seconds when solving unweighted instances and varying o (End).

A

parameters: T' = 0o

Decomposition

VNS

time limit = 86400s

stop condition = 300s

Instance o) OPT sec. Trnax sec. Best Tinax Avg. Tinax Avg.(s)
1*3126.24 86400.00/2885.76 270.72| 2885.76 2933.86 52.65
2 - -| 5744.80 17315.08] 5744.80 5771.52 78.88
. PT50D15% 550 3 - -| 8657.28 14419.11| 8630.56 8649.26 91.33
4 - -111462.88 14419.09| 11489.60 11508.30 76.75
) - -114348.64 14421.91| 14428.80 14434.14 3591
6 - -117234.40 14418.32| 17234.40 17485.57 37.64
1*3847.68 86400.00| 3847.68 7424.05| 3847.68 3950.55 64.74
2 - -| 7695.36 14439.34| 7641.92 7682.00 36.38
W P1000D15% D50 3 - - - 86400.00] 11489.60 11605.83 67.56
4 - - - 86400.00] 15283.84 15349.30 76.41
) - -119131.52 14433.69| 19104.80 19234.39 66.49
6 - - - 86400.00, 22979.20 23410.73 112.49
1 *641.28 86400.00| 641.28 3201.67 641.28 641.28 17.94
2 - -1 1202.40 3589.18| 1202.40 1203.74 10.09
3%*2030.72 86400.00/1790.24 297.44| 1790.24 1790.24 0.15
. P200D10%590 4 - -| 2404.80 10993.74| 2378.08 2400.79 1.89
5 - -| 2992.64 1200.84] 2992.64 2992.64 12.98
6 - -| 3580.48 7224.15| 3580.48 3580.48 0.21
7 - -| 4168.32 2382.04| 4168.32 4217.75 43.90
8 - -| 4782.88 7820.39] 4809.60 4817.62 13.23
1 1202.4017470.88| 1202.40 3376.48| 1202.40 1241.14 131.36
2 - -| 2378.08 903.16] 2404.80 2404.80 8.97
3 - -| 3580.48 262.56| 3580.48 3580.48 0.08
W P400D10% 590 4 - -| 4756.16 991.95| 4756.16 4777.54 58.81
) - -| 5958.56 255.96| 5958.56 5975.93 59.92
6 - -| 7134.24 862.01| 7134.24 7134.24 1.96
7 - -| 8336.64 183.60| 8336.64 8379.39 69.29
8 - -1 9512.32 240.45] 9619.20 9619.20 31.49

Table 5.8 Makespan(Ty,.x) in seconds when solving weighted instances and varying o.

. Decomposition VNS
parameters: T' = 0o

time limit = 86400s stop condition = 300s

Instance o OPT sec. Trax sec. Best Tinax Avg. Tinax Avg.(s)

_ 1 1886.98 15.84| 1886.98 0.39] 1886.98 1886.98 0.01
w-P200D5% D70

2 3699.67 172.46| 3699.67 0.37| 3699.67 3699.67 0.02

_ 1 1885.31 22.74| 1946.84 0.41] 1885.31 1885.31 0.03
w-P200D7%D50

2 3740.19 653.34| 3740.19 0.47| 3740.19 3740.19 0.04

_ 1 3735.32 79.99| 3735.32 1.20| 3735.32 3735.32 0.01
w-P400D5% D70

2 T457.00 1988.79| 7458.55 1.22| 7458.55 745855 0.19

_ 1 3773.12 94.42| 3773.12 247 3773.12 3773.12 0.03
w-P400D7%D50

2 7436.46 1464.54| 7436.46 1.53| 7436.46 7436.46 0.26

1 1409.48 212.44| 1409.48 0.26] 1409.48 1409.48 0.08

w-P200D5%D90 2 2735.45 34294.09| 2736.79 0.33| 2735.45 2736.23 0.90

3 %4148.52 86400.00| 4148.52 0.34| 4148.52 4148.52 0.78

1 1399.82 453.18| 1399.82 0.55| 1399.82 1399.82 0.10

w-P200D7%D70 2 2724.20 2647.32| 2726.87 0.50] 2724.20 2725.04 0.40

3 *4105.25 86400.00| 4105.25 0.59| 4105.25 4105.25 3.41

1 2812.93 925.85| 2812.93 0.56| 2812.93 2812.93 0.14

w-P400D5%D90 2 *5555.98 86400.00| 5568.43 0.75| 5555.12 5555.30 13.20

3 *8381.36 86400.00| 8381.36 0.74| 8381.36 8381.36 4.07

1 2791.66 605.48| 2791.66 1.74| 2791.66 2791.66 0.15

w-P400D7%D70 2 *5545.75 86400.00| 5555.17 1.37| 5545.49 5545.51 3.73

3 *8346.83 86400.00| 8346.83 1.43| 8346.83 8346.83 13.77

1 1121.89 3611.52| 1121.89 13.61| 1121.89 1121.89 42.04

_ 2%2222.9786400.00|12216.51 99.52| 2212.64 2213.97 126.59
w-P200D10% D50

3*3329.75 86400.00/3314.91 69.04| 3314.91 3320.12 54.75

4 *4509.50 86400.00(4436.74 19.78| 4436.74 4437.46 76.78

1 2290.48 40443.02| 2316.78 34.98| 2290.48 2290.48 6.50

_ 2%*4591.18 86400.00/4445.09 16.37| 4434.52 4437.33 78.96
w-P400D10% D50

3 *6765.02 86400.00/6650.29 19.40| 6648.11 6657.81 &86.10

4 *9938.25 86400.00/8901.19 73.87| 8901.19 8902.89 58.79

The table continues on next page

94

Table 5.8 Makespan(Ti,.x) in seconds when solving weighted instances and varying o (Con-

tinued).

. Decomposition VNS
parameters: T' = 0o

time limit = 86400s stop condition = 300s

Instance o OPT sec. Trnax sec. Best Trnax AvE.Tinax Avg.(s)

1 944.06 8669.90, 944.06 17.64 944.06 944.06 58.91
2*1838.27 86400.00/1818.19 315.24| 1816.30 1816.84 94.62
w-P200D7%D90 3 *2737.73 86400.00/2724.26 193.49| 2724.19 2724.19 151.52
4%3784.47 86400.00|3633.31 2826.81| 3632.45 3633.19 149.25
5*4952.71 86400.00{4582.94 2834.41| 4585.65 4600.59 133.66

1*1909.18 86400.00{1891.23 04.26| 1891.23 1904.24 125.80
2*3922.21 86400.00/3701.03 319.12| 3697.34 3697.90 113.25
w-P400D7%D90 3 *5567.01 86400.00/5545.72 49.86| 5545.48 5545.48 T78.77
4*9094.33 86400.00/7398.95 7395.50| 7394.18 7396.18 130.84
) - 9302.92 15918.34| 9300.46 9361.46 113.56

1 820.4062142.01| 822.78 1015.08 825.06 825.06 81.79
2 - -| 1577.97 11209.34| 1577.87 1582.31 115.51
3%2446.63 86400.00|2372.45 14413.80| 2365.78 2371.93 149.33
4*4168.27 86400.00|3159.91 8257.01| 3157.05 3165.93 107.74
5*4198.12 86400.00{3945.45 22388.35| 3947.86 3958.33 68.83
6 *5613.12 86400.00/4763.35 5832.36| 4763.35 4809.49 58.26

w-P200D10% D70

1*1671.1286400.00(1632.77 7249.23| 1633.77 1639.62 114.80

2*3303.16 86400.00|3166.70 27629.18| 3164.05 3175.29 134.49

_ 3 4748.65 21612.15| 4747.60 4756.31 127.08
w-P400D10%D70

4*7080.11 86400.00/6335.64 28821.90| 6334.85 6347.79 101.82

5 *8989.29 86400.00/7918.13 21613.88| 7911.42 7943.12 96.72

6 - - 9529.57 21616.77| 9534.57 9630.75 73.83
1*2028.11 86400.00(1979.39 1826.05| 1988.39 2007.95 55.76
2 - - 3905.71 11820.59| 3902.44 3913.18 128.80
_ 3 - -| 5851.96 21620.22| 5855.56 5864.11 144.98
w-P500D15% D50
4 - -| 7800.26 14410.70| 7804.04 7818.67 135.90
) - - 9753.65 28826.40| 9750.66 9790.69 95.56
6 - -11730.98 21619.57| 11776.53 11904.97 112.61

The table continues on next page

95

Table 5.8 Makespan(Tmax) in seconds when solving weighted instances and varying o (End).

. Decomposition VNS
parameters: T' = oo

time limit = 86400s stop condition = 300s

Instance o OPT sec. Tnax sec. Best Thax Ave. Tinax Avg.(s)

1*3138.73 86400.00(2984.54 2474.51| 3008.45 3047.97 105.02
5849.27 7556.80| 5844.06 5858.75 101.48
8767.62 19072.32| 8762.21 8784.29 126.76
11680.18 21624.97| 11679.59 11712.72 144.81
14602.86 19282.36| 14610.90 14665.37 80.64

w-P750D15% D50

2

3

4

)

6 - - - 86400.00] 17665.34 17820.95 130.71
1%*4343.26 86400.00(3917.65 7657.63| 3962.55 4020.12 86.24
2

3

4

5

6

7740.00 14407.20| 7724.25 7752.53 142.33
- - - 86400.00| 11594.43 11614.93 122.14
- - - 86400.00| 15467.11 15493.21 112.32
- -119306.31 11764.35| 19315.50 19383.26 112.98
- -123253.94 14438.73] 23309.74 23647.27 108.75

w-P1000D15% D50

1 *665.54 86400.00| 646.58 15579.50| 659.08 662.94 121.04
- -| 1237.80 21616.32] 1230.42 1239.56 74.07
- -| 1840.77 28840.56] 1838.98 1839.37 104.40
- -| 2460.09 21622.26] 2454.44 2459.90 81.69
- - 3069.42 28825.47| 3067.49 3076.62 90.21
- -| 3678.99 36027.84| 3678.08 3678.69 92.09
- -| 4305.23 21622.02] 4300.25 4330.28 105.68
- -| 4943.87 21621.77| 4954.66 4978.82 73.89
*1302.82 86400.00/1265.11 9770.29| 1270.19 1309.43 105.74
- -| 2468.59 14732.29| 2467.42 2475.52 89.36
- -| 3690.58 21646.61] 3688.64 3689.12 145.47
- -| 4925.60 21659.91] 4924.38 4930.98 105.31
- -| 6151.24 21651.88| 6158.54 6169.61 98.90
- -| 7378.95 21647.51] 7377.22 7378.39 89.97
- -| 8615.73 19407.21] 8611.91 8655.26 101.35
- -1 9893.10 17639.44] 9929.49 9981.36 75.65

w-P200D10%D90

w-P400D10% D90

O N O U = W N[0 Ot W N

We observe from the tables that both decomposition and VNS methods performed well for

96

all instances tested. In fact, both methods find solutions when the exact method fails. In
general, it appears that increasing the reliability factor does not affect the performance of

the proposed heuristic methods.

Furthermore, the decomposition could reach the optimum or improve (values indicated in
bold) the best known makespan (cases with “x” in the column “OPT”) in several instances, ex-
cept for the cases “u-P400D7%D90” (o = 1), “w-P200D7%D50” (o = 1), “w-P400D5%D70"
(0 = 2), “w-P200D5%D90" (¢ = 2), “w-P400D5%D90” (0 = 2), “w-P400D10%D50"
(0 = 1), “w-P200D7%D70" (0 = 2), “w-P400D7%D70"(c = 2), and “w-P200D10%D70"
(0 = 1) for which more iterations without improving the objective function need to be done
by the method in order to be able to obtain best known solutions (as discussed in Section
5.5.2). Otherwise, it kept the percentage deviations w.r.t. the optimum below 1.47% (“u-
P400D7%D90 and o = 1) for the unweighted instances and below 3.26% (“w-P200D7% D50”
and ¢ = 1) for the weighted cases. Moreover, the decomposition method usually requires
considerable smaller execution times than the time spent by CPLEX (first column “sec”) to
find the optima (or the best known solution for the cases with “x”) reported in the column

“OPT”.

Regarding the VNS-based heuristic, it also presented good performance. It is the fastest
proposed method, with average makespan deviation w.r.t. the best known solution always
inferior to 3.22%(“u-P400D10%D90” and ¢ = 1) for unweighted instances, and inferior to
0.57%(“w-P200D10%D70” and ¢ = 1) for weighted ones. Besides, VNS solutions are in
average better than the best known makespan in 42 instances of the instances tested (values

in bold).

Those average makespan values (column “Avg.T},.,”) improvements yield average reduction
of 6.14% and 5.17% for the unweighted and weighted cases, respectively. In particular,
the VNS heuristic is the unique method reaching feasible solutions for the instances “u-
P1000D15%D50” (o € {3,4,6}), and “w-P1000D15%D50” (¢ € {3,4}). Finally, the VNS
heuristic is more reliable in terms of finding near-optimal solutions within a small time horizon

when compared to the decomposition method.

The choice of representing a solution through a spatial partition tree as shown in Section 5.4.2
is very important to simplify the exploration of neighboring solutions. However, such repre-
sentation is not able to represent all the possible spatial-convex covering of the solution space.
For instance, Figure 5.10 illustrates an example of covering (dashed lines) which cannot be
represented by the adopted spatial-partition tree data structure. Representing such covering
would require the use of another data structure. Our VNS explores rather efficiently the

solution space, although it is proven not capable of visiting all the feasible solutions for the

97

CAPsac.
6'O
50
40
30

20

T1O
»

L
+c—>

O O O OXO0 O
«0O O O _0o0_0O0_0
0 O O O 0 O
«s0 O O&0 O O
a0 O O O 050
~0 O O O O O
«x0 O _O_0. L .:0._0

Figure 5.10 Spatial-convex covering which cannot be represented by the adopted spatial-
partition tree data structure.

Regarding the sensitivity analysis of the proposed methods to the parameter T, that is done
by progressively decreasing the value of T by 1 second until the communication delays turn
the problem infeasible. In particular, the experiments are concentrated upon the instances
“u-P200D5%D70” and “w-P200D5%D70” with o = 1. In these instances, the longest com-
munication delays found when executing the decomposition heuristic and the VNS (for 20
runs), when no constraints are imposed to the maximum transmission time (i.e. , T = +00),
vary between 33.6s and 48s. For that reason, the first value of T used in our experiments
was 60 seconds, being decreased by 1 second for each tested T down to 7' = 23s, when both
instances are actually proved infeasible by CPLEX.

Figure 5.11 presents the results of instances “u-P200D5%D70” and “w-P200D5%D70” ob-
tained by the decomposition-based and the VNS heuristics for T € {24s,25s,26s, . ..,59s,
60s}. The figure shows how decreasing T values affect the ability of the proposed methods
to achieve optimal or near-optimal solutions. We used distinct shaded regions in the figure
to represent the different optimal 7, values obtained within the interval of tested T values.
Thus, we can observe for instance “u-P200D5%D70” two shaded regions before the problem
becomes infeasible for 7' < 24s, one in which T, = 2939.20 for T = [24s, 33s], and another
in which T7%, = 1870.40 for 7' = [34s,60s]. The vertical axis “Dev.(%)” in the figure reports

the percentage deviation w.r.t. the optimum 77 . in the shaded region associated with each

value of T tested. Green lines and “e” symbols represent the deviations obtained by the

decomposition-based method (named “Decomp.”) whereas the average deviation achieved by

98

20 runs of the VNS method (denoted by “VNS”) are represented by the orange lines and
empty “077'
u-P200D5%D70

| T =2939.20: T, = 1870.40 VNS
§ § e Decomp.

N

250 30 o35 40 a5 50 55 60

24s 26s 33s T
w-P200D5%D70
35 1 T 3
{Thax = 2980.00 : Ty, = 1934.39 VNS
304 | P iTh, = 188698 e Decomp.

T IeEshlE s

[ValaVaVaVaVaVaValalaln)
I\ I A/ I I

$ FoPPOPOReOeeRH

:25; 30 35° 40 45 1 50 55 60
24s J6s 33s 3Bs T 47s

Figure 5.11 Percentage deviation achieved varying T for instances “u-P200D5%D70” (top)
and “w-P200D5%D70” (bottom).

It can be observed in Figure 5.11 from the unweighted instance that the decomposition-based
method achieves optimality for most of the tested T values except for 27s < T < 33s where
it reaches percentage deviations up to 27.27%. Those high deviations are mainly due to the
T, increase for T < 33s, from 1870.40 to 2939.20. We observed that for 27s < T the initial
bounds n, and n,, of the decomposition method are not good estimates for the cardinalities
of the sub-regions that compose the optimal solutions, and thus, the heuristic is likely to
finish before reaching a near-optimal solution. For 24s < T < 26s, the initial limits n, and

n, lead to infeasible problems until they are large enough to encompass feasible solutions,

99

which were in this case, close to optima. In contrast, the VNS method achieves optimality

for all tested 7" values when solving the unweighted case.

Regarding the weighted case, the decomposition method presents similar behavior as when
solving the unweighted case, and its solution deviation goes up to 28.42% for 27s < T < 33s.
The first 7}},, increase from 1886.98 to 1934.39 (i.e. +2.5%) was not sufficient to affect the
quality of the solution obtained by the decomposition. The VNS only presents small increases
in the average deviation for 36s < T < 47s but they never surpass 1.25%, otherwise the VNS

reaches optimality.

We remark that the VNS method constructs its initial solution in our experiments using
T=+00. This means that the VNS initial solutions may be infeasible in terms of the trans-
mission delays. Our experiments allowed us to observe that the proposed VNS was able to

find feasible solutions even from infeasible starting points.

5.6 Conclusions

We addressed the optimization of the 3D reconstruction step within a swarm-powered 3D
mapping mission according to the so-called Covering-Assignment Problem for swarm-powered
ad-hoc clouds - CAPsac. It minimizes the completion time of the 3D reconstruction photo-
processing phase by exploiting the distributed computational power of the swarm of drones.
This was achieved by integrating the photo covering (workload) optimization along with the

assignment of the drones to the photo processing subtasks (i.e., sub-regions).

Since time is a very precious resource in emergency field operations supported by UAVs, the
limited computation time — in the order of a couple of minutes for the biggest and more
complex instances, we proposed two heuristic algorithms to solve this NP-hard problem in

a limited amount of time (i) a mathematical programming-based heuristic as well as a (ii)
Variable Neighborhood Search method.

Despite the fact that we had focused on a swarm-powered distributed 3D reconstruction for
humanitarian emergency response application, the proposed methods can be deployed to any
application in the CAPsac’s scope. Finally, the methods can be adapted to consider auxiliary

computing resources in addition to those offered by the UAV swarm.

Computational experiments were conducted with the unweighted and weighted realistic in-
stances available online at https://github.com/ds4dm/CAPsac to assess the performance
of the proposed heuristic methods. The experiments exposed that the VNS heuristic either
quickly achieves near-optimal solutions or rapidly improves the best known makespan for

a vast number of instances. The decomposition-based heuristic is also effective in most of

100

the tested cases and is an efficient method when compared to solving the C'APsac formu-
lations by commercial solvers. Although the performance of decomposition-based heuristic
deteriorates for some values of 7' close to infeasibility, the sensitivity analysis done for the
decomposition and VNS methods demonstrated that those methods still perform well when

varying o and T.

Our current work with Humanitas Solutions (https://www.humanitas.io/) is focused on

embedding the heuristics proposed in this paper into real deployed UAV swarms.

101

CHAPTER 6 OptiMaP: SWARM-POWERED OPTIMIZED 3D MAPPING
PIPELINE FOR EMERGENCY RESPONSE OPERATIONS

The advancement of mobile devices capabilities has fostered the creation of the Internet of
Things (IoT) [1] and smart cities [2]. Given their massive amount of data and processing
tasks [3], services providing dynamically scalable and virtualized storage and computing
resources over the internet as cloud computing [4] became crucial. However, cloud computing
solutions are susceptible to high latency and mobility support issues [5]. Edge Computing
(EC) infrastructures are similar to the ones found in cloud computing, but their resources
are located at the edge of the network, e.g., in computational and network resources on the
routing path between the source of the data/processing task and the data centers [6]. EC

solutions arise as a popular alternative to cloud computing by addressing high latency issues.

The capabilities of EC are enhanced by the adoption of Unmanned Aerial Vehicles (UAVs),
which are also referred as drones, given their aerial capabilities and low cost [7-11]. Such
characteristics are further exploited when UAVs cooperate as a fully autonomous swarm.
In swarm robotics, simple agents are coordinated in a decentralized way to realize complex
collective tasks while maximizing the swarm performance and resilience [12]. Naturally,
swarms of drones are applied in a vast list of tasks such as target search and tracking,
surveillance, and mapping [13]. Concerning EC applications, UAV swarming may implement
dedicated wireless networks [14] as well as establish ad-hoc clouds that provides storage and

processing resources [15-18].

Likewise EC technology, UAV swarming is often employed in synergy with digital photogram-
metry [45,46] for applications such as 3D mapping, where a set of aerial images are collected
for a target region so that its 3D model can be reconstructed. In such context, the set of
images required to create the 3D map are usually collected all in parallel by the swarm of
drones. However, the 3D reconstruction process is typically carried in a centralized manner
by a dedicated computer or data center [48-53], being vulnerable to connectivity and latency

issues.

Given the power within the UAV swarm, its distributed resources can be exploited through
the creation of an ad-hoc cloud infrastructure [15-18] in which the 3D reconstruction process
can be performed. In [124], the authors introduced the Covering-Assignment Problem for
swarm-powered ad-hoc clouds (CAPsac) which minimizes the completion time of processing
tasks offloaded to a swarm-powered ad-hoc cloud by jointly optimizing the workload gener-

ation and workload assignment. In the context of a swarm-powered 3D mapping missions,

102

the CAPsac aims to optimally create and allocate the multi-node computing workload that
constitutes the 3D reconstruction process. Given that each computing node reconstructs a
specific sub-region on a specific drone, an optimal solution for the CAPsac defines how to
minimize the completion time of the overall 3D reconstruction process by optimally i) di-
viding the set of images into various sub-regions and then ii) allocating each sub-region to a

certain UAV.

Providing the 3D map of the operation area enhances real-life emergence response applica-
tions since it improves the decision-making and situation awareness during the mission. In
fact, those 3D twin maps enable first responders to expose threats as damage in roads and
buildings or dangerous zones [54-57]. In such operations, each minute is critical and it is
crucial to build 3D maps as quickly as possible regardless of internet connection. Yet, by
efficiently constructing 3D maps of the target region to emergency responders, we also release

UAVs to perform other crucial tasks for the first response operation.

In this chapter, we propose and deploy the swarm-powered Optimized 3D Mapping Pipeline
(OptiMaP) for emergency response operations. The OptiMaP allows the 3D reconstruction
process to be distributed across the swarm members instead of relying on an unique central

workstation as done in [47-53].

The next section describes the OptiMaP for emergency response missions. In the sequel,
each step in the OptiMaP is described: Section 6.2 presents the waypoint generation process;
Section 6.3 explains the multi-UAV photo collection step; Section 6.4 describes the work-
load generation and allocation mechanism as well as the heuristics adopted for solving it;
Section 6.5 presents the distributed 3D reconstruction phase. Finally, Section 6.6 shows and
analyses the deployment of the 3D mapping missions in a realistic simulator, while Section 6.7

outlines our conclusions.

6.1 Swarm-powered optimized 3D mapping pipeline

OptiMaP is built with the Robotic Operating System (ROS) framework [150], and employs
a ground station ROS node in addition to the ROS nodes for the drones. Besides dealing
with centralized tasks within the pipeline, the ground station is the interface with the user
— it allows the user to setup and supervise the mission, and provides the resulting 3D
maps. In order to define the underlying ad-hoc wireless network connecting the drones,
OptiMaP uses the Heterogeneous Embedded Ad-hoc Virtual Emergency Network (HEAVEN)
middleware [151].

The swarm-powered OptiMaP for emergency response operations can be decomposed into

103

four main steps (illustrated in Figure 6.1):

1. Waypoint generation: Global Positioning System (GPS) coordinates are defined by
a ground station to guide the UAVs during the photo collection step. Each waypoint

represents a photo shooting location in the target region;

2. Multi-UAV photo collection: the UAV swarm cooperates to capture all photos

following the generated waypoints.

3. Optimized workload generation and allocation according to CAPsac: the set
of photos is split into sub-regions, and each sub-region (i.e., subset of photos) is assigned
to a UAV according to the CAPsac [124] optimization.

4. Distributed 3D reconstruction: the workload created in the previous step is of-
floaded to the assigned UAVs. Once a UAV lands at its landing position, it performs

the 3D reconstruction of its assigned sub-regions.

Besides employing the UAV swarm for cooperative photo collection, our pipeline exploits the
swarming ad-hoc cloud infrastructure during the whole 3D reconstruction procedure. Thus,
OptiMaP is resilient to latency and connectivity issues and speed-ups the creation of the 3D
model of the target region. At the end of the process, the digital replica of the target region
is available for the first responders in the ground station. Next, we detail each step of the

OptiMaP pipeline.

6.2 Waypoints generation

The image-based 3D reconstruction process requires photos taken from various perspectives
of the region of interest in order to create the correspondent 3D model. This step generates
the waypoints — GPS coordinates which define where those photos must be taken — required
to portray the whole target region. Since the resulting 3D model heavily depends on its input
photos, generating waypoints that leads to a good 3D model is crucial for the success of the
3D mapping mission. When generating waypoints, parameters as perspective, lens quality,
overlap, coverage, and object geometry affect the number of photos required to produce 3D
maps with good resolution [87,96]. The same amount of waypoints may be appropriate to

regions of interest with different dimensions when adjusting those parameters [57].

Among those parameters, the overlaps are important for the 3D reconstruction since they
define how much the photo footprints (i.e., area captured by a photo) may overlap between

each other. Large overlaps improve the resulting 3D model but may require more photos to

104

Waypoint
generation

Multi-UAV photo
collection

Optimized
workload
generation and
allocation

Distributed 3D
reconstruction

Figure 6.1 OptiMaP pipeline.

capture the whole region of interest. Usually, good values of overlaps range between 60% and
80% [96]. A simple way to fulfill both overlap and region coverage constraints is to generate

waypoints on a grid pattern [152].

Given a convex polygon delimiting the region of interest and an overlap 6 (in percentage),
one can construct a grid of waypoints such that the resulting photo footprints covers the

region of interest while respecting 6 [152]:

1. construct the rectangular bounding box encompassing the region of interest;

2. place waypoints in a grid pattern along the rectangular bounding box starting from its
superior left vertex. The distance A, in meters between two consecutive waypoints in

the same row is defined by
A, =w— — (6.1)

where w is the width in meters of the photo footprint [96]. The spacing A, (in meters)

105

between two rows is obtained according to

100 — 0
100

A, = (6.2)

where ¢ corresponds to the length in meters of the photo footprint [96];

3. remove created waypoints lying outside the convex polygon which delimits the region

of interest.

In OptiMaP, we perform the described waypoints generation step at the ground station.

6.3 Multi-UAV photo collection

Once the waypoints were created by the ground station, they can be assigned to drones
for the photo collection step. A long list of task assignment methods were proposed in the
literature [44]. A swarm of drones benefits from decentralized task allocation methods given
their dynamic nature [44]. Since those methods require specific techniques to consider the
unpredictable behavior of the UAV swarm (e.g., [153-156]), which is beyond the scope of
this chapter, we adopt a simple deterministic method to assign the defined waypoints to the

swarm drones.

Given a set of drones D, let us denote by W = {wy, ws, - -+ ,w,} the set of waypoints created
during the waypoints generation step such that waypoints w € W are ordered according to

their creation time. Also, let ny be the number of waypoints assigned to a drone d € D.
The waypoint assignment method assigns % waypoints per drone, i.e., ng = %
drones d € D in such a way that each waypoint is assigned to exactly one drone. Whenever

|W| is not divisible by |D|, the drones are assigned to either [%W or H%H waypoints. The

first |W| — |D| [%J drones have ng = [%1 waypoints whereas the remaining drones have
W]

ng = {WJ Finally, starting from the first drone in D and the first waypoint in W, the

method sequentially assigns ng waypoints to each drone d € D. This process is repeated

for all

until all waypoints are assigned.

Once all waypoints are assigned to a drone by the ground station, the drones take off from
their landing position and start the photo collection. Naturally, a drone returns and lands

at his landing position when it has collected all of its assigned photos (waypoints).

The deterministic nature of that method allows us to use the exact same scenario when com-
paring distinct heuristic strategies used in the optimized workload creation and generation
step (Section 6.4).

106

6.4 Optimized workload generation and allocation according to CAPsac

We address the exploitation of the swarm-powered ad-hoc cloud by casting the 3D recon-
struction processing task as an instance of the CAPsac. This approach promises to yield large
improvements in the 3D reconstruction completion time when compared with centralized 3D

reconstruction procedures.

Given the photos P that were captured along waypoints W to portray the target region, the
CAPsac is a NP-hard problem that minimizes the completion time of the 3D reconstruction
process (presented in the following section) by jointly computing (i) the optimal covering
of photos, i.e., the splitting of the target region into multiple convex sub-regions, and (ii)
the optimal sub-region-to-drone assignments [124]. A CAPsac solution, thus, renders how to
parallelize and distribute a 3D reconstruction task across (8D-capable) UAVs by decomposing

it into small 3D reconstruction sub-tasks.

CAPsac deals with two main constraints when optimizing workload generation and alloca-
tion [124]:

1. the sub-regions must form a spatial-convexr covering, i.e., the union of all sub-regions
(subset of photos) is equal to the target region (P) and each sub-regions is a spatial-
conver set — all photos lying inside the set’s convex hull are allocated to that same

sub-region;

2. the transmission of data among the drones must follow the Maz-Min Fairness (MMF)

rate allocation paradigm [79], and the communication delays cannot exceed T seconds;

The communication delays must be addressed since the photos are scattered across the drones’
hard drives and a 3D reconstruction sub-task cannot start until the responsible drone has
all photos that are part of the sub-task (i.e., sub-region reconstruction). As a consequence,

drones exchange photos between each other to complete their assigned sub-tasks.

CAPsac accounts for the transmission delays by establishing TCP sessions on top of a single
tree topology. Naturally, the MMF paradigm is adopted for the transmission rates allocation
since it approximates the TCP protocol behavior [82]. The TCP rate allocation mechanism
can diverge from the ideal MMF paradigm when using a multi-hop wireless network [135].
Nevertheless, it is demonstrated by [83] that an approximated form of fairness achieves better
routing solutions for elastic traffic demands than adjusting them as inelastic. Other issues as
round-trip-time variance and multi-connection schemes [135] can be addressed by adjusting

a specific group of constraints [83].

107

J ique
e Camndro e ®
1
! I
L ® ® - -

1
! + | D]
1 !
1 ., 1
. ®! ® =
1
! ."“ ! e
F Q X A | — > 4
c A
I%G 0 ﬁrs
1 Dy ! S5
1 ‘L?ov 1 g‘ é

S, 1 5
L% Q| 2 &
%
r® e ® ' S
1 !
1 : a®
! 1 71
1 1
1 : /
1 3 L qu
- IS @t
B2 o N Y e D g0
N
""""" Network + ‘ 3D-capable drones x Ordinary drone
@ Photo taken by <= ® Photo taken by X

P -: sub-region assigned to A |:| sub-region assigned to =+

Figure 6.2 Illustrative solution obtained by CAPsac.

Figure 6.2 illustrates a solution for an instance of the CAPsac with two 3D-capable drones
(“+” and “A” symbols) and one ordinary drone (“x” symbol) — the drones are connected by
a tree topology network (represented by dotted lines). The waypoints (and the correspondent
photos) allocated to the drone “+” are represented by the “@” symbols. Similarly, the “®”
symbols correspond to waypoints allocated to the drone “x”. The target region is split into
two sub-regions (delimited by rectangles). The sub-region in the left (dashed lines) is assigned

to the drone “A” whereas the sub-region in the right is assigned to the drone “+7.

Both exact and heuristic approaches were proposed to solve CAPsac [124,125]. In [125],
heuristic methods for solving the CAPsac were proposed: one decomposition-based method,
and a method based on Variable Neighborhood Search (VNS) [157]. The authors demonstrate
that their VNS heuristic outperforms the decomposition approach in most of the real scenarios
tested.

However, it is not known how much improvement is achieved with workloads generated and
allocated by CAPsac heuristics when compared with non-CAPsac approaches. To perform
such analysis, we propose a simple constructive greedy heuristic that generates and allocates
workloads, but they do not fulfill transmission delay constraints. Thus, the greedy method

serves as a baseline for the workloads created and allocated by the CAPsac.

In the next sections, we describe a greedy baseline heuristic and the VNS heuristic of [125]

108
for the CAPsac.

6.4.1 Greedy heuristic

We propose a simple greedy constructive heuristic for obtaining a workload and its allocation
in the ad-hoc cloud computing resources. The constructed solution produces spatial-convex
coverings and satisfies the network resilience. However, it does not meet the maximum
allowed communication delays, and hence, it does not constitute a CAPsac feasible solution.
Nonetheless, that solution is quickly obtained by the greedy heuristic and serves to define a
baseline to assess whether ad-hoc clouds actually benefits from CAPsac solutions obtained

by other more sophisticated heuristics (as the one in Section 6.4.2).

Our proposed greedy method splits the target region into rectangular sub-regions of equal
dimension. Then, it iteratively assigns the unassigned sub-regions among the 3D-capable
drones accounting for their current individual completion time and active traffic demands.
So, the method (i) greedily selects the 3D-capable drone d whose current completion time
is minimal and, then (ii) allocates to d the unassigned sub-region that yields the smallest

increase of incoming data to be transmitted to d.

6.4.2 Variable neighborhood search-based heuristic

In this section, we summarize the VNS-based method proposed in [125] for solving instances
of CAPsac. Variable neighborhood search is a stochastic search framework based on heuristics
that has been successfully applied to many NP-hard problems [147] like the CAPsac.

For a given optimization problem P, let us denote S its solution space, X" its (finite but very
large) feasible set of solutions, x a solution of P, and f(x) the objective function f: z — R
that maps a solution x to its cost. We formally define a (minimization) optimization problem
P as

P =min{f(z)|lz € X, X CS}. (6.3)

When the solution space S = R", P is as a continuous optimization problem, whereas P is
classified as discrete optimization problem if & = Z". A solution x* is the global optimum of
P if and only if

flx*) < f(x) VxeX. (6.4)

Given a solution z, let us denote by N(x) C X a neighborhood of x composed by all its
neighboring solutions, i.e., all solutions obtained from x by means of a single local transfor-

mation, e.g., complementing terms of x = {0,1}" in a combinatorial optimization problem

109

or increasing/decreasing terms in z = R” up to a certain value in a continuous optimization

setting. A local optimum & associated with a neighborhood is defined as
f(3) < fl@) Vo € N(2). (6.5)

VNS achieves optimal or near-optimal solutions by keeping a single solution x during its
execution while searching for a better solution 2’ € Ny (x) in increasingly larger neighborhoods
of z so that Mi(xz) < Na(z) < ... < Ni,..(z). By starting from an initial solution z and
k =1, VNS sequentially applies a diversification step followed by an intensification step until
a stopping condition (e.g., execution time) is met. The diversification step draws from N (z)
a random neighboring solution z’. Then, the intensification step performs a local descent
procedure from z’ which results in the local optimum z”. If the z” is worst or equivalent
to x, k is incremented and x is updated. Otherwise, k is reset to 1. The VNS search then
resumes from its diversification step, and those steps are repeated until the stopping condition
is met. We remark that k is also reset to one every time k > k., so that the VNS does not

degenerate to a random search.

In [125], the authors developed a VNS heuristic for the CAPsac. Their method represents a
solution of the problem by means of a spatial-partition tree data structure, which is illustrated
in Figure 6.3. In the represented tree, the set of distinct photo latitudes L and the set of
distinct photo longitudes C' are split three times (numbered lines) to form four rectangular

sub-regions (dashed lines).

The VNS method of [125] explores four distinct neighborhoods for a solution, namely:

o sub-tree reconstruction, which randomly reconstructs a sub-tree rooted at a given depth

of the spatial-partition tree;
e sub-region transfer, which switches a sub-region assignment from one drone to another;

e sub-region swap, which swaps a pair of sub-region assignments between two distinct

drones;

e splitting hyperplane reallocation, which reallocates splitting hyperplanes in nodes of the

spatial partition tree.

The sub-tree reconstruction neighborhood is still applied in the diversification step. In this
case, the parameter k£ of the VNS establishes the depth k£ from which a sub-tree will be
randomly selected for reconstruction. Consequently, k.. is equal to the depth of the whole

spatial partition tree. The reader is referred to [125] for more details about the VNS method.

110

! 60° 0 © O ©
Splitting index: 3
50,0, @ O O
r
’ ‘s o % o0 o
C:1,2] C:[3,4,5]
L:[1,2,3,4,5,6] L:[1,2,3,4,5,6]
Axis: L Axis: L 30 O o>—0—0O0—
Splitting index: 4 Splitting index: 3
2010, ©° O ©
f 3
r ra r ra H ? ? (é (4) (5)
C:1,2] C:[1, 2] C:[3,4,5] | |C:[3,4,5] +c—>
L:[1,2,3] L:[4, 5, 6] L:[1,2] L:[3, 4,5, 6]

Figure 6.3 Spatial partition tree (left) and the respective spatial-convex covering of waypoints
(right).

6.5 Distributed 3D reconstruction

The 3D reconstruction constructs a 3D model of a given scene portrayed by a set of input
images taken from different perspectives. It sequentially applies the so-called Structure from
Motion (SfM) [84] and Multi-View Stereo (MVS) [85] techniques [86]. The whole process can
be decomposed into three steps [87]:

1. Feature detection: finds key features as corners, edges, and blobs in all input photos;

2. Feature matching: matches the key features found across multiple photos — the match-
ing of key features from distinct photos means that they are the same key feature being

portrayed in multiple photos;

3. Reconstruction: computes the 3D position of each matched key feature based on their

2D position in the photos and corresponding camera pose.

These steps produce the so-called dense point cloud which is the set of 3D positions of all
matched key features. At this point, two steps (final phase) still need to be performed to

transform the dense point cloud into a complete 3D model:

1. Meshing: given a dense point cloud as input, the 3D model surface is estimated (i.e.,

triangle meshes). Different methods can be applied to this step, e.g., [93,94].

2. Texturing: based on the appearance of pixels in the input photos, characteristics like

color, illumination, and texture are added to the 3D model, e.g., [95].

111

After the meshing and texturing steps, the complete 3D model of the region portrayed by
the input photos is ready.

In the context of OptiMaP, each sub-region (subset of photos) created in the previous step
is used as the input photos of a 3D reconstruction sub-model (sub-task). Then, the 3D
reconstruction process for each sub-region is done according to the workload allocation from
the CAPsac solution. As a result, at the end of the reconstruction process, each drone has
one dense point cloud for each of its assigned sub-regions. At this point, all dense point
clouds are sent to the ground station which is responsible for merging them and performing
the meshing and texturing steps. Finally, a digital replica of the whole target area is made

available.

All processing steps for the 3D reconstruction are performed through the OpenDroneMap
toolkit [158]. Furthermore, each 3D reconstruction sub-task created by CAPsac is imple-

mented as a Docker container [159].

6.6 Deployment of the 3D mapping mission via simulation

Our experimental analysis aimed to evaluate (i) the efficiency of the OptiMaP pipeline for
emergency response applications, and (ii) the quality of the workloads created and allo-
cated by the VNS-based method when compared with the workload obtained by the baseline

heuristic.

The deployment and anticipated analysis of emergency response situations by simulation
are crucial for planning effective real-life missions. Such practice allows examining distinct
response protocols without facing an actual crisis. Furthermore, there is a scarcity of realistic

data, and the use of multiple real drones may result in high testing costs and risks.

We perform our experiments through a simulator able to provide realistic physics and visuals:
the HyperXSpace (HXS) simulator [160]. Besides leveraging the realistic drones as proposed in
AirSim [161] with detailed realistic 3D scenarios and ad-hoc communication emulation, HXS
carries the simulations in a cloud-based infrastructure. HXS emulates the ad-hoc wireless
network by changing the package loss probability and reducing the ideal bandwidth between
two nodes according to the inter-drone distance. Furthermore, HXS represents each agent
(e.g., UAV) as a set of Docker containers in such a way that Software-in-the-loop (SITL) such
as flight controllers are supported. Therefore, applications simulated in HXS can be directly
deployed on real drones. Such testing environment allows us to deploy and evaluate the
OptiMaP in realistic emergency response scenarios. It also provides a controlled experimental

setting for the compared algorithms since they can be tested in identical conditions, which

112

would be very hard to obtain with the use of real drones.

In order to evaluate the OptiMaP in different scenarios, we vary the number of waypoints/photos
of the tested instances as described in Table 6.1. Concerning the scenarios with 150, 226,
and 363 photos, we considered areas with higher density to represent points of interest that
require more photos to produce detailed 3D replicas of those respective areas. All scenarios
were constructed to fulfill 90% of overlapping between the photo footprints given a field of
view of 90° and a drone altitude of 100m. We tested scenarios with 5 drones and 3 sub-regions
(i.e, 3D-capable drones). We kept the number of 3D-capable drones smaller than the total
number of drones to force communication among them. Besides, data exchanges allow us to
evaluate the impact of the workload generation and allocation in generating communication
delays. In all scenarios, the network emulator reduces the bandwidth between two nodes
(drones) according to their distance. Given a certain communication link and the respective
inter-drone distance, the ideal bandwidth is reduced by 20% each 50 meters starting from a
distance of 50 meters (5mbps and 0% package loss) up to 200 meters from which the link is
no longer available (i.e., bandwidth equal to zero and 100% of packages loss). Thus, taking
into consideration that bandwidth configuration, we placed the drone (landing) positions to
generate the (line) topology presented in Figure 6.4. That topology was designed to force
multiple traffic demands to share the same links. The values for the maximum allowed com-
munication delay (T) are presented in Table 6.1 as well. They were set according to each

analyzed scenario to represent realistic values.

6.6.1 Simulation results

First, we evaluate the advantage of adopting the OptiMaP when compared to reconstruct
the whole target region in a centralized manner. We do not report the time spent by the
waypoint generation and the photo collection steps since they are identical for a given number
of photos in the HXS. We define completion time as the time required to exchange all photos
and perform the 3D reconstruction, i.e., the completion time accounts for communication
delays and 3D reconstruction duration only. Figure 6.5 presents the total completion time of
the 3D mapping mission when relying on the centralized approach (red B symbols) and on
the decentralized ones: the greedy heuristic (orange 4 symbols) and the VNS-based method
(green e symbols) — halted after 30s of execution time. Similarly, Figure 6.6 shows how
the communication delays are affected by adopting the CAPsac workload generation and

allocation in comparison with the centralized and non-CAPsac approach (greedy method).

We note from Figure 6.6 that the transmission delays for VNS may also exceed T, as it is
the case for the mapping scenarios 1 (71.16% — 17.79s longer), 2 (17.97% — 7.19s longer), 3

113

. i
>
. o :
..*«\ 9
W, . oA
Yy . e
.

A 3D-capable drone x Ordinary drone

Communication link

Figure 6.4 Network topology employed in deployed scenarios.

Table 6.1 Deployed 3D mapping scenarios.

Scenario | Photos Area (km?2) T (sec.)
1 135 0.124 25
2 150 0.124 40
3 211 0.186 35
4 226 0.186 100
5 348 0.293 80
6 363 0.293 120

(73.97% — 25.89s longer), and 5 (24.11% — 19.29s longer). This is due to how the MMF rate
allocation paradigm addressed by the CAPsac approximates the TCP protocol behavior. It
is known that the ideal MMF paradigm can diverge from actual TCP rate allocation in multi-
hop wireless network [135] and that it cannot address issues as the hidden node phenomenon.
However, such approximated allocation paradigm leads to better routing solutions for elastic
traffic demands than addressing them as inelastic demands [83]. Furthermore, the commu-
nication delays could be improved by considering, for each traffic demand, a round-trip-time
(RTT) based scalability parameters that would instruct the MMF constraints to assign more
bandwidth to the traffic demands served by shorter routing paths [79,124]. For this purpose,
before launching the optimization algorithm, we could modify the application to derive the
inter-drone RTT with a series of PING commands; the obtained latency values could be then

normalized to compute the RTT scalability parameters of the MMF' constraints.

114

Completion times vs. number of photos

4500 A
m Centralized
| @& Greedy
4000 e VNS
3500 A
3000 A

Seconds
N
w
o
o
1

2000 A

1500 1

1000 1

500 A

150 200 250 300 350
Number of photos

Figure 6.5 Completion times when employing the centralized approach, the greedy heuristic,
and the VNS method.

Communication delay vs. number of photos

B Centralized
¢ Greedy
2504 @ VNS

200 A

Seconds
=
w
o
1

100 A

50

150 200 250 300 350
Number of photos

Figure 6.6 Communication delays obtained by adopting the centralized approach, the greedy
heuristic, and the VNS method.

115

We noticed a significant gain of performance when optimizing the workload creation and
allocation with the greedy and VNS-based methods. Both approaches presented a dramatic
reduction in the completion times and the communication delays when compared to recon-
structing the target region with a equivalent centralized workstation. Concerning only the
greedy and the VNS heuristics, the VNS presents best performance for both completion and

transmission times, and its violations of 7', if any, are always reasonable.

Figure 6.7 reports the completion time (i.e., transmission delay + 3D reconstruction duration)
of each drone when employing the greedy (orange ¢ symbols) and VNS (green e symbols)
heuristics. As observed in Figure 6.7, the VNS yields most balanced workload generation
and allocation (i.e., similar individual drone completion times) across the drones. Hence, we
can conclude that the VNS exploits better the computing resources within the UAV-powered
ad-hoc cloud. In fact, the completion times of the solutions obtained by the greedy heuristic
can be up to 18.22% longer than those of the solutions obtained by the VNS.

Finally, we assess the impact of OptiMaP in the use of the network resources. Figure 6.8
shows the total amount of data exchanged (lines) and the largest transferred amount of data
among all performed transmission demands (dashed lines) when adopting the centralized
approach (red B symbols), the greedy heuristic (orange 4 symbols), and the VNS-based
method (green e symbols). Similarly, Figure 6.9 reports the average throughput achieved by
the centralized approach, the greedy heuristic, and the VNS-based method.

We observe in Figure 6.8 that the OptiMaP with the VNS heuristic usually exchanges less
amount of data when compared with the centralized and the greedy approaches. Furthermore,
as seen in Figure 6.9, the OptiMaP also leads to better flow rate allocations, making a more

effective use of the networking resources available in the ad-hoc cloud.

6.7 Conclusions

We proposed and deployed the swarm-powered Optimized 3D Mapping Pipeline (OptiMaP)
for emergency response applications. It optimizes the workload generation and allocation by
employing a VNS-based heuristic that solves the Covering-Assignment Problem for swarm-
powered ad-hoc clouds (CAPsac).

The OptiMaP allows the 3D reconstruction process to be distributed across the swarm-
powered ad-hoc cloud instead of relying uniquely on a central workstation. Such approach
reduces the creation time of the 3D maps and takes into account transmission delay con-
straints required by the application. As a result, 3D maps of the target region are rapidly

provided to the emergency responders, thus allowing the UAVs to perform other crucial tasks

116

Completion time per drone

1600 @ Greedy
® VNS

1400 4

1200 1

Seconds
=
o
o
o
1

800 A
600 -
e
L 2
400 4 ¢
150 200 250 300 350

Number of photos

Figure 6.7 Completion time per drone when using the greedy and VNS heuristics used within
OptiMaP.

Total exchanged data(-) and max. exchanged data across transfers(---)

60000
m Centralized
¢ Greedy
soooo{ ® VNS
40000 A
Q
~ 30000 A
20000
10000 A

150 200 250 300 350
Number of photos

Figure 6.8 Total data exchanged (lines) and the data sent in the largest transmission demand
(dashed lines) by the centralized approach, the greedy method and VNS heuristic.

117

Avg. throughput per number of photos

m Centralized
300 - Greedy
® VNS
275 A
250 A
/
/
9 225 4 y
§ \ /
200 - 4
175 A
150
125 - \/.\lf — ==

150 200 250 300 350
Number of photos

Figure 6.9 Average throughput achieved by the centralized approach, the greedy method and
VNS heuristic.

for the first response operation.

The simulation results proved that both communication delays and completion times of those
missions are drastically reduced by OptiMaP. When comparing the (CAPsac) VNS-based
method against the (non-CAPsac) greedy heuristic, the VNS heuristic presented the best
completion times and transmission delays as well as a better utilization of the computing

and network resources of the swarm-powered ad-hoc cloud.

118

CHAPTER 7 GENERAL DISCUSSION

The contributions presented in this thesis focus on optimizing the workload carried by swarm-
power ad-hoc clouds. Furthermore, we adopted the swarm-powered 3D mapping mission for
emergency response scenarios as use-case. In order to optimize the use of swarm-powered ad-
hoc clouds, we proposed a new NP-hard optimization problem, namely CAPsac, that jointly
optimizes the workload creation and assignment. We presented different MILP formulations
to obtain optimal solutions for the proposed problem. Each minute counts during timely
manner applications, and the time required to obtain optimal solutions may be impractical
for these situations. Thus, we designed heuristics able to find good CAPsac solutions quickly
for emergency response missions. Finally, in order to assess how much improvement can
be reached in real-life conditions, we developed an optimized distributed 3D reconstruction

pipeline for emergence response missions.

7.1 Summary of Works

We proposed the CAPsac to exploit the network and computing resources embedded within
an ad-hoc cloud established on top of a swarm of drones and connected by a dedicated wireless
network. A CAPsac solution maps the tasks carried by the ad-hoc cloud to swarm members
such that their overall completion time is minimized. Furthermore, the CAPsac jointly
groups the processing tasks into batches (i.e., creates a workload) and assigns these batches
to swarm members (i.e., assigns the workload). For instance, during a swarm-powered 3D
mapping mission, the CAPsac simultaneously optimizes the split of the region to be portrayed
in the 3D map (i.e., a collection of photos) into smaller sub-regions (which are subsets of

photos), and the assignment of these sub-regions to the drones.

In Chapter 4, we presented the NP-hardness proof of the CAPsac and two different MILP
formulations to solve the CAPsac. The photo-based CAPsac (pCAPsac) formulation as-
signs each photo forming the target region to one sub-region later processed by a swarm
member. The region-based CAPsac (rCAPsac) formulation selects the optimal set of sub-
regions among all possible feasible rectangular sub-regions of a target region. In order to
assess those formulations, we carried a series of computational experiments with a set of
unweighted and weighted realistic benchmark instances. These experiments revealed that
the “pC'APsac” formulation was more efficient by using ordering inequalities that remove
from the feasible continuous search space sub-regions whose boundaries are not regular. In

fact, the “pCAPsac” formulation, within the configured time limit, could solve more than

119

50% of the considered realistic instances involving up to two hundred images and six drones.
However, the different branching priority strategies and row generation methods have not
proven to yield a performance gain while solving that formulation. The sensitivity analysis
of the formulation “pC' APsac” showed that it becomes more difficult to solve as the reliability
factor o increases. Tests with varying values for the maximum allowed transmission time T
also presented a slight gain of performance up to when T approaches a limit for which the
problem becomes unfeasible. Finally, column generation was employed in the “rCAPsac”

formulation, but the presence of highly degenerate optima led to long execution times.

According to the current MILP solvers performance and amount of offloaded computational
tasks, it may be impractical for timely manner applications to find the optimal workload
creation and workload allocation due to the time required to reach optimality. Therefore,
in order to quickly obtain good solutions for critical applications as emergency response
missions, we designed heuristics able to find near-optimal CAPsac solutions in a short time

horizon.

In Chapter 5, we described a mathematical programming heuristic based on decomposition
and a VNS heuristic to minimize the completion time of the data processing step in those
timely manner applications according to the CAPsac. The decomposition-based method
is inspired by the observation that good solutions have their workload close to the perfect
workload division w.r.t. the number of photos per sub-region. Therefore, we limit the solution
space of the “rC APsac” formulation to sub-regions for which the number of photos lie inside
a predefined interval [ng, n,|. In brief, the decomposition-based method iteratively increases
that interval until the value of the objective function doesn’t change after two successive
interval increments. The other proposed heuristic is based on the largely applied stochastic
search metaheuristic named VNS, which aims to reach optimum or near-optimum solutions
for global combinatorial optimization problems. VNS employs several different neighborhoods
to escape local minima and reach global optimality, and it can be decomposed into the
successive use of diversification and intensification steps. Also, a special data structure,
named as spatial partition tree, was designed to efficiently represent a workload (spatial-
convex partition) for our proposed neighborhoods. Accordingly, our VNS heuristic exploits
the sub-tree reconstruction during the diversification step, whereas the intensification step
comprises a Variable Neighborhood Descent (VND) — sequence of local searches over the sub-
region transfer, the sub-region swap, and the splitting hyperplane reallocation neighborhoods,
respectively. Computational experiments were conducted to assess the performance of those
proposed heuristic methods. Our computational results reveal that the proposed heuristics
either quickly reach optimality or improve the best known solutions for almost all tested

realistic instances comprising up to 1000 images and fifteen drones. Further, they exposed

120

that the VNS heuristic is the fastest method for finding good solutions to a vast number of
instances. The decomposition-based heuristic is also effective in most of the tested cases, and
it is an efficient method when compared to solving the C'APsac formulations by commercial
solvers. Although the performance of the decomposition-based heuristic deteriorates for some
values of T' close to unfeasibility, the sensitivity analysis done for the decomposition and VNS

heuristics demonstrated that these methods still perform well for varying o and T values.

Once we developed methods able to find optimal and near-optimal solutions, it is equally
important to ensure that the proposed methods have reasonable performance under real-life
conditions. Thus, Chapter 6 presented the swarm-powered Optimized 3D Mapping Pipeline
(OptiMaP) for emergency response operations. We described two distinct ways to generate
and allocate workloads within the OptiMaP: (i) (CAPsac) VNS-based method of Chapter 5;
(i) (non-CAPsac) a greedy method that does not ensure transmission delays smaller than 7.
We also assessed how effective is the CAPsac when optimizing 3D mapping missions exploit-
ing a swarm-powered ad-hoc cloud in a simulator that provides realistic physics, visuals and
wireless multi-hop network. The simulations compared the CAPsac approach against the
non-CAPsac and the centralized (i.e., offloading all processing tasks to one swarm member)
approaches. They demonstrated that the use of OptiMaP significantly reduces the commu-
nication delays and completion times when compared with the centralized strategy. Finally,
the OptiMaP with the VNS method displays the best completion times and transmission de-
lays, and it led to the most balanced use of the networking and computing resources within
the ad-hoc cloud.

7.2 Limitations

Chapter 4 presented formulations to solving the CAPsac as well as ordering cuts that elim-
inate solutions with unfeasible borders in the continuous space. However, the “pCAPsac”
formulation presents a large number of equivalent relaxed optimal solutions, partially due
to symmetry. Consequently, the convergence time of the branch-and-cut method solving
that MILP formulation is increased. Another challenge appears when solving the continu-
ous relaxation of the “rC' APsac” formulation through column generation since the problem

presents high degeneracy. As a result, the CG method requires long execution times to finish.

Heuristics for optimizing the CAPsac were described in Chapter 5. We noticed that the
decomposition-based method may reach suboptimal solutions whenever the stopping condi-
tion (i.e., the number of iterations without improvement on the objective function) is not
adequate. Thus, it could be problematic to adjust that parameter in real life missions. Con-

cerning the VNS-based heuristic in Chapter 5, the spatial partition tree plays an important

121

role when searching for solutions, and it is known that it cannot represent all partitions in the
solution space. If that data structure is modified to represent more solution configurations,
the solution space quickly increase and make the local searches slow. On the other hand,
simpler data structures accelerate the local searches but may lead to poor solutions given its

restricted solution representation.

In Chapter 6, we have deployed realistic simulations of 3D mapping missions according to
the OptiMaP. We have shown that those missions benefit from the OptiMaP, but simulations
with a larger number of (real) drones would be required to scale our proposed pipeline. We
remarked that the longest transmission times can exceed T seconds during our experiments
when employing the OptiMaP. Those limitations were due to the fact that both network
emulator and MMF are approximations of the wireless network behavior. Naturally, they
may deviate from a real-life network and additional adjustments in the MMF should be

performed to address this issue.

122

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

In this thesis, we investigated how to optimize the use of a swarm-powered ad-hoc cloud for
timely manner IoT applications that require clustering, communication, and reliability con-
straints. Furthermore, contributions were produced to achieve the main objectives described
in Chapter 1.

Chapter 4 proposed a new NP-hard optimization problem, namely the Covering-Assignment
Problem for swarm-powered ad-hoc clouds (CAPsac), and two MILP formulations (“pC APsac”
and “rCAPsac”) to find optimal solutions to the problem. Chapter 5 presented two near-
optimal algorithms to quickly find good solutions for the CAPsac — a decomposition-based
heuristic and a VNS-based method. Finally, in Chapter 6, we described and deployed the
swarm-powered Optimized 3D Mapping Pipeline (OptiMaP), which uses the CAPsac to gen-
erate and allocate the workload carried by the swarm-powered ad-hoc cloud. Besides being
relevant for understanding how to exploit the considered ad-hoc infrastructure efficiently,
those contributions are crucial to apply the developed techniques in real life missions as our
use-case application, i.e., swarm-powered 3D mapping for emergency response operations.
However, those contributions present some limitations, leading to new research opportuni-

ties.

- The large number of equivalent optimal solutions in the continuous relaxation of the
“pCAPsac” formulation deteriorates the branch-and-cut performance since the dual
bound increases slowly, and the cutting plane procedure take longer to terminate. We
noticed that both boundaries constraints (4.10)-(4.13) and the McCormick inequali-
ties (4.3)-(4.5) contribute to that issue. Naturally, designing new cuts and formulations

dealing with those constraints can potentially accelerate the branch-and-cut method.

- The column generation of the “rC APsac” formulation presents high degeneracy. The
issue may be addressed by applying column generation over a new MILP formulation
that selects tasks-to-drone assignments (i.e., sub-regions-to-drone assignments) instead
of sets of tasks (sub-regions). In addition, fast pricing procedures need to be developed
to select good columns to be added into the restricted master problem given the large

number of possible assignments.

- Concerning the VNS method, we noticed that the proposed spatial partition tree re-
stricts the solution space, which might lead to suboptimal solutions. The adjustment

of that data structure is essential to expand the considered solution space without

123

compromising the local search performance.

The definition a precise interval [ng, n,] is critical for the decomposition-based method.
The creation of the initial interval [ny, n,] may benefit from machine learning techniques

which could indicate good starting values for n, and n,,.

The MMF flow control paradigm is a powerful tool to approximate the transmission
behavior in networks, but it can deviate when dealing with wireless networks. For the
considered timely manner applications, it is crucial to address issues as route round
trip times and hidden nodes in the network. They may be tackled by employing the

multiplicative parameters proposed in [83] and stochastic programming techniques.

An alternative way to solve the CAPsac is to develop a real-time method that could
start as soon as the data (images) collection procedure begins. The possible gain of
performance lies in the fact that the real-time version would already have a reliable
solution and the drones would already have performed part of the necessary transmis-
sion demands when the photo acquisition step ends. Decentralized approaches would

further improve the system robustness.

The CAPsac assumes that all the communications are performed over a wireless net-
work, but other communication interfaces may be available for some IoT applications.
Furthermore, multi-tree communication topology (i.e., one tree for each communication
interface) would reduce the load on the wireless network and decrease communication
delays. Such approach could also enhance the system reliability since alternative net-

works could be used in case of drone malfunction.

A CAPsac variant allowing changes in topology of the communication network may
improve the data exchange across the swarm members. Changing the network topology
can be performed by moving drones either closer or far from each other. Since moving
drones highly drains their batteries, the energy consumed for maneuvering the drones
and changing the network topology need to be considered in this CAPsac variant.
Furthermore, drones cannot use the new network topology until all drones are moved
to their new positions, thus the time required to move the drones directly affects overall

mission completion time and should be taken into account as well.

124

REFERENCES

[1] H. Hejazi, H. Rajab, T. Cinkler, and L. Lengyel, “Survey of platforms for massive IoT,”
in 2018 IEEE International Conference on Future IoT Technologies (Future IoT), 2018,

pp. 1-8.

[2] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for
smart cities,” IEEFE Internet of Things Journal, vol. 1, no. 1, pp. 22-32, 2014.

[3] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Siddiqa, and
I. Yaqoob, “Big IoT data analytics: Architecture, opportunities, and open research

challenges,” IEEE Access, vol. 5, pp. 5247-5261, 2017.

[4] B. P. Rimal, A. Jukan, D. Katsaros, and Y. Goeleven, “Architectural requirements for
cloud computing systems: an enterprise cloud approach,” Journal of Grid Computing,
vol. 9, no. 1, pp. 3-26, 2011.

[5] J. Qadir, B. Sainz-De-Abajo, A. Khan, B. Garcia-Zapirain, I. De La Torre-Diez, and
H. Mahmood, “Towards mobile edge computing: Taxonomy, challenges, applications
and future realms,” IEEE Access, vol. 8, pp. 189129-189 162, 2020.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,”
IEEFE Internet of Things Journal, vol. 3, no. 5, pp. 637646, 2016.

[7] S. Wan, J. Lu, P. Fan, and K. B. Letaief, “Toward big data processing in iot: Path
planning and resource management of UAV base stations in mobile-edge computing
system,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 5995-6009, 2020.

[8] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a UAV-mounted
cloudlet: Optimization of bit allocation and path planning,” IFEFE Transactions on
Vehicular Technology, vol. 67, no. 3, pp. 2049-2063, 2018.

9] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and resource allocation in
UAV-enabled mobile edge computing,” IEEE Internet of Things Journal, vol. 7, no. 4,
pp. 3147-3159, 2020.

[10] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li, “Joint offloading and trajectory
design for UAV-enabled mobile edge computing systems,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 1879-1892, 2019.

[11]

[12]

[15]

[16]

[17]

[19]

[20]

125

N. Mohamed, J. Al-Jaroodi, I. Jawhar, H. Noura, and S. Mahmoud, “UAVFog: A UAV-
based fog computing for internet of things,” in 2017 IEEE SmartWorld, Ubiquitous
Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communi-

cations, Cloud Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1-8.

E. Sahin, “Swarm robotics: From sources of inspiration to domains of application,” in
Swarm Robotics, E. Sahin and W. M. Spears, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 10-20.

S. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, “A survey on aerial
swarm robotics,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837-855, 2018.

[lker Bekmezci, O. K. Sahingoz, and Samil Temel, “Flying ad-hoc networks (FANETS):
A survey,” Ad Hoc Networks, vol. 11, no. 3, pp. 1254 — 1270, 2013. [Online|. Available:
http://www.sciencedirect.com/science/article/pii/S1570870512002193

A. Malhotra, S. K. Dhurandher, and B. Kumar, “Resource allocation in multi-hop

mobile ad hoc cloud,” in 2014 Recent Advances in Engineering and Computational

Sciences (RAECS), 2014, pp. 1-6.

M. Hamdaqa, M. M. Sabri, A. Singh, and L. Tahvildari, “Adoop: MapReduce for Ad-
Hoc Cloud Computing,” in Proceedings of the 25th Annual International Conference
on Computer Science and Software Engineering, ser. CASCON ’15. USA: IBM Corp.,
2015, p. 26-34.

I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran, and S. Guizani,
“Mobile ad hoc cloud: A survey,” Wireless Communications and Mobile
Computing, vol. 16, no. 16, pp. 2572-2589, 2016. [Online]. Available: https:
//onlinelibrary.wiley.com /doi/abs/10.1002/wcm.2709

W. Chen, B. Liu, H. Huang, S. Guo, and Z. Zheng, “When UAV swarm meets edge-
cloud computing: The QoS perspective,” IEEFE Network, vol. 33, no. 2, pp. 3643,
2019.

A. Otto, N. Agatz, J. Campbell, B. Golden, and E. Pesch, “Optimization approaches
for civil applications of unmanned aerial vehicles (UAVSs) or aerial drones: A survey,”
Networks, vol. 0, no. 0, 2018.

W. P. Coutinho, M. Battarra, and J. Fliege, “The unmanned aerial vehicle

routing and trajectory optimisation problem, a taxonomic review,” Computers

[21]

23]

[26]

[29]

[30]

126

& Industrial Engineering, vol. 120, pp. 116 — 128, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360835218301815

P. B. Sujit and D. Ghose, “Search using multiple UAVs with flight time constraints,”
IEEE Transactions on Aerospace and FElectronic Systems, vol. 40, no. 2, pp. 491-509,
April 2004.

H. Oh, S. Kim, A. Tsourdos, and B. A. White, “Coordinated road-network search route
planning by a team of UAVs,” International Journal of Systems Science, vol. 45, no. 5,
pp. 825-840, 2014.

H. Oh, H.-S. Shin, S. Kim, A. Tsourdos, and B. A. White, Cooperative Mission and
Path Planning for a Team of UAVs. Dordrecht: Springer Netherlands, 2015, pp.
1509-1545.

P. Lanillos, S. K. Gan, E. Besada-Portas, G. Pajares, and S. Sukkarieh, “Multi-UAV
target search using decentralized gradient-based negotiation with expected observa-
tion,” Information Sciences, vol. 282, pp. 92 — 110, 2014.

S. K. Gan and S. Sukkarieh, “Multi-UAV target search using explicit decentralized
gradient-based negotiation,” in Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on. 1EEE, 2011, pp. 751-756.

X. Ji, X. Wang, Y. Niu, and L. Shen, “Cooperative search by multiple unmanned
aerial vehicles in a nonconvex environment,” Mathematical Problems in Engineering,
vol. 2015, pp. 1-19, 2015.

Z. Tang and U. Ozguner, “Motion planning for multitarget surveillance with mobile
sensor agents,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 898-908, Oct 2005.

S. Karaman and G. Inalhan, “Large-scale task/target assignment for UAV fleets using a
distributed branch and price optimization scheme,” IFAC' Proceedings Volumes, vol. 41,
no. 2, pp. 13310 — 13317, 2008, 17th IFAC World Congress.

M. Niccolini, M. Innocenti, and L. Pollini, “Multiple UAV task assignment using de-
scriptor functions,” IFAC Proceedings Volumes, vol. 43, no. 15, pp. 93-98, 2010.

A. Viguria, I. Maza, and A. Ollero, “Distributed service-based cooperation in
aerial /ground robot teams applied to fire detection and extinguishing missions,” Ad-
vanced Robotics, vol. 24, no. 1-2, pp. 1-23, 2010.

[31]

32]

[36]

[37]

[38]

[39]

127

H. Choi, Y. Kim, and H. Kim, “Genetic algorithm based decentralized task assignment
for multiple unmanned aerial vehicles in dynamic environments,” International Journal

Aeronautical and Space Sciences, vol. 12, no. 2, pp. 163-174, 2011.

A. Barrientos, J. Colorado, J. d. Cerro, A. Martinez, C. Rossi, D. Sanz, and J. Valente,
“Aerial remote sensing in agriculture: A practical approach to area coverage and path

planning for fleets of mini aerial robots,” Journal of Field Robotics, vol. 28, no. 5, pp.
667-689, 2011.

S. Moon, E. Oh, and D. H. Shim, “An integral framework of task assignment and path
planning for multiple unmanned aerial vehicles in dynamic environments,” Journal of
Intelligent € Robotic Systems, vol. 70, no. 1, pp. 303-313, Apr 2013.

S. Moon, D. H. Shim, and E. Oh, Cooperative Task Assignment and Path Planning for
Multiple UAVs. Dordrecht: Springer Netherlands, 2015, pp. 1547-1576.

M. Turpin, N. Michael, and V. Kumar, “Capt: Concurrent assignment and planning
of trajectories for multiple robots,” The International Journal of Robotics Research,
vol. 33, no. 1, pp. 98-112, 2014.

J. J. Enright, E. Frazzoli, M. Pavone, and K. Savla, UAV Routing and Coordination
in Stochastic, Dynamic Environments. Dordrecht: Springer Netherlands, 2015, pp.
2079-2109.

A. Sadeghi and S. L. Smith, “Heterogeneous task allocation and sequencing via de-
centralized large neighborhood search,” Unmanned Systems, vol. 5, no. 02, pp. 79-95,
2017.

D. Zorbas, L. D. P. Pugliese, T. Razafindralambo, and F. Guerriero, “Optimal drone
placement and cost-efficient target coverage,” Journal of Network and Computer Ap-
plications, vol. 75, pp. 16 — 31, 2016.

P. Ladosz, H. Oh, and W.-H. Chen, “Trajectory planning for communication relay
unmanned aerial vehicles in urban dynamic environments,” Journal of Intelligent €
Robotic Systems, vol. 89, no. 1, pp. 7-25, Jan 2018.

L. Caraballo, J. Diaz-Banez, I. Maza, and A. Ollero, “The block-information-sharing
strategy for task allocation: A case study for structure assembly with aerial robots,”
FEuropean Journal of Operational Research, vol. 260, no. 2, pp. 725 — 738, 2017.

[41]

[42]

[44]

[48]

[49]

[50]

[51]

128

A. Grancharova, E. . Grgtli, D.-T. Ho, and T. A. Johansen, “UAVs trajectory planning
by distributed MPC under radio communication path loss constraints,” Journal of
Intelligent € Robotic Systems, vol. 79, no. 1, pp. 115-134, 2015.

S. Koulali, E. Sabir, T. Taleb, and M. Azizi, “A green strategic activity scheduling for
UAV networks: A sub-modular game perspective,” IEEE Communications Magazine,
vol. 54, no. 5, pp. 5864, May 2016.

S. Xu, K. Dogancay, and H. Hmam, “Distributed pseudolinear estimation and UAV
path optimization for 3D AOA target tracking,” Signal Processing, vol. 133, pp. 64-78,
2017.

A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A review of the
state-of-the-art,” in Cooperative Robots and Sensor Networks 2015. Springer, 2015,
pp. 31-51.

M. A. Gomarasca, Elements of Photogrammetry. Dordrecht: Springer Netherlands,
2009, ch. 3, pp. 79-121.

W. Linder, Digital Photogrammetry. Springer Berlin Heidelberg, 2016.

D. Meyer, E. Fraijo, E. Lo, D. Rissolo, and F. Kuester, “Optimizing UAV systems
for rapid survey and reconstruction of large scale cultural heritage sites,” in Digital
Heritage, 2015, vol. 1. 1EEE, 2015, pp. 151-154.

P. Doherty, J. Kvarnstrom, P. Rudol, M. Wzorek, G. Conte, C. Berger, T. Hinzmann,
and T. Stastny, “A collaborative framework for 3D mapping using unmanned aerial ve-

hicles,” in International Conference on Principles and Practice of Multi-Agent Systems.
Springer, 2016, pp. 110-130.

G. Loianno, Y. Mulgaonkar, C. Brunner, D. Ahuja, A. Ramanandan, M. Chari, S. Diaz,
and V. Kumar, “A swarm of flying smartphones,” in Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016, pp. 1681-1688.

J. Schmiemann, H. Harms, J. Schattenberg, M. Becker, S. Batzdorfer, and L. Frerichs,
“A distributed online 3D-lidar mappin system,” ISPRS - International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W6,
pp. 339-346, 2017.

K. Kobayashi, H. Shishido, Y. Kameda, and I. Kitahara, “Method to generate disaster-
damage map using 3D photometry and crowd sourcing,” in 2017 IEEE International
Conference on Big Data (Big Data). 1EEE, 2017, pp. 4397-4399.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

129

S. Golodetz, T. Cavallari, N. A. Lord, V. A. Prisacariu, D. W. Murray, and P. H.
Torr, “Collaborative large-scale dense 3D reconstruction with online inter-agent pose
optimisation,” arXiv preprint arXiv:1801.08361, 2018.

T. Hinzmann, T. Stastny, G. Conte, P. Doherty, P. Rudol, M. Wzorek, E. Galceran,
R. Siegwart, and I. Gilitschenski, “Collaborative 3D reconstruction using heteroge-
neous UAVs: System and experiments,” in International Symposium on Experimental
Robotics. Springer, 2016, pp. 43-56.

N. Kerle, F. Nex, M. Gerke, D. Duarte, and A. Vetrivel, “UAV-based structural
damage mapping: A review,” ISPRS International Journal of Geo-Information, vol. 9,
no. 1, 2020. [Online]. Available: https://www.mdpi.com/2220-9964/9/1/14

N. Nikhil, S. M. Shreyas, G. Vyshnavi, and S. Yadav, “Unmanned aerial vehicles (UAV)
in disaster management applications,” in 2020 Third International Conference on Smart
Systems and Inventive Technology (ICSSIT), 2020, pp. 140-148.

C. Liu, H. Sui, and L. Huang, “Identification of building damage from UAV-
based photogrammetric point clouds using supervoxel segmentation and latent
dirichlet allocation model,” Sensors, vol. 20, no. 22, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/22/6499

M. Aljehani and M. Inoue, “Performance evaluation of multi-UAV system in post-
disaster application: Validated by HITL simulator,” IEEE Access, vol. 7, pp. 64 386—
64 400, 2019.

Y. Tan and Z.-Y. Zheng, “Research advance in swarm robotics,” Defence Technology,
vol. 9, no. 1, pp. 18 — 39, 2013.

L. Bayindir, “A review of swarm robotics tasks,” Neurocomputing, vol. 172, pp. 292—
321, 2016.

P. B. Sujit and D. Ghose, “Two-agent cooperative search using game models with
endurance-time constraints,” FEngineering Optimization, vol. 42, no. 7, pp. 617639,
2010.

L. E. Dubins, “On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents,” American Journal of
mathematics, vol. 79, no. 3, pp. 497-516, 1957.

130

[62] A. Rubinstein, “Perfect equilibrium in a bargaining model,” Econometrica: Journal of
the Econometric Society, pp. 97-109, 1982.

[63] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[64] S. Ghandi and E. Masehian, “Review and taxonomies of assembly and disassembly
path planning problems and approaches,” Computer-Aided Design, vol. 67, pp. 5886,
2015.

[65] A. Fotouhi, M. Ding, and M. Hassan, “Dronecells: Improving 5G spectral efficiency
using drone-mounted flying base stations,” arXiv preprint arXiv:1707.02041, 2017.

[66] B. P. Rimal and I. Lumb, The Rise of Cloud Computing in the Era of Emerging
Networked Society. Cham: Springer International Publishing, 2017, pp. 3-25.
[Online]. Available: https://doi.org/10.1007/978-3-319-54645-2 1

[67] Y. Mansouri and M. A. Babar, “A review of edge computing: Features and
resource virtualization,” Journal of Parallel and Distributed Computing, vol. 150, pp.
155-183, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0743731520304317

[68] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge computing: A
survey,” Future Generation Computer Systems, vol. 97, pp. 219-235, 2019. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0167739X18319903

[69] Z. Pang, L. Sun, Z. Wang, E. Tian, and S. Yang, “A survey of cloudlet based mo-
bile computing,” in 2015 International Conference on Cloud Computing and Big Data
(CCBD), 2015, pp. 268-275.

[70] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang, and
R. Ranjan, “Fog computing: Survey of trends, architectures, requirements, and research
directions,” IEFE Access, vol. 6, pp. 47980-48 009, 2018.

[71] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,”
IEEFE Internet of Things Journal, vol. 5, no. 1, pp. 450-465, 2018.

[72] D. F. Pigatto, M. Rodrigues, J. V. de Carvalho Fontes, A. S. R. Pinto,
J. Smith, and K. R. L. J. C. Branco, The Internet of Flying Things.
John Wiley & Sons, Ltd, 2018, ch. 19, pp. 529-562. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119456735.ch19

73]

[74]

[76]

[77]

78]

[82]

131

S. Jeong, O. Simeone, and J. Kang, “Mobile cloud computing with a UAV-
mounted cloudlet: optimal bit allocation for communication and computation,”
IET Communications, vol. 11, no. 7, pp. 969-974, Mar. 2017. [Online]. Available:
https://doi.org/10.1049/iet-com.2016.1114

F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization in UAV-
enabled wireless-powered mobile-edge computing systems,” IEFE Journal on Selected
Areas in Communications, vol. 36, no. 9, pp. 1927-1941, 2018.

X. Hu, K.-K. Wong, K. Yang, and Z. Zheng, “UAV-assisted relaying and edge comput-
ing: Scheduling and trajectory optimization,” IEEE Transactions on Wireless Com-
munications, vol. 18, no. 10, pp. 47384752, 2019.

M.-A. Messous, H. Sedjelmaci, N. Houari, and S.-M. Senouci, “Computation offloading
game for an UAV network in mobile edge computing,” in 2017 IEEFE International
Conference on Communications (ICC), 2017, pp. 1-6.

A. Asheralieva and D. Niyato, “Hierarchical game-theoretic and reinforcement learning
framework for computational offloading in UAV-enabled mobile edge computing net-
works with multiple service providers,” IEEE Internet of Things Journal, vol. 6, no. 5,
pp. 8753-8769, 2019.

Y. Wang, Z.-Y. Ru, K. Wang, and P.-Q. Huang, “Joint deployment and task scheduling
optimization for large-scale mobile users in multi-UAV-enabled mobile edge comput-
ing,” IEEE Transactions on Cybernetics, vol. 50, no. 9, pp. 3984-3997, 2020.

D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks. Prentice-Hall Inter-
national New Jersey, 1992, vol. 2.

D. Nace and M. Pidéro, “Max-min fairness and its applications to routing and load-
balancing in communication networks: a tutorial,” IEEE Communications Surveys &
Tutorials, vol. 10, no. 4, 2008.

E. Amaldi, A. Capone, S. Coniglio, and L. G. Gianoli, “Network optimization problems
subject to max-min fair flow allocation,” IEEE Communications Letters, vol. 17, no. 7,
pp. 14631466, 2013.

L. Massoulié¢ and J. Roberts, “Bandwidth sharing: Objectives and algorithms,” in
INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEFE, vol. 3. TEEE, 1999, pp. 1395-1403.

[83]

[84]

[33]

[89]

[92]

[93]

132

S. Coniglio, L. G. Gianoli, E. Amaldi, and A. Capone, “Elastic traffic engineering sub-
ject to a fair bandwidth allocation via bilevel programming,” IEEE/ACM Transactions
on Networking, 2020.

J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4104—
4113.

S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A comparison and
evaluation of multi-view stereo reconstruction algorithms,” in 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1,
June 2006, pp. 519-528.

Y. Furukawa, C. Hernandez et al., “Multi-view stereo: A tutorial,” Foundations and

Trends in Computer Graphics and Vision, vol. 9, no. 1-2, pp. 1-148, 2015.

P. Tang, S. Vick, J. Chen, and S. German Paal, “Chapter 2 - surveying,
geomatics, and 3D reconstruction,” in Infrastructure Computer Vision, 1. Brilakis
and C. Haas, Eds. Butterworth-Heinemann, 2020, pp. 13 — 64. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780128155035000024

H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene from two
projections,” Nature, vol. 293, no. 5828, p. 133, 1981.

O. Ozyesil, V. Voroninski, R. Basri, and A. Singer, “A survey of structure from motion.”
Acta Numerica, vol. 26, p. 305-364, 2017.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International

journal of computer vision, vol. 60, no. 2, pp. 91-110, 2004.

Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive representation for local
image descriptors,” in Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2004. CVPR 2004., vol. 2, June 2004, pp.
[1-506-11-513 Vol.2.

H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,” in
Computer Vision — ECCYV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404-417.

M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe, “Parallel poisson surface reconstruc-

tion,” in Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin, D. Koracin,

[96]

[97]

98]

[99]

[100]

[101]

[102]

133

Y. Kuno, J. Wang, J.-X. Wang, J. Wang, R. Pajarola, P. Lindstrom, A. Hinkenjann,
M. L. Encarnacao, C. T. Silva, and D. Coming, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 678-689.

M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,” ACM Transac-
tions on Graphics (ToG), vol. 32, no. 3, p. 29, 2013.

M. Waechter, N. Moehrle, and M. Goesele, “Let there be color! Large-scale texturing of
3D reconstructions,” in ECCV 201/, ser. Lecture Notes in Computer Science, D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Springer International Publishing, 2014,
vol. 8693, pp. 836-850.

M. Pepe, L. Fregonese, and M. Scaioni, “Planning airborne photogrammetry and
remote-sensing missions with modern platforms and sensors,” Furopean Journal of
Remote Sensing, vol. 51, no. 1, pp. 412436, 2018.

F. Nex and F. Remondino, “UAV for 3D mapping applications: a review,” Applied
Geomatics, vol. 6, no. 1, pp. 1-15, 2014.

J. A. J. Berni, P. J. Zarco-Tejada, L. Suarez, and E. Fereres, “Thermal and narrow-
band multispectral remote sensing for vegetation monitoring from an unmanned aerial
vehicle,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp.
722-738, March 2009.

G. Grenzdorffer, A. Engel, and B. Teichert, “The photogrammetric potential of low-cost
UAVs in forestry and agriculture,” The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. XXXVII, no. B1, pp. 1207-1214,
2008.

J. Martinez-de Dios, L. Merino, F. Caballero, A. Ollero, and D. Viegas, “Experimental
results of automatic fire detection and monitoring with UAVs,” Forest Ecology and
Management, vol. 234, no. 1, p. S232, 2006.

F. Chiabrando, F. Nex, D. Piatti, and F. Rinaudo, “UAV and RPV systems for pho-
togrammetric surveys in archaelogical areas: two tests in the Piedmont region (Italy),”
Journal of Archaeological Science, vol. 38, no. 3, pp. 697-710, 2011.

K. Lambers, H. Eisenbeiss, M. Sauerbier, D. Kupferschmidt, T. Gaisecker, S. Sotoodeh,
and T. Hanusch, “Combining photogrammetry and laser scanning for the recording and
modelling of the late intermediate period site of Pinchango Alto, Palpa, Peru,” Journal
of Archaeological Science, vol. 34, no. 10, pp. 1702-1712, 2007.

[103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

134

M. Oczipka, J. Bemmann, H. Piezonka, J. Munkabayar, B. Ahrens, M. Achtelik, and
F. Lehmann, “Small drones for geo-archaeology in the steppes: locating and document-
ing the archaeological heritage of the Orkhon Valley in Mongolia,” in Remote Sensing
for Environmental Monitoring, GIS Applications, and Geology IX, U. Michel and D. L.
Civco, Eds., vol. 7478, International Society for Optics and Photonics. SPIE, 2009,
pp. 53 — 63.

F. Rinaudo, F. Chiabrando, A. M. Lingua, and A. Spano, “Archaeological site monitor-
ing: UAV photogrammetry can be an answer,” ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIX-B5,
pp. H83-588, 2012.

G. J. J. Verhoeven, “Providing an archaeological bird’s-eye view — an overall picture
of ground-based means to execute low-altitude aerial photography (LAAP) in archae-

ology,” Archaeological Prospection, vol. 16, no. 4, pp. 233249, 2009.

W. Hartmann, S. Tilch, H. Eisenbeiss, and K. Schindler, “Determination of the UAV
position by automatic processing of thermal images,” ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIX-
B6, pp. 111-116, 2012.

M. Manyoky, P. Theiler, D. Steudler, and H. Eisenbeiss, “Unmanned aerial vehicle in
cadastral applications,” ISPRS-international archives of the photogrammetry, remote
sensing and spatial information sciences, vol. XXXVIII-1/C22, pp. 57-62, 2011.

U. Niethammer, S. Rothmund, M. James, J. Travelletti, and M. Joswig, “UAV-based
remote sensing of landslides,” International Archives of Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, vol. 38, no. Part 5, pp. 496-501, 2010.

J. G. Smith, J. Dehn, R. P. Hoblitt, R. G. LaHusen, J. B. Lowenstern, S. C. Moran,
L. McClelland, K. A. McGee, M. Nathenson, P. G. Okubo, J. S. Pallister, M. P. Poland,
J. A. Power, D. J. Schneider, and T. W. Sisson, “Volcano monitoring,” in Geological

Monitoring. Geological Society of America, 2009, pp. 273-305.

C. Zhang, “An UAV-based photogrammetric mapping system for road condition assess-
ment,” ISPRS - International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. XXXVII-B5, pp. 627-632, 2008.

T.-Y. Chou, M.-L. Yeh, Y. C. Chen, and Y. H. Chen, “Disaster monitoring and man-

agement by the unmanned aerial vehicle technology,” in International Archives of Pho-

[112]

[113]

[114]

[115]

[116]

117]

[118]

[119]

[120]

135

togrammetry, Remote Sensing and Spatial Information Sciences, vol. 38, no. 7B, 2010,
p. 137-142.

R. Haarbrink and E. Koers, “Helicopter UAV for photogrammetry and rapid response,”
in 2nd Int. Workshop “The Future of Remote Sensing”, ISPRS Inter-Commission
Working Group 1I/V Autonomous Navigation, vol. 1. Citeseer, 2006.

P. Molina, I. Colomina, T. Victoria, J. Skaloud, W. Kornus, R. Prades, and C. Aguilera,
“Searching lost people with UAVs: The system and results of the CLOSE-SEARCH
project,” in International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 39, no. EPFL-CONF-182482, 2012, pp. 441-446.

P. Zarco-Tejada, R. Diaz-Varela, V. Angileri, and P. Loudjani, “Tree height quantifi-
cation using very high resolution imagery acquired from an unmanned aerial vehicle

(UAV) and automatic 3D photo-reconstruction methods,” Furopean Journal of Agron-
omy, vol. 55, pp. 89 — 99, 2014.

J. Bendig, A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth, “Estimating
biomass of barley using crop surface models (CSMs) derived from UAV-based RGB
imaging,” Remote Sensing, vol. 6, no. 11, pp. 10395-10412, 2014.

R. A. Diaz-Varela, R. De la Rosa, L. Leén, and P. J. Zarco-Tejada, “High-resolution
airborne UAV imagery to assess olive tree crown parameters using 3D photo recon-

struction: Application in breeding trials,” Remote Sensing, vol. 7, no. 4, pp. 4213-4232,
2015.

H. Surmann, N. Berninger, and R. Worst, “3D mapping for multi hybrid robot co-
operation,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on. TEEE, 2017, pp. 626—633.

J. Roters, F. Steinicke, and K. H. Hinrichs, “Quasi-real-time 3D reconstruction from
low-altitude aerial images,” in Proc. of the 28th Urban Data Management Symposium,
2011, pp. 231-241.

M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza,
“Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro
aerial vehicle,” Journal of Field Robotics, vol. 33, no. 4, pp. 431-450, 2016.

S. Huh, S. Hong, and J. Lee, “Energy-efficient distributed programming model for
swarm robot,” in Control, Automation and Systems (ICCAS), 2013 13th International
Conference on. 1EEE, 2013, pp. 300-305.

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

136

S. Milani and A. Memo, “Impact of drone swarm formations in 3D scene reconstruc-
tion,” in 2016 IEEE International Conference on Image Processing (ICIP). 1EEE,
Sep. 2016, pp. 2598-2602.

M. Darrah, M. M. Trujillo, K. Speransky, and M. Wathen, “Optimized 3D mapping of a
large area with structures using multiple multirotors,” in 2017 International Conference
on Unmanned Aircraft Systems (ICUAS). 1EEE, June 2017, pp. 716-722.

L. Wei, X. Jin, and Z. Wu, “3d modeling based on multiple unmanned aerial vehi-

R

cles with the optimal paths,” in 2016 International Symposium on Intelligent Signal

Processing and Communication Systems (ISPACS). TEEE, Oct 2016, pp. 1-6.

L. R. Costa, D. Aloise, L. G. Gianoli, and A. Lodi, “The Covering-Assignment Prob-
lem for Swarm-Powered Ad Hoc Clouds: A Distributed 3-D Mapping Usecase,” IEEFE
Internet of Things Journal, vol. 8 no. 9, pp. 7316-7332, 2021.

L. R. Costa, D. Aloise, L. G. Gianoli, and A. Lodi, “Heuristics for optimizing
3D mapping missions over swarm-powered ad hoc clouds,” 2021. [Online|. Available:
http://arxiv.org/abs/2103.06953

H. Mei, K. Yang, Q. Liu, and K. Wang, “Joint trajectory-resource optimization in UAV-
enabled edge-cloud system with virtualized mobile clone,” IFEE Internet of Things
Journal, vol. 7, no. 7, pp. 5906-5921, 2020.

X. Wei, C. Tang, J. Fan, and S. Subramaniam, “Joint optimization of energy consump-
tion and delay in cloud-to-thing continuum,” IEEFE Internet of Things Journal, vol. 6,
no. 2, pp. 23252337, 2019.

J. Zhang, L. Zhou, Q. Tang, E. C.-H. Ngai, X. Hu, H. Zhao, and J. Wei, “Stochastic
computation offloading and trajectory scheduling for UAV-assisted mobile edge com-
puting,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3688-3699, 2019.

Z. Tan, H. Qu, J. Zhao, S. Zhou, and W. Wang, “UAV-aided Edge/Fog computing in
smart IoT community for social augmented reality,” IEEE Internet of Things Journal,
vol. 7, no. 6, pp. 4872-4884, 2020.

T. Yu, X. Wang, and A. Shami, “UAV-enabled spatial data sampling in large-scale
[oT systems using denoising autoencoder neural network,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 1856-1865, 2019.

[131]

[132]
[133]

134]

[135]

[136]

[137]

[138]

[139)]

[140]

141]

142]

137

CBC/Radio-Canada. (2020, April) Emission découverte: Drones humanitaires. [On-
line]. Available: https://ici.radio-canada.ca/tele/decouverte/site/segments/reportage/
139538 /drones-humanitaires

W. Gay, Raspberry Pi Hardware Reference, 1st ed. USA: Apress, 2014.
L. G. Gianoli, April 2020, private communication.

P. Huang, Y. Wang, K. Wang, and K. Yang, “Differential evolution with a variable
population size for deployment optimization in a UAV-assisted IoT data collection
system,” IEFE Transactions on Emerging Topics in Computational Intelligence, vol. 4,
no. 3, pp. 324-335, 2020.

A. Raniwala, P. De, S. Sharma, R. Krishnan, and T. Chiueh, “End-to-end flow fairness
over IEEE 802.11-based wireless mesh networks,” in IEEE INFOCOM 2007-26th IEEE
International Conference on Computer Communications. TEEE, 2007, pp. 2361-2365.

D. Bertsimas and M. Sim, “Robust discrete optimization and network flows,”
Mathematical Programming, vol. 98, mno. 1-3, pp. 49-71, sep 2003. [On-
line]. Available: http://www.springerlink.com/openurl.asp?genre=article{& }id=doi:
10.1007/s10107-003-0396-4

E. Delage, L. G. Gianoli, and B. Sanso, “A practicable robust counterpart formulation
for decomposable functions: A network congestion case study,” Operations Research,
vol. 66, no. 2, pp. 535-567, 2018.

G. P. McCormick, “Computability of global solutions to factorable nonconvex pro-
grams: Part i—convex underestimating problems,” Mathematical programming, vol. 10,
no. 1, pp. 147-175, 1976.

R. J. Fowler, M. S. Paterson, and S. L.. Tanimoto, “Optimal packing and covering in
the plane are NP-complete,” Information Processing Letters, vol. 12, no. 3, pp. 133 —
137, 1981.

D. S. Johnson, “The NP-completeness column: An ongoing guide,” Journal of Algo-
rithms, vol. 3, no. 2, pp. 182 — 195, 1982.

G. Desaulniers, J. Desrosiers, and M. M. Solomon, Eds., Column Generation.
Springer US, 2005. [Online]. Available: https://doi.org/10.1007/b135457

A. Lodi, “Mixed integer programming computation,” in 50 Years of Integer Program-
ming 1958-2008. Springer, Berlin, Heidelberg, 2010, pp. 619-645.

[143)]

144]

[145]

[146]

[147)

148

[149]

[150]

[151]

[152]

[153]

138

E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance
profiles,” Mathematical Programming, vol. 91, no. 2, pp. 201-213, Jan. 2002. [Online].
Available: https://doi.org/10.1007/s101070100263

R. Jain, The art of computer systems performance analysis: techniques for experimental

design, measurement, simulation, and modeling. New York: Wiley, 1991.

OpenDroneMap, “CloudODM,” 2020. [Online]. Available: https://github.com/
OpenDroneMap /CloudODM

P. Hansen and N. Mladenovi¢, “Variable neighborhood search: Principles and appli-
cations,” Furopean Journal of Operational Research, vol. 130, no. 3, pp. 449 — 467,
2001.

P. Hansen, N. Mladenovi¢, J. Brimberg, and J. A. M. Pérez, Variable Neighborhood
Search. Cham: Springer International Publishing, 2019, pp. 57-97. [Online].
Available: https://doi.org/10.1007/978-3-319-91086-4_ 3

I. Boussaid, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,”
Information Sciences, vol. 237, pp. 82 — 117, 2013, prediction, Control and Diagnosis

using Advanced Neural Computations.

J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Commun. ACM, vol. 18, no. 9, p. 509-517, Sep. 1975.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source
software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

(2021) Heterogeneous Embedded Ad-hoc Virtual Emergency Network (HEAVEN)
middleware. ~ Humanitas. [Online]. Available: https://www.humanitas.io/

off-grid-networking
V. Boyavalle, March 2021, private communication.

J. Turner, Q. Meng, G. Schaefer, A. Whitbrook, and A. Soltoggio, “Distributed task
rescheduling with time constraints for the optimization of total task allocations in a
multirobot system,” IEEFE Transactions on Cybernetics, vol. 48, no. 9, pp. 25832597,
2018.

[154]

[155]

[156]

157]

[158]

[159]

[160]

[161]

139

I[. Jang, H. Shin, and A. Tsourdos, “Anonymous hedonic game for task allocation in a
large-scale multiple agent system,” IEEE Transactions on Robotics, vol. 34, no. 6, pp.

1534-1548, 2018.

S. Mayya, D. S. D’antonio, D. Saldana, and V. Kumar, “Resilient task allocation in
heterogeneous multi-robot systems,” IEFE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1327-1334, 2021.

M. Alshaboti and U. Baroudi, “Multi-robot task allocation system: Fuzzy auction-
based and adaptive multi-threshold approaches,” SN Computer Science, vol. 2, no. 2,
Feb. 2021. [Online]. Available: https://doi.org/10.1007/s42979-021-00479-x

N. Mladenovié¢ and P. Hansen, “Variable neighborhood search,” Computers ¢ Opera-
tions Research, vol. 24, no. 11, pp. 1097 — 1100, 1997.

(2021) ODM - a command line toolkit to generate maps, point clouds, 3D models and
DEMs from drone, balloon or kite images. OpenDroneMap/ODM. [Online]. Available:
https://github.com/OpenDroneMap/ODM

(2021) Empowering app development for developers. Docker inc. [Online]. Available:
https://www.docker.com

(2021) Hyper-realistic simulation-based innovation platform|Hyper-X-Space. Humani-
tas. [Online|. Available: https://www.hxs.ai/

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical
simulation for autonomous vehicles,” in Field and Service Robotics, 2017. [Online].

Available: https://arxiv.org/abs/1705.05065

