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 A B S T R A C T

Ultrasound shear waves offer a non-destructive testing approach to assess the biomechanical 
properties of biological soft tissues. This paper presents a method based on the dispersion 
relations of ultrasound shear waves to inversely derive the viscoelastic properties of soft tissues. 
In the proposed method, dispersion relations are extracted from shear wave signals based on the 
multi-scale wavelet correlation analysis. Here, the continuous wavelet transform is employed 
to convert shear wave signals into various frequencies. The cross-correlation method is utilized 
to obtain the phase velocity of the shear waves. This approach offers advantages, including 
multiscale analysis capability, high-resolution time–frequency representation, flexible parameter 
selection, and continuous time–frequency scaling. Subsequently, an inversion process utilizing 
the simulated annealing algorithm is designed to characterize the properties of soft tissues. 
The effectiveness and accuracy of the proposed approach have been verified numerically and 
experimentally.

. Introduction

The mechanical properties of biological soft tissues, including stress–strain relationships, stiffness, elasticity, and viscosity, can 
e an indicator of the physiological and pathological states of biological tissues. The foundation of pathology lies in changes to the 
olecular structure or composition of biological tissues. For instance, diseases such as sclerotic breast cancer [1], atherosclerosis [2], 
nd prostate cancer [3] often exhibit an increase in tissue stiffness compared to pre-disease conditions, especially in the early stages 
f disease development. Additionally, changes in the viscosity of soft tissues may indicate the presence of an inflammatory process, 
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which can lead to fluid accumulation, increased cellular activity, or metabolic changes [4]. The characterization of viscoelastic 
properties is widely used in diagnosing conditions such as cancer [5], liver fibrosis [6], and cardiovascular diseases [7]. Furthermore, 
monitoring changes in the viscoelastic properties of tissues during treatment can be used to assess therapeutic outcomes [8]. In 
the design and fabrication of artificial tissues or biomaterials, such as during 3-dimensional (3D) printing, understanding their 
viscoelastic properties is crucial for mimicking the mechanical behavior of natural tissues [9].

To effectively and accurately monitor or measure the viscoelastic properties of soft tissues, a variety of methods have been 
proposed in the literature. Non-destructive testing (NDT), known for its non-invasive nature and convenience, has been widely 
utilized in this field [10,11]. Techniques such as indentation testing, magnetic resonance elastography (MRE), and ultrasound 
elastography are among the methods employed. Indentation testing quantifies the mechanical properties of materials by measuring 
the force applied by an indenter and recording the force–displacement curve. This curve, combined with specific models or empirical 
formulas, is used to calculate the material’s mechanical parameters [12,13]. By analyzing the force–displacement curve, indentation 
testing typically measures the overall mechanical properties of a material but is unable to assess the distribution of internal 
properties. For materials with heterogeneity or anisotropy, this method may not accurately describe their complex internal structures. 
MRE is an advanced technique within the realm of magnetic resonance imaging (MRI). While MRI relies on electromagnetic waves to 
capture intricate images of the internal structures of biological materials, MRE takes this a step further by incorporating mechanical 
vibrations that create shear waves within the tissues [14]. These waves are subsequently tracked and measured utilizing MRI 
technology. Viscoelastic properties of the tissue are then assessed through analysis of MRI images of recorded waves. This method 
has played a significant role in areas such as liver fibrosis [15] and cardiac imaging [16]. However, this method is relatively costly 
and may require a significant amount of time to perform.

Ultrasound elastography offers low cost and high operability, leading to extensive application of this technology for measuring 
the viscoelastic properties of soft tissues. Traditional ultrasound techniques use static strain estimation methods [17]. This involves 
applying a static force to the soft tissue, causing it to deform. When ultrasound waves are used for detection, the echoes also change. 
By comparing ultrasound echoes before and after the application of a force, this method determines the displacement distribution 
under external force to estimate the tissue’s deformation or Young’s modulus using an inversion algorithm [18]. These methods 
utilize compression waves for displacement tracking and often involve manually applied pressure, or the natural pulsation of an 
organ. However, for the remote examination of internal organs and other deeper tissues, the applied pressure may not adequately 
propagate to the target depth. Another ultrasound elastography technique is based on shear waves. Transient elastography (TE) 
involves applying a push with a probe to the surface of the tissue to generate transient shear deformation that propagates into the 
tissue. The velocity of the shear wave near the source of excitation can be obtained by recording the ultrasound echo signals [19]. 
This method typically permits the estimation of the tissue’s shear modulus or Young’s modulus (usually considering Poisson’s ratio 
of soft tissue close to 0.5) [20].

Shear wave elastography (SWE), a pivotal technique in the field of ultrasound elastography, has emerged as a mainstream 
technology in clinical elastographic imaging. It is distinguished by its high resolution, quantifiability, and extensive applicability 
across various clinical settings. Compared with TE, SWE can provide regional or global elasticity information, offering broader 
applicability and precise localization of pathological areas. TE typically yields a single elasticity value; its operation is relatively 
straightforward but lacks imaging capabilities. SWE can estimate the viscoelasticity of a medium using the frequency-dependent 
dispersion properties of shear wave speed in viscoelastic media [21,22]. Typically, this method relies on acoustic radiation force 
(ARF) to generate shear waves. Shear wave phase velocities are analyzed by measuring signals at certain space intervals. To 
accurately obtain dispersion relations, various methods have been proposed. For instance, the work [23] applied different frequencies 
of excitation to measure the corresponding shear wave speeds and obtain dispersion relations. The work [24] introduced a technique 
where multi-frequency external sources are employed to generate simultaneous multi-frequency reverberant shear wave fields for 
viscoelasticity analysis. The studies [25,26] adjust the distances between signal collection points to obtain dispersion relation. The 
research [27] developed a novel supersonic shear imaging technique for the in vivo quantitative mapping of liver viscoelasticity. 
The time-of-flight technique is utilized to recover shear wave velocities, enabling the acquisition of dispersion relations for the 
quantitative two-dimensional mapping of shear elasticity. The study [28] employed Doppler imaging technology to analyze the 
dispersion of shear wave velocity and attenuation, aiming to assess liver conditions such as steatosis.

Dispersion relations are typically extracted from spatiotemporal ultrasound data. Different methods have been proposed to 
extract dispersion relations. For example, phase gradient algorithms have been used to analyze the phase of shear waves at different 
frequencies at multiple lateral positions relative to the location of ARF application [29]. Methods using two-dimensional Fourier 
transform (2DFT) have also been applied to process spatiotemporal shear wave data and extract dispersion relations [30,31]. 
However, Fourier transform-based methods may be limited by noise, spatial, and temporal sampling. The work [32] proposed 
a method based on continuous wavelet transform (CWT), originally developed for extracting the dispersion relations of seismic 
waves, to analyze ultrasound shear waves. This approach requires the use of Green’s functions to compute phase difference, where 
a parameter determined by phase data and wave propagation characteristics must be predefined through optimization fitting or 
prior knowledge. The parameter pre-determination may pose an inconvenience. Moreover, the study did not account for the multi-
scale nature of CWT and did not utilize dispersion curves to inversely estimate the viscoelastic properties of soft tissues. CWT is a 
commonly used method in signal processing, and one of its primary objectives is to transform a time-domain signal into different 
frequencies or scales. CWT offers a flexible way to analyze signals by adjusting its resolution to the signal’s frequency content, unlike 
the fixed resolution of Fourier transform (FT). This adaptability makes WT ideal for non-stationary signals with changing statistical 
properties over time, which FT cannot handle as effectively. WT’s multi-scale analysis captures both local details and overall trends, 
and its localization in time and frequency allows for precise identification of signal features. It is also more noise-resistant, thanks 
2 
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to its selective design to respond to signal characteristics [33]. Therefore, this paper proposes a method based on multiscale wavelet 
cross-correlation (WCC) analysis to enhance the stability and noise resistance of dispersion relation extraction. In the proposed 
method, the CWT is employed to convert spatiotemporal shear wave data into various frequencies. The cross-correlation method is 
subsequently utilized to determine time delays, thus obtaining the phase velocity of the shear waves. This approach offers several 
advantages, including multiscale analysis capability, high-resolution time–frequency representation, the elimination of the need for 
window functions and the selection of parameters for Green’s function, and continuous time–frequency scaling.

As mentioned above, the extraction of dispersion relations may be used to characterize the viscoelastic properties of soft tissues by 
SWE. Several studies have been conducted to characterize viscoelasticity, with the main challenge lying in the frequency-dependent 
sensitivity of the parameters. For example, the study [34] obtained low-frequency dispersion relations (50 to 150 Hz) using MRI, 
which can further be used to analyze the shear modulus of soft tissues. However, this approach is highly susceptible to noise 
interference and requires high-quality data acquisition equipment, making it challenging to achieve accurate results in practice. 
The work [35,36] employed the least squares (LS) fitting method for parameter estimation. However, the inversion methods based 
on LS are prone to noise and disturbances during the dispersion extraction process, which may cause the results to depend heavily 
on local data characteristics, potentially leading to overfitting. The simulated annealing (SA) algorithm, due to its strong search 
capability, is better equipped to handle such noise or disturbances and to find more stable solutions. Therefore, in this study, an 
SA-based inversion algorithm is proposed to characterize the viscoelasticity of soft tissues. The proposed method is first validated 
through numerical analysis. In numerical analysis, the impact of wave signals with varying levels of noise on the proposed method 
for extracting dispersion relations has been studied, demonstrating the method’s robust noise resistance. A filter based on discrete 
wavelet transform is established to handle heavy noise signals. The proposed method has been effectively applied to the inversion of 
viscoelastic properties in live ducks’ livers with different fat contents, which validates the effectiveness and accuracy of the proposed 
dispersion relation extraction method and inversion process.

2. Methodology

The complete flowchart of the method proposed in this paper is shown in Fig.  1. The proposed method consists of the following 
steps: the first step is data collection (as explained in Section 2.1). The second step involves extracting the experimental dispersion 
relations based on WCC analysis (as explained in Section 2.3). The third step is the inverse estimation of soft tissue’s viscoelastic 
properties based on the simulated annealing algorithm (SA) (as explained in Section 2.5). During the inversion process, the forward 
model is used to compute the theoretical dispersion relations (as explained in Section 2.4). Those steps are explained in the following 
sections.

2.1. Experimental setup and data acquisition

The experimental setup, as shown in Fig.  1(a), involves applying a given excitation to the external surface of the soft tissue, 
typically in the form of acoustic force pushes. Two ultrasound sensors are positioned at distances 𝑟1 and 𝑟2 from the point of 
excitation application, where 𝛥𝑟 = 𝑟2 − 𝑟1. The collected displacement signals in the 𝑧 direction (the axial dimension defined in the 
coordinate system in Fig.  1(a)) are denoted as 𝑆1 and 𝑆2, representing the induced shear waves.

2.2. Ultrasound shear waves

For homogeneous viscoelastic materials, Navier’s equation governs the behavior of shear waves. This equation can be expressed 
as, 

𝜇∇2𝐮 = 𝜌 𝜕
2𝐮
𝜕𝑡2

(1)

in which 𝜌 is the density; 𝐮 is the displacement vector; 𝜇 refers to the shear modulus and is a complex number. In this paper, 
the Kelvin–Voigt viscoelastic model is used to define the shear modulus 𝜇, since it shows a better performance for soft tissue 
modeling [37], i.e., 𝜇 = 𝜇1 + 𝑖𝜔𝜇2, and 𝜇1 is the shear elasticity and 𝜇2 refers to the viscosity; 𝑖 is the imaginary unit (𝑖 =

√

−1); 𝜔
is the angular frequency. The problem is reformulated in a cylindrical coordinate system (r, 𝜃, 𝑧). The displacement component in 
the 𝑧 direction can be expressed as Chen et al. [38], 

𝑢(𝑟) = 𝐷𝑒−𝑘𝐼 𝑟
√

𝑟
𝑒𝑖𝑘𝑅𝑟. (2)

where 𝐷 is a term that is independent of the variable 𝑟; the complex wavenumber 𝑘 = 𝑘𝑅 + 𝑖𝑘𝐼 , where 𝑘𝑅 is the real part of 𝑘, and 
𝑘𝐼  is the imaginary part of 𝑘. 𝑘, 𝑘𝑅, and 𝑘𝐼  are all functions of frequency. Therefore, the general solution of the shear wave is a 
function of frequency and can be analyzed at each frequency component.

Utilizing Euler’s equation, expressed as 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥, where 𝑥 is a variable, Eq. (2) can be expanded to 𝑢(𝑟) =
𝐷𝑒−𝑘𝐼 𝑟
√

𝑟

[

cos(𝑘𝑅𝑟) + 𝑖 sin(𝑘𝑅𝑟)
]

. It can be found that the phase of 𝑢(𝑟) can be calculated as arctan( sin(𝑘𝑅𝑟)cos(𝑘𝑅𝑟)
) = arctan(tan(𝑘𝑅𝑟)) = 𝑘𝑅𝑟. 

For two signals collected at positions 𝑟1 and 𝑟2, denoted by 𝑢(𝑟1) and 𝑢(𝑟2), the phase difference (𝜙𝑠) can be computed as 𝜙𝑠 = 𝑘𝑅𝛥𝑟, 
where 𝛥𝑟 = 𝑟2 − 𝑟1. Given that 𝑘𝑅 = 𝜔∕𝑐𝑠, we can deduce 𝑐𝑠(𝑓 ) = 𝛥𝑟

𝜙𝑠∕𝜔
, where the term 𝜙𝑠𝜔  refers to the time lag of the signals 𝑢(𝑟1)

and 𝑢(𝑟 ) (that is, 𝑆  and 𝑆 ) at the frequency 𝜔.
2 1 2
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Fig. 1. The schematic diagram of the SA-based characterization using the wave cross-correlation analysis-extracted dispersion relation. (a). The setup for data 
acquisition: 𝑆1 and 𝑆2 are the two collected signals. (b). The experimental dispersion relation (𝑐𝑒𝑥𝑠 (𝑓 )) extraction process using WCC analysis. (c). The SA-based 
inversion process for the soft tissue viscoelasticity characterization, where 𝜇1: shear modulus, 𝜇2: viscosity, 𝜌: density; 𝜇10 and 𝜇20 are the initialized values of 
𝜇1 and 𝜇2, respectively; 𝜇∗

1 and 𝜇∗
2 are the inverted results of 𝜇1 and 𝜇2, respectively. (d). The forward model (𝐃𝐏𝐑(.)).

2.3. Dispersion relation extraction based on the WCC analysis

In this work, we propose a method that utilizes wavelet transform (WT) and cross-correlation analysis to extract the dispersion 
relation of the phase velocity 𝑐𝑠(𝑓 ) at varying frequencies, based on the two signals 𝑆1 and 𝑆2. The CWT is applied to decompose 
the signals into different frequency components [39,40]. The CWT for a given signal, 𝑥(𝑡), can be expressed as, 

𝐶𝑤𝑡(𝑎, 𝑏) =
1
√

𝑎 ∫

+∞

−∞
𝑥(𝑡) ⋅ 𝜓∗

( 𝑡 − 𝑏
𝑎

)

𝑑𝑡, (3)

where 𝜓(.) is the wavelet basis function and 𝜓∗(.) is its complex conjugate function; 𝑎 is the scale parameter, responsible for the 
width of the wavelet basis function, while 𝑏 is the translation parameter, responsible for the position of time of the wavelet basis 
function. The scale parameter 𝑎 can be related to the frequency and in CWT, the frequency value 𝑓𝑎 corresponding to the scale 
parameter 𝑎 can be approximated as 𝑓𝑎 = 𝐹𝑐𝐹𝑠

𝑎 , where 𝐹𝑐 is the center frequency of the selected wavelet basis function(𝜓(.)) and 𝐹𝑠
is the sampling frequency of the input signal. In this study, the complex Morlet wavelet is chosen as the basis function [41]. This 
selection is attributed to its excellent capability in capturing local features and frequency characteristics of signals, which is crucial 
for effective time–frequency analysis [42].

The procedure of the proposed method (WCC) for the dispersion relation of phase wave velocity 𝑐𝑠(𝑓 ) is elaborated as follows:

1. For the signals 𝑆1 and 𝑆2 collected at positions 𝑟1 and 𝑟2 respectively, the result of the CWT, 𝐶𝑤𝑡, is computed using Eq. (3). 
The outcomes for these signals are denoted as 𝐶 (𝑓, 𝑡) and 𝐶 (𝑓, 𝑡), corresponding to each signal. In the investigated area, 
1 2
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pairs at different positions can be selected for dispersion extraction to increase the robustness. The frequency variable 𝑓
is within the range of 𝛺, where 𝛺 is a vector that starts at 𝐹𝑚𝑎𝑥𝑁𝑠

, increments by 𝐹𝑚𝑎𝑥𝑁𝑠
, and goes up to 𝐹max. Here, 𝐹max

represents the maximum frequency for time–frequency analysis, and 𝑁𝑠 is used to denote the frequency resolution for time–
frequency analysis. A larger value of 𝑁𝑠 implies more frequency components, while a smaller value of 𝑁𝑠 implies fewer 
frequency components. The parameter 𝑁𝑠 is instrumental in regulating the number of sample points on the dispersion curve. 
To increase the density of sample points, 𝑁𝑠 can be reduced, which enhances the stability of the dispersion curve results. 
Moreover, certain scale parameters of the WT may resonate with noise elements within the signal, thereby influencing the 
accuracy of the results. To counteract this, one can iteratively adjust the ranges of 𝛺 and 𝑁𝑠 to mitigate the effects of noise.

2. At a specific frequency 𝑓 , the cross-correlation, 𝛾, of 𝐶1(𝑓, 𝑡) and 𝐶2(𝑓, 𝑡) can be obtained by Cheng and Pellettiere [43], 

𝛾(𝑓, 𝜏) = ∫

+∞

−∞
𝐶2(𝑓, 𝑡 + 𝜏) ⋅ 𝐶1(𝑓, 𝑡)𝑑𝑡, (4)

Here, 𝐶1(𝑓, 𝑡) and 𝐶2(𝑓, 𝑡) are the normalized versions of 𝐶1(𝑓, 𝑡) and 𝐶2(𝑓, 𝑡), respectively, scaled to the [0,1] range. This 
normalization aims to enhance the stability of the correlation calculation. 𝜏 represents the time lag between the signal 
components 𝐶1(𝑓, 𝑡) and 𝐶2(𝑓, 𝑡) at the frequency 𝑓 . 𝛾(𝑓, 𝜏) indicates the correlation at different time delays (𝜏) between 
𝐶1(𝑓, 𝑡) and 𝐶2(𝑓, 𝑡). When the collected signals are severely noisy, their cross-correlation might exhibit some singularities, 
which could affect the identification of time lags. To enhance the stability of time lag identification, a 5-layer wavelet 
threshold filter has been designed to process the cross-correlation when the collected signals are heavily affected by noise. 
This wavelet threshold filter is described in detail in Appendix  B.

3. At different frequencies, the results of the CWT exhibit pseudoperiodicity. Therefore, for the components 𝐶1(𝑓, 𝑡) and 𝐶2(𝑓, 𝑡)
at a specific frequency 𝑓 , the time lag (𝑡𝛥) between these two pseudoperiodic functions can be determined by the time 
component (𝜏) corresponding to the maximum correlation. This is because when 𝐶2(𝑓, 𝑡) is shifted forward by 𝑡𝛥 seconds on 
the time axis, the similarity between 𝐶1(𝑓, 𝑡) and 𝐶2(𝑓, 𝑡) reaches its peak. Therefore, there is, 

𝑡𝛥(𝑓 ) = argmax
𝜏

{𝛾(𝑓, 𝜏)}, (5)

4. Since 𝑡𝛥(𝑓 ) represents the phase difference in the time dimension between the components 𝐶1(𝑓, 𝑡) and 𝐶2(𝑓, 𝑡) at different 
frequencies, the phase velocity at the frequency 𝑓 , denoted as 𝑐𝑠(𝑓 ), can be calculated by 

𝑐𝑠(𝑓 ) =
𝛥𝑟
𝑡𝛥(𝑓 )

, (6)

where the wavenumber-frequency dispersion relation based on WCC can be expressed as 𝑘𝑅(𝑓 ) = 2𝜋𝑓∗𝑡𝛥(𝑓 )
𝛥𝑟 . Steps (2) through 

(4) outline the process of calculating the phase velocity at a specific frequency 𝑓 . By repeating this process for different 
frequencies within the set 𝑓 ∈ 𝛺, the dispersion relation for these frequencies can be determined.

The above procedures of WCC analysis for dispersion relation extraction can be summarized in Algorithm 1.
Algorithm 1 The procedure of WCC analysis.
Initialization: 𝑖 = 1, 𝐹𝑚𝑎𝑥, 𝑁𝑠, 𝛺, 𝐶1(𝛺, 𝑡), 𝐶2(𝛺, 𝑡) , 
while 𝑖 ≤ 𝑁𝑠 do 
𝑓 ← 𝛺[𝑖]
𝛾(𝑓, 𝜏) ← ∫ +∞

−∞ 𝐶2(𝑓, 𝑡 + 𝜏) ⋅ 𝐶1(𝑓, 𝑡)𝑑𝑡
𝑡𝛥(𝑓 ) ← argmax

𝜏
{𝛾(𝑓, 𝜏)}

𝑐𝑠(𝑓 ) ← 𝛥𝑟∕𝑡𝛥(𝑓 )
𝑖 + +

end while
Output the phase velocity 𝑐𝑠(𝛺) of the input frequency vector 𝛺

2.4. Theoretical dispersion relation

The complex wavenumber 𝑘 can be computed using the formula 𝑘 = 𝜔
𝑐 , where the wave velocity 𝑐 is a complex number. This 

velocity is given by 𝑐 =
√

𝜇
𝜌 ; therefore, the complex wavenumber 𝑘 can be calculated as: 

𝑘 =
𝜔
√

𝜌
√

𝜇21 + 𝜇
2
2𝜔

2

√

𝜇1 − 𝑖𝜔𝜇2, (7)

The term √𝜇1 − 𝑖𝜔𝜇2 can be calculated as 
√

𝜇1 − 𝑖𝜔𝜇2 =
√

𝐴(cos 𝜃̂2 + 𝑖 sin 𝜃̂
2 ), where 𝐴 =

√

𝜇21 + 𝜔
2𝜇22 and 𝜃̂ = arccos 𝜇1𝐴 .

The wavenumber-frequency dispersion relation can be obtained as, 𝑘𝑅 =
𝜔
√

𝜌
𝐴

√

𝐴+𝜇1
2 . Here, the phase velocity (𝑐𝑠(𝑓 )) of the 

shear waves can be defined as 𝑐𝑠(𝑓 ) = 𝜔
𝑘𝑅
, that is, 

𝑐𝑠(𝑓 ) = 𝐴

√

2 , (8)

𝜌(𝐴 + 𝜇1)

5 
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Here, the forward model, denoted by 𝐃𝐏𝐑(𝑓, 𝜇1, 𝜇2, 𝜌), is defined to show the relation of the phase velocity, 𝑐𝑠(𝑓 ), at different 
frequencies according to Eq.  (8).

2.5. Inversion based on SA

This paper proposes a method for characterizing the viscoelastic properties of soft tissues based on the SA algorithm. Its 
advantage lies in its insensitivity to initial values, effectively avoiding entrapment in local optima. The core ideas of SA include 
the annealing process and the Metropolis criterion [44]. For an annealing process implementation, we set an initial temperature, 
i.e., the maximum temperature 𝑇max, and a minimum temperature for annealing, 𝑇min. In each iteration 𝑖𝑡𝑒𝑟, the temperature is 
updated as 𝑇 = 𝑇old

log(1+𝑖𝑡𝑒𝑟) , where 𝑇old is the temperature from the previous iteration. When the temperature decreases to a certain 
value 𝑇 , a certain number of searches are conducted to update the solution. The new solution 𝑥new is used to update the old one 
𝑥old. To ensure the convergence of the algorithm, at temperature 𝑇 , the maximum number of updates for the new solution, 𝐾max, 
is set. Specifically, define 𝛥𝐹 = 𝐹 (𝑥new) − 𝐹 (𝑥old), where 𝐹 (.) is the loss function. The Metropolis criterion states that when 𝛥𝐹 < 0, 
there exists 𝑒− 𝛥𝐹

𝑇 > 𝑟𝑑 where 𝑟𝑑 is a random number in the range [0, 1], the solution is updated with the new one.
According to the analytical dispersion relation, denoted by 𝐃𝐏𝐑(𝑓𝑛, 𝜇1, 𝜇2, 𝜌), and utilizing the forward model in Eq.  (8) along 

with the dispersion relation extracted by the proposed WCC analysis method in Algorithm 1, denoted by 𝑐𝑒𝑥𝑠 (𝑓𝑛) where 𝑓𝑛 is the 𝑛𝑡ℎ
frequency in the extracted dispersion relation, the loss function is defined as follows: 

𝐹 = 1
𝑁

𝑁
∑

𝑛=1

|

|

𝐃𝐏𝐑(𝑓𝑛, 𝜇1, 𝜇2, 𝜌) − 𝑐𝑒𝑥𝑠 (𝑓𝑛)|| , (9)

where 𝑁 is the total number of frequencies in the extracted dispersion relation. Based on this loss function in Eq.  (9), the SA-based 
inversion process is described as follows:
Algorithm 2 The SA-based soft tissue viscoelasticity inversion.
Initialization: 𝜇1 = 𝜇10, 𝜇2 = 𝜇20, 𝑖𝑡𝑒𝑟 = 1, 𝑇 = 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥
while 𝑖𝑡𝑒𝑟 ≤ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 and 𝑇 ≥ 𝑇𝑚𝑖𝑛 do 
𝐾 = 1
while 𝐾 ≤ 𝐾𝑚𝑎𝑥 do 
𝑥𝑜𝑙𝑑 ← {𝜇1, 𝜇2}
𝑥𝑛𝑒𝑤 ← 𝑥𝑜𝑙𝑑
𝛥𝐹 = 𝐹 (𝑥𝑛𝑒𝑤) − 𝐹 (𝑥𝑜𝑙𝑑 )
if 𝛥𝐹 ≤ 0 or [𝛥𝐹 > 0 and 𝑒(−

𝛥𝐹
𝑇 ) > 𝑟𝑎𝑛𝑑(0, 1)] then 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑
end if
𝐾 + +

end while
𝑇 = 𝑇

log(1+𝑖𝑡𝑒𝑟)
𝑖𝑡𝑒𝑟 + +

end while
Output the inversion result: 𝜇∗1 , 𝜇∗2

3. Verification in silico

3.1. Data acquisition

To validate the reliability and accuracy of the method proposed in this paper, a numerical analysis is initially conducted. The data 
for this analysis is generated using the finite element method (FEM) model (the configuration is given in Appendix  A). The material 
properties of the viscoelastic medium under study, along with the distances between the two sensor locations, are summarized in 
Table  1. Two cases of the soft tissues are analyzed, and specifically, in Case 1, the shear modulus and viscosity of the material are 
modeled to replicate the renal cortex of a swine kidney, as examined in the work [45]. The data simulation methods for these 2 
cases are identical.

In this simulation, a sampling frequency of 105 Hz is configured, and the sampling time is 0.03 s. Therefore, at each receiver 
position, a time series with 3000 points can be obtained. Fig.  2(a) displays the waveform of the two collected signals, 𝑆1 and 𝑆2, 
respectively.

3.2. Dispersion relation extraction using WCC analysis

When the two signals 𝑆1 and 𝑆2 are obtained, following the procedure given in Algorithm 1, the dispersion relation can be 
extracted based on the proposed WCC analysis. In this section, the signal collected from Case 1 is used for illustration.
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Table 1
The physical properties and the distance of the two receivers.
 Parameter (unit) Case 1 Case 2 
 Shear modulus 𝜇1 (Pa) 2300 7500  
 Viscosity 𝜇2 (Pa s) 2.2 7.2  
 Density 𝜌 (kg∕m3) 1000 1000  
 Poisson’s ratio 𝜈 0.495 0.495  
 Receiver spacing 𝛥𝑟 (mm) 2 2  

The analysis begins by computing the CWT coefficients for 𝑆1 and 𝑆2, as prescribed by Eq.  (3). The outcomes of the CWT, labeled 
as 𝐶1(𝑓, 𝑡) for 𝑆1 and 𝐶2(𝑓, 𝑡) for 𝑆2, are illustrated in Figs.  2(c) and (d) respectively. Typically, the dispersion characteristics of soft 
tissues are examined within a frequency range up to 500 Hz, yet the precise range should be adapted based on empirical data 
available [26,29,45]. For the numerical analysis in this research, the frequency spectrum is confined to [50,500] Hz. The highest 
frequency band considered, 𝐹max, is fixed at 500 Hz due to the primary observation of dispersive phenomena within this band [45]. 
First, the choice of 𝑁𝑠 = 24 serves as a representative parameter value for method validation and performance evaluation. Then, 
by incrementally increasing 𝑁𝑠, we illustrate the effectiveness and adaptability of the WCC method in terms of frequency-domain 
resolution. In practical applications, 𝑁𝑠 can be adjusted to balance the desired resolution and computational efficiency.

Fig.  2(b) gives the component of the CWT coefficient when 𝑓 = 416.67 Hz, where the component of the CWT result has been 
normalized to [0,1], that is 𝐶̄1(𝑓, 𝑡) and 𝐶̄2(𝑓, 𝑡). In Fig.  2(b), it can be observed that the frequency components 𝐶̄1(𝑓, 𝑡) and 𝐶̄2(𝑓, 𝑡)
are pseudo-periodic functions and their time lag is denoted as 𝑡𝛥. 𝑡𝛥 here can be obtained by performing cross-correlation on the 
frequency components 𝐶̄1(𝑓, 𝑡) and 𝐶̄2(𝑓, 𝑡). The results of the cross-correlation analysis are presented in Fig.  3. At this frequency, the 
specific calculation process for 𝑡𝛥 and the phase wave speed is as follows: The cross-correlation 𝛾(𝑓, 𝜏) between these two components 
can be calculated at different times 𝜏 using Eq. (4). The time delay 𝑡𝛥 is identified at the point where 𝛾(𝑓, 𝜏) reaches its maximum, 
denoted by 𝑀𝑎𝑥{𝛾(𝑓, 𝜏)}. Here, 𝑡𝛥 is identified as 6.1 × 10−4 s. Consequently, when 𝑓 = 416.67 Hz, the phase velocity of the wave 
is calculated to be 3.28 m∕s. By iterating the procedure demonstrated in Fig.  3, at the frequencies indicated in Fig.  2(c)(d), we can 
compute the phase velocity 𝑐𝑠(𝑓 ) at each frequency.

Fig.  4 displays the dispersion curves for three 𝑁𝑠 values corresponding to parts (a), (b), and (c) of the figure. Fig.  4(a) illustrates 
the dispersion curves derived from the simulated signals 𝑆1 and 𝑆2 using the proposed WCC method, and compares them with the 
theoretical dispersion curves obtained from the forward model. The key observations from this comparison are: (1) The proposed 
method successfully extracts the dispersion relations from shear wave vibration signals with high accuracy. However, an anomaly 
is noted at extremely low frequencies, likely caused by wavelet transform distortions at these frequencies. Potential reasons include 
insufficient sampling frequency for the low-frequency components, leading to a violation of the Nyquist theorem, and signal edge 
effects that prevent a complete wavelet cycle at the signal’s start and end. Despite this, the outlier is distinguishable and removable, 
thus not impeding the overall dispersion relation extraction. For frequencies above 50 Hz, the average precision (AP), as defined 
in Eq.  (10), is found to be 98.13%, compared to the theoretical dispersion relation. 

𝐴𝑃 = 1
𝑁𝑑

𝑁𝑑
∑

𝑖=1

|𝑌𝑖 − 𝑌𝑖|
𝑌𝑖

, (10)

where 𝑌𝑖 is the 𝑖th extracted dispersion relation point and 𝑌𝑖 is the corresponding theoretical value. 𝑁𝑑 is the total number of the 
extracted dispersion relation points.

Fig.  4(a) demonstrates the results for 𝑁𝑠 = 24, whereas Fig.  4(b) shows the case for 𝑁𝑠 = 36. Fig.  4(c) for 𝑁𝑠 = 45 further 
illustrates the increased sample points. An increase in 𝑁𝑠 leads to a higher number of sample points on the dispersion curve, 
enhancing its stability. The AP between the extracted dispersion relations and the theoretical models for 𝑁𝑠 of 24, 36, and 45 
can demonstrate the method’s accuracy and stability.

Fig.  5 presents the dispersion relations extracted using the WCC method for Cases 1 and 2 (𝑁𝑠 = 24), along with their 
corresponding analytical dispersion relations. The comparison shows that the performance of the proposed WCC method in extracting 
dispersion relations is commendable. The dispersion extraction based on 2DFT is also compared in the figure.

3.3. Noise resistance analysis

To test the stability and robustness of the proposed method against noise, this study firstly conducts the noise resistance analysis 
by adding white Gaussian noise (WGN) into the generated displacement waveforms at different levels. The noise level is controlled 
by setting various signal-to-noise ratios (SNR). Figs.  6 and 7 show the results of dispersion extraction at SNR levels of 40 dB and 
20 dB, respectively. Signals for the analysis in this section are from Case 1.

Fig.  6 presents the dispersion extraction result at an SNR of 40 dB. Fig.  6(a) shows the signal with noise; Fig.  6(b) displays the 
normalized CWT coefficients at a frequency of 277.78 Hz, where the noise is quite noticeable; Fig.  6(c) shows the cross-correlation 
of the two components from Fig.  6(b), indicating that the cross-correlation remains stable even in the presence of noise. Fig.  6(d) 
illustrates the results of the proposed dispersion extraction method at an SNR of 40 dB, demonstrating its stability and high accuracy.

Fig.  7 presents the dispersion extraction result at an SNR of 20 dB. Fig.  7(a) shows the noisy signal; Fig.  7(b) displays the 
normalized CWT coefficients at a frequency of 375 Hz, where the noise is very severe; Fig.  7(c) shows the cross-correlation range 
7 
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Fig. 2. The results of the CWT of the two given signals 𝑆1 and 𝑆2: (a) The two collected signals 𝑆1 and 𝑆2; (b) The normalized components of the CWT 
coefficients 𝐶1(𝑓, 𝑡) and 𝐶2(𝑓, 𝑡) at the frequency 𝑓 = 416.67 Hz; (c) The CWT coefficient of Signal 𝑆1, 𝐶1(𝑓, 𝑡); (d) The CWT coefficient of Signal 𝑆2, 𝐶2(𝑓, 𝑡).

Fig. 3. The cross-correlation of 𝐶̄1(𝑓, 𝑡) and 𝐶̄2(𝑓, 𝑡) when 𝑓 = 416.67 Hz.
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Fig. 4. Comparison of the extracted dispersion relation curves obtained through the proposed WCC analysis with those derived from the theoretical forward 
model; Ther: Theoretical model. (a). 𝑁𝑠 = 24; (b). 𝑁𝑠 = 36 (b). 𝑁𝑠 = 45.

Fig. 5. The extracted dispersion relation curves for Cases 1 and 2; Ther: Theoretical model. (a). Case 1; (b). Case 2.

near the maximum of the cross-correlation of the two components from Fig.  7(b), revealing potential singularities due to severe 
noise, which could lead to inaccurate identification of time lags. When singularities appear in the cross-correlation due to noise, 
9 
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Fig. 6. The dispersion relation extracted from the noised signals with 𝑆𝑁𝑅 = 40 dB. (a). The two noised signals 𝑆1 and 𝑆2; (b). The normalized CWT coefficients 
𝐶̄1(𝑓, 𝑡) and 𝐶̄2(𝑓, 𝑡) of the noised signals at 𝑓 = 277.78 Hz. (c). The cross-relation of the normalized CWT coefficients 𝐶̄1(𝑓, 𝑡) and 𝐶̄2(𝑓, 𝑡) in (b). (d). The dispersion 
relation extracted by the proposed method. Ther: Theoretical model.

Table 2
The AP of the dispersion extraction at different SNRs.
 Noise levels Case 1 Case 2 
 40 dB 0.97 0.95  
 20 dB 0.89 0.85  
 20 dB with filter 0.94 0.90  

the designed 5-layer wavelet threshold filter is used to smooth the cross-correlation. Fig.  7(c) presents the noisy and filtered cross-
correlation, where the point 𝑀𝑁  is the maximum of the noised cross-correlation, caused by noise-induced singularities, leading to 
potential misinterpretation. With the designed filter, singularities in the filtered cross-correlation are smoothed, and the point 𝑀𝐹
corresponds to the maximum of the cross-correlation, thus enhancing the stability of time lag identification. Fig.  7(d) shows the 
results of the proposed dispersion extraction method at an SNR of 20 dB, demonstrating greater stability and accuracy with the 
filter compared to the unfiltered results.

Table  2 summarizes the accuracy (AP) of the dispersion extraction results at SNRs of 40 dB and 20 dB (both with and without 
the filter) in 2 cases. It is observed that the proposed method achieves high accuracy in dispersion extraction across various noise 
levels. The dispersion extraction results based on 2DFT are also shown in Fig.  6(d) and Fig.  7(d) for different noise levels. For all 
cases (no noise, 40 dB noise, and 20 dB noise), the average accuracy (AP%) of the dispersion extraction results from 2DFT and WCC 
compared with the analytical solution are as follows: No noise: 97.3% (2DFT), 98.1% (WCC); 40 dB: 94.7% (2DFT), 96.0% (WCC); 
20 dB: 83.2% (2DFT), 87.0% (WCC). From the comparison of these results, we observe that under lower noise conditions, the results 
of the two methods are quite similar. However, as the noise level increases, WCC demonstrates more stable results. This is because 
the noise significantly affects the frequency components of the signal at specific frequencies, and WCC, with its multi-scale nature, 
is able to analyze the signal at various resolutions, thereby reducing the impact of noise.

The signals with non-Gaussian random impulse noise were also analyzed and the results of the dispersion extraction using 
different methods are displayed in Fig.  8. From this figure, it is can be found that the FT-based method exhibits anomalies at 
33.33 Hz. Furthermore, the performance of the WCC method is comparable to that of the FT method in the frequency range of 50 
to 300 Hz. Beyond 300 Hz, the WCC method relatively outperforms the FT method. This is because the method based on WCC can 
10 
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Fig. 7. The cross-correlation analysis of the noised signals with 𝑆𝑁𝑅 = 20 dB. (a). The two noised signals 𝑆1 and 𝑆2; (b). The normalized CWT coefficients 𝐶̄1(𝑓, 𝑡)
and 𝐶̄2(𝑓, 𝑡) of the noised signals at 𝑓 = 375 Hz. (c). The cross-correlation of 𝐶̄1(𝑓, 𝑡) and 𝐶̄2(𝑓, 𝑡) when 𝜏 > 0.93 and its corresponding filtered cross-correlation 
(d). The dispersion relation with and without the filter. Ther: Theoretical model.

Table 3
The accuracy of the SA-based inversion at each case.
 Noise levels AP(%): Mean±STD
 𝜇1 𝜇2  
 No noises 99.5 ± 0.08 99.5 ± 0.6 
 40 dB 96.7 ± 3.9 98.5 ± 2.0 
 20 dB 94.7 ± 6.6 96.9 ± 4.2 

provide local information of the signal in both time and frequency domains, with the capability of multi-resolution analysis. This 
allows the analysis of signals at different scales (resolutions). It can capture detailed features of impulse noise in high-frequency 
parts, while retaining the main components of the signal in low-frequency parts, thereby achieving effective noise suppression and 
signal preservation.

3.4. Inversion based on SA

Each parameter in the SA is allocated a substantial search range, with the shear modulus 𝜇1 and viscosity 𝜇2 for Cases 1 and 
2 varying over ±50% of their true values. For Cases 1 and 2, the density is set to 1000 kg∕m3, which is a typical assumption for 
general soft tissues.

To test the accuracy of the inversion algorithm, dispersion relations based on noise-free signals (Fig.  4(b)), signals with an SNR 
of 40 dB (Fig.  6(d)), and signals with an SNR of 20 dB that have been filtered (Fig.  7(d)), are used for SA-based inversion testing. 
The accuracy of the inversion results for each case is displayed in Table  3, including the mean and the standard deviation(STD), 
for the 2 cases at different noise levels. It is observed that in each case, the inversion results demonstrate high accuracy. Therefore, 
the efficacy and accuracy of the proposed dispersion extraction method and inversion algorithm are verified. The calculations are 
performed on a computer with an Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz processor. It can be found that the inversion takes 
approximately 3 s.
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Fig. 8. Different methods for dispersion relation extraction. Ther: Theoretical model.

3.5. Discussions about the inversion

The sensitivity of the dispersion curve to the parameters 𝜇1 and 𝜇2 is related to the frequency range. The results of the sensitivity 
analysis for 𝜇1 and 𝜇2 using the theoretical dispersion relation from Case 2 are shown in Fig.  9. In this analysis, 𝜇1 (KPa) and 𝜇2
(Pa⋅s) are incremented by a proportional factor of 1.0–1.5 (with a step size of 0.01). For each disturbed parameter, the theoretical 
dispersion curve is computed and compared with the reference curve. The mean absolute error (MAE) is used as the sensitivity 
indicator, reflecting the overall deviation of the curve due to the parameter changes. Fig.  9(a) shows the sensitivity analysis from 
1 to 100 Hz; we can see that the dispersion relation is significantly more sensitive to 𝜇1 in this frequency range. By analyzing the 
analytical dispersion relation, we find that when the frequency approaches 0, the phase velocity equals √𝜇1∕𝜌. However, for practical 
signals, the amplitude of the low-frequency components is relatively low, making it more susceptible to noise interference. This also 
requires higher demands on the data acquisition equipment, as low-frequency signals need longer sampling times to cover a complete 
cycle. Therefore, it is often difficult to extract accurate dispersion relations in the low-frequency range. Here, the dispersion relation 
in the 100 to 500 Hz range is used for analysis. Fig.  9(b) shows the sensitivity analysis in this range, where it can be observed that 
in this frequency range, the dispersion curve shows higher sensitivity to 𝜇2, providing a new opportunity for viscosity inversion. 
Therefore, we adopt a joint inversion method to characterize both 𝜇1 and 𝜇2. Fig.  10 shows the inversion process for different 
dispersion curves extracted from WCC in Case 1, with the contour plot of the objective function(loss) for different 𝜇1 and 𝜇2. From 
this plot, we can see that the objective function for this inversion process is a convex function. For convex functions, we can use the 
Grid Search (GS) method for inversion. The step sizes for 𝜇1 (KPa) and 𝜇2 (Pa  s) are set to 10−3, and the search range is ±50% of 
their true values. The inversion parameters are determined by finding the coordinates corresponding to the minimum value in the 
contour plot. The red points in the figure represent the GS inversion results. In Fig.  10(a), the inversion results using the dispersion 
in Fig.  5(a), and their comparison with SA show the following accuracies: 𝜇1 ∶ 99.45% (SA), 95.04% (GS); 𝜇2 ∶ 99.97% (SA), 99.96% 
(GS). The average computation times are: 3 s (SA), 22 s (GS). In Fig.  10(b), for the dispersion relation affected by stronger noise 
(Fig.  7(d)), the inversion results compared with SA show the following accuracies: 𝜇1 ∶ 99.4% (SA), 85.2% (GS); 𝜇2 ∶ 99.9% (SA), 
97.1% (GS). Similarly, GS is also applied to the dispersion curve in Case 2 (Fig.  5(b)), with the following accuracies: 𝜇1 ∶ 95.6%
(SA), 93.6% (GS); 𝜇2 ∶ 99.1% (SA), 98.7% (GS). The average computation times are: 3 s (SA), 300 s (GS).

From the comparison of these inversion results, we can observe that the SA-based method offers high accuracy and time efficiency 
in parameter inversion. GS is affected by the grid step size, where a smaller step size may lead to memory overload and excessive 
time cost. If the step size is too large, it may cause the optimal solution to be missed. In contrast, SA, through random walks in 
continuous space, can approach the exact optimal solution. GS itself is global (covering the entire parameter space), but due to 
discretization and computational cost, it may fail to ‘‘see’’ the true global optimum. On the other hand, SA can dynamically adjust 
the search range through random walks and cooling strategies, gradually approaching the optimal solution. We also observe the 
noise resistance of SA. This is because the dynamic search strategy of SA is more robust to noise interference (while GS is more 
sensitive to local fluctuations in the objective function). Noise causes significant fluctuations in the objective function at adjacent 
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Fig. 9. The sensitivity analysis (a). 1 Hz to 100 Hz. (b). 100 to 500 Hz.

Fig. 10. Normalized contour plot and GS inversion for different dispersion relations. (a). Dispersion in Fig.  5(a). (b). Dispersion in Fig.  7(d).

grid points, which may lead GS to misjudge the optimal solution. The ‘‘rigid’’ selection of GS (only considering the minimum value at 
grid points) amplifies the noise impact, whereas the ‘‘flexible’’ search of SA (probabilistic acceptance) smooths the noise interference.

We also compared the inversion results with the least squares (LS) fitting method (as discussed in the work [36] using the three 
dispersion relations mentioned above. The LS method used in this study is based on the trust region reflective method in MATLAB. 
The inversion accuracy obtained are as follows: For Case 1 (No Noise): 92.1% (𝜇1), 99.2% (𝜇2). For Case 2 (No Noise): 94.8% (𝜇1), 
99.3% (𝜇2). For Case 1 with 20 dB noise: 80.4% (𝜇1), 96.7% (𝜇2). From these results, we can observe that SA outperforms the LS 
method, particularly when stronger noise is present. This is because dispersion data is often influenced by noise and disturbances. 
LS is usually affected by these factors, leading to results that are overly dependent on local data characteristics, which may cause 
overfitting. In contrast, SA, due to its strong dynamic search ability, is better able to handle such noise or disturbances, finding 
more stable solutions. In terms of time efficiency, the average computation time for the LS method is 2 s, which is more efficient 
compared to SA. However, since the forward process in this study has an analytical solution, the efficiency of SA is acceptable. 
Considering both accuracy and time efficiency, SA is a highly recommended method for the problem addressed in this study.

4. Experimental application

This study utilized shear ultrasonic wave experimental data to validate the proposed method. The ultrasonic waveform data used 
were provided by Bhatt et al. (2021) [46]. This work implemented a SWE sequence to assess the biomechanical properties of farm-
raised fatty duck livers (foie gras). This research involved nine mulard ducks used for the production of foie gras. The experiment 
received approval from the Institutional Animal Care and Ethics Committee at the University of Montréal Hospital Research Centre. 
During a two-week pre-feeding period, the ducks had free access to feed. After this pre-feeding period, the ducks underwent 12 
days of force-feeding twice daily via a mechanical tube with humidified corn kernels (40% water and 60% dry corn kernels). The 
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Fig. 11. The shear wave acquisition in the specimen. (a). The position of measurement. (b). An example of a signal pair of the recorded shear wave waveforms: 
𝑆1 and 𝑆2.

amount of food gradually increased from about 350 grams at the beginning of the feeding period to 650 grams per meal. Ultrasound 
measurements were taken on the farm on the 1st, 5th, 9th, and 12th days of the force-feeding period. During measurements, the 
ducks remained awake (no anesthesia) and were manually restrained in a dorsal position by a veterinarian. Ultrasound measurements 
were conducted using a Verasonics Vantage programmable system and an ATL L7-4 linear probe (the specifications: number of 
elements 128; center frequency 5 MHz; element pitch 0.298 mm; element length 7 mm; number of transmitting elements 64; number 
of receiving elements 128). The probe was placed on the duck liver for real-time B-mode imaging, and the focus point was manually 
selected within a depth of 1 cm. In shear wave elastography mode, five focused acoustic radiation pushes were applied using 64 
elements of the probe. Each push lasted 198.4 ms and was positioned from −5 to 5 mm in depth from the focal zone with steps of 
2.5 mm. When measuring shear wave propagation, 5 pushes in depth are performed to generate shear waves. The SWE sequence was 
repeated 5 times for data averaging. This means there were 5 instances of shear wave propagation, each following one after another 
with a given latent period. A single acquisition included 100 radio frequency frames for shear wave tracking. Beamforming was 
performed using the f-k migration method, which enhances beamforming accuracy and image reconstruction by transforming the 
signal into the frequency and wavenumber domains, achieving a frame rate of 3623 Hz for shear wave displacement tracking [47]. 
The liver profiles of the investigated ducks were manually delineated based on the veterinarian’s experience. More experimental 
details can be found in the work [46].

Fig.  11(a) shows the propagation of the shear wave in an ultrasound image of the duck liver at a certain frame, where the 
acoustic radiation force excitation of the shear wave can be seen. To capture the required two-point shear wave signals (𝑆1 and 
𝑆2), a 1 cm × 1 cm region of interest (ROI) on the liver is marked for signal extraction. The selection of the ROI involves choosing 
a region where the shear wave front can be clearly observed as it propagates. Fig.  11(a) provides a example of positions for 𝑆1
and 𝑆2, with a spacing of 3.125 mm. Since 𝑆1 and 𝑆2 move across different rows and columns within the ROI, most points within 
the ROI are accessed. Fig.  11(b) shows an example of a raw waveform signal pair. These figures are produced using waveform 
data provided by the work [46]. Given the constraints of the limited number of radio frequency frames collected, time-domain 
interpolation techniques were applied to the raw waveform data to enhance its continuity and smoothness.

For a pair of signals, the WCC-based method can be used for dispersion relation extraction. As mentioned in Section 3.2, it 
is possible to set different frequency intervals to obtain more phase velocities, and then merge these phase velocities to perform 
outlier removal. To reduce noise interference and improve the stability of the dispersion relation extraction, within the ROI, the 
signal pair can be moved in a fixed interval along the row and column directions to obtain the dispersion curve extraction results 
from multiple signal pairs. These dispersion relations can be processed for outlier removal and averaging, and smoothing filter 
treatment, to obtain a smooth and continuous dispersion relation for the detected duck liver ultrasound shear wave. Fig.  12 displays 
the dispersion relations extracted using the WCC method from one example measurement taken on the 1st, 5th, 9th, and 12th days 
across the frequency range of 75 Hz to 300 Hz. The dispersion relation extracted by the 2DFT method is also plotted. Based on the 
dispersion relations corresponding to the viscoelastic properties inverted using the SA algorithm and the experimental dispersion 
data, it can be found that the algorithm’s outputs fit the experimental results well.

The work utilizes five shear wave data at each time point (Day 1, 5, 9, and 12) to extract dispersion curves, respectively. 
Subsequently, the viscoelastic properties 𝜇1 and 𝜇2 are inverted using each dispersion curve. The mean and STD of the inverted 
results for viscoelastic properties at each time point are displayed in Fig.  13. The value change of 𝜇1(𝐾𝑃𝑎) and 𝜇2(𝑃𝑎 ∗ 𝑠) at 
different time points (Day 1, Day 5, Day 9, and Day 12) can be found as follows. During the four time points measured, 𝜇1 generally 
showed an upward trend. The greatest rate of increase occurred from Day 5 to Day 9, with 𝜇1 rising by 35.8% compared to Day 5, 
with the rate of increase slowing from Day 9 to Day 12. 𝜇  also displayed an overall upward trend during this period. The increase 
2
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Fig. 12. The experimental and inverted dispersion relation curves of the ultrasound shear waves. Inverted: inverted dispersion relation curves. WCC: WCC-
extracted experimental dispersion relation curves. 2DFT: dispersion relation using 2DFT. (a). Day 1. (b) Day 5. (c). Day 9. (d). Day 12.

was most significant in the first four days, with 𝜇2 rising by 45.38% from Day 1 to Day 5. The growth rate of 𝜇2 slowed after Day 5. 
These data not only provide a scientific basis for the optimization of duck liver quality but also offer references for the formulation 
of further feeding and management strategies.

5. Discussions and conclusion

This paper proposes a method for the inversion of viscoelastic properties of soft tissues based on ultrasound shear wave dispersion. 
This method initially uses the WCC method to extract dispersion relations from shear wave signals, followed by the use of the SA 
algorithm and the forward model to achieve the inversion of viscoelastic properties. The feasibility and accuracy of the proposed 
method are validated through numerical analysis and experimental animals in vivo.

In the numerical analysis, the performance of the proposed method was analyzed across different soft tissues and under various 
noise conditions. Subsequently, the raw data provided by the study [46] were used for experimental validation. In the work [46], 
viscoelasticity was assessed at two specific frequencies: 75 Hz and 202 Hz, combining attenuation and dispersion information. In 
contrast, this study uses the dispersion relation within the frequency range of 100 Hz to 300 Hz for viscoelastic characterization, 
which may lead to different results. Additionally, variations in signal processing methods, such as filtering techniques, can contribute 
to differences in the viscoelastic characterization results. Despite these variations, the general trend in the viscoelasticity of duck 
liver with feeding days remains consistent across different characterization methods.

This method has several advantages: 1. The method based on WCC employs multi-scale analysis, which has the potential to 
accurately acquire phase velocity data across various frequency ranges. 2. The inversion method proposed can estimate shear 
modulus and viscosity solely based on the dispersion curve and the viscoelastic model. This convenience can enhance the efficiency 
of characterizing soft tissues. 3. The method uses the dispersion relation curve within an interval for the inversion of viscoelastic 
properties. Compared to the method in the study [46] that just estimated the viscoelasticity at specific frequency points employing 
attenuation coefficients and phase velocity, this paper’s approach provides efficiency.
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Fig. 13. The inversion results of viscoelasticity.

However, some issues also need attention: 1. During the process of measuring shear waves, the influence of noise might affect the 
results of dispersion extraction. Moreover, other kinds of waves, such as longitudinal waves and guided waves, may also impact the 
measurement results. To improve the stability of dispersion extraction, this paper uses a multi-point measurement method within 
the ROI. 2. To enhance the accuracy of the estimated results, future studies could also combine the phase velocity dispersion curves 
with attenuation coefficients across frequency bands to jointly invert for viscoelasticity. 3. In this study, a rheological model (Kelvin–
Voigt model), is employed to assess viscosity. It is essential to recognize that the parameters of this model may be influenced by the 
development of certain pathologies, which could introduce biases in diagnosis. For example, the rheological behavior of the liver may 
change in response to variations in its fat content. 4. In practical applications, initiating the inversion process can be challenging if 
the dispersion information are not well understood. Fortunately, previous studies [48,49], have provided the viscoelastic properties 
of different soft tissues. These prior research findings can serve as prior information for initialization and determining the search 
range, thus providing valuable references for the inversion process. In this paper, SA is employed as the tool for inversion. The 
choice of SA is due to its global optimality and efficiency. Although this study focused on two parameters under the assumption of 
a single-layer soft tissue, future research will assume multilayer soft tissues. In such cases, where parameters across different layers 
need to be inverted, local optimization issues can become more severe, further showcasing the advantages of the SA model used in 
this study.

In this study, the ARF is employed to generate shear waves. This method is sensitive to the incident angle of the probe. Variations 
in the incident angle may affect the excitation efficiency, propagation path of shear waves, and subsequent elastic parameter 
measurements, potentially reducing the accuracy and repeatability of the results [50]. To address this issue, this study adopted a 
perpendicular incidence approach between the probe and the soft tissue surface. The main advantages of this approach are as follows: 
the method can ensure that the shear wave excitation direction aligns with the propagation direction of the sound waves. This 
enhances the excitation efficiency of shear waves. Perpendicular incidence avoids deviations in the shear wave propagation direction, 
improving wave purity and predictability. Perpendicular incidence reduces multipath propagation and signal interference, enhancing 
the intensity and SNR of shear waves. Therefore, maintaining the perpendicular incident angle between the probe and the tissue 
surface during practical operations is critical for achieving high-precision and high-reliability soft tissue elasticity assessments. For 
excitation methods involving non-perpendicular incident angles, future research could focus on developing corresponding analytical 
models to enable accurate viscoelastic property analysis under various incident angles.
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Fig. A.14. The schematic of the FEM model.
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Appendix A. Numerical simulation

In the FEM model by the software COMSOL, a 2D simulation area is depicted in Fig.  A.14, which is a square with each side 
measuring 0.2 m. The boundary 𝐵1 is set as a free boundary condition, while the other boundaries 𝐵2, 𝐵3, and 𝐵4 are assigned 
low-reflection boundary conditions. More details on the viscoelastic simulation of soft tissues can be found in the literature [51].

Appendix B. Wavelet threshold filter

To mitigate the singularities introduced by noise in cross-correlation, which could hinder the accurate identification of time 
lags, a filter utilizing discrete wavelet transform (DWT) is implemented. DWT evolves from the discretization of CWT. Mallat’s 
efficient method for DWT enables it to function as a filter, separating the signal into low-frequency (approximation coefficients, 
𝑐𝐴) and high-frequency (detail coefficients, 𝑐𝐷) components [52]. In this context, cA captures the signal’s overall trend, while 𝑐𝐷
encapsulates detailed aspects.

In this research, a 5-level DWT-based filter is developed for filtering in cross-correlation analysis. The initial level of DWT 
decomposes the input signal into 𝑐𝐴 and 𝑐𝐷. Subsequent levels, from the second to the fifth, employ heuristic soft thresholding 
on the 𝑐𝐷 from the prior level’s decomposition. The thresholded outcomes are then inversely transformed using inverse DWT at 
each stage, yielding the reconstructed filtered signal.

Data availability

Data will be made available on request.
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