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RÉSUMÉ

En 1851, Hermann von Helmholtz met au point un appareil permettant l’observation directe
du fond de l’œil, révélant au monde la surface rétinienne et les vaisseaux qui l’arpentent.
Le réseau vasculaire rétinien suscite alors un espoir inédit au sein du corps médical. Son
observation simple et non intrusive est en effet singulière pour des vaisseaux du corps humain.
Pourrait-elle permettre d’établir le lien entre les anomalies de la microvasculature rétinienne
et celles des vaisseaux irriguant d’autres organes comme le cœur, le cerveau, les reins, etc. ?
Il naît alors dans le corps médical un espoir et une ambition : découvrir sur la rétine des
signes précurseurs de pathologies vasculaires. Afin de permettre la conduite et la comparaison
d’études sur de larges cohortes, des indicateurs non subjectifs des altérations vasculaires
rétiniennes sont développés comme les mesures de calibres équivalents de l’artère et de la
veine centrales, ou comme la tortuosité des vaisseaux. Rapidement, apparait la volonté de
mesurer ces paramètres vasculaires par des méthodes semi puis complètement automatiques.

Quatre étapes constituent ces méthodes : 1. la segmentation des vaisseaux rétiniens ; 2. leur
classification en artérioles et veinules ; 3. l’extraction topologique de l’arbre vasculaire ; 4. sa
paramétrisation. Ensemble, elles constituent la modélisation topologique et géométrique de
l’arbre vasculaire à partir d’images de fond d’œil, qui sera le sujet de ce document.

Depuis 2015, les réseaux de neurones convolutifs ont reçu beaucoup d’attention de la com-
munauté de chercheurs travaillant sur l’identification des artérioles et veinules rétiniennes.
Si ces modèles culminent en haut des classements de l’état de l’art, ils restent limités par
leur tendance au surapprentissage et par leur incapacité à apprendre la structure topologique
sous-jacente à la vasculature de la rétine. À cause du faible volume de données annotées
disponibles, les modèles de classification souffrent particulièrement de problèmes de générali-
sation et sont sujets à des incohérences topologiques : inversant régulièrement la classification
d’un vaisseau au milieu d’une branche. Ces incohérences sont problématiques pour l’extrac-
tion fiable de la topologie de l’arbre vasculaire. Tant et si bien que les récents logiciels qui
exploitent ces modèles pour la paramétrisation vasculaire automatique abandonnent la modé-
lisation topologique (au détriment des paramètres vasculaires qui en dépendent) ou reposent
sur des approches simplistes qui ignorent ces incohérences. Comment mettre à profit alors,
les recherches récentes appliquant les CNN à la segmentation et la classification des vaisseaux
sur image de fond d’œil, pour extraire une modélisation topologique robuste de l’arbre vas-
culaire rétinien en vue d’en extraire des paramètres cliniques fiables ? Pour répondre à cette
problématique, je formule trois objectifs spécifiques.
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Le premier objectif est la construction d’un nouveau jeu de données annotées (MAPLES-
DR) pour l’entraînement et la validation de modèles de segmentation et de classification des
vaisseaux rétiniens. Cet objectif fut réalisé par l’organisation d’une campagne d’annotation
visant 4 structures anatomiques (dont les vaisseaux) et 6 structures pathologiques, sympto-
matiques de la rétinopathie diabétique sur 200 images de fond d’œil. L’ampleur du travail
a nécessité la conception d’une plateforme d’annotation Web permettant la correction de
cartes préannotées. L’étude de variabilité inter-observateur conduite pour l’occasion révèle
d’importants désaccords entre rétinologues sur le contour exact et la détection des structures
pathologiques.

Le second objectif est la formulation d’une nouvelle architecture de réseaux convolutifs pour
la classification vasculaire : les steered CNN. Les filtres des neurones convolutifs sont repa-
ramétrisés en des steerables filters afin de piloter, pour chaque pixel de l’image, la direction
dans laquelle ils sont orientés avant d’être convolués. Pour la classification vasculaire, ce for-
malisme est utilisé pour maintenir les filtres convolutifs alignés avec la direction de chaque
vaisseau de l’image. La mutualisation paramétrique qui en résulte assure une meilleure capa-
cité de généralisation au modèle, surtout lorsque le nombre de paramètres ou d’échantillons
d’entraînement est limité.

Le troisième objectif est la modélisation topologique et géométrique de l’arbre vasculaire
rétinien à partir de cartes imparfaites de segmentation sémantique prédites par réseaux de
neurones convolutifs (CNN). Cette ambition a conduit à l’implémentation du Fundus Vessels
Toolkit (FVT) : une librairie Python qui fournit les outils pour extraire minutieusement une
représentation topologique et géométrique du graphe vasculaire rétinien à partir de ces cartes
imparfaites. Une nouvelle méthode de partition du graphe permet alors de contraindre le
graphe vasculaire ainsi obtenu à adopter la forme d’une arborescence cliniquement plausible,
et ce faisant corrige bon nombre des artefacts de segmentation et de classification initialement
prédits par le CNN. Par ce simple post-traitement, FVT permet d’augmenter l’exactitude
de classification et de reconnecter 75% des branches déconnectées de leurs vaisseaux. Cette
représentation en arborescence permet finalement la paramétrisation du réseau vasculaire
rétinien.

Dans un chapitre complémentaire, je reviens sur le paradoxe de la littérature récente concer-
nant la segmentation des vaisseaux rétiniens : le nombre de publications s’envole depuis 2020,
mais les performances stagnent. Je montre par une analyse lexicographique des 1738 papiers
de la littérature que ces méthodes ne sont plus limitées par des lacunes architecturales ou
d’entraînement, mais par un retard des protocoles pour les évaluer : dû à la fois à un manque
de diversité des jeux de données de test, mais aussi à l’utilisation de métriques trop sensibles
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au biais d’annotations.

L’ensemble de ces travaux pose les termes de la transposition des récents progrès techno-
logiques de segmentation et de classification de la vasculature rétinienne, vers des résultats
cliniques pour le dépistage des pathologies vasculaires.
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ABSTRACT

In 1851, Hermann von Helmholtz developed an instrument that enabled direct observation of
the ocular fundus, revealing the retinal surface and its intricate vasculature to the scientific
community. The retinal vascular network quickly gained interest from the medical field,
as its straightforward and non-invasive observation offers a unique window into the human
circulatory system. Could abnormalities in the retinal microvasculature be indicators of
vascular dysfunctions in other organs such as the heart, brain, or kidneys? Could they serve as
early signs of vascular pathologies? To support large-scale cohort studies and enable objective
comparisons, quantifiable and non-subjective indicators of retinal vascular abnormalities were
developed, including the equivalent calibers of the central artery and vein, and vascular
tortuosity. Soon, the need for semiautomatic and eventually fully automatic measurement
methods became apparent.

These automatic methods typically consist of four key stages: (1) segmentation of retinal
vessels; (2) classification of vessels into arterioles and venules; (3) topological extraction of
the vascular tree; and (4) its geometric parameterization. Together, these stages form the
basis for the central topic of this thesis, namely the topological and geometric modeling of
the vascular tree from fundus images.

Since 2015, convolutional neural networks (CNNs) have attracted significant attention for
the segmentation and classification of retinal vessels. Despite achieving state-of-the-art per-
formance, such models remain constrained by their propensity to overfit and their limited
ability to learn the underlying topological structure of the retinal vasculature. The scarcity of
annotated data exacerbates generalization issues, leading to frequent topological inconsisten-
cies, such as the misclassification of a vessel midway along its branch. These inconsistencies
hinder the reliable extraction of vascular topology. As a result, most recent software tools
either forego topological modeling altogether (at the expense of vasular parameters that de-
pend on it), or rely on simplistic heuristics that ignore such errors. How, then, can recent
CNN-based advances in vessel segmentation and classification be leveraged to produce a ro-
bust topological model of the retinal vascular tree for the extraction of clinically meaningful
parameters? This thesis addresses this question through three specific objectives.

The first objective is the construction of a new annotated dataset, MAPLES-DR, for train-
ing and evaluating models that perform the segmentation and classification of retinal vessels.
This objective was achieved through a large-scale annotation campaign during which four
anatomical structures (including vessels) and six pathological structures associated with di-
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abetic retinopathy were manually labeled in 200 fundus images. To facilitate this effort,
a Web-based annotation platform was developed, enabling the correction of pre-annotated
maps. An interobserver variability study conducted as part of this campaign revealed sub-
stantial disagreements among retinal specialists regarding the exact contours and detection
of pathological structures.

The second objective involves the development of a novel CNN architecture for vessel
classification: the steered CNN. In this design, convolutional filters are reparameterized into
steerable filters that can be dynamically aligned with the local orientation of vessels for each
pixel independently. This formalism enforces rotational consistency and reduces redundancy
in parameterization by sharing parameters across all vessel orientations. The steetable filters
improve the model’s generalization capabilities, especially when few trainable parameters or
training samples are available.

The third objective focuses on the topological and geometric modeling of the retinal vas-
cular tree from imperfect semantic segmentation maps generated by CNNs. This led to the
development of the Fundus Vessels Toolkit (FVT), a Python library that enables the ex-
traction of a detailed topological and geometric representation of the vascular graph from
imperfact segmentation maps. A novel graph partitioning algorithm constrains the extracted
graph to form a clinically plausible tree structure, correcting many segmentation and classi-
fication artifacts produced by CNNs. This simple post-processing step significantly improves
classification accuracy and reconnects up to 75% of previously disconnected vessel branches.
The resulting tree representation enables accurate parameterization of the retinal vascular
network.

In a complementary chapter, the thesis examines a paradox in the recent literature: while
the number of publications on retinal vessel segmentation has surged since 2020, performance
metrics have stagnated. Through a lexicographic analysis of 1,738 papers, it is demonstrated
that progress is now hindered not by architectural or training limitations, but by outdated
evaluation protocols. The latter problem can be ascribed both to insufficient diversity in test
datasets and to using performance metrics that are overly sensitive to annotation biases.

Together, these contributions lay the foundation for translating recent advances in retinal
vessel segmentation and classification into clinically meaningful outcomes for vascular disease
screening.
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CHAPITRE 1 INTRODUCTION

«Nowhere else in the living body are we able to study the blood vessels of the size of the central artery
and its branches to the finest arterioles than in the fundus. The man with the ophthalmoscope is
impressed by its importance in the recognition of the early signs of general disease and of its general
diagnostic and its prognostic value. But its greatest value lies in the possibility it affords to help
solve the problems that have so long baffled medical science, in the search for ultimate causes of
conditions that are so common, so varied in their manifestations and so serious in their course.»

H. Friedenwald, Oxford 1930 [3]

La présence de vaisseaux sanguins à la surface du fond d’œil est connue dès le 18e siècle : Jean
Méry les aurait remarqués pour la première fois en 1704 dans les yeux de son chat, lorsqu’il lui
maintenait la tête sous l’eau. Il faut cependant attendre 1851 pour que l’Allemand Hermann
von Helmholtz mette au point un appareil permettant l’observation de la rétine d’un individu
sans qu’il soit nécessaire de l’immerger. L’ophtalmoscope est de conception rudimentaire : une
source de lumière est reflétée par une surface semi-refléchissante vers la pupille du patient. Un
observateur plongeant alors son regard au travers de la surface voit sa ligne de vue s’aligner
avec les rayons illuminant le fond d’œil, et y découvre le réseau vasculaire rétinien.

La simplicité de l’appareil conduit à son succès immédiat. Il faut dire que l’observation
directe et non intrusive de vaisseaux sanguins est inédite dans le corps humain. Pourrait-elle
permettre d’établir le lien entre les anomalies de la microvasculature rétinienne et celles des
vaisseaux irriguant d’autres organes comme le cœur, le cerveau, les reins ? Il naît alors dans
le corps médical un espoir et une ambition : découvrir sur la rétine des signes précurseurs
de pathologies vasculaires. Autrement dit, utiliser les yeux comme fenêtre, non pas de l’âme
comme le disait Georges Rodenbach, mais du cœur et du système vasculaire en général pour
mieux comprendre et anticiper ses défaillances.

Aussi, pendant près de trois siècles, les ophtalmologues ont regardé leurs patients dans le noir
de la pupille, d’abord par des observations directes via un ophtalmoscope puis par imagerie
de fond d’œil (“fundus” en anglais). Cette famille d’imagerie désigne tout système d’acqui-
sition capable de capturer une image des tissus semi-transparents rétiniens par réflexion de
lumière sur la rétine [4]. Depuis la première commercialisation par Zeiss en 1926 de photogra-
phies monochromes de la rétine, les technologies d’acquisition ont bien évolué : les caméras
fond d’œil contemporaines capturent en couleur et à haute résolution jusqu’à un angle de
133 ◦ de l’intérieur du globe oculaire. Dans cette thèse, on s’intéressera plus précisément
aux photographies de champ standard (30 ◦ à 50 ◦) car cette modalité non invasive, rapide
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et bon marché est largement répandue dans les services ophtalmologiques du monde entier.
Elle a ainsi largement contribué aux études conduites sur de grandes cohortes de patients
pour établir le lien entre altérations de la micro-vasculature rétinienne et d’autres pathologies
vasculaires. Dans un premier temps, les ophtalmologues recensent ces altérations : rétrécisse-
ment des artères, augmentation de la tortuosité, etc. Puis, dans un objectif de standardisation
des études, des indicateurs géométriques, morphologiques et topologiques de la vasculature
rétinienne sont développés. Mais la mesure manuelle de ces indicateurs souffre d’une grande
variabilité et est chronophage.

Depuis 30 ans, des yeux d’un autre genre s’ouvrent et scrutent avec ceux des cliniciens les
images de la rétine, des yeux rapides, infatigables et constants : les yeux des algorithmes.
Ces dernières années, la segmentation et la classification automatique du réseau vasculaire
rétinien ont en effet suscité l’intérêt de la communauté de chercheurs en vision par ordinateur.
Ces algorithmes, les réseaux de neurones particulièrement, ont une précision croissante et
constituent une première étape vers l’automatisation et la standardisation de l’extraction
d’indicateurs vasculaires cliniques. Cependant, pour compléter cette tâche, une seconde étape
est nécessaire : la modélisation topologique de l’arbre vasculaire à partir des segmentations
de vaisseaux. De plus, la définition de la topologie de l’arbre vasculaire rétinien nécessite
l’extraction de deux autres structures qui constituent des “points cardinaux” permettant de
s’y repérer et d’en estimer l’échelle : la fovea et le disque optique.

Structures anatomiques d’intérêt sur images de fond d’oeil

La surface extérieure du globe oculaire est une paroi blanche, rigide et opaque : la sclère.
À l’intérieur de cette enveloppe protectrice, tapissant le fond de l’œil, deux tissus se su-
perposent : la rétine et la choroïde. La choroïde est un tissu hautement vascularisé chargé
d’alimenter en sang la surface externe de la rétine, dont la surface interne abrite les photo-
récepteurs qui nous donnent la vue. C’est cette dernière surface qui est scrutée par les oph-
talmologues, initialement à l’aide d’un ophtalmoscope et aujourd’hui par imagerie du fond
d’œil dont un exemple est donné à droite de la figure 1.1. Et c’est la vasculature de cette
surface qui va nous intéresser au cours des 136 prochaines pages de ce projet de doctorat.

La fovea Notre acuité visuelle est maximale au centre de notre champ de vision. En effet,
c’est au centre de la rétine que la densité de photorécepteurs – particulièrement celle des
cônes responsables de la vision en couleurs – est la plus élevée. Cette zone absorbe donc
plus la lumière, teintant le fond de la rétine et y apparaissant comme une tache sombre : la
macula. Cette zone diffuse de 5 à 6 mm de diamètre contient en son cœur un point sombre
bien défini : la fovea, mesurant environ 150 µm.
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Figure 1.1 Schéma des principales structures anatomiques de la rétine.
Gauche : Vue en coupe du globe oculaire ; Droite : Image du fond d’œil centrée sur la fovea.

Le disque optique Le globe oculaire est connecté à son orbite par le nerf optique qui
assure la liaison nerveuse entre les photorécepteurs rétiniens et le cortex visuel et qui alimente
l’œil en sang par l’artère et la veine centrales. Le disque optique est la tête de ce nerf, c’est le
point de convergence des axones (les terminaisons nerveuses) rétiniennes. Le disque optique
se situe du côté nasal de la macula. Lorsqu’il est sain, son diamètre vertical mesure environ
1,7 mm et celui horizontal 1,5 mm. Sur l’imagerie de fond d’œil, il apparaît comme une zone
claire dénuée de capteurs (causant d’ailleurs un point aveugle dans notre champ de vision).
Sa surface n’est pas plane : en son centre, elle prend la forme d’un entonnoir d’où émerge
l’artère et la veine centrales. Ce renfoncement nommé excavation papillaire ou papille (“cup”
en anglais) se présente comme une ellipse claire au cœur du disque optique.

Les vaisseaux rétiniens À la sortie de la papille, l’artère et la veine centrales se ramifient en
artérioles et veinules. Les artérioles acheminent le sang chargé d’oxygène vers les capillaires qui
sillonnent la surface interne de la rétine et dont la paroi endothéliale permet des échanges avec
les cellules photoréceptrices (notamment leur ravitaillement en oxygène et la récupération du
dioxyde de carbone). Le sang appauvri en oxygène est alors collecté par les veinules puis
par la veine centrale. Cette différence de composition sanguine se traduit par une couleur
plus foncée des veinules 1. La paroi des artérioles rétiniennes est – comme celle des artérioles
cérébrales et coronaires – dotée de muscles lisses qui permettent à ces vaisseaux d’adapter leur
calibre (leur diamètre) et donc leur débit sanguin aux besoins des cellules photoréceptrices qui
varient avec la luminosité. Cette caractéristique fait parfois apparaître sur la ligne médiane
du vaisseau un liseré blanc propre aux artérioles. Enfin, une dernière propriété distingue les
deux types de vaisseaux : le diamètre des veinules est globalement plus large que celui des
artérioles (respectivement 300 µm et 200 µm en moyenne).

1. La protéine d’hémoglobine oxyde ses atômes de fer pour transporter la molécule de dioxygène. Cette
oxydation se traduit, dans le sang comme dans la rouille, par une teinte rouge vif.
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Objectif de recherche
Avec l’avènement des réseaux de neurones entraînés par apprentissage profond, le nombre
de publications traitant de la segmentation et de la classification des vaisseaux rétiniens ex-
plose : depuis 2020, il dépasse les 150 publications chaque année (plus de 200 en 2022) ! Mais,
si ces articles motivent généralement leur recherche par des enjeux cliniques, peu de travaux
évaluent les retombées réelles de ce foisonnement d’articles. La segmentation sémantique du
réseau vasculaire n’est d’ailleurs que la première étape vers l’extraction des indicateurs cli-
niques : elle doit être suivie d’une extraction des informations géométriques, morphologiques
et topologiques. Or, cette seconde étape n’est pas triviale lorsqu’elle doit travailler à par-
tir de segmentations automatiques qui introduisent des artefacts topologiques inhérents aux
approches basées uniquement sur une analyse des intensités de l’image.

Comment mettre ces progrès récents des techniques de segmentation sémantique des vaisseaux
au service de la recherche clinique, en automatisant l’extraction des indicateurs vasculaires
existants et potentiellement en permettant le développement de nouveaux ? Mon doctorat
s’inscrit dans l’effort clinique de compréhension et de dépistage des rétinopathies diabétiques
et de pathologies vasculaires. Il vise au développement et à la validation d’un outil auto-
matique de modélisation topologique de la vasculature rétinienne, afin d’en permettre une
analyse fiable et reproductible sur les images de fond d’œil issues de grandes cohortes.

Plan de la thèse
La présente thèse expose les travaux conduits pendant mon doctorat et leurs conclusions.
Elle est structurée en neuf chapitres dont le premier est cette introduction. Le second est une
revue de littérature traitant de la modélisation topologique du réseau vasculaire rétinien : ses
motivations, l’évolution de ses algorithmes et ses limitations. Le troisième énonce les objec-
tifs spécifiques de mon projet de recherche et sa méthodologie générale. Les trois chapitres
suivants détaillent la méthode proposée pour atteindre chaque objectif spécifique. Ils sont ins-
pirés des trois articles publiés durant mon doctorat, mais explorent plus en profondeur chaque
sujet. Le quatrième est consacré à MAPLES-DR : une campagne d’annotation des structures
anatomiques et pathologiques de la rétine ayant abouti à la publication d’un nouveau jeu
de données annoté. Le cinquième expose un nouveau formalisme de neurones convolutifs :
les steered CNN, spécifiquement conçus pour la classification des artérioles et veinules réti-
niennes. Le sixième détaille l’élaboration du Fundus Vessels Toolkit, un outil de modélisation
automatique de la vasculature rétinienne robuste aux artefacts de segmentation et de clas-
sification. Le septième chapitre introduit un paradoxe intéressant sur la littérature actuelle
et le dépeint par une analyse lexicographique, employant un modèle de langage large (LLM)
pour le triage de milliers d’articles scientifiques. Le huitième, la discussion, montre comment



5

les méthodes proposées aux chapitres 4, 5 et 6 répondent aux objectifs spécifiques et quelles
limites persistent. Le neuvième et dernier chapitre de cette thèse en résume les contributions
et formule des recommandations pour des travaux futurs.
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CHAPITRE 2 REVUE DE LITTÉRATURE

Ce chapitre revisite les motivations cliniques à la modélisation topologique du réseau vascu-
laire rétinien. Puis, il propose un tour d’horizon de la littérature sur la segmentation et la
classification automatique des vaisseaux, et sur la reconstruction de l’arbre vasculaire. Il se
conclut par une revue des outils semi- et complètement automatiques de modélisation et de
paramétrisation de l’arbre vasculaire rétinien et une analyse de leurs limites.

2.1 Genèse de la modélisation du réseau vasculaire rétinien

On verra ici comment la paramétrisation du réseau vasculaire rétinien s’est imposée comme
un formidable outil pour analyser les effets des pathologies vasculaires systémiques sur les
artérioles et veinules de la rétine.

Premières observations d’anomalies rétiniennes dues aux défaillances vasculaires

Dès 1898, Marcus Gunn recense et décrit les anomalies de la vasculature rétinienne chez des
patients souffrant d’hypertension [5]. Il observe un rétrécissement généralisé et irrégulier du
calibre (c’est-à-dire du diamètre) des artérioles, accompagné de perturbations des reflets lu-
mineux le long de leur surface. Il note aussi l’apparition de lésions vasculaires : hémorragies,
œdèmes et anomalies des capillaires (aujourd’hui appelées néovascularisation). Cette descrip-
tion évolue peu durant la première moitié du 20e siècle, mais leur compréhension étiologique
progresse. On associe la contraction généralisée des artérioles à l’élévation de la pression arté-
rielle et on lui impute l’apparition de lésions vasculaires. Quant aux irrégularités de calibres,
on les relie plutôt à une hypertension contrôlée ou à des cas de sclérose artériolaire [6].

Afin de permettre la conduite et la comparaison d’études sur de plus larges populations,
des systèmes de classification standardisés de ces anomalies sont développés. Ainsi, en 1939,
Keith, Wagener et Barker classent les symptômes de rétinopathie hypertensive selon 4 stades
de gravité : 1. rétrécissement généralisé ou focal des artérioles ; 2. entailles artérioveineuses ;
3. hémorragies ou exsudats ; 4. œdème de la papille [7]. Ils proposent aussi pour chacun une
définition précise. Mais en 1966, Kagan et al. montrent que malgré cet effort de standardi-
sation, la détection de ces symptômes souffre d’une grande variabilité inter-observateur [8].
Cette variabilité se manifeste particulièrement lors de l’évaluation du rétrécissement des ar-
térioles, alors que ce signe est peut-être le plus prometteur pour étudier les effets précoces
des pathologies vasculaires sur la rétine.
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Vers des indicateurs non-subjectifs des altérations vasculaires rétiniennes

Pour pallier cette variabilité, apparaît la nécessité d’une mesure quantitative, non subjective
de la contraction généralisée des artérioles rétiniennes. Comme il n’est pas envisageable de
faire mesurer à un clinicien le diamètre de toutes les artérioles du fond d’œil (en tout cas dans
un temps raisonnable), Parr et al. [9] proposent en 1974 un protocole de mesure estimant
le calibre de l’artère centrale de l’œil par une mesure des quelques artérioles à la périphé-
rie du disque optique. La zone d’intérêt est limitée de 0.5 à 1 diamètre de disque autour
de la papille : de sorte à en être suffisamment éloignée pour éviter les sections de transi-
tions artères/artérioles, tout en se concentrant uniquement sur les premiers embranchements
artériolaires Les diamètres de toutes les artérioles traversant cette zone sont mesurés indivi-
duellement par un expert puis agrégés en remontant la topologie de l’arbre artérien jusqu’à
l’artère centrale 1. Le calibre obtenu est nommé calibre équivalent de l’artère rétinienne cen-
trale (CRAE) et peut être comparé d’un individu à l’autre. Sa méthode de mesure sera
simplifiée en 2003 par Knudtson et al. [11] qui limitent le nombre d’artérioles considérées
aux 6 plus importantes, après avoir remarqué que le nombre d’artérioles biaisait le calibre
équivalent. Le CRAE est toujours utilisé sous cette forme aujourd’hui pour estimer le calibre
global des artérioles rétiniennes.

En 1992, Hubbard et al. [12] adaptent la formule de Parr et Spears pour calculer le ca-
libre équivalent de la veine rétinienne centrale (CRVE) et en déduisent le ratio du calibre
artérioles/veinules (AVR) défini par AVR = CRAE

CRVE . En utilisant le CRVE comme référence,
l’AVR est bien moins sensible à la variabilité naturelle du calibre des vaisseaux au sein d’une
population. De ce fait, il capte rapidement l’attention de la recherche clinique qui projette
de l’évaluer sur de larges cohortes. Il deviendra ainsi rapidement le porte-étendard des indi-
cateurs quantitatifs de l’altération des vaisseaux rétiniens et d’autres émergeront dans son
sillage, comme la tortuosité ou la dimension fractale (cf. section 2.3.1).

1. Pour chaque paire d’artérioles issues d’une même bifurcation, le calibre Ŵ de l’artère parent est dérivé
par : Ŵ =

√
0.87w2

a + 1.01w2
b − 0.22wawb − 10.76 où wa et wb sont respectivement le calibre de l’artériole

la plus petite et la plus large en µm. Cette agrégation tient ainsi compte du nombre d’embranchements
artériolaires, puisque la surface totale du système vasculaire artériolaire augmente avec ce dernier et qu’il
est très variable d’un individu à l’autre. Elle est aussi fonction du carré des calibres artériolaires de sortes à
mieux représenter la capacité sanguine de l’artère centrale (qui est proportionnelle à sa section et non à son
rayon) [10].
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Premier protocole de mesure de l’AVR assistée par ordinateur

C’est dans ce contexte qu’en décembre 1999, Hubbard et al. [12] publient la première étude qui
quantifie l’AVR sur une large cohorte de 9040 participants âgés de 48 à 73 ans. Ils montrent
que l’AVR suit une distribution normale au sein de la population, que sa moyenne varie selon
le sexe, l’ethnicité, le statut de fumeur et décroît avec l’âge. Par ailleurs, après avoir corrigé
pour ces facteurs, ils observent bien une corrélation entre l’AVR et la pression artérielle et
confirment quantitativement un rétrécissement généralisé des artérioles rétiniennes.

Mais le vrai intérêt de cette publication, pour nous, réside dans la méthode utilisée pour
mesurer l’AVR sur une population de cette ampleur. Ce papier est en effet le premier (en
tous cas à notre connaissance) à proposer l’utilisation d’un «image processor» pour stan-
dardiser l’évaluation d’un paramètre vasculaire rétinien. Étant donné la singularité d’un tel
appareil pour l’époque, les auteurs décrivent leur protocole avec force détails. Le scan réti-
nien monochrome (canal vert) est tout d’abord numérisé par un scanner de film 35 mm et
transféré au processeur d’image Sun Microsystems affublé d’un écran "haute résolution" de
19 pouces. L’annotateur sélectionne ensuite la région d’intérêt dont le contraste et la netteté
sont améliorés numériquement. Il peut alors marquer les contours d’un vaisseau à l’aide d’un
outil suffisamment saugrenu pour être mentionné par les auteurs : « A mouse was used to
mark the two edges of the vessel » !

Du point de vue du traitement d’images, la méthode est rudimentaire : elle se limite à une
amélioration des contrastes et une magnification. Mais les auteurs annoncent qu’ils travaillent
à un algorithme pour automatiser la sélection manuelle des bords des vaisseaux et espèrent
ainsi améliorer la reproductibilité et l’efficacité des mesures de calibre. Dès lors, l’histoire
de la paramétrisation du réseau vasculaire est définitivement liée à celle de l’informatique
biomédicale et du traitement d’image. Et les motivations invoquées en 1999 restent inchan-
gées aujourd’hui : 1. la standardisation des protocoles de mesures pour éviter la variabilité
inter-observateur et comparer les résultats entre études ; 2. leur automatisation pour rendre
possible l’analyse de cohortes importantes et améliorer la force statistique des résultats.

L’utilisation d’une telle « débauche » d’outils technologiques (un écran 19 pouces et une
souris !) contraint cependant les auteurs à souligner une limitation de leur méthode : « Mea-
surement of A/V ratio using a computerized image processor is practical in a research setting,
but currently could not be easily done in a clinical setting. »

Cette limitation sera très éphémère...
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Premiers logiciels de mesure semi-automatique de l’AVR

À peine 3 ans plus tard, en 2002, la même équipe présente le logiciel Retinal Analysis [13].
Un outil capable de mesurer automatiquement le calibre des vaisseaux en détectant leurs
contours sur des profils d’intensité extraits le long de leurs sections. Néanmoins, l’utilisateur
doit toujours placer manuellement la grille de la zone de mesure, choisir les sections de
vaisseaux à évaluer, valider les mesures de calibre et calculer le CRAE, le CRVE et l’AVR.
Ainsi, si la reproductibilité du résultat est améliorée par la détection des contours, le protocole
nécessite toujours 25 minutes pour extraire l’AVR d’une image.

Ce logiciel est remplacé quelques années plus tard par IVAN qui réduit de 5 minutes le temps
de mesure par une pré-segmentation des vaisseaux. L’algorithme qui réalise cette tâche n’est
pas documenté, on sait simplement qu’il s’appuie sur une carte de super-pixels parmi lesquels
sont identifiés les segments vasculaires. Durant une décennie, son utilisation se répand dans
le monde entier pour quantifier l’AVR sur des cohortes et investiguer l’effet des maladies car-
diovasculaires sur la vasculature rétinienne de plusieurs milliers de patients. Pour ne donner
que quelques exemples, il sera utilisé aux États-Unis : avec la Beaver Dam Eye Study [14,15]
(diabète) ou la Multi-Ethnic Study of Atherosclerosis [16] (athérosclérose), en Australie : avec
la Blue Montains Eye Study [17,18] (hypertension), ou encore en Europe avec la Thessaloniki
Eye Study [19] (facteurs de risques cardiovasculaires).

En 2010, Cheung et al. [20] proposent d’étendre la région de mesure de l’AVR à deux dia-
mètres du disque optique, alors qu’elle était jusque-là limitée à 1. Ils montrent que l’AVR
ainsi obtenu est plus reproductible et a une meilleure corrélation statistique avec les facteurs
de risques cardiovasculaires. Mais pour réussir cet exploit sans augmenter le temps d’anno-
tation, leur logiciel SIVA automatise la segmentation du disque optique et des vaisseaux et
identifie même les artérioles et veinules !
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2.2 Modélisation automatique du graphe vasculaire rétinien

On l’a vu, le réseau vasculaire rétinien, singulier par la simplicité de son observation, est
scruté et mesuré depuis le XIXe siècle avec l’espoir de mieux comprendre et anticiper les
pathologies cardiovasculaires et rétiniennes. Mais les protocoles de mesure de calibre déve-
loppés à la fin du XXe siècle se restreignent, par pragmatisme, à une petite région autour
du disque optique. Pour étendre leur définition à une portion plus large de la rétine et pour
standardiser la mesure d’autres paramètres vasculaires (comme la tortuosité ou la géométrie
des embranchements), la segmentation, la classification et la modélisation topologique auto-
matique des vaisseaux rétiniens s’imposent comme une nécessité. Leur objectif est double :
réduire le temps d’annotation pour permettre l’analyse de cohortes plus nombreuses et stan-
dardiser la mesure des paramètres vasculaires pour comparer leurs valeurs d’une étude à
l’autre sans variabilité inter-observateur.

Lorsqu’en 2010, Cheung et al. développent SIVA, le premier logiciel de mesure de l’AVR
à intégrer un algorithme de segmentation et de classification de la vasculature rétinienne,
ils bénéficient des travaux de recherche déjà conduits sur ces algorithmes depuis plusieurs
décennies. En préambule d’une analyse de SIVA et de ses successeurs semi et complètement
automatiques, cette section passe en revue l’évolution des algorithmes de segmentation et
de classification automatique des vaisseaux rétiniens : depuis les méthodes non supervisées
jusqu’aux réseaux de neurones à plusieurs millions de paramètres. Cependant, ce domaine
connaît un tel intérêt depuis 30 ans qu’il est impossible de le synthétiser en une revue exhaus-
tive : le nombre de papiers concernant la segmentation seule avoisine les 1700 depuis l’an 2000,
dont la moitié a été publiée après le début de mon doctorat en 2019 (cf. Fig. 2.1). Je prends
donc le parti d’une revue narrative s’appuyant sur des articles de revues récents [21–26]. Je
tenterai néanmoins une approche exhaustive (bien qu’expérimentale) dans le chapitre 7.
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Figure 2.1 Nombre de publications annuelles cumulées concernant la segmentation et la
classification des vaisseaux rétiniens à partir d’image de fond d’oeil.

Les publications regroupées dans ce graphique ont été identifiées selon la méthode de la section 7.
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2.2.1 Défis techniques à la segmentation sémantique des vaisseaux rétiniens

Pour comprendre les méthodes de segmentation et de classification des vaisseaux rétiniens sur
images de fond d’œil, commençons par relever les difficultés auxquelles elles doivent répondre.

Singularité morphologique et variabilité des structures vasculaires rétiniennes

La morphologie singulière des vaisseaux, et a fortiori des vaisseaux rétiniens, pose plusieurs
défis aux algorithmes de segmentation. Leur structure longiligne et leur présence dans l’en-
semble de l’image interdisent les approches par bounding-box ou détection de centroïde. À
cause de leur finesse, et bien qu’ils sillonnent la quasi-totalité de l’image, les vaisseaux ne
représentent que 15% des pixels de la région d’intérêt : soit un débalancement de classe non
négligeable. Cette finesse est en outre hétérogène : une grande diversité de calibres coexiste
dans une même image avec un ratio de l’ordre de 1 à 20. Autre défi, la vasculature se dé-
ploie en 3D sur la surface rétinienne mais est projetée en 2D par l’imagerie de fond d’œil. Il
est donc fréquent qu’un vaisseau soit occulté par un autre lorsqu’ils se croisent ou évoluent
parallèlement. Dans ces deux cas, il est parfois difficile d’identifier de quel vaisseau émanent
certaines ramifications (voir Figure 2.2c). Pour cette même raison de perspective, les artères
et veines de la cupule optique sont difficiles à distinguer car vues de face.

Les algorithmes de segmentation doivent aussi être robustes à la variabilité morphologique
de la vasculature rétinienne d’un individu à l’autre. Celle-ci s’applique au calibre moyen dont
les variations sont liées à l’âge, au sexe, à l’éthnicité, etc. Hao et al. [27] ont même mesuré
une fluctuation du calibre intra-individu au cours du cycle cardiaque (de l’ordre de 6% pour

Figure 2.2 Exemples de segmentations vasculaires difficiles dans la base de données HRF.
a. & b. Vaisseaux flous et contrastant peu avec le fond ; c. Vaisseaux enchevêtrés et de tailles diverses ;
d. & e. Vaisseaux occultés par des lésions de la rétine ou du vitré.
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les artérioles et 4% pour les veinules). La tortuosité et la topologie des vaisseaux connaissent
aussi une variabilité importante entre individus, au point qu’elle puisse être utilisée comme
descripteur pour valider l’identité d’une personne [28] !

Le contraste entre vaisseaux et fond est normalement un atout important pour la segmenta-
tion des vaisseaux, comme celui entre artérioles et veinules l’est pour leur classification. Mais
si ce contraste est bien marqué près du disque optique et au centre de l’image, il s’atténue en
périphérie. En outre, sur certaines images, les vaisseaux de la choroïde (couche vasculaire et
nerveuse sous la rétine) transparaissent et induisent des variations importantes de luminosité
du fond rétinien, affectant son contraste avec les vaisseaux (cf. Figure 2.2a).

Les lésions du vitré ou de la rétine – particulièrement les hémorragies et les exsudats –
peuvent aussi occulter des portions de vaisseaux (cf. Fig. 2.2d & e), altérer leurs couleurs
(cf. Fig. 2.2e) ou rendre imprécises leurs bordures (cf. Fig. 2.2b). Tous ces cas sont propices
à des faux négatifs dans la segmentation automatique. Par ailleurs, chez certains patients,
la membrane externe des vaisseaux reflète, en son sommet, la lumière émise par la caméra.
Une ligne blanche apparaît alors au centre du vaisseau et semble le scinder en deux dans
le sens de la longueur (cf. Fig. 2.2c). Ce cas se produit plus fréquemment à la surface des
artérioles. L’algorithme doit alors être capable de le distinguer du cas où deux vaisseaux
sont limitrophes et parallèles : dans le premier, la ligne claire appartient au vaisseau, dans le
second, elle appartient au fond.

Artefacts et variabilité d’acquisition

Une mauvaise qualité d’acquisition de l’image de fond d’œil peut aussi être source d’erreurs
pour les algorithmes de segmentation et de classification des vaisseaux rétiniens. Ainsi, une
mauvaise mise au point rendra flous les contours des petits vaisseaux ; des poussières oubliées
sur l’objectif prendront la forme d’une tache sombre sur la rétine, ou un mauvais réglage de
la source lumineuse plongera des pans entiers du fond d’œil dans l’ombre.

En outre, il faut ajouter à la variabilité anatomique naturelle de la rétine celle due au dis-
positif d’imagerie. En effet, depuis la première commercialisation d’une caméra fundus par
Zeiss-Littman en 1955, les technologies de photographie du fond d’œil ont beaucoup évolué.

Figure 2.3 Colorations d’une même rétine imagée par différentes caméras. Source : [1]
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Ainsi, l’angle de FOV, c’est-à-dire l’angle correspondant à la section imagée de l’intérieur du
globe oculaire, était initialement limité à 25◦ mais atteint aujourd’hui 133◦ pour une caméra
fundus couleur ou même 200◦ pour une caméra laser [29]. La résolution des capteurs, facteur
déterminant pour distinguer les vaisseaux les plus fins, a aussi grandement progressée : de
500 × 500 à plus de 3000 × 3000 pixels. D’une caméra à l’autre, la coloration de l’image
peut aussi grandement varier [1], comme démontré par la Figure 2.3 (la couleur de la rétine
dépend aussi de la pigmentation rétinienne [30]). Toutes ces variations présentent un défi de
généralisation aux algorithmes de segmentation et de classification vasculaire.

Volume limité de données publiques pour entraîner et valider les modèles

Cet enjeu de généralisation est d’autant plus préoccupant que le volume de données publiques
annotées pour entraîner et valider les algorithmes de segmentation et de classification est
très réduit, en tout cas jusqu’à ces dernières années. Il faut dire que l’annotation manuelle
de ces données est particulièrement fastidieuse : la segmentation seule nécessite 2 heures par
image [31] ! Aussi, au début de mon doctorat en 2019, ces jeux de données publics totalisaient
moins de 200 images pour la segmentation et 107 images pour la classification. Et pour
parvenir à ces chiffres, il fallait agréger des images de résolutions et de FOV hétéroclites,
certaines centrées sur la macula et d’autres sur le disque optique. Pour cette raison, les
algorithmes que nous allons présenter ont souvent été validés sur le jeu qui a servi à leur
entraînement, quitte à produire une version de l’algorithme par jeu de données.

Tableau 2.1 Jeux de données publics d’images de fond d’oeil avec annotations vasculaires.
† Ces base de données ne sont pas réellement publiques mais sont disponibles sur demande.

Nom (année) # Images Dimensions Camera (FOV) Population

Annotées pour la segmentation uniquement
STARE (2000 [32]) 20 700 × 650 TopCon TRV-50 (35◦) Californie, US
DRIVE (2004 [31]) 40 565 × 594 Canon CR5 (45◦) Pays-Bas (25-90 ans)
CHASE_DB1 (2009 [33]) 28 1280 × 960 NM-200-D (30◦) UK (10 ans)
HRF (2013 [34]) 45 3504 × 2336 Canon CF-60 UVi (60◦) République Tchèque
IOSTAR† (2015 [35]) 30 1024 × 1024 EasyScan SLO (45◦) -

FIVES (2022 [36]) 800 2048 × 2048 TRC-NW8 (50◦) Zhejiang, Chine

Annotées pour la segmentation et la classification
AV-DRIVE (2013 [37]) 40 voir DRIVE
LES-AV (2018 [38]) 22 1958 × 2196 Visucam ZK-5 (30◦/45◦) - (53-90 ans)
HRF (AV) (2019 [39]) 45 voir HRF

RETA (2022 [40]) 81 4288 × 2848 Kowa VX-10α (50◦) Inde
Leuven-Haifa† (2024 [41]) 220 1444 × 1444 Visucam 500 (30◦) Belgique (18-90 ans)



14

La suite de cette section 2.2 est organisée en quatre parties. Les sections 2.2.2 et 2.2.3 traitent
des méthodes de segmentation puis de classification automatique des vaisseaux rétiniens n’im-
pliquant pas l’entraînement d’un modèle par apprentissage profond (DL) ; elles visent à décrire
la nature de ces tâches par un tour d’horizon de leurs algorithmes conçus manuellement. La
section 2.2.4 présente les méthodes qui améliorent la classification A/V par une modélisation
topologique des vaisseaux. Enfin, la section 2.2.5 présente les modèles de réseaux de neurones
et leurs évolutions spécifiques à la segmentation sémantique de la vasculature rétinienne.

2.2.2 Segmentation des vaisseaux rétiniens pré apprentissage profond

Compte tenu de la faible quantité de données publiques disponibles au début des années 2000,
les premières méthodes de segmentation vasculaire sont non supervisées. Elles reposent sur la
connaissance a priori de la morphologie des vaisseaux pour les distinguer de l’arrière-plan, en
particulier sur leur forme longiligne et leur contraste avec le fond de la rétine. Ce contraste
étant particulièrement prononcé sur le canal vert, il sera généralement le seul exploité par
une majorité des méthodes citées ci-dessous qui travaillent en niveaux de gris.

Méthodes non supervisées

Filtrage convolutif Dès 1989, Chaudhuri et al. [42] constatent que le profil d’intensité le
long d’une section des vaisseaux rétiniens est analogue à une courbe gaussienne. Ils proposent
une modélisation par un matched response filters (MRF) de taille 32×32 pour détecter les
vaisseaux verticaux, puis déclinent ce filtre en 12 variantes pour couvrir toutes les orienta-
tions avec un pas de 15◦. Cette approche consistant à estimer la "vascularité" de chaque pixel
(c’est-à-dire la vraisemblance qu’il appartienne à un vaisseau) par filtrage convolutif fera de
nombreux émules. Hoover et al. (2000 [32]) lui ajoutent des caractéristiques extraites sur l’en-
semble de l’image. Al Rawi et al. (2007 [43]) affinent les paramètres du filtre pour maximiser
la segmentation sur DRIVE et atteignent 94,7% d’exactitude (accuracy) sur cette base. Puis
une série de travaux explore d’autres familles de filtres : comme les filtres de Gabor (Meng et
al., 2015 [44]), les ondelettes (Wang et al., 2013 [45]) ou les filtres COSFIRE (Azzopardi et
al., 2015 [46]). Les bonnes performances de toutes ces méthodes témoignent de l’efficacité du
filtrage convolutif pour la segmentation vasculaire. Il sera au cœur de nombreuses méthodes
supervisées ou non et on peut même considérer les CNN comme des lointains héritiers. Ce-
pendant, l’approche initiale est limitée par son absence de considérations pour la dimension
longitudinale des vaisseaux, qui favorise la prédiction des segmentations bruitées et discon-
tinues. Pour répondre à cette limitation, des méthodes par suivi (tracking) de vaisseaux ou
par évaluation de la Hessienne virent le jour.
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Suivi (tracking) des vaisseaux En 1998, Chutatape et al. [47] combinent les MRF de
Chaudhuri et al. avec des filtres de Kalman chargés d’estimer, à partir du dernier pixel connu
d’un vaisseau, la position du pixel suivant le long de sa ligne centrale. La procédure débute par
l’identification, à la frontière du disque optique, des pixels appartenant aux vaisseaux ; puis
elle suit itérativement ces vaisseaux jusqu’à atteindre une terminaison vasculaire. La même
année, Tolias et al. [48] proposent une méthode similaire où les MRF sont remplacés par
un Fuzzy C-mean Clustering (FCM). Ces approches dites de "suivi" des vaisseaux assurent
des résultats topologiquement cohérents, et plusieurs travaux s’en inspireront. Lalonde et al.
(2000 [49]) proposeront de plutôt suivre les contours des vaisseaux détectés par un algorithme
de Canny. Puis, des variations de l’algorithme de suivi seront explorées : notamment par ajus-
tement d’un modèle physique de vaisseaux (Cree et al., 2005 [50]), par approche bayésienne
(Adel et al., 2009 [51]) ou par filtre à particules (Nayebifar et al., 2013 [52]). Mais cette
famille de méthodes présente deux défauts : 1. les embranchements – où plusieurs directions
sont "suivables" – sont généralement gérés par des solutions ad hoc ; 2. ces méthodes sont
vulnérables aux artefacts d’acquisition ou aux lésions qui causent parfois des discontinuités
le long des vaisseaux et interrompent prématurément leur découverte.

Valeurs propres de la Hessienne En 1999, Martinez-Perez et al. (1999 [53]) adaptent
au fond d’œil les travaux de Frangi et al. (1998 [54]) sur la segmentation de vaisseaux sur
images rayons X, et proposent un nouvel estimateur de "vascularité" : l’écart entre les deux
valeurs propres de la Hessienne. En effet, puisque la Hessienne mesure la courbure locale de la
variation d’intensité, un fort écart entre ses deux valeurs propres λ1 << λ2 indique une struc-
ture tubulaire, dont l’orientation est celle du vecteur propre associé à λ1. Contrairement aux
filtres MRF, la Hessienne ne s’appuie pas uniquement sur un profil orthogonal au vaisseau,
mais évalue aussi sa stabilité dans la direction tangente. Elle est aussi naturellement équiva-
riante à la rotation et ôte la nécessité de répéter l’analyse dans plusieurs orientations. Vingt
ans après, la Hessienne est toujours utilisée pour développer des méthodes non supervisées
de segmentation des vaisseaux rétiniens (Zhang et al., 2010 [55] ; Alhussein, 2020 [56]).

Approches multi-échelles Dans leur article initial sur les images rayons X, Frangi et al.
notaient que, pour obtenir les meilleurs résultats, l’échelle à laquelle est calculée la Hessienne
doit correspondre au calibre du vaisseau analysé. Ils évaluaient donc la Hessienne pour une
série d’échelles de sorte à couvrir l’ensemble des calibres présents dans l’image, puis combi-
naient les cartes de réponses. Cette approche multi-échelle sera une des clés pour permettre
la segmentation de tous les vaisseaux rétiniens, petits comme larges. Et elle ne se limite pas
au calcul de la Hessienne : en 2002, Gang et al. [57] montrent que les algorithmes MRF
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s’améliorent aussi lorsque la taille du filtre s’adapte à celle des vaisseaux rétiniens. En 2006,
Sofka et al. [58] développent une normalisation des MRF générés à des échelles variables, afin
de choisir automatiquement l’échelle la plus pertinente. La même année, Cai et Chung [59]
exploitent une pyramide de Gaussienne multi-échelles pour rendre leur algorithme de "suivi"
de vaisseau plus résistant au bruit autour des vaisseaux les plus fins.

Morphologie mathématique En 2001, Zana et Klein [60] proposent de détecter les
formes longilignes des vaisseaux rétiniens non pas par "suivi" ou Hessienne, mais par une
transformée "top-hat" avec pour éléments structurants une série de lignes de taille fixe et
d’orientation variable (avec un pas de 15◦), dont le bruit est corrigé par une ouverture appli-
quée à la reconstruction géodésique de l’image. Cette approche par opérations de morphologie
mathématique (morphomat) sera très populaire dans les années 2010, pour sa simplicité d’im-
plémentation et ses capacités de débruitage. Elles seront souvent utilisées en complément des
méthodes énoncées plus haut. Ainsi, en 2011, Rossant et al [61] publient une approche exclu-
sivement morphomat consistant en un prétraitement par fermeture, puis une détection par
des filtres "top-hat" et "path-opening" ; leur traitement est multi-échelle. De même, en 2013,
Nguyen et al. [62] proposent un algorithme basé sur des détecteurs de lignes multi-échelle
(Multi-Scale Line Detector). La même année, Budai et al. [63] reprennent l’approche de la
Hessienne évaluée à plusieurs échelles, mais y ajoutent une étape de post-traitement par opé-
rations morphomat.

Bien sûr, la taxonomie des méthodes non supervisées présentées ci-dessus est non exhaustive.
Il faudrait y ajouter entre autres les méthodes par seuillage local adaptatif (Hoover et al.,
2000 [32]), par modèle de contour actif (Zhao et al. 2015 [64]), ou par transformée de Radon
(K. Noronha, 2012 [65]). Elle est aussi contestable : à mesure que l’intérêt pour la segmen-
tation des vaisseaux rétiniens monte, les travaux combinent les approches et il n’est plus
possible de les ranger dans telle ou telle catégorie. Mais dans le contexte de cette thèse, cette
taxonomie révèle les principaux leviers qui sont à notre disposition – ou qu’il faut mettre à
la disposition des algorithmes d’apprentissage machine – pour analyser la vasculature réti-
nienne. En particulier, elle souligne l’importance d’une analyse multi-échelle et qui s’appuie
sur la section des vaisseaux (e.g. par un filtrage convolutif) mais aussi sur leur direction
tangente (e.g. "suivi", Hessienne ou morphomat) pour limiter le bruit de segmentation.

En 2004, une évaluation comparative des approches de segmentations place Zana et Klein en
tête des méthodes non supervisées [66], avec une exactitude de 93.77%. Mais déjà dans cette
étude, la première place est remportée par une méthode supervisée.
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Méthodes supervisées

L’étude de Neimeijer et al. (2004 [66]), comparant les méthodes non supervisées existantes
et proposant une méthode supervisée, est conduite à l’occasion de la publication de leur base
de données DRIVE. Ce n’est pas anodin : les méthodes supervisées ont besoin de telles bases
pour entraîner leurs classifieurs statistiques à identifier, parmi une série de caractéristiques
décrivant l’image, les combinaisons permettant de distinguer si un pixel appartient à un
vaisseau ou non. Les publications de STARE en 2000 [32] puis de DRIVE en 2004 [31] ouvrent
donc la voie au développement de ces méthodes, dont on donnera ici quelques exemples.

La méthode supervisée de Neimeijer et al. [66] extrait, pour chaque pixel, un vecteur descrip-
teur à 31 dimensions obtenu par un filtrage convolutif avec des filtres Gaussiens multi-échelles
et avec leurs dérivées du premier et second ordre. Trois classifieurs sont ensuite comparés pour
reconnaître les vecteurs décrivant des pixels de vaisseaux : un classifieur linéaire, un quadra-
tique et un classifieur des k plus proches voisins (k-NN). Dans toutes leurs expériences, le
k-NN est le plus précis et surpasse les méthodes non supervisées. Les auteurs expliquent en
partie ce gain par l’existence de biais d’annotation non négligeables dans la vérité terrain :
pour faire "mieux" que le second annotateur de DRIVE (94.73% d’exactitude) les algorithmes
doivent en réalité se spécialiser sur les biais du premier dont les annotations ont été choisies
comme étalon (gold-standard). À ce jeu, les méthodes supervisées ont un avantage considé-
rable sur celles non supervisées. Les performances de la méthode de Neimeijer et al. sont
améliorées la même année par Staal et al. (2004 [67]) qui divisent l’image en petites régions
définies par leur proximité aux lignes de crêtes des structures ressemblant à des vaisseaux,
puis ajoutent au descripteur de chaque pixel les caractéristiques extraites de la région à
laquelle il appartient.

En 2006, Soares et al. [68] entraînent un classifieur Bayésien à identifier les pixels apparte-
nant aux vaisseaux rétiniens à partir de caractéristiques extraites par des filtres de Gabor.
La même année, Ricci et Perfetti [69] implémentent avec succès une segmentation des vais-
seaux rétiniens par machines à vecteurs de support (SVM) qui s’appuie sur un vecteur de
caractéristiques généré par des filtres détecteurs de lignes. Les performances des SVMs sont
significativement améliorées 4 ans plus tard par You et al. [70] qui proposent deux mo-
difications : 1. les vaisseaux les plus larges sont traités séparément des autres, 2. la base
d’entraînement est augmentée avec des échantillons annotés automatiquement par un SVM,
préalablement entraîné sur des images annotées par un humain. Pour ne pas induire de bruit
dans l’ensemble d’apprentissage étendu, seuls sont conservés les échantillons où la certitude
du SVM est élevée. Cette approche semi-supervisée permet d’augmenter virtuellement le
nombre d’échantillons d’entraînement sans le coût d’une annotation manuelle.
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En 2010, Lupascu et al. [71] extraient, pour chaque pixel de l’image, un vecteur de 41-D
par concaténation d’une bonne partie des descripteurs présentés plus haut : notamment la
convolution avec des MRF et des filtres de Gabor ou Gaussiens multi-échelles, les estimateurs
de "vascularité" de Frangi [54] et de Staal [67], ou encore les valeurs et vecteurs propres de
la Hessienne. En confiant ce vecteur descripteur à un classifieur Adaboost (Feature Based
Adaboost Classifier), ils atteignent 95.97% d’exactitude sur DRIVE. Leur méthode restera à
la tête du classement sur DRIVE jusqu’à ce qu’elle soit détrônée par les CNN.

2.2.3 Classification traditionnelle des artérioles et veinules rétiniennes

Avant d’étudier les approches de segmentation des vaisseaux rétiniens par réseaux de neu-
rones, intéressons-nous aux méthodes traditionnelles pour leur classification. On l’a vu à la
section 2.1, cette étape est cruciale pour permettre une analyse différenciée des artérioles et
veinules de la rétine, par exemple pour mesurer l’AVR. À ma connaissance, il n’existe pas
d’approche non supervisée à la classification des vaisseaux, et puisque la première base de
données publique annotée A/V n’est publiée qu’en 2013, le développement de ces méthodes
est plus tardif que celui des méthodes de segmentation. Ce retard s’explique aussi par une
attention moindre portée à ces méthodes par la communauté scientifique : toujours à ce jour,
le nombre de papiers publiés sur le sujet n’atteint pas le dixième de leurs équivalents en
segmentation (cf. Figure 2.1).

Les méthodes de classification A/V traditionnelles (pré-apprentissage profond) suivent toutes
à peu près le même fonctionnement, présenté sur la Figure 2.4. Elles débutent par la squelet-
tisation d’une segmentation vasculaire pré-existante ; puis identifient sur la carte du squelette
les points de jonction entre branches et les en effacent, faisant ainsi apparaître des segments
continus de vaisseau que l’on désignera par le terme : branche. L’algorithme de classification
vasculaire en lui-même a alors la charge d’étiquetter chaque branche comme artériole ou
veinule. C’est cet algorithme qui diffère d’une méthode à l’autre.

Figure 2.4 Vue schématique des étapes précédant la classification des branches vasculaires.
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Dans leur review publiée en 2024, Chen et al. [26] recensent 18 articles publiés entre 2003 et
2023 qui approchent la classification des vaisseaux rétiniens par des méthodes de classifica-
tion traditionnelles pures, c’est-à-dire qui extraient un vecteur de caractéristiques descriptives
pour chaque branche puis entraînent un classifieur statistique à distinguer si ce vecteur re-
présente une artériole ou une veinule. Les classifieurs testés sont variés : des méthodes de
partitionnement de données (clustering) diffus [72] ou de partitionnement k-means [73, 74],
un classifieur bayésien [75], des mixtures de Gaussiennes [76,77], des classifieurs k-NN [78,79].
Après 2013 et la publication de la base annotée AV-DRIVE [37], les classifieurs par analyse
discriminante linéaire (LDA) [80–82] et les SVM [83–85] gagnent en popularité.

Concernant les caractéristiques descriptives, les algorithmes proposés utilisent le plus souvent
des caractéristiques statistiques (quantiles, moyenne, écart-type) extraites soit directement
des intensités le long de la branche [72, 78, 80, 86], soit après avoir converti ces intensités
dans un espace de couleur plus judicieux comme LAB ou HSL [73–77,79,80,83,84]. Quelques
articles proposent un choix de caractéristiques plus spécifiques : Neimeijer et al. (2009 [78])
incluent le calibre vasculaire et les angles d’embranchements ; Zamperini et al. (2012 [75])
ajoutent la position du centroïde de la branche relativement au disque optique. D’autres ob-
tiennent aussi de bons résultats avec des descripteurs morphologiques, par exemple en cher-
chant dans le profil des vaisseaux les reflets lumineux symptomatiques des artérioles [82,83,86]
ou par des descripteurs de textures [79]. Pour réduire la complexité algorithmique des classi-
fieurs, certains auteurs diminuent la dimensionnalité du descripteur par PCA (Kondermann,
2007 [83]), ou éliminent ses composantes les moins pertinentes, en les ayant préalablement
classées à l’aide d’algorithmes Random Forest (Vijayakumar, 2016 [84]), de recherche géné-
tique (Huang, 2018 [81]), ou de Binary Particule Swarm Optimization (Irshad, 2021 [85]).

Tous les descripteurs énoncés plus haut sont efficaces pour distinguer le type des plus gros
vaisseaux. Néanmoins, le contraste entre artérioles et veinules s’atténuant pour les vaisseaux
plus fins, ils sont insuffisants pour classifier les branches secondaires ou tertiaires. D’ailleurs,
une majorité des méthodes citées plus haut se contentent de classifier les vaisseaux rétiniens
principaux, et souvent uniquement sur leur portion directement mitoyenne au disque optique.
Certes, certains articles proposent des stratégies exploitant les connaissances a priori sur le
graphe vasculaire rétinien pour améliorer leurs performances : comme Grisan et al. (2003 [72])
qui divisent le disque optique en quadrants pour assurer la détection d’une veine et d’une
artère dans chacun, ou Vázquez et al. (2012 [87]) qui ajoutent une étape de "suivi" (tracking)
pour regrouper des branches appartenant à un même vaisseau. Mais pour espérer classifier
l’ensemble des vaisseaux rétiniens, ces caractéristiques locales ne suffisent pas : il faut tirer
profit de la représentation topologique de l’arbre vasculaire.
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2.2.4 Modélisation topologique du graphe vasculaire pour la classification A/V

On verra ici comment ont émergé, après l’année 2009, des méthodes de classification A/V
s’appuyant sur une modélisation topologique de l’arbre vasculaire rétinien. Mais, en préam-
bule, débutons par un rappel rapide sur la topologie de cet arbre.

Topologie de l’arbre vasculaire rétinien

La topologie de l’arbre vasculaire rétinien est très variable entre individus, mais possède
cependant quelques invariants. En règle générale : artérioles et veinules s’alternent sur la
surface rétinienne de sorte que les croisements vasculaires impliquent quasi systématiquement
des vaisseaux de types différents (l’artériole passera souvent au-dessus de la veinule). Le
nombre de vaisseaux sortant du disque optique est variable, mais deux artérioles encadrent
toujours la macula (une dans chaque hémisphère supérieur et inférieur).

En théorie, le réseau vasculaire devrait être représenté par un graphe acyclique dirigé, naissant
de l’artère centrale et finissant à la veine centrale. La première moitié serait composée des
artérioles rétiniennes, le nombre de branches irait donc croissant à mesure qu’elles se ramifient
pour laisser place aux capillaires, puis décroîtrait dans la seconde moitié où les capillaires se
regroupent en veinules. Mais en pratique, les technologies d’imagerie du fond d’œil n’ont pas
aujourd’hui la résolution suffisante pour distinguer les vaisseaux capillaires rétiniens 5 à 10
fois plus fins qu’un cheveu (10 à 15 µm). Par ailleurs, seule la tête de l’artère et de la veine
centrales est visible et leurs embranchements dans le disque optique sont particulièrement
enchevêtrés. On modélise donc plutôt le graphe vasculaire rétinien par une forêt d’arbres
dont les nœuds racines sont placés aux frontières du disque optique et dont les feuilles sont
les pointes des vaisseaux à partir desquelles on ne distingue plus leurs ramifications. Dans
cette typologie topologique, un vaisseau désigne un arbre de cette forêt.

Une telle modélisation topologique en vaisseaux distincts est cependant une représentation
avancée du graphe vasculaire rétinien. En pratique, celle obtenue à partir de la segmentation
vasculaire pure est bien plus simpliste. Elle consiste en un graphe des branches définies à
la section précédente (segment continu d’un vaisseau). Dans ce graphe non-orienté, chaque
arc représente une branche reliant deux noeuds qui sont de trois types : les terminaisons
matérialisent les extrémités ou les racines des vaisseaux, elles ne sont connectées qu’à une
unique branche ; les bifurcations désignent les embranchements où une branche principale
donne naissance à deux branches secondaires ; les croisements apparaissent lorsque deux
vaisseaux s’intersectent, ils relient au moins quatre branches (deux par vaisseaux).
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Classification A/V par partition du graphe vasculaire

L’approche topologique pour la classification A/V diffère des méthodes qui consistent à ne
pas considérer chaque branche individuellement mais plutôt à propager la classe connue
des branches principales vers leurs ramifications difficiles à classifier. Cependant, dans la
représentation topologique extraite de la segmentation, artérioles et veinules se croisent,
s’entremêlent et se recouvrent mutuellement. Pour propager la classe des branches principales
vers les branches secondaires le long de la topologie, il est donc nécessaire de “démêler”
les nœuds du graphe afin d’identifier comment sont connectées leurs branches adjacentes.
Chaque nœud non terminal doit ainsi être interprété soit comme une bifurcation (si toutes
ses branches incidentes appartiennent au même vaisseau), soit comme un croisement (si elles
sont issues de vaisseaux différents), soit comme un groupe de terminaisons superposées, soit
enfin, comme une combinaison de ces options.

Rothaus et al. (2009 [88]) sont parmi les premiers à proposer une solution à ce problème.
Ils interprètent tous les nœuds de rang 3 (avec trois branches incidentes) comme des bifur-
cations et tous les nœuds de rang 4 comme des croisements diagonaux de vaisseaux. Selon
ces hypothèses, ils construisent, pour un graphe vasculaire donné, un système de contraintes
binaires où les branches adjacentes à une bifurcation sont considérées d’une même classe et
celles adjacentes à un croisement sont de classes opposées. En fournissant alors manuellement
les classes A/V de quelques branches, l’algorithme résout le système de contraintes et annote
l’ensemble du graphe. Lorsqu’un conflit apparaît entre contraintes, certaines sont relaxées par
des heuristiques prédéfinies, et si le conflit persiste, une résolution manuelle est nécessaire.

Cette première approche se limite à séparer les artérioles des veinules, mais les travaux qui
suivront s’intéresseront au problème plus général du partitionnement du graphe vasculaire (ou
graph tracing) consistant à isoler les sous-graphes propres à chaque vaisseau (voir Figure 2.5).

Figure 2.5 Partitionnement d’un graphe de branches pour isoler chaque vaisseau.
a. Graphe de branches non-orienté ; b. Partition du graphe : chaque vaisseau a sa couleur propre et les
nœuds de croisement ont disparu, seuls restent ceux des bifurcations et des terminaisons.
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Cette opération se formule comme un problème d’assignation où chaque branche du graphe
vasculaire doit être associée à un vaisseau. Suite au partitionnement, les nœuds de croisement
sont effacés du graphe de sorte que chaque vaisseau soit représenté par un arbre de branches
(voir Figure 2.5b). La classification de l’ensemble du graphe en est alors simplifiée puisqu’elle
est réduite à l’attribution d’une classe à chaque vaisseau plutôt qu’à chaque branche (les
auteurs proposeront généralement de classer les branches principales de chaque vaisseau par
les méthodes supervisées détaillées plus haut). Bienfait supplémentaire, le partitionnement
du graphe permet aussi l’analyse de l’arborescence vasculaire et en particulier des bifurcations
(seuls nœuds non terminaux restants) dont on peut mesurer l’angle des branches incidentes
ou le ratio des calibres. À ce titre, il fait partie de l’arsenal d’algorithmes déployés par les
outils semi-automatiques et automatiques qui mesurent les paramètres vasculaires rétiniens.

Partition du graphe par interprétation de la connectivité locale des branches

Une première approche pour partitionner le graphe vasculaire consiste à visiter chaque nœud
du graphe pour préciser la connectivité entre ses branches adjacentes : sont-elles toutes
connectées entre elles (comme une bifurcation) ou seulement certaines (comme un croise-
ment) et, dans ce dernier cas, lesquelles sont connectées entre elles ? Rothaus et al. (2009 [88])
présupposaient une connexion diagonale des branches adjacentes à un nœud de rang 4. Ce-
pendant, ce n’est qu’une possibilité parmi d’autres, comme le montre la Figure 2.6. Pour
déterminer la bonne connectivité entre ces branches, il faut s’appuyer sur leurs propriétés
géométriques fournies par la segmentation vasculaire.

Figure 2.6 Résolution de la connectivité locale d’un nœud reliant 4 branches incidentes.
a. Représentation topologique commune aux quatres configurations suivantes dans lesquelles le nœud
représente : b. un croisement diagonal de deux vaisseaux ; c. un point de contact de deux vaisseaux
parallèles ; d. deux bifurcations ; e. une bifurcation confondue avec une terminaison.
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En 2012, Lin et al. [89] estiment la similarité des branches adjacentes à un nœud par un filtre
de Kalman étendu. Le filtre se base sur le calibre des branches, sur l’intensité du canal vert,
sur la variation de ces deux valeurs à l’abord de la jonction, et sur les angles d’incidence.

En 2014, Dashtbozorg et al. [90] proposent plutôt d’interpréter la connectivité au sein d’un
nœud par une série d’heuristiques, chacune spécifique à un type de nœud (i.e. rang 2, 3, 4 ou
5). Par exemple, l’heuristique pour les nœuds de rang 4 détermine s’ils doivent être interprétés
comme des bifurcations, des croisements, ou des points de rencontre de terminaison vasculaire
et comment relier les branches incidentes en fonction du calibre vasculaire et des angles
d’incidence. Cette approche est reprise par Pellegini et al. (2018 [91]) qui remplacent les
heuristiques par un algorithme « graph-cut », puis plus récemment par Zhao et al. (2020 [92])
qui les remplacent par une recherche d’ensembles dominants sur le graphe de connectivité
des branches.

Partition du graphe par optimisation globale de l’arborescence vasculaire

Parfois, les informations géométriques locales ne suffisent pas à déterminer la connectivité de
branches adjacentes à un nœud, et il faut alors exploiter la topologie des nœuds voisins. De
et al. (2014 [93], 2016 [94]) proposent de remplacer les heuristiques strictes de Dashtbozorg
par des poids continus modélisant la plausibilité d’une connexion entre deux branches. En
pratique, ils construisent un graphe de ligne : c’est-à-dire un graphe dans lequel une branche
vasculaire – un arc dans le graphe standard – est représentée par un nœud dans le graphe
de ligne ; et où réciproquement, un nœud du graphe standard est représenté dans le graphe
de ligne par plusieurs arcs symbolisant les connexions entre des branches adjacentes (voir
Figure 2.7). De et al. pondèrent les arcs du graphe de ligne par un coefficient qui diminue
lorsque l’angle entre les deux branches connectées augmente. Puis, ils définissent N vaisseaux
(un pour chaque branche racine) et affublent chaque branche d’un vecteur de taille N indi-
quant la probabilité qu’elle appartienne aux différents vaisseaux. En forçant les vecteurs des

Figure 2.7 Construction d’un graphe de ligne à partir de la segmentation vasculaire.
a. Segmentation vasculaire ; b. Graphe vasculaire ; c. Graphe de ligne.
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branches racines à une probabilité de 100% pour leur vaisseau et 0 pour les autres, ils dif-
fusent alors l’influence de chaque vaisseau le long de la topologie du graphe de ligne jusqu’à
ce que les vecteurs de probabilité se stabilisent. Les branches sont finalement affectées au
vaisseau avec la plus forte probabilité.

En 2015, Estrada et al. [95] proposent une toute autre formulation du problème. Ils postulent
l’arborescence vasculaire originale T évoluant en 3D sur la surface rétinienne, dont les nœuds
sont uniquement des bifurcations ou des terminaisons (pas de croisement entre vaisseaux) et
dont la descendance de chaque branche principale correspond à un unique vaisseau rétinien.
Ils formulent alors le graphe vasculaire G tel qu’observé sur l’image de fond d’œil comme une
projection P de l’arborescence originale T dans lequel tous les vaisseaux – artérioles comme
veinules – se croisent et se confondent. Avec cette formulation, l’objectif de la modélisation
topologique consiste à inverser la projection P . Or, comme plusieurs arborescences peuvent
avoir la même image par P (cf. Fig. 2.8), Estrada et al. explorent l’ensemble de ces arbo-
rescences pour y trouver la plus plausible. Pour ce faire, ils définissent une orientation aux
arcs de G afin de produire une arborescence valide, puis ils inversent successivement l’orien-
tation des branches (par ex. Fig. 2.8 b & c) ou altèrent la parenté des branches issues de
croisements (par ex. Fig. 2.8 c & d), tout en s’assurant de maintenir la validité globale de
l’arbre. Chaque inversion ou altération de parenté génère une nouvelle configuration qu’Es-

Figure 2.8 Variété d’arborescence induisant un même graphe vasculaire non-orienté.
a. Graphe vasculaire non-orienté commun aux trois configurations suivantes. Entre b. et c. seule l’orien-
tation d’une branche change ; entre c. et d. seule l’hérédité des deux branches supérieures change.
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trada et al. représentent par un nœud dans un méta-graphe d’arborescences. Afin d’identifier
la plus plausible, ils calculent un score pour chacune en sommant des mesures de simila-
rité entre branches connectées (selon leurs couleurs, leurs calibres ou leurs orientations). Le
méta-graphe est alors exploré par un algorithme de recherche « best-first ».

Ce calcul global de la plausibilité d’une arborescence est un profond changement de para-
digme : la connectivité au sein d’une jonction n’est plus simplement interprétée au regard de la
similarité de ses branches incidentes, elle intègre aussi la plausibilité des jonctions avales. Dit
autrement, puisque la contrainte de validité de l’arborescence lie l’interprétation de certaines
jonctions entre elles (le choix d’une configuration pour une jonction pouvant interdire des
options pour les autres), l’interprétation évidente de certaines jonctions contribue à l’inter-
prétation de jonctions incertaines. En outre, cette approche permet à Estrada et al. d’inclure
des indicateurs généraux de plausibilité comme le taux de croisement incluant à la fois une
artériole et une veine qui devrait théoriquement approcher 100 %. Leur méthode se révèle
redoutablement efficace, pour la première fois plus de 90 % des pixels du squelette de DRIVE
sont correctement classifiés. Elle parvient même à partitionner le graphe vasculaire d’images
aquises à grand angle ! Cependant, elle est très sensible aux déconnexions de vaisseaux parfois
provoquées par des faux négatifs sur la segmentation. D’ailleurs, ils évaluent leur algorithme
sur les segmentations manuelles de DRIVE et sont même contraints d’exclure une image où
trop de vaisseaux sont déconnectés du disque optique.

Dans leur méthode, Dashtbozorg et al. prétraitaient le graphe pour y corriger les artefacts
de déconnexion (faux négatifs), surconnexion (faux positifs) ou de recouvrement (lorsque les
segmentations de deux vaisseaux distincts mais adjacents se superposent et se confondent de
sorte que, dans le graphe, un unique arc représente une portion de l’un et l’autre). Cependant,
comme pour la résolution de la connectivité des nœuds, leur prétraitement consiste en une
série d’heuristiques strictes et locales. En 2013, Lau et al. [96] avaient proposé une méthode
d’énumération d’arborescences et d’estimation probabiliste de leur plausibilité qui tenait
compte des artefacts de recouvrement vasculaire, mais uniquement de ceux-là. En outre, leur
méthode ne traitait que des vaisseaux compris dans la région entre .5 et 2 diamètres du
disque optique autour de la cupule. À ce jour, le problème de partitionnement du graphe
vasculaire rétinien par une approche d’optimisation globale de l’arborescence mais robuste
aux artefacts de segmentation reste irrésolu.



26

2.2.5 Segmentation sémantique des vaisseaux rétiniens par réseaux de neurones

Nous avons résumé dans les sections précédentes les évolutions de la littérature concernant la
segmentation et la classification du réseau vasculaire rétinien par des approches non supervi-
sées ou supervisées traditionnelles. Toutes ces approches s’appuient sur des caractéristiques
descriptives choisies manuellement par les auteurs. Ce paradigme change avec l’essor des
approches par réseaux de neurones, capables d’apprendre automatiquement à extraire les
caractéristiques pertinentes pour résoudre la tâche qui leur est soumise. À partir du début
des années 2010, ces modèles ont rapidement conquis l’intérêt des chercheurs travaillant dans
le domaine biomédical en général et sur la segmentation vasculaire en particulier.

La révolution de l’apprentissage profond et des réseaux de neurones convolutifs

Les réseaux de neurones entrainés par apprentissage profond sont des algorithmes conçus
pour accomplir une tâche de traitement de signal par une modélisation statistique du lien
entre les signaux d’entrée et une consigne souhaitée. Contrairement aux méthodes d’appren-
tissage traditionnelles, cette modélisation considère le signal d’entrée tel quel (et non des
caractéristiques choisies manuellement pour le représenter) et elle s’échelonne en une série de
représentations successives de plus en plus abstraites. On ne détaillera pas ici le formalisme
théorique qui a déjà été expliqué maintes fois et mieux que je ne pourrais le faire (notam-
ment par Goodfellow, Bengio et Courville, 2016 [97]). On rappellera simplement que chaque
représentation est constituée d’un vecteur de caractéristiques dérivé de la représentation pré-
cédente par une couche de neurones artificiels. Ces neurones sont définis par une fonction
mathématique statique alliant une combinaison linéaire suivie d’une transformation non li-
néaire, ainsi que par des poids ajustables qui paramètrent la réponse du neurone. Lors de la
phase d’entraînement du modèle, ses poids sont mis à jour itérativement par descente de gra-
dient de sorte à minimiser une fonction de coût mesurant un taux d’erreur. De tels modèles
sont théoriquement capables de modéliser n’importe quelle transformation, sous réserve que
le nombre de neurones et d’échantillons d’entraînement soit suffisant.

Cette formulation en réseaux de neurones présente plusieurs avantages comparés aux mé-
thodes d’apprentissage dites traditionnelles. D’abord, sa grande versatilité : régression, clas-
sification, segmentation, reconstruction, appliquée à du texte, des images ou des sons, sa
diversité d’applications est telle qu’elle semble dotée d’ubiquité ! Et puisque la théorie est
commune à toutes, les innovations conçues par exemple pour l’analyse de texte peuvent
être transposables à la segmentation d’images. Ensuite, l’extraction des caractéristiques est
totalement automatique. De ce fait, le réseau ne considère que les données de l’ensemble d’en-
traînement et non une connaissance a priori du phénomène étudié, ce qui est généralement
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vu comme un atout pour ne pas risquer de biaiser l’interprétation des données 2. Enfin, les
caractéristiques ainsi extraites possèdent généralement de bien meilleures capacités de géné-
ralisation. Ces capacités sont telles qu’il est notamment possible de raccourcir grandement le
temps d’entraînement d’un modèle en utilisant les poids d’un réseau à l’architecture similaire
mais entraîné sur un autre jeu d’entraînement plutôt qu’en les initialisant aléatoirement (par
ex. en pré-entraînant un réseau pour ensuite l’affiner sur des images médicales). Pour toutes
ces raisons, les réseaux de neurones artificiels entraînés par apprentissage profond sont de-
venus incontournables dans les conférences et journaux d’interprétation d’images médicales.

Ce formalisme n’est pas récent, dès la fin des années 90, Yoshua Bengio et Yann LeCun
(1998 [98]) en avaient proposé une variante pour la reconnaissance d’images (en l’occurrence
des chiffres) qu’ils nomment CNN et dont chaque neurone apprend un filtre de convolution.
Les couches de neurones convolutifs sont alternées avec des couches de sous-échantillonnage
qui réduisent la résolution des représentations mais augmentent leur nombre de canaux. Les
dernières couches sont complètement connectées : elles réduisent par combinaison linéaire la
représentation de l’image dotée de la plus faible résolution (et donc du plus grand nombre
de canaux) à un vecteur de caractéristiques puis en la prédiction finale. Au début des années
2010, suite aux avancées incrémentales du cadre théorique des réseaux de neurones profonds
et à l’explosion des capacités de calcul, la capacité de généralisation de ces modèles éclate au
grand jour et révolutionne le domaine de l’apprentissage machine. Ainsi, en 2012, les CNN dé-
passent largement les performances des autres méthodes d’apprentissage sur la classification
des images du challenge ImageNet (Krizhevsky, 2012 [99]).

Deux ans plus tard, Melinscak et al. [100] sont parmi les premiers à porter cette approche
à la segmentation des vaisseaux rétiniens. Leur modèle CNN contient 125 k paramètres
organisés en 4 couches convolutives et deux couches complètement connectées et atteint
les performances prometteuses de 94.7% d’exactitude sur DRIVE. Depuis, la majorité des
travaux de recherche en segmentation ou en classification des vaisseaux rétiniens s’intéresse
à ces algorithmes : soit en développant des innovations spécifiques à cette tâche, soit en
important des avancées de la technologie développées pour des approches plus généralistes.
Deux avenues de recherche sont principalement explorées : 1. le choix d’architecture des
réseaux et 2. leur procédure d’entraînement.

2. On pourrait cependant nuancer cette affirmation : considérer que les données sont «la vérité» stricte,
c’est négliger tous leurs biais intrinsèques. De plus, les connaissances a priori sur un phénomène sont sou-
vent de bonnes pistes de recherche pour imaginer des régularisations de la fonction de coût et améliorer la
généralisation du modèle.
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Évolutions Architecturales

Depuis 2015, les architectures de réseaux de neurones spécialisés dans le traitement d’images
et a fortiori dans la segmentation et la classification des vaisseaux rétiniens ont connu de
nombreuses évolutions. Il y eut initialement quelques tentatives d’approches non convolu-
tives, comme Li et al. (2016 [101]) qui entraînèrent cinq couches complètement connectées à
prédire la carte de segmentation d’un patch de 16 par 16. Mais rapidement, dans la lignée de
Melinscak et al., les modèles convolutifs s’imposent.

CNN Les réseaux de neurones convolutifs ont en effet un avantage sur les modèles complè-
tement connectés : dans une couche convolutive, les filtres sont convolués sur toute l’image,
là où un modèle complètement connecté associerait un poids à un pixel. Les CNN sont ainsi
non seulement plus économiques en paramètres, mais de plus, chaque paramètre bénéficie de
l’information de l’ensemble des pixels de l’image. Ou plus exactement l’ensemble des pixels
du patch : En effet, pour savoir si un pixel est un vaisseau ou non, on présente au modèle un
patch de son voisinage dans l’image. Le modèle de Melinscak et al. analyse ainsi des patchs
de 64 × 64 pixels. En 2016, Likowscki et Krawiec [102] améliorent leur travail en appliquant
une augmentation de données aléatoire géométrique (rotation, symétrie et redimensionne-
ment) et colorimétrique (teinte et saturation). L’année suivante, plusieurs travaux (Girard
et al. 2017 [103] ; Welikala et al., 2017 [104]) proposent d’augmenter le nombre de neurones
de la dernière couche d’un à deux. Par cette simple modification, ils convertissent le réseau
de segmentation en un modèle de segmentation sémantique, c’est-à-dire qui réalise simulta-
nément la segmentation et la classification des artérioles et veinules rétiniennes. Un défaut
des modèles CNN demeure cependant : initialement conçus pour la classification d’images,
ils nécessitent que chaque pixel soit analysé individuellement pour obtenir la carte de seg-
mentation complète. Cette limitation motive la conception de modèle réseaux de neurones
complètement convolutif (FCN).

FCN Proposé pour la première fois par Long et al. (2015 [105]), les FCN troquent les
dernières couches complètement connectées des CNN par des couches convolutives avec des
filtres 1×1. Par ce subterfuge, la sortie vectorielle des CNN devient matricielle et le modèle
prédit dorénavant une image complète. Il est aussi équivariant par translation : une trans-
lation de son image d’entrée induit une translation équivalente de sa prédiction, propriété
qui est parfaitement adaptée pour les tâches de segmentation. À cause des couches de sous-
échantillonnage, la prédiction du modèle est cependant sous-résolue par rapport à l’image
d’entrée. Long et al. proposent donc de suréchantillonner (par convolution transposée) à la
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résolution de l’image, les cartes produites à différentes étapes du réseau, avant de les combiner
pour obtenir la prédiction finale. Cette méthode est adaptée à la segmentation des vaisseaux
rétiniens par Fu et al. (2016 [106]) avec leur architecture Deep Vessels dans laquelle les pré-
dictions aux multiples résolutions sont combinées par un champs aléatoire conditionel (CRF).
Mais les FCNs devront attendre 2015 pour exprimer leur plein potentiel de segmentation à
travers l’architecture U-Net.

U-Net Cette architecture proposée en 2015 par Ronneberger et al. [107] contient deux
parties. La première moitié : l’encodeur, est similaire en tout point à un CNN dont on aurait
enlevé les couches finales de classification (il ne sera d’ailleurs pas rare de la remplacer par
un CNN pré-entraîné sur ImageNet). La seconde : le décodeur, est une réplique par symé-
trie de l’encodeur ; il réduit progressivement le nombre de caractéristiques par couche tout
en augmentant leur résolution jusqu’à atteindre celle de l’image. Encodeur et décodeur sont
reliés à chaque résolution par une “skip-connection” qui concatène les prédictions du pre-
mier à celles fraîchement suréchantillonnées du second. On le verra dans l’étude exhaustive
de la littérature (chapitre 7), cette architecture sera la plus plébiscitée par les publications
traitant de segmentation sémantique des vaisseaux rétiniens. En 2019, Hemelings et al. [39]
l’étudient en détail sur cette tâche : ils réduisent le nombre de caractéristiques prédites par
chaque couche pour éviter le surapprentissage dans ce contexte de volume réduit de données
d’entraînement. Pour la même raison, ils montrent un effet bénéfique de l’utilisation de dro-
pout entre les couches les plus profondes. Surtout, ils mettent en évidence l’importance de la
taille du champ d’activation 3 dans la classification vasculaire. Ils proposent de l’augmenter en
choisissant des tailles de filtres convolutifs 5×5 et des convolutions diluées. Les bénéfices des
convolutions diluées furent par la suite approfondis par Biswas et al. (2020 [108]) ou Hussain
et al. (2022 [109]). D’autres auteurs proposent de substituer chaque couche convolutive par
un bloc qui en comprend trois avec des filtres de taille 1×1, 3×3 et 5×5 (D. Yang et al.,
2020 [110] ; X. Yang et al. 2022 [111]). Des modèles plus denses sont aussi proposés, renforçant
le nombre de connexions entre les couches convolutives qui travaillent à différentes échelles.
C’est le cas du FR-UNet de Lio et al. (2022 [112]) dont on trouve une implémentation publiée
avec ses paramètres entraînés dans le paquet python Fundus-Image-Toolbox (Gervelmeyer,
2025 [113]). Toutes ces publications tentent d’améliorer la cohérence des prédictions entre les
gros et les petits vaisseaux en amplifiant les capacités d’analyse multi-résolution déjà bien
présentes dans les U-Net. De ce point de vue, elles s’inscrivent dans la lignée des approches
multi-échelles imaginées 10 à 20 ans plus tôt pour segmenter ces mêmes vaisseaux avec des

3. Le champ d’activation est défini comme la taille de la fenêtre dans l’image de départ qui peut théori-
quement contribuer au calcul d’un pixel dans celle prédite, ou dit autrement, c’est la taille cumulée obtenue
par composition de tous les filtres de convolution.
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algorithmes non supervisés. J’ai moi-même contribué à ce mouvement pendant ma maîtrise
en 2018 à l’occasion d’une publication (Lepetit-Aimon et al., 2018 [114]) dans laquelle j’ad-
joignais au U-Net classique, une branche travaillant sur l’image sous-résolue.

Bloc d’attention Malgré le recours à de multiples résolutions de travail, la segmentation
sémantique des vaisseaux les plus fins reste un défi pour les U-Net. Une interprétation est
alors formulée : pour segmenter les vaisseaux indépendamment de leur taille, la multiplicité
de résolutions ne suffit pas, encore faut-il les « aiguiller » de sorte que le modèle s’appuie
sur les résolutions basses pour les vaisseaux larges, et celles élevées pour les vaisseaux fins.
Zhang et al. (2019 [115]) proposent d’implémenter cet « aiguillage » en insérant des modules
d’attention dans un U-Net, là où les caractéristiques de l’encodeur sont concaténées à celles,
plus basse résolution, du décodeur. L’idée d’attention avait été développée pour les CNN
par Woo et al. (2018 [116]) : elle consiste à « désactiver » certains neurones d’une couche
convolutive en multipliant leur réponse par un masque. Ce masque est calculé par une branche
parallèle qui analyse les entrées de la couche pour déterminer quel neurone doit être désactivé.
Une fonction sigmoïde à la fin de cette branche assure que sa valeur soit comprise entre 0
et 1 (tel un masque). Les neurones ainsi shuntés peuvent, réciproquement, se spécialiser à
l’analyse de certains objets, par exemple les plus petits vaisseaux. Woo et al. avaient proposé
de combiner deux formes d’attention dans les CNN : une attention par canal et une attention
spatiale. En 2019, Mou et al. [117] exploitent précisément cette idée d’attention duale pour la
segmentation des vaisseaux rétiniens. Puis en 2021, Li et al. [118] montrent qu’en intégrant
des modules d’attention au décodeur du U-Net, il est possible d’atteindre les performances
de l’état de l’art avec un modèle économe en paramètres et ne travaillant qu’à 3 résolutions
(comparés aux 5 des U-Net standard).

Transformeurs Comme on l’a vu à la section précédente, la classification des vaisseaux
éloignés du disque optique est particulièrement délicate sans s’appuyer sur une approche to-
pologique. Or le champ d’attention limité des FCN leur interdit l’apprentissage d’une telle
approche : lorsqu’ils classifient les pixels en périphérie de l’image, le disque optique n’est
tout simplement plus visible pour ces modèles. Un problème similaire affectait les réseaux
de neurones analysant le langage naturel, et trouva sa résolution avec l’apparition des mo-
dèles dits “transformeurs”. Ces modèles appréhendent la tâche bien différemment de leurs
prédécesseurs : plutôt que d’apprendre à reconnaître des séquences de mots, ils modélisent
l’interaction de chaque mot avec ses voisins plus ou moins proches : au sein d’une phrase,
d’un texte, ou aujourd’hui d’un roman (GPT-4 peut analyser un contexte d’environ 96 000
mots). Je n’expliquerai pas ici leur fonctionnement, hormis qu’ils reposent sur un mécanisme
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d’attention croisée (self attention) leur permettant de modéliser l’interaction de mots séparés
d’une distance arbitrairement longue et uniquement limitée par l’espace mémoire à disposi-
tion. Cette méthode fut proposée pour l’analyse du langage en 2017 par Vaswani et al. dans
leur article : « Attention is all you need » [119], puis transposée à l’analyse d’images 4 ans
plus tard par Dosovitskiy et al. : « An image is worth 16x16 words » [120] qui introduit
les vision transformers (ViT). La capacité de cette architecture à modéliser des interactions
longues distances semble évidemment un atout pour la segmentation sémantique des vais-
seaux rétiniens, et rapidement des auteurs les intègrent à leurs modèles : soit par des couches
de self-attention placées sur les skip-connection du U-Net (Zhang et al., 2022 [121] ; Yu et
al., 2022 [122]) ou entre ses couches convolutives (Yi et al., 2023 [123]) ; soit en remplaçant
toutes les couches de convolutions par des modules transformeurs Swin (Li et al., 2024 [124]).

On pourrait ajouter à cette liste des principaux « courants architecturaux » : les approches
squeeze and excitation (Shen et al., 2022 [125]) ou les réseaux de neurones par graphe (GNN)
(Mishra et al., 2021 [126]). Mais la frise chronologique présentée dans cette section permet
déjà de distinguer les tendances de la littérature. Les réseaux de neurones convolutifs semblent
être particulièrement adaptés à la segmentation et à la classification des vaisseaux, probable-
ment grâce aux aptitudes naturelles des approches convolutives déjà mises en évidence lors
du développement d’algorithmes non supervisés. Parmi les modèles convolutifs, une majorité
a en commun l’architecture U-Net, dont les multiples résolutions semblent particulièrement
bénéfiques pour analyser tous les vaisseaux, quel que soit leur calibre. Les approches récentes
par transformeurs améliorent marginalement les performances de segmentation et de classi-
fication, mais au prix d’une importante hausse du nombre de paramètres. Ces architectures,
particulièrement gourmandes en données d’entraînement, semblent largement bridées par le
faible volume de jeux de données annotées disponibles.

Notons que ces «courants architecturaux» n’évoluent pas dans des couloirs isolés. Au contraire,
la littérature fourmille d’articles piochant dans l’un ou dans l’autre, combinant et recombi-
nant leurs idées pour former des architectures inédites. Les baptiser devient alors un exercice
quasi poétique, voire ésotérique pour peu que tous les courants aient été réunis dans une
même architecture, comme pour ce papier sobrement intitulé : Global Transformer and Dual
Local Attention Network via Deep-Shallow Hierarchical Feature Fusion [127]. Plus sérieuse-
ment, je ne peux m’empêcher de constater une certaine hubris quant à la complexité des
approches proposées qui semblent parfois moins être motivées par une intuition scientifique
que par la composition de mots-clés. En 2022, Galdran et al. [128] avaient déjà noté la forte
expansion paramétrique et computationnelle des modèles proposés, sans nécessairement in-
duire une hausse équivalente des performances. Ils avaient alors montré qu’un modèle simple
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composé de deux U-Net placés l’un derrière l’autre (baptisé W-Net) égalait ces architectures
en segmentation comme en classification, sous réserve qu’il soit entraîné correctement.

Ce foisonnement de la littérature pose aussi un problème de validation. Les propositions
de modèles énoncées plus haut sont souvent motivées par l’intuition d’une adéquation entre
une formulation de réseau et la tâche visée, mais cette intuition est rarement interrogée puis
confirmée ou infirmée. Certes, les papiers contiennent régulièrement une étude ablative pour
démontrer l’intérêt de l’intégration successive des idées qu’ils proposent. Mais les réseaux de
neurones, dont l’entraînement peut produire des résultats hautement variables, présentent
un vrai défi de répétabilité et de comparaison entre papiers. En effet, comment savoir si les
fluctuations de performance entre deux architectures s’expliquent bel et bien par les propriétés
du modèle proposé, par une synergie nouvelle engendrée par une composition judicieuse de
modules, ou si elles sont simplement dues à la hausse du nombre de paramètres, à un meilleur
choix d’hyperparamètres, de jeu de données ou de procédure d’entraînement ? Gardons cette
question en tête, on y reviendra...

Évolution de la procédure d’entraînement

L’amélioration des procédures d’entraînement est abordée par la littérature en parallèle des
recherches d’architectures. Et si elle est éclipsée par ces dernières en termes de nombre de
papiers, elle propose tout de même quelques idées qui méritent d’être mentionnées ici.

Approches Génératives On l’a vu, le manque de données annotées pour l’entraînement
pose une difficulté majeure pour le développement de réseaux de neurones fiables. Pour at-
ténuer cette difficulté, des travaux exploitent des modèles génératifs pour créer de fausses
images de fond d’œil à partir d’une segmentation vasculaire connue. Cette approche est
d’abord mise en œuvre avec un réseau adversarial génératif (GAN) (Costa et al., 2018 [129] ;
Lahiri et al. 2020 [130] ; Andreini et al., 2022 [131]), puis plus récemment avec un modèle
de diffusion (Go et al., 2024 [132]). Mais ces méthodes présentent un risque d’introduire des
hallucinations dans l’ensemble d’entraînement. Une autre catégorie d’approches exploite l’en-
traînement adversarial différemment : le générateur est entraîné à prédire la segmentation de
vaisseaux sur des images non annotées par un jeu adversarial avec un modèle discriminateur
qui tente d’identifier dans deux couples images de fond d’œil/segmentation vasculaire lequel
provient du jeu d’entraînement annoté et lequel a été produit par le générateur. (Wu et al.,
2019 [133] ; Kamran et al., 2021 [134]) . Dans les deux cas, ces méthodes permettent de tirer
profit des nombreuses images de fond d’œil publiques non annotées, mais offrent des gains
en performances généralement limités.
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Métriques de validation Depuis les premiers algorithmes de segmentation des vaisseaux
rétiniens, la métrique de validation a toujours été l’exactitude 4. Mais alors que les algorithmes
s’améliorent, cette métrique est de moins en moins pertinente pour les évaluer. 1. Elle donne
trop d’importance aux pixels du fond (qui constituent 80 à 90 % de la zone d’intérêt) de sorte
qu’un algorithme ne détectant aucun vaisseau atteint une exactitude moyenne avoisinant les
85%... Pour cette raison, l’indice Dice qui ignore les pixels vrai-négatifs 5 gagne en popula-
rité depuis une dizaine d’années pour évaluer les méthodes de segmentation vasculaire : à
ma connaissance, il est utilisé pour la première fois comme tel en 2015 (Mukherjee et al.,
2015 [135]). 2. L’exactitude donne relativement moins d’importance à la détection des petits
vaisseaux qu’à ceux plus larges (qui sont composés de plus de pixels) et elle est très sensible
aux variations de contour des vaisseaux qui ne sont pourtant pas toujours bien définis. Afin
de mieux évaluer la capacité d’un modèle à détecter des vaisseaux quels que soient leur taille
ou contour, Shit et al. proposent en 2021 [136] une variation du dice qui ne tient compte que
des pixels appartenant au squelette vasculaire : le center-line dice ou CL Dice. On trouve une
métrique analogue mais sous un autre nom dans un article publié 9 ans plus tôt par Gegun-
dez et al. : A Function for Quality Evaluation of Retinal Vessel Segmentations (2012 [137]).
Dans ce papier, ils proposent aussi deux autres métriques : l’une similaire au score Dice mais
intégrant une tolérance à la variation des contours vasculaires, et l’autre mesurant la simila-
rité de connectivité par décompte des composantes connectées de la segmentation. 3. Cette
évaluation de la connectivité ou plus largement de la similarité topologique est l’angle mort
ultime de l’exactitude et des métriques mesurant des taux de pixels. En effet, quelques pixels
absents d’une segmentation n’auront que très peu d’impact sur la valeur de ces métriques,
quand bien même ces pixels déconnecteraient une branche du reste du graphe vasculaire en
transformant complètement sa topologie. En 2021, Araujo et al. [138] proposent de mesurer
la similarité topologique en évaluant combien de paires de pixels connectés 6 dans la vérité
terrain le sont aussi dans la prédiction. Cependant, leur article n’est pas publié dans une
revue et sera peu repris. Tout récemment, Berger et al. (2024 [139]) ont commis : Pitfalls of
topology-aware image segmentation. Dans cette prépublication ArXiv, ils rapprochent trois
applications de segmentation sensibles à la topologie : la segmentation des vaisseaux sur
image de fond d’œil, des routes sur image satellite et des neurones sur images du cerveau
captées par microscope électronique. Ils identifient des lacunes communes aux validations

4. L’éxactitude (accuracy en anglais) est définie par : acc = TP + TN

TP + TN + FP + FN
où TP et TN sont les vrais positifs et négatifs et où FP et FN sont les faux positifs et négatifs.

5. L’indice Dice-Sørensen, analogue au score de classification F1, est défini par : dice = 2TP

2TP + FP + FN
.

6. Araujo et al. considèrent une paire de pixels connectés s’il existe un chemin continu de pixels appartenant
à la segmentation pour les relier.
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topologiques de ces méthodes : notamment que leurs jeux de données, conçus pour la seg-
mentation, contiennent des erreurs impactant fortement les métriques topologiques (par ex.
quelques pixels manquants à la segmentation de vaisseaux dans DRIVE). Ils montrent aussi
un manque de maturité des métriques topologiques (nombre de Betti, erreurs d’appariement
de Betti [140]) qui indiquent parfois des niveaux de performances contradictoires.

Fonctions de coût Les problèmes des métriques de validation identifiés plus haut se
posent de manière analogue aux fonctions de coût guidant l’apprentissage des réseaux de
neurones ; avec une contrainte supplémentaire cependant : ces dernières doivent être diffé-
rentiables. Pour la segmentation sémantique, la fonction de coût généralement privilégiée
est l’entropie croisée qui donne une bonne approximation différentiable de l’exactitude, mais
souffre des mêmes lacunes. Plusieurs recherches explorent donc d’autres options. En 2016,
Milletary et al. [141] proposent une formulation différentiable du score Dice : le soft-Dice, dans
un contexte de segmentation volumétrique sur image IRM. Cette fonction de coût sera reprise
deux ans plus tard pour la segmentation des vaisseaux rétiniens (Soomro et al., 2018 [142]).
D’autres auteurs proposent de conserver l’entropie croisée mais en la pondérant en fonction
de la difficulté des régions (Wang et al., 2020 [143]). Dans leur article proposant le CL-Dice,
Shit et al. (2021 [136]) formulent une fonction de coût correspondante en s’appuyant sur une
version différentiable de la squelettisation. Leur article se limite à la segmentation vasculaire,
mais sera étendu à la classification par Jian et al. (2024 [144]). Enfin, en 2023, Mao et al. [145]
appliquent à la segmentation vasculaire la topo-loss : une fonction de coût proposée quatre
ans plus tôt par Hu et al. (2019 [146]) qui exploite des diagrammes de persistance (persistance
homology diagram) pour pénaliser les variations du nombre de composantes connectées ou
d’anses topologiques lorsqu’on fait évoluer le seuil de segmentation appliqué à la prédiction.
Malheureusement, en l’absence d’une validation topologique standardisée, il est difficile de
distinguer les bienfaits de ces méthodes comparées au soft-Dice ou à l’entropie croisée.

Limitations des réseaux de neurones

Malgré les centaines d’articles sur la segmentation et la classification des vaisseaux rétiniens
par réseaux de neurones, certaines lacunes de ces modèles semblent persister inexorablement.

Incohérence topologique L’exactitude en segmentation des U-Net et de leurs succes-
seurs est particulièrement élevée, les erreurs qui subsistent concernent donc un petit nombre
de pixels. Dans leur récente revue des algorithmes de segmentation des vaisseaux rétiniens,
Li et al. (2025 [25]) identifient deux types de lacunes communes aux réseaux de neurones :
l’omission des vaisseaux les plus fins et la discontinuité dans la segmentation des vaisseaux, en



35

particulier en cas de faible contraste, d’occlusion par une lésion ou proche des croisements.
Concernant la classification, le taux d’erreur est plus important. La revue de Chen et al.
(2024 [26]) l’attribue à un déclin important des performances pour les petits vaisseaux et
aux changements erronés mais récurrents de la classe prédite au sein d’une branche. Toutes
ces erreurs de segmentation et de classification semblent pointer vers une cause commune :
la méconnaissance de la structure topologique sous-jacente au graphe vasculaire rétinien. Au
fond, les réseaux de neurones convolutifs sont comparables aux méthodes qui les ont précé-
dés et qui s’appuyaient sur une modélisation morphologique locale des vaisseaux. Certes, ils
en démultiplient le potentiel en accroissant considérablement la complexité et le nombre de
paramètres, mais ils en conservent aussi les lacunes topologiques fondamentales. Chen et al.
(2024 [26]) notent d’ailleurs que les rares approches alliant modèles convolutifs et analyse
du graphe obtenaient généralement les meilleurs résultats en classification. Ils recommandent
donc le développement d’algorithmes de post-traitement des cartes de segmentation séman-
tique prédites par réseaux de neurones pour en assurer la cohérence topologique.

Lacune de généralisation Les réseaux de neurones sont généralement reconnus pour leur
bonne capacité de généralisation, à la condition qu’une variété suffisante de données d’entraî-
nement leur soit disponible. Or, en analyse d’images médicales – particulièrement lorsqu’il est
question de segmentation sémantique – les données annotées sont rares. Dans ce domaine,
on connaît donc plutôt les réseaux de neurones pour leur propension au surapprentissage
(over-fitting) et à l’apprentissage des biais de données. Les modèles de segmentation et de
classification des vaisseaux rétiniens y sont particulièrement vulnérables étant donné le faible
nombre de jeux de données spécialisés pour ces tâches. Li et al. (2025 [25]) soulignent d’ailleurs
dans leur revue que ces données sont insuffisantes pour capturer la variabilité et la complexité
inhérentes aux situations cliniques réelles. Pour en avoir entraîné pendant plusieurs années,
je peux moi-même attester que ces modèles sont plutôt capricieux : un simple changement
de caméra peut faire effondrer les performances d’un modèle même si les nouvelles images
sont objectivement de meilleure qualité ! Cette spécialisation au jeu d’entraînement est parti-
culièrement vraie pour la classification vasculaire : les performances mesurées sur l’ensemble
de test de la base choisie pour entraîner le modèle sont très différentes de celles obtenues sur
une autre base. Les modèles sont ainsi généralement entraînés et testés sur chaque jeu indivi-
duellement. Et malheureusement, la montée en complexité des architectures, l’accroissement
de leur nombre de paramètres, et la recherche perpétuelle de nouveaux records de perfor-
mance sur des jeux de validation très limités aggravent cette tendance au surapprentissage,
au détriment des capacités de généralisation des modèles.
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Stagnation des performances Plusieurs méta-analyses publiées récemment compilent
les performances des algorithmes de segmentation (Khandouzi, 2022 [22] ; Kumar, 2023 [23] ;
Qin, 2024 [24] ; Liu, 2025 [25]) et de classification (Chen, 2024 [26]) des vaisseaux rétiniens,
et les tendances qu’ils observent sont intrigantes. À leur arrivée en 2015, les CNN grimpent
rapidement dans les classements de segmentation vasculaire sans toutefois égaler la méthode
de Lupascu et al. (2010 [71]) qui combinait de nombreux descripteurs conçus manuellement.
Ce palier sera franchi à partir de 2018 et de l’introduction des U-Net pour la segmentation sé-
mantique des réseaux rétiniens : ainsi Xiao et al. (2018 [147]) atteignent 96.55% d’exactitude
sur DRIVE avec un Res-U-Net. Mais depuis, les performances des méthodes proposées oscil-
lent entre 96% et 97% sur cette métrique, et ce, en dépit des nombreux efforts de recherche
pour améliorer les architectures des modèles et leur procédure d’entraînement. Concernant la
classification, Chen et al. (2024 [26]) concluent que, bien qu’elles constituent la majorité des
travaux récents, les approches par réseaux de neurones obtiennent des performances compa-
rables en moyenne aux approches topologiques pures. Il semble donc que ces modèles aient
atteint, depuis quelques années, un plafond de performances difficile à dépasser.
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2.3 Paramétrisation du réseau vasculaire rétinien à partir de segmentation sé-
mantique automatique

Les techniques de segmentation et de classification des vaisseaux énumérées à la section
précédente ont beaucoup évolué depuis 2002 et le développement du premier logiciel de
mesure semi-automatique des paramètres vasculaires rétiniens. On verra ici comment ces
nouvelles techniques furent incorporées à ces logiciels, permettant une paramétrisation semi-
automatique puis complètement automatique du réseau vasculaire des images de fond d’œil.
On commencera par un rappel des paramètres vasculaires exploités par les études cliniques.

2.3.1 Paramètres vasculaires rétiniens

Calibre vasculaire La mesure de diamètre des vaisseaux est centrale pour identifier le
rétrécissement symptomatique des artérioles. Sa mesure automatique repose initialement sur
une détection de contours sur le profil d’intensité du canal vert, dans une direction orthogo-
nale au vaisseau (Sherry, 2002 [13]). Cette mesure peut être affinée en ajustant un modèle
gaussien à ce profil (Li, 2005 [148]). Cette méthode est particulièrement adaptée pour déter-
miner le calibre des artères réfléchissant la lumière en leur centre. Aujourd’hui, on considère
généralement que les cartes de segmentations automatiques sont suffisamment fiables pour
une mesure directe du calibre, par exemple par le calcul d’une carte de distance (Distance
Transform) [149].

Tortuosité Une élévation de la tortuosité vasculaire est associée très tôt à l’hyperten-
sion et à l’athérosclérose (Scheie et al., 1953 [150]). Mais l’appréciation de la tortuosité est
subjective, et définir un indice qui correspond à cette appréciation tout en étant calculable
automatiquement à partir du squelette vasculaire n’est pas trivial. Une première formule est
proposée par Lotmar et al. (1979 [151]) qui l’a définie pour chaque branche comme le ratio de
la longueur de l’arc (le nombre de pixels du squelette) sur la longueur de la corde (la distance
euclidienne entre le premier et le dernier pixel de la branche). En 1999, Hart et al. [152]
définissent une série d’indices de tortuosité en fonction de la courbure locale κ. Ils concluent
que la formule correspondant le mieux au sentiment clinique de la tortuosité est l’intégrale
de κ2 le long de la courbe. Grisan et al. (2008 [153]) proposent de calculer la tortuosité par
une moyenne des ratios arc sur corde calculée entre chaque point d’inflexion de la courbe.
Enfin, Trucco et al. (2010 [154]) généralisent la formule de Hart et montrent que la valeur de
la tortuosité est sensible au calibre des vaisseaux. Quelles que soient la définition choisie, la
tortuosité est toujours calculée à partir du squelette des artérioles ou des veinules sur lequel
chaque branche a été identifiée.
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Dimension fractale Les multiples ramifications du réseau vasculaire rétinien sont des
structures délicates à modéliser pour les algorithmes proposés avant les années 2000. Il est
donc proposé d’estimer le taux de ramification par une approche globale estimant la dimen-
sion fractale. Mainster (1990 [155]) propose de compter le nombre de pixels du squelette à
l’intérieur de cercles centrés sur le disque optique et de rayon variable. Il trace alors la courbe
du logarithme du nombre de pixels en fonction du logarithme des rayons et en mesure la
pente pour obtenir la dimension fractale du graphe. Une implémentation plus rapide dite
de Box-Counting est proposée par Liebovitch et Toth (1989 [156]). Elle consiste à couvrir la
région d’intérêt de grilles de carrés dont on fait varier la longueur c du côté. La dimension
fractale est alors donnée par la pente de la courbe du nombre de carrés contenant une partie
du squelette en fonction de c. C’est cette méthode qui est retenue aujourd’hui. Il a été montré
que des changements de la dimension fractale sont associés à l’hypertension, la DR, ou encore
la mortalité liée aux coronaropathies ou aux AVC (Zu, 2014 [157]).

Paramètres des bifurcations Les modèles physiques d’écoulement du sang dans les
vaisseaux permettent de prédire les caractéristiques géométriques optimales aux bifurcations
(Murray, 1926 [158]). Les écarts entre les valeurs théoriques de ces caractéristiques et leurs
valeurs mesurées sont symptomatiques d’une altération des propriétés physiques des vais-
seaux, par exemple à cause du diabète (Luo et al., 2017 [159]). Pour quantifier ces écarts,
Martinez-Perez et al. (2000 [160]) ont proposé une série d’indicateurs géométriques des bifur-
cations. Soit une branche parente (de diamètre d0) donnant naissance à deux branches filles
(de diamètre d1 et d2, avec d1 > d2), tel qu’illustré sur la Figure 2.9. On note θ1 et θ2 les
angles de variation de direction entre la branche mère et chaque branche fille.

Figure 2.9 Typologie des grandeurs géométriques à une bifurcation.
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Martinez-Perez et al. définissent :
— Le ratio longueur-diamètre : L

d
;

— Le coefficient d’embranchement (ou facteur d’expansion) : d2
1 + d2

2
d2

0
;

— Le facteur d’asymétrie : d1
d2

;
— L’angle d’embranchement : θ1 + θ2 ; et l’asymétrie angulaire : |θ1 − θ2| ;
— L’exposant de jonction : e tel que de

0 = de
1 + de

2

(Murray avait suggéré que la valeur optimale pour les artères était e = 3).
Ces paramètres sont les plus complexes à évaluer automatiquement car ils nécessitent de dis-
tinguer les bifurcations parmi toutes les jonctions du graphe vasculaire puis d’identifier quelle
branche est la branche principale. En d’autres termes, leur mesure automatique nécessite de
résoudre le problème de partition du graphe vasculaire (cf. Section 2.2.4).

2.3.2 Logiciel Semi-Automatique et Automatique de mesure des paramètres
vasculaires rétiniens

Depuis le développement d’IVAN en 2004, plusieurs logiciels de mesure des paramètres
vasculaires rétiniens virent le jour. Les huit principaux sont recensés dans le tableau 2.2.

Le premier est SIVA (Cheung et al., 2010 [20]) développé par une équipe de recherche
à Singapour. La liste des paramètres vasculaires qu’il extrait est bien plus complète que
celle d’IVAN (tous les paramètres mentionnés plus haut sont mesurés), et il étend aussi la
zone de mesure jusqu’à 2 diamètres du disque optique autour de la papille. Pour réaliser
cet exploit, SIVA confie la segmentation des vaisseaux à un algorithme non supervisé qui
analyse le gradient de l’image pour identifier le squelette vasculaire (Garg et al., 2007 [161]),
la partition du graphe est réalisée par une recherche globale de l’arborescence optimale (Lau
et al. 2013 [96]) puis chaque sous-graphe est classifié comme artérioles ou veinules par une
approche non supervisée exploitant le contraste de couleur entre artères et veines au sein
d’une même image. Ces étapes sont menées sous la supervision d’un utilisateur qui a la
charge de les valider et, si besoin, de les corriger.

En 2011, une équipe écossaise publie VAMPIRE (Perez-Rovira et al., 2011 [162]). Ce logiciel
vise un domaine d’application similaire à SIVA. Il segmente les vaisseaux par un classifieur
bayésien et des ondelettes multi-échelles, mais n’embarque ni méthode pour identifier auto-
matiquement les artérioles et veinules, ni algorithme de partition du graphe : les nœuds à 3
branches incidentes sont simplement interprétés comme des bifurcations. Cette approche est
moins fiable que celle de SIVA, mais contrairement à ce dernier, VAMPIRE analyse l’ensemble
de l’image de fond d’œil. Le logiciel s’exécute sous la supervision d’un utilisateur.



40

Tableau 2.2 Comparaison des logiciels automatiques et semi-automatiques de mesure des paramètres vasculaires rétiniens
seg. sem. : Segmentation Sémantique (segmentation et classification simultanée) ; MSLD : Multi-Scale Line Detector ;

Semi-Automatique Complètement Automatique

IVAN SIVA VAMPIRE QUARTZ SIVA-DLS AutoMorph TVBM RMHAS

Publication 2004 2010 [20] 2011 [162] 2015 [163] 2020 2022 [164] 2022 [165] 2022 [149]

ROI Standard Standard Complète Complète Standard Standard Standard Standard
& Étendue & Étendue & Complète & Complète & Complète

Temps par image 20 min 25 min - 54 s quelques secondes < 2 s < 2 s < 2 s

Code Public - - Sur demande - - Code et Modèle Code seul -

Algorithme de modélisation du graphe vasculaire

Segmentation - Non-Supervisée Supervisée Supervisée FCN U-Net LUNet U-Net
(Garg 2007 [161]) ondelettes MSLD (Xu 2019 [166]) (Fhima 2024 [167])

Classification - Clustering - Arbre de décision seg. sem. seg. sem. seg. sem. U-Net
par contraste par couleur dédiés

Partition - Globale - Locale - - - Séparation
du graphe (Lau 2013 [96]) A/V

Paramètres Vasculaires

Calibre & AVR
√ √ √ √ √ √ √ √

Tortuosité
√ √ √ √ √ √

Dimension Fractale
√ √ √ √ √

Bifurcations
√ √ √ √

Modélisation Topologique
√

(
√

)
√
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La même équipe publiera en 2020 une version complètement automatique nommée SIVA-
DLS qui tirera profit d’un FCN pour la segmentation et la classification des vaisseaux.
Cependant, cette version ne permettra la mesure que des calibres vasculaires et de l’AVR.

En 2015, Fraz et al. [163] réduisent le temps d’annotation par image de 25 minutes à 54 se-
condes en étant les premiers à proposer une solution complètement automatique : QUARTZ.
Les vaisseaux y sont segmentés par une approche supervisée exploitant des détecteurs de
lignes multi-échelles (MSLD), puis identifiés dans le graphe par résolution locale de la connec-
tivité des branches et enfin catégorisés A/V par un arbre de décision et des caractéristiques
colorimétriques. Le logiciel mesure uniquement le calibre, l’AVR et la tortuosité des vaisseaux.

Enfin en 2022 sont publiés trois outils par trois équipes différentes (anglaise, israélo-belge et
sino-australienne) : AutoMorph (Zhou et al., 2022 [164]), TVBM (Fhima et al., 2022 [165])
et RMHAS (Shi et al., 2022 [149]). Ces trois méthodes ont en commun l’utilisation de mo-
dèles U-Net pour la segmentation et la classification des vaisseaux. Mais seul RMHAS effectue
une modélisation topologique du graphe vasculaire. Pour identifier chaque vaisseau, ils ex-
traient simplement le graphe séparément des cartes de segmentation des artérioles et de celles
des veinules. Ils n’ont ainsi pas besoin de partitionner le graphe, mais sont particulièrement
sensibles aux erreurs de classification.

2.3.3 Limites des logiciels existants

Incohérence entre standards L’objectif motivant le développement de ces logiciels semi
et complètement automatiques était de faire disparaître la subjectivité et la variabilité inter-
observateur en remplaçant les annotateurs humains par un protocole de mesure déterministe
et standardisé. Cet objectif n’est qu’à moitié rempli. Certes, ces logiciels sont déterministes,
mais leur variété crée une duplicité des standards. Chacun propose en effet une sélection
différente de paramètres vasculaires, et les paramètres qu’ils ont en commun ne sont pas
forcément calculés sur la même région ou avec la même formule. Surtout, chacun a son
propre algorithme de segmentation et de classification, exploitant des méthodes radicalement
différentes et accroissant encore les différences de mesure d’un logiciel à l’autre. En 2022,
Mautuit et al. [168] avaient comparé les valeurs d’AVR, de CRAE et de CRVE mesurées par
IVAN, SIVA et VAMPIRE. Alors que ces paramètres ont une définition unique et théori-
quement standardisée, Mautuit et al. observent une différence statistiquement significative
du calibre moyen mesuré par chaque logiciel, et montrent que, même après avoir corrigé ce
biais, les mesures de VAMPIRE sont faiblement corrélées avec celles des deux autres logiciels.
Ils concluent cependant que tous obtiennent des corrélations similaires avec les principaux
paramètres vasculaires (hypertension, pression systolique et diastolique, etc.).
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Accessibilité restreinte Ces incohérences entre logiciels sont aggravées par l’opacité qui
les entoure : sur les huit, seuls deux ont vu leur code être rendu public (les deux plus récents :
AutoMorph et PVBM). Il est donc impossible de comparer leur implémentation pour identi-
fier les sources de dissensus, définir des bonnes pratiques, et ainsi faire évoluer les protocoles
de mesure. L’inaccessibilité de ces logiciels est aussi problématique pour les chercheurs en
vision par ordinateur qui sont privés d’outils pour évaluer la capacité de leurs algorithmes de
segmentation et de classification à produire des cartes pertinentes pour la paramétrisation
du réseau vasculaire rétinien.

Concurrence des approches end-to-end Danielescu et al. ont récemment recensé les
usages des analyses automatiques des vaisseaux rétiniens comme indicateur de pathologies
non ophtalmiques (2024 [169]). Ils concluent qu’un large consensus existe sur la corrélation
entre les paramètres vasculaires (en particulier les mesures de calibres) et les facteurs de
risque cardiovasculaires, et que des recherches prometteuses les relient aussi à des patho-
logies cérébrales, rénales ou respiratoires. Ils indiquent cependant que ces corrélations sont
souvent modérées et trop limitées pour être exploitées à des fins prédictives. Sur ce point, les
paramètres vasculaires sont concurrencés par des indicateurs end-to-end prédits par des ré-
seaux de neurones directement à partir des images de fond d’œil. C’est par exemple le cas du
retinal age gap : la différence entre l’âge réel d’un patient et l’âge prédit à partir d’une image
de sa rétine par un CNN (Zhu et al., 2023 [170]). On pourrait ainsi être tenté de délaisser
les approches par modélisation du graphe vasculaire pour celles end-to-end, mais, alors que
les algorithmes de segmentation sémantique vasculaire sont enfin matures, il me semble que
la paramétrisation vasculaire peut révéler son plein potentiel. Surtout en considérant le gain
d’interprétabilité qu’elle représente comparé à ces indicateurs « boîte noire ».

Modélisation topologique insuffisante La maturité des modèles de segmentation et
la classification des vaisseaux rétiniens ouvrent de nouveaux horizons aux analyses para-
métriques sur de larges cohortes. Elles rendent possible la mesure du calibre de l’ensemble
des vaisseaux et non plus simplement des principaux ; l’analyse différenciée des branches en
fonction du nombre de bifurcations qui les séparent des vaisseaux centraux ; ou encore une
analyse fine de l’évolution morphologique et géométrique des vaisseaux à travers des données
longitudinales. Mais pour permettre ces études, encore faut-il que la modélisation du graphe
vasculaire soit suffisamment fiable et précise. C’est un dernier reproche qu’on peut formuler
à l’encontre de ces logiciels : seulement trois extraient une représentation topologique du
graphe vasculaire. Et parmi les logiciels récents exploitant des CNN, RMHAS est le seul à
produire cette modélisation. Son approche pour le faire est d’ailleurs simpliste et très sensible
aux erreurs de classification.
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CHAPITRE 3 MÉTHODOLOGIE GÉNÉRALE

Ce chapitre synthétise la littérature de la modélisation automatique du graphe vasculaire
rétinien et pointe des lacunes. Il expose ensuite les axes de recherche que j’ai choisis pour y
répondre durant mon doctorat, et les raisons motivant ces choix.

3.1 Synthèse de la littérature
À l’origine de la littérature décrite dans le chapitre précédent se trouve une ambition formulée
en défi : l’ambition de comprendre et prévenir les pathologies vasculaires par l’observation de
la vasculature du fond d’œil ; le défi d’automatiser la paramétrisation des artérioles et veinules
rétiniennes. De cette ambition et de ce défi, naît une effervescence académique autour des
questions de segmentation, puis de classification, et finalement de modélisation topologique
du graphe vasculaire rétinien. On essaie plusieurs approches pour détecter ces vaisseaux :
d’abord non supervisées, en exploitant leur profil reconnaissable par des filtres convolutifs ou
leur structure tubulaire identifiable par l’analyse hessienne ou par des opérateurs morphomat.
Puis, lorsque des jeux de données annotés sont publiés, les approches supervisées s’imposent.
Les CNN, et plus précisément l’architecture U-Net, surpassent toutes les méthodes antérieures
pour la segmentation, et se hissent au niveau des méthodes topologiques pour la classifica-
tion. Trente-six ans et près de 2000 articles ont succédé à la première publication en 1989
d’une méthode de segmentation des vaisseaux rétiniens. Les problèmes d’alors – l’amplitude
de variation des diamètres de vaisseaux ou les artefacts d’illumination et de contraste – ont
largement été résolus, et de nouveaux sont apparus. Concernant les réseaux de neurones,
deux limitations persistent : 1. ces modèles sont particulièrement sujets au surapprentissage,
surtout compte tenu du faible volume de données annotées pour leur entraînement et leur
validation ; 2. ils semblent méconnaître la structure topologique sous-jacente au graphe vas-
culaire rétinien : les cartes qu’ils prédisent contiennent des artefacts de segmentation et de
classification impliquant peu de pixels mais à fort impact topologique.

Les méthodes de modélisation topologique du réseau vasculaire rétinien – c’est-à-dire de
partition du graphe afin de représenter chaque vaisseau comme un arbre dont le nœud ra-
cine est connu – sont évoquées dans les revues de littérature de classification comme des
post-traitements prometteurs pour corriger a posteriori les artefacts topologiques des CNN.
Initialement développées pour permettre la classification des artérioles et veinules avant l’ar-
rivée des réseaux de neurones, ces méthodes semblent peu à peu retomber dans l’oubli. Elles
peinent notamment à trouver leur place dans les logiciels de paramétrisation des vaisseaux
rétiniens qui leur préfèrent des approches plus simplistes. Pourtant, elles permettraient une
identification plus fiable des bifurcations par ces logiciels.
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Au terme de cette revue de littérature, je formule quatre constats associés aux quatre étapes
successives de la modélisation du graphe vasculaire rétinien : sa segmentation, sa classifica-
tion, l’extraction de sa topologie, et sa paramétrisation.

Constat 1 : Les méthodes de segmentation ont fait l’objet de très nombreuses publi-
cations ces dernières années et voient aujourd’hui leurs performances stagner. À mon sens,
cette stagnation s’explique par deux facteurs. D’une part, les données d’entraînement et de
validation ne sont plus suffisantes pour tirer profit des architectures de réseaux de neurones
toujours plus complexes ; d’autre part, les métriques évaluant les modèles ont atteint leur
limite d’applicabilité : au niveau de performances actuel, elles sont trop sensibles aux biais
d’annotation et pas assez aux artefacts topologiques.

Constat 2 : La classification des artérioles et veinules est dix fois moins étudiée que
leur segmentation. Pourtant, la classification des petits vaisseaux éloignés du disque optique
reste incertaine pour les modèles convolutifs ; et ces algorithmes sont par ailleurs sujets à des
incohérences topologiques : inversant régulièrement la classification d’un vaisseau au milieu
d’une branche. En outre, les jeux de données annotés pour la classification A/V sont encore
plus rares que ceux annotés pour la segmentation, ce qui présente un défi supplémentaire à la
capacité de généralisation des modèles de classification. Ce point est d’autant plus inquiétant
que les images de fond d’œil issues des cohortes de patients dont on souhaite modéliser
la vasculature rétinienne n’ont pas nécessairement les mêmes caractéristiques d’éthnie ou
d’acquisition que celles des jeux ayant entraîné les modèles.

Constat 3 : L’extraction de la topologie de l’arbre vasculaire rétinien, maillon essentiel
pour sa modélisation, était au cœur de l’attention entre 2010 et 2015 lorsqu’elle assistait la
classification A/V en réalisant la partition du graphe vasculaire. Néanmoins, elle semble au-
jourd’hui délaissée par la communauté de chercheurs. Remise au goût du jour et combinée aux
réseaux de neurones, elle pourrait pourtant corriger certains de leurs artefacts topologiques.

Constat 4 : Quatre outils de paramétrisation des vaisseaux rétiniens basés sur des CNN
ont été publiés depuis 2020, mais un seul (RMHAS) modélise topologiquement le réseau
vasculaire comme une forêt d’arbres, et la méthode choisie pour ce faire est très sensible
aux erreurs de classification A/V. Le seul autre logiciel proposant une telle modélisation
(SIVA) est semi-automatique et limite son analyse à 2 diamètres du disque optique autour
de la papille. Ces outils sont donc en retard sur la littérature de modélisation topologique.
J’ajoute que, pour 3/4 d’entre eux, le code n’est pas accessible librement. Cette situation n’est
pas anecdotique : elle prive les chercheurs en segmentation et en classification des outils pour
évaluer leurs algorithmes dans la perspective d’une paramétrisation des vaisseaux rétiniens.
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3.2 Problématique de recherche

Les réseaux de neurones et plus spécifiquement les CNN ont reçu beaucoup d’attention de la
communauté de chercheurs travaillant sur l’identification des artérioles et veinules rétiniennes.
Si ces modèles culminent en haut des classements de l’état de l’art, ils restent limités par leur
tendance au surapprentissage et par leur incapacité à apprendre la structure topologique sous-
jacente à la vasculature de la rétine. Les logiciels récents de paramétrisation automatique des
vaisseaux rétiniens qui exploitent ces modèles ont soit abandonné la modélisation topologique
de l’arbre vasculaire, soit ont recours à une approche simpliste qui ne tient pas compte des
artefacts topologiques de segmentation ou de classification.

Je formule donc pour cette thèse la problématique suivante : Comment mettre à profit les
recherches récentes appliquant les CNN à la segmentation et la classification des vaisseaux sur
image de fond d’œil, pour extraire une modélisation topologique robuste de l’arbre vasculaire
rétinien en vue d’en extraire des paramètres cliniques fiables ?

3.3 Objectifs spécifiques

Parmi les multiples questions que soulèvent cette problématique, j’ai choisi d’orienter mon
doctorat sur les objectifs spécifiques suivants.

Objectif I : Construire un nouveau jeu de données annotées pour l’entraîne-
ment et la validation de modèles de segmentation et de classification vasculaire
sur image de fond d’oeil. Peu de jeux de données publics d’images de fond d’œil sont
annotés pour la segmentation des vaisseaux rétiniens, et encore moins distinguent les arté-
rioles et les veinules. Que ce soit pour mieux représenter la variété des conditions cliniques à
l’entraînement des modèles, ou pour renforcer la confiance dans l’évaluation de leur qualité,
de nouvelles annotations doivent être collectées.

Objectif II : Améliorer les propriétés intrinsèques de généralisation des CNN
appliqués à la classification A/V. Les efforts conduits pour l’objectif I ne suffiront jamais
à faire disparaître complètement le risque de surapprentissage qui plane sur les CNN, et en
particulier ceux qui classifient les artérioles et les veinules. Je propose donc d’aborder ce
problème par un second angle : modifier le formalisme des neurones convolutifs pour améliorer
leurs propriétés intrinsèques de généralisation.
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Objectif III : Modéliser la topologie et la géométrie de l’arbre vasculaire rétinien
à partir de cartes imparfaites de segmentation A/V. Puisque les réseaux convolutifs
peinent à apprendre la cohérence topologique du réseau vasculaire, il est nécessaire d’adapter
les méthodes de modélisation de l’arbre vasculaire pour qu’elles tiennent compte des im-
perfections présentes dans les cartes de segmentation et de classification. Pour ce faire, on
peut s’appuyer sur la littérature qui traite du partitionnement optimal du graphe vasculaire
développée entre 2010 et 2015 pour la classification A/V.

3.4 Approche générale

Ces objectifs spécifiques sont traités dans les trois prochains chapitres de la thèse, dont voici
un aperçu de leurs motivations et approches respectives.

3.4.1 MAPLES-DR : une campagne d’annotation des structures anatomiques
et pathologiques de la rétine

À l’heure où les réseaux de neurones fleurissent dans tous les secteurs du traitement du
signal, la pression sur la disponibilité des données annotées augmente. Dans le domaine de la
segmentation d’image médicale, l’annotation des images est fastidieuse et coûteuse. Il n’est
donc pas étonnant que les jeux de données publics dédiés à la segmentation et la classification
des vaisseaux sur les images de fond d’œil soient insuffisants pour représenter la variété des
situations cliniques. Dans les dernières années, cette situation tend néanmoins à se résorber
avec la publication en 2022 des jeux comme FIVES [36], RETA [40], ou celui de Leuven-
Haifa [41] en 2024. J’ai moi-même posé ma pierre à l’édifice avec la publication en 2024 de
MAPLES-DR (MESSIDOR Anatomical and Pathological Labels for Explainable Screening of
Diabetic Retinopathy).

Ce projet fut certainement le plus long de mon doctorat. Il trouve son origine en 2018 lors
d’une collaboration entre le LIV4D, le MILA et une équipe de rétinologues canadiens qui sou-
haitaient améliorer le programme de télédépistage de la rétinopathie diabétique au Canada
en l’assistant d’outils de diagnostic automatique. Étant donné l’expertise du LIV4D dans la
segmentation automatique des structures rétiniennes et l’importance donnée à l’interpréta-
bilité en IA médicale, il fut décidé que l’algorithme impliquerait des étapes de segmentation
de structures anatomiques et pathologiques pour établir son diagnostic (contrairement à une
approche end-to-end). Mais, à l’époque, les bases de données publiques d’images de fond
d’œil pour entraîner des modèles de segmentation de lésions sont tout aussi limitées que
celles pour les vaisseaux, et la nécessité d’en annoter une nouvelle nous apparaît rapidement.
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Dans les années qui suivirent, sept cliniciens se sont donc relayés pour annoter quatre types
de structures anatomiques (les vaisseaux, le disque optique, la papille et la fovéa) et six types
de structures pathologiques symptomatiques de la DR sur 200 images de fond d’œil issues
du jeu de données public MESSIDOR [171].

Cette exhaustivité d’annotation est inédite. J’ai donc dû concevoir un protocole d’annotation
dédié s’appuyant : d’une part sur des présegmentations prédites par des algorithmes puis cor-
rigées par les rétinologues ; et d’autre part sur une plateforme d’annotation web implémentée
pour l’occasion. Par la suite, j’ai pu réutiliser ces outils et les segmentations des vaisseaux
pour annoter les cartes des artérioles et les veinules sur 100 images de MAPLES-DR. Ces
cartes ont été mises à profit dans les deux chapitres suivants.

3.4.2 STEERED CNN : l’équivariance par rotation au service de la classification
des artères et veines rétiniennes

Pour approcher le second objectif, je prends la littérature à revers : plutôt que d’accroître
la complexité architecturale et paramétrique des modèles de classification des vaisseaux réti-
niens, je vais plutôt chercher à réduire leur nombre de paramètres en exploitant une propriété
de leur tâche : la classification ne dépend pas de l’orientation des vaisseaux. Les CNN qui
réalisent cette classification doivent donc être équivariant par rotation : c’est-à-dire qu’une
rotation de l’image présentée en entrée doit théoriquement induire une rotation analogue sur
la carte de prédiction en sortie. Les CNN possèdent naturellement une propriété similaire,
ils sont équivariants par translation : par définition de l’opérateur de convolution, une trans-
lation de leur entrée produit une translation équivalente de leur sortie ; mais l’équivariance
par rotation n’est pas inscrite dans leur formalisme. Le modèle doit donc l’apprendre à partir
des données d’entraînement. Et lorsque peu de données sont disponibles – comme c’est le
cas pour la classification A/V rétinienne – cet apprentissage est approximatif, et peut être
source d’erreur.

Cette lacune m’a soufflé une idée assez peu étudiée dans la littérature : modifier le formalisme
des neurones convolutifs – au cœur de tous les CNN et des U-Nets – afin d’orienter leurs filtres
selon la direction locale de chaque vaisseau de l’image avant d’appliquer la convolution. Ainsi,
chaque filtre du modèle pourrait participer à la détection de tous les vaisseaux d’une image,
quel que soit leur orientation, au contraire des neurones convolutifs standards qui perçoivent
différemment les vaisseaux horizontaux et verticaux. En mutualisant les filtres de cette façon,
les steered CNN devraient nécessiter moins de paramètres pour réaliser la même tâche, ils
seraient ainsi moins sujets au surapprentissage et plus aptes à généraliser.
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3.4.3 FUNDUS VESSELS TOOLKIT : modélisation géométrique et topologique
de l’arbre vasculaire rétinien

Le troisième objectif de cette thèse traite des dernières étapes de la modélisation du graphe
vasculaire rétinien : l’extraction de sa topologie et de sa géométrie pour mesurer des para-
mètres vasculaires. Il porte plus spécifiquement une ambition théorique : montrer comment les
techniques de partitionnement optimal de l’arbre vasculaire, développées initialement comme
un prétraitement topologique en vue de classer chaque branche comme artériole ou veinule,
peuvent à nouveau retrouver leur place aujourd’hui, comme post-traitement des cartes de
segmentation sémantique prédites par CNN pour en corriger les incohérences topologiques.

Après être parvenu à la conclusion qu’aucun logiciel de paramétrisation n’offrait le cadre dont
j’avais besoin, je dus me résoudre à développer moi-même un nouvel outil : la librairie Python
baptisée Fundus Vessels Toolkit (FVT). En me lançant dans ce développement, je n’imaginais
pas la nuée d’anicroches dont recèle la modélisation topologique du réseau vasculaire rétinien.
La variabilité naturelle des vaisseaux produit en effet tant d’exceptions, tant de cas étranges,
que l’implémentation de FVT se révéla être une épreuve de minutie algorithmique.

L’ultime chapitre de méthode de cette thèse est donc traversé par deux mouvements. D’une
part, le développement théorique d’une nouvelle méthode de correction topologique des im-
perfections contenues dans les cartes de segmentation prédites par CNN. Et d’autre part,
l’ajustement minutieux de chacune des étapes qui jalonnent le processus d’extraction de la
géométrie et de la topologie de l’arbre vasculaire rétinien.
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CHAPITRE 4 MAPLES-DR : UNE CAMPAGNE D’ANNOTATION DES
STRUCTURES ANATOMIQUES ET PATHOLOGIQUES DE LA RÉTINE

Le présent chapitre est consacré à MAPLES-DR (MESSIDOR Anatomical and Pathological
Labels for Explainable Screening of Diabetic Retinopathy), un nouveau jeu de segmentation
des structures anatomiques et pathologiques de la rétine pour 200 images de fond d’œil issues
de la base publique MESSIDOR [171]. Il détaille le choix du protocole d’annotation (résumé
sur la Figure 4.1), en présente les résultats et se conclut par une étude inédite de la variabilité
inter-observateur lors de la segmentation des lésions rétiniennes.

Pre-segmentation 
by AI Models

198 fundus images from

MESSIDOR public dataset

4 ANATOMICAL STRUCTURES

6 PATHOLOGICAL STRUCTURES
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∗ The web-based annotation tool is published alongside the dataset.

2 RETHINOPATHY GRADES   (using international standard)

Diabetic Retinopathy Macular Edema

4.
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Figure 4.1 Résumé graphique du protocole d’annotation de MAPLES-DR.
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4.1 Motivations et travaux connexes

Enjeux du dépistage automatique de la DR

La rétinopathie diabétique (DR) est une complication du diabète qui cause des lésions sur la
micro-vasculature rétinienne et conduit dans plus d’un quart des cas à une détérioration de la
vue. Elle concerne 22% des patients diabétiques, soit 103,12 millions d’adultes en 2020 [172],
et est la première cause de cécité dans le monde pour les adultes entre 25 et 75 ans [173]. Sa
progression lente se caractérise cliniquement par des stades définis par l’apparition de lésions
sur la rétine qui doivent être surveillées chez les populations à risque pour assurer une prise en
charge précoce et espérer préserver leur vision [174]. En Amérique du Nord, 40% des patients
diabétiques ne sont pas dépistés pour la DR malgré de larges programmes de dépistage
[175–177]. Cependant, l’expérience fournie par ces programmes montre une amélioration du
taux de patients surveillés grâce au dépistage par télé-ophtalmologie [178], et suggère que des
algorithmes de diagnostic automatique de la DR pourraient encore démultiplier leur efficacité,
en réduisant le coût des examens de dépistage pour augmenter leur fréquence, et en assurant
une prise en charge immédiate des patients référés [174].

Durant la dernière décennie, les CNN puis les Vision Transformers furent appliqués avec
succès aux diagnostics automatiques de DR à partir d’images de fond d’œil, en tous cas dans
le cadre de recherches académiques. Au cœur du développement de ces algorithmes supervisés
sont les bases de données publiques d’images annotées, sur lesquelles sont entraînés puis
validés ces modèles [179]. Parmi elles, les bases de données Eyepacs [180] et MESSIDOR-
2 [171] ont permis aux algorithmes de dépistage automatique d’atteindre des performances
supérieures aux exigences de la FDA (sensibilité supérieure à 85% et spécificité supérieure à
82,5%) [179], ou à celles d’experts humains [181].

Pourtant, il persiste un manque de confiance du personnel médical envers ces technologies
qui n’atteignent pas les standards d’une "explainable AI". D’une part, ces modèles ne sont
pas interprétables : les règles implicitement utilisées pour produire les diagnostics nous sont
inintelligibles et rien n’assure qu’elles soient similaires à celles des rétinologues [179,182,183].
Cette opacité est d’autant plus inquiétante aux regards des imperfections des vérités terrains
utilisées pour évaluer ces modèles : les bases de données publiques de DR sont spécifiques à une
population et leurs protocoles d’annotations ne sont pas standardisés. De ce fait, les modèles
entraînés sur l’une sont spécifiques à ses biais et sont incompatibles avec les autres [179,183].
D’autre part, ces modèles se prêtent mal à une collaboration entre AIs et ophtalmologistes
humains car les diagnostics produits par ces modèles sont étayés de trop peu d’explications.
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Segmenter les structures rétiniennes pour dépister la DR

Pour dépasser ces limitations, il nous est apparu qu’une partie de la réponse résidait dans
l’amélioration des labels d’entraînement. En effet, l’incertitude concernant l’évaluation des
algorithmes et les problèmes de généralisation appellent à plus de diversité dans les bases de
données de validation et à une meilleure documentation de leurs biais et de leur processus
d’annotation. Par ailleurs, la faible explicabilité des algorithmes appelle à plus d’exhausti-
vité et de pertinence clinique des labels qui guident leurs entraînements, bien au-delà des
simples diagnostics. Dans leur rapport "Four principles of Explainable AI" [184], le NIST
(National Institute of Standards and Technology) rappelle que pour être satisfaisante, la jus-
tification d’une prédiction doit être «meaningfull» pour son public cible. C’est-à-dire, dans
notre cas, qu’elle soit formulée dans un vocabulaire dont la sémantique est familière aux
ophtalmologistes. Or les grades de DR ne constituent qu’une petite partie de ce vocabulaire :
les justifications cliniques s’appuient plutôt sur les structures anatomiques ou pathologiques
de l’œil (vaisseaux, macula, lésions rouges ou claires, etc.) [185–187]. Ainsi, que ce soit pour
faire converger a priori les modèles vers des représentations compatibles avec les connais-
sances cliniques ou pour interpréter a posteriori ces représentations en les comparant à des
biomarqueurs cliniquement reconnus, les bases de données annotées au niveau du pixel ont
un rôle crucial dans le développement de modèles de dépistage explicable.

Bases de données publiques pour la segmentation des structures rétiniennes

Annoter au niveau du pixel les structures anatomiques ou pathologiques de la rétine requiert
considérablement plus de temps et d’effort qu’apposer un simple diagnostic de DR. Les bases
de données proposant de telles annotations sont donc naturellement bien moins nombreuses.
La plupart ne proposent des annotations que pour un seul type de structure : par ex. vaisseaux
[31,36,40,45], disque optique [188–190], exsudats [191], ou micro-anévrismes [192].

Concernant les structures pathologiques, seulement quatre bases de données proposent des
annotations pour plusieurs lésions symptomatiques de la DR (i.e. micro-anévrisme, hémorra-
gies, exsudats et CWS). FGADR [193] et Retinal Lesions [194] contiennent de très nombreuses
images mais en segmentant grossièrement les zones pathologiques. Au contraire, IDRiD [195]
et DDR [196] fournissent des segmentations précises mais pour moins d’images (respective-
ment 81 et 757 images). Aucune ne contient d’annotation de structures anatomiques. Par
ailleurs, les articles qui accompagnent ces bases de données se concentrent sur la hausse
des performances de segmentation qu’elles permettent, mais ne décrivent que très briève-
ment le protocole ayant produit leurs annotations et aucun ne mesure leur variabilité inter-
observateur. Il est donc très difficile de juger de leur fiabilité.
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4.2 Méthode d’annotation de MAPLES-DR

4.2.1 Sélection des images

Lors de la conception du projet, il fut décidé que la campagne d’annotation (initialement
conçue comme une campagne pilote) se limiterait à 200 images d’une base de données pu-
blique d’images de fond d’œil. Le choix de la base se porta sur MESSIDOR parce qu’elle
servait de référence pour valider les algorithmes de dépistage de DR et qu’elle ne disposait
d’aucune annotation de structures rétiniennes. La sélection des 200 images (parmi les 1200
de MESSIDOR) fut randomisée de sorte que 30 soient saines, 59 soient de stade R1, 55 soient
R2 et 56 soient R3 (selon les diagnostics de DR fournis par MESSIDOR). Cette distribu-
tion n’est pas représentative de la prévalence de la rétinopathie ni dans le jeu de données
MESSIDOR, ni dans la population réelle (c.f. Figure 4.2). Néanmoins, elle assure un nombre
suffisant d’images pour chaque stade de la maladie tout en se concentrant sur ceux critiques
pour le dépistage (R1 et R2).

À la fin de la campagne d’annotation, il nous est apparu que 2 images étaient des duplicatas 1.
Bien qu’ayant déjà été annotées par nos experts, ces images furent exclues de MAPLES-DR,
réduisant le nombre total d’images à 198. Leurs cartes de segmentations et diagnostics furent
tout de même rendues publiques à des fins de transparence et d’étude de variabilité.
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Stade de Rétinopathie Diabétique Stade d'Œdème Maculaire

Figure 4.2 Différences de prévalence de DR et ME entre MAPLES-DR (violet), MESSIDOR
au complet (turquoise) et une population dépistée par téléophtalmologie [2] à Toronto (gris).

1. La base de données originale MESSIDOR contenait plusieurs images accidentellement dupliquées por-
tant des noms différents. Cette erreur fut corrigée ultérieurement dans MESSIDOR-2 [197], mais malheureu-
sement notre travail s’appuyait sur la première version.
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4.2.2 Sélection des structures anatomiques et pathologiques à annoter

Le choix d’inclure ou non les structures rétiniennes dans la liste des annotations de MAPLES-
DR fut concerté avec les rétinologues en s’appuyant sur le rôle de chacune dans l’histopatho-
logie de la DR et dans son dépistage.

Structures anatomiques Bien que les structures anatomiques rétiniennes soient présentes
dans toutes les images, y compris les images saines, leur aspect et leur proximité avec les
lésions fournissent de précieuses informations pour le diagnostic. La morphologie des vaisseaux
rétiniens est révélatrice des stades de la DR : une augmentation de la tortuosité artériolaire
est associée aux stades léger et modéré [198], tandis que le «venous beading» et la dilatation
des veinules sont plutôt des symptômes des stades prolifératifs sévères. De plus, la gravité
d’une lésion dépend souvent de sa position par rapport au disque optique ou à la macula.
Ainsi, l’œdème maculaire est évalué en comptant le nombre de lésions situées à un ou deux
diamètres du disque optique par rapport à la macula. La Figure 4.3 présente un exemple
d’annotations de structures anatomiques de MAPLES-DR.

Figure 4.3 Structures anatomiques annotées dans MAPLES-DR (Bleu sombre : disque
optique, bleu clair : papille, violet sombre : macula, violet clair : vaisseaux).
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Lésions rouges Le diabète altère les parois des vaisseaux provoquant parfois des dysfonc-
tionnements de la microvasculature rétinienne et l’apparition de microanévrismes, d’hémor-
ragies, d’anomalies microvasculaires intrarétiniennes (IRMA) ou de néovaisseaux. Ces struc-
tures pathologiques sont appelées « lésions rouges ». Les microanévrismes – petites dilatations
circulaires de capillaires – sont des signes précoces de dysfonctionnement microvasculaire et
sont associés à une DR légère. Aux stades plus avancés de la pathologie apparaissent les hé-
morragies intrarétiniennes puis les IRMA dont la prolifération coïncide avec le stade sévère de
la maladie, ce qui indique un risque de 50 % de développer une néovascularisation en l’espace
d’un an. L’émergence de néovaisseaux (NV) marque la transition vers le stade prolifératif, le
stade le plus sévère du dépistage de la DR, qui nécessite une consultation immédiate chez un
ophtalmologiste. En effet, s’ils ne sont pas traités, ces néovaisseaux risquent de produire des
hémorragies prérétiniennes ou vitréennes, entraînant une perte visuelle majeure. La distinc-
tion entre les NV et les IRMA est difficile à établir à partir des seules images du fond d’œil
et nécessite normalement une angiographie à la fluorescéine. En l’absence de cette modalité,
les deux furent annotés comme NV dans MAPLES-DR.

Lésions claires Dans les stades graves de la DR, la rétine s’épaissit et des exsudats durs
– des dépôts clairs autour de capillaires endommagés – peuvent apparaître. Des ischémies
plus sévères provoquent parfois un blocage du transport axonal dans la couche de fibres du
nerf optique, qui peut à son tour entraîner l’apparition de lésions connues sous le nom de
nodules cotonneux. Ces lésions se caractérisent par leur aspect blanc et leurs contours flous. Si
leur étiologie principale est la rétinopathie diabétique, les nodules cotonneux (CWS) peuvent
également être observés dans d’autres maladies vasculaires comme l’hypertension artérielle.
Enfin, MAPLES-DR fournit aussi des annotations de Drusens. Bien que ces lésions claires
soient plus symptomatiques de la dégénérescence maculaire liée à l’âge (DMLA) que de la
DR, leur aspect est similaire à celui des exsudats et peut être confondu avec eux. Ils sont
donc inclus dans MAPLES-DR pour marquer la distinction entre eux.

4.2.3 Recrutement des annotateurs

Les cartes de segmentation de MAPLES-DR ont été annotées par sept rétinologues canadiens
affiliés à cinq hôpitaux différents : l’Hôpital Maisonneuve-Rosemont, le University Health
Network (à Toronto), le CHUM (Centre Hospitalier Universitaire de Montréal), le Centre
Hospitalier Universitaire Saint-Justine, et l’Université de Sherbrooke. Tous les annotateurs
étaient des rétinologues seniors qui ont été recrutés suite à leur implication dans des pro-
grammes de téléophtalmologie pour la détection de la DR au Québec et en Ontario.
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Figure 4.4 Exemples d’annotations de structures pathologiques

4.2.4 Conception du protocole d’annotation

MAPLES-DR se limite à l’annotation de 200 images, mais elle fut conçue comme une cam-
pagne pilote préparant le terrain à l’annotation de grandes bases de données (i.e. les milliers
d’images de télémédecine canadienne) par la collaboration de multiples annotateurs répar-
tis dans les différentes provinces canadiennes. Aussi, une attention particulière fut portée à
maximiser l’efficacité des annotateurs lors de la conception du protocole d’annotation. Les
caractéristiques de l’outil d’annotation détaillées ci-dessous témoignent de cette ambition.
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Prétraitement des images de fond d’oeil

Les dimensions des images de fond d’œil dans MESSIDOR varient de 1440 × 960 à 2304 × 1536
pixels. Pour uniformiser la résolution des cartes de segmentation dans MAPLES-DR, toutes
les images furent recadrées et redimensionnées à une résolution de 1500 × 1500 pixels. En-
suite, deux algorithmes d’amélioration d’image furent appliqués pour aider les annotateurs
dans leur lecture. Le premier visait à corriger les variations d’illumination tout en préservant
les teintes de l’image, par une soustraction de la médiane et par une égalisation d’histogramme
CLAHE sur le canal de luminosité. Le second maximisait les contrastes en normalisant in-
dépendamment les intensités de chaque canal couleur de manière à étendre au maximum
leur plage de valeurs (voir Figure 4.5). Ces deux algorithmes de prétraitement pouvaient être
activés individuellement ou en combinaison par le clinicien lors de l’annotation. Ils furent
particulièrement utilisés lors de l’annotation des vaisseaux et des lésions rouges.

(a) Sans pré-traitement (b) CLAHE (c) Maximisation des
constrastes

(d) Combinaison des
deux pré-traitements

Figure 4.5 Prétraitements disponible sur la plateforme d’annotation pour améliorer la lec-
ture des image de fond d’oeil

Préannotation automatique

La segmentation médicale est une tâche intrinsèquement fastidieuse. Aussi, plutôt que d’an-
noter de zéro, les rétinologues furent chargés d’examiner des cartes de segmentation générées
par IA (que nous appellerons cartes préannotées) et d’en corriger les éventuelles erreurs. Cette
méthode, bien moins laborieuse, fut utilisée pour annoter les exsudats, les microanévrismes,
les hémorragies et les vaisseaux sanguins. Pour les autres structures pathologiques (néovais-
seaux, drusen et CWS), les bases de données publiées à l’époque n’étaient malheureusement
pas suffisantes pour entraîner des modèles de segmentation performants. L’annotation des
autres structures anatomiques (macula, disque optique et papille) étant plus simple, elle ne
nécessitait pas de préannotations.
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En pratique, la génération des cartes préannotées fut confiée à deux modèles du niveau de
l’état de l’art en 2018 : l’un chargé de segmenter les lésions [199], l’autre de segmenter les
vaisseaux [114]. Les valeurs de seuillage des cartes de probabilités prédites par ces deux mo-
dèles furent cependant légèrement réduites de façon à favoriser les faux positifs par rapport
aux faux négatifs. Ce choix reposait sur l’hypothèse qu’examiner les structures préannotées
et supprimer celles incorrectes serait une tâche plus aisée que repérer et annoter celles man-
quantes. Inversement, toutes les lésions préannotées sur les images saines (selon les étiquettes
DR de MESSIDOR) furent automatiquement effacées, afin d’éviter à l’annotateur de devoir
les supprimer manuellement. Enfin, lorsque la première moitié des segmentations de vais-
seaux fut corrigée, on réentraîna le modèle de préannotation vasculaire et on mit à jour les
préannotations de la seconde moitié. Le temps moyen nécessaire à l’annotation des vaisseaux
fut ainsi réduit de 10% entre la première et la seconde moitié.

Plateforme web d’annotation

Ce protocole de collecte de segmentations par correction de préannotation n’était pas aussi
répandu en 2018 qu’il ne l’est aujourd’hui. À l’époque, aucun outil libre ne trouvait satisfac-
tion à nos yeux. Nous avons donc conçu les maquettes d’une plateforme d’annotation dont le
développement fut confié à une équipe d’étudiants en génie logiciel. J’ai supervisé leur travail
puis ai complété, maintenu, et déployé la plateforme. Son code a récemment été rendu public
sur Github, accompagné d’une CLI Python et de documentation.

La collaboration entre des experts éloignés géographiquement fut le premier défi à relever
lors de la conception. Elle fut assurée par une solution double. 1. la plateforme d’annotation
prit la forme d’une application web accessible en tout temps sur le serveur du laboratoire.
Pour des raisons de sécurité évidentes, l’accès fut protégé par un portail d’authentification
et on assigna à chaque rétinologue un compte utilisateur propre. 2. La plateforme fut dotée
d’un système d’affectation de tâches : chacune étant liée à une image et un annotateur et
y associant une liste des structures rétiniennes à réviser et compléter. Cette liste de tâches
à compléter est présentée aux rétinologues immédiatement après leur authentification (cf.
Figure 4.6). Chacun dispose de sa propre version des annotations de sorte que plusieurs
rétinologues puissent annoter la même image. Une CLI en Python me permettait de répartir
préalablement les tâches parmi l’équipe d’annotateurs puis de modifier ces affectations, d’en
surveiller la complétion et de télécharger les annotations corrigées.

Après avoir sélectionné une tâche, l’utilisateur est transporté vers le cœur de la plateforme :
l’éditeur d’annotation. Celui-ci est avant tout un outil de visualisation et de révision des
multiples structures rétiniennes, chacune possédant son calque et sa couleur propre (cf. Fi-

https://github.com/LIV4D/AnnotationPlatform
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gure 4.7). L’utilisateur peut cacher chaque calque individuellement et ajuster leur opacité
afin de les rendre semi-transparents. L’éditeur permet aussi de cacher ou révéler toutes les
annotations d’un appui sur une touche, et ainsi d’examiner par clignotement les pixels de
l’image qu’elles recouvrent. Dans la même optique, le mode "bordure" remplace les cartes de
segmentation par une carte de leurs contours, facilitant la visualisation des structures détou-
rées. Enfin, l’annotateur peut à son gré zoomer et activer individuellement ou en combinaison
les prétraitements de l’image fundus (cf. Section 4.2.4).

Figure 4.6 Interface de sélection d’une tâche parmi celles assignées.

Figure 4.7 Interface d’annotation des structures rétiniennes.
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Les outils d’édition en eux-mêmes sont similaires à ceux de n’importe quel logiciel de dessin.
Un pinceau et une gomme circulaires de taille réglable ajoutent ou enlèvent des pixels du
calque d’annotation actif. Les deux sont doublés d’outils de détourage permettant de délimiter
des zones en traçant leurs contours. Une option du pinceau implémentée dans la plateforme
la distingue des logiciels de dessin traditionnels : elle transforme son comportement pour qu’il
n’ajoute pas de nouveaux pixels, mais plutôt qu’il remplace le type d’annotations existantes
sans en modifier la segmentation. Cette option est particulièrement utile pour requalifier une
préannotation d’exsudats en drusen, ou pour spécifier le type d’un vaisseau en artère ou veine.
Après avoir corrigé l’annotation, le rétinologue peut laisser un commentaire puis, d’un clic, la
sauvegarder et charger la suivante. Le temps d’annotation est enregistré automatiquement.

Instructions fournies aux retinologues

En préparation de la campagne d’annotation, les 10 structures rétiniennes à segmenter furent
regroupées en 4 catégories : 1. lésions rouges (micro-anévrismes, hémorragies et néovais-
seaux), 2. lésions claires (exsudats, drusen, CWS), 3. vaisseaux, 4. structures anatomiques
hors vaisseaux (disque optique, papille, macula). Puis on attribua à chaque rétinologue l’une
des quatre catégories de sorte qu’il n’eût à annoter que les structures associées. Chacune des
200 images fut ainsi vue par plusieurs rétinologues, mais chaque type de biomarqueur n’a été
examiné que par un seul expert : l’un segmentant les vaisseaux, l’autre les lésions rouges, etc.
Cette division des tâches d’annotation visait à spécialiser chaque clinicien dans l’étiquetage
d’un type de structure rétinienne pour simplifier la courbe d’apprentissage des outils d’anno-
tation et accélérer l’ensemble du processus. Cette approche, combinée à la pré-segmentation
des lésions et vaisseaux, permit de réduire le temps pour annoter une image à 22 minutes
cumulées en moyenne.

Hormis la liste des structures à segmenter et des recommandations sur l’utilisation des outils
d’annotation, aucune instruction explicite ne fût fournie aux cliniciens : ni sur une définition
clinique des structures (nous faisions totalement confiance dans leur expérience médicale), ni
sur le niveau de détail attendu. Radsch et al. [200] a récemment montré que pour améliorer la
qualité des annotations biomédicales, il était préférable de fournir des images d’exemples plu-
tôt que des instructions textuelles même détaillées. Les cartes de préannotations remplissent
parfaitement cette fonction. En présentant à l’annotateur des lésions petites (leur diamètre
médian était de 13 pixels) et nombreuses ; elles incitent à segmenter chaque lésion individuel-
lement (au lieu d’encercler la zone générale) et à prêter attention à toutes les lésions, même
les plus petites.

https://github.com/LIV4D/AnnotationPlatform/blob/master/documentation/UserGuide.pdf
https://github.com/LIV4D/AnnotationPlatform/blob/master/documentation/UserGuide.pdf
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4.2.5 Bilan du travail d’annotation

Les structures rétiniennes de MAPLES-DR furent en réalité majoritairement revues et corri-
gées par seulement trois rétinologues (cf. Figure 4.8) : Dr. Boucher (87% des lésions claires),
Dr. Brent (62% des lésions rouges) et Dr. Duval (100% des vaisseaux). Au total, 69 heures
ont été nécessaires pour réviser et annoter les 200 images.

La macula, le disque optique et la papille furent les plus rapides à annoter, avec une moyenne
de 2 minutes par image ; suivis par la segmentation des vaisseaux, avec une moyenne de
6 minutes par image. Pour cette dernière, la pré-segmentation semble avoir été d’une aide
précieuse : 77,5 % des pixels annotés comme vaisseaux dans MAPLES-DR sont issus des
préannotations, et moins de 8,3 % des pixels préannotés ont été manuellement identifiés
comme faux positifs et effacés (cf. Figure 4.9). Pour autant, la segmentation des vaisseaux
a nécessité d’importantes corrections : en moyenne 56k pixels par image ont été segmentés
manuellement, majoritairement des petits vaisseaux (voir Figure 4.10a).

39%
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100%

36%

Vaisseaux 

Disque & Macula 

Lésions Rouges 

Lésions Claires Rétinologue A
Rétinologue B
Rétinologue C
Rétinologue D
Rétinologue E
Rétinologue F
Rétinologue G

Proportion d'images annotées

Figure 4.8 Proportion d’images annotées par chaque rétinologue.

Figure 4.9 Vue quantitative du travail d’annotation pour chaque catégorie de structures
rétiniennes. Les barres sombres correspondent aux segmentations ajoutées manuellement, celles claires
correspondent aux préannotations effacées. Chacune est annotée du nombre de pixels corrigés par image. Le
pourcentage indique l’aire occupée par chaque structure rapportée à l’aire des images.



61

(a) Vaisseaux (b) Toutes lésions confondues
Figure 4.10 Préannotations corrigées par les rétinologues. (Blanc : préannotation inchangée ;
Turquoise : segmentation ajoutée manuellement, Violet : préannotation effacée manuellement.)

Les structures pathologiques ne concernent qu’une petite fraction des annotations de MAPLES-
DR : elles couvrent moins de 0.5% des images. Pourtant, c’est bien elles qui ont nécessité le
plus grand effort d’annotation. Le temps passé sur chaque image est très variable : de quelques
dizaines de secondes pour les images saines à une heure pour les plus pathologiques. Comme
pour les vaisseaux, l’annotation manuelle des structures pathologiques s’appuie largement sur
les pré-segmentations. Pour les lésions qui en disposaient (microanévrismes, hémorragies et
exsudats), seul un quart des pixels a été ajouté manuellement, les 3 quarts restant proviennent
directement des cartes préannotées. Mais contrairement aux vaisseaux, les cartes de lésions
préannotées contenaient plus de faux positifs : plus de 58 % des hémorragies préannotées
furent effacées, de même que 47 % des microanévrismes et 40 % des exsudats (cf. Figure 4.9).
La plupart des hémorragies et des microanévrismes effacés étaient en réalité des vaisseaux,
comme le montre la Figure 4.10b. En moyenne, l’annotation des structures pathologiques prit
6 minutes par image pour les lésions claires et 10 minutes pour les lésions rouges.

4.2.6 Préparation des données pour la publication

La campagne d’annotation s’est conclue par un travail de formatage des cartes de segmenta-
tion corrigées en vue de leur publication. Tout d’abord, un rapide parcours des annotations
a permis d’éliminer quelques faux positifs évidents (par ex. une hémorragie sur un vaisseau)
introduits par les préannotations mais ayant échappé à la vigilance des rétinologues. Cette
brève inspection révéla une segmentation manquante pour la macula (l’image étant centrée



62

sur le disque optique, la macula est hors-champ) ; et six pour le disque optique à cause de
contours trop flous pour être précisément délimités. Le jeu de données fut ensuite divisé en
un ensemble d’entraînement et un ensemble de test. Pour s’assurer de la représentativité de
ce dernier, on construisit un vecteur indiquant la présence ou l’absence de chaque type de
lésion, puis on appliqua la stratification «iterative multilabel-shuffle» proposée par Sechidis
et al. [201] de sorte que l’ensemble de test soit constitué de 60 images laissant le reste (138
images) pour l’ensemble d’entraînement. Cette séparation est clairement apparente dans l’ar-
borescence de l’archive publique de MAPLES-DR afin que toutes les publications futures qui
évalueraient leurs méthodes avec MAPLES-DR se réfèrent bien au même ensemble de test.

Il faut noter que, conformément aux instructions de partage de MESSIDOR, nous n’avons
pas publié les images de fond d’œil ayant servi de base à nos annotations. Elles doivent être
téléchargées manuellement depuis le site du consortium. Cependant, afin d’éviter à l’utili-
sateur l’effort d’extraction des régions d’intérêt depuis les images de MESSIDOR et de leur
redimensionnement au format de MAPLES-DR , j’ai implémenté une librairie python dédiée
à l’automatisation de cette tâche, sous réserve que l’utilisateur lui indique un chemin local
vers l’archive de MESSIDOR. Cette librairie télécharge aussi automatiquement les annota-
tions de MAPLES-DR, permet de les exporter localement dans le format souhaité, inclut
les algorithmes de prétraitement d’images de fond d’œil et expose même les informations
complémentaires sur l’annotation (préannotations, commentaires, temps, etc.). Elle est pu-
bliée sous la forme d’un paquet python disponible sur Github et pip et est documentée ici en
anglais et en français !

Figure 4.11 Page d’accueil de la documentation du paquet maples-dr.

https://doi.org/10.6084/m9.figshare.24328660.v2
https://github.com/LIV4D/MAPLES-DR
https://pypi.org/project/maples-dr/
https://liv4d.github.io/MAPLES-DR/fr/index.html
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4.3 Évaluation de la fiabilité des annotations

Annoter à partir de cartes pré-segmentées par intelligence artificielle (IA) n’est pas un choix
anodin lorsqu’on construit une base de données qui a justement pour vocation l’entraîne-
ment et la validation d’algorithmes supervisés. Ces cartes introduisent fatalement des biais
dans les annotations qui risquent de se propager aux nouveaux modèles, compromettant leur
acuité. Par ailleurs, quand bien même les rétinologues avaient segmenté sans préannotation,
la variabilité inter-observateur naturelle entre eux est aussi une source d’incertitude qui doit
être mesurée pour assurer la fiabilité des annotations de MAPLES-DR. Cette section évalue
l’ampleur de ces biais et de cette variabilité. D’abord par l’étude des deux paires d’images
dupliquées de MAPLES-DR, puis par la réannotation des structures pathologiques d’une
dizaine d’images par 3 annotateurs, avec et sans préannotations.

4.3.1 Estimation de la variabilité inter-observateur sur les duplicatas

Chaque structure rétinienne annotée dans MAPLES-DR ne le fut que par un unique clinicien,
excluant de facto toute étude de variabilité inter-observateur. Ou plutôt, cette étude aurait
été exclue si 2 duplicatas ne s’étaient pas glissés par inadvertance dans la liste des images
annotées. Cet accident permet une première estimation de la variabilité inter-observateur
présente dans MAPLES-DR. Cependant, étant donné la taille très réduite de l’échantillon (2
images), nous restreindrons notre étude à une approche qualitative.

Figure 4.12 Visualisation comparative des annotations vasculaires pour les images dupli-
quées de MAPLES-DR. (Blanc : Pixels communs aux deux annotations, Violet : pixels inclus uniquement
dans le jeu d’entraînement, Bleu : pixels inclus comme doublons)
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Commençons avec les annotations vasculaires, puisque ce sont celles qui nous intéressent le
plus pour la thèse. Les vaisseaux les plus larges font l’objet d’un consensus parfait entre les
deux cartes de segmentation, probablement parce qu’ils proviennent directement des préan-
notations (cf. Figure 4.12). La variabilité intra-observateur 2 se manifeste plutôt sur les petits
vaisseaux : souvent, ils sont annotés sur les deux cartes mais avec un tracé différent. Ces
observations corroborent celles de Kai et al. [36] qui ont mesuré un dice intra-annotateur de
0.9679 en moyenne sur 40 images annotées deux fois par 5 annotateurs.

Figure 4.13 Visualisation comparative des lésions rouges (en haut) et lésions claires (en
bas) pour les images dupliquées de MAPLES-DR. (Même légende que la Figure 4.12.)

2. Tous les vaisseaux ont été revus et corrigés par Dr. Duval. L’étude des doublons est donc dans ce cas
une étude intra-observateur et non inter-observateur.
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Pour les structures pathologiques, les observations sont radicalement différentes. Sur les 28
lésions rouges annotées par les rétinologues, seulement 13 sont communes aux deux. Pour les
lésions claires, ce nombre tombe à 3 parmi 83 lésions annotées ! Au-delà de cette variabilité de
détection des lésions, la visualisation comparative des annotations pathologiques (Figure 4.13)
révèle des désaccords sur la segmentation des lésions communes, en particulier lorsque ces
lésions ne sont pas présentes dans la carte de pré-segmentation. Ces résultats interpellent : ils
appellent une étude approfondie de la variabilité d’annotation des structures pathologiques
rétiniennes, avec et sans préannotation. Surtout que, à notre connaissance, aucun article n’a
été publié sur le sujet à ce jour. C’est donc sur ces structures que nous avons concentré notre
étude de variabilité inter-observateur.

4.3.2 Variabilité inter-observateur sans préannotation de lésions

Dans un premier temps, on s’intéressa à la segmentation manuelle en l’absence des cartes
de préannotations. L’objectif était double : d’une part évaluer la variabilité inter-observateur
sans elles, et d’autre part établir une segmentation de référence à laquelle on puisse comparer
les annotations de MAPLES-DR obtenues avec elles. Pour cette première phase, on demanda
donc à trois rétinologues d’annoter, chacun de leur côté, toutes les structures pathologiques
de 51 images de MAPLES-DR. Nous aurions aimé conduire une étude analogue sur les vais-
seaux mais, sachant que le temps nécessaire pour annoter les vaisseaux d’une image sans
préannotations avoisine les deux heures [31], l’effort d’annotation fut jugé irréaliste.

La variabilité inter-observateur est de deux ordres. La première est liée aux désaccords de
détection : lorsqu’une structure est considérée comme pathologique et annotée comme telle
par un rétinologue, mais qu’elle est absente de la carte de segmentation produite par un
autre. La seconde implique des désaccords de segmentation : une même structure est annotée
par deux rétinologues, mais ses contours diffèrent. Ces deux types de variabilité doivent être
traités individuellement. La variabilité de détection entre deux observateurs fut quantifiée
par un score F1 défini sur le nombre de lésions plutôt que le nombre de pixels 3. La variabilité
de segmentation fut quant à elle évaluée par un calcul de l’intersection sur union (IoU) en ne
considérant que les lésions conjointement annotées par les deux observateurs. La Figure 4.14
présente ces scores pour chaque type de lésion et chaque paire de rétinologues.

3. Le nombre de lésions annotées par un observateur O1 est tout d’abord calculé par un algorithme de
composantes connectées. Ensuite, une lésion est considérée comme commune si au moins un de ses pixels a
aussi été annoté par le second observateur O2. Puisque le nombre de lésions varie grandement d’un observateur
à l’autre, le nombre de lésions annotées par O1 commune à O2 peut être très différent du nombre de lésions
annotées par O2 commune à O1. Le score F1 est donc obtenu par moyenne harmonique des ratios – calculés
indépendamment pour O1 et O2 – du nombre de lésions communes sur le nombre de lésions annotées. (En
choisissant un observateur comme vérité terrain, ces ratios seraient équivalent à la precision et au recall.)
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Figure 4.14 Variabilité inter-observateur lors de segmentation de lésions sans préannotation.
(En haut : variabilité de détection ; en bas : variabilité de segmentation. Chaque paire d’annotateurs est
évaluée individuellement. La ligne pointillée correspond à la moyenne des paires.)

Les rétinologues s’accordent le plus sur la détection des exsudats, mais le score F1 n’atteint
que 61% en moyenne. Pour les micro-anévrismes, les hémorragies et les CWS, on mesure un
accord moyen entre 28% et 33% et il tombe à 13,3% pour les drusens 4. Une piste d’explication
pour comprendre cet accord supérieur pour les exsudats et inférieur pour les drusens est à
chercher dans leur fréquence respective (voir Figure 4.10). Les exsudats – symptômes courants
de la DR – sont particulièrement présents dans les fonds d’œil de MAPLES-DR : 22 par image
en moyenne ; alors que les drusens – plutôt associés à la DMLA – y sont rares : en moyenne 3
par image et la majorité n’en contiennent pas. Il est probable que la vigilance des annotateurs
soit plus faible pour ces lésions rares, conduisant à une annotation partielle.

Contrairement à celle de détection, la variabilité de segmentation est homogène parmi les
types de lésions (si l’on exclut celles qui n’ont pas été simultanément identifiées par les deux
observateurs). Quelle que soit la paire de rétinologues considérée, l’IoU varie entre 0.4 et 0.6.

4. Nous n’analyserons pas les néovaisseaux qui ont été identifié sur trop peu d’images pour obtenir des
résultats significatifs.
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Résumons par des ordres de grandeur mesurés sur toutes les lésions confondues : lorsqu’elles
sont annotées sans préannotation, environ un tiers des lésions identifiées par chaque rétino-
logue ne l’est par aucun des deux autres (en excluant les drusens pour lesquels ce rapport
est plutôt de deux tiers), et un quart des lésions annotées par au moins deux rétinologues
n’est pas annoté par le troisième. Pour une même lésion annotée par deux observateurs, en
moyenne un pixel sur deux n’est pas commun. Pour plus de détails, un billet de blog analyse
dans le détail et par de multiples graphes interactifs les résultats de cette étude.

Ces niveaux de variabilité étant évidemment inattendus, nous les avons présentés aux réti-
nologues pour tenter de comprendre leurs causes. Au-delà de la variabilité naturelle, trois
facteurs potentiels ont été identifiés :

1. Les prétraitements d’amélioration du fond d’oeil n’ont pas été utilisés par tous les
annotateurs. Ceux qui les ont activés ont eu tendance à annoter plus de lésions.

2. La distinction entre micro-anévrismes et les petites hémorragies est difficile à partir du
fond d’oeil simple et nécessite normalement l’angiographie. Une partie de la variabilité
de détection de ces lésion est donc due à des désaccords sur leur type. En considérant
indifféremment les deux lésions rouges comme une classe commune, le score F1 moyen
pour la détection de ces lésions passe de 28,2% et 32,5% (respectivement pour les
micro-anévrismes et les hémorragies) à 58,4%.

3. L’absence de consignes spécifiques a conduit à des styles d’annotation différents d’un
annotateur à l’autre : certains annotant chaque lésion précisément alors que d’autres
détouraient globalement les amas.

Il est en tous cas certain que, compte tenu de cette variabilité inter-observateur, toute ten-
tative pour extraire une vérité terrain unique à partir des triples cartes de segmentation ne
produirait pas un résultat fiable.

4.3.3 Variabilité inter-observateur avec préannotation de lésions

La précédente section conclut à une variabilité inter-observateur très élevée lors de l’anno-
tation de lésions à partir de zéro. Qu’en est-il lors d’annotation par correction de cartes
pré-segmentées ? Pour le savoir, nous avons reproduit l’expérience en fournissant des pré-
annotations aux trois rétinologues. Un modèle de segmentation plus récent fut utilisé de
sorte qu’on ajouta les nodules cotonneux à la liste des lésions préannotées de MAPLES-DR :
i.e. les micro-anévrismes, les hémorragies et les exsudats. Les drusens et les néovaisseaux
furent écartés de l’étude faute de modèle pour les segmenter. Les métriques de variabilité
de détection et de segmentation de ces lésions sont présentées sur la Figure 4.15. Elles sont
spectaculairement plus élevées que celles obtenues sans préannotation.

https://liv4d.github.io/Team_LIV4D.github.io/ophthalmology/fundus/labelling_platform_evaluation/
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Figure 4.15 Variabilité Inter-observateur lors de segmentation de lésions avec préannota-
tion. (À gauche : variabilité de détection ; à droite : variabilité de segmentation.)

Deux phénomènes concourent à ce résultat : 1. les lésions correctement détectées par l’IA ont
exactement la même segmentation pour tous les rétinologues qui les ont conservées. 2. Bien
qu’aucune instruction n’ait été donnée aux rétinologues sur le niveau de détail attendu lors
de la segmentation manuelle d’une lésion, les lésions préannotées sont autant d’exemples de
segmentations souhaitées, agissant comme une consigne implicite et harmonisant le « style »
des annotations ajoutées par les différents annotateurs.

Seuls les nodules cotonneux semblent conserver une variabilité inter-observateur élevée malgré
les préannotations. Cette différence s’explique par la qualité et le faible nombre de préanno-
tations pour cette lésion. Sur les 16 images, seuls 14 CWS furent préannotés par le modèle et
un seul fut considéré valide par les trois rétinologues. Les autres furent retirés manuellement,
mais pas par tous les rétinologues simultanément, entraînant un taux élevé de désaccord.

En bref, annoter les structures pathologiques du fond d’œil en corrigeant des cartes pré-
segmentées diminue significativement la variabilité inter-observateur en introduisant une ré-
férence commune pour tous les annotateurs. Toutefois, l’ampleur de cette réduction repose
fortement sur la bonne qualité du modèle de pré-segmentation. Les différences importantes
observées sur les deux duplicatas de MAPLES-DR résultent ainsi certainement de la moins
bonne qualité du modèle initialement utilisé en 2018.

4.3.4 Biais introduit par la préannotation des lésions

Le recours aux préannotations est un moyen efficace pour réduire la variabilité inter-observateur
lors de l’annotation des lésions rétiniennes. Mais si la moitié des hémorragies ou micro-
anévrismes de MAPLES-DR sont directement issus de ces préannotations, quels biais introduisent-
elles dans les annotations finales ? Idéalement, les annotations de zéros auraient permis de
construire une segmentation de référence pour répondre à cette question, mais elles diffèrent
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trop d’un rétinologue à l’autre pour définir une vérité terrain fiable (voir section 4.3.2). Nous
nous rabattons donc sur une analyse qualitative du style d’annotation qui compare les dis-
tributions de taille des lésions et de leur nombre par image pour cinq annotateurs : O1, O2,
et O3 sont les rétinologues seuls, CP est un rétinologue avec préannotation (i.e. la version
de MAPLES-DR), et IA sont les préannotations avant correction.

Ces distributions sont présentées par la Figure 4.16. Elles confirment la disparité de style
présentée à la section 4.3.2 entre les rétinologues : les lésions dessinées par O2 sont en moyenne
deux à quatre fois plus grandes que celles de O1 et O3, et O1 a annoté en moyenne deux fois
plus de lésions que O2 ou O3. Concernant les biais liés aux pré-segmentations : la filiation
entre les préannotations (IA) et les corrections (CP) est évidente tant par le nombre de
lésions que par leurs tailles : elles sont plus nombreuses et de tailles plus diverses que celles
annotées uniquement par les rétinologues. Mais les annotations CP portent aussi la trace des
corrections : leurs tailles s’alignent sur O1 ou O3, et leur nombre sur O1. En résumé, les
préannotations biaisent les annotations vers une sensibilité accrue. En l’absence d’une vérité
terrain fiable, difficile de dire si elle est synonyme d’exhaustivité ou de faux positifs...

Enfin, un pic de lésions de 78 pixels est visible pour O1, O3 et CP. Cette taille correspond
en réalité à l’outil d’annotation par défaut (un cercle de diamètre 10 pixels) et semble corres-
pondre à la taille des plus petits détails annotés par les cliniciens. Bien qu’anodin, ce détail
souligne l’importance sous-estimée du choix des paramètres par défaut.
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Lésions Claires Lésions Rouges

Figure 4.16 Distribution de la taille et du nombre de lésions par images avec et sans
préannotation. (O1, O2, O3 : annotations manuelles sans préannotations ; CP : annotation par correction
de préannotations ; IA : préannotations avant corrections. La barre verticale indique la valeur médiane.)
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4.3.5 Entraînement de modèles de segmentations avec MAPLES-DR

Afin d’évaluer la pertinence de MAPLES-DR pour l’entraînement de modèles de segmen-
tations, nous avons entraîné cinq modèles à segmenter les lésions rétiniennes (i.e. micro-
anévrismes, hémorragies, exsudats et CWS) sur des jeux de données publics différents :
MAPLES-DR, IDRiD [195], DDR [196], FGADR [193], et Retinal Lesions [194]. Tous furent
construits à partir du même protocole rudimentaire : un modèle U-Net simple est entraîné
à segmenter conjointement les quatre lésions rétiniennes par minimisation d’une fonction de
coût Dice en utilisant la traditionnelle descente de gradient stochastique (SGD) comme op-
timiseur. Pour accélérer l’apprentissage, les poids initiaux de l’encodeur sont pré-entraînés
sur ImageNet. Tous les modèles furent ensuite évalués sur les ensembles de tests individuels
associés à chacun de ces jeux de données. Les mIoU mesurés pour chaque combinaison d’en-
sembles de formation et de test sont compilés dans le tableau 4.1.

Pour chaque ensemble de test, le modèle qui obtient les meilleures performances est celui qui
a été entraîné sur l’ensemble d’entraînement correspondant. Ce résultat est attendu étant
donné l’écart entre les jeux de données : tant en termes des caractéristiques d’images de fond
d’œil (ethnicité, qualité et résolution de l’image, colorimétrie, etc.) que du style d’annotation
(segmentations grossières pour Retinal Lesions, précises pour MAPLES-DR, IDRiD et DDR
ou mélange des deux pour FGADR). Malgré ces divergences, un modèle entraîné sur un jeu de
données peut, dans une certaine mesure, se généraliser aux autres. Nous avons mesuré cette
capacité en classant les modèles par mIoU sur chaque jeu de données, puis en calculant la
moyenne des classements. Le modèle entraîné sur MAPLES-DR obtient le deuxième meilleur
classement moyen de 2.8, derrière IDRiD, dont le classement moyen est de 2.2. Ces deux jeux
de données sont pourtant ceux contenant le plus petit nombre d’images d’entraînement, mais
leurs images de fond d’œil de bonne qualité et leurs annotations précises de chaque lésion
semblent particulièrement profiter aux capacités de généralisation des modèles.

Tableau 4.1 Performance en généralisation de modèles de segmentation de lésions par
ensemble d’entraînement. Les jeux de données d’entraînement sont triés en fonction de leur classement
moyen sur tous les ensembles de test.

Jeu d’entraînement Performance par ensemble de test (mIoU) Rang
(nb. image) IDRiD MAPLES-DR DDR FGADR Ret. Les. Moyen
IDRiD (54) 57.6% 37.5% 35.6% 28.4% 26.0% 2.2
MAPLES-DR (118) 39.7% 46.8% 31.0% 26.9% 27.8% 2.8
DDR (450) 48.6% 35.4% 43.0% 26.4% 24.8% 3.2
FGADR (1096) 33.0% 28.8% 31.7% 47.4% 25.5% 3.4
Retinal Lesions (948) 28.6% 27.3% 28.6% 28.4% 48.2% 3.4
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4.4 Discussion et Contributions

Le choix de corriger des cartes pré-segmentées plutôt que d’annoter de zéro, bien qu’exigé par
l’ambition de la tâche de segmentation, comportait le risque d’introduire un biais dans les an-
notations collectées. Mais les différentes expériences d’évaluation de MAPLES-DR semblent
valider ce choix : si un biais a été introduit, il a accru la sensibilité d’annotation. Elles
montrent surtout que l’annotation par correction de préannotations a permis de diminuer si-
gnificativement la variabilité inter-observateur, en particulier lors de l’annotation des lésions.
Dans l’ensemble, le dyptique préannotation et outils d’annotation web s’est révélé efficace :
réduisant le temps nécessaire à la segmentation des vaisseaux de 2 heures [31] à 6 minutes en
moyenne !

Au début du projet, nous imaginions que les seuls écueils à anticiper seraient liés à la concep-
tion des outils d’annotation, mais si le projet fut si long, c’est que des obstacles apparurent
ensuite là où nous ne les attendions pas. Les valeurs de variabilité inter-observateur en dé-
tection et en segmentation de lésions nous ont notamment pris par surprise. À notre connais-
sance, il n’en existe aucune mention dans la littérature. Nous-mêmes ne l’avons pas inclus
dans l’article de MAPLES-DR 5, préférant y consacrer un article dédié ultérieurement. À mon
sens, elles mettent au jour un sérieux problème d’alignement entre les objectifs théoriques
de la segmentation des structures rétiniennes (la détection des lésions pour le diagnostic de
pathologie, l’identification des vaisseaux pour en extraire la géométrie ou la topologie, etc.)
et la fonction objectif optimisée en pratique par les modèles de segmentation pendant leur
entraînement. Cette dernière prête en effet beaucoup d’importance aux pixels en pourtour des
lésions et des vaisseaux. Or, si l’on en croit les résultats de l’étude de variabilité, les contours
de ces structures ne semblent pas centraux dans la pratique médicale, ou en tous cas ne font
pas l’objet d’un consensus sur leur positionnement exact. À l’inverse, la fonction objectif
accorde trop peu de considérations à des aspects pourtant cruciaux comme la continuité de
la topologie vasculaire.

Il reste néanmoins que la qualité des annotations de MAPLES-DR offre aux modèles qu’elles
entraînent de bonnes capacités de généralisation et constitue une base solide de pré-entraînement
[202]. Et au-delà des modèles de segmentation, l’exhaustivité inédite des types de structures
annotées est précieuse pour ouvrir la voie à des approches qui combinent ces structures pour
un dépistage interprétable de la DR (Legault et al., 2025 [203]).

5. Nous signalons tout de même dans la section Usage Note du papier que les CWS, les drusens et les
néovaisseaux sont insufissament représentés dans MAPLES-DR pour constituer un jeu d’entraînement fiable,
et que ces annotations seraient plus propices à servir de base de pré-entraînement.
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Concernant cette thèse, le projet MAPLES-DR apporte deux contributions. D’une part, les
198 nouvelles annotations des structures anatomiques rétiniennes rejoignent et diversifient
celles des autres jeux de données publics, contribuant ainsi à l’amélioration des modèles de
segmentation des vaisseaux, du disque et de la macula. D’autre part, j’ai pu tirer profit de la
plateforme d’annotation pour distinguer les artérioles des veinules sur 100 cartes de segmen-
tation vasculaire de MAPLES-DR. Le prochain chapitre exploite ces cartes pour entraîner
une nouvelle formulation de neurones convolutifs : les steered CNN.
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CHAPITRE 5 STEERED CNN : L’ÉQUIVARIANCE PAR ROTATION AU
SERVICE DE LA CLASSIFICATION DES ARTÈRES ET VEINES

RÉTINIENNES

Le formalisme des SCN (ou Steered CNN) présenté dans ce chapitre modifie la définition
des neurones convolutifs des CNN pour y inscrire l’équivariance à la rotation. Cette nouvelle
définition vise à réduire le nombre de paramètres nécessaires à ces modèles et espère ainsi
améliorer leur capacité de généralisation.

Ce chapitre est probablement le plus mathématique de la thèse, il suit le formalisme énoncé
au début de ce document.

5.1 Motivations et travaux connexes

5.1.1 Motivations à l’équivariance par rotation

Dans le chapitre sur les réseaux convolutifs [204] issu de leur manuel « Deep Learning » publié
en 2016, Ian Goodfellow, Yoshua Bengio et Aaron Courville motivent l’efficacité des CNN
pour le traitement d’images par une triple propriété que leur confère l’opérateur convolutif :
l’équivariance par translation, la faible densité de connectivité (sparse interaction et connec-
tivity), et la mutualisation des paramètres (parameter sharing). En effet, parce que la taille
des filtres de convolution est très inférieure à celle de l’image analysée, chaque pixel prédit par
le modèle ne dépend que d’une portion de l’image centrée sur ce pixel (sparse interaction),
réduisant considérablement le temps de calcul nécessaire à l’inférence ou l’entraînement d’un
CNN comparativement à un modèle complètement connecté. En outre, puisque les mêmes
filtres de convolution sont appliqués à toutes les régions de l’image d’entrée (parameter sha-
ring), le nombre de paramètres est non seulement restreint mais aussi indépendant de la
résolution de l’image, à contrario des modèles complètement connectés qui attribuent un jeu
de paramètres à chaque position du vecteur d’entrée. L’empreinte mémoire lors de l’utilisation
et du stockage des modèles convolutifs est donc faible. En outre, le modèle est équivariant
par translation : la translation de son image d’entrée induit une translation analogue de sa
prédiction ; ou dit autrement : le modèle n’est pas sensible aux coordonnées absolues des
objets qu’il segmente. Cette indifférence à la position est particulièrement pertinente pour la
segmentation de vaisseaux qui se déploient sur la totalité de l’image. Mais le principal avan-
tage de la réutilisation intensive des filtres de convolution au sein d’un CNN est ailleurs :
elle impose à chaque paramètre de participer aux traitements de l’ensemble des pixels de
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l’image. Cette mutualisation des fonctions d’un paramètre agit à la fois comme régularisa-
tion et comme dopant de son efficacité statistique : lors d’un entraînement, il voit en effet sa
valeur ajustée non pas une fois par image mais une fois par pixel de celle-ci !

Cependant, tous ces bénéfices des CNN se limitent aux transformations de translation et ne
s’appliquent pas aux rotations. Rien n’assure que la segmentation ou la classification d’un
objet (par exemple, un vaisseau) ne varie avec l’orientation sous laquelle il est présenté. La
Figure 5.1 montre d’ailleurs des variations dans la classification A/V de certains petits vais-
seaux lorsqu’on fait subir des rotations à l’image de fond d’œil présentée au CNN. Pire, la
littérature de classification vasculaire pré-apprentissage profond obtient de très bons résul-
tats en analysant le profil des vaisseaux [78,82], c’est-à-dire en analysant des caractéristiques
particulièrement anisotropiques ! Or, pour être équivariant par rotation, un CNN dont la
prédiction reposerait sur de telles caractéristiques devrait nécessairement consacrer plusieurs
filtres de convolution à la détection d’une seule de ces caractéristiques, mais dans toutes ses
orientations. Plus exactement, on peut imaginer que, lors de la phase d’apprentissage, les
échantillons d’entraînement présentant des vaisseaux horizontaux induisent une mise à jour
des paramètres très différentes de ceux présentant des vaisseaux analogues mais verticaux. Ces
différences peuvent permettre la spécialisation des filtres de convolution vers chaque orienta-
tion de vaisseaux, mais au prix de plus nombreuses itérations et échantillons d’entraînement
avant que le modèle ne converge. Inscrire l’équivariance par rotation dans le formalisme des

  0°  45°  90° 135°

180° 225° 270° 315°

Figure 5.1 Variations de la classification A/V prédite par un même CNN, pour différentes
rotations initiales de l’image d’entrée

(Pour simplifier leur comparaison, les vaisseaux variants sont en surbrillance et les cartes présentées ont
subi un rotation inverse à celle infligée à l’image fond d’oeil.)
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CNN devrait permettre l’économie de cette déduplication des filtres de convolution et ainsi
la réduction de la taille du modèle et du temps de calcul nécessaire à son entraînement. L’in-
tuition communément admise du rasoir d’Ockham laisse même espérer que cette diminution
du nombre de paramètres augmente d’autant les capacités de généralisation du modèle.

5.1.2 CNN et équivariance par rotation

De nombreuses tâches de segmentation biomédicale (dont la segmentation des vaisseaux ou
leur classification en artères ou veines) sont par essence équivariantes par rotation. Puisque
rien dans l’implémentation standard des CNN n’assure cette propriété, elle doit nécessai-
rement être apprise par le modèle lors de l’entraînement. Pour favoriser cet apprentissage,
une première solution consiste à intégrer une augmentation géométrique à la boucle d’en-
traînement : chaque image de fond d’œil subit une rotation d’un angle aléatoire et la même
transformation est appliquée à la vérité terrain. Durant l’entraînement, le modèle apprendra
ainsi à classifier les vaisseaux, quelle que soit leur orientation. Cette solution naïve est uti-
lisée par la quasi-totalité des travaux appliquant les réseaux de neurones à la segmentation
sémantique du réseau rétinien, bien qu’elle soit sujette aux limitations énoncées à la section
précédente. Il existe pourtant des travaux qui visent à améliorer l’équivariance par rotation
des CNN, qu’on peut regrouper en deux familles.

La première famille s’inspire de l’augmentation géométrique par rotation des images en entrée
du modèle. Cheng et al. [205] proposent d’inciter le réseau à conserver constante sa représen-
tation d’une image donnée, alors qu’elle lui est présentée sous des orientations variables. En
pratique, cette incitation prend la forme d’un terme de régularisation ajouté à la fonction de
coût qui fait converger les caractéristiques latentes calculées à partir de différentes versions
d’une même image. Une autre approche est proposée par Laptev et al. [206] : elle repose
aussi sur la démultiplication par rotation des images présentées au modèle, mais étend la
procédure à la phase d’inférence. Pour obtenir une prédiction invariante à l’orientation, le
modèle analyse successivement l’image selon une série d’orientations, puis, parmi toutes les
prédictions obtenues, il ne conserve que celle avec la probabilité la plus forte. Ces deux ap-
proches affichent des gains de performance pour la reconnaissance d’objets et ne nécessitent
presque aucune modification des architectures existantes. Cependant, si leur invariance par
rotation s’avère utile pour la classification d’images, elle n’est pas applicable dans le contexte
de la segmentation sémantique où chaque objet a sa propre orientation locale.

La seconde famille abandonne la rotation des échantillons d’entraînement et propose de l’ap-
pliquer plutôt aux noyaux de convolution eux-mêmes. Chaque noyau est pivoté dans n orien-
tations avant d’être convolué avec sa carte d’entrée, produisant ainsi n cartes de sortie. Ces
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multiples versions de chaque carte sont soit fusionnées immédiatement après chaque couche
convolutive par un max-pooling [207], soit maintenues tout au long du réseau – chaque ver-
sion n’étant convoluée qu’avec des noyaux orientés dans une unique direction à l’aide de group
convolution – et regroupées à la dernière couche [208,209]. Lors de l’entraînement, les mises
à jour obtenues pour chaque orientation d’un noyau sont moyennées avant de lui être appli-
quées. De cette façon, bien que chacune ait son orientation propre, les différentes versions
d’un même noyau restent toujours cohérentes entre elles. Autrement dit, les méthodes de
cette seconde famille implémentent l’équivariance à la rotation par la mutualisation des pa-
ramètres sur les différentes orientations ! Et comme on pouvait s’y attendre, elles démontrent
une amélioration impressionnante de l’efficacité des paramètres pour les tâches de classi-
fication et de segmentation sémantique. Cependant, les travaux cités plus haut réalisent la
rotation des noyaux de convolution par une interpolation bilinéaire : cette méthode est simple
à implémenter mais est peu efficace en temps de calcul et produit des artefacts pour tout
angle de rotation qui n’est pas un multiple de 90◦. Une solution à ce problème se trouve avec
les steerable filters.

5.1.3 Steerable Filters : des filtres de convolution orientables

En 1991, Freeman et al. [210] proposent une méthode pour convoluer efficacement une image
avec de multiples versions d’un même filtre, chacune orientée différemment. Pour ce faire, ils
introduisent une nouvelle famille de filtres convolutifs : les Steerable Filters qui sont définis
par une combinaison linéaire d’une série de filtres élémentaires et qui peuvent être orientés
dans une direction arbitraire en modifiant la pondération de la combinaison linéaire tout en
maintenant les filtres élémentaires constants.

Plus formellement, un filtre polaire Ψ(ρ, θ) est dit steerable si sa rotation par un angle α

(notée Rotα

[
Ψ(ρ, θ)

]
= Ψ(ρ, θ − α)) peut s’écrire comme la combinaison linéaire de H filtres

élémentaires (notés Ψh) par des coefficients linéaires qui sont fonctions de α (notés ah(α)) :

Ψ(ρ, θ − α) =
H∑

h=1
ah(α) Ψh(ρ, θ) (5.1)
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Grâce à la reformulation de la rotation de ces filtres, la convolution d’une image X avec un
steerable filter orienté dans une direction arbitraire α se factorise comme :

X ∗ Rotα

[
Ψ

]
=

H∑
h=1

(
ah(α) · X ∗ Ψh

)
(5.2)

Autrement dit, après avoir convolué en amont l’image avec le jeu prédéfini de filtres élémen-
taires Ψh, on peut, par combinaison linéaire des résultats avec les coefficients appropriés,
simuler la rotation du filtre dans autant de directions que désirées.

Considérons un exemple trivial : le filtre W(θ) = cos(θ), dont on omettra temporairement la
partie radiale par simplicité. Le développement trigonométrique de sa rotation donne :

W(θ − α) = cos(θ − α)

= cos(α) cos(θ) + sin(α) sin(θ)

= a1(α) · Ψ1(θ) + a2(α) · Ψ2(θ)
Ce filtre admet donc une décomposition en deux filtres élémentaires Ψ1(θ) = cos(θ) et
Ψ2(θ) = sin(θ), dont la combinaison linéaire par les coefficients a1(α) = cos(α) et a2(α) =
sin(α) décrit bien la rotation de W. En précalculant les convolutions avec ces filtres élémen-
taires (Y1 = X ∗ Ψ1 et Y2 = X ∗ Ψ2) on peut déduire la convolution de l’image X par le
filtre W après rotation d’un angle α :

X ∗ Rotα

[
W

]
= cos(α) · Y1 + sin(α) · Y2

La notation en nombres complexes est particulièrement adaptée aux steerable filters. En effet,
dans ce domaine, la rotation d’un filtre – c’est-à-dire le déphasage de sa composante polaire
– se traduit par un facteur du type e−iα. On peut par exemple montrer que tout filtre de la
forme Ψ(ρ, θ) = Re

[
G(ρ)eikθ

]
est steerable et que sa rotation est décrite par :

Ψk(ρ, θ − α) = cos(kα) Re
[

G(ρ)eikθ
]

+ sin(kα) Im
[

G(ρ)eikθ
]

(5.3)
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5.1.4 Steerable CNN

En 2016, Cohen et al. [211] étendent leur propre travail [208] et proposent l’utilisation de
steerable filters pour implémenter la rotation des noyaux convolutifs. Pour ce faire, ils repa-
ramétrisent les noyaux de convolution de leur Group Equivariant Convolutional Layer par
une combinaison linéaire de steerable filters et inventent les Steerable CNN. Ce formalisme
a depuis été modifié et reformulé à plusieurs reprises [212, 213], et a même été étendu pour
implémenter l’équivariance à des transformations de symétries axiales ou de redimension-
nement [214–216]. L’architecture de base reste cependant toujours la même : chaque carte
de caractéristiques est calculée selon plusieurs orientations jusqu’à la couche finale, où une
orientation pour chaque pixel et chaque caractéristique est sélectionnée par max-pooling. Ces
architectures atteignent les performances de l’état de l’art pour la classification d’objet alors
qu’elles utilisent considérablement moins de paramètres.

Cependant, leur implémentation de l’équivariance est partielle car les caractéristiques ne sont
calculées que pour n orientations. En outre, sélectionner l’orientation la plus pertinente selon
les probabilités de classification rend cette décision sujette aux fluctuations de prédiction du
modèle. Dans le cas de la classification des vaisseaux en particulier, leur orientation peut être
directement dérivée du squelette vasculaire. Les steered CNN proposés dans ce chapitre par-
tagent avec les Steerable CNN le reparamétrage des filtres de convolution par des « steerable
filters », mais contrairement à ces derniers qui appliquent leurs filtres de convolution dans
une série d’orientations prédéfinies, les steered CNN alignent dynamiquement leurs noyaux
de convolution sur les orientations locales des vaisseaux.

5.2 Étude préliminaire : isotropismes des CNN classifieurs de vaisseaux

On l’a vu, la méthode la plus populaire pour réaliser l’équivariance par rotation des CNN
standard reste l’augmentation de données géométriques : en faisant subir une même rotation
aléatoire à l’image d’entrée et à la vérité terrain. On peut cependant s’interroger sur l’efficacité
de cette méthode et ses implications sur les filtres de convolution appris.

Par ailleurs, les méthodes qui implémentent l’équivariance par rotation dans les CNN sont
généralement motivées par l’existence d’un gaspillage de paramètres pour adapter le mo-
dèle aux différentes orientations. Mais la véracité et l’ampleur de ce postulat n’ont, à ma
connaissance, jamais été vérifiées. Avant d’exposer le fonctionnement des steered CNN, il
me paraît important d’évaluer combien de paramètres un modèle de classification d’artères-
veines consacre-t-il à apprendre les mêmes caractéristiques dans plusieurs orientations ? On
pourrait être surpris de la réponse...
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Mesure du tropisme des neurones

La question n’est pas triviale : les fonctions modélisées par une couche convolutive ne sont
pas soigneusement rangées dans des noyaux individuels. Elles émergent plutôt de l’interaction
de plusieurs filtres entre eux, parfois combinés avec des filtres de la couche précédente ou de
la couche suivante. Comment identifier alors, parmi les poids du modèle, une fonction spé-
cifique et ses répliques orientées différemment ? Une réponse indirecte peut être trouvée par
une question plus simple : dans un modèle globalement équivariant par rotation (par exemple
grâce à une augmentation de données géométriques), combien de neurones ne sont pas iso-
tropiques ? En effet, pour que la prédiction du modèle reste constante lors d’un changement
d’orientation de l’image, de tels neurones doivent nécessairement compenser mutuellement les
variations de leur prédiction respective. D’une manière ou d’une autre, ces neurones doivent
se relayer pour assurer collectivement des fonctions qu’ils ne pourraient assurer seuls sans
briser l’équivariance du modèle. Ainsi, en mesurant la différence entre l’équivariance globale
du modèle et l’isotropisme local de ses neurones, on peut déduire la proportion de paramètres
présentant une redondance liée à l’orientation. Cette section décrit une version polaire de la
densité spectrale de puissance comme mesure du tropisme (ou de l’isotropisme) des neurones
convolutifs d’un CNN.

Soit I(i, j) une image présentée à l’entrée d’un réseau, et ϕ : I → y l’application qui calcule
la prédiction y(i, j) d’un neurone du réseau. On définit Φ(θ) = Rot−θ

[
ϕ

(
Rotθ

[
I
]) ]

, où la
carte Φ(θ) est obtenue en présentant au réseau une rotation de l’image I(i, j) par un angle
θ et en appliquant à la prédiction du neurone une contre-rotation de −θ (voir Figure 5.2).
Dit autrement, Φ(θ) est la carte que l’on obtiendrait si l’image I était gardée fixe et si tous
les noyaux de convolution du modèle ϕ subissaient une rotation d’un angle θ. Par définition,
ϕ est équivariant par rotation si Φ est constant : Φ(θ) = y ∀ θ ∈ R. Notre étude pourrait
s’arrêter à la vérification de cette invariance, mais le bruit et les artéfacts d’interpolation liés
aux rotations rendent floue la notion de constance dans ce contexte. Il nous faut la quantifier.

𝜃1

𝜙 y0I

𝜙
𝜃1

𝚽(𝜃1)

I2 𝜙
𝜃2 𝜃2

𝜙 : Réseau de neurone

: Image d’entréeI

: Image I pivotée d’un angle 𝜃𝑘I𝑘

: Prédiction d’un neurone associée à 𝐈𝑘𝐲
𝑘𝐲

2

𝚽 𝜃𝑘 = Rot−𝜃k 𝐲𝑘

𝚽(𝜃2)

Figure 5.2 Schéma de la méthode de calcul de Φ(θ).
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Figure 5.3 Exemples de décomposition polaire de la densité spectrale de puissance (DSP)
pour des harmoniques polaires de rang 0, 1, 2 et 3 ; et pour deux noyaux de convolution
symétrique et anti-symétrique.

Soit R(∆θ) la fonction d’autocorrélation de Φ(θ) définie pour chaque pixel par :

R(∆θ) =
∑

θ

Φ(θ) · Φ(θ − ∆θ)

On s’intéresse à sa transformée de Fourier S(ω) = F
[
R(∆θ)

]
. L’autocorrélation permet ici

d’évaluer les variations de Φ induites par une rotation ∆θ, et ce, quelle que soit l’orientation de
départ, supprimant ainsi la primauté de θ = 0 comme orientation de référence. La transformée
de Fourier décompose ensuite ces variations par harmoniques angulaires. Ainsi, S(ω) distingue
par leur tropisme les différentes composantes de la fonction réalisée par ϕ : S(0) en identifie
la composante équivariante, S( 1

2π
) la composante anti-symétrique, S( 2

2π
) celle symétrique,

etc. (voir Figure 5.3). Le théorème de Wiener-Khinchin indique que S(ω) est équivalente à la
densité spectrale de puissance et en donne une méthode de calcul plus commode qui se passe
de l’autocorrélation : S(ω) =

∣∣∣F[
Φ(θ)

]∣∣∣2.
Analyse de l’équivariance par rotation de la classification A/V

En calculant S(ω) sur la carte de probabilité prédite par un CNN, on obtient alors une série
de spectres (un pour chaque pixel) qui, agrégés et normalisés, offrent un bon outil de compré-
hension du tropisme du modèle. La première composante de ce spectre indique la proportion
équivariante du signal prédit, ou dit autrement, la proportion de fonctions isotropiques parmi
l’ensemble des fonctions du modèle. Ce spectre renseigne aussi sur la proportion de compo-
santes 2π-variantes ou π-variantes, associées aux fonctions antisymétriques et symétriques.
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Figure 5.4 Comparaison du tropisme de la prédiction de CNN entraîné avec et sans aug-
mentation de données géométriques.

Dans une première expérience de cette étude préliminaire, nous comparerons l’équivariance
de modèles entraînés avec et sans augmentation de données géométriques. La Figure 5.4
présente pour ces deux cas, les DSP de modèles 1 évalués sur 25 images du jeu de test de
MAPLES-DR. La DSP d’un modèle non entraîné et initialisé aléatoirement a aussi été ajoutée
à la Figure à titre de référence. D’après ces résultats, les variations de prédiction liées à un
changement d’orientation de l’image que l’on avait rapportées en introduction de ce chapitre
(cf. Figure A) concerneraient moins de 5% de la puissance totale du signal prédit. En tout
cas lorsque le modèle est entraîné avec des rotations aléatoires de ses échantillons d’entrée,
car lorsque cette augmentation de données est désactivée, cette proportion monte à 17%,
se rapprochant de sa distribution avant entraînement. En première approche, cette méthode
simple semble donc efficace pour induire une équivariance, même imparfaite, à la rotation.

Analyse de l’équivariance par rotation de chaque couche convolutive

Si les CNN sont bien globalement isotropiques, qu’en est-il de leurs couches individuelles ?
La Figure 5.5 présente, pour 8 CNN entraînés avec augmentation de données et 8 CNN
entraînés sans, la DSP des composantes équivariantes, anti-symétriques et symétriques de
chacune de leurs couches convolutives. L’architecture et le protocole d’entraînement de ces
modèles seront présentés dans la section de validation ; indiquons seulement qu’il s’agit d’un
U-Net comptant 5 étages d’encodeur (Conv 1 à 5) et 4 étages de décodeur (Conv 6 à 9).

Plusieurs observations sont à tirer de cette Figure. Elle confirme d’abord l’équivariance in-
complète mais significativement améliorée par l’augmentation de données géométriques des
modèles entraînés à la classification des vaisseaux rétiniens. Elle signale surtout que la prédic-
tion finale n’est pas la seule à être globalement équivariante à la rotation. En fait, les seules
couches anisotropiques du réseau sont les plus profondes, au centre du U-Net ; et même pour

1. Le protocole d’entraînement de ces modèles est le même que celui qui sera décrit dans la section de
validation de ce chapitre. Les spectres de la Figure sont une moyenne obtenue par l’agrégation des prédictions
de 8 modèles entraînés avec augmentation de données géométriques et de 8 modèles entraînés sans.
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Figure 5.5 Effet de l’augmentation de données sur les composantes polaires de la Densité
Spectrale de Puissance pour chaque couche convolutive d’un CNN classifieur d’A/V.

Les lignes opaques sont la moyenne des huits meilleurs modèles entraînés avec (bleu) et sans (vert)
augmentation de données. Une ligne propre à chaque modèle est affichée semi-transparente. La ligne
pointillée est une référence correspondant à un modèle initialisé aléatoirement et non entraîné.

celles-ci, la composante équivariante reste la plus importante de toutes. En comparant les
courbes obtenues avec et sans augmentation de données, il apparaît clairement que si cette
dernière améliore bel et bien l’équivariance globale du modèle, son action ne se limite pas
à la couche finale : c’est l’ensemble des neurones qui deviennent plus isotropiques et voient
s’atténuer leurs composantes anti-symétriques. En analysant individuellement chaque neu-
rone de chaque couche, le constat est encore plus frappant : en moyenne, si l’on exclut les
deux couches centrales (Conv 5 et Conv 6), plus de 90% des neurones des CNN entraînés
avec l’augmentation de données sont principalement isotropiques !

Ce résultat est doublement paradoxal : si autant de paramètres sont naturellement isotro-
piques, est-il vraiment nécessaire de développer un formalisme équivariant pour dédupliquer
les quelques paramètres restants ? En un sens, s’ils sont « insensibles » à la rotation, ces
paramètres sont déjà mutualisés entre les différentes orientations vasculaires. Certes. Mais
comment expliquer alors que les approches traditionnelles pour la classification des vaisseaux
rétiniens trouvent généralement plus pertinentes des caractéristiques anisotropiques [78,82] ?

La théorie des réseaux neuronaux démontre que, si le nombre de paramètres et d’échantillons
d’entraînement est suffisant, un réseau peut théoriquement approximer n’importe quelle fonc-
tion. Néanmoins, en pratique, l’architecture et la procédure d’apprentissage favorisent cer-
taines approximations, au détriment d’autres. Aussi, je postule que la régularisation par
augmentation de données détourne le modèle de l’apprentissage des noyaux de convolution
anisotropiques. Ainsi, le défi à relever par les steered CNN ne se limite pas à l’implémentation
d’un modèle complètement équivariant à la rotation, il doit aussi permettre de la réaliser sans
imposer l’apprentissage de noyaux de convolution isotropiques.
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5.3 Méthode

5.3.1 Objectif et vue schématique des steered CNN

Dans un CNN standard, les couches convolutives suivent la forme mathématique suivante :

yn(i, j) =
∑
m

xm ⊛
(i,j)

Wn,m (5.4)

où yn(i, j) est le pixel (i, j) de la carte yn produite par le nième neurone de la couche ; xm est
la mième carte en entrée de la couche ; Wn,m est le noyau de convolution reliant l’entrée xm

à la sortie ym ; et où ⊛
(i,j)

est l’opérateur de corrélation croisée 2 calculé au pixel (i, j).

L’objectif des steered CNN est de pouvoir choisir pour chaque pixel (i, j), l’angle α(i, j) sous
lequel le noyau doit être orienté avant sa convolution avec l’image. Autrement dit, on souhaite
transformer l’équation 5.4 en :

yn(i, j) =
∑
m

xm ⊛
(i,j)

Rotα(i,j)
[
Wn,m

]
(5.5)

Du point de vue du traitement des signaux, cette formulation découple deux tâches qui sont
normalement intriquées pour un CNN standard : d’une part la reconnaissance et classification
des vaisseaux et d’autre part la détection de leur orientation. Dans les steered CNN, cette
seconde tâche est « externalisée » et devient un signal d’entrée du modèle sous la forme d’un
champ d’orientation 3 α⃗ indiquant, pour chaque pixel de l’image, la direction du vaisseau le
plus proche (voir section 5.3.2 pour son calcul). Les steered CNN ne sont donc pas équivariants
par rotation au sens strict du terme : pour réaliser cette propriété, il repose sur l’hypothèse que
lors d’une rotation de l’image, les directions des vecteurs de α⃗ subiront la même rotation, et
ils la répercuteront sur les noyaux de convolution du modèle. À tout le moins, l’équation 5.5
assure la mutualisation des paramètres entre les différentes orientations vasculaires (sous
réserve que α⃗ traduise bien la direction locale des vaisseaux).

Cette reformulation des couches convolutives qui rend leur orientation pilotable localement,
est la seule modification qui distingue les steered CNN des CNN standards. Ainsi, n’importe
quel modèle de classification vasculaire reposant sur des neurones convolutifs peut bénéfi-
cier de ce formalisme en remplaçant simplement ses couches convolutives par leur version
« steered » et en lui ajoutant une entrée secondaire : le champ d’orientation α⃗.

2. Les implémentations des couches convolutives ont généralement recours à la corrélation croisée plutôt
qu’à la convolution. Ce détail d’implémentation n’ayant que très peu d’importance, on continuera d’utiliser
le terme convolution dans le reste du chapitre.

3. Pour le champ d’orientation on utilisera la nomenclature suivante : α⃗ est le champ de vecteurs (dotés
d’une norme et d’une direction) et α est une matrice d’angle : α(i, j) = arg

(
α⃗(i, j)

)
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5.3.2 Calcul du champ de direction α⃗

Les steered CNN ajustent l’orientation de leur noyau de convolution selon un champ de
direction α⃗ calculé en amont. Dans le contexte de la classification des vaisseaux en artères
ou veines, ce champ doit suivre la direction locale des vaisseaux.

Les méthodes de segmentation des vaisseaux du fond d’œil ont aujourd’hui atteint un niveau
de performance suffisant (cf. section 2.2.5) pour que la procédure de calcul du champ α⃗

puisse raisonnablement s’appuyer sur elles. Cette procédure débute par une squelettisation
de la segmentation vasculaire. On attribue ensuite à chaque pixel v du squelette un champ
vectoriel radial γ⃗v orienté dans la direction opposée à v et dont la norme est pondérée par
une gaussienne centrée sur v. Cette pondération s’assure que l’intensité du champ décroisse
à mesure que la distance à v augmente. Son écart-type a été fixé empiriquement à 75 pixels
pour une image de fond d’œil de résolution 1500 × 1500 pixels. Le champ d’orientation
α⃗ est alors défini comme la somme des influences de l’ensemble des pixels du squelette
vasculaire : α⃗ =

∑
v

γ⃗v. Orienter ce champ dans une direction normale aux vaisseaux plutôt

que tangentielle évite d’avoir à leur attribuer un sens. La Figure 5.6 présente un exemple de
champ d’influence γ⃗v et du champ d’orientation total α⃗.

Afin de préserver la cohérence spatiale au sein d’un steered CNN, la résolution spatiale du
champ α⃗ est adaptée à celle des cartes d’entrées de chaque couche convolutive. En particulier,
lorsque ces cartes sont sous-échantillonnées (suite à une couche de pooling ou un pas de
convolution), α⃗ subit le même sous-échantillonnage précédé d’un filtre moyenneur.

Figure 5.6 Champ d’orientation α⃗ calculé à partir de la squelettisation de la segmentation
vasculaire. À gauche : Champ d’influence généré par 4 pixels individuels du squelette (dessinés
en bleu). À droite : Champ complet, superposé au squelette et à la segmentation vasculaire.
(Pour des raisons de lisibilité, les champs affichés sont sous-échantillonnés.)
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5.3.3 Reparamétrisation des noyaux de convolution

La mise en œuvre de la formule 5.5 n’est pas triviale : la valeur de α(i, j) et donc celle de
Rotα(i,j)

[
W n,m

]
varie à chaque pixel (i, j). Il faudrait donc, en théorie, recalculer une rotation

des filtres de convolution pour chacun des pixels de l’image. Cette solution est évidemment
irréaliste pour des réseaux qui convoluent des milliers de filtres avec des millions de pixels. La
présente section montre comment résoudre ce problème par une reparamétrisation des filtres
de convolution Wn,m sous une forme « steerable ».

Pour commencer, il nous faut choisir une famille de steerable filters et le jeu de filtres élémen-
taires associé. Ce sera le jeu de filtres utilisé par les Steerable CNN, formés par une bande
gaussienne dans la dimension radiale et une série harmonique dans leur composante polaire.
Ces filtres élémentaires, définis dans le domaine complexe, sont générés par :

Ψk,r(ρ, θ) = Gr(ρ) · eikθ (5.6)

dont la composante radiale Gr(ρ) = e2(ρ−r)2 décrit un anneau de rayon r pondéré par une
gaussienne, et la composante polaire est l’harmonique angulaire de rang k (voir Figure 5.7).

Considérons maintenant un noyau de convolution standard W(p, q) ∈ R défini dans le système
de coordonnées cartésien (p, q) ∈ Z2. À la manière d’une décomposition en ondelette polaire,
on peut approximer W(p, q) par une combinaison linéaire de filtres élémentaires Ψk,r(p, q)
produits par le rééchantillonnage en coordonnées cartésiennes des filtres Ψk,r(ρ, θ) :

W(p, q) ≈ Re
( K∑

k=0

R∑
r=0

ωk,r Ψk,r(p, q)
)

(5.7)

L’analogie de la décomposition en ondelette pour interpréter cette équation est d’autant
plus adaptée que les filtres Ψk,r constituent, dans leur composante angulaire, les bases d’une
décomposition en série de Fourier polaire. Les filtres générés par k = 0 codent les composantes
purement radiales de W et ceux générés avec k ≥ 1 représentent chacun une fréquence
angulaire propre. Naturellement, la qualité de l’approximation de W par la décomposition 5.7
dépend des paramètres générant la famille de filtres élémentaires Ψk,r : le rang harmonique
maximum K limite la résolution polaire du filtre reconstruit, quant au rayon R il en définit la
taille maximale. Le réglage de ces paramètres sera discuté dans la section 5.3.6. Notons que,
pour approximer le filtre carré W de taille P × P , les filtres de convolution élémentaires Ψk,r

doivent être de taille
√

2P ×
√

2P , afin de modéliser la rotation des pixels aux extrémités des
diagonales de W. Ainsi, la décomposition d’un filtre de convolution 5 × 5 nécessite des filtres
élémentaires de taille 7 × 7 (voir Figure 5.7).
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Figure 5.7 Le jeu de filtres élémentaires Ψk,r échantillonné en coordonnées cartésiennes.
Les valeurs positives sont colorées en rouge et celles négatives en noir.

Les coefficients ωk,r sont (comme les filtres élémentaires Ψk,r) définis dans le domaine com-
plexe et en ce sens chaque coefficient est double 4 : ωk,r = ωRe

k,r + i ωIm
k,r. Pour interpréter la

valeur de ces coefficients, la formulation polaire est plus adaptée : |ωk,r| pondère l’intensité de
Ψk,r, et arg(ωk,r) définit le déphasage de Ψk,r relativement aux autres filtres élémentaires. Vu
de W – qui ne considère que la partie réelle de la combinaison linéaire des filtres élémentaires
– ce déphasage se traduit par une rotation. En modulant ainsi l’intensité et l’orientation de
chaque filtre Ψk,r, les coefficients linéaires ωk,r sont l’équivalent pour les couches convolutives
steered de ce que sont les poids pour les couches convolutives classiques : ils définissent quelle
forme géométrique est détectée par le noyau de convolution. Sous cette perspective, l’équa-
tion 5.7 consiste donc en une reparamétrisation des couches convolutives, dont les implications
seront explorées dans la prochaine section.

Mais revenons auparavant à la rotation du filtre de convolution Wn,m. On peut montrer que,
suite à sa décomposition suivant l’équation 5.7, et par un jeu de phases et de trigonométrie,
le filtre Wn,m est « steerable » selon la formule :

Rotα

[
Wn,m

]
=

R∑
r=0

K∑
k=0

[
cos(kα)WRe

n,m,k,r + sin(kα)WIm
n,m,k,r

]
(5.8)

où WRe
n,m,k,r et WIm

n,m,k,r sont la partie réelle et imaginaire de Wn,m,k,r = ωn,m,k,r · Ψk,r qui
s’écrivent sous leur forme développée :

WRe
n,m,k,r = ωRe

n,m,k,rΨRe
k,r + ωIm

n,m,k,rΨIm
k,r

WIm
n,m,k,r = ωRe

n,m,k,rΨIm
k,r − ωIm

n,m,k,rΨRe
k,r

4. À l’exception des coefficients ω0,r qui sont réels purs car Ψk,r n’a pas de partie imaginaire pour k = 0.
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La combinaison de 5.5 et 5.8 donne alors la définition des SCN :

yn(i, j) =
R∑

r=0

K∑
k=0

[
cos

(
k α(i, j)

) ∑
m

(
xm ⊛

(i,j)
WRe

n,m,k,r

)
+ sin

(
k α(i, j)

) ∑
m

(
xm ⊛

(i,j)
WIm

n,m,k,r

)] (5.9)

Autrement dit, en convoluant dans un premier temps xm avec les noyaux WRe
n,m,k,r et WIm

n,m,k,r

(pour toutes les valeurs de k et r), puis en multipliant élément par élément les résultats de
ces convolutions avec les cartes cos(k α) et sin(k α), il est bien possible de sélectionner, a
posteriori et pour chaque pixel (i, j), l’orientation dans laquelle Wn,m,k,r est appliqué.

5.3.4 Différences théoriques entre les CNN standards et les steered CNN

À première vue, la capacité d’adapter l’orientation de ces filtres peut sembler être l’unique
distinction entre un steered CNN et un CNN standard. Mais en y regardant de plus près, la
reparamétrisation des noyaux de convolution implique une utilisation bien différente de leurs
paramètres. Dans un CNN standard, chaque poids correspond à un unique pixel d’un noyau
de convolution, sa fonction géométrique ne prend donc sens que par sa relation avec les poids
adjacents et sa valeur ne peut être interprétée que relativement à ces derniers. À l’inverse,
les paramètres ωn,m,k,r des steered CNN pondèrent chacun un filtre élémentaire Ψk,r complet.
Ils ont donc leur propre signification géométrique caractérisée par une dispersion spatiale r

et une fréquence angulaire k.

Cette différence conceptuelle du rôle déféré à chaque paramètre est encore plus évidente
lorsqu’on s’intéresse à l’entraînement d’un steered CNN et aux formules de rétropropagation
du gradient qui le régissent. On peut en effet montrer que le gradient de la fonction de coût
L relativement aux paramètres ωn,m,k,r s’écrit :

dωn,m,k,r = ∂L
∂ωn,m,k,r

=
(

xm ⊛
(i,j)

Rotα(i,j)
[
Ψk,r

])
⊛ dyn (5.10)

où dyn = ∂L
∂yn

est le signal de gradient associé à la prédiction yn de la couche convolutive.
Pour rappel, cette même formule est réduite dans un CNN standard à dWn,m = xm⊛dyn. En
d’autres termes, les mises à jour accumulées dans les paramètres pendant l’entraînement sont
obtenues dans les deux cas par la corrélation du signal de gradient dyn avec le signal d’entrée
xm. Mais dans les steered CNN, xm a préalablement été filtré avec le filtre élémentaire Ψk,r

associé au paramètre ωn,m,k,r. Au contraire, dans un CNN standard, les mises à jour des
poids d’un même noyau de convolution ne diffèrent que par une translation par quelques
pixels de xm avant sa corrélation avec dyn. Les paramètres des steered CNN sont donc bien
plus indépendants les uns des autres pendant l’apprentissage.
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Spécialiser chaque paramètre à une fonction géométrique permet aussi d’élaguer les fonctions
– et donc les paramètres – qui contribuent le moins à la qualité des prédictions du modèle.
Cette idée sera explorée plus en détail dans la section 5.3.6. On y montrera que pour ap-
proximer un filtre de taille 5 × 5 pixels, la plage d’harmonique polaire peut être limitée à
K = 2 sans perte de performance. La paramétrisation steered compte alors 3 paramètres
réels purs et 4 paramètres complexes, soit 3 + 4 × 2 = 11 degrés de liberté, contre 25 pour
une paramétrisation convolutive standard.

Ainsi, à nombre de neurones égal, les paramètres des steered CNN sont moins nombreux,
plus spécifiques et plus interprétables que leur alter ego standard. Tous ces avantages de mo-
délisation ont cependant un coût computationnel : le nombre de convolutions nécessaires au
calcul de yn lors de l’inférence ou de dxn lors de la propagation arrière du gradient augmente
d’un facteur de 2KR. En effet, la carte xm n’est plus simplement convoluée avec les filtres
de convolution standard Wn,m, mais avec chacune de leurs composantes WRe

n,m,k,r et WIm
n,m,k,r

(cf. équation 5.9). La prochaine section montrera comment alléger ce coût additionnel en
temps de calcul.

5.3.5 Implémentation optimisée des steered CNN

Réarrangements des termes de convolutions

La décomposition de chaque noyau de convolution Wn,m en une combinaison linéaire de
filtres élémentaires Ψk,r démultiplie le nombre de convolutions dans les steered CNN. Les dif-
férentes composantes radiales k de ces filtres doivent en effet impérativement être convoluées
séparément pour permettre la sélection de leur orientation a posteriori par leur multipli-
cation respective avec cos(kα) et sin(kα). Néanmoins, cette contrainte ne s’applique pas
aux composantes radiales r de Wn,m,k,r. Une première approche consiste donc à agréger ces
composantes en un filtre composite Wnmk = ∑R

r=0 ωn,m,k,rΨk,r et ainsi diviser le nombre de
convolutions par R. On appellera cette approche composite :

yn(i, j) =
∑
m

(
xm ⊛

(i,j)
WRe

nm0

)
+

K∑
k=1

[
cos

(
k α(i, j)

) ∑
m

(
xm ⊛

(i,j)
WRe

n,m,k

)

+ sin
(

k α(i, j)
) ∑

m

(
xm ⊛

(i,j)
WIm

n,m,k

)] (5.11)

Par ailleurs, notons dans cette formule que les harmoniques k = 0 sont traitées séparément
des autres pour tenir compte de leur particularité : elles sont les seules à être réelles pures.
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Une autre approche d’optimisation consiste à convoluer en amont les cartes xm avec chaque
filtre élémentaire Ψk,r, afin d’obtenir les cartes intermédiaires zm,k,r = xm ⊛Ψk,r. On recom-
pose alors yn par une multiplication matricielle de ces cartes zm,k,r avec les poids ωn,m,k,r. On
désignera cette approche comme pré-convoluée. Elle se calcule par :

yn =
∑
m

R∑
r=0

(
ωRe

n,m,0,r · zRe
m,0,r

)
+

K∑
k=1

[
cos

(
k α

) ∑
m

R∑
r=1

Re
(

ωn,m,k,r · zm,k,r

)

+ sin
(

k α
) ∑

m

R∑
r=1

Im
(

ωn,m,k,r · zm,k,r

)] (5.12)

Dans ce cas, le nombre de convolutions par couche est donc toujours égal au nombre de filtres
élémentaires Ψk,r : soit 2KR + 1 convolutions, et ce, quel que soit le nombre de caractéris-
tiques d’entrée ou de sortie de la couche. Pour accélérer encore le calcul, zm,k,r, la taille de
chaque filtre élémentaire Ψk,r, peut aussi être limitée à sa valeur minimale imposée par r

(3 × 3 pour r = 0 ; 5 × 5 pour r = 1 ; etc.) . Néanmoins, cette optimisation des opérations
de convolutions implique une augmentation conséquente du nombre de multiplications ma-
tricielles.

Ces deux méthodes sont mutuellement exclusives et leur gain respectif en temps de calcul
dépend des valeurs de K, R, n, m, de la taille de l’image, etc. Testée en contexte réel d’un U-
Net complet où K = 2 et R = 2, l’inférence d’une image 512×512 pixels est plus rapide avec
l’approche préconvoluée (166 ms plutôt que 178 ms), mais la rétropropagation du gradient
bénéficie davantage de l’approche composite (263 ms contre 288 ms). Dans les deux cas, ces
optimisations réduisent efficacement le temps de calcul ajouté par la formulation steered.

Calcul rapide de cos(kα) et sin(kα)

Au-delà des convolutions supplémentaires, les calculs trigonométriques de cos(kα) et sin(kα)
sur l’ensemble des pixels de l’image sont aussi coûteux, mais peuvent être contournés. En
effet, le champ d’orientation est communiqué au réseau sous la forme d’un champ de vecteurs
α⃗. En assumant que ses vecteurs soient unitaires, alors les composantes de α⃗ dans un repère
cartésien s’écrivent :

α⃗(i, j) =
cos

(
α(i, j)

)
sin

(
α(i, j)

)
On notera α⃗1 ce champ de vecteur contenant les valeurs de cos(kα) et sin(kα) pour k = 1.
Par identité trigonométrique, on peut montrer que le champ α⃗k est égal à une combinaison
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linéaire des composantes cartésiennes de α⃗k−1 et α⃗1.

α⃗k =
α

(x)
k

α
(y)
k

 =
cos

(
k α

)
sin

(
k α

)
=

cos
(
(k − 1) α

)
cos

(
α

)
− sin

(
(k − 1) α

)
sin

(
α

)
cos

(
(k − 1) α

)
sin

(
α

)
+ sin

(
(k − 1) α

)
cos

(
α

)
α⃗k =

α
(x)
k−1 α

(x)
1 − α

(y)
k−1 α

(y)
1

α
(x)
k−1 α

(y)
1 + α

(y)
k−1 α

(x)
1


On a donc une définition récursive de cos(kα) et sin(kα) nécessitant uniquement des opéra-
tions de multiplication-accumulation dans lesquelles excellent les cartes graphiques.

5.3.6 Réglage du jeu des filtres élémentaires

Choix du rang harmonique maximum K

Malgré les optimisations présentées à la section 5.3.5, le temps de calcul nécessaire à un
steered CNN reste supérieur à celui d’un CNN standard d’un facteur 2K + 1. Il y a donc
un compromis sur le choix du rang harmonique maximum K. Une valeur élevée assure une
résolution angulaire supérieure, mais au prix d’un temps de calcul allongé. La question est
donc de savoir, à budget de temps de calcul constant, à partir de quelle valeur de K le gain
de performance lié à la hausse de la résolution angulaire ne compense plus la perte de gain
potentiel qu’aurait permise une optimisation plus longue des hyper-paramètres.
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Figure 5.8 Précision moyenne d’un steered CNN sur son ensemble de test en fonction du
rang harmonique maximum K de ces filtres élémentaires Ψk,r.
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Pour répondre à cette question, on a entraîné à la classification de vaisseaux rétiniens 5 une
série de modèles avec des rangs harmoniques maximum variables. Leurs performances ont
ensuite été évaluées sur un ensemble de test, elles sont présentées sur la Figure 5.8. Les
résultats de cette série d’entraînement sont univoques : au-delà de K = 2, la précision sur
l’ensemble de test stagne et régresse même légèrement. Tous les steered CNN présentés dans
les expériences de validation seront donc limités à des harmoniques de rang 0, 1 et 2.

Par ailleurs, la Figure 5.8 révèle que, comme nous l’avions pressenti, une modélisation pure-
ment isotropique n’est pas suffisante pour classifier des artères et des veines rétiniennes. En
effet, les modèles n’ayant accès qu’à des filtres élémentaires où k = 0 voient leurs précisions
moyennes sur l’ensemble de test chuter de 10 points : 0.75 au lieu de 0.85.

Normalisation de Ψn,m et initialisation de ωn,m,k,r

L’architecture de steered CNN est inédite, elle ne dispose évidemment d’aucun poids pré-
entraîné sur ImageNet, et ses poids doivent être initialisés aléatoirement avant chaque en-
traînement. Généralement, les noyaux de convolutions Wn,m dans les CNN standard sont
initialisés par une distribution gaussienne de moyenne nulle et dont le paramétrage de la va-
riance est crucial pour garantir la stabilité du signal à travers le modèle. En effet, un réglage
légèrement trop faible ou trop élevé induirait une petite amplification ou atténuation qui, ré-
verbérée par chacune des couches, pourrait provoquer l’explosion ou l’effondrement du signal.
Dans un steered CNN, Wn,m est une composition de ωn,m,k,r et de Ψn,m. Ce réglage induit
donc des contraintes sur l’initialisation aléatoire de ωn,m,k,r, ainsi que sur la normalisation
des Ψn,m.

En suivant la démarche de He et al. [217] on peut montrer que les filtres élémentaires Ψn,m

doivent être normalisés de sorte que ∑
p,q Ψ2

n,m(p, q) = 1 et que la gaussienne initialisant les
paramètres ωn,m,k,r doit avoir comme variance :

V ar
[
ωn,m,k,r

]
=


2

m · Nk,r

· 1
1 + 2

π

(
1 −

( ∑
p,q Ψk,r(p, q)

)2) si k = 0

2
m · Nk,r

· π

π + 2 si k > 0

où Nk,r est le nombre de filtres élémentaires Ψn,m et m est le nombre d’entrées de la couche.
La démonstration de ces formules est détaillée en Annexe A.

5. Le protocole d’entraînement est celui partagé par toutes les expériences de validation (voir section 5.4.1).
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5.4 Évaluation expérimentale des steered CNN

L’étude expérimentale d’une nouvelle formulation de neurone convolutif s’est révélée exal-
tante par l’espoir et la curiosité qu’elle suscite. Dans cette section, nous évaluerons les perfor-
mances des steered convolutional neurons (SCN) comparées à celles des neurones convolutifs
standards et nous identifierons leurs propriétés uniques, en particulier leur capacité de géné-
ralisation.

5.4.1 Protocole expérimental

Modèle de référence

Récemment, plusieurs stratégies ont été proposées pour améliorer l’entraînement de modèles
convolutifs à la classification des vaisseaux rétiniens, mais il n’existe pas encore de consensus
sur laquelle est la meilleure. Pour valider les SCN, nous avons décidé d’ignorer les méthodes
les plus récentes et de nous concentrer plutôt sur leur point commun : l’architecture U-Net.
De cette façon, les résultats des expériences présentés dans cette section ne sont pas propres à
une stratégie d’apprentissage spécifique et peuvent théoriquement être reproduits avec toutes.

Hemeling et al. [39] ont étudié en détail une série de variations d’architecture U-Net pour
la classification A/V . Nous retenons de cette étude le modèle générique présenté sur la Fi-
gure 5.9 : un U-Net travaillant à 5 échelles obtenues en divisant puis multipliant successive-
ment la résolution des prédictions neuronales par un facteur de 2 grâce à un rééchantillonnage
bilinéaire. Chaque résolution est analysée par deux couches convolutives 5 × 5, chacune sui-
vie d’une Batch Norm et d’une fonction d’activation ReLU. Le nombre de caractéristiques
prédites par ces couches augmente de façon inversement proportionnelle à leur résolution,

Figure 5.9 Architecture de modèle U-Net retenue pour évaluer les steered CNN.
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passant de c pour les premières couches à 16c pour les couches les plus profondes. On étu-
diera plus loin l’effet de l’hyperparamètre c, mais indiquons tout de suite que les meilleurs
modèles ont été obtenus avec c = 12 ou c = 16.

Notre étude se limite à la classification artères/veines des vaisseaux rétiniens dont on suppose
connaître la segmentation. Ainsi, et contrairement à Hemeling et al., la dernière couche de
notre modèle ne produit qu’une unique carte dont la sigmoïde indique, pour chaque pixel, la
probabilité que le vaisseau le plus proche soit une artère plutôt qu’une veine. Évidemment, la
fonction de coût et les métriques de classification du modèle ont été réglées pour ne considérer
que les pixels appartenant à la segmentation vasculaire. Par ailleurs, une étude préliminaire
sur le pré-traitement de l’image de fond d’œil nous a révélé que le modèle performe mieux
lorsqu’on lui présente une image dont l’illumination a été localement corrigée par soustrac-
tion de la médiane, plutôt que l’image brute. Néanmoins, les meilleures performances sont
observées lorsqu’il a accès aux deux. C’est cette dernière option qui a donc été retenue.

Dans la suite de cette section, deux architectures de modèles seront comparées. La première
reprendra à la lettre la description du modèle présentée ci-dessus et servira de base de réfé-
rence aux expériences. La seconde verra toutes ses couches convolutives 5×5 (en rouge sur la
Figure 5.9) remplacées par leur formulation steered dans laquelle les noyaux seront orientés
selon un champ de vecteur α⃗ calculé à partir de la segmentation (voir la section 5.3.2).

Procédure d’entraînement

Dans toutes les expériences qui suivront, les deux architectures ont été entraînées et évaluées
sur un sous-ensemble de 65 images de MAPLES-DR réannotées avec une classification ar-
tère/veine (A/V) 6. La moitié de ces images (35) a été dédiée à l’entraînement du modèle, 5
à sa validation et 25 à son test. Tous les modèles ont été initialisés aléatoirement selon He
et al. [217] (cf. section 5.3.6) puis entraînés par un optimiseur Adam et pour un maximum
de 500 époques. La fonction de coût minimisée était une simple entropie croisée binaire. Des
fonctions de coût Dice, smooth et focale ont aussi été étudiées, mais aucune n’a amélioré les
résultats de l’entropie croisée.

Pour chaque expérience, l’optimisation des hyperparamètres (pas d’apprentissage, augmenta-
tion de données, etc.) a été conduite par un algorithme Tree-structured Parzen Estimator [218]
avec pour objectif de maximiser l’aire sous la courbe ROC (AUC-ROC) sur l’ensemble de
validation. Le temps d’entraînement sur une carte graphique NVidia RTX2080 Ti varie de
10 minutes à 5 heures en fonction des configurations du modèle.

6. Au moment où ces expériences ont été conduites, seulement 65 images avait été annotées A/V.
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Mesure des performances de classification

Les performances comparées des steered CNN et des CNN standard seront estimées par deux
métriques de classification. La première est l’exactitude (accuracy en anglais) qui mesurera
leurs performances lorsque leur prédiction est seuillée à 1

2 . Cette métrique est courante pour
évaluer la classification des vaisseaux rétiniens : elle rapporte le nombre de pixels correctement
classifiés comme artères ou veines, au nombre de pixels total de la segmentation vasculaire.
L’aire de cette segmentation étant globalement répartie équitablement entre artères et veines
(i.e. les classes sont équilibrées), la valeur de l’exactitude est très proche d’autres métriques
courantes de classification comme le score F1 ou l’indice de Jaccard que l’on peut donc
omettre. La seconde métrique est l’AUC-ROC. Elle témoigne de la force discriminative des
cartes de probabilités sans imposer un point de fonctionnement.

La capacité de généralisation des modèles a été mesurée en évaluant les modèles sur un
jeu de données qui n’a pas servi à leur entraînement, soit le jeu de données HRF, publié par
Hemeling et al. [39] qui contient 45 images de résolution comparable à celle de MAPLES-DR.

Les expériences qui vont suivre tentent de mesurer l’impact de certains paramètres de l’en-
traînement (par ex. le nombre de poids du modèle ou le volume d’entraînement) sur les
performances de classification de modèles. Cependant, les performances fluctuent d’un en-
traînement à l’autre et l’optimisation des hyperparamètres reste le facteur le plus déterminant
sur leur valeur. Pour mieux isoler l’effet d’une variable spécifique dans le bruit lié à cette op-
timisation, chaque expérience a été répétée 20 fois et on a sélectionné les 5 meilleurs essais
selon l’AUC sur l’ensemble de validation. Tous les résultats présentés ci-dessous indiquent la
moyenne et l’écart-type de ces 5 essais en mesurant leur performance sur les ensembles de
test de MAPLES-DR et HRF. Au final, cette section de validation s’appuie sur les résultats
collectés parmi 600 entraînements de steered CNN et 900 entraînements de CNN standard.

5.4.2 Performance générale de classification

Parmi ce millier de modèles, analysons dans un premier temps les 5 meilleurs steered CNN
avec les 5 meilleurs CNN standard, toutes expériences confondues. Leurs performances de
classification A/V sur MAPLES-DR et HRF sont rapportées dans le tableau 5.1.

Tableau 5.1 Performances (AUC-ROC) des 5 meilleurs modèles steered et standard

Ensemble de test : MAPLES-DR HRF (généralisation)
Métrique : Exactitude AUC-ROC Exactitude AUC-ROC

CNN standard 88.2±0.3% 95.2±0.2% 82.3±1.4% 91.2±1.2%
Steered CNN 89.3±0.8% 95.9±0.4% 82.4±1.9% 91.7±0.7%
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Ces premiers résultats sont rassurants : les steered CNN apprennent bien à classifier les
vaisseaux de MAPLES-DR, ils obtiennent même de meilleurs résultats que les CNN standard
sur l’ensemble de test de ce jeu de données : l’AUC-ROC augmente de 0.7% et l’exactitude
de 1%. Sur le jeu de test HRF, les deux modèles perdent en performance et, bien que les
steered CNN conservent une avance sur les CNN standard, celle-ci n’est pas significative étant
donné l’écart-type plus grand dont souffrent les mesures. On reviendra plus en détail sur les
capacités de généralisation des steered CNN plus loin dans cette section.

Qualitativement, les erreurs des CNN standard sont concentrées aux terminaisons et aux
croisements de vaisseaux les plus fins, comme nous l’avions vu en introduction. Les steered
CNN ne corrigent pas toutes ces erreurs : certaines petites branches émergant d’intersections
restent mal classifiées. Cependant, leurs prédictions sont moins sujettes à des changements
soudains ou à l’apparition de taches au milieu d’une branche, et elles sont globalement plus
cohérentes (voir Figure 5.10). L’équivariance par rotation complète des steered CNN n’est
probablement pas étrangère à la disparition de ces artefacts, qui apparaissaient et disparais-
saient chez les CNN standard, au gré de l’orientation initiale de l’image (voir Figure 5.1).

Figure 5.10 Classification A/V par un steered CNN (gauche) et un CNN standard (droite).
(L’image est issue de l’ensemble de test de MAPLES-DR. Les erreurs de classification d’artères et de
veines apparaissent respectivement en cyan et rose..)

5.4.3 Équivariance à la rotation et anisotropisme des SCN

Par définition, chaque couche convolutive d’un steered CNN est complètement équivariante à
la rotation (sous réserve que le champ α⃗ pivote avec l’image). Pour comprendre le tropisme
des fonctions qu’elle modélise, on ne peut donc pas mener une analyse par DSP comme
on l’a fait avec les CNN standards : toute la puissance spectrale serait, par construction,
concentrée sur la composante équivariante. On lui a préféré deux approches : la première,
indirecte, évalue la dépendance à l’augmentation de données géométriques ; la seconde étudie
directement la distribution des poids ωk,r.
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Dépendance à l’augmentation de données géométrique

Si l’équivariance par rotation des CNN standard s’appuie largement sur l’augmentation de
données géométriques (voir section 5.2), qu’en est-il pour les steered CNN ? Le tableau 5.2
compile les performances des CNN steered et standard sans augmentation de données géomé-
triques sur MAPLES-DR et sur HRF. Cette augmentation de données est en réalité composée
de deux opérations dans notre protocole d’entraînement : une rotation aléatoire et une défor-
mation élastique. Notons que les directions des vecteurs d’orientation α⃗ ne tiennent compte
que de la première : la carte de leur composante verticale et horizontale est déformée par in-
terpolation bilinéaire par la déformation élastique, mais leurs directions ne sont pas corrigées
pour compenser les petites rotations locales qu’elle induit.

La désactivation complète de ces augmentations de données détériore les performances des
CNN standard et steered, mais les steered CNN en souffrent moins. Sur le jeu de test de
MAPLES-DR, ils perdent 2% de AUC-ROC contre 3% pour les CNN standard ; et sur HRF,
ils ne perdent que 3% là où les CNN standard en perdent 5%. Si on ne désactive que les
rotations aléatoires mais qu’on conserve les déformations élastiques, la perte de performances
sur MAPLES-DR disparaît chez les steered CNN mais reste partiellement présente chez les
CNN standard à hauteur de 1% (et 2% sur HRF).

Les steered CNN ne dépendent donc plus du tout de la rotation des échantillons d’entraîne-
ment pour apprendre à classer les artères et veines rétiniennes quelle que soit leur orientation.
La déformation élastique reste néanmoins un moyen efficace pour augmenter artificiellement
le nombre d’échantillons d’entrée, même si elle est moins nécessaire aux steered CNN qu’aux
CNN standards.

Ensemble de test : MAPLES-DR HRF (généralisation)
Aug. de données Géométrique : élastique seule aucune élastique seule aucune
CNN standard 94.2±0.4% 92.2±0.5% 89.7±1.3% 86.5±1.5%
Steered CNN 95.7±0.3% 94.1±0.1% 90.8±1.0% 89.6±0.7%

Tableau 5.2 Effet de la présence ou l’absence de rotation aléatoires des échantillons d’en-
traînement sur la métrique d’AUC calculée sur les ensembles de test.
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Analyse des poids ωk,r appris par les SCN

La rotation aléatoire des échantillons d’entraînement augmente les performances des CNN
standards et leur assure une meilleure équivariance par rotation. Mais elle induit un isotro-
pisme sur l’ensemble des noyaux de convolution, à rebours de la littérature sur la classification
A/V par des algorithmes traditionnels qui reposent plutôt sur des filtres anisotropiques. Dans
cette alternative, quel choix est fait par les steered CNN ? Répondre à cette question est bien
plus simple pour les steered CNN que pour les CNN standards : les paramètres ωk,r étant
associés à des fonctions géométriques spécifiques, on peut directement comparer la pondéra-
tion des filtres élémentaires Ψk,r isotropiques (pour k = 0) avec celles anisotropiques (k = 1
ou k = 2).

La Figure 5.11 montre la distribution des poids ωk,r du steered CNN ayant obtenu la meilleure
AUC-ROC sur l’ensemble de validation (les poids des 5 modèles suivants dans le classement
observent les mêmes tendances). Les poids sont regroupés par rang harmonique k et par
paire de couches convolutives : où Conv. 1-5 sont les paires de l’encodeur du U-Net, et Conv.
6-9 celles du décodeur. Les trois premières paires donnent autant ou plus de poids aux filtres
élémentaires anisotropiques qu’à ceux isotropiques. Puis, cette tendance s’atténue pour Conv.
4 et elle disparaît définitivement à partir de Conv. 5 et pour les couches du décodeur. Notons
que cette distinction n’existe pas à l’initialisation du modèle où tous les filtres élémentaires
ont la même pondération relative ; elle apparaît à l’entraînement. La solution optimale d’après
les steered CNN pour classifier les vaisseaux rétiniens est donc conforme à notre intuition :
extraire des caractéristiques anisotropiques de l’image de fond d’œil, puis les recombiner
isotropiquement pour calculer la prédiction.

Figure 5.11 Distribution des poids ωk,r d’un steered CNN regroupés par harmonique polaire
k et par couche convolutive.

La médiane de chaque distribution est représentée par un trait horizontal. Les gradients de couleur
indiquent la position des terciles autour de la médiane.
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5.4.4 Efficacité de la modélisation

Efficacité paramétrique

Pour évaluer l’efficacité paramétrique des SCN (c’est-à-dire la quantité d’information que
chaque paramètre peut encoder), j’ai effectué plusieurs entraînements, en réduisant progres-
sivement le nombre de caractéristiques du modèle : en commençant par une moyenne de
134 caractéristiques par couche, pour finir à une seule (voir Figure 5.12). Dans l’ensemble,
l’architecture que nous proposons permet d’obtenir une AUC-ROC plus élevée que celle de
référence en utilisant moins de paramètres. En dessous de 20k paramètres en particulier, les
performances chutent rapidement pour les CNN standards, alors qu’elles restent stables pour
les steered CNN sur les deux jeux de données. Même lorsque chaque couche est contrainte à
n’utiliser qu’une seule caractéristique – cas complètement irréaliste où leurs mécanismes de
combinaison linéaire seraient complètement désactivés – les steered CNN atteignent toujours
0,88 AUC sur MAPLES-DR et 0,84 sur HRF.
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Figure 5.12 Performances comparées du steered CNN avec un CNN standard en fonction
du nombre de paramètres.

Il est intéressant de noter que les courbes de performance sur l’ensemble de données de géné-
ralisation HRF illustrent bien l’intuition du rasoir d’Ockham : au-delà de 830k paramètres,
les modèles steered commencent à se spécialiser sur MAPLES-DR et leur AUC-ROC sur
HRF recule. Les modèles standards sont également sujets à ce phénomène, mais uniquement
après avoir été entraînés avec 10 fois plus de paramètres, ce qui indique une fois de plus la
meilleure efficacité paramétrique des steered CNN.
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Capacité de généralisation avec peu d’échantillons d’entraînement

Pour évaluer plus en profondeur les capacités de généralisation des steered CNN lorsque peu
de données sont disponibles, une série d’entraînements fut conduite en ne conservant qu’une
partie des 35 images d’entraînement de MAPLES-DR (cf. Figure 5.13). Alors que l’AUC-ROC
des CNN standards chute de manière significative lorsque le nombre d’échantillons d’entraîne-
ment est considérablement réduit, les steered CNN conservent des performances raisonnables
sur MAPLES-DR et se détériorent moins rapidement sur HRF. Ainsi, même lorsqu’ils sont
entraînés sur seulement 7 images (20% de l’ensemble d’entraînement de MAPLES-DR), les
steered CNN atteignent une AUC-ROC de 0,91 alors que l’AUC-ROC des CNN standards
tombe à 0,86. Ce résultat concorde avec la plus faible dépendance des steered CNN à l’aug-
mentation de données géométrique : la mutualisation paramétrique induite par le formalisme
steered permet à chaque filtre convolutif d’être entraîné sur l’ensemble des vaisseaux d’une
image sans les distinguer par leur orientation. En quelque sorte, à nombre d’images d’entraî-
nement égal, chaque filtre d’un steered CNN bénéficie de plus « d’exemples de vaisseaux »
desquels il peut apprendre.
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Figure 5.13 Performances comparées du steered CNN avec un CNN standard en fonction
du volume d’entraînement.
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Rapidité de convergence du modèle

Non seulement les SCN nécessitent moins d’échantillons de données pour converger, mais
ils requièrent également moins d’itérations d’entraînement. Pour mesurer cette vitesse d’ap-
prentissage accrue, nous avons modélisé l’évolution de l’AUC de validation au cours des
entraînements par des courbes exponentielles : AUCval = b · exp(−a · t) + c où t est le nombre
d’itérations d’entraînement et a, b et c les paramètres de la courbe. En posant λ = log(2)

|a| , on
peut extraire de ces courbes un indicateur de « demi-vie », c’est-à-dire le nombre d’itérations
d’entraînement nécessaires pour réduire de moitié la différence entre la valeur courante de
l’AUC de validation et sa valeur finale (voir Figure 5.14).

La distribution de ces indicateurs de demi-vie est représentée sur la Figure 5.15. Toutes
les configurations testées pour les expériences précédentes y sont agrégées. En moyenne,
l’AUC-ROC de validation des modèles steered converge en 2,4 fois moins d’itérations que
les modèles standards. En d’autres termes, les SCN facilitent l’exploration de l’espace des
paramètres pour y chercher le modèle optimal.

 λ

 λ

 λ

Figure 5.14 Exemple de regression par une courbe exponentielle de l’évolution de l’AUC-
ROC de validation ; et de mesure géométrique de la demi-vie λ.

100 200 300 400

Steered CNN
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Demi-vie (en nombre d'itérations d'entrainement)
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Figure 5.15 Rapidité de convergence lors de l’entraînement de CNN steered et standard.
La « vitesse » est ici quantifiée par la demi-vie de l’AUC-ROC calculée sur l’ensemble de validation. Plus
la demi-vie est faible, plus la convergence est rapide. Les distributions représentées agrègent toutes les
courbes d’entraînement des expériences précédentes.
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5.5 Discussion et Contributions

Toutes nos expériences montrent que le remplacement des neurones convolutifs standard
par des SCN augmente les performances de classification A/V des vaisseaux rétiniens. Elles
mettent aussi en évidence une amélioration de la modélisation de cette tâche qui se traduit par
une efficacité paramétrique accrue, une convergence plus rapide et une moindre vulnérabilité
au surapprentissage lorsque peu de données d’entraînement sont disponibles. Par ce dernier
point, les steered CNN ont démontré une meilleure capacité de généralisation.

La nature de la tâche de classification A/V n’est probablement pas étrangère à ces gains de
performance. En effet, avant les modèles entraînés par apprentissage profond, les meilleurs
algorithmes de classification vasculaires reposaient sur des descripteurs dépendants de l’orien-
tation des vaisseaux (par exemple, les caractéristiques des dérivées de gaussiennes et la mesure
de l’épaisseur des vaisseaux [78] ou l’analyse des reflets le long des artères [82]). On a d’ailleurs
vu que ces descripteurs sensibles à l’orientation sont essentiels aux steered CNN : lorsqu’on
limite les filtres élémentaires à des composantes purement radiales, l’exactitude du modèle
chute de 10% (voir Figure 5.8). Pour apprendre de tels descripteurs, les CNN standards
doivent cependant consacrer plusieurs paramètres à l’apprentissage de filtres anisotropiques
selon différentes orientations et doivent être entraînés sur de nombreux exemples de vaisseaux
dans chaque orientation pour apprendre ces paramètres. En pratique, et à plus forte raison
lorsqu’ils sont entraînés sous augmentation de données géométriques de rotation, les filtres de
convolution des CNN standards convergent plus facilement vers des filtres isotropiques. Nous
pensons que la formulation de la rétropropagation du gradient dans les CNN standards, où
les signaux de gradient générés par chaque vaisseau présent dans un mini-batch sont agglo-
mérés ensemble – y compris des vaisseaux ayant des orientations mutuellement orthogonales
– explique ce biais isotropique. Ainsi, les bénéfices des SCN dépassent la simple amélioration
de l’efficacité paramétrique : la reparamétrisation des neurones convolutifs permet surtout
l’apprentissage de descripteurs anisotropiques, là où les CNN favorisent ceux isotropiques.

Enfin l’étude qualitative des steered CNN semble indiquer que leur équivariance à la rotation
les immunise contre les variations soudaines de prédiction A/V au sein d’un même vaisseau,
et induit une meilleure cohérence topologique de leur prédiction.
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CHAPITRE 6 FUNDUS VESSELS TOOLKIT : MODÉLISATION
GÉOMÉTRIQUE ET TOPOLOGIQUE DE L’ARBRE VASCULAIRE

RÉTINIEN

Ce chapitre vise à modéliser topologiquement puis à paramétrer l’arbre vasculaire rétinien
à partir de cartes de segmentation sémantiques imparfaites prédites par CNN. Il a été
implémenté dans un paquet python accessible sur Github et Pip nommé fundus-vessels-
toolkit (FVT). Ce nom sera utilisé pour désigner la méthode décrite dans ce chapitre.

6.1 Enjeux et Motivations

Standardisation de la topologie de l’arbre vasculaire

Comme on l’a vu dans la revue de littérature, la paramétrisation de l’arbre vasculaire réti-
nien suppose une représentation topologique structurée : la mesure de la tortuosité repose
sur l’identification de branches et la paramétrisation des bifurcations nécessite de les distin-
guer des croisements. Plus précisément, la modélisation topologique finale doit idéalement se
conformer aux règles suivantes pour permettre une paramétrisation exhaustive :

— Le réseau vasculaire rétinien est modélisé par une forêt d’arbres.
— Dans cette forêt, chaque arbre représente un vaisseau unique émanant du disque op-

tique et est affublé d’un unique label : artère ou veine.
— Chaque noeud de ces arbres représente soit la racine d’un vaisseau, soit une de ses

terminaisons, soit un de ses embranchements (e.g. une branche donnant naissance à 2
branches ou plus). Les coordonnées spatiales de chaque noeud sont connues.

— Chaque arc représente une branche d’un vaisseau et est associé à une séquence de
pixels appartenant au squelette vasculaire et formant une courbe dont on peut dériver
les tangentes. Le calibre du vaisseau est défini pour chaque point de cette courbe.

Artefacts des segmentations sémantiques par CNN

Les modèles CNN atteignent aujourd’hui de bonnes performances d’exactitude sur la segmen-
tation et la classification des vaisseaux sur images de fond d’œil. Mais ils peinent à apprendre
leur structure topologique, de sorte que leurs prédictions contiennent toujours plusieurs types
d’artefacts connus :

— des irrégularités de la surface des vaisseaux segmentés induisant des pointes (spurs)
sur le squelette vasculaire ;

https://github.com/gabriel-lepetitaimon/fundus-vessels-toolkit
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— des fragmentations de la segmentation sous la forme : soit de trous responsables de
l’apparition de cycles érronnés dans le squelette, soit de discontinuités qui isolent
certains vaisseaux du reste du graphe vasculaire (voir Figure 6.1 droite) ;

— des erreurs de la classification A/V locales ou pour une branche complète ;
— des erreurs de classification aux croisements de vaisseaux : au lieu d’annoter ces pixels

comme veinules ET artérioles, le modèle choisi un type unique, induisant une discon-
tinuité dans la carte de segmentation de l’autre.

Figure 6.1 Artefacts de segmentation sémantique des vaisseaux rétiniens par CNN.

Travaux connexes

Parmi les logiciels récents qui utilisent des cartes de segmentation prédites par CNN pour
paramétriser automatiquement le réseau vasculaire rétinien, trois sur quatre abandonnent la
modélisation en arbre, au détriment des paramètres qui en dépendent. Le quatrième, RMHAS
(Shi et al. 2022 [149]) implémente une méthode pour cette modélisation mais ne tient pas
compte des artefacts identifiés plus haut. Ainsi, à la moindre erreur de segmentation ou de
classification, la représentation topologique produite est erronée.

Dans leur récente revue de littérature sur les algorithmes de classification A/V du fond d’œil,
Chen et al. [26] ont conclu à la nécessité du développement de méthodes de post-traitement
en s’inspirant de la littérature antérieure aux CNN (en 2015) et qui abordait la classification
A/V comme un problème de partitionnement du graphe vasculaire. C’est-à-dire le problème
de l’identification des différents vaisseaux dans le graphe non orienté du squelette où tous,
artérioles comme veinules, s’entremêlent. La méthode présentée dans ce chapitre s’inspire
particulièrement des travaux d’Estrada et al. [219] qui formulaient le problème comme une
recherche de l’arborescence la plus plausible parmi l’ensemble des arborescences générables
par le graphe non orienté. On conservera de leur approche le choix d’orienter les branches
vasculaires et d’énumérer les arborescences possibles pour trouver la plus plausible. Cepen-
dant, leur méthode ne peut opérer que sur un squelette de qualité parfaite : en particulier,
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elle ne contient aucun mécanisme pour corriger les éventuelles déconnexions de branche. Elle
présuppose aussi que les nœuds racines du graphe sont connus.

À l’inverse, la méthode que je propose ici tient compte des artefacts inhérents à la seg-
mentation sémantique par CNN et même cherche à les corriger. Elle vise à identifier quelle
arborescence conforme aux règles topologiques énoncées plus haut pourrait avoir généré l’ob-
servation bruitée de la segmentation sémantique qu’on lui présente. Pour ce faire, elle traduit
les connaissances cliniques sur la structure des vaisseaux rétiniens en une série d’heuristiques
topologiques et géométriques.

6.2 Méthode

La séquence d’algorithme présentée dans ce chapitre a pour but l’extraction d’une topologie
standardisée du graphe vasculaire rétinien à partir de cartes de segmentation et de classi-
fication imparfaites produites par un réseau de neurones. Pour ce faire, une succession de
représentations est construite, chacune s’appuyant sur la précédente pour en corriger les ar-
tefacts et standardiser la structure. Le diagramme de la méthode est présenté sur la figure 6.2

I. Extraction de la topologie

Classification A/V 

II. Extraction de la géométrie de chaque branche

III. Pré-traitement du graphe

Topologie Simple

• Graphe Vasculaire: 𝐺(𝑉, 𝐵)
• Position des nœuds

• Courbes des branches

Géométrie

Pour chaque branche:

• Tangente et courbure locale

• Calibre vasculaire

• Courbe de Bézier

Topologie Enrichie

• Labels A/V des branches

• Liste d’arcs virtuels
(reconnections plausibles)
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Segmentation

Identification

des nœuds

Identification

des branches
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des pointes
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des branches

Réduction des 

artéfacts topologiques
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• Arbre vasculaire individuel

• Nœud racine

• Label Artère/Veine

IV. Partition du graphe en arborescence

Construction du 
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Recherche des 

arborescences optimales
Partition

Figure 6.2 Vue d’ensemble de l’extraction de l’arbre vasculaire dans FVT.
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6.2.1 Extraction initiale de la topologie

La première phase consiste à convertir le squelette des vaisseaux en un graphe de branches
vasculaires reliées par des nœuds pour obtenir une première modélisation topologique des
vaisseaux rétiniens. Pour ce faire, la carte du squelette est dérivée de la segmentation des
vaisseaux grâce à la méthode de squelettisation de Lee et al. [220], telle qu’implémentée dans
skimage.morphology. Puis, chaque pixel du squelette est attribué à une branche ou, s’il
est à l’intersection de plusieurs, à un nœud. Cette phase est très similaire aux travaux de la
littérature, bien qu’elle s’en distingue déjà par la correction de certains artefacts du squelette.

Détection des noeuds du graphe : les terminaisons et les jonctions

Pour identifier les terminaisons et jonctions vasculaires dans le squelette, une majorité de
travaux récents comptent, pour chacun de ses pixels, le nombre de voisins qui appartiennent
aussi au squelette : si ce nombre est de 3 ou plus, le pixel est considéré comme une jonction ;
s’il est exactement égal à un, le pixel est identifié comme une terminaison [149, 165]. Cette
méthode est algorithmiquement simple, mais produit des faux positifs aux jonctions.

Nous avons donc préféré une détection explicite de chaque type de nœud par les détecteurs hit-
or-miss présentés sur la figure 6.3. Ces détecteurs sont appliqués à chaque pixel du squelette.
Ceux répondant aux filtres (a) sont identifiés comme des terminaisons et ceux activant les
filtres (b-f) sont annotés comme jonctions. Tous les autres pixels du squelette sont considérés
comme appartenant à une branche, on y reviendra.

(a) Terminaison (b) Jonction X (c) Jonction carrée (d) Jonction T (e) Jonction Y (f) Jonction Y (bis)

Figure 6.3 Masques de détecteurs hit-or-miss pour la détection des noeuds du graphe.
Pour activer un détecteur, tout les pixels en bleu foncé doivent appartenir au squelette et tout ceux en
rouge doivent en être absent. Les masques (a), (d), (e), et (f) sont appliqués 8 fois, en subissant une
rotation de 45◦ entre chaque application. Le masque (b) est de la même manière appliqué deux fois.

Correction des croix creuses

Une première étape de correction d’artefacts intervient immédiatement après la détection
des nœuds. En effet, il arrive qu’un pixel soit absent de la segmentation vasculaire, ou que
deux vaisseaux mitoyens soient correctement détectés mais séparés par une ligne diagonale
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d’un unique pixel de large. La squelettisation produit alors une série de croix creuses qui sont
interprétées de manière erronée comme une succession de jonctions en T (voir figure 6.4a).
Pour corriger cette erreur, un détecteur hit-or-miss supplémentaire est chargé de leur identi-
fication, puis ces croix sont effacées et le squelette est reformé. Suite à ces corrections, tous
les nœuds restants sont ajoutés au graphe, et leurs coordonnées spatiales sont sauvegardées.

(a) Exemples de CC et de leurs corrections (b) Détecteur de CC

Figure 6.4 Illustration de la correction des croix creuses (CC).

Découverte des branches qui relient les noeuds

Il reste à découvrir les branches qui relient les nœuds précédemment identifiés. Pour ce faire,
le voisinage de chaque jonction est inspecté. On cherche dans un premier temps les paires
de nœuds directement adjacents afin d’ajouter immédiatement les arcs correspondants au
graphe. Puis, une branche est créée pour chaque pixel du voisinage qui appartient au squelette
et qui n’a pas encore été étiqueté ni comme nœud, ni comme branche. Le pixel est annoté du
numéro de la branche pour ne pas être visité à nouveau, et on cherche parmi les 5 pixels de
son voisinage diamétralement opposés au nœud de départ celui qui appartient au squelette.
Cette dernière étape est répétée en analysant itérativement le voisinage des pixels identifiés,
et ce jusqu’à trouver un nœud. On ajoute alors au graphe un arc reliant le nœud de départ
à celui d’arrivée, et on lui associe des informations complémentaires liées à la branche. Pour
l’instant, ces informations comprennent uniquement le numéro de la branche et la séquence
de pixels définissant sa courbe.

Une seconde correction du squelette intervient alors : on supprime toutes les branches dont
au moins une des extrémités est une terminaison vasculaire et dont la longueur est inférieure
à 2. Elles correspondent en effet à des aberrations (dites spurs ou pointes) produites par
la squelettisation lorsque la surface d’un vaisseau varie rapidement. Les nœuds qui ne sont
connectés qu’à deux branches après cette étape sont supprimés et leurs branches sont fu-
sionnées. Cette correction ne supprime pas toutes les spurs mais simplifie le graphe avant la
conduite d’une analyse poussée de la géométrie des branches.
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6.2.2 Extraction de la géométrie de chaque branche

À la fin de la première phase du traitement, la vasculature rétinienne est représentée par un
graphe non orienté de branches vasculaires dont on connaît les courbes que forment leurs
squelettes. La seconde phase du traitement combine cette représentation topologique simple
avec la segmentation des vaisseaux pour enrichir le graphe d’une modélisation géométrique
de chacune de ses branches.

Nettoyage des extrémités des branches

Aux extrémités des branches (aux abords des nœuds), le squelette vasculaire n’est pas fiable :
attiré par les branches émergentes, il s’écarte du centre des vaisseaux principaux et prend
la forme d’un H aux intersections (cf. Figure 6.5). Les algorithmes d’extraction de graphes
vasculaires remédient généralement à cette faillibilité en masquant tous les pixels situés dans
un rayon fixe autour des jonctions. Mais ce faisant, ils risquent de supprimer des pixels
valides du squelette (si le rayon est trop grand) ou de conserver des pixels erronés (s’il est
trop étroit). Nous proposons plutôt de nettoyer chaque extrémité de branche en utilisant ses
caractéristiques géométriques.

Soit les coordonnées pi =
(
p

(x)
i ; p

(y)
i

)
du iieme pixel de la courbe d’une branche, nous définis-

sons la tangente à l’extrémité du squelette comme suit :

t̂i =
10∑

j=1
G(j) ·

(
pi+j − pi

)
(6.1)

où G(j) est une gaussienne centrée en 0 et avec un écart-type de 3 pixels.

Soit aussi dLi et dRi : les distances séparant pi des deux bords les plus proches du vaisseau
dans une direction orthogonale à t̂i et soit le calibre du vaisseau ci = dRi + dLi. En partant
de l’extrémité p0 d’une branche, chaque pixel du squelette pi est testé en fonction des quatre
conditions suivantes :

1. Les bords du vaisseau Ri et Li ont été trouvés ;
2. Le squelette se trouve près du centre du vaisseau ;
3. Les calibres ci et ci+1 sont approximativement les mêmes ;
4. Le pixel pi est le pixel du squelette le plus proche de Ri et Li.

Le premier pixel qui remplit toutes les conditions est choisi comme l’extrémité de la branche,
et tous ceux qui le précèdent sont supprimés (voir Figure 6.5). Si l’extrémité de la branche
correspond à une terminaison vasculaire, la condition 4 est remplacée par une vérification de
la stabilité de la tangente, garantissant que t̂i ≈ t̂i+1.
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Figure 6.5 Nettoyage du squelette aux extrémités des branches.
À droite, les extrémités des branches sont matérialisées par des traits orthogonaux aux vaisseaux. Les
portions du squelette qui apparaissent en blanc sur cette image n’appartiennent à aucune branche.

Suite au nettoyage de leurs extrémités, on élimine toutes les branches terminales dont la
longueur est inférieure au calibre de la branche adjacente la plus large. Cette méthode de
détection et suppression des spurs est plus fiable que celle généralement utilisée qui consiste
à supprimer, de façon indifférenciée, toutes les branches de longueur inférieure à un seuil fixe.
Notre méthode permet en effet de conserver les petites branches fines en périphérie de la
vasculature tout en supprimant les longs spurs des vaisseaux les plus larges. Le nettoyage du
squelette proposé plus haut est clé dans cette démarche car il permet de mesurer la longueur
réelle des branches plutôt que la longueur de leur squelette qui comprend en plus la portion
entre le centre et la surface du vaisseau parent (si le vaisseau est large, cette différence est
importante). Les nœuds orphelins – qui ne sont connectés à aucune branche – sont également
supprimés du graphe.

Calcul des propriétés géométriques des courbes des branches

Une fois nettoyé, le squelette de chaque branche est analysé point par point, pour en extraire
les propriétés géométriques. À commencer par la tangente au point pi, calculée par addition
des points subséquents pi+j et soustraction des points précédents pi−j du squelette :

ti =
J∑

j=0

G(j)
2 ·

(
pi+j − pi−j

)
(6.2)

Ici, le réglage de J et de l’écart-type de la gaussienne G définit la sensibilité de ti aux
changements d’orientation : plus ils sont faibles, plus la tangente sera à même de capter les
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changements rapides de la direction du vaisseau. Néanmoins, pour assurer une mesure fiable,
l’écart-type doit être d’au moins 3 pixels. En effet, la position relative de pi+n et pi−n dans le
voisinage proche de pi est très sensible au bruit de discrétisation du squelette : par exemple,
une mesure de la tangente qui ne tiendrait compte que de pi+1 verrait sa résolution angulaire
limitée à 45◦.

À partir de la tangente ainsi lissée, on définit la courbure Ki au point pi comme une fonction
de la tangente ti et de sa dérivée δti = ti − ti−1. D’après Grisan et al. [153] :

Ki = t
(x)
i δt

(y)
i − t

(y)
i δt

(x)
i

∥δti∥3 (6.3)

Enfin, le calibre du vaisseau est mesuré à chaque point pi par la même procédure que celle
utilisée pour nettoyer les extrémités des branches : En partant de pi, deux rayons sont émis
dans des directions opposées, perpendiculairement à ti. On nomme p′

i et p′′
i les points d’in-

tersection de ces rayons avec la bordure du vaisseau (selon la segmentation vasculaire). Le
calibre de la branche au point pi est alors défini comme la distance entre p′

i et p′′
i .
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Figure 6.6 Informations géométriques extraites pour une branche vasculaire.
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Modélisation des courbes vasculaires par des B-splines cubiques

La modélisation géométrique de branches est enrichie d’une dernière propriété : une paramé-
trisation de leur courbe par des B-splines cubiques. L’objectif est double : d’une part, faciliter
la manipulation mathématique des courbes des branches, par exemple pour des calculs de
distances ou d’intersections ; et d’autre part, obtenir un descripteur stable de la géométrie
vasculaire qui, comparé au squelette brut, soit moins sensible aux variations de segmentation.

Notre méthode pour cette modélisation s’inspire de l’algorithme proposé par Philip J. Schnei-
der [221] qui convertit une courbe discrétisée en une spline de Bézier cubique. Soit une courbe
discrète formée par la succession de n points : pi =

(
p

(x)
i , p

(y)
i

)
avec i ∈ N et i < n, l’algo-

rithme commence par l’approximer avec un unique polynôme de Bézier cubique :

P(u) =
(
P(x); P(y)

)
= (1 − u)3P0 + 3u(1 − u)2P1 + 3u2(1 − u)P2 + u3P3 (6.4)

Où P0 et P3 sont les points de départ et d’arrivée, P1 et P2 sont les points de contrôle
et u ∈ [0 ; 1] est le paramètre de la courbe. Soit la discrétisation D : i → ui qui associe
à chaque point pi de la courbe sa valeur interpolée P(ui), on définit l’erreur quadratique
moyenne de reconstruction par : εMSE = ∑n

i=0 ∥P(ui) − pi∥2. Si P0, P3 et leurs tangentes sont
fixées, le choix optimal de P1 et P2 pour minimiser l’erreur quadratique εMSE est solvable
exactement et avec une complexité O(n). Néanmoins, la qualité de la modélisation dépend
de la discrétisation D qui doit aussi être optimisée par une routine de Newton-Raphson
afin de trouver, pour chaque valeur de i, le paramètre ui qui minimise la distance εi =
∥pi − P(ui)∥. L’algorithme optimise donc alternativement D puis les coefficients P1 et P2,
jusqu’à ce que l’erreur maximale de reconstruction : εmax = maxi ∥P(ui) − pi∥ soit inférieure
à l’erreur désirée εcible. Si cette erreur cible n’est pas atteinte après dix itérations, ou si εmax

est supérieure au double de εcible, la courbe est divisée en deux et l’algorithme est appliqué
individuellement aux deux sections. Si, à nouveau, une section ne peut être approximée par
une unique courbe de Bézier cubique, elle est elle-même sous-divisée et ce récursivement
jusqu’à ce que εmax soit inférieure à εcible = 2 pixels (déterminé empiriquement). La B-spline
peut alors être formée par l’assemblage des courbes de Bézier ainsi obtenues.

Dans son implémentation initiale, Philip J. Schneider [221] subdivise les courbes au point où
εi est maximale. Mais ces points sont particulièrement sensibles aux variations de segmen-
tation, et ils sont donc insatisfaisants pour devenir les nœuds d’une B-spline stable. Nous
choisissons plutôt de forcer leur placement sur les points d’inflexion de la courbe. Dans notre
implémentation, les racines de la courbure de la branche sont identifiées en amont comme
de potentiels nœuds de la B-spline. Lorsqu’il doit subdiviser une courbe, l’algorithme choisit
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le point d’inflexion pour lequel l’erreur cumulée est répartie le plus équitablement de part
et d’autre du point. Deux erreurs interviennent dans notre calcul : la distance euclidienne
εi et l’erreur cosinus entre les tangentes des courbes réelle et approximée (voir l’illustration
Figure 6.7).

Résultat de la modélisation d'une branche par une BSpline
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Figure 6.7 Découpage itératif de la courbe d’une branche en une B-spline cubique.
Le premier graphique indique la position des points d’inflexions en rouge. Les quatres graphiques suivants
présentent, de haut en bas, chaque subdivision de la courbe et la diminution de l’erreur de reconstruction.
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6.2.3 Intégration de la classification A/V au graphe vasculaire

Pour l’instant, seule la segmentation des vaisseaux a été utilisée pour construire le graphe et
ses propriétés géométriques. La troisième étape du traitement enrichit la représentation du
graphe vasculaire à partir de l’information fournie par la classification A/V.

Coloration des branches et noeuds comme artériole ou veinule

On souhaite colorier chaque branche et chaque nœud du graphe d’une couleur définissant leur
classe : ART pour les artérioles et VEI pour les veinules. Cette tâche est moins triviale qu’il n’y
paraît car la segmentation vasculaire sur laquelle notre travail (et l’ensemble de la littérature)
s’appuie n’est pas une segmentation par instance. Par conséquent, lorsque deux branches de
vaisseaux se rapprochent suffisamment l’une de l’autre, leurs segmentations s’unissent et leurs
squelettes fusionnent. Dans le graphe G(V, B) une seule branche rend alors compte de ces
deux vaisseaux, qui sont pourtant bien souvent de classes différentes (puisque les artérioles
et les veinules s’alternent sur la rétine). Une troisième couleur BOTH est donc définie pour
ces branches à la fois ART et VEI.

Le coloriage des branches débute par l’assignation d’une couleur à chacun des pixels pi de
leur squelette. Pour ce faire, trois pixels de la carte de classification A/V sont étudiés : pi

lui-même ainsi que les points p′
i et p′′

i placés sur la bordure du vaisseau, à l’intersection d’une
droite orthogonale à ti (voir section 6.2.2). Si ces trois pixels sont ART (resp. VEI), pi est
étiqueté ART (resp. VEI) ; sinon, il est étiqueté BOTH. Une fois que l’ensemble de ses pixels
a ainsi été colorié, la couleur globale de la branche est déduite comme suit : si plus de 2/3
des pixels d’une branche partagent une couleur commune, cette dernière est attribuée à la
branche ; sinon, la branche est divisée en sections de couleur homogènes. Ce seuil permet
de corriger les petites "taches" qui apparaissent parfois sur les cartes de classification A/V
prédites par CNN. Enfin, les branches de moins de deux pixels après l’étape de nettoyage du
squelette sont coloriées d’une quatrième couleur UNK : leur classe A/V étant inconnue.

Les nœuds sont alors initialisés avec la classe UNK, puis leur couleur est définie en fonction
de celles de leurs branches incidentes :

— Si toutes sont ART (resp. VEI), le noeud est ART (resp. VEI) ;
— Si certaines sont ART et d’autres VEI ou si au moins une est BOTH, le nœud est

BOTH ;
— Si un nœud a deux branches incidentes, dont une UNK, la couleur de l’autre branche

est propagée au noeud et à la branche UNK.
Puisque cette dernière règle modifie la couleur d’une branche, la procédure de coloriage des
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Figure 6.8 Correction des artefacts topologiques. Gauche : Graphe colorié par les classes
A/V (rouge : ART ; bleu : VEI ; violet : BOTH ; vert : UNK). Droite : Graphe simplifié.

nœuds est répétée itérativement jusqu’à ce que leur couleur soit stable.

Enfin, on identifie par un algorithme de composantes connexes les groupes de nœuds UNK.
Si toutes les branches incidentes d’un groupe sont ART (resp. VEI ou BOTH), ses nœuds
sont recolorés ART (resp. VEI ou BOTH). La figure 6.8 montre un exemple de graphe A/V
colorié selon cette méthode.

Simplification topologique du graphe A/V

Le graphe vasculaire extrait à partir d’une segmentation automatique contient parfois des
structures topologiques inutilement complexes, en particulier lorsqu’il est construit sans dis-
tinction des artérioles et des veinules. Ces artefacts topologiques ont été conservés jusqu’ici
pour ne pas perturber la coloration du graphe. Celle-ci étant faite, on peut dorénavant les
simplifier par la procédure suivante (illustrée par la Figure 6.8) :

1. Tout nœud reliant exactement deux branches de la même couleur qui forment un
angle obtu est supprimé puisqu’il est topologiquement inutile, et ses deux branches
incidentes sont fusionnées en une seule.

2. Les branches orphelines (connectées à aucune autre branche) dont la longueur de la
courbe est inférieure au calibre Dmax du vaisseau le plus large sont aussi supprimées.

3. Les jonctions adjacentes de même couleur sont fusionnées lorsque leur distance est
inférieure à Dmax. Si une jonction pourrait ainsi s’associer avec plusieurs autres, toutes
sont regroupées et fusionnées ensemble. Le nœud résultant est placé à leur barycentre
et est connecté à toutes les branches incidentes au groupe, tandis que les branches qui
reliaient les jonctions entre-elles sont effacées.

4. L’étape 1. de cette procédure est exécutée à nouveau pour supprimer tout noeud qui
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aurait été rendu topologiquement inutile par les simplifications précédentes.
5. La routine de coloriage des noeuds est exécutée à nouveau pour que la coloration A/V

du graphe soit conforme à sa nouvelle topologie.

Recensement des reconnections potentielles

Il n’est pas rare que les modèles de segmentation vasculaire probabilistes fractionnent par
erreur la segmentation des petits vaisseaux, en particulier proches des intersections. Ce frac-
tionnement déconnecte certaines branches du reste du graphe vasculaire et induit ainsi des
artefacts topologiques : les arcs qui auraient dû matérialiser ces connexions sont absents, et
des nœuds terminaux apparaissent à l’emplacement des fins prématurées des vaisseaux. Suite
à la simplification du graphe à l’étape précédente, une recherche est conduite parmi tous les
nœuds terminaux pour identifier ceux qui résulteraient d’une telle déconnexion.

Pour ce faire, la tangente à l’extrémité de chaque terminaison vasculaire est prolongée dans
un cône large de 20◦ et long de 100 pixels. Toutes les branches dont le squelette intersecte ce
cône sont subdivisées en insérant un nœud au point d’intersection, puis un arc virtuel est créé
entre ce nouveau nœud et celui au sommet du cône. Si l’intersection est proche de l’extrémité
d’une branche (au maximum Dmax), elle n’est pas subdivisée et l’arc virtuel est connecté à son
nœud existant. Ces arcs virtuels ne sont pas directement ajoutés au graphe : ils sont transmis
en tant qu’arcs hypothétiques à l’algorithme d’optimisation d’arborescence vasculaire décrit
dans la section suivante. C’est ce dernier qui évaluera la plausibilité de chacun et retiendra
uniquement ceux qui améliorent la vraisemblance globale du graphe.

Figure 6.9 Illustration de la recherche des reconnections possibles.
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6.2.4 Résolution de l’arborescence propre à chaque vaisseau

À ce stade, une majorité des informations présentes dans les cartes de segmentation et de
classification vasculaire ont été traduites par des attributs du graphe G(V, B). Mais cette
représentation s’arrête à la notion de branches : artérioles et veinules sont enchevêtrées au
sein du même graphe où les différents vaisseaux de la rétine se confondent. L’étape finale du
traitement vise à identifier dans ce graphe les sous-arbres propres à chaque vaisseau, puis
à les représenter par une arborescence composée d’une branche principale et de branches
secondaires, tertiaires, etc. C’est véritablement la clé de voûte de la méthode : elle s’appuie
sur toutes les informations extraites par les étapes précédentes pour désentrelacer les vais-
seaux, trouver leur racine et leurs terminaisons, tout en corrigeant les artefacts résiduels de
segmentation ou de classification.

Pour y parvenir, cette ultime étape ajoute aux informations précédentes la position du disque
optique et de la macula fournies par une segmentation de ces structures. Elle s’appuie ensuite
sur les connaissances cliniques de la structure des graphes vasculaires rétiniens, traduites
en heuristiques, pour estimer la plausibilité des différentes hypothèses d’arborescences et
sélectionner la plus crédible. Mais auparavant, elle débute par une énumération exhaustive
de toutes les arborescences que G(V, B) peut générer. Cette énumération prend la forme d’un
graphe de lignes.

Construction du graphe de lignes

La réduction du graphe G(V, B) en une forêt de sous-arbres enracinés consiste, mathémati-
quement parlant, à trouver le morphisme P : B → B ∪∅ qui associe à chaque branche bi ∈ B

sa branche parente bj tel que :

P : bi 7→

bj ∈ B si bi est une branche secondaire

∅ si bi est primaire et n’a pas de parent

Si on contraint P à ne contenir aucun cycle, alors le morphisme génère bien un arbre orienté
dont la racine est ∅ et où toute branche bp ∈ B telle que P(bp) = ∅ est une branche
principale d’un vaisseau rétinien. Bien sûr, le choix de P peut drastiquement modifier l’allure
du graphe vasculaire. Pour s’en convaincre, prenons le graphe vasculaire G(V, B) à 5 nœuds
et 4 branches présenté sur la figure 6.10. Fixons P(13) = P(23) = ∅, si P(34) = 13 et
P(35) = 23 on obtient l’arborescence b1, si P(34) = 23 et P(35) = 13 on obtient celle b2, si
enfin P(34) = P(35) = 13 on a celle b3. Au total, plus de 30 arborescences différentes peuvent
être générées par cette simple intersection. Évidemment, toutes ne sont pas pertinentes :
l’arborescence b4 est par exemple très peu probable.
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Figure 6.10 Illustration de la construction du graphe de ligne. a. Graphe vasculaire G(V, B) ;
b. Exemple d’arborescence que G peut générer ; c. Graphe de ligne listant toutes les arbo-
rescences possibles.

L’ensemble des arborescences peut être représenté par un graphe de ligne dirigé L(G) dérivé
du graphe vasculaire G(V, B) comme suit. Pour chaque branche buv ∈ B reliant les nœuds
u, v ∈ V , deux nœuds sont ajoutés à L(G) : b̄−→uv et b̄−→vu. Le premier suppose que buv est
orientée de u vers v tandis que le second suppose l’inverse. Les nœuds de L(G) sont coloriés
de la même classe A/V que la branche qu’ils représentent, à l’exception près que les branches
BOTH sont dédoublées dans le graphe de ligne : une paire de nœuds la représentant dans sa
version ART, et une autre dans sa version VEI.

On considère ensuite un nœud u ∈ V du graphe vasculaire et ses nœuds adjacents Adj(u) ⊂
V : pour chaque combinaison de nœuds adjacents (vn, vm) ∈ Adj(u) avec n ̸= m, un arc de
ligne est ajouté à L(G) dirigé de b̄−−→vnu vers b̄−−→uvm

. Si u est connecté à N branches vasculaires
(et donc à autant de nœuds), on ajoute ainsi N ×(N −1) arcs dans le graphe de ligne. Chacun
de ces arcs représente une hypothèse de relation hiérarchique entre branches : en l’occurrence
que b−−→vnu donne naissance à b−−→uvm

à travers le nœud u.

Les points d’extrémité et les nœuds proches des limites du disque optique ou du fond d’œil
sont considérés comme des racines plausibles de leurs sous-arbres. Pour chaque nœud u parmi
ces candidats, un arc est créé dans L(G), dirigé de ∅ vers la branche b̄ −→uv,
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Pondération du graphe de ligne

Chaque arc du graphe de ligne est affublé d’un score de plausibilité calculé par des heuristiques
qui traduisent la plausibilité de l’hypothèse portée par l’arc selon les connaissances cliniques.

— Ces heuristiques favorisent l’hypothèse que b−−→vnu soit la branche parente de b−−→uvm
si 1.

leur tangentes se font face ; 2. elles ont la même classe A/V, ou 3. la branche mère
a un calibre supérieur à la branche fille. Plus précisément, le score de l’arc qui porte
cette hypothèse est calculé par :

ρ
(

b−−→vnu, b−−→uvm

)
= ωt̂ · t̂(b−−→vnu) ◦ t̂(b−−→uvm

) + ωav · 1av(bvnu, buvm)

+ ωĉ · σ
(

ĉ(b−−→vnu) − ĉ(b−−→uvm
)
)

Où t̂(b−−→vnu) et ĉ(b−−→vnu) sont les tangentes et les calibres à l’extrémité u de bvnu ; σ(·) est
la fonction sigmoïde ; et 1av(bvnu, buvm) vaut 1 si bvnu et buvm ont la même classe A/V
et 0 sinon. Les paramètres ωt̂, ωav et ωĉ pondèrent les différents termes de l’heuristique.

— Les arcs portant l’hypothèse que la branche b−→uv soit la racine d’un vaisseau sont favo-
risés si u est proche du disque optique ou du bord de la région d’interêt de l’image de
fond d’oeil.

— Enfin la plausibilité de la direction de chaque branche buv est aussi estimée en ajoutant
à tous les arcs de lignes adjacents aux noeuds b̄−→uv et b̄−→vu, les scores suivants :

ρ
(

b−→uv

)
= −ρ

(
b−→vu

)
= ωt ·

〈
ti

(
b−→uv

)
◦ t̃

(
pi

)〉
+ ωc · σ

(
chalf(b−→uv) − chalf(b−→vu)

)

où chalf(b−→uv) et chalf(b−→vu) sont le calibre médian sur la première et seconde moitié de
buv, et où

〈
ti

(
b−→uv

)
◦ t̃

(
pi

)〉
est la moyenne de distance cosinus entre la tangente de la

branche ti

(
b−→uv

)
et celle attendue t̃

(
pi

)
, calculée pour tous les points pi de la branche

buv. La direction t̃ est une estimation de l’orientation probable des branches en tout
point du fond d’œil : elle pointe à l’opposé du disque optique et vers son symétrique
autour de la macula 1. La direction favorisée pour la branche est donc celle pour laquelle
1. les tangentes s’éloignent du disque optique et tournent autour de la macula, 2. le
calibre décroit.

1. L’influence de ces deux points est définie comme inversement proportionnelle au carré de leur distance
à la manière d’un champ magnétique.
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Résolution de l’arborescence la plus plausible

Une fois que L(G) est défini, son arborescence maximale (MSA) est calculée, de sorte à ne
conserver qu’un seul arc de ligne dirigé vers chaque branche b̄−→uv et b̄−→vu. Ensuite, chaque paire
de nœuds linéaires b̄−→uv et b̄−→vu est fusionnée, formant un graphe linéaire plus simple L∗ où
les branches vasculaires sont représentées par des nœuds linéaires uniques. La représentation
arborescente la plus plausible pour le graphe vasculaire est obtenue en calculant le MSA de
L∗ (cf. Figure 6.11c). Les sous-arbres de vaisseaux sont ensuite développés en parcourant la
MSA à partir de chaque arête sortante de la branche racine ∅. Une fois séparé, chaque sous-
arbre se voit attribuer son étiquette A/V majoritaire, ce qui permet de corriger les erreurs
de classification A/V locales.

Figure 6.11 Illustration de l’optimisation d’arborescence a. Graphe vasculaire G ; b. Graphe
de ligne orienté L(G) ; c. Graphe de ligne simplifié L∗(G). (Les arcs de lignes correspondants
aux hypothèses rejetées par la MSA sont semi-transparents.)

Heuristique «garde-fou»

L’étape d’optimisation décrite ici accorde plus d’importance aux caractéristiques géomé-
triques et topologiques extraites de la segmentation des vaisseaux qu’à la classification A/V.
Cependant, il arrive qu’un vaisseau semble « émerger » d’un autre parce que son segment
en amont a été occulté ou n’a pas été segmenté. Ces rares cas conduisent à des affiliations
de branches erronées et à la fusion de vaisseaux distincts en un seul sous-arbre. Une dernière
heuristique de sauvegarde détecte ces cas en recherchant les branches croisées qui sont af-
filiées au même sous-arbre. Si les branches croisées avaient initialement des étiquettes A/V
différentes, leurs sous-arbres sont déconnectés.
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6.3 Évaluation de la modélisation topologique

L’évaluation de la méthode d’extraction de la topologie par FVT est divisée en deux parties.
Dans un premier temps, on évaluera la capacité de l’algorithme de partitionnement du graphe
à corriger les artefacts de segmentation et de classification. Puis, dans un second temps, on
évaluera la pertinence des paramètres vasculaires extraits avec la librairie sous la forme d’une
étude pilote sur la base de données canadienne CLSA.

6.3.1 Correction des artéfacts topologiques

Pour évaluer la capacité de corrections des artefacts de FVT, on appliqua sa méthode de
modélisation topologique à des cartes de segmentation A/V prédites par le modèle de seg-
mentation sémantique Automorph [164]. Ce modèle a été spécifiquement choisi car, d’une
part, il est public, de sorte que n’importe qui pourrait reproduire les expériences ci-dessous ;
et d’autre part, ses cartes de segmentation A/V sont généralement de bonne qualité mais
contiennent les artefacts topologiques typiques des CNN.

Nous avons comparé les arbres vasculaires extraits par le FVT avec ceux obtenus par la
méthode de RMHAS [149], c’est-à-dire la méthode « naïve » qui analyse séparément les
cartes de segmentation des artérioles et veinules, extrait de chacune le graphe ART et VEI

individuellement, puis identifie le sous-graphe propre à chaque vaisseau par une analyse en
composantes connectées et finalement place la racine de chaque vaisseau sur le nœud le
plus proche du disque optique. Les deux méthodes reçoivent les mêmes segmentations A/V
prédites par Automorph de sorte à pouvoir comparer les propriétés des arborescences extraites
par chacune. La Figure 6.12 présente une vue comparative de ces arborescences pour trois
images extraites du sous-ensemble réannoté de MAPLES-DR.

Analyse qualitative

Cette comparaison qualitative des deux méthodes (qui me rappelle étrangement le jeu des 7
différences) révèle plusieurs qualités de notre approche :
Premièrement, les principales erreurs de classification d’Automorph où une section de vais-
seau change soudainement de classe sont corrigées par FVT et l’intégrité du vaisseau est
correctement restaurée A/V (voir agrandissement a., b. et c.).
Deuxièmement, une majorité des déconnexions de vaisseaux semble aussi être identifiée et cor-
rigée correctement par FVT (voir agrandissement a. et c.). Concernant ces reconnexions, j’at-
tire l’attention du lecteur sur l’agrandissement a. et ses nombreuses interruptions de veinules
aux croisements avec l’artériole horizontale. Ces interruptions sont causées par une mauvaise
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Figure 6.12 Arborescence extraite par RMHAS (gauche) et par FVT (droite).
Les noeuds racines apparaissent plus sombres, les noeuds feuilles plus clair. Toutes les images présentent
des reconnexions ; a. et b. montrent des corrections de classification A/V ; b. présente le positionnement
valide d’une branche réentrant l’image ; c. illustre l’effet de l’heuristique « garde-fou » sur une artère qui
semble émerger d’une veine.

classification des pixels de croisements par Automorph : au lieu d’être classés BOTH, ils ont
été identifiés uniquement ART, et ont ainsi été exclus de la carte de segmentation VEI. Après
l’optimisation d’arborescence de FVT, les branches de veinules au-dessus de cette artériole
ont toutes été reconnectées avec leur vaisseau mère. Dans ces trois images, je ne distingue
qu’une déconnexion de veinules non identifiée par FVT, en haut au milieu de l’agrandisse-
ment a. Ici, les tangentes aux extrémités des nœuds terminaux ne se font pas suffisamment
face pour que la reconnexion soit envisagée.
Troisièmement, FVT identifie correctement la direction des branches y compris pour la veine
de l’agrandissement b. qui provient de l’extérieur de l’image et se dirige vers son centre. Le
nœud racine (plus foncé) est bien placé à la frontière de la région d’intérêt et non proche du
disque optique, en bas à gauche de l’agrandissement comme RMHAS.
Quatrièmement, l’agrandissement c. montre un exemple d’application de l’heuristique « garde-



121

fou ». La branche mère de l’artériole indiquée d’une flèche blanche n’a pas été segmentée par
Automorph, ainsi l’artériole semble émerger de la bifurcation de la veinule. Puisque ce nœud
n’est ni à proximité du disque optique, ni de la bordure de la région d’intérêt, il n’est pas
considéré dans le graphe de ligne comme un potentiel nœud racine. Lors de l’optimisation
de l’arborescence, l’artériole qui en émane est donc considérée comme appartenant au même
vaisseau que la veinule. Cependant, puisque ces deux vaisseaux se recroisent plus en aval,
l’heuristique « garde-fou » identifie ce cas peu probable et déconnecte l’artériole a posteriori,
de sorte qu’elle apparaît bien détachée sur l’agrandissement c.

Analyse quantitative

Pour quantifier l’étendue de ces corrections, nous avons testé ces deux méthodes de mo-
délisation topologique sur les 100 images de MAPLES-DR annotées A/V. L’extraction du
graphe vasculaire est toujours réalisée à partir des segmentations sémantiques imparfaites
d’AutoMorph, mais les annotations de MAPLES-DR nous permettent de mesurer combien
de branches d’artérioles et de veinules sont annotées de la bonne classe. Les résultats quan-
titatifs confirment l’analyse qualitative : le partitionnement du graphe réalisé par FVT est
plutôt robuste aux erreurs de classification : l’exactitude de classification A/V des branches
passe ainsi de 93,7% pour RMHAS (sans correction d’artefacts) à 95,2% avec FVT. En par-
ticulier, le nombre de branches artériolaires correctement classées augmente de près de 3%
(cf. Tableau 6.1). Ces résultats confirment également l’intuition de Chen et al. (2024 [26])
selon laquelle le post-traitement des prédictions des CNN à l’aide de méthodes basées sur
les graphes peut améliorer la classification A/V. Je tiens ici à rappeler que FVT n’utilise
pas d’informations extraites de l’image pour réaliser ces corrections : il analyse simplement
la propriété géométrique et topologique extraite de la segmentation sémantique, et les rend
conformes à une arborescence vasculaire plausible selon des connaissances cliniques a priori.

Tableau 6.1 Correction par FVT des artefacts de segmentation sémantique sur les images
de MAPLES-DR.

Partionnement Simple Optimisé
Exactitude de classification A/V (en % du nombre de branches)

Artérioles 90.29% 93.11%
Veinules 96.41% 96.84%

Nombre d’artefacts topologiques par image
Racines de vaisseau mal placées 6.5 2.2

Discontinuités de vaisseaux 15.7 3.7
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Pour aller plus loin, nous avons aussi compté manuellement le nombre de nœuds identifiés
comme nœuds racines à tort ainsi que le nombre de discontinuités de vaisseaux dans les
images de MAPLES-DR. L’attention portée au placement des nœuds racines peut apparaître
saugrenue, mais elle est capitale pour déterminer la direction des branches du graphe vas-
culaire et ainsi identifier quelle est la branche principale de chaque bifurcation. Ici encore,
FVT montre sa robustesse aux artefacts de segmentation et de classification d’AutoMorph,
en réduisant le nombre de racines invalides par un facteur de 3, et le nombre de discontinuités
de vaisseaux par un facteur de 4 (cf. Tableau 6.1).

6.3.2 Exemple d’application : Étude pilote sur CLSA

L’objectif final de FVT est l’extraction des paramètres vasculaires, dont un certain nombre
a déjà été implémenté (tortuosité, et paramètres de bifurcations). Dans cette section, nous
proposons une étude pilote pour montrer la validité de ces paramètres. Nous les comparons à
ceux extraits par AutoMorph (AVR, tortuosité et dimension fractale). Pour que la comparai-
son soit juste, nous n’étudierons que le paramètre commun à ces deux logiciels : la tortuosité
des artérioles et des veinules. Les deux logiciels s’appuient sur les mêmes cartes de segmenta-
tion sémantique prédite par AutoMorph pour réaliser leur mesure. Ainsi, les différences entre
les valeurs mesurées sont à imputer aux corrections A/V et à la minutie de la modélisation
géométrique de FVT (la tortuosité s’appuie sur la mesure de la courbure). Ils mesurent cette
tortuosité par branche, puis les agrègent pour toute l’image par une moyenne pondérée par
la taille de chaque branche.

Les images utilisées pour mener cette comparaison sont celles de l’Étude longitudinale cana-
dienne sur le vieillissement (CLSA) [222], une étude à grande échelle qui suit les données de
santé de 20 423 participants à travers le Canada. Parmi les informations de santé disponibles,
nous nous sommes intéressés aux 272 patients ayant déclaré avoir eu des antécédents d’AVC.
Cet antécédent a été associé à une évolution de la tortuosité vasculaire de la rétine par des

Tableau 6.2 Associations entre les tortuosités calculées par FVT ou Automorph, et les AVC
dans la cohorte Baseline de CLSA. (Les p-values significatives sont indiquées en gras.)

Logiciel Paramètre vasculaire Odds Ratio p-value
FVT Tortuosité ART 3.6e-15 0.031

Tortuosité VEI 6.1e+25 0.006
AutoMorph Tortuosité ART 1.02 0.232

Tortuosité VEI 1.08 0.011
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études cliniques (Cheung et al., 2013 [223] ; Sandoval-Garcia et al., 2021 [224]). Pour repro-
duire ce résultat, nous avons appliqué une régression logistique aux mesures de tortuosité et
ajusté nos modèles en fonction de l’âge, du diabète, du cholestérol et de l’hypertension des
participants. Le tabagisme, l’IMC et l’origine culturelle n’ont pas démontré d’associations
significatives et ont été exclus du modèle final.

Contrairement à Automorph, FVT a fourni une tortuosité artériolaire qui est significative-
ment associée aux accidents vasculaires cérébraux. En ce qui concerne la tortuosité veineuse,
le FVT et l’Automorph présentent tous deux des associations significatives avec les accidents
vasculaires cérébraux, mais le FVT présente une corrélation plus forte avec un rapport de
cotes de 6,1e+25. La correction des artefacts effectuée par le FVT sur l’arbre vasculaire
semble donc améliorer la fiabilité et la qualité de l’évaluation de la tortuosité des vaisseaux.

En outre, Automorph – dont l’implémentation est en Python pur – requiert 715 ms par image
pour calculer les biomarqueurs à partir des cartes de segmentation A/V précalculées, alors que
FVT – dont l’extraction bas niveau de la topologie et de la géométrie est implémentée comme
une extension C++ – n’a eu besoin que de 214 ms en comptant la correction des artefacts de
segmentation ! Au total, l’analyse de 20 000 scans rétiniens de la cohorte du CLSA n’aura pris
que 73 minutes, démontrant la capacité du FVT à traiter de grands ensembles de données.

6.4 Discussion et Contributions

La méthode de modélisation géométrique et topologique implémentée dans FVT se déploie
en quatre étapes, les trois premières préparant le terrain à la quatrième : d’abord l’extraction
naïve de la topologie du squelette, puis la modélisation de la géométrie de chaque branche à
partir de la segmentation, ensuite la prise en compte de la classification A/V et l’identifica-
tion des artefacts topologiques (simplification et déconnexions), chaque étape enrichissant la
représentation du graphe vasculaire tout en prenant en considération les potentiels artefacts
présents dans la carte du squelette, de la segmentation ou de la classification. L’extraction
topologique initiale à partir de la segmentation pure assure notamment que les erreurs de
classification ne soient pas converties en erreurs de segmentation comme c’est le cas pour
RMHAS. À partir de cette modélisation prudente, la dernière étape de la méthode recense
toutes les hypothèses concernant les directions de branches, leurs connexions et reconnexions,
et le positionnement des nœuds racines, et leur attribue un score de plausibilité. Et finale-
ment, la partition du graphe est réalisée par une approche globale qui élimine les hypothèses
les moins plausibles tout en assurant que celles restantes forment une arborescence cohérente.

Comparé aux autres logiciels de paramétrisation vasculaire complètement automatiques RM-
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HAS [149] et AutoMorph [164], cette méthode confère à FVT une plus grande robustesse aux
artefacts de segmentation et de classification régulièrement présents dans les cartes prédites
par CNN. Par cet atout, la modélisation topologique de FVT peut servir autant à la correc-
tion a posteriori des segmentations sémantiques de ces modèles, qu’à la mesure de paramètres
vasculaires fiables.

En outre, le projet de FVT a été pensé non pas comme une simple implémentation de partition
du graphe à des fins de recherche théorique, mais comme un outil public et documenté mis
à disposition de la communauté dans l’espoir qu’elle s’en empare. Ainsi, l’API de la librairie
s’assure que l’utilisateur puisse non seulement accéder ergonomiquement à l’ensemble des
composantes de la représentation riche du graphe vasculaire, mais puisse aussi manipuler
ce graphe : ajouter, supprimer ou même scinder des branches, fusionner des nœuds, etc. La
méthode décrite ici utilise ces fonctions pour simplifier le graphe, en corrigeant les artefacts ou
en mesurant les paramètres vasculaires. Mais l’utilisateur peut choisir d’utiliser ces fonctions
pour développer sa propre méthode, ou ses propres paramètres. Par cette librairie, j’espère
humblement fournir un outil qui puisse, un tant soit peu, rapprocher la communauté de
chercheurs en segmentation vasculaire de leurs acolytes cliniciens.

Le paquet FVT est aussi accompagné d’une librairie de visualisation permettant d’inspecter
et de comparer dans le détail et directement depuis un notebook Jupyter ; toutes les représen-
tations du graphe vasculaire énoncées dans ce chapitre (segmentations, squelettes, tangentes,
graphes, etc.) ont d’ailleurs été générées avec son aide. Cet outil de visualisation peut paraître
anecdotique, mais je suis pourtant convaincu que sa capacité d’inspecter aisément le moindre
détail de la modélisation topologique ou géométrique, doublée du choix d’une implémentation
en C++, a grandement conditionné la méthode que je propose, m’invitant à porter attention
aux détails. La multitude de petites optimisations et les multiples règles et heuristiques qui
jalonnent ce chapitre en sont autant de traces.
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CHAPITRE 7 CHAPITRE COMPLÉMENTAIRE : LE PARADOXE DE LA
LITTÉRATURE SUR LA SEGMENTATION DES VAISSEAUX RÉTINIENS

Dans ce chapitre complémentaire, je propose de prendre du recul sur la littérature de mo-
délisation du graphe vasculaire pour étudier le paradoxe suivant. Ces dernières années, la
segmentation sémantique des vaisseaux rétiniens reçoit une attention comme jamais aupara-
vant : depuis 2020, le nombre de publications annuelles pour la segmentation seule dépasse
les 150 chaque année (cf. Figure 7.1). C’est trois fois plus qu’en 2015, avant l’avènement
des CNN. Pourtant, depuis 2020, cette vague de publications n’a pas suscité d’amélioration
significative des performances. On va ici investiguer ce paradoxe par une méthode de revue
systématique, automatique et expérimentale que je n’aurais pas pu utiliser au début de mon
doctorat car elle exploite un LLM pour le triage des papiers.

7.1 Méthode de revue systématique et automatique

La revue systématique débute par un recensement exhaustif des papiers liés au sujet. Une
première collecte de références est menée sur Scopus, Pubmed et Google Scholar. La requête
est choisie volontairement large pour ne pas négliger d’articles. Par exemple, pour Scopus :

TITLE-ABS-KEY((fundus OR retinal) AND (vessels OR vascular OR arteries OR artery
OR arteriole OR arterioles OR vein OR veins OR veinule OR veinules)
AND (segmentation OR classification))

Cette recherche initiale aboutit à 8183 références uniques, principalement issues de Scopus.
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Figure 7.1 Nombre de publications par an et par pays traitant de la segmentation des
vaisseaux rétiniens sur images de fond d’oeil.
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Parmi elles, 705 furent exclues par impossibilité de télécharger le pdf automatiquement 1.
Dans les 7478 références restantes, une majorité est hors sujet. Elles furent donc filtrées par
un LLM (le Phi-3-mini de Microsoft) à qui on confia le titre et l’abstract de chaque papier
ainsi qu’une série de questions à choix multiples vérifiant les critères d’exclusion suivants :

— La langue de l’article est l’anglais (choix possibles : english, chinese, german, et other) ;
— L’article traite d’images de fond d’oeil couleur (choix : color fundus, OCT or OCTA, angiography

or angiograms, slit lamp, ultrasound, 3D images, MR, CT, et other) ;
— La contribution du papier concerne une nouvelle méthode de segmentation ou de

classification d’artère veine (choix : novel segmentation method, novel artery and vein

classification method, review other research papers, novel diagnosis method, et other) ;
— Les structures segmentées sont les vaisseaux (choix : retinal vessels, arteries and veins,

optic disc, macula or fovea, lesions, et microaneurysms or hemorrhages).
Avec cette méthodologie, j’ai recensé 1738 publications concernant la segmentation des vais-
seaux rétiniens et 126 concernant leur classification. Le regroupement par pays sur la Fi-
gure 7.1 révèle que l’accroissement spectaculaire du nombre de publications depuis 2020 est
principalement dû à un intérêt grandissant en Chine et dans une moindre mesure en Inde.
Les universités de ces deux pays totalisent près de deux tiers des publications de ces cinq
dernières années.

Ces références furent agglomérées pour former un corpus dont le texte et les tableaux furent
extraits du pdf des articles à l’aide de GrobID [225]. Puis, une série d’heuristiques analysant
le titre des sections classa chacune selon leur fonction : Introduction, Travaux Connexes,
Méthode, Évaluation, et Conclusion.. À la fin de cette procédure, on obtient donc un corpus
soigneusement organisé contenant la plupart des articles publiés traitant de la segmentation
des vaisseaux rétiniens sur image de fond d’œil et dont on peut sonder les titres et abstracts
des articles, ainsi que le texte et les tableaux de leurs différentes sections. J’ai analysé ce
corpus par des méthodes lexicographiques pour peindre un tableau général de l’évolution de
la littérature sur la segmentation sémantique du graphe vasculaire rétinien.

7.2 Sonder la littérature de segmentation vasculaire rétinienne

Évolution des tendances méthodologiques Pour débuter l’analyse, étudions simple-
ment les termes récurrents dans les titres des articles du corpus. Les nuages de mots pré-
sentés sur la Figure 7.2 regroupent ces termes selon quatre périodes : 2000-2009, 2010-2014,

1. Le téléchargement automatique des pdfs a été confié à un script python qui renseigne l’adresse DOI
d’un article dans la barre d’un navigateur puis déclenche le téléchargement de sa référence et de son pdf à
l’aide du plugin Zotero. Le script est disponible à l’adresse : github.com/gabriel-lepetitaimon/bibtool.

https://github.com/gabriel-lepetitaimon/bibtool
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Figure 7.2 Nuages de mots des titres d’articles sur la segmentation des vaisseaux rétiniens.
Les mots communs à tous les papiers sont omis (fundus, vessel, segmentation, etc.).

2015-2019 et 2020-2025. On y voit apparaître dans les titres : les mots clés convolutional
neural network et deep learning dans la période charnière 2015-2019. Auparavant, on voit
la prédominance des matched filter et des ondelettes (wavelet) entre 2000 et 2009, puis
des filtres de Gabor, des approches morphologiques (morphological) entre 2010 et 2015. Le
concept de feature qui est présent dans les titres à cette période est généralement accolé aux
termes multiscale, invariant, ou landmark. Après 2020, les réseaux de neurones perdent
leur adjectif convolutional, au profit de u net et d’attention. Toutes ces observations
corroborent le récit de l’évolution des méthodes décrites dans la revue de littérature.

Ces observations peuvent être approfondies en mesurant la proportion de papiers qui men-
tionnent, dans leur titre ou dans leur méthode, les termes associés aux différentes approches
recensées à la section 2.2. La Figure 7.3 présente ces proportions année après année. Elle révèle
que l’intérêt pour les méthodes non supervisées est en perte de vitesse. Les matched filter,
les filtres de Gabor et les ondelettes ont résisté le plus longtemps, mais leur occurrence dé-
croît monotonément depuis 2017. Même les opérateurs de morphomat pourtant utiles comme
post-traitement et qui participaient à un tiers des méthodes proposées en 2014, ne sont men-
tionnés que par 7% des papiers en 2024. Seules les approches multi-scale connaissent un
intérêt croissant puisque ce concept transcende les approches non supervisées et reste perti-
nent à la conception de réseaux de neurones. Concernant les classifieurs traditionnels, deux
se démarquent sur la période 2005-2015 : les SVM qui sont étudiés dans 12% des papiers en
2011 ; et les réseaux de neurones qui, même en l’absence d’apprentissage profond et réduits à
une ou deux couches cachées, étaient déjà les classifieurs les plus plébiscités de cette période.
Cette Figure nous apprend surtout que, depuis son introduction dans le domaine en 2015, la
proportion de papiers proposant des méthodes entraînées par apprentissage profond n’a cessé
de croître. Ainsi, en 2024, 81% des articles mentionnaient dans leur méthode les termes de
Deep Learning, CNN ou U-Net ! Ce dernier modèle est spécifiquement mentionné dans 71%
des publications cette année-là, il est sans conteste le socle commun de l’état de l’art. Les
recherches sur les approches génératives GAN ou Transformer sont en croissance mais restent
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Figure 7.3 Occurence entre 2005 et 2024 des termes méthodologiques dans le titre et les
sections de méthodes des articles de segmentation des vaisseaux rétiniens.

L’axe des ordonnées indique le pourcentage de papier contenant chaque terme parmi les publications de
l’année. L’échelle de cet axe varie d’une colonne à l’autre.

minoritaires (respectivement 13% et 18% en 2024) ; contrairement au concept d’attention
qui apparaît dans la moitié des papiers publiés en 2023 et 2024. Enfin, bien qu’il soit difficile
de catégoriser les fonctions de coûts utilisées par une analyse lexicographique, on constate
néanmoins que le nombre de mentions de la dice loss rattrape celui de la cross-entropy
et pourrait l’égaler en 2025 si la tendance se maintient.

Évolution des méthodes de validation La méthode d’analyse par occurrence est par-
faitement adaptée pour étudier l’évolution des pratiques de validation des algorithmes : il
suffit de mesurer l’occurrence des noms des métriques et des jeux de données dans les sections
de validation et dans les tableaux des papiers. Ces mesures sont présentées sur la Figure 7.4.
Concernant les métriques, elles mettent en exergue la prédominance de l’exactitude (utilisée
par 83% des papiers en 2024) et du couple sensibilité/spécificité. La Figure montre aussi une
nette progression du score Dice à partir de 2015, de sorte qu’il est mentionné pour valider
35% des articles en 2024. Le score de détection de vaisseau CL Dice proposé par Shit et al.
en 2021 [136] peine à s’implanter : en 2024, seulement 4% des papiers l’utilisent. Pour les
métriques sensibles à la topologie vasculaire, c’est encore pire : les termes topolog* n’ap-
paraissent que dans 9% de la littérature en 2014 et les métriques topologiques telles que le
nombre de Betti ne sont tout simplement pas mentionnées. Concernant les jeux d’entraîne-
ment et de validation, DRIVE [31] et STARE [32] sont les plus utilisés (par respectivement
70% et 50% des articles publiés en 2024) et sont rattrapés par CHASE DB [33] (47% en 2024)
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Figure 7.4 Occurence des métriques et jeu de données annotées pour la segmentation des
vaisseaux rétiniens dans les sections de validation et les tableaux des articles du corpus.

Les traits verticaux pointillés sur le graphe des jeux de données indiquent leurs dates de publication.

bien que sa publication ait été plus tardive. L’adoption des bases de données haute résolu-
tion HRF [226] et FIVES [36] semble par contre ralentie. Certes, elles ont été publiées plus
récemment (en 2013 et 2021), mais je reste étonné qu’une base aussi complète que FIVES
tant en termes de résolution que de nombre d’échantillons (800 images !) ne soit toujours
exploitée que par 4% des publications de 2024. Plus généralement, on constate un certain
conservatisme dans les protocoles de validation : suite à l’adoption rapide de DRIVE, les
autres jeux de données peinent à y trouver leur place. Une dizaine d’années se seront ainsi
écoulées entre la publication de CHASE DB et sa démocratisation dans la littérature.

7.3 Pistes d’explications du paradoxe

Revenons au paradoxe qui nous préoccupe : l’envolée du nombre de publications qui contraste
avec la stagnation des performances. La vague de publications ces dernières années traitant
de la segmentation des vaisseaux rétiniens est quasiment exclusivement dédiée à l’entraîne-
ment par apprentissage profond de modèles convolutifs dérivés de la famille des U-Net. Cette
application clinique est devenue un laboratoire d’où les équipes de recherche redoublent de
propositions pour construire des réseaux toujours plus performants et toujours plus com-
plexes. Cette exploration des différentes structures de modèles est catalysée par les outils de
développement à la disposition des chercheurs (PyTorch, Keras, etc.) qui rendent aisées les
itérations architecturales à partir de modèles existants.

Mais pour évaluer la pertinence de ces modèles, les protocoles de validation actuels sont
insuffisants. D’une part, les jeux de données publics pour l’entraînement et la validation
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des algorithmes sont trop limités : la majorité des papiers publiés n’exploitent que les deux
ou trois jeux de données les plus anciens, dont la résolution n’est pas représentative des
technologies d’imagerie actuelles et qui totalisent seulement 88 images à diviser en ensembles
d’entraînement, de validation et de test. Pour Li et al. (2025 [25]), c’est ce point qui entrave la
progression des modèles et réduit surtout leur valeur d’usage dans des scénarios cliniques. La
sous-exploitation des jeux de données récents est d’autant plus problématique qu’elle aggrave
le risque de surapprentissage déjà entretenu par la complexité croissante des modèles.

D’autre part, les métriques de validation sont en retard par rapport aux performances élevées
des modèles. Si l’exactitude de segmentation était pertinente pour mesurer la progression des
algorithmes il y a 15 ans, elle montre aujourd’hui ses limites. En effet, les modèles actuels
dépassent systématiquement de 2 à 3 % l’exactitude obtenue par le second annotateur de
DRIVE (94.73%) en comparaison avec la vérité terrain annotée par le premier. J’ai réguliè-
rement vu ce résultat interprété dans la littérature comme une attestation de la supériorité
de la machine sur un annotateur humain. C’est, il me semble, un contresens. Les segmenta-
tions fournies comme vérité terrain par DRIVE ne sont pas plus valides que celles du second
observateur : l’une comme l’autre ont été annotées par des humains et souffrent de biais et
de variances d’annotations. Ainsi, une exactitude nettement supérieure à celle du second an-
notateur témoigne d’une sur-spécialisation du modèle sur les biais d’annotation du premier.
En ce sens, une telle valeur devrait plutôt être interprétée comme étant « en dehors de la
zone de validité de la métrique », à la manière des instruments de mesure indiquant « Out
of Range » lorsque leurs aiguilles sortent du cadran. Pour lire une valeur fiable des perfor-
mances des modèles de segmentations, il faut donc changer d’instrument de mesure et choisir
une métrique qui relève plus finement les erreurs qui nous importent et ignore les variations
inter-observateurs : comme le CL Dice ou les métriques topologiques.

Pourtant depuis 2015, les métriques qui ont principalement progressée et rivalisent avec
l’exactitude sont celles qui souffrent des mêmes lacunes de mesure : l’AUC-ROC et la sensi-
bilité/spécificité. Je vois deux facteurs pouvant expliquer ce phénomène. 1. La comparaison
à l’état de l’art nécessite la réutilisation des métriques déjà publiées pour évaluer les perfor-
mances d’un modèle, ce qui crée une inertie dans les pratiques de validation. La progression de
l’AUC-ROC et du couple sensibilité/spécificité est donc le prolongement de leur implantation
déjà importante avant 2015. 2. L’ubiquité des réseaux de neurones, c’est-à-dire la capacité de
ce formalisme à apporter la même solution algorithmique à une vaste diversité de problèmes
de traitement du signal, est certes au cœur de leur développement et de leur succès rapide,
mais elle tend à uniformiser aussi les protocoles de validation. Or ceux-ci devraient rester spé-
cifiques à chaque application. Ce constat avait d’ailleurs poussé Maier-Hein et al. (2024 [227])
à mener un vaste projet de recommandations de métriques pour les différentes applications
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biomédicales. En l’occurrence, pour la segmentation des vaisseaux, ils préconisent le CL Dice.

Ainsi, si les performances de segmentation semblent stagner, c’est que leurs protocoles de
validation ne sont plus en mesure de supporter les problématiques de recherche contempo-
raines qui font essentiellement face à des défis topologiques. Dit autrement, le problème de
la segmentation des vaisseaux rétiniens – tel qu’il est formulé selon l’exactitude et sur les
quelques jeux de données publics – peut être considéré comme résolu. L’accumulation des
recherches sur le sujet n’induit donc pas d’amélioration des performances tant qu’un nouveau
protocole de validation plus spécifique n’aura pas été développé pour les évaluer.

Ce protocole devra veiller à aligner les métriques de performances avec l’objectif sous-jacent
à la segmentation et la classification vasculaire. Cet objectif est resté inchangé depuis la pre-
mière publication de Chaudhuri et al. en 1989 [42] : permettre une meilleure compréhension et
un meilleur dépistage des pathologies vasculaires et rétiniennes. D’ailleurs, quatre articles sur
cinq de notre corpus utilisent dans leur introduction les termes disease et diagnostic, et ce,
quelle que soit leur année de publication. Plus spécifiquement, la rétinopathie diabétique est
la plus invoquée (dans 6/10 papiers en moyenne), suivie de l’hypertension (4/10). Dans leur
revue de 2022, Khandouzi et al. [22] expliquent aussi l’intérêt croissant pour la segmentation
des vaisseaux rétiniens par : "the accuracy of segmentation algorithms has a significant effect
on the early detection of ocular diseases and can make a positive difference as a result of
treatment". La motivation sous-jacente à toute cette littérature fait donc consensus.

Pourtant, très peu de papiers s’intéressent à la transposition des modèles de segmentation
et de classification vers des résultats cliniques. Comme si la conception et l’amélioration de
ces modèles accaparaient l’attention de la communauté de chercheurs depuis tant d’années
que leur motivation initiale s’est finalement muée en une image d’Épinal : admise par tous
mais rarement interrogée et étudiée en pratique. Probablement parce que, contrairement à
celui de la segmentation vasculaire, le problème de sa transposition en résultats cliniques ne
se pose pas en des termes bien définis.

Au fond, je réalise que le travail que j’ai rapporté dans cette thèse pourrait s’apparenter à
celui d’un pionnier : allant récolter de nouvelles annotations, alertant sur la variabilité que j’y
ai découverte ; puis explorant une voie d’architecture de réseaux rarement étudiée, cherchant
à améliorer les modèles par leur simplification ; enfin, défrichant le champ de la modélisation
topologique à partir des segmentations imparfaites, et proposant des outils pour que d’autres
puissent y faire germer leurs propres idées. Bref, j’ai consacré mon doctorat à étudier et
définir les termes permettant de bien poser le problème de la modélisation automatique de la
topologie de l’arbre vasculaire rétinien, pour qu’un jour, l’évaluation des qualités topologiques
et paramétriques des modèles de segmentation soit aussi simple qu’un calcul d’exactitude.
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CHAPITRE 8 DISCUSSION GÉNÉRALE

Le projet doctoral présenté dans cette thèse a pour objectif général d’exploiter les modèles
CNN de segmentation et de classification des vaisseaux sur image de fond d’œil pour extraire
une modélisation topologique robuste de l’arbre vasculaire rétinien et mesurer des para-
mètres vasculaires fiables. Pour ce faire, j’ai réalisé trois objectifs spécifiques de recherche :
1. la construction d’un nouveau jeu de données annotées pour enrichir l’entraînement de ces
modèles ; 2. la reparamétrisation des neurones convolutifs pour piloter l’orientation des filtres
de convolution et ainsi mutualiser les paramètres et améliorer la généralisation des modèles
de classification vasculaire ; 3. la modernisation des approches de partition du graphe vas-
culaire rétinien en proposant une méthode de modélisation topologique de l’arbre vasculaire
rétinien robuste aux artefacts des modèles CNN. Ce pénultième chapitre discute des réussites
et limitations des méthodes proposées à l’aune des objectifs spécifiques et de la problématique
générale de ma thèse.

8.1 MAPLES-DR

La campagne d’annotation de MAPLES-DR a permis la collecte de nouvelles segmentations
de vaisseaux annotées par des rétinologues. Ces nouvelles vérités terrain rejoignent celles
des autres bases de données publiques comme STARE [32], DRIVE [31], CHASEDB [33],
HRF [226], doublant le nombre d’annotations disponibles : MAPLES-DR seul contient en
effet plus d’images que toutes ces bases réunies. Par cette contribution, nous enrichissons donc
significativement les ensembles d’entraînement et de validation des modèles de segmentation
vasculaire de sorte qu’ils représentent mieux la diversité des situations cliniques. Nous avons
d’ailleurs montré à travers une étude menée sur les segmentations des structures pathologiques
que les modèles entraînés sur MAPLES-DR possèdent de bonnes capacités de généralisation
et que ce jeu de données constitue une base solide de pré-entraînement [202].

L’utilisation de carte de pré-segmentation a joué un rôle clé pour l’annotation des cartes
vasculaires en réduisant considérablement le temps de segmentation. Alors que l’annotation
manuelle de DRIVE a requis 2 heures par image [31], notre équipe de rétinologue n’a eu
besoin que de 6 minutes en moyenne pour ajouter les vaisseaux omis par le modèle de pré-
segmentation. Certes, ces cartes présentent un risque de biais sur les annotations finales.
Mais nous avons montré que ce biais se manifestait plutôt par une sensibilité accrue des
annotateurs (en tout cas pour les structures pathologiques). Nous avons surtout montré que
ces cartes étaient un moyen efficace pour réduire la variabilité inter-observateur, et cet effet
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est d’autant plus prononcé que la qualité du modèle de pré-segmentation est bonne. C’est
le premier reproche qu’on pourrait faire à MAPLES-DR : ses modèles de pré-segmentations
correspondent à l’état de l’art de 2018 et sont aujourd’hui dépassés.

En outre, et bien qu’elle ne soit pas directement liée à mon projet doctoral, la variabilité
inter-observateur mesurée sur les structures pathologiques de la rétine interroge. Des études
mesurant la variabilité d’annotations des vaisseaux existent : pour DRIVE [31] les deux an-
notateurs sont d’accord sur 94,7% des pixels, plus récemment Kai et al. [36] avaient mesuré
un dice inter-annotateur de 0,924. Mais, à notre connaissance, aucune étude n’avait éva-
lué la variabilité inter-observateur pour l’annotation des lésions rétiniennes. Les mesures de
variabilité présentées dans cette thèse sont donc inédites. Elles sont aussi surprenantes par
leur ampleur (entre 13,3% et 61% d’accord de détection en fonction du type de lésions).
Pour mieux interpréter ces valeurs, il faudrait cependant conduire de nouvelles annotations
pour distinguer dans cette variabilité, la composante inter-observateur (biais) et celle intra-
observateur (bruit). Cette dernière n’est en effet pas mesurée par notre étude sur les lésions
et pourrait expliquer en partie la variabilité observée.

8.2 Steered CNN

Le formalisme des steered CNN proposé dans le chapitre 5 réussit l’exploit, à rebours de
la littérature des méthodes de segmentation sémantique des vaisseaux rétiniens, d’améliorer
ses performances suite à une réduction de son nombre de paramètres. De ce point de vue,
les steered CNN marchent dans les pas de Gladran et al. [128] qui affirmaient obtenir les
performances de l’état de l’art en 2022 avec un modèle simplifié.

Pour réaliser cet objectif, on s’est inspiré des travaux qui proposent de redéfinir les neurones
convolutifs pour les contraindre à respecter des groupes de symétries, et plus particulièrement
l’équivariance par rotation [211–213]. Ces travaux sont généralement motivés par l’intuition
que ces symétries épargneraient au réseau la nécessité de consacrer plusieurs paramètres
à la détection d’une même forme sous toutes ses orientations. À notre connaissance, cette
intuition qui semble de bon sens n’avait cependant jamais été étudiée expérimentalement.
L’étude du tropisme des neurones convolutifs dans un CNN que j’ai conduite à la section 5.2
indique d’ailleurs qu’elle est partiellement fausse. J’ai en effet montré que, sous l’effet de
l’augmentation de données par rotation, un CNN standard ne modélise pas l’équivariance à
la rotation par une duplication de ses filtres convolutifs, mais par l’apprentissage de filtres
isotropiques. Ainsi, la force des steered CNN comparés aux CNN standards ne se limite pas
à leur efficacité paramétrique accrue : elle réside aussi dans leur capacité à apprendre des
filtres anisotropiques. On observe en effet que, lorsque la régularisation par augmentation de
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données de rotation est levée, les filtres vers lesquels convergent naturellement les premières
couches d’un steered CNN sont particulièrement anisotropiques : le poids de leurs compo-
santes symétriques et anti-symétriques est nettement plus élevé que celui de leurs composantes
isotropiques. Cette observation concorde avec la littérature de classification traditionnelle des
vaisseaux rétiniens qui analyse le profil des vaisseaux [78,82].

La réduction du nombre de paramètres n’est cependant pas un but en soi. Le second objectif
reposait en réalité sur le pari que la réduction du nombre de paramètres se traduirait par
une hausse de la capacité de généralisation du modèle (selon l’intuition du rasoir d’Ockham).
Sur ce point, les conclusions sont plus mitigées. Certes lorsqu’on limite un steered CNN et
un CNN standard à 10k paramètres ou moins, ou lorsqu’on les entraîne sur 20 images ou
moins, les performances mesurées sur un jeu de données n’ayant pas servi à l’entraînement
sont nettement en faveur des steered CNN. Mais cet écart se résorbe lorsqu’on augmente le
nombre de paramètres et d’échantillons d’entraînement. Ce résultat reste honorable dans la
mesure où la plupart des méthodes de la littérature sont entraînées avec 20 images ou moins,
faute de données annotées.

Les limitations des steered CNN sont liées aux champs d’orientations α⃗ qui pilotent l’orien-
tation de leurs filtres pour chaque pixel de l’image. Dans notre méthode, ce champ est une
variable d’entrée calculée préalablement, ce qui a deux conséquences : 1. Les steered CNN
ne peuvent être appliqués à la segmentation vasculaire puisque le champ d’orientations des
vaisseaux serait alors inconnu. Ils pourraient néanmoins être utilisés pour raffiner une seg-
mentation préexistante ou pour délimiter les contours des vaisseaux à partir de leur squelette.
2. La classification prédite par les steered CNN peut être sensible aux erreurs de la carte de
segmentation vasculaire dont est dérivé le champ d’orientations α⃗. Cet effet est partiellement
atténué par l’augmentation de données élastiques appliquées à l’entraînement des steered
CNN et qui induit des petites rotations aléatoires du champ α⃗. Néanmoins, la sensibilité aux
erreurs de segmentation mériterait d’être quantifiée.

8.3 Fundus Vessels Toolkit

Parmi les logiciels de paramétrisation automatique du réseau vasculaire rétinien reposant sur
des modèles CNN pour la segmentation sémantique des vaisseaux, un seul (RMHAS [149])
s’essaie à la modélisation topologique du graphe vasculaire. Mais la méthode choisie n’est pas
robuste aux artefacts topologiques des CNN : à la moindre erreur de classification au sein
d’une branche, cela produit une déconnexion dans le graphe.

Pour pallier ces erreurs, je reformule le problème de partitionnement du graphe vasculaire
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comme celui d’une énumération d’hypothèses mutuellement inclusives ou exclusives, puis
d’une sélection de l’ensemble cohérent le plus plausible d’hypothèses par double application
de la MSA. Ce formalisme présente plusieurs intérêts par rapport aux méthodes qu’avaient
proposées la littérature pour assister la classification A/V avant les CNN. Comparé aux mé-
thodes d’interprétation de la connectivité locale des branches [88–91], il assure la cohérence
générale de l’arborescence et permet de résoudre la connectivité des nœuds incertains en
s’appuyant sur ceux plus évidents. Comparé aux méthodes d’optimisation globale de l’ar-
borescence [93–95] elle permet d’évaluer les hypothèses de reconnexions des branches et ne
postule pas de la position des nœuds racines. Elle est ainsi moins sensible aux artefacts de
segmentation et de classification vasculaires, et peut même permettre de corriger des erreurs
de classification A/V !

Tous ces artefacts ne sont néanmoins pas corrigés pour autant. Lorsqu’une branche entière
est omise par le modèle de segmentation, FVT n’a aucun moyen pour la reconstituer. De
même si l’intervalle séparant deux portions d’une branche mal segmentée est trop grand ou
si les extrémités des branches ne se font pas face. Dans de rares cas, il arrive que la procédure
d’optimisation d’arborescence désigne la mauvaise parenté pour une branche du graphe, de
sorte que la branche et toute sa descendance soient affiliées au mauvais vaisseau. Ces cas se
produisent généralement suite à un faux négatif de la segmentation effaçant complètement
une branche incidente à un croisement de vaisseaux. La branche émergeant du croisement
donne alors l’illusion de bifurquer de l’autre vaisseau. La solution optimale serait de considérer
le croisement comme la racine de la branche émergeante, mais les nœuds éloignés du disque
optique et du bord de l’image ne sont pas considérés comme des racines potentielles. Ce type
d’erreurs est malheureusement commun à toutes les approches de partitionnement du graphe
vasculaire. L’heuristique « garde-fou » proposée à la fin de la méthode du chapitre 6 détecte
et corrige a posteriori une partie de ces cas, mais n’est pas infaillible.

Il reste que la représentation géométrique et topologique de l’arbre vasculaire rétinien par
FVT produit des résultats encourageants sur l’étude pilote conduite sur les 20k images de
CLSA, reproduisant les résultats d’études cliniques [223,224] par une extraction automatique
de la tortuosité à partir de cartes de segmentation sémantique imparfaites.
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CHAPITRE 9 CONCLUSION

9.1 Synthèse des travaux

Par la publication de MAPLES-DR [202], j’ai contribué à l’effort impulsé par la communauté,
de la collecte de nouvelles données annotées pour diversifier les ensembles d’entraînement et
de validation des modèles de segmentation des structures rétiniennes. L’ambition de pluralité
des labels et les contraintes liées aux distances géographiques séparant les annotateurs nous
ont poussés à proposer un nouveau protocole d’annotation et à développer notre propre pla-
teforme d’annotations. Ce diptyque s’est révélé particulièrement efficace autant pour réduire
le temps d’annotation que pour réduire la variabilité d’annotation inter-observateur. Par la
mise à disposition des outils d’annotations, et par la documentation du protocole ayant abouti
à MAPLES-DR dans une publication Scientific Data, j’espère permettre à d’autres équipes
de recherche de contribuer à l’effort d’annotation. La campagne de collecte de MAPLES-DR
fut aussi l’occasion de conduire une étude de variabilité inédite sur l’annotation des struc-
tures pathologiques rétiniennes, mettant en lumière de nombreux désaccords sur l’annotation
de ces structures. Cette découverte soulève, plus généralement, une problématique d’aligne-
ment entre l’objectif clinique nécessitant l’identification de ces structures et les métriques de
segmentation.

J’ai ensuite proposé une reparamétrisation des neurones convolutifs qui découple la détection
de l’orientation des vaisseaux de leur classification en artérioles ou veinules. Le formalisme
des steered CNN [228] ajoute une seconde entrée aux modèles de classification sous la forme
d’un champ de direction α qui pilote, pour chaque pixel de l’image, la direction dans la-
quelle doivent s’orienter les filtres du modèle avant d’être convolués. Ainsi, les fonctions des
filtres convolutifs sont mutualisées de sorte que chacun puisse participer à l’analyse de tous
les vaisseaux d’une image, quelle que soit leur orientation. Pour réaliser efficacement et pré-
cisément la rotation des filtres convolutifs, ils sont reparamétrés en steerable filters. Outre
les propriétés d’équivariance par rotation, ce reparamétrage en harmonique polaire permet
une interprétation plus intuitive des paramètres appris par le modèle. Dans un article pu-
blié sur ce formalisme, j’ai montré que les modèles de classification A/V qui l’utilisaient
bénéficiaient d’une meilleure capacité de généralisation – en particulier lorsque le nombre de
paramètres ou d’échantillons d’entraînement est limité – et que leur entraînement nécessitait
moins d’itérations.

Enfin j’ai implémenté un outil de modélisation automatique de la géométrie et de la topologie
du graphe vasculaire à partir de segmentations sémantiques imparfaites : le Fundus Vessels
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Toolkit [229]. Cet outil s’appuie d’une part sur une séquence de traitement raffinant, étape
après étape, une représentation topologique et géométrique du graphe vasculaire ; et d’autre
part sur une modernisation des méthodes de partitions du graphe vasculaire afin de les
adapter aux défis que représentent les artefacts présents dans les cartes de segmentation
sémantique produites par CNN. L’alliance des deux permet de rétablir les connexions entre
des branches déconnectées dans la segmentation à cause de faux négatifs. Elle assure aussi la
correction des erreurs locales de classification, en forçant le graphe vasculaire extrait de
la segmentation sémantique à adopter la forme d’une arborescence plausible. Sous cette
représentation, le réseau vasculaire rétinien se prête volontiers à une paramétrisation fiable
de ses caractéristiques géométriques et topologiques.

9.2 Recommandation et travaux futurs

Recommandation 1 : Étude de variabilité inter et intra-observateur sur l’an-
notation des vaisseaux assistée par pré-segmentation L’étude de la variabilité sur les
structures pathologiques de la rétine du chapitre 4 interroge sur l’usage de ces vérités terrain
pour entraîner et valider des modèles et révèle combien l’annotation par présegmentation
réduit cette variabilité. À ma connaissance, ce facteur n’a pas été étudié dans les études
de variabilités d’annotations des vaisseaux. De façon plus générale, mon expérience avec
MAPLES-DR m’encourage à recommander de toujours conduire une étude de variabilité in-
ter et intra-observateur lors de l’annotation d’un jeu de données, ne serait-ce que pour définir
les valeurs "maximales" des métriques au-delà desquelles elles ne mesurent que du bruit.

Recommandation 2 : Construire une vérité terrain topologique pour la vascu-
lature rétinienne. Le manque d’images de fond d’œil annotées pour la segmentation et
la classification des vaisseaux se résorbe peu à peu. C’est cependant loin d’être le cas pour
la tâche de partitionnement du graphe vasculaire et plus généralement d’extraction de la
topologie de l’arbre vasculaire rétinien. À ma connaissance, il n’existe qu’un seul dataset à
proposer ce type d’annotation : RETA [40]. Les outils proposés dans cette thèse : autant
la plateforme d’annotations que la librairie FVT, pourraient assister la collecte de plus de
vérités terrains de ce type, en pré-annotant les images.

Recommandation 3 : Orienter les steered CNN par un mécanisme d’attention
Le formalisme des steered CNN requiert aujourd’hui le calcul préalable d’un champ de di-
rection pour définir comment orienter ses filtres. Ce qui ne permet pas son application pour
une tâche de segmentation. On peut cependant imaginer prédire ce champ de vecteurs sous
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la forme d’une matrice à deux composantes calculée par une branche parallèle du modèle.
Cette branche parallèle serait en réalité analogue à un mécanisme d’attention dont on aurait
remplacé la fonction sigmoïde par une sinusoïde et qui aurait la charge de déphaser les stee-
rable filters plutôt que de shunter telles caractéristiques ou tels pixels. Conserver la propriété
d’équivariance par rotation avec ce formalisme nécessiterait cependant quelques recherches
théoriques pour s’assurer que la direction prédite par la branche suive toujours l’orienta-
tion des objets dans l’image.Une investigation plus avancée de la théorie des steerable CNN
pourrait donner plus d’idées pour aborder ce problème.

Recommandation 4 : Modéliser le score de plausibilité du graphe plutôt que
de l’estimer par heuristiques Dans FVT, la qualité du score de plausibilité d’une ar-
borescence est totalement dépendante de la validité des heuristiques qui le calculent. Ces
heuristiques doivent donc être réglées avec soin pour tenir compte de la multitude des to-
pologies vasculaires rétiniennes. Pour contourner ce problème, on peut tout à fait imaginer
entraîner un GNN à prédire la plausibilité de chaque arc du graphe de ligne en lui don-
nant accès aux caractéristiques géométriques (angle, calibre, courbure) de chaque branche,
accompagnées de caractéristiques géométriques (par exemple extraites de la représentation
latente du modèle de classification A/V). La partition du graphe serait toujours réalisée par
la double application de la MSA, mais sur les scores de plausibilité prédits par le GNN. C’est
d’ailleurs toute l’élégance de la méthode proposée pour le partitionnement du graphe : elle est
décorrélée de l’algorithme d’énumération des hypothèses et de celui évaluant leur plausibilité.
On peut ainsi faire évoluer l’un ou l’autre en gardant le même cadre général. On peut aussi
envisager l’adaptation de méthodes de suivi vasculaire par renforcement développées pour la
modélisation de la micro-vasculature cérébrale [230].

Recommandation 5 : Développer des métriques de similarités topologiques La
représentation géométriquement et topologiquement riche produite par FVT peut servir de
base au développement de nouvelles métriques topologiques pour évaluer les modèles de seg-
mentation et de classification. À ce rôle, je pense que la distance d’édition de graphe serait la
meilleure candidate. Certes, il faudrait étendre les algorithmes qui la calculent efficacement
pour qu’ils gèrent les opérations de fusion/scission de branches et de nœuds. Ces opérations
sont en effet essentielles pour identifier les déconnexions/reconnexions de branches. Mais une
fois ce problème algorithmique résolu, une telle métrique serait non seulement utile pour éva-
luer les méthodes de segmentation vasculaires, mais aussi celles de modélisation topologique.
Et elle paverait la voie vers un recalage avancé des graphes vasculaires rétiniens permettant
par exemple l’analyse de leur évolution dans le temps à travers des études longitudinales.
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ANNEXE A VARIANCE DU SIGNAL D’INFÉRENCE DANS UN
STEERED CNN

L’équation simplifiée 5.12 définit la nième sortie de la lième couche convolutive d’un steered
CNN par :

y(l)
n (i, j) =

∑
m

∑
k,r

ωn,m,k,r · z(l)
m,k,r(i, j)

où ωn,m,k,r est un paramètre du modèle, et où zm,k,r est la corrélation croisée entre la mième

entrée de la couche et le filtre élémentaire Ψk,r :
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∑
p,q

x(l)
m (i + p, j + q) · Ψk,r(p, q)
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Notons qu’en normalisant chaque filtre élémentaire de sorte que
∣∣∣Ψk,r

∣∣∣
2

= 1, on assure que
la variance de z

(l)
m,k,r soit la même que celle de x(l)

m .

En supposant que la sortie correspondante de la couche convolutive précédente y(l−1)
m suive

une distribution gaussienne de moyenne nulle, alors l’espérance et la variance de x(l)
m =

ReLU
(
y(l−1)

m

)
sont celles d’une demi-gaussienne :
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Par ailleurs, ωn,m,k,r et z
(l)
m,k,r(i, j) sont indépendantes et E
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= 0 on a donc :
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où Nk,r est le nombre de filtres élémentaires Ψk,r.

La combinaison de toutes ces équations donne :
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ωn,m,k,r

]
·

((
1 − 2

π

) ∣∣∣Ψk,r

∣∣∣2
2

+ 2
π

( ∑
Ψk,r

)2
)
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En imposant que Var
[
y(l)

n

]
= Var

[
y(l−1)

n

]
on a alors :

Var
[
ωn,m,k,r

]
= 2

m · Nk,r

· 1
1 + 2

π
(1 − (∑ Ψk,r)2)

Or ∑ Ψk,r = 0 ∀k, r ∈ (N∗,N∗), on peut donc simplifier la formule ci-dessus lorsque k > 0.
La variance de ωn,m,k,r permettant de conserver une variance constante pendant l’inférence
est donc :

V ar
[
ωn,m,k,r

]
=


2

m · Nk,r

· 1
1 + 2

π

(
1 −

( ∑
p,q Ψk,r(p, q)

)2) si k = 0

2
m · Nk,r

· π

π + 2 si k > 0
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