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RESUME

En 1851, Hermann von Helmholtz met au point un appareil permettant 1’observation directe
du fond de l'ceil, révélant au monde la surface rétinienne et les vaisseaux qui I’arpentent.
Le réseau vasculaire rétinien suscite alors un espoir inédit au sein du corps médical. Son
observation simple et non intrusive est en effet singuliere pour des vaisseaux du corps humain.
Pourrait-elle permettre d’établir le lien entre les anomalies de la microvasculature rétinienne
et celles des vaisseaux irriguant d’autres organes comme le coeur, le cerveau, les reins, etc. ?
Il nait alors dans le corps médical un espoir et une ambition : découvrir sur la rétine des
signes précurseurs de pathologies vasculaires. Afin de permettre la conduite et la comparaison
d’études sur de larges cohortes, des indicateurs non subjectifs des altérations vasculaires
rétiniennes sont développés comme les mesures de calibres équivalents de l'artére et de la
veine centrales, ou comme la tortuosité des vaisseaux. Rapidement, apparait la volonté de

mesurer ces parametres vasculaires par des méthodes semi puis complétement automatiques.

Quatre étapes constituent ces méthodes : 1. la segmentation des vaisseaux rétiniens; 2. leur
classification en artérioles et veinules; 3. I'extraction topologique de I'arbre vasculaire ; 4. sa
paramétrisation. Ensemble, elles constituent la modélisation topologique et géométrique de

I’arbre vasculaire a partir d’images de fond d’ceil, qui sera le sujet de ce document.

Depuis 2015, les réseaux de neurones convolutifs ont recu beaucoup d’attention de la com-
munauté de chercheurs travaillant sur 'identification des artérioles et veinules rétiniennes.
Si ces modeles culminent en haut des classements de 'état de 'art, ils restent limités par
leur tendance au surapprentissage et par leur incapacité a apprendre la structure topologique
sous-jacente & la vasculature de la rétine. A cause du faible volume de données annotées
disponibles, les modeles de classification souffrent particulierement de problemes de générali-
sation et sont sujets a des incohérences topologiques : inversant régulierement la classification
d’un vaisseau au milieu d’une branche. Ces incohérences sont problématiques pour 'extrac-
tion fiable de la topologie de 'arbre vasculaire. Tant et si bien que les récents logiciels qui
exploitent ces modeles pour la paramétrisation vasculaire automatique abandonnent la modé-
lisation topologique (au détriment des parameétres vasculaires qui en dépendent) ou reposent
sur des approches simplistes qui ignorent ces incohérences. Comment mettre a profit alors,
les recherches récentes appliquant les CNN a la segmentation et la classification des vaisseaux
sur image de fond d’ceil, pour extraire une modélisation topologique robuste de I'arbre vas-
culaire rétinien en vue d’en extraire des parameétres cliniques fiables 7 Pour répondre a cette

problématique, je formule trois objectifs spécifiques.
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Le premier objectif est la construction d’un nouveau jeu de données annotées (MAPLES-
DR) pour I'entrainement et la validation de modeles de segmentation et de classification des
vaisseaux rétiniens. Cet objectif fut réalisé par 'organisation d’une campagne d’annotation
visant 4 structures anatomiques (dont les vaisseaux) et 6 structures pathologiques, sympto-
matiques de la rétinopathie diabétique sur 200 images de fond d’ceil. L’ampleur du travail
a nécessité la conception d’une plateforme d’annotation Web permettant la correction de
cartes préannotées. L’étude de variabilité inter-observateur conduite pour l'occasion révele
d’importants désaccords entre rétinologues sur le contour exact et la détection des structures

pathologiques.

Le second objectif est la formulation d’une nouvelle architecture de réseaux convolutifs pour
la classification vasculaire : les steered CNN. Les filtres des neurones convolutifs sont repa-
ramétrisés en des steerables filters afin de piloter, pour chaque pixel de I'image, la direction
dans laquelle ils sont orientés avant d’étre convolués. Pour la classification vasculaire, ce for-
malisme est utilisé pour maintenir les filtres convolutifs alignés avec la direction de chaque
vaisseau de 'image. La mutualisation paramétrique qui en résulte assure une meilleure capa-
cité de généralisation au modele, surtout lorsque le nombre de parametres ou d’échantillons

d’entralnement est limité.

Le troisieme objectif est la modélisation topologique et géométrique de l'arbre vasculaire
rétinien a partir de cartes imparfaites de segmentation sémantique prédites par réseaux de
neurones convolutifs (CNN). Cette ambition a conduit a I'implémentation du Fundus Vessels
Toolkit (FVT) : une librairie Python qui fournit les outils pour extraire minutieusement une
représentation topologique et géométrique du graphe vasculaire rétinien a partir de ces cartes
imparfaites. Une nouvelle méthode de partition du graphe permet alors de contraindre le
graphe vasculaire ainsi obtenu a adopter la forme d’une arborescence cliniquement plausible,
et ce faisant corrige bon nombre des artefacts de segmentation et de classification initialement
prédits par le CNN. Par ce simple post-traitement, FVT permet d’augmenter 'exactitude
de classification et de reconnecter 75% des branches déconnectées de leurs vaisseaux. Cette
représentation en arborescence permet finalement la paramétrisation du réseau vasculaire
rétinien.

Dans un chapitre complémentaire, je reviens sur le paradoxe de la littérature récente concer-
nant la segmentation des vaisseaux rétiniens : le nombre de publications s’envole depuis 2020,
mais les performances stagnent. Je montre par une analyse lexicographique des 1738 papiers
de la littérature que ces méthodes ne sont plus limitées par des lacunes architecturales ou
d’entrainement, mais par un retard des protocoles pour les évaluer : dii a la fois & un manque

de diversité des jeux de données de test, mais aussi a I'utilisation de métriques trop sensibles
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au biais d’annotations.

L’ensemble de ces travaux pose les termes de la transposition des récents progres techno-
logiques de segmentation et de classification de la vasculature rétinienne, vers des résultats

cliniques pour le dépistage des pathologies vasculaires.
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ABSTRACT

In 1851, Hermann von Helmholtz developed an instrument that enabled direct observation of
the ocular fundus, revealing the retinal surface and its intricate vasculature to the scientific
community. The retinal vascular network quickly gained interest from the medical field,
as its straightforward and non-invasive observation offers a unique window into the human
circulatory system. Could abnormalities in the retinal microvasculature be indicators of
vascular dysfunctions in other organs such as the heart, brain, or kidneys? Could they serve as
early signs of vascular pathologies? To support large-scale cohort studies and enable objective
comparisons, quantifiable and non-subjective indicators of retinal vascular abnormalities were
developed, including the equivalent calibers of the central artery and vein, and vascular
tortuosity. Soon, the need for semiautomatic and eventually fully automatic measurement

methods became apparent.

These automatic methods typically consist of four key stages: (1) segmentation of retinal
vessels; (2) classification of vessels into arterioles and venules; (3) topological extraction of
the vascular tree; and (4) its geometric parameterization. Together, these stages form the
basis for the central topic of this thesis, namely the topological and geometric modeling of

the vascular tree from fundus images.

Since 2015, convolutional neural networks (CNNs) have attracted significant attention for
the segmentation and classification of retinal vessels. Despite achieving state-of-the-art per-
formance, such models remain constrained by their propensity to overfit and their limited
ability to learn the underlying topological structure of the retinal vasculature. The scarcity of
annotated data exacerbates generalization issues, leading to frequent topological inconsisten-
cies, such as the misclassification of a vessel midway along its branch. These inconsistencies
hinder the reliable extraction of vascular topology. As a result, most recent software tools
either forego topological modeling altogether (at the expense of vasular parameters that de-
pend on it), or rely on simplistic heuristics that ignore such errors. How, then, can recent
CNN-based advances in vessel segmentation and classification be leveraged to produce a ro-
bust topological model of the retinal vascular tree for the extraction of clinically meaningful

parameters? This thesis addresses this question through three specific objectives.

The first objective is the construction of a new annotated dataset, MAPLES-DR, for train-
ing and evaluating models that perform the segmentation and classification of retinal vessels.
This objective was achieved through a large-scale annotation campaign during which four

anatomical structures (including vessels) and six pathological structures associated with di-



abetic retinopathy were manually labeled in 200 fundus images. To facilitate this effort,
a Web-based annotation platform was developed, enabling the correction of pre-annotated
maps. An interobserver variability study conducted as part of this campaign revealed sub-
stantial disagreements among retinal specialists regarding the exact contours and detection

of pathological structures.

The second objective involves the development of a novel CNN architecture for vessel
classification: the steered CNN. In this design, convolutional filters are reparameterized into
steerable filters that can be dynamically aligned with the local orientation of vessels for each
pixel independently. This formalism enforces rotational consistency and reduces redundancy
in parameterization by sharing parameters across all vessel orientations. The steetable filters
improve the model’s generalization capabilities, especially when few trainable parameters or

training samples are available.

The third objective focuses on the topological and geometric modeling of the retinal vas-
cular tree from imperfect semantic segmentation maps generated by CNNs. This led to the
development of the Fundus Vessels Toolkit (FVT), a Python library that enables the ex-
traction of a detailed topological and geometric representation of the vascular graph from
imperfact segmentation maps. A novel graph partitioning algorithm constrains the extracted
graph to form a clinically plausible tree structure, correcting many segmentation and classi-
fication artifacts produced by CNNs. This simple post-processing step significantly improves
classification accuracy and reconnects up to 75% of previously disconnected vessel branches.
The resulting tree representation enables accurate parameterization of the retinal vascular

network.

In a complementary chapter, the thesis examines a paradox in the recent literature: while
the number of publications on retinal vessel segmentation has surged since 2020, performance
metrics have stagnated. Through a lexicographic analysis of 1,738 papers, it is demonstrated
that progress is now hindered not by architectural or training limitations, but by outdated
evaluation protocols. The latter problem can be ascribed both to insufficient diversity in test

datasets and to using performance metrics that are overly sensitive to annotation biases.

Together, these contributions lay the foundation for translating recent advances in retinal
vessel segmentation and classification into clinically meaningful outcomes for vascular disease

screening.
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CHAPITRE 1 INTRODUCTION

«Nowhere else in the living body are we able to study the blood vessels of the size of the central artery
and its branches to the finest arterioles than in the fundus. The man with the ophthalmoscope is
impressed by its importance in the recognition of the early signs of general disease and of its general
diagnostic and its prognostic value. But its greatest value lies in the possibility it affords to help
solve the problems that have so long baffled medical science, in the search for ultimate causes of

conditions that are so common, so varied in their manifestations and so serious in their course.»

H. Friedenwald, Oxford 1930 [3]

La présence de vaisseaux sanguins a la surface du fond d’ceil est connue des le 18° siecle : Jean
Méry les aurait remarqués pour la premiere fois en 1704 dans les yeux de son chat, lorsqu’il lui
maintenait la téte sous 1'eau. Il faut cependant attendre 1851 pour que I’Allemand Hermann
von Helmholtz mette au point un appareil permettant ’observation de la rétine d’un individu
sans qu’il soit nécessaire de I'immerger. L’ ophtalmoscope est de conception rudimentaire : une
source de lumiere est reflétée par une surface semi-refléchissante vers la pupille du patient. Un
observateur plongeant alors son regard au travers de la surface voit sa ligne de vue s’aligner

avec les rayons illuminant le fond d’ceil, et y découvre le réseau vasculaire rétinien.

La simplicité de I'appareil conduit a son succes immédiat. Il faut dire que 1’observation
directe et non intrusive de vaisseaux sanguins est inédite dans le corps humain. Pourrait-elle
permettre d’établir le lien entre les anomalies de la microvasculature rétinienne et celles des
vaisseaux irriguant d’autres organes comme le cceur, le cerveau, les reins ? Il nait alors dans
le corps médical un espoir et une ambition : découvrir sur la rétine des signes précurseurs
de pathologies vasculaires. Autrement dit, utiliser les yeux comme fenétre, non pas de I'ame
comme le disait Georges Rodenbach, mais du coeur et du systeme vasculaire en général pour

mieux comprendre et anticiper ses défaillances.

Aussi, pendant pres de trois siecles, les ophtalmologues ont regardé leurs patients dans le noir
de la pupille, d’abord par des observations directes via un ophtalmoscope puis par imagerie
de fond d’eeil (“fundus” en anglais). Cette famille d'imagerie désigne tout systeme d’acqui-
sition capable de capturer une image des tissus semi-transparents rétiniens par réflexion de
lumiére sur la rétine [4]. Depuis la premiére commercialisation par Zeiss en 1926 de photogra-
phies monochromes de la rétine, les technologies d’acquisition ont bien évolué : les caméras
fond d’ceil contemporaines capturent en couleur et a haute résolution jusqu’a un angle de
133 © de l'intérieur du globe oculaire. Dans cette these, on s’intéressera plus précisément

aux photographies de champ standard (30 © a 50 °) car cette modalité non invasive, rapide



et bon marché est largement répandue dans les services ophtalmologiques du monde entier.
Elle a ainsi largement contribué aux études conduites sur de grandes cohortes de patients
pour établir le lien entre altérations de la micro-vasculature rétinienne et d’autres pathologies
vasculaires. Dans un premier temps, les ophtalmologues recensent ces altérations : rétrécisse-
ment des arteres, augmentation de la tortuosité, etc. Puis, dans un objectif de standardisation
des études, des indicateurs géométriques, morphologiques et topologiques de la vasculature
rétinienne sont développés. Mais la mesure manuelle de ces indicateurs souffre d'une grande

variabilité et est chronophage.

Depuis 30 ans, des yeux d'un autre genre s’ouvrent et scrutent avec ceux des cliniciens les
images de la rétine, des yeux rapides, infatigables et constants : les yeux des algorithmes.
Ces dernieres années, la segmentation et la classification automatique du réseau vasculaire
rétinien ont en effet suscité 'intérét de la communauté de chercheurs en vision par ordinateur.
Ces algorithmes, les réseaux de neurones particulierement, ont une précision croissante et
constituent une premiere étape vers 'automatisation et la standardisation de l’extraction
d’indicateurs vasculaires cliniques. Cependant, pour compléter cette tache, une seconde étape
est nécessaire : la modélisation topologique de 'arbre vasculaire a partir des segmentations
de vaisseaux. De plus, la définition de la topologie de I'arbre vasculaire rétinien nécessite
I'extraction de deux autres structures qui constituent des “points cardinaux” permettant de

s’y repérer et d’en estimer 1’échelle : la fovea et le disque optique.

Structures anatomiques d’intérét sur images de fond d’oeil

La surface extérieure du globe oculaire est une paroi blanche, rigide et opaque : la sclere.
A Dlintérieur de cette enveloppe protectrice, tapissant le fond de Peeil, deux tissus se su-
perposent : la rétine et la choroide. La choroide est un tissu hautement vascularisé chargé
d’alimenter en sang la surface externe de la rétine, dont la surface interne abrite les photo-
récepteurs qui nous donnent la vue. C’est cette derniere surface qui est scrutée par les oph-
talmologues, initialement a 1’aide d’un ophtalmoscope et aujourd’hui par imagerie du fond
d’eeil dont un exemple est donné a droite de la figure 1.1. Et c’est la vasculature de cette

surface qui va nous intéresser au cours des 136 prochaines pages de ce projet de doctorat.

La fovea Notre acuité visuelle est maximale au centre de notre champ de vision. En effet,
c’est au centre de la rétine que la densité de photorécepteurs — particulierement celle des
cones responsables de la vision en couleurs — est la plus élevée. Cette zone absorbe donc
plus la lumiere, teintant le fond de la rétine et y apparaissant comme une tache sombre : la
macula. Cette zone diffuse de 5 & 6 mm de diametre contient en son cceur un point sombre

bien défini : la fovea, mesurant environ 150 pm.
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FIGURE 1.1 Schéma des principales structures anatomiques de la rétine.

Gauche : Vue en coupe du globe oculaire ; Droite : Image du fond d’ceil centrée sur la fovea.

Le disque optique Le globe oculaire est connecté a son orbite par le nerf optique qui
assure la liaison nerveuse entre les photorécepteurs rétiniens et le cortex visuel et qui alimente
I'ceil en sang par l'artere et la veine centrales. Le disque optique est la téte de ce nerf, c’est le
point de convergence des axones (les terminaisons nerveuses) rétiniennes. Le disque optique
se situe du co6té nasal de la macula. Lorsqu’il est sain, son diametre vertical mesure environ
1,7 mm et celui horizontal 1,5 mm. Sur I'imagerie de fond d’ceil, il apparait comme une zone
claire dénuée de capteurs (causant d’ailleurs un point aveugle dans notre champ de vision).
Sa surface n’est pas plane : en son centre, elle prend la forme d’'un entonnoir d’ou émerge
I'artere et la veine centrales. Ce renfoncement nommé excavation papillaire ou papille (“cup”

en anglais) se présente comme une ellipse claire au coeur du disque optique.

Les vaisseaux rétiniens A la sortie de la papille, Partére et la veine centrales se ramifient en
artérioles et veinules. Les artérioles acheminent le sang chargé d’oxygene vers les capillaires qui
sillonnent la surface interne de la rétine et dont la paroi endothéliale permet des échanges avec
les cellules photoréceptrices (notamment leur ravitaillement en oxygene et la récupération du
dioxyde de carbone). Le sang appauvri en oxygene est alors collecté par les veinules puis
par la veine centrale. Cette différence de composition sanguine se traduit par une couleur
plus foncée des veinules®. La paroi des artérioles rétiniennes est — comme celle des artérioles
cérébrales et coronaires — dotée de muscles lisses qui permettent a ces vaisseaux d’adapter leur
calibre (leur diametre) et donc leur débit sanguin aux besoins des cellules photoréceptrices qui
varient avec la luminosité. Cette caractéristique fait parfois apparaitre sur la ligne médiane
du vaisseau un liseré blanc propre aux artérioles. Enfin, une derniere propriété distingue les
deux types de vaisseaux : le diametre des veinules est globalement plus large que celui des

artérioles (respectivement 300 um et 200 pum en moyenne).

1. La protéine d’hémoglobine oxyde ses atomes de fer pour transporter la molécule de dioxygene. Cette
oxydation se traduit, dans le sang comme dans la rouille, par une teinte rouge vif.



Objectif de recherche

Avec l'avéenement des réseaux de neurones entrainés par apprentissage profond, le nombre
de publications traitant de la segmentation et de la classification des vaisseaux rétiniens ex-
plose : depuis 2020, il dépasse les 150 publications chaque année (plus de 200 en 2022) ! Mais,
si ces articles motivent généralement leur recherche par des enjeux cliniques, peu de travaux
évaluent les retombées réelles de ce foisonnement d’articles. La segmentation sémantique du
réseau vasculaire n’est d’ailleurs que la premiere étape vers 'extraction des indicateurs cli-
niques : elle doit étre suivie d’une extraction des informations géométriques, morphologiques
et topologiques. Or, cette seconde étape n’est pas triviale lorsqu’elle doit travailler a par-
tir de segmentations automatiques qui introduisent des artefacts topologiques inhérents aux

approches basées uniquement sur une analyse des intensités de 1'image.

Comment mettre ces progres récents des techniques de segmentation sémantique des vaisseaux
au service de la recherche clinique, en automatisant 1’extraction des indicateurs vasculaires
existants et potentiellement en permettant le développement de nouveaux? Mon doctorat
s’'inscrit dans 'effort clinique de compréhension et de dépistage des rétinopathies diabétiques
et de pathologies vasculaires. Il vise au développement et a la validation d’un outil auto-
matique de modélisation topologique de la vasculature rétinienne, afin d’en permettre une

analyse fiable et reproductible sur les images de fond d’ceil issues de grandes cohortes.

Plan de la theése

La présente these expose les travaux conduits pendant mon doctorat et leurs conclusions.
Elle est structurée en neuf chapitres dont le premier est cette introduction. Le second est une
revue de littérature traitant de la modélisation topologique du réseau vasculaire rétinien : ses
motivations, I’évolution de ses algorithmes et ses limitations. Le troisiéme énonce les objec-
tifs spécifiques de mon projet de recherche et sa méthodologie générale. Les trois chapitres
suivants détaillent la méthode proposée pour atteindre chaque objectif spécifique. Ils sont ins-
pirés des trois articles publiés durant mon doctorat, mais explorent plus en profondeur chaque
sujet. Le quatrieme est consacré a MAPLES-DR : une campagne d’annotation des structures
anatomiques et pathologiques de la rétine ayant abouti a la publication d’un nouveau jeu
de données annoté. Le cinquiéeme expose un nouveau formalisme de neurones convolutifs :
les steered CNN, spécifiquement concus pour la classification des artérioles et veinules réti-
niennes. Le sizieme détaille I’élaboration du Fundus Vessels Toolkit, un outil de modélisation
automatique de la vasculature rétinienne robuste aux artefacts de segmentation et de clas-
sification. Le septiéme chapitre introduit un paradoxe intéressant sur la littérature actuelle
et le dépeint par une analyse lexicographique, employant un modele de langage large (LLM)

pour le triage de milliers d’articles scientifiques. Le huitiéme, la discussion, montre comment



les méthodes proposées aux chapitres 4, 5 et 6 répondent aux objectifs spécifiques et quelles
limites persistent. Le neuviéme et dernier chapitre de cette these en résume les contributions

et formule des recommandations pour des travaux futurs.



CHAPITRE 2 REVUE DE LITTERATURE

Ce chapitre revisite les motivations cliniques a la modélisation topologique du réseau vascu-
laire rétinien. Puis, il propose un tour d’horizon de la littérature sur la segmentation et la
classification automatique des vaisseaux, et sur la reconstruction de 'arbre vasculaire. Il se
conclut par une revue des outils semi- et completement automatiques de modélisation et de

paramétrisation de 'arbre vasculaire rétinien et une analyse de leurs limites.

2.1 Genése de la modélisation du réseau vasculaire rétinien

On verra ici comment la paramétrisation du réseau vasculaire rétinien s’est imposée comme
un formidable outil pour analyser les effets des pathologies vasculaires systémiques sur les

artérioles et veinules de la rétine.

Premiéres observations d’anomalies rétiniennes dues aux défaillances vasculaires

Des 1898, Marcus Gunn recense et décrit les anomalies de la vasculature rétinienne chez des
patients souffrant d’hypertension [5]. Il observe un rétrécissement généralisé et irrégulier du
calibre (c’est-a-dire du diametre) des artérioles, accompagné de perturbations des reflets lu-
mineux le long de leur surface. Il note aussi 'apparition de lésions vasculaires : hémorragies,
cedémes et anomalies des capillaires (aujourd’hui appelées néovascularisation). Cette descrip-
tion évolue peu durant la premiere moitié du 20° siecle, mais leur compréhension étiologique
progresse. On associe la contraction généralisée des artérioles a ’élévation de la pression arté-
rielle et on lui impute 'apparition de lésions vasculaires. Quant aux irrégularités de calibres,

on les relie plutot & une hypertension contrdlée ou a des cas de sclérose artériolaire [6].

Afin de permettre la conduite et la comparaison d’études sur de plus larges populations,
des systemes de classification standardisés de ces anomalies sont développés. Ainsi, en 1939,
Keith, Wagener et Barker classent les symptomes de rétinopathie hypertensive selon 4 stades
de gravité : 1. rétrécissement généralisé ou focal des artérioles; 2. entailles artérioveineuses ;
3. hémorragies ou exsudats; 4. cedéme de la papille [7]. Ils proposent aussi pour chacun une
définition précise. Mais en 1966, Kagan et al. montrent que malgré cet effort de standardi-
sation, la détection de ces symptomes souffre d’une grande variabilité inter-observateur [§].
Cette variabilité se manifeste particulierement lors de I’évaluation du rétrécissement des ar-
térioles, alors que ce signe est peut-étre le plus prometteur pour étudier les effets précoces

des pathologies vasculaires sur la rétine.



Vers des indicateurs non-subjectifs des altérations vasculaires rétiniennes

Pour pallier cette variabilité, apparait la nécessité d'une mesure quantitative, non subjective
de la contraction généralisée des artérioles rétiniennes. Comme il n’est pas envisageable de
faire mesurer a un clinicien le diametre de toutes les artérioles du fond d’ceil (en tout cas dans
un temps raisonnable), Parr et al. [9] proposent en 1974 un protocole de mesure estimant
le calibre de 'artere centrale de I’'ceil par une mesure des quelques artérioles a la périphé-
rie du disque optique. La zone d’intérét est limitée de 0.5 a 1 diametre de disque autour
de la papille : de sorte a en étre suffisamment éloignée pour éviter les sections de transi-
tions arteres/artérioles, tout en se concentrant uniquement sur les premiers embranchements
artériolaires Les diametres de toutes les artérioles traversant cette zone sont mesurés indivi-
duellement par un expert puis agrégés en remontant la topologie de ’arbre artérien jusqu’a
Iartére centrale®. Le calibre obtenu est nommé calibre équivalent de I'artére rétinienne cen-
trale (CRAE) et peut étre comparé d'un individu a l'autre. Sa méthode de mesure sera
simplifiée en 2003 par Knudtson et al. [11] qui limitent le nombre d’artérioles considérées
aux 6 plus importantes, apreés avoir remarqué que le nombre d’artérioles biaisait le calibre
équivalent. Le CRAE est toujours utilisé sous cette forme aujourd’hui pour estimer le calibre

global des artérioles rétiniennes.

En 1992, Hubbard et al. [12] adaptent la formule de Parr et Spears pour calculer le ca-
libre équivalent de la veine rétinienne centrale (CRVE) et en déduisent le ratio du calibre

artérioles/veinules (AVR) défini par AVR = SR8E. En utilisant le CRVE comme référence,

I’AVR est bien moins sensible a la variabilité naturelle du calibre des vaisseaux au sein d’une

population. De ce fait, il capte rapidement I'attention de la recherche clinique qui projette
de I’évaluer sur de larges cohortes. Il deviendra ainsi rapidement le porte-étendard des indi-
cateurs quantitatifs de I'altération des vaisseaux rétiniens et d’autres émergeront dans son

sillage, comme la tortuosité ou la dimension fractale (cf. section 2.3.1).

1. Pour chaque paire d’artérioles issues d’'une méme bifurcation, le calibre W de lartére parent est dérivé
par : W = \/0.871112 + 1.01w§ — 0.22w,wp — 10.76 ou w, et wy sont respectivement le calibre de 'artériole
la plus petite et la plus large en pm. Cette agrégation tient ainsi compte du nombre d’embranchements
artériolaires, puisque la surface totale du systeme vasculaire artériolaire augmente avec ce dernier et qu’il
est tres variable d’un individu a l'autre. Elle est aussi fonction du carré des calibres artériolaires de sortes a
mieux représenter la capacité sanguine de 'artére centrale (qui est proportionnelle & sa section et non a son
rayon) [10].




Premier protocole de mesure de ’AVR assistée par ordinateur

C’est dans ce contexte qu’en décembre 1999, Hubbard et al. [12] publient la premiére étude qui
quantifie 'AVR sur une large cohorte de 9040 participants agés de 48 a 73 ans. Ils montrent
que ’AVR suit une distribution normale au sein de la population, que sa moyenne varie selon
le sexe, 'ethnicité, le statut de fumeur et décroit avec I’age. Par ailleurs, apres avoir corrigé
pour ces facteurs, ils observent bien une corrélation entre ’AVR et la pression artérielle et

confirment quantitativement un rétrécissement généralisé des artérioles rétiniennes.

Mais le vrai intérét de cette publication, pour nous, réside dans la méthode utilisée pour
mesurer I’AVR sur une population de cette ampleur. Ce papier est en effet le premier (en
tous cas a notre connaissance) a proposer l'utilisation d'un «image processor» pour stan-
dardiser 'évaluation d’un paramétre vasculaire rétinien. Etant donné la singularité d’un tel
appareil pour I’époque, les auteurs décrivent leur protocole avec force détails. Le scan réti-
nien monochrome (canal vert) est tout d’abord numérisé par un scanner de film 35 mm et
transféré au processeur d’image Sun Microsystems affublé d’un écran "haute résolution" de
19 pouces. L’annotateur sélectionne ensuite la région d’intérét dont le contraste et la netteté
sont améliorés numériquement. Il peut alors marquer les contours d’un vaisseau a l’aide d’un
outil suffisamment saugrenu pour étre mentionné par les auteurs : « A mouse was used to

mark the two edges of the vessel » !

Du point de vue du traitement d’images, la méthode est rudimentaire : elle se limite a une
amélioration des contrastes et une magnification. Mais les auteurs annoncent qu’ils travaillent
a un algorithme pour automatiser la sélection manuelle des bords des vaisseaux et esperent
ainsi améliorer la reproductibilité et 'efficacité des mesures de calibre. Des lors, I'histoire
de la paramétrisation du réseau vasculaire est définitivement liée a celle de I'informatique
biomédicale et du traitement d’image. Et les motivations invoquées en 1999 restent inchan-
gées aujourd’hui : 1. la standardisation des protocoles de mesures pour éviter la variabilité
inter-observateur et comparer les résultats entre études; 2. leur automatisation pour rendre

possible 'analyse de cohortes importantes et améliorer la force statistique des résultats.

L’utilisation d’une telle « débauche » d’outils technologiques (un écran 19 pouces et une
souris!) contraint cependant les auteurs a souligner une limitation de leur méthode : « Mea-
surement of A/V ratio using a computerized image processor is practical in a research setting,

but currently could not be easily done in a clinical setting. »

Cette limitation sera tres éphémere...



Premiers logiciels de mesure semi-automatique de ’AVR

A peine 3 ans plus tard, en 2002, la méme équipe présente le logiciel Retinal Analysis [13].
Un outil capable de mesurer automatiquement le calibre des vaisseaux en détectant leurs
contours sur des profils d’intensité extraits le long de leurs sections. Néanmoins, ['utilisateur
doit toujours placer manuellement la grille de la zone de mesure, choisir les sections de
vaisseaux a évaluer, valider les mesures de calibre et calculer le CRAE, le CRVE et ’AVR.
Ainsi, si la reproductibilité du résultat est améliorée par la détection des contours, le protocole

nécessite toujours 25 minutes pour extraire ’AVR d’une image.

Ce logiciel est remplacé quelques années plus tard par IVAN qui réduit de 5 minutes le temps
de mesure par une pré-segmentation des vaisseaux. L’algorithme qui réalise cette tache n’est
pas documenté, on sait simplement qu’il s’appuie sur une carte de super-pixels parmi lesquels
sont identifiés les segments vasculaires. Durant une décennie, son utilisation se répand dans
le monde entier pour quantifier ’AVR sur des cohortes et investiguer 1'effet des maladies car-
diovasculaires sur la vasculature rétinienne de plusieurs milliers de patients. Pour ne donner
que quelques exemples, il sera utilisé aux Etats-Unis : avec la Beaver Dam Eye Study [14,15]
(diabete) ou la Multi-Ethnic Study of Atherosclerosis [16] (athérosclérose), en Australie : avec
la Blue Montains Fye Study [17,18] (hypertension), ou encore en Europe avec la Thessaloniki

Eye Study [19] (facteurs de risques cardiovasculaires).

En 2010, Cheung et al. [20] proposent d’étendre la région de mesure de I’AVR a deux dia-
meétres du disque optique, alors qu’elle était jusque-la limitée a 1. Ils montrent que ’AVR
ainsi obtenu est plus reproductible et a une meilleure corrélation statistique avec les facteurs
de risques cardiovasculaires. Mais pour réussir cet exploit sans augmenter le temps d’anno-
tation, leur logiciel SIVA automatise la segmentation du disque optique et des vaisseaux et

identifie méme les artérioles et veinules !
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2.2 Modélisation automatique du graphe vasculaire rétinien

On l’a vu, le réseau vasculaire rétinien, singulier par la simplicité de son observation, est
scruté et mesuré depuis le XIX® siecle avec 'espoir de mieux comprendre et anticiper les
pathologies cardiovasculaires et rétiniennes. Mais les protocoles de mesure de calibre déve-
loppés a la fin du XX¢ siecle se restreignent, par pragmatisme, a une petite région autour
du disque optique. Pour étendre leur définition a une portion plus large de la rétine et pour
standardiser la mesure d’autres parametres vasculaires (comme la tortuosité ou la géométrie
des embranchements), la segmentation, la classification et la modélisation topologique auto-
matique des vaisseaux rétiniens s’imposent comme une nécessité. Leur objectif est double :
réduire le temps d’annotation pour permettre I’analyse de cohortes plus nombreuses et stan-
dardiser la mesure des parametres vasculaires pour comparer leurs valeurs d'une étude a

l'autre sans variabilité inter-observateur.

Lorsqu’en 2010, Cheung et al. développent SIVA, le premier logiciel de mesure de ’AVR
a intégrer un algorithme de segmentation et de classification de la vasculature rétinienne,
ils bénéficient des travaux de recherche déja conduits sur ces algorithmes depuis plusieurs
décennies. En préambule d’une analyse de SIVA et de ses successeurs semi et completement
automatiques, cette section passe en revue I’évolution des algorithmes de segmentation et
de classification automatique des vaisseaux rétiniens : depuis les méthodes non supervisées
jusqu’aux réseaux de neurones a plusieurs millions de parametres. Cependant, ce domaine
connait un tel intérét depuis 30 ans qu’il est impossible de le synthétiser en une revue exhaus-
tive : le nombre de papiers concernant la segmentation seule avoisine les 1700 depuis 1’an 2000,
dont la moitié a été publiée apres le début de mon doctorat en 2019 (cf. Fig. 2.1). Je prends
donc le parti d’une revue narrative s’appuyant sur des articles de revues récents [21-26]. Je

tenterai néanmoins une approche exhaustive (bien qu’expérimentale) dans le chapitre 7.
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FiGURE 2.1 Nombre de publications annuelles cumulées concernant la segmentation et la
classification des vaisseaux rétiniens a partir d’'image de fond d’oeil.

Les publications regroupées dans ce graphique ont été identifiées selon la méthode de la section 7.
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2.2.1 Défis techniques a la segmentation sémantique des vaisseaux rétiniens

Pour comprendre les méthodes de segmentation et de classification des vaisseaux rétiniens sur

images de fond d’ceil, commencons par relever les difficultés auxquelles elles doivent répondre.

Singularité morphologique et variabilité des structures vasculaires rétiniennes

La morphologie singuliere des vaisseaux, et a fortiori des vaisseaux rétiniens, pose plusieurs
défis aux algorithmes de segmentation. Leur structure longiligne et leur présence dans ’en-
semble de Iimage interdisent les approches par bounding-box ou détection de centroide. A
cause de leur finesse, et bien qu’ils sillonnent la quasi-totalité de 'image, les vaisseaux ne
représentent que 15% des pixels de la région d’intérét : soit un débalancement de classe non
négligeable. Cette finesse est en outre hétérogene : une grande diversité de calibres coexiste
dans une méme image avec un ratio de 'ordre de 1 a 20. Autre défi, la vasculature se dé-
ploie en 3D sur la surface rétinienne mais est projetée en 2D par I'imagerie de fond d’ceil. Il
est donc fréquent qu’un vaisseau soit occulté par un autre lorsqu’ils se croisent ou évoluent
parallelement. Dans ces deux cas, il est parfois difficile d’identifier de quel vaisseau émanent
certaines ramifications (voir Figure 2.2¢). Pour cette méme raison de perspective, les arteres

et veines de la cupule optique sont difficiles a distinguer car vues de face.

Les algorithmes de segmentation doivent aussi étre robustes a la variabilité morphologique
de la vasculature rétinienne d’'un individu a 'autre. Celle-ci s’applique au calibre moyen dont
les variations sont liées a I’age, au sexe, a I'éthnicité, etc. Hao et al. [27] ont méme mesuré

une fluctuation du calibre intra-individu au cours du cycle cardiaque (de 'ordre de 6% pour

FI1GURE 2.2 Exemples de segmentations vasculaires difficiles dans la base de données HRF.

a. & b. Vaisseaux flous et contrastant peu avec le fond ; c. Vaisseaux enchevétrés et de tailles diverses ;
d. & e. Vaisseaux occultés par des lésions de la rétine ou du vitré.
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les artérioles et 4% pour les veinules). La tortuosité et la topologie des vaisseaux connaissent
aussi une variabilité importante entre individus, au point qu’elle puisse étre utilisée comme

descripteur pour valider 'identité d’une personne [28]!

Le contraste entre vaisseaux et fond est normalement un atout important pour la segmenta-
tion des vaisseaux, comme celui entre artérioles et veinules ’est pour leur classification. Mais
si ce contraste est bien marqué pres du disque optique et au centre de I'image, il s’atténue en
périphérie. En outre, sur certaines images, les vaisseaux de la choroide (couche vasculaire et
nerveuse sous la rétine) transparaissent et induisent des variations importantes de luminosité

du fond rétinien, affectant son contraste avec les vaisseaux (cf. Figure 2.2a).

Les lésions du vitré ou de la rétine — particulierement les hémorragies et les exsudats —
peuvent aussi occulter des portions de vaisseaux (cf. Fig. 2.2d & e), altérer leurs couleurs
(cf. Fig. 2.2e) ou rendre imprécises leurs bordures (cf. Fig. 2.2b). Tous ces cas sont propices
a des faux négatifs dans la segmentation automatique. Par ailleurs, chez certains patients,
la membrane externe des vaisseaux reflete, en son sommet, la lumiére émise par la caméra.
Une ligne blanche apparait alors au centre du vaisseau et semble le scinder en deux dans
le sens de la longueur (cf. Fig. 2.2c). Ce cas se produit plus fréquemment a la surface des
artérioles. L’algorithme doit alors étre capable de le distinguer du cas ou deux vaisseaux
sont limitrophes et paralléles : dans le premier, la ligne claire appartient au vaisseau, dans le

second, elle appartient au fond.

Artefacts et variabilité d’acquisition

Une mauvaise qualité d’acquisition de I'image de fond d’ceil peut aussi étre source d’erreurs
pour les algorithmes de segmentation et de classification des vaisseaux rétiniens. Ainsi, une
mauvaise mise au point rendra flous les contours des petits vaisseaux ; des poussieres oubliées
sur I'objectif prendront la forme d’une tache sombre sur la rétine, ou un mauvais réglage de

la source lumineuse plongera des pans entiers du fond d’ceil dans 'ombre.

En outre, il faut ajouter a la variabilité anatomique naturelle de la rétine celle due au dis-
positif d’imagerie. En effet, depuis la premiere commercialisation d’une caméra fundus par

Zeiss-Littman en 1955, les technologies de photographie du fond d’ceil ont beaucoup évolué.

FIGURE 2.3 Colorations d'une méme rétine imagée par différentes caméras. Source : [1]
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Ainsi, 'angle de FOV, c’est-a-dire I'angle correspondant a la section imagée de I'intérieur du
globe oculaire, était initialement limité a 25° mais atteint aujourd’hui 133° pour une caméra
fundus couleur ou méme 200° pour une caméra laser [29]. La résolution des capteurs, facteur
déterminant pour distinguer les vaisseaux les plus fins, a aussi grandement progressée : de
500 x 500 a plus de 3000 x 3000 pixels. D'une caméra a l'autre, la coloration de l'image
peut aussi grandement varier [1], comme démontré par la Figure 2.3 (la couleur de la rétine
dépend aussi de la pigmentation rétinienne [30]). Toutes ces variations présentent un défi de

généralisation aux algorithmes de segmentation et de classification vasculaire.

Volume limité de données publiques pour entrainer et valider les modeles

Cet enjeu de généralisation est d’autant plus préoccupant que le volume de données publiques
annotées pour entrainer et valider les algorithmes de segmentation et de classification est
tres réduit, en tout cas jusqu’a ces dernieres années. Il faut dire que ’annotation manuelle
de ces données est particulierement fastidieuse : la segmentation seule nécessite 2 heures par
image [31]! Aussi, au début de mon doctorat en 2019, ces jeux de données publics totalisaient
moins de 200 images pour la segmentation et 107 images pour la classification. Et pour
parvenir a ces chiffres, il fallait agréger des images de résolutions et de FOV hétéroclites,
certaines centrées sur la macula et d’autres sur le disque optique. Pour cette raison, les
algorithmes que nous allons présenter ont souvent été validés sur le jeu qui a servi a leur

entralnement, quitte a produire une version de I’algorithme par jeu de données.

TABLEAU 2.1 Jeux de données publics d’images de fond d’oeil avec annotations vasculaires.

T Ces base de données ne sont pas réellement publiques mais sont disponibles sur demande.

Nom (année) # Images Dimensions Camera (FOV) Population

Annotées pour la segmentation uniquement

STARE (2000 [32]) 20 700 x 650 TopCon TRV-50 (35°) Californie, US
DRIVE (2004 [31]) 40 565 x 594 Canon CR5 (45°) Pays-Bas (25-90 ans)
CHASE_DBI1 (2009 [33)) 28 1280 x 960 NM-200-D (30°) UK (10 ans)

HRF (2013 [34]) 45 3504 x 2336 Canon CF-60 UVi (60°) République Tcheque
IOSTAR! (2015 [35]) 30 1024 x 1024 EasyScan SLO (45°) -

FIVES (2022 [36]) 800 2048 x 2048 TRC-NWS (50°)  Zhejiang, Chine

Annotées pour la segmentation et la classification

AV-DRIVE (2013 [37]) 40 voir DRIVE

LES-AV (2018 [38)) 22 1958 x 2196 Visucam ZK-5 (30°/45°) - (53-90 ans)

HRF (AV) (2019 [39]) 45 voir HRF

RETA (2022 [40]) 81 4288 x 2848 Kowa VX-10« (50°) Inde

Leuven-Haifal (2024 [41]) 220 1444 x 1444 Visucam 500 (30°) Belgique (18-90 ans)
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La suite de cette section 2.2 est organisée en quatre parties. Les sections 2.2.2 et 2.2.3 traitent
des méthodes de segmentation puis de classification automatique des vaisseaux rétiniens n’im-
pliquant pas 'entrainement d'un modele par apprentissage profond (DL) ; elles visent a décrire
la nature de ces taches par un tour d’horizon de leurs algorithmes cong¢us manuellement. La
section 2.2.4 présente les méthodes qui améliorent la classification A/V par une modélisation
topologique des vaisseaux. Enfin, la section 2.2.5 présente les modeles de réseaux de neurones

et leurs évolutions spécifiques a la segmentation sémantique de la vasculature rétinienne.

2.2.2 Segmentation des vaisseaux rétiniens pré apprentissage profond

Compte tenu de la faible quantité de données publiques disponibles au début des années 2000,
les premieres méthodes de segmentation vasculaire sont non supervisées. Elles reposent sur la
connaissance a priori de la morphologie des vaisseaux pour les distinguer de I'arriere-plan, en
particulier sur leur forme longiligne et leur contraste avec le fond de la rétine. Ce contraste
étant particulierement prononcé sur le canal vert, il sera généralement le seul exploité par

une majorité des méthodes citées ci-dessous qui travaillent en niveaux de gris.

Méthodes non supervisées

Filtrage convolutif Deés 1989, Chaudhuri et al. [42] constatent que le profil d’intensité le
long d’une section des vaisseaux rétiniens est analogue a une courbe gaussienne. Ils proposent
une modélisation par un matched response filters (MRF) de taille 32x32 pour détecter les
vaisseaux verticaux, puis déclinent ce filtre en 12 variantes pour couvrir toutes les orienta-
tions avec un pas de 15°. Cette approche consistant a estimer la "vascularité" de chaque pixel
(c’est-a-dire la vraisemblance qu’il appartienne a un vaisseau) par filtrage convolutif fera de
nombreux émules. Hoover et al. (2000 [32]) lui ajoutent des caractéristiques extraites sur ’en-
semble de I'image. Al Rawi et al. (2007 [43]) affinent les parameétres du filtre pour maximiser
la segmentation sur DRIVE et atteignent 94,7% d’exactitude (accuracy) sur cette base. Puis
une série de travaux explore d’autres familles de filtres : comme les filtres de Gabor (Meng et
al., 2015 [44]), les ondelettes (Wang et al., 2013 [45]) ou les filtres COSFIRE (Azzopardi et
al., 2015 [46]). Les bonnes performances de toutes ces méthodes témoignent de Uefficacité du
filtrage convolutif pour la segmentation vasculaire. Il sera au cceur de nombreuses méthodes
supervisées ou non et on peut méme considérer les CNN comme des lointains héritiers. Ce-
pendant, I’approche initiale est limitée par son absence de considérations pour la dimension
longitudinale des vaisseaux, qui favorise la prédiction des segmentations bruitées et discon-
tinues. Pour répondre a cette limitation, des méthodes par suivi (tracking) de vaisseaux ou

par évaluation de la Hessienne virent le jour.
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Suivi (tracking) des vaisseaux En 1998, Chutatape et al. [47] combinent les MRF de
Chaudhuri et al. avec des filtres de Kalman chargés d’estimer, a partir du dernier pixel connu
d’un vaisseau, la position du pixel suivant le long de sa ligne centrale. La procédure débute par
I'identification, a la frontiere du disque optique, des pixels appartenant aux vaisseaux ; puis
elle suit itérativement ces vaisseaux jusqu’a atteindre une terminaison vasculaire. La méme
année, Tolias et al. [48] proposent une méthode similaire ou les MRF sont remplacés par
un Fuzzy C-mean Clustering (FCM). Ces approches dites de "suivi' des vaisseaux assurent
des résultats topologiquement cohérents, et plusieurs travaux s’en inspireront. Lalonde et al.
(2000 [49]) proposeront de plutdt suivre les contours des vaisseaux détectés par un algorithme
de Canny. Puis, des variations de ’algorithme de suivi seront explorées : notamment par ajus-
tement d’'un modele physique de vaisseaux (Cree et al., 2005 [50]), par approche bayésienne
(Adel et al., 2009 [51]) ou par filtre & particules (Nayebifar et al., 2013 [52]). Mais cette
famille de méthodes présente deux défauts : 1. les embranchements — ou plusieurs directions
sont "suivables" — sont généralement gérés par des solutions ad hoc; 2. ces méthodes sont
vulnérables aux artefacts d’acquisition ou aux lésions qui causent parfois des discontinuités

le long des vaisseaux et interrompent prématurément leur découverte.

Valeurs propres de la Hessienne FEn 1999, Martinez-Perez et al. (1999 [53]) adaptent
au fond d’ceil les travaux de Frangi et al. (1998 [54]) sur la segmentation de vaisseaux sur
images rayons X, et proposent un nouvel estimateur de "vascularité" : I'écart entre les deux
valeurs propres de la Hessienne. En effet, puisque la Hessienne mesure la courbure locale de la
variation d’intensité, un fort écart entre ses deux valeurs propres A\; << Ay indique une struc-
ture tubulaire, dont 1'orientation est celle du vecteur propre associé a A\;. Contrairement aux
filtres MRF, la Hessienne ne s’appuie pas uniquement sur un profil orthogonal au vaisseau,
mais évalue aussi sa stabilité dans la direction tangente. Elle est aussi naturellement équiva-
riante a la rotation et 6te la nécessité de répéter 'analyse dans plusieurs orientations. Vingt
ans apres, la Hessienne est toujours utilisée pour développer des méthodes non supervisées

de segmentation des vaisseaux rétiniens (Zhang et al., 2010 [55]; Alhussein, 2020 [56]).

Approches multi-échelles Dans leur article initial sur les images rayons X, Frangi et al.
notaient que, pour obtenir les meilleurs résultats, 1’échelle a laquelle est calculée la Hessienne
doit correspondre au calibre du vaisseau analysé. Ils évaluaient donc la Hessienne pour une
série d’échelles de sorte a couvrir I'ensemble des calibres présents dans I'image, puis combi-
naient les cartes de réponses. Cette approche multi-échelle sera une des clés pour permettre
la segmentation de tous les vaisseaux rétiniens, petits comme larges. Et elle ne se limite pas

au calcul de la Hessienne : en 2002, Gang et al. [57] montrent que les algorithmes MRF
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s’améliorent aussi lorsque la taille du filtre s’adapte a celle des vaisseaux rétiniens. En 2006,
Sofka et al. [58] développent une normalisation des MRF générés a des échelles variables, afin
de choisir automatiquement 1’échelle la plus pertinente. La méme année, Cai et Chung [59]
exploitent une pyramide de Gaussienne multi-échelles pour rendre leur algorithme de "suivi"

de vaisseau plus résistant au bruit autour des vaisseaux les plus fins.

Morphologie mathématique FEn 2001, Zana et Klein [60] proposent de détecter les
formes longilignes des vaisseaux rétiniens non pas par "suivi' ou Hessienne, mais par une
transformée "top-hat" avec pour éléments structurants une série de lignes de taille fixe et
d’orientation variable (avec un pas de 15°), dont le bruit est corrigé par une ouverture appli-
quée a la reconstruction géodésique de I'image. Cette approche par opérations de morphologie
mathématique (morphomat) sera tres populaire dans les années 2010, pour sa simplicité d’im-
plémentation et ses capacités de débruitage. Elles seront souvent utilisées en complément des
méthodes énoncées plus haut. Ainsi, en 2011, Rossant et al [61] publient une approche exclu-
sivement morphomat consistant en un prétraitement par fermeture, puis une détection par
des filtres "top-hat" et "path-opening"; leur traitement est multi-échelle. De méme, en 2013,
Nguyen et al. [62] proposent un algorithme basé sur des détecteurs de lignes multi-échelle
(Multi-Scale Line Detector). La méme année, Budai et al. [63] reprennent I’approche de la
Hessienne évaluée a plusieurs échelles, mais y ajoutent une étape de post-traitement par opé-

rations morphomat.

Bien stir, la taxonomie des méthodes non supervisées présentées ci-dessus est non exhaustive.
Il faudrait y ajouter entre autres les méthodes par seuillage local adaptatif (Hoover et al.,
2000 [32]), par modele de contour actif (Zhao et al. 2015 [64]), ou par transformée de Radon
(K. Noronha, 2012 [65]). Elle est aussi contestable : & mesure que U'intérét pour la segmen-
tation des vaisseaux rétiniens monte, les travaux combinent les approches et il n’est plus
possible de les ranger dans telle ou telle catégorie. Mais dans le contexte de cette these, cette
taxonomie révele les principaux leviers qui sont a notre disposition — ou qu’il faut mettre a
la disposition des algorithmes d’apprentissage machine — pour analyser la vasculature réti-
nienne. En particulier, elle souligne I'importance d’'une analyse multi-échelle et qui s’appuie
sur la section des vaisseaux (e.g. par un filtrage convolutif) mais aussi sur leur direction

tangente (e.g. "suivi', Hessienne ou morphomat) pour limiter le bruit de segmentation.

En 2004, une évaluation comparative des approches de segmentations place Zana et Klein en
téte des méthodes non supervisées [66], avec une exactitude de 93.77%. Mais déja dans cette

étude, la premiere place est remportée par une méthode supervisée.
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Méthodes supervisées

L’étude de Neimeijer et al. (2004 [66]), comparant les méthodes non supervisées existantes
et proposant une méthode supervisée, est conduite a ’occasion de la publication de leur base
de données DRIVE. Ce n’est pas anodin : les méthodes supervisées ont besoin de telles bases
pour entrainer leurs classifieurs statistiques a identifier, parmi une série de caractéristiques
décrivant I'image, les combinaisons permettant de distinguer si un pixel appartient a un
vaisseau ou non. Les publications de STARE en 2000 [32] puis de DRIVE en 2004 [31] ouvrent

donc la voie au développement de ces méthodes, dont on donnera ici quelques exemples.

La méthode supervisée de Neimeijer et al. [66] extrait, pour chaque pixel, un vecteur descrip-
teur a 31 dimensions obtenu par un filtrage convolutif avec des filtres Gaussiens multi-échelles
et avec leurs dérivées du premier et second ordre. Trois classifieurs sont ensuite comparés pour
reconnaitre les vecteurs décrivant des pixels de vaisseaux : un classifieur linéaire, un quadra-
tique et un classifieur des k plus proches voisins (k-NN). Dans toutes leurs expériences, le
k-NN est le plus précis et surpasse les méthodes non supervisées. Les auteurs expliquent en
partie ce gain par l'existence de biais d’annotation non négligeables dans la vérité terrain :
pour faire "mieux" que le second annotateur de DRIVE (94.73% d’exactitude) les algorithmes
doivent en réalité se spécialiser sur les biais du premier dont les annotations ont été choisies
comme étalon (gold-standard). A ce jeu, les méthodes supervisées ont un avantage considé-
rable sur celles non supervisées. Les performances de la méthode de Neimeijer et al. sont
améliorées la méme année par Staal et al. (2004 [67]) qui divisent I'image en petites régions
définies par leur proximité aux lignes de crétes des structures ressemblant a des vaisseaux,
puis ajoutent au descripteur de chaque pixel les caractéristiques extraites de la région a

laquelle il appartient.

En 2006, Soares et al. [68] entrainent un classifieur Bayésien & identifier les pixels apparte-
nant aux vaisseaux rétiniens a partir de caractéristiques extraites par des filtres de Gabor.
La méme année, Ricci et Perfetti [69] implémentent avec succes une segmentation des vais-
seaux rétiniens par machines a vecteurs de support (SVM) qui s’appuie sur un vecteur de
caractéristiques généré par des filtres détecteurs de lignes. Les performances des SVMs sont
significativement améliorées 4 ans plus tard par You et al. [70] qui proposent deux mo-
difications : 1. les vaisseaux les plus larges sont traités séparément des autres, 2. la base
d’entrainement est augmentée avec des échantillons annotés automatiquement par un SVM,
préalablement entrainé sur des images annotées par un humain. Pour ne pas induire de bruit
dans 'ensemble d’apprentissage étendu, seuls sont conservés les échantillons ou la certitude
du SVM est élevée. Cette approche semi-supervisée permet d’augmenter virtuellement le

nombre d’échantillons d’entrainement sans le colit d’'une annotation manuelle.
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En 2010, Lupascu et al. [71] extraient, pour chaque pixel de l'image, un vecteur de 41-D
par concaténation d’une bonne partie des descripteurs présentés plus haut : notamment la
convolution avec des MRF et des filtres de Gabor ou Gaussiens multi-échelles, les estimateurs
de "vascularité" de Frangi [54] et de Staal [67], ou encore les valeurs et vecteurs propres de
la Hessienne. En confiant ce vecteur descripteur a un classifieur Adaboost (Feature Based
Adaboost Classifier), ils atteignent 95.97% d’exactitude sur DRIVE. Leur méthode restera a

la téte du classement sur DRIVE jusqu’a ce qu’elle soit détronée par les CNN.

2.2.3 Classification traditionnelle des artérioles et veinules rétiniennes

Avant d’étudier les approches de segmentation des vaisseaux rétiniens par réseaux de neu-
rones, intéressons-nous aux méthodes traditionnelles pour leur classification. On I'a vu a la
section 2.1, cette étape est cruciale pour permettre une analyse différenciée des artérioles et
veinules de la rétine, par exemple pour mesurer PAVR. A ma connaissance, il n’existe pas
d’approche non supervisée a la classification des vaisseaux, et puisque la premiere base de
données publique annotée A/V n’est publiée qu’en 2013, le développement de ces méthodes
est plus tardif que celui des méthodes de segmentation. Ce retard s’explique aussi par une
attention moindre portée a ces méthodes par la communauté scientifique : toujours a ce jour,
le nombre de papiers publiés sur le sujet n’atteint pas le dixiéme de leurs équivalents en

segmentation (cf. Figure 2.1).

Les méthodes de classification A/V traditionnelles (pré-apprentissage profond) suivent toutes
a peu pres le méme fonctionnement, présenté sur la Figure 2.4. Elles débutent par la squelet-
tisation d’une segmentation vasculaire pré-existante ; puis identifient sur la carte du squelette
les points de jonction entre branches et les en effacent, faisant ainsi apparaitre des segments
continus de vaisseau que 1’on désignera par le terme : branche. L’algorithme de classification
vasculaire en lui-méme a alors la charge d’étiquetter chaque branche comme artériole ou

veinule. C’est cet algorithme qui differe d’'une méthode a 'autre.

Identification Classification A/V
des branches par branche
/A

Squelettisation Suppression des jonctions
‘ T -

FIGURE 2.4 Vue schématique des étapes précédant la classification des branches vasculaires.
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Dans leur review publiée en 2024, Chen et al. [26] recensent 18 articles publiés entre 2003 et
2023 qui approchent la classification des vaisseaux rétiniens par des méthodes de classifica-
tion traditionnelles pures, c’est-a-dire qui extraient un vecteur de caractéristiques descriptives
pour chaque branche puis entrainent un classifieur statistique a distinguer si ce vecteur re-
présente une artériole ou une veinule. Les classifieurs testés sont variés : des méthodes de
partitionnement de données (clustering) diffus [72] ou de partitionnement k-means [73, 74],
un classifieur bayésien [75], des mixtures de Gaussiennes [76,77], des classifieurs k-NN [78,79].
Apres 2013 et la publication de la base annotée AV-DRIVE [37], les classifieurs par analyse
discriminante linéaire (LDA) [80-82] et les SVM [83-85] gagnent en popularité.

Concernant les caractéristiques descriptives, les algorithmes proposés utilisent le plus souvent
des caractéristiques statistiques (quantiles, moyenne, écart-type) extraites soit directement
des intensités le long de la branche [72,78, 80, 86], soit apres avoir converti ces intensités
dans un espace de couleur plus judicieux comme LAB ou HSL [73-77,79,80,83,84]. Quelques
articles proposent un choix de caractéristiques plus spécifiques : Neimeijer et al. (2009 [78])
incluent le calibre vasculaire et les angles d’embranchements; Zamperini et al. (2012 [75])
ajoutent la position du centroide de la branche relativement au disque optique. D’autres ob-
tiennent aussi de bons résultats avec des descripteurs morphologiques, par exemple en cher-
chant dans le profil des vaisseaux les reflets lumineux symptomatiques des artérioles [82,83,86]
ou par des descripteurs de textures [79]. Pour réduire la complexité algorithmique des classi-
fieurs, certains auteurs diminuent la dimensionnalité du descripteur par PCA (Kondermann,
2007 [83]), ou éliminent ses composantes les moins pertinentes, en les ayant préalablement
classées a l'aide d’algorithmes Random Forest (Vijayakumar, 2016 [84]), de recherche géné-
tique (Huang, 2018 [81]), ou de Binary Particule Swarm Optimization (Irshad, 2021 [85]).

Tous les descripteurs énoncés plus haut sont efficaces pour distinguer le type des plus gros
vaisseaux. Néanmoins, le contraste entre artérioles et veinules s’atténuant pour les vaisseaux
plus fins, ils sont insuffisants pour classifier les branches secondaires ou tertiaires. D’ailleurs,
une majorité des méthodes citées plus haut se contentent de classifier les vaisseaux rétiniens
principaux, et souvent uniquement sur leur portion directement mitoyenne au disque optique.
Certes, certains articles proposent des stratégies exploitant les connaissances a priori sur le
graphe vasculaire rétinien pour améliorer leurs performances : comme Grisan et al. (2003 [72])
qui divisent le disque optique en quadrants pour assurer la détection d'une veine et d’une
artere dans chacun, ou Vazquez et al. (2012 [87]) qui ajoutent une étape de "suivi" (tracking)
pour regrouper des branches appartenant a un méme vaisseau. Mais pour espérer classifier
I’ensemble des vaisseaux rétiniens, ces caractéristiques locales ne suffisent pas : il faut tirer

profit de la représentation topologique de I’arbre vasculaire.
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2.2.4 Modélisation topologique du graphe vasculaire pour la classification A/V

On verra ici comment ont émergé, apres 'année 2009, des méthodes de classification A/V
s’appuyant sur une modélisation topologique de I'arbre vasculaire rétinien. Mais, en préam-

bule, débutons par un rappel rapide sur la topologie de cet arbre.

Topologie de ’arbre vasculaire rétinien

La topologie de I’arbre vasculaire rétinien est tres variable entre individus, mais possede
cependant quelques invariants. En regle générale : artérioles et veinules s’alternent sur la
surface rétinienne de sorte que les croisements vasculaires impliquent quasi systématiquement
des vaisseaux de types différents (I'artériole passera souvent au-dessus de la veinule). Le
nombre de vaisseaux sortant du disque optique est variable, mais deux artérioles encadrent

toujours la macula (une dans chaque hémisphere supérieur et inférieur).

En théorie, le réseau vasculaire devrait étre représenté par un graphe acyclique dirigé, naissant
de l'artere centrale et finissant a la veine centrale. La premiere moitié serait composée des
artérioles rétiniennes, le nombre de branches irait donc croissant a mesure qu’elles se ramifient
pour laisser place aux capillaires, puis décroitrait dans la seconde moitié ou les capillaires se
regroupent en veinules. Mais en pratique, les technologies d’imagerie du fond d’ceil n’ont pas
aujourd’hui la résolution suffisante pour distinguer les vaisseaux capillaires rétiniens 5 a 10
fois plus fins qu'un cheveu (10 & 15 pum). Par ailleurs, seule la téte de l'arteére et de la veine
centrales est visible et leurs embranchements dans le disque optique sont particulierement
enchevétrés. On modélise donc plutot le graphe vasculaire rétinien par une forét d’arbres
dont les neeuds racines sont placés aux frontieres du disque optique et dont les feuilles sont
les pointes des vaisseaux a partir desquelles on ne distingue plus leurs ramifications. Dans

cette typologie topologique, un vaisseau désigne un arbre de cette forét.

Une telle modélisation topologique en vaisseaux distincts est cependant une représentation
avancée du graphe vasculaire rétinien. En pratique, celle obtenue a partir de la segmentation
vasculaire pure est bien plus simpliste. Elle consiste en un graphe des branches définies a
la section précédente (segment continu d’'un vaisseau). Dans ce graphe non-orienté, chaque
arc représente une branche reliant deux noeuds qui sont de trois types : les terminaisons
matérialisent les extrémités ou les racines des vaisseaux, elles ne sont connectées qu’a une
unique branche; les bifurcations désignent les embranchements ot une branche principale
donne naissance a deux branches secondaires; les croisements apparaissent lorsque deux

vaisseaux s’intersectent, ils relient au moins quatre branches (deux par vaisseaux).
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Classification A /V par partition du graphe vasculaire

L’approche topologique pour la classification A/V differe des méthodes qui consistent & ne
pas considérer chaque branche individuellement mais plutot a propager la classe connue
des branches principales vers leurs ramifications difficiles a classifier. Cependant, dans la
représentation topologique extraite de la segmentation, artérioles et veinules se croisent,
s’entremélent et se recouvrent mutuellement. Pour propager la classe des branches principales
vers les branches secondaires le long de la topologie, il est donc nécessaire de “déméler”
les noeuds du graphe afin d’identifier comment sont connectées leurs branches adjacentes.
Chaque noeud non terminal doit ainsi étre interprété soit comme une bifurcation (si toutes
ses branches incidentes appartiennent au méme vaisseau), soit comme un croisement (si elles
sont issues de vaisseaux différents), soit comme un groupe de terminaisons superposées, soit

enfin, comme une combinaison de ces options.

Rothaus et al. (2009 [88]) sont parmi les premiers a proposer une solution a ce probleme.
Ils interpretent tous les nceuds de rang 3 (avec trois branches incidentes) comme des bifur-
cations et tous les noeuds de rang 4 comme des croisements diagonaux de vaisseaux. Selon
ces hypotheses, ils construisent, pour un graphe vasculaire donné, un systeme de contraintes
binaires ou les branches adjacentes a une bifurcation sont considérées d’une méme classe et
celles adjacentes a un croisement sont de classes opposées. En fournissant alors manuellement
les classes A/V de quelques branches, 1'algorithme résout le systéme de contraintes et annote
I’ensemble du graphe. Lorsqu’un conflit apparait entre contraintes, certaines sont relaxées par

des heuristiques prédéfinies, et si le conflit persiste, une résolution manuelle est nécessaire.

Cette premiere approche se limite a séparer les artérioles des veinules, mais les travaux qui
suivront s’intéresseront au probleme plus général du partitionnement du graphe vasculaire (ou

graph tracing) consistant a isoler les sous-graphes propres a chaque vaisseau (voir Figure 2.5).

FIGURE 2.5 Partitionnement d’un graphe de branches pour isoler chaque vaisseau.

a. Graphe de branches non-orienté ; b. Partition du graphe : chaque vaisseau a sa couleur propre et les
neeuds de croisement ont disparu, seuls restent ceux des bifurcations et des terminaisons.
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Cette opération se formule comme un probleme d’assignation ou chaque branche du graphe
vasculaire doit étre associée a un vaisseau. Suite au partitionnement, les nceuds de croisement
sont effacés du graphe de sorte que chaque vaisseau soit représenté par un arbre de branches
(voir Figure 2.5b). La classification de I'ensemble du graphe en est alors simplifiée puisqu’elle
est réduite a lattribution d’une classe a chaque vaisseau plutdt qu’a chaque branche (les
auteurs proposeront généralement de classer les branches principales de chaque vaisseau par
les méthodes supervisées détaillées plus haut). Bienfait supplémentaire, le partitionnement
du graphe permet aussi I’analyse de I’arborescence vasculaire et en particulier des bifurcations
(seuls noeuds non terminaux restants) dont on peut mesurer I'angle des branches incidentes
ou le ratio des calibres. A ce titre, il fait partie de I'arsenal d’algorithmes déployés par les

outils semi-automatiques et automatiques qui mesurent les parametres vasculaires rétiniens.

Partition du graphe par interprétation de la connectivité locale des branches

Une premiere approche pour partitionner le graphe vasculaire consiste a visiter chaque nocud
du graphe pour préciser la connectivité entre ses branches adjacentes : sont-elles toutes
connectées entre elles (comme une bifurcation) ou seulement certaines (comme un croise-
ment) et, dans ce dernier cas, lesquelles sont connectées entre elles ? Rothaus et al. (2009 [88])
présupposaient une connexion diagonale des branches adjacentes a un noeud de rang 4. Ce-
pendant, ce n’est quune possibilité parmi d’autres, comme le montre la Figure 2.6. Pour
déterminer la bonne connectivité entre ces branches, il faut s’appuyer sur leurs propriétés

géométriques fournies par la segmentation vasculaire.

a. b. C. d. e.

FI1GURE 2.6 Résolution de la connectivité locale d’un nceud reliant 4 branches incidentes.
a. Représentation topologique commune aux quatres configurations suivantes dans lesquelles le noeud

représente : b. un croisement diagonal de deux vaisseaux; c. un point de contact de deux vaisseaux

paralleles ; d. deux bifurcations; e. une bifurcation confondue avec une terminaison.
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En 2012, Lin et al. [89] estiment la similarité des branches adjacentes & un noeud par un filtre
de Kalman étendu. Le filtre se base sur le calibre des branches, sur I'intensité du canal vert,

sur la variation de ces deux valeurs a ’abord de la jonction, et sur les angles d’incidence.

En 2014, Dashtbozorg et al. [90] proposent plutét d’interpréter la connectivité au sein d’un
nceud par une série d’heuristiques, chacune spécifique a un type de nceud (i.e. rang 2, 3, 4 ou
5). Par exemple, I’heuristique pour les nceuds de rang 4 détermine s'ils doivent étre interprétés
comme des bifurcations, des croisements, ou des points de rencontre de terminaison vasculaire
et comment relier les branches incidentes en fonction du calibre vasculaire et des angles
d’incidence. Cette approche est reprise par Pellegini et al. (2018 [91]) qui remplacent les
heuristiques par un algorithme « graph-cut », puis plus récemment par Zhao et al. (2020 [92])
qui les remplacent par une recherche d’ensembles dominants sur le graphe de connectivité

des branches.

Partition du graphe par optimisation globale de I’arborescence vasculaire

Parfois, les informations géométriques locales ne suffisent pas a déterminer la connectivité de
branches adjacentes a un nceud, et il faut alors exploiter la topologie des nceuds voisins. De
et al. (2014 [93], 2016 [94]) proposent de remplacer les heuristiques strictes de Dashtbozorg
par des poids continus modélisant la plausibilité d’une connexion entre deux branches. En
pratique, ils construisent un graphe de ligne : c¢’est-a-dire un graphe dans lequel une branche
vasculaire — un arc dans le graphe standard — est représentée par un nceud dans le graphe
de ligne; et ou réciproquement, un nceud du graphe standard est représenté dans le graphe
de ligne par plusieurs arcs symbolisant les connexions entre des branches adjacentes (voir
Figure 2.7). De et al. ponderent les arcs du graphe de ligne par un coefficient qui diminue
lorsque I'angle entre les deux branches connectées augmente. Puis, ils définissent N vaisseaux
(un pour chaque branche racine) et affublent chaque branche d’un vecteur de taille N indi-

quant la probabilité qu’elle appartienne aux différents vaisseaux. En forcant les vecteurs des

Graphe Vasculaire:

— Branche

® Intersection de
branches

bt Graphe de lignes:
@® Branche

- Intersection de
branches

F1GUurE 2.7 Construction d'un graphe de ligne a partir de la segmentation vasculaire.

a. Segmentation vasculaire ; b. Graphe vasculaire ; c. Graphe de ligne.
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branches racines a une probabilité de 100% pour leur vaisseau et 0 pour les autres, ils dif-
fusent alors 'influence de chaque vaisseau le long de la topologie du graphe de ligne jusqu’a
ce que les vecteurs de probabilité se stabilisent. Les branches sont finalement affectées au

vaisseau avec la plus forte probabilité.

En 2015, Estrada et al. [95] proposent une toute autre formulation du probleme. Ils postulent
I’arborescence vasculaire originale T évoluant en 3D sur la surface rétinienne, dont les nceuds
sont uniquement des bifurcations ou des terminaisons (pas de croisement entre vaisseaux) et
dont la descendance de chaque branche principale correspond a un unique vaisseau rétinien.
[ls formulent alors le graphe vasculaire G tel qu’observé sur I'image de fond d’ceil comme une
projection P de 'arborescence originale T' dans lequel tous les vaisseaux — artérioles comme
veinules — se croisent et se confondent. Avec cette formulation, I'objectif de la modélisation
topologique consiste a inverser la projection P. Or, comme plusieurs arborescences peuvent
avoir la méme image par P (cf. Fig. 2.8), Estrada et al. explorent ’ensemble de ces arbo-
rescences pour y trouver la plus plausible. Pour ce faire, ils définissent une orientation aux
arcs de GG afin de produire une arborescence valide, puis ils inversent successivement 1’orien-
tation des branches (par ex. Fig. 2.8 b & c) ou altérent la parenté des branches issues de
croisements (par ex. Fig. 2.8 ¢ & d), tout en s’assurant de maintenir la validité globale de

I’arbre. Chaque inversion ou altération de parenté génere une nouvelle configuration qu’Es-

O Neceud racine

® Nceud jonction ou
terminal

ee:Nceud dédoublé a l'inter-
section de deux vaisseaux

— Branche d'orientation
inconnue

—» Branche orientée
(de 'amont vers l'aval)

P(T)

a. b. C. d.

FIGURE 2.8 Variété d’arborescence induisant un méme graphe vasculaire non-orienté.

a. Graphe vasculaire non-orienté commun aux trois configurations suivantes. Entre b. et c. seule I'orien-
tation d’une branche change; entre c. et d. seule I’'hérédité des deux branches supérieures change.
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trada et al. représentent par un nceud dans un méta-graphe d’arborescences. Afin d’identifier
la plus plausible, ils calculent un score pour chacune en sommant des mesures de simila-
rité entre branches connectées (selon leurs couleurs, leurs calibres ou leurs orientations). Le

méta-graphe est alors exploré par un algorithme de recherche « best-first ».

Ce calcul global de la plausibilité d'une arborescence est un profond changement de para-
digme : la connectivité au sein d’une jonction n’est plus simplement interprétée au regard de la
similarité de ses branches incidentes, elle integre aussi la plausibilité des jonctions avales. Dit
autrement, puisque la contrainte de validité de I’arborescence lie I'interprétation de certaines
jonctions entre elles (le choix d'une configuration pour une jonction pouvant interdire des
options pour les autres), I'interprétation évidente de certaines jonctions contribue a l'inter-
prétation de jonctions incertaines. En outre, cette approche permet a Estrada et al. d’inclure
des indicateurs généraux de plausibilité comme le taux de croisement incluant a la fois une
artériole et une veine qui devrait théoriquement approcher 100 %. Leur méthode se révele
redoutablement efficace, pour la premiere fois plus de 90 % des pixels du squelette de DRIVE
sont correctement classifiés. Elle parvient méme a partitionner le graphe vasculaire d’images
aquises a grand angle! Cependant, elle est tres sensible aux déconnexions de vaisseaux parfois
provoquées par des faux négatifs sur la segmentation. D’ailleurs, ils évaluent leur algorithme
sur les segmentations manuelles de DRIVE et sont méme contraints d’exclure une image ou

trop de vaisseaux sont déconnectés du disque optique.

Dans leur méthode, Dashtbozorg et al. prétraitaient le graphe pour y corriger les artefacts
de déconnexion (faux négatifs), surconnexion (faux positifs) ou de recouvrement (lorsque les
segmentations de deux vaisseaux distincts mais adjacents se superposent et se confondent de
sorte que, dans le graphe, un unique arc représente une portion de I'un et 'autre). Cependant,
comme pour la résolution de la connectivité des nceuds, leur prétraitement consiste en une
série d’heuristiques strictes et locales. En 2013, Lau et al. [96] avaient proposé une méthode
d’énumération d’arborescences et d’estimation probabiliste de leur plausibilité qui tenait
compte des artefacts de recouvrement vasculaire, mais uniquement de ceux-la. En outre, leur
méthode ne traitait que des vaisseaux compris dans la région entre .5 et 2 diametres du
disque optique autour de la cupule. A ce jour, le probléme de partitionnement du graphe
vasculaire rétinien par une approche d’optimisation globale de ’arborescence mais robuste

aux artefacts de segmentation reste irrésolu.
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2.2.5 Segmentation sémantique des vaisseaux rétiniens par réseaux de neurones

Nous avons résumé dans les sections précédentes les évolutions de la littérature concernant la
segmentation et la classification du réseau vasculaire rétinien par des approches non supervi-
sées ou supervisées traditionnelles. Toutes ces approches s’appuient sur des caractéristiques
descriptives choisies manuellement par les auteurs. Ce paradigme change avec 'essor des
approches par réseaux de neurones, capables d’apprendre automatiquement a extraire les
caractéristiques pertinentes pour résoudre la tache qui leur est soumise. A partir du début
des années 2010, ces modeles ont rapidement conquis I'intérét des chercheurs travaillant dans

le domaine biomédical en général et sur la segmentation vasculaire en particulier.

La révolution de ’apprentissage profond et des réseaux de neurones convolutifs

Les réseaux de neurones entrainés par apprentissage profond sont des algorithmes congus
pour accomplir une tache de traitement de signal par une modélisation statistique du lien
entre les signaux d’entrée et une consigne souhaitée. Contrairement aux méthodes d’appren-
tissage traditionnelles, cette modélisation considere le signal d’entrée tel quel (et non des
caractéristiques choisies manuellement pour le représenter) et elle s’échelonne en une série de
représentations successives de plus en plus abstraites. On ne détaillera pas ici le formalisme
théorique qui a déja été expliqué maintes fois et mieux que je ne pourrais le faire (notam-
ment par Goodfellow, Bengio et Courville, 2016 [97]). On rappellera simplement que chaque
représentation est constituée d’un vecteur de caractéristiques dérivé de la représentation pré-
cédente par une couche de neurones artificiels. Ces neurones sont définis par une fonction
mathématique statique alliant une combinaison linéaire suivie d’'une transformation non li-
néaire, ainsi que par des poids ajustables qui parameétrent la réponse du neurone. Lors de la
phase d’entrainement du modele, ses poids sont mis a jour itérativement par descente de gra-
dient de sorte a minimiser une fonction de cotdt mesurant un taux d’erreur. De tels modeles
sont théoriquement capables de modéliser n'importe quelle transformation, sous réserve que

le nombre de neurones et d’échantillons d’entrainement soit suffisant.

Cette formulation en réseaux de neurones présente plusieurs avantages comparés aux meé-
thodes d’apprentissage dites traditionnelles. D’abord, sa grande versatilité : régression, clas-
sification, segmentation, reconstruction, appliquée a du texte, des images ou des sons, sa
diversité d’applications est telle qu’elle semble dotée d’ubiquité! Et puisque la théorie est
commune a toutes, les innovations concgues par exemple pour 'analyse de texte peuvent
étre transposables a la segmentation d’images. Ensuite, I'extraction des caractéristiques est
totalement automatique. De ce fait, le réseau ne considere que les données de ’ensemble d’en-

trainement et non une connaissance a priori du phénomene étudié, ce qui est généralement
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vu comme un atout pour ne pas risquer de biaiser I'interprétation des données?. Enfin, les
caractéristiques ainsi extraites possedent généralement de bien meilleures capacités de géné-
ralisation. Ces capacités sont telles qu’il est notamment possible de raccourcir grandement le
temps d’entrainement d’un modele en utilisant les poids d’un réseau a ’architecture similaire
mais entrainé sur un autre jeu d’entrainement plutot qu’en les initialisant aléatoirement (par
ex. en pré-entrainant un réseau pour ensuite U'affiner sur des images médicales). Pour toutes
ces raisons, les réseaux de neurones artificiels entrainés par apprentissage profond sont de-

venus incontournables dans les conférences et journaux d’interprétation d’images médicales.

Ce formalisme n’est pas récent, dés la fin des années 90, Yoshua Bengio et Yann LeCun
(1998 [98]) en avaient proposé une variante pour la reconnaissance d’images (en 'occurrence
des chiffres) qu’ils nomment CNN et dont chaque neurone apprend un filtre de convolution.
Les couches de neurones convolutifs sont alternées avec des couches de sous-échantillonnage
qui réduisent la résolution des représentations mais augmentent leur nombre de canaux. Les
dernieres couches sont complétement connectées : elles réduisent par combinaison linéaire la
représentation de I'image dotée de la plus faible résolution (et donc du plus grand nombre
de canaux) a un vecteur de caractéristiques puis en la prédiction finale. Au début des années
2010, suite aux avancées incrémentales du cadre théorique des réseaux de neurones profonds
et a l'explosion des capacités de calcul, la capacité de généralisation de ces modeles éclate au
grand jour et révolutionne le domaine de I'apprentissage machine. Ainsi, en 2012, les CNN dé-
passent largement les performances des autres méthodes d’apprentissage sur la classification
des images du challenge ImageNet (Krizhevsky, 2012 [99]).

Deux ans plus tard, Melinscak et al. [100] sont parmi les premiers & porter cette approche
a la segmentation des vaisseaux rétiniens. Leur modele CNN contient 125 k parametres
organisés en 4 couches convolutives et deux couches compléetement connectées et atteint
les performances prometteuses de 94.7% d’exactitude sur DRIVE. Depuis, la majorité des
travaux de recherche en segmentation ou en classification des vaisseaux rétiniens s’intéresse
a ces algorithmes : soit en développant des innovations spécifiques a cette tache, soit en
important des avancées de la technologie développées pour des approches plus généralistes.
Deux avenues de recherche sont principalement explorées : 1. le choix d’architecture des

réseaux et 2. leur procédure d’entrainement.

2. On pourrait cependant nuancer cette affirmation : considérer que les données sont «la vérité» stricte,
c’est négliger tous leurs biais intrinseques. De plus, les connaissances a priori sur un phénomeéne sont sou-
vent de bonnes pistes de recherche pour imaginer des régularisations de la fonction de cotit et améliorer la
généralisation du modele.



28

Evolutions Architecturales

Depuis 2015, les architectures de réseaux de neurones spécialisés dans le traitement d’images
et a fortiori dans la segmentation et la classification des vaisseaux rétiniens ont connu de
nombreuses évolutions. Il y eut initialement quelques tentatives d’approches non convolu-
tives, comme Li et al. (2016 [101]) qui entrainérent cing couches complétement connectées a
prédire la carte de segmentation d’un patch de 16 par 16. Mais rapidement, dans la lignée de

Melinscak et al., les modeles convolutifs s’imposent.

CNN Les réseaux de neurones convolutifs ont en effet un avantage sur les modeles comple-
tement connectés : dans une couche convolutive, les filtres sont convolués sur toute I'image,
la ot un modele completement connecté associerait un poids a un pixel. Les CNN sont ainsi
non seulement plus économiques en parametres, mais de plus, chaque parametre bénéficie de
I'information de I'’ensemble des pixels de 'image. Ou plus exactement 'ensemble des pixels
du patch : En effet, pour savoir si un pixel est un vaisseau ou non, on présente au modele un
patch de son voisinage dans I'image. Le modele de Melinscak et al. analyse ainsi des patchs
de 64 x 64 pixels. En 2016, Likowscki et Krawiec [102] améliorent leur travail en appliquant
une augmentation de données aléatoire géométrique (rotation, symétrie et redimensionne-
ment) et colorimétrique (teinte et saturation). L’année suivante, plusieurs travaux (Girard
et al. 2017 [103]; Welikala et al., 2017 [104]) proposent d’augmenter le nombre de neurones
de la derniere couche d'un a deux. Par cette simple modification, ils convertissent le réseau
de segmentation en un modele de segmentation sémantique, c’est-a-dire qui réalise simulta-
nément la segmentation et la classification des artérioles et veinules rétiniennes. Un défaut
des modeles CNN demeure cependant : initialement congus pour la classification d’images,
ils nécessitent que chaque pixel soit analysé individuellement pour obtenir la carte de seg-
mentation complete. Cette limitation motive la conception de modele réseaux de neurones

completement convolutif (FCN).

FCN Proposé pour la premiere fois par Long et al. (2015 [105]), les FCN troquent les
dernieres couches completement connectées des CNN par des couches convolutives avec des
filtres 1x 1. Par ce subterfuge, la sortie vectorielle des CNN devient matricielle et le modele
prédit dorénavant une image complete. Il est aussi équivariant par translation : une trans-
lation de son image d’entrée induit une translation équivalente de sa prédiction, propriété
qui est parfaitement adaptée pour les taches de segmentation. A cause des couches de sous-
échantillonnage, la prédiction du modele est cependant sous-résolue par rapport a I'image

d’entrée. Long et al. proposent donc de suréchantillonner (par convolution transposée) a la
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résolution de I'image, les cartes produites a différentes étapes du réseau, avant de les combiner
pour obtenir la prédiction finale. Cette méthode est adaptée a la segmentation des vaisseaux
rétiniens par Fu et al. (2016 [106]) avec leur architecture Deep Vessels dans laquelle les pré-
dictions aux multiples résolutions sont combinées par un champs aléatoire conditionel (CRF).
Mais les FCNs devront attendre 2015 pour exprimer leur plein potentiel de segmentation a

travers ’architecture U-Net.

U-Net Cette architecture proposée en 2015 par Ronneberger et al. [107] contient deux
parties. La premiere moitié : I’encodeur, est similaire en tout point a un CNN dont on aurait
enlevé les couches finales de classification (il ne sera d’ailleurs pas rare de la remplacer par
un CNN pré-entrainé sur ImageNet). La seconde : le décodeur, est une réplique par symé-
trie de I'encodeur ; il réduit progressivement le nombre de caractéristiques par couche tout
en augmentant leur résolution jusqu’a atteindre celle de I'image. Encodeur et décodeur sont
reliés a chaque résolution par une “skip-connection” qui concatene les prédictions du pre-
mier a celles fraichement suréchantillonnées du second. On le verra dans 1’étude exhaustive
de la littérature (chapitre 7), cette architecture sera la plus plébiscitée par les publications
traitant de segmentation sémantique des vaisseaux rétiniens. En 2019, Hemelings et al. [39]
I’étudient en détail sur cette tache : ils réduisent le nombre de caractéristiques prédites par
chaque couche pour éviter le surapprentissage dans ce contexte de volume réduit de données
d’entralnement. Pour la méme raison, ils montrent un effet bénéfique de 1'utilisation de dro-
pout entre les couches les plus profondes. Surtout, ils mettent en évidence I'importance de la
taille du champ d’activation ® dans la classification vasculaire. Ils proposent de I'augmenter en
choisissant des tailles de filtres convolutifs 5x5 et des convolutions diluées. Les bénéfices des
convolutions diluées furent par la suite approfondis par Biswas et al. (2020 [108]) ou Hussain
et al. (2022 [109]). D’autres auteurs proposent de substituer chaque couche convolutive par
un bloc qui en comprend trois avec des filtres de taille 1x1, 3x3 et 5x5 (D. Yang et al.,
2020 [110]; X. Yang et al. 2022 [111]). Des modeles plus denses sont aussi proposés, renforcant
le nombre de connexions entre les couches convolutives qui travaillent a différentes échelles.
C’est le cas du FR-UNet de Lio et al. (2022 [112]) dont on trouve une implémentation publiée
avec ses parametres entrainés dans le paquet python Fundus-Image-Toolbox (Gervelmeyer,
2025 [113]). Toutes ces publications tentent d’améliorer la cohérence des prédictions entre les
gros et les petits vaisseaux en amplifiant les capacités d’analyse multi-résolution déja bien
présentes dans les U-Net. De ce point de vue, elles s’inscrivent dans la lignée des approches

multi-échelles imaginées 10 a 20 ans plus tot pour segmenter ces mémes vaisseaux avec des

3. Le champ d’activation est défini comme la taille de la fenétre dans 'image de départ qui peut théori-
quement contribuer au calcul d’un pixel dans celle prédite, ou dit autrement, c’est la taille cumulée obtenue
par composition de tous les filtres de convolution.
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algorithmes non supervisés. J’ai moi-méme contribué a ce mouvement pendant ma maitrise
en 2018 a l'occasion d’'une publication (Lepetit-Aimon et al., 2018 [114]) dans laquelle j’ad-

joignais au U-Net classique, une branche travaillant sur I'image sous-résolue.

Bloc d’attention Malgré le recours a de multiples résolutions de travail, la segmentation
sémantique des vaisseaux les plus fins reste un défi pour les U-Net. Une interprétation est
alors formulée : pour segmenter les vaisseaux indépendamment de leur taille, la multiplicité
de résolutions ne suffit pas, encore faut-il les « aiguiller » de sorte que le modele s’appuie
sur les résolutions basses pour les vaisseaux larges, et celles élevées pour les vaisseaux fins.
Zhang et al. (2019 [115]) proposent d’implémenter cet « aiguillage » en insérant des modules
d’attention dans un U-Net, la ou les caractéristiques de I’encodeur sont concaténées a celles,
plus basse résolution, du décodeur. L’idée d’attention avait été développée pour les CNN
par Woo et al. (2018 [116]) : elle consiste a « désactiver » certains neurones d'une couche
convolutive en multipliant leur réponse par un masque. Ce masque est calculé par une branche
parallele qui analyse les entrées de la couche pour déterminer quel neurone doit étre désactivé.
Une fonction sigmoide a la fin de cette branche assure que sa valeur soit comprise entre 0
et 1 (tel un masque). Les neurones ainsi shuntés peuvent, réciproquement, se spécialiser a
I’analyse de certains objets, par exemple les plus petits vaisseaux. Woo et al. avaient proposé
de combiner deux formes d’attention dans les CNN : une attention par canal et une attention
spatiale. En 2019, Mou et al. [117] exploitent précisément cette idée d’attention duale pour la
segmentation des vaisseaux rétiniens. Puis en 2021, Li et al. [118] montrent qu’en intégrant
des modules d’attention au décodeur du U-Net, il est possible d’atteindre les performances
de I'état de I'art avec un modele économe en parametres et ne travaillant qu’a 3 résolutions

(comparés aux 5 des U-Net standard).

Transformeurs Comme on l'a vu a la section précédente, la classification des vaisseaux
¢loignés du disque optique est particulierement délicate sans s’appuyer sur une approche to-
pologique. Or le champ d’attention limité des FCN leur interdit 'apprentissage d’une telle
approche : lorsqu’ils classifient les pixels en périphérie de I'image, le disque optique n’est
tout simplement plus visible pour ces modeles. Un probleme similaire affectait les réseaux
de neurones analysant le langage naturel, et trouva sa résolution avec I'apparition des mo-
deles dits “transformeurs” Ces modeles appréhendent la tache bien différemment de leurs
prédécesseurs : plutét que d’apprendre a reconnaitre des séquences de mots, ils modélisent
I'interaction de chaque mot avec ses voisins plus ou moins proches : au sein d’une phrase,
d’un texte, ou aujourd’hui d’un roman (GPT-4 peut analyser un contexte d’environ 96 000

mots). Je n’expliquerai pas ici leur fonctionnement, hormis qu’ils reposent sur un mécanisme
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d’attention croisée (self attention) leur permettant de modéliser I'interaction de mots séparés
d’une distance arbitrairement longue et uniquement limitée par ’espace mémoire a disposi-
tion. Cette méthode fut proposée pour 'analyse du langage en 2017 par Vaswani et al. dans
leur article : « Attention is all you need » [119], puis transposée a I'analyse d’images 4 ans
plus tard par Dosovitskiy et al. : « An image is worth 16x16 words » [120] qui introduit
les vision transformers (ViT). La capacité de cette architecture a modéliser des interactions
longues distances semble évidemment un atout pour la segmentation sémantique des vais-
seaux rétiniens, et rapidement des auteurs les integrent a leurs modeles : soit par des couches
de self-attention placées sur les skip-connection du U-Net (Zhang et al., 2022 [121]; Yu et
al., 2022 [122]) ou entre ses couches convolutives (Yi et al., 2023 [123]) ; soit en remplagant

toutes les couches de convolutions par des modules transformeurs Swin (Li et al., 2024 [124]).

On pourrait ajouter a cette liste des principaux « courants architecturaux » : les approches
squeeze and excitation (Shen et al., 2022 [125]) ou les réseaux de neurones par graphe (GNN)
(Mishra et al., 2021 [126]). Mais la frise chronologique présentée dans cette section permet
déja de distinguer les tendances de la littérature. Les réseaux de neurones convolutifs semblent
étre particulierement adaptés a la segmentation et a la classification des vaisseaux, probable-
ment grace aux aptitudes naturelles des approches convolutives déja mises en évidence lors
du développement d’algorithmes non supervisés. Parmi les modeles convolutifs, une majorité
a en commun l'architecture U-Net, dont les multiples résolutions semblent particulierement
bénéfiques pour analyser tous les vaisseaux, quel que soit leur calibre. Les approches récentes
par transformeurs améliorent marginalement les performances de segmentation et de classi-
fication, mais au prix d’une importante hausse du nombre de parametres. Ces architectures,
particulierement gourmandes en données d’entrainement, semblent largement bridées par le

faible volume de jeux de données annotées disponibles.

Notons que ces «courants architecturaux» n’évoluent pas dans des couloirs isolés. Au contraire,
la littérature fourmille d’articles piochant dans I'un ou dans ’autre, combinant et recombi-
nant leurs idées pour former des architectures inédites. Les baptiser devient alors un exercice
quasi poétique, voire ésotérique pour peu que tous les courants aient été réunis dans une
méme architecture, comme pour ce papier sobrement intitulé : Global Transformer and Dual
Local Attention Network via Deep-Shallow Hierarchical Feature Fusion [127]. Plus sérieuse-
ment, je ne peux m’empécher de constater une certaine hubris quant a la complexité des
approches proposées qui semblent parfois moins étre motivées par une intuition scientifique
que par la composition de mots-clés. En 2022, Galdran et al. [128] avaient déja noté la forte
expansion paramétrique et computationnelle des modeles proposés, sans nécessairement in-

duire une hausse équivalente des performances. Ils avaient alors montré quun modele simple
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composé de deux U-Net placés I'un derriere I'autre (baptisé W-Net) égalait ces architectures

en segmentation comme en classification, sous réserve qu’il soit entrainé correctement.

Ce foisonnement de la littérature pose aussi un probleme de validation. Les propositions
de modeles énoncées plus haut sont souvent motivées par l'intuition d’une adéquation entre
une formulation de réseau et la tache visée, mais cette intuition est rarement interrogée puis
confirmée ou infirmée. Certes, les papiers contiennent régulierement une étude ablative pour
démontrer 'intérét de 'intégration successive des idées qu’ils proposent. Mais les réseaux de
neurones, dont I'entrainement peut produire des résultats hautement variables, présentent
un vrai défi de répétabilité et de comparaison entre papiers. En effet, comment savoir si les
fluctuations de performance entre deux architectures s’expliquent bel et bien par les propriétés
du modele proposé, par une synergie nouvelle engendrée par une composition judicieuse de
modules, ou si elles sont simplement dues a la hausse du nombre de parametres, a un meilleur
choix d’hyperparametres, de jeu de données ou de procédure d’entrainement ? Gardons cette

question en téte, on y reviendra...

Evolution de la procédure d’entrainement

L’amélioration des procédures d’entrainement est abordée par la littérature en parallele des
recherches d’architectures. Et si elle est éclipsée par ces derniéres en termes de nombre de

papiers, elle propose tout de méme quelques idées qui méritent d’étre mentionnées ici.

Approches Génératives On l'a vu, le manque de données annotées pour I’entrainement
pose une difficulté majeure pour le développement de réseaux de neurones fiables. Pour at-
ténuer cette difficulté, des travaux exploitent des modeles génératifs pour créer de fausses
images de fond d’ceil a partir d’'une segmentation vasculaire connue. Cette approche est
d’abord mise en ceuvre avec un réseau adversarial génératif (GAN) (Costa et al., 2018 [129] ;
Lahiri et al. 2020 [130]; Andreini et al., 2022 [131]), puis plus récemment avec un modele
de diffusion (Go et al., 2024 [132]). Mais ces méthodes présentent un risque d’introduire des
hallucinations dans ’ensemble d’entrainement. Une autre catégorie d’approches exploite 1’en-
trainement adversarial différemment : le générateur est entrainé a prédire la segmentation de
vaisseaux sur des images non annotées par un jeu adversarial avec un modele discriminateur
qui tente d’identifier dans deux couples images de fond d’ceil/segmentation vasculaire lequel
provient du jeu d’entrainement annoté et lequel a été produit par le générateur. (Wu et al.,
2019 [133]; Kamran et al., 2021 [134]) . Dans les deux cas, ces méthodes permettent de tirer
profit des nombreuses images de fond d’ceil publiques non annotées, mais offrent des gains

en performances généralement limités.
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Meétriques de validation Depuis les premiers algorithmes de segmentation des vaisseaux
rétiniens, la métrique de validation a toujours été 'exactitude *. Mais alors que les algorithmes
s’améliorent, cette métrique est de moins en moins pertinente pour les évaluer. 1. Elle donne
trop d’importance aux pixels du fond (qui constituent 80 & 90 % de la zone d’intérét) de sorte
qu'un algorithme ne détectant aucun vaisseau atteint une exactitude moyenne avoisinant les
85%... Pour cette raison, I'indice Dice qui ignore les pixels vrai-négatifs® gagne en popula-
rité depuis une dizaine d’années pour évaluer les méthodes de segmentation vasculaire : a
ma connaissance, il est utilisé pour la premiére fois comme tel en 2015 (Mukherjee et al.,
2015 [135]). 2. L’exactitude donne relativement moins d’importance a la détection des petits
vaisseaux qu’a ceux plus larges (qui sont composés de plus de pixels) et elle est tres sensible
aux variations de contour des vaisseaux qui ne sont pourtant pas toujours bien définis. Afin
de mieux évaluer la capacité d'un modele a détecter des vaisseaux quels que soient leur taille
ou contour, Shit et al. proposent en 2021 [136] une variation du dice qui ne tient compte que
des pixels appartenant au squelette vasculaire : le center-line dice ou CL Dice. On trouve une
métrique analogue mais sous un autre nom dans un article publié 9 ans plus tot par Gegun-
dez et al. : A Function for Quality Fvaluation of Retinal Vessel Segmentations (2012 [137]).
Dans ce papier, ils proposent aussi deux autres métriques : I'une similaire au score Dice mais
intégrant une tolérance a la variation des contours vasculaires, et 'autre mesurant la simila-
rité de connectivité par décompte des composantes connectées de la segmentation. 3. Cette
évaluation de la connectivité ou plus largement de la similarité topologique est I’angle mort
ultime de 'exactitude et des métriques mesurant des taux de pixels. En effet, quelques pixels
absents d'une segmentation n’auront que tres peu d’impact sur la valeur de ces métriques,
quand bien méme ces pixels déconnecteraient une branche du reste du graphe vasculaire en
transformant complétement sa topologie. En 2021, Araujo et al. [138] proposent de mesurer
la similarité topologique en évaluant combien de paires de pixels connectés® dans la vérité
terrain le sont aussi dans la prédiction. Cependant, leur article n’est pas publié dans une
revue et sera peu repris. Tout récemment, Berger et al. (2024 [139]) ont commis : Pitfalls of
topology-aware image segmentation. Dans cette prépublication ArXiv, ils rapprochent trois
applications de segmentation sensibles a la topologie : la segmentation des vaisseaux sur
image de fond d’ceil, des routes sur image satellite et des neurones sur images du cerveau

captées par microscope électronique. Ils identifient des lacunes communes aux validations

TP+ TN
4. L’éxactitude (accuracy en anglais) est définie par : acc = TPLTN ::__ FPIEN
ou TP et TN sont les vrais positifs et négatifs et ou F'P et F'N sont les faux positifs et négatifs.

2TP

2TP+FP+FN’
6. Araujo et al. consideérent une paire de pixels connectés s’il existe un chemin continu de pixels appartenant

a la segmentation pour les relier.

5. L’indice Dice-Sgrensen, analogue au score de classification F1, est défini par : dice =
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topologiques de ces méthodes : notamment que leurs jeux de données, congus pour la seg-
mentation, contiennent des erreurs impactant fortement les métriques topologiques (par ex.
quelques pixels manquants a la segmentation de vaisseaux dans DRIVE). Ils montrent aussi
un manque de maturité des métriques topologiques (nombre de Betti, erreurs d’appariement

de Betti [140]) qui indiquent parfois des niveaux de performances contradictoires.

Fonctions de coiit Les problemes des métriques de validation identifiés plus haut se
posent de maniere analogue aux fonctions de colit guidant I'apprentissage des réseaux de
neurones; avec une contrainte supplémentaire cependant : ces dernieres doivent étre diffé-
rentiables. Pour la segmentation sémantique, la fonction de cotit généralement privilégiée
est 1’entropie croisée qui donne une bonne approximation différentiable de ’exactitude, mais
souffre des mémes lacunes. Plusieurs recherches explorent donc d’autres options. En 2016,
Milletary et al. [141] proposent une formulation différentiable du score Dice : le soft-Dice, dans
un contexte de segmentation volumétrique sur image IRM. Cette fonction de cofit sera reprise
deux ans plus tard pour la segmentation des vaisseaux rétiniens (Soomro et al., 2018 [142]).
D’autres auteurs proposent de conserver l’entropie croisée mais en la pondérant en fonction
de la difficulté des régions (Wang et al., 2020 [143]). Dans leur article proposant le CL-Dice,
Shit et al. (2021 [136]) formulent une fonction de coiit correspondante en s’appuyant sur une
version différentiable de la squelettisation. Leur article se limite a la segmentation vasculaire,
mais sera étendu a la classification par Jian et al. (2024 [144]). Enfin, en 2023, Mao et al. [145]
appliquent a la segmentation vasculaire la topo-loss : une fonction de cotit proposée quatre
ans plus tot par Hu et al. (2019 [146]) qui exploite des diagrammes de persistance (persistance
homology diagram) pour pénaliser les variations du nombre de composantes connectées ou
d’anses topologiques lorsqu’on fait évoluer le seuil de segmentation appliqué a la prédiction.
Malheureusement, en 1’absence d’une validation topologique standardisée, il est difficile de

distinguer les bienfaits de ces méthodes comparées au soft-Dice ou a ’entropie croisée.

Limitations des réseaux de neurones

Malgré les centaines d’articles sur la segmentation et la classification des vaisseaux rétiniens

par réseaux de neurones, certaines lacunes de ces modeles semblent persister inexorablement.

Incohérence topologique I’exactitude en segmentation des U-Net et de leurs succes-
seurs est particulierement élevée, les erreurs qui subsistent concernent donc un petit nombre
de pixels. Dans leur récente revue des algorithmes de segmentation des vaisseaux rétiniens,
Li et al. (2025 [25]) identifient deux types de lacunes communes aux réseaux de neurones :

I’omission des vaisseaux les plus fins et la discontinuité dans la segmentation des vaisseaux, en
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particulier en cas de faible contraste, d’occlusion par une lésion ou proche des croisements.
Concernant la classification, le taux d’erreur est plus important. La revue de Chen et al.
(2024 [26]) T'attribue a un déclin important des performances pour les petits vaisseaux et
aux changements erronés mais récurrents de la classe prédite au sein d’'une branche. Toutes
ces erreurs de segmentation et de classification semblent pointer vers une cause commune :
la méconnaissance de la structure topologique sous-jacente au graphe vasculaire rétinien. Au
fond, les réseaux de neurones convolutifs sont comparables aux méthodes qui les ont précé-
dés et qui s’appuyaient sur une modélisation morphologique locale des vaisseaux. Certes, ils
en démultiplient le potentiel en accroissant considérablement la complexité et le nombre de
parametres, mais ils en conservent aussi les lacunes topologiques fondamentales. Chen et al.
(2024 [26]) notent d’ailleurs que les rares approches alliant modeéles convolutifs et analyse
du graphe obtenaient généralement les meilleurs résultats en classification. Ils recommandent
donc le développement d’algorithmes de post-traitement des cartes de segmentation séman-

tique prédites par réseaux de neurones pour en assurer la cohérence topologique.

Lacune de généralisation Les réseaux de neurones sont généralement reconnus pour leur
bonne capacité de généralisation, a la condition qu’une variété suffisante de données d’entrai-
nement leur soit disponible. Or, en analyse d’images médicales — particulierement lorsqu’il est
question de segmentation sémantique — les données annotées sont rares. Dans ce domaine,
on connait donc plutot les réseaux de neurones pour leur propension au surapprentissage
(over-fitting) et a lapprentissage des biais de données. Les modeles de segmentation et de
classification des vaisseaux rétiniens y sont particulierement vulnérables étant donné le faible
nombre de jeux de données spécialisés pour ces taches. Li et al. (2025 [25]) soulignent d’ailleurs
dans leur revue que ces données sont insuffisantes pour capturer la variabilité et la complexité
inhérentes aux situations cliniques réelles. Pour en avoir entrainé pendant plusieurs années,
je peux moi-méme attester que ces modeles sont plutot capricieux : un simple changement
de caméra peut faire effondrer les performances d'un modele méme si les nouvelles images
sont objectivement de meilleure qualité! Cette spécialisation au jeu d’entrainement est parti-
culierement vraie pour la classification vasculaire : les performances mesurées sur ’ensemble
de test de la base choisie pour entrainer le modele sont tres différentes de celles obtenues sur
une autre base. Les modeles sont ainsi généralement entrainés et testés sur chaque jeu indivi-
duellement. Et malheureusement, la montée en complexité des architectures, I'accroissement
de leur nombre de parametres, et la recherche perpétuelle de nouveaux records de perfor-
mance sur des jeux de validation tres limités aggravent cette tendance au surapprentissage,

au détriment des capacités de généralisation des modeles.
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Stagnation des performances Plusieurs méta-analyses publiées récemment compilent
les performances des algorithmes de segmentation (Khandouzi, 2022 [22] ; Kumar, 2023 [23];
Qin, 2024 [24]; Liu, 2025 [25]) et de classification (Chen, 2024 [26]) des vaisseaux rétiniens,
et les tendances qu’ils observent sont intrigantes. A leur arrivée en 2015, les CNN grimpent
rapidement dans les classements de segmentation vasculaire sans toutefois égaler la méthode
de Lupascu et al. (2010 [71]) qui combinait de nombreux descripteurs congus manuellement.
Ce palier sera franchi a partir de 2018 et de I'introduction des U-Net pour la segmentation sé-
mantique des réseaux rétiniens : ainsi Xiao et al. (2018 [147]) atteignent 96.55% d’exactitude
sur DRIVE avec un Res-U-Net. Mais depuis, les performances des méthodes proposées oscil-
lent entre 96% et 97% sur cette métrique, et ce, en dépit des nombreux efforts de recherche
pour améliorer les architectures des modeles et leur procédure d’entrainement. Concernant la
classification, Chen et al. (2024 [26]) concluent que, bien qu’elles constituent la majorité des
travaux récents, les approches par réseaux de neurones obtiennent des performances compa-
rables en moyenne aux approches topologiques pures. Il semble donc que ces modeles aient

atteint, depuis quelques années, un plafond de performances difficile a dépasser.
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2.3 Paramétrisation du réseau vasculaire rétinien a partir de segmentation sé-

mantique automatique

Les techniques de segmentation et de classification des vaisseaux énumérées a la section
précédente ont beaucoup évolué depuis 2002 et le développement du premier logiciel de
mesure semi-automatique des parametres vasculaires rétiniens. On verra ici comment ces
nouvelles techniques furent incorporées a ces logiciels, permettant une paramétrisation semi-
automatique puis complétement automatique du réseau vasculaire des images de fond d’ceil.

On commencera par un rappel des parametres vasculaires exploités par les études cliniques.

2.3.1 Parameétres vasculaires rétiniens

Calibre vasculaire La mesure de diametre des vaisseaux est centrale pour identifier le
rétrécissement symptomatique des artérioles. Sa mesure automatique repose initialement sur
une détection de contours sur le profil d’intensité du canal vert, dans une direction orthogo-
nale au vaisseau (Sherry, 2002 [13]). Cette mesure peut étre affinée en ajustant un modele
gaussien a ce profil (Li, 2005 [148]). Cette méthode est particulierement adaptée pour déter-
miner le calibre des arteres réfléchissant la lumiere en leur centre. Aujourd’hui, on considere
généralement que les cartes de segmentations automatiques sont suffisamment fiables pour
une mesure directe du calibre, par exemple par le calcul d’une carte de distance (Distance
Transform) [149].

Tortuosité Une élévation de la tortuosité vasculaire est associée tres tot a I'hyperten-
sion et a l'athérosclérose (Scheie et al., 1953 [150]). Mais 'appréciation de la tortuosité est
subjective, et définir un indice qui correspond a cette appréciation tout en étant calculable
automatiquement a partir du squelette vasculaire n’est pas trivial. Une premiere formule est
proposée par Lotmar et al. (1979 [151]) qui I’a définie pour chaque branche comme le ratio de
la longueur de I’arc (le nombre de pixels du squelette) sur la longueur de la corde (la distance
euclidienne entre le premier et le dernier pixel de la branche). En 1999, Hart et al. [152]
définissent une série d’indices de tortuosité en fonction de la courbure locale k. Ils concluent
que la formule correspondant le mieux au sentiment clinique de la tortuosité est 'intégrale
de k2 le long de la courbe. Grisan et al. (2008 [153]) proposent de calculer la tortuosité par
une moyenne des ratios arc sur corde calculée entre chaque point d’inflexion de la courbe.
Enfin, Trucco et al. (2010 [154]) généralisent la formule de Hart et montrent que la valeur de
la tortuosité est sensible au calibre des vaisseaux. Quelles que soient la définition choisie, la
tortuosité est toujours calculée a partir du squelette des artérioles ou des veinules sur lequel

chaque branche a été identifiée.
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Dimension fractale Les multiples ramifications du réseau vasculaire rétinien sont des
structures délicates a modéliser pour les algorithmes proposés avant les années 2000. 11 est
donc proposé d’estimer le taux de ramification par une approche globale estimant la dimen-
sion fractale. Mainster (1990 [155]) propose de compter le nombre de pixels du squelette a
I'intérieur de cercles centrés sur le disque optique et de rayon variable. Il trace alors la courbe
du logarithme du nombre de pixels en fonction du logarithme des rayons et en mesure la
pente pour obtenir la dimension fractale du graphe. Une implémentation plus rapide dite
de Box-Counting est proposée par Liebovitch et Toth (1989 [156]). Elle consiste a couvrir la
région d’intérét de grilles de carrés dont on fait varier la longueur ¢ du coté. La dimension
fractale est alors donnée par la pente de la courbe du nombre de carrés contenant une partie
du squelette en fonction de c. C’est cette méthode qui est retenue aujourd’hui. Il a été montré
que des changements de la dimension fractale sont associés a I’hypertension, la DR, ou encore
la mortalité liée aux coronaropathies ou aux AVC (Zu, 2014 [157]).

Paramétres des bifurcations Les modeles physiques d’écoulement du sang dans les
vaisseaux permettent de prédire les caractéristiques géométriques optimales aux bifurcations
(Murray, 1926 [158]). Les écarts entre les valeurs théoriques de ces caractéristiques et leurs
valeurs mesurées sont symptomatiques d’une altération des propriétés physiques des vais-
seaux, par exemple & cause du diabete (Luo et al., 2017 [159]). Pour quantifier ces écarts,
Martinez-Perez et al. (2000 [160]) ont proposé une série d’indicateurs géométriques des bifur-
cations. Soit une branche parente (de diametre dy) donnant naissance a deux branches filles
(de diametre d; et dy, avec d1 > d2), tel qu'illustré sur la Figure 2.9. On note 6, et 6, les

angles de variation de direction entre la branche mere et chaque branche fille.

F1GURE 2.9 Typologie des grandeurs géométriques a une bifurcation.
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Martinez-Perez et al. définissent :

— Le ratio longueur-diameétre : % ;

di + d3
— Le coefficient d’embranchement (ou facteur d’expansion) : — 7 2.
0
— Le facteur d’asymétrie : g—; ;

— L’angle d’embranchement : 0; + 65 ; et 'asymétrie angulaire : |6; — 0] ;
— L’exposant de jonction : e tel que df = df + d5
(Murray avait suggéré que la valeur optimale pour les artéres était e = 3).
Ces parametres sont les plus complexes a évaluer automatiquement car ils nécessitent de dis-
tinguer les bifurcations parmi toutes les jonctions du graphe vasculaire puis d’identifier quelle
branche est la branche principale. En d’autres termes, leur mesure automatique nécessite de

résoudre le probleme de partition du graphe vasculaire (cf. Section 2.2.4).

2.3.2 Logiciel Semi-Automatique et Automatique de mesure des parameétres

vasculaires rétiniens

Depuis le développement A’TVAN en 2004, plusieurs logiciels de mesure des parametres

vasculaires rétiniens virent le jour. Les huit principaux sont recensés dans le tableau 2.2.

Le premier est SIVA (Cheung et al., 2010 [20]) développé par une équipe de recherche
a Singapour. La liste des parametres vasculaires qu’il extrait est bien plus complete que
celle 'TVAN (tous les parameétres mentionnés plus haut sont mesurés), et il étend aussi la
zone de mesure jusqu’a 2 diametres du disque optique autour de la papille. Pour réaliser
cet exploit, SIVA confie la segmentation des vaisseaux a un algorithme non supervisé qui
analyse le gradient de I'image pour identifier le squelette vasculaire (Garg et al., 2007 [161]),
la partition du graphe est réalisée par une recherche globale de I’arborescence optimale (Lau
et al. 2013 [96]) puis chaque sous-graphe est classifié comme artérioles ou veinules par une
approche non supervisée exploitant le contraste de couleur entre arteres et veines au sein
d’une méme image. Ces étapes sont menées sous la supervision d’un utilisateur qui a la

charge de les valider et, si besoin, de les corriger.

En 2011, une équipe écossaise public VAMPIRE (Perez-Rovira et al., 2011 [162]). Ce logiciel
vise un domaine d’application similaire a SIVA. Il segmente les vaisseaux par un classifieur
bayésien et des ondelettes multi-échelles, mais n’embarque ni méthode pour identifier auto-
matiquement les artérioles et veinules, ni algorithme de partition du graphe : les noeuds a 3
branches incidentes sont simplement interprétés comme des bifurcations. Cette approche est
moins fiable que celle de SIVA, mais contrairement a ce dernier, VAMPIRE analyse ’ensemble

de I'image de fond d’ceil. Le logiciel s’exécute sous la supervision d’un utilisateur.



TABLEAU 2.2 Comparaison des logiciels automatiques et semi-automatiques de mesure des parametres vasculaires rétiniens

seg. sem. : Segmentation Sémantique (segmentation et classification simultanée) ; MSLD : Multi-Scale Line Detector ;

Semi-Automatique

Compléetement Automatique

IVAN SIVA VAMPIRE QUARTZ SIVA-DLS AutoMorph TVBM RMHAS
Publication 2004 2010 [20] 2011 [162] 2015 [163] 2020 2022 [164] 2022 [165] 2022 [149]
ROI Standard Standard Complete Complete Standard Standard Standard Standard
& Etendue & Etendue & Complete & Complete & Complete
Temps par image 20 min 25 min - 54 s quelques secondes <2s <2s <2s
Code Public - - Sur demande - - Code et Modele Code seul -
Algorithme de modélisation du graphe vasculaire
Segmentation - Non-Supervisée Supervisée Supervisée FCN U-Net LUNet U-Net
(Garg 2007 |161])  ondelettes MSLD (Xu 2019 [166]) (Fhima 2024 [167])
Classification - Clustering - Arbre de décision seg. sem. seg. sem. seg. sem. U-Net
par contraste par couleur dédiés
Partition - Globale - Locale - - - Séparation
du graphe (Lau 2013 [96]) A/V
Parameétres Vasculaires
Calibre & AVR vV Vv Vv v 4 Vv Vv Vv
Tortuosité vV v v V4 4 v
Dimension Fractale Vv Vv Vv V4 Vv
Bifurcations Vv Vv v v
Modélisation Topologique vV (V) v

0¥
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La méme équipe publiera en 2020 une version completement automatique nommée SIVA-
DLS qui tirera profit d'un FCN pour la segmentation et la classification des vaisseaux.

Cependant, cette version ne permettra la mesure que des calibres vasculaires et de I’AVR.

En 2015, Fraz et al. [163] réduisent le temps d’annotation par image de 25 minutes a 54 se-
condes en étant les premiers a proposer une solution completement automatique : QUARTZ.
Les vaisseaux y sont segmentés par une approche supervisée exploitant des détecteurs de
lignes multi-échelles (MSLD), puis identifiés dans le graphe par résolution locale de la connec-
tivité des branches et enfin catégorisés A/V par un arbre de décision et des caractéristiques

colorimétriques. Le logiciel mesure uniquement le calibre, ’AVR et la tortuosité des vaisseaux.

Enfin en 2022 sont publiés trois outils par trois équipes différentes (anglaise, israélo-belge et
sino-australienne) : AutoMorph (Zhou et al., 2022 [164]), TVBM (Fhima et al., 2022 [165])
et RMHAS (Shi et al., 2022 [149]). Ces trois méthodes ont en commun 1'utilisation de mo-
deles U-Net pour la segmentation et la classification des vaisseaux. Mais seul RMHAS effectue
une modélisation topologique du graphe vasculaire. Pour identifier chaque vaisseau, ils ex-
traient simplement le graphe séparément des cartes de segmentation des artérioles et de celles
des veinules. Ils n’ont ainsi pas besoin de partitionner le graphe, mais sont particulierement

sensibles aux erreurs de classification.

2.3.3 Limites des logiciels existants

Incohérence entre standards L’objectif motivant le développement de ces logiciels semi
et completement automatiques était de faire disparaitre la subjectivité et la variabilité inter-
observateur en remplacant les annotateurs humains par un protocole de mesure déterministe
et standardisé. Cet objectif n’est qu’a moitié rempli. Certes, ces logiciels sont déterministes,
mais leur variété crée une duplicité des standards. Chacun propose en effet une sélection
différente de parametres vasculaires, et les parametres qu’ils ont en commun ne sont pas
forcément calculés sur la méme région ou avec la méme formule. Surtout, chacun a son
propre algorithme de segmentation et de classification, exploitant des méthodes radicalement
différentes et accroissant encore les différences de mesure d’un logiciel a l'autre. En 2022,
Mautuit et al. [168] avaient comparé les valeurs d’AVR, de CRAE et de CRVE mesurées par
IVAN, SIVA et VAMPIRE. Alors que ces parametres ont une définition unique et théori-
quement standardisée, Mautuit et al. observent une différence statistiquement significative
du calibre moyen mesuré par chaque logiciel, et montrent que, méme apres avoir corrigé ce
biais, les mesures de VAMPIRE sont faiblement corrélées avec celles des deux autres logiciels.
Ils concluent cependant que tous obtiennent des corrélations similaires avec les principaux

parametres vasculaires (hypertension, pression systolique et diastolique, etc.).
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Accessibilité restreinte Ces incohérences entre logiciels sont aggravées par 'opacité qui
les entoure : sur les huit, seuls deux ont vu leur code étre rendu public (les deux plus récents :
AutoMorph et PVBM). Il est donc impossible de comparer leur implémentation pour identi-
fier les sources de dissensus, définir des bonnes pratiques, et ainsi faire évoluer les protocoles
de mesure. L’inaccessibilité de ces logiciels est aussi problématique pour les chercheurs en
vision par ordinateur qui sont privés d’outils pour évaluer la capacité de leurs algorithmes de
segmentation et de classification a produire des cartes pertinentes pour la paramétrisation

du réseau vasculaire rétinien.

Concurrence des approches end-to-end Danielescu et al. ont récemment recensé les
usages des analyses automatiques des vaisseaux rétiniens comme indicateur de pathologies
non ophtalmiques (2024 [169]). Ils concluent qu’un large consensus existe sur la corrélation
entre les parametres vasculaires (en particulier les mesures de calibres) et les facteurs de
risque cardiovasculaires, et que des recherches prometteuses les relient aussi a des patho-
logies cérébrales, rénales ou respiratoires. Ils indiquent cependant que ces corrélations sont
souvent modérées et trop limitées pour étre exploitées a des fins prédictives. Sur ce point, les
parametres vasculaires sont concurrencés par des indicateurs end-to-end prédits par des ré-
seaux de neurones directement a partir des images de fond d’ceil. C’est par exemple le cas du
retinal age gap : la différence entre I’age réel d’un patient et I’age prédit a partir d’'une image
de sa rétine par un CNN (Zhu et al., 2023 [170]). On pourrait ainsi étre tenté de délaisser
les approches par modélisation du graphe vasculaire pour celles end-to-end, mais, alors que
les algorithmes de segmentation sémantique vasculaire sont enfin matures, il me semble que
la paramétrisation vasculaire peut révéler son plein potentiel. Surtout en considérant le gain

d’interprétabilité qu’elle représente comparé a ces indicateurs « boite noire ».

Modélisation topologique insuffisante La maturité des modeles de segmentation et
la classification des vaisseaux rétiniens ouvrent de nouveaux horizons aux analyses para-
métriques sur de larges cohortes. Elles rendent possible la mesure du calibre de ’ensemble
des vaisseaux et non plus simplement des principaux; 'analyse différenciée des branches en
fonction du nombre de bifurcations qui les séparent des vaisseaux centraux; ou encore une
analyse fine de I’évolution morphologique et géométrique des vaisseaux a travers des données
longitudinales. Mais pour permettre ces études, encore faut-il que la modélisation du graphe
vasculaire soit suffisamment fiable et précise. C’est un dernier reproche qu’on peut formuler
a l'encontre de ces logiciels : seulement trois extraient une représentation topologique du
graphe vasculaire. Et parmi les logiciels récents exploitant des CNN, RMHAS est le seul a
produire cette modélisation. Son approche pour le faire est d’ailleurs simpliste et tres sensible

aux erreurs de classification.
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CHAPITRE 3 METHODOLOGIE GENERALE

Ce chapitre synthétise la littérature de la modélisation automatique du graphe vasculaire
rétinien et pointe des lacunes. Il expose ensuite les axes de recherche que j’ai choisis pour y

répondre durant mon doctorat, et les raisons motivant ces choix.
3.1 Synthese de la littérature

A Dorigine de la littérature décrite dans le chapitre précédent se trouve une ambition formulée
en défi : Pambition de comprendre et prévenir les pathologies vasculaires par I'observation de
la vasculature du fond d’ceil ; le défi d’automatiser la paramétrisation des artérioles et veinules
rétiniennes. De cette ambition et de ce défi, nait une effervescence académique autour des
questions de segmentation, puis de classification, et finalement de modélisation topologique
du graphe vasculaire rétinien. On essaie plusieurs approches pour détecter ces vaisseaux :
d’abord non supervisées, en exploitant leur profil reconnaissable par des filtres convolutifs ou
leur structure tubulaire identifiable par ’analyse hessienne ou par des opérateurs morphomat.
Puis, lorsque des jeux de données annotés sont publiés, les approches supervisées s’imposent.
Les CNN;, et plus précisément I'architecture U-Net, surpassent toutes les méthodes antérieures
pour la segmentation, et se hissent au niveau des méthodes topologiques pour la classifica-
tion. Trente-six ans et pres de 2000 articles ont succédé a la premiere publication en 1989
d’une méthode de segmentation des vaisseaux rétiniens. Les probléemes d’alors — 'amplitude
de variation des diametres de vaisseaux ou les artefacts d’illumination et de contraste — ont
largement été résolus, et de nouveaux sont apparus. Concernant les réseaux de neurones,
deux limitations persistent : 1. ces modeles sont particulierement sujets au surapprentissage,
surtout compte tenu du faible volume de données annotées pour leur entrainement et leur
validation ; 2. ils semblent méconnaitre la structure topologique sous-jacente au graphe vas-
culaire rétinien : les cartes qu’ils prédisent contiennent des artefacts de segmentation et de

classification impliquant peu de pixels mais a fort impact topologique.

Les méthodes de modélisation topologique du réseau vasculaire rétinien — c’est-a-dire de
partition du graphe afin de représenter chaque vaisseau comme un arbre dont le noeud ra-
cine est connu — sont évoquées dans les revues de littérature de classification comme des
post-traitements prometteurs pour corriger a posteriori les artefacts topologiques des CNN.
Initialement développées pour permettre la classification des artérioles et veinules avant 1’ar-
rivée des réseaux de neurones, ces méthodes semblent peu a peu retomber dans 1’oubli. Elles
peinent notamment & trouver leur place dans les logiciels de paramétrisation des vaisseaux
rétiniens qui leur préferent des approches plus simplistes. Pourtant, elles permettraient une

identification plus fiable des bifurcations par ces logiciels.
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Au terme de cette revue de littérature, je formule quatre constats associés aux quatre étapes
successives de la modélisation du graphe vasculaire rétinien : sa segmentation, sa classifica-

tion, I'extraction de sa topologie, et sa paramétrisation.

Constat 1 : Les méthodes de segmentation ont fait l'objet de trés nombreuses publi-
cations ces dernitres années et voient aujourd’hui leurs performances stagner. A mon sens,
cette stagnation s’explique par deux facteurs. D’une part, les données d’entrainement et de
validation ne sont plus suffisantes pour tirer profit des architectures de réseaux de neurones
toujours plus complexes; d’autre part, les métriques évaluant les modeles ont atteint leur
limite d’applicabilité : au niveau de performances actuel, elles sont trop sensibles aux biais

d’annotation et pas assez aux artefacts topologiques.

Constat 2 : La classification des artérioles et veinules est dix fois moins étudiée que
leur segmentation. Pourtant, la classification des petits vaisseaux éloignés du disque optique
reste incertaine pour les modeles convolutifs ; et ces algorithmes sont par ailleurs sujets a des
incohérences topologiques : inversant régulierement la classification d’'un vaisseau au milieu
d’une branche. En outre, les jeux de données annotés pour la classification A/V sont encore
plus rares que ceux annotés pour la segmentation, ce qui présente un défi supplémentaire a la
capacité de généralisation des modeles de classification. Ce point est d’autant plus inquiétant
que les images de fond d’ceil issues des cohortes de patients dont on souhaite modéliser
la vasculature rétinienne n’ont pas nécessairement les mémes caractéristiques d’éthnie ou

d’acquisition que celles des jeux ayant entrainé les modeéles.

Constat 3 : L’extraction de la topologie de ’arbre vasculaire rétinien, maillon essentiel
pour sa modélisation, était au coeur de I'attention entre 2010 et 2015 lorsqu’elle assistait la
classification A/V en réalisant la partition du graphe vasculaire. Néanmoins, elle semble au-
jourd’hui délaissée par la communauté de chercheurs. Remise au gotit du jour et combinée aux

réseaux de neurones, elle pourrait pourtant corriger certains de leurs artefacts topologiques.

Constat 4 : Quatre outils de paramétrisation des vaisseaux rétiniens basés sur des CNN
ont été publiés depuis 2020, mais un seul (RMHAS) modélise topologiquement le réseau
vasculaire comme une forét d’arbres, et la méthode choisie pour ce faire est tres sensible
aux erreurs de classification A/V. Le seul autre logiciel proposant une telle modélisation
(SIVA) est semi-automatique et limite son analyse a 2 diametres du disque optique autour
de la papille. Ces outils sont donc en retard sur la littérature de modélisation topologique.
J’ajoute que, pour 3/4 d’entre eux, le code n’est pas accessible librement. Cette situation n’est
pas anecdotique : elle prive les chercheurs en segmentation et en classification des outils pour

évaluer leurs algorithmes dans la perspective d’'une paramétrisation des vaisseaux rétiniens.
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3.2 Problématique de recherche

Les réseaux de neurones et plus spécifiquement les CNN ont recu beaucoup d’attention de la
communauté de chercheurs travaillant sur I'identification des artérioles et veinules rétiniennes.
Si ces modeles culminent en haut des classements de 1’état de I'art, ils restent limités par leur
tendance au surapprentissage et par leur incapacité a apprendre la structure topologique sous-
jacente a la vasculature de la rétine. Les logiciels récents de paramétrisation automatique des
vaisseaux rétiniens qui exploitent ces modeles ont soit abandonné la modélisation topologique
de I'arbre vasculaire, soit ont recours a une approche simpliste qui ne tient pas compte des

artefacts topologiques de segmentation ou de classification.

Je formule donc pour cette these la problématique suivante : Comment mettre a profit les
recherches récentes appliquant les CNN a la segmentation et la classification des vaisseaux sur
image de fond d’ceil, pour extraire une modélisation topologique robuste de I'arbre vasculaire

rétinien en vue d’en extraire des paramétres cliniques fiables ?

3.3 Objectifs spécifiques

Parmi les multiples questions que soulevent cette problématique, j’ai choisi d’orienter mon

doctorat sur les objectifs spécifiques suivants.

Objectif I : Construire un nouveau jeu de données annotées pour l’entraine-
ment et la validation de modeles de segmentation et de classification vasculaire
sur image de fond d’oeil. Peu de jeux de données publics d’images de fond d’ceil sont
annotés pour la segmentation des vaisseaux rétiniens, et encore moins distinguent les arté-
rioles et les veinules. Que ce soit pour mieux représenter la variété des conditions cliniques a
I’entrainement des modeles, ou pour renforcer la confiance dans I’évaluation de leur qualité,

de nouvelles annotations doivent étre collectées.

Objectif II : Améliorer les propriétés intrinseques de généralisation des CNN
appliqués a la classification A /V. Les efforts conduits pour 1'objectif I ne suffiront jamais
a faire disparaitre completement le risque de surapprentissage qui plane sur les CNN; et en
particulier ceux qui classifient les artérioles et les veinules. Je propose donc d’aborder ce
probléme par un second angle : modifier le formalisme des neurones convolutifs pour améliorer

leurs propriétés intrinseques de généralisation.
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Objectif III : Modéliser la topologie et la géométrie de ’arbre vasculaire rétinien
a partir de cartes imparfaites de segmentation A /V. Puisque les réseaux convolutifs
peinent a apprendre la cohérence topologique du réseau vasculaire, il est nécessaire d’adapter
les méthodes de modélisation de l'arbre vasculaire pour qu’elles tiennent compte des im-
perfections présentes dans les cartes de segmentation et de classification. Pour ce faire, on
peut s’appuyer sur la littérature qui traite du partitionnement optimal du graphe vasculaire

développée entre 2010 et 2015 pour la classification A/V.

3.4 Approche générale

Ces objectifs spécifiques sont traités dans les trois prochains chapitres de la these, dont voici

un aperc¢u de leurs motivations et approches respectives.

3.4.1 MAPLES-DR : une campagne d’annotation des structures anatomiques

et pathologiques de la rétine

A Theure ot les réseaux de neurones fleurissent dans tous les secteurs du traitement du
signal, la pression sur la disponibilité des données annotées augmente. Dans le domaine de la
segmentation d’image médicale, I’annotation des images est fastidieuse et cofiteuse. Il n’est
donc pas étonnant que les jeux de données publics dédiés a la segmentation et la classification
des vaisseaux sur les images de fond d’ceil soient insuffisants pour représenter la variété des
situations cliniques. Dans les derniéres années, cette situation tend néanmoins a se résorber
avec la publication en 2022 des jeux comme FIVES [36], RETA [40], ou celui de Leuven-
Haifa [41] en 2024. J’ai moi-méme posé ma pierre a 1'édifice avec la publication en 2024 de
MAPLES-DR (MESSIDOR Anatomical and Pathological Labels for Explainable Screening of
Diabetic Retinopathy).

Ce projet fut certainement le plus long de mon doctorat. Il trouve son origine en 2018 lors
d’une collaboration entre le LIV4D, le MILA et une équipe de rétinologues canadiens qui sou-
haitaient améliorer le programme de télédépistage de la rétinopathie diabétique au Canada
en assistant d’outils de diagnostic automatique. Etant donné I'expertise du LIV4D dans la
segmentation automatique des structures rétiniennes et I'importance donnée a l'interpréta-
bilité en IA médicale, il fut décidé que 'algorithme impliquerait des étapes de segmentation
de structures anatomiques et pathologiques pour établir son diagnostic (contrairement a une
approche end-to-end). Mais, a 1’époque, les bases de données publiques d’images de fond
d’ceil pour entrainer des modeles de segmentation de lésions sont tout aussi limitées que

celles pour les vaisseaux, et la nécessité d’en annoter une nouvelle nous apparait rapidement.
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Dans les années qui suivirent, sept cliniciens se sont donc relayés pour annoter quatre types
de structures anatomiques (les vaisseaux, le disque optique, la papille et la fovéa) et six types
de structures pathologiques symptomatiques de la DR sur 200 images de fond d’ceil issues
du jeu de données public MESSIDOR [171].

Cette exhaustivité d’annotation est inédite. J’ai donc dii concevoir un protocole d’annotation
dédié s’appuyant : d'une part sur des présegmentations prédites par des algorithmes puis cor-
rigées par les rétinologues; et d’autre part sur une plateforme d’annotation web implémentée
pour l'occasion. Par la suite, j’ai pu réutiliser ces outils et les segmentations des vaisseaux
pour annoter les cartes des artérioles et les veinules sur 100 images de MAPLES-DR. Ces

cartes ont été mises a profit dans les deux chapitres suivants.

3.4.2 STEERED CNN : I’équivariance par rotation au service de la classification

des artéres et veines rétiniennes

Pour approcher le second objectif, je prends la littérature a revers : plutot que d’accroitre
la complexité architecturale et paramétrique des modeles de classification des vaisseaux réti-
niens, je vais plutot chercher a réduire leur nombre de parametres en exploitant une propriété
de leur tache : la classification ne dépend pas de 'orientation des vaisseaux. Les CNN qui
réalisent cette classification doivent donc étre équivariant par rotation : c’est-a-dire qu'une
rotation de I'image présentée en entrée doit théoriquement induire une rotation analogue sur
la carte de prédiction en sortie. Les CNN possedent naturellement une propriété similaire,
ils sont équivariants par translation : par définition de 'opérateur de convolution, une trans-
lation de leur entrée produit une translation équivalente de leur sortie; mais I’équivariance
par rotation n’est pas inscrite dans leur formalisme. Le modele doit donc I'apprendre a partir
des données d’entrainement. Et lorsque peu de données sont disponibles — comme c’est le
cas pour la classification A/V rétinienne — cet apprentissage est approximatif, et peut étre

source d’erreur.

Cette lacune m’a soufflé une idée assez peu étudiée dans la littérature : modifier le formalisme
des neurones convolutifs — au cceur de tous les CNN et des U-Nets — afin d’orienter leurs filtres
selon la direction locale de chaque vaisseau de I'image avant d’appliquer la convolution. Ainsi,
chaque filtre du modele pourrait participer a la détection de tous les vaisseaux d’une image,
quel que soit leur orientation, au contraire des neurones convolutifs standards qui pergoivent
différemment les vaisseaux horizontaux et verticaux. En mutualisant les filtres de cette fagon,
les steered CNN devraient nécessiter moins de parametres pour réaliser la méme tache, ils

seraient ainsi moins sujets au surapprentissage et plus aptes a généraliser.
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3.4.3 FUNDUS VESSELS TOOLKIT : modélisation géométrique et topologique

de I’arbre vasculaire rétinien

Le troisieme objectif de cette these traite des dernieres étapes de la modélisation du graphe
vasculaire rétinien : 'extraction de sa topologie et de sa géométrie pour mesurer des para-
metres vasculaires. Il porte plus spécifiquement une ambition théorique : montrer comment les
techniques de partitionnement optimal de I'arbre vasculaire, développées initialement comme
un prétraitement topologique en vue de classer chaque branche comme artériole ou veinule,
peuvent a nouveau retrouver leur place aujourd’hui, comme post-traitement des cartes de

segmentation sémantique prédites par CNN pour en corriger les incohérences topologiques.

Apres étre parvenu a la conclusion qu’aucun logiciel de paramétrisation n’offrait le cadre dont
j’avais besoin, je dus me résoudre a développer moi-méme un nouvel outil : la librairie Python
baptisée Fundus Vessels Toolkit (FVT). En me lancant dans ce développement, je n’imaginais
pas la nuée d’anicroches dont recele la modélisation topologique du réseau vasculaire rétinien.
La variabilité naturelle des vaisseaux produit en effet tant d’exceptions, tant de cas étranges,

que I'implémentation de FVT se révéla étre une épreuve de minutie algorithmique.

L’ultime chapitre de méthode de cette these est donc traversé par deux mouvements. D’une
part, le développement théorique d'une nouvelle méthode de correction topologique des im-
perfections contenues dans les cartes de segmentation prédites par CNN. Et d’autre part,
I’ajustement minutieux de chacune des étapes qui jalonnent le processus d’extraction de la

géométrie et de la topologie de I'arbre vasculaire rétinien.
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CHAPITRE 4 MAPLES-DR : UNE CAMPAGNE D’ANNOTATION DES
STRUCTURES ANATOMIQUES ET PATHOLOGIQUES DE LA RETINE

Le présent chapitre est consacré & MAPLES-DR (MESSIDOR Anatomical and Pathological
Labels for Explainable Screening of Diabetic Retinopathy), un nouveau jeu de segmentation
des structures anatomiques et pathologiques de la rétine pour 200 images de fond d’ceil issues
de la base publique MESSIDOR [171]. 11 détaille le choix du protocole d’annotation (résumé
sur la Figure 4.1), en présente les résultats et se conclut par une étude inédite de la variabilité

inter-observateur lors de la segmentation des lésions rétiniennes.

MAPLES-DR

198 fundus images from
MESSIDOR public dataset

Pre-segmentation
by Al Models S 6\’5

Manual corrections ‘

and segmentations by g -
7 senior retinologists
on a custom web-based
annotation interface*

4 ANATOMICAL STRUCTURES

\ * Optic Disc
\ * Optic Cup

 Exudates
|  Cotton Wool Spots
* Drusens

SEGMENTATIONS OF RETINAL STRUCTURES

S WU Micro Aneurysms
4 e Hemorrhages

DR & ME manual grading ° Neo-vessels

through majority-voting
and deliberation

2 RETHINOPATHY GRADES  (using international standard)

w
= Diabetic Retinopathy Macular Edema
<
*Absent .
& e LSevere s
*Mild . . *Mild
) . . . *Proliferative
* The web-based annotation tool is published alongside the dataset. Moderate *Moderate

FIGURE 4.1 Résumé graphique du protocole d’annotation de MAPLES-DR.
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4.1 Motivations et travaux connexes

Enjeux du dépistage automatique de la DR

La rétinopathie diabétique (DR) est une complication du diabéte qui cause des lésions sur la
micro-vasculature rétinienne et conduit dans plus d’'un quart des cas a une détérioration de la
vue. Elle concerne 22% des patients diabétiques, soit 103,12 millions d’adultes en 2020 [172],
et est la premiere cause de cécité dans le monde pour les adultes entre 25 et 75 ans [173]. Sa
progression lente se caractérise cliniquement par des stades définis par ’apparition de lésions
sur la rétine qui doivent étre surveillées chez les populations a risque pour assurer une prise en
charge précoce et espérer préserver leur vision [174]. En Amérique du Nord, 40% des patients
diabétiques ne sont pas dépistés pour la DR malgré de larges programmes de dépistage
[175-177]. Cependant, I'expérience fournie par ces programmes montre une amélioration du
taux de patients surveillés grace au dépistage par télé-ophtalmologie [178], et suggere que des
algorithmes de diagnostic automatique de la DR pourraient encore démultiplier leur efficacité,
en réduisant le cotit des examens de dépistage pour augmenter leur fréquence, et en assurant

une prise en charge immédiate des patients référés [174].

Durant la derniére décennie, les CNN puis les Vision Transformers furent appliqués avec
succes aux diagnostics automatiques de DR a partir d’images de fond d’ceil, en tous cas dans
le cadre de recherches académiques. Au coeur du développement de ces algorithmes supervisés
sont les bases de données publiques d’images annotées, sur lesquelles sont entrainés puis
validés ces modeles [179]. Parmi elles, les bases de données Eyepacs [180] et MESSIDOR-
2 [171] ont permis aux algorithmes de dépistage automatique d’atteindre des performances
supérieures aux exigences de la FDA (sensibilité supérieure a 85% et spécificité supérieure a
82,5%) [179], ou a celles d’experts humains [181].

Pourtant, il persiste un manque de confiance du personnel médical envers ces technologies
qui n’atteignent pas les standards d’'une 'explainable AI". D’une part, ces modeles ne sont
pas interprétables : les regles implicitement utilisées pour produire les diagnostics nous sont
inintelligibles et rien n’assure qu’elles soient similaires a celles des rétinologues [179,182,183].
Cette opacité est d’autant plus inquiétante aux regards des imperfections des vérités terrains
utilisées pour évaluer ces modeles : les bases de données publiques de DR sont spécifiques a une
population et leurs protocoles d’annotations ne sont pas standardisés. De ce fait, les modeles
entrainés sur I'une sont spécifiques a ses biais et sont incompatibles avec les autres [179,183].
D’autre part, ces modeles se prétent mal a une collaboration entre Als et ophtalmologistes

humains car les diagnostics produits par ces modeles sont étayés de trop peu d’explications.



51

Segmenter les structures rétiniennes pour dépister la DR

Pour dépasser ces limitations, il nous est apparu qu’une partie de la réponse résidait dans
I’amélioration des labels d’entrainement. En effet, I'incertitude concernant ’évaluation des
algorithmes et les problemes de généralisation appellent a plus de diversité dans les bases de
données de validation et a une meilleure documentation de leurs biais et de leur processus
d’annotation. Par ailleurs, la faible explicabilité des algorithmes appelle a plus d’exhausti-
vité et de pertinence clinique des labels qui guident leurs entrainements, bien au-dela des
simples diagnostics. Dans leur rapport "Four principles of Explainable AI" [184], le NIST
(National Institute of Standards and Technology) rappelle que pour étre satisfaisante, la jus-
tification d’une prédiction doit étre «meaningfull» pour son public cible. C’est-a-dire, dans
notre cas, qu’elle soit formulée dans un vocabulaire dont la sémantique est familiere aux
ophtalmologistes. Or les grades de DR ne constituent qu’une petite partie de ce vocabulaire :
les justifications cliniques s’appuient plutét sur les structures anatomiques ou pathologiques
de Pceil (vaisseaux, macula, lésions rouges ou claires, etc.) [185-187]. Ainsi, que ce soit pour
faire converger a priori les modeles vers des représentations compatibles avec les connais-
sances cliniques ou pour interpréter a posteriori ces représentations en les comparant a des
biomarqueurs cliniquement reconnus, les bases de données annotées au niveau du pixel ont

un role crucial dans le développement de modeles de dépistage explicable.

Bases de données publiques pour la segmentation des structures rétiniennes

Annoter au niveau du pixel les structures anatomiques ou pathologiques de la rétine requiert
considérablement plus de temps et d’effort qu’apposer un simple diagnostic de DR. Les bases
de données proposant de telles annotations sont donc naturellement bien moins nombreuses.
La plupart ne proposent des annotations que pour un seul type de structure : par ex. vaisseaux
[31,36,40,45], disque optique [188-190], exsudats [191], ou micro-anévrismes [192].

Concernant les structures pathologiques, seulement quatre bases de données proposent des
annotations pour plusieurs lésions symptomatiques de la DR (i.e. micro-anévrisme, hémorra-
gies, exsudats et CWS). FGADR [193] et Retinal Lesions [194] contiennent de trés nombreuses
images mais en segmentant grossierement les zones pathologiques. Au contraire, IDRiD [195]
et DDR [196] fournissent des segmentations précises mais pour moins d’images (respective-
ment 81 et 757 images). Aucune ne contient d’annotation de structures anatomiques. Par
ailleurs, les articles qui accompagnent ces bases de données se concentrent sur la hausse
des performances de segmentation qu’elles permettent, mais ne décrivent que tres brieve-
ment le protocole ayant produit leurs annotations et aucun ne mesure leur variabilité inter-

observateur. Il est donc tres difficile de juger de leur fiabilité.
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4.2 Méthode d’annotation de MAPLES-DR

4.2.1 Sélection des images

Lors de la conception du projet, il fut décidé que la campagne d’annotation (initialement
congue comme une campagne pilote) se limiterait a 200 images d’une base de données pu-
blique d’images de fond d’ceil. Le choix de la base se porta sur MESSIDOR parce qu’elle
servait de référence pour valider les algorithmes de dépistage de DR et qu’elle ne disposait
d’aucune annotation de structures rétiniennes. La sélection des 200 images (parmi les 1200
de MESSIDOR) fut randomisée de sorte que 30 soient saines, 59 soient de stade R1, 55 soient
R2 et 56 soient R3 (selon les diagnostics de DR fournis par MESSIDOR). Cette distribu-
tion n’est pas représentative de la prévalence de la rétinopathie ni dans le jeu de données
MESSIDOR, ni dans la population réelle (c.f. Figure 4.2). Néanmoins, elle assure un nombre
suffisant d’images pour chaque stade de la maladie tout en se concentrant sur ceux critiques
pour le dépistage (R1 et R2).

A la fin de la campagne d’annotation, il nous est apparu que 2 images étaient des duplicatas L
Bien qu’ayant déja été annotées par nos experts, ces images furent exclues de MAPLES-DR,
réduisant le nombre total d’images a 198. Leurs cartes de segmentations et diagnostics furent

tout de méme rendues publiques a des fins de transparence et d’étude de variabilité.

100%
B MAPLES-DR

MESSIDOR-2

80% Prévalence

60%
40%

20%

Sain R1 R2 R3 Sain M1 M2

Stade de Rétinopathie Diabétique Stade d'GEdéme Maculaire

FIGURE 4.2 Différences de prévalence de DR et ME entre MAPLES-DR (violet), MESSIDOR
au complet (turquoise) et une population dépistée par téléophtalmologie [2] a Toronto (gris).

1. La base de données originale MESSIDOR, contenait plusieurs images accidentellement dupliquées por-
tant des noms différents. Cette erreur fut corrigée ultérieurement dans MESSIDOR-2 [197], mais malheureu-
sement notre travail s’appuyait sur la premiere version.
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4.2.2 Sélection des structures anatomiques et pathologiques a annoter

Le choix d’inclure ou non les structures rétiniennes dans la liste des annotations de MAPLES-
DR fut concerté avec les rétinologues en s’appuyant sur le role de chacune dans I’histopatho-

logie de la DR et dans son dépistage.

Structures anatomiques Bien que les structures anatomiques rétiniennes soient présentes
dans toutes les images, y compris les images saines, leur aspect et leur proximité avec les
lésions fournissent de précieuses informations pour le diagnostic. La morphologie des vaisseaux
rétiniens est révélatrice des stades de la DR : une augmentation de la tortuosité artériolaire
est associée aux stades léger et modéré [198], tandis que le «venous beading» et la dilatation
des veinules sont plutot des symptomes des stades prolifératifs séveres. De plus, la gravité
d’une lésion dépend souvent de sa position par rapport au disque optique ou a la macula.
Ainsi, 'cedeme maculaire est évalué en comptant le nombre de lésions situées a un ou deux

diametres du disque optique par rapport a la macula. La Figure 4.3 présente un exemple

d’annotations de structures anatomiques de MAPLES-DR.

FIGURE 4.3 Structures anatomiques annotées dans MAPLES-DR (Bleu sombre : disque
optique, bleu clair : papille, violet sombre : macula, violet clair : vaisseaux).



o4

Lésions rouges Le diabete altére les parois des vaisseaux provoquant parfois des dysfonc-
tionnements de la microvasculature rétinienne et 'apparition de microanévrismes, d’hémor-
ragies, d’anomalies microvasculaires intrarétiniennes (IRMA) ou de néovaisseaux. Ces struc-
tures pathologiques sont appelées « lésions rouges ». Les microanévrismes — petites dilatations
circulaires de capillaires — sont des signes précoces de dysfonctionnement microvasculaire et
sont associés a une DR légere. Aux stades plus avancés de la pathologie apparaissent les hé-
morragies intrarétiniennes puis les IRMA dont la prolifération coincide avec le stade sévere de
la maladie, ce qui indique un risque de 50 % de développer une néovascularisation en 'espace
d’un an. L’émergence de néovaisseauzr (NV) marque la transition vers le stade prolifératif, le
stade le plus sévere du dépistage de la DR, qui nécessite une consultation immédiate chez un
ophtalmologiste. En effet, s’ils ne sont pas traités, ces néovaisseaux risquent de produire des
hémorragies prérétiniennes ou vitréennes, entrainant une perte visuelle majeure. La distinc-
tion entre les NV et les IRMA est difficile a établir a partir des seules images du fond d’ceil
et nécessite normalement une angiographie a la fluorescéine. En I’absence de cette modalité,

les deux furent annotés comme NV dans MAPLES-DR.

Lésions claires Dans les stades graves de la DR, la rétine s’épaissit et des exsudats durs
— des dépodts clairs autour de capillaires endommagés — peuvent apparaitre. Des ischémies
plus séveres provoquent parfois un blocage du transport axonal dans la couche de fibres du
nerf optique, qui peut a son tour entrainer ’apparition de lésions connues sous le nom de
nodules cotonneux. Ces lésions se caractérisent par leur aspect blanc et leurs contours flous. Si
leur étiologie principale est la rétinopathie diabétique, les nodules cotonneux (CWS) peuvent
également étre observés dans d’autres maladies vasculaires comme 'hypertension artérielle.
Enfin, MAPLES-DR fournit aussi des annotations de Drusens. Bien que ces lésions claires
soient plus symptomatiques de la dégénérescence maculaire liée a I’age (DMLA) que de la
DR, leur aspect est similaire a celui des exsudats et peut étre confondu avec eux. Ils sont

donc inclus dans MAPLES-DR pour marquer la distinction entre eux.

4.2.3 Recrutement des annotateurs

Les cartes de segmentation de MAPLES-DR ont été annotées par sept rétinologues canadiens
affiliés a cinq hopitaux différents : 'Hopital Maisonneuve-Rosemont, le University Health
Network (a Toronto), le CHUM (Centre Hospitalier Universitaire de Montréal), le Centre
Hospitalier Universitaire Saint-Justine, et I’Université de Sherbrooke. Tous les annotateurs
étaient des rétinologues seniors qui ont été recrutés suite a leur implication dans des pro-

grammes de téléophtalmologie pour la détection de la DR au Québec et en Ontario.
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FIGURE 4.4 Exemples d’annotations de structures pathologiques

4.2.4 Conception du protocole d’annotation

MAPLES-DR se limite a ’annotation de 200 images, mais elle fut congue comme une cam-
pagne pilote préparant le terrain a 'annotation de grandes bases de données (i.e. les milliers
d’images de télémédecine canadienne) par la collaboration de multiples annotateurs répar-
tis dans les différentes provinces canadiennes. Aussi, une attention particuliere fut portée a
maximiser D'efficacité des annotateurs lors de la conception du protocole d’annotation. Les

caractéristiques de I'outil d’annotation détaillées ci-dessous témoignent de cette ambition.
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Prétraitement des images de fond d’oeil

Les dimensions des images de fond d’ceil dans MESSIDOR varient de 1440 x 960 a 2304 x 1536
pixels. Pour uniformiser la résolution des cartes de segmentation dans MAPLES-DR, toutes
les images furent recadrées et redimensionnées a une résolution de 1500 x 1500 pixels. En-
suite, deux algorithmes d’amélioration d’image furent appliqués pour aider les annotateurs
dans leur lecture. Le premier visait a corriger les variations d’illumination tout en préservant
les teintes de I'image, par une soustraction de la médiane et par une égalisation d’histogramme
CLAHE sur le canal de luminosité. Le second maximisait les contrastes en normalisant in-
dépendamment les intensités de chaque canal couleur de maniere a étendre au maximum
leur plage de valeurs (voir Figure 4.5). Ces deux algorithmes de prétraitement pouvaient étre
activés individuellement ou en combinaison par le clinicien lors de ’annotation. Ils furent

particulierement utilisés lors de I’annotation des vaisseaux et des 1ésions rouges.

(a) Sans pré-traitement (b) CLAHE (¢) Maximisation des (d) Combinaison des
constrastes deux pré-traitements

FI1GURE 4.5 Prétraitements disponible sur la plateforme d’annotation pour améliorer la lec-
ture des image de fond d’oeil

Préannotation automatique

La segmentation médicale est une tache intrinsequement fastidieuse. Aussi, plutot que d’an-
noter de zéro, les rétinologues furent chargés d’examiner des cartes de segmentation générées
par IA (que nous appellerons cartes préannotées) et d’en corriger les éventuelles erreurs. Cette
méthode, bien moins laborieuse, fut utilisée pour annoter les exsudats, les microanévrismes,
les hémorragies et les vaisseaux sanguins. Pour les autres structures pathologiques (néovais-
seaux, drusen et CWS), les bases de données publiées a ’époque n’étaient malheureusement
pas suffisantes pour entrainer des modeles de segmentation performants. L’annotation des
autres structures anatomiques (macula, disque optique et papille) étant plus simple, elle ne

nécessitait pas de préannotations.
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En pratique, la génération des cartes préannotées fut confiée a deux modeles du niveau de
I'état de 'art en 2018 : I'un chargé de segmenter les lésions [199], Pautre de segmenter les
vaisseaux [114]. Les valeurs de seuillage des cartes de probabilités prédites par ces deux mo-
deles furent cependant légerement réduites de fagon a favoriser les faux positifs par rapport
aux faux négatifs. Ce choix reposait sur 'hypothese qu’examiner les structures préannotées
et supprimer celles incorrectes serait une tache plus aisée que repérer et annoter celles man-
quantes. Inversement, toutes les lésions préannotées sur les images saines (selon les étiquettes
DR de MESSIDOR) furent automatiquement effacées, afin d’éviter a 'annotateur de devoir
les supprimer manuellement. Enfin, lorsque la premiere moitié des segmentations de vais-
seaux fut corrigée, on réentraina le modele de préannotation vasculaire et on mit a jour les
préannotations de la seconde moitié. Le temps moyen nécessaire a ’annotation des vaisseaux

fut ainsi réduit de 10% entre la premiére et la seconde moitié.

Plateforme web d’annotation

Ce protocole de collecte de segmentations par correction de préannotation n’était pas aussi
répandu en 2018 qu’il ne I’est aujourd’hui. A 1’époque, aucun outil libre ne trouvait satisfac-
tion & nos yeux. Nous avons donc congu les maquettes d’une plateforme d’annotation dont le
développement fut confié a une équipe d’étudiants en génie logiciel. J’ai supervisé leur travail
puis ai complété, maintenu, et déployé la plateforme. Son code a récemment été rendu public

sur Github, accompagné d'une CLI Python et de documentation.

La collaboration entre des experts éloignés géographiquement fut le premier défi a relever
lors de la conception. Elle fut assurée par une solution double. 1. la plateforme d’annotation
prit la forme d’une application web accessible en tout temps sur le serveur du laboratoire.
Pour des raisons de sécurité évidentes, 1'acces fut protégé par un portail d’authentification
et on assigna a chaque rétinologue un compte utilisateur propre. 2. La plateforme fut dotée
d’'un systeme d’affectation de taches : chacune étant liée a une image et un annotateur et
y associant une liste des structures rétiniennes a réviser et compléter. Cette liste de taches
a compléter est présentée aux rétinologues immédiatement apres leur authentification (cf.
Figure 4.6). Chacun dispose de sa propre version des annotations de sorte que plusieurs
rétinologues puissent annoter la méme image. Une CLI en Python me permettait de répartir
préalablement les taches parmi I’équipe d’annotateurs puis de modifier ces affectations, d’en

surveiller la complétion et de télécharger les annotations corrigées.

Apres avoir sélectionné une tache, I'utilisateur est transporté vers le cceur de la plateforme :
I’éditeur d’annotation. Celui-ci est avant tout un outil de visualisation et de révision des

multiples structures rétiniennes, chacune possédant son calque et sa couleur propre (cf. Fi-


https://github.com/LIV4D/AnnotationPlatform
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gure 4.7). L'utilisateur peut cacher chaque calque individuellement et ajuster leur opacité
afin de les rendre semi-transparents. L’éditeur permet aussi de cacher ou révéler toutes les
annotations d’un appui sur une touche, et ainsi d’examiner par clignotement les pixels de
I'image qu’elles recouvrent. Dans la méme optique, le mode "bordure" remplace les cartes de
segmentation par une carte de leurs contours, facilitant la visualisation des structures détou-
rées. Enfin, 'annotateur peut a son gré zoomer et activer individuellement ou en combinaison

les prétraitements de I'image fundus (cf. Section 4.2.4).

Editor Gallery Tasks

Completed

Image Complete Tasks Incomplete Tasks

Submit

FIGURE 4.7 Interface d’annotation des structures rétiniennes.
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Les outils d’édition en eux-mémes sont similaires a ceux de n’importe quel logiciel de dessin.
Un pinceau et une gomme circulaires de taille réglable ajoutent ou enlevent des pixels du
calque d’annotation actif. Les deux sont doublés d’outils de détourage permettant de délimiter
des zones en tragant leurs contours. Une option du pinceau implémentée dans la plateforme
la distingue des logiciels de dessin traditionnels : elle transforme son comportement pour qu’il
n’ajoute pas de nouveaux pixels, mais plutot qu’il remplace le type d’annotations existantes
sans en modifier la segmentation. Cette option est particulierement utile pour requalifier une
préannotation d’exsudats en drusen, ou pour spécifier le type d’un vaisseau en artere ou veine.
Apres avoir corrigé 'annotation, le rétinologue peut laisser un commentaire puis, d’un clic, la

sauvegarder et charger la suivante. Le temps d’annotation est enregistré automatiquement.

Instructions fournies aux retinologues

En préparation de la campagne d’annotation, les 10 structures rétiniennes a segmenter furent
regroupées en 4 catégories : 1. lésions rouges (micro-anévrismes, hémorragies et néovais-
seaux), 2. lésions claires (exsudats, drusen, CWS), 3. vaisseaux, 4. structures anatomiques
hors vaisseaux (disque optique, papille, macula). Puis on attribua a chaque rétinologue 1'une
des quatre catégories de sorte qu’il n’elit & annoter que les structures associées. Chacune des
200 images fut ainsi vue par plusieurs rétinologues, mais chaque type de biomarqueur n’a été
examiné que par un seul expert : I'un segmentant les vaisseaux, I’autre les lésions rouges, etc.
Cette division des taches d’annotation visait a spécialiser chaque clinicien dans I’étiquetage
d’un type de structure rétinienne pour simplifier la courbe d’apprentissage des outils d’anno-
tation et accélérer ’ensemble du processus. Cette approche, combinée a la pré-segmentation
des lésions et vaisseaux, permit de réduire le temps pour annoter une image a 22 minutes

cumulées en moyenne.

Hormis la liste des structures a segmenter et des recommandations sur 1'utilisation des outils
d’annotation, aucune instruction explicite ne fiit fournie aux cliniciens : ni sur une définition
clinique des structures (nous faisions totalement confiance dans leur expérience médicale), ni
sur le niveau de détail attendu. Radsch et al. [200] a récemment montré que pour améliorer la
qualité des annotations biomédicales, il était préférable de fournir des images d’exemples plu-
tot que des instructions textuelles méme détaillées. Les cartes de préannotations remplissent
parfaitement cette fonction. En présentant a ’annotateur des lésions petites (leur diametre
médian était de 13 pixels) et nombreuses ; elles incitent a segmenter chaque lésion individuel-
lement (au lieu d’encercler la zone générale) et a préter attention a toutes les 1ésions, méme

les plus petites.


https://github.com/LIV4D/AnnotationPlatform/blob/master/documentation/UserGuide.pdf
https://github.com/LIV4D/AnnotationPlatform/blob/master/documentation/UserGuide.pdf
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4.2.5 Bilan du travail d’annotation

Les structures rétiniennes de MAPLES-DR furent en réalité majoritairement revues et corri-
gées par seulement trois rétinologues (cf. Figure 4.8) : Dr. Boucher (87% des lésions claires),
Dr. Brent (62% des lésions rouges) et Dr. Duval (100% des vaisseaux). Au total, 69 heures

ont été nécessaires pour réviser et annoter les 200 images.

La macula, le disque optique et la papille furent les plus rapides a annoter, avec une moyenne
de 2 minutes par image; suivis par la segmentation des vaisseaux, avec une moyenne de
6 minutes par image. Pour cette derniere, la pré-segmentation semble avoir été d’une aide
précieuse : 77,5 % des pixels annotés comme vaisseaux dans MAPLES-DR sont issus des
préannotations, et moins de 8,3 % des pixels préannotés ont été manuellement identifiés
comme faux positifs et effacés (cf. Figure 4.9). Pour autant, la segmentation des vaisseaux
a nécessité d’importantes corrections : en moyenne 56k pixels par image ont été segmentés

manuellement, majoritairement des petits vaisseaux (voir Figure 4.10a).

Lésions claires [ TS Bl B ccnclosue A
B Rétinologue B
B Rétinologue D
. B Rétinologue F
Vaisseaux 100% i
Rétinologue G
Proportion d'images annotées
. 5. , s
F1GURE 4.8 Proportion d’images annotées par chaque rétinologue.
Lésions Rouges Lésions Claires Vaisseaux
W Annotations manuelles Hl Annotations manuelles Hl Annotations manuelles
B Préannotations de microanévrismes [l Préannotations de exsudats M Préannotations de vaisseaux
B Préannotations de hémorragies Préannotations effacées Autres Structures
Préannotations effacées B Annotations manuelles
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F1GURE 4.9 Vue quantitative du travail d’annotation pour chaque catégorie de structures
rétiniennes. Les barres sombres correspondent aux segmentations ajoutées manuellement, celles claires
correspondent aux préannotations effacées. Chacune est annotée du nombre de pixels corrigés par image. Le
pourcentage indique l'aire occupée par chaque structure rapportée a I’'aire des images.
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(a) Vaisseaux (b) Toutes lésions confondues

FIGURE 4.10 Préannotations corrigées par les rétinologues. (Blanc : préannotation inchangée ;
Turquoise : segmentation ajoutée manuellement, Violet : préannotation effacée manuellement.)

Les structures pathologiques ne concernent qu’une petite fraction des annotations de MAPLES-
DR : elles couvrent moins de 0.5% des images. Pourtant, c¢’est bien elles qui ont nécessité le
plus grand effort d’annotation. Le temps passé sur chaque image est tres variable : de quelques
dizaines de secondes pour les images saines a une heure pour les plus pathologiques. Comme
pour les vaisseaux, ’annotation manuelle des structures pathologiques s’appuie largement sur
les pré-segmentations. Pour les lésions qui en disposaient (microanévrismes, hémorragies et
exsudats), seul un quart des pixels a été ajouté manuellement, les 3 quarts restant proviennent
directement des cartes préannotées. Mais contrairement aux vaisseaux, les cartes de lésions
préannotées contenaient plus de faux positifs : plus de 58 % des hémorragies préannotées
furent effacées, de méme que 47 % des microanévrismes et 40 % des exsudats (cf. Figure 4.9).
La plupart des hémorragies et des microanévrismes effacés étaient en réalité des vaisseaux,
comme le montre la Figure 4.10b. En moyenne, I’annotation des structures pathologiques prit

6 minutes par image pour les lésions claires et 10 minutes pour les lésions rouges.

4.2.6 Préparation des données pour la publication

La campagne d’annotation s’est conclue par un travail de formatage des cartes de segmenta-
tion corrigées en vue de leur publication. Tout d’abord, un rapide parcours des annotations
a permis d’éliminer quelques faux positifs évidents (par ex. une hémorragie sur un vaisseau)
introduits par les préannotations mais ayant échappé a la vigilance des rétinologues. Cette

breve inspection révéla une segmentation manquante pour la macula (I'image étant centrée
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sur le disque optique, la macula est hors-champ) ; et six pour le disque optique a cause de
contours trop flous pour étre précisément délimités. Le jeu de données fut ensuite divisé en
un ensemble d’entrainement et un ensemble de test. Pour s’assurer de la représentativité de
ce dernier, on construisit un vecteur indiquant la présence ou l’absence de chaque type de
lésion, puis on appliqua la stratification «iterative multilabel-shuffle» proposée par Sechidis
et al. [201] de sorte que l'ensemble de test soit constitué de 60 images laissant le reste (138
images) pour l’ensemble d’entrainement. Cette séparation est clairement apparente dans ’ar-
borescence de I'archive publique de MAPLES-DR afin que toutes les publications futures qui

évalueraient leurs méthodes avec MAPLES-DR se référent bien au méme ensemble de test.

Il faut noter que, conformément aux instructions de partage de MESSIDOR, nous n’avons
pas publié les images de fond d’ceil ayant servi de base a nos annotations. Elles doivent étre
téléchargées manuellement depuis le site du consortium. Cependant, afin d’éviter a 1'utili-
sateur 'effort d’extraction des régions d’intérét depuis les images de MESSIDOR et de leur
redimensionnement au format de MAPLES-DR , j’ai implémenté une librairie python dédiée
a 'automatisation de cette tache, sous réserve que 'utilisateur lui indique un chemin local
vers 'archive de MESSIDOR. Cette librairie télécharge aussi automatiquement les annota-
tions de MAPLES-DR, permet de les exporter localement dans le format souhaité, inclut
les algorithmes de prétraitement d’images de fond d’ceil et expose méme les informations
complémentaires sur I’annotation (préannotations, commentaires, temps, etc.). Elle est pu-

bliée sous la forme d’un paquet python disponible sur Github et pip et est documentée ici en

anglais et en francais!

* MAPLES_DR #  Documentation du jeu de données MAPLES-DR Afficher la source de la page

Rechercher docs

Documentation du jeu de données MAPLES-DR

Le jeu de données MAPLES-DR . . . .
MAPLES-DR (MESSIDOR Anatomical and Pathological Labels for Explainable Screening of

Diabetic Retinopathy) est un jeu de données public de diagnostics de DR et de cartes de
segmentations de structures rétiniennes.

Dataset Description

Python library Notre équipe canadienne de sept rétinologues séniors ont annoté des grades de DR
Démarrage Rapide (Rétinopathie Diabétique) et de ME (CEdéme Maculaire), sur 198 images de fond d'ceil du
Utiliser les images de MESSIDOR jeu de données public MESSIDOR 1. pour chacune de ces images, ils ont aussi segmentés
dix structures rétiniennes symptomatiques de ces deux pathologies: le disque optique, la
cupule optique, la macula, les vaisseaux, les micro-anévrismes, les hémorragies, les néo-
vaisseaux, les exsudats, les nodules cotonneux and les drusens. Pour une description
détaillée de tous ces biomarqueurs ainsi que leurs réles dans le dépistage de la DR, référez-

Exemple de visualisation

vous 3 la section description du jeu de données de cette documentation. En publiant
MAPLES-DR nous espérons contribuer aux recherches visant 3 améliorer I'interprétabilité
des modéles de diagnostique automatique de la DR par apprentissage machine.

FIGURE 4.11 Page d’accueil de la documentation du paquet maples-dr.


https://doi.org/10.6084/m9.figshare.24328660.v2
https://github.com/LIV4D/MAPLES-DR
https://pypi.org/project/maples-dr/
https://liv4d.github.io/MAPLES-DR/fr/index.html
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4.3 Evaluation de la fiabilité des annotations

Annoter & partir de cartes pré-segmentées par intelligence artificielle (IA) n’est pas un choix
anodin lorsqu’on construit une base de données qui a justement pour vocation l’entraine-
ment et la validation d’algorithmes supervisés. Ces cartes introduisent fatalement des biais
dans les annotations qui risquent de se propager aux nouveaux modeles, compromettant leur
acuité. Par ailleurs, quand bien méme les rétinologues avaient segmenté sans préannotation,
la variabilité inter-observateur naturelle entre eux est aussi une source d’incertitude qui doit
étre mesurée pour assurer la fiabilité des annotations de MAPLES-DR. Cette section évalue
I’ampleur de ces biais et de cette variabilité. D’abord par I’étude des deux paires d’images
dupliquées de MAPLES-DR, puis par la réannotation des structures pathologiques d’une

dizaine d’images par 3 annotateurs, avec et sans préannotations.

4.3.1 Estimation de la variabilité inter-observateur sur les duplicatas

Chaque structure rétinienne annotée dans MAPLES-DR ne le fut que par un unique clinicien,
excluant de facto toute étude de variabilité inter-observateur. Ou plutot, cette étude aurait
été exclue si 2 duplicatas ne s’étaient pas glissés par inadvertance dans la liste des images
annotées. Cet accident permet une premiere estimation de la variabilité inter-observateur
présente dans MAPLES-DR. Cependant, étant donné la taille trés réduite de I’échantillon (2

images), nous restreindrons notre étude a une approche qualitative.

F1GURE 4.12 Visualisation comparative des annotations vasculaires pour les images dupli-
quées de MAPLES-DR. (Blanc : Pixels communs aux deux annotations, Violet : pixels inclus uniquement
dans le jeu d’entrainement, Bleu : pixels inclus comme doublons)
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Commencons avec les annotations vasculaires, puisque ce sont celles qui nous intéressent le
plus pour la these. Les vaisseaux les plus larges font ’objet d’'un consensus parfait entre les
deux cartes de segmentation, probablement parce qu’ils proviennent directement des préan-
notations (cf. Figure 4.12). La variabilité intra-observateur * se manifeste plutot sur les petits
vaisseaux : souvent, ils sont annotés sur les deux cartes mais avec un tracé différent. Ces
observations corroborent celles de Kai et al. [36] qui ont mesuré un dice intra-annotateur de

0.9679 en moyenne sur 40 images annotées deux fois par 5 annotateurs.

FIGURE 4.13 Visualisation comparative des lésions rouges (en haut) et lésions claires (en
bas) pour les images dupliquées de MAPLES-DR. (Méme légende que la Flgure 4.12.)

2. Tous les vaisseaux ont été revus et corrigés par Dr. Duval. L’étude des doublons est donc dans ce cas
une étude intra-observateur et non inter-observateur.
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Pour les structures pathologiques, les observations sont radicalement différentes. Sur les 28
lésions rouges annotées par les rétinologues, seulement 13 sont communes aux deux. Pour les
lésions claires, ce nombre tombe a 3 parmi 83 lésions annotées! Au-dela de cette variabilité de
détection des lésions, la visualisation comparative des annotations pathologiques (Figure 4.13)
révele des désaccords sur la segmentation des 1ésions communes, en particulier lorsque ces
lésions ne sont pas présentes dans la carte de pré-segmentation. Ces résultats interpellent : ils
appellent une étude approfondie de la variabilité d’annotation des structures pathologiques
rétiniennes, avec et sans préannotation. Surtout que, a notre connaissance, aucun article n’a
été publié sur le sujet a ce jour. C’est donc sur ces structures que nous avons concentré notre

étude de variabilité inter-observateur.

4.3.2 Variabilité inter-observateur sans préannotation de lésions

Dans un premier temps, on s’intéressa a la segmentation manuelle en 'absence des cartes
de préannotations. L’objectif était double : d’une part évaluer la variabilité inter-observateur
sans elles, et d’autre part établir une segmentation de référence a laquelle on puisse comparer
les annotations de MAPLES-DR obtenues avec elles. Pour cette premiere phase, on demanda
donc a trois rétinologues d’annoter, chacun de leur c6té, toutes les structures pathologiques
de 51 images de MAPLES-DR. Nous aurions aimé conduire une étude analogue sur les vais-
seaux mais, sachant que le temps nécessaire pour annoter les vaisseaux d’une image sans

préannotations avoisine les deux heures [31], I'effort d’annotation fut jugé irréaliste.

La variabilité inter-observateur est de deux ordres. La premiere est liée aux désaccords de
détection : lorsqu’une structure est considérée comme pathologique et annotée comme telle
par un rétinologue, mais qu’elle est absente de la carte de segmentation produite par un
autre. La seconde implique des désaccords de segmentation : une méme structure est annotée
par deux rétinologues, mais ses contours different. Ces deux types de variabilité doivent étre
traités individuellement. La variabilité de détection entre deux observateurs fut quantifiée
par un score F1 défini sur le nombre de lésions plutdt que le nombre de pixels®. La variabilité
de segmentation fut quant a elle évaluée par un calcul de l'intersection sur union (IoU) en ne
considérant que les lésions conjointement annotées par les deux observateurs. La Figure 4.14

présente ces scores pour chaque type de lésion et chaque paire de rétinologues.

3. Le nombre de lésions annotées par un observateur O1 est tout d’abord calculé par un algorithme de
composantes connectées. Ensuite, une lésion est considérée comme commune si au moins un de ses pixels a
aussi été annoté par le second observateur O2. Puisque le nombre de lésions varie grandement d’un observateur
a l'autre, le nombre de 1ésions annotées par O1 commune & O2 peut étre treés différent du nombre de lésions
annotées par O2 commune a O1. Le score F1 est donc obtenu par moyenne harmonique des ratios — calculés
indépendamment pour O1 et O2 — du nombre de lésions communes sur le nombre de lésions annotées. (En
choisissant un observateur comme vérité terrain, ces ratios seraient équivalent & la precision et au recall.)
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FI1GURE 4.14 Variabilité inter-observateur lors de segmentation de lésions sans préannotation.
(En haut : variabilité de détection; en bas : variabilité de segmentation. Chaque paire d’annotateurs est
évaluée individuellement. La ligne pointillée correspond & la moyenne des paires.)

Les rétinologues s’accordent le plus sur la détection des exsudats, mais le score F'1 n’atteint
que 61% en moyenne. Pour les micro-anévrismes, les hémorragies et les CWS, on mesure un
accord moyen entre 28% et 33% et il tombe a 13,3% pour les drusens ?. Une piste d’explication
pour comprendre cet accord supérieur pour les exsudats et inférieur pour les drusens est a
chercher dans leur fréquence respective (voir Figure 4.10). Les exsudats — symptomes courants
de la DR — sont particulierement présents dans les fonds d’ceil de MAPLES-DR : 22 par image
en moyenne ; alors que les drusens — plutdt associés a la DMLA — y sont rares : en moyenne 3
par image et la majorité n’en contiennent pas. Il est probable que la vigilance des annotateurs

soit plus faible pour ces lésions rares, conduisant a une annotation partielle.

Contrairement a celle de détection, la variabilité de segmentation est homogene parmi les
types de lésions (si 'on exclut celles qui n’ont pas été simultanément identifiées par les deux

observateurs). Quelle que soit la paire de rétinologues considérée, I'loU varie entre 0.4 et 0.6.

4. Nous n’analyserons pas les néovaisseaux qui ont été identifié sur trop peu d’images pour obtenir des
résultats significatifs.
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Résumons par des ordres de grandeur mesurés sur toutes les lésions confondues : lorsqu’elles
sont annotées sans préannotation, environ un tiers des lésions identifiées par chaque rétino-
logue ne l'est par aucun des deux autres (en excluant les drusens pour lesquels ce rapport
est plutdt de deux tiers), et un quart des lésions annotées par au moins deux rétinologues
n’est pas annoté par le troisieme. Pour une méme lésion annotée par deux observateurs, en
moyenne un pixel sur deux n’est pas commun. Pour plus de détails, un billet de blog analyse

dans le détail et par de multiples graphes interactifs les résultats de cette étude.

Ces niveaux de variabilité étant évidemment inattendus, nous les avons présentés aux réti-
nologues pour tenter de comprendre leurs causes. Au-dela de la variabilité naturelle, trois

facteurs potentiels ont été identifiés :

1. Les prétraitements d’amélioration du fond d’oeil n’ont pas été utilisés par tous les
annotateurs. Ceux qui les ont activés ont eu tendance a annoter plus de lésions.

2. La distinction entre micro-anévrismes et les petites hémorragies est difficile a partir du
fond d’oeil simple et nécessite normalement ’angiographie. Une partie de la variabilité
de détection de ces lésion est donc due a des désaccords sur leur type. En considérant
indifféremment les deux lésions rouges comme une classe commune, le score F'1 moyen
pour la détection de ces lésions passe de 282% et 32,5% (respectivement pour les
micro-anévrismes et les hémorragies) a 58,4%.

3. L’absence de consignes spécifiques a conduit a des styles d’annotation différents d’un
annotateur a ’autre : certains annotant chaque lésion précisément alors que d’autres

détouraient globalement les amas.

Il est en tous cas certain que, compte tenu de cette variabilité inter-observateur, toute ten-
tative pour extraire une vérité terrain unique a partir des triples cartes de segmentation ne

produirait pas un résultat fiable.

4.3.3 Variabilité inter-observateur avec préannotation de lésions

La précédente section conclut a une variabilité inter-observateur tres élevée lors de I'anno-
tation de lésions a partir de zéro. Qu’en est-il lors d’annotation par correction de cartes
pré-segmentées 7 Pour le savoir, nous avons reproduit l'expérience en fournissant des pré-
annotations aux trois rétinologues. Un modele de segmentation plus récent fut utilisé de
sorte qu’on ajouta les nodules cotonneux a la liste des lésions préannotées de MAPLES-DR :
i.e. les micro-anévrismes, les hémorragies et les exsudats. Les drusens et les néovaisseaux
furent écartés de I'étude faute de modele pour les segmenter. Les métriques de variabilité
de détection et de segmentation de ces lésions sont présentées sur la Figure 4.15. Elles sont

spectaculairement plus élevées que celles obtenues sans préannotation.


https://liv4d.github.io/Team_LIV4D.github.io/ophthalmology/fundus/labelling_platform_evaluation/
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FIGURE 4.15 Variabilité Inter-observateur lors de segmentation de lésions avec préannota-
tion. (A gauche : variabilité de détection; a droite : variabilité de segmentation.)

Deux phénomenes concourent a ce résultat : 1. les lésions correctement détectées par I'TA ont
exactement la méme segmentation pour tous les rétinologues qui les ont conservées. 2. Bien
qu’aucune instruction n’ait été donnée aux rétinologues sur le niveau de détail attendu lors
de la segmentation manuelle d’une lésion, les lésions préannotées sont autant d’exemples de
segmentations souhaitées, agissant comme une consigne implicite et harmonisant le « style »

des annotations ajoutées par les différents annotateurs.

Seuls les nodules cotonneux semblent conserver une variabilité inter-observateur élevée malgré
les préannotations. Cette différence s’explique par la qualité et le faible nombre de préanno-
tations pour cette lésion. Sur les 16 images, seuls 14 CWS furent préannotés par le modele et
un seul fut considéré valide par les trois rétinologues. Les autres furent retirés manuellement,

mais pas par tous les rétinologues simultanément, entrainant un taux élevé de désaccord.

En bref, annoter les structures pathologiques du fond d’ceil en corrigeant des cartes pré-
segmentées diminue significativement la variabilité inter-observateur en introduisant une ré-
férence commune pour tous les annotateurs. Toutefois, 'ampleur de cette réduction repose
fortement sur la bonne qualité du modele de pré-segmentation. Les différences importantes
observées sur les deux duplicatas de MAPLES-DR résultent ainsi certainement de la moins

bonne qualité du modele initialement utilisé en 2018.

4.3.4 Biais introduit par la préannotation des lésions

Le recours aux préannotations est un moyen efficace pour réduire la variabilité inter-observateur
lors de I'annotation des lésions rétiniennes. Mais si la moitié des hémorragies ou micro-
anévrismes de MAPLES-DR sont directement issus de ces préannotations, quels biais introduisent-
elles dans les annotations finales 7 Idéalement, les annotations de zéros auraient permis de

construire une segmentation de référence pour répondre a cette question, mais elles different
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trop d'un rétinologue a I'autre pour définir une vérité terrain fiable (voir section 4.3.2). Nous
nous rabattons donc sur une analyse qualitative du style d’annotation qui compare les dis-
tributions de taille des lésions et de leur nombre par image pour cinq annotateurs : 01, 02,
et O3 sont les rétinologues seuls, CP est un rétinologue avec préannotation (i.e. la version
de MAPLES-DR), et IA sont les préannotations avant correction.

Ces distributions sont présentées par la Figure 4.16. Elles confirment la disparité de style
présentée a la section 4.3.2 entre les rétinologues : les 1ésions dessinées par O2 sont en moyenne
deux a quatre fois plus grandes que celles de O1 et O3, et O1 a annoté en moyenne deux fois
plus de lésions que O2 ou O3. Concernant les biais liés aux pré-segmentations : la filiation
entre les préannotations (IA) et les corrections (CP) est évidente tant par le nombre de
lésions que par leurs tailles : elles sont plus nombreuses et de tailles plus diverses que celles
annotées uniquement par les rétinologues. Mais les annotations CP portent aussi la trace des
corrections : leurs tailles s’alignent sur O1 ou O3, et leur nombre sur O1. En résumé, les
préannotations biaisent les annotations vers une sensibilité accrue. En ’absence d'une vérité

terrain fiable, difficile de dire si elle est synonyme d’exhaustivité ou de faux positifs...

Enfin, un pic de lésions de 78 pixels est visible pour O1, O3 et CP. Cette taille correspond
en réalité a I'outil d’annotation par défaut (un cercle de diametre 10 pixels) et semble corres-
pondre a la taille des plus petits détails annotés par les cliniciens. Bien qu’anodin, ce détail

souligne I'importance sous-estimée du choix des parametres par défaut.
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FIGURE 4.16 Distribution de la taille et du nombre de lésions par images avec et sans
préannotation. (01, 02, O3 : annotations manuelles sans préannotations; CP : annotation par correction
de préannotations; IA : préannotations avant corrections. La barre verticale indique la valeur médiane.)



70

4.3.5 Entrainement de modeles de segmentations avec MAPLES-DR

Afin d’évaluer la pertinence de MAPLES-DR pour I'entrainement de modeles de segmen-
tations, nous avons entrainé cinq modeles a segmenter les lésions rétiniennes (i.e. micro-
anévrismes, hémorragies, exsudats et CWS) sur des jeux de données publics différents :
MAPLES-DR, IDRiD [195], DDR. [196], FGADR [193], et Retinal Lesions [194]. Tous furent
construits a partir du méme protocole rudimentaire : un modele U-Net simple est entrainé
a segmenter conjointement les quatre lésions rétiniennes par minimisation d’une fonction de
cott Dice en utilisant la traditionnelle descente de gradient stochastique (SGD) comme op-
timiseur. Pour accélérer I'apprentissage, les poids initiaux de I’encodeur sont pré-entrainés
sur ImageNet. Tous les modeles furent ensuite évalués sur les ensembles de tests individuels
associés a chacun de ces jeux de données. Les mloU mesurés pour chaque combinaison d’en-

sembles de formation et de test sont compilés dans le tableau 4.1.

Pour chaque ensemble de test, le modele qui obtient les meilleures performances est celui qui
a été entrainé sur I’ensemble d’entrainement correspondant. Ce résultat est attendu étant
donné I’écart entre les jeux de données : tant en termes des caractéristiques d’images de fond
d’ceil (ethnicité, qualité et résolution de I'image, colorimétrie, etc.) que du style d’annotation
(segmentations grossieres pour Retinal Lesions, précises pour MAPLES-DR, IDRiD et DDR
ou mélange des deux pour FGADR). Malgré ces divergences, un modele entrainé sur un jeu de
données peut, dans une certaine mesure, se généraliser aux autres. Nous avons mesuré cette
capacité en classant les modeles par mloU sur chaque jeu de données, puis en calculant la
moyenne des classements. Le modele entrainé sur MAPLES-DR obtient le deuxiéme meilleur
classement moyen de 2.8, derriere IDRiD, dont le classement moyen est de 2.2. Ces deux jeux
de données sont pourtant ceux contenant le plus petit nombre d’images d’entrainement, mais
leurs images de fond d’ceil de bonne qualité et leurs annotations précises de chaque lésion

semblent particulierement profiter aux capacités de généralisation des modeles.

TABLEAU 4.1 Performance en généralisation de modeles de segmentation de lésions par
ensemble d’entralnement. Les jeux de données d’entrainement sont triés en fonction de leur classement
moyen sur tous les ensembles de test.

Jeu d’entrainement Performance par ensemble de test (mloU) Rang
(nb. image) IDRiD MAPLES-DR DDR FGADR Ret. Les. Moyen
IDRiD (54) 57.6% 37.5% 35.6%  28.4% 26.0% 2.2
MAPLES-DR (118) 39.7% 46.8% 31.0%  26.9% 27.8% 2.8
DDR (450) 48.6% 35.4% 43.0% 264%  248% 3.2
FGADR (1096) 33.0% 28.8% 31.7%  47.4% 25.5% 3.4

Retinal Lesions (948)  28.6% 27.3% 28.6%  28.4% 48.2% 3.4
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4.4 Discussion et Contributions

Le choix de corriger des cartes pré-segmentées plutot que d’annoter de zéro, bien qu’exigé par
I’ambition de la tache de segmentation, comportait le risque d’introduire un biais dans les an-
notations collectées. Mais les différentes expériences d’évaluation de MAPLES-DR semblent
valider ce choix : si un biais a été introduit, il a accru la sensibilité d’annotation. Elles
montrent surtout que I'annotation par correction de préannotations a permis de diminuer si-
gnificativement la variabilité inter-observateur, en particulier lors de I’'annotation des lésions.
Dans 'ensemble, le dyptique préannotation et outils d’annotation web s’est révélé efficace :
réduisant le temps nécessaire a la segmentation des vaisseaux de 2 heures [31] a 6 minutes en

moyenne !

Au début du projet, nous imaginions que les seuls écueils a anticiper seraient liés a la concep-
tion des outils d’annotation, mais si le projet fut si long, c¢’est que des obstacles apparurent
ensuite la ou nous ne les attendions pas. Les valeurs de variabilité inter-observateur en dé-
tection et en segmentation de lésions nous ont notamment pris par surprise. A notre connais-
sance, il n’en existe aucune mention dans la littérature. Nous-mémes ne l'avons pas inclus
dans l'article de MAPLES-DR °, préférant y consacrer un article dédié ultérieurement. A mon
sens, elles mettent au jour un sérieux probleme d’alignement entre les objectifs théoriques
de la segmentation des structures rétiniennes (la détection des lésions pour le diagnostic de
pathologie, l'identification des vaisseaux pour en extraire la géométrie ou la topologie, etc.)
et la fonction objectif optimisée en pratique par les modeles de segmentation pendant leur
entralnement. Cette derniere préte en effet beaucoup d’importance aux pixels en pourtour des
lésions et des vaisseaux. Or, si I’on en croit les résultats de I’étude de variabilité, les contours
de ces structures ne semblent pas centraux dans la pratique médicale, ou en tous cas ne font
pas Pobjet d’un consensus sur leur positionnement exact. A linverse, la fonction objectif
accorde trop peu de considérations a des aspects pourtant cruciaux comme la continuité de

la topologie vasculaire.

Il reste néanmoins que la qualité des annotations de MAPLES-DR offre aux modeles qu’elles
entrainent de bonnes capacités de généralisation et constitue une base solide de pré-entrainement
[202]. Et au-dela des modeles de segmentation, I'exhaustivité inédite des types de structures
annotées est précieuse pour ouvrir la voie a des approches qui combinent ces structures pour
un dépistage interprétable de la DR (Legault et al., 2025 [203]).

5. Nous signalons tout de méme dans la section Usage Note du papier que les CWS, les drusens et les
néovaisseaux sont insufissament représentés dans MAPLES-DR pour constituer un jeu d’entrainement fiable,
et que ces annotations seraient plus propices a servir de base de pré-entrainement.
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Concernant cette these, le projet MAPLES-DR apporte deux contributions. D’une part, les
198 nouvelles annotations des structures anatomiques rétiniennes rejoignent et diversifient
celles des autres jeux de données publics, contribuant ainsi a 'amélioration des modeles de
segmentation des vaisseaux, du disque et de la macula. D’autre part, j’ai pu tirer profit de la
plateforme d’annotation pour distinguer les artérioles des veinules sur 100 cartes de segmen-
tation vasculaire de MAPLES-DR. Le prochain chapitre exploite ces cartes pour entrainer

une nouvelle formulation de neurones convolutifs : les steered CNN.
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CHAPITRE 5 STEERED CNN : L’EQUIVARIANCE PAR ROTATION AU
SERVICE DE LA CLASSIFICATION DES ARTERES ET VEINES
RETINIENNES

Le formalisme des SCN (ou Steered CNN) présenté dans ce chapitre modifie la définition
des neurones convolutifs des CNN pour y inscrire ’équivariance a la rotation. Cette nouvelle
définition vise a réduire le nombre de parametres nécessaires a ces modeles et espere ainsi

améliorer leur capacité de généralisation.

Ce chapitre est probablement le plus mathématique de la these, il suit le formalisme énoncé

au début de ce document.

5.1 Motivations et travaux connexes

5.1.1 Motivations a I’équivariance par rotation

Dans le chapitre sur les réseaux convolutifs [204] issu de leur manuel « Deep Learning » publié
en 2016, Ian Goodfellow, Yoshua Bengio et Aaron Courville motivent 'efficacité des CNN
pour le traitement d’images par une triple propriété que leur confére 'opérateur convolutif :
I'équivariance par translation, la faible densité de connectivité (sparse interaction et connec-
tivity), et la mutualisation des parametres (parameter sharing). En effet, parce que la taille
des filtres de convolution est tres inférieure a celle de I'image analysée, chaque pixel prédit par
le modele ne dépend que d’une portion de I'image centrée sur ce pixel (sparse interaction),
réduisant considérablement le temps de calcul nécessaire a I'inférence ou I'entrainement d’un
CNN comparativement a un modele completement connecté. En outre, puisque les mémes
filtres de convolution sont appliqués a toutes les régions de 'image d’entrée (parameter sha-
ring), le nombre de parametres est non seulement restreint mais aussi indépendant de la
résolution de I'image, a contrario des modeles completement connectés qui attribuent un jeu
de parametres a chaque position du vecteur d’entrée. L’empreinte mémoire lors de I'utilisation
et du stockage des modeles convolutifs est donc faible. En outre, le modele est équivariant
par translation : la translation de son image d’entrée induit une translation analogue de sa
prédiction ; ou dit autrement : le modele n’est pas sensible aux coordonnées absolues des
objets qu’il segmente. Cette indifférence a la position est particulierement pertinente pour la
segmentation de vaisseaux qui se déploient sur la totalité de I'image. Mais le principal avan-
tage de la réutilisation intensive des filtres de convolution au sein d'un CNN est ailleurs :

elle impose a chaque parametre de participer aux traitements de I’ensemble des pixels de
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I'image. Cette mutualisation des fonctions d’un parametre agit a la fois comme régularisa-
tion et comme dopant de son efficacité statistique : lors d’un entrainement, il voit en effet sa

valeur ajustée non pas une fois par image mais une fois par pixel de celle-ci!

Cependant, tous ces bénéfices des CNN se limitent aux transformations de translation et ne
s’appliquent pas aux rotations. Rien n’assure que la segmentation ou la classification d’un
objet (par exemple, un vaisseau) ne varie avec 'orientation sous laquelle il est présenté. La
Figure 5.1 montre d’ailleurs des variations dans la classification A/V de certains petits vais-
seaux lorsqu’on fait subir des rotations a I'image de fond d’ceil présentée au CNN. Pire, la
littérature de classification vasculaire pré-apprentissage profond obtient de tres bons résul-
tats en analysant le profil des vaisseaux [78,82], c’est-a-dire en analysant des caractéristiques
particulierement anisotropiques! Or, pour étre équivariant par rotation, un CNN dont la
prédiction reposerait sur de telles caractéristiques devrait nécessairement consacrer plusieurs
filtres de convolution a la détection d’une seule de ces caractéristiques, mais dans toutes ses
orientations. Plus exactement, on peut imaginer que, lors de la phase d’apprentissage, les
échantillons d’entrainement présentant des vaisseaux horizontaux induisent une mise a jour
des parametres tres différentes de ceux présentant des vaisseaux analogues mais verticaux. Ces
différences peuvent permettre la spécialisation des filtres de convolution vers chaque orienta-
tion de vaisseaux, mais au prix de plus nombreuses itérations et échantillons d’entrainement

avant que le modele ne converge. Inscrire ’équivariance par rotation dans le formalisme des
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FIGURE 5.1 Variations de la classification A/V prédite par un méme CNN, pour différentes
rotations initiales de I'image d’entrée

(Pour simplifier leur comparaison, les vaisseaux variants sont en surbrillance et les cartes présentées ont
subi un rotation inverse a celle infligée a 'image fond d’oeil.)
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CNN devrait permettre ’économie de cette déduplication des filtres de convolution et ainsi
la réduction de la taille du modele et du temps de calcul nécessaire a son entrainement. L’in-
tuition communément admise du rasoir d’Ockham laisse méme espérer que cette diminution

du nombre de parametres augmente d’autant les capacités de généralisation du modele.

5.1.2 CNN et équivariance par rotation

De nombreuses taches de segmentation biomédicale (dont la segmentation des vaisseaux ou
leur classification en artéres ou veines) sont par essence équivariantes par rotation. Puisque
rien dans l'implémentation standard des CNN n’assure cette propriété, elle doit nécessai-
rement étre apprise par le modele lors de 'entrainement. Pour favoriser cet apprentissage,
une premiere solution consiste a intégrer une augmentation géométrique a la boucle d’en-
tralnement : chaque image de fond d’ceil subit une rotation d’'un angle aléatoire et la méme
transformation est appliquée a la vérité terrain. Durant ’entralnement, le modele apprendra
ainsi a classifier les vaisseaux, quelle que soit leur orientation. Cette solution naive est uti-
lisée par la quasi-totalité des travaux appliquant les réseaux de neurones a la segmentation
sémantique du réseau rétinien, bien qu’elle soit sujette aux limitations énoncées a la section
précédente. Il existe pourtant des travaux qui visent a améliorer 1’équivariance par rotation

des CNN, qu’on peut regrouper en deux familles.

La premiere famille s’inspire de 'augmentation géométrique par rotation des images en entrée
du modele. Cheng et al. [205] proposent d’inciter le réseau a conserver constante sa représen-
tation d’une image donnée, alors qu’elle lui est présentée sous des orientations variables. En
pratique, cette incitation prend la forme d’un terme de régularisation ajouté a la fonction de
colit qui fait converger les caractéristiques latentes calculées a partir de différentes versions
d’une méme image. Une autre approche est proposée par Laptev et al. [206] : elle repose
aussi sur la démultiplication par rotation des images présentées au modele, mais étend la
procédure a la phase d’inférence. Pour obtenir une prédiction invariante a l'orientation, le
modele analyse successivement 'image selon une série d’orientations, puis, parmi toutes les
prédictions obtenues, il ne conserve que celle avec la probabilité la plus forte. Ces deux ap-
proches affichent des gains de performance pour la reconnaissance d’objets et ne nécessitent
presque aucune modification des architectures existantes. Cependant, si leur invariance par
rotation s’avere utile pour la classification d’images, elle n’est pas applicable dans le contexte

de la segmentation sémantique ol chaque objet a sa propre orientation locale.

La seconde famille abandonne la rotation des échantillons d’entrainement et propose de I’ap-
pliquer plutot aux noyaux de convolution eux-mémes. Chaque noyau est pivoté dans n orien-

tations avant d’étre convolué avec sa carte d’entrée, produisant ainsi n cartes de sortie. Ces
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multiples versions de chaque carte sont soit fusionnées immédiatement apres chaque couche
convolutive par un max-pooling [207], soit maintenues tout au long du réseau — chaque ver-
sion n’étant convoluée qu’avec des noyaux orientés dans une unique direction a ’aide de group
convolution — et regroupées a la derniere couche [208,209]. Lors de I'entrainement, les mises
a jour obtenues pour chaque orientation d’un noyau sont moyennées avant de lui étre appli-
quées. De cette fagon, bien que chacune ait son orientation propre, les différentes versions
d’'un méme noyau restent toujours cohérentes entre elles. Autrement dit, les méthodes de
cette seconde famille implémentent 1’équivariance a la rotation par la mutualisation des pa-
rametres sur les différentes orientations! Et comme on pouvait s’y attendre, elles démontrent
une amélioration impressionnante de l'efficacité des parametres pour les taches de classi-
fication et de segmentation sémantique. Cependant, les travaux cités plus haut réalisent la
rotation des noyaux de convolution par une interpolation bilinéaire : cette méthode est simple
a implémenter mais est peu efficace en temps de calcul et produit des artefacts pour tout
angle de rotation qui n’est pas un multiple de 90°. Une solution a ce probleme se trouve avec

les steerable filters.

5.1.3 Steerable Filters : des filtres de convolution orientables

En 1991, Freeman et al. [210] proposent une méthode pour convoluer efficacement une image
avec de multiples versions d’'un méme filtre, chacune orientée différemment. Pour ce faire, ils
introduisent une nouvelle famille de filtres convolutifs : les Steerable Filters qui sont définis
par une combinaison linéaire d’une série de filtres élémentaires et qui peuvent étre orientés
dans une direction arbitraire en modifiant la pondération de la combinaison linéaire tout en

maintenant les filtres élémentaires constants.

Plus formellement, un filtre polaire W(p,#) est dit steerable si sa rotation par un angle «
(notée Rot, {\If(p, 9)} = U(p,0 — a)) peut s’écrire comme la combinaison linéaire de H filtres

¢lémentaires (notés Wy,) par des coefficients linéaires qui sont fonctions de a (notés ay(«)) :

H

‘If(p,e—Oé) :;ah(a) \Ilh(pa 0) (51)
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Grace a la reformulation de la rotation de ces filtres, la convolution d’une image X avec un

steerable filter orienté dans une direction arbitraire a se factorise comme :
H
X x Rot, {\Il} => (ah(a) - X ‘Ilh) (5.2)
h=1
Autrement dit, apres avoir convolué en amont l'image avec le jeu prédéfini de filtres élémen-

taires W, on peut, par combinaison linéaire des résultats avec les coefficients appropriés,

simuler la rotation du filtre dans autant de directions que désirées.

Considérons un exemple trivial : le filtre W () = cos(6), dont on omettra temporairement la

partie radiale par simplicité. Le développement trigonométrique de sa rotation donne :
W (0 — «a) = cos(d — )
= cos(a) cos(#) + sin(a) sin(h)
= ar(a) - U1(0) + az() - ¥2(0)
Ce filtre admet donc une décomposition en deux filtres élémentaires W,(0) = cos(f) et
W, (0) = sin(f), dont la combinaison linéaire par les coefficients a; () = cos(a) et as(a) =
sin(«) décrit bien la rotation de W. En précalculant les convolutions avec ces filtres élémen-

taires (Y; = X x ¥y et Yy = X # Wy) on peut déduire la convolution de 'image X par le

filtre W apres rotation d’un angle « :

X * Rot, [W] = cos(a) - Y; +sin(a) - Yo

La notation en nombres complexes est particulierement adaptée aux steerable filters. En effet,
dans ce domaine, la rotation d’un filtre — c¢’est-a-dire le déphasage de sa composante polaire
— se traduit par un facteur du type e7*. On peut par exemple montrer que tout filtre de la

forme W(p,0) = Re[ G(p)e'® } est steerable et que sa rotation est décrite par :

Ui(p, 0 — o) = cos(ka) Re[ G(p)e'*? } + sin(ka) Im[ G(p)e™® ] (5.3)
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5.1.4 Steerable CNN

En 2016, Cohen et al. [211] étendent leur propre travail [208] et proposent l'utilisation de
steerable filters pour implémenter la rotation des noyaux convolutifs. Pour ce faire, ils repa-
ramétrisent les noyaux de convolution de leur Group Equivariant Convolutional Layer par
une combinaison linéaire de steerable filters et inventent les Steerable CNN. Ce formalisme
a depuis été modifié et reformulé a plusieurs reprises [212,213], et a méme été étendu pour
implémenter 1’équivariance a des transformations de symétries axiales ou de redimension-
nement [214-216]. L’architecture de base reste cependant toujours la méme : chaque carte
de caractéristiques est calculée selon plusieurs orientations jusqu’a la couche finale, ou une
orientation pour chaque pixel et chaque caractéristique est sélectionnée par max-pooling. Ces
architectures atteignent les performances de 1’état de ’art pour la classification d’objet alors

qu’elles utilisent considérablement moins de parametres.

Cependant, leur implémentation de I’équivariance est partielle car les caractéristiques ne sont
calculées que pour n orientations. En outre, sélectionner ’orientation la plus pertinente selon
les probabilités de classification rend cette décision sujette aux fluctuations de prédiction du
modele. Dans le cas de la classification des vaisseaux en particulier, leur orientation peut étre
directement dérivée du squelette vasculaire. Les steered CNN proposés dans ce chapitre par-
tagent avec les Steerable CNN le reparamétrage des filtres de convolution par des « steerable
filters », mais contrairement a ces derniers qui appliquent leurs filtres de convolution dans
une série d’orientations prédéfinies, les steered CNN alignent dynamiquement leurs noyaux

de convolution sur les orientations locales des vaisseaux.

5.2 Etude préliminaire : isotropismes des CNN classifieurs de vaisseaux

On l’a vu, la méthode la plus populaire pour réaliser I’équivariance par rotation des CNN
standard reste 'augmentation de données géométriques : en faisant subir une méme rotation
aléatoire a I'image d’entrée et a la vérité terrain. On peut cependant s’interroger sur lefficacité

de cette méthode et ses implications sur les filtres de convolution appris.

Par ailleurs, les méthodes qui implémentent 1’équivariance par rotation dans les CNN sont
généralement motivées par 'existence d'un gaspillage de parametres pour adapter le mo-
dele aux différentes orientations. Mais la véracité et 'ampleur de ce postulat n’ont, a ma
connaissance, jamais été vérifiées. Avant d’exposer le fonctionnement des steered CNN, il
me parait important d’évaluer combien de parametres un modele de classification d’arteres-
veines consacre-t-il a apprendre les mémes caractéristiques dans plusieurs orientations ? On

pourrait étre surpris de la réponse...
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Mesure du tropisme des neurones

La question n’est pas triviale : les fonctions modélisées par une couche convolutive ne sont
pas soigneusement rangées dans des noyaux individuels. Elles émergent plutot de 'interaction
de plusieurs filtres entre eux, parfois combinés avec des filtres de la couche précédente ou de
la couche suivante. Comment identifier alors, parmi les poids du modele, une fonction spé-
cifique et ses répliques orientées différemment ? Une réponse indirecte peut étre trouvée par
une question plus simple : dans un modele globalement équivariant par rotation (par exemple
grice a une augmentation de données géométriques), combien de neurones ne sont pas iso-
tropiques ? En effet, pour que la prédiction du modele reste constante lors d'un changement
d’orientation de I'image, de tels neurones doivent nécessairement compenser mutuellement les
variations de leur prédiction respective. D’'une maniére ou d’une autre, ces neurones doivent
se relayer pour assurer collectivement des fonctions qu’ils ne pourraient assurer seuls sans
briser I’équivariance du modele. Ainsi, en mesurant la différence entre I’équivariance globale
du modele et I'isotropisme local de ses neurones, on peut déduire la proportion de parametres
présentant une redondance liée a 'orientation. Cette section décrit une version polaire de la
densité spectrale de puissance comme mesure du tropisme (ou de l'isotropisme) des neurones
convolutifs d’'un CNN.

Soit I(4, j) une image présentée a l'entrée d'un réseau, et ¢ : I — y I'application qui calcule
la prédiction y(i, j) d'un neurone du réseau. On définit ®(§) = Rot_g[ qb(Rotg [I]) } ol la
carte ®(0) est obtenue en présentant au réseau une rotation de I'image 1(4, j) par un angle
0 et en appliquant a la prédiction du neurone une contre-rotation de —f (voir Figure 5.2).
Dit autrement, ® () est la carte que I'on obtiendrait si 'image I était gardée fixe et si tous
les noyaux de convolution du modele ¢ subissaient une rotation d’un angle 6. Par définition,
¢ est équivariant par rotation si ® est constant : ®(f) =y V 6 € R. Notre étude pourrait
s’arréter a la vérification de cette invariance, mais le bruit et les artéfacts d’interpolation liés

aux rotations rendent floue la notion de constance dans ce contexte. Il nous faut la quantifier.

I ' 0
p i : Réseau de neurone
1 01
N I [ :lImage d’entré
/ " : ge d’entrée
7 7 —> \ ]
[, :Image I pivotée d’un angle 6,
0, 0,
N \Z V  : Prédiction d’un neurone associée a I,
|_’ o : —» d

| @(6)) = Rot_g, [v,]

FIGURE 5.2 Schéma de la méthode de calcul de ®(0).
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FIGURE 5.3 Exemples de décomposition polaire de la densité spectrale de puissance (DSP)
pour des harmoniques polaires de rang 0, 1, 2 et 3; et pour deux noyaux de convolution
symétrique et anti-symétrique.

Soit R(A#) la fonction d’autocorrélation de ®(6) définie pour chaque pixel par :

R(AG) =Y ®(0) - (0 — AD)

On s’intéresse a sa transformée de Fourier S(w) = F [R(AG)}. L’autocorrélation permet ici
d’évaluer les variations de ® induites par une rotation Af, et ce, quelle que soit I’orientation de
départ, supprimant ainsi la primauté de § = 0 comme orientation de référence. La transformée
de Fourier décompose ensuite ces variations par harmoniques angulaires. Ainsi, S(w) distingue
par leur tropisme les différentes composantes de la fonction réalisée par ¢ : S(0) en identifie
la composante équivariante, S(i) la composante anti-symétrique, S(%) celle symétrique,
etc. (voir Figure 5.3). Le théoréeme de Wiener-Khinchin indique que S(w) est équivalente a la
densité spectrale de puissance et en donne une méthode de calcul plus commode qui se passe

de Pautocorrélation : S(w) = ‘]—“{@(9)} ‘2.

Analyse de I’équivariance par rotation de la classification A/V

En calculant S(w) sur la carte de probabilité prédite par un CNN, on obtient alors une série
de spectres (un pour chaque pixel) qui, agrégés et normalisés, offrent un bon outil de compré-
hension du tropisme du modele. La premiere composante de ce spectre indique la proportion
équivariante du signal prédit, ou dit autrement, la proportion de fonctions isotropiques parmi
I’ensemble des fonctions du modele. Ce spectre renseigne aussi sur la proportion de compo-

santes 2m-variantes ou mw-variantes, associées aux fonctions antisymétriques et symétriques.
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F1GURE 5.4 Comparaison du tropisme de la prédiction de CNN entrainé avec et sans aug-
mentation de données géométriques.

Dans une premiere expérience de cette étude préliminaire, nous comparerons 1’équivariance
de modeles entrainés avec et sans augmentation de données géométriques. La Figure 5.4
présente pour ces deux cas, les DSP de modeles® évalués sur 25 images du jeu de test de
MAPLES-DR. La DSP d’un modéle non entrainé et initialisé aléatoirement a aussi été ajoutée
a la Figure a titre de référence. D’apres ces résultats, les variations de prédiction liées a un
changement d’orientation de I'image que 1’on avait rapportées en introduction de ce chapitre
(cf. Figure A) concerneraient moins de 5% de la puissance totale du signal prédit. En tout
cas lorsque le modele est entrainé avec des rotations aléatoires de ses échantillons d’entrée,
car lorsque cette augmentation de données est désactivée, cette proportion monte a 17%,
se rapprochant de sa distribution avant entralnement. En premiere approche, cette méthode

simple semble donc efficace pour induire une équivariance, méme imparfaite, a la rotation.

Analyse de I’équivariance par rotation de chaque couche convolutive

Si les CNN sont bien globalement isotropiques, qu’en est-il de leurs couches individuelles ?
La Figure 5.5 présente, pour 8 CNN entrainés avec augmentation de données et 8 CNN
entrainés sans, la DSP des composantes équivariantes, anti-symétriques et symétriques de
chacune de leurs couches convolutives. L’architecture et le protocole d’entrainement de ces
modeles seront présentés dans la section de validation ; indiquons seulement qu’il s’agit d’un

U-Net comptant 5 étages d’encodeur (Conv 1 & 5) et 4 étages de décodeur (Conv 6 a 9).

Plusieurs observations sont a tirer de cette Figure. Elle confirme d’abord ’équivariance in-
complete mais significativement améliorée par 'augmentation de données géométriques des
modeles entrainés a la classification des vaisseaux rétiniens. Elle signale surtout que la prédic-
tion finale n’est pas la seule a étre globalement équivariante a la rotation. En fait, les seules

couches anisotropiques du réseau sont les plus profondes, au centre du U-Net ; et méme pour

1. Le protocole d’entrainement de ces modeles est le méme que celui qui sera décrit dans la section de
validation de ce chapitre. Les spectres de la Figure sont une moyenne obtenue par ’agrégation des prédictions
de 8 modeéles entrainés avec augmentation de données géométriques et de 8 modeles entrainés sans.
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FiGURE 5.5 Effet de 'augmentation de données sur les composantes polaires de la Densité
Spectrale de Puissance pour chaque couche convolutive d'un CNN classifieur d’A/V.

Les lignes opaques sont la moyenne des huits meilleurs modeles entrainés avec (bleu) et sans (vert)
augmentation de données. Une ligne propre a chaque modele est affichée semi-transparente. La ligne
pointillée est une référence correspondant & un modele initialisé aléatoirement et non entrainé.

celles-ci, la composante équivariante reste la plus importante de toutes. En comparant les
courbes obtenues avec et sans augmentation de données, il apparait clairement que si cette
derniere améliore bel et bien I'équivariance globale du modele, son action ne se limite pas
a la couche finale : c’est I’ensemble des neurones qui deviennent plus isotropiques et voient
s'atténuer leurs composantes anti-symétriques. En analysant individuellement chaque neu-
rone de chaque couche, le constat est encore plus frappant : en moyenne, si 'on exclut les
deux couches centrales (Conv 5 et Conv 6), plus de 90% des neurones des CNN entrainés

avec 'augmentation de données sont principalement isotropiques !

Ce résultat est doublement paradoxal : si autant de parametres sont naturellement isotro-
piques, est-il vraiment nécessaire de développer un formalisme équivariant pour dédupliquer
les quelques parametres restants ? En un sens, s’ils sont « insensibles » a la rotation, ces
parametres sont déja mutualisés entre les différentes orientations vasculaires. Certes. Mais
comment expliquer alors que les approches traditionnelles pour la classification des vaisseaux

rétiniens trouvent généralement plus pertinentes des caractéristiques anisotropiques [78,82] 7

La théorie des réseaux neuronaux démontre que, si le nombre de parametres et d’échantillons
d’entrainement est suffisant, un réseau peut théoriquement approximer n’importe quelle fonc-
tion. Néanmoins, en pratique, 'architecture et la procédure d’apprentissage favorisent cer-
taines approximations, au détriment d’autres. Aussi, je postule que la régularisation par
augmentation de données détourne le modele de 'apprentissage des noyaux de convolution
anisotropiques. Ainsi, le défi a relever par les steered CNN ne se limite pas a 'implémentation
d’un modele compléetement équivariant a la rotation, il doit aussi permettre de la réaliser sans

imposer 'apprentissage de noyaux de convolution isotropiques.
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5.3 Méthode

5.3.1 Objectif et vue schématique des steered CNN

Dans un CNN standard, les couches convolutives suivent la forme mathématique suivante :

Vali,J) =Y Xm & W (5.4)
m 2y
ou y,(i,7) est le pixel (i, ) de la carte y,, produite par le n

iéme

neurone de la couche; x,, est

la m®™® carte en entrée de la couche; W, est le noyau de convolution reliant I'entrée x,,

a la sortie y,, ; et ot ® est opérateur de corrélation croisée? calculé au pixel (i, j).
(4,5)
L’objectif des steered CNN est de pouvoir choisir pour chaque pixel (7, j), 'angle a(i, j) sous

lequel le noyau doit étre orienté avant sa convolution avec 'image. Autrement dit, on souhaite

transformer 1’équation 5.4 en :

(i) = Y %, ® Wi (5:5)
m (4,3)
Du point de vue du traitement des signaux, cette formulation découple deux taches qui sont
normalement intriquées pour un CNN standard : d'une part la reconnaissance et classification
des vaisseaux et d’autre part la détection de leur orientation. Dans les steered CNN, cette
seconde tache est « externalisée » et devient un signal d’entrée du modele sous la forme d’un
champ d’orientation® & indiquant, pour chaque pixel de I'image, la direction du vaisseau le
plus proche (voir section 5.3.2 pour son calcul). Les steered CNN ne sont donc pas équivariants
par rotation au sens strict du terme : pour réaliser cette propriété, il repose sur I’hypothese que
lors d’une rotation de I'image, les directions des vecteurs de & subiront la méme rotation, et
ils la répercuteront sur les noyaux de convolution du modéle. A tout le moins, 1’équation 5.5
assure la mutualisation des parametres entre les différentes orientations vasculaires (sous

réserve que @ traduise bien la direction locale des vaisseaux).

Cette reformulation des couches convolutives qui rend leur orientation pilotable localement,
est la seule modification qui distingue les steered CNN des CNN standards. Ainsi, n’importe
quel modele de classification vasculaire reposant sur des neurones convolutifs peut bénéfi-
cier de ce formalisme en remplacant simplement ses couches convolutives par leur version

« steered » et en lui ajoutant une entrée secondaire : le champ d’orientation a.

2. Les implémentations des couches convolutives ont généralement recours a la corrélation croisée plutot
qu’a la convolution. Ce détail d’implémentation n’ayant que trés peu d’importance, on continuera d’utiliser
le terme convolution dans le reste du chapitre.

3. Pour le champ d’orientation on utilisera la nomenclature suivante : & est le champ de vecteurs (dotés
d’une norme et d’une direction) et o est une matrice d’angle : a(i, j) = arg (G(i, j))



84

5.3.2 Calcul du champ de direction &

Les steered CNN ajustent 'orientation de leur noyau de convolution selon un champ de
direction & calculé en amont. Dans le contexte de la classification des vaisseaux en artéres

ou veines, ce champ doit suivre la direction locale des vaisseaux.

Les méthodes de segmentation des vaisseaux du fond d’ceil ont aujourd’hui atteint un niveau
de performance suffisant (cf. section 2.2.5) pour que la procédure de calcul du champ o
puisse raisonnablement s’appuyer sur elles. Cette procédure débute par une squelettisation
de la segmentation vasculaire. On attribue ensuite a chaque pixel v du squelette un champ
vectoriel radial 4, orienté dans la direction opposée a v et dont la norme est pondérée par
une gaussienne centrée sur v. Cette pondération s’assure que 'intensité du champ décroisse
a mesure que la distance a v augmente. Son écart-type a été fixé empiriquement a 75 pixels
pour une image de fond d’ceil de résolution 1500 x 1500 pixels. Le champ d’orientation
a est alors défini comme la somme des influences de I'ensemble des pixels du squelette

vasculaire : & = Z %,- Orienter ce champ dans une direction normale aux vaisseaux plutdt

v
que tangentielle évite d’avoir a leur attribuer un sens. La Figure 5.6 présente un exemple de

champ d’influence 4, et du champ d’orientation total c.

Afin de préserver la cohérence spatiale au sein d’un steered CNN, la résolution spatiale du
champ & est adaptée a celle des cartes d’entrées de chaque couche convolutive. En particulier,
lorsque ces cartes sont sous-échantillonnées (suite a une couche de pooling ou un pas de

convolution), & subit le méme sous-échantillonnage précédé d’un filtre moyenneur.

o7

FIGURE 5.6 Champ d’orientation & calculé a partir de la squelettisation de la segmentation
vasculaire. A gauche : Champ d’influence généré par 4 pixels individuels du squelette (dessinés
en bleu). A droite : Champ complet, superposé au squelette et & la segmentation vasculaire.
(Pour des raisons de lisibilité, les champs affichés sont sous-échantillonnés.)
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5.3.3 Reparamétrisation des noyaux de convolution

La mise en ceuvre de la formule 5.5 n’est pas triviale : la valeur de a(i,j) et donc celle de
Rotaij) [an} varie & chaque pixel (7, 7). Il faudrait donc, en théorie, recalculer une rotation
des filtres de convolution pour chacun des pixels de I'image. Cette solution est évidemment
irréaliste pour des réseaux qui convoluent des milliers de filtres avec des millions de pixels. La
présente section montre comment résoudre ce probleme par une reparamétrisation des filtres

de convolution W,, ,,, sous une forme « steerable ».

Pour commencer, il nous faut choisir une famille de steerable filters et le jeu de filtres élémen-
taires associé. Ce sera le jeu de filtres utilisé par les Steerable CNN, formés par une bande
gaussienne dans la dimension radiale et une série harmonique dans leur composante polaire.

Ces filtres élémentaires, définis dans le domaine complexe, sont générés par :

Uir(p,0) = Gr(p) - ™ (5.6)

dont la composante radiale G,(p) = 2P~ déerit un anneau de rayon r pondéré par une

gaussienne, et la composante polaire est I’harmonique angulaire de rang k (voir Figure 5.7).

Considérons maintenant un noyau de convolution standard W (p, ¢) € R défini dans le systéme
de coordonnées cartésien (p, q) € Z>. A la maniére d’une décomposition en ondelette polaire,
on peut approximer W(p, ¢) par une combinaison linéaire de filtres élémentaires Wy .(p, q)

produits par le rééchantillonnage en coordonnées cartésiennes des filtres Wy, .(p, 6) :

K R

W(p,q) ~ Re( Yo whr Pra(p, Q)> (5.7)

k=0 r=0

L’analogie de la décomposition en ondelette pour interpréter cette équation est d’autant
plus adaptée que les filtres Wy, constituent, dans leur composante angulaire, les bases d'une
décomposition en série de Fourier polaire. Les filtres générés par k = 0 codent les composantes
purement radiales de W et ceux générés avec k > 1 représentent chacun une fréquence
angulaire propre. Naturellement, la qualité de ’approximation de W par la décomposition 5.7
dépend des parametres générant la famille de filtres élémentaires Wy, : le rang harmonique
maximum K limite la résolution polaire du filtre reconstruit, quant au rayon R il en définit la
taille maximale. Le réglage de ces parametres sera discuté dans la section 5.3.6. Notons que,
pour approximer le filtre carré W de taille P x P, les filtres de convolution élémentaires ¥y, ,.
doivent étre de taille v/2P x /2P, afin de modéliser la rotation des pixels aux extrémités des
diagonales de W. Ainsi, la décomposition d’un filtre de convolution 5 x 5 nécessite des filtres

élémentaires de taille 7 x 7 (voir Figure 5.7).
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FIGURE 5.7 Le jeu de filtres élémentaires Uy, échantillonné en coordonnées cartésiennes.

Les valeurs positives sont colorées en rouge et celles négatives en noir.

Les coefficients wy,, sont (comme les filtres élémentaires Wy ) définis dans le domaine com-

plexe et en ce sens chaque coefficient est double? : wy, = wie

+ iwy™. Pour interpréter la
valeur de ces coefficients, la formulation polaire est plus adaptée : |wy | pondeére I'intensité de
W, ., et arg(wy,,) définit le déphasage de Wy, relativement aux autres filtres élémentaires. Vu
de W — qui ne consideére que la partie réelle de la combinaison linéaire des filtres élémentaires
— ce déphasage se traduit par une rotation. En modulant ainsi l'intensité et I'orientation de
chaque filtre Wy, ., les coefficients linéaires wy, , sont I’équivalent pour les couches convolutives
steered de ce que sont les poids pour les couches convolutives classiques : ils définissent quelle
forme géométrique est détectée par le noyau de convolution. Sous cette perspective, I'équa-
tion 5.7 consiste donc en une reparamétrisation des couches convolutives, dont les implications

seront explorées dans la prochaine section.

Mais revenons auparavant a la rotation du filtre de convolution W, ,,,. On peut montrer que,
suite a sa décomposition suivant I’équation 5.7, et par un jeu de phases et de trigonométrie,

le filtre W,, ,,, est « steerable » selon la formule :

R K
Rot, {an} => > [cos(ka)W§%7k7r + sin(k:a)ngm’k’T (5.8)
r=0 k=0
ou ng;n,k,, et W;‘f‘mk’r sont la partie réelle et imaginaire de Wy, 1 = Wpmper - Wi, qui

s’écrivent sous leur forme développée :

Re _  Re Re Im Im
n,m,k,r wn,m,k,r\pk,r + wn,m,k,r‘yk,r
Im _ Re Im Im Re
Wn,m,k,r - wn,m,k,r\:[’k,r - wn,m,k,r\I’k,r

4. A Vexception des coeflicients wy , qui sont réels purs car ¥y, , n’a pas de partie imaginaire pour k = 0.
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La combinaison de 5.5 et 5.8 donne alors la définition des SCN :

= f: i [cos (k ) Z (Xm ® WS?nk?”)

r=0 k=0 m (5.9)
+ sin (k )Z (Xm ® Wgzmmkr)]

Autrement dit, en convoluant dans un premier temps x,, avec les noyaux Wf}jmk,r et ng’mkﬂq
(pour toutes les valeurs de k et r), puis en multipliant élément par élément les résultats de
ces convolutions avec les cartes cos(k ) et sin(k ), il est bien possible de sélectionner, a

posteriori et pour chaque pixel , lorientation dans laquelle W, ,, 1., est appliqué.

5.3.4 Différences théoriques entre les CNN standards et les steered CNN

A premiére vue, la capacité d’adapter I'orientation de ces filtres peut sembler étre Punique
distinction entre un steered CNN et un CNN standard. Mais en y regardant de plus pres, la
reparamétrisation des noyaux de convolution implique une utilisation bien différente de leurs
parametres. Dans un CNN standard, chaque poids correspond a un unique pixel d’un noyau
de convolution, sa fonction géométrique ne prend donc sens que par sa relation avec les poids
adjacents et sa valeur ne peut étre interprétée que relativement & ces derniers. A I'inverse,
les parametres wy, m k., des steered CNN ponderent chacun un filtre élémentaire ¥y, . complet.
Ils ont donc leur propre signification géométrique caractérisée par une dispersion spatiale r

et une fréquence angulaire k.

Cette différence conceptuelle du role déféré a chaque parametre est encore plus évidente
lorsqu’on s’intéresse a I'entrainement d’un steered CNN et aux formules de rétropropagation
du gradient qui le régissent. On peut en effet montrer que le gradient de la fonction de cott

L relativement aux parametres wy, k., Sécrit :

oL
dwy, m T:—<Xm®Rotai- \IIT>®d 5.10
) 7k7 awn7m7k7r (7,,_]) ( 7])|: k? :| yn ( )
ou dy, = % est le signal de gradient associé¢ a la prédiction y, de la couche convolutive.

Pour rappel, cette méme formule est réduite dans un CNN standard a dW,, ,,, = x,,, ®dy,,. En
d’autres termes, les mises a jour accumulées dans les parameétres pendant I’entrainement sont
obtenues dans les deux cas par la corrélation du signal de gradient dy,, avec le signal d’entrée
X Mais dans les steered CNN, x,,, a préalablement été filtré avec le filtre élémentaire Wy, .
associé au parametre Wy, k. Au contraire, dans un CNN standard, les mises a jour des
poids d'un méme noyau de convolution ne different que par une translation par quelques
pixels de x,, avant sa corrélation avec dy,,. Les parametres des steered CNN sont donc bien

plus indépendants les uns des autres pendant I'apprentissage.
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Spécialiser chaque parametre a une fonction géométrique permet aussi d’élaguer les fonctions
— et donc les parametres — qui contribuent le moins a la qualité des prédictions du modele.
Cette idée sera explorée plus en détail dans la section 5.3.6. On y montrera que pour ap-
proximer un filtre de taille 5 x 5 pixels, la plage d’harmonique polaire peut étre limitée a
K = 2 sans perte de performance. La paramétrisation steered compte alors 3 parametres
réels purs et 4 parametres complexes, soit 3 +4 x 2 = 11 degrés de liberté, contre 25 pour

une paramétrisation convolutive standard.

Ainsi, & nombre de neurones égal, les parametres des steered CNN sont moins nombreux,
plus spécifiques et plus interprétables que leur alter ego standard. Tous ces avantages de mo-
délisation ont cependant un cotit computationnel : le nombre de convolutions nécessaires au
calcul de y,, lors de I'inférence ou de dx,, lors de la propagation arriere du gradient augmente
d’'un facteur de 2K R. En effet, la carte x,, n’est plus simplement convoluée avec les filtres
de convolution standard W,, ,,,, mais avec chacune de leurs composantes WS;%M et W,Ilmmm

(cf. équation 5.9). La prochaine section montrera comment alléger ce cofit additionnel en

temps de calcul.

5.3.5 Implémentation optimisée des steered CNIN
Réarrangements des termes de convolutions

La décomposition de chaque noyau de convolution W, ,,, en une combinaison linéaire de
filtres élémentaires Wy, démultiplie le nombre de convolutions dans les steered CNN. Les dif-
férentes composantes radiales k£ de ces filtres doivent en effet impérativement étre convoluées
séparément pour permettre la sélection de leur orientation a posteriori par leur multipli-
cation respective avec cos(ka) et sin(ka). Néanmoins, cette contrainte ne s’applique pas
aux composantes radiales » de W, ,,, . .. Une premiere approche consiste donc a agréger ces
composantes en un filtre composite W,,,,,x = Zf:o Wnom kr P et ainsi diviser le nombre de

convolutions par R. On appellera cette approche composite :

yn(i, ) = + ’il cos (k: a(i,j)) Z (Xm ® )

m (ivj)

+ sin (k a(i,j)) > <xm ® )]

m (4,9)

(5.11)

Par ailleurs, notons dans cette formule que les harmoniques & = 0 sont traitées séparément

des autres pour tenir compte de leur particularité : elles sont les seules a étre réelles pures.
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Une autre approche d’optimisation consiste a convoluer en amont les cartes x,,, avec chaque
m

filtre élémentaire Wy ., afin d’obtenir les cartes intermédiaires z,, i, = X, ® ¥y, .. On recom-

pose alors y,, par une multiplication matricielle de ces cartes z,, ;. , avec les poids wy, ;n kr. On

désignera cette approche comme pré-convoluée. Elle se calcule par :

S| ) + 3| eos(ba) X

mor=0 (5.12)

+ Sin( )sz:

Dans ce cas, le nombre de convolutions par couche est donc toujours égal au nombre de filtres
¢lémentaires Wy, : soit 2K R + 1 convolutions, et ce, quel que soit le nombre de caractéris-
tiques d’entrée ou de sortie de la couche. Pour accélérer encore le calcul, z,, ., la taille de
chaque filtre élémentaire Wy ,, peut aussi étre limitée a sa valeur minimale imposée par r
(3 x 3 pour r =0;5 x5 pour r = 1; etc.) . Néanmoins, cette optimisation des opérations
de convolutions implique une augmentation conséquente du nombre de multiplications ma-

tricielles.

Ces deux méthodes sont mutuellement exclusives et leur gain respectif en temps de calcul
dépend des valeurs de K, R, n, m, de la taille de I'image, etc. Testée en contexte réel d'un U-
Net complet ou K = 2 et R = 2, I'inférence d’une image 512 x 512 pixels est plus rapide avec
I'approche préconvoluée (166 ms plutot que 178 ms), mais la rétropropagation du gradient
bénéficie davantage de 'approche composite (263 ms contre 288 ms). Dans les deux cas, ces

optimisations réduisent efficacement le temps de calcul ajouté par la formulation steered.

Calcul rapide de cos(ka) et sin(ka)

Au-dela des convolutions supplémentaires, les calculs trigonométriques de cos(ka) et sin(ka)
sur I'ensemble des pixels de I'image sont aussi coliteux, mais peuvent étre contournés. En
effet, le champ d’orientation est communiqué au réseau sous la forme d’'un champ de vecteurs

a. En assumant que ses vecteurs soient unitaires, alors les composantes de & dans un repere

i) = [cos (a(i,j))]

sin (a(i,j))

cartésien s’écrivent :

On notera a; ce champ de vecteur contenant les valeurs de cos(ka) et sin(ka) pour k = 1.

Par identité trigonométrique, on peut montrer que le champ &, est égal a une combinaison
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linéaire des composantes cartésiennes de ay,_; et .

-]t

(k
Cos ( ) ( ) — sin ((k -1) a) sin (a)
cos ( ) ( ) + sin ((k - 1) a) cos (a)

a}gplag) ~ o
) @

k-1 G

—

o =

_oz;(c_)l agy) +

On a donc une définition récursive de cos(ka) et sin(ka) nécessitant uniquement des opéra-

tions de multiplication-accumulation dans lesquelles excellent les cartes graphiques.

5.3.6 Réglage du jeu des filtres élémentaires
Choix du rang harmonique maximum K

Malgré les optimisations présentées a la section 5.3.5, le temps de calcul nécessaire a un
steered CNN reste supérieur a celui d'un CNN standard d'un facteur 2K + 1. Il y a donc
un compromis sur le choix du rang harmonique maximum K. Une valeur élevée assure une
résolution angulaire supérieure, mais au prix d’un temps de calcul allongé. La question est
donc de savoir, a budget de temps de calcul constant, a partir de quelle valeur de K le gain
de performance lié a la hausse de la résolution angulaire ne compense plus la perte de gain

potentiel qu’aurait permise une optimisation plus longue des hyper-parametres.

0.9
0.85

0.8

Précision classif. A/V

0.75
0 1 2 4 8

Rang de I'harmonique maximum K

FIGURE 5.8 Précision moyenne d'un steered CNN sur son ensemble de test en fonction du
rang harmonique maximum K de ces filtres élémentaires ¥y, ,..
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Pour répondre & cette question, on a entrainé a la classification de vaisseaux rétiniens® une

série de modeles avec des rangs harmoniques maximum variables. Leurs performances ont
ensuite été évaluées sur un ensemble de test, elles sont présentées sur la Figure 5.8. Les
résultats de cette série d’entrainement sont univoques : au-dela de K = 2, la précision sur
I’ensemble de test stagne et régresse méme légerement. Tous les steered CNN présentés dans

les expériences de validation seront donc limités a des harmoniques de rang 0, 1 et 2.

Par ailleurs, la Figure 5.8 révele que, comme nous ’avions pressenti, une modélisation pure-
ment isotropique n’est pas suffisante pour classifier des arteres et des veines rétiniennes. En
effet, les modeles n’ayant acces qu’a des filtres élémentaires ou k = 0 voient leurs précisions

moyennes sur ’ensemble de test chuter de 10 points : 0.75 au lieu de 0.85.

Normalisation de ¥, ,, et initialisation de w;, ., 1,

L’architecture de steered CNN est inédite, elle ne dispose évidemment d’aucun poids pré-
entrainé sur ImageNet, et ses poids doivent étre initialisés aléatoirement avant chaque en-
trainement. Généralement, les noyaux de convolutions W,, ,,, dans les CNN standard sont
initialisés par une distribution gaussienne de moyenne nulle et dont le paramétrage de la va-
riance est crucial pour garantir la stabilité du signal a travers le modele. En effet, un réglage
légerement trop faible ou trop élevé induirait une petite amplification ou atténuation qui, ré-
verbérée par chacune des couches, pourrait provoquer I’explosion ou 'effondrement du signal.
Dans un steered CNN, W, .., est une composition de wy, 1, et de ¥, ,,. Ce réglage induit

donc des contraintes sur l'initialisation aléatoire de wy, ;1. ainsi que sur la normalisation

des W, ..

En suivant la démarche de He et al. [217] on peut montrer que les filtres élémentaires ¥,, ,,,
doivent étre normalisés de sorte que -, ‘Iliym(p, q) = 1 et que la gaussienne initialisant les

parametres Wy, doit avoir comme variance :

S ! 5 sik=0
Var {w } _ Nea 14 %(1 B (Zp,q Uy (p, Q>) )
o - a sik>0

m'Nk7,«.7r+2

ou Nj, est le nombre de filtres élémentaires W¥,, ,, et m est le nombre d’entrées de la couche.

La démonstration de ces formules est détaillée en Annexe A.

5. Le protocole d’entrainement est celui partagé par toutes les expériences de validation (voir section 5.4.1).
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5.4 Evaluation expérimentale des steered CNN

L’étude expérimentale d’une nouvelle formulation de neurone convolutif s’est révélée exal-
tante par I’espoir et la curiosité qu’elle suscite. Dans cette section, nous évaluerons les perfor-
mances des steered convolutional neurons (SCN) comparées a celles des neurones convolutifs
standards et nous identifierons leurs propriétés uniques, en particulier leur capacité de géné-

ralisation.

5.4.1 Protocole expérimental
Modéle de référence

Récemment, plusieurs stratégies ont été proposées pour améliorer I’entrainement de modeles
convolutifs a la classification des vaisseaux rétiniens, mais il n’existe pas encore de consensus
sur laquelle est la meilleure. Pour valider les SCN, nous avons décidé d’ignorer les méthodes
les plus récentes et de nous concentrer plutot sur leur point commun : ’architecture U-Net.
De cette facon, les résultats des expériences présentés dans cette section ne sont pas propres a

une stratégie d’apprentissage spécifique et peuvent théoriquement étre reproduits avec toutes.

Hemeling et al. [39] ont étudié en détail une série de variations d’architecture U-Net pour
la classification A/V . Nous retenons de cette étude le modele générique présenté sur la Fi-
gure 5.9 : un U-Net travaillant a 5 échelles obtenues en divisant puis multipliant successive-
ment la résolution des prédictions neuronales par un facteur de 2 grace a un rééchantillonnage
bilinéaire. Chaque résolution est analysée par deux couches convolutives 5 x 5, chacune sui-
vie d'une Batch Norm et d’une fonction d’activation ReLLU. Le nombre de caractéristiques

prédites par ces couches augmente de fagon inversement proportionnelle a leur résolution,

Conv. | Conv. 2 Conv. 3 Conv. 4 Conv. 5 Conv. 6 Conv. 7 Conv. 8 Conv. 9

c ¢ c ¢ 1

. —> Couche convolutive 5x5 x o .
> (+ Batch norm + ReLU) € Prédictions couche convolutive
o (x cartes de taille 64x64 pixels)

—> Couche convolutive 1x1

— ——> Copie (avec dropout) Cartes sous-échantillonnées —>—>—3
e 2 L—> Sous-échantillonnage bilinéaire Concaténation de cartes copiées et e 2
Sur-échantillonnage bilinéaire de cartes suréchantillonnées
g—) - i T
4c  4c 4 4c
g—) - - - -
g 8c 8c 8c 8c
> —> - S —

-
2 16¢ l6¢c
- - —>

FIGURE 5.9 Architecture de modele U-Net retenue pour évaluer les steered CNN.
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passant de ¢ pour les premieres couches a 16¢ pour les couches les plus profondes. On étu-
diera plus loin l'effet de I’hyperparametre ¢, mais indiquons tout de suite que les meilleurs

modeéles ont été obtenus avec ¢ = 12 ou ¢ = 16.

Notre étude se limite a la classification arteres/veines des vaisseaux rétiniens dont on suppose
connaitre la segmentation. Ainsi, et contrairement a Hemeling et al., la derniére couche de
notre modele ne produit quune unique carte dont la sigmoide indique, pour chaque pixel, la
probabilité que le vaisseau le plus proche soit une artére plutét qu'une veine. Evidemment, la
fonction de coiit et les métriques de classification du modele ont été réglées pour ne considérer
que les pixels appartenant a la segmentation vasculaire. Par ailleurs, une étude préliminaire
sur le pré-traitement de 'image de fond d’ceil nous a révélé que le modele performe mieux
lorsqu’on lui présente une image dont l'illumination a été localement corrigée par soustrac-
tion de la médiane, plutét que I'image brute. Néanmoins, les meilleures performances sont

observées lorsqu’il a acces aux deux. C’est cette derniere option qui a donc été retenue.

Dans la suite de cette section, deux architectures de modeles seront comparées. La premiere
reprendra a la lettre la description du modele présentée ci-dessus et servira de base de réfé-
rence aux expériences. La seconde verra toutes ses couches convolutives 5 x 5 (en rouge sur la
Figure 5.9) remplacées par leur formulation steered dans laquelle les noyaux seront orientés

selon un champ de vecteur & calculé a partir de la segmentation (voir la section 5.3.2).

Procédure d’entrainement

Dans toutes les expériences qui suivront, les deux architectures ont été entrainées et évaluées
sur un sous-ensemble de 65 images de MAPLES-DR réannotées avec une classification ar-
tere/veine (A/V)°. La moitié de ces images (35) a été dédiée & l'entrainement du modele, 5
a sa validation et 25 a son test. Tous les modeles ont été initialisés aléatoirement selon He
et al. [217] (cf. section 5.3.6) puis entrainés par un optimiseur Adam et pour un maximum
de 500 époques. La fonction de colit minimisée était une simple entropie croisée binaire. Des
fonctions de cotit Dice, smooth et focale ont aussi été étudiées, mais aucune n’a amélioré les

résultats de I'entropie croisée.

Pour chaque expérience, 'optimisation des hyperparametres (pas d’apprentissage, augmenta-
tion de données, etc.) a été conduite par un algorithme Tree-structured Parzen Estimator [218]
avec pour objectif de maximiser 'aire sous la courbe ROC (AUC-ROC) sur l'ensemble de
validation. Le temps d’entrainement sur une carte graphique NVidia RTX2080 Ti varie de

10 minutes a 5 heures en fonction des configurations du modele.

6. Au moment ou ces expériences ont été conduites, seulement 65 images avait été annotées A/V.
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Mesure des performances de classification

Les performances comparées des steered CNN et des CNN standard seront estimées par deux
métriques de classification. La premiere est I’exactitude (accuracy en anglais) qui mesurera
leurs performances lorsque leur prédiction est seuillée a % Cette métrique est courante pour
évaluer la classification des vaisseaux rétiniens : elle rapporte le nombre de pixels correctement
classifiés comme arteres ou veines, au nombre de pixels total de la segmentation vasculaire.
L’aire de cette segmentation étant globalement répartie équitablement entre arteres et veines
(i.e. les classes sont équilibrées), la valeur de I'exactitude est tres proche d’autres métriques
courantes de classification comme le score F1 ou l'indice de Jaccard que 1'on peut donc
omettre. La seconde métrique est TAUC-ROC. Elle témoigne de la force discriminative des

cartes de probabilités sans imposer un point de fonctionnement.

a capacité de généralisation des modeles a été mesurée en évaluant les modeles sur un
L té d lisat d del t luant 1 del
jeu de données qui n’a pas servi a leur entrainement, soit le jeu de données HRF, publié par

Hemeling et al. [39] qui contient 45 images de résolution comparable a celle de MAPLES-DR.

Les expériences qui vont suivre tentent de mesurer 'impact de certains parametres de 1’en-
tralnement (par ex. le nombre de poids du modele ou le volume d’entrainement) sur les
performances de classification de modeles. Cependant, les performances fluctuent d'un en-
tralnement a l'autre et 'optimisation des hyperparametres reste le facteur le plus déterminant
sur leur valeur. Pour mieux isoler 'effet d’une variable spécifique dans le bruit lié a cette op-
timisation, chaque expérience a été répétée 20 fois et on a sélectionné les 5 meilleurs essais
selon ’AUC sur I'ensemble de validation. Tous les résultats présentés ci-dessous indiquent la
moyenne et ’écart-type de ces 5 essais en mesurant leur performance sur les ensembles de
test de MAPLES-DR et HRF. Au final, cette section de validation s’appuie sur les résultats

collectés parmi 600 entrainements de steered CNN et 900 entrainements de CNN standard.

5.4.2 Performance générale de classification

Parmi ce millier de modeles, analysons dans un premier temps les 5 meilleurs steered CNN
avec les 5 meilleurs CNN standard, toutes expériences confondues. Leurs performances de
classification A/V sur MAPLES-DR et HRF sont rapportées dans le tableau 5.1.

TABLEAU 5.1 Performances (AUC-ROC) des 5 meilleurs modeles steered et standard

Ensemble de test : MAPLES-DR HRF (généralisation)
Métrique - Exactitude AUC-ROC  Exactitude AUC-ROC

CNN standard 88.24+0.3% 95.2+0.2% 82.3+1.4% 91.24+1.2%
Steered CNN 89.3+0.8% 95.9+0.4% 82.4+1.9% 91.7+0.7%
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Ces premiers résultats sont rassurants : les steered CNN apprennent bien a classifier les
vaisseaux de MAPLES-DR, ils obtiennent méme de meilleurs résultats que les CNN standard
sur I’ensemble de test de ce jeu de données : 'TAUC-ROC augmente de 0.7% et I'exactitude
de 1%. Sur le jeu de test HRF, les deux modeles perdent en performance et, bien que les
steered CNN conservent une avance sur les CNN standard, celle-ci n’est pas significative étant
donné I’écart-type plus grand dont souffrent les mesures. On reviendra plus en détail sur les

capacités de généralisation des steered CNN plus loin dans cette section.

Qualitativement, les erreurs des CNN standard sont concentrées aux terminaisons et aux
croisements de vaisseaux les plus fins, comme nous 'avions vu en introduction. Les steered
CNN ne corrigent pas toutes ces erreurs : certaines petites branches émergant d’intersections
restent mal classifiées. Cependant, leurs prédictions sont moins sujettes a des changements
soudains ou a 'apparition de taches au milieu d’'une branche, et elles sont globalement plus
cohérentes (voir Figure 5.10). L’équivariance par rotation complete des steered CNN n’est
probablement pas étrangere a la disparition de ces artefacts, qui apparaissaient et disparais-

saient chez les CNN standard, au gré de l'orientation initiale de I'image (voir Figure 5.1).
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FIGURE 5.10 Classification A/V par un steered CNN (gauche) et un CNN standard (droite).

(L’image est issue de I’ensemble de test de MAPLES-DR. Les erreurs de classification d’artéres et de
veines apparaissent respectivement en cyan et rose..)
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5.4.3 Equivariance a la rotation et anisotropisme des SCN

Par définition, chaque couche convolutive d’un steered CNN est completement équivariante a
la rotation (sous réserve que le champ & pivote avec I'image). Pour comprendre le tropisme
des fonctions qu’elle modélise, on ne peut donc pas mener une analyse par DSP comme
on l'a fait avec les CNN standards : toute la puissance spectrale serait, par construction,
concentrée sur la composante équivariante. On lui a préféré deux approches : la premiere,
indirecte, évalue la dépendance a 'augmentation de données géométriques; la seconde étudie

directement la distribution des poids wy,-.



96

Dépendance a augmentation de données géométrique

Si I’équivariance par rotation des CNN standard s’appuie largement sur 'augmentation de
données géométriques (voir section 5.2), qu’en est-il pour les steered CNN 7 Le tableau 5.2
compile les performances des CNN steered et standard sans augmentation de données géomé-
triques sur MAPLES-DR et sur HRF. Cette augmentation de données est en réalité composée
de deux opérations dans notre protocole d’entralnement : une rotation aléatoire et une défor-
mation élastique. Notons que les directions des vecteurs d’orientation & ne tiennent compte
que de la premiere : la carte de leur composante verticale et horizontale est déformée par in-
terpolation bilinéaire par la déformation élastique, mais leurs directions ne sont pas corrigées

pour compenser les petites rotations locales qu’elle induit.

La désactivation complete de ces augmentations de données détériore les performances des
CNN standard et steered, mais les steered CNN en souffrent moins. Sur le jeu de test de
MAPLES-DR, ils perdent 2% de AUC-ROC contre 3% pour les CNN standard ; et sur HRF,
ils ne perdent que 3% la ou les CNN standard en perdent 5%. Si on ne désactive que les
rotations aléatoires mais qu’on conserve les déformations élastiques, la perte de performances
sur MAPLES-DR disparait chez les steered CNN mais reste partiellement présente chez les
CNN standard a hauteur de 1% (et 2% sur HRF).

Les steered CNN ne dépendent donc plus du tout de la rotation des échantillons d’entraine-
ment pour apprendre a classer les arteres et veines rétiniennes quelle que soit leur orientation.
La déformation élastique reste néanmoins un moyen efficace pour augmenter artificiellement
le nombre d’échantillons d’entrée, méme si elle est moins nécessaire aux steered CNN qu’aux
CNN standards.

Ensemble de test : MAPLES-DR HRF (généralisation)
Aug. de données Géométrique : élastique seule aucune élastique seule aucune
CNN standard 94.240.4% 92.24+0.5%  89.7+1.3% 86.5+1.5%
Steered CNN 95.740.3% 94.1£0.1% 90.8+1.0% 89.6+0.7%

TABLEAU 5.2 Effet de la présence ou I'absence de rotation aléatoires des échantillons d’en-
trainement sur la métrique d’AUC calculée sur les ensembles de test.
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Analyse des poids wy, appris par les SCN

La rotation aléatoire des échantillons d’entrainement augmente les performances des CNN
standards et leur assure une meilleure équivariance par rotation. Mais elle induit un isotro-
pisme sur ’ensemble des noyaux de convolution, a rebours de la littérature sur la classification
A/V par des algorithmes traditionnels qui reposent plutot sur des filtres anisotropiques. Dans
cette alternative, quel choix est fait par les steered CNN 7 Répondre a cette question est bien
plus simple pour les steered CNN que pour les CNN standards : les parametres wy, étant
associés a des fonctions géométriques spécifiques, on peut directement comparer la pondéra-
tion des filtres élémentaires Wy, . isotropiques (pour k = 0) avec celles anisotropiques (k = 1
ou k =2).

La Figure 5.11 montre la distribution des poids wy,, du steered CNN ayant obtenu la meilleure
AUC-ROC sur I'ensemble de validation (les poids des 5 modeles suivants dans le classement
observent les mémes tendances). Les poids sont regroupés par rang harmonique k et par
paire de couches convolutives : ou Conv. 1-5 sont les paires de I’encodeur du U-Net, et Conv.
6-9 celles du décodeur. Les trois premieres paires donnent autant ou plus de poids aux filtres
élémentaires anisotropiques qu’a ceux isotropiques. Puis, cette tendance s’atténue pour Conv.
4 et elle disparait définitivement a partir de Conv. 5 et pour les couches du décodeur. Notons
que cette distinction n’existe pas a l'initialisation du modele ou tous les filtres élémentaires
ont la méme pondération relative ; elle apparait a ’entrainement. La solution optimale d’apres
les steered CNN pour classifier les vaisseaux rétiniens est donc conforme a notre intuition :
extraire des caractéristiques anisotropiques de I'image de fond d’ceil, puis les recombiner

isotropiquement pour calculer la prédiction.
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FIGURE 5.11 Distribution des poids wy, d'un steered CNN regroupés par harmonique polaire
k et par couche convolutive.

La médiane de chaque distribution est représentée par un trait horizontal. Les gradients de couleur
indiquent la position des terciles autour de la médiane.
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5.4.4 Efficacité de la modélisation
Efficacité paramétrique

Pour évaluer lefficacité paramétrique des SCN (c’est-a-dire la quantité d’information que
chaque parametre peut encoder), j’ai effectué plusieurs entrainements, en réduisant progres-
sivement le nombre de caractéristiques du modele : en commencant par une moyenne de
134 caractéristiques par couche, pour finir a une seule (voir Figure 5.12). Dans l'ensemble,
I’architecture que nous proposons permet d’obtenir une AUC-ROC plus élevée que celle de
référence en utilisant moins de parametres. En dessous de 20k parametres en particulier, les
performances chutent rapidement pour les CNN standards, alors qu’elles restent stables pour
les steered CNN sur les deux jeux de données. Méme lorsque chaque couche est contrainte a
n’utiliser qu'une seule caractéristique — cas completement irréaliste ou leurs mécanismes de
combinaison linéaire seraient completement désactivés — les steered CNN atteignent toujours
0,88 AUC sur MAPLES-DR et 0,84 sur HRF.

MAPLES-DR HRF (Généralisation)
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FIGURE 5.12 Performances comparées du steered CNN avec un CNN standard en fonction
du nombre de parametres.

Il est intéressant de noter que les courbes de performance sur ’ensemble de données de géné-
ralisation HRF illustrent bien I'intuition du rasoir d’Ockham : au-dela de 830k parameétres,
les modeles steered commencent a se spécialiser sur MAPLES-DR et leur AUC-ROC sur
HRF recule. Les modeles standards sont également sujets a ce phénomeéne, mais uniquement
apres avoir été entrainés avec 10 fois plus de parametres, ce qui indique une fois de plus la

meilleure efficacité paramétrique des steered CNN.



99

Capacité de généralisation avec peu d’échantillons d’entrainement

Pour évaluer plus en profondeur les capacités de généralisation des steered CNN lorsque peu
de données sont disponibles, une série d’entrainements fut conduite en ne conservant qu’'une
partie des 35 images d’entrainement de MAPLES-DR (cf. Figure 5.13). Alors que '’AUC-ROC
des CNN standards chute de maniere significative lorsque le nombre d’échantillons d’entraine-
ment est considérablement réduit, les steered CNN conservent des performances raisonnables
sur MAPLES-DR et se détériorent moins rapidement sur HRF. Ainsi, méme lorsqu’ils sont
entrainés sur seulement 7 images (20% de I'ensemble d’entrainement de MAPLES-DR), les
steered CNN atteignent une AUC-ROC de 0,91 alors que 'TAUC-ROC des CNN standards
tombe a 0,86. Ce résultat concorde avec la plus faible dépendance des steered CNN a 'aug-
mentation de données géométrique : la mutualisation paramétrique induite par le formalisme
steered permet a chaque filtre convolutif d’étre entrainé sur I’ensemble des vaisseaux d’une
image sans les distinguer par leur orientation. En quelque sorte, a nombre d’images d’entrai-
nement égal, chaque filtre d'un steered CNN bénéficie de plus « d’exemples de vaisseaux »

desquels il peut apprendre.
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F1GURE 5.13 Performances comparées du steered CNN avec un CNN standard en fonction
du volume d’entralnement.
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Rapidité de convergence du modele

Non seulement les SCN nécessitent moins d’échantillons de données pour converger, mais
ils requierent également moins d’itérations d’entrainement. Pour mesurer cette vitesse d’ap-
prentissage accrue, nous avons modélisé ’évolution de ’AUC de validation au cours des

entrainements par des courbes exponentielles : AUC,, = b-exp(—a-t)+c ou t est le nombre

10|g(‘2)

d’itérations d’entrainement et a, b et ¢ les parametres de la courbe. En posant \ = , on
peut extraire de ces courbes un indicateur de « demi-vie », ¢’est-a-dire le nombre d’itérations
d’entrainement nécessaires pour réduire de moitié la différence entre la valeur courante de

I’AUC de validation et sa valeur finale (voir Figure 5.14).

La distribution de ces indicateurs de demi-vie est représentée sur la Figure 5.15. Toutes
les configurations testées pour les expériences précédentes y sont agrégées. En moyenne,
I’AUC-ROC de validation des modeles steered converge en 2.4 fois moins d’itérations que
les modeles standards. En d’autres termes, les SCN facilitent I'exploration de I'espace des

parametres pour y chercher le modele optimal.
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F1GURE 5.14 Exemple de regression par une courbe exponentielle de 1’évolution de I’AUC-
ROC de validation ; et de mesure géométrique de la demi-vie \.
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FIGURE 5.15 Rapidité de convergence lors de 'entrainement de CNN steered et standard.
La « vitesse » est ici quantifiée par la demi-vie de ’AUC-ROC calculée sur ’ensemble de validation. Plus
la demi-vie est faible, plus la convergence est rapide. Les distributions représentées agregent toutes les
courbes d’entrainement des expériences précédentes.
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5.5 Discussion et Contributions

Toutes nos expériences montrent que le remplacement des neurones convolutifs standard
par des SCN augmente les performances de classification A/V des vaisseaux rétiniens. Elles
mettent aussi en évidence une amélioration de la modélisation de cette tache qui se traduit par
une efficacité paramétrique accrue, une convergence plus rapide et une moindre vulnérabilité
au surapprentissage lorsque peu de données d’entrainement sont disponibles. Par ce dernier

point, les steered CNN ont démontré une meilleure capacité de généralisation.

La nature de la tache de classification A/V n’est probablement pas étrangere a ces gains de
performance. En effet, avant les modeles entrainés par apprentissage profond, les meilleurs
algorithmes de classification vasculaires reposaient sur des descripteurs dépendants de I'orien-
tation des vaisseaux (par exemple, les caractéristiques des dérivées de gaussiennes et la mesure
de I’épaisseur des vaisseaux [78] ou I'analyse des reflets le long des arteres [82]). On a d’ailleurs
vu que ces descripteurs sensibles a l'orientation sont essentiels aux steered CNN : lorsqu’on
limite les filtres élémentaires a des composantes purement radiales, I'exactitude du modele
chute de 10% (voir Figure 5.8). Pour apprendre de tels descripteurs, les CNN standards
doivent cependant consacrer plusieurs parametres a ’apprentissage de filtres anisotropiques
selon différentes orientations et doivent étre entrainés sur de nombreux exemples de vaisseaux
dans chaque orientation pour apprendre ces parametres. En pratique, et a plus forte raison
lorsqu’ils sont entrainés sous augmentation de données géométriques de rotation, les filtres de
convolution des CNN standards convergent plus facilement vers des filtres isotropiques. Nous
pensons que la formulation de la rétropropagation du gradient dans les CNN standards, ou
les signaux de gradient générés par chaque vaisseau présent dans un mini-batch sont agglo-
mérés ensemble — y compris des vaisseaux ayant des orientations mutuellement orthogonales
— explique ce biais isotropique. Ainsi, les bénéfices des SCN dépassent la simple amélioration
de Tefficacité paramétrique : la reparamétrisation des neurones convolutifs permet surtout

I’apprentissage de descripteurs anisotropiques, la ou les CNN favorisent ceux isotropiques.

Enfin I’étude qualitative des steered CNN semble indiquer que leur équivariance a la rotation
les immunise contre les variations soudaines de prédiction A/V au sein d’'un méme vaisseau,

et induit une meilleure cohérence topologique de leur prédiction.
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CHAPITRE 6 FUNDUS VESSELS TOOLKIT : MODELISATION
GEOMETRIQUE ET TOPOLOGIQUE DE L’ARBRE VASCULAIRE
RETINIEN

Ce chapitre vise a modéliser topologiquement puis a paramétrer I'arbre vasculaire rétinien
a partir de cartes de segmentation sémantiques imparfaites prédites par CNN. I a été
implémenté dans un paquet python accessible sur Github et Pip nommé fundus-vessels-

toolkit (FVT). Ce nom sera utilisé pour désigner la méthode décrite dans ce chapitre.

6.1 Enjeux et Motivations

Standardisation de la topologie de ’arbre vasculaire

Comme on 'a vu dans la revue de littérature, la paramétrisation de ’arbre vasculaire réti-
nien suppose une représentation topologique structurée : la mesure de la tortuosité repose
sur l'identification de branches et la paramétrisation des bifurcations nécessite de les distin-
guer des croisements. Plus précisément, la modélisation topologique finale doit idéalement se
conformer aux regles suivantes pour permettre une paramétrisation exhaustive :

— Le réseau vasculaire rétinien est modélisé par une forét d’arbres.

— Dans cette forét, chaque arbre représente un vaisseau unique émanant du disque op-
tique et est affublé d’un unique label : artere ou veine.

— Chaque noeud de ces arbres représente soit la racine d’un vaisseau, soit une de ses
terminaisons, soit un de ses embranchements (e.g. une branche donnant naissance a 2
branches ou plus). Les coordonnées spatiales de chaque noeud sont connues.

— Chaque arc représente une branche d’un vaisseau et est associé a une séquence de
pixels appartenant au squelette vasculaire et formant une courbe dont on peut dériver

les tangentes. Le calibre du vaisseau est défini pour chaque point de cette courbe.

Artefacts des segmentations sémantiques par CNN

Les modeles CNN atteignent aujourd’hui de bonnes performances d’exactitude sur la segmen-
tation et la classification des vaisseaux sur images de fond d’ceil. Mais ils peinent a apprendre
leur structure topologique, de sorte que leurs prédictions contiennent toujours plusieurs types
d’artefacts connus :

— des irrégularités de la surface des vaisseaux segmentés induisant des pointes (spurs)

sur le squelette vasculaire ;


https://github.com/gabriel-lepetitaimon/fundus-vessels-toolkit
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— des fragmentations de la segmentation sous la forme : soit de trous responsables de
I’apparition de cycles érronnés dans le squelette, soit de discontinuités qui isolent
certains vaisseaux du reste du graphe vasculaire (voir Figure 6.1 droite) ;

— des erreurs de la classification A/V locales ou pour une branche compléte ;

— des erreurs de classification aux croisements de vaisseaux : au lieu d’annoter ces pixels
comme veinules E'T artérioles, le modele choisi un type unique, induisant une discon-
tinuité dans la carte de segmentation de 'autre.

Erreurs de Classification Erreurs de Segmentation

FIGURE 6.1 Artefacts de segmentation sémantique des vaisseaux rétiniens par CNN.

Travaux connexes

Parmi les logiciels récents qui utilisent des cartes de segmentation prédites par CNN pour
paramétriser automatiquement le réseau vasculaire rétinien, trois sur quatre abandonnent la
modélisation en arbre, au détriment des parametres qui en dépendent. Le quatrieme, RMHAS
(Shi et al. 2022 [149]) implémente une méthode pour cette modélisation mais ne tient pas

compte des artefacts identifiés plus haut. Ainsi, a la moindre erreur de segmentation ou de

classification, la représentation topologique produite est erronée.

Dans leur récente revue de littérature sur les algorithmes de classification A/V du fond d’eeil,
Chen et al. [26] ont conclu a la nécessité du développement de méthodes de post-traitement
en s’'inspirant de la littérature antérieure aux CNN (en 2015) et qui abordait la classification
A/V comme un probléme de partitionnement du graphe vasculaire. C’est-a-dire le probleme
de l'identification des différents vaisseaux dans le graphe non orienté du squelette ou tous,
artérioles comme veinules, s’entremélent. La méthode présentée dans ce chapitre s’inspire
particulierement des travaux d’Estrada et al. [219] qui formulaient le probleme comme une
recherche de ’arborescence la plus plausible parmi I’ensemble des arborescences générables
par le graphe non orienté. On conservera de leur approche le choix d’orienter les branches
vasculaires et d’énumérer les arborescences possibles pour trouver la plus plausible. Cepen-

dant, leur méthode ne peut opérer que sur un squelette de qualité parfaite : en particulier,
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elle ne contient aucun mécanisme pour corriger les éventuelles déconnexions de branche. Elle

présuppose aussi que les noeuds racines du graphe sont connus.

A Tlinverse, la méthode que je propose ici tient compte des artefacts inhérents a la seg-
mentation sémantique par CNN et méme cherche a les corriger. Elle vise a identifier quelle
arborescence conforme aux regles topologiques énoncées plus haut pourrait avoir généré 1’ob-
servation bruitée de la segmentation sémantique qu’on lui présente. Pour ce faire, elle traduit
les connaissances cliniques sur la structure des vaisseaux rétiniens en une série d’heuristiques

topologiques et géométriques.

6.2 Méthode

La séquence d’algorithme présentée dans ce chapitre a pour but I'extraction d’une topologie
standardisée du graphe vasculaire rétinien a partir de cartes de segmentation et de classi-
fication imparfaites produites par un réseau de neurones. Pour ce faire, une succession de
représentations est construite, chacune s’appuyant sur la précédente pour en corriger les ar-

tefacts et standardiser la structure. Le diagramme de la méthode est présenté sur la figure 6.2
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FIGURE 6.2 Vue d’ensemble de I'extraction de ’arbre vasculaire dans FVT.
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6.2.1 Extraction initiale de la topologie

La premiere phase consiste a convertir le squelette des vaisseaux en un graphe de branches
vasculaires reliées par des noeuds pour obtenir une premiere modélisation topologique des
vaisseaux rétiniens. Pour ce faire, la carte du squelette est dérivée de la segmentation des
vaisseaux grace a la méthode de squelettisation de Lee et al. [220], telle qu’implémentée dans
skimage .morphology. Puis, chaque pixel du squelette est attribué a une branche ou, s’il
est a 'intersection de plusieurs, & un noeud. Cette phase est tres similaire aux travaux de la

littérature, bien qu’elle s’en distingue déja par la correction de certains artefacts du squelette.

Détection des noeuds du graphe : les terminaisons et les jonctions

Pour identifier les terminaisons et jonctions vasculaires dans le squelette, une majorité de
travaux récents comptent, pour chacun de ses pixels, le nombre de voisins qui appartiennent
aussi au squelette : si ce nombre est de 3 ou plus, le pixel est considéré comme une jonction ;
s'il est exactement égal a un, le pixel est identifié comme une terminaison [149,165]. Cette

méthode est algorithmiquement simple, mais produit des faux positifs aux jonctions.

Nous avons donc préféré une détection explicite de chaque type de noeud par les détecteurs hit-
or-miss présentés sur la figure 6.3. Ces détecteurs sont appliqués a chaque pixel du squelette.
Ceux répondant aux filtres (a) sont identifiés comme des terminaisons et ceux activant les
filtres (b-f) sont annotés comme jonctions. Tous les autres pixels du squelette sont considérés

comme appartenant a une branche, on y reviendra.

XXX
XX

x8

(a) Terminaison (b) Jonction X (c) Jonction carrée (d) Jonction T  (e) Jonction Y (f) Jonction Y (bis)

FIGURE 6.3 Masques de détecteurs hit-or-miss pour la détection des noeuds du graphe.

Pour activer un détecteur, tout les pixels en bleu foncé doivent appartenir au squelette et tout ceux en
rouge doivent en étre absent. Les masques (a), (d), (e), et (f) sont appliqués 8 fois, en subissant une
rotation de 45° entre chaque application. Le masque (b) est de la méme maniére appliqué deux fois.

Correction des croix creuses

Une premiere étape de correction d’artefacts intervient immédiatement apres la détection
des noeuds. En effet, il arrive qu'un pixel soit absent de la segmentation vasculaire, ou que

deux vaisseaux mitoyens soient correctement détectés mais séparés par une ligne diagonale
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d’un unique pixel de large. La squelettisation produit alors une série de croix creuses qui sont
interprétées de maniere erronée comme une succession de jonctions en T (voir figure 6.4a).
Pour corriger cette erreur, un détecteur hit-or-miss supplémentaire est chargé de leur identi-
fication, puis ces croix sont effacées et le squelette est reformé. Suite a ces corrections, tous

les noeuds restants sont ajoutés au graphe, et leurs coordonnées spatiales sont sauvegardées.

X X

XX

(a) Exemples de CC et de leurs corrections (b) Détecteur de CC

FIGURE 6.4 Ilustration de la correction des croix creuses (CC).

Découverte des branches qui relient les noeuds

Il reste a découvrir les branches qui relient les nceuds précédemment identifiés. Pour ce faire,
le voisinage de chaque jonction est inspecté. On cherche dans un premier temps les paires
de neoeuds directement adjacents afin d’ajouter immédiatement les arcs correspondants au
graphe. Puis, une branche est créée pour chaque pixel du voisinage qui appartient au squelette
et qui n’a pas encore été étiqueté ni comme noeud, ni comme branche. Le pixel est annoté du
numéro de la branche pour ne pas étre visité a nouveau, et on cherche parmi les 5 pixels de
son voisinage diamétralement opposés au noeud de départ celui qui appartient au squelette.
Cette derniere étape est répétée en analysant itérativement le voisinage des pixels identifiés,
et ce jusqu’a trouver un nceud. On ajoute alors au graphe un arc reliant le nceud de départ
a celui d’arrivée, et on lui associe des informations complémentaires liées a la branche. Pour
I'instant, ces informations comprennent uniquement le numéro de la branche et la séquence

de pixels définissant sa courbe.

Une seconde correction du squelette intervient alors : on supprime toutes les branches dont
au moins une des extrémités est une terminaison vasculaire et dont la longueur est inférieure
a 2. Elles correspondent en effet a des aberrations (dites spurs ou pointes) produites par
la squelettisation lorsque la surface d’un vaisseau varie rapidement. Les noeuds qui ne sont
connectés qu’a deux branches apres cette étape sont supprimés et leurs branches sont fu-
sionnées. Cette correction ne supprime pas toutes les spurs mais simplifie le graphe avant la

conduite d'une analyse poussée de la géométrie des branches.
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6.2.2 Extraction de la géométrie de chaque branche

A la fin de la premiére phase du traitement, la vasculature rétinienne est représentée par un
graphe non orienté de branches vasculaires dont on connait les courbes que forment leurs
squelettes. La seconde phase du traitement combine cette représentation topologique simple
avec la segmentation des vaisseaux pour enrichir le graphe d’une modélisation géométrique

de chacune de ses branches.

Nettoyage des extrémités des branches

Aux extrémités des branches (aux abords des nceuds), le squelette vasculaire n’est pas fiable :
attiré par les branches émergentes, il s’écarte du centre des vaisseaux principaux et prend
la forme d'un H aux intersections (cf. Figure 6.5). Les algorithmes d’extraction de graphes
vasculaires remédient généralement a cette faillibilité en masquant tous les pixels situés dans
un rayon fixe autour des jonctions. Mais ce faisant, ils risquent de supprimer des pixels
valides du squelette (si le rayon est trop grand) ou de conserver des pixels erronés (s’il est
trop étroit). Nous proposons plutot de nettoyer chaque extrémité de branche en utilisant ses
caractéristiques géométriques.

Soit les coordonnées p; = (pl(-w); pgy)) du ™ pixel de la courbe d'une branche, nous définis-

sons la tangente a l'extrémité du squelette comme suit :

10

t=>60)- (pi+j - pi) (6.1)

Jj=1

ou G(7) est une gaussienne centrée en 0 et avec un écart-type de 3 pixels.

Soit aussi dL; et dR; : les distances séparant p; des deux bords les plus proches du vaisseau
dans une direction orthogonale a {; et soit le calibre du vaisseau ¢; = dR; + dL;. En partant
de I'extrémité py d’une branche, chaque pixel du squelette p; est testé en fonction des quatre
conditions suivantes :

1. Les bords du vaisseau R; et L; ont été trouvés;

2. Le squelette se trouve pres du centre du vaisseau ;

3. Les calibres ¢; et ¢;11 sont approximativement les mémes ;

4. Le pixel p; est le pixel du squelette le plus proche de R; et L;.
Le premier pixel qui remplit toutes les conditions est choisi comme I’extrémité de la branche,
et tous ceux qui le précedent sont supprimés (voir Figure 6.5). Si 'extrémité de la branche
correspond a une terminaison vasculaire, la condition 4 est remplacée par une vérification de

la stabilité de la tangente, garantissant que t; ~ ;1.
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FIGURE 6.5 Nettoyage du squelette aux extrémités des branches.

A droite, les extrémités des branches sont matérialisées par des traits orthogonaux aux vaisseaux. Les
portions du squelette qui apparaissent en blanc sur cette image n’appartiennent a aucune branche.

Suite au nettoyage de leurs extrémités, on élimine toutes les branches terminales dont la
longueur est inférieure au calibre de la branche adjacente la plus large. Cette méthode de
détection et suppression des spurs est plus fiable que celle généralement utilisée qui consiste
a supprimer, de facon indifférenciée, toutes les branches de longueur inférieure a un seuil fixe.
Notre méthode permet en effet de conserver les petites branches fines en périphérie de la
vasculature tout en supprimant les longs spurs des vaisseaux les plus larges. Le nettoyage du
squelette proposé plus haut est clé dans cette démarche car il permet de mesurer la longueur
réelle des branches plutot que la longueur de leur squelette qui comprend en plus la portion
entre le centre et la surface du vaisseau parent (si le vaisseau est large, cette différence est
importante). Les noeuds orphelins — qui ne sont connectés a aucune branche — sont également

supprimés du graphe.

Calcul des propriétés géométriques des courbes des branches

Une fois nettoyé, le squelette de chaque branche est analysé point par point, pour en extraire
les propriétés géométriques. A commencer par la tangente au point p;, calculée par addition

des points subséquents p;; et soustraction des points précédents p;_; du squelette :

=T (s ) (62)

Jj=0

Ici, le réglage de J et de l'écart-type de la gaussienne G définit la sensibilité de ¢; aux

changements d’orientation : plus ils sont faibles, plus la tangente sera a méme de capter les
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changements rapides de la direction du vaisseau. Néanmoins, pour assurer une mesure fiable,
I’écart-type doit étre d’au moins 3 pixels. En effet, la position relative de p;,, et p;_, dans le
voisinage proche de p; est trés sensible au bruit de discrétisation du squelette : par exemple,
une mesure de la tangente qui ne tiendrait compte que de p;,; verrait sa résolution angulaire
limitée a 45°.

A partir de la tangente ainsi lissée, on définit la courbure K; au point p; comme une fonction
de la tangente t; et de sa dérivée ot; = t; — t;_1. D’apres Grisan et al. [@] :

I

i (6.3)
ot ]*

Enfin, le calibre du vaisseau est mesuré a chaque point p; par la méme procédure que celle
utilisée pour nettoyer les extrémités des branches : En partant de p;, deux rayons sont émis
dans des directions opposées, perpendiculairement a ¢;. On nomme p; et p! les points d’in-
tersection de ces rayons avec la bordure du vaisseau (selon la segmentation vasculaire). Le

calibre de la branche au point p; est alors défini comme la distance entre p; et p!.
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FIGURE 6.6 Informations géométriques extraites pour une branche vasculaire.
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Modélisation des courbes vasculaires par des B-splines cubiques

La modélisation géométrique de branches est enrichie d’une derniere propriété : une paramé-
trisation de leur courbe par des B-splines cubiques. L’objectif est double : d’une part, faciliter
la manipulation mathématique des courbes des branches, par exemple pour des calculs de
distances ou d’intersections; et d’autre part, obtenir un descripteur stable de la géométrie

vasculaire qui, comparé au squelette brut, soit moins sensible aux variations de segmentation.

Notre méthode pour cette modélisation s’inspire de I'algorithme proposé par Philip J. Schnei-
der [221] qui convertit une courbe discrétisée en une spline de Bézier cubique. Soit une courbe
discreéte formée par la succession de n points : p; = ( §$),p§y>) avec i € N et 1 < n, lalgo-

rithme commence par 'approximer avec un unique polynéome de Bézier cubique :
P(u) = (PW; PW) = (1 — w)*Pg + 3u(l — u)?Py + 3u*(1 — u)P; + u’Ps (6.4)

Ou Py et P3 sont les points de départ et d’arrivée, P; et Py sont les points de controle
et u € [0;1] est le parametre de la courbe. Soit la discrétisation D : i — w; qui associe
a chaque point p; de la courbe sa valeur interpolée P(u;), on définit I'erreur quadratique
moyenne de reconstruction par : eygg = 2% [|P(u;) — pi||>. Si P, Ps et leurs tangentes sont
fixées, le choix optimal de P; et Py pour minimiser l'erreur quadratique eygg est solvable
exactement et avec une complexité O(n). Néanmoins, la qualité de la modélisation dépend
de la discrétisation D qui doit aussi étre optimisée par une routine de Newton-Raphson
afin de trouver, pour chaque valeur de i, le parametre u; qui minimise la distance g; =
|lp: — P(u;)||. L’algorithme optimise donc alternativement D puis les coefficients Py et Ps,
jusqu’a ce que l'erreur maximale de reconstruction : £, = max; ||P(u;) — pi|| soit inférieure
a lerreur désirée e.,1.. Si cette erreur cible n’est pas atteinte apres dix itérations, ou si £ax
est supérieure au double de g6, la courbe est divisée en deux et 1'algorithme est appliqué
individuellement aux deux sections. Si, a nouveau, une section ne peut étre approximée par
une unique courbe de Bézier cubique, elle est elle-méme sous-divisée et ce récursivement
jusqu’a ce que pay soit inférieure a ecipe = 2 pixels (déterminé empiriquement). La B-spline

peut alors étre formée par 1'assemblage des courbes de Bézier ainsi obtenues.

Dans son implémentation initiale, Philip J. Schneider [221] subdivise les courbes au point ou
g; est maximale. Mais ces points sont particulierement sensibles aux variations de segmen-
tation, et ils sont donc insatisfaisants pour devenir les nceuds d’une B-spline stable. Nous
choisissons plutot de forcer leur placement sur les points d’inflexion de la courbe. Dans notre
implémentation, les racines de la courbure de la branche sont identifiées en amont comme

de potentiels noeuds de la B-spline. Lorsqu’il doit subdiviser une courbe, I’algorithme choisit
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le point d’inflexion pour lequel 'erreur cumulée est répartie le plus équitablement de part
et d’autre du point. Deux erreurs interviennent dans notre calcul : la distance euclidienne

g; et Perreur cosinus entre les tangentes des courbes réelle et approximée (voir 'illustration
Figure 6.7).

Résultat de la modélisation d'une branche par une BSpline

Courbure et points d'inflexion le long de la branche
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FIGURE 6.7 Découpage itératif de la courbe d’une branche en une B-spline cubique.

Le premier graphique indique la position des points d’inflexions en rouge. Les quatres graphiques suivants
présentent, de haut en bas, chaque subdivision de la courbe et la diminution de ’erreur de reconstruction.
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6.2.3 Intégration de la classification A/V au graphe vasculaire

Pour 'instant, seule la segmentation des vaisseaux a été utilisée pour construire le graphe et
ses propriétés géométriques. La troisieme étape du traitement enrichit la représentation du

graphe vasculaire & partir de I'information fournie par la classification A/V.

Coloration des branches et noeuds comme artériole ou veinule

On souhaite colorier chaque branche et chaque nceud du graphe d’une couleur définissant leur
classe : ART pour les artérioles et VEI pour les veinules. Cette tache est moins triviale qu’il n’y
parait car la segmentation vasculaire sur laquelle notre travail (et ’ensemble de la littérature)
s’appuie n’est pas une segmentation par instance. Par conséquent, lorsque deux branches de
vaisseaux se rapprochent suffisamment I'une de I'autre, leurs segmentations s’unissent et leurs
squelettes fusionnent. Dans le graphe G(V, B) une seule branche rend alors compte de ces
deux vaisseaux, qui sont pourtant bien souvent de classes différentes (puisque les artérioles
et les veinules s’alternent sur la rétine). Une troisieme couleur BOTH est donc définie pour
ces branches a la fois ART et VEL

Le coloriage des branches débute par 'assignation d’une couleur a chacun des pixels p; de
leur squelette. Pour ce faire, trois pixels de la carte de classification A/V sont étudiés : p;
lui-méme ainsi que les points p; et p; placés sur la bordure du vaisseau, a l'intersection d'une
droite orthogonale a ¢; (voir section 6.2.2). Si ces trois pixels sont ART (resp. VEI), p; est
étiqueté ART (resp. VEI); sinon, il est étiqueté BOTH. Une fois que ’ensemble de ses pixels
a ainsi été colorié, la couleur globale de la branche est déduite comme suit : si plus de 2/3
des pixels d'une branche partagent une couleur commune, cette derniére est attribuée a la
branche; sinon, la branche est divisée en sections de couleur homogenes. Ce seuil permet
de corriger les petites "taches" qui apparaissent parfois sur les cartes de classification A/V
prédites par CNN. Enfin, les branches de moins de deux pixels apres 1'étape de nettoyage du

squelette sont coloriées d’'une quatriéme couleur UNK : leur classe A/V étant inconnue.

Les noeuds sont alors initialisés avec la classe UNK, puis leur couleur est définie en fonction
de celles de leurs branches incidentes :
— Si toutes sont ART (resp. VEI), le noeud est ART (resp. VEI);
— Si certaines sont ART et d’autres VEI ou si au moins une est BOTH, le nceud est
BOTH ;
— Si un neeud a deux branches incidentes, dont une UNK, la couleur de 'autre branche
est propagée au noeud et a la branche UNK.

Puisque cette derniere regle modifie la couleur d’une branche, la procédure de coloriage des
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F1GURE 6.8 Correction des artefacts topologiques. Gauche : Graphe colorié par les classes
A/V (rouge : ART; bleu : VEI; violet : BOTH ; vert : UNK). Droite : Graphe simplifié.

neeuds est répétée itérativement jusqu’a ce que leur couleur soit stable.

Enfin, on identifie par un algorithme de composantes connexes les groupes de noeuds UNK.
Si toutes les branches incidentes d’un groupe sont ART (resp. VEI ou BOTH), ses nceuds
sont recolorés ART (resp. VEI ou BOTH). La figure 6.8 montre un exemple de graphe A/V

colorié selon cette méthode.

Simplification topologique du graphe A/V

Le graphe vasculaire extrait a partir d’'une segmentation automatique contient parfois des
structures topologiques inutilement complexes, en particulier lorsqu’il est construit sans dis-
tinction des artérioles et des veinules. Ces artefacts topologiques ont été conservés jusqu’ici
pour ne pas perturber la coloration du graphe. Celle-ci étant faite, on peut dorénavant les

simplifier par la procédure suivante (illustrée par la Figure 6.8) :

1. Tout noeud reliant exactement deux branches de la méme couleur qui forment un
angle obtu est supprimé puisqu’il est topologiquement inutile, et ses deux branches

incidentes sont fusionnées en une seule.

2. Les branches orphelines (connectées a aucune autre branche) dont la longueur de la

courbe est inférieure au calibre D,,,, du vaisseau le plus large sont aussi supprimées.

3. Les jonctions adjacentes de méme couleur sont fusionnées lorsque leur distance est
inférieure a D,,.,. Si une jonction pourrait ainsi s’associer avec plusieurs autres, toutes
sont regroupées et fusionnées ensemble. Le noeud résultant est placé a leur barycentre
et est connecté a toutes les branches incidentes au groupe, tandis que les branches qui

reliaient les jonctions entre-elles sont effacées.

4. L’étape 1. de cette procédure est exécutée a nouveau pour supprimer tout noeud qui
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aurait été rendu topologiquement inutile par les simplifications précédentes.

5. La routine de coloriage des noeuds est exécutée a nouveau pour que la coloration A/V

du graphe soit conforme a sa nouvelle topologie.

Recensement des reconnections potentielles

Il n’est pas rare que les modeles de segmentation vasculaire probabilistes fractionnent par
erreur la segmentation des petits vaisseaux, en particulier proches des intersections. Ce frac-
tionnement déconnecte certaines branches du reste du graphe vasculaire et induit ainsi des
artefacts topologiques : les arcs qui auraient di matérialiser ces connexions sont absents, et
des noeuds terminaux apparaissent a I’emplacement des fins prématurées des vaisseaux. Suite
a la simplification du graphe a I’étape précédente, une recherche est conduite parmi tous les

nceuds terminaux pour identifier ceux qui résulteraient d’une telle déconnexion.

Pour ce faire, la tangente a l'extrémité de chaque terminaison vasculaire est prolongée dans
un cone large de 20° et long de 100 pixels. Toutes les branches dont le squelette intersecte ce
cone sont subdivisées en insérant un noeud au point d’intersection, puis un arc virtuel est créé
entre ce nouveau nceud et celui au sommet du cone. Si l'intersection est proche de l'extrémité
d’une branche (au maximum D,y ), elle n’est pas subdivisée et 1'arc virtuel est connecté a son
neeud existant. Ces arcs virtuels ne sont pas directement ajoutés au graphe : ils sont transmis
en tant qu’arcs hypothétiques a 'algorithme d’optimisation d’arborescence vasculaire décrit
dans la section suivante. C’est ce dernier qui évaluera la plausibilité de chacun et retiendra

uniquement ceux qui améliorent la vraisemblance globale du graphe.

FIGURE 6.9 Illustration de la recherche des reconnections possibles.
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6.2.4 Résolution de ’arborescence propre a chaque vaisseau

A ce stade, une majorité des informations présentes dans les cartes de segmentation et de
classification vasculaire ont été traduites par des attributs du graphe G(V, B). Mais cette
représentation s’arréte a la notion de branches : artérioles et veinules sont enchevétrées au
sein du méme graphe ou les différents vaisseaux de la rétine se confondent. L’étape finale du
traitement vise a identifier dans ce graphe les sous-arbres propres a chaque vaisseau, puis
a les représenter par une arborescence composée d'une branche principale et de branches
secondaires, tertiaires, etc. C’est véritablement la clé de voiite de la méthode : elle s’appuie
sur toutes les informations extraites par les étapes précédentes pour désentrelacer les vais-
seaux, trouver leur racine et leurs terminaisons, tout en corrigeant les artefacts résiduels de

segmentation ou de classification.

Pour y parvenir, cette ultime étape ajoute aux informations précédentes la position du disque
optique et de la macula fournies par une segmentation de ces structures. Elle s’appuie ensuite
sur les connaissances cliniques de la structure des graphes vasculaires rétiniens, traduites
en heuristiques, pour estimer la plausibilité des différentes hypotheses d’arborescences et
sélectionner la plus crédible. Mais auparavant, elle débute par une énumération exhaustive
de toutes les arborescences que G(V, B) peut générer. Cette énumération prend la forme d’un

graphe de lignes.

Construction du graphe de lignes

La réduction du graphe G(V, B) en une forét de sous-arbres enracinés consiste, mathémati-
quement parlant, a trouver le morphisme P : B — BU@ qui associe a chaque branche b; € B

sa branche parente b; tel que :

{bj € B sib; est une branche secondaire

P:b—

%) si b; est primaire et n’a pas de parent

Si on contraint P a ne contenir aucun cycle, alors le morphisme génere bien un arbre orienté
dont la racine est @ et ou toute branche b, € B telle que P(b,) = @ est une branche
principale d’un vaisseau rétinien. Bien siir, le choix de P peut drastiquement modifier I'allure
du graphe vasculaire. Pour s’en convaincre, prenons le graphe vasculaire G(V, B) a 5 noeuds
et 4 branches présenté sur la figure 6.10. Fixons P(13) = P(23) = @, si P(34) = 13 et
P(35) = 23 on obtient 'arborescence b1, si P(34) = 23 et P(35) = 13 on obtient celle b2, si
enfin P(34) = P(35) = 13 on a celle b3. Au total, plus de 30 arborescences différentes peuvent
dtre générées par cette simple intersection. Evidemment, toutes ne sont pas pertinentes :

I’arborescence b4 est par exemple tres peu probable.
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b1 b2

b3 ) b
@ kB LJE

a. b. C.

FIGURE 6.10 Illustration de la construction du graphe de ligne. a. Graphe vasculaire G(V, B) ;
b. Exemple d’arborescence que G peut générer; c. Graphe de ligne listant toutes les arbo-
rescences possibles.

L’ensemble des arborescences peut étre représenté par un graphe de ligne dirigé L(G) dérivé
du graphe vasculaire G(V, B) comme suit. Pour chaque branche b,, € B reliant les noeuds
u,v € V, deux nceuds sont ajoutés a L(G) : by et bg;. Le premier suppose que by, est
orientée de u vers v tandis que le second suppose l'inverse. Les noeuds de L(G) sont coloriés
de la méme classe A/V que la branche qu’ils représentent, a I’exception pres que les branches
BOTH sont dédoublées dans le graphe de ligne : une paire de nceuds la représentant dans sa

version ART, et une autre dans sa version VEI.

On considére ensuite un nceud v € V' du graphe vasculaire et ses noeuds adjacents Adj(u) C
V' : pour chaque combinaison de nceuds adjacents (v, v,,) € Adj(u) avec n # m, un arc de
ligne est ajouté a L(G) dirigé de by vers by . Si u est connecté & N branches vasculaires
(et donc a autant de noeuds), on ajoute ainsi N x (N —1) arcs dans le graphe de ligne. Chacun
de ces arcs représente une hypothese de relation hiérarchique entre branches : en l'occurrence

que bz donne naissance a bz a travers le noeud w.
n m

Les points d’extrémité et les noeuds proches des limites du disque optique ou du fond d’ceil
sont considérés comme des racines plausibles de leurs sous-arbres. Pour chaque nceud u parmi

ces candidats, un arc est créé dans L(G), dirigé de @ vers la branche b,
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Pondération du graphe de ligne

Chaque arc du graphe de ligne est affublé d’un score de plausibilité calculé par des heuristiques

qui traduisent la plausibilité de I'hypothese portée par I’arc selon les connaissances cliniques.

— Ces heuristiques favorisent I’hypothese que b= soit la branche parente de by si
leur tangentes se font face; 2. elles ont la méme classe A/V, ou 3. la branche mere
a un calibre supérieur a la branche fille. Plus précisément, le score de I'arc qui porte

cette hypothese est calculé par :

p<bm’ bm) - + Way - 1av(b”nua buvm)

+ w0 (#lbaa) — elbay) )

Ot #(by—) et ¢(by=) sont les tangentes et les calibres & I'extrémité u de by, ; o(-) est
la fonction sigmoide; et 1*V(by, u, buw,,) vaut 1 si by, . et by, ont la méme classe A/V

et 0 sinon. Les parameétres ., w,, et w; ponderent les différents termes de ’heuristique.

— Les arcs portant I’hypothese que la branche bz; soit la racine d’un vaisseau sont favo-

risés si u est proche du disque optique ou du bord de la région d’interét de 'image de

fond d’oeil.

— Enfin la plausibilité de la direction de chaque branche b, est aussi estimée en ajoutant

a tous les arcs de lignes adjacents aux noeuds bg; et bz, les scores suivants :

P(@ﬁ) = —p<bm> = + we - (7<Cha1f(bm) - Chan‘(bm)>

ol Cpaif(bgs) et cnaie(by) sont le calibre médian sur la premiere et seconde moitié de

buv, €t ou <ti (bm) ot (pl)> est la moyenne de distance cosinus entre la tangente de la

branche t; (b@) et celle attendue ¢ (pi), calculée pour tous les points p; de la branche
b.y. La direction t est une estimation de l'orientation probable des branches en tout
point du fond d’eeil : elle pointe a 'opposé du disque optique et vers son symétrique
autour de la macula ®. La direction favorisée pour la branche est donc celle pour laquelle

les tangentes s’éloignent du disque optique et tournent autour de la macula, 2. le

calibre décroit.

1. L’influence de ces deux points est définie comme inversement proportionnelle au carré de leur distance
a la maniere d’'un champ magnétique.
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Résolution de ’arborescence la plus plausible

Une fois que L(G) est défini, son arborescence maximale (MSA) est calculée, de sorte a ne
conserver qu'un seul arc de ligne dirigé vers chaque branche b= et b. Ensuite, chaque paire
de noeuds linéaires by et by est fusionnée, formant un graphe linéaire plus simple L* ou
les branches vasculaires sont représentées par des nocuds linéaires uniques. La représentation
arborescente la plus plausible pour le graphe vasculaire est obtenue en calculant le MSA de
L* (cf. Figure 6.11c). Les sous-arbres de vaisseaux sont ensuite développés en parcourant la
MSA a partir de chaque aréte sortante de la branche racine @. Une fois séparé, chaque sous-
arbre se voit attribuer son étiquette A/V majoritaire, ce qui permet de corriger les erreurs
de classification A/V locales.

(%)
a b.
12
@ —>
.\_/ (0]
12
12

FI1GURE 6.11 Illustration de I'optimisation d’arborescence a. Graphe vasculaire GG ; b. Graphe
de ligne orienté L(G); c. Graphe de ligne simplifié L*(G). (Les arcs de lignes correspondants
aux hypotheses rejetées par la MSA sont semi-transparents.)

Heuristique «garde-fou»

L’étape d’optimisation décrite ici accorde plus d’importance aux caractéristiques géomé-
triques et topologiques extraites de la segmentation des vaisseaux qu’a la classification A/V.
Cependant, il arrive qu'un vaisseau semble « émerger » d’un autre parce que son segment
en amont a été occulté ou n’a pas été segmenté. Ces rares cas conduisent a des affiliations
de branches erronées et a la fusion de vaisseaux distincts en un seul sous-arbre. Une derniere
heuristique de sauvegarde détecte ces cas en recherchant les branches croisées qui sont af-
filiées au méme sous-arbre. Si les branches croisées avaient initialement des étiquettes A/V

différentes, leurs sous-arbres sont déconnectés.
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6.3 Evaluation de la modélisation topologique

L’évaluation de la méthode d’extraction de la topologie par FVT est divisée en deux parties.
Dans un premier temps, on évaluera la capacité de I’algorithme de partitionnement du graphe
a corriger les artefacts de segmentation et de classification. Puis, dans un second temps, on
évaluera la pertinence des parametres vasculaires extraits avec la librairie sous la forme d’une

étude pilote sur la base de données canadienne CLSA.

6.3.1 Correction des artéfacts topologiques

Pour évaluer la capacité de corrections des artefacts de FVT, on appliqua sa méthode de
modélisation topologique & des cartes de segmentation A/V prédites par le modele de seg-
mentation sémantique Automorph [164]. Ce modele a été spécifiquement choisi car, d'une
part, il est public, de sorte que n’importe qui pourrait reproduire les expériences ci-dessous ;
et d’autre part, ses cartes de segmentation A/V sont généralement de bonne qualité mais

contiennent les artefacts topologiques typiques des CNN.

Nous avons comparé les arbres vasculaires extraits par le FVT avec ceux obtenus par la
méthode de RMHAS [149], c’est-a-dire la méthode « naive » qui analyse séparément les
cartes de segmentation des artérioles et veinules, extrait de chacune le graphe ART et VEI
individuellement, puis identifie le sous-graphe propre a chaque vaisseau par une analyse en
composantes connectées et finalement place la racine de chaque vaisseau sur le nceud le
plus proche du disque optique. Les deux méthodes recoivent les mémes segmentations A/V
prédites par Automorph de sorte a pouvoir comparer les propriétés des arborescences extraites
par chacune. La Figure 6.12 présente une vue comparative de ces arborescences pour trois

images extraites du sous-ensemble réannoté de MAPLES-DR.

Analyse qualitative

Cette comparaison qualitative des deux méthodes (qui me rappelle étrangement le jeu des 7
différences) révele plusieurs qualités de notre approche :

Premiérement, les principales erreurs de classification d’Automorph ou une section de vais-
seau change soudainement de classe sont corrigées par FVT et l'intégrité du vaisseau est
correctement restaurée A/V (voir agrandissement a., b. et c.).

Deuxiémement, une majorité des déconnexions de vaisseaux semble aussi étre identifiée et cor-
rigée correctement par FVT (voir agrandissement a. et c.). Concernant ces reconnexions, j’at-
tire I’attention du lecteur sur I’agrandissement a. et ses nombreuses interruptions de veinules

aux croisements avec l'artériole horizontale. Ces interruptions sont causées par une mauvaise
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FIGURE 6.12 Arborescence extraite par RMHAS (gauche) et par FVT (droite).

Les noeuds racines apparaissent plus sombres, les noeuds feuilles plus clair. Toutes les images présentent
des reconnexions; a. et b. montrent des corrections de classification A/V ; b. présente le positionnement
valide d’une branche réentrant I'image ; c. illustre 'effet de I’heuristique « garde-fou » sur une artére qui
semble émerger d’une veine.

classification des pixels de croisements par Automorph : au lieu d’étre classés BOTH, ils ont
été identifiés uniquement ART, et ont ainsi été exclus de la carte de segmentation VEI. Apres
I'optimisation d’arborescence de FVT, les branches de veinules au-dessus de cette artériole
ont toutes été reconnectées avec leur vaisseau mere. Dans ces trois images, je ne distingue
qu'une déconnexion de veinules non identifiée par FVT, en haut au milieu de ’agrandisse-
ment a. Ici, les tangentes aux extrémités des nceuds terminaux ne se font pas suffisamment
face pour que la reconnexion soit envisagée.

Troisiemement, FV'T identifie correctement la direction des branches y compris pour la veine
de 'agrandissement b. qui provient de I'extérieur de 'image et se dirige vers son centre. Le
noeud racine (plus foncé) est bien placé a la frontiere de la région d’intérét et non proche du
disque optique, en bas a gauche de I'agrandissement comme RMHAS.

Quatriemement, ’agrandissement c. montre un exemple d’application de I’heuristique « garde-
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fou ». La branche meére de 'artériole indiquée d’une fleche blanche n’a pas été segmentée par
Automorph, ainsi I'artériole semble émerger de la bifurcation de la veinule. Puisque ce noeud
n’est ni a proximité du disque optique, ni de la bordure de la région d’intérét, il n’est pas
considéré dans le graphe de ligne comme un potentiel noeud racine. Lors de I'optimisation
de I'arborescence, ’artériole qui en émane est donc considérée comme appartenant au méme
vaisseau que la veinule. Cependant, puisque ces deux vaisseaux se recroisent plus en aval,
I’heuristique « garde-fou » identifie ce cas peu probable et déconnecte I'artériole a posteriori,

de sorte qu’elle apparait bien détachée sur I’agrandissement c.

Analyse quantitative

Pour quantifier ’étendue de ces corrections, nous avons testé ces deux méthodes de mo-
délisation topologique sur les 100 images de MAPLES-DR annotées A/V. L’extraction du
graphe vasculaire est toujours réalisée a partir des segmentations sémantiques imparfaites
d’AutoMorph, mais les annotations de MAPLES-DR nous permettent de mesurer combien
de branches d’artérioles et de veinules sont annotées de la bonne classe. Les résultats quan-
titatifs confirment l'analyse qualitative : le partitionnement du graphe réalisé par FVT est
plutot robuste aux erreurs de classification : 'exactitude de classification A/V des branches
passe ainsi de 93,7% pour RMHAS (sans correction d’artefacts) a 95,2% avec FVT. En par-
ticulier, le nombre de branches artériolaires correctement classées augmente de pres de 3%
(cf. Tableau 6.1). Ces résultats confirment également I'intuition de Chen et al. (2024 [26])
selon laquelle le post-traitement des prédictions des CNN a l'aide de méthodes basées sur
les graphes peut améliorer la classification A/V. Je tiens ici a rappeler que FVT n’utilise
pas d’informations extraites de I'image pour réaliser ces corrections : il analyse simplement
la propriété géométrique et topologique extraite de la segmentation sémantique, et les rend

conformes a une arborescence vasculaire plausible selon des connaissances cliniques a priori.

TABLEAU 6.1 Correction par FVT des artefacts de segmentation sémantique sur les images
de MAPLES-DR.

Partionnement Simple Optimisé

FEzactitude de classification A/V (en % du nombre de branches)
Artérioles 90.29% 93.11%
Veinules 96.41% 96.84%

Nombre d’artefacts topologiques par image
Racines de vaisseau mal placées 6.5 2.2
Discontinuités de vaisseaux 15.7 3.7
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Pour aller plus loin, nous avons aussi compté manuellement le nombre de noeuds identifiés
comme nceuds racines a tort ainsi que le nombre de discontinuités de vaisseaux dans les
images de MAPLES-DR. L’attention portée au placement des nceuds racines peut apparaitre
saugrenue, mais elle est capitale pour déterminer la direction des branches du graphe vas-
culaire et ainsi identifier quelle est la branche principale de chaque bifurcation. Ici encore,
FVT montre sa robustesse aux artefacts de segmentation et de classification d’AutoMorph,
en réduisant le nombre de racines invalides par un facteur de 3, et le nombre de discontinuités

de vaisseaux par un facteur de 4 (cf. Tableau 6.1).

6.3.2 Exemple d’application : Etude pilote sur CLSA

L’objectif final de FVT est I'extraction des parameétres vasculaires, dont un certain nombre
a déja été implémenté (tortuosité, et parametres de bifurcations). Dans cette section, nous
proposons une étude pilote pour montrer la validité de ces parametres. Nous les comparons a
ceux extraits par AutoMorph (AVR, tortuosité et dimension fractale). Pour que la comparai-
son soit juste, nous n’étudierons que le parametre commun a ces deux logiciels : la tortuosité
des artérioles et des veinules. Les deux logiciels s’appuient sur les mémes cartes de segmenta-
tion sémantique prédite par AutoMorph pour réaliser leur mesure. Ainsi, les différences entre
les valeurs mesurées sont a imputer aux corrections A/V et a la minutie de la modélisation
géométrique de FVT (la tortuosité s’appuie sur la mesure de la courbure). Ils mesurent cette
tortuosité par branche, puis les agregent pour toute I'image par une moyenne pondérée par

la taille de chaque branche.

Les images utilisées pour mener cette comparaison sont celles de I'Etude longitudinale cana-
dienne sur le vieillissement (CLSA) [222], une étude a grande échelle qui suit les données de
santé de 20 423 participants a travers le Canada. Parmi les informations de santé disponibles,
nous nous sommes intéressés aux 272 patients ayant déclaré avoir eu des antécédents d’AVC.

Cet antécédent a été associé a une évolution de la tortuosité vasculaire de la rétine par des

TABLEAU 6.2 Associations entre les tortuosités calculées par FVT ou Automorph, et les AVC
dans la cohorte Baseline de CLSA. (Les p-values significatives sont indiquées en gras.)

Logiciel Parametre vasculaire Odds Ratio p-value

FVT Tortuosité ART 3.6e-15 0.031
Tortuosité VEI 6.1e+25 0.006
AutoMorph Tortuosité ART 1.02 0.232

Tortuosité VEI 1.08 0.011




123

études cliniques (Cheung et al., 2013 [223]; Sandoval-Garcia et al., 2021 [224]). Pour repro-
duire ce résultat, nous avons appliqué une régression logistique aux mesures de tortuosité et
ajusté nos modeles en fonction de ’age, du diabete, du cholestérol et de I'hypertension des
participants. Le tabagisme, I'IMC et 'origine culturelle n’ont pas démontré d’associations

significatives et ont été exclus du modele final.

Contrairement a Automorph, FVT a fourni une tortuosité artériolaire qui est significative-
ment associée aux accidents vasculaires cérébraux. En ce qui concerne la tortuosité veineuse,
le FVT et I’Automorph présentent tous deux des associations significatives avec les accidents
vasculaires cérébraux, mais le FVT présente une corrélation plus forte avec un rapport de
cotes de 6,1e+25. La correction des artefacts effectuée par le FVT sur I'arbre vasculaire

semble donc améliorer la fiabilité et la qualité de I’évaluation de la tortuosité des vaisseaux.

En outre, Automorph — dont I'implémentation est en Python pur — requiert 715 ms par image
pour calculer les biomarqueurs a partir des cartes de segmentation A /V précalculées, alors que
FVT — dont I'extraction bas niveau de la topologie et de la géométrie est implémentée comme
une extension C++ — n’a eu besoin que de 214 ms en comptant la correction des artefacts de
segmentation! Au total, 'analyse de 20 000 scans rétiniens de la cohorte du CLSA n’aura pris

que 73 minutes, démontrant la capacité du FVT a traiter de grands ensembles de données.

6.4 Discussion et Contributions

La méthode de modélisation géométrique et topologique implémentée dans FVT se déploie
en quatre étapes, les trois premieres préparant le terrain a la quatrieme : d’abord 'extraction
naive de la topologie du squelette, puis la modélisation de la géométrie de chaque branche a
partir de la segmentation, ensuite la prise en compte de la classification A/V et I'identifica-
tion des artefacts topologiques (simplification et déconnexions), chaque étape enrichissant la
représentation du graphe vasculaire tout en prenant en considération les potentiels artefacts
présents dans la carte du squelette, de la segmentation ou de la classification. L’extraction
topologique initiale a partir de la segmentation pure assure notamment que les erreurs de
classification ne soient pas converties en erreurs de segmentation comme c’est le cas pour
RMHAS. A partir de cette modélisation prudente, la derniére étape de la méthode recense
toutes les hypotheses concernant les directions de branches, leurs connexions et reconnexions,
et le positionnement des nceuds racines, et leur attribue un score de plausibilité. Et finale-
ment, la partition du graphe est réalisée par une approche globale qui élimine les hypothéses

les moins plausibles tout en assurant que celles restantes forment une arborescence cohérente.

Comparé aux autres logiciels de paramétrisation vasculaire complétement automatiques RM-
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HAS [149] et AutoMorph [164], cette méthode confere & FVT une plus grande robustesse aux
artefacts de segmentation et de classification régulierement présents dans les cartes prédites
par CNN. Par cet atout, la modélisation topologique de FVT peut servir autant a la correc-
tion a posteriori des segmentations sémantiques de ces modeles, qu’a la mesure de parametres

vasculaires fiables.

En outre, le projet de FVT a été pensé non pas comme une simple implémentation de partition
du graphe a des fins de recherche théorique, mais comme un outil public et documenté mis
a disposition de la communauté dans 1’espoir qu’elle s’en empare. Ainsi, ’API de la librairie
s’assure que l'utilisateur puisse non seulement accéder ergonomiquement a 1’ensemble des
composantes de la représentation riche du graphe vasculaire, mais puisse aussi manipuler
ce graphe : ajouter, supprimer ou méme scinder des branches, fusionner des nceuds, etc. La
méthode décrite ici utilise ces fonctions pour simplifier le graphe, en corrigeant les artefacts ou
en mesurant les parametres vasculaires. Mais 'utilisateur peut choisir d’utiliser ces fonctions
pour développer sa propre méthode, ou ses propres parametres. Par cette librairie, j’espére
humblement fournir un outil qui puisse, un tant soit peu, rapprocher la communauté de

chercheurs en segmentation vasculaire de leurs acolytes cliniciens.

Le paquet FVT est aussi accompagné d’une librairie de visualisation permettant d’inspecter
et de comparer dans le détail et directement depuis un notebook Jupyter ; toutes les représen-
tations du graphe vasculaire énoncées dans ce chapitre (segmentations, squelettes, tangentes,
graphes, etc.) ont d’ailleurs été générées avec son aide. Cet outil de visualisation peut paraitre
anecdotique, mais je suis pourtant convaincu que sa capacité d’inspecter aisément le moindre
détail de la modélisation topologique ou géométrique, doublée du choix d’une implémentation
en C++, a grandement conditionné la méthode que je propose, m’invitant a porter attention
aux détails. La multitude de petites optimisations et les multiples regles et heuristiques qui

jalonnent ce chapitre en sont autant de traces.
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CHAPITRE 7 CHAPITRE COMPLEMENTAIRE : LE PARADOXE DE LA
LITTERATURE SUR LA SEGMENTATION DES VAISSEAUX RETINIENS

Dans ce chapitre complémentaire, je propose de prendre du recul sur la littérature de mo-
délisation du graphe vasculaire pour étudier le paradoxe suivant. Ces derniéres années, la
segmentation sémantique des vaisseaux rétiniens regoit une attention comme jamais aupara-
vant : depuis 2020, le nombre de publications annuelles pour la segmentation seule dépasse
les 150 chaque année (cf. Figure 7.1). C’est trois fois plus qu’en 2015, avant ’avénement
des CNN. Pourtant, depuis 2020, cette vague de publications n’a pas suscité d’amélioration
significative des performances. On va ici investiguer ce paradoxe par une méthode de revue
systématique, automatique et expérimentale que je n’aurais pas pu utiliser au début de mon

doctorat car elle exploite un LLM pour le triage des papiers.

7.1 Meéthode de revue systématique et automatique

La revue systématique débute par un recensement exhaustif des papiers liés au sujet. Une
premiere collecte de références est menée sur Scopus, Pubmed et Google Scholar. La requéte

est choisie volontairement large pour ne pas négliger d’articles. Par exemple, pour Scopus :

TITLE-ABS-KEY((fundus OR retinal) AND (vessels OR vascular OR arteries OR artery
OR arteriole OR arterioles OR vein OR veins OR veinule OR veinules)

AND (segmentation OR classification))

Cette recherche initiale aboutit a 8183 références uniques, principalement issues de Scopus.

200
3
= Chine
B
E 150 Inde
= ,
= Etats-Unis
W
£ 100 Royaume-Uni
® Australie
2
= 50 Singapour
=
A Canada
0 Autre
2000 2005 2010 2015 2020

Année

FiGURE 7.1 Nombre de publications par an et par pays traitant de la segmentation des
vaisseaux rétiniens sur images de fond d’oeil.
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Parmi elles, 705 furent exclues par impossibilité de télécharger le pdf automatiquement .
Dans les 7478 références restantes, une majorité est hors sujet. Elles furent donc filtrées par
un LLM (le Phi-3-mini de Microsoft) a qui on confia le titre et 'abstract de chaque papier
ainsi qu'une série de questions a choix multiples vérifiant les criteres d’exclusion suivants :

— La langue de l'article est ’anglais (choix possibles : english, chinese, german, et other);

— L’article traite d'images de fond d’oeil couleur (choix : color fundus, OCT or OCTA, angiography
or angiograms, slit lamp, ultrasound, 3D images, MR, CT, et other);

— La contribution du papier concerne une nouvelle méthode de segmentation ou de
classification d’artére veine (choix : novel segmentation method, novel artery and vein
classification method, review other research papers, novel diagnosis method, et other);

— Les structures segmentées sont les vaisseaux (choix : retinal vessels,arteries and veins,
optic disc, macula or fovea, lesions, et microaneurysms or hemorrhages).

Avec cette méthodologie, j’ai recensé 1738 publications concernant la segmentation des vais-
seaux rétiniens et 126 concernant leur classification. Le regroupement par pays sur la Fi-
gure 7.1 révele que l'accroissement spectaculaire du nombre de publications depuis 2020 est
principalement dii a un intérét grandissant en Chine et dans une moindre mesure en Inde.
Les universités de ces deux pays totalisent pres de deux tiers des publications de ces cingq

derniéres années.

Ces références furent agglomérées pour former un corpus dont le texte et les tableaux furent
extraits du pdf des articles a I’aide de GroblID [225]. Puis, une série d’heuristiques analysant
le titre des sections classa chacune selon leur fonction : Introduction, Travaux Connexes,
Méthode, Evaluation, et Conclusion.. A la fin de cette procédure, on obtient donc un corpus
soigneusement organisé contenant la plupart des articles publiés traitant de la segmentation
des vaisseaux rétiniens sur image de fond d’ceil et dont on peut sonder les titres et abstracts
des articles, ainsi que le texte et les tableaux de leurs différentes sections. J’ai analysé ce
corpus par des méthodes lexicographiques pour peindre un tableau général de 1’évolution de

la littérature sur la segmentation sémantique du graphe vasculaire rétinien.

7.2 Sonder la littérature de segmentation vasculaire rétinienne

Evolution des tendances méthodologiques Pour débuter I'analyse, étudions simple-
ment les termes récurrents dans les titres des articles du corpus. Les nuages de mots pré-

sentés sur la Figure 7.2 regroupent ces termes selon quatre périodes : 2000-2009, 2010-2014,

1. Le téléchargement automatique des pdfs a été confié & un script python qui renseigne I’adresse DOI
d’un article dans la barre d’un navigateur puis déclenche le téléchargement de sa référence et de son pdf a
l’aide du plugin Zotero. Le script est disponible & I’adresse : github.com/gabriel-lepetitaimon/bibtool.


https://github.com/gabriel-lepetitaimon/bibtool
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F1GURE 7.2 Nuages de mots des titres d’articles sur la segmentation des vaisseaux rétiniens.

Les mots communs a tous les papiers sont omis (fundus, vessel, segmentation, etc.).

2015-2019 et 2020-2025. On y voit apparaitre dans les titres : les mots clés convolutional
neural network et deep learning dans la période charniere 2015-2019. Auparavant, on voit
la prédominance des matched filter et des ondelettes (wavelet) entre 2000 et 2009, puis
des filtres de Gabor, des approches morphologiques (morphological) entre 2010 et 2015. Le
concept de feature qui est présent dans les titres a cette période est généralement accolé aux
termes multiscale, invariant, ou landmark. Apres 2020, les réseaux de neurones perdent
leur adjectif convolutional, au profit de u net et d’attention. Toutes ces observations

corroborent le récit de I’évolution des méthodes décrites dans la revue de littérature.

Ces observations peuvent étre approfondies en mesurant la proportion de papiers qui men-
tionnent, dans leur titre ou dans leur méthode, les termes associés aux différentes approches
recensées a la section 2.2. La Figure 7.3 présente ces proportions année apres année. Elle révele
que l'intérét pour les méthodes non supervisées est en perte de vitesse. Les matched filter,
les filtres de Gabor et les ondelettes ont résisté le plus longtemps, mais leur occurrence dé-
crolt monotonément depuis 2017. Méme les opérateurs de morphomat pourtant utiles comme
post-traitement et qui participaient a un tiers des méthodes proposées en 2014, ne sont men-
tionnés que par 7% des papiers en 2024. Seules les approches multi-scale connaissent un
intérét croissant puisque ce concept transcende les approches non supervisées et reste perti-
nent a la conception de réseaux de neurones. Concernant les classifieurs traditionnels, deux
se démarquent sur la période 2005-2015 : les SVM qui sont étudiés dans 12% des papiers en
2011 ; et les réseaux de neurones qui, méme en l'absence d’apprentissage profond et réduits a
une ou deux couches cachées, étaient déja les classifieurs les plus plébiscités de cette période.
Cette Figure nous apprend surtout que, depuis son introduction dans le domaine en 2015, la
proportion de papiers proposant des méthodes entrainées par apprentissage profond n’a cessé
de croitre. Ainsi, en 2024, 81% des articles mentionnaient dans leur méthode les termes de
Deep Learning, CNN ou U-Net! Ce dernier modele est spécifiquement mentionné dans 71%
des publications cette année-la, il est sans conteste le socle commun de 1’état de l'art. Les

recherches sur les approches génératives GAN ou Transformer sont en croissance mais restent
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F1GURE 7.3 Occurence entre 2005 et 2024 des termes méthodologiques dans le titre et les
sections de méthodes des articles de segmentation des vaisseaux rétiniens.

L’axe des ordonnées indique le pourcentage de papier contenant chaque terme parmi les publications de
I'année. L’échelle de cet axe varie d’une colonne a 'autre.

minoritaires (respectivement 13% et 18% en 2024); contrairement au concept d’attention
qui apparait dans la moitié des papiers publiés en 2023 et 2024. Enfin, bien qu’il soit difficile
de catégoriser les fonctions de cotits utilisées par une analyse lexicographique, on constate
néanmoins que le nombre de mentions de la dice loss rattrape celui de la cross-entropy

et pourrait ’égaler en 2025 si la tendance se maintient.

Evolution des méthodes de validation La méthode d’analyse par occurrence est par-
faitement adaptée pour étudier I’évolution des pratiques de validation des algorithmes : il
suffit de mesurer 'occurrence des noms des métriques et des jeux de données dans les sections
de validation et dans les tableaux des papiers. Ces mesures sont présentées sur la Figure 7.4.
Concernant les métriques, elles mettent en exergue la prédominance de I'exactitude (utilisée
par 83% des papiers en 2024) et du couple sensibilité/spécificité. La Figure montre aussi une
nette progression du score Dice a partir de 2015, de sorte qu’il est mentionné pour valider
35% des articles en 2024. Le score de détection de vaisseau CL Dice proposé par Shit et al.
en 2021 [136] peine a s’implanter : en 2024, seulement 4% des papiers 1'utilisent. Pour les
métriques sensibles a la topologie vasculaire, c’est encore pire : les termes topolog* n’ap-
paraissent que dans 9% de la littérature en 2014 et les métriques topologiques telles que le
nombre de Betti ne sont tout simplement pas mentionnées. Concernant les jeux d’entraine-
ment et de validation, DRIVE [31] et STARE [32] sont les plus utilisés (par respectivement
70% et 50% des articles publiés en 2024) et sont rattrapés par CHASE DB [33] (47% en 2024)



129

Métriques Jeu de données

83% - 84%1
/\/“/\/_ accuracy I /\/-// dataset

54%

46% M /\’_/_,___/\——
AUC STARE

78% - 8%
M/\/_/—/—\‘ Sen/spe 4:/\‘/—/‘—/\ .

50% -
35% -

Dice - CHASE
il CL Dice 21%1 |l HRF
9% A ; ‘ ‘ ___topological 4% ‘ ‘ ‘ ‘ { _FIVES
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020

F1GURE 7.4 Occurence des métriques et jeu de données annotées pour la segmentation des
vaisseaux rétiniens dans les sections de validation et les tableaux des articles du corpus.

Les traits verticaux pointillés sur le graphe des jeux de données indiquent leurs dates de publication.

bien que sa publication ait été plus tardive. L’adoption des bases de données haute résolu-
tion HRF [226] et FIVES [36] semble par contre ralentie. Certes, elles ont été publiées plus
récemment (en 2013 et 2021), mais je reste étonné qu'une base aussi complete que FIVES
tant en termes de résolution que de nombre d’échantillons (800 images!) ne soit toujours
exploitée que par 4% des publications de 2024. Plus généralement, on constate un certain
conservatisme dans les protocoles de validation : suite a I’adoption rapide de DRIVE, les
autres jeux de données peinent a y trouver leur place. Une dizaine d’années se seront ainsi

écoulées entre la publication de CHASE DB et sa démocratisation dans la littérature.

7.3 Pistes d’explications du paradoxe

Revenons au paradoxe qui nous préoccupe : I'envolée du nombre de publications qui contraste
avec la stagnation des performances. La vague de publications ces derniéres années traitant
de la segmentation des vaisseaux rétiniens est quasiment exclusivement dédiée a ’entraine-
ment par apprentissage profond de modeles convolutifs dérivés de la famille des U-Net. Cette
application clinique est devenue un laboratoire d’ou les équipes de recherche redoublent de
propositions pour construire des réseaux toujours plus performants et toujours plus com-
plexes. Cette exploration des différentes structures de modeles est catalysée par les outils de
développement a la disposition des chercheurs (PyTorch, Keras, etc.) qui rendent aisées les

itérations architecturales a partir de modeles existants.

Mais pour évaluer la pertinence de ces modeles, les protocoles de validation actuels sont

insuffisants. D’une part, les jeux de données publics pour I'entrainement et la validation



130

des algorithmes sont trop limités : la majorité des papiers publiés n’exploitent que les deux
ou trois jeux de données les plus anciens, dont la résolution n’est pas représentative des
technologies d’imagerie actuelles et qui totalisent seulement 88 images a diviser en ensembles
d’entrainement, de validation et de test. Pour Li et al. (2025 [25]), ¢’est ce point qui entrave la
progression des modeles et réduit surtout leur valeur d’usage dans des scénarios cliniques. La
sous-exploitation des jeux de données récents est d’autant plus problématique qu’elle aggrave

le risque de surapprentissage déja entretenu par la complexité croissante des modeles.

D’autre part, les métriques de validation sont en retard par rapport aux performances élevées
des modeles. Si I'exactitude de segmentation était pertinente pour mesurer la progression des
algorithmes il y a 15 ans, elle montre aujourd’hui ses limites. En effet, les modeles actuels
dépassent systématiquement de 2 & 3 % l'exactitude obtenue par le second annotateur de
DRIVE (94.73%) en comparaison avec la vérité terrain annotée par le premier. J’ai régulie-
rement vu ce résultat interprété dans la littérature comme une attestation de la supériorité
de la machine sur un annotateur humain. C’est, il me semble, un contresens. Les segmenta-
tions fournies comme vérité terrain par DRIVE ne sont pas plus valides que celles du second
observateur : I'une comme l'autre ont été annotées par des humains et souffrent de biais et
de variances d’annotations. Ainsi, une exactitude nettement supérieure a celle du second an-
notateur témoigne d’une sur-spécialisation du modele sur les biais d’annotation du premier.
En ce sens, une telle valeur devrait plutot étre interprétée comme étant « en dehors de la
zone de validité de la métrique », a la maniere des instruments de mesure indiquant « Out
of Range » lorsque leurs aiguilles sortent du cadran. Pour lire une valeur fiable des perfor-
mances des modeles de segmentations, il faut donc changer d’instrument de mesure et choisir
une métrique qui reléve plus finement les erreurs qui nous importent et ignore les variations

inter-observateurs : comme le CL Dice ou les métriques topologiques.

Pourtant depuis 2015, les métriques qui ont principalement progressée et rivalisent avec
I'exactitude sont celles qui souffrent des mémes lacunes de mesure : 'TAUC-ROC et la sensi-
bilité /spécificité. Je vois deux facteurs pouvant expliquer ce phénomene. 1. La comparaison
a I’état de 'art nécessite la réutilisation des métriques déja publiées pour évaluer les perfor-
mances d’un modele, ce qui crée une inertie dans les pratiques de validation. La progression de
I’AUC-ROC et du couple sensibilité /spécificité est donc le prolongement de leur implantation
déja importante avant 2015. 2. L’ubiquité des réseaux de neurones, c’est-a-dire la capacité de
ce formalisme a apporter la méme solution algorithmique a une vaste diversité de problemes
de traitement du signal, est certes au coeur de leur développement et de leur succes rapide,
mais elle tend a uniformiser aussi les protocoles de validation. Or ceux-ci devraient rester spé-
cifiques a chaque application. Ce constat avait d’ailleurs poussé Maier-Hein et al. (2024 [227])

a mener un vaste projet de recommandations de métriques pour les différentes applications
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biomédicales. En I'occurrence, pour la segmentation des vaisseaux, ils préconisent le CL Dice.

Ainsi, si les performances de segmentation semblent stagner, c’est que leurs protocoles de
validation ne sont plus en mesure de supporter les problématiques de recherche contempo-
raines qui font essentiellement face a des défis topologiques. Dit autrement, le probleme de
la segmentation des vaisseaux rétiniens — tel qu’il est formulé selon I'exactitude et sur les
quelques jeux de données publics — peut étre considéré comme résolu. L’accumulation des
recherches sur le sujet n’induit donc pas d’amélioration des performances tant qu’un nouveau

protocole de validation plus spécifique n’aura pas été développé pour les évaluer.

Ce protocole devra veiller a aligner les métriques de performances avec I’'objectif sous-jacent
a la segmentation et la classification vasculaire. Cet objectif est resté inchangé depuis la pre-
miére publication de Chaudhuri et al. en 1989 [42] : permettre une meilleure compréhension et
un meilleur dépistage des pathologies vasculaires et rétiniennes. D’ailleurs, quatre articles sur
cing de notre corpus utilisent dans leur introduction les termes disease et diagnostic, et ce,
quelle que soit leur année de publication. Plus spécifiquement, la rétinopathie diabétique est
la plus invoquée (dans 6/10 papiers en moyenne), suivie de 'hypertension (4/10). Dans leur
revue de 2022, Khandouzi et al. [22] expliquent aussi l'intérét croissant pour la segmentation
des vaisseaux rétiniens par : "the accuracy of segmentation algorithms has a significant effect
on the early detection of ocular diseases and can make a positive difference as a result of

treatment". La motivation sous-jacente a toute cette littérature fait donc consensus.

Pourtant, tres peu de papiers s’intéressent a la transposition des modeles de segmentation
et de classification vers des résultats cliniques. Comme si la conception et 'amélioration de
ces modeles accaparaient 'attention de la communauté de chercheurs depuis tant d’années
que leur motivation initiale s’est finalement muée en une image d’Epinal : admise par tous
mais rarement interrogée et étudiée en pratique. Probablement parce que, contrairement a
celui de la segmentation vasculaire, le probleme de sa transposition en résultats cliniques ne

se pose pas en des termes bien définis.

Au fond, je réalise que le travail que j’ai rapporté dans cette these pourrait s’apparenter a
celui d’un pionnier : allant récolter de nouvelles annotations, alertant sur la variabilité que j’y
ai découverte ; puis explorant une voie d’architecture de réseaux rarement étudiée, cherchant
a améliorer les modeles par leur simplification ; enfin, défrichant le champ de la modélisation
topologique a partir des segmentations imparfaites, et proposant des outils pour que d’autres
puissent y faire germer leurs propres idées. Bref, j'ai consacré mon doctorat a étudier et
définir les termes permettant de bien poser le probleme de la modélisation automatique de la
topologie de I'arbre vasculaire rétinien, pour qu’un jour, I’évaluation des qualités topologiques

et paramétriques des modeles de segmentation soit aussi simple qu'un calcul d’exactitude.
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CHAPITRE 8 DISCUSSION GENERALE

Le projet doctoral présenté dans cette these a pour objectif général d’exploiter les modeles
CNN de segmentation et de classification des vaisseaux sur image de fond d’ceil pour extraire
une modélisation topologique robuste de l'arbre vasculaire rétinien et mesurer des para-
metres vasculaires fiables. Pour ce faire, j’ai réalisé trois objectifs spécifiques de recherche :
1. la construction d’un nouveau jeu de données annotées pour enrichir I’entrainement de ces
modeles ; 2. la reparamétrisation des neurones convolutifs pour piloter I'orientation des filtres
de convolution et ainsi mutualiser les parametres et améliorer la généralisation des modeles
de classification vasculaire; 3. la modernisation des approches de partition du graphe vas-
culaire rétinien en proposant une méthode de modélisation topologique de I'arbre vasculaire
rétinien robuste aux artefacts des modeles CNN. Ce pénultieme chapitre discute des réussites
et limitations des méthodes proposées a ’aune des objectifs spécifiques et de la problématique

générale de ma these.

8.1 MAPLES-DR

La campagne d’annotation de MAPLES-DR a permis la collecte de nouvelles segmentations
de vaisseaux annotées par des rétinologues. Ces nouvelles vérités terrain rejoignent celles
des autres bases de données publiques comme STARE [32], DRIVE [31], CHASEDB [33],
HRF [226], doublant le nombre d’annotations disponibles : MAPLES-DR seul contient en
effet plus d’images que toutes ces bases réunies. Par cette contribution, nous enrichissons donc
significativement les ensembles d’entrainement et de validation des modeles de segmentation
vasculaire de sorte qu’ils représentent mieux la diversité des situations cliniques. Nous avons
d’ailleurs montré a travers une étude menée sur les segmentations des structures pathologiques
que les modeles entrainés sur MAPLES-DR possédent de bonnes capacités de généralisation

et que ce jeu de données constitue une base solide de pré-entrainement [202].

L’utilisation de carte de pré-segmentation a joué un role clé pour 'annotation des cartes
vasculaires en réduisant considérablement le temps de segmentation. Alors que 'annotation
manuelle de DRIVE a requis 2 heures par image [31], notre équipe de rétinologue n’a eu
besoin que de 6 minutes en moyenne pour ajouter les vaisseaux omis par le modele de pré-
segmentation. Certes, ces cartes présentent un risque de biais sur les annotations finales.
Mais nous avons montré que ce biais se manifestait plutot par une sensibilité accrue des
annotateurs (en tout cas pour les structures pathologiques). Nous avons surtout montré que

ces cartes étaient un moyen efficace pour réduire la variabilité inter-observateur, et cet effet
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est d’autant plus prononcé que la qualité du modele de pré-segmentation est bonne. C’est
le premier reproche qu’on pourrait faire a MAPLES-DR : ses modeles de pré-segmentations

correspondent a I’état de 'art de 2018 et sont aujourd’hui dépassés.

En outre, et bien qu’elle ne soit pas directement liée a mon projet doctoral, la variabilité
inter-observateur mesurée sur les structures pathologiques de la rétine interroge. Des études
mesurant la variabilité d’annotations des vaisseaux existent : pour DRIVE [31] les deux an-
notateurs sont d’accord sur 94,7% des pixels, plus récemment Kai et al. [36] avaient mesuré
un dice inter-annotateur de 0,924. Mais, a notre connaissance, aucune étude n’avait éva-
lué la variabilité inter-observateur pour l'annotation des lésions rétiniennes. Les mesures de
variabilité présentées dans cette these sont donc inédites. Elles sont aussi surprenantes par
leur ampleur (entre 13,3% et 61% d’accord de détection en fonction du type de lésions).
Pour mieux interpréter ces valeurs, il faudrait cependant conduire de nouvelles annotations
pour distinguer dans cette variabilité, la composante inter-observateur (biais) et celle intra-
observateur (bruit). Cette derniére n’est en effet pas mesurée par notre étude sur les lésions

et pourrait expliquer en partie la variabilité observée.

8.2 Steered CNN

Le formalisme des steered CNN proposé dans le chapitre 5 réussit l'exploit, a rebours de
la littérature des méthodes de segmentation sémantique des vaisseaux rétiniens, d’améliorer
ses performances suite a une réduction de son nombre de parametres. De ce point de vue,
les steered CNN marchent dans les pas de Gladran et al. [128] qui affirmaient obtenir les

performances de 1’état de I'art en 2022 avec un modele simplifié.

Pour réaliser cet objectif, on s’est inspiré des travaux qui proposent de redéfinir les neurones
convolutifs pour les contraindre a respecter des groupes de symétries, et plus particulierement
I'équivariance par rotation [211-213]. Ces travaux sont généralement motivés par 'intuition
que ces symétries épargneraient au réseau la nécessité de consacrer plusieurs parametres
a la détection d’une méme forme sous toutes ses orientations. A notre connaissance, cette
intuition qui semble de bon sens n’avait cependant jamais été étudiée expérimentalement.
L’étude du tropisme des neurones convolutifs dans un CNN que j’ai conduite a la section 5.2
indique d’ailleurs qu’elle est partiellement fausse. J’ai en effet montré que, sous l'effet de
I’augmentation de données par rotation, un CNN standard ne modélise pas 1’équivariance a
la rotation par une duplication de ses filtres convolutifs, mais par ’apprentissage de filtres
isotropiques. Ainsi, la force des steered CNN comparés aux CNN standards ne se limite pas
a leur efficacité paramétrique accrue : elle réside aussi dans leur capacité a apprendre des

filtres anisotropiques. On observe en effet que, lorsque la régularisation par augmentation de
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données de rotation est levée, les filtres vers lesquels convergent naturellement les premieres
couches d’un steered CNN sont particulierement anisotropiques : le poids de leurs compo-
santes symétriques et anti-symétriques est nettement plus élevé que celui de leurs composantes
isotropiques. Cette observation concorde avec la littérature de classification traditionnelle des

vaisseaux rétiniens qui analyse le profil des vaisseaux [78,82].

La réduction du nombre de parametres n’est cependant pas un but en soi. Le second objectif
reposait en réalité sur le pari que la réduction du nombre de parametres se traduirait par
une hausse de la capacité de généralisation du modele (selon I'intuition du rasoir d’Ockham).
Sur ce point, les conclusions sont plus mitigées. Certes lorsqu’on limite un steered CNN et
un CNN standard a 10k parametres ou moins, ou lorsqu’on les entraine sur 20 images ou
moins, les performances mesurées sur un jeu de données n’ayant pas servi a ’entrainement
sont nettement en faveur des steered CNN. Mais cet écart se résorbe lorsqu’on augmente le
nombre de parametres et d’échantillons d’entrainement. Ce résultat reste honorable dans la
mesure ou la plupart des méthodes de la littérature sont entrainées avec 20 images ou moins,

faute de données annotées.

Les limitations des steered CNN sont liées aux champs d’orientations & qui pilotent ’orien-
tation de leurs filtres pour chaque pixel de I'image. Dans notre méthode, ce champ est une
variable d’entrée calculée préalablement, ce qui a deux conséquences : 1. Les steered CNN
ne peuvent étre appliqués a la segmentation vasculaire puisque le champ d’orientations des
vaisseaux serait alors inconnu. Ils pourraient néanmoins étre utilisés pour raffiner une seg-
mentation préexistante ou pour délimiter les contours des vaisseaux a partir de leur squelette.
2. La classification prédite par les steered CNN peut étre sensible aux erreurs de la carte de
segmentation vasculaire dont est dérivé le champ d’orientations . Cet effet est partiellement
atténué par l'augmentation de données élastiques appliquées a l'entrainement des steered
CNN et qui induit des petites rotations aléatoires du champ a. Néanmoins, la sensibilité aux

erreurs de segmentation mériterait d’étre quantifiée.

8.3 Fundus Vessels Toolkit

Parmi les logiciels de paramétrisation automatique du réseau vasculaire rétinien reposant sur
des modeles CNN pour la segmentation sémantique des vaisseaux, un seul (RMHAS [149])
s’essaie a la modélisation topologique du graphe vasculaire. Mais la méthode choisie n’est pas
robuste aux artefacts topologiques des CNN : a la moindre erreur de classification au sein

d’une branche, cela produit une déconnexion dans le graphe.

Pour pallier ces erreurs, je reformule le probleme de partitionnement du graphe vasculaire
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comme celui d'une énumération d’hypotheses mutuellement inclusives ou exclusives, puis
d’une sélection de ’ensemble cohérent le plus plausible d’hypotheses par double application
de la MSA. Ce formalisme présente plusieurs intéréts par rapport aux méthodes qu’avaient
proposées la littérature pour assister la classification A/V avant les CNN. Comparé aux mé-
thodes d’interprétation de la connectivité locale des branches [88-91], il assure la cohérence
générale de l'arborescence et permet de résoudre la connectivité des noeuds incertains en
s’appuyant sur ceux plus évidents. Comparé aux méthodes d’optimisation globale de l’ar-
borescence [93-95] elle permet d’évaluer les hypotheéses de reconnexions des branches et ne
postule pas de la position des nceuds racines. Elle est ainsi moins sensible aux artefacts de
segmentation et de classification vasculaires, et peut méme permettre de corriger des erreurs
de classification A/V'!

Tous ces artefacts ne sont néanmoins pas corrigés pour autant. Lorsqu’une branche entiere
est omise par le modele de segmentation, FVT n’a aucun moyen pour la reconstituer. De
méme si l'intervalle séparant deux portions d’une branche mal segmentée est trop grand ou
si les extrémités des branches ne se font pas face. Dans de rares cas, il arrive que la procédure
d’optimisation d’arborescence désigne la mauvaise parenté pour une branche du graphe, de
sorte que la branche et toute sa descendance soient affiliées au mauvais vaisseau. Ces cas se
produisent généralement suite a un faux négatif de la segmentation effacant complétement
une branche incidente a un croisement de vaisseaux. La branche émergeant du croisement
donne alors I'illusion de bifurquer de I'autre vaisseau. La solution optimale serait de considérer
le croisement comme la racine de la branche émergeante, mais les nceuds éloignés du disque
optique et du bord de I'image ne sont pas considérés comme des racines potentielles. Ce type
d’erreurs est malheureusement commun a toutes les approches de partitionnement du graphe
vasculaire. L’heuristique « garde-fou » proposée a la fin de la méthode du chapitre 6 détecte

et corrige a posteriori une partie de ces cas, mais n’est pas infaillible.

Il reste que la représentation géométrique et topologique de I'arbre vasculaire rétinien par
FVT produit des résultats encourageants sur 1’étude pilote conduite sur les 20k images de
CLSA, reproduisant les résultats d’études cliniques [223,224] par une extraction automatique

de la tortuosité a partir de cartes de segmentation sémantique imparfaites.
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CHAPITRE 9 CONCLUSION

9.1 Syntheése des travaux

Par la publication de MAPLES-DR, [202], j’ai contribué a I’effort impulsé par la communauté,
de la collecte de nouvelles données annotées pour diversifier les ensembles d’entrainement et
de validation des modeles de segmentation des structures rétiniennes. L’ambition de pluralité
des labels et les contraintes liées aux distances géographiques séparant les annotateurs nous
ont poussés a proposer un nouveau protocole d’annotation et a développer notre propre pla-
teforme d’annotations. Ce diptyque s’est révélé particulierement efficace autant pour réduire
le temps d’annotation que pour réduire la variabilité d’annotation inter-observateur. Par la
mise a disposition des outils d’annotations, et par la documentation du protocole ayant abouti
a MAPLES-DR dans une publication Scientific Data, j’espere permettre a d’autres équipes
de recherche de contribuer a l'effort d’annotation. La campagne de collecte de MAPLES-DR
fut aussi 'occasion de conduire une étude de variabilité inédite sur 'annotation des struc-
tures pathologiques rétiniennes, mettant en lumiere de nombreux désaccords sur 'annotation
de ces structures. Cette découverte souleve, plus généralement, une problématique d’aligne-
ment entre l'objectif clinique nécessitant I'identification de ces structures et les métriques de

segmentation.

J’ai ensuite proposé une reparamétrisation des neurones convolutifs qui découple la détection
de Dorientation des vaisseaux de leur classification en artérioles ou veinules. Le formalisme
des steered CNN [228] ajoute une seconde entrée aux modeles de classification sous la forme
d’un champ de direction « qui pilote, pour chaque pixel de I'image, la direction dans la-
quelle doivent s’orienter les filtres du modele avant d’étre convolués. Ainsi, les fonctions des
filtres convolutifs sont mutualisées de sorte que chacun puisse participer a ’analyse de tous
les vaisseaux d’une image, quelle que soit leur orientation. Pour réaliser efficacement et pré-
cisément la rotation des filtres convolutifs, ils sont reparamétrés en steerable filters. Outre
les propriétés d’équivariance par rotation, ce reparamétrage en harmonique polaire permet
une interprétation plus intuitive des parametres appris par le modele. Dans un article pu-
blié sur ce formalisme, j'ai montré que les modeles de classification A/V qui 'utilisaient
bénéficiaient d’une meilleure capacité de généralisation — en particulier lorsque le nombre de
parametres ou d’échantillons d’entrainement est limité — et que leur entrainement nécessitait

moins d’itérations.

Enfin j’ai implémenté un outil de modélisation automatique de la géométrie et de la topologie

du graphe vasculaire a partir de segmentations sémantiques imparfaites : le Fundus Vessels
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Toolkit [229]. Cet outil s’appuie d’une part sur une séquence de traitement raffinant, étape
apres étape, une représentation topologique et géométrique du graphe vasculaire ; et d’autre
part sur une modernisation des méthodes de partitions du graphe vasculaire afin de les
adapter aux défis que représentent les artefacts présents dans les cartes de segmentation
sémantique produites par CNN. L’alliance des deux permet de rétablir les connexions entre
des branches déconnectées dans la segmentation a cause de faux négatifs. Elle assure aussi la
correction des erreurs locales de classification, en forcant le graphe vasculaire extrait de
la segmentation sémantique a adopter la forme d’une arborescence plausible. Sous cette
représentation, le réseau vasculaire rétinien se préte volontiers a une paramétrisation fiable

de ses caractéristiques géométriques et topologiques.

9.2 Recommandation et travaux futurs

Recommandation 1 : Etude de variabilité inter et intra-observateur sur ’an-
notation des vaisseaux assistée par pré-segmentation L’étude de la variabilité sur les
structures pathologiques de la rétine du chapitre 4 interroge sur 1'usage de ces vérités terrain
pour entrainer et valider des modeles et révele combien ’annotation par présegmentation
réduit cette variabilité. A ma connaissance, ce facteur n’a pas été étudié¢ dans les études
de variabilités d’annotations des vaisseaux. De facon plus générale, mon expérience avec
MAPLES-DR m’encourage a recommander de toujours conduire une étude de variabilité in-
ter et intra-observateur lors de I'annotation d’un jeu de données, ne serait-ce que pour définir

les valeurs "maximales" des métriques au-dela desquelles elles ne mesurent que du bruit.

Recommandation 2 : Construire une vérité terrain topologique pour la vascu-
lature rétinienne. Le manque d’images de fond d’ceil annotées pour la segmentation et
la classification des vaisseaux se résorbe peu a peu. C’est cependant loin d’étre le cas pour
la tache de partitionnement du graphe vasculaire et plus généralement d’extraction de la
topologie de I'arbre vasculaire rétinien. A ma connaissance, il n’existe qu’un seul dataset a
proposer ce type d’annotation : RETA [40]. Les outils proposés dans cette these : autant
la plateforme d’annotations que la librairie FVT, pourraient assister la collecte de plus de

vérités terrains de ce type, en pré-annotant les images.

Recommandation 3 : Orienter les steered CNN par un mécanisme d’attention
Le formalisme des steered CNN requiert aujourd’hui le calcul préalable d'un champ de di-
rection pour définir comment orienter ses filtres. Ce qui ne permet pas son application pour

une tache de segmentation. On peut cependant imaginer prédire ce champ de vecteurs sous
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la forme d’une matrice a deux composantes calculée par une branche parallele du modele.
Cette branche parallele serait en réalité analogue a un mécanisme d’attention dont on aurait
remplacé la fonction sigmoide par une sinusoide et qui aurait la charge de déphaser les stee-
rable filters plutot que de shunter telles caractéristiques ou tels pixels. Conserver la propriété
d’équivariance par rotation avec ce formalisme nécessiterait cependant quelques recherches
théoriques pour s’assurer que la direction prédite par la branche suive toujours l’orienta-
tion des objets dans 'image.Une investigation plus avancée de la théorie des steerable CNN

pourrait donner plus d’idées pour aborder ce probléme.

Recommandation 4 : Modéliser le score de plausibilité du graphe plutét que
de DP’estimer par heuristiques Dans FVT, la qualité du score de plausibilité d’une ar-
borescence est totalement dépendante de la validité des heuristiques qui le calculent. Ces
heuristiques doivent donc étre réglées avec soin pour tenir compte de la multitude des to-
pologies vasculaires rétiniennes. Pour contourner ce probléeme, on peut tout a fait imaginer
entrainer un GNN a prédire la plausibilité de chaque arc du graphe de ligne en lui don-
nant acces aux caractéristiques géométriques (angle, calibre, courbure) de chaque branche,
accompagnées de caractéristiques géométriques (par exemple extraites de la représentation
latente du modele de classification A/V). La partition du graphe serait toujours réalisée par
la double application de la MSA, mais sur les scores de plausibilité prédits par le GNN. C’est
d’ailleurs toute 1'élégance de la méthode proposée pour le partitionnement du graphe : elle est
décorrélée de 'algorithme d’énumération des hypotheses et de celui évaluant leur plausibilité.
On peut ainsi faire évoluer I'un ou l'autre en gardant le méme cadre général. On peut aussi
envisager ’adaptation de méthodes de suivi vasculaire par renforcement développées pour la

modélisation de la micro-vasculature cérébrale [230].

Recommandation 5 : Développer des métriques de similarités topologiques La
représentation géométriquement et topologiquement riche produite par FVT peut servir de
base au développement de nouvelles métriques topologiques pour évaluer les modeles de seg-
mentation et de classification. A ce role, je pense que la distance d’édition de graphe serait la
meilleure candidate. Certes, il faudrait étendre les algorithmes qui la calculent efficacement
pour qu'’ils gerent les opérations de fusion/scission de branches et de noeuds. Ces opérations
sont en effet essentielles pour identifier les déconnexions/reconnexions de branches. Mais une
fois ce probléeme algorithmique résolu, une telle métrique serait non seulement utile pour éva-
luer les méthodes de segmentation vasculaires, mais aussi celles de modélisation topologique.
Et elle paverait la voie vers un recalage avancé des graphes vasculaires rétiniens permettant

par exemple I'analyse de leur évolution dans le temps a travers des études longitudinales.
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ANNEXE A VARIANCE DU SIGNAL D’INFERENCE DANS UN
STEERED CNN

L’équation simplifiée 5.12 définit la n'®™® sortie de la ™ couche convolutive d’un steered

CNN par :
y()(Zj Zzwnmkr Zg}kr(z ])

m kr
OU Wy m kr €St un parametre du modele, et ou z,, . est la corrélation croisée entre la m'“™¢

entrée de la couche et le filtre élémentaire ¥y, :

Zfi)mw =Y "2V +p,j+q) Vi, p,q)

p.q

avec : Var [zm,k,r} = Var [CL‘ l)] Z 5 +(p,q) = Var [x(l } ‘\Ilk .

i) = B[] - X 10 0,0 [m] S,
p,q

1, on assure que

Notons qu’en normalisant chaque filtre élémentaire de sorte que ‘lIlk,r , =
)

ok SOIt la méme que celle de zd).

la variance de z

En supposant que la sortie correspondante de la couche convolutive précédente yt=1 suive
une distribution gaussienne de moyenne nulle, alors 'espérance et la variance de :L‘m) =

ReLU (ygfl)) sont celles d'une demi-gaussienne :

E[z0] = var{ (1 1)} et Var[zll]] = ;var[ygg—w} . (1 _ i)

@

mkr(3,7) sont indépendantes et E(wnvmvk’,) =0 on a donc :

Par ailleurs, wy, k., €t 2

Varly®] = m - Ny, - Var wym e <var[z<z> |+ B[ }2)

m,k,r m,k,r

ou Ny, est le nombre de filtres élémentaires Wy, ,.

La combinaison de toutes ces équations donne :

Var {yg)} =m - Ny, - Var [wn,m,k,r} . ;Var {yg&l)] ((1 — i) ‘\Ilkr Z RS r) )
2 2

Var |y B\ 5
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En imposant que Var [yg)} = Var {yﬁfﬁl)} on a alors :

2 1
Vi n,m,k,r| — :
ar {w m,k, } m - N’w 1+ %(1 _ (Z ‘I’k,r>2)

Or > W,, =0 Vk,re (N*,N*), on peut donc simplifier la formule ci-dessus lorsque k > 0.

La variance de wy ,, ,,» permettant de conserver une variance constante pendant l'inférence
est donc :

2N ' ! 5 sik=0
Var(wnmis] = m -2 e 1 J; 2(1= (Zpg Yrr(p0) )

. i k>0
m-Np, 742 .
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