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RÉSUMÉ 

Équipée d’un palpeur, une machine-outil devient également capable de servir d'appareil de mesure. 

Cela augmente à la fois l'efficacité et la précision de la fabrication et rend la machine-outil 

compétente pour remplacer la machine à mesurer tridimensionnelle. Bien qu'efficace, l'utilisation 

de machines-outils pour la mesure en cours de processus pose le défi de la traçabilité métrologique. 

L'évaluation de l'incertitude est le seul moyen de relever ce défi. Malgré l'utilisation croissante des 

techniques de mesure sur machines-outils, les informations sur son incertitude sont confinées aux 

méthodes spécifiquement développées pour les machines à mesurer tridimensionnelles, en 

particulier ISO 15530-3. 

Cette étude concerne l'évaluation de l'incertitude des résultats de la mesure sur machine- outil avec 

une méthode de covariance sans utiliser d’étalon, contrairement à l'instruction spécifiée par l'ISO 

15530-3. Le schéma d'évaluation de l'incertitude comprend deux approches principales, soit un 

estimateur de Monte Carlo adaptatif et un estimateur dans le cadre du Guide pour l'Expression de 

l'incertitude de mesure (GUM). La fonction de mesure pour le palpage sur machine-outil est le 

modèle cinématique de la machine-outil à cinq axes, qui reçoit cinq positions des axes et treize 

erreurs géométriques de la machine en tant que grandeurs d'entrée et renvoie trois coordonnées 

cartésiennes de la position compensée dans le repère de la pièce. En conséquence, la fonction de 

densité jointe requise pour démarrer la méthode de Monte Carlo adaptative encode les informations 

statistiques de ces grandeurs d'entrée. 

La répétabilité des positions d’axe saisies détermine une partie de leurs incertitudes sous la forme 

d'une matrice de covariance. En faisant varier les positions des cinq axes de la machine et des deux 

composantes du vecteur unitaire d’approche, les mesures répliquées sur machine-outil sur deux 

sphères de précision donnent la variance et la covariance des positions enregistrées des articulations 

qui sont utilisées pour ajuster un modèle de répétabilité. Des expériences séparées sur une jauge 

annulaire déterminent les effets potentiels de l'orientation du palpage, de l'hystérésis du système, 

de la stratégie de la mesure et de la durée de la tâche sur la répétabilité de la mesure. 

Puis, un simulateur de Monte Carlo adaptatif estime l’incertitude des treize erreurs géométriques 

de la machine avec l’artefact de l’échelle et des billes de référence. L’identification quotidienne 

(une fois par jour) des erreurs avec cette méthode donne des échantillons des centres des billes 
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mesurés sur machine-outil variant sur le long terme, dont la fonction de densité jointe est la 

grandeur d’entrée de l'estimateur de l'incertitude des paramètres de la machine. Cet évaluateur de 

l'incertitude valide également une méthode dans le cadre du GUM (« GUM uncertainty framework 

») comme alternative efficace à l'approche de Monte Carlo qui exige beaucoup de temps de 

traitement. 

Les matrices de covariance des positions d’axe enregistrées et celle des paramètres de la machine 

s’assemblent dans un simulateur de covariance. La matrice de covariance assemblée lance un 

estimateur Monte Carlo adaptif distinct basé sur le modèle cinématique de la machine, qui estime 

l’incertitude associée à la position compensée d’un ensemble de points. L'incertitude peut se 

propager plus à travers une fonction de GD&T et produire l'incertitude standard de propriétés 

géométriques. La mesure sur machine-outil des étalons à différentes positions d’axe de la machine 

valide le schéma d’incertitude développé. Enfin, une méthode de GUM validée avec l'estimateur 

de l'incertitude de Monte Carlo remplace cette dernière et augmente considérablement l'efficacité 

de l'évaluation de l'incertitude. 
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ABSTRACT 

Equipped with a touch probe, a machine tool becomes able to serve as a measuring device, as well. 

This promotes both the efficiency and accuracy of manufacture and makes the machine tool 

competent to replace the coordinate-measuring machine. Although efficient, the use of machine 

tools for in-process measurement raises the challenge of measurement traceability. The uncertainty 

evaluation is the only means to address this challenge. Despite the growing use of the on-machine 

measurement techniques, the guidelines on its uncertainty have mostly remained confined to the 

standards specifically developed for coordinate-measuring machines, particularly ISO 15530-3. 

This study concerns the uncertainty evaluation of the on-machine measurement results with a full-

covariance matrix method without using a calibrated reference, unlike the instruction specified in 

ISO 15530-3. The uncertainty evaluation scheme includes two main approaches, an adaptive Monte 

Carlo estimator and the GUM framework. The measurement function in on-machine probing is the 

forward kinematic model of a five-axis machine tool, which receives five probed joint positions 

and thirteen geometric errors of the machine as input quantities and returns three Cartesian 

coordinates of the compensated position in the workpiece frame. Accordingly, the joint distribution 

required to start the adaptive Monte Carlo method encodes the requisite statistical information of 

these input variables. 

The repeatability of the probed axis positions determines, in part, their uncertainty in the form of a 

covariance matrix. By varying the positions of the machine’s axes and two components of the unit 

approach vector, replicated on-machine probing on two precision spheres gives the variance and 

covariance of the recorded joint positions to fit the repeatability model. Separate experiments on a 

ring gauge determine the potential effects on the probing repeatability of the probe orientation, 

system’s hysteresis, measurement strategy, and task period. 

Then, a Monte Carlo simulator estimates the uncertainty of thirteen geometric errors of the machine 

using the scale and master ball artifact. A day-to-day (once a day) error identification with this 

method gives samples of the on-machine probed ball centres varying over the long-term (15 days), 

whose joint distribution is the input of the uncertainty estimator of the machine parameters. This 

uncertainty evaluator also validates a GUM-framework method as an efficient alternative to the 

time-consuming Monte Carlo approach. 
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The covariance matrices of the recorded axis positions and the machine parameters assemble in a 

covariance matrix simulator. The assembled covariance matrix initiates a separate Monte Carlo 

estimator based on the machine’s forward kinematic model, which evaluates the uncertainty 

associated with the compensated position of a probed point set. The uncertainty can propagate 

further through any GD&T function and yield the standard uncertainty of desirable geometric 

features. The on-machine measurement of calibrated references at various positions of the 

machine’s axes validates the developed uncertainty scheme. Finally, a separate GUM framework, 

validated with the Monte Carlo uncertainty estimator, replaces this method and highly increases 

the efficiency of uncertainty assessment. 
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 : INTRODUCTION 

The synergy between measurement and manufacture is well established. A precise product is not 

obtainable unless with a capable measurement integrated into manufacture. A reliable 

measurement, however, dictates that the measurement section be isolated from the production line 

so that it functions under a strictly controlled environment. Therefore, merging these two tasks 

triggers both the challenge and opportunity of on-machine tool measurement, where the same 

machine performs the whole measurement and machining tasks, including probing a target point 

set on the machined part and the geometrical dimensioning and tolerancing (GD&T) confirmation. 

On-machine measurement increases efficiency by preventing inspection bottlenecks at the quality 

control section of the production process. This technique is also capable of meeting high-precision 

manufacturing requirements. On the other hand, the uncontrolled environment of the shop floor is 

associated with a wide range of influential factors contributing to measurement accuracy. Dividing 

these effects into systematic and random calls for detailed knowledge of the machine, workpiece, 

and environment. These factors are most likely correlated and sometimes inseparable due to their 

strongly coupled behaviour. Aiming at converting machine tools to coordinate-measuring 

machines (CMMs), researchers primarily resort to the existing standards for the uncertainty 

evaluation in CMMs. However, these specifications apply to stiff, precise, and environmentally 

isolated equipment and include a simplified methodology that neglects the correlations between 

the uncertainty contributors. Moreover, additional degrees of freedom provided by rotary axes of 

a machine tool bring about more complexity and imperfections. 

1.1 Research problem 

The current trend in the uncertainty evaluation of on-machine measurement results lies in the 

methods established specifically for the uncertainty evaluation in CMMs, such as those given in 

ISO 15530 [1, 2]. This study attends to three main concerns over this application. First, the 

differences between CMMs and machine tools regarding the working conditions, maintenance, and 

environment require detailed studies on dominant uncertainty contributors to on-machine 

measurement. Second, since the methodology specified in ISO 15530-3 [1] requires using a 

calibrated counterpart for the target part, fabricating and calibrating such a reference would be 

costly, especially for large part manufacture. Third, the methodology given in this standard 
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originates from the law of propagation of uncertainty specified by the Guide to the expression of 

uncertainty in measurement (GUM). This formulation, however, excludes any covariance effect 

between the input quantities, which can falsify uncertainty estimates.  

1.2 Objectives 

The main objective is to convert a machine tool to a traceable coordinate measuring machine 

(CMM). To approach this goal, considering the concerns clarified above, this research aims at 

meeting the following sub-objectives. 

1- Define an uncertainty zone for all the points of a point set measured by a five-axis machine tool 

serving as a measuring device. The zone must establish the traceability of the measurement results. 

That is, true value of the measurand is likely to lie inside the zone with the desired probability. 

2- Quantify the uncertainty sources that contribute to the uncertainty associated with the final 

probing results. The uncertainty contributors are much more diverse compared to those of CMMs 

kept under controlled environmental conditions.  

3- Evaluate the correlation between the input quantities since the uncertainty sources are not 

necessarily independent and their correlations influence the uncertainty of measurement results. 

4- Verify the uncertainty scheme through exemplary GD&T analysis. 

1.3 Impact 

One can consider implementing the methodology of this study to transform a machine tool into a 

traceable measuring device. Such an evolution would be achievable in a relatively short period and 

only by conducting inexpensive inspections on the machine tool. As a result of this project, any 

production line can be economically equipped with a reliable in-situ measuring device that 

considerably increases the efficiency and productivity of manufacturing cycle. Today, although 

CMMs are mostly inseparable from precision manufacturing, the future machine tools can 

independently cope with both the machining and measuring tasks, which gradually marginalizes 

CMMs owing to this study and similar research works. Moreover, the current research will be a 

benchmark for investigating more efficient and more accurate uncertainty estimators. 
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1.4 Assumptions 

1- The machine’s geometric errors used to compensate for the systematic effects are optimum. 

2- The joint positions recorded through replicated probing tasks in the short and long term are 

distributed to normal distributions. 

3- The variations of the machine’s status remain within the range obtained by periodic 

monitoring over two weeks and they do not change dramatically in the course of this study. 
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 : LITERATURE REVIEW 

2.1 On-machine measurement 

The practice of integrating measurement into manufacture has brought about higher production 

efficiency. Thanks to this technique, the manufacturing process can readjust and adapt to changes 

in external conditions [3, 4]. Excluding capable measurement from manufacturing cycle 

dramatically reduces production efficiency. By its classical application, measurement within a 

manufacturing environment aims to provide a realization of a product’s geometric features against 

its design drawings and specifications. Expert measurement directs industries towards high-

precision manufacturing characterized by low batch, high variety, tight tolerance, and high-value 

products [5]. 

Owing to their capability and flexibility, CMMs play an important role in dimensional 

measurements [6]. Equipped with touch probes, machine tools also contribute to measurement 

procedures in different ways. They effectively respond to the needs of manual gauging through on-

machine probing [7], where the operators of machine tools use this technique to position and align 

the machine’s and the workpiece’s datum. A machine tool also serves as a comparator between 

manufactured parts and their calibrated counterparts [8]. Today, however, the application of on-

machine probing grows further to on-machine verification (OMV) [9], where the GD&T 

confirmation occurs in situ and on the machine. 

Dimensional measurement can happen at different stages of a manufacturing line, from the initial 

alignment and setup of the part on the machine’s table to the final part verification in the GD&T 

unit. Historically, manufacturers ensure the product quality only during the last step, i.e. the product 

measurement [10]. This “gate-keeping” strategy that stems from a defect detection (not prevention) 

policy, fails to guarantee or to enhance effectively product quality [8]. On the other hand, CMMs, 

which are known to be the only measurement apparatus capable of providing an acceptable level 

of uncertainty [11], should function independently of manufacturing department for metrological 

reasons. As a result, these precise systems are major sources of process bottleneck and inefficiency 

[9, 12]. Moreover, in the case of closed-loop manufacturing, delayed feedback from the 

measurement unit (or CMM) to the machining section notably decelerates the manufacturing cycle. 
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The idea of reducing the production’s dependency on CMMs has triggered the idea of on-machine 

measurement whose steps are shown in Figure 2-1. 

 

Figure 2-1: Steps of on-machine measurement [13]. 

On-machine measurement applications have emerged over the recent decades. Shiraishi 

summarizes the journey of on-machine measurement between the years 1961 and 1985 [14]. 

Yadayan and Burdekin review the applications of this method developed between 1986 and 1996 

[15], and Vacharnukul and Kekid cover the advances introduced before 2003 [16]. In-process 

measurement for machining, including monitoring and control, becomes a research topic in 1989 

[14, 17, 18]. At the same time, in-process measurement and workpiece-referred form accuracy 

control (WORFAC) improve the repeatability and stability of diamond turning processes [19]. In 

this system, unlike the conventional techniques that focus on mechanical elements of the machine, 

the controlling actions correspond to the real-time status of the workpiece. Using WORFAC, 

Kohno et al. [20] monitor the relative distance between the workpiece and the cutting tool to retain 

the desired accuracy (Figure 2-2). To read the distance, they use a high-precision optical surface 

sensor (HIPOSS), which works based on point autofocus with an accuracy of less than 1 nm. They 

adopt the same technique to create a freeform surface using an absolute reference. 

In a closed-loop manufacturing system, the measurement unit provides feedback to apply an 

incremental modification of the process. Particularly, the measurement section of a production line 

can in situ evaluate the tool’s condition, monitor the real-time tool-workpiece positioning (error 
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analysis), and measure the geometric features of the workpiece [21]. Certain methods of on-

machine measurement call for external equipment such as sensors and interferometers. Others can 

come to function more easily by installing touch or non-touch probes on the machine. 

 

Figure 2-2: Principles of the workpiece-referred control system. If the tool-holder moves towards 

or away from the workpiece, the microtool servo compensates the movement [19]. 

On-machine measurement of a machine’s geometric errors includes direct and indirect methods. 

Direct techniques attend to intrinsic errors of each of the machine’s axis such as positioning and 

scaling imperfections. Indirect methods, on the other hand, primarily characterize volumetric errors 

[21]. Ibaraki undertakes a detailed review on the indirect identification of geometric errors [22]. 

Among others, Ball-bar is an indirect technique vastly used for measuring the machine’s volumetric 

errors [23]. R-test [24], reconfigurable uncalibrated master ball artifact (RUMBA) [25], scale and 

master bar artifact (SAMBA) [26], and touch and go (TANGO) [27] are other indirect methods 

developed recently. All these methods analyze the volumetric errors obtained via on-machine 

measurement through the forward kinematic model of the machine to identify the link 

imperfections and error motions. 

The applications of on-machine measurement can go beyond the identification of geometric errors. 

The on-machine monitoring of the tool wear phenomenon is another important practice to control 

the tool’s geometric features and maintain its cutting edge during the machining process. Similar 

to the indication of the machine’s error, the methods for tool wear monitoring split into direct and 
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indirect approaches. Acceptable direct monitoring of the tool’s conditions dictates that measuring 

equipment, such as scanning electron microscopes (SEMs) and atomic force microscopes (AFMs), 

be independent of the manufacturing line. Particularly, the vacuum chamber of SEMs requires an 

environment isolated from the machining section. Besides, the time-consuming accurate alignment 

of an AFM’s cantilever probe causes significant inefficiency [28, 29]. On the other hand, the tool’s 

quality is economically detectable via in-process and on-machine indirect methods by measuring 

process variables such as acoustic emissions [30], cutting force [31], cutting chips [32], and surface 

finish [33]. 

A summary of the main advantages of on-machine measurement is as follows. 

 In-process measurement: measuring deviations from the desirable part geometry provides 

feedback to readjust the process parameters. The collected data can be directly used in the 

machine controller for a real-time self-adapted manufacturing process [34]. 

 Post-process control: programming and using a machine tool as a CMM provides a 

complete inspection report of the machine’s conditions. This archive includes the history 

of the process parameters, which can facilitate process optimization and allow for 

intelligent process control [4]. 

 Part setup: almost all machining programmes assume certain positioning of the workpiece 

relative to the machine’s table. On-machine measurement considerably reduces the setup 

time, processing time, and material loss by cutting the parts from optimally positioned 

blocks [34]. 

 Monitoring machine tool’s performance: the machine’s geometry and the tool’s conditions 

change during the machining procedure. Periodic on-machine measurement can capture 

these variations, prevent unacceptable parts, and schedule the machine maintenance [34]. 

Some of the most important limitations of on-machine measurement are: 

 Cost: the machine tool time is more expensive than the CMM time. 

 Lack of accuracy: machine tools are under the influence of various error sources such as 

thermal issues and geometric errors, which are propagated through the machine’s links. 
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These effects deviate measurement results from true value of the measurand (the quantity 

intended to be measured). 

 Metrology software insufficiencies: the assessment of product quality for real-time 

decision-making requires in-situ complex mathematical calculations. Various types of 

metrology software developed for CMMs conveniently perform the GD&T tasks. However, 

these programmes are inadequate for on-machine applications. 

 Environmental variations: unstable conditions of an industrial environment cause unwanted 

variations in the machine’s performance. Not only does this issue affect the accuracy of on-

machine measurement, but it also makes the evaluation of measurement uncertainty more 

complex. 

The implementation of on-machine measurement techniques for OMV purposes requires taking 

two main steps: eliminating the error (bias) associated with the probing outcomes and assigning an 

uncertainty interval to the measurement results. Dealing successfully with these two steps converts 

a machine tool to a traceable CMM [13, 35-37]. To detect the measurement bias, high-precision 

optical methods firstly appeared. Despite their high accuracy, the interferometric methods are 

susceptible to external disturbances such as vibration and air turbulence in the optic path [21]. For 

instance, Nomura et al. [38], use a Fizeau interferometer for on-machine measurement of the 

workpiece’s shape and report that it is impossible to exploit the full capacity of the device due to 

vibrations of the machine tool. Compared with non-contact measurement equipment, contact tools, 

e.g. touch-trigger probes, have become more commercialized and industrially common. The touch 

probes are usually spindle-mounted on machining centers and turret-mounted on lathes. 

Takaya [21] divides the measurement bias into systematic and random effects. He asserts that the 

systematic effects mainly stem from the machine’s geometric errors, while the random effects are 

due to the tool’s varying position relative to the workpiece. The main challenge of on-machine 

measurement is that the machine might fail to observe the measurement bias as the same machine 

carries out both the machining and measurement tasks. Moreover, the thermal effect is known to 

be a strong environmental and internal factor affecting the machine’s accuracy [39-41]. For large-

scale production, this issue becomes more evident since a small variation in temperature causes a 

large thermal deflection in the part, which demands more consideration in the measurement 
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procedure. It is also possible that the low repeatability of machine tools caused by the poorly 

controlled environment of the shop floor considerably affects the precision of measurement results. 

2.2 Measurement uncertainty 

According to the International vocabulary of metrology (VIM), the measurement result is a set of 

values, together with any other information attributed to the quantity intended to be measured, i.e. 

the measurand [3]. The measurement result is only an estimate of true value of the measurand [42]. 

Since the measurement is always an inaccurate procedure due to physical conditions, any 

measurement procedure requires evaluation. In other words, the value obtained as the measurement 

result differs from its true value, even if the result is the best possible estimate for the measurand. 

The measure of this difference is the measurement accuracy [3]. The measurement result in the 

form of single value has little practical significance unless it comes with a quantified metric of its 

accuracy. The difference between a measured quantity value and a reference quantity value is the 

measurement error. VIM [3] divides the measurement error into two components: systematic and 

random. The systematic measurement error is “the component of the measurement error that in 

replicate measurement remains constant or varies in a predictable manner”. In the definition of this 

group of measurement errors, the reference quantity value is “a true quantity value, or a measured 

quantity value of a measurement standard of negligible measurement uncertainty, or a conventional 

quantity value” [3]. On the other hand, the random measurement error is the “component of the 

measurement error that in replicate measurements varies in an unpredictable manner”. The 

reference quantity value in the identification of random error is “the average that would ensue from 

an infinite number of replicate measurements of the same measurand” [3]. The two types of 

measurement error can appear as quantified terms in the mathematical model of the measurement 

task. This model converts the input quantities to a best estimate of the measurand. This model 

might include correction: the value algebraically added (Figure 2-3) or multiplied to the input 

quantities to compensate for the systematic error. However, the correction cannot completely 

eliminate the systematic error, but can reduce it [42]. 

The uncertainty of measurement is defined as a parameter reflecting the dispersion of the values 

reasonably attributed to the measurand [3, 42]. This parameter implies the lack of knowledge about 

true value of the measurand. After the correction for determining systematic effect, the 
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measurement result remains only an estimate because of two main uncertainty sources: random 

variations of the input quantities and imperfect corrections for the systematic effect [42]. The 

uncertainty associated with the systematic error correction is not itself a systematic error. This 

incomplete knowledge of the required correction value contributes to measurement uncertainty. 

The compensated measurement result can lie accidentally very close to true value of the measurand, 

although it might come with a large value of uncertainty. Thus, measurement uncertainty is 

different from the remaining unknown error (Figure 2-3) [42]. 

 

Figure 2-3: Schematic illustration of the compensation for systematic error. 

In general, various sources contribute to measurement uncertainty. An incomplete definition or an 

imperfect realization of the measurand is an uncertainty source, termed “definitive” and “intrinsic” 

uncertainty by VIM [3] and GUM [3], respectively. For example, defining the measurand as the 

thickness of a sheet or the flatness of a surface triggers intrinsic uncertainty resulting respectively 

from an infinite number of true values of the measurand (thickness) and insufficient data about the 

measurand (flatness). Non-representative sampling, limited knowledge of environmental 

conditions, finite instrument resolution, and non-identical measurement replications are among 
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other uncertainty sources. Depending on the measurement task, different uncertainty factors might 

come into effect, which might originate from dependent (correlated) sources [42]. 

ISO 14253-1 [43] clarifies the role of uncertainty assessment in decision-making and conformity 

check of a fabricated part. Although technical drawings specify certain geometric tolerances, 

measurement uncertainty narrows the tolerance zone. This standard [43] elaborates on this issue 

by defining two zones, namely conformance, and non-conformance zone (Figure 2-4). Part 

conformity requires that the measurement result lie within the conformance zone. In one-

dimensional metrology, the conformance zone and the uncertainty interval sum up to the tolerance 

zone. That is, the larger the uncertainty interval, the narrower the conformance zone. The 

uncertainty interval defines the area where the compliance is indeterminable. This implies that 

specifying as small an uncertainty interval as possible to the measurement result increases the 

conformity chance of the manufactured part [43]. 

 

Figure 2-4: Dependence of the tolerance zone on measurement uncertainty [43]. 

In the case of coordinate measurements, where a spatial vector describes the measurement 

accuracy, specifying an uncertainty interval to each coordinate gives an ellipsoidal uncertainty 

zone, characterized by the three diameters representing the three orthogonal uncertainty intervals. 

Since most of the measuring systems suffer from systematic errors, the evaluation of the 

uncertainty associated with an imperfect correction of the measurement result is crucial. That is, 
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the uncertainty associated with the measurement results obtained by a certain measurement system 

depends on its calibration procedure. ISO 15530 [1, 2] includes the uncertainty evaluation methods 

for coordinate measurement with CMMs. ISO 15530-3 [1] specifies the details of an uncertainty 

evaluation procedure, known as the “substitution method”, using a calibrated workpiece nominally 

similar to the part under measurement. According to this standard, the measurement task must hold 

certain similarities to the calibration process, in terms of part’s dimension and geometry, sampling 

strategy, and environmental conditions. ISO 15530-3 includes many effects such as repeatability 

and geometric errors, temperature and drift, random and systematic errors of probing device, 

measurement strategy, and scale resolution, as uncertainty effects arising from CMM and the 

measurement procedure [1]. Nevertheless, this standard assumes that these numerous effects 

appear through four main uncertainty terms: measurement procedure, calibration of counterpart, 

calibration of measurement process, and the differences between the measured part and the 

calibrated counterpart (in roughness, form, coefficient of thermal expansion, and elasticity) [1]. 

These factors together with environmental considerations are the sources that contribute to the 

uncertainty associated with the measurement result. 

The “substitution method” is the approach used most for uncertainty evaluation in on-machine 

measurement [36, 44-47]. The first disadvantage of this application is its dependence on a 

calibrated counterpart. Manufacture and calibration of a reference workpiece for any new part is 

costly, especially for large part machining. Moreover, the methodology specified in ISO 15530-3 

[1] gives the uncertainty associated with “task-specific” measurements, which only suits the 

intended measurement procedure. Therefore, this method can be efficient only if the sampling task 

and other factors influencing measurement uncertainty remain unchanged throughout the 

measurements done for quality control purposes. However, the uncontrolled work environment of 

machine tools causes variations in both the machine’s and part’s status. The exclusion of any 

correlation analyses between the uncertainty budgets is another important limitation of this method. 

2.3 Evaluation of measurement uncertainty 

GUM [42] is the internationally accepted master document for uncertainty evaluation in the 

measurement of physical objects. Instead of classifying the uncertainty components, this guide 

categorizes the methods of evaluating them. Accordingly, the evaluation methods of uncertainty 
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split into type A and type B. The type A evaluation (of uncertainty) includes “the statistical analysis 

of series of observations” [42]. In most cases, the best available estimate for the expectation or 

expected value 𝜇𝑤 of random variable 𝑊 is the average or arithmetic mean �̅� of 𝑛 independent 

observations obtained under the same measurement conditions. Individual observation 𝑤𝑖 differ 

from others because of random effects. GUM defines the experimental standard deviation of the 

observations as standard uncertainty 𝑢(𝑤) of best estimate 𝜇𝑤: 

𝑢(𝑤) = √
1

(𝑛 − 1)
∑(𝑤𝑖 − �̅�)

2

𝑛

𝑖=1

 2-1 

The type B evaluation of uncertainty is “by means other than the statistical analyses of series of 

observations” [42]. In this type, a scientific assessment based on all available knowledge of the 

variability of the parameter evaluates standard uncertainty. Usually, quantifying an uncertainty 

component using an external source is a type B evaluation of uncertainty. For instance, in ISO 

15530-3 [1], the uncertainty associated with the calibrated value is a type B evaluation, whereas 

the uncertainty associated with the measurement bias and the repeatability of the recorded data is 

of type A. 

Usually, instead of determining measurand 𝑌 directly from the outcomes of the measuring 

instrument, measurement function 𝑓 estimates the measurement results. This function has 𝑁 input 

quantities 𝑋1, … , 𝑋𝑁: 

𝑌 = 𝑓(𝑿) = 𝑓(𝑋1, … , 𝑋𝑁) 2-2 

The vector of input quantities 𝑿 includes values whose uncertainty comes from either the current 

measurement or external sources. 

The evaluation of measurement uncertainty relies on the propagation of uncertainty of the input 

quantities through the measurement function. This means, the distribution of the output quantity, 

which encodes the standard uncertainty associated with the output estimate, is obtainable by 

propagating the distributions of input quantities through the measurement function. In Figure 2-5b, 

the propagation of joint probability density function (PDF) 𝑔𝑿(𝝃) through measurement function 

𝑓 gives PDF 𝑔𝑌(𝜂) for measurand 𝑌. In this figure, 𝝃 and 𝜂 denote possible values for the input 

vector and output scalar quantity, respectively. Joint PDF 𝑔𝑿(𝝃) includes the information about the 
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statistical behaviour of input vector 𝑿 together with the correlations between each pair of random 

variables 𝑋𝑖 and 𝑋𝑗. In a metrological context, the distribution of input quantities carries the 

required information on uncertainty sources such as measured values, calibrated values, and expert 

knowledge about other uncertainty budgets. Then, input joint PDF 𝑔𝑿(𝝃) includes even those input 

quantities that possess Type-B standard uncertainty. If all or several input quantities have strong 

correlations, 𝑔𝑿(𝝃) is not decomposable. On the other hand, if all input variables are mutually 

independent, the joint PDF of 𝑿 can be replaced by the product of PDFs 𝑔𝑋𝑖(𝜉𝑖) for the individual 

input variable 𝑋𝑖 [42]. PDF 𝑔𝑌(𝜂) stores statistical information of the measurand, from which 

measurement uncertainty is obtainable. 

One can adopt three main approaches of propagation of distributions to evaluate measurement 

uncertainty: 

1) First, so-called the “Markov formula” analytically gives the PDF of the output quantity as below 

[48]: 

𝑔𝑌(𝜂) = ∫ …
∞

−∞

∫ 𝑔𝑿(𝝃)
∞

−∞

𝛿(𝜂 − 𝑓(𝝃))𝑑𝜉1…𝑑𝜉𝑁 2-3 

where 𝛿 represents the Dirac delta function. Analyzing PDF 𝑔𝑌(𝜂) for the output variable can then 

specify a suitable coverage interval that contains true value of the measurand with desirable 

coverage probability 𝑝. GUM refers to this interval as expanded uncertainty 𝑈. The expanded 

uncertainty can be expressed as 𝑈 = 𝜂max − 𝜂min, where 𝜂max and 𝜂min are possible values of 𝑌, 

which satisfy 

𝐺𝑌(𝜂max) − 𝐺𝑌(𝜂min) = 𝑝 2-4 

and are obtainable from 𝐺𝑌(𝜂), cumulative distribution function (CDF) of 𝑌. In other words, 𝜂max 

and 𝜂min create a 100 𝑝% coverage interval for 𝑌. Such an interval is not unique and, considering 

the necessity of choosing the smallest possible uncertainty interval, expanded uncertainty 𝑈 is the 

shortest possible 100 𝑝% coverage interval. If 𝑌 is distributed to certain distributions such as 

normal, the expanded uncertainty for output quantity 𝑌 is derivable without determining 𝜂max and 

𝜂min. In Figure 2-5a, the half-width of the light grey area is the standard uncertainty 𝑢(𝑦), 

associated with best estimate 𝑦 for measurand 𝑌, which is a measure of the dispersion of the values 
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attributable to 𝑌. The half-width of the light grey zone and the adjacent dark grey area denote 

expanded uncertainty 𝑈, which can be expressed as 𝑈 = 𝑘𝑝𝑢(𝑦) for certain distributions, where 

𝑘𝑝 is the coverage factor. For a normal distribution, coverage factors 2 and 3 give 95% and 99% 

coverage probability, respectively. 

  

Figure 2-5: a) Propagation of possible values 𝜉𝑖   of 𝑋𝑖   through measurement function 𝑓 and the 

creation of the output’s distribution describing the possible values 𝜂 of 𝑌, and b) the normal PDF 

for output quantity 𝑌. Best estimate 𝑦 of measurand 𝑌 is assumed to be the expected value of 𝑌. 

The standard deviation is the standard uncertainty 𝑢(𝑦) associated with 𝑦. The expanded 

uncertainty 𝑈 includes 95% of possible values of 𝑦, corresponding to a coverage factor of 2 [49]. 

Although the analytical method based on Eq. 2-3 provides a PDF for the output quantity, it remains 

a feasible solution merely for simple measurement models with untangled PDFs for their input 

quantities. In on-machine measurement, where the compensation for systematic effects occurs 

through a chain of homogeneous transformation matrices (HTMs), adopting this analytical 

approach can be demanding. Moreover, the possible high correlations between the inputs of the 

on-machine measurement function can raise further complexity for this method. Besides, the 

covariance matrix and, in turn, the joint PDF of the input quantities vary from point to point on the 

machine tool, which requires separate solutions of Eq. 2-3 to calculate the uncertainty associated 

with a set of points. These disadvantages besides being single-output make this approach unsuitable 

for uncertainty estimation in on-machine measurement. 
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2) The second approach is the “law of propagation of uncertainty” specified by GUM. According 

to VIM, the uncertainty associated with best estimate 𝑦 of measurand 𝑌, termed “combined 

standard uncertainty” 𝑢c(𝑦), is obtainable based on the individual standard uncertainty associated 

with each input quantity. In this method, approximating 𝑦 about its expected value with a Taylor 

series leads to the combined standard uncertainty of 𝑦: 

𝑢c(𝑦) = √∑(
𝜕𝑓

𝜕𝑥𝑖
)
2

𝑢2(𝑥𝑖)

𝑁

𝑖=1

+ 2∑ ∑
𝜕𝑓

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑥𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

𝑢(𝑥𝑖, 𝑥𝑗) 2-5 

where 𝑢2(𝑥𝑖) is the square of standard uncertainty associated with best estimate 𝑥𝑖 of input quantity 

𝑋𝑖 and 𝑢(𝑥𝑖, 𝑥𝑗) is the covariance between 𝑥𝑖 and 𝑥𝑗. If input quantities 𝑋1, … , 𝑋𝑁 are mutually 

independent, the second term under the radical in Eq. 2-5 equals zero. Each 𝑢(𝑥𝑖) is a standard 

uncertainty obtained with a Type A or Type B evaluation. The combined standard uncertainty 

𝑢c(𝑦) is an estimate for standard deviation of the output quantity and determines the dispersion of 

values attributable to measurand 𝑌. Eq. 2-5 is the law of propagation of uncertainty, referred to as 

the “delta method” in statistics. Unlike Eq. 2-3, this method does not provide any PDF for the 

output quantity. Then, the expanded uncertainty corresponding to a stipulated coverage probability 

is not obtainable by Eq. 2-4. If the PDF of 𝑌 is normal, the expanded uncertainty can be specified 

by 𝑈 = 𝑘𝑝𝑢c(𝑦), providing 95% and 99% coverage probability for coverage factors 2 and 3, 

respectively. 

The law of propagation of uncertainty specified by GUM is limited to multi-input single-output 

measurement models. Supplement 2 to GUM [50] extends this method for multivariate problems, 

known as the “GUM uncertainty framework” (GUF). Supposing implicit multivariate measurement 

model ℎ(𝒀, 𝑿) = 𝟎, where 𝑿 = (𝑋1, … , 𝑋𝑁) and 𝒀 = (𝑌1, … , 𝑌𝑚) are respectively the input and 

output quantity vectors, the relation between the covariance matrix of input quantities 𝑼𝒙 and that 

of output variables 𝑼𝒚 is [50] 

𝑼𝒚 = 𝑪𝑼𝒙𝑪
T , 𝑪 = 𝑪𝒚

−1𝑪𝒙 2-6 
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in which, 𝑪𝒙 and 𝑪𝒚 are the sensitivity matrices of dimension 𝑚×𝑁 and 𝑚 ×𝑚, which include 

the partial derivatives of the measurement model with respect to the input and output quantities, 

respectively. 

3) The third approach to address the propagation of distributions is the Monte Carlo method 

(MCM). This method uses pseudo-random numbers to draw at random from the joint PDF of input 

quantities. Evaluating a drawn set of input quantities through measurement model 𝑓 creates the 

corresponding values of the measurand. Repeating this process for 𝑀 times results in the same 

number of vectors of the output quantities. A telling example of an application of this method is in 

the approximation of the value of 𝜋. Supposing a quarter circle inscribed in a unit square (Figure 

2-6a), the probability that a random point chosen within the unit square lies within the quarter circle 

is equals the ratio between their areas, 𝐴quarter−circle/𝐴square = 𝜋/4. Using MCM, this probability 

(and, in turn, an approximation of the value of 𝜋) is obtainable by drawing at random the 

coordinates of a large number of points from the uniform distribution U(0,1) (Figure 2-6b). 

  

Figure 2-6: a) The application of MCM for the approximation of the value of 𝜋; a) 2000 points 

chosen at random within a unit square illustrated in different colours, denoting whether they lie in 

the quarter circle or not, and b) estimate of 𝜋 converging to its true value by increasing the 

number of MCM trials. 
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The competitive advantage of MCM is its reasonable convergence properties. According to the 

central limit theorem, the average 𝒚 of the 𝑀 values attributed to measurand 𝒀 converges to the 

expectation of 𝒀 proportional to 𝑀−0.5 [51]. That is, to improve the numerical accuracy of 𝒚 by 

one binary digit, it suffices to increase 𝑀 fourfold [52]. As a result, the convergence properties of 

MCM is independent of the number of input quantities 𝑁. 

A multivariate sample generator serves as the engine of an MCM simulator. In univariate cases, a 

common approach to create a sample of a random variable is to use its inverse CDF. To this end, 

the sample generator draws a random number between 0 and 1 from uniform distribution U(0,1), 

then converts it to a random sample using the inverse CDF. However, drawing a multivariate 

random sample from a joint PDF might be delicate. Supplement 1 to GUM proposes the following 

equation to draw 𝑀 random vectors from an 𝑁-dimensional multivariate normal distribution: 

𝑮𝑿 = 𝝁𝟏𝑀×1
T + 𝑹T𝒁 2-7 

where 𝑮𝑿 is an 𝑁 ×𝑀 matrix whose the 𝑗th column is a random draw from the multivariate normal 

distribution, 𝝁 is the vector of expectations (means) of dimension 𝑁 × 1, and 𝟏𝑀×1 is a vector of 

ones of dimension 𝑀 × 1. In this equation, matrix 𝒁 of dimension 𝑁 ×𝑀 includes 𝑀 draws from 

the 𝑁-dimensional standard normal distribution, and 𝑹 is the Cholesky factor (a lower triangular 

matrix) of covariance matrix 𝑼𝒙 of dimension 𝑁 × 𝑁, which satisfies the following equation 

𝑼𝒙 = 𝑹𝑹
𝑇 2-8 

To evaluate the uncertainty of 𝑚 measurands with respect to 𝑁 input parameters, matrix 𝑮𝒀 of 

dimension 𝑚×𝑀 stores the set generated for output quantities. Matrices 𝑮𝑿 and 𝑮𝒀 are discrete 

representations of input and output parameters [50] The 𝑖th row of 𝑮𝑿 and the jth row of 𝑮𝒀 are the 

discrete representations of marginal distributions for scalar quantities 𝑋𝑖 and 𝑌𝑗, respectively [52]. 

𝑮𝒀 encodes statistical information about the output values. Taking the average of each row of 𝑮𝒀 

provides 𝒚, a best estimate for 𝒀, as follows. 

𝒚 =
1

𝑴
𝐆𝒀𝟏𝑀×1 2-9 

The covariance matrix associated with best estimate 𝒚 is 

𝑼𝒚 =
1

𝑀 − 1
𝐆′𝒀(𝐆′𝒀)

T ,        𝐆′𝒀 = 𝐆𝒀 − 𝒚(𝟏𝑀×1)
T 2-10 
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The ith diagonal element of 𝑼𝒚 is the square of standard uncertainty associated with the ith output 

quantity. The off-diagonal value on the ith row and the jth column of this matrix represents the 

covariance between the corresponding output values. 

The 100𝑝% coverage interval bounded by 𝜂min and 𝜂max of the single output scalar 𝑌𝑖 is easily 

achievable using MCM. To this end, after sorting the values on the ith row of 𝑮𝒀 in non-decreasing 

order, the values whose indices differ by 𝑝𝑀 are 𝜂min and 𝜂max [52]. In a multivariate case, the 

determination of coverage interval is more complicated as it requires sorting multivariate data. In 

this regard, Supplement 2 to GUM [50] indicates three main forms of coverage regions: hyper-

ellipsoidal, hyper-rectangular, and the smallest coverage region. 

Considering the convergence of the MCM results, Supplement 2 to GUM [50] specifies the details 

of an “adaptive MCM” procedure by incorporating convergence criteria into the MCM algorithm. 

The effectiveness of MCM in estimating the statistical metrics of output quantities depends on the 

number of conducted trials. The convergence criteria set the desirable stability and precision of the 

MCM numerical results. Supplement 2 to GUM [50] suggests that after ℎ sequences of MCM (each 

sequence includes 𝑀 trials), convergence holds if the standard deviations associated with ℎ 

accumulative estimates for 𝒚, standard uncertainties 𝒖(𝒚), the maximum eigenvalue 𝜆max of the 

associated correlation matrix, and coverage factor 𝑘𝑝, are smaller than stipulated numerical 

tolerances. Otherwise, the MCM simulator runs one more sequence and continues until the 

convergence occurs. 

MCM has a wide range of application in various areas of science and industry. Particularly, this 

method has been adopted for the evaluation of measurement uncertainty in CMMs. Balsamo et al. 

[53] introduce “expert CMM” (ECMM) aiming at the uncertainty evaluation of the CMM results. 

Adhering to GUM, they conduct task-oriented measurement strategies with minimum involvement 

of the user. For both on-line (immediate check) and off-line (comparative evaluation) 

measurement, they also examine the possibility of decomposition of error contributors. They 

estimate the CMM parameters (only geometric errors) by a self-calibration procedure introduced 

in [54]. Their measurement procedure includes probing a calibrated artifact at 100 different 

positions in the working volume of the CMM. For 93 measurements, true value of the measurand 

lies within the estimated 95% expanded uncertainty. Schwenke et al. [55] use an MCM uncertainty 
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evaluator in complex dimensional measurements. They develop a software package including a 

library of uncertainty contribution modules. To verify them, they conduct complex tasks on a CMM 

including the surface roughness measurements with a stylus, roundness measurement with form 

testers, and geometric feature measurements. Their experiments result in 96% and 97% coverage 

probability for an estimated 95% expanded uncertainty interval. 

In another application of MCM, Sladek and Gaska [56] develop a virtual CMM simulator to 

evaluate the measurement uncertainty of probed coordinates. This scheme focuses on the 

volumetric error caused by the CMM joint errors and the probe’s deviations assuming that the 

system has an effective thermal compensator consisting of at least two temperature sensors and 

that it works under controlled environmental conditions specified by the manufacturer for best 

performance. They use a laser tracer to indicate the kinematic errors of the CMM equipped with a 

retro-reflector. Then, they estimate the volumetric errors caused by the identified joint errors at 

asset of target points uniformly distributed within a grid. They also quantify the contribution of the 

probe to volumetric error by probing a precision sphere under different probing strategies. To verify 

their model, they use a cylindrical standard and a double bar artifact and measure them at different 

positions and with varying probing strategies. They validate their model by reporting considerable 

overlaps between the expanded uncertainty intervals of the probed features and those of the 

calibrated values.  

The MCM uncertainty estimators are also practical for measuring form features. Wen et al. [57] 

apply this technique to investigate the uncertainty associated with cylindricity. Employing a quasi-

partial swarm optimization algorithm, they solve a mathematical equation for the minimum 

cylindricity zone, which serves as measurement function. Then, they evaluate the uncertainty of 

cylindricity through MCM and GUF. Along with the parameters that appear in the cylindricity 

equation, they also consider the effects of the measurement repeatability, thermal variations, 

thermal expansion coefficient, drift and hysteresis, and sampling strategy. Comparing with the 

adaptive MCM results, they find GUF invalid to quantify the uncertainty of cylindricity errors. In 

another investigation on the uncertainty of form features, Kruth et al. [58] particularly study 

roundness, though their approach can cover various types of form features. They incorporate an 

error simulator in a CMM software, which provides their MCM with feature imperfections 

including position, orientation, size, and form features. Suitably bounding these features, they 
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compare the uncertainty associated with form deviations of circular profiles with and without the 

form effects. They show that the uncertainty of form deviations considerably affects measurement 

uncertainty so that by excluding this effect, true values of the measurand (diameter and center 

distance of circular profiles) lie off the expanded uncertainty interval. Ren et al. [59] use MCM to 

quantitatively analyze the measurement uncertainty associated with the profile of freeform 

surfaces. They first develop a measurement model by establishing a mathematical relation for the 

target features of freeform surfaces. Then, they introduce a generator of random form errors into 

an MCM simulator. They also develop an analytical model for measurement uncertainty, which 

allows for the uncertainty estimation in the freeform measurement tasks. Using an ultra-precision 

freeform mould insert of a bifocal optical lens, they verify the model by studying the uncertainty 

associated with the pick-to-valley height of the freeform surface. 

Many researchers apply MCM to address the machine tool’s accuracy and volumetric error. 

Bringmann and Knapp [60] estimate the uncertainty associated with the calibration technique 

“chase-the-ball” using MCM. In their algorithm, a virtual machine tool receives a set of volumetric 

errors randomly drawn from uniform distributions. They define the error PDFs based on various 

specifications and standards. Then, they calculate the machine parameters based on the simulated 

calibration procedure. Comparing the calculated and predefined error values, they estimate the 

uncertainty associated with the machine parameters. They adopt the same approach to estimate the 

uncertainty of the parameters obtained by another calibration procedure called “3-D ball plate” 

[61]. Andolfatto et al. [62] use the non-contact measuring instrument “CapBall” to identify the 

machine’s link errors and then implement MCM to estimate the associated uncertainty. 

Considering the uncertainties of the CapBall’s sensors, transformation matrices, and the drift of the 

closed kinematic chain, they estimate the uncertainty of 8 link errors and 6 setup errors. They 

compare two different methods to model the thermal drift of the machine: statistical and cyclic. 

They conclude that the statistical method results in smaller confidence intervals, while the cyclic 

method is more reliable because it better quantifies the cyclic behaviour of the dimensional 

alternations caused by thermal changes. They argue that including the effect of drift in uncertainty 

evaluations results in less normality in the output distribution because the MCM trials do not hold 

the identical conditions required for replicated experiments. Los and Mayer [63] implement an 

adaptive MCM to evaluate the uncertainty associated with 8 link errors and 3 error motions 
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denoting the slope of the positioning errors of the three prismatic axes of a five-axis machine tool. 

They identify the machine’s geometric errors via the SAMBA method. The inputs of their 

measurement model are the coordinates probed on SAMBA. While the machine is cold or is 

cooling down from 27 to 23 °C, repeating the SAMBA test over 24 h gives the probability 

distribution of the input quantities. The obtained joint PDF covers the covariance between the input 

quantities caused by interdependencies of error sources. They report smaller rectangular coverage 

intervals without the warm-up cycle, although this poorly represents the real performance 

conditions of the machine. 

When it comes to the uncertainty evaluation of on-machine tool probing, the literature is lacking 

an inclusive approach that includes a full covariance analysis between the input quantities. The 

very few related studies concern the dominant uncertainty sources in on-machine measurement and 

eliminating the need for a calibrated reference as specified by ISO 15530-3. Using a task-specific 

method for uncertainty evaluation, Mutilba et al. [45] quantify the major uncertainty budgets in on-

machine probing. They fabricate a workpiece possessing certain geometric features and then 

calibrate each feature with a CMM. Carrying out on-machine probing on the machined part, they 

study the contribution of each uncertainty factor suggested by ISO 15530-3. They report the 

repeatability of on-machine measurement to be the most dominant uncertainty source. They find 

this term even more influential for the on-machine probing following the machining process. They 

detect a strong correlation between the machine’s geometric errors and volumetric error. In another 

study [44], they examine the feasibility of excluding the calibrated reference required by ISO 

15530-3. For each target point, they indicate volumetric error and the associated uncertainty using 

a laser tracer before starting on-machine measurement. This enables them to approximate the 

volumetric error at any position on the machine tool. Accordingly, they calculate the measurement 

bias of a calculated feature and validate their results by showing the possibility of excluding the 

calibrated workpiece. 
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 : METHODOLOGY AND SYNTHESIS 

3.1 Methodology 

The methodology of this study includes the following steps. Figure 3-1 also shows the data flow 

of this project. 

3.1.1 Uncertainty estimation schemes 

The measurement uncertainty schemes consist of an adaptive MCM and a GUF estimator. 

Supplements 1 and 2 to GUM are the bases of the uncertainty schemes. Each input quantity is 

regarded as a random variable. In the adaptive MCM, a joint PDF encodes the required statistical 

information including best estimates and correlations of the input quantities. The MCM estimator 

generates a set of input vectors by drawing at random from the input joint PDF. Each MCM trial 

includes the evaluation of one input vector stored in the input set with a measurement function. 

When estimating the uncertainty of the machine’s geometric errors, this function is the SAMBA 

algorithm, an iterative solution to tune the machine’s forward kinematic model so that the predicted 

volumetric errors fit those collected with the on-machine probing of SAMBA. When estimating 

the uncertainty associated with on-machine probed positions, the measurement function is the 

machine’s forward kinematic model. The statistical analysis of the MCM output set provides an 

assessment of the uncertainty associated with the measurand. 

The second scheme analytically evaluates measurement uncertainty through GUF, which considers 

a Taylor series approximation of the measurement function. Supplement 2 to GUM specifies this 

method based on the law of propagation of uncertainty for multi-input multi-output measurement 

functions. This method is supposedly less precise and more efficient compared to MCM. Then, the 

MCM estimator validates the GUF scheme. This requires knowing the sensitivity coefficients of 

the measurement function with respect to the input quantities. To this end, we use numerical 

differentiation. 

Considering the machine’s forward kinematic model as the measurement function of on-machine 

probing of a single point, the input quantities are the five joint positions recorded at the moment 

the probe’s tip touches the target surface, plus the thirteen machine’s geometric errors used to 



24 

 

 

compensate for the measurement bias with a 13-error model. A suitable joint PDF embodies the 

statistical behaviour of these input parameters. 

3.1.2 On-machine probing repeatability 

Part of the uncertainty associated with the on-machine probed joint positions includes the 

repeatability of the probing results. Accordingly, carrying out replicated on-machine probing tasks, 

a mathematical model is fitted to the covariance values of the recorded joint positions collected by 

varying the effective factors expected to influence the repeatability of on-machine probing results. 

These factors are the five positions of the machine’s axes and two spherical coordinates defining 

the unit vector of the approach direction. This repeatability model estimates the on-machine 

probing repeatability in the form of 5×5 covariance matrices (the blue matrices in Figure 3-1) with 

respect to these effective factors. Since the rotary axis positions remain immobile when the probe 

approaches the target, the positions reported for these axes are constant and equal to the 

commanded values. As a result, the corresponding elements of the covariance matrix equal zero. 

3.1.3 Machine geometric errors and associated uncertainty 

Besides the probed joint positions, the machine’s geometric errors are the other inputs of the on-

machine measurement function, i.e. the machine’s forward kinematic model. The SAMBA 

technique identifies these parameters. The iterative solver of this method receives 328 input 

quantities, including 327 coordinates of ball centre indications (including three Cartesian 

coordinates for each of 109 ball measurements done during one SAMBA test) plus the length of 

the SAMBA’s calibrated scale bar. This function returns 13 machine parameters including eight 

inter axis imperfections and three error motions of the prismatic axes. A separate adaptive MCM 

and the corresponding GUF scheme estimate the uncertainty associated with the machine 

parameters. Replicated SAMBA tests provide a quantitative picture of the variations of the 

machine’s status through the covariance matrix of the 328 input parameters. The adaptive MCM 

estimates the 13 machine parameters along with their associated uncertainty in the form of a 13×13 

covariance matrix (the orange matrix in Figure 3-1). The MCM estimator then examines the 

feasibility of the GUF application in the identification of machine’s errors with SAMBA. Unlike 

the repeatability tests that concern the short-term variations of the reported joint positions, the 
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replicated SAMBA tests reflect the long-term random behaviour of the machine. This enables the 

uncertainty schemes to take into account the day-to-day variations of the machine tool and include 

this effect in the estimated uncertainty for on-machine measurement.  

3.1.4 Covariance of input quantities 

Since the quantifications of the two input sets of the on-machine measurement function, discussed 

in 3.1.2 and 3.1.3, occur separately, a complementary treatment is required to assemble them in the 

form of a joint PDF defined by a full covariance matrix. To this end, for a point set (point cloud) 

of size 𝑛, a covariance simulator receives 𝑛 repeatability covariance matrices (each of dimension 

5×5) and the covariance matrix of the machine parameters (of dimension 13×13) and simulates a 

5𝑛+13×5𝑛+13 covariance matrix for the input quantities of the on-machine measurement function. 

3.1.5 Uncertainty assessment in on-machine probing and GD&T 

The covariance matrix and best estimates of the input quantities initiate the adaptive MCM 

estimator. The concerned outputs of the machine’s kinematic function are three compensated 

Cartesian coordinates of the probe’s tip in the workpiece frame for each probed point. The MCM 

scheme estimates 3𝑛 compensated coordinates and the associated joint PDF, specified by a 3𝑛×3𝑛 

covariance matrix (the green matrix in Figure 3-1). Including a geometric-feature function as an 

add-on in the MCM estimator also enables the scheme to assess the GD&T results. The output of 

this function is a scaler value of a geometric feature such as length, flatness, sphericity, etc. The 

experimental validation of estimated uncertainty includes the on-machine probing of calibrated 

references, such as a gauge block and a precision sphere, at several positions of the machine’s work 

envelope. The portion of the experimental results whose estimated expanded uncertainties 

encompass the calibrated value should be as large as the desired coverage probability (for a 

speculated coverage factor). 

3.2 Dissertation synthesis 

After defining the scope of this study in the first two chapters, the four following chapters present 

the steps towards the objectives defined in 1.2. Chapter 4 includes the repeatability analysis of on-

machine measurement. This chapter covers the repeatability models in on-machine probing and the 
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influence of other factors such as hysteresis and resolution. Chapter 5 concerns the machine 

parameters and the associated uncertainty (covariance matrix). An adaptive MCM is the main 

approach to this goal and then, its results validate the GUF application as an efficient alternative. 

Chapter 6 addresses the uncertainty assessment in on-machine measurement via an adaptive MCM 

estimator. This chapter specifies the details on the covariance matrix simulator and the 

experimental validation of estimated expanded uncertainty. Chapter 7 discusses the validation of 

GUF for the on-machine probing results. Figure 3-2 presents the synthesis of the four following 

chapters. Figure 3-1 also categorizes the subjects covered by articles (chapter). 
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Figure 3-1: Data flow in the uncertainty assessment in on-machine measurement. Also shown are 

best estimates and the covariance matrices obtained at certain steps when processing a point set 

of size 𝑛. 
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Figure 3-2: Synthesis of Chapters four to seven and the subjects covered by each chapter. 
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PROBING BY A FIVE-AXIS MACHINE TOOL 

Published in: International Journal of Machine Tools and Manufacture, March 2020 

Authors: Saeid Sepahi-Boroujeni*a; J.R.R. Mayera; Farbod Khameneifara 

4.1 Abstract 

Assessing the repeatability of on-machine probing is required to estimate the measurement 

uncertainty. Currently, standards such as ISO 230-2:2014 and ISO 230-6:2002 include approaches 

only for a single-axis or a diagonal-path evaluation of the machine repeatability. Also, ISO 230-

10:2016 is limited to the evaluation of the probing repeatability at a specific position of the machine 

for single-point surface measurement as well as for measuring the circle and sphere centre location. 

In this paper, a general model capable of predicting the measurement repeatability, considered as 

a covariance matrix, for a five-axis machine in any probing situation is sought from replicate 

measurements on a spherical artifact at various positions and with different probing directions. 

Polynomial functions fitted to the X, Y and Z recorded coordinates as well as to the normal (radial) 

and tangential projection values respectively perpendicular and tangent to the target surface 

estimate the standard deviations, i.e. the square roots of the diagonal elements of the covariance 

matrix, of on-machine probing in terms of experimental factors. Separate polynomials were fitted 

to the covariance quantities obtained between the recorded components as well as the normal and 

the tangential projections to estimate the off-diagonal elements of the covariance matrix. The 

factors include the positions of all five machine axes at the target point as well as the measurement 

direction. The repeatability models are validated by comparing measured and predicted values for 

a separate validation data set, which shows that a quantitative prediction of the randomness of on-

machine measurement is achievable. The potential effects of the probe orientation, the hysteretic 

behaviour of the measurement system, the measurement strategy and the time span on the on-
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machine probing are also studied through different experiments on a ring gauge. The effect of 

hysteresis on probing repeatability was found negligible but biases were detected. 

Keywords: On-machine probing; Repeatability; Covariance matrix; Machine tool; Random errors; 

Hysteresis. 

4.2 Introduction 

On-machine probing is the practice of using a machine tool to measure parts while they are still on 

the machine rather than moving them to the metrology room. This allows manufacturers to correct 

the process mistakes and rectify the geometric errors on the part before removing the part from the 

machine tool. Such closed-loop machining process increases the productivity and decreases the 

scrap machined parts, which makes on-machine probing appealing to the part manufacturers. 

However, the geometric and dynamic errors of the machine tool, the errors of the probing system, 

as well as the thermal effects can adversely affect the quality of the on-machine measurement [4]. 

This gives rise to the complexity and, at the same time, the importance of studying the random 

behaviour and the repeatability of machine tools in the probing mode. 

VIM defines random error as “component of the measurement error that in replicate measurements 

varies in an unpredictable manner” [3]. Then, random effects are characterized by two main 

attributes: variability and unpredictability. Although any observable error can have a systematic 

cause, the trade-off between compensation for all detectable errors and the costs of evaluation leads 

to classifying part of the errors as random effects. According to VIM, a difference between 

systematic and random errors is that systematic effects are measured with respect to a reference 

quantity value, which is usually provided by a calibrated artifact. Unlike systematic errors, the 

random effects of a system are quantified against the most probable outcome of the system. VIM 

refers to this reference as “the average that would ensue from an infinite number of replicate 

measurements of the same measurand”. As a result, random errors can be measured without using 

any calibrated reference. 

The random behaviour of a system can be quantified by statistical analysis of a population made 

of a finite number of its possible outcomes. A randomness evaluation is based on the practice of 

repeating independent trials. Since the number of trials or population members is finite, any 
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assessment of the random behaviour of the system is an estimate. Statistical measures describing 

how outcomes are dispersed around a reference value comply with the definition of random errors 

and can give a quantified picture of the random behaviour of a system [3]. In this regard, standard 

deviation is typically used to evaluate the randomness of a phenomenon based on a finite number 

of trials [42]. When it comes to measurement systems, an incorrect estimate of random effects can 

lead to wasted time, effort and material. Making a reliable assessment of the system repeatability 

is necessary for uncertainty evaluation of any measurement result.  

The current standards for machine tool testing have certain limitations that do not allow a reliable 

assessment of the repeatability of on-machine probing. ISO 230-2:2014 [64] proposes instructions 

to measure the positioning repeatability of a single axis of a machine tool. ISO 230-6:2002 [65] 

extends the repeatability evaluation from single-axis movements to diagonal paths traveled by the 

simultaneous movements of two or three linear axes. Based on these standards and mostly by using 

laser interferometers, the accuracy and repeatability of axis positioning in CNC machines have 

been studied [63, 66, 67]. However, these standards exclude addressing the various positioning of 

the tool with respect to the workpiece resulting from the movement of all machine axes in a 5-axis 

machine tool. ISO 230-10:2016 [68] includes instructions for the evaluation of probing 

repeatability, computed as the range of recorded values in the X, Y, and Z-axis coordinates in a 

specific position of the machine, for single-point surface measurement as well as for measuring 

circle and sphere centre location. This definition of repeatability, however, is not appropriate for 

measurement uncertainty evaluation purposes, for which the system repeatability must be 

estimated through standard deviation and covariance analysis [1, 42]. In addition, it is desirable to 

develop methods for estimating the repeatability of on-machine probing at any position of the 

working volume of the machine tool with different probing directions. Such investigation is 

missing in the current standards and the literature of machine tool testing.  

 For decades, the contact probe on a coordinate measuring machine (CMM) has been a de facto 

standard of data acquisition for off-line part inspection in manufacturing. Due to the similarities 

between a CMM and a machine tool, it is worth reviewing the related works on the evaluation of 

the repeatability of the CMM measurements. Compared with the studies conducted on the 

repeatability of CMMs, metrological capacities of machine tools have been less considered. ISO 

15530-3:2011 [1] specifies the evaluation of measurement uncertainty associated with the 
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outcomes of a CMM measurement using an uncertainty evaluation technique known as 

“substitution method”, which is a part-centred approach that reveals little information about the 

random behaviour of the measurement system (i.e., CMM). In this standard, measurement 

uncertainty is calculated as a function of machine repeatability as well as the uncertainties of 

calibrated values, error compensations, and the similarities assumed between the part and the 

calibrated artifact. Woźniak and Jankowski [69] defined a new parameter describing the 

repeatability of angular positioning by a CMM articulated head. They determined the repeatability 

of the articulated head by comparing the errors occurring by engaging the articulated head and 

those occurring when only the probe was employed. They repeated five times a 25-point sampling 

on a reference sphere with and without turning the articulated head between the measurements. 

Determining the repeatability of the articulated head for different stylus lengths, they showed that 

these values are larger than the errors specified by the manufacturer. Woźniak [70] also proposed 

a procedure to determine the repeatability of the magnetic joint performance used in the automatic 

stylus or probe module change racks of a CMM by measuring a sphere centre with and without 

magnetic joint effects. For automatic and manual replacement of magnetic joints, they proposed 

different test and assembly procedures to examine the effects of replacement direction and the 

length of stylus. They observed that the automatic replacement for large probes with heavy and 

long styli might improve the repeatability in comparison with manual replacement. 

As a prerequisite for uncertainty estimation, the repeatability of CMMs can be evaluated via 

different techniques and equipment. The Lasertracer, based on linear interferometry technology 

and the quadrilateration principles, is used to measure both the accuracy and the repeatability of 

positioning of a CMM [56, 71]. In the setup of a Lasertracer, the probe of a CMM is replaced with 

a retro-reflector. As a result, the associated uncertainty component is not considered. Accordingly, 

the errors of the probe must be evaluated separately [72, 73]. The repeatability of a CMM can also 

be evaluated by probing artifacts through various measurement strategies that engage both the 

CMM and the probing system at the same time [74-76]. Balsamo et al. [53] introduced the Expert 

CMM (ECMM) project aiming to evaluate the measurement uncertainty using the Monte Carlo 

(MC) method. They first estimated the geometric errors of CMM by a self-calibration procedure 

and then repeatedly measured an artifact in 100 different positions in the working volume of the 

CMM. Sladek and Gaska [56] developed an MC simulator for measurement uncertainty estimation. 
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Their algorithm evaluates the volumetric errors caused by CMM joint errors and probing 

deviations. They used a Lasertracer to estimate the geometric errors of the CMM. Residual errors 

(the systematic volumetric errors that remain uncompensated) caused by kinematic errors are 

determined at positions uniformly distributed at the nodes of a 3D Cartesian grid. They investigated 

the contribution of the probe head to the volumetric errors by probing a precision sphere under 

different probing strategies. They considered many parameters such as the angle between 

measurement direction and the normal vector of the measured surface, the roughness and form 

errors of the target surface, ball deformation, and stylus deflection. Zhong et al. [77] established a 

new S trajectory for R-test measurements to evaluate the dynamic accuracy of five-axis machine 

tools. They considered the repeatability of the machine tool, the measurement uncertainty of the 

R-test and the repeatability of set-up operation to be the main contributors to the uncertainty of the 

new method. They conducted a thousand-trial MC simulation for measurement uncertainty 

evaluation. In another work, Zhong et al. [78] present a spherical strategy for double ball-bar 

measurement to evaluate the volumetric accuracy of a five-axis machine tool. They evaluate the 

uncertainty of the calibration process through the law of the propagation of uncertainties specified 

by the Guide to the Expression of Uncertainty in Measurement (GUM). Taking into account the 

same uncertainty sources including the machine repeatability and set-up operation as well as the 

ball-bar uncertainty, they validate the uncertainty evaluation by an MC method. 

In this study, two precision spheres are used to quantify the repeatability (covariance matrix) of 

on-machine probing of a five-axis horizontal machining centre equipped with a touch-trigger 

probe. The spheres are probed repeatedly at multiple positions within the machine’s working 

volume with various approach directions. Polynomial functions are then fitted to the measured 

points that enable the standard deviations of on-machine probing to be estimated at any desired 

position and with any probing direction. Covariance models, including the polynomials of degree 

five, also are fitted to the covariance values measured between the recorded coordinates and 

projected components. In order to gain a better understanding of the sources of non-repeatability, 

the potential effects of the hysteresis behaviour of the measurement system are then studied through 

on-machine measurements of 24 points on the inner wall of a ring gauge with ordered and shuffled 

replicate measurements.  
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4.3 Methods and materials 

Implementing on-machine measurement techniques to verify the geometric parameters of a 

machined product requires two main steps: eliminating systematic errors and evaluating the 

uncertainty of measurement results (Figure 4-1). Successfully dealing with these two steps can 

convert a machine tool to a traceable CMM [37]. However, many challenges have to be faced 

before meeting these conditions. Compensation for various kinematic errors propagated through 

the kinematic chain of a machine tool requires a periodic calibration of the machine. Variable 

machine thermal status with its level of activity and changes in the industrial environment condition 

also might cause variations in machine systematic errors. Moreover, probing repeatability must be 

quantified. 

The uncertainty of measurement result is defined as a parameter reflecting the dispersion of the 

values that could be reasonably attributed to the measurand [3, 42]. This parameter reflects the lack 

of knowledge of true value of the measurand. After correction for determined systematic effects, 

measurement results remain only an estimate because of two uncertainty sources: random effects 

and imperfect corrections of the measurement result for the systematic effects [42]. Supplement 1 

to the GUM [79] specifies the measurement uncertainty evaluation based on an MC method. 

Supplement 2 to the GUM [50] is a modification of the GUM uncertainty framework applicable to 

a multi-input multi-output measurement function. Regardless of employing either method, both 

variance and covariance evaluations of the uncertainty contributors are required. In an MC method, 

a joint probability density function (PDF) describes the random behaviour of measurement function 

inputs based on the covariance matrix of the inputs. Drawing input vectors at random, an MC 

simulator evaluates the random inputs through the measurement function and generates an output 

population, which encodes crucial statistical information about the output quantities, including 

measurement uncertainty and output covariance. The GUM uncertainty framework, which 

approximates measurement uncertainty through the Taylor-series linearization of measurement 

function, also requires the covariance matrix of the input values. As a result, any evaluation of 

measurement uncertainty must address the covariance matrix of considered contributors (Figure 

4-1). 



35 

 

 

When the axes of a machine tool are driven to a position, due to a combination of systematic and 

random errors, the relative position of the tool with respect to the workpiece differs from the 

nominal relative position. The systematic portion of this deviation is not observable by the machine 

tool since it simply reports the coordinates based on its axes positions. To evaluate systematic 

errors, calibrated measuring equipment [67, 80] or calibrated artifacts [26, 81] are employed. 

Evaluating the random errors of on-machine probing, however, does not require calibrated artifacts 

because these errors are evaluated against the mean of repeated trials. Random deviations in the 

relative position of the tool frame with respect to the relevant workpiece feature frame manifest 

themselves in the recorded touch coordinates. 

 

Figure 4-1: On-machine probing and the uncertainty evaluation of measurement results. In 

orange, the subject addressed in this paper. 

4.4 Repeatability of on-machine probing 

The repeatability of on-machine probing is evaluated as a covariance matrix of dimension 3×3, 

including the standard deviations (square roots of diagonal components) of recorded touch 

coordinates in a finite number of probing tasks and the covariance (off-diagonal components) 

between the recorded Cartesian coordinates. In case of employing the normal and the tangential 

projections of probed points, the measurement repeatability can be presented in the form of a 

covariance matrix of dimension 2×2. The repeatability of on-machine probing was investigated in 
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a five-axis ball test where two precision spheres of nominal diameter 25.400 mm and nominal stem 

lengths (from the mounting base to the ball centre) 76.20 and 152.40 mm are chosen as artifact. 

Target points on the balls were measured on a five-axis horizontal machining centre model HU40-

T from Mitsui Seiki equipped with a Renishaw® MP 700 touch-trigger probe (Figure 4-2a). In order 

to evaluate the repeatability of on-machine probing, target point coordinates 𝑋T, 𝑌T, and 𝑍T in the 

machine frame as well as rotary axes indexations 𝐵T and 𝐶T are chosen as experimental factors in 

the design of experiments (Figure 4-2b). In addition, the spherical coordinates 𝜃 and 𝜑 of a unit 

approach vector, expressed in a spherical coordinate system located at the artifact centre (Figure 

4-2c) are also considered as experimental factors that would influence the probing performance. 

The polar and azimuthal axes of the spherical coordinate system are respectively parallel to the 

machine’s Z and Y axes, i.e. Zm and Ym (Figure 4-2c). Before the design of experiments, the effects 

of probe orientation ω (Figure 4-2c) was investigated by probing the machine’s pallet, in a “probe 

orientation” test. In this experiment, varying angle ω (spindle indexation) from 0° to 360° by 

increments of 45°, each measurement is repeated 50 times while the machine probing movement 

is kept unchanged along the X-axis of the machine, Xm (Figure 4-2d). This test led to small 

variations (≈ 0.1 μm) in the standard deviation of the measurement results. Then, the probe 

orientation was disregarded in on-machine repeatability analyses. 

The variation ranges of the experimental factors are listed in Table 4-1. Experimental factors were 

combined to form a total number of 50 target poses. Each target point was probed 30 times before 

moving to the next target point so that 1500 on-machine measurements were carried out. The 

standard deviation of the 29 values recorded for each of the X, Y and Z coordinates and probing 

angles at a target point as well as the covariance between the recorded values were taken as the 

repeatability of on-machine measurements for those conditions. 

In order to obtain mathematical models capable of estimating the repeatability of on-machine 

measurements at any desired position, polynomial functions were fitted, in a least-square sense, to 

the standard deviations of the recorded X, Y, and Z coordinates at 50 positions as well as to the 

same results but projected normal and tangential to the target surface. Similarly, quintic 

polynomials were fitted to the covariance values between each pair of the recorded coordinates, 

including cov(X, Y), cov(X, Z) and cov(Y, Z), as well as those of the normal and tangential 

projections cov(N,T). These repeatability models use as independent input variables, the five 
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quantities representing the target pose 𝑋T, 𝑌T, 𝑍T, 𝐵T, and 𝐶T (Figure 4-2b) as well as angles 𝜃 and 

𝜑 defining the measurement direction (Figure 4-2c). Each standard deviation model 𝑓 consists of 

22 coefficients that can be expressed as: 

𝑓 = 𝛼𝑓,0 + 𝛼𝑓,1𝜑 + 𝛽𝑓,1𝜑
2 + 𝛼𝑓,2𝜃 + 𝛽𝑓,2𝜃

2 + 𝛾𝑓,2𝜃
3 + 𝛿𝑓,2𝜃

4 +∑𝛼𝑓,𝑖𝑃𝑖

7

𝑖=3

+ 𝛽𝑓,𝑖𝑃𝑖
2 + 𝛾𝑓,𝑖𝑃𝑖

3 
4-1 

A covariance model g, consisting of 36 coefficients, is formulated as: 

𝑔 = 𝛼𝑔,0 +∑𝛼𝑔,𝑖𝑃𝑖

7

𝑖=1

+ 𝛽𝑔,𝑖𝑃𝑖
2 + 𝛾𝑔,𝑖𝑃𝑖

3 + 𝛿𝑔,𝑖𝑃𝑖
4 + 휀𝑔,𝑖𝑃𝑖

5 
4-2 

where, in Eq. 4-1, 𝑃𝑖  (𝑖 = 3,… ,7) take on five experimental factors 𝑋T, 𝑌T, 𝑍T, 𝐵T, and 𝐶T. In Eq. 

4-2, 𝑃𝑖  (𝑖 = 1,… ,7) take on seven experimental factors 𝑋T, 𝑌T, 𝑍T, 𝐵T, 𝐶T, 𝜃, and 𝜑. In these 

equations, 𝛼𝑓,𝑖, 𝛽𝑓,𝑖, 𝛾𝑓,𝑖, and 𝛿𝑓,𝑖 are the coefficients of standard deviation model 𝑓, and 𝛼𝑔,𝑖, 𝛽𝑔,𝑖, 

𝛾𝑔,𝑖, 𝛿𝑔,𝑖, 휀𝑔,𝑖 are the coefficients of covariance model 𝑔. 

To validate the models, eight additional target poses were randomly chosen within the working 

space of the machine. The points were repeatedly measured and the repeatability values of the 

recorded coordinates were compared with the values predicted by the models.  

The spherical geometry of the artifacts provides the opportunity to approach the target surface in 

any desired direction. For machine tools, imperfections in the positioning of machine axes can 

result in deviations in both the relative translation and the relative orientation of the tool with 

respect to the workpiece. Having a three-dimensionally axisymmetric geometry, the spherical 

artifact decouples the direction of probing from the angular position of the sphere generated by the 

rotary axes, which ensures the isotropy of the approach direction to the target surface. However, 

the variable deviation from nominal in the relative position of the tool frame with respect to the 

stylus tip position is likely to affect the recorded coordinates in replicate measurements. The 

relative translation when triggering occurs, including both the systematic and random errors, can 

be described by a longitudinal component 𝑎 and a lateral component 𝑏, respectively aligned with 

and perpendicular to the nominal approach direction (Figure 4-3). The longitudinal component 

manifests itself directly in the coordinates recorded by the machine. Although the machine is  
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Figure 4-2: a) Experimental setup of five-axis ball tests including the precision spheres and the 

touch-trigger probe mounted on the five-axis machine tool. b) The target pose coordinates 𝑋T , 𝑌T  , 

and 𝑍T   in the machine frame as well as the indexations of rotary axes 𝐵T  and 𝐶T   considered as 

machine factors in the design of experiments for the repeatability evaluation of on-machine 

measurements. Also shown are c) the polar 𝜑 and azimuthal angle 𝜃 of the approach direction, 

and d) the probing strategy of the probe orientation tests used to study the effects of probe 

orientation ω, around the probe axis, on measurement repeatability.  

Table 4-1: Variation ranges of the experimental factors in the repeatability evaluation of on-

machine measurements. 

 𝜑 (degree) 𝜃 (degree) 𝐵T(degree) 𝐶T (degree) 𝑋T (mm) 𝑌T (mm) 𝑍T (mm) 

Min 0 0 -90 -180 -220 -170 -110 

Max +90 +360 +90 +180 +230 +180 +220 
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of the relative lateral deviation 𝑏′ in the touch position, this component might affect the recorded 

coordinates because of the resulting change in the longitudinal position at trigger time. Considering 

the radii of employed artifact and stylus tip with respectively nominal values of 12.700 and 3.000 

mm, a lateral translation of 𝑏′ = 125.3 µm is required to change the approach distance along the 

nominal approach direction by 𝑑 = 0.5 µm, which is equal to the machine resolution. That is, the 

random lateral deviation of the tool frame with respect to the workpiece frame in replicate 

measurements must be significantly large to affect the coordinates recorded by the machine, which 

is less likely to occur in reality. Although the probe would already deviate laterally by up to 100 

µm due to the machine systematic errors, findings of this research show that the variation range of 

lateral deviations caused by random errors rarely exceeds 4 µm. Therefore, sphere is a suitable 

artifact for repeatability evaluation due to its isotropy of probing directions and its insensitivity to 

the relative rotation and the randomness of relative lateral translation of the stylus tip with respect 

to the master sphere in replicate measurements. 

 

Figure 4-3: Schematic illustration of the effect of relative translation of the tool with respect to 

the workpiece on the approach distance along the nominal approach direction. 

4.5 Hysteresis of the measurement system 

Hysteresis is an error source arising from the fact that a system response to an input can be affected 

by the preceding inputs [82]. For example, touch probe hysteresis mainly results from friction at 
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the sitting contact in a touch-trigger probe structure and can be magnified by elastic deflection of 

the stylus [83]. This phenomenon occurs when there is a change in the measurement direction, 

where the friction in the sitting contacts prevents the probe stylus from recovering its neutral 

position when the contact ends [84]. Backlash on machine tools is another example. Both 

systematic and random effects of hysteresis are measured by means of a “probing hysteresis test”, 

which includes the hysteresis effects of both the machine axes and the touch-trigger probe. In this 

test, 12 target points uniformly distributed (𝜓 = 0°, 30°, … , 330° in Figure 4-4a) around the inner 

wall of a ring gauge of the nominal diameter of 63.50 mm were measured. The ring gauge centre 

was positioned at the x=y=0 position of the machine. For each target point, two probing results, as 

the X, Y and Z-axis machine readings were recorded: the first probing follows the probing of the 

same target point, while the second follows the probing of the ring wall on the opposite side of the 

target point (Figure 4-5a). By doing so, the two recorded results are different by the hysteresis 

being involved. The probe retracts to the ring centre after each probing. This procedure is repeated 

24 times. The effect of hysteresis is then investigated by calculating the average radial projections 

and the corresponding standard deviations obtained for each of the two data sets. 

In this test, the potential hysteretic effect of the machine axes on changing the previously measured 

point might be partially erased by the approach motion to the point to be probed. Then, to study 

the hysteresis effect of the X and Y axes, only the four target points (𝜓 = 0°, 90°, 180°, 270° in 

Figure 4-4a) along these axes were probed for the “axis hysteresis test”. In this experiment, two 

probing results were recorded for each target point: the first follows approaching (without touch) 

the ring wall along the positive direction of the cross axis, and the second follows approaching 

(without touch) the ring wall along the negative direction of the cross axis (Figure 4-5b). For the 

two data sets, the hysteresis effect of the X and Y axes are then investigated by calculating the 

average radial projections and the corresponding standard deviations. 
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Figure 4-4: Target points in a) the probing hysteresis and axis hysteresis tests (For the axis 

hysteresis tests, only the target points at 𝜓 = 0°, 90°, 180°, and 270° were probed), and b) the 

simple, shuffled and ordered ring gauge. 

 

Figure 4-5: Measurement strategy adopted in each cycle of a) the probing hysteresis test and b) 

the axis hysteresis test. After each measurement, the probe retracts to the ring centre. 

4.6 Probing strategy and time span 

It is well understood that thermal effects systematically influence machine accuracy. However, the 

effect of thermal variations of the machine tool on its random behaviour in both machining and 

probing still needs to be addressed in more detail. Depending on the strategy adopted for replicate 

measurements in repeatability evaluation, probing duration might vary between a few minutes to a 

few hours. During this period, the machine performance gradually alters due to the thermal loadings 

caused by the heat generated by the various machine sub-systems as well as the thermal exchanges 
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with the environment. Moreover, the machine axes might move differently between two replicate 

probing tasks. To study the effect of probing strategy and the time span of repeated measurements, 

the 24 points shown in Figure 4-4b were measured under three different measurement strategies. 

For the first strategy, each target point was probed 50 times before moving to the next target point 

so that all measurements at a target point are gathered in a relatively short time. In this measurement 

strategy, referred to as “simple ring gauge” test, replicate measurements of each point are 

completed in almost 12 min. Then for the second strategy, the 24 points were measured once one 

after another and this cycle was repeated 50 times, referred to as “ordered ring gauge” test. The 

third strategy involves measuring the 24 points in a randomly shuffled order until each point is 

probed 50 times, referred to as “shuffled ring gauge” test. The three ring gauge tests were conducted 

with two indexations of the initial target point 𝜓0 = 0° and 𝜓0 = 7.5° (Figure 4-4b). In the three 

ring gauge tests, the approach position was at the centre of the ring gauge and the probe retracts to 

the centre after each probing. The ordered and shuffled ring gauge tests each lasted almost five 

hours to complete the replicate measurements of each target point. The temperature of the machine 

chamber was measured during the ordered and the shuffled ring gauge tests. The resolution of the 

employed thermometer is one °F. The standard deviation of the repeated measurements was 

calculated to quantify the measurement repeatability. 

4.7 Results and discussion 

4.7.1 Probe orientation 

The probe orientation test (Figure 4-2d) was carried out to study the effect of spindle indexation, 

and thus probe orientation around its axis, on the repeatability of recorded data. Changing the probe 

orientation 𝜔 from 0° to 360° results in small changes in the repeatability of on-machine 

measurements with a peak-to-valley variation of 0.08 μm (Figure 4-6). Part of these variations can 

be explained by the random behaviour of the touch-trigger probe. Pre-travel variation causes the 

majority of touch-trigger probe errors [85]. This error is the distance traveled by the probe between 

the points where the probe touches a target and where triggering occurs. Although treated as the 

systematic behaviour of a touch-trigger probe, pre-travel also has a random nature [86]. Wozniak 

and Jankowski [87] showed that although smaller than systematic errors, random errors contribute 
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to the unidirectional repeatability of touch-trigger probes. As a result of the probe orientation test, 

probe orientation ω was disregarded so that the repeatability of on-machine measurements was 

evaluated considering the seven parameters, listed in Table 4-1. 

  

Figure 4-6: The repeatability of on-machine measurements versus the probe orientation ω in the 

probe orientation tests (Figure 4-2d). 

4.7.2 Repeatability models of on-machine measurements 

The coordinates recorded by the five-axis ball tests suggest that most of the first recorded values, 

among the 30 repeated measurements at each position, were singularly deviated from the average 

(Figure 4-7). This is thought to be due to hysteresis because the first touch has a preceding motion, 

which is different from subsequent touches. In order to prevent this outlier affecting the standard 

deviation of each sample, the first probing result was ignored in the standard deviation calculations. 

Given that this study separately addresses the hysteretic effects (section 4.7.3), disregarding the 

first deviated indication prevents the model from double counting this effect. 
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Figure 4-7: Typical X and Y coordinates recorded in the replicate measurements for the five-axis 

ball tests obtained for nominal target pose 𝑋T = −68.8, 𝑌T  = 69.7, 𝑍T  = 110.6, 𝐵T = −54°, 𝐶T  =

−180°, 𝜑 = 90° and 𝜃 = 144°. The polar angle of the approach direction is 𝜑 = 90°, thus the 

probe moves in the XY plane resulting in no variation in Z coordinate. 

4.7.2.1 Standard deviation models 

On-machine measurement repeatability models of the machine give the machine repeatability for 

any point and measurement direction. The seven inputs (𝑋T, 𝑌T, 𝑍T, 𝐵T, 𝐶T, φ and θ) of the 

repeatability models are obtainable from the measurement G code. The R-squared values 

(coefficients of determination) of the fitted standard deviation models are 92%, 81%, and 90 %, 

respectively for the X, Y, and Z coordinates (Figure 4-8a-c). The models are then used to predict 

the standard deviations at the eight validation points, randomly chosen within the working volume 

of the machine, with maximum errors 36%, 34%, and 33% for the X, Y, and Z coordinates, 

respectively (Table 4-2). The magnitudes of the maximum differences between measured and 

predicted values are 0.24, 0.09, and 0.12 μm, respectively. 

One of the conditions of regression models for a valid least-squares fit is that the fitted residuals 

are normally distributed [88]. To verify this condition, the histograms of residuals of the 

repeatability models were visually inspected (Figure 4-8d-f). Considering the fact that the 

theoretical percentiles of the normal distribution versus the observed sample percentiles should be 

approximately linear [88], normal probability plots can give a more reliable picture of the quality 

of the fitted functions. The normal probability plots of the residuals pass approximately through 
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zero and are nearly linear (Figure 4-8g-i), suggesting the condition that the residuals are normally 

distributed is met. No extreme outlier is present and the residuals are reasonably bounded resulting 

in non-heavy tailed distributions. Therefore, the residuals of the fitted models can be considered as 

“well-behaved”. Higher-order polynomial functions, i.e. quartic, was also examined, which were 

fitted with higher R-squared values though inaccurately estimated the validation data, probably due 

to over-fitting. 

In the uncertainty analysis of single point measurement, the repeatability of the three recorded 

Cartesian coordinates contributes to the uncertainty associated with the position reported for a 

target point. In general, this is important for the evaluation of certain tolerances of freeform 

surfaces, for example in airfoil blade inspection where airfoil profile should be reconstructed under 

the uncertainty of inspection data points [89, 90]. However, in many metrological applications, the 

final measurand, such as a surface flatness, or a hole roundness, is mostly insensitive to any 

variation parallel to the target surface. In this regard, having the machine repeatability along the 

measurement direction and in a local coordinate frame positioned at the target point with normal 

and tangential axes with respect to the target surface will be more practical. Accordingly, 

repeatability models that receive the target pose and the measurement direction and return the 

repeatability along the nominal measurement direction, as well as tangent to the target surface, are 

fitted to the measured points. The R-squared values of the standard deviation models are 84% and 

82% (Figure 4-9a and b) respectively for the normal and tangential projections. The models predict 

the standard deviation of on-machine measurement for the eight verification points with maximum 

errors of 38% and 27% (Table 4-2), denoting maximum difference magnitudes 0.34 and 0.05 μm 

for the normal and tangential directions, respectively. The normality of the residuals (Figure 4-9c 

and d) were examined through the normal probability plots (Figure 4-9e and f). 

 



46 

 

 

 

Figure 4-8: Regression plots of the values measured versus the values predicted by the probing 

standard deviation models for: a) the X coordinate, b) the Y coordinate, and c) the Z coordinate. 

The non-filled and filled markers represent the measurement results used to fit and to validate the 

probing repeatability models, respectively. The residual histograms obtained by fitting the 

standard deviation models to the: d) X coordinate, e) Y coordinate, and f) Z coordinate. Normal 

probability plots obtained for the recorded g) X coordinate, h) Y coordinate, and i) Z coordinate. 
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Figure 4-9: Regression plot of the values measured versus the values predicted by the probing 

standard deviation model a) perpendicular to the target surface and b) tangent to the target 

surface. The non-filled and filled markers represent the measurement results used to fit and to 

validate the probing repeatability models, respectively. The residual histograms obtained by 

fitting the standard deviation model c) perpendicular to the target surface and d) tangent to the 

target surface. Normal probability plot e) perpendicular to the target surface and f) tangent to the 

target surface 

Table 4-2: Validation of the standard deviation models of on-machine measurements.  

 
Experimental factors  Error (%) 

𝜑 (degree) 𝜃 (degree) BT (degree) CT (degree) XT (mm) YT (mm) ZT (mm)  X Y Z N T 

1 45 180 -90 120 -153.5 -158.3 -89.6  32.1 33.3 10.6 5.1 22.7 

2 60 240 -60 -180 -36.5 74.5 114.3  35.8 21.6 26.3 37.6 11.5 

3 60 240 -60 -180 -102.4 -165.5 152.4  13.0 6.4 3.6 22.8 7.6 

4 0 240 0 0 -80.0 -80.0 90.0  15.6 7.9 32.5 24.6 4.5 

5 0 240 0 0 -80.0 160.0 166.2  12.0 12.0 24.1 10.7 9.9 

6 15 240 30 -60 -58.8 27.6 133.8  31.9 22.8 15.8 19.7 14.4 

7 60 240 60 -120 212.7 -16.2 -71.6  19.9 33.0 12.7 33.2 1.7 

8 45 180 -90 120 -153.5 -158.3 -89.6  14.1 33.9 6.8 14.2 27.0 
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In order to provide a picture of the effects of each factor on the repeatability and its variations, 

Table 4-3 quantitatively summarizes the standard deviation model. The columns include the mean 

of the indicated output as well as its average gradient with respect to each of the seven experimental 

factors. In each row of this table, the indicated factor is incrementally varied over its range, 

specified in Table 4-1, and the average values as well as the absolute gradients of the model are 

calculated. In this table, the factors other than the considered variable are fixed in a way that the 

machine axes are set at their central values (Table 4-1) and the approach direction is [φ, θ]=[45°, 

45°].  

Figure 4-10 shows the variations of the standard deviation functions with respect to the frame of 

the last axis (the C-axis) of the workpiece branch of the machine tool, which includes the X, B, and 

C-axis. The five-axis ball tests are conducted in a way that after completing each probing task and 

before starting the next repetition, all the five axes of the machine retract to their zero positions. 

As a result, although rotary axes B and C are fixed while the touch-trigger probe picks the 

coordinates, these axes contribute to the repeatability of probing results due to their unrepeatable 

positioning through the replicate measurements. In Figure 4-10, the axis positions other than the 

independent factors of each graph are fixed at their central values (Table 4-1) and the approach 

direction is [φ, θ]=[45°, 45°]. The positions of axes B and C have little effect on the repeatability 

of the recorded Z coordinates (Figure 4-10c), whereas they are more likely to affect the X (Figure 

4-10a) and Y (Figure 4-10b) coordinates, where larger gradients are observable for the standard 

deviation functions (Table 4-3). The maximum standard deviation of the recorded X coordinate 

exceeds 0.40 μm (Figure 4-10a) at the extremes of the B and C-axis.  

Figure 4-10d-f illustrate the variations of on-machine measurement standard deviation with respect 

to the B and X-axis of the machine. The repeatability of the Y coordinate (Figure 4-10e) varies 

more with respect to the X-axis than what is shown in Figure 4-10b for the B and C-axis (Table 

4-3). As Figure 4-10e illustrates, for all values of the B-axis the repeatability of the Y coordinates 

improves at the negative extreme of the X-axis. The standard deviations of the recorded Y (Figure 

4-10e) and Z (Figure 4-10f) coordinate reach 0.55 and 0.70 μm, respectively. Figure 4-10g-i show 

the recorded standard deviations of the coordinates versus the positions of the C and X axes of the 

machine. The maximum standard deviation of the recorded Y coordinate (Figure 4-10h) is 0.62 μm 

at the zero positions of the C-axis, and that of the recorded Z coordinate (Figure 4-10i) exceeds 0.7 
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μm. The effect of the prismatic X-axis on the repeatability of on-machine measurement is more 

significant in the recorded Y coordinates (Figure 4-10h), where a larger gradient is observable 

along the machine X-axis (Table 4-3).  

Figure 4-11 shows the repeatability variations with respect to the axes of the tool branch, Z and Y 

axes. The standard deviation of measured X coordinates is smaller than 0.30 μm (Figure 4-11a) 

and its variations with respect to the Z-axis are small in all the positions of Y-axis (Table 4-3 and 

Figure 4-11a). The maximum standard deviation of the Y (Figure 4-11b) and Z (Figure 4-11c) 

coordinates reaches 0.80 and 0.58 μm, respectively. According to Table 4-3, the average gradient 

of standard deviation model with respect to the Y-axis is among the largest. This implies a more 

significant role of this axis in the repeatability variations of on-machine probing. Particularly, the 

Y-axis position dramatically varies the recorded Y coordinate with an average gradient of 0.0089 

μm/mm. 

Table 4-3: The average of standard deviation and the average of absolute gradient of the standard 

deviation model with respect to the experimental factors. For each row, the variable other than 

the indicated factor is fixed so that the machine axes are fixed at their central values (Table 4-1) 

and the approach direction is [φ,θ]=[45°,45°]. 
 

Average of standard deviation (μm)  Average of absolute gradient (μm/unit) 
 

X Y Z N T  X Y Z N T 

𝜑 (degree) 0.18 0.57 0.36 0.78 0.10  0.0033 0.0052 0.0068 0.0044 0.0027 

𝜃 (degree) 0.30 0.50 0.48 0.74 0.20  0.0044 0.0039 0.0054 0.0062 0.0012 

BT (degree) 0.19 0.57 0.46 0.61 0.16  0.0034 0.0033 0.0009 0.0111 0.0009 

CT (degree) 0.21 0.56 0.44 0.85 0.15  0.0017 0.0015 0.0004 0.0041 0.0001 

XT (mm) 0.20 0.51 0.44 0.65 0.13  0.0024 0.0057 0.0007 0.0082 0.0024 

YT (mm) 0.19 0.60 0.44 0.84 0.16  0.0022 0.0089 0.0060 0.0149 0.0009 

ZT (mm) 0.21 0.58 0.45 0.71 0.16  0.0007 0.0029 0.0023 0.0073 0.0009 
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Figure 4-10: The standard deviation of on-machine measurements versus the positions of the 

workpiece branch axes: a-c) B and C; d-f) B and X; and g-i) X and C. The other independent 

parameters are fixed at their central values (Table 4-1) and the approach direction is 

[φ,θ]=[45°,45°]. 
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Figure 4-11: The standard deviation of on-machine measurements versus the positions of the tool 

branch axes Z and Y. The other independent parameters are fixed at their central values (Table 

4-1) and the approach direction is [φ,θ]=[45°,45°]. 

Figure 4-12 depicts the polar plots of the standard deviation models with respect to the polar φ and 

azimuthal 𝜃 angles of the approach direction. The repeatability plots of the recorded X and Y 

coordinates (Figure 4-12a and b) are more stretched along the machine X (𝜃=90°) and Y (𝜃=0°), 

respectively. The repeatability of these coordinates improves by decreasing the azimuthal angle of 

the approach direction. Smaller plots of the recorded X coordinates implies more repeatability of 

the machine X-axis. The plots of the recorded Z coordinates (Figure 4-12c) are more circular 

compared with the other two prismatic axes of the machine that might be caused by the symmetry 

of the Z-axis movement with respect to the polar angle φ of the approach direction. Because of 

fitting residuals, the model fitted to the recorded Z coordinates does not pass through zero at φ 

=90°. As expected, the standard deviation of the recorded coordinates projected on the normal 

(radial) direction (Figure 4-12d) is considerably larger than those projected on the tangential 

direction (Figure 4-12e). 

 

 

 
 

a b c 



52 

 

 

 

Figure 4-12: The polar plots of the standard deviation predictions from the model versus the polar 

φ and azimuthal 𝜃 angle of the approach direction for the a) X coordinate, b) Y coordinate, c) Z 

coordinate, d) normal (radial) projection, and e) tangential projection of the Cartesian readings. 

The other independent parameters are fixed at their central values (Table 4-1). 

4.7.2.2 Covariance models 

Studying the correlation coefficients and the p-values obtained through hypothesis testing revealed 

some strong correlations between the recorded coordinates under specific measurement conditions. 

The repeatability analysis of a machine tool for uncertainty evaluation purposes will be incomplete 

without determining the off-diagonal elements of the covariance matrix. The output of the 

covariance model is needed to propagate the uncertainty of on-machine measurement through to 

their post-processing to evaluate part deviations against their required tolerances. Particularly, the 

covariance analysis is inevitable in uncertainty evaluation of a multi-input measurement function, 

which is usually the case in on-machine measurement. However, the proposed model also can serve 

as a stand-alone scheme, providing insights into machine performance. 
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Therefore, four covariance models were fitted to estimate the covariance between the recorded X 

and Y coordinates cov(X,Y), between the recorded X and Z coordinates cov(X,Z), between the 

recorded Y and Z coordinates cov(Y,Z) and between the normal and tangential projections 

cov(N,T). 

When the probe travels in a way that a component of the reported coordinates (for example X 

coordinate) remains unchanged during the movement, the covariance values between that 

component and the other two are zero (cov(X,Y)=0 and cov(X,Z)=0). Because the covariance 

between a constant and a changing variable is zero. Also, by varying the azimuthal angle 𝜃 of the 

probing direction from 0° to 360°, the recorded X coordinates at 𝜃=0° and 180° as well as the 

recorded Y coordinates at 𝜃=90° and 270° remain constant. That is, at these five angles 𝜃, the 

covariance between the recorded X and Y coordinates cov(X,Y) is zero. This implies that any 

polynomial function used to estimate cov(X,Y) should have at least a degree of five. 

The R-squared values of the fitted covariance models are 95%, 89%, and 76 %, respectively for 

cov(X,Y), cov(X,Z) and cov(Y,Z) (Figure 4-13a-c). The models predicted these covariance 

quantities at the eight validation points with maximum errors 31%, 35%, and 45% (Table 4-4), 

denoting maximum differences between measured and predicted values of 0.12, 0.07, and 0.07 

μm2, respectively. The quality of fittings is examined with fitting residual histograms and normal 

probability plots (Figure 4-13d-i). The R-squared values of the models fitted to estimate the 

covariance between the normal and the tangential projections cov(N,T) is 77% (Figure 4-14a). This 

model predicts cov(N,T) for the eight validation points with a maximum error of 37% (Table 4-4), 

denoting a maximum difference magnitude of 0.04 μm2. Similarly, the normal probability plot 

(Figure 4-14c) was used to inspect the normality of the residuals (Figure 4-14b). 
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Figure 4-13: Regression plots of the values measured versus the values predicted by the 

covariance models between: a) the X and Y coordinates cov(X,Y), b) the X and Z coordinates 

cov(X,Z), and c) the Y and Z coordinates cov(Y,Z). The non-filled and filled markers represent 

the measurement results used to fit and to validate the covariance models, respectively. The 

residual histograms obtained by fitting the models to the: d) cov(X,Y), e) cov(X,Z), and f) 

cov(Y,Z). Normal probability plots obtained for the measured g) cov(X,Y), h) cov(X,Z), and i) 

cov(Y,Z). 
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Figure 4-14: a) Regression plot of the values measured versus the values predicted by the 

covariance model between the values projected perpendicular to the target surface and tangent to 

the target surface cov(N,T). The non-filled and filled markers represent the measurement results 

used to fit and to validate the covariance models, respectively. b) The residual histograms 

obtained by fitting the model and c) corresponding normal probability plot. 

Table 4-4: Validation of the covariance models of on-machine measurements.  

 
Experimental factors  Error (%) 

𝜑 (degree) 𝜃 (degree) BT (degree) CT (degree) XT (mm) YT (mm) ZT (mm)  
cov(X,Y) cov(X,Z) cov(Y,Z) cov(N,T) 

1 45 180 -90 120 -153.5 -158.3 -89.6  0.3 23.9 14.2 27.4 

2 60 240 -60 -180 -36.5 74.5 114.3  25.9 12.6 8.8 17.1 

3 60 240 -60 -180 -102.4 -165.5 152.4  20.8 14.1 2.7 12.1 

4 0 240 0 0 -80.0 -80.0 90.0  20.6 20.3 10.5 11.8 

5 0 240 0 0 -80.0 160.0 166.2  17.7 17.4 18.3 11.4 

6 15 240 30 -60 -58.8 27.6 133.8  14.0 16.8 2.3 18.6 

7 60 240 60 -120 212.7 -16.2 -71.6  28.9 13.3 3.2 1.2 

8 60 -120 75 240 211.6 -16.9 -74.6  8.7 10.6 17.8 17.4 

 

Table 4-5 summarizes the mean and the absolute gradient of the covariance model with respect to 

the experimental factors (Table 4-1). In this table, similar to Table 4-4, the machine axes are fixed 

at their central values (Table 4-1) and the approach direction is [φ, θ]=[45°, 45°]. Figure 4-15 

depicts the polar plots of the absolute values of the covariance models with respect to the approach 

vector components, the polar φ and the azimuthal 𝜃 angles. As this figure demonstrates, the 

strongest correlation is observable between the X and Y coordinates for the positive and negative 
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movements of X and Y-axis, respectively, (270°< 𝜃<360 ) where the covariance reaches 0.9 μm2. 

The Y and Z coordinates are the least correlated variables. As expected, the estimator model for 

cov(X, Y) forms a rose curve due to the zeros of the function at azimuthal angles 0°, 90°, 180°, 

270° and 360° (Figure 4-15a). Asymmetric petals suggest that the covariance between the recorded 

X and Y coordinates is larger for angles 𝜃 between 270° and 360°. When the polar angle of the 

approach vector φ is zero, standing for the probe movement along the Z-axis, cov(X, Y) is zero due 

to the constant values recorded for X and Y coordinates. However, because of fitting errors the 

covariance model returns nonzero values for cov(X, Y) at φ=0°. The maximum covariance between 

the X and Y coordinates belongs to the probe movement with φ=90°, where the recorded Z 

coordinate is constant. As a result of the unchanged X coordinates recorded at 𝜃=0° and 𝜃=180°, 

the zeros of the covariance function cov(X, Z) occur at these angles (Figure 4-15b). The covariance 

values cov(X, Z) are almost symmetric with respect to the machine Y-axis and do not exceed 0.4 

μm2. By moving along the Z-axis, i.e. φ=0°, the constant recorded X coordinates result in the zero 

of the covariance function cov(X, Z). Having its zero values at 𝜃=90° and 𝜃=270°, the covariance 

between the Y and the Z recorded coordinates is smaller than 0.2 μm2.  

The behaviour of the model estimating cov(N, T) is mostly steady, except for φ=90° where the 

model has five zeros by varying azimuthal angle from 𝜃=0° to 𝜃=360°, resembling the behaviour 

of cov(X, Y). When the approach vector is along any axis of the machine the tangential component 

of the recorded position is zero, resulting in zero covariance between the normal and the tangential 

projections. This happens when φ=0°, i.e. approaching along the Z-axis, or when φ=90° and 𝜃 

takes on one of the values 0°, 90°, 180°, 270° or 360°, denoting the approach vectors along the X 

or Y-axis. For polar φ angles other than φ=0° and φ=90°, the covariance variations with azimuthal 

angle 𝜃 barely exceed 0.06 μm2, implying an axisymmetric correlation between normal and 

tangential projections with respect to the azimuthal angle 𝜃, except for φ=0° and 90°. 

Dividing the machine errors into systematic and random components, the later can account for the 

random positioning of the tool (probe) with respect to the workpiece. Although random, it is 

suspected that this portion of the machine errors may result from variability sources within the 

machine structure. These effects propagate through the kinematic chain of the machine and can 

systematically deviate the end position of the machine branches, resulting in some significant 

correlations between the coordinates recorded in on-machine probing. 
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Table 4-5: The average of standard deviation and the average of absolute gradients of the 

covariance with respect to the experimental factors. For each row the variable other than the 

indicated factor is fixed so that the machine axes are fixed at their central values (Table 4-1) and 

the approach direction is [φ, θ]=[45°, 45°]. 
 

Average of absolute covariance (μm2)  Average of absolute gradient (μm2/unit) 

 X-Y X-Z Y-Z N-T  X-Y X-Z Y-Z N-T 

𝜑 (degree) 0.14 0.18 0.10 0.12  0.0087 0.0095 0.0099 0.0068 

𝜃 (degree) 0.21 0.23 0.08 0.19  0.0251 0.0063 0.0019 0.0018 

BT (degree) 0.21 0.31 0.15 0.21  0.0057 0.0054 0.0105 0.0033 

CT (degree) 0.13 0.27 0.04 0.18  0.0026 0.0015 0.0013 0.0014 

XT (mm) 0.17 0.22 0.04 0.13  0.0029 0.0030 0.0026 0.0025 

YT (mm) 0.11 0.21 0.04 0.16  0.0035 0.0088 0.0051 0.0076 

ZT (mm) 0.08 0.19 0.03 0.15  0.0042 0.0028 0.0047 0.0027 

 

Figure 4-15: The polar plots of the absolute values of covariance predictions from the model 

versus the polar φ and azimuthal 𝜃 angle of the approach direction for the a) cov(X, Y), b) cov(X, 

Z), c) cov(Y, Z) and, d) cov(N, T). The other independent parameters are fixed at their central 

values (Table 4-1). 

  

  
 

a b 

c d 
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4.7.3 Probing hysteresis test and axis hysteresis test 

Figure 4-16a shows the difference between the average of radial projections recorded in the probing 

hysteresis test (Figure 4-5a). In general, the ring gauge radius measures smaller in the presence of 

hysteresis. The average of radial projections recorded with hysteresis minus those recorded without 

hysteresis are plotted in Figure 4-16b. On average, the radius measures 0.11 μm smaller when 

hysteresis is involved. Figure 4-16c shows the standard deviation obtained in the probing hysteresis 

test with and without hysteresis effects as well as for the combined data. As this figure shows, 

hysteresis has no significant effect on the repeatability of probing results. Hysteresis changes the 

average of probing repeatability by 0.01 μm. To evaluate the uncertainty associated with the 

systematic hysteresis errors (Figure 4-16b), the law of propagation of uncertainties [42] can be 

applied. At each indexation, the hysteresis error is calculated by [84] 

𝐻𝜓 = 𝑟𝐻,𝜓̅̅ ̅̅ ̅̅ − 𝑟𝜓̅̅̅̅  
4-3 

where, 𝑟𝐻,𝜓̅̅ ̅̅ ̅̅  and 𝑟𝜓̅̅̅̅  are the average of radial projections measured respectively with and without 

hysteresis being involved, for indexations 𝜓 = 0°, 30°, … ,330°. Then, the standard uncertainty of 

hysteresis error 𝑢(𝐻𝜓) can be estimated as 

𝑢(𝐻𝜓) = √𝑢2(𝑟𝐻,𝜓̅̅ ̅̅ ̅) + 𝑢2(𝑟𝜓̅̅ ̅) 
4-4 

where, 𝑢(𝑟𝐻,𝜓̅̅ ̅̅ ̅) and 𝑢(𝑟𝜓̅̅ ̅) are the standard uncertainties (standard deviations of the mean) of radial 

projections obtained for each indexation 𝜓. Evaluating these parameters results in 𝑢(𝐻𝜓) values 

between 0.13 μm and 0.25 μm (Figure 4-16b). By averaging over the 12 values shown in Figure 

4-16b, the average hysteresis error is 0.11 μm with a standard uncertainty of 0.19 μm. 

Figure 4-17 shows the hysteresis errors, for the axis hysteresis test (Figure 4-5b), calculated as the 

average of radial projections recorded with the premovements along the positive direction of the 

cross axis minus those recorded with the negative direction of the cross axis. Comparing the 

hysteresis errors of axes X and Y (Figure 4-17a) with the probing hysteresis errors obtained for the 

corresponding indexations 𝜓 = 0°, 90°, 180° and 270° (Figure 4-16b) reveals that the hysteresis 

error of the machine axes is on average 0.22 μm larger than probing hysteresis. Similar to the 
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probing hysteresis test, on average, the axis hysteresis has negligible effects on the probing 

repeatability (Figure 4-17b). 

 

Figure 4-16: a) Polar presentation of the differences between the radii measured for indexations 

𝜓 = 0°, 30°, … ,330° (Figure 4-4a), with and without hysteresis being involved; b) hysteresis 

errors identified for each indexation together with the associated standard uncertainty, and c) the 

standard deviations of the radial projections recorded for each indexation. 

 

Figure 4-17: a) Hysteresis errors of machine axes X and Y with premovements along the positive 

and negative directions of the cross axis together with the associated standard uncertainty and b) 

the standard deviations of probing results with the premovements. 
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4.7.4 Probing strategy and time span 

Figure 4-18 shows the trend of recorded 50 measurements in each of the three ring gauge tests: 

simple, ordered and shuffled. This figure also includes the temperature variations of the machine 

work envelop measured during the shuffled and ordered ring gauge tests. In the simple ring gauge 

test, replicate measurements of each point took about 12 min to complete, suggesting a period short 

enough to result in stable outputs, from a thermal effects point of view. Therefore, as can be seen 

in this figure, no systematic behaviour is distinguishable in the recorded values. On the other hand, 

systematic drifts are observable in the coordinates recorded with the ordered and shuffled 

strategies. As Figure 4-18 shows, the temperature variations are consistent with the drifts in the 

recorded coordinates and projections, suggesting that the drifts are most likely to be caused by 

thermal effects. Each of these tests takes five hours to run, 25 times longer than the simple ring 

gauge test. 

Considering that only the random errors of the measurement system should account for the 

repeatability of on-machine measurement, random variations should be isolated from the recorded 

data before any repeatability evaluation. To do so, cubic polynomials are first fitted to the recorded 

coordinates and the radial projections obtained through the shuffled and ordered tests in order to 

remove drift, which is associated with thermal effects. Then, fitting residuals are considered to 

represent the random variations of the recorded data, whose standard deviation specifies probing 

repeatability. The repeatability values obtained after removing the systematic drifts are shown in 

Figure 4-19. The average repeatability over the 24 points, obtained by the three tests, is almost 0.65 

μm for radial projections. The average repeatability values recorded for the X and Y coordinates 

with the three ring gauge tests vary by a maximum of 10%, which suggests that the measurement 

strategy has a negligible effect on probing repeatability. 

Because of the long time spans of the shuffled and ordered ring gauge tests, the machine status in 

terms of thermal variations and performance of inner components, such as bearings, gears and 

slideway systems, is expected to gradually change during these tests. Besides the observed drifts, 

these changes might affect the random behaviour of the machine. To study this effect, the steady 

state of raw data, typically shown in Figure 4-18, is analyzed. As Figure 4-18 shows, after the 25th 

iteration, the drift is negligible. The probing repeatability along the X (𝜓 = 0°, 180°) and Y (𝜓 =
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90°, 270°) axes is calculated within a 10-iteration wide frame. By sliding this frame between the 

26th and the 50th iterations, the standard deviations of the data within the frames are shown in Figure 

4-20. In this figure, the time span for data acquisition within each frame of the simple test is 2.5 

min, where the machine axes and the probe do not perform any other task between two consecutive 

measurements. This period for the ordered and shuffled tests is almost 24 times larger, i.e. one 

hour, where the X and Y axes, and the probe conduct different tasks between two consecutive 

measurements. Then, compared with the simple test, machine conditions are expected to vary more 

within each frame of the ordered and shuffled tests. As this figure shows, the repeatability obtained 

by the ordered and shuffled tests is mostly more stable than the simple test, especially for both 

positive and negative directions of the Y-axis. Moreover, the differences between the probing 

repeatability along the X and Y axes are smaller in the shuffled and ordered tests compared with 

the simple test. Conducting this analysis with wider frames verifies these results. These 

observations imply that warming up the machine and carrying out different/random tasks before 

conducting an on-machine measurement, as in the shuffled and ordered ring gauge tests, stabilizes 

the repeatability of axis X and Y.  

 

Figure 4-18: Typical trends of replicate measurements done in different ring gauge tests along 

with temperature variations measured during the shuffled and ordered tests. The presented data is 

the normal (radial) projections recorded at 90° (𝜓0 = 7.5° in Figure 4-4b). 
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Figure 4-19: The repeatability of on-machine measurements obtained based on the fitting 

residuals in the ordered and shuffled ring gauge tests for a) the X coordinate, b) the Y coordinate, 

and c) the normal projection of the Cartesian readings at the 24 points (with 𝜓0 = 7.5° in Figure 

4-4b). The angle 𝜓 (Figure 4-4b ) corresponding to each indexation in Figure 4-4b is shown on 

top of each graph. 

 

Figure 4-20: The probing repeatability along the X and Y axes by sliding a 10-iteration wide 

frame between the 26th and the 50th iterations shown in Figure 4-18. Results obtained through 

the a) simple, b) ordered, and c) shuffled ring gauge tests. 
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The results of the simple ring gauge test with 𝜓0 = 7.5° (Figure 4-4b) reveal the effect of machine 

resolution in the repeatability of recorded coordinates. According to VIM [3], the resolution is the 

“smallest change in a quantity being measured that causes a perceptible change in the 

corresponding indication”. Machine resolution transfers continuous measurement results into 

discrete counterparts. Because of machine resolution, output fluctuations can be either damped or 

amplified as the measurement outcomes are mapped to different indications. This transformation 

might affect any estimate of the repeatability of measurement results. The effect of the resolution 

is visible in Figure 4-21a , which shows the 50 X and Y coordinates recorded for point 67.5° (Figure 

4-4b) through replicate measurements in the simple ring gauge test. In the on-machine probing, 

when a touch occurs, the position of each axis is translated to the closest indication on the axis 

encoder. As a result, the recorded touch positions in replicate measurements are less likely to lie 

on the nominal approach path, but on the grids formed by the indications of the machine axes 

(Figure 4-21a). As can be seen in Figure 4-21a, since the Y-axis motion is dominant the recorded 

point set is oriented approximately along the nominal measurement direction in a way that the 

variation range of the Y coordinates is proportionally larger than that of the X coordinates. This  

 

Figure 4-21: 50 replicate measurements recorded in simple ring gauge test with an approach 

direction lying in the XY plane of the machine frame and making an angle of a) 67.5° and b) 

262.5° with the positive direction of the X-axis of the machine (δ=0.5 μm is the machine 

resolution and the labels indicate the number of duplicate results). 

  
 

  

 

  

 

a b 
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diagram also illustrates how a certain amount of covariance between X and Y occurs when both 

axes are involved in a probing operation. The effect of machine resolution is even more obvious at 

target point 262.5°, where all the 50 recorded X coordinates were mapped to the same indication, 

resulting in perfectly repeatable outcomes with a standard deviation of zero (Figure 4-21b). 

4.8 Conclusions 

In this study, we quantified the repeatability of a specific instance of a five-axis machine tool in 

the probing mode by measuring two precision spheres as artifacts and a ring gauge. In order to 

evaluate measurement repeatability, firstly machine parameters including five quantities of 

machine pose at the target point 𝑋T, 𝑌T, and 𝑍T, 𝐵T and 𝐶T, two direction parameters 𝜃 and 𝜑, 

indicating the approach direction with respect to the target surface, and the probe orientation ω 

were considered. Preliminary analysis on the effect of probe orientation ω revealed its negligible 

effect on the measurement repeatability (≈ 0.1 μm). Ignoring this parameter in the design of 

experiments, 1500 on-machine probing tasks were carried out, including 30 repeated measurements 

on target points on the spheres at various poses within the workspace of the machine and with 

different measurement directions. Polynomial models were then fitted to the standard deviations 

of the recorded X, Y, and Z coordinates as well as to those of the projections of recorded 

coordinates perpendicular and tangent to the target surface. The covariance quantities were then 

estimated by fitting quintic polynomials to the measured covariance between the recorded 

coordinates. The potential effect of measurement system hysteresis on the repeatability of recorded 

coordinates was also investigated by probing 12 points equally distributed around the inner wall of 

the ring gauge. The findings are summarized below. 

1. Validation of the models suggests that the repeatability of on-machine measurements, 

quantified by its standard deviation and covariance, can be predicted for any position of the 

machine and approach direction. The presented method can provide the repeatability 

models that reliably portray the random behaviour of a machine tool, which is one of the 

major challenges in conducting traceable on-machine tool measurements. Results show that 

the standard deviation in on-machine measurement barely exceeds one μm. The recorded 

X and Y coordinates showed a strong correlation, up to 0.90 μm2, especially for the positive 

and negative movements of the X and the Y-axis, respectively. The recorded Y and Z 
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coordinates were found to be mostly independent with covariance values smaller than 0.15 

μm2. Covariance information is necessary to estimate the uncertainty of geometric and 

dimensional deviations calculated using the collected coordinates. 

2. Hysteresis has a negligible effect on the repeatability of on-machine probing. However, 

some systematic effects (i.e., biases) were observed. The systematic hysteresis errors 

caused by the whole probing system, including the machine and the probe, were found to 

be smaller than those caused by the machine axes. This implies that the measuring system 

should be entirely considered in hysteresis evaluation because separate hysteresis 

evaluations of the system components can provide inaccurate error values. 

3. The simple ring gauge test shows that the machine resolution plays a significant role in 

altering the fluctuations of the measurement results so that perfectly repeatable coordinates 

(zero standard deviation) are recorded for some approach directions with a small angle with 

the X- or Y-axis. For other directions, a correlation occurs between the coordinates, with 

the main variability along the probing direction. 
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4.10 Appendix A. Examples of data analysis 

4.10.1 Standard deviation and covariance evaluation in the five-axis ball test 

Figure A. 1 schematically shows a single probing on the precision sphere in the five-axis ball test. 

The machine records coordinates X, Y and Z of the probe tip position (vector OP⃗⃗⃗⃗  ⃗ in the machine 
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frame) over 30 repeated measurements. In order to calculate normal projections N of the recorded 

coordinates, first, vector CP⃗⃗ ⃗⃗  can be obtained as 

CP⃗⃗ ⃗⃗ = OP⃗⃗⃗⃗  ⃗ − OC⃗⃗⃗⃗  ⃗ A. 4-1 

Then, normal projection N is 

N = CP⃗⃗ ⃗⃗  . �̂� ,    �̂� = (
sin𝜑 sin𝜃
sin𝜑 cos𝜃
cos𝜑

)  A. 4-2 

where �̂� is the nominal unit vector normal to the ball surface at the target point. For target 

point[𝜑, 𝜃, 𝐵T, 𝐶T, 𝑋T, 𝑌T, 𝑍T] = [18°, 144°, 90°, −180°, 78.1 mm, 76.8 mm,−66.8 mm] we have 

OC⃗⃗⃗⃗  ⃗ = [76.2000, 80.0000, −78.9190] mm. In this example, considering probing results OP⃗⃗⃗⃗  ⃗ =

[78.9655, 76.1950,−64.4430] mm, equation A. 4-2 gives N= 15.2211 mm. Then, tangential 

projection T of the recorded coordinates is 

T = √‖CP⃗⃗ ⃗⃗ ‖
2
− N2 A. 4-3 

which yields T =0.0009 mm. These calculations are conducted on the 30 measurements repeated  

 

Figure A. 1: Schematic of a single probing on the precision sphere in the five-axis ball test. 
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for each of the 50 target points. The 50 standard deviations obtained for each of the coordinates 

and projections form a data set are used to fit the standard deviation model given by Eq. 4-1. The 

covariance values are also calculated between the recorded coordinates and the projections in order 

to fit the covariance model given by Eq. 4-2. 

4.10.2 Hysteresis evaluation 

In the probing hysteresis test conducted for 𝜓 = 60° (Figure 4-4a), coordinates X and Y are directly 

recorded by the machine. Radial projections R are obtained by 

R = (
X
Y
) . �̂� ,    �̂� = (

cos𝜓
sin𝜓
)  A. 4-4 

where �̂� is the nominal unit vector along the approach direction. Averaging over the 24 radial 

projections calculated for 𝜓 = 60° gives 𝑟𝐻,𝜓̅̅ ̅̅ ̅̅ =28.7821 mm and 𝑟𝜓̅̅̅̅ =28.7819 mm, respectively with 

and without hysteresis being involved. Then, Eq. 4-3 gives a hysteresis error of 𝐻60° = −0.17 µm. 

In the axis hysteresis test concerning the positive direction of the X-axis, the X-axis hysteresis error 

is 0.46 µm, which is calculated as the average of readings recorded with the premovements along 

the positive direction of the Y-axis (28.7623 mm) minus those recorded with the negative direction 

of the Y-axis (28.7618 mm). 

4.10.3 Evaluation of probing strategy and time span effects 

Using Eq. A. 4-4), the radial projections measured by means of the three ring gauge tests (i.e., 

simple, ordered and shuffled tests), conducted for 𝜓 = 30° (Figure 4-4b with 𝜓0 = 0°), are shown 

in Figure A. 2a. This figure also includes the cubic polynomials along with their equations, fitted 

to the readings of the ordered and the shuffled ring gauge tests. By removing the drift in this 

example, the standard deviations recorded in the ordered test decreased from 2.07, 1.12 and 2.34 

µm to 0.45, 0.28 and 0.49 µm, respectively for the coordinates X and Y, and the radial projections. 
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Figure A. 2: a) The radial projections measured by the simple, ordered and shuffled ring gauge 

tests, conducted for 𝜓 = 30° (Figure 4-4b with 𝜓0 = 0°), and b) the corresponding fitting 

residuals obtained for the ordered and shuffled tests together with the raw data recorded by the 

simple test. 
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5.1 Abstract 

Whether using a machine tool as a machining or a measuring system, its accuracy has a key role in 

ensuring product quality. As a result, conducting periodic geometric calibration of a machine tool 

to quantify and to compensate for the machine’s geometric errors is highly desirable. The measured 

geometric errors must be accompanied by uncertainty estimates, reflecting the lack of exact 

knowledge of the value of measurands. Indirect calibration approaches, as opposed to direct ones, 

have gained considerable attention recently because they can be automated and take considerably 

less time to conduct. However, the uncertainty of the indirectly measured error parameters is more 

challenging to estimate because of the complexity of the used mathematical models and the large 

number of machine error parameters identified simultaneously. The use of uncalibrated artifacts 

also adds to the wariness towards such approaches. In this paper, two different approaches are used 

to evaluate the uncertainty of machine geometric errors identified by the scale and master ball 

artifact (SAMBA), an indirect approach relying on the on-machine probing of uncalibrated and 

calibrated artifacts. First, a simulator of an adaptive Monte Carlo method (MCM) determines the 

uncertainty of machine tool geometric errors. A multivariate sample generator draws at random the 

input vectors from a joint probability density function (PDF) obtained through experimental 

replications over 15 days. Supplement 2 to the Guide to the expression of uncertainty in 

measurement (GUM) specifies the conditions where an adaptive MCM validates the GUM 

uncertainty framework (GUF). Adhering to the instructions given by this standard, the validity of 
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GUF, a much faster uncertainty evaluation method, is examined. Results show that the adaptive 

MCM procedure, which takes 24 h to run, validates the alternative GUF approach, which takes a 

computation time of only 10 min. A maximum disagreement of 1% between the geometric errors 

from experimental replications and their estimates identified by the adaptive MCM implies that the 

marginal means of the estimated output joint PDF in the adaptive MCM well represent the average 

of the output quantities. High dependencies of the linear terms (slopes) of the linear positioning 

errors of prismatic axes X, Y, and Z on the SAMBA scale bar length cause high correlations 

between these errors with correlation coefficients up to 0.965. The largest standard uncertainty 

estimated for the angular geometric errors is 1.26 μrad (associated with the out-of-squareness error 

of axis Z relative to axis X, EB0Z) and that for the translational geometric errors is 1.03 μm 

(associated with the distance between the spindle axis and axis B along axis X, EX0S). Axis X is 

estimated to have the largest standard uncertainty (6.1 μm/m) of the linear terms (slopes) of the 

linear positioning errors among the machine’s prismatic joints. 

Keywords: Uncertainty; Monte Carlo; GUM framework; Machine tool; Calibration; SAMBA 

5.2 Introduction 

Machining accurate parts requires machine tools characterized by high repeatability and accuracy 

[91]. In closed-loop manufacturing, part metrology (through in-process inspection or off-line 

measurements) can provide feedback to apply adjustments to the process parameters to attain the 

required accuracy [15]. Geometric accuracy of the part can also be achieved through machine 

calibration, including error compensation or mechanical adjustments, before machinery may come 

into operation [92]. Calibration becomes more important when production conditions such as 

manufacturing time and volume prevent any closed-loop optimization of process parameters [91]. 

Machine tools have structural loops built of linear and rotary axes, having a tool at one end and a 

workpiece at the other end of their kinematic chain. Due to geometric errors of the machine tools, 

the actual end position and orientation of the tool with respect to the workpiece differ from their 

nominal values. Geometric errors describe the imperfect position and orientation of a mechanical 

axis relative to other mechanical axes of the machine as well as the imperfect motions of each 

machine axis [91]. 
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Measurement methodologies of geometric errors comprise direct and indirect measurement 

methods. In case of direct method, the measurand is a single geometric error, such as linear or 

angular error motions of a single axis [91]. Measuring the angular error motion of a rotary axis or 

linear positioning error of a linear axis are examples of direct methods [93]. When conducting 

direct measurements, it is necessary to install the setup in a way that only the targeted error affects 

the measurement results [22]. On the other hand, indirect measurements focus on the superposition 

of geometric errors, i.e. volumetric error, the relative deviations between actual and nominal 

position and orientation of the tool frame with respect to the workpiece frame. The ball bar is one 

of the most established instruments for indirect measurement of machine geometric errors, 

described in ISO 230-4:2005 [94]. In a circular trajectory, geometric errors of at least two axes of 

the machine tool result in variations of the ball bar length from its nominal value. Then, best fitting 

the machine kinematic error model to the ball bar readings can identify many geometric errors. 

Indirect measurement methods mostly benefit from simpler setups and faster measurement 

processes compared to direct methods [22]. 

Regardless of choosing a direct or an indirect method to quantify the geometric errors of a machine 

tool, measurement results are subject to measurement uncertainty. The Guide to the Expression of 

Uncertainty in Measurement (GUM) [42] defines an internationally accepted procedure for 

measurement uncertainty evaluation. GUM mainly focuses on the law of propagation of 

uncertainties as a tool to propagate the uncertainties of the input variables of a measurement 

function to evaluate the uncertainty of measurement results. This law, however, is limited to multi-

input single-output measurement models and does not provide any probability density function 

(PDF) for the measurement output quantity. Supplement 1 to the GUM [79] provides details of the 

implementation of a Monte Carlo method (MCM), by which the PDF and many other statistical 

measures of the output quantity become achievable for multi-input multi-output measurement 

functions. Supplement 2 to the GUM [50] presents a modification of the GUM uncertainty 

framework (GUF) that gives the estimates of the output quantities and their covariance matrix of a 

multi-input multi-output function when the input quantities are summarized (as in GUM) in terms 

of estimates and their covariance matrix. In addition, Supplement 2 to the GUM specifies the 

validation steps of GUF using an MCM. 
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In general, indirect methods employed for a multi-axis machine tool calibration identify the 

geometric errors through a multi-output measurement function. As a result, the law of propagation 

of uncertainties specified by GUM is unable to evaluate the uncertainty of estimated geometric 

errors. Besides, in case of compensation for the effects of the geometric errors of a machine tool 

used as a measuring device, the uncertainties of the geometric errors must be further propagated 

through the employed compensation model to evaluate the uncertainty of the corrected probing 

results. This requires, besides the uncertainties of the estimated geometric errors, the correlation 

between these estimates, which is not attainable via the methodology specified in GUM [42]. 

Consequently, one has to evaluate the uncertainty of geometric errors by means of an appropriate 

method such as MCM or the validated GUF, respectively elaborated in Supplements 1 [79] and 2 

[50] to the GUM. 

In machine tool metrology, MCM can address the uncertainty associated with geometric errors 

obtained in the calibration process of machine tools. Bringmann and Knapp [60] estimate the 

uncertainty associated with the calibration technique “chase-the-ball” using an MCM, where 

machine errors are drawn at random from uniform distributions. They define the ranges of these 

errors according to comparative measurements, manufacturer specifications or the values stated in 

standards. In another study [61], they adopt the same approach to estimate the uncertainty of 

machine parameters obtained by another calibration procedure, “3-D ball plate”. They model 

machine parameters as a superposition of a linear term (e.g., the thermal expansion of a ball screw), 

of a cyclic term with a wavelength representing either the grating of the linear scale or the pitch of 

the ball screw, plus a certain number of Fourier harmonics. The parameters of such a series are 

random draws from uniform PDFs. Andolfatto et al. [62] use the non-contact measuring instrument 

“CapBall” to identify machine axis position and orientation errors and then implement an MCM to 

estimate the uncertainty associated with the estimated errors. They evaluate the uncertainties of 

eight axis position and orientation errors and six setup errors by considering the effects of CapBall 

sensors, transformation matrices, and the drift of the kinematic chain. They show that involving 

the drift effects in uncertainty evaluations results in less normality in the measurand distribution 

because the MCM trials do not occur under identical conditions. Los and Mayer [63] implement 

an adaptive MCM to evaluate the uncertainty associated with eight axis position and orientation 

errors and three error motions of a machine tool, identified by using the scale and master ball 
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artifact (SAMBA) technique. The inputs of their measurement model are the coordinates probed 

on SAMBA using a touch-trigger probe. Replicate measurements over a period of 24 h determine 

the joint PDF of input values, while the machine is cold or is cooling down from 27°C to 23°C. 

They report smaller rectangular coverage intervals without the warm-up cycle, though these 

intervals do not well represent real conditions of the machine performance. They also observe a 

large growth in the output correlation matrix due to the drifts in ball coordinates probably caused 

by thermal variations in the machine tool. Zimmermann and Ibaraki [95] adopt a new calibration 

procedure based on on-machine measurement of an uncalibrated artifact to identify the position 

errors and the error motion of a rotary axis of a machine tool. They use an MCM simulator to 

estimate the standard uncertainty propagated through the multi-input multi-output calibration 

model. Measuring the repeatability of the probing system smaller than the machine resolution, they 

assign a density function with a standard deviation equal to the machine resolution to the input 

quantities, i.e. the on-machine probing results. MCM is also an effective tool in the uncertainty 

evaluation of coordinate measuring machines (CMMs) [58, 96-99]. Balsamo et al. [53] introduce 

“expert CMM” aiming to evaluate the uncertainty associated with CMM probing, where an error 

simulator adds imperfections to random samples and repeatedly generates distorted shapes of a 

part. Then, statistical analysis of the population obtained for these shapes gives the uncertainty 

associated with the measurement results. They validate the evaluated uncertainty by measuring 

repeatedly a calibrated hole plate at 100 different positions of the CMM working volume. The 

uncertainty associated with 93 measurements out of 100 lies within the expanded uncertainty 

interval for a coverage probability of 95%. Sladek and Gaska [56] use a LaserTracer™, a 

commercial product, to indicate volumetric errors and the repeatability of a CMM. Defining a 3D 

Cartesian grid in the working volume of the machine, they assign a PDF to each point through 

replicate measurements. They separately investigate the contribution of the employed probe head 

to CMM probing accuracy by measuring a precision sphere under different probing strategies. They 

conclude that, in case of systematic error compensation, studying the effects of random errors can 

address the accuracy of the CMM i.e. the closeness between a measured value and true value of 

the measurand. 

In this study, we investigate the uncertainty associated with the machine geometric errors 

quantified by the multi-input multi-output calibration model of SAMBA. In order to involve only 
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the random effects, the measurement process excludes any warm-up cycle or noticeable thermal 

variation of the machine tool. Then, an adaptive MCM simulator receives the summary of the initial 

measurements (indications of the center positions of the balls of the artifact), in terms of estimates 

and an associated covariance matrix, and returns the estimates of the machine errors and the 

associated uncertainties. Then, through a linear approximation of the SAMBA calibration function, 

GUF evaluates the estimates and the uncertainties of the machine errors. Comparing the outcomes 

of the two approaches, we examine the feasibility of replacing the elaborate MCM with the efficient 

but approximate GUF. 

5.3 Geometric error evaluation 

The SAMBA artifact consists of any number of precision balls fixed on rods with different lengths 

along with a calibrated scale bar made of a fixed length magnetic double ball bar (Figure a). In this 

study, four balls are used. The position of the balls amongst themselves and relative to the machine 

table are uncalibrated and the scale bar is the only calibrated part of the artifact. The bar sits directly 

on the machine pallet and it is assumed that the relative positions of the four balls with respect to 

the last kinematic axis of the workpiece branch remain unchanged during the calibration process 

(Figure b). The experimental stage of the calibration process consists of probing each precision 

ball, in order to determine its centre coordinates, in different angular positions of the machine rotary 

axes and measuring the length of the scale bar at least once. 

As an indirect method, the SAMBA technique identifies geometric errors based on the evaluation 

of volumetric error vectors or residuals 𝒓 at the ball centres [25, 26]. This requires an error-enriched 

kinematic model of the machine, which allows calculating the predicted tool position 𝑷tool relative 

to the probed ball centre 𝑷ball. The kinematic model of the machine gives this predicted relative 

position based on the axis positions and through a chain of transformation matrices corresponding 

to the machine topology and its geometric errors (Figure b). Then, residuals 𝒓 are 

𝒓 = (𝑷tool − 𝑷ball)predicted − (𝑷tool − 𝑷ball)actual 5-1 

where, 𝑷tool and 𝑷ball are column vectors including the coordinates of the tool and the ball 

positions, respectively, and 𝒓 is a column vector of the corresponding residuals. The actual relative 
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position equals the zero vector when the tool (stylus tip centre) coincides with the centre of the 

probed ball. This being physically impossible, the tool coordinates are approximated by probing 

five points on the ball surface. In other words, when probing a ball, it is assumed that the recorded 

machine axis positions, as estimated from the five points probed on the ball surface, would be those 

positioning the tool (stylus tip center) at the ball centre, so that 

(𝑷tool −𝑷ball)actual = �⃗⃗�  5-2 

Substituting Eq. 5-2 into Eq. 5-1 yields 

𝒓 = (𝑷tool − 𝑷ball)predicted 5-3 

Figure 5-1a illustrates the flowchart of the SAMBA geometric error estimation process. For each 

ball centre, mapping the probe tip centre from the tool frame to the ball frame by means of 

homogeneous transformation matrix 𝑻ball tool gives the corresponding residual [63]. This matrix is 

obtained by multiplying homogenous transformation matrices between successive error-enriched 

link and axis frames from each ball to the stylus tip [100]. Eq. 5-3 implies that the smaller the 

residuals, the more accurate is the machine kinematic model ( 𝑻ball tool). In other words, the more 

accurate are the geometric errors in the kinematic model of a machine tool, the more accurate is 

the predicted relative position of the tool with respect to the workpiece. Then, a calibration model 

can identify the geometric errors by developing the machine kinematic model in such a way that 

minimizes the sum of the squares of residuals 𝒓. SAMBA incorporates the Gauss-Newton method 

[101] to estimate the required changes (adjustments) 𝜹𝒚 in 𝒚, a column matrix of machine 

geometric errors and artifact dimensions. By defining  𝑱 the sensitivity Jacobian matrix of residuals 

𝒓 with respect to 𝜹𝒚, the residuals are 

𝒓 = 𝑱 𝜹𝒚 
5-4 

Solving this equation for 𝜹𝒚 gives 

 𝜹𝒚 = 𝑱+𝒓 
5-5 
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where 𝑱+ is the pseudoinverse matrix of 𝑱, defined by 

𝑱+ = (𝑱T𝑱)−𝟏 𝑱T 5-6 

The minimization of the sum of the squares of residuals 𝒓 starts with an initial guess for 𝒚. The 

initial guess for the machine geometric errors is 𝟎 (the perfect or nominal machine) and the initial 

guess for the uncalibrated dimensions 𝒅 (the balls’ centre coordinates in the last axis frame of the 

workpiece branch) is the mean predicted tool position for each ball calculated using a nominal 

machine model, i.e. 𝒚0 = [𝟎, 𝒅]T. Although the ball positions are uncalibrated and dimensions 𝒅 

are only roughly known at first, including them together with the machine geometric errors as 

unknown variables in 𝒚 allows for explaining as much as possible of the residuals by also changing 

the estimated coordinates of the balls in the last workpiece branch frame. In the 𝑛th iteration (𝑛 >

0), after extracting the corresponding residual vector 𝒓𝑛 from homogeneous transformation matrix 

𝑻ball tool, adjustments 𝜹𝒚𝑛 (Eq. 5-5) update 𝒚𝑛−1 as 𝒚𝑛 = 𝒚𝑛−1 + 𝜹𝒚𝑛. The process stops when 

|𝜹𝒚𝑛| becomes smaller than stipulated threshold 𝝉. 

In this study, SAMBA evaluates the geometric errors of a five-axis horizontal machining centre 

model HU40-T from Mitsui Seiki equipped with a Renishaw® MP 700 touch-trigger probe (Figure 

5-1). The employed SAMBA consists of four precision balls of diameter 12.7 mm and a scale bar 

with a calibrated length of 305.2105 mm. The geometric error measurement procedure is replicated 

over 15 days, once a day at a specific hour and without any preceding warm-up cycle. Each test of 

these experimental replications of the SAMBA procedure completes over a time span of almost 3 

h, including the probing of 109 ball centres. Table 5-1 lists the machine geometric errors identified 

by SAMBA as measurand. In this table, the error symbols are according to the nomenclature 

specified in [102]. 
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Figure 5-1: a) Experimental setup of SAMBA on a Mitsui Seiki HU40-T machine tool equipped 

with a Renishaw® MP 700 touch-trigger probe. b) Schematic of the five-axis machine tool with 

topology WCBXFZYST (W: workpiece; C and B: rotary axes around axes Z and Y, respectively; 

X, Y, and Z: machine linear axes; F: foundation; S: spindle, and T: tool). 

Table 5-1: Geometric errors of the machine tool according to the nomenclature specified in [102]. 

The first subscript is the nature of the error, the numeral 0 (zero) as the middle subscript indicates 

that it is an axis position or an orientation error (not an error motion) and the third subscript is the 

axis of motion with this error. 

Symbol Description 

Number of significant 

figures as per validated 

uncertainty 

EA0B (μrad) out-of-squareness error of axis B relative to axis Z 2 

EC0B (μrad) out-of-squareness error of axis B relative to axis X 2 

EX0C (μm) distance between axes B and C 4 

EA0C (μrad) out-of-squareness error of axis C relative to axis B 3 

EB0C (μrad) out-of-squareness error of axis C relative to axis X 2 

EB0Z (μrad) out-of-squareness error of axis Z relative to axis X 3 

EA0Y (μrad) out-of-squareness error of axis Y relative to axis Z 3 

EC0Y (μrad) out-of-squareness error of axis Y relative to axis X 3 

EXX1 (μm/m) linear term (slope) of the linear positioning error of axis X 2 

EYY1 (μm/m) linear term (slope) of the linear positioning error of axis Y 3 

EZZ1 (μm/m) linear term (slope) of the linear positioning error of axis Z 3 

EY0S (μm) distance between the spindle axis and axis C along axis Y 3 

EX0S (μm) distance between the spindle axis and axis B along axis X 4 
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Figure 5-2: Flowcharts of a) SAMBA calibration process and b) uncertainty evaluation by means 

of the adaptive Monte Carlo. 

5.4 Uncertainty estimation 

Any statement of the results of a measurement process is complete only when accompanied by the 

measurement uncertainty. The GUM uncertainty framework (GUF) [50] mainly includes a 

linearized model that efficiently estimates an expanded uncertainty by assuming a normal PDF for 

the output quantities. Based on the central limit theorem, however, assuming a normal PDF for the 

output quantities can be imprecise when a t-distribution describes an input quantity with a type A 

evaluation with a small number of replicate indications [48]. This might happen in industrial 

metrology, for example, by assigning a uniform (rectangular) PDF to a calibrated length. Therefore, 

employing the linear uncertainty evaluation using GUF [50] requires a careful inspection of input 

variables. Although costly in terms of computing time, MCM is a reliable mathematical algorithm 

for determining the joint PDF of the output values, by which one can validate the legitimacy of 

GUF. 

5.5 Adaptive Monte Carlo method 

In an MCM, the evaluation of an input population with measurement model 𝑓(𝑿) generates a 

population of output quantities (Figure b). A multivariate sample generator serves as an engine in 

any MCM simulator, which uses the joint PDF assigned to input quantities 𝑿 to create input 
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estimate 𝒙. Each draw of input quantities corresponds to one and only one set of measurand values, 

𝒚, through the measurement model. Then, repeating this process, say 𝑀 times (trials), results in the 

same number of output quantity sets. For a univariate random variable, mapping a random number 

within interval [0,1] through the inverse of the cumulative distribution function (CDF) of the input 

random variable can generate a random sample. However, drawing a multivariate random sample 

from a joint PDF is more complicated. Supplement 1 to the GUM [79] proposes the following 

equation to draw 𝑀 random vectors from an 𝑁 −dimensional multivariate normal distribution: 

𝑮𝑿 = 𝒙 𝟏𝑴×𝟏
T + 𝑳T 𝒁 5-7 

where, 𝑮𝑿 is an 𝑁 ×𝑀 matrix, of which the 𝑗th column is a random draw from the multivariate 

normal distribution, and 𝒙, of dimension 𝑁 × 1, is the vector of input quantity estimates. 𝟏𝑀×1 is 

a column vector of ones of length 𝑀 and 𝒁, of dimension 𝑁 ×𝑀, is a set of draws from a standard 

normal distribution. In this equation, 𝑳 of dimension 𝑁 × 𝑁 is the Cholesky factor (a lower 

triangular matrix) of covariance matrix 𝑼𝒙 that satisfies 

𝑼𝒙 = 𝑳 𝑳
T  5-8 

Then, the 𝑀 vectors included in 𝑮𝑿 correlate as per the covariance matrix 𝑼𝒙 of the input data. In 

the evaluation of random input vectors 𝒙 over 𝑀 trials of MCM, matrix 𝑮𝒀 of dimension 𝑚×𝑀 

stores the output vectors, where m is the number of output quantities. Matrices 𝑮𝑿 and 𝑮𝒀 are the 

discrete presentations of input and output parameters so that the 𝑖th row of 𝑮𝑿 and the 𝑗th row of 𝑮𝒀 

provide the discrete representations of marginal distributions for random variables 𝑋𝑖 and 𝑌𝑗, 

respectively [52, 79]. Taking the average of each row of 𝑮𝒀 provides 𝒚, a best estimate of 𝒀: 

𝒚 =
1

𝑀
𝑮𝒀 𝟏𝑀×1 

5-9 

The covariance matrix associated with the best estimate 𝒚 is 

𝑼𝒚 =
1

𝑀 − 1
𝑮′𝒀 (𝑮′𝒀)

T ,        𝑮′𝒀 = 𝑮𝒀 − 𝒚(𝟏𝑀×1)
T 5-10 
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The square root of the 𝑖th diagonal element of 𝑼𝒚 is the standard uncertainty associated with the 

estimate of the 𝑖th output quantity 𝑦𝑖. The off-diagonal value located on the 𝑖th row and the 𝑗th 

column of 𝑼𝒚 represents the covariance between the corresponding output estimates. 

For a given coverage probability 𝑝, a coverage interval [𝑦low , 𝑦high] of single output variable 𝑌𝑖 is 

an interval comprising 𝑝𝑀 estimates 𝑦𝑖 of the output population. This interval is obtainable by 

sorting the values in the 𝑖th row of 𝑮𝒀 into non-decreasing order, and identifying 𝑦low and 𝑦high 

with indices differing by 𝑝𝑀 [52]. Generally, there is more than one coverage interval for a specific 

coverage probability because any interval, within which 𝑌𝑖 lies with probability 𝑝, can be taken as 

a coverage interval [79]. For output vector 𝒀, however, determination of coverage interval is less 

straightforward, since it requires sorting multivariate data. Considering that the coverage interval 

represents the expanded uncertainty associated with the output estimate 𝒚 [42], mostly the smallest 

coverage interval is of interest. In multivariate distributions, the smallest coverage region does not 

have a particular geometric definition and a hyper-volume integration can merely approximate its 

shape [50]. Nevertheless, in uncertainty evaluation, one can replace the smallest coverage region 

either with a hyper-ellipsoidal coverage region, which is close to the smallest region, or with a 

hyper-rectangular coverage region, which might be conservatively large. Supplement 2 to the GUM 

formulates a hyper-ellipsoidal coverage region as [50] 

(𝜼 − 𝒚)T 𝑼𝒚
−1(𝜼 − 𝒚) = 𝑘𝑝

2 5-11 

where 𝒚 (best estimate of output 𝒀) specifies its location, 𝑼𝒚 (the covariance matrix associated 

with estimate 𝒚) defines its shape, and 𝑘𝑝 specifies its size while 𝜼 is an independent parameter. 

Supplement 2 to the GUM also provides detailed instructions on how to determine 𝑘𝑝 [50]. 

In the MCM, the numerical precision of the average (estimate) 𝒚 of the measurand 𝒀 is expected 

to improve by one digit when the number of MCM trials increases by a factor of 𝑀-0.5 [51]. For 

example, the numerical accuracy of 𝒚 obtained by 𝑀 trials of an MCM is likely to improve by one 

decimal digit after 100×𝑀 trials. As a result, the convergence properties of the MCM is 

irrespective to the number of input quantities 𝑁 [52]. Supplement 2 to the GUM establishes 

convergence criteria for an MCM, namely adaptive MCM [50]. After each sequence (consisting of 



81 

 

 

𝑀=104 trials), the standard deviations obtained for estimates 𝒚, standard uncertainties 𝒖𝒚, 

maximum eigenvalue λmax of the associated correlation coefficient matrix, and coverage factor 𝑘𝑝 

are calculated. In an adaptive MCM, the convergence criterion includes (after ℎ =10 sequences) 

comparing these standard deviations with corresponding stipulated numerical tolerances. The 

numerical tolerance 𝛿 associated with output quantity 𝑌𝑖 is defined as [50] 

𝛿 =
1

2
10𝑙 5-12 

where 𝑙 is the number of decimal digits of the significant figures considered for output quantity 𝑌𝑖 

(Table 5-1). The simulator executes one more sequence if the convergence does not hold (Figure 

b). 

In this study, the employed MCM simulator comprises the SAMBA numerical calibration 

procedure (Figure 5-2), described in section 2, as measurement model 𝑓(𝑿). The inputs of this 

function consist of 327 centre ball coordinates indications (including three Cartesian coordinates 

for each of the 109 ball measurements done during the calibration) plus the length of the SAMBA 

calibrated scale bar, therefore 𝑁 = 328. The experimental population, consisting of the 

experimental replications, yields the joint PDF of input quantities 𝑿. For each of the 104 trials, the 

multivariate sample generator draws one input vector 𝒙 at random (Eq. 5-7) and stores it in matrix 

𝑮𝑿 of dimension 328×104 (Figure b). Then, measurement function 𝑓(𝑿) processes each column of 

matrix 𝑮𝑿 and returns  𝑚 =13 scalar geometric errors listed in Table 5-1, stored in matrix 𝑮𝒀 of 

dimension 13×104. After each sequence of MCM, best estimate 𝒚 (Eq. 5-9), the associated standard 

uncertainty 𝒖𝒚, coverage factor 𝑘𝑝, and the maximum eigenvalue 𝜆max of the correlation matrix of 

the output quantities are calculated from the concatenation of all matrices 𝑮𝒀 from the executed 

sequences. Although only 𝑚 =13 output quantities (the geometric errors listed in Table 5-1) are of 

interest, the SAMBA calibration function also returns the ball centre coordinates and the 

coordinates of the scale bar’s ends, a total of 6×3 more output quantities. This reduction in the 

number of outputs from 31 to 13 does not affect the statistical properties of the generated population 

stored in matrix 𝑮𝒀 as well as on estimated covariance matrix, standard uncertainties, and the 

coverage factor of any single output quantity.  
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5.6 GUM uncertainty framework 

In GUF, the propagation of uncertainties proceeds without propagating PDFs. In this method, the 

linear term of the Taylor series of measurement model 𝑓(𝑿) approximates the variations of 

measurand about its expected value due to small changes of the input quantities about their 

expected values [42]. Accordingly, covariance matrix 𝑼𝒚 associated with output estimates 𝒚 is [50] 

𝑼𝒚 = 𝑪𝒙 𝑼𝒙 𝑪𝒙
T 5-13 

where 𝑪𝒙 is the sensitivity matrix of dimension 𝑚 ×𝑁 given by evaluating 

𝑪𝒙 =

[
 
 
 
 
𝜕𝑌1
𝜕𝑋1
⋯
𝜕𝑌1
𝜕𝑋𝑁

⋮ ⋱ ⋮
𝜕𝑌𝑚
𝜕𝑋1
⋯
𝜕𝑌𝑚
𝜕𝑋𝑁]
 
 
 
 

 5-14 

at 𝑿 = 𝒙, where 𝒙 is an estimate of input quantity 𝑿. Because of the numerical approach (Figure 

5-2a) used in the SAMBA calibration function, no explicit mathematical form of this function is 

available. Nevertheless, numerical differentiation can approximate the partial derivatives of Eq. 

5-14. Figure 5-3 shows the calculation procedure of the 𝑗th column of the sensitivity matrix (Eq. 

5-14), i.e. the partial derivatives of the SAMBA calibration function with respect to 𝑋𝒋, the 𝑗th input 

quantity at 𝑿 = 𝒙. The step size in the numerical differentiation (Figure 5-3) is 𝑢(𝑥𝑗), the standard 

uncertainty associated with estimate 𝑥𝑗 of input quantity 𝑋𝑗 [42]. 

 

Figure 5-3: Numerical differentiation of the SAMBA calibration function at 𝑿 = 𝒙 with respect 

to 𝑋𝑗  , the 𝑗th input quantity. 
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The evaluation of measurement function 𝑓(𝑿) at 𝑿 = 𝒙 gives estimate 𝒚 of output quantities 𝒀. 

Assuming a normal joint PDF for the 𝑚 =13 outputs, GUF specifies hyper-ellipsoidal coverage 

factor 𝑘𝑝 =4.73 for coverage probability 𝑝 = 0.95 [50]. 

5.7 Results and discussion 

Any systematic variation in the initial measurements, i.e. the coordinates recorded on the 

experimental replications of SAMBA, can considerably enlarge the variance of the assigned 

distributions and can falsify the correlation between the input quantities. Such large standard 

deviations can affect the validity of the GUF results, which approximates the output uncertainty of 

a function in terms of small deviations of input values [42]. Inspecting the trend of the recorded 

raw data for any probable drift or systematic behaviour and taking actions to reduce it can help the 

agreement between the adaptive MCM and the GUF evaluations. Figure 5-4 illustrates the typical 

variations of a ball centre coordinates measured in the experimental replications of SAMBA. 

Systematic trends are hardly distinguishable in the measured coordinates which are fairly equally 

spread around the mean value through the sequence. The acquisition of data under almost the same 

thermal conditions of the machine tool and with the same experimental factors, including 

measurement strategy and speed, can cause the random behaviour of the recorded data (Figure 5-4). 

However, the laboratory uses an environment control similar to the university classrooms. 

Therefore, some levels of temperature variation are expected, which could contribute to the 

randomness of the records. Other machine variation sources as well as some lack of repeatability 

of the touch probe, could also contribute [103]. 

 

Figure 5-4: Variations of the centre coordinates of ball 3 around their average (the zero line) 

measured in the experimental replications of SAMBA. 
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Table 5-2 presents the estimates of machine errors and the associated standard uncertainties 

obtained by the adaptive MCM and the GUF procedures. The machine reference frame (Xm, Ym, 

Zm) determines the sign of the estimated geometric errors while the direction of the angular errors 

follows the right-hand rule (Figure b). The adaptive MCM results are also shown in Figure 5-5, 

grouped into three categories; the angular errors, the translational errors, and the linear terms 

(slopes) of the linear positioning errors. Table 5-2 also includes the experimental results, in which 

only the experimental replications shape the population of input vectors (rather than thousands of 

random input vectors drawn at random from the assigned joint PDF). Table 5-3 includes 𝜆max, the 

maximum eigenvalue of the correlation matrix of machine errors, and 𝑘𝑝, the coverage factor 

according to the hyper-ellipsoidal coverage region, specified by these three approaches. Adhering 

to Supplement 2 to the GUM [50], the differences between the MCM and the GUF results remain 

within the corresponding numerical tolerances (Eq. 5-10) advised by this standard, which suffices 

to validate GUF. As a result, GUF is not only efficient but also adequately accurate to replace 

MCM for the uncertainty evaluation of a machine tool calibration via SAMBA. Depending on the 

specified numerical tolerance and the speed of computation, an MCM task might require weeks to 

complete. The most demanding part of the employed MCM code is calling the SAMBA calibration 

function, i.e. measurement model 𝑓(𝑿). All the quantities listed in Table 5-2 and Table 5-3 

converge before or by 10 sequences (ℎ = 10), for an almost 24 h runtime (on a computer with an 

Intel i7 processor running at 4.2 GHz using 32 GB of RAM, running Windows version 10). 

Considering the rate of MCM convergence, increasing the number of significant digits (Table 5-1) 

by one would considerably increase the runtime required for convergence. On the other hand, GUF 

efficiently evaluates the uncertainty, in less than 10 min, by the analytic equation given in Eq. 5-13 

and through a numerical differentiation according to Eq. 5-14. 

Table 5-2 includes the MCM results and the results obtained by the experimental replications. The 

maximum difference between the values obtained for the geometric error estimates is smaller than 

1%, although that for the associated uncertainties is 47% and belongs to EYY1 (Table 5-2). The 

conformity of the MCM estimates with those obtained by experimental replications implies that 

the marginal means of the joint PDF estimated for the output vector in the adaptive MCM well 

represent the average of the output quantities. However, for the uncertainty of the linear terms 

(slopes) of the linear positioning errors, i.e. EXX1, EYY1, and EZZ1, the standard deviations estimated 
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by the experimental data and by the adaptive MCM show notable differences, causing the joint 

PDF to stretch along these directions. This difference is most likely due to introducing the standard 

uncertainty of the scale bar length to the joint PDF of the input vector. For 𝜆max and 𝑘𝑝 (Table 

5-3), the differences between the MCM and the experimental results are 10% and 31%, 

respectively. For a small output population, as in the experiments, coverage factor 𝑘𝑝 is highly 

sensitive to the number and the distribution of output points in ℝ𝑚 (in this study, the 13-

dimensional domain of the output vector). Particularly for the 15 trials of the experimental 

replications, a hyper-ellipsoidal coverage region for coverage probability of almost 𝑝 =0.95 has to 

encompass 14 output points. Then, the position of a single point can notably vary the coverage 

factor, which specifies the size of the coverage region. Then, the limited number of experimental 

replications can explain the difference between the coverage factors determined by the experiments 

and the adaptive MCM.  

The geometric error estimates given in Table 5-2 are calculated based on the best estimate of the 

328 input quantities, which is obtained by averaging over the probing results of the experimental 

replications. However, in this table, the standard uncertainties belong to any output vector of only 

one implementation of the SAMBA method. If one estimates the geometric errors of a machine 

tool by carrying out 𝑘 replications of the SAMBA process, any uncertainty evaluation should be 

done based on the experimental standard deviations associated with the mean of the 𝑘 input vectors 

[42]. As a result, the experimental uncertainty associated with the machine parameters obtained 

through 𝑘 replications of the SAMBA procedure can be estimated by dividing the standard 

uncertainties given in Table 5-2 by √𝑘. Particularly, in order to estimate the standard uncertainties 

associated with the geometric error values given in Table 5-2, the standard uncertainties presented 

in this table have to be divided by √15 (≈ 3.9). 
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Table 5-2: Error estimates 𝑦 and standard uncertainty 𝑢𝑦   evaluated by the adaptive MCM, the 

experimental replications (Exp.) and GUF (results with one digit more than the number of 

significant digits presented in Table 5-1). 

Error 
Best estimate 𝒚  Standard uncertainty 𝒖𝒚  

Is GUF validated? 
Exp. MCM GUF  Exp. MCM GUF  

EA0B (μrad) -8.73 -8.73 -8.77  0.86 0.86 0.87  Yes 

EC0B (μrad) -2.80 -2.80 -2.83  0.80 0.80 0.79  Yes 

EX0C (μm) -104.59 -104.59 -104.59  0.48 0.48 0.48  Yes 

EA0C (μrad) -18.75 -18.75 -18.73  0.86 0.86 0.87  Yes 

EB0C (μrad) -4.40 -4.41 -4.41  0.96 0.96 0.97  Yes 

EB0Z (μrad) -12.23 -12.24 -12.28  1.26 1.26 1.26  Yes 

EA0Y (μrad) -13.87 -13.86 -13.89  1.12 1.12 1.12  Yes 

EC0Y (μrad) 25.81 25.81 25.76  0.89 0.89 0.89  Yes 

EXX1 (μm/m) 75.6 75.6 75.4  4.6 6.1 6.1  Yes 

EYY1 (μm/m) 102.0 102.0 101.8  3.7 5.4 5.4  Yes 

EZZ1 (μm/m) 113.4 113.3 113.2  3.8 5.5 5.5  Yes 

EY0S (μm) 18.72 18.72 18.73  0.88 0.88 0.89  Yes 

EX0S (μm) -107.15 -107.15 -107.15  1.04 1.03 1.03  Yes 

Table 5-3: The maximum eigenvalue 𝜆max  of the correlation matrix and coverage factor 𝑘𝑝   of 

hyper-ellipsoidal coverage region for coverage probability 0.95 obtained by the adaptive MCM, 

the experimental replications (Exp.), and GUF. 

Validation parameter Exp. MCM GUF Is GUF validated? 

Maximum eigenvalue 𝜆max of correlation matrix 4.99 4.47 4.46 Yes 

Coverage factor 𝑘𝑝 3.61 4.73 4.73 Yes 

 

Figure 5-5: Error estimates (absolute values) and the associated standard uncertainty evaluated 

through the adaptive MCM. Errors are grouped into three categories; the angular errors, the 

translational errors, and the linear terms (slopes) of the linear positioning errors. 
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The following are three examples from the most to the least correlated geometric error estimates 

including the comparisons between the GUF and the MCM results. Table 5-4 includes the 

superposition of the correlation and the covariance matrices obtained by the adaptive MCM. 

According to this table, the linear terms (slopes) of the linear positioning errors of the prismatic 

joints EXX1, EYY1, and EZZ1 are the most correlated machine errors. Sensitivity analysis of these 

three outputs by studying the corresponding rows of the sensitivity matrix 𝑪𝒙 (Eq. 5-14), which 

represent the gradient of each output, demonstrates their significant dependency on the standard 

uncertainty of the SAMBA scale bar length. Figure 5-6 shows the gradient magnitudes of the 

machine geometric errors and their partial derivatives with respect to the SAMBA scale bar length. 

The largest partial derivative magnitudes of these errors are the ones with respect to the length of 

the scale bar and almost equal to 3.34×10-3 μm/m2, denoting 88%, 87%, and 84% of the magnitudes 

of the gradients of EXX1, EYY1, and EZZ1, respectively (Figure 5-6). Therefore, these three functions 

are likely to show the same variation trends in most directions, which can cause high correlation 

coefficients. SAMBA calibrates the prismatic joints in a way that it identifies the relative 

positioning errors using the isolated balls, and determines their magnitudes by measuring, at least 

once, the length of the scale bar. As a result, one can expect that the three linear terms vary with 

full correlation (Table 5-4) by changing the measured length of the scale bar because of, for 

example, thermal variations or simply via some machine or probe related non-repeatable factors. 

 

Figure 5-6: The gradient magnitudes of the geometric errors and their partial derivatives with 

respect to the SAMBA scale bar length. The green columns represent the absolute values of the 

partial derivatives whose numerical values are shown as data labels. 
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Table 5-4: Superposition of the correlation and the covariance matrices obtained by the adaptive 

MCM. The upper triangular part of the matrix includes the correlation coefficients and the lower 

triangular part together with the diagonal elements include the covariance values. The color 

spectrum denotes the absolute values of the correlation coefficients. 

 

 

Figure 5-7a illustrates the ellipsoidal and the rectangular coverage regions, for coverage probability 

𝑝 =0.95, specific to EXX1 and EYY1 by means of the adaptive MCM and the GUF evaluations, along 

with 2,000 random output points. In this figure, also shown are the outputs of experimental 

replications together with the coverage regions obtained in the experiments. The areas of the 

ellipsoidal coverage regions specified by GUF and the adaptive MCM (161.8 and 160.5 μm2/m2, 

respectively) are comparable, although GUF overestimates the area of the rectangular region (657.3 

μm2/m2) compared to that obtained by the adaptive MCM (548.9 μm2/m2). Although not required 

by supplement 2 to the GUM [50], the size of the hyper-ellipsoidal coverage region obtained by 

GUF is also compared with an approximated size of the smallest coverage region. The latter is 

estimated by creating hyper-rectangular regions (meshes) region in the space of the MCM output 

quantities [50]. The area of the smallest coverage region is almost 158.9 μm2/m2 that is 2% smaller 

than the areas of the GUF ellipsoidal regions. The areas of the ellipsoidal and the rectangular 

coverage regions specified by the experiments are 96.1 and 269.0 μm2/m2, respectively, 40% and 

51% times smaller than the areas obtained by the adaptive MCM (Figure 5-7a). Excluding the 
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uncertainty of the scale bar from the MCM analysis suggests that such a difference is mostly 

because of the length uncertainty of the SAMBA scale bar that is not involved in the experiment 

results. However, even without the length uncertainty being involved, the experiment results are 

less likely to provide a coverage region close enough to the ones obtainable with the adaptive MCM  

 

Figure 5-7: a) Ellipsoidal and rectangular coverage regions obtained by the experiments (Exp.), 

the adaptive MCM, and the GUF analyses for EXX1 and EYY1 (for coverage probability 𝑝 =0.95) 

together with 2,000 points drawn at random from the joint PDF of the outputs and the 15 outputs 

obtained experimentally. b) 3D histogram of the outputs based on the adaptive MCM, and 

comparison between the adaptive MCM and the GUF histograms for c) EXX1 and d) EYY1. 
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and the GUF procedures. Because, as mentioned before, the size and the area of a coverage region 

strongly depends on the position of a single output quantity. A single row of the histogram bins in 

the joint PDF of these errors (Figure 5-7b) also suggests a high correlation between them. Figure 

5-7c and d compare the PDFs of EXX1 and EYY1 determined by the adaptive MCM and the GUF 

approaches. 

After the positioning errors of the prismatic joints, the out-of-squareness of axes B (EC0B) and Y 

(EC0Y) relative to axis X are the most correlated machine errors (Table 5-4). Figure 5-8a depicts 

2,000 random points of these errors along with the ellipsoidal and rectangular coverage regions for 

coverage probability 𝑝 =0.95. The ellipsoidal coverage regions are less stretched compared with 

the regions obtained for the positioning errors (Figure 5-8a), showing a smaller correlation between 

the two out-of-squareness errors. The areas of the ellipsoidal regions specified by the adaptive 

MCM and GUF are comparable (7.5 μrad2). The area of the smallest coverage region is almost 7.4 

μrad2, which is 1% smaller than the ellipsoidal area specified by the adaptive MCM. The 

experimental results determine the areas of the ellipsoidal (4.7 μrad2) and rectangular (10.0 μrad2) 

coverage regions smaller than those specified by the adaptive MCM. Figure 5-8b illustrates the 

joint PDF of the same errors and Figure 5-8c and d compare the PDFs of the same errors obtained 

using the adaptive MCM and the GUF evaluations. Considering the topology of the machine 

(Figure b), EC0B and EC0Y model the out-of-squareness errors to the same primary axis X and are 

occurring in parallel planes in the machine frame, i.e. the XY plane. This makes both errors have 

related, but not identical, effects on the vector of volumetric error. Any indirect calibration process 

should be able to separate these effects to identify these geometric errors. Despite probing SAMBA 

at various axis positions and rotary axes angular position, a portion of the effects of these errors 

still seems to remain coupled, which can account for the considerable correlation (0.828 μrad2) 

between EC0B and EC0Y (Table 5-4). Optimization of the SAMBA measurement strategy might 

address this issue and decrease the correlation between such coupled output variables. However, 

there is also the possibility that a physical correlation exists whereby some common factors affect 

both errors simultaneously.  
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Figure 5-8: a) Ellipsoidal and rectangular coverage regions obtained by the experiments (Exp.), 

the adaptive MCM, and the GUF analyses for EC0B and EC0Y (for coverage probability 𝑝 =0.95) 

together with 2,000 points drawn at random from the joint PDF of the outputs and the 15 outputs 

obtained experimentally. b) 3D histogram of the outputs based on the adaptive MCM, and 

comparison between the adaptive MCM and the GUF histograms for c) EC0B and d) EC0Y. 

The least correlated machine errors are EY0S and EX0S with a correlation coefficient of 0.001 (Table 

5-4). The ellipsoidal coverage region for coverage probability 𝑝 =0.95 is more circular (Figure 

5-9a) and the sizes of these coverage regions are closer to the rectangular regions compared with 

the more correlated outputs studied before (Figure 5-7a and Figure 5-8a). The areas of the 
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ellipsoidal regions determined by the adaptive MCM and the GUF analyses are 17.1 and 17.4 μrad2, 

respectively. Amongst all the output pairs, the area of the rectangular coverage region obtained for 

EY0S and EX0S using GUF (18.3 μrad2) is the closest to its counterpart obtained by the adaptive 

MCM (18.2 μrad2). The area of the smallest coverage region (obtain based on the MCM results) is 

 

Figure 5-9: a) Ellipsoidal and rectangular coverage regions obtained by the experiments (Exp.), 

the adaptive MCM, and the GUF analyses for EY0S and EX0S (for coverage probability 𝑝 =0.95) 

together with 2,000 points drawn at random from the joint PDF of the outputs and the 15 outputs 

obtained experimentally. b) 3D histogram of the outputs based on the adaptive MCM, and 

comparison between the adaptive MCM and the GUF histograms for c) EY0S and d) EX0S. 
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almost 16.73 μrad2, which is 4% smaller than the ellipsoidal area given by GUF. The experimental 

areas of the ellipsoidal and the rectangular coverage regions are 10.6 and 13.4 μrad2, respectively, 

which notably differ from the values obtained by the adaptive MCM and the GUF approaches. 

Figure 5-9b depicts the joint PDF of the error, which is mostly symmetric with respect to both 

variables. Figure 5-9c and d illustrate the comparable PDFs acquired by the adaptive MCM and 

the GUF evaluations for EY0S and EX0S. 

5.8 Conclusions 

In this study, we evaluate the uncertainty associated with the indirectly estimated geometric errors 

of a machine tool identified by on-machine touch probing of a scale and master ball artifact 

(SAMBA). First, an adaptive MCM simulator evaluates the estimates of the geometric errors and 

the associated uncertainties. The input of the adaptive MCM is a vector of length 328, including 

the length of the SAMBA scale bar as well as the coordinates of 109 SAMBA ball centres as the 

measured machine coordinates of four balls probed using the linear axes for different angular 

positions of the rotary axes. The outputs are 13 geometric errors of the machine tool. Repeating the 

calibration of a Mitsui Seiki® five-axis machine tool model HU40-T equipped with a Renishaw® 

MP 700 touch-trigger probe over 15 days provides an initial sample of experimental replications 

to approximate the joint PDF of the input quantities. Then, adhering to Supplement 2 to the GUM, 

the results of the adaptive MCM examine the feasibility of the SAMBA uncertainty evaluation 

through GUF. The estimates of the geometric errors, the standard uncertainty associated with the 

estimates, the coverage factor for coverage probability 𝑝 =0.95, and the maximum eigenvalue of 

the output correlation matrix are the validation criteria. In addition, comparing the experimental 

results to the geometric error estimates obtained by the adaptive MCM simulator examines the 

reliability of the marginal means of the joint PDF assigned to the output quantities. Below are the 

most important conclusions: 

1. GUF can replace the adaptive MCM for the uncertainty evaluation of machine tool 

geometric errors identified by SAMBA. Comparing the adaptive MCM and the GUF results 

demonstrates that the linearization of the SAMBA calibration function via the Taylor series 

through GUF gives an adequately accurate approximation of the function. Besides the 
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validation criteria, the areas of the ellipsoidal and the rectangular coverage regions obtained 

by MCM and GUF are also comparable. 

2. Comparing the experimental and the adaptive MCM results signifies the reliability of the 

means of the joint PDF assigned to the output quantities in the adaptive MCM uncertainty 

evaluation. The maximum difference between the estimates obtained by the adaptive MCM 

and the experiments does not exceed 1%. However, for the uncertainties associated with 

the linear terms (slopes) of the linear positioning errors, this difference is up to 47%, which 

is most likely because of introducing the standard uncertainty of the scale bar length to the 

joint PDF of the input vector in the MCM procedure. 

3. The linear terms (slopes) of the linear positioning errors of the prismatic joints EXX1, EYY1, 

and EZZ1, are the most correlated machine errors. A sensitivity analysis reveals their 

significant dependency on the length of the SAMBA scale bar so that the partial derivative 

magnitudes of these errors with respect to the length of the scale bar are 88%, 87%, and 

84% of the norms of the gradients of EXX1, EYY1, and EZZ1, respectively. Then, the 

dependence of these errors on the measured length of the scale bar, which can vary due to 

thermal drift of the machine, may also account for the high correlation values. 
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6.1 Abstract 

Despite the growing use of machine tools for in-process measurement, the uncertainty evaluation 

of on-machine probing has mostly remained limited to the method specifically developed in ISO 

15530-3 for coordinate-measuring machines. These methods reduce the on-machine measurement 

problem to a single-output system, so that the law of propagation of uncertainty becomes 

applicable, which excludes any covariance effect between the input quantities. This study proposes 

a methodology that inclusively estimates the uncertainty associated with any probing within the 

working space of a five-axis machine tool. Defined by the machine’s forward kinematic model, the 

on-machine measurement function receives the machine’s geometric errors and the axis positions 

for a probed point set, and estimates its compensated position in the workpiece frame. The proposed 

uncertainty estimator assembles the covariance matrices associated with these input quantities and 

evaluates the measurement uncertainty through an adaptive Monte Carlo method. Unlike the task-

specific method given by ISO 15530-3, this scheme eliminates the need for any part’s calibrated 

counterpart and involves the covariance between the input quantities. The experimental verification 

of the new method includes the on-machine measurement of a gauge’s length and the diameter and 

sphericity of a precision sphere through highly diverse axis positions of a five-axis machine tool. 

Over the 225 possible combinations of 15 point sets (each of size 2) probed on the gauge block, 

the coverage probability of the expanded uncertainty (for a coverage factor of 2) estimated for the 

gauge’s length is 90%. Then, 10 point sets (each of size 25) collected on the sphere create 10 

accumulated pools, and from each, 200 randomly drawn samples estimate the sphere’s diameter. 
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The coverage probabilities of the expanded uncertainty estimated for the pools built of up to 7 point 

sets remain above 94%. These levels of confidence are comparable to the theoretical level (95%). 

Keywords: Uncertainty; On-machine measurement; Covariance; Five-axis machine tool; Monte 

Carlo 

6.2 Introduction 

The measurement capability of machine tools, imparted by installing touch probes, has improved 

both the efficiency and accuracy of manufacture. Measuring a machined part in situ prevents 

inspection bottlenecks and provides the feedback required for readjusting the process parameters 

[15]. This advantage, however, introduces a new challenge, being ensuring the traceability of the 

on-machine measurement results, which calls for a reliable uncertainty assessment. 

Besides measurement capacity, any behaviour quantification of machine tools is complete only if 

it comes with an uncertainty metric. Stability analysis of machining process [104], control of 

chatter [105, 106], thermal deflections [107], and kinematic error identification [108, 109] are a 

few among many studies where uncertainty evaluation establishes the tractability of results. 

The guide to the Expression of Uncertainty in Measurement (GUM) [42] presents the law of 

propagation of uncertainty based on a linear Taylor approximation of the measurement function. 

This method forms the basis of the uncertainty assessment in the identification of many machining 

systems [110, 111]. Supplement 2 to the GUM [50] includes a modification to this law that allows 

the uncertainty evaluation of multi-dimensional problems through the GUM uncertainty 

framework. According to this document, however, a Monte-Carlo-method (MCM) validation, 

which is already established in Supplement 1 to the GUM [79], is required to certify the uncertainty 

calculated through the GUM uncertainty framework. For this purpose, Supplement 2 to the GUM 

[50] specifies an adaptive MCM that ensures the results stabilize in the statistical sense by 

conducting an adequately large number of MCM trials. 

Machine tools share many kinematic features with coordinate measuring machines (CMMs). 

Following ISO 15530-3 [1], Štrbac et al. [99] study the influence of thermal effect on systematic 

error and measurement uncertainty in the CMM measurement of the diameter and roundness of a 

ring gauge. They report significant growth in the standard uncertainty of the diameter by increasing 
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the system temperature. Mussatayev et al. [112] also detect a significant contribution of thermal 

effects, raised by long-term measurement tasks, to the uncertainty of the CMM measurement of a 

hole plate standard. Harmatys et al. [113] study the effect of a warm-up period on the measurement 

accuracy of an optical CMM. Studying the measurement results obtained during and after warm-

up periods, they report a considerable increase in measurement uncertainty by rising the part 

temperature, which they attribute to the thermal deflection of the part rather than that of the 

machine. 

Resorting to the methods established specifically for the uncertainty evaluation of CMM 

measurement, such as those proposed in ISO 15530 [1, 2], is the approach most adopted to address 

the traceability of on-machine measurements [36, 44-47]. However, this practice brings about new 

challenges. First, the differences between CMMs and machine tools in terms of working conditions, 

maintenance routines, and environment require specific studies on dominant uncertainty 

contributors to on-machine measurement. Second, fabricating and calibrating a counterpart for any 

new workpiece would be costly, especially when it comes to large part machining. 

The instruction specified in ISO 15530-3 [1] evaluates the standard uncertainty of task-specific 

measurements. That is, the evaluated uncertainty resulting from this standard only suits the 

intended measurement task. Such a simplification saves much time and computation cost only if 

the probing process, as well as the factors contributing to the measurement uncertainty, remain 

unchanged during the measurement tasks conducted on the products selected for quality control. 

However, machine tools are known for their unsteady conditions caused by the uncontrolled 

environment of the shop floor. In different terms, the varying state of a machine tool, in both the 

short and long term, can affect the credibility of the measurement uncertainty evaluated by the 

replacement method documented in ISO 15530-3. More specifically, the repeatability of a machine 

tool could vary from time to time, although studying this effect on a certain machine tool 

demonstrates the stability of the short-term repeatability of on-machine measurements [103]. 

Moreover, the geometric errors of the machine tool and in turn, the measurement bias are likely to 

change in the long term with the thermal conditions of the machine and the environment [41]. 

Besides these challenges, the main disadvantage of the present guidelines on the uncertainty 

evaluation for CMMs is the absence of any covariance analysis between the input quantities. The 

formula given by ISO 15530-3, which stems from the law of propagation of uncertainty, neglects 



98 

 

 

the covariance term in the expectation of a squared first-order Taylor expansion of the measurement 

function about the expectations of the input variables. This can be understood by considering an 

underlying causal relationship between certain probed coordinates and the bias of on-machine 

measurement results. For instance, the changes in a machine tool’s geometric errors can 

simultaneously affect certain probed coordinates and the measurement bias, implying a correlation 

between them. 

Through a task-specific scheme for uncertainty evaluation, Mutilba et al. [45] investigate the major 

uncertainty contributors in on-machine measurement under the shop-floor conditions. They 

machine a workpiece including several geometric features and then calibrate each feature on a 

CMM. Conducting on-machine measurements on the machined part and through an uncertainty 

evaluation according to ISO 15530-3, they quantify the contribution of each uncertainty term 

specified by this standard. They report that the repeatability of on-machine measurement is the 

main uncertainty contributor. They find this factor even more dominant for the on-machine 

measurement following the machining process, which they attribute to the changes in thermal 

conditions. They also detect a strong correlation between the geometric errors of the machine tool 

and the systematic errors of the on-machine measurement results and conclude that the machine’s 

geometric errors are the major contributors to the uncertainty associated with the bias of 

measurement results. 

Following the ISO 15530-3 instruction, the user’s knowledge about the machine's systematic error 

contribution to the measurement uncertainty is only obtainable through a calibrated workpiece 

installed at a certain position on the machine tool. To overcome this limitation and the need for a 

calibrated workpiece, Mutilba et al. [44] quantify the uncertainty associated with the systematic 

errors with a laser tracer right before conducting the on-machine measurement. This allows them 

to obtain the volumetric error of each probed point, and accordingly, calculate the measurement 

bias of a calculated feature, i.e. the difference between the feature calculated directly from the 

probed point set and that obtained after correcting each point by subtracting the corresponding 

volumetric error. Skipping the evaluation of the uncertainty associated with this measurement bias, 

they directly introduce this error (as an uncertainty source) into the equation given by ISO 15530-

3. They also follow the instruction specified in this standard to calculate the probing repeatability 

through replicated measurements of the workpiece. Then, they validate the standard uncertainty 
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associated with each estimated feature through the results [45] obtained using the ISO 15530-3 

method and show the feasibility of eliminating the calibrated workpiece from the uncertainty 

evaluation process suggested by this standard. 

In another implementation of the existing methods for the uncertainty evaluation of CMMs, Gąska 

et al. [114] developed a virtual CMM-based model into an uncertainty estimator for five-axis 

measuring systems by drawing an analogy between the rotary axes of an articulated probe head 

installed on a CMM and those of a five-axis machine tool. Including in their model the systematic 

errors of both the CMM kinematic structure and the probe, they evaluate the uncertainty associated 

with a calculated feature through an MCM simulation. For this purpose, they deviate the probed 

coordinates of each point based on the distribution of volumetric errors obtained with a laser tracer. 

By comparing the model outcomes with the calibrated values, they verify their model for the 

Geometric Dimensioning and Tolerancing (GD&T) applications via on-machine measurement. 

Despite promising results, this methodology lacks the covariance analysis for the input quantities 

including the five axis positions, the three coordinates defining the probing direction, and the 

systematic errors. 

Unlike any other existing approach to uncertainty evaluation of on-machine measurement, the 

methodology proposed in this paper concerns the covariance between the input quantities of the 

measurement function. Moreover, benefiting from an indirect machine error identifier, i.e. the scale 

and master ball artifact (SAMBA) [26], the proposed method obviates the need for a calibrated 

workpiece resembling the concerned workpiece (as specified in ISO 15530-3) and provides an 

inclusive uncertainty evaluator that ensures the metrological traceability irrespective of the 

workpiece’s position on the machine. Experimental on-machine probing of a gauge block and a 

precision sphere verify that the uncertainty estimate provides coverage probability comparable to 

the expected value (95% for a coverage factor of 2). 

6.3 Uncertainty estimation with an adaptive Monte Carlo method 

In the context of this project, the on-machine assessment of a geometric feature includes three main 

steps (Figure 6-1). The first step is to identify the geometric errors of the machine (machine 

parameters). As an indirect error identifier, the SAMBA’s algorithm estimates the machine 

parameters based on the raw measurements of the centre of the balls obtained through a series of 
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on-machine measurements of its artifact. Then, in the second step, an error compensator, which 

operates as the on-machine measurement function, receives these machine’s imperfections and 

builds the machine’s forward kinematic model that uses the workpiece probing results recorded as 

axis positions to calculate the compensated position of the probed point set in the workpiece frame. 

Finally, a GD&T function calculates the deviation of the geometric feature of interest. The 

uncertainty evaluation of on-machine measurement includes the propagation of the uncertainty 

associated with the input quantities through these steps with a tailored adaptive MCM. To do so, 

the covariance matrices associated with the machine parameters (the orange matrix in Figure 6-1) 

and the probing results (the blue matrices in Figure 6-1) assemble (the multicoloured matrix in 

Figure 6-1) and provide the on-machine measurement function with the covariance matrix 

associated with its inputs. This matrix includes the covariance of the probed axis positions among 

themselves (the purple matrix in Figure 6-1) and the machine parameters (the yellow matrix in 

Figure 6-1). 

 

Figure 6-1: Data flow for the on-machine assessment of a geometric feature from a point set 

consisting of 𝑛 probed points. The matrices in colour schematically represent the covariance 

matrices associated with the input and output quantities of the different steps. 

6.3.1 Adaptive Monte Carlo method 

The main idea of an MCM is to evaluate measurement function 𝒀 = 𝑓(𝑿), where 𝑓:ℝ𝑁 → ℝ𝑚, 

for a population of estimates 𝒙 = [𝑥1, … , 𝑥𝑁]
T of the vector of input quantities 𝑿 = [𝑋1, … , 𝑋𝑁]

T 

and to build a population of estimates 𝒚 = [𝑦1, … , 𝑦𝑚]
T of the vector of output quantities 𝒀 =

[𝑌1, … , 𝑌𝑚]
T. A covariance simulator (Figure 6-1) provides the adaptive MCM with the information 

needed to generate the population of input quantities. In the current application of MCM, the on-
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machine measurement function receives the axis positions recorded for a probed point set along 

with 13 machine parameters (Figure 6-5a and ), builds the machine’s kinematic model through a 

chain of homogenous transformation matrices, and then returns the compensated position of the 

probed point set in the workpiece Cartesian frame (Figure 6-2c). Assuming an on-machine 

measurement of a point set of size 𝑛 with a five-axis machine tool, the number of inputs and outputs 

of the measurement function are 𝑁=5𝑛+13 and 𝑚=3𝑛, respectively. Should the geometric feature 

outlined by the point set be the output of interest, the measurement function also calls the GD&T 

verifier (step 3 in Figure 6-1), which reduces the number of outputs from 𝑚=3𝑛 to one (a scalar 

quantity of the concerned geometric feature such as length, diameter, sphericity, etc.). 

Table 6-1: Geometric errors of the machine tool according to the nomenclature specified in [102]. 

The first subscript is the nature of the error, the numeral 0 (zero) as the middle subscript indicates 

that it is an axis position or orientation error (not an error motion) and the third subscript is the 

axis of motion with this error. 

 Symbol Description 

1 EA0B out-of-squareness error of axis B relative to axis Z 

2 EC0B out-of-squareness error of axis B relative to axis X 

3 EX0C distance between axes B and C 

4 EA0C out-of-squareness error of axis C relative to axis B 

5 EB0C out-of-squareness error of axis C relative to axis X 

6 EB0Z out-of-squareness error of axis Z relative to axis X 

7 EA0Y out-of-squareness error of axis Y relative to axis Z 

8 EC0Y out-of-squareness error of axis Y relative to axis X 

9 EXX1 linear term (slope) of the linear positioning error of axis X 

10 EYY1 linear term (slope) of the linear positioning error of axis Y 

11 EZZ1 linear term (slope) of the linear positioning error of axis Z 

12 EY0S distance between the spindle axis and axis C along axis Y 

13 EX0S distance between the spindle axis and axis B along axis X 

 

The MCM simulator (Figure 6-2b) draws at random 𝑀 input vectors from a normal joint probability 

distribution function (joint PDF) described by the mean and the covariance matrix of 𝑿 (the 

multicoloured matrix in Figure 6-1) and stores them in matrix 𝑮𝑿 of dimension 𝑁 ×𝑀 [50]. The 
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output samples, stored in matrix 𝑮𝒀 of dimension 𝑚 ×𝑀, encode the knowledge of possible values 

of output vector 𝒀 that, among other statistical measures, releases the standard uncertainty 𝒖𝒚 

associated with 𝒚, a best estimate for 𝒀. This best estimate is obtainable by averaging over the 𝑀 

estimates of output quantities. Standard uncertainty 𝒖𝒚 is the square root of the diagonal elements 

of covariance matrix 𝑼𝒚 (the green matrix in Figure 6-1) associated with estimate 𝒚, given by [50]: 

𝑼𝒚 =
1

𝑀 − 1
𝑮′𝒀 (𝑮′𝒀)

T ,        𝑮′𝒀 = 𝑮𝒀 − 𝒚(𝟏𝑀×1)
T 6-1 

where 𝟏𝑀×1 is a column vector of ones of length 𝑀. 

Concerning the convergence of MCM, Supplement 2 to the GUM [50] specifies the details of an 

adaptive MCM, where after each sequence ℎ (including 𝑀=104 trials), the simulator records 

estimates 𝒚, standard uncertainties 𝒖𝒚, maximum eigenvalue λmax of the associated correlation 

coefficient matrix, and coverage factor 𝑘𝑝 (corresponding to coverage probability 𝑝). After the 

tenth sequence (ℎ=10), the adaptive MCM calculates the standard deviations of these metrics out 

of the ℎ=10 accumulated values and compares them with stipulated numerical tolerances. If these 

standard deviations are larger than the numerical tolerances, the adaptive MCM executes one more 

sequence and this procedure continues until the convergence holds. More details about the used 

adaptive MCM can be found in [115]. 

6.3.2 Covariance of input quantities 

The multivariate sample generator of an MCM process builds a population of possible values of 

input vector 𝑿. Although random, the input quantities drawn at each trial satisfy certain constraints 

in terms of magnitude and correlation according to a joint PDF (usually normal) described by a 

mean and a covariance matrix that should reliably define the random behaviour of the probed 

positions and the machine parameters as well as their correlation. However, quantification of such 

a covariance matrix poses a significant challenge because the on-machine probing and the 

identification of the machine parameters are usually obtained at different times and the machine 

parameters are presumed to remain valid for compensation purposes during a certain period. 
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Figure 6-2: Data flow of a) the covariance simulator for input quantities, which provides a full 

covariance matrix for b) the adaptive Monte Carlo method that evaluates a large sample of input 

quantities through c) the on-machine measurement function. 

 

The short-term repeatability analysis of the machine tool used in this project reveals an insignificant 

standard deviation (< 1 µm) for the single-point on-machine measurements [103]. This short-term 

repeatability (the blue matrices in Figure 6-1) is obtained through replicated on-machine 

measurements over a time span of 10 min, while the machine’s state remains almost unchanged. 

Therefore, it excludes the day-to-day (long-term) probing repeatability caused by the machine’s 

variation, mostly due to thermal drift and changes in its working conditions. To estimate the long-

term variations of the probed coordinates and simultaneously, to quantify their correlations among 

themselves and with the machine parameters, the variations in the latter effect can be thought of as 

the cause for the long-term variations of the probed coordinates. In other words, having a quantified 

picture of the machine’s day-to-day fluctuations allows estimating the long-term variations of the 

on-machine probed points as well as the corresponding correlations. 

Figure 6-3 shows the procedure of the covariance simulation for the input quantities. We assume 

that random variable 𝜞 (5×1) describes the axis positions recorded in the long-term replications 

(long-term repeatability) of the on-machine measurement of a certain target point by a five-axis 

machine tool. The probe tip touches the target point and the machine reports axis positions 𝝋 (5×1). 

A repeatability model [103] gives repeatability covariance matrix 𝒗 associated with probing results 

Joint PDF of 
machine s 
parameters

Joint PDF of 
probing 

repeatability

Forward kinematic 

model 

Inverse kinematic 
model 

Multivariate sample 
generation

a)
Joint PDF 
of inputs X

Number 
of trials M

Multivariate 

sample generation

Statistical 

analysis

{𝒚, 𝒖𝒚, λmax , 𝑘𝑝 }
h 

Convergence 

holds

𝑝 

𝒚, 𝒖𝒚, λmax , 𝑘𝑝  

No

Yes

b)

h0=10

h=h+1

Uh GX
h×M input vectors x

GX

Uh GX
h×M output vectors y

GY

+

+

c)
Joint PDF of 

unexplained errors E

Output vector y
(1)

of compensated positions 
in workpiece frame

Output vector y
(2)

of geometric feature
Choose over
y

(1) 
and y

(2)

GD&T

Machine s 
perameters and 

probing results x

 y

Multivariate 

sample generation
Forward 

kinematic model



104 

 

 

𝝋. Let us assume random variable 𝜱 (5×1) describes the short-term variations of the probed axis 

positions and is distributed as: 

𝜱~𝒩(𝝋 , 𝒗) 6-2 

where 𝒩(𝝋 , 𝒗) is a multivariate normal distribution with mean and covariance of 𝝋 and 𝒗, 

respectively. The SAMBA method identifies the current machine parameters 𝜹 (13×1). 

Compensating (evaluating) random variable 𝜱 with the machine’s forward kinematic model 𝑓 for 

the current machine parameters 𝜹 yields 𝜳 = 𝑓(𝜱 , 𝜹), where 𝜳 (3×1) is the random variable 

describing the compensated positions in the workpiece frame. Depending on measurement function 

𝑓, 𝜳 can have different types of distribution. Here, we assume a normal multivariate distribution 

with mean and covariance of 𝝍 and 𝒘, respectively, describes 𝜳: 

𝜳~𝒩(𝝍 ,𝒘) 6-3 

Day-to-day monitoring (once a day over a long term, say two weeks) of the machine tool estimates 

the long-term variations of the machine’s status, described by random variable 𝜟, distributed as: 

𝜟~𝒩(𝜹 , 𝝈) 6-4 

where 𝒩(𝜹 , 𝝈) is a multivariate normal distribution with mean 𝜹 and covariance 𝝈. The SAMBA 

method identifies 𝜹 (the 13 machine parameters) through a multiple regression using the least-

square approach. In this indirect method, a sample consisting of 327 observations (raw machine 

measurements of the center of the balls at 109 positions) and the length of a calibrated bar are used 

to approximate the machine parameters [115]. This sample seems large enough so that the 

normality assumption (Eq. 6-4) holds as a consequence of the Central Limit Theorem [116]. To 

achieve maximum compensation for systemic effects, it is essential that the machine parameters 

incorporated in the measurement function represent the current status of the machine. Therefore, 

the distribution given by Eq. 6-4 should be valid in terms of both the mean and the covariance. If 

the day-to-day monitoring results of the machine seem outdated, although its working conditions 

and environment have not significantly changed, one can presume the covariance 𝝈 (shape) of this 
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distribution to be valid and only update its mean 𝜹 (centre) by conducting a new error identification 

test. 

𝑄 random draws 𝜹𝑞 (𝑞 = 1, … , 𝑄) from Eq. 6-4 simulates this number of machine tools, each 

representing the machine’s status in the corresponding section of the period of the day-to-day 

identification of the machine’s errors. Now, we assume each simulated machine tool (defined by 

𝜹𝑞) conducts a short-term pseudo-repeatability test on the same target point whose location on the 

machine’s table remains unchanged. This gives 𝑄 distributions of the short-term probing 

repeatability, where random variable 𝜱𝑞 denotes the recorded positions for the five axes of the 

machine over the 𝑞th pseudo-repeatability test: 

𝜱𝑞~𝒩(𝝋𝑞 , 𝒗𝑞) 6-5 

in which 𝒩(𝝋𝑞 , 𝒗𝑞) is a multivariate normal distribution with mean and covariance of 𝝋𝑞 and 𝒗𝑞, 

respectively. Because the short-term repeatability test is repeatable [103], 𝒗𝑞 ≈ 𝒗. Then, 

𝜱𝑞~𝒩(𝝋𝑞 , 𝒗) 6-6 

These 𝑄 distributions of 𝜱𝑞 give snapshots of the long-term variations of axis positions (described 

by 𝜞), taken 𝑄 times over the considered long time span. As a result, one random draw from each 

of these distributions gives a sample of size 𝑄, resembling replicated probing results collected over 

the long-term. In other words, the drawn sample approximates the axis positions obtainable on a 

day-to-day basis (conforming to the SAMBA routine that identifies the machine’s status 𝜟), as if 

the target point is probed once a day over the long-term. Therefore, to evaluate 𝜞, it suffices to 

quantify 𝜱𝑞 (Eq. 6-6) and do the 𝑄 random draws. 

Since the target point’s location on the machine table remains unchanged, it is expected that the 

compensation of the acquired data during any of the 𝑄 pseudo-experiment results in the same 

compensated positions, described by  𝜳 in Eq. 6-3. Then, evaluating 𝜳 through the inverse 

kinematic model 𝑓−1 of each erroneous machine described with 𝜹𝑞 quantifies random variable 𝜱𝑞, 

the five pseudo-axis positions of the machine: 

𝜱𝑞 = 𝑓−1(𝜳, 𝜹𝑞) 6-7 
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in which 𝜳 is distributed as Eq. 6-3. 

One random draw from each of the 𝑄 distributions given by Eq. 6-7 gives a sample of 𝑄 probing 

results recorded in the long-term. Therefore, this approximates to sampling 𝜸𝑞 (𝑞=1, … , 𝑄) from 

the distribution of 𝜞. Choosing an adequately large value for 𝑄 provides a population of estimates 

for 𝜞. Since according to Eq. 6-7, 𝜱𝑞 (and consequently 𝜞) varies with the machine’s status 𝜹𝑞, 

combining the population estimated for 𝜞 with that of the machine parameters 𝜟 (composed of 𝜹𝑞) 

estimates the joint distribution of all the input quantities of the on-machine measurement function. 

The 𝑞th member of the assembled population is the concatenation of 𝜸𝑞 and 𝜹𝑞. 

 

Figure 6-3: Data flow for the simulation of the covariance matrix of the input quantities 

consisting of probed axis positions 𝜞 and machine parameters 𝜟. The process includes 

calculating compensated positions 𝜳 through forward kinematic model 𝑓 with an estimate of 

current machine parameters 𝜹, then simulating long-term repeatability of on-machine 

measurement by evaluating the compensated positions 𝜳 through the inverse kinematic model 

𝑓−1  with a sample of machine parameters 𝜹𝑞   (𝑞 = 1,… , 𝑄). For illustrative purposes, the 

distributions are univariate. 

A covariance simulator conducts these steps and estimates the long-term random behaviour of 

probing results based on the corresponding variations of the machine tool, as if the probing task 

has lasted many days. For an on-machine probed point set 𝝋 of size 𝑛, like in measuring the 

diameter of a hole by probing 𝑛 points around it, the repeatability model [103] first provides the 
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short-term covariance matrices 𝒗 of dimension 5×5 (denoted by the blue matrices in Figure 6-1). 

Then, according to Eq. 6-2, the covariance simulator generates a population (Population I of size 

𝑄) of point sets, i.e. of the vectors (5𝑛×1) of the probed axis positions, whose mean equals probing 

results 𝝋. Then, the machine’s forward kinematic model receives each member (point set) of 

Population I and calculates the corresponding compensated positions in the workpiece frame 

through the current estimated machine parameters 𝜹. The resulting population (Population II) 

consists of the possible actual positions 𝜳 of the probed point set in the workpiece frame. 

Monitoring the machine parameters over 15 days (once a day) gives an estimate of their joint PDF 

[115]. To update this joint distribution, it is centred at the current parameters of the machine 𝜹 

without affecting its covariance, given that the machine’s functionality and environmental 

condition have barely changed. The covariance matrix 𝝈 (the 13×13 orange matrix in Figure 6-1) 

defines the shape of this distribution [115]. The covariance simulator receives this joint PDF and 

generates a population (Population III of size 𝑄) of the estimates for the machine parameters 𝜹𝑞 

(𝑞 = 1,… , 𝑄), where each vector (13×1) represents a different simulated machine tool. Then, the 

inverse kinematic models of the simulated erroneous machines generate the probing data (axis 

coordinates) that each instance of the machine parameters ,included in Population III, would have 

produced for each compensated point set stored in Population II. This generates Population IV (of 

size 𝑄), consisting of the simulated positions of the machine’s axes obtainable in a long-term 

replicated probing task, conforming to the day-to-day variations of the machine’s status over 15 

days. Combining populations III and IV gives the joint PDF and then the corresponding covariance 

matrix of dimension (5𝑛+13)×(5𝑛+13) for input vector 𝑿 of the on-machine measurement function, 

suitable to initiate the MCM procedure (Figure 6-2b). The multicoloured matrix in Figure 6-1 

denotes this covariance matrix. Since the positions of the machine’s rotary axes (B and C) remain 

unchanged during the probing of a single point, they appear as constant values so that the 

corresponding elements in the covariance matrix are zero. 

An example of the single-point probing on a reduced single-axis machine tool can illustrate the 

covariance simulation. In this example, the only machine parameter is the linear term (slope) of the 

positioning error, given as 𝛿=-50.0 µm/m with a variance of 𝜎=100 µm2/m2 obtained over a day-

to-day error identification. Let us assume random variables 𝛷 and 𝛹 describe the probed axis 

position and the compensated position, respectively, and 𝛤 denotes the long-term variations of the 
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recorded axis position. This machine probes one end of a gauge block and reports a hypothetical 

value of 𝜑=100.000 mm with a repeatability of 𝑣=1.0 µm2 in terms of variance. A multivariate 

sample generator produces Population I (of size 104) of axis position 𝛷 based on normal 

distribution (Figure 6-4): 

𝛷~𝒩(𝜑, 𝑣) 6-8 

Population II includes compensated position 𝛹, evaluated through the measurement function 

(Figure 6-4): 

𝛹 = 𝑓(𝛷, 𝛿) = 𝛷(1 + 𝛿) 6-9 

This population shares the variance of Population I but its mean is 𝜓 = 𝜑(1 + 𝛿)=99.995 mm. 

Then, the multivariate sample generator creates Population III (of size 104) of the machine error 

parameters 𝛥 according to normal distribution (Figure 6-4): 

𝛥~𝒩(𝛿, 𝜎) 6-10 

This population includes 104 simulated machine tools, varying in the long-term. Since the gauge 

block preserves its geometry and location on the machine table, each member of this population 

suffices to estimate the probing result obtainable in the short-term by the simulated machine it 

represents. To do so, evaluating the 𝑞th (𝑞 = 1,… , 104) compensated position (𝜓𝑞) stored in 

Population II through the inverse kinematic model formed by the 𝑞th simulated machine (𝛿𝑞) 

included in Population III estimates the corresponding axis position in a long-term replicated 

probing task (𝛾𝑞). This creates Population IV of 𝛤 (Figure 6-4): 

𝛾𝑞 = 𝑓−1(𝜓𝑞 , 𝛿𝑞) =
𝜓𝑞

(1 + 𝛿𝑞)
 6-11 

Although Eq. 6-7 suggests processing the whole members of Population II through the inverse 

kinematic model with 𝛿𝑞, doing so only for one member of this population suffices as long as 𝑄 is 

adequately large. 
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Figure 6-4: The data flow of the covariance simulation for a single-point probing on a single-axis 

(axis 𝛷) machine tool with a positioning error of 𝛿. The green distribution describes the 

population of short-term repeatability of probed positions 𝛷 (Population I). The purple histogram 

represents the population of corresponding compensated positions 𝛹 (Population II). The orange 

distribution describes the population of machine parameter 𝛥 varying in the long-term 

(Population III). Evaluating Population II through the inverse kinematic model with population 

III gives the blue histogram representing the population of long-term repeatability of probed 

positions 𝛤 (Population IV). Combining Populations III and IV provides a joint distribution for 

input random variables 𝛤 and 𝛥. Analyzing the combined population reveals a correlation 

coefficient of -0.7, a high interdependence that is evident in the orientation of 2,000 random 

points drawn from the joint distribution. 

Population IV encodes the long-term variations of the recorded axis position while probing the 

same target point. Assembling this population (variations of the probed axis positions in the long-

term 𝛤) and Population III (variations of the machine parameter in the long-term 𝛥) gives the 

bivariate joint PDF of these variables, where these populations define the marginal distributions 

for the axis position and the machine’s error, respectively. The mean and the covariance matrices 

of the joint PDF are: 

[
𝛾
𝛿
] = [

100 mm
−50.0 μm 𝑚⁄

] ,   [
cov(𝛤, 𝛤) cov(𝛤, 𝛥)
cov(𝛥, 𝛤) cov(𝛥, 𝛥)

] = [ 2.0 × 10
−6 −1.0 × 10−2

−1.0 × 10−2 1.0 × 102
] 6-12 
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The marginal distribution for the axis position shares the mean of Population I, i.e. 𝛾=𝜑=100.000 

mm, although its variance increases from 1.0 to 2.0 µm2, through the propagation of uncertainty 

(Figure 6-4). This joint PDF results in a standard uncertainty of 2.2 µm for the compensated axis 

position 𝜓=99.995 mm, whereas relying only on the probing repeatability (the short-term random 

behaviour of the probed position) and neglecting the inputs’ correlation yield 1.4 µm. As Figure 

6-4 shows, the input quantities are strongly correlated (corr(𝛤, 𝛥)=-0.7). The negative correlation 

confirms that a smaller machine’s error causes a larger probed axis position since the machine’s 

axis has contracted (the slope of the machine’s positioning error is negative). Including such a 

causal relationship between the two input quantities in the uncertainty estimation becomes possible 

only through the covariance analysis. Otherwise, as this example demonstrates, the assumption of 

independence of inputs causes an inaccurate estimate for their random behaviour. 

6.3.3 Volumetric errors unexplained by SAMBA 

Precise compensation for systematic errors is a prerequisite for uncertainty evaluation. That is, the 

closer the output estimate to the true value of the measurand, the smaller the uncertainty interval 

to encompass it. In an ideal case, full compensation for systematic errors places the centre of an 

uncertainty interval on the true value of the measurand, denoting no residual bias in the 

measurement result. In practice, however, the estimated uncertainty interval has to be large enough, 

due to the residual systematic effects, so that it encompasses the true value of the measurand. These 

residual systematic errors are those unexplained by the estimated machine parameters due to 

limitations of the error identification model. To consider these effects, the uncertainty estimator 

includes a vector of unexplained volumetric errors 𝑬: 

𝑬 = [𝒆𝟏, … , 𝒆𝒏]
T 6-13 

where 𝒆𝒔 = [𝑒X, 𝑒Y, 𝑒Z]
T (𝑠 = 1,… , 𝑛), is the unexplained volumetric error associated with the 𝑠th 

point of a point set of size 𝑛. Unexplained volumetric error 𝑬 is added to the compensated positions 

(in the workpiece frame) of each probed point set (Figure 6-2c): 

𝒚(𝟏) = 𝒚 + 𝑬  6-14 
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At each trial of the adaptive MCM, the uncertainty estimator creates 𝑬 through 𝑛 random draws 

from the joint PDF of 𝒆. Calculating the unexplained volumetric errors for 92 positions probed on 

the machine during the SAMBA procedure gives the mean and the covariance matrix of 𝒆: 

�̅� ≈ 𝟎 ,   cov(𝒆) = [
4.5 −1.7 −22.0
−1.7 6.6 0.7
−22.0 0.7 5.8

] × 10−5 mm2  6-15 

These 92 points take no part in the SAMBA probing data used for the error identification with this 

method. 

6.4 Experimental verification 

The on-machine measurement of calibrated workpieces allows for the evaluation of the proposed 

uncertainty estimator. For this purpose, a Mitsui Seiki HU40-T five-axis horizontal machining 

centre (Figure 6-5a) equipped with a Renishaw® MP 700 touch-trigger probe measures a gauge 

block’s length and a precision ball’s diameter and sphericity. The nominal length of the probe’s 

stylus is 150 mm. All probing is conducted using the linear axes whereas different positions of 

rotary axes B and C re-locate the workpiece in the work envelope. Each measurement task of the 

gauge block (Figure 6-5b) with a nominal length of 500 mm and an expanded uncertainty of 0.3 

µm (indicated at a temperature of 20°C) includes probing one point on each end’s centre (denoted 

by numbers 1 and 2 in Figure 6-5b), providing a set of two points (𝑛=2). First, for the B-axis 

position of zero and C-axis positions 135°, 165°, …, and 285°, and then for nine random positions 

of rotary axes B and C, the machine probes Side A of the gauge block, resulting in a group of 15 

data (including 30 probed points). The same procedure is repeated (with different nine random 

positions for the rotary axes) for Side B of the gauge block to acquire another group of 15 data. 

One single draw from each group provides a point set of size 2 whose distance gives the gauge’s 

length plus the effective diameter of the probe’s stylus tip. To compensate for the latter, while the 

B- and C- axis positions are zero, a five-point probing of a precision sphere of known diameter is 

conducted. The effective diameter of the probe’s stylus tip is 5.925 mm and because of the 

relatively small size of the used precision sphere and since the rotary axes are not involved in the 

five-point probing, the uncertainty associated with the stylus tip is assumed negligible. The 

calibrated diameter and sphericity of the sphere are 19.05 mm and 0.4 µm with associated expanded 
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uncertainties of 0.5 and 0.1 µm, respectively (indicated at a temperature of 20°C). The whole 

measurement process of the gauge block lasts about 15 min. 

The second experimental validation consists in measuring the diameter and the sphericity of the 

same precision sphere (Figure 6-5c) by probing 25 points (𝑛=25) on its surface (Figure 6-5d) [117]. 

Ten point sets are collected at ten random positions of axes B and C. For each point set, the least-

square sphere estimates the diameter, and the difference between the maximum and the minimum 

fitting residuals indicates the sphericity. The sphere measurements take about 74 min. An infrared 

camera constantly captures the temperature of the calibrated parts and reports a variation between 

21.6 and 22.1 °C with an average temperature of 21.7 °C. To have up-to-date knowledge of the 

machine’s state, the SAMBA method identifies the machine parameters twice, once before and 

once after the two experiments, whose average introduces the vector of the machine parameters 

(13×1) to the on-machine measurement function. 

Let us assume that 𝜂 denotes the possible values of the measurand (gauge’s length, sphere’s 

diameter or its sphericity) and that this variable is normally distributed with mean 𝑦cal (the 

calibrated value of the measurand) and standard deviation 𝑢cal (the standard uncertainty associated 

with the calibrated value). This distribution (Figure 6-5e) includes the available benchmark of the 

true value of the measurand. The probability that expanded uncertainty interval 𝑦 ± 𝑈𝑦 associated 

with a geometric feature estimate (obtained through the proposed methodology for a stipulated 

coverage factor) encompasses the calibrated value of the measurand 𝑦cal is the area bounded within 

this interval and under the distribution curve of the calibrated value (Figure 6-5e): 

𝑝 = ∫
1

𝑢cal√2𝜋
𝑒
−
1
2
(
𝜂−𝑦cal
𝑢cal
)
2

𝑑𝜂
 𝑦+𝑈𝑦

 𝑦−𝑈𝑦

 6-16 

Ideally, this integral yields the theoretical coverage probability (for example 95% for a coverage 

factor of 2). For each calibrated workpiece, the calibrated value 𝑦cal,20°C and its standard 

uncertainty 𝑢cal,20°C (inspected at 20.0 °C according to the workpieces’ specifications), the 

temperature difference of the workpiece Δ𝑇 compared with the calibration process and its 

uncertainty 𝑢Δ𝑇, and the workpiece’s thermal expansion 𝛼 and its uncertainty 𝑢𝛼 are the factors  
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Figure 6-5: The experimental procedure where a) a Mitsui Seiki HU40-T five-axis horizontal 

machining centre (shown with its axis location errors) measures b) a gauge block and c) a 

precision sphere. Also shown are d) the target points probed on the precision sphere and e) the 

calculation of the coverage probability in the experimental verification where the red area is the 

coverage probability provided by the expanded uncertainty interval 𝑦 ±𝑈𝑦   for measurand 𝜂. 

defining mean 𝑦cal and the standard deviation 𝑢cal of this distribution. The linear expansion 

equation gives 𝑦cal: 

𝑦cal = 𝑦cal,20°C(1 + 𝛼Δ𝑇) 6-17 
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and the law of propagation of uncertainty estimates standard uncertainty 𝑢cal 

𝑢cal = √(
𝜕𝑦cal
𝜕𝑦cal,20°C

)

2

𝑢cal,20°C
2 + (

𝜕𝑦cal
𝜕𝛼
)
2

𝑢𝛼2 + (
𝜕𝑦cal
𝜕Δ𝑇
)
2

𝑢Δ𝑇
2  

6-18 

which yields 

𝑢cal = √(1 + 𝛼Δ𝑇)
2 𝑢cal,20°C
2 + (𝑦cal,20°CΔ𝑇)

2
𝑢𝛼
2 + (𝑦cal,20°C 𝛼)

2
𝑢Δ𝑇
2  6-19 

According to the calibration specifications, 𝑦cal,20°C and 𝑢cal,20°C (for a coverage factor of 2) are 

500.0000 mm and 0.2 µm for the gauge’s length, and 19.0500 mm and 0.3 µm for the sphere’s 

diameter, respectively. Thermal expansion coefficient 𝛼 and its uncertainty 𝑢𝛼 are 10.80×10-6 and 

0.15×10-6 °C-1, respectively. Based on the average temperature (21.75°C) captured during the on-

machine measurements, the temperature difference Δ𝑇 is 1.75°C and its uncertainty is derived from 

the device’s resolution (0.01°C) as 0.005/√3=0.003°C. Substituting these values in Eqs. 6-17 and 

6-19 returns 𝑦cal and 𝑢cal as 500.0095 mm and 0.2 µm for the gauge’s length, and 19.0504 mm 

and 0.3 µm for the diameter of the precision sphere, respectively. The thermal effects on the 

calibrated sphericity and its uncertainty are assumed negligible. 

6.5 Results and discussion 

6.5.1 Gauge block 

The two data groups (each of size 15), collected during the gauge block test, provide 152 different 

point sets of size 2, denoting 225 bipoint samples of length estimates. Simple probing tasks, such 

as length measurement, usually complete without moving the rotary axes, i.e. the two points picked 

at the part’s ends share the same rotary-axis positions. In this experiment, however, the position of 

the workpiece frame, relative to the machine frame, is different for each single-point probing, 

except for the six lengths measured with the B-axis at its zero position and with C-axis positions 

of 135°, 165°, …, and 285°. This challenges the compensation capacity of the on-machine 
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measurement function and well represents the diversity of possible data acquisitions to measure 

linear feature-of-size on a part. 

For each bipoint, the uncertainty estimator (Figure 6-2b) receives the vector of input estimates 𝒙 

of dimension 23×1 (including 2x5=10 axis positions comprising the bipoint and 13 machine 

parameters) along with its simulated (Figure 6-2a) covariance matrix 𝑼𝒙 of dimension 23×23. To 

obtain this matrix, following the procedure given in section 2-2, a multivariate random generator 

first creates Population I (10×104) based on the short-term repeatability of each point. Evaluating 

this population with the forward kinematic model generates Population II (6×104) of compensated 

positions for each bipoint. The multivariate random generator creates Population III (13×104) based 

on the joint PDF of the machine parameters. Then, evaluating each member of Populations II 

through the inverse kinematic model with one and only one member of Population III gives 

population IV (10×104) encoding simulated short-term repeatability. Combining Populations III 

and IV estimates the population of all input quantities (23×104) from which full covariance matrix 

𝑼𝒙 (23×23) is obtainable. By evaluating 𝑀=104 generated bipoints through the on-machine 

measurement function (Figure 6-2c), it then creates a population of size 𝑀 of vectors 𝒚(𝟏) (6×1), 

whose members are the possible actual positions of the point set in the workpiece frame. Then, the 

GD&T unit calculates the gauge’s length corresponding to each compensated point set, resulting 

in a population of scalar output 𝑦(2) of compensated length 𝑙c. A statistical analysis of this 

population provides best estimate 𝑦 of the gauge’s length and the associated expanded uncertainty 

𝑈𝑦 (for a coverage factor of 2). Repeating this procedure for the 225 point sets gives this number 

of expanded uncertainty intervals  𝑦 ± 𝑈𝑦. The estimated expanded uncertainties vary between 

17.5 and 25.5 µm, with an average of 19.2 µm. Then, the integral specified by Eq. 6-16 gives 225 

coverage probabilities provided by the estimated intervals, over which averaging yields an average 

coverage probability of �̅� =90%. 

Figure 6-6a shows the compensated errors 𝑒cversus the measurement errors 𝑒m, where 

𝑒c = 𝑙c − 𝑦cal  and  𝑒m = 𝑙m − 𝑦cal 
6-20 

in which 𝑙m is the gauge’s length measured from the probing data before compensation. Also shown 

is the average expanded uncertainty zone [-19.2 , +19.2] µm. The 203 green points represent the 
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compensated points whose expanded uncertainty intervals overlaps with that of the calibrated 

length. Although after compensation for systematic errors the data is less scattered along the 

vertical axis (compensation error), the residual volumetric errors of an imperfect compensation 

prevent it from lying on the zero horizontal line. Figure 6-6b shows 20 random (out of 225) samples 

of the probed (before error compensation) and compensated gauge’s lengths compared with the 

calibrated value. In some cases, such as samples 10 to 13, the compensation deteriorates the length 

estimate. However, the average length estimate enhances from 500.007 to 500.009 mm, while their 

standard deviations decrease from 0.031 to 0.011 mm. 

Excluding the effect of unexplained volumetric errors (Eq. 6-14) from the uncertainty model can 

demonstrate the influence of this uncertainty budget. Without this factor, the average coverage 

probability in the gauge block measurement decreases to 39%, mainly caused by a considerable 

reduction in the evaluated expanded uncertainty. This reduction in coverage probability implies the 

unexplained offset between the calibrated length and the compensated measurement results, which 

could be reduced by adopting a more exhaustive error system in the forward kinematic model of 

the machine tool. 

  

Figure 6-6: a) Compensation error versus measurement error for 225 measured gauge’s lengths, 

where the average expanded uncertainty interval is denoted by the blue zone, and b) 20 (out of 

225) samples of the probed (before compensation) and compensated gauge’s lengths with the 

associated expanded uncertainty (shown by error bars) and the calibrated length.  
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6.5.2 Precision sphere 

For small workpieces (relative to the machine’s working volume) such as the precision sphere used 

in this work, the probed points share nearly the same axis positions. As a result, the machine’s 

kinematic chain estimates similar volumetric error for the points, which mostly eliminates the need 

for error compensation for many geometric features, including diameter and sphericity. In other 

words, because of small distances within the points probed on such a relatively small sphere, the 

error compensation almost only translates the point set so that it barely changes the diameter of the 

sphere fitted in the least-square sense to the point set. This is evident for the 10 probed point sets 

(each including 25 measured points) whose calculated diameter and sphericity alter merely by 0.3 

and 0.2 µm on average after the error compensation (Figure 6-7). 

In the uncertainty evaluation of the sphere’s geometric features (diameter and sphericity) indicated 

by each of the 10 collected point sets, the vector of input estimates 𝒙 is of dimension 138×1 

(including 125 axis positions, 5 for each of the 25 points measured, and 13 machine parameters). 

This vector along with covariance matrix 𝑼𝒙 of dimension 138×138 result in a population of output 

vectors 𝒚(𝟏) (75×1) of compensated Cartesian coordinates of the point set in the workpiece frame. 

To simulate 𝑼𝒙, the forward kinematic model evaluates Population I (125×104) and gives 

Population II (75×104) of compensated positions. Evaluating each member of the latter through the 

inverse kinematic model with only one member of Population III (13×104) yields Population IV 

(125×104). Combining Populations III and IV provides an assembled population (138×104) which 

provides full covariance matrix 𝑼𝒙 (138×138). 

The diameter and the sphericity of the least-square sphere outlined by each point set create two 

separate and independent populations of scalar output 𝑦(2), whose average and standard deviation 

give best estimate 𝑦 and associated expanded uncertainty 𝑈𝑦 for each feature. Repeating this 

procedure for each point set gives 10 best estimates for diameter (with an average of 19.0493 mm) 

and the associated expanded uncertainties (for a coverage factor of 2) which vary between 10.7 and 

11.1 µm with an average of 10.9 µm (Figure 6-7a). The expanded uncertainties for the sphericity 

best estimates (with an average of 7.5 µm) vary between 10.9 and 11.2 µm, having an average of 

11.1 µm (Figure 6-7b). 
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The diameter estimates (after compensation) differ from the calibrated diameter with a maximum 

of 2.0 µm and with an average of 1.1 µm so that all the 10 expanded uncertainty intervals 

encompass the calibrated diameter (Figure 6-7a). This demonstrates the machine’s high accuracy 

in measuring the diameter of a small sphere. Although the sphericity estimates hold considerable 

offsets from the calibrated sphericity (up to twentyfold), each expanded uncertainty interval 

includes the calibrated value, owing to its relatively ample size that is even greater than the 

compensated sphericity (Figure 6-7b). 

  

Figure 6-7: The compensated outputs with associated expanded uncertainties, the probed 

measurand (before compensation), and calibrated value of the measurand for a) the diameter and 

b) the sphericity of the precision sphere for each of 10 point sets. 

For all the 10 point sets, although the expanded uncertainty intervals associated with the diameter 

and sphericity estimates comprise the corresponding calibrated value, validating the coverage 

probability provided by the uncertainty estimator requires a considerably larger number of point 

sets. For this purpose, first, 𝑘 (1≤ 𝑘 ≤10) out of the 10 point sets are pooled to build one set of 
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essentially from 𝑘 random positions within the machine’s working space. After drawing 200 point 

sets, which is an adequately large number for the validation purpose, the uncertainty estimator 

(Figure 6-2) quantifies best estimate and the associated standard uncertainty for the diameter and 

sphericity indicated by each point set. Then, for a coverage factor of 2, Eq. 6-16 gives the coverage 

probability offered by each expanded uncertainty. 

Figure 6-8a shows the results for the diameter. The coverage probabilities calculated out of 200 

point sets drawn at random from 𝑘 pooled point sets collected experimentally on the precision 

sphere. Raising 𝑘 increases the difficulty to compensate for systematic errors since this increases 

the diversity of the volumetric errors at the probed points. Drawing from the pool built by up to 

three point sets keeps the coverage probability of 100%. Although the average of the probed 

diameters (before the compensation for systematic effects) notably recedes from the calibrated 

value for 𝑘=2 and 3, the error compensation results in full coverage probabilities. By adding four 

more point sets to the pool (𝑘=7), the coverage probability gradually drops to 95%, and then goes 

down to 90% by involving the eighth point set. Increasing the level of challenge more than this 

largely deteriorates the coverage probability so that it declines to about 60% after involving 9 and 

10 point sets. The average of expanded uncertainties assigned to the point sets for each 𝑘 varies 

between 8.9 and 9.7 µm (Figure 6-8a). After 𝑘=3, the effectiveness of error compensation gradually 

decreases so that after 𝑘=7 it even slightly worsens the average of probed diameters. 

Figure 6-8b shows the results for the sphericity. The coverage probability immediately drops from 

100% to 9% by pooling two point sets and it sinks to zero by further increasing 𝑘. For 𝑘=2, although 

the average of the probed sphericities (before the compensation for systematic effects) dramatically 

drifts away from the calibrated value and reaches 111.4 µm, it decreases almost twelvefold after 

the error compensation. However, such a considerable recovery is insufficient for keeping the 

coverage probability from the steep fall. For the full pool (including all the 10 point sets), the 

average sphericity estimate grows to 26.7 µm. The average of expanded uncertainties estimated for 

each 𝑘 varies between 11.7 and 13.2 µm. 
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Figure 6-8: The coverage probability, the average of output estimates (after compensation) with 

the associated average expanded uncertainties, the average of probed measurands (before 

compensation), and the calibrated value of the measurand vs. the number of pooled point sets 𝑘, 

shown for a) the diameter and b) the sphericity of the precision sphere. 

6.5.3 Verification of the uncertainty estimator 

When expressed in mm, each compensated coordinate of a point set in the workpiece frame is 

regarded as having four significant decimal digits. Accordingly, the numerical tolerance for the 

MCM convergence is 0.05 µm [50]. The same numerical tolerance is considered for the geometric 

features. The MCM procedure (Figure 6-2) converges after ℎ=10 sequences, including 𝑀=105 

trails. For all the outputs, the numerical tolerance is larger than the standard deviation of ten values 

recorded for estimates 𝒚, standard uncertainties 𝒖𝒚, maximum eigenvalue 𝜆max of the associated 

correlation coefficient matrix, and coverage factor 𝑘𝑝, which establishes the convergence of MCM. 

Table 6-2 lists these values for the six coordinates of a point set probed on the gauge block and for 

its length estimate. 
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Table 6-2: Standard deviation (Std.) of: estimates 𝑦, standard uncertainties 𝑢𝑦  , maximum 

eigenvalue 𝜆max   of the associated correlation coefficient matrix, and coverage factor 𝑘𝑝   after 

ℎ=10 sequences (𝑀=105 trials) of MCM for the six coordinates of a point set collected on the 

gauge block and for its length estimate. 

Measurand 
Std. of estimates 

𝒚 (µm) 

Std. of standard 

uncertainty 𝒖𝒚 

(µm) 

Std. of coverage 

factor 𝑘𝑝 

Std. of the maximum 

eigenvalue 𝜆max of 

correlation matrix 

Coordinate X of point 1 0.02492 0.00867 

0.00176 0.00252 

Coordinate Y of point 1 0.01375 0.02838 

Coordinate Z of point 1 0.03048 0.00948 

Coordinate X of point 2 0.02175 0.01850 

Coordinate Y of point 2 0.01463 0.01854 

Coordinate Z of point 2 0.03217 0.03213 

Gauge’s length 0.03371 0.03174 0.00000 0.00228 

 

Incorporating a machine’s error identifier (SAMBA) into the uncertainty estimator enables it to 

build the machine’s kinematic chain at any target point and to compensate for the systematic effects 

irrespective of the positions of the machine’s axes. This allows the uncertainty estimation of on-

machine measurement based on the probed point set, unlike the task-specific method specified in 

ISO 15530-3 where the measurement function includes only the concerned geometric feature and 

the associated measurement bias as input quantities. ISO 15530-3 reduces the number of problem’s 

dimensions to one, so the law of propagation of uncertainty becomes applicable. However, this 

simplification might cause the loss of some information encoded in the raw point set. Particularly, 

the covariance within the probed points and between them and the systematic error variables are 

the effects excluded in the task-specific technique. There might be certain change patterns in the 

shape of a point set that barely influence the geometric feature, such as the variations along the 

target surface in flatness measurement or any translation of the data set in many feature analyses 

such as form. If the probed points share an underlying systematic cause (such as a certain machine 

parameter) that accounts for such patterns, the covariance analysis allows considering them in the 

uncertainty assessment. Besides, the method proposed herein brings about flexibility in the strategy 

adopted for data acquisition and control over the input data such as combining and merging 
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separate point sets. This quality allows generating large diverse samples of probing data from the 

limited number of point sets, as done in this study for the gauge block and the sphere. 

Although 5% less than the theoretical value for a coverage factor of 2, the coverage probability of 

90% provided by the expanded uncertainty associated with the estimate for the gauge’s length 

offers nevertheless a high level of confidence. Moreover, the coverage probability for sphericity 

remains over 94% for 𝑘=7, and it slightly decreases to 90% for 𝑘=8 (Figure 6-8a). This is despite 

the diversity of the axis positions included in each point set and the level of challenge imposed on 

the compensation capacity of the measurement function, which seem to be much more intense than 

what usually happens in practice. 

As Figure 6-6 implies, the coverage probability is promising to be closer to 95% by improving the 

compensation for the measurement bias. This may become possible by a more accurate estimate 

for the machine parameters through a more elaborate error model, such as an 84-parameter model 

that includes more intra-axis errors, instead of the 13-parameter type used in this work. Such a 

modification should not only result in narrower offsets between a measurement result and the 

calibrated value of the measurand, but it reduces the uncertainty caused by the residual systematic 

errors. However, unlike the diameter estimation through a least-square sphere, which averages the 

unexplained volumetric errors, these effects directly influence the sphericity. Moreover, any 

estimate for the machine’s geometric errors seems to be unable to explain the wide differences 

between the sphericity estimates and the calibrated value, even for 𝑘=1 (Figure 6-7b and Figure 

6-8b). Because any compensation based on the machine’s geometric errors, even via true machine 

parameters, would only translate the whole point set, due to the small distances within the points, 

which hardly affects the sphericity estimate. As a result, machine’s imperfections other than its 

geometric errors, such as hysteresis errors and probe lobing errors, could in part account for such 

systematic errors observable in the sphericity analysis. Since the SAMBA method measures ball 

centres, any probe lobing or backlash of the linear axes is neither detected nor modelled and 

estimated. Identifying these errors and including their uncertainty in the uncertainty framework 

(Figure 6-2) could improve the error compensation and lead to a higher coverage probability with 

a smaller uncertainty interval. 
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6.6 Summary and conclusions 

This study proposes a methodology for uncertainty evaluation in on-machine measurement. The 

measurement function receives the machine’s axis positions at probe triggering and its geometric 

errors to build the kinematic chain for every measurement. The outputs are the compensated 

Cartesian positions of the probed point set in the workpiece frame. The uncertainty estimator 

assembles the covariance matrices associated with these two input vectors and triggers an adaptive 

MCM. The experimental validation of the uncertainty assessment includes the on-machine 

measurement of the length of a gauge block and the diameter and sphericity of a precision sphere. 

Various combinations of 15 point sets (bipoints) probed on the gauge block and random sampling 

from the pools built of up to 10 point sets collected on the sphere provide adequate data to calculate 

the coverage probability offered by the expanded uncertainty intervals. The following are the most 

important conclusions: 

1. The multi-dimensional framework of the proposed uncertainty method preserves the 

important information about the random behaviour of a probed point set, encoded in the 

synthetized covariance matrix of the input quantities. This is unlike the task-specific 

method that functions based on the geometric feature measurement and its systematic bias. 

2. The uncertainty scheme eliminates the need for any calibrated counterpart. The on-machine 

measurement function consists in the machine’s kinematic model and can address any 

probed point set throughout the working volume of the machine. 

3. The new method offers a coverage probability comparable to the theoretical level of 

confidence (95%). This metric is 90% for the gauge’s length estimate and remains above 

94% for the diameter estimates made by drawing at random from up to seven pooled point 

sets probed on the sphere. These are despite the disparate axis positions within each point 

set, which highly challenges the compensation competence of the on-machine measurement 

function. 

4. The considerable contribution of unexplained volumetric errors to the uncertainty of on-

machine measurement signifies the importance of the model sophistication in the 

identification of machine parameters. 
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6.8 Annex A. Positions of the machine’s rotary axes in validation 

experiments 

Table A. 6-1: The positions of the machine’s rotary axes during the on-machine measurement of 

the gauge’s length. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Side A 
B 0 0 0 0 0 0 -42 -65 88 59 -1 51 -1 -82 42 

C 135 165 195 225 255 285 152 224 27 232 99 13 170 197 293 

Side B 
B 0 0 0 0 0 0 58 -15 22 -49 -27 -25 -4 -64 64 

C 135 165 195 225 255 285 210 4 64 18 9 16 244 329 124 

Table A. 6-2: The positions of the machine’s rotary axes during the on-machine measurement of 

the sphere’s diameter and sphericity. 

 1 2 3 4 5 6 7 8 9 10 

B 55 -35 -40 -24 -11 19 32 -5 7 25 

C -22 -299 -171 -73 -9 -207 -254 -305 -132 -96 
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 : PROMPT UNCERTAINTY ESTIMATION WITH GUM 

FRAMEWORK FOR ON-MACHINE TOOL COORDINATE 

METROLOGY 

When machine tools come to operation as measuring systems, they boost production efficiency 

because of the synergy between measurement and manufacture. Like in any other measurement 

procedure, the estimates for measurand obtained by these apparatus are complete only when they 

come with uncertainty metrics [42]. This is essential to establish the traceability of the 

measurement process. 

On the other hand, generating an accurate uncertainty assessment is usually a time-consuming 

process. This stems from the computation cost of the propagation of uncertainty, which provides a 

basis for uncertainty estimators. The complexities associated with the analytical method for the 

propagation of uncertainty, known as the Markov formula [48], have brought about the 

development of numerical methods. The Monte Carlo method (MCM) is an iterative numerical 

approach to propagate distributions and is favourable for complex measurement functions or those 

with no closed-form mathematical expression. Moreover, according to the Central Limit Theorem 

[48], this method has promising convergence properties. Despite that, calling the measurement 

function once in every MCM trial highly increases the computation time, especially when it comes 

to an adaptive MCM where the convergence criteria require conducting an adequately large number 

of trials. Supplement 2 to GUM [50] specifies an alternative analytical solution for the propagation 

of uncertainty, referred to as the GUM uncertainty framework (GUF). Validated with an adaptive 

MCM, GUF is an efficient replacement for the inefficient MCM. 

The GUF application in the metrology of machine tools has remained limited probably because of 

the convolutions of covariance analysis. These difficulties confine the GUF implementation to its 

single-output form, specified by GUM [42] as the law of propagation of uncertainty [44, 118]. In 

this study, however, a full covariance estimator allows for conducting GUF. Adhering to 

Supplement 2 to GUM [50], we then assess the validity of the GUF results by comparing them with 

the MCM estimates, considering predefined numerical tolerances. The conformity of GUF to the 

MCM results is also examined through ellipsoidal coverage regions and marginal probability 

density functions (PDFs). 
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7.1 Uncertainty evaluation 

Two approaches evaluate the uncertainty associated with on-machine measurement results. An 

experimentally verified adaptive MCM provides uncertainty assessments against which the GUF 

results are validated. 

7.1.1 Measurement function, input, and output quantities 

The forward kinematic model of the machine serves as the on-machine measurement function. This 

model receives the probed axis positions and the machine parameters to calculate the compensated 

Cartesian coordinates in the workpiece frame using a chain of homogeneous transformation 

matrices that gives the relative position of the tool frame, as the stylus tip centre, with respect to 

the workpiece frame. When probing a point set of size 𝑛, like in estimating a ring’s diameter by 

probing 𝑛 points around its surface, the recorded 5𝑛 axis positions (five joint positions per probed 

point) together with 13 machine parameters, describing the geometric status of the machine, form 

the input data of uncertainty estimators. Therefore, the number of input quantities is 𝑁 = 5𝑛 + 13. 

The 5×5 repeatability matrices of probed axis positions [103] and the 13×13 covariance matrix 

associated with the machine parameters [115] separately encode information on the correlations 

involved in on-machine measurement since the data on the machine parameters and the probed axis 

positions is acquired independently. As a result, the full covariance matrix of the input quantities 

is not directly obtainable from observations. To assemble these effects and obtain a single full 

covariance matrix 𝑼𝒙 of dimension (5𝑛+13)×(5𝑛+13), a covariance estimator (6.3.2) simulates 

pseudo-repeatability tests as though the replicated tests of on-machine probing and those of 

geometric error indication (with SAMBA [26]) occur at the same time, which approximates the 

full covariance matrix of the input quantities. 

The 3𝑛 compensated Cartesian coordinates of the probed points in the workpiece frame are the 

output quantities of the measurement function, thus the number of output quantities is 𝑚 = 3𝑛 and 

covariance matrix 𝑼𝒚 is of dimension 3𝑛×3𝑛. When a probed point set is further processed to 

estimate the actual value of geometric feature attributes, the final covariance matrix diagonals are 

the scalar values (variance) associated with the estimates. 
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7.1.2 Monte Carlo method 

MCM evaluates with the measurement function (the machine’s forward kinematic model) an 

adequately large sample of input quantities 𝑿, drawn at random from a joint distribution, resulting 

in a corresponding sample of output quantities 𝒀 [50, 79]. In an adaptive MCM, this procedure 

completes in ℎ sequences, each including 𝑀=104 trials. During each sequence, matrix 𝑮𝑿 

accumulates 𝑀 drawn input vectors 𝒙 and matrix 𝑮𝒀 stores the corresponding evaluated output 

vectors 𝒚 (Figure 7-1a). The latter provides essential statistical information to evaluate the 

uncertainty of the measurement function’s outputs. As a result, regardless of the number of input 

and output quantities, an estimate for the joint PDF of the measurand is obtainable by MCM. Given 

a desirable coverage probability of 𝑝, the MCM simulator initially conducts ℎ0 = 10 sequences 

and then calculates output estimates 𝒚, associated standard uncertainty 𝒖𝒚, maximum eigenvalue 

𝜆max of the output correlation matrix, and coverage factor 𝑘𝑝 (Figure 7-1a). Comparing with 

predefined numerical tolerances, if convergence does not hold, it then conducts one more sequence 

and continues until the results converge. More details on the MCM procedure can be found in 

[115]. 

7.1.3 GUM uncertainty framework 

The Taylor series of a function evaluates it with an infinite sum of the terms formed by the 

function’s derivatives at a single point. Considering the first two terms of the Taylor series of a 

measurement function at the expectation values of the input quantities, GUM estimates the 

measurement function in a small neighbourhood of these expected values. Drawing an analogy 

between this neighbourhood and the standard uncertainty intervals of the input values, the law of 

propagation of uncertainty evaluates the standard uncertainty of the output quantities. 

The GUF outcome is an estimate for the covariance matrix of the output variables. Then, compared 

with MCM, GUF reveals limited information about the measurand. Particularly, GUF does not 

provide any joint PDF for the output quantities. Nonetheless, fitting certain distributions, such as 

normal, to the obtained covariance matrix might approximate the true joint PDF of the output 

quantities. 
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Supplement 2 to GUM [50] develops this concept for multi-output measurement function 𝒀 =

𝑓(𝑿), where 𝑿 = [𝑋1, … , 𝑋𝑁]
T is a vector of 𝑁 input quantities and 𝒀 = [𝑌1, … , 𝑌𝑚]

T is a vector of 

𝑚 output quantities. Covariance matrix 𝑼𝒚 associated with output estimates 𝒚 is 

𝑼𝒚 = 𝑪𝒙 𝑼𝒙 𝑪𝒙
T 7-1 

where 𝑼𝒙 is the covariance matrix associated with best estimates 𝒙 of input quantities 𝑿. In this 

equation, 𝑪𝒙 is the sensitivity matrix at 𝑿 = 𝒙 of dimension 𝑚 ×𝑁: 

𝑪𝒙 =

[
 
 
 
 
𝜕𝑌1
𝜕𝑋1
⋯
𝜕𝑌1
𝜕𝑋𝑁

⋮ ⋱ ⋮
𝜕𝑌𝑚
𝜕𝑋1
⋯
𝜕𝑌𝑚
𝜕𝑋𝑁]
 
 
 
 

 7-2 

 

Figure 7-1: a) Data flow for uncertainty assessment in on-machine measurement using an 

adaptive Monte Carlo method, and on-machine measurement of b) gauge block and c) precision 

sphere. 
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Given the complexity of the on-machine measurement function, numerical differentiation is a 

suitable means to estimate the partial derivatives stored in the sensitivity matrix 𝑪𝒙 given in Eq. 

7-2. According to GUM [42], the step size for differentiating the measurement function with 

respect to the 𝑗th input quantity 𝑋𝑗 equals the corresponding standard uncertainty 𝑢(𝑥𝑗). Figure 7-2 

illustrates the numerical differentiation procedure using the symmetric derivative. 

 

Figure 7-2: Numerical differentiation of the output quantities 𝒀 of on-machine measurement 

function at 𝑿 = 𝒙 with respect to 𝑋𝑗  , the 𝑗th input quantity. 

7.2 Validation of GUF with an adaptive Monte Carlo method 

Supplement 2 to GUM [50] specifies the validation procedure of GUF using an adaptive MCM. 

After indicating the numerical tolerances for convergence criteria of the adaptive MCM, these 

metrics also define the required accuracy of the GUF results. This standard defines: 

𝒅𝒚 = |𝒚
GUF − 𝒚MCM| 

𝒅𝒖(𝒚) = |𝒖(𝒚)
GUF − 𝒖(𝒚)MCM| 

𝑑𝜆𝑚𝑎𝑥 = |𝜆𝑚𝑎𝑥
GUF − 𝜆𝑚𝑎𝑥

MCM| 

𝑑𝑘𝑝 = |𝑘𝑝
GUF − 𝑘𝑝

MCM| 

7-3 

where 𝒅𝒚, 𝒅𝒖(𝒚), 𝑑𝜆max , and 𝑑𝑘𝑝 are the absolute differences between the MCM and GUF results 

(denoted by the respective superscripts) respectively for best estimates 𝒚, associated standard 

uncertainty 𝒖(𝒚), the largest eigenvalue 𝜆max of the output correlation matrix, and coverage factor 

𝑘𝑝. If numerical tolerance for 𝒚 and 𝒖(𝒚) is 𝜹 and that for 𝜆max and 𝑘𝑝 is 𝜌 and 𝜅𝑝, respectively, 
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+
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the adaptive MCM validates the GUF results if all the absolute differences given by Eq. 7-3 are 

smaller than the corresponding numerical tolerances: 

𝒅𝒚 ≤ 𝜹 

𝒅𝒖(𝒚) ≤ 𝜹 

𝑑𝜆𝑚𝑎𝑥 ≤ 𝜌 

𝑑𝑘𝑝 ≤ 𝜅𝑝 

7-4 

7.3 Results and discussions 

Experimental on-machine measurements on a gauge block (Figure 7-1b) and a precision sphere 

(Figure 7-1c) with a Mitsui Seiki HU40-T five-axis horizontal machining centre have already 

validated the MCM results by examining whether the uncertainty intervals provide the desired 

coverage probability. Each compensated coordinate of a probed point is regarded as having four 

significant decimal digits when expressed in mm. Then, the numerical tolerance for best estimates 

𝒚 and associated standard uncertainty 𝒖(𝒚) is 𝜹=0.05𝟏3𝑛×1 µm, where 𝟏3𝑛×1 is a column vector 

of ones of length 3𝑛. The numerical tolerance for the largest eigenvalue 𝜆max of the output 

correlation matrix and coverage factor 𝑘𝑝 is also 𝜌=𝜅𝑝=0.05. Table 7-1 includes the absolute 

differences for best estimates 𝒚 and associated standard uncertainty 𝒖(𝒚), determined for two 

points probed on the gauge block with a calibrated length of 500.0095 mm. For point 1, the probed 

positions for linear axes X, Y, and Z are -138.5650, 94.6560, and 196.2320 mm, and those for the 

rotary axes B and C are -42° and -293°, respectively. These values for point 2 are -61.2880, 

48.3440, 246.8170 mm, -64°, and -124°, respectively. This table also includes the estimate for the 

gauge’s length and its standard uncertainty along with the absolute differences between these 

quantities obtained with the two evaluation methods. The largest eigenvalue 𝜆max and coverage 

factor 𝑘𝑝 given by GUF and their absolute difference are also presented in Table 7-2. All the 

absolute differences listed in these two tables are smaller than the stipulated numerical tolerances, 

which validates the GUF results. For best estimates 𝒚, the maximum absolute difference is 72% of 

the specified numerical tolerance. This metric is 38% for standard uncertainty 𝒖(𝒚). For maximum 

eigenvalue 𝜆max and coverage factor 𝑘𝑝, these differences are even smaller, that is, 1% and 9% of 
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the numerical tolerance, respectively. Verifying these criteria for different points probed at various 

positions on the machine tool holds the credibility of the GUF results. 

For the three compensated coordinates of point 1, Figure 7-3a-c compare the ellipsoidal and 

rectangular coverage regions for coverage probability 𝑝=95% obtained with GUF and MCM, 

which encompass 2000 random output points. The smallest coverage region for each pair of output 

quantities is also estimated with a finite element method specified in Supplement 2 to GUM [50]. 

The difference between the coverage areas for coordinates X and Y does not exceed 1% for both 

the ellipsoidal and rectangular coverage regions. For these coordinates, the smallest coverage area 

is 982.8 µm2, which is by less than 1% different from the GUF ellipsoidal coverage area. These 

differences for the X-Z and Y-Z pairs also do not exceed 1%, whose smallest areas of coverage 

region are 962.6 and 1178.5 µm2, respectively. Figure 7-3d-f demonstrate the closeness between 

the MCM marginal PDFs for the compensated coordinates of point 1 and the normal PDFs fitted 

based on best estimates and the associated covariance matrix given by GUF. 

For almost all the considered tasks, the adaptive MCM converges in ℎ=10 sequences, including. 

𝑀=105 trials. For the estimation of the gauge’s length, where the probed point set includes two 

points (𝑛=2), the adaptive MCM completes in 167 s, on a computer with an Intel i7 processor 

running at 4.2 GHz, 32 GB of RAM, and Windows 10. This time for GUF is 7 s, 24 times faster 

than the adaptive MCM. In a different task, the adaptive MCM estimates the diameter of a sphere 

and the associated uncertainty in 1967 s, whereas GUF completes in 12 s, being 164 times faster. 

Figure 7-4 compares the computation times between the adaptive MCM and GUF for the sphere’s 

diameter obtained from the point sets with different sizes varying from 𝑛=10 to 25. The 

computation time of GUF increases almost linearly proportional to the size of point set 𝑛. On 

average, GUF is 249 times more efficient than MCM in the sphere identification. This notable 

reduction in the computation cost mainly originates from the costly covariance simulator that 

operates based on an MCM algorithm (for both the MCM and GUF uncertainty schemes) and has 

to recur every MCM trial, whereas this occurs only once in GUF. This difference is more evident 

for larger point sets, where the number of calls for the forward kinematic model rises. 
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Table 7-1: The adaptive MCM and GUF results for best estimates 𝑦 and associated standard 

uncertainty 𝑢(𝑦) together with their absolute differences obtained for the compensated 

coordinates of two points probed on a gauge block and its estimated length. 

 Best estimate 𝒚 (mm)  Standard uncertainty 𝒖(𝒚) (µm) 

 MCM GUF 𝒅𝒚 𝒅𝒚/𝜹 (%)  MCM GUF 𝒅𝒖(𝒚) 𝒅𝒖(𝒚)/ 𝜹 (%) 

Coordinate X of point 1 -178.6461 -178.6462 2.89E-05 58  6.7 6.7 4.38E-03 9 

Coordinate Y of point 1 -178.6461 -178.6461 3.61E-05 72  8.2 8.2 1.23E-02 25 

Coordinate Z of point 1 53.1107 53.1107 2.54E-05 51  7.6 7.6 4.25E-03 9 

Coordinate X of point 2 179.1009 179.1009 1.38E-05 28  6.8 6.8 1.71E-03 3 

Coordinate Y of point 2 179.0881 179.0881 1.18E-05 24  8.4 8.4 1.20E-02 24 

Coordinate Z of point 2 53.1067 53.1068 1.79E-05 36  7.7 7.7 1.91E-02 38 

Gauge’s length 499.9966 499.9966 1.21E-05 24  9.0 9.0 6.76E-03 14 

Table 7-2: The adaptive MCM and GUF results for the largest eigenvalue 𝜆max   of the output 

correlation matrix and coverage factor 𝑘𝑝   along with their absolute differences obtained for the 

compensated coordinates of two points and the estimated length listed in Table 7-1. 

 𝜆max  𝑘𝑝 

 MCM GUF 𝑑𝜆max 𝑑𝜆max/𝜌 (%)  MCM GUF 𝑑𝑘𝑝  𝑑𝑘𝑝/𝜅𝑝 (%) 

Point set (Table 7-1) 1.313 1.312 4.80E-04 1  3.55 3.55 4.50E-03 9 

Length 1.000 1.000 0 0  1.96 1.96 8.45E-04 2 

 

7.4 Summary and Conclusions 

An adaptive MCM developed for uncertainty assessment in on-machine measurement examines 

the feasibility of GUF. We apply these methods to obtain the best estimates and the associated 

standard uncertainty of the length of a gauge block and the diameter of a precision sphere. The 

computation cost of the uncertainty evaluation is also measured for the sphere’s diameter obtained 

from sets of 𝑛=10 to 25 points. The summarized conclusions are as follows: 

1. The adaptive MCM validates the GUF application for uncertainty assessment in on-

machine probing and part verification. For the studied case of the gauge block 

measurement, the maximum absolute differences between the MCM and the GUF results 
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are 72% and 38% of the specified numerical tolerance, respectively for best estimates and 

the associated standard uncertainty. These measures are 1% and 9% for maximum 

eigenvalue 𝜆max of the output correlation matrix and coverage factor 𝑘𝑝, respectively. 

2. Besides complying with the criteria specified by Supplement 2 to GUM, the ellipsoidal and 

rectangular coverage regions as well as the marginal PDFs given by GUF closely 

approximate those obtained by MCM, which further validates GUF. 

3. The GUF implementation dramatically decreases the uncertainty computation time. This 

method evaluates the uncertainty associated with a compensated bipoint probed on the 

gauge block and that with its length estimate in 7 s, which is 24 times faster than the 

adaptive MCM (167 s). For a point set of size 25 probed on the sphere, GUF gives the 

uncertainty associated with the compensated points and with the sphere’s diameter in 12 s, 

whereas this time for MCM is 1967 s, i.e. 164 times longer. On average, GUF is 249 times 

more efficient in the sphere identification. 

 

Figure 7-3: a-c) Ellipsoidal and rectangular coverage regions (for coverage probability 𝑝=0.95) 

obtained by the adaptive MCM and GUF for the compensated coordinates of a point probed on 

the gauge block. Also shown are 2,000 random output points. d-f) Comparison between the 

marginal histograms given by the adaptive MCM and GUF. 
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Figure 7-4: The computation time of GUF for uncertainty evaluation of the sphere’s diameter 

from the point sets with different sizes and the time ratio of the adaptive MCM to GUF. 
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 : GENERAL DISCUSSION 

The uncertainty evaluation of the on-machine probing results poses new challenges because of the 

uncontrolled environment of the shop floor and the unsteady status of machine tools. We can 

assume that most of the uncertainty components that originate from the measuring system 

(including the machine tool and probe) manifest themselves in the form of either probing 

repeatability or an imperfect compensation for the measurement bias. The former includes the 

random behaviour of the system, whereas the latter stands for the post-compensation residual 

systematic effects. Therefore, it is crucial to ensure the utmost randomness in the observations 

during the replicated probing tasks aimed at the quantification of the probing repeatability. This is 

obtainable by a visual inspection of the raw probing results to make sure they exclude any 

systematic trend. This most likely requires completing these tests in a short period to prevent the 

thermal systematic effects. Then, the repeatability obtained by this means inevitably includes the 

short-term variations of the probing results. 

On the other hand, the data required to identify the variations of the machine’s status (quantified 

by the machine parameters) should accumulate in the long-term, for example on a day-to-day basis, 

because of two main reasons. First, the machine’s state is less likely to change over the short term 

and monitoring its condition over days or weeks gives a more complete picture of the range within 

which the machine alters. Second, knowing the machine’s fluctuations over the long term helps 

anticipate the long-term repeatability of on-machine probing results, which can be difficult to 

determine directly. 

Estimating the long-term repeatability of the on-machine probing results based on the machine’s 

alternations has an important by-product: the covariance between these two sets of data. This 

covariance matrix gives an estimate for the full joint PDF of the input quantities of the on-machine 

measurement function. Since these input values possibly correlate, this covariance matrix increases 

the accuracy of the uncertainty estimates. This feature also allows for implementing GUF, 

developed for multi-output problems to compensate for the inefficiency of an adaptive MCM. 

Because the other existing uncertainty evaluators are lacking this important aspect, they reduce the 

problem dimensions by converting the acquired point set to the concerned geometric feature. This 

makes it possible to apply the law of propagation of uncertainty, which ignores the covariance 

effects. 
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The post-compensation residuals of the measurement bias mainly stem from two factors. First, the 

uncertainty associated with the machine parameters that can originate from the long-term 

repeatability of the SAMBA probing results, mostly caused by the evolution in the machine’s state, 

directly contributes to the uncertainty of the calculated volumetric error. Second, the limitations of 

the SAMBA’s error model and the unconsidered geometric errors, such as backlash, systematically 

falsify the estimated measurement bias. Moreover, the variations of these excluded errors can affect 

the repeatability of the SAMBA probing results. That is, even if all the machine’s considered 

parameters remain unchanged from time to time, the probing results might fluctuate because of the 

variations in the unconsidered errors and, consequently, in the recorded volumetric error by the 

SAMBA method. This second portion of the residual systematic errors causes the unexplained 

volumetric errors captured through the validation of the SAMBA procedure. Therefore, as long as 

these unexplained volumetric errors exist, the uncertainty evaluated for the machine parameters 

(Chapter 5) might fail to encompass their true values with the expected coverage probability. 

Consequently, it is essential to determine the unexplained measurement bias and to involve them 

in the uncertainty scheme. 

Benefiting from SAMBA, an indirect method to identify the machine parameters, enables the 

uncertainty estimator to evaluate the uncertainty associated with the first-hand probing outcomes, 

being the acquired point set. This is unlike the method given in ISO 15530-3, where the knowledge 

about the measurement bias and its uncertainty merely concerns a geometric feature defined by a 

probed point set and is limited to a certain set-up and probing task. Nevertheless, the main 

distinction of the developed uncertainty scheme lies in the covariance analysis. The major 

challenge in quantifying the input covariance matrix is that the on-machine probing and the 

identification of the machine parameters do not occur all at once. This makes it impossible to track 

the simultaneous variations of the two or more input quantities. To overcome this challenge, a 

simulation of the long-term replicated on-machine probing, conforming to the day-to-day 

monitoring of the machine, models the possible correlations between the inputs. 
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 : CONCLUSIONS AND FUTURE WORKS 

Considering the whole study and the knowledge gained in the course of this research, this chapter 

lists some important conclusions and future works. 

9.1 General conclusions 

 Despite the highly diverse axis positions considered in the experimental validation of the 

proposed uncertainty scheme, the coverage probability remains comparable to the desired 

level of confidence. This proves the traceability of the on-machine measurement results 

obtained by the used machine tool. Implementing the uncertainty estimator allows for 

converting this machine tool to a traceable CMM. 

 The capacity for a full covariance analysis makes a fundamental distinction between this 

scheme and the other uncertainty evaluators. This feature is expected to increase the 

accuracy of uncertainty estimates. The other methods reduce the problem’s dimensions so 

that they can apply the law of propagation of uncertainty that excludes any covariance 

between the input quantities. 

 For a multi-output measurement task as on-machine probing, having the covariance matrix 

of the inputs allows for conducting GUF. This approach considerably increases the 

efficiency of the uncertainty estimator without compromising accuracy. The high 

computation costs of calling the machine’s forward kinematic model and the MCM-based 

covariance simulator are the main reasons for the inefficiency of the adaptive MCM. 

 The proposed method eliminates the need for a calibrated counterpart. This competence is 

achievable by using SAMBA that indirectly identifies the machine parameters that are the 

underlying causes of the measurement bias and can estimate the volumetric error at any 

position on the machine tool. 

 The repeatability of on-machine measurement is predictable for any position on the 

machine tool and any approach direction. This, besides using an indirect identifier for the 

machine parameters, accounts for the flexibility of the proposed method in addressing the 



138 

 

 

uncertainty of any probed point set regardless of its position and the adopted probing 

strategy. 

 GUF can effectively replace the adaptive MCM in uncertainty estimation for the identified 

machine’s geometric errors via SAMBA. A considerable improvement in the computation 

cost is obtainable, which can make a remarkable difference when optimizing the SAMBA 

strategy aiming at minimizing the uncertainty associated with the outputs. 

 Unlike the feature-based uncertainty approaches, this methodology deals with the direct 

outcomes of an on-machine measurement, i.e. the probed points. This practice provides in-

depth knowledge about the geometric features defined by an acquired point set. This also 

enables quantifying the sensitivity of the estimated feature with respect to the recorded joint 

positions and the geometric errors of the machine. 

 Unlike the compensation for systematic errors, which might improve by using more 

elaborate error models, the random effects are inevitable. However, the high short-term on-

machine probing repeatability of the used machine tool and the negligible effect of 

hysteresis prevent form considerable growth of the expanded uncertainty. 

 The noticeable effects of the machine’s resolution on the recorded coordinates and their 

variance show the importance of considering this factor in the design of the repeatability 

tests. Including the probing tasks with the approach directions slightly deviated from the 

prismatic axes can make this effect manifest itself in the probing results. Moreover, the 

inverse kinematic model should be able to map the calculated joint positions onto the 

machine’s resolution grids.  

9.2 Future works 

Considering the assumptions made in the beginning and the limitations that arose during this 

research, addressing the following concerns in future works seems necessary: 

 Because of the GD&T considerations, the uncertainty interval should be as small as possible 

while it holds the desired coverage probability. This calls for maximizing the compensation 

for measurement bias, which minimizes the systematic offset between true value of the 

measurand and its estimate. The forward kinematic model of the machine measures this 
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error based on the geometric errors identified by SAMBA. Therefore, the more accurate the 

machine parameters, the smaller the on-machine measurement uncertainty. This calls for 

adopting a more complete model by SAMBA and optimizing its strategy. 

 One can categorize the uncertainty sources involved in on-machine measurement into three 

main components: the measuring system, part, and environment. Although through its 

systematic and random behaviour, the measuring system (the machine tool and probe) 

indirectly reveals some important environmental effects, such as thermal changes, the part’s 

role requires separate attention. The effects of thermal deflections, surface finish, form 

errors, and clamping distortion are the potential uncertainty sources coming from the part. 

 Implementing the proposed uncertainty scheme on other machine tools with different 

topologies can examine its reproducibility. 

 More complex GD&T tasks, such as freeform measurements, can further challenge the 

developed methodology. 
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