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RÉSUMÉ

Le paradigme paramétrique de l’inférence statistique a été principalement restructuré au
début du XXe siècle. Bien que, pendant plusieurs décennies, cette approche classique de
l’inférence ait continué à conserver sa prédominance en tant que principal motif d’inférence
accepté, le siècle précédent a également vu l’arrivée d’autres approches favorables à l’inférence
statistique. Les techniques non paramétriques, l’analyse exploratoire des données et la théorie
de l’apprentissage statistique sont des exemples de ces paradigmes alternatifs. L’adoption
de ces nouvelles méthodologies, en plus des avantages offerts par les machines classiques, a
enrichi les sciences, où l’analyse des données empiriques est préoccupante.

Cependant, l’adoption des nouvelles méthodologies s’est faite à son propre rythme dans
différents domaines. En particulier, dans les domaines où les données communément rencon-
trées présentent des propriétés atypiques, cette transition a souvent été retardée. La thèse
présentée ici étudie et établit certaines étapes essentielles vers la réalisation de l’application
du paradigme inférentiel de l’apprentissage statistique ou de la théorie Vapnik-Chervonenkis
(VC) à l’analyse de données incomplètes; plus précisément, les données biaisées et censurées
sont au cœur de notre intérêt. Ce cadre d’apprentissage sera appelé faiblement supervisé,
tout au long de ce travail. En outre, nous étudions les capacités d’apprentissage des réseaux
de neurones dits de cartographie, selon les normes fournies par la théorie de l’apprentissage
statistique.

La théorie de l’apprentissage statistique, à l’heure actuelle, est l’une des branches les plus
matures de la science des données moderne et héberge une riche offre de techniques mathéma-
tiquement approuvées pour résoudre les problèmes de données. Comme son homologue clas-
sique, les techniques fournies par la théorie de l’apprentissage statistique peuvent alimenter
les méthodologies d’analyse de données, en général, et l’analyse de données incomplètes, ce
qui est notre intérêt, en particulier. Le certain type de données considéré, ici, est fréquem-
ment rencontré dans l’analyse du temps jusqu’à l’événement ou de la survie, où l’approche
paramétrique classique de l’inférence statistique est toujours courante. Cela suggère que l’-
analyse des données incomplètes pourrait, de manière significative, bénéficier du potentiel
des nouvelles méthodes offertes par l’apprentissage statistique.

Bien que certains cadres non classiques aient déjà fait leur chemin dans l’analyse des données
de survie, les études fondamentales connexes franchissent encore des étapes rudimentaires. La
majorité des études existantes portent sur les performances pratiques de certains algorithmes,
tels que les méthodes d’ensemble, sur des ensembles de données de survie concrets. Cela laisse
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un certain nombre de questions fondamentales, visant l’applicabilité globale des méthodes
d’apprentissage à l’analyse de données incomplètes, sans réponse. Un exemple de telles
questions est les conditions nécessaires et suffisantes pour la fiabilité d’une machine pour
apprendre à partir de données biaisées et censurées. Combler ces lacunes était la principale
motivation derrière la thèse présentée ici. Plus précisément, le paramétrage particulier du
biais d’échantillonnage simultané et de la censure semble totalement absent de la littérature
sur l’apprentissage statistique.

Pour au moins deux raisons, il est important d’étudier l’intégration des méthodes d’appren-
tissage statistique dans l’analyse de données incomplètes: (i) La théorie de l’apprentissage
statistique offre une flexibilité inférentielle étendue, ce qui conduit à couvrir un plus large
éventail de situations dans des problèmes du monde réel; et (ii) il pourrait utiliser la capacité
de calcul des ordinateurs modernes pour résoudre des problèmes complexes ou complexes
d’analyse de données. De plus, à partir de maintenant, certaines techniques d’apprentissage
se sont déjà révélées très prometteuses dans la pratique. La puissance accrue offerte par ces
méthodes est ce qui justifie la pertinence de la présente recherche.Nous étudions ici les sujets
suivants, dans le cadre de données biaisées et censurées: (i) l’apprentissage de la fonction de
distribution, (ii) le problème de minimisation des risques et sa cohérence, (iii) l’apprentissage
de la fonction de régression, (iv) la sélection de la variable de régression basée sur l’estimation
du maximum de vraisemblance, (v) l’application de la cartographie des réseaux de neurones
pour résoudre le problème d’apprentissage, et (vi) certains problèmes importants et ouverts
ainsi que quelques défis à considérer dans les études futures.

Les trois premiers problèmes font partie des problèmes les plus fondamentaux de la théorie
de l’apprentissage statistique et sont résolus ici, avec succès, pour des données biaisées et
censurées. En particulier, nous dérivons les mesures de probabilité empiriques appropriées,
définies en termes de données biaisées et censurées, qui peuvent estimer de manière cohérente
les mesures de probabilité réelles sous-jacentes. Il est illustré comment les résultats peuvent
être appliqués davantage pour minimiser le risque fonctionnel. De plus, une méthode de
régression par noyau pour une estimation correcte de la fonction de régression, en présence
de biais et de censure, est proposée. En outre, les conséquences de certaines approches naïves
du problème sont indiquées.

Dans le cadre du quatrième problème, nous considérons deux méthodes de sélection de vari-
ables basées sur la vraisemblance, appelées approches conditionnelle et conjointe. La première
est, en fait, basée sur l’approche conventionnelle de l’analyse de régression, c’est-à-dire con-
ditionnant la vraisemblance de la réponse sur les covariables. Elle est dite conventionnelle
car elle est basée sur la définition de la fonction de régression et est la méthode, normale-
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ment, utilisée dans les problèmes de régression. En revanche, nous proposons une deuxième
approche qui utilise la vraisemblance conjointe des covariables et la réponse pour sélection-
ner les variables. Cette approche a été créée à l’origine pour l’estimation des paramètres
mais nous étendons son application au problème de la sélection des variables. Nous pensons
que cette dernière approche pourrait être supérieure à la première en termes de sélection
du sous-ensemble correct de caractéristiques influentes. Certaines propriétés mathématiques
des deux méthodes, qui seraient responsables de cette supériorité, sont dérivées et discutées.
Enfin, une brève étude de simulation établit une comparaison entre les deux approches, dont
le résultat soutient l’hypothèse de la suprématie de l’approche inconditionnelle sur l’autre.
Cependant, fournir une preuve mathématique complète, en faveur ou contre cette hypothèse,
nécessite une enquête plus approfondie.

Ensuite, nous fournissons une étude complète des réseaux de neurones dits de cartographie
et de leur capacité à résoudre le problème principal de l’apprentissage statistique. Nous re-
montons les racines mathématiques justifiant les capacités d’estimation des réseaux il y a
plus d’un siècle. Divers problèmes mathématiques connexes, tels que le problème de solv-
abilité algébrique et le théorème de représentation de Kolmogorov-Arnold, sont introduits
et leur relation avec les réseaux de neurones cartographiques est examinée. Nous montrons
comment la distinction entre l’approximation et la représentation explique la capacité de
ces réseaux en estimation de fonction. Pour conclure, nous discutons de la pertinence des
réseaux de neurones dans le cadre de la théorie de l’apprentissage statistique. Plus précisé-
ment, nous discutons des raisons pour lesquelles les réseaux de neurones ne sont pas capables
de résoudre complètement le problème d’apprentissage, selon les principes d’apprentissage
statistique d’un apprentissage fiable.

Enfin, quelques défis ouverts, y compris le problème de classification, la détection de la
direction de la dépendance et l’apprentissage de la dimension intrinsèque des données, dans
le contexte de données biaisées et censurées, sont introduites et, rapidement, discutées.

Comme mentionné précédemment, certains des problèmes résolus ici, tels que l’estimation de
la fonction de distribution et le problème de minimisation des risques, sont d’une importance
cruciale en théorie de l’apprentissage statistique. La raison, comme expliqué au chapitre 3, est
que la résolution des principales formes génériques des problèmes d’apprentissage supervisé,
c’est-à-dire l’estimation de la densité, la régression et la classification ou la reconnaissance
de formes, se résume à résoudre les problèmes de minimisation des risques et d’estimation de
la distribution.
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ABSTRACT

The parametric paradigm of statistical inference was mostly systematized in the early twen-
tieth century. Although for several decades this classical approach to inference continued
to preserve its dominance as the main accepted ground for inference, the previous century
has witnessed the arrival of other propitious approaches to statistical inference too. The
non-parametric techniques, exploratory data analysis, and statistical learning theory are all
examples of these alternative paradigms. Adopting these new methodologies, in addition to
the benefits the classical machinery offers, has enriched sciences, where analysis of empirical
data is of concern.

However, embracing the new methodologies has occurred at its own pace in different areas.
Particularly, in domains, where commonly encountered data exhibit some atypical properties,
this transition has often been delayed. The current thesis studies and establishes some
essential steps towards realizing the application of the inferential paradigm of statistical
learning or Vapnik-Chervonenkis (VC) theory to the analysis of incomplete data; specifically,
the data that are biased and censored, are at the core of our interest. This setting of learning
will be called weakly-supervised, throughout this work. In addition, we investigate the
learning capabilities of the so-called mapping neural networks, according to the standards
provided by statistical learning theory.

Statistical learning theory, by now, is one of the maturest branches of modern data science
and hosts a rich supply of mathematically approved techniques for solving data problems.
Like its classical counterpart, the techniques provided by statistical learning theory can em-
power data analysis methodologies, in general, and analysis of incomplete data, which is our
interest, in particular. The certain type of data considered, here, is frequently encountered in
time-to-event or survival analysis, where the classical parametric approach to statistical infer-
ence is still the mainstream. This suggests that incomplete-data analysis might, significantly,
benefit from the potential of the new methods offered by statistical learning.

Although some non-classical frameworks have already made their way into the analysis of
survival data, related foundational studies are still passing rudimentary stages. The major-
ity of the existing studies deal with the practical performance of certain algorithms, such as
ensemble methods, to concrete survival datasets. This leaves a number of fundamental ques-
tions, targeting the global applicability of the learning methods to the analysis of incomplete
data, unanswered. An example of such questions is the necessary and sufficient conditions
for the reliability of a machine for learning from biased and censored data. Filling such gaps
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was the primary motivation that triggered the present research. Specifically, the particular
setting of the simultaneous sampling bias and censoring seems to be, completely, lacking in
the statistical learning literature.

For at least two reasons, it is important to investigate the integration of the statistical learn-
ing methods into the analysis of incomplete data: (i) Statistical learning theory provides
extended inferential flexibility, which leads to covering a wider range of situations in real–
world problems; and (ii) it might employ the computational capability of modern computers
to solve complex or computationally heavy problems of data analysis. In addition, as of now,
some learning techniques have already proved to be very promising in practice. The increased
power offered by these methods is what justifies the relevance of the present research.

Here, we study the following topics, in the context of biased, and censored data: (i) learning
the distribution function, (ii) risk minimization problem and its consistency, (iii) learning
the regression function, (iv) regression variable selection based on maximum likelihood esti-
mation, (v) application of the mapping neural networks to solve the learning problem, and
(vi) some important, open problems as well as a few challenges to be considered in future
studies.

The first three problems are amongst the most fundamental problems of statistical learning
theory and are settled here, successfully, for biased and censored data. In particular, we
derive the appropriate empirical probability measures, defined in terms of biased and cen-
sored data, that can consistently estimate the underlying actual probability measures. It is
illustrated how the results can be further applied to minimize the risk functional. Also, a
kernel regression method for a proper estimation of the regression function, in the presence
of bias and censoring, is proposed. In addition, the consequences of some naïve approaches
to the problem are indicated.

In connection with the fourth problem, we consider two likelihood-based variable selection
methods, referred to as the conditional and joint approaches. The first one is, in fact, based
on the conventional approach to regression analysis, i.e., conditioning the likelihood of the
response on the covariates. It is called conventional because it is based on the definition
of the regression function and is the method, normally, used in regression problems. In
contrast, we propose a second approach that employs the joint likelihood of the covariates
and the response for selecting variables. This approach was originally created for parameter
estimation but we extend its application to the problem of variable selection. We speculate
that the latter approach might be superior to the former one in terms of selecting the correct
subset of influential features. Some mathematical properties of both methods, which are
believed to be responsible for this superiority, are derived and discussed. Finally, a brief
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simulation study draws a comparison between the two approaches, whose outcome supports
the hypothesis of the supremacy of the unconditional approach over the other one. However,
providing a complete mathematical proof, in favour of or against this hypothesis, requires
further investigation.

Next, we provide a comprehensive investigation of the so-called mapping neural networks
and their capability of solving the main problem of statistical learning. We trace back the
mathematical roots justifying the estimation abilities of the networks to more than a century
ago. Various related mathematical problems, such as the algebraic solvability problem and
the Kolmogorov-Arnold representation theorem, are introduced and their relation with the
mapping neural networks are scrutinized. We show how the distinction between the approxi-
mation and representation explains the capacity of these networks in function estimation. To
conclude, we discuss the relevance of the neural networks inside the framework of statistical
learning theory. Specifically, we discuss why neural networks are not able to, completely, solve
the learning problem, according to the statistical learning principles of reliable learning.

Finally, a few open challenges, including the classification problem, detection of the depen-
dency direction, and learning the intrinsic dimension of data, in the context of biased and
censored data, are introduced and, swiftly, discussed.

As mentioned earlier, some of the problems solved here, such as estimation of the distribution
function and the risk minimization problem, are of crucial importance in statistical learning
theory. The reason, as explained in Chapter 3, is that solving the main generic forms of the
supervised learning problems, i.e., density estimation, regression, and classification or pat-
tern recognition, boil down to solving the risk minimization and the distribution estimation
problems.
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CHAPTER 1 INTRODUCTION

1.1 Initial Motivation

How to make a statistically reliable inference about a population of interest, when the avail-
able sample data are incomplete is what the current thesis studies. The certain type of
incompleteness considered, i.e., sampling bias and censoring, is frequently encountered in ob-
servational studies, particularly, in the so-called follow-up, prevalent-cohort, cross-sectional
study design. However, a comprehensive investigation of the learning problem in this specific
setting is missing, completely, in the statistical learning literature. This deficiency was the
initial motivation that convinced us to undertake this research project. The present study,
successfully, and to a considerable extent, fills in some of the existing gaps in the area of
learning from length-biased, right-censored, with covariates (LBRC-C) data and paves the
way for filling further gaps in future. The detailed contributions of our study are listed in
the upcoming sections of this chapter.

1.2 General Context and Relevance

The specific incompleteness being considered consists of two components: (i) A type of
sampling bias, called length bias, and (ii) right censoring, which is a partial loss of information
on some of the sampled units. Making statistical inference in presence of length bias and right
censoring has a quite long history in several fields including survival analysis and reliability
theory, due to its practical usefulness and popularity. When the response variable of interest
in data analysis is of time-to-event sort of nature, considering the length bias and censoring
is almost inevitable, because of various restrictions the researchers commonly have to face.
The classical approaches to time-to-event or survival analysis are predominantly based on
the inferential framework of classical statistics, which was formally established in the early
twentieth century, almost exclusively, by the works of Ronald A. Fisher (1890–1962) [Vapnik,
1998].

Apart from the invaluable contributions of the classical approach to the development of
statistical inference and its applications in other areas of science, including biology and
medicine, several other approaches made their way into the world of data analysis as well.
Moreover, some of them proved to be quite promising in various applications. For instance,
some methods of statistical learning theory, such as the support vector machines (SVMs) and
ensemble methods as well as different types of artificial neural networks are among the state-
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of-the-art methods of today’s data analysis [Horne et al., 2009, Sidey-Gibbons and Sidey-
Gibbons, 2019, Matheny et al., 2020]. This raises a natural question: Could incorporating the
statistical learning inferential machinery into time-to-event data analysis, possibly, empower
the existing inferential framework? In particular, how it affects the learning methodology in
the context of LBRC-C data?

There are reasons to believe that the answer to the aforementioned question is positive:
First, the flexibility offered by more recent nonparametric approaches, including that of
statistical learning theory, facilitates making an inference in a broader range of problems
where, typically, the assumptions of parametric statistics could hardly be met. Second, the
development of statistical learning theory, was motivated, to some extent, by the advent of
new powerful computers in 1960s. Hence, being computer compatible has always been at
the very core of the statistical learning methodology. By consolidating statistical inference
with the computational capacity of modern computers, statistical learning might make a
considerable contribution to the world of data analysis. (See chapters 2 and 3 for more
details.)

Nonetheless, statistical learning has only begun to establish its potential in numerous areas,
where the classical paradigm of inference is still considered mainstream. For instance, in
many fields of biology, medical sciences, psychology, etc. This is not surprising as it is well
known that these sciences and statistics have been benefited from each other since a long time
ago [Halpin and Stam, 2006]. In fact, some of the most celebrated statistical tools were first
motivated by applications in biology and related fields. Examples include testing hypothesis,
randomized controlled trials for treatment assessment, and etc [Fisher, 1935].

One of the areas that need to be investigated more, from the statistical learning theory point
of view, is undoubtedly the analysis of time-to-event data. This particular type of data is
found in a diverse range of disciplines, including those studying the lifespan of both living
organisms and other objects. While there is already a considerable amount of research in
the context of time-to-event or survival data in the framework of survival analysis, reliability
engineering and machine learning, some more specific areas have attracted less attention.
Analysis of LBRC-C data is one of them. In particular, when it comes to statistical learning
theory, the literature falls short. To the best of our knowledge, there is not even a single
account of research that, specifically, studies learning from LBRC-C data. This significant
shortage makes our research relevant and inescapable.

The present thesis, hence, is dedicated to investigating multiple aspects of learning from
LBRC-C data. Some of the problems considered, particularly, aim at fundamental aspects
of learning in the context of interest such as estimating the distribution function or risk
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minimization, while others target ultimate applicability of certain tools to solve the learning
problem, e.g., investigating the capability of the mapping neural networks in function esti-
mation based on length-biased, right-censored (LBRC) data. The details of the particular
problems considered in the present study will be given later in this chapter.

1.3 Background and Importance of Studying LBRC-C Data

Time-to-event is the output of interest in numerous disciplines spanning epidemiology, eco-
nomics, econometrics, gerontology, and etc [LeClere, 2005, Backman et al., 2011, Asher et al.,
2017]. It is defined as the amount of time elapsed from the occurrence of an initiating event
until that of a second event called a terminating event. Both events are pre-defined. For ex-
ample, the initiating event might be birth, the onset of a disease, or an aircraft’s release, while
the terminating event could be retirement, death, or the aircraft’s phase-out, respectively.

Time-to-event modelling is a ubiquitous problem, evidence of which is the existence of mul-
tiple domains, such as survival analysis, reliability theory, event history analysis, duration
modelling, etc., all with similar objectives. As a result, a vast variety of methods have been
developed for this purpose. Survival analysis alone hosts a great deal of theory, a big por-
tion of which is related to modelling potential associations between the time-to-event or an
individual’s survival time and a set of other measurements for that individual.

Naturally, any data-driven inference depends on the characteristics of the training data.
That is, any quality of the data, potentially affecting the outcome of the analysis, should
be properly incorporated in the learning process; otherwise, the algorithm’s learnability,
i.e., the ability to extract relevant information might be influenced negatively. Regarding
time-to-event data, there are, also, several concerns worth considering. One of the most
crucial factors, ignoring which may cause serious issues, is data incompleteness [Nakagawa
and Freckleton, 2008]. We usually have to deal with a compound incompleteness consisting
of multi-aspect distortion and information loss. The following paragraph elaborates more on
this issue.

The gold standard in time-to-event data is to conduct follow-up studies on randomly selected
cases from the incident population, i.e., subjects who have not experienced the initiating event
before the study starts. Logistic or other constraints may, however, preclude the possibility
of conducting incident cohort studies. A feasible alternative in such cases is to conduct a
cross-sectional prevalent cohort study for which one recruits prevalent cases, that is, subjects
who have already experienced the initiating event, but not the terminating event [Wang
et al., 1993, Asgharian and Wolfson, 2005, Bergeron et al., 2008]. When the interest lies in
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estimating the lifespan between the initiating and the terminating event, subjects may be
followed prospectively either until the terminating event happens or they are lost to follow-up,
whichever occurs first.

This study design gives rise to two types of incompleteness: First, the response variable, being
lifetime, is observed for some subjects while for others we only know that it is greater than
some observed period, called censoring time. This type of incompleteness due to censoring
is called right censoring. Second, it is well known that prevalent cases have, on average,
longer lifespans since longer survivors are more prone to be selected at the recruitment time.
This leads to a phenomenon referred to as left truncation. Due to the presence of right
censoring, learning from such data for prediction and generalization falls into one of the
subcategories of well-known supervised learning. We call this subcategory weakly-supervised
learning as the information on the right censored responses is only partially available. As
such, a prevalent cohort comprises a non-random sample that is not representative of the
target incident population.

Left truncation and right censoring has been extensively studied in survival analysis; par-
ticularly, right censoring, because of its prevalence. The consequences of failure to take the
left truncation into account has been discussed by Wolfson et al. [2001]. In particular, it was
illustrated how this failure, almost surely, results in an overestimation of the survival time in
patients with dementia. For more details on left truncation and right censoring, see Lagakos
et al. [1988], Leung et al. [1997], Barrajon and Barrajon [2019], Lagakos [1979], Prinja et al.
[2010], among others.

Length bias, however, which is a special case of left truncation, has been studied much less.
Length bias occurs when the chance of being selected into the sample is proportional to
the survival time. For a general survey of methods for data analysis with length bias and
their applications, one may refer to Arratia et al. [2019]. An important feature of length
biased data, when covariates are also collected for each subject, is an additional layer of
bias introduced to the sampling distribution of the covariates. This specific aspect of length
bias had been completely ignored in the literature until recently when Bergeron [2006] and
Bergeron et al. [2008] addressed the problem.

As mentioned earlier, the current thesis pioneers studying the problem of learning from
LBRC data in presence of covariates, in the statistical-learning-related literature. Studying
the learning characteristics of LBRC-data analysis seems inevitable according to the frequent
application of the prevalent-cohort cross-sectional sampling design with follow-up in time-to-
event and survival analysis. For instance, Huang and Wang [1995], Wang [1991], Wang et al.
[1993], all consider this selection setting for conducting their research.
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Surprisingly, some of the problems considered here, such as the regression function estimation,
discussed in Chapter 4, as well as the variable selection problem, studied in Chapter 5,
had no mention even in the survival analysis literature. Nonetheless, in the past couple
of years and due to the increasing accessibility of recording data digitally, sampling bias
and incompleteness became more visible and have sparsely attracted the attention of some
researchers active in areas close to learning theory. Examples are Luck et al. [2018], Laforgue
and Clémençon [2019]. Note that none of the existing works, including Luck et al. [2018],
Laforgue and Clémençon [2019], considered learning from LBRC data.

1.4 Inference in Statistical Learning Theory

The appearance of statistical learning theory and its development was a response to certain
limitations of the classical approach to statistical inference. By “classical” we mainly refer
to the parametric paradigm of statistics, whose first systematic application to solving data
problems was thanks to Ronald Fisher in 1920s. The major ingredients of the presently well-
known parametric statistics had been around long before that time, but it was him who, in
addition to systematizing its application for the first time, promoted and popularized it on
a global scale. The parametric approach remained the main, or probably the only, widely
accepted paradigm for several decades [Vapnik, 1998].

Perhaps the most essential elements of the parametric approach are (i) parametric families
of distributions such as the exponential family, and (ii) the powerful maximum likelihood
estimation (MLE) as its primary inferential engine. Both of these elements, despite being
extremely powerful, impose some restrictions that limit the applicability of the parametric
framework in many situations [Vapnik, 1998, 1995]. For example, the theoretical validity of
inference based on parametric distributions highly depends on strong assumptions that need
to be satisfied a priori. The problem is that many of these constraints are hardly met in the
world of real problems. The MLE principle, also, suffers from several issues that make it
not always the first choice of preference. These problems will be discussed in more details in
Chapter 3.

Moreover, the arrival of the first powerful computers in 1960s made it possible to put the
classical methodology to the test, particularly, in situations that previously were just beyond
the reach of traditional methods due to their computational complexity [Vapnik, 1998, James
et al., 2013]. This further reveals the necessity to rethink some aspects of the mainstream
statistical inference. All of these events together led to several new directions in the analysis
of data, including statistical learning theory.
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The details of statistical inference in the framework of statistical learning is discussed in
Chapter 3. Hence, here we skip the in-depth discussion of the theory of statistical learning.
Nonetheless, let us briefly introduce the main building blocks of statistical learning theory,
in order to motivate its use in the context of survival analysis with LBRC-C data [Vapnik,
1992, 1995, 1998].

1. Statistical learning theory establishes the main problem of learning, i.e., the problem
of statistical inference, as a problem of function estimation.

2. Function estimation involves choosing a function from a set of pre-determined admis-
sible functions (also called the hypothesis space), provided a limited (finite) amount of
empirical data.

3. In choosing the set of admissible functions and then the best function among them,
two criteria are always considered:

(a) Minimum risk or maximum utility that could be achieved by applying a specific
function among the set of admissible functions, in order to make inference inside
the set of given empirical examples. This is usually called the fit of a model, i.e.,
how well the specific function that has been chosen fits the data;

(b) The function’s ability to generalize beyond the given set of example data. That
is, the ability to achieve a small risk if being applied to new data. This is what
we call generalization ability.

4. The general quality of the learning process is measured based on the well-known statis-
tical criterion of consistency. The qualitative part of the theory provides the necessary
and sufficient conditions for the consistency of a learning processes.

5. The general quantitative part of the theory includes bounds of the rates of convergence,
which can be regarded as the rate of generalization of these learning processes.

6. Principles for estimating functions from a small collection of data, based on the devel-
oped theory.

7. Concrete methods of function estimation and their application to solving real-life prob-
lems. These methods must satisfy the previous points.

The first three items above comprise the methodological backbone of statistical learning the-
ory. From the theoretical point of view, the goodness-of-fit and the generalizability of an
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individual candidate function, as explained in Chapter 3, might be measured by averaging
the risk of applying that function for making an inference, which can be either description
or prediction, evaluated on all possible values of data. However, to be able to do so, one
needs complete information about the distribution of data. In reality, this information is not
available and instead a sample of data is provided, which must be employed to, empirically,
estimate the underlying probability measure. This brings us to the main problem of mathe-
matical statistics, i.e., estimation of an actual probability measure by means of an empirical
measure constructed base on the available data.

Once and empirical measure is known, one needs to assess both its validity and feasibility
for solving the learning problem. At this point, the qualitative and quantitative theories,
mentioned in the fourth and fifth items above, come into play. Now, one of the important
distinctions of the inferential approach of statistical learning theory with that of the classical
one appears: In practice, we are given only a finite amount of sample data. Therefore, it
makes sense to verify the viability of the learning process for “small” collections of data.
In fact, this is the intersection of the qualitative and the quantitative theories of statistical
learning since it provides the relation between the quality of learning, which is, roughly, the
difference between the expected and empirical risks, in terms of sample size and the capacity
of the set of admissible functions.

The capacity of a set of functions, called the Vapnik-Chervonenkis dimension (VC dimen-
sion), plays a crucial role in statistical learning theory. It represents the complexity of the
learning problem that can be solved by that particular set of functions. As we will see later,
this is a major factor in both determining the “right” set of hypotheses as well as the rate
of convergence of the empirical risk to the expected one [Vapnik and Chervonenkis, 1974a,b,
Vapnik, 1995]. What makes this procedure different from the classical approach is the fact
that the potential admissible functions are accepted into the hypothesis space taking both
the sample size and the complexity of the problem at hand into account. This is in contrast
with constructing the hypothesis space based on the functions’ form. Recall that in linear
regression, e.g., the hypothesis space consists of all linear-in-parameter functions, with com-
plete disregard for the complexity of the problem and functions’ ability to solve the regression
problem. The risk minimization task carried out over such a hypothesis space, determined
as explained, is called the structural risk minimization (SRM) [Vapnik and Chervonenkis,
1974a,b, Vapnik, 1995, 1998].

Finally, statistical learning theory provides concrete methods of function estimation, i.e.,
solving the main problem of learning, that satisfy the aforementioned principles. SVMs are,
perhaps, the most prominent example of such methods.
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Now, it is important to note that the entire theory of statistical learning has been originally
developed for the situation where the provided data are representative. Since our main
objective is to focus on learning from biased and censored data with covariates, it is necessary
to consider all of the fundamental elements of statistical learning theory, carefully, in the new
context of interest and establish the infrastructure once more but with respect to the setting
we are interested in. This leads us to the particular list of problems to be addressed, in
order to build a coherent framework based on the principles of statistical learning theory for
learning from LBRC-C data, including the case where covariates must also be added to the
analysis. The next section is devoted to these problems.

1.5 Research Problems and their Solutions

In what follows, we discuss, swiftly, the main problems addressed in the present work. De-
tailed representation of each problem is postponed to the corresponding chapter. Besides,
we introduce the results obtained, briefly.

1.5.1 Learning the Distribution Function from LBRC-C Data

As mentioned in the previous section, one important problem in both statistics and statistical
learning theory is estimating the probability measure from empirical data. More precisely,
assume that there is a probability space (Ω,Σ, P ) that describes the distributional structure
of the stochastic phenomenon of interest, with Z : Ω → R being the corresponding random
variable. The problem involves estimating the unknown probability measure P based on a
given set of independent and identically distributed (i.i.d.) realization of Z, say D = {z

i
:

i = 1, 2, . . . , n}. In fact, one should estimate P (A), for any measurable set A ∈ Σ. If D
is representative of the target population, then, P (A) is usually estimated by the empirical
measure P̂

n
(A) defined as

P̂
n
(A) = 1

n

n∑
i=1
1
A

(z
i
),

where 1
A

is the indicator function of A. A special case of this problem is learning the
distribution function, i.e., the cumulative distribution function (CDF), defined on a certain
subset of the σ-algebra Σ. Note that this problem is defined in detail in Chapter 4.

For the case of representative data, this problem was completely solved and its asymptotic
properties were also established by the well-known multidimensional Glivenko-Cantelli theo-
rem. Also, Asgharian et al. [2002], Asgharian and Wolfson [2005] had, thoroughly, established
the problem when data are LBRC but without covariates.
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However, estimating the distribution function from LBRC-C data was still an open problem,
prior to our work. Therefore, the first problem to be addressed in our research is the following:

P1. Given the measurable space (Ω,Σ) and a set of length-biased and right-censored realiza-
tions, D, of the random variable (vector) Z, defined on Ω, estimate the distribution function
FZ.

Problem P1 is discussed in section 4.1. In particular, we prove that there are empirical
measures that can reliably, in the sense of almost sure consistency, estimate the distribution
function base on LBRC-C data. Due to significant differences, we discuss the case where
data are purely biased and where right censoring is also present in data, separately. Clearly,
in both cases, we assume that the sample data contain a vector of covariates associated with
each subject.

1.5.2 Learning the Regression Function from LBRC-C Data

One of the principal problems in the area of supervised learning is the regression problem. In
fact, many authors divide the problems of supervised learning into two main subcategories of
regression and classification or pattern recognition problems. This division is roughly based
on the nature of the response (output) variable. That is, regression refers to the situations
where the response variable of interest is a continuous random variable, while classification
or pattern recognition involves a discrete response variable.

The regression problem is defined as learning the regression function form a set of sample
data, including both the covariate and the response values for each sampled subject. That
is, estimating the function

E
Y |X=x(Y ) =

∫
y dF

Y |X=x(y), ∀x ∈ Rd;

where X is a vector of covariates and Y is the response. Note that this is the definition of
the regression function and can be found in any textbook of mathematical statistics [Casella
and Berger, 2002, Vapnik, 1998]. In our setting, the given response values are subject to
length bias and right censoring. Two frequently applied approaches to the regression prob-
lem can be stated as follows: (i) The regression function E

Y |X=x(Y ) is assumed to be an
explicit parametric function of x, say r

β
(x), with β ∈ B, being the so-called regression co-

efficient. Hence, in this case, the estimation of the regression function boils down to the
estimation of the coefficient β. Note that to be able to solve this problem one requires that
the identifiability assumption is held. Commonly, this setting is referred to as parametric
regression. Nonetheless, we try to avoid this term out of its ambiguity (see Chapter 4) and

probl:p1
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call it explicit. (ii) No explicit form for the regression function E
Y |X=x(Y ) is assumed. Let us

denote r(x) = E
Y |X=x(Y ). Here, the regression estimation requires estimating the value of

the regression function r(x), at each point x. Similarly, as in the previous case, we call this
the non-explicit regression rather than nonparametric. Here in this thesis, both cases are of
interest but with different motivations.

In the survival analysis literature, the explicit regression problem with length bias and right
censoring is very well studied. However, all likelihood-based analyses of the regression prob-
lem had failed to take a very subtle but decisive point into account: An additional layer of
bias that is induced by the length bias and affects the sampling distribution of the covariates.
Bergeron et al. [2008], Bergeron [2006] settled this problem by proposing a new likelihood-
based approach which will be referred to as the joint-likelihood or simply joint approach.
This approach properly treats the covariate bias, in contrast to the conventional approach,
which is based on the likelihood of the response, conditioned on the covariate distribution.
Bergeron et al. [2008], illustrated the superiority of the joint approach, compared to the
conditional one, in terms of parameter estimation bias and efficiency.

In this thesis, we consider the non-explicit regression problem, i.e., estimating the regression
function from LBRC-C data. This leads us to the second major problem being investigated:

P2. Let r(x) = E
Y |X=x(Y ) be the non-explicit regression function. Estimate the value of

r(x), for any covariate vector x, given length-biased and right-censored sample data D.

Problem P2 is addressed in section 4.3. As for P1, we investigate, first, the case where data
are length biased but no censoring is allowed. Then, separately, we solve P2 for the LBRC
case. In both cases, we propose a kernel regression solution to the problem, which are,
indeed, the generalized counterparts of the well-known Nadaraya-Watson kernel regression.
We, also, indicate two different naive applications of the kernel regression to LBRC-C data,
which result in incorrect estimates of the regression problem.

1.5.3 Risk Minimization Problem with LBRC-C Data

As discussed earlier, risk minimization is at the heart of the statistical learning methodology
for making statistical inference. In fact, the main problem of statistical learning is formulated
based on a risk minimization task [Vapnik, 1998]. That is, let H denote the hypothesis space
and R(h) be expected risk associated with any h ∈ H. Then, one needs to solve the following
optimization problem in order to find the optimal functional dependency between the input
and output:

inf
h∈H
{R(h)} .

probl:P2
probl:p1
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We will see in Chapter 3, R is defined based on the underlying probability measure, which
is not known, as briefly explained in subsection 1.5.1. In practice, one uses the empirical
risk functional, denoted by R̂

n
(h), instead of the expected one. R̂

n
(h), however, is an em-

pirical process whose consistency has to be established to guarantee the reliability of the
learning machine. When data are representative, this result has been provided by Vapnik
and Chervonenkis [1968].

Now, the problem of risk minimization and its asymptotic properties in the context of LBRC
data was never considered before. This constitutes the next research problem in the present
study:

P3. Given length-biased and right-censored data D and a suitable loss function, construct
an empirical risk functional R̂

n
that can, consistently, estimate the expected risk R over the

hypothesis space H.

Note that the covariate-free case is a special case of this more general one, and hence, is
implied from it. The same fact applies to the estimation of the distribution function. P3
is studied in section 4.2, where we establish the empirical risk functional for the length
biased and for the length-biased, right-censored data, independently. In addition, we provide
sufficient conditions for the consistency of the empirical risks.

1.5.4 Regression Variable Selection with LBRC-C Data

Variable (feature) selection is of significant importance from both descriptive and predictive
perspectives [Sauer et al., 2013, Chowdhury and Turin, 2020, Genuer et al., 2010a, Meyer
et al., 2019]. It is, also, used for a broad variety of purposes, such as detecting the influential
factors in a health condition or for initiating preventive measures to avoid adverse outcomes
of a treatment. For different applications of variable selection see Ertefaie et al. [2018], Sauer
et al. [2013], Chowdhury and Turin [2020], Lu and Petkova [2014], among others. Variable
selection in the context of explicit regression, which was defined earlier in subsection 1.5.2,
comprises the next problem we address here in this study.

In regression analysis, variable selection involves, systematically, determining the most signif-
icant set of covariates out of all available covariates in the sample data. In subsection 1.5.2,
we mentioned that, in our investigation, the explicit regression setting would be of interest.
In fact, we investigate the variable selection based on the MLE in the explicit regression set-
ting. The entire chapters 5 and 6 are devoted to this problem and a related, short simulation
study.

The existing literature on variable selection, in general, is extremely rich. For a review of
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variable selection methods one may refer to Desboulets [2018], Heinze et al. [2018], and Sauer
et al. [2013]. The problem of variable selection might be considered as a form of model se-
lection. There exist various types of criteria for optimal model selection amongst a set of
pre-determined candidate models. In many frequently used criteria for model or variable
selection, likelihood function constitutes one of the major components of the criteria. This
class of variable selection methods is the one we focus on. Examples of likelihood-based
criteria are the the information-based ones, such as the well-known Akaike information cri-
terion (AIC) and Bayesian information criterion (BIC) [Akaike, 1974, Schwarz, 1978] as well
as their modified variants, including Hannan–Quinn information criterion (HQC) [Hannan
and Quinn, 1979], Watanabe–Akaike information criterion (WAIC) [Watanabe, 2010, 2013],
focused information criterion (FIC) [Claeskens and Hjort, 2003, Hjort and Claeskens, 2003,
2006].

Recall the conditional and joint likelihood-based approaches we have already mentioned in
subsection 1.5.2. We explained that the difference between these two methods, in terms of
parameter estimation, has been already established by Bergeron et al. [2008], Bergeron [2006].
Clearly, both the conditional and joint approaches can be potentially used in constructing
model or variable selection criteria. However, because the joint approach has been created
rather recently, it has never been employed for the purpose of model or variable selection. In
Chapter 5, first, we propose a family of variable and model selection criteria that are con-
structed utilizing the joint likelihood function. Note that it is the first time in the literature
that the unconditional likelihood has been applied to the problem of selection of variables
with LBRC-C data. Then, we study the distinction between the conditional and the joint
likelihoods when they are used as the likelihood component of variable selection measures
in the context of LBRC-C data. This brings us to the next problem: (Detailed definition is
given in Chapter 5.)

P4. Consider the regression problem

Y = r
β
(X) + ε, β ∈ B,

where Y ∈ R, X ∈ Rd, B ⊆ Rd+1, r
β
is a real-valued linear function of β and X, and ε

denotes a suitable error term independent from X. Then, if β0 = (β0
0, . . . ,β

0
d
) is the true

regression coefficient, then, investigate and compare the impact of employing the conditional
and joint likelihoods on variable selection, given a length-biased and right-censored sample
dataset. In particular, which one is more capable of selecting correct models? Why?

Due to the fact that the joint approach uses the thorough information provided by training
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data, while its conditional counterpart does not, by ignoring the information contained in
the distribution of the covariates, we speculate that the unconditional likelihood should be
more efficient in selecting the correct set of variables than the conditional one. This is the
core hypothesis that is put to the test in Chapter 5.

In connection with P4, we show that (i) conceptually, the correct choice for variable selection
is the joint likelihood and not the conventional (conditional) one; (ii) the two likelihoods
exhibit different behaviours in certain respects, which in turn affects the variable selection;
(iii) these distinctions might, ultimately, lead to higher chances of selecting incorrect (un-
derfitted) models by the conditional approach. Despite being able to show these divergences
between the two approaches, unfortunately, at the moment we cannot provide a rigorous
proof for the hypothesis mentioned earlier, however, a simulation study, provided in Chap-
ter 6, seems to be aligned with the superiority of the proposed approach compared to the
conventional one.

All the main results obtained in Chapter 5 are original contributions of the present thesis.

1.5.5 Learning by Mapping Neural Networks

All questions considered so far aim at providing a global procedure that let one solve a
learning problem in a theoretically sound way. Metaphorically, they provide a road map that
indicates the correct and reliable path to the destination, being the solution to the problem.
What still needs to be considered is to find a reliable vehicle that can take one to that
destination. Assume that we are provided with a list of multiple vehicles that can potentially
take us to the destination, however, we need to inspect them and make sure they are capable
of completing this task.

Aligned with this metaphor, our purpose of considering the artificial neural networks, in this
research, is to find out whether they could be regarded as a vehicle that could be used to
reach the destination, and if yes, how well they keep up with the standards of statistical
learning theory throughout the road. Note that we focus on a specific type of networks,
commonly called mapping neural networks. These are perceptron-like multilayer feedforward
neural networks with the capability of estimating functions from a finite amount of data. It
is worth noting that while our ultimate goal is to study the capability of the mapping neural
networks in learning from biased and censored data, here and as a first step, we try to settle
the problem in a less specific framework, i.e., learning from complete data.

Regarding the history of neural networks, creation of the first multilayer perceptron by Frank
Rosenblatt, in late 1950s, marked a major milestone in the history of both learning theory,

probl:P4


14

in general, and the neural networks, in particular [Rosenblatt, 1962]. In fact, Rosenblatt’s
perceptron was the very first actual learning machine that came into existence. Shortly after,
the mathematical theory of learning was initiated by Novikoff [1962]. Despite the promising
start, artificial neural networks lost their initial appeal soon and began to attract attention
only about two decades later, when an already existing gradient-based fitting method [Kelley,
1960, Bryson, 1962] was applied for updating the weights of a neural network, in 1980s
[Rumelhart et al., 1986a,b]. This method was called backpropagation.

The application of backpropagation brought up the artificial neural networks to the attention
of researchers for the second time. This was followed by a series of successful applications
of neural networks in particular areas. Most of the studies on artificial neural networks
have been focused on the applied aspects of them, as a result of which more fundamental
properties were neglected until recent decades. There are still a huge amount of unanswered
questions about the mathematical mechanism underlying their success in practice. As a part
of this study, we try to take some steps in order to shed some light on the mathematics of
the mapping neural networks and their ability to solve the learning problem, especially, with
respect to the principles considered in statistical learning theory.

Problem P5, stated below, gives a high-level description of the questions that motivated the
material of Chapter 7. We call it “high-level” because the following questions consist of
several sub-questions that are addressed, separately, in the dedicated chapter.

P5. Could mapping neural network be employed to solve the main problem of learning, i.e.,
the problem of statistical inference? If yes, How compatible are they with the statistical
learning methodological standards?

In order to answer the questions mentioned in P5, we have tracked down the mathematical
results that are connected to the problem of function estimation, in some cases, to more
than a century ago. Connected to the mapping neural networks, at least three different, but
closely related, notions must be distinguished to understand how mapping neural networks
might be employed and solve the learning problem. These three notions are (i) function
estimation, (ii) function representation, and (iii) function approximation. Estimation refers
to the general capability of solving the learning problem and depends on the other two.

As we will see in Chapter 7, while the representation ability of networks is sufficient to guar-
antee the mapping neural networks’ capacity of solving the learning problem, theoretically,
when it comes to practice, implementing such networks is extremely hard, if not impossible.
On the other hand, for the purpose of learning, having exact representation is not necessary
and, therefore, out of interest. We will see that a reasonable approximation ability is suf-
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ficient for being able to solve the learning problem. In addition, such networks are easy to
implement in practice.

Nonetheless, compatibility of the mapping neural networks with the statistical learning
ecosystem requires close attention. Recall that the SRM principle comprises one of the
key concepts that balance the complexity of the learning machine according to the problem
under consideration as well as the sample data. This principle is not satisfied with the map-
ping neural networks being utilized for solving the learning problem. While, according to
statistical learning theory, the learning procedure consists of two selection stages, learning by
the mapping neural networks completely ignores one of them resulting in solving the learning
problem only partially, in the explained sense. Very recently we became aware of a work by
Vapnik that points to the same problem [Vapnik, 2019].

1.6 Layout of the Thesis

Chapter 2 is devoted to a discussion on the existing related literature. It is important to no-
tice that the present work consists of components belonging to multiple related but distinct
areas: (i) Statistical learning theory, (ii) survival (time-to-event) analysis, and (iii) map-
ping neural networks. This fact, indeed, gives a strong interdisciplinary character to this
work, which means that the topics included might have been motivated and developed, in-
dependently and in disparate scientific contexts, nevertheless, in some cases simultaneously.
This complicates, particularly, reviewing and providing the pertinent literature in a smooth
chronological manner. As a result, we introduce the literature of each subject in a separate
section.

In Chapter 3, we introduce the main elements of statistical learning theory and survival
analysis, which can be considered as preliminary knowledge for the development of the rest
of the thesis. Related to statistical learning theory, particularly we introduce the main
problem of statistical learning, the principles of risk minimization, including expected risk
minimization, empirical risk minimization (ERM), and structural risk minimization (SRM).
We, also, introduce the VC dimension, which plays a pivotal role in the SRM procedure.
Finally, we state the necessary and sufficient conditions for the non-trivial consistency (the
definition of which is given in Chapter 3) of learning.

In addition, we provide the main concepts of survival analysis that are required for our
investigation in chapters 4 and 5. This includes the details of the setting we are interested in,
i.e., LBRC-C data and the prevalent-cohort, cross-sectional sampling design with follow-up.

Chapter 4, discusses problems P1, P2, P3, and related issues. Precisely, we establish the
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problem of learning the distribution function, non-explicit regression function and risk min-
imization from LBRC-C data.

In Chapter 5, problem P4 is settled. Specifically, a new MLE-based variable selection pro-
cedure is proposed. The new method is grounded in the joint distribution of the covariates
and the response rather than the conditional one, commonly used in conventional likelihood-
based approaches, for analysis of LBRC-C data. Some essential properties of the joint and
conditional approaches are derived and compared together. These certain properties are be-
ing scrutinized and are shown to be responsible for the superior performance of the joint
approach in detecting the correct subset of covariates. Finally, Chapter 6 belongs to the
analysis of the simulated example. All the results achieved in chapters 4, 5, and 6 are novel
and, exclusively, contributions of the current study.

Chapter 7 is dedicated to the mapping neural networks and related questions. Particularly,
we address problem P5 and establish the results we have briefly explained in the previous
section.

In the end, Chapter 8 contains concluding notes and a few problems to be considered in
future research.

1.7 Some Notes on Main Contributions

Before closing this introductory chapter, we would like to add some notes on the contribu-
tions of the current thesis. First, some of the problems this research settles might be regarded
as a contribution to the foundations of statistical learning in the context of LBRC-C data.
Specifically, the main problem of supervised learning, often, take one of the following forms:
(i) density estimation, (ii) regression estimation, and (iii) classification or pattern recogni-
tion. As we explain in Chapter 3, all of these problems, as a matter of fact, are different
forms of a single problem, i.e., the problem of risk minimization from empirical data. Risk
minimization itself depends, directly, on the estimation of the actual probability measure,
governing the distributional behaviour of the data in hand, utilizing a limited amount of
sample data. In other words, supervised learning can eventually be reduced to the main
problem of mathematical statistics, i.e., to construct an empirical probability measure that
can consistently estimate the underlying probability measure. In Chapter 4, in addition to
the non-explicit regression problem, both problems of distribution function estimation and
risk minimization are effectively solved. This fundamental step paves the way for solving any
supervised learning problem when data are LBRC-C.

The problem of variable selection, considered in Chapter 5, besides its theoretical novelty
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and properly taking the covariate bias into account, has immediate impacts on the related
practice, both for practitioners and for policymakers. Indeed, it should not be difficult to see
how detecting the true risk factors of a disease, e.g., may lead to more effective use of the
available financial and other resources. In terms of predictive modelling, there are situations
where decisions have to be made in real time and, clearly, being able to avoid obsolete factors
in producing the outcome of interest can reduce both the required time to respond as well
as necessary computational expenses.

Next, we believe that fundamental research from the mathematical point of view, in the area
of the artificial neural networks, deserves much more attention than it presently receives.
There is no doubt that studying the applied aspects of the neural networks is also extremely
important, but it should be noticed that without a profound theoretical framework there is
no guarantee whether the application is actually approaching the desired destination. (Recall
the metaphor mentioned earlier.) Hopefully, the theoretical scrutiny provided in Chapter 7
contributes to encouraging more research at deeper levels rather than considering individual
applications per se.

Finally, both chapters 3 and 7, constitute a unique collection of results, which can provide
students, researchers, and anyone with an interest in related areas with a succinct and concise
introduction to statistical learning theory and the mapping neural networks without needing
to explore, typically, tedious classical references. Especially, Chapter 7 gathers too many
pieces of a puzzle that are scattered in various places finding which requires an incredible
amount of time and effort. We know that since we learnt it the hard way. These two chapters
are the by-product of our investigation of the problems of interest.

To summarize, we conclude that our contributions to knowledge, roughly, fall into three
categories: (i) fundamental (theoretical), (ii) practical, and (iii) educational.
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CHAPTER 2 LITERATURE REVIEW

In this chapter, we briefly look into the existing literature and summarize the results that
are most pertinent to the topics studied in this thesis. The main attention will be paid to
the phenomena of censoring, truncation and length bias. Due to the fairly interdisciplinary
nature of our research, we thought a thematic structure for the literature review would best
serve our purpose. Therefore, the chapter is divided into two independent sections and each
section is devoted to a separate topic. The two sections discuss the results belonging to the
following areas, respectively: (1) The learning-related literature, and (2) a general history of
the length bias in different branches of science including survival analysis. Note that we did
not include the mapping neural networks in this chapter since a vast portion of the discussion
in Chapter 7 is already devoted to the historical aspects and to reviewing the related works
that influenced the development of the neural networks.

2.1 The Learning Literature

In the present section, first, we provide a succinct historical review of the creation and
advancement of statistical learning theory. Further, we will have a look at the works that
are particularly related to the context of LBRC-C data.

Statistical learning theory appeared in 1960s as a purely theoretical discipline with the main
objective of making a statistically sound inference about a target population, given a set of
sample data. In 1990s, the invention of a new type of algorithms, called the SVM [Cortes
and Vapnik, 1995], became a transition point for the theory of statistical learning from being
a purely theoretical analysis to a practical framework capable of estimating multidimensional
functions [Vapnik, 1998].

The evolution of statistical learning theory from a purely theoretical assessment of statistical
principles of inference to a data analysis discipline with a rich set of practical tools was, to
some extent, encouraged by the appearance of first powerful computers that were capable of
conducting analysis on multidimensional, real-life data problems. Once this possibility was
realized, it immediately became evident that the classical approaches towards function esti-
mation, for the purpose of statistical inference, in low-dimensions did not reflect the problem
of singularity, which usually occurs in the analysis of high-dimensional data. Singularity
refers to situations where the variance-covariance matrix of data is ill-conditioned and, con-
sequently, cannot be computed. This issue happens, often, when the dimension of the input
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vectors becomes much larger than the sample size.

As Vapnik once phrased it, “there was something that could not be captured by the classical
paradigm” of statistical inference [Vapnik, 1998]. The problem he referred to is what Bellman
et al. [1957] called the curse of dimensionality in his dynamic programming. The desire to
overcome this difficulty formed the initial inspiration for creating an alternative paradigm,
which was developed by Vapnik and Chervonenkis during a course of almost three decades
[Vapnik, 1998]. All the central questions and surrounding aspects of the theory were gradually
established in a series of works published by Vapnik and Chervonenkis during 1960s–1990s
[Vapnik and Chervonenkis, 1968, 1971, 1974a,b, Vapnik and Stepanyuk, 1978, Vapnik and
Chervonenkis, 1981, 1989, Vapnik, 1992, 1995, 1998, 1999, 2006, 2019]. For this reason,
statistical learning theory is sometimes referred to as Vapnik-Chervonenkis (VC) theory.

To understand the motivation behind the theory, it would be insightful to have a brief
look at the earlier years and the events that preceded the birth of statistical learning. The
first half of the 20th century witnessed several important events which are related to this
discussion: First, the development of multiple groundbreaking algorithms for a problem that
later became known as pattern recognition. These algorithms include Fisher’s discriminant
analysis [Fisher, 1936] and Rosenblatt’s perceptron [Rosenblatt, 1957, 1958a,b]. Formally,
the pattern recognition problem belongs to the statistical framework of estimating functions
from empirical data. The reason we recall the pattern recognition problem is that, indeed,
it is of primary importance in the development of learning theory, as we discuss further.

In pattern recognition, the considered class of functions consists of rather simple functions,
i.e., indicator functions. Perhaps, pattern recognition is one of the simplest cases of statis-
tical inductive inference, compared to the regression and density estimation. Nevertheless,
studying this simple case became crucially important in formalizing the generalization ability
of a general set of functions. We will see that the ability of a collection of functions to gener-
alize is a closely related concept to the pivotal notion of capacity, in VC theory of statistical
learning, and studying the pattern recognition problem served as a powerful instrument to
establish the general notion of capacity for any class of functions. It was fortunate that the
transition from the simple case of indicator functions to more complex ones was possible
using pretty standard mathematical techniques.

Another game changer occurred in 1980s: It was suddenly noted, by Vapnik and Chervo-
nenkis, that a generalized version of the Glivenko-Cantelli [Glivenko, 1933, Cantelli, 1933]
problem would result in the same theory as the one they had developed for learning and
generalization in pattern recognition. This discovery triggered motivations for promoting a
comprehensive theory of learning [Vapnik, 1998].
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In the sections to come, a closer look into the aforementioned set of events and their influence
on the development of learning theory is provided.

Compared to inferential statistics, it has been much earlier for descriptive statistics to realize
itself as a theoretically profound set of tools for studying real-world phenomena. In contrast,
the history of a systematic statistical inferential infrastructure only can be traced back to the
first decades of the twentieth century, when an episode of a few notable events, approximately,
between 1900 and 1930, sparked off the analysis of statistical inference. Among them were
the statistical hypothesis tests, significance tests, MLE, etc [Pearson, 1900, 1992, Fisher,
1920, 1922, 1925, 1992, 1970, Neyman and Pearson, 1992].

First, Fisher’s unified framework of parametric inference for finding functional dependencies
from empirical data. The problem he addressed might be generally expressed as follows:
Given a set of observed data one intends to estimate the underlying statistical structure of
the data distribution having some a priori information. Normally, this information is on the
structure of the function to be estimated. In particular, since at the time the existence of
parametric distributions had already been known, the main task was to estimate a finite
number of parameters from data [Fisher, 1932].

The formulation above is rather general since it can apply to various contexts. Fisher dis-
cussed this general problem in the following settings: (i) Discriminant analysis (DA), (ii) Re-
gression analysis, and (iii) Density estimation. The method he proposed for estimation was
the MLE, which truly provided a powerful frame for statistical inference.

It must be noted that the MLE had been already around since a couple of hundred years
before Fisher. For instance, one could find elements of it in the works of Gauss, Laplace and
others, who lived long before Fisher. But Fisher was the one who popularized the use of
MLE in a systematic way. However, the mathematical ground for its application was only
established later. It was only in 1938 that Wilks [1938] proved a very important property of
the MLE, i.e., the asymptotic behaviour of the log-likelihood ratio statistic.

The second important event was due to Glivenko [1933] and Cantelli Cantelli [1933], who
worked on a similar problem but with slightly different assumptions. They proved that the
empirical distribution converges to the actual distribution uniformly and does not depend on
the distribution, i.e.,

‖F̂
n
− F‖∞ = sup

t∈R
|F̂
n
(t)− F (t)| a.s.−−→ 0.

This is a more general setting compared to Fisher’s in that no prior knowledge of distribution
is required. Shortly after, Kolmogorov [1933] showed that this convergence occurs with a fast
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rate, i.e., exponentially. Specifically, he showed that

lim
n→∞

P{
√
n‖F̂

n
− F‖∞ < ε} = 1− 2

∞∑
k=1

(−1)k−1 exp{−2ε2k2}.

Later Smirnov [1939] also obtained similar bounds for the convergence of the empirical dis-
tribution.

Broadly speaking, there are fundamental distinctions between the core inferential principles
behind Fisher’s parametric approach and the one, implicitly, suggested by the Glivenko-
Cantelli and Kolmogorov’s theorem. They stem from two different philosophies, and this
could be understood by looking at the basilar assumptions each of them makes.

Because of this difference, they initiated two different ideologies in the context of statistical in-
ference: The well-known parametric or particular and non-parametric or general approaches.
One can say that Fisher’s parametric approach is narrower in its nature since the strong as-
sumptions, based on which the theory is established, make the application domain restricted
to situations where there is a considerable amount of a priori, additional information. By
additional information, we mean what cannot be implied from the sample data.

What if the observed data is the only source of information? In the absence of reliable, a
priori information about the actual distribution or the target function, one should naturally
think of the more liberal approach, i.e., the non-parametric one, since it provides more room
for applying a wider set of functions for making an inference. In other words, reducing the
prerequisite assumptions opens new horizons of applicability of the inferential paradigm.

On the other hand, such machinery that is supposed to work in a very wide range of problems
cannot be simple. It should, undoubtedly, be capable of dealing with a much bigger variety
of occasions. But how one can determine whether a specific methodology is, actually, reliable
to be employed in solving inferential problems? Statistical learning theory’s answer to this
question possesses two aspects:

First, any theory to be applied in the setting of the general approach must be able to provide
the necessary and sufficient conditions for asymptotic optimality of the solution. Second, it
should be able to provide reasonable solutions for a fixed sample size.

In other words, asymptotic behaviour solely, cannot qualify a method for real-world situa-
tions, unless it is also capable of making inference when a fixed amount of data is available.
Clearly, in the context of the parametric statistics, especially with the MLE, the latter re-
quirement sounds too much to hope for. However, Kolmogorov’s discovery, concerning the
convergence rate of the empirical distribution to the actual one, reinforced this hope.
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Given these revelations in 1930s, indeed, the theoretical ground was already prepared for a
new paradigm of inference to flourish. Nevertheless, the course of events that took place in
reality, proved to have absolutely different trends. Despite the very swift development of the
parametric approach, which was, basically, the only accepted paradigm until 1960s, Glivenko,
Cantelli and Kolmogorov’s findings did not immediately trigger thoughts about the existence
of other possible theories; the ones that could have possibly been more flexible and powerful.
As a matter of fact, these discoveries were mainly believed to contribute to the foundation
of probability and mathematical statistics.

It took several decades, as well as a sequence of theoretical and practical events, until some
researchers in the mathematical and statistical community began to deviate gradually from
the mainstream settings of inference and started to question the possible existence of alterna-
tive foundations for building a new inferential system. The most marked events were related
to the underlying assumptions of the parametric framework. In the following paragraphs, we
briefly mention those assumptions and why they started to seem rather shaky.

In a major portion of the problems, the set of allowed functions, from which the parametric
approach searches for the best dependency, usually consists of polynomials that are linear in
their parameters. A classical example is the linear regression problem. There are theoretical
results, such as the Stone-Weierstrass theorem, which truly justify the possibility of approx-
imating any continuous function, with any desired accuracy, by only polynomials. This is
computationally feasible in practice only if certain conditions hold. Assume that the target
function is defined on the d-dimensional cube Id = [0, 1]d and is s-time differentiable. If
one intends to approximate such a function by means of a polynomial with N terms, then
the guaranteed accuracy is of the order O(N− s

d ) [Vapnik, 1998]. Consequently, for approx-
imating a non-smooth function, one has to increase the number of terms N involved in the
approximation exponentially as the function’s dimension grows. This is a real burden even
with most of the modern ordinary computers. Recall the curse of dimensionality mentioned
earlier!

Another issue is what Tukey [1960] pointed out. Real data often exhibit some peculiarities
and do not obey the exact rules of the formal distributions. Hence, he suggested that one
must treat data problems with specifically chosen methods capable of revealing subtleties
of individual data-related situations. This fact inspired the foundations of the so-called
exploratory data analysis (EDA).

Lastly, there are a few serious restrictions associated with the principal estimation machinery
in the parametric approach, i.e., the MLE principle. Although the MLE enjoys some unique,
desirable characteristics, it should be employed with additional care. In Chapter 5 and in
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Section 8.2.1 (of Chapter 8.2), we discuss one of the possible problems of the maximum-
likelihood-based inference. More precisely, the problem of sensitivity to the proper use of
a priori knowledge. Next, is the lack of theoretical ground for using the MLE in finite-
sample problems. While asymptotically, and in presence of some general conditions, the
MLE provides optimal solutions, there is evidence suggesting its failure to achieve optimality.
Finally, it has been shown that on some occasions there exists actually superior estimation
strategy which uniformly provides better estimations. See, e.g., Stein’s phenomenon.

Perhaps, the aforementioned circumstances were amongst the major factors behind the birth
of new alternatives, including statistical learning theory. It is important to note that, be-
sides the approach adopted by statistical learning, there were numerous other directions that
resulted in other new techniques and algorithms. These attempts, though, stand at different
distances from the classical ideology. In particular, some of them can be viewed as partial
cures but still belonging to the mainstream ideology, while others took more radical posi-
tions and departed substantially from the accepted inferential model. Examples are robust
inference [Tukey, 1960, 1962, 1977, Huber, 1964, Hampel, 1968], generalized linear models
(GLM) [Nelder and Wedderburn, 1972], among others.

In Chapter 3, we delve into the foundations of statistical learning theory; in particular,
we analyze the main problem of statistical inference, together with the solution statistical
learning offers to overcome the limitations of the classical inferential organization. In the
following paragraphs, we will focus on the studies of right-censored and length-biased data
in the domain of learning theory. Note that, in what follows, we slightly extend our view to
cover related works in learning theory in a broader sense. Particularly, we include some of
the works in the area of artificial neural networks. Surprisingly, among different branches of
learning theory, the neural networks community was the first to show interest in studying
survival data. In addition, in the learning-theory-related literature, they have the largest
amount of works dealing with time-to-event data. Before discussing some of these results in
more detail, let us provide an overall insight on the volume of the research undertaken in
various areas of learning about the different aspects of the context of our interest.

The specific type of the data we are interest in this thesis exhibit three properties: (1) Right
censoring, (2) length bias, and (3) the covariate bias induced by the length bias. Beginning in
1900s, some neural network researchers started to show interest in analyzing survival data by
neural networks. Since the right censoring is the most frequently seen peculiarity in survival
data we realized that there have been produced a considerable amount of studies in the area
of the neural networks where the right censoring is, at least, acknowledged by the authors.
However, acknowledging the existence of right censoring does not mean taking it into account
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during the data analysis by networks. In fact, in a good portion of these studies, the authors
simply removed the censored data and advanced the analysis with the rest. Also, in some
cases, the censored data were considered as missing and were imputed to be used for the
analysis. In contrast, we were not able to find any work dealing with or even mentioning
either of the length bias or the induced covariate bias.

In the statistical learning literature, the attention to survival data began to emerge more
recently. Similarly, as in the neural network literature, many of the studies mention the
existence of right censoring in the data analyzed. Again, not all of them provide a proper
way to handle right censoring. Compared to the neural network literature, we have found,
significantly, less number of works mentioning right censoring. Similarly, we could not manage
to find any research on length bias data, from the statistical learning point of view. On the
other hand, we have found a couple of works in reinforcement learning focusing on left
truncated data. The left truncation is a more general form of bias and has the length bias as
its special case. There has been no mention of the induced covariate bias in none of the works
we have reviewed. It is also worth mentioning that none of the researches found have tackled
the foundations of learning (risk minimization, density estimation, etc) in the context of
either length-biased or right-censored data. That is, the predominant majority of the works
are application-oriented. See, for example, random survival forests [Ishwaran et al., 2008] or
the SVMs for consored data [Khan and Zubek, 2008]. Next, we provide a summary of some
of the works done in the learning-related sphere.

In the neural-network literature, Snow et al. [1994] provide one of the first studies with the
main interest being a certain type of time-to-event data. Their objective is to determine
whether artificial neural networks would be helpful to predict biopsy results in men with
abnormal prostate cancer screening test(s) and to predict treatment outcome after radical
prostatectomy. However, it is not clear if the data used in this study, which were extracted
randomly from a prostate-specific-antigen-based screening study database, were length biased
or right censored.

Faraggi and Simon [1995] present a feed-forward neural network as the basis for a non-linear,
proportional-hazards model for modelling censored survival data. According to the authors,
this approach can be extended to other models used with censored survival data. The MLE
is utilized to estimate the parameters of the proportional-hazards neural network. They, also,
argue that these maximum-likelihood-based models can be compared, using readily available
techniques such as the likelihood ratio test, the AIC, etc. The proposed model is tested on
survival data of men with prostatic carcinoma. The data are right-censored, however, there
is no mention of truncation or length bias.
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Zupan et al. [2000] is one of the earliest studies investigating the classification problem of
survival data. Roughly, the proposed approach consists of manipulating the censored data, in
the first step, and then applying any existing classification method. This can be considered
as an example of utilizing imputation to deal with censoring. Essentially, they estimate the
probability of event for censored subjects and assign them a distribution of outcome (survival)
accordingly. They, also, mention that “since most machine learning techniques do not deal
with outcome distributions, the schema is implemented using weighted examples”. Therefore,
data manipulation is once more used to “prepare” the data for the learning process. Finally,
they test their approach to build prognostic models for prostate cancer recurrence.

Jerez-Aragonés et al. [2003] provides a hybrid model for prognosis of breast cancer relapse
based on a combination of neural networks and decision trees. They present a decision
support tool that combines a novel algorithm, called control of induction by sample division
method to select the most relevant prognostic factors (variable selection). Then, a system
composed of different neural networks topologies takes the selected variables as input to
produce the final survival class. Unfortunately, it is not clear how the censored data are
handled.

Bøvelstad et al. [2007] compares some of the most frequently used regression approaches in
statistical learning to the regression analysis of high-dimensional survival data. The main
motivation is predicting the survival time of patients with cancer based on gene expression
profiles. Apart from the difficulties related to high-dimensional genome-wide expression data,
they mention censoring as another source of challenge. All the methods considered are
combinations of some dimensionality reduction method such as the principle component
analysis and the Cox model. Hence, they do not offer any special treatment of censoring
from the learning point of view. Eventually, they discuss neither the length bias nor the
truncation.

Next, Witten and Tibshirani [2010] provides a comparative study of statistical learning meth-
ods applied to high-dimensional survival data. While censoring is discussed by the authors,
no truncation or length bias is mentioned there. Note that the authors provide a quite thor-
ough and useful list of references in the statistical learning domain with interest in survival
data.

Steele et al. [2018] studies prognostic modelling based on electronic health records (EHR)
data and compares “conventional epidemiological approaches” to machine learning ones such
as the random forests. They simply remove the data related to the censored subjects. Length
bias or truncation is not of their interest.

Macías-García et al. [2020] is another research that studies time-to-event data in connection
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with breast cancer recurrence. The data are subject to type I censoring, however, the time-
to-event or survival time for the censored subjects at the end of the study are replaced by
their censoring time.

Similar to Bøvelstad et al. [2007], Spooner et al. [2020] studies and compares the performance
of some machine learning models on high-dimensional survival data with non-informative cen-
soring. The models considered are either of the following forms: (i) A combination of some
variable selection or dimensionality reduction methods with the Cox proportional-hazards
(CPH) model, such as a penalised Cox Regression model with either the Least Absolute
Shrinkage and Selection Operator (LASSO), the Elastic Net, or the Ridge penalties. (ii) En-
semble methods with or without the CPH model, including boosted CPH models, such as the
Cox model with likelihood-based boosting (CoxBoost), Cox model with gradient boosting
(GLMBoost) and Extreme Gradient Boosting (XGBoost) with tree-based and linear mod-
el-based boosting, and the random forests. To deal with censoring, Spooner et al. [2020]
employ the Cox model. No truncation, including length bias, is considered. It is worth men-
tioning that a valuable list of references related to statistical learning of the time-to-event is
provide by the authors.

The number of the works in statistical or other branches of learning theory that somehow are
related to survival data is huge. Fortunately, we were able to look into numerous researches,
in learning theory, for the purpose of this literature review. However, due to the number of the
works considered, it is impossible for us to mention all of them in this section. Nonetheless,
we are able to summarize them as follows. While the aforementioned list of the works is
just a tiny, and non-exhaustive list of examples, where the interest rests in time-to-event
data, it reflects the major tendency in the related areas of research. Just as we have seen
in the examples above, the majority of the researches on survival data, from the learning
point of view, is restricted to considering censoring, solely, with no mention of the truncation
or length bias at all. We were able to find few articles with interest in left-truncated (but
not length-biased) data, in the domain of reinforcement learning. Particularly, Daskalakis
et al. [2019], and Daskalakis et al. [2020] study the regression problem when data are left-
truncated. In addition to the motivation of these works which are different from the one of
ours, there is, also, no censoring involved in these researches.

To conclude, we add a few more examples to the already mentioned works. Note that these
are all connected to the analysis of survival data from the learning point of view, where the
length bias or truncation were not of interest but censoring, at least, has been mentioned:
Graf et al. [1999], Heagerty et al. [2000], Nguyen and Rocke [2002], Hothorn et al. [2004], Li
and Gui [2004], Li and Li [2004], Shivaswamy et al. [2007], Schumacher et al. [2007], Bittern
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et al. [2007], Ishwaran et al. [2008], Khan and Zubek [2008], Goldberg and Kosorok [2012],
Binder [2013], Padhukasahasram et al. [2015], Ranganath et al. [2016], Martinsson [2016],
Vock et al. [2016], Lee and Lim [2019], Nemati et al. [2020], De Laurentiis and Ravdin [1994],
Liestøl et al. [1994], Biganzoli et al. [1998], Ripley and Ripley [2001], Joshi and Reeves [2006],
Chi et al. [2007], Montes-Torres et al. [2016], Nilsaz-Dezfouli et al. [2017], Ching et al. [2018],
Kvamme et al. [2019], Bengio [2019], Tilman [2020].

2.2 A History of Length Bias

In the present section, we focus on the literature related to the length bias. It is important
to note that the occurrence of the length bias and right censoring is not restricted to a
specific field. The following examples belong to various disciplines and, consequently, some
of them included a considerable amount of domain-related technical details, which were not
completely relevant to the topic of our interest. For this reason, such details were mostly
skipped.

Another thing worth mentioning is that because length bias appears in situations belonging
to different areas of research, it was rarely discussed as the central subject of interest and in
a unified and systematic way. Hughes and Savoca [1999] argued that this lack of attention
to this issue may be explained by the fact that the earliest and most frequent applications of
duration analysis, in general, appeared in experimental designs where one has essentially more
control over inclusion of relevant cases to the study. Finally, we would like to mention that
the core intention of writing this section, perhaps, might be summarized as to emphasize the
importance of the problem of length bias in data analysis by showing that this is a ubiquitous
problem that has been revisited frequently, in plenty of situations, and in diverse areas of
research.

Studying the phenomenon of length bias dates back, at least, to the first decades of the 20th
century. The rise of length-biased data in practice can be probably attributed to biology
and, especially, the works of Wicksell on the famous corpuscles problem. Wicksell [1925,
1926] investigated the bodies of corpuscles formed in tissues of different human and other
animals’ organs. It was known at the time that the corpuscle bodies varied, considerably,
in terms of both size and numbers, even within one single organ. Accordingly, Wicksell’s
main objective was to detect the distribution of the size and numbers of the corpuscle bodies
in individual organs, as well as, their distribution in distinct organs and individuals. Back
then, and in absence of today’s modern technology, to do the measurements, Wicksell had
no option but cutting the tissue and then quantifying the corpuscles’ sizes and counts on
the two-dimensional, cross-sectional surfaces of the cut tissue. This sampling method is
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length biased as corpuscles with larger diameters are more likely to be cut and observed in
the sample. Moreover, this “two-dimensional sampling” of the de facto three-dimensional
corpuscles introduced another kind of bias as well: The diameter of an arbitrary sampled
corpuscle was less than or equal to its true diameter if the diameter was defined as the
longest distance between any two points of the corpuscle. A year later, Wicksell [1926]
studied a similar problem and succeeded to extend the previously obtained results to the
case of ellipsoid corpuscles.

Fisher [1934] and Neyman [1955] also considered the problem of estimation of the incidence
frequency utilizing length-biased data collected, from the prevalent population.

McFadden [1962] investigated the length of intervals between a sequence of events generated
according to a stationary point process. Let

(
X
t
(ω), t ∈ T

)
be a stationary stochastic process

with T being a subset of the naturals N. Define the sequence of the intervals between the
events as I

t
:= X

t+1 − X
t
. Now, if one samples intervals at a random moment r, then,

apparently, the length of the chosen intervals is subject to length bias. McFadden was
interested in differences between the original set of intervals

(
I
t
, t ∈ T

)
and the sampled

ones.

Blumenthal [1967] was interested in estimating the mean life of electron tubes. An electron
tube or valve is a device that controls electric current flow between electrodes, in a high
vacuum, to which an electric potential difference has been applied. The particular sample
he had access to consisted of the tubes that had already been working for a certain amount
of time. Similar to the sampling design employed in the cross-sectional, prevalent-cohort
studies, Blumenthal’s sample was biased since longer-lasting electron tubes enjoyed more
chances of being selected in a sample. Blumenthal considered two types of systems. First,
systems with “finite” age, and second, those with extremely long lifetimes, called equilibrium.
Since the backward and forward recurrence times were assumed to be distributed identically,
the question was whether the knowledge of the backward recurrence time suffices to estimate
the mean lifetime of a tube. From the practical point of view, this is a sensible question as
the backward recurrence time can be measured immediately after a tube is sampled, whereas
measuring the forward recurrence time requires waiting until the failure occurs. Blumenthal’s
answer though showed a higher efficiency for the estimation process with both backward and
forward recurrence times taken into account. He explained that the estimates will have less
variance due to the fact that backward and forward recurrence times are not independent.
Special attention has been paid to the gamma and Weibull families of distributions.

Cox [1969] discussed, among others, the process of assessing the quality of a fabric through
the length of its fibres. It was supposed that the fabric’s quality was positively correlated
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with the length of its fibres. Therefore, to control the quality, fibres were randomly sampled
by a comb and measured subsequently. This sampling mechanism favoured longer fibres
by giving them higher chances of being selected. The moments of the distribution of the
length-biased sampled fibres and their relation with those of the unbiased distribution were
targeted in the study. In addition, it was shown that the length-biased sampling provided
more efficient estimates of the upper tail of the distributions when the unbiased distribution
of the fibre’s length was assumed to be either Log-Normal or Gamma. This is not surprising
because the upper tail of the distribution is, in fact, where the length-biased sampling avidly
tends to choose from. It is worth mentioning that since the applications motivating the
aforementioned studies did not involve censoring, no correction for considered data has been
considered.

After the basic theory was established, the number of applications raised dramatically over
time. For example, Goldsmith [1967] realized that there were equivalents to the original
Wicksell’s anatomy problem in physics: The true particle size obtained from a thin section
of an object is distorted and, as a result, the distribution of the particle sizes cannot be
immediately observed. Goldsmith provided calculations for finding true distribution in the
aforementioned case. Similar issues were encountered in astrophysics related to the problem of
cataloging galaxies. Likewise in biology, Smith et al. [1969] dealt with an analogous problem
in a study of carcinogenesis. Carcinogenesis, also called oncogenesis or tumorigenesis, refers
to the process of the transformation of normal cells into cancerous ones.

Zelen’s works in the area of screening tests and randomized trials, in late 60s and early 70s,
dealt with general sampling biases. These works, some of which were coauthored with other
researchers, played a considerable role in raising awareness and recognition of the biased
sampling’s implications in medical and epidemiological studies. For instance, one may refer
to Feigl and Zelen [1965], Zelen [1969, 1973, 1979], for some related results. Particularly,
in a later work, Davidov and Zelen [2001] pointed the effect of size-biased sampling in the
investigation of the relative risk of diseases based on family history. According to the authors,
the familial risk of having a disease is, usually, assessed through case-control studies based on
databases consisting of a collection of family histories of cases typically assembled as a result
of one family member being diagnosed with the target disease. They argued that sampling
based on family registries is size biased because larger families are found in registers with
higher probabilities (i.e., proportional to their size).

Lagakos et al. [1988] carried out an important research on AIDS and related issues, where the
data were sampled through a cross-sectional prevalent-cohort design. In this case, the original
data were right truncated but using a reverse time transformation they were converted into
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left-truncated data, so that the techniques available for left truncation could be applied to
analyze the data.

The length-biased methodology has also been applied to data analysis in multiple studies in
the domain of Alzheimer’s and dementia. For example, Gao and Hui [2000] used a two-phased
sampling scheme to estimate incidence of dementia. On the other hand, in an analysis related
to Alzheimer’s, Stern et al. [1997] used data which were extracted from prevalent cohort, but
no correction for length bias was accounted. Wolfson et al. [2001] showed that, when length
bias is taken into account properly, the median survival lifetime of individuals with dementia
is considerably shorter than it was previously estimated. This study was based on the data
from the Canadian Study of Health and Aging (CSHA).

As already seen, aetiology is an area where length-biased data are quite prevalent. Inter-
estingly, the setting in which length bias is discussed in aetiology differs from the setting
adopted in conventional lifetime analysis in that the target variable in aetiology is the preva-
lence (proportion) of a characteristic or an attribute among individuals who already have
developed a certain disease. This is, unquestionably, an important issue in immunogenetics
since it helps establish whether a characteristic is related to the aetiology of the disease, i.e.,
if it plays a causal role, or it is of prognostic importance, in which case the characteristic
could be implied from the disease and not vice versa. An example of an aetiologic study with
length-biased data is Simon [1980].

As well as in biomedical sciences, the length bias is of great interest in the theory of renewal
processes. A renewal process can be described as follows: Assume that a number of objects
from a particular population are put in operation at the present moment. Whenever an object
fails, a new object from the same population will replace it. Now, suppose that, at some time
r in distant future, an inspector collects the data of the operating-at-that-moment objects
and monitors the objects for a fixed amount of time s after collection. The collected data
contain information about the age of each object at the moment of collection. The variable of
interest is the mean lifetime of the population while available sample is limited to the objects
in use at the collection time. Assuming that r is large enough such data are length biased.
Moreover, if s <∞, then the sample is right censored as well. Renewal processes have been
investigated in Winter and Földes [1988], among others.

Hughes and Savoca [1999] studied the impact of legal reforms on the duration of legal disputes
over medical malpractice. The sample used was obtained from insurance claims during a
period of 4 years (1985 − 1989) in the USA. The data were both length biased and right
censored and the authors proposed corrections for both issues. Interestingly, the result of
the study revealed that the “English rule”, i.e., a rule that requires the loser at trial to cover
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all legal expenses, is the only factor among several competing factors which shortens the
length of a dispute. Moreover, it was illustrated that failing to account for length bias might
result in an absolutely inverse conclusion, i.e., the English rule may seem to lengthen the
time needed for settlement and litigation.

Often, length bias occurs when the variable of interest involves time or sampling mechanism
might be affected by time. In economics, for instance, while time might not be the main
objective of investigation, it can play a role in sampling. The influence of length-biased
sampling on contingent value studies, which are used to quantify the value of non-monetary
variables such as environmental commodities and non-traded goods, was explored by Nowell
et al. [1988]. Sampling users of such commodities (e.g., a fishing resort) requires being on
site while individuals are in the middle of an activity. This implies that those users who
tend to spend more time, and thus put more value on the contingents, are more likely to
be sampled. Nowell and Stanley [1991] noted an akin length bias in mall intercept surveys.
For example, they pointed out that selecting shoppers inside a shopping center rather than
sampling at the entrance exhibits some properties of length bias. Similarly, there could
be differences in tendencies of being sampled between individuals who visit many different
stores in comparison to those who spend a longer time in a single shop. As a final example
of applying length bias methodology in economics one may think of studying the length
of spells of unemployment. A related reference can be found in an unpublished script by
De Uña Álvarez [2001].

To conclude this chapter, we would like to emphasize that while the provided list of the
works considered in this section is not comprehensive, it is sufficient to see the ubiquity of
the length bias, and consequently, its importance as a research context in the field of data
analysis. Nonetheless, as we have seen in the previous section of the present chapter, the
issue has not received much attention, especially, from the learning theory community. We
hope that the next chapters shed some light on the problem, in particular, from the statistical
learning viewpoint.
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CHAPTER 3 PRELIMINARY KNOWLEDGE

In this chapter, we provide the background knowledge necessary for the rest of the thesis.
Particularly, as the main object of interest is statistical learning from a certain type of
incomplete data, which is often encountered in the analysis of time-to-event or survival data,
here we review the following two topics:

1. Foundations of statistical learning theory, and

2. Time-to-event or survival analysis.

Sections 3.1 and 3.3 are dedicated to these topics, respectively.

3.1 Foundations of Statistical Learning Theory

Statistical learning theory, as one of the maturest branches of data science and machine learn-
ing, has evolved around the main problem of statistics, i.e., making sound statistical inference
about a target population based on a limited amount of sample data. While adopting some
fundamental concepts from statistics, statistical learning theory exploits some techniques
from functional analysis in order to provide a coherent mathematical framework for solving
data-related problems in real-world situations. It has, also, extended the power of classi-
cal tools of statistics to new areas of application by successfully consolidating statistics and
computer-related sciences. This section explores the foundations of statistical learning theory
and presents a condensed overview of its main results and their connection with some pre-
viously achieved results in mathematics, such as the well-known Glivenko-Cantelli theorem
and the law of large numbers.

3.1.1 Inference in Statistical Learning Theory

First of all, let us introduce the main problem of statistical learning theory, according to
VC theory, which is the primary theoretical framework of this research. In what follows,
we formulate the main problem of supervised learning since the weakly-supervised learning
context considered in this work is, as a matter of fact, a sub-category of supervised learning.

Assume that there exists a generating mechanism that randomly generates independent input
vectors X ∈ Rd according to an unknown, fixed probability PX(x). More precisely, X is
a measurable function X : X → Rd, where X is a sample space of a probability space
(X ,ΣX , PX), and (Rd,B

d
) is the Borel measurable space.
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Also, there is a “supervisor” whose job is to assign an output Y ∈ R to each generated input
X, through an unknown, fixed, stochastic procedure P

Y |X.

Additionally, there exists a machine whose objective is to realize how to, properly, assign an
output to each input, as does the supervisor, by observing a limited amount of data, called
the training data or sample set D. Therefore, the training set is a finite collection of realized
input vectors, together with their corresponding outputs assigned by the supervisor, which
where collected independently. That is,

D =
{

(x
i
, y
i
) ∈ Rd+1 | i = 1, . . . , n

}
. (3.1)

Note that a “proper” output is one that is close, in consonance with some similarity measure,
to the output the supervisor would appoint to x. However, the machine is not aware of the
supervisor’s assignment mechanism and the only information available for the machine to
come upon the outputs is the sample data D.

It is important to note that the provided samples come from the joint distribution PX,Y ,
rather than the conditional P

Y |X. (See Figure 3.1.)

Generator x Supervisor y

Learning Machine ŷ

Figure 3.1 Vapnik’s Model of Learning from Examples. Vapnik’s model consists of three elements:
a generator, a target operator or supervisor, and a learning machine. During the training procedure, the
learning machine is provided by a finite number of (x, y), labeled by the supervisor, based on which the
machine produces the estimate ŷ. (Concept borrowed from Vapnik [1998].)

Formally, the underlying relation between X and Y is called a (functional) dependence or a
hypothesis. In practice, the learning machine is at liberty to choose a dependence, say h

θ
, only

from a predetermined hypothesis space HΘ, which is a distinguishable family of parametric
hypotheses. More precisely, HΘ := {h

θ
: Rd → R | θ ∈ Θ}, where Θ is an arbitrary index

set.

Generally, HΘ is assumed to be a vector space, usually, equipped with some additional
structure, such as a norm or an inner product, in order to facilitate, for example, defining a
(dis)similarity measure over the vectors. A common choice is a Hilbert space.

Since we assume a one-to-one correspondence between the hypothesis space HΘ and its index
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set Θ, with a slight abuse of notation, we can talk of θ in place of h
θ
. Accordingly, Θ will

be called the hypothesis space.

The scenario described above, gives rise to two completely different inferential models:

1. The first one involves a two-step inferential process, namely, an inductive step, which
is to identify the supervisor’s general “wisdom” from the particular set of training
data, and subsequently, a deductive step consisting of applying the revealed wisdom to
arbitrary future cases.

2. The second model requires a type of inference that involves no generalization. More
precisely, the learning machine is not interested in discovering the general wisdom of
the supervisor; in contrast, its goal is to, merely, infer the outputs for the members of
a certain subset S ⊂ R. This type of inference is called transductive inference.

Training Data

D = {(x1, y1), . . . , (x
n
, y
n
)}

Function Approximation

∀x ∈ Rd :
ŷ = h

θ̂
(x) is estimated.

Function Approximated at S

∀x ∈ S :
ŷ = h

θ̂
(x) is estimated.

Ind
uct

ion
Deduction

Transduction

Figure 3.2 Induction vs. Transduction. Here, the two potential types of inference, as Vapnik described,
are depicted: One uses the training data, D, to estimate the functional dependence hθ at the entire input
space, through an inductive inferential scheme and, then, applies the estimated function hθ̂ to deduce the
values of function at the points of interest, i.e., points belonging to S, for example. In contrast, the transduc-
tive approach uses the training data to, directly, infer the values of ŷ at each point of S. (Concept borrowed
from Vapnik [1995].)

While the former problem is considered to be harder compared to the latter, it turns out
that the general principles, by means of which these classes of problems might be solved are
alike. Clearly, the reason behind the difficulty of solving problems of the first type is that
it necessitates estimating the function h

θ
over the entire input space before being able to

employ it for further predictions. In the current study, we consider the first approach, which
involves a two-step inference, i.e., induction and deduction.
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3.1.2 Inductive Principle of Estimation by Risk Minimization

Recall that the main goal of the learning machine is to find a hypothesis θ ∈ Θ that possesses
the optimal performance in assigning an output Y to any arbitrary input X, compared
to other admissible hypothesis. Particularly, it is desirable for the chosen hypothesis to
be able to generalize, i.e., to be able to label unseen examples. This is usually achieved
by minimizing the expected amount of mistakes any hypothesis θ, belonging to the set of
admissible functions, does if it was to be employed for assigning the outputs. The meaning
of “mistake” is highly context-dependent. To, systematically, assign an error to each output,
generated by a hypothesis θ, one uses a loss function. Hence, we shall first formalize this
concept:

Definition 1 (Loss Function). Let Θ be the hypothesis space and X, Y denote the input and
output, respectively. Then, a loss function L, defined for any hypothesis θ ∈ Θ and a realized
vector z = (x, y), is a measure of dissimilarity between h

θ
(x) and y, i.e.,

L : Θ×Rd+1 → R≥0

(θ, z) 7→ L
θ
(z),

where L
θ
is PZ-integrable, i.e.,

∫
L
θ
(z) dPZ(z) <∞.

Given a loss function, we are able to define the next important concept that generalizes, in
the explained sense, the amount of loss associated with a hypothesis θ. This generalized loss
is called (expected) risk and is what the learning machine “desires” to minimize, over the set
of admissible hypothesis Θ, in order to select the optimal hypothesis.

Definition 2 (Expected Risk Functional). Suppose L
θ
denotes a particular loss function.

Then, the expected risk is a functional R : Θ→ R that assigns, to each hypothesis θ ∈ Θ, a
certain value R(θ), called the expected risk associated with θ, which is defined by

R(θ) :=EX,Y

{
L
θ
(X, Y )

}
=
∫
L
θ
(u, v) dPX,Y (u, v).

(3.2)

In general, the risk functional R depends on the distribution PX,Y , as well as, the loss function
L
θ
. Nevertheless, since both of them are assumed to be fixed during the learning process

we can consider the expected risk as a function(al) of only the hypothesis, thus the single
argument θ for the functional R.
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Now, having the definition of the expect risk, one is able to formalize the main problem of
statistical learning theory as follows.

The Learning Problem. Let PX,Y be the fixed, unknown, joint probability measure under-
lying the observations and Θ be the hypothesis space. Then, learning is defined as solving the
minimization problem

inf
θ∈Θ

{
R(θ)

}
,

where an i.i.d. sample D, defined by equation (3.1), is given.

Although, minimizing the expected risk functional over the hypothesis space seems a rea-
sonable tool to be used for solving the problem of finding the best hypothesis in Θ, there
is no actual way to compute it because of its dependence on the unknown distribution PX,Y
(see equation (3.2)). Alternatively, one may resort to a “suitable” sample-based estimator of
R(θ). One natural possibility is given in the next definition:

Definition 3 (Empirical Risk Functional). Let D be the sample defined by equation (3.1),
and L

θ
be a loss function. Then, the functional R̂

n
: Θ→ R is called the empirical risk and

is defined as

R̂
n
(θ) := 1

n

n∑
i=1

L
θ
(x

i
, y
i
).

Definition 3, enables one to solve the learning problem based on empirical data. That is,
by minimizing the empirical risk R̂

n
(θ), instead of R(θ). As mentioned earlier, while the

empirical risk functional seems to be an intuitive and natural surrogate for the expected risk,
the adequacy of such a substitution has to be investigated.

In fact, the theoretical justification of this replacement comprises a considerable amount of
the theory developed in statistical learning theory. Similarly as in classical statistics, the
goodness of the empirical risk, in order to be applied for solving the learning problem in
place of the expected risk, is studied by examining its consistency. This makes sense as the
empirical risk functional is a data-based estimate of the expected risk functional.

Before discussing the consistency, there is one more point to be noted: The ERM principle had
been being applied in statistics long before the emergence of learning theory. For example,
it should not be difficult to see that the least-squares regression or the maximum likelihood
estimation methods are both special cases of the empirical risk minimization; the distinction
barely lies in the choice of the loss function.
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3.1.3 Consistency of the Empirical Risk Minimization

In statistics, asymptotic theory is the standard framework for assessing the general adequacy
of a sample-based statistic. Asymptotic consistency is usually a desirable property for an
estimator.

There is an important point about the notion of consistency that must be clarified. Of-
tentimes, the usefulness of asymptotic properties is being criticized for being “unrealistic”
since it considers the behaviour of an estimator in the idealistic occasion where an unlimited
amount of data is available. Perhaps, this confusion stems from a subtle misinterpretation of
what, actually, consistency implies. Put it non-technically, asymptotic consistency is merely
a bare minimum for an estimator to be regarded as reliable. It is important to note that con-
sidering the asymptotic consistency as a sufficient condition for the accuracy of an estimator
is, simply and unduly, confusing its actual meaning. Indeed, consistency should be viewed
as a necessary condition rather than a sufficient one.

Before further discussing the consistency, let us remind you that in the upcoming chapter we
use two key concepts from probability theory and statistics, namely, convergence in probability
and almost sure convergence of sequences of random variables. One may easily find the
definitions in almost any standard text in probability and statistics or related areas. Her are
a few examples: Casella and Berger [2002], Wilks [1943] or Vapnik [1998]. Here, convergence
in probability and almost surely will be denoted by p−−→ and a.s.−−→, respectively.

In the following paragraphs, first, we recall the classical definition of a consistent estimator.
After that, a closely related but slightly different notion will be discussed. This new concept
is called nontrivial consistency and is the one used in statistical learning theory.

Definition 4 (Consistency of an Estimator). Let
{
P
γ

: γ ∈ Γ
}

be a family of parametric
probability measures defined on a measurable space (Ω,Σ) and X

i
, i = 1, 2, . . . , n, be i.i.d.

random variables distributed according to P
γ
. Then, γ̂

n
:= γ̂

n
(X1, X2, . . . , Xn

) is called a
consistent estimator of the parameters γ if and only if γ̂

n
converges to the actual value of γ,

in probability, i.e.,
γ̂
n

p−−→ γ, as n→∞, ∀γ ∈ Γ.

(For the definition of consistency see Ibragimov and Has’minskii [1981], among others.)

For example, the so-called sample mean and sample median are consistent estimators of the
population mean and median, respectively; provided that they exist and are well-defined.

Further, we define a particular type of consistency, which is of interest in the context of
learning theory and is slightly stronger than the classical consistency. The new concept is
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called nontrivial consistency.

Definition 5 (Nontrivial Consistency of ERM). Given a hypothesis space Θ, define the
subset Θ

c
⊆ Θ as

Θ
c

:= {θ ∈ Θ | R(θ) > c}, c ∈ R.

Then, the ERM is said to be nontrivially (or strictly) consistent over Θ if for any real c holds

inf
θ∈Θc

{
R̂
n
(θ)

}
p−−→ inf

θ∈Θc

{
R(θ)

}
, as n→∞.

The reason for calling it “nontrivial” might be explained as follows: Suppose that Θ be a
hypotheses space, over which the ERM is not consistent. Now, extend Θ by adding a function
θ0, for which we have that

L
θ0

(x, y) < inf
θ∈Θ

{
L
θ
(x, y)

}
, ∀(x, y) ∈ X × Y .

Clearly, this makes the ERM consistent over the extended hypothesis space Θ∪{θ0} as both
the empirical and expected risk reach their minimum at θ0, independently from the data
distribution and sample size n. The nontrivial consistency, in Definition 5, excludes such
“trivial” cases.

In the sequel, we discuss the conditions under which the ERM principle constitute a nontriv-
ially consistent estimator for the expected risk. First of all, one of the key achievements in the
theory of learning will be introduced. This is a theorem proved by Vapnik and Chervonenkis
[1989] that establishes the sufficient and necessary conditions for nontrivial consistency of
the ERM.

The nontrivial consistency of the ERM is established utilizing the following two related
stochastic processes. First, consider the one-sided empirical process defined by the following
random variable:

ξ+
n := sup

θ∈Θ

{
R(θ)− R̂

n
(θ)

}
+
,

Where

u+ :=

u if u > 0,

0 otherwise.

In fact, ξ+
n and some of its particular properties were crucial to investigation of the nontrivial

consistency of the ERM. Specifically, they proved that if ξ+
n converges, in probability, to zero
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as n grows to infinity, then the ERM is nontrivially consistent over the hypothesis space Θ,
and conversely. In other words, convergence of the one-sided empirical process ξ+

n provides
a necessary and sufficient condition for the nontrivial consistency of the ERM. Further, we
will introduce this theorem in more details.

Theorem 1 (One-Sided Uniform Law of Large Numbers). Let r1, r2 ∈ R and Θ be a set of
hypotheses such that for any θ ∈ Θ holds r1 ≤ R(θ) ≤ r2. Then, the ERM is nontrivially
consistent over Θ, iff

lim
n→∞

P
{

sup
θ∈Θ

[
R(θ)− R̂

n
(θ)

]
> ε

}
= 0, ∀ε > 0. (3.3)

Therefore, according to theorem 1, verifying the nontrivial consistency of the ERM might
be replaced by evaluating the validity of the limit (3.3). Notice that (3.3) actually gives the
convergence in probability of ξ+

n , because

P
{
|ξ+
n | > ε

}
= P

{∣∣∣∣∣sup
θ∈Θ

[
R(θ)− R̂

n
(θ)

]
+

∣∣∣∣∣ > ε

}
= P

{
sup
θ∈Θ

[
R(θ)− R̂

n
(θ)

]
> ε

}
.

It was mentioned before that although consistency of any estimation procedure does not
necessarily imply its quality, it should be a desirable property for any estimator to possess.
As a result of the equivalence established in the theorem above, equation (3.3) may obviously
play a crucial role in learning theory and is worth a closer look. To this end, we will introduce
two stochastic processes, through which the validity of the convergence (3.3) will be verified
later.

Now, consider the following two-sided empirical process:

ξ
n

:= sup
θ∈Θ

{
|R(θ)− R̂

n
(θ)|

}
, n = 1, 2, . . . .

If |Θ| < ∞, i.e., the hypothesis space contains only a finite number of functions, then
ξ
n
converges in probability to zero as n increases. To see this, it is enough to notice that

R̂
n
(θ) p−−→ R(θ), according to the law of large numbers (LLN), which in turn implies ξ

n

p−−→ 0,
as n→∞. This can be interpreted as the |Θ|-dimensional (uniform) law of large numbers,
which describes the LLN in a vector space of a finite dimension. In this case, it requires
simultaneous convergence in probability in every coordinate. In the current case, each θ ∈ Θ
corresponds to a coordinate of the vector space [Vapnik, 1995].

The problem arises when |Θ| is infinite. In fact, in the infinite occasion, ξ
n
does not necessar-
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ily converges to zero, in probability, as the sample size tends to infinity. Hence, it turns out
that the hypothesis space’s properties impact the potential generalizability of the uniform
law of large numbers to functional spaces, broadly speaking. Accordingly, the next step is to
formalize the hypothesis space’s properties contributing to the uniform LLN to hold.

3.1.4 Capacity or Complexity of the Hypothesis Space

A hypothesis space must contain diverse enough hypotheses θ’s in order to make the model
a good fit for the training data. In other words, the richer the space Θ, the higher likelihood
that the learning machine contains a dependence that is a good fit for the training data.
Therefore, the measure of diversity plays a crucial role. Nonetheless, the choice of the com-
plexity measure is not necessarily obvious. This section, is devoted to this topic from the
statistical learning point of view.

VC theory employs a type of entropy in order to develop the notion of complexity for a set
of admissible hypothesis. Note that, multiple concepts of entropy had been introduced, and
in different contexts, before the VC entropy. Despite being defined and applied in seemingly
unrelated ways across different fields, all of these definitions can be, to a very good extent,
boiled down to a unifying core idea underlying all of them. For example, one may refer to
Vapnik [1995] for the difference between the VC entropy and the well-known metric entropy.

Before introducing the VC entropy, let us simplify our notation, for the remainder of this
chapter:

• Denote Z := (X, Y ). Subsequently, the training data, defined by equation (3.1), is of
the form D = {z

i
∈ Rd+1 | i = 1, . . . , n}. Note that everywhere throughout this thesis

n denotes the sample (or training) size, unless otherwise stated.

• Given D and θ ∈ Θ, define q(θ,D) as the vector of the corresponding losses, i.e.,

q(θ,D) :=
(
L
θ
(z1), L

θ
(z2), . . . , L

θ
(z
n
)
)
.

Definition 6 (Entropy and Growth). Let D and q be as defined above, and Θ be the set of
admissible hypotheses such that, for any θ ∈ Θ and z ∈ Rd+1, holds r1 ≤ L

θ
(z) ≤ r2, with

r1, r2 ∈ R. Assume that ε > 0 is and arbitrary real, and N(Θ,D, ε) denotes the cardinality
of the smallest ε-net covering the set {q(θ,D)|θ ∈ Θ}. Then, define the following:
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• Random VC ε-Entropy:

H(Θ,D, ε) := ln
[
N(Θ,D, ε)

]
;

• VC ε-Entropy:
H(Θ, n, ε) := EZ

[
H(Θ,D, ε)

]
;

• Annealed VC Entropy:

H0(Θ, n, ε) := ln
{
EZ

[
N(Θ,D, ε)

]}
;

• Growth Function:
G(Θ, n, ε) := ln

[
sup
D

{
N(Θ,D, ε)

}]
.

The hypothesis space considered in Definition 6 is general in the sense that it may contain real-
valued functions rather than only indicator functions, however, Vapnik and Chervonenkis first
developed the theory for the simpler case of indicator functions [Vapnik and Chervonenkis,
1968, 1971] and later generalized it to the version stated above [Vapnik and Chervonenkis,
1981].

The introduction of the VC ε-entropy facilitates the establishment of the necessary and
sufficient conditions for the two-sided uniform LLN in the functional space:

Theorem 2 (Generalized Two-Sided Uniform LLN). Let Θ be a set of real-valued and
bounded dependencies as defined in Definition 6. Then, ξ

n

p−−→ 0, as n→∞, iff

lim
n→∞

H(Θ, n, ε)
n

= 0, ∀ε > 0. (3.4)

The generalized two-sided uniform LLN provides a sufficient condition for the consistency of
the ERM since

P
{

sup
θ∈Θ

[
R(θ)− R̂

n
(θ)

]}
≤ P

{
sup
θ∈Θ

∣∣∣R(θ)− R̂
n
(θ)

∣∣∣}

and therefore,
ξ
n

p−−→ 0, as n→∞
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implies that
ξ+
n

p−−→ 0, as n→∞,

where the latter has been showed to be a necessary and sufficient condition for the nontrivial
consistency of the ERM.

Another important point is that, as we have just seen, grounding the nontrivial consistency
of the ERM in the generalized two-sided uniform LLN is obviously too restrictive since the
main concern in the ERM is, in fact, the consistency of the minimization problem; more
concisely, we are not interested in the fact that whether maximizing the expected risk via
the empirical risk is nontrivially consistent. To see this, note that the uniform two-sided
convergence can be written as

lim
n→∞

P
{
|ξ
n
| > ε

}
= 0, ∀ε > 0,

where the probability on the left-hand side of the equation might be expressed as

P
{
|ξ
n
| > ε

}
= P

{(
sup
θ∈Θ

[
R(θ)− R̂

n
(θ)

]
> ε

) ⋃ (
sup
θ∈Θ

[
R̂
n
(θ)−R(θ)

]
> ε

)}
.

But the second event on the right side of the equality above can obviously been violated
without affecting the nontrivial consistency of the risk minimization problem. Given this,
one should be willing to find a more liberal condition compared to the one expressed in
equation (3.4). Hence, as the final step, Vapnik and Chervonenkis [1989] solved the problem
of finding the conditions that while being necessary and sufficient specifically for the non-
trivial consistency of the minimization part, do not necessarily imply the same thing for the
maximization problem.

Let Θ be the hypothesis space under consideration, which as in previous cases contains
only real, and bounded hypotheses. Additionally, assume that there exists another set of
hypotheses, say Θ∗, containing measurable functions satisfying the following: For any θ ∈ Θ
there is a function θ∗ ∈ Θ∗ such that

L
θ
(z)− L

θ∗
(z) ≥ 0, ∀z ∈ Rd+1,∫ [

L
θ
(z)− L

θ∗
(z)
]

dFZ(z) ≤ δ,
(3.5)

where L
θ∗

(z) is the loss caused by applying θ∗ to z.

Theorem 3 (Necessary and Sufficient Conditions for One-Sided Uniform LLN). Let Θ be
the hypothesis space described in Theorem 1. Then, equation (3.3) holds iff for any positive
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δ, η and ε there exists a set of functions Θ∗ with properties (3.5) and such that

lim
n→∞

H(Θ∗, n, ε)
n

< η. (3.6)

Note that according to theorem 1 and theorem 3, inequality (3.6) is a necessary and sufficient
condition for the ERM to be nontrivially consistent.

So far, the rate of convergence of the empirical risk to the expected one has not been discussed.
First, we say that the empirical risk R̂

n
(θ) converges fast to the true risk R0 := inf

θ∈Θ
R(θ) if

P
{
R̂
n
(θ)−R0 > ε

}
< exp(−cε2n),

as n → ∞, where c is a positive constant. It turns out that the following condition is
sufficient for a fast rate of convergence:

lim
n→∞

H0(Θ, n, ε)
n

= 0, ∀ε > 0. (3.7)

However, its necessity for a fast rate of convergence is still an open question.

An important point that must be paid attention is that both conditions (3.6) and (3.7) depend
on the distribution of the data by definition, while one desires to find general conditions which
characterize properties of a learning machine independent from the data distribution. In fact,
the following equation, based on the growth function, provides a distribution-free, necessary
and sufficient condition for nontrivial consistency of the ERM. It also guarantees a fast rate
of convergence:

lim
n→∞

G(Θ, n, ε)
n

= 0, ∀ε > 0.

Unfortunately, the growth function is hard to calculate in practice. The very important
notion of the VC dimension is a practical cure to this problem. More precisely, the VC
dimension is a basis for providing an upper bound for the growth function, which can be
used as measure of complexity for a set of hypothesis. It is important to note that the bound
provided by the VC dimension is looser than that given by the growth function, as a result
of which the VC dimension is a somehow “less accurate” measure of complexity.

Next, we give the definition of the VC dimension, first, for a set of indicator functions, and
then for the general case of a set of real-valued functions.

Definition 7 (VC Dimension of Indicators). The VC dimension of a set of indicator func-
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tions Q(z,θ), θ ∈ Θ, is the maximum number of vectors z1, . . . , zν that can be separated into
two classes in all 2ν possible ways using the functions of the considered set of indicators. In
addition, if any number ν ≥ 1 of vectors can be shattered by the considered set of indicators,
then the VC dimension of the set of indicators is said to be infinity.

Definition 8 (VC Dimension of Real-Valued Functions). Let Θ be the set of admissible
hypotheses such that r1 ≤ Q(z,θ) ≤ r2, with r1, r2 ∈ R. Then, the VC dimension of Θ is

defined as the VC dimension of the indicator functions
{
1≥r

(
Q(z,θ)

)
: r ∈ (r1, r2)

}
.

The following results provide non-asymptotic bounds for the empirical risk and will be used
later in order to control the capacity of the hypothesis space: Let Θ be the set of admissible
hypotheses such that r1 ≤ Q(z,θ) ≤ r2, with r1, r2 ∈ R. Then, for any θ ∈ Θ

P
{
R̂
n
(θ)− A ≤ R(θ) ≤ R̂

n
(θ) + A

}
≥ 1− η, (3.8)

where

A = (r2 − r1)
√
ν(ln 2n

ν
+ 1)− ln(η4)
n

, (3.9)

and ν <∞ is the VC dimension of Θ. In addition, if θ̂(Θ,n) is the minimizer of the empirical
risk over Θ, one can verify that

P
{
R(θ̂(Θ,n))− inf

θ∈Θ
R(θ) ≤ (r2 − r1)

√
− ln η

2n + A
}
≥ 1− 2η. (3.10)

The previous two inequalities (3.8) and (3.10) are related to the following two fundamental
questions about the learning ability of a machine:

1. What is the actual risk associated to the hypothesis chosen by minimizing the empirical
risk?

2. How close is the actual risk of the chosen hypothesis to the minimum actual risk one
can achieve amongst hypothesis in Θ?

Moreover, the aforementioned bounds provide the basis for the method statistical learning
theory applies to control the generalization ability of a learning machine.

3.1.5 Structural Risk Minimization

While the SRM is closely related to classical regularization theory in that it provides a more
general approach compared to regularization, especially, it provides a better justification for
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the use of regularization functionals in data analysis. One issue before the introduction of
the SRM was that it was not always straightforward how to justify the application of the
classical regularization functionals for a finite set of training examples. These functionals
were mainly formulated based on functional analysis arguments, whose concern is clearly not
making inference based on empirical data. Consequently, application of these functionals in
data analysis relied mostly on asymptotics rather than reflecting finite-data considerations
[Evgeniou et al., 2000].

Vapnik’s idea can be simplified as follows: When only a finite set of training examples are
available, one must search for an optimal hypothesis in a reasonably narrow set of hypotheses
since a too “rich” space may contain a function which fits the data perfectly (with zero
training error) but performs poorly on new data. As discussed earlier VC theory formalizes
these concepts in terms of the VC dimension as a measure of capacity of a set of functions. In
addition, it controls the capacity depending on the training data and its size and by applying
the bounds explained earlier in section 3.1.4. Put it simply, the bigger the training data, the
more complex set of hypotheses can be considered.

Now, to see the SRM in more detail, note that it can be shown that the bounds introduced
in section 3.1.4, i.e., expressions (3.8) and (3.10), become arbitrarily narrow as the sample
size increases. However, the situation in cases with small sample size is different as explained
further.

Before anything, let us clarify that the sample size n will be considered to be small if n
ν
is

small, i.e., the ratio of the size over the VC dimension of the machine. As a rule of thumb,
we shall regard the sample size is small if this ratio is less than 20.

In the small sample case, the bounds provided by conditions (3.8) and (3.10) do not auto-
matically guarantee the generalization ability of a learning machine. In other words, a small
empirical risk does not necessarily result in a small actual risk. Nevertheless, to add to the
generalization ability of the learning machine, these bounds suggest not only minimizing the
empirical risk but, at the same time, minimizing a combination of the empirical risk and the
complexity of the hypothesis space. This leads to the method of structural risk minimization,
whose main idea is to, based on complexity (capacity), construct a nested structure of hy-
pothesis spaces Θ1,Θ2, . . . ,Θk

, . . . whose VC dimensions, denoted by ν1, . . . , νk, . . . , satisfy
the following:

ν1 ≤ ν2 ≤ · · · ≤ ν
k
≤ · · · <∞

Now, for a given set of observations D = {z1, . . . , zn}, the SRM chooses a hypothesis θ̂(Θk,n),
which minimizes both (1) the empirical risk over Θ

k
, and (2) the summation of the empirical

risk and the bound A provided in (3.9).
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Let R̂(1,n), R̂(2,n), . . . , R̂(k,n), . . . denote the minimum empirical risks achievable over the nested
hypothesis spaces, mentioned above, applied to D. Then, it is not hard to see that

R̂(1,n) ≥ R̂(2,n) ≥ · · · ≥ R̂(k,n) ≥ . . .

since the larger the hypothesis space, the more flexible it becomes. However, it is well known
that, for small n’s, this may lead to the problem of overfitting. What the SRM does is
controlling the gap between the empirical (training) and expected (true) risk by choosing a
reasonable complexity.

Although, the general idea of minimizing the structural risk was first introduced by Vapnik
and Chervonenkis [1974a,b] and by using the VC dimension as the measure of complexity, the
SRM is a general method and might be utilized with different measures of fit and complexity.

3.1.6 From Glivenko-Cantelli Theorem to Generalized Uniform Convergence

One may summarize the main problem of statistics as to find an unknown probability measure
from observed data. More precisely, assume that there exists a probability space (Ω,Σ, P ),
whose probability measure P is unknown. The problem of estimating P (A), for any mea-
surable set A ∈ Σ, when the measurable space (Ω,Σ) as well as a limited number of i.i.d.
training examples D = {z1, z2, . . . , zn} are given, is a fundamental problem in (mathematical)
statistics, to which will be referred as the main problem of statistics. Consider the following
two approaches to solving this problem:

• Strong (Complete): The aim is to estimate P (A) for any measurable subset A ∈ Σ, i.e.,
to completely recover the probability measure;

• Weak (Partial): Aims to estimate the probability measure merely for a particular sub-
collection of the measurable sets, i.e., to estimate P (A), for A ∈ Σ′, where Σ′ ⊂ Σ. In
this case, Σ′ does not need to constitute a σ-algebra.

Investigating the latter problem dates back to 1930s, when a partial solution to the problem of
weak estimation was provided by one of the most essential results in mathematical statistics,
namely, the Glivenko-Cantelli Theorem. It was known from the LLN that the frequency of
occurrence of events tends to their probabilities by increasing the amount of observed data,
however, none of the LLN’s variants cater for the uniform convergence of frequencies to the
corresponding probabilities. Glivenko [1933] and Cantelli [1933] provided a solution for a
certain type of events, i.e., a certain Σ′.
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As the theorem was originally proved for the one-dimensional case, we also state it in its orig-
inal form here. However, generalization to higher finite dimensions can be easily achieved by
slight technical modifications. Suppose that Z is a random variable defined on a probability
space (Ω,Σ, P ) and Σ′ ⊂ Σ is a set of events of the form

Σ′ := {ω ∈ Ω |Z(ω) ≤ t, t ∈ R}. (3.11)

According to the Glivenko-Cantelli theorem, the frequency of such events approaches their
probability asymptotically [Glivenko, 1933, Cantelli, 1933].

Theorem 4 (Glivenko-Cantelli). Let Z1, Z2, . . . , Zn be i.i.d. random variables defined over
a common probability space and with a common cumulative distribution function F

Z
. The

empirical distribution function for Z1, . . . , Zn is defined as

F̂
n
(t) := 1

n

n∑
i=1
1(−∞,t](Zi),

where 1 is the indicator function. Then,

‖F̂
n
− F

Z
‖∞ = sup

t∈R
|F̂
n
(t)− F

Z
(t)| a.s.−−→ 0. (3.12)

The Glivenko-Cantelli theorem was originally proved for convergence in probability but it
holds, in fact, for the almost sure convergence as well, hence equation (3.12). In accordance
with the division of the main problem of statistics into weak and strong, the estimation
targeted in the Glivenko-Cantelli theorem falls into the weak class of estimations. As one
ideally wishes to find a strong estimation tool, it was natural for learning theory to search for
viable expansions of the type of convergence achieved by the Glivenko-Cantelli theorem, i.e.,
the uniform convergence, but for a broader class of empirical measures. Realizing such an
expansion gave rise to the introduction of the extremely important Glivenko-Cantelli class
of functions, which will be discussed shortly.

Before moving onto the introduction of the Glivenko-Cantelli classes, it is worth mentioning
that the rate of convergence for the estimator F̂

n
in one dimensional case has also been

studied separately, for example, by Kolmogorov and Smirnov, among others. We shall skip
these results in favour of the more general ones obtained later in Vapnik-Chervonenkis (VC)
theory.

To formulate the uniform convergence in a more extensive setting, let us restate the funda-
mental problem of statistics in the measure-theoretic language: Let (Ω,Σ, P ) be a probability
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space, 1 whose probability measure P is unknown. The problem is then to estimate P , when
the measurable space (Ω,Σ), as well as, sample data D = {z1, z2, . . . , zn} are given [Vapnik,
1995]. Note that this original form of the problem does not actually impose any restric-
tion on the form of measurable sets, in contrast with the case of the empirical distribution
function, which focuses on a particular type of measurable sets. The need for extension of
the Glivenko-Cantelli becomes more apparent by noticing that, besides the huge theoretical
appeal this generalization has, considering the empirical distribution function may not be as
natural if the sample space Ω consists of objects such as functions, manifolds, etc. This is
not a technical concern but rather a conceptual one. The empirical distribution function is a
special case of a random measure indexed by Σ′ given in equation (3.11). The next concept
we would like to introduce is called empirical measure, which paves the way for a natural
transition from the empirical distribution functions case to the general framework.

Definition 9 (Empirical Measure). Let D = {z1, z2, . . . , zn} be an i.i.d. sample of the
random variable Z from a probability space (Ω,Σ, P ) to (S,Σ

s
). Suppose that A ∈ Σ

s
, then

the empirical measure of A is defined by

P̂
n
(A) := 1

n

n∑
i=1
1
A

(z
i
).

Also, if f : S → Rd is a measurable function, the empirical measure P̂
n
maps f to its

empirical mean:

P̂
n
f := 1

n

n∑
i=1

f(z
i
).

Since P̂
n
f can be interpreted as the mean of f with respect to the measure P̂

n
, an alternative

notation we will apply interchangeably is P̂
n
f =

∫
S

f dP̂
n
.

The empirical distribution function is a special case of the empirical measure, where the σ-
algebra contains sets of a particular form. The strong LLNs results in both P̂

n
(A) a.s.−−→ P (A),

and P̂
n
f

a.s.−−→ Pf = E
P
f , as n → ∞, but as already mentioned, it would be very alluring

to be able to have results similar to what the Glivenko-Cantelli theorem provides for the
occasion of the empirical measures defined on less restrictive forms of measurable sets. This
was, in fact, what the so-called Glivenko-Cantelli classes brought into perspective.

Definition 10 (Glivenko-Cantelli Class). Let (S,Σ
s
, P ) be a measure space and Σ′ ⊆ Σ

s
.

Also, let F denotes a set of measurable functions defined on S. Then,
1The probability space can be replaced by any measure space.
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• Σ′ is said to be a Glivenko-Cantelli class of measurable sets if

‖P̂
n
− P‖Σ′ := sup

A∈Σ′
|P̂
n
(A)− P (A)| a.s.−−→ 0, and

• F is said to be a Glivenko-Cantelli class of measurable functions if

‖P̂
n
− P‖F := sup

f∈F
|P̂
n
f − Pf | a.s.−−→ 0,

as n→∞.

Therefore, one of the objectives of theory can be summarized as to find a full characterization
of the Glivenko-Cantelli classes of functions. This characterization was achieved by providing
the necessary and sufficient conditions for a class of functions or sets to be Glivenko-Cantelli.

3.2 A Discussion on Ill-Posed Problems and Inductive Bias

According to Hadamard, a well-posed mathematical problem must have the following proper-
ties: (a) existence of a solution, (b) uniqueness of the solution, and (c) continuity (stability)
of the solution with respect to the initial conditions. Any problem not satisfying any of the
aforementioned properties is called ill-posed.

There is a broad category of scientific and mathematical problems, called inverse problems,
whose main goal is to find some model’s parameters by looking at a finite set of observed
instances of the model [Tarantola, 2005]. Apparently, the general problem of learning from
examples falls into this category. Moreover, a considerable amount of inverse problems, in-
cluding the learning problem, are typical examples of ill-posed problems in Hadamard’s sense.
Particularly, learning form examples violates Hadamard’s condition on the uniqueness of a
solution because it involves inducing a parametric function h

θ
, which describes the relation

between the variables x and y, from a finite set of points D = {(x
i
, y
i
)|i = 1, . . . , n;n ∈ N},

contaminated by some noise. Clearly, there might exist multiple (usually infinite) values of
the parameter which fit the data reasonably well. Therefore, the general problem of learning,
in the sense explained, is not solvable.

Classical methods to approach ill-posed problems usually involve introducing some additional
constraints to the initial problem either by (i) restricting the parameter space (hypothesis
space), or (ii) targeting an “optimal” solution rather than a unique universal one, or alter-
natively by a combination of both. The well-known regularization methods are examples of
classical methods created for dealing with ill-posed problems.
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Apart form the validity of possible justifications for adding this additional information to
the analysis, added constraints lead to imposing a certain type of bias to the model which
is referred to as inductive or learning bias. An inductive bias is essentially an auxiliary
assumption without which the learning problem cannot be solved uniquely. It will not be
exaggerating to claim that the majority of inferential methods, applied in machine learning
and statistics, suffer (more precisely, benefit) from one or more inductive biases [Mitchell,
1980, Gordon and desJardins, 1995].

The next section discusses a specific method used in statistical learning theory to approach
the ill-posed learning problem. But before moving further, and in order to grasp a sense of
inductive bias, let us give some examples of inductive biases in popular machine learning
methods:

• The simplest example is the ordinary linear regression problem, where the hypothesis
space is reduced to the set of linear functions rather than allowing the hypothesis space
to include any possible function.

• The naive assumption of conditional independence in another example of an inductive
bias in models like the naive Bayes classifier.

• Classifiers that classify objects based on maximizing a separating margin, such as the
support vector machines, are also biased in that they assume the a wider gap between
classes provides better classification.

• The famous Occam’s razor, which favors less complex models, in fact, is the next
example of a learning bias. Perhaps, this is one of the most frequently inductive biases
met in a vast variety of scientific fields. Indeed, the rational behind the variable selection
methods is a special case of the Occam’s razor principle.

• Instance-based learning algorithms, which apply notions like similarity, association or
distance, additionally, assume that closer or more similar objects are more likely to
belong to the same class. A known example is the K-nearest neighbors algorithm.
Note that a similar concept is used in the K-means clustering algorithm too.

Since studying the inductive bias types is not in the scope of this note, we will not extend the
above list further as it can get too exhaustive. More examples might be found on Wikipedia
and Mitchell [1980].
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3.3 Time-to-Event Data Analysis and Related Issues

As stated in Chapter 1, analysis of Time-to-event, survival time, or lifetime arises often and
in numerous fields, which makes it necessary to study and to develop suitable techniques that
can be applied to the analysis of such data. Especially, due to the specific properties of time-
to-event data, usually, these techniques require to be designed particularly for dealing with
these certain peculiarities. In this section, we introduce some of the important concepts,
procedures, and issues related to the analysis of survival data and, especially, explain the
weakly-supervised setting we consider in the following chapters.

3.3.1 Basic Concepts

First of all, let us define the main variable of interest, i.e., the time-to-event. Note that we
will use time-to-event, survival time, lifetime, and failure time interchangeably, throughout
this thesis. Time-to-event is defined as the amount of time elapsed from the occurrence of
an initiating event E1 until that of a second event E2, called the terminating event. Both
events are pre-defined. E1 might be birth, or onset of a disease, e.g., while the corresponding
terminating events, E2, could be defined as death, or the recurrence of a disease, respectively.
In the rest of the thesis, Y will be used to denote the survival time.

Now, having the primary variable of interest defined, in the coming paragraphs, we will
briefly introduce several basic concepts which are of central importance in the analysis of
time-to-event data.

Let Z be a positive random variable and z be an arbitrary point in its range. By F
Z
we

denote the CDF of Z, i.e. F
Z

(z) = P(Z ≤ z). If Z represents the failure time of a certain
object, then the survival function will be denoted by S

Z
and is define as

S
Z

(z) := P(Z > z) = 1− F
Z

(z).

The hazard function, denoted by h
Z

(z), is the conditional probability of failure, given survival
up to time z. That is,

h
Z

(z) := lim
∆z→0

P(z ≤ Z < z + ∆z|Z ≥ z)
∆z .

Consequently, the cumulative hazard function may be achieved by integrating the hazard
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over the time period between 0 and z:

H
Z

(z) :=
∫ z

0
h
Z

(u) du.

It is easy to see that

h
Z

(z) =
f
Z

(z)
S
Z

(z) = − d
dz
[
lnS

Z
(z)
]
,

where f
Z
is the probability distribution function (PDF) of Z.Different basic types of hazard

can be distinguished based on how it changes over time.

3.3.2 Sampling Procedure and Its Consequences

The so-called follow-up studies are among the most popular study designs being used in
survival analysis. In fact, conducting follow-up studies on a randomly selected sample of the
target population is considered as the gold standard in related areas. Nonetheless, there exist
situations where keeping up with this standard is extremely hard or even impossible. The
next concept to be explained is closely related to such situations. In the context of time-
to-event, the target population, mentioned above, is referred to as the incident population.
That is, the population whose individuals have not experienced the initiating event E1, and
consequently E2, before the study begins. The recruitment time, or simply the recruitment
will be used to refer to the start of a study. Different factors may, indeed, prevent one from
sampling directly from the incident population. To name a few, consider logistic restrictions,
for instance, or the financial burdens this ideal design imposes on the available material
resources.

Instead, a feasible alternative in such cases is to conduct a cross-sectional prevalent cohort
study, where one recruits prevalent cases rather than incident ones [Huang and Wang, 1995,
Wang, 1991, Wang et al., 1993]. More concisely, the recruited subjects are being chosen from
the portion of the incident population who have already experienced E1 but not E2. When
the interest lies in estimating the lifespan between the initiating and the terminating events,
subjects may be followed prospectively either until the terminating event happens or until
they are lost to follow-up, whichever occurs first.

Such a sampling scheme gives rise to two types of incompleteness:

First, the response variable Y , i.e., the time interval between E1 and E2, might be, exactly,
observed only for a subset of the recruited subjects. For the rest of the sample, we only know
that the terminating event has not occurred up until a specific moment in time. This specific
moment is called the censoring time. There are multiple sorts of censoring, which will be
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explained, in detail, later in this section.

Second, it is well known that the prevalent cases have, on average, longer lifetimes since longer
survivors are more prone to be recruited to the study. This leads to a phenomenon referred
to as truncation, i.e., some of the individuals in the incident population have a smaller chance
to be selected by this specific sampling method.

The term weakly-supervised learning in the thesis’ title, in fact, points to situations where
learning is happening in presence of incomplete data. This falls into a subcategory of the more
general supervised learning since the response variable Y is clearly defined, i.e., the survival
time, and also the value of Y is available, although partially. Note that a prevalent cohort
comprises a non-random sample that is not representative of the target incident population.
In the following paragraphs, we will discuss typical time-to-event data characteristics in more
detail. Particularly, we focus on the deeper aspects of incompleteness, including censoring,
truncation, and their types.

3.3.3 Essential Data Characteristics

In the following sections, we provide a general introduction to some data subtleties that are
most frequently met in survival data. Note that besides these specific peculiarities, survival
data can be vulnerable to other general data pathologies as well.

Non-Normality of Lifetime

One of the very first distinctions of time-to-event data is that most of the time the data are
not normally distributed and instead have a sort of asymmetric distributions reflecting the
fact that the event of interest, i.e., the terminating event, often tends to occur, for example,
at earlier stages of the experiment or vice versa. An example is the infant mortality rate as
newborns are normally more susceptible to health problems compared to children of a few
weeks age.

Incompleteness and Bias

A principal objective of any data analysis is to generalize the information, obtained from a
sample of a population, to the whole population by means of induction. Hence, data are one
of the main tools based on which statistical inference is made. This fact makes it vitally
important to make sure, in the first place, that the data in hand satisfy necessary conditions
for making a sound inference. It should not be difficult to figure out how undesirable qualities
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of data may threaten the soundness of the inference if being ignored or not taken into account
properly. The following example highlights this fact.

A well-known dilemma, called the falling cat, refers to a 1987 study, where the collected data
suggested a controversial outcome as follows. 132 cats that had fallen out of high-rise windows
and were brought to a veterinary hospital were examined for related injuries. Surprisingly,
analyzing the data showed that falling from higher stories were associated with less severe
injuries. However, some researchers argue that this counter-intuitive finding could have been
the result of a bias called the survivorship bias [Whitney and Mehlhaff, 1987].

Incompleteness results in the sampled data being unrepresentative. This is the case in the
setting considered in this work: Truncation, systematically, introduces bias to the collected
data and, therefore, make them unrepresentative of the whole population. It is worth men-
tioning that, in practice, there exists a vast range of sources that might be responsible for the
incompleteness of data. Also, biasedness and missingness can happen at different phases of
data collection or even analysis itself. Sometimes, bias is an inevitable result of employing a
certain method of sampling (like in the situation of our interest), while other times, it could
be a byproduct of the intrinsic nature of the stochastic phenomenon being studied. It would
be insightful to see a few examples, where data are contaminated by some sort of bias or
incompleteness. Next, we focus on two specific types of incompleteness that determine the
setting of our interest.

Incompleteness Due to Censoring

Before giving the exact definition of censoring, let us begin with a simple example, to best
understand it. Consider a scale that is able to weigh objects up to a maximum of 3 tons. If
one places an object weighing more than 3 tons on it, the scale still indicates the maximum
measurable value, i.e., 3 tons. Hence, while the exact weight of this object cannot be known
using this scale, it still provides partial information about it, i.e., the smallest upper bound
of its weight.

As in the bathroom scale example, censoring refers to situations, where the information about
the realized value of a random variable is available only partially. As an example, assume
that we are interested in the relapse-free survival time corresponding to a certain treatment
of a disease. This is the amount of time from receiving the treatment to the recurrence of the
disease. However, in survival data, often, not all the subjects have experienced the terminat-
ing event due to either of the following reasons: (1) A patient has not yet experienced the
recurrence by the end of the study; (2) A patient had been lost to follow-up during the study;
or (3) A patient has exited the study for a reason irrelevant to the study. The aforementioned
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scenario comprises one of the multiple types of a phenomenon, called censoring. Technically,
three types of censoring happen in survival data, which are defined as follows.

Definition 11 (Censoring). Let Y be a real-valued random variable and a, b ∈ R∪{−∞,∞},
and a ≤ b. Also, let y be a realization of Y , whose exact value is unknown. Then, y is said to
be (1) interval censored if y ∈ (a, b); (2) left censored if y is interval censored and a = −∞;
and (3) right censored if y is interval censored and b =∞.

The most common type of censoring in survival data is the right censoring; the relapse-free
survival time example, given earlier in this subsection, is also an occasion of right censoring.
For an example of the left censoring, imagine that in the previous example patients are
examined for recurrence of the disease 6 months after the administration of the first dose
of the treatment. Those subjects for whom a relapse is detected in the exam, the exact
disease-free time is unknown and the only information available in this setting is that the
value of interest is less than 6 months. And finally, if a second examination is performed
after a year, then those subjects who were disease-free in the first exam but otherwise in the
second exam are examples of interval-censored data. Similarly, a disease-free individual in
the first exam who has been lost to follow-up before the second exam is also regarded as an
interval-censored case.

Moreover, right censoring itself is divided into two sub-types:

1. Type I: It happens when at a predetermined time all the remaining subjects in the
study, i.e., those who have not experienced the failure event yet, are censored.

2. Type II: It occurs when a predetermined number of failures is reached, regardless of
the time at which the failures have happened the rest of the participants are censored.
Note that a failure means experiencing the terminating event.

Yet, another point to be taken into account in censored data is the so-called informativeness
of the censoring mechanism. Censoring is called random or non-informative if censoring
and failure times are independent from each other. Notice that there is a close connection
between the randomness of censoring and that of the missingness, in general.

Most attention, especially, in survival analysis and related domains, has been paid to statis-
tical methods dealing with right-censored data. Nonetheless, there have, also, been methods
developed for treating left and interval censoring. (See Hosmer et al. [2008], for example.)

Throughout the remainder of this thesis, right-censored data are of our interest. Note that
when data are subject to right censoring, one only observes the minimum of the censoring
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Recruitment Cencoring

E1
E2A C

R

Y

C ∧R = min(C,R)
O = A+ (C ∧R)

Figure 3.3 Available Information on Each Subject. Here, a right-censored subject from a (potentially
left-truncated) sample is illustrated. Values displayed are as follows: E1, E2 are the initiating (onset) and
terminating (failure) events; Y is the time-to-event; A shows the current lifetime, while R is the residual
lifetime; and lastly, C indicates the residual censoring time. O is the observed value of the “response”, which
is either the total censoring or failure time. In case of left-truncated data Ỹ , Ã, and R̃ would be used.

and failure time, i.e., min(C,R) := C ∧ R. C is called the residual censoring time and
is the time interval from the recruitment until the moment the potential censoring of the
subject happens. The overall censoring time, however, refers to the time interval between
the initiating event E1 and the potential moment of censoring and is denoted by C ′. Finally,
R is the residual lifetime or forward recurrence time, i.e., the time interval elapsed from the
recruitment of a subject up to its failure E2. Notice that the survival time Y , which is the
main variable of interest is the whole interval between E1 and E2. (See Figure 3.3.)

Weighted Distributions, Length Bias and Truncation

Sampling or selection bias is a phenomenon, closely, related to the so-called weighted distri-
butions. Let Z be a random variable with density f

Z
. In standard situations, i.e., where

the sampling procedure is not biased, inference about f
Z
is made directly through the drawn

sample as the observations are distributed according to the same distribution as the target
population, i.e., f

Z
. However, there are cases, in practice, where the data are observed from

a distribution proportional to w(z)f
Z

(z), where w(z) ≥ 0 is a weight function defined on
the range of Z. Observing such practical situations, in fact, motivated the definition and
investigation of the weighted distributions. One of the earliest considerations of weighted
distributions took place in a study by Fisher [1934], as he investigated the impacts of the
methods of ascertainment on the sampling frequencies of random events. Later Rao [1965,
1985] studied the distribution of random variables as they were observed (being sampled) and
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generalized the concept of a weighted distribution by extending it from observed frequencies
to distributions. We define the weighted density of the observations as

f
w

(z) =
w(z)f

Z
(z)

E
Z

[w(Z)] ,

provided that E
Z

[w(Z)] <∞. The above definition may be extended to the case of discrete
random variables easily. An interesting example is the phenomenon of publication bias in
meta-analysis. This is a bias that happens due to a tendency of “not to report the details
of nonsignificant results” when combining findings in multiple studies on the same issue.
That is, researchers, oftentimes, leave the details of statistical analyses unreported when
mean differences obtained are not statistically significant. In other words, detailed statistical
results become published proportionally to the significance of the results, where the weight
function can be expressed as w(z) = 1{|z| ≥ 1.96}. The failure to report nonsignificant
results is considered as a type of prejudice against the null hypothesis. (For results concerning
the publication bias in meta-analysis, see Hedges [1992], Iyengar and Greenhouse [1988]).

A special case of weighted distributions is of great interest in survival analysis and reliability
theory for the following reason: As mentioned earlier, there are numerous situations where
keeping up with standard sampling schemes in observational studies is not the preferred one
due to different reasons. When, instead, prevalent cases are recruited to a study, the chance
of selecting an individual becomes proportional to the individual’s survival time, which is
the variable of interest. Technically speaking, we are sampling cases according to a weighted
distribution with w(z) = I(z) = z, where I represents the identity function. Put it otherwise,
the random variable Z is observed with a probability proportional to its size. This selection
bias is called size-bias. In survival analysis however, length bias is the favored term pointing
to the variable of interest, i.e., the length of survival time. Accordingly, replacing the weight
function w with the identity function in the equation above gives the density of the length-
biased Z, denoted by f

LB
, as

f
LB

(z) =
z f

Z
(z)

E(Z) . (3.13)

To explain the relation between the length bias and the specific sampling method being used,
let us define the sampling procedure in a formal language. Suppose that Z is a random vari-
able with density f

Z
. Formally, one can consider sampling as a procedure during which some

of the already realized values of the random variable Z are being selected or observed. This
interpretation enables us to formalize the sampling procedure as a separate random variable
defined on the same sample space and σ-algebra as Z’s but with a different probability mea-
sure. Accordingly, let ζ

Z
be a random variable representing a sampling procedure from Z.
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Then, the event of a certain realization z being sampled by ζ
Z
is expressed by {ζ

Z
= z}.

This way, one can define a length-biased sampling procedure: ζ
Z
is said to be length biased

if
P{ζ

Z
= z} ∝ z.

Further, we will use a tilde sign to denote a length-biased variable. Accordingly, Ỹ will be
applied to denote length-biased survival time.

The next important concept to be defined here is called truncation. Recall that an incident
population consists of individuals who experienced the incidence of the condition of interest
sometime within a specified interval of time. However, they may or may not have had the
terminating event or failure. In contrast, a prevalent population refers to individuals who, at
a specified moment, have experienced the incidence of the condition but the defined failure
has not occurred for them.

Note that because the incident population is defined independently from the occurrence of
failure, the prevalent population is a subset of the incident population. This simple fact,
makes it thoroughly reasonable to aim at the incident population for drawing a sample
instead of the prevalent population if the goal is to make inference about the survival time
in connection with the considered condition. But as mentioned before this is not always
possible or preferable out of different reasons, such as budget shortage or ethical concerns.

As explained earlier sampling from the prevalent population is a popular alternative. Partic-
ularly, this is a major scenario in many observational studies like the popular cross-sectional
cohort studies. This, obviously, makes the sample biased by excluding part of the popula-
tion from the sample. In fact, this selection scheme ignores individuals who have already
experienced both events before the enrollment, e.g., those who had experienced the disease
sometime in the past and died subsequently as a result of the illness before the enrollment
time. It means that to have the chance to be enrolled in the study, an individual has to,
at least, survive up to the recruitment time. This leads us to the definition of truncation in
general, and the definition of left truncation, in particular.

Definition 12 (Truncation). Let Y be real-valued random variable and ζ
Y
a sampling scheme

from realizations of Y , where selection of a certain y by ζ
Y

is denoted by {ζ
Y

= y}. In
addition, suppose that a, b ∈ R ∪ {−∞,∞}, and a ≤ b. Then, we say that ζ

Y
leads to

1. interval truncation or truncation from below and above if {ζ
Y

= y} =⇒ y ∈ (a, b);

2. left truncation or truncation from below if it leads to interval truncation and b =∞;

3. right truncation or truncation from above if it leads to interval truncation and a = −∞.



59

A

Y

Y
=
A

Prevalent
Population
(Y > A)

Non-Observed
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(Y < A)

Figure 3.4 Incident vs Prevalent Populations. Here, the prevalent population is depicted versus the
incident one. The purple upper triangle displays the prevalent population, while the grey lower triangle
represents individuals having experienced both initiating and terminating events. The union of these two
areas, i.e., the whole square, makes the susceptible (incident) population. Y denotes the lifetime and A, the
truncation time.

Further, we will refer to the time interval between the initiating event and the recruitment
by the term truncation time, current lifetime, or backward recurrence time and will denote it
by A.

According to the given definitions, one may see that the sampling design mentioned in this
section, generates left-truncated samples. Nevertheless, one must be aware that a sample
being left truncated does not necessarily imply its length biasedness. More precisely, left
truncation does not result in the selection density stated in equation (3.13). To generate
length biasedness out of left truncation, it must be accompanied by an extra condition, called
stationarity. Stationarity requires the truncation time to be distributed uniformly among the
incident population. The union of the left truncation and stationarity assumption leads to the
probability of observing a certain value y (of random variable Y ) is proportional to its size,
i.e., f

Ỹ
(y) ∝ yf

Y
(y). This union constitutes a very important assumption throughout the

current thesis. Hence, the length bias is the union of the uniformity of A together with Y ≥ A

and will be denoted by a tilde sign. As the main interest of this chapter involves studying
length-biased samples, in the rest of the chapter stationarity is always assumed to hold when
left truncation is considered. (More details about the relation between the distribution of
onsets and the bias induced by left truncation has been described by Brookmeyer and Gail
[1987]. (see Figure 3.4).

It is important to note that truncation is the result of the sampling procedure, whereas
censoring is not. In fact, truncation is related to ascertainment bias, sampling bias, survivor-
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Observed
Truncated
Censored

Figure 3.5 Left Truncation and Right Censoring. Incompleteness of data due to left truncation and
right censoring is depicted here. The dashed grey subjects are excluded from the study as they do not belong
to the prevalent cohort.

ship/survival bias, exclusion bias, and caveman effect. While censoring causes a partial loss of
information on some subjects enrolled in the study, truncation excludes some subjects from
being sampled completely causing a total loss of information on those subjects, even their
existence. One must distinguish between a bias that causes missing data and a bias that is
the result of missing data.

3.3.4 Impact of Length Bias on Covariates

Inclusion of covariates into the analysis of data, collected through cross-sectional sampling,
adds new concerns that must be paid close attention. With the exception of few studies
the covariate-related issues in left-truncated data have been mostly skipped in the literature.
Data collection through cross-sectional prevalent cohort sampling, in addition to the intro-
duction of length bias to the response variable, imposes bias on the sampling distribution of
the covariates as well and, as we will see later, failure to include this information into the
analysis may cause highly misleading results. Particularly, in most conventional regression
analysis, the tradition of conditioning on the observed values of covariates results in missing
out on the information provided by the sampling distribution of the covariates. Clearly, this
is an issue if the covariate distribution is indeed informative. The reason why length bias af-
fects the sampling distribution of covariates may be explained as follows. Since the discussed
sampling design tends to select the items with larger values of survival time it is natural to
expect an over-representation of the covariate values which are associated with longer sur-
vivors. Hence, the induced covariate bias in the prevalent cohort is another consequence of
the sampling mechanism. Distribution of the biased covariates will be discussed in detail in
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later sections.

3.3.5 Summarizing the Notation and Terminology

Here, we complete and summarize the specific notation adopted for the analysis of LBRC-C
data in the rest of the present thesis.

• Uppercase letters denote one-dimensional random variables, while bold uppercase de-
notes random vectors (or matrices).

• Lowercase bold and regular letters are reserved for realizations of random vectors and
random variables, respectively.

• The sample or training data is represented by D throughout the thesis.

• Y denotes the response variable, which is time-to-event, survival time or lifetime in the
rest of this work unless otherwise specified.

• Length-biased variables will be marked with a tilde, e.g., Ỹ refers to the length-biased
survival time. Naturally, we assume that Y, Ỹ ≥ 0.

• X = (X1, X2, . . . , Xd
), with d ≥ 1, is a vector of covariates.

• Biased variables (not length-biased) will be represented by an asterisk. Therefore,
∗
X

is applied to denote a biased vector of covariates.

• Bold Z is used to show the vector of covariates and the response together, i.e., Z =
(X, Y ). Similarly,

∗
Z = (

∗
X, Ỹ ).

• For realization of the random vectors or variables we do not use any tilde or asterisk,
i.e., Ỹ = y or

∗
X = x.

• When applicable, regression coefficients are denoted by β = (β0, . . . , βd) or its trans-
pose. Nevertheless, θ is used to indicate the vector of all parameters to be estimated,
including the regression ones.

• A is the current lifetime, i.e., the time interval between the initiating event and sampling
time.

• Residual lifetime or backward recurrence time is denoted by R. Therefore, Y = A+R.

• C
i
is the censoring time, which is the time elapsed from the sampling of the subject

until its possible censoring.
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• One may observe only R ∧ C = min(R,C) due to possible censoring.

• Additionally, we define O := A+ (R ∧ C).

• The failure indicator δ is defined to be a Bernoulli random variable indicating whether
a subject has failed or censored; that is, δ = 1{R≤C}.

• The relevant information per each subject can be represented as a random vector, each
entry of which being a feature. For brevity, we assume that any sample D consists of
subjects S

i
, i = 1, 2, . . . , n, where S

i
is a vector encompassing all features associated

with subject i. Therefore, a sample dataset with n subjects, in its most general form,
i.e., without specifying the features is represented as D = {S

i
: i = 1, . . . , n}. If data

includes the time-to-event for each subject, then S
i

= (Y
i
) = Y

i
; or in the context of

our interest we have that S
i

= (
∗
X
i
, Ã

i
, R̃

i
∧ C

i
, δ
i
), i.e.,

D =
{

(
∗
X
i
, Ã

i
, R̃

i
∧ C

i
, δ
i
) : i = 1, . . . , n

}
,

where
∗
X
i

= (
∗
X
i1
, . . . ,

∗
X
id

) (see Figure 3.4).

3.3.6 Classical Approaches to Time-To-Event Regression

Apart from the survival time itself, in many situations, one might be interested in how a
set of covariates (inputs) affect the survival rate. Regression analysis of time-to-event data
allows one to investigate the impact of a set of explanatory variables on the survival time
when analyzing survival data. In what follows, we briefly introduce the most commonly
applied regression models of lifetime data in the classical framework of statistical inference,
namely, the CPH, and the accelerated failure time (AFT) models.

Cox Proportional-Hazards Model

The famous CPH model, introduced by Cox [1972], is a multiple regression model, which, like
any other multiple regression model, provides the possibility of studying the simultaneous
effects of several risk factors (covariates) on the hazard rate at different points of time. The
core assumption in the CPH model states that the effect of each covariate on the hazard rate
at time t is to increase or decrease the hazard by some constant, i.e.,

h(t|X;β) = h0(t) exp 〈X,β〉 , (3.14)
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where h0 is unknown and is called the baseline hazard, i.e., the hazard rate when all covariates
equal zero:

h0(t) := h(t|X = 0).

β = (β0, . . . , βd) is a vector of parameters, commonly called regression coefficients, describ-
ing the relative influence or risk associated with each covariate (or factor). Widely speaking,
exp 〈X,β〉 in equation (3.14) (sometimes called the relative hazard function) could be re-
placed by any suitable known function of the covariates and their coefficients [Cox, 1972].
The proportionality suggests that if a subject’s risk of failure is r times of the failure risk of
another subject, then at all points in time, the risk ratio remains the same, i.e., r. The pro-
portional hazards model is a semi-parametric model as the baseline hazard is left completely
unspecified. In other words the baseline hazard h0 is an infinite-dimensional parameter, whilst
β is finite-dimensional. In practice, the baseline hazard can be estimated by the Breslow’s
estimator [Breslow, 1975].

By looking at equation (3.14) one could see that an obvious advantage of the CPH model
is, undoubtedly, the straightforward interpretation it provides due to the simple form of the
function chosen to express the impact of the covariates on the hazard. More precisely, the
effect size of each covariate could be easily verified by the magnitude of its coefficient. A coef-
ficient greater than zero indicates a positive association between the corresponding covariate
and the hazard rate, while a negative coefficient is an indicator of a negative association.

Sometimes, researchers, instead of the coefficient β
j
, 1 ≤ j ≤ d, itself, use the hazard ratio

to determine the effect of covariates on the hazard or survival. Hazard ratios are defined
as exp(β

j
). In cancer studies, for example, a covariate with a hazard ratio greater than 1

(equivalently, a positive coefficient) is called a bad prognostic factor, whereas a covariate with
a hazard ratio less than 1 (equivalently, a negative coefficient) is called a good prognostic
factor.

Similarly, as in any model-based analysis of data, it is important to validate the adequacy
of the model in terms of describing the dependence between the failure time and covariates.
One of the things to be examined is the validity of the assumptions made by the CPH model.
Fortunately, the CPH model makes a fairly minimal set of assumptions including the afore-
mentioned proportional-hazards, linearity of the relation between the hazard and covariates,
and influential observations. Commonly applied residuals tests are (i) Schoenfeld residuals to
check the proportional hazards assumption [Schoenfeld, 1980, 1982], (ii) martingale residuals
to assess linearity, and (iii) deviance residuals to examine influential observations [Grambsch
and Therneau, 1994].
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Accelerated Failure Time

The AFT (or accelerated life) time model is, also, a regression models that explores the
relation between potential risk factors and the failure time. Similarly, as for the CPH models,
the AFT model is based on a set of assumptions, some of which are analogous to those of the
CPH model such as linearity. Nonetheless, the primary distinction lies in the assumed effect
of the covariates on the variable of interest, i.e., the survival time. The AFT assumes that
the effect of the risk factors on the survival time is to accelerate (or inversely, to decelerate)
the survival time by some constant. Therefore,

S(t|X;β) = S0 (t exp {− 〈X,β〉} |X;β) , (3.15)

where S0(t) is the probability that a reference subject, i.e., a subject for whom X = 0, will
be alive at time t. By analogy, we may call S0 the baseline survival function. An equivalent
way of formulating an AFT model is by the following ordinary linear regression model for in
terms of the log-survival time:

U = log Y = 〈X,β〉+ σε, (3.16)

where ε is a suitable error term, and σ is a constant multiplier that modifies the noise’s
significance and is independent of X. In fact, different error distributions lead to different
baseline survival distributions. In (3.16), the term σε gives the baseline distribution of the
lifetime, i.e., when covariates are all zero. To see the effect of the covariates, it is enough to
exponentiate both sides of equation (3.16) which gives

Y = Y0 exp{〈X,β〉},

with U0 := exp(σε). Now, we have that

S(t|X;β) = P{Y > t|X;β}

= P{Y0 exp{〈X,β〉} > t|X;β}

= P{Y0 > t exp{− 〈X,β〉}|X;β)} = S0(t exp{− 〈X,β〉}|X;β),

which is equation (3.15). This means that the probability of an individual with covariate X
to survive up to time t equals the probability that a reference subject (with X = 0) will be
alive at time t exp{− 〈X,β〉}. In other words, time passing has accelerated by a factor of
exp{− 〈X,β〉}. While everything happens as exp{− 〈X,β〉} times faster, unlike the CPH,
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this does not mean that the hazard function is always exp{− 〈X,β〉} times as high.

The AFT model is usually applied in a fully parametrized manner, that is, the distribution
of the baseline survival time is specified completely. However, it is possible to take a semi-
parametric approach as well, for instance, see Buckley and James [1979].
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CHAPTER 4 FOUNDATIONS OF LEARNING FROM INCOMPLETE
DATA

Earlier in Chapter 3, the importance of investigating the learning problem in the context of
sampling bias and incompleteness due to censoring has been discussed. It was, also, men-
tioned that this importance stems mainly from the inevitable constraints typically imposed
by limitations of time or other resources. In particular, we have seen that the common use of
the cross-sectional, prevalent-cohort design with follow-up leads to left truncation and right
censoring. This is quite a frequently encountered setting in practice. To see some examples,
check Huang and Wang [1995], Wang [1991], Wang et al. [1993], among others.

Considering the importance of the problem, the present chapter is devoted to studying a few
problems that are connected to the aforementioned setting and learning from LBRC-C data.
It is important to note that, although we emphasize, particularly, the length bias throughout
the discussion, most of the results obtained in this chapter could be easily extended to other
types of bias, so long as the bias’ structure is known. The chapter consists of three primary
sections discussing the following problems, independently:

1. Estimation of the distribution function of the response (here, lifetime) from LBRC-C
data;

2. The risk minimization problem, under length bias and right censoring, which comprises
the inferential engine of statistical learning theory;

3. Estimation of the regression function of the lifetime from LBRC-C data.

4.1 Learning the Distribution Function from LBRC-C Data

The particular problem of interest in this section is to learn the distribution function of the
survival time, from a limited sample of LBRC-C data. In other words, we would like to
estimate the underlying, unknown probability measure, defined on a certain sample space
with a particular set of measurable subsets, when a set of i.i.d., and LBRC-C data are given.

In order to understand the LBRC-C setting better and, especially, to see its difference with
the case where the sample data are representative of the entire population, i.e., where there
is no sampling bias and censoring, let us begin with the following simpler case and then move
onto the situation of interest.
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Let (Ω,Σ, P ) be the probability space of interest. Generally, the sample space Ω can be
a set of vectors including, e.g., inputs, outputs, and other related information. With no
loss of generality, and in order to formalize the problem mathematically, let us assume that
the sample space contains only the covariates and the response variable of interest, i.e.,
Ω = X × Y . Given that Ω is a product space, the natural choice for the σ-algebra is the
tensor-product σ-algebra, i.e., Σ = ΣX ⊗ΣY , where ΣX and ΣY are the individual σ-algebras
considered on X and Y , respectively. Similarly, the probability measure P is defined to be
the product measure P = PX × PY with PX and P

Y
being the measures defined on (X ,ΣX )

and (Y ,ΣY), respectively.

The problem of estimating P (A), for any measurable set A ∈ Σ, when the measurable space
(Ω,Σ) as well as a limited number of i.i.d. training examples D = {z

i
= (x

i
, y
i
) ∈ X ×Y : i =

1, 2, . . . , n} are given, is a fundamental problem in mathematical statistics. Let P̂
n
denote

the estimator of P based on D. In general, P̂
n
is called the empirical measure (see Definition

9). Now, having the fundamental problem of mathematical statistics defined, we are ready
to take the first step towards the definition of the central problem of interest in the current
section, i.e., the problem of learning (estimating) the distribution function from LBRC-C
data. This is the first step, because as mentioned earlier, we first define the problem in the
unbiased and complete data setting and then move onto the specific case of LBRC-C data.

The problem of estimating the distribution function might be defined as a special case of
the more general fundamental problem of mathematical statistics defined above: Given the
measurable space (Ω,Σ), estimate P (A), for any measurable subset A ∈ Σ

4
⊂ Σ, where A is

of the particular form A = AX × AY with

AX = {a ∈ X : X(a) 4 x} , x ∈ Rd,

AY = {b ∈ Y : Y (b) ≤ y} , y ∈ R,
(4.1)

where 4 is an element-wise inequality. In fact, the σ-algebra Σ has been replaced with one of
its proper subsets, i.e., Σ

4
. Note that this new set of measurable subsets does not necessarily

need to compose a proper σ-algebra. This is the weak mode of estimation explained in
Chapter 3. Moreover, with this particular form assumed, the probability measure P reduces
to the CDF.

In the ordinary case of unbiased and complete data, the uniform consistency of the empirical
distribution function, as an empirical measure for estimating the underlying distribution, is
the direct result of the Glivenko-Cantelli theorem for random vectors (Theorem 4). Notice
that, under this scenario, the learning procedure is fully supervised as there is no bias and
censoring involved. That is, all the values of the response variable Y in the training data are
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given.

Now, as it was promised earlier, let us consider the problem of learning the or estimating the
distribution function in the specific situation of LBRC-C data. The length bias, formally, can
be interpreted as a second probability measure, say P̃ , that is defined on the same measurable
space (Ω,Σ

4
). As it was explained before, this is the distribution according to which the

realizations of the sample space Ω are observed. On the other hand, censoring does not
change the underlying stochastic structure of the experiment.

Since in most practical cases, the target distribution to be estimated is the unbiased distri-
bution P , the learning problem in the context of LBRC-C data is almost the same as in the
ordinary case except for a slight modification: Let the measurable space (Ω,Σ

4
) is given.

Also, a set of i.i.d. samples Z
i
, i = 1, 2, . . . , n, is available. However, this time the data

are distributed according to the length-biased distribution, i.e., Z
i
∼ P̃ . Additionally, the

observations are subject to right censoring. Then, the learning problem is to estimate the
unbiased distribution function P using the given length-biased and right-censored training
data D.

Finally, as the probability measure of interest is the distribution function, i.e., the CDF, we
will replace P with the more conventional notation F , which denotes a generic CDF.

Statistical Learning Interpretation of the Problem

In Chapter 3, we have emphasized that, in the framework of statistical learning theory,
the general learning problem is a risk minimization problem. Although it might seem not
obvious, estimating the distribution function can also be formalized as a risk minimization
problem. As a matter of fact, this problem is closely related to the density estimation. This
relation has been thoroughly discussed by Vapnik in different places, including Vapnik and
Stepanyuk [1978] and Vapnik [1998]. Particularly, it has been illustrated that how estimating
the distribution function or the related density estimation might be expressed as either a
risk minimization problem or the so-called problem of interpreting the results of indirect
measurements. Besides, Vapnik discusses the parametric framework of density estimation,
which he calls the Fisher-Wald’s setting. In the latter case, the estimation procedure is based
on the frequently used MLE, which can be easily expressed in terms of risk minimization.
(For details, see section 1.5 of Vapnik [1998].) Our perspective of the problem, however, is
based on a non-parametric approach.
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4.1.1 Preliminaries

We shall formally consider the following two types of data: First, when the sample data
contain no covariates, i.e., LBRC data, and second, when each subject in the sample data is
associated with a vector of covariates, giving rise to LBRC-C data. In both scenarios, the
learning procedure is weakly supervised as information is available only partially due to the
right censoring and length bias.

In the context of LBRC-C data, the problem of survival estimation in the first setting above,
i.e., when there is no covariates involved, has been discussed thoroughly by Asgharian et al.
[2002], Asgharian and Wolfson [2005]. In particular, the asymptotic properties of the esti-
mated, the nonparametric maximum likelihood estimation (NPMLE), survivor function has
been completely established. In contrast, learning the survival distribution function in pres-
ence of covariates has not been studied yet. So, the core objective of the rest of this section is
to investigate the problem of estimating the survival distribution function with LBRC data,
including covariates, i.e., LBRC-C data.

First of all, we introduce, and briefly discuss, the background conditions and assumptions
we are going to consider throughout our investigation. The notation and basic concepts
explained in the following paragraphs are quite general and are assumed to hold in both the
LBRC and LBRC-C settings.

Suppose that n subjects from the prevalent population are recruited at the beginning of a
followup study. Subjects are collected independently and are planned to be followed up for a
certain period of time when the study ends. Of the entire sample, n

f
subjects fail during the

study, i.e., between the recruitment and end of the study. Another portion of the recruited
sample are right censored during the study; these are the individuals who are lost to follow
up. Finally, those who survive up to the end of the study are right censored once the study
period is over. Assume n

c
is the total number of censored subjects. Hence, n = n

f
+ n

c
. We

will assume that censoring of the residual lifetimes are carried out randomly, i.e., n
f
and n

c

are both random quantities.

To each observed subject i is attached a quadruple (
∗
X
i
, Ã

i
, R̃

i
∧C

i
, δ
i
), where

∗
X
i
is a vector

of covariates, Ã
i
, and R̃

i
are the current and residual lifetimes, C

i
is the residual censoring

time, and δ
i
is the failure indicator, defined in subsection 3.3.5.

Clearly, the survival time Ỹ
i
is the sum of the current and residual lifetimes, i.e., Ỹ

i
= Ã

i
+R̃

i
,

for each subject i. Similarly, the (overall) censoring time C ′i is the sum of the current lifetime
and the residual censoring time, i.e., C ′i = Ã

i
+ C

i
. Another key assumption we assume to

be satisfied is the stationarity assumption. That is, the incident rate over time is unchanged
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and, consequently, a stationary Poisson process can reasonably describe the incidence of
the initiating event E1 or onset. Further, we assume that the residual censoring time C is
independent of (Ã, R̃). Note that this is a reasonable assumption in many applications such as
settings with type I censoring. On the other hand, the survival time and the overall censoring
time are correlated, because one may easily see that, under the stationarity assumption, we
have

Cov(Ỹ , C ′) = Var(Ã)
1 + corr(Ã, R̃)

√
Var R̃
Var Ã

 .
The positive correlation between Ỹ and C ′ is a result of the stationarity assumption. The
reason is that, under stationarity, we have that Ã|Ỹ ∼ Unif(0, Ỹ ), which in turn implies that
Var(Ã) = Var(Ỹ −Ã) = Var(R̃). Therefore, the censoring under consideration is informative.
We remind the reader that censoring is called non-informative or random if it is independent
of the survival time, which is not the case here.

Before discussing the problem of estimating the distribution function based on LBRC-C data,
note that we consider two separate cases:

• Case One: No Censoring. Here, the sampled data are assumed to be purely length
biased, however, information on the survival of all sampled subjects is fully provided,
That is, n

c
= 0.

• Case Two: With Censoring. In this case, in addition to the length bias caused by the
sampling procedure, subjects might be right censored. Hence, the exact survival value,
for a subset of the sampled subjects, is known only partially, i.e., solely a lower bound
for the potential survival time is available. Therefore, 0 < n

c
≤ n.

As shown later, these two cases have essential differences and should be treated separately.
In fact, learning the distribution, when data are censored, is harder compared to the case of
pure length-biased data.

4.1.2 Case One: No Censoring

Without censoring, δ
i

= 1 and R̃
i
∧ C

i
= R̃

i
, for all i = 1, 2, . . . , n. That is, one can

assume that to any subject i is associated (
∗
X
i
, Ã

i
, R̃

i
), which is an equivalent but shorter

notation than the one introduced earlier. It is easy to see that estimating the length biased
distribution function, i.e., F∗

Z|T
(z) = P (

∗
Z 4 z), where z is a realized value of

∗
Z = (

∗
X, Ỹ )

with Ỹ = Ã + R̃ being the overall lifetime, is rather straightforward. This is because the
sample data are distributed according to the same length-biased distribution, which is the
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target of the estimation in this case. More precisely, we have that

F∗
Z|T

(z) = P (
∗
Z 4 z) = P (

∗
X 4 x, Ỹ ≤ y)

=
∫

(u,v)4(x,y)

dF ∗
X,Ỹ |T

(u, v) =
∫

w4z

dF∗
Z|T

(w)

which depends completely on the biased distributions. Therefore, the multidimensional em-
pirical distribution

F̂∗
Z;∗n

(z) = 1
n

n∑
i=1
1(z

i
4 z)

= 1
n

n∑
i=1
1(x

i
4 x, a

i
+ r

i
≤ y)

(4.2)

provides a natural estimator for the desired (length biased) distribution function. The sub-
script

∗
Z; ∗n highlights the fact that this is an estimator of the biased variable

∗
Z, built upon a

biased sample of size n, i.e., ∗n. Furthermore, the Glivenko-Cantelli theorem guarantees that

‖F̂∗
Z;∗n
− F∗

Z|T
‖∞

a.s.−−→ 0, as n→∞. (4.3)

Now, let us consider the estimation of the unbiased distribution FZ(z) under length bias. In
fact, what we are interested in is P (Z 4 z), while the data are sampled through a length
biased sampling procedure. In contrast to the estimation of F∗

Z|T
, the sample data cannot be

naively used in order to construct the empirical measure. Note that, in presence of covariates,
the following two identities hold:

f
Ỹ |X,T (y|X = x) =

yf
Y |X(y|X = x)

µ(x) , (4.4)

and1

f ∗
X|T

(x) =
µ(x)fX(x)

µ
, (4.5)

1There is a subtle point in the notation used in equation (4.4) that might seem confusing: Although we
know that the length bias in the response variable leads to the covariates being biased too, the conditional
distributions on both sides of the equation are conditioned on X, rather than

∗
X. The reason is that when

the covariate is given, its distribution does not play a role anymore. Hence, the original distribution of the
covariates should be used.
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where µ(x) := E
Y |X(y|X = x), and µ := EX[µ(x)], both in the incident population. The

above equations imply that

f∗
Z|T

(z) = f ∗
X,Ỹ |T

(x, y)

= y

µ
fX,Y (x, y) = y

µ
fZ(z).

(4.6)

Now, consider the target distribution function to be estimated, i.e., FZ(z):

FZ(z) = P (Z 4 z) = P (X 4 x, Y ≤ y)

=
∫

(u,v)4(x,y)

dFX,Y (u, v) =
∫

w4z

dFZ(w),

which, after plugging equation (4.6), yields

FZ(z) =
∫

(u,v)4(x,y)

fX,Y (u, v) d(u, v)

= µ
∫

(u,v)4(x,y)

v−1 dF ∗
X,Ỹ |T

(u, v) = µ
∫

w4z

v−1 dF∗
Z|T

(w).
(4.7)

As one can see, the last integral above is taken with respect to the biased joint distribution
function F∗

Z|T
and can be easily estimated from the sample data. But we still need to estimate

the overall mean response µ. In fact, there are two ways to estimate µ from the biased sample.
First, using equation (4.5) one can easily derive the following:

µ =
[∫ 1

µ(u)f
∗
X|T

(u) du
]−1

=
{
E ∗

X|T

[
1

µ(x)

]}−1

, (4.8)

which is also based on the biased distribution of the covariates. Replacing µ in equation (4.7)
with what equation (4.8) provides, we obtain

FZ(z) =
E∗

Z|T
(y−1 |

∗
Z 4 z)

E ∗
X|T

[
1

µ(x)

] . (4.9)

Apparently, the last equation implies that one is able to rewrite the unbiased distribution
function, solely, based on the biased joint distribution of the covariates and the response and
the biased distribution of the covariate. In other words, FZ can be estimated using the given
LBRC-C sample. However, there is a subtle point here that needs further attention. Recall
that µ(x) = E

Y |X(y|X = x). That is, we still need the unbiased distribution of the response
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given the covariate to be able to compute this conditional expectation. This information is
not readily available, which means µ(x) itself should be estimated from data. In general, this
is not a straightforward estimation, especially, if the covariate is continuous.

Fortunately, this is not the only way one can estimate µ. Note that equation (4.6), also, can
be used for this purpose. It is not difficult to see that (4.6) implies

µ =
[∫

v−1 dF∗
Z|T

(u, v)
]−1

=
[
E∗

Z|T
(y−1)

]−1
, (4.10)

which can be, directly, estimated from the biased data. Now, equation (4.10) together with
(4.7) provide one with the following expression:

FZ(z) =
E∗

Z|T
(y−1 |

∗
Z 4 z)

E∗
Z|T

(y−1) .

The last equation, however, gives rise to the following natural empirical distribution:

F̂Z;∗n(z) = n

nz

[
n∑
i=1

y−1
i 1(z

i
4 z)

](
n∑
i=1

y−1
i

)−1

(4.11)

where nz =
n∑
i=1
1(z

i
4 z). The subscript Z, ∗n is to emphasize that this is an estimator of the

unbiased variable Z, based on a sample dataset consisting of n, biased subjects. Equation
(4.11) does not require the additional estimation of µ(x), in contrast with the estimator one
could have driven based on equation (4.9).

Naturally, after constructing an estimator, one would like to check its consistency. Here, we
skip the technical details of a proper proof of consistency and shortly provide a sketch of the
proof and the general idea behind it.

The almost sure consistency of the estimator (4.11) is implied from the fact that FZ,
∗
n
, ob-

tained above, is a continuous transformation of the sequence F∗
Z,
∗
n
, defined earlier by equation

(4.2), together with the Glivenko-Cantelli result stated in equation (4.3).

4.1.3 Case Two: With Censoring

As stated before, a tuple (
∗
X
i
, Ã

i
, R̃

i
∧C

i
, δ
i
) is associated to every observed subject i. Under

the stationarity assumption, the joint density of the current and residual lifetimes, condi-
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tioned on the covariates and the left truncation, is given by

f
Ã,R̃|X,T

(a, r | X = x) =


f
Y |X(a+ r | X = x)

E(Y |X = x) , a, r > 0,

0, otherwise,
(4.12)

where T denotes the left truncation [Vardi, 1989, Feller, 1971].

The final objective is to learn the CDF of the unbiased joint distribution, i.e., FZ(z), for
any z ∈ Rd+1. Since the relation between the unbiased and length-biased distribution of
the lifetime is known, we can achieve the goal of learning the unbiased distribution through
learning the length-biased one first and then transform it to the desired unbiased distribution;
that is, first, learning F∗

Z|T
, and further use it to find FZ.

In the following paragraphs, we first derive the nonparametric maximum likelihood function,
and then, following a similar procedure as Asgharian and Wolfson [2005], will try to estimate
the length-biased distribution function. Note that what makes the situation different here,
from the one considered in Asgharian and Wolfson [2005], is the presence of covariates in the
present setting.

Consider the sub-sample of the failed subjects and define the following:

F̃1(z) := F∗
Z|δ,T

(z | δ = 1) = P(
∗
X 4 x, Ã+ R̃ ≤ y | δ = 1).

Let f̃1 be the corresponding density. Then,

f̃1(z) = f∗
Z|δ,T

(
∗
X = x, Ã+ R̃︸ ︷︷ ︸

Ỹ

= a+ r︸ ︷︷ ︸
y

| δ = 1)

=
f∗

Z,δ|T
(
∗
X = x, Ã+ R̃ = a+ r, δ = 1)

P
δ|T (δ = 1) .

Let P
δ|T (δ = 1) = P(δ = 1 | T ) = p. Hence, by the law of total probability we obtain

f̃1(z) = 1
p
f∗

Z,C|T
(
∗
X = x, Ã+ R̃ = a+ r, C > R̃︸ ︷︷ ︸

δ=1

)

= 1
p

∫ y

0
f∗

Z,C|R̃,T
(
∗
X = x, Ã+ R̃ = a+ r, C > R̃ | R̃ = r)f

R̃|T (r) dr

= 1
p

∫ y

0
f ∗

X,Ã,C|R̃,T
(
∗
X = x, Ã = a, C > r | R̃ = r)f

R̃|T (r) dr.
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The residual censoring was assumed to be independent from the current lifetime as well as
the covariates, which implies that

f̃1(z) = 1
p

∫ y

0
f ∗

X,Ã|R̃,T
(
∗
X = x, Ã = a | R̃ = r)P

C|T (C > r)f
R̃|T (r) dr

= 1
p

∫ y

0
f ∗

X,Ã,R̃|T
(
∗
X = x, Ã = a, R̃ = r)S

C
(r) dr

= 1
p

∫ y

0
f
Ã,R̃|X,T (Ã = a, R̃ = r | X = x) f ∗

X|T
(x)S

C
(r) dr,

where S
C

(r) = 1−F
C

(r) is the survival function of the residual censoring time. Now, plugging
equations (4.12) and (4.5) yields

f̃1(z) = f∗
Z|δ,T

(z | δ = 1)

= 1
p

∫ y

0

f
Y |X(a+ r | X = x)fX(x)

µ
S
C

(r) dr

=
fZ(z)
p µ

∫ y

0
S
C

(r) dr,

(4.13)

which shows the relation between the unbiased joint density fX,Y with the biased joint density

of the failed sampled subjects f̃1. For ease, denote ζ(y) :=
∫ y

0
S
C

(r) dr. Then, from the last
equation one can derive the corresponding distribution function:

FZ(z) =
∫

w4z

fZ(w) dw

= p µ
∫

w4z

[ζ(v)]−1 dF̃1(w).
(4.14)

Now, in order for one to be able to derive the empirical distribution function based on
equation (4.14), µ and ζ, also, need to be expressed based on the biased joint distribution
since the available data are biased. Using equation (4.13), one can also verify that

µ = p
{∫

w
[ζ(v)]−1 dF̃1(w)

}−1
, (4.15)
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plugging which in equation (4.14) yields that

FZ(z) = p2
{∫

w
[ζ(v)]−1 dF̃1(w)

}−1

∫

w4z

[ζ(v)]−1 dF̃1(w)


= p2

E∗
Z|δ,T

{[
ζ(Ỹ )

]−1
| δ = 1,

∗
Z 4 z

}
E∗

Z|δ,T

{[
ζ(Ỹ )

]−1
| δ = 1

} .

(4.16)

The last equation, literally, means that the unbiased joint distribution function FZ might be
expressed as a transformation of the biased joint distribution F̃1 and the survival function of
the residual censoring, i.e., S

C
. More precisely, we have that

FZ = FX,Y = Γ(S
C
, F̃1),

where

Γ [ζ(y), G(z)] = p2
{∫

w

[∫ v

0
S
C

(r) dr
]−1

dG(w)
}−1

(4.17)

×


∫

w4z

[∫ v

0
S
C

(r) dr
]−1

dG(w)

 ,
defines the transformation Γ, for any functions S : R → [0, 1] and G : Rd+1 → [0, 1]. Note
that Γ is a continuous transformation, in both arguments. Now, based on equation (4.16),
the empirical distribution function will be of the following form:

F̂Z,
∗
n
(z) = p̂2

n

n
f

nz,f

n∑
i=1

{[∫ yi

0
Ŝ
C

(r) dr
]−1

δ
i
1(z

i
4 z)

}{
n∑
i=1

δ
i

[∫ yi

0
Ŝ
C

(r) dr
]−1

}−1

, (4.18)

where p̂
n
is the estimate of p, i.e., P(δ = 1 | T ), n

f
=

n∑
i=1

δ
i
, and nz,f =

n∑
i=1

δ
i
1(z

i
4 z).

As one can see in equation (4.18), the survival function of the residual censoring times S
C

(r),
also, needs to be estimated from data. The good news is that the well-known Kaplan-Meier
(aka product limit) estimator might be applied to this end. Traditionally, the Kaplan-Meier
estimator is used to, non-parametrically, estimate the survival function of the lifetime, and
specifically, it can take care of right censoring [Kaplan and Meier, 1958]. The Kaplan-Meier
estimator has been discussed in the literature extensively and, hence, we skip the details.
However, we briefly introduce how to apply it for estimating S

C
.
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First, notice that the aforementioned traditional context is not exactly what we are looking
for: In connection with equation (4.18), what we are interested in is the survival function
of the residual censoring time and not the survival function of the lifetime. Interestingly,
besides its conventional context, the Kaplan-Meier estimator can be used in a broader sense
as explained further: The event of interest does not necessarily require to be the failure time.
In fact, in a more general setting, we assume that there exist two hypothetical “terminating”
events, say E2 and E ′2, any of which can occur first. The key point here is that, for any
subject, only the quantity E2 ∧ E

′
2 could be observed, i.e., the event which occurs first. The

Kaplan-Meier estimator might be equally applied to estimate the survival function of either
of E2 or E ′2, depending on the desired objective.

Returning to our problem, we are interested in the survival function of the residual censoring
time, nonetheless, for a portion of the subjects the exact censoring time is not available due
to failure happen first. In other words, the right censoring time itself is subject to being
right censored, due to a sooner failure. Therefore, the Kaplan-Meier estimator of S

C
can be

written as follows:
Ŝ
C

(t) =
∏
i:ti≤t

(
1−

d
i

n
i

)
,

where t
i
’s are the moments at which at least one of the events E2, E

′
2 occurs, di is the number

of the specific event of interest, i.e., right-censored subjects at t
i
, and n

i
is the total number

of subjects who have not experienced neither E2 nor E ′2 at t
i
. Figure 4.1 provides a toy

example of the Kaplan-Meier curve.

S
C

(t)

1

4
5

2
5

tc2 c5 c6

y1 y3 y4

Figure 4.1 Kaplan-Meier Estimator of the Survival of the Total Censoring Time. Here, the step
function in blue illustrates the empirical estimate of the survival function of the residual censoring time,
i.e., SC , for example data consisting of 3 censored subjects at times c2, c5 and c6 (red crosses), and 3 failed
subjects at times y1, y3, and y4 (red crosses). Vertical red tick-marks show occurrence of the alternative
event, i.e., failure.

This completes the estimation of the distribution function FZ based on LBRC-C sample
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data. An interesting fact about estimator (4.18) is that it was derived purely based on the
sub-sample of the failed subjects. In practice, this may lead to efficiency loss, especially,
if data are heavily right censored. Nevertheless, when the censored portion of the sample
is negligible, equation (4.18) constitutes a reasonably efficient estimator of the distribution
function. Next, the consistency of estimator will be discussed.

Theorem 5 (Uniform Almost-Sure Consistency of the Empirical Distribution Function with
LBRC-C Data). Let FZ,

∗
n
denote the estimator defined by equation (4.18). Then, FZ,

∗
n
, calcu-

lated from LBRC-C sample data, constitutes a uniform, almost-surely, consistent estimator
of the unbiased distribution function FZ, given by equation (4.14). That is,

‖FZ;∗n − FZ‖∞
a.s.−−→ 0, as n→∞.

Proof. First, notice that
FZ;∗n = Γ

n
(Ŝ

C
, ˆ̃F1),

where Γ
n
is the empirical version of the continuous transformation Γ defined by equation

(4.17). Denote

λ
n
(z) := 1

nz,1

{
n∑
i=1

[∫ yi

0
Ŝ
C

(r) dr
]−1

δ
i
1(z

i
4 z)

}

λ′n(z) := 1
n1

{
n∑
i=1

δ
i

[∫ yi

0
Ŝ
C

(r) dr
]−1

}
,

with n1 =
n∑
i=1

δ
i
, and nz,1 =

n∑
i=1

δ
i
1(z

i
4 z) and

λ(z) :=
∫

w4z

[ζ(v)]−1 dF̃1(w)

λ′(z) :=
{∫

w
[ζ(v)]−1 dF̃1(w)

}−1
.

The Kaplan-Meier estimator Ŝ
C
is uniformly, almost surely, consistent, i.e., ‖Ŝ

C
−S

C
‖∞

a.s.−−→
0, as n tends to infinity. Also, note that ˆ̃F1;∗n is simply the empirical distribution and, hence,

converges to the actual distribution function, i.e., ‖ ˆ̃F1;∗n − F̃1‖∞
a.s.−−→ 0. Consequently, as
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n→∞, we have that

λ
n
(z) a.s.−−→ λ(z), (4.19)

λ′n(z) a.s.−−→ λ′(z).

On the other hand, it is easy to see that

‖FZ;∗n − FZ‖∞ = sup
z

∣∣∣∣Γn(Ŝ
C
, ˆ̃F1)− Γ(S

C
, F̃1)

∣∣∣∣
= sup

z

∣∣∣∣∣λn(z)
λ′n(z) −

λ(z)
λ′(z)

∣∣∣∣∣
≤ 1
λ′(z) sup

z
|λ
n
(z)− λ(z)|+ λ(z)

λ′n(z)λ′(z) sup
z
|λ′n(z)− λ′(z)|,

Now, as n grows, the last inequality together with equations (4.19) complete the proof.

4.2 Risk Minimization under LBRC-C Data

In this section of the current chapter, we investigate the problem of minimizing the risk
functional when data are LBRC-C. As we have seen in Chapter 3, risk minimization is the
essential inferential machinery of statistical learning theory for solving all major supervised
problems [Vapnik, 1998]. Recall that in order to find the optimal hypothesis or functional de-
pendence, one desires to minimize the expected risk functional R(θ) over the set of admissible
functions Θ. (See The Learning Problem.)

As discussed in subsection 3.1.3, one of the most important goals of statistical learning
theory is to provide the necessary and sufficient conditions for reliable learning. Also, it was
explained that the reliability is measured by the concept of non-trivial consistency, which in
turn was guaranteed by the two-sided uniform convergence. More precisely, it was shown
that the two-sided uniform convergence was sufficient for a learning machine to be non-
trivially consistent. Nonetheless, the two-sided convergence was not necessary for non-trivial
consistency; as a matter of fact, the one-sided uniform convergence was shown to be the
sufficient and necessary condition for it. Here, we establish this problem for the case of
LBRC-C data and derive the sufficient conditions for consistent learning from this type of
data.

In other words, the present section provides the foundations of a reliable learning procedure
from data with a specific type of incompleteness we are interested in. As a result, we provide
general learning machines that can be reliably utilized to solve the main supervised learning
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problems. It is worth mentioning that while we do not, explicitly, target the classification
problem here, once the reliability of the risk minimization problem is established, results can
be extended to classification easily since the only difference amongst the main supervised
learning problems boils down to the choice of a specific loss function.

This section is closely related to the previous one since risk minimization requires learning
the underlying probability measure, in the first place. However, in a broader sense, learning
density is a special case of the risk minimization problem.

To begin with, we consider the problem in the setting of Case One, discussed in subsection
4.1.2. That is, we first study the properties of risk minimization when the available data
are purely length biased and there is no censoring involved. After, we move onto Case Two,
considered in subsection 4.1.3, where data are supposed to exhibit both the sampling bias
and right censoring. Note that, although we focus, particularly, on length bias and right
censoring in this work, the results achieved can be easily extended to any type of sampling
bias provided that the relation between the biased and unbiased populations is known.

4.2.1 Expected and Empirical Risk Functionals

First, recall that Q
θ
(Z) = L[Y, h

θ
(X)], with L being a loss function, Z = (X, Y ), and

h
θ
∈ HΘ. The expected risk to be minimized is the following stochastic process:

R(θ) = FZQθ = EZ

[
Q
θ
(z)
]

=
∫
Q
θ

dFZ, (4.20)

where FZ is the unbiased actual distribution function. In the context of our interest, i.e.,
where data are LBRC-C, the empirical risk should naturally be defined accordingly. That is,

R̂Z;∗n(θ) = F̂Z;∗nQθ = EZ;∗n

[
Q
θ
(z)
]

=
∫
Q
θ

dF̂Z;∗n. (4.21)

Equations (4.20) and (4.21) provide the general form of the expected and empirical risk
functionals, respectively. Next, we will separately give the individual risks for the case of
pure length bias and simultaneous length bias and right censoring, i.e., Case One and Case
Two.

4.2.2 Risk Minimization with Pure Length Bias

When there is no censoring, equation (4.6), which provides the relation between the biased
and unbiased joint distribution, together with equation (4.20) imply that the expected risk

subsec:case1
subsec:case2
subsec:case1
subsec:case2
subsec:case2
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can be expressed as follows:

R(θ) =
∫
Q
θ
(u, v) dFX,Y (u, v)

= µ
∫
v−1Q

θ
(u, v) dF ∗

X,Ỹ |T
(u, v)

= µ E∗
Z|T

[
Ỹ −1Q

θ
(
∗
Z)
]
.

We have already seen that equation (4.10) provides an estimator for the overall mean lifetime
µ that can be estimated from the length biased data. Hence, replacing µ with right-hand
side of equation (4.10) brings us to the expected risk functional, fully expressed in terms of
the length-biased training data:

R(θ) =
[
E∗

Z|T
(Ỹ −1)

]−1
E∗

Z|T

[
Ỹ −1Q

θ
(
∗
Z)
]
.

Now, the corresponding empirical risk can be easily derived form the above equation:

R̂Z;∗n(θ) =
(

n∑
i=1

y−1
i

)−1
 n∑
j=1

y−1
j Q

θ
(z
j
)
 .

4.2.3 Risk Minimization with Length Bias and Right Censoring

Now, if there is right censoring involved, then, applying equation (4.13), to (4.20) gives

R(θ) =
∫
Q
θ
(u, v) dFX,Y (u, v)

= pµ
∫
Q
θ
(u, v) [ζ(v)]−1 f ∗

X,Ỹ |δ,T
(u, v | δ = 1) d(u, v)

= pµ E∗
Z|δ,T

{
[ζ(Ỹ )]−1Q

θ
(
∗
Z) | δ = 1

}
.

Similarly as before, the overall mean µ should be replaced with the right-hand side of equation
(4.15). So, the expected risk is given as

R(θ) = p2
(
E∗

Z|δ,T

{[
ζ(Ỹ )

]−1
| δ = 1

})−1
E∗

Z|δ,T

{
[ζ(Ỹ )]−1Q

θ
(
∗
Z) | δ = 1

}
,

where ζ(y) :=
∫ y

0
S
C

(r) dr. Clearly, this last equality explicitly expresses the expected risk
functional in terms of the distributional information provided by failed individuals in the
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prevalent cohort, which ultimately leads us to the following empirical risk:

R̂Z;∗n(θ) = p̂2
n

{
n∑
i=1

δ
i

[
ζ(y

i
)
]−1

}−1 n∑
j=1

δ
i

[
ζ(y

j
)
]−1

Q
θ
(z
j
).

Once we have the concrete forms of the expected and empirical risk, it is time to examine how
reliable this machinery is for the purpose of solving the learning problem. In the following
subsection, we discuss the consistency and related issues in the LBRC-C setting.

4.2.4 Reliability of Learning from LBRC-C Data

The notation used in previous sections allows expressing the conditions needed for consistency
in a unified subsection, rather than having to discuss Case One and Case Two, separately.
The general form of the two-sided uniform convergence, which is a sufficient condition for
non-trivial consistency, requires a learning machine to satisfy

‖R̂Z;∗n(θ)−R(θ)‖∞
a.s.−−→ 0, as n→∞. (4.22)

Hence, the eventual objective is to verify whether the above condition holds for the risk
functionals extracted in the preceding subsection. To this end, notice that, for each θ ∈ Θ,

R̂Z;∗n(θ)−R(θ) = F̂Z;∗nQθ − FZQθ

=
∫
Q
θ
(z) dF̂Z;∗n(z)−

∫
Q
θ
(z) dFZ(z)

=
∫
Q
θ
(z) d

(
F̂Z;∗n − FZ

)
(z) .

Now, opening the inner difference up applying the integration by parts we obtain that

R̂Z;∗n(θ)−R(θ) = Q
θ
(z)

[(
F̂Z;∗n − FZ

)
(z)
]
−
∫ [(

F̂Z;∗n − FZ

)
(z)
]

dQ
θ
(z).

Note that integration by parts, in situation above, requires the function Q
θ
to be of bounded

variation as well as the difference function F̂Z;∗n − FZ to be differentiable almost everywhere.
In addition, and with no loss of generality, we assume that z accepts values in a bounded
set. Now, one can check that the last equation implies that

‖R̂∗
Z;n

(θ)−R(θ)‖∞ ≤ ‖F̂Z;∗n − FZ‖∞ sup
z
|Q

θ
(z)|

+ ‖F̂Z;∗n − FZ‖∞
∫
| dQ

θ
(z)|,

subsec:case1
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which, in turn, gives the sufficient conditions for the two-sided uniform convergence (4.22).
It is easy to see that if

‖F̂Z;∗n − FZ‖∞
a.s.−−→ 0, as n→∞,

as well as
sup

z
|Q

θ
(z)| <∞, and

∫
| dQ

θ
(z)| <∞, (4.23)

then, convergence (4.22) holds. For the specific risk functionals we have introduced here,
based on LBRC-C data, it was already shown (in the preceding section) that, for both Case
One and Case Two, ‖F̂Z;∗n−FZ‖∞

a.s.−−→ 0, as n increases. Therefore, conditions (4.23) provide
the sufficient conditions for non-trivial consistency of the risk minimization procedure based
on the empirical risks we have defined in this subsection. The fortunate fact is that the
extracted conditions are quite general and, consequently, hold for most of the commonly
used loss functions. Verifying conditions (4.23) for particular losses is rather trivial and is
left to the reader.

4.3 Regression Analysis under LBRC-C Data

All problems that have been considered so far in this chapter were related to the estimation of
the underlying probability measure using empirical data. Particularly, we have explained that
learning the (lifetime) distribution function is a less general case of learning the probability
measure defined on an arbitrary σ-algebra of measurable sets. In other words, in all of
the discussed cases, the target was to discover the distributional structure of the stochastic
experiment of interest completely. Recall that the objective was to estimate P (A), for any
measurable set A of the specific form given in equations (4.1). In the most general case, it
led us to replace P with its empirical counterpart P̂

n
that could estimate P consistently.

Nevertheless, there are situations where the comprehensive distributional characteristics of
a stochastic phenomenon are either impossible or hard to learn, or are not of direct interest.
In the remainder of this section, we propose a novel method of estimating the regression
function when the data are LBRC-C.

Here, we focus on the non-explicit model of regression estimation. Specifically, we show why
applying the Nadaraya-Watson estimator, naively, to LBRC-C data leads to invalid estimates.
In addition, we will clearly show how one might correct the estimates.

One of the main subcategories of the supervised learning problems in learning theory belongs
to problem of regression estimation. Aligned with the main problem of statistical learn-
ing, demonstrated in subsection 3.1.1, it is assumed that each statistical unit consists of a

subsec:case1
subsec:case1
subsec:case2
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covariate (or input) vector X ∈ Rd and a response (output) Y ∈ R that are related by
the stochastic functional dependence F

Y |X. As mentioned earlier, for the sake of regression
analysis, one wants to solve the easier problem of estimating a certain stochastic property
of the distribution F

Y |X, e.g., one of its central tendencies, rather than estimation of the
distribution function, completely.

In this work, we focus on the study of mean regression, which is learning the following
function from data:

E
Y |X(Y = y | X = x) =

∫
v dF

Y |X(Y = v | X = x), ∀x ∈ Rd.

We call the left-hand side of the equation above, E
Y |X(Y = y | X = x), or shortly E

Y |X(y | x),
the regression function and the regression problem is defined as estimation of the regression
function. Recall that the available data come from the joint distribution FX,Y , however.

Existing approaches to the regression problem, has been divided into different groups in
multiple ways. The popular division of the regression analysis models (or methods) into
parametric and nonparametric is, perhaps, the most frequently used classification. Neverthe-
less, we avoid using this terminology because of its ambiguity [Le Cam and Lo Yang, 1990];
particularly, parametric and non-parametric in the context of regression differ from what
Vapnik means, when he described the shortcomings of the classical paradigm of statistical
inference. (See Chapter 3.)

Instead, we use the terms explicit (definite) and non-explicit (indefinite) in the sense explained
below: If the regression function is assumed to be a parametric function of the covariates,
i.e.,

E
Y |X(Y = y | X = x) = r

θ
(x), θ ∈ Θ, ∀x ∈ Rd,

then, the model is said to be explicit or definite. This means that the following stochastic
relation is supposed to be true about the underlying structure of the data at hand:

Y = r
θ
(X) + ε,

where ε is the error or noise, which might or might not be distributed according to a para-
metric family of distributions. In this case, regression involves estimation of the parametric
function r

θ
, which is, in fact, selecting the optimal value for the parameter θ from a pre-

determined hypothesis space. In contrast, if no assumption about the explicit form of the
regression function E

Y |X(y | x), with respect to x, is made, then the model is called non-
explicit. The well-known linear regression, for example, is an explicit model since r

θ
is a
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polynomial in X. On the other hand, Nadaraya–Watson kernel regression is an example of a
non-explicit model [Nadaraya, 1964, Watson, 1964].

From the statistical learning point of view, in the explicit model approach one can described
the solution in terms of risk minimization. Assume that there is a parametric set of admissible
functionsHΘ, where we are looking for the regression function r

θ
. As we discussed earlier, the

statistical learning theory’s approach to the risk minimization problem is based on minimizing
the risk over the parameter space Θ. It is easy to check that two of the most frequently used
techniques of regression estimation in practice, i.e., the MLE and the least squares, are both
special occasions of risk minimization. In fact, the difference between these two techniques
lies in the losses being used. More precisely, in both cases, one desires to minimize the
expected risk (3.2), once with the loss function being

L
θ
(X, Y ) = −L(θ; X, Y ),

where −L(θ; X, Y ) is the likelihood of θ given X, Y , and once with

L
θ
(X, Y ) =

[
Y − h

θ
(X)

]2
,

i.e., the squared residual. (See, e.g., Vapnik [1998].)

Explicit modelling of regression analysis, in particular, the MLE approach is of central interest
in Chapter 5. Since we, ultimately, wish to study the problem in the context of LBRC-C
data, it would be insightful to become familiar with the regression tools used in survival
analysis. For this reason, a brief introduction to the most frequently applied models in
survival regression has been provided in subsection 3.3.6.

4.3.1 Non-Explicit Regression Estimation under LBRC-C Data

For the purpose of non-explicit modelling, it is assumed that E
Y |X(y | x) = r(x), where r is

an unknown function. Note that we do not require r to have any particular form, such as
polynomial form, for instance. What we are interested in is the value of r at any given X = x0,
i.e., r̂(x0), which is an estimate of r(x0) calculated using the data {(x

i
, y
i
) : i = 1, 2, . . . , n}.

What Nadaraya-Watson estimator suggests is a local weighted average of values of response
provided in the sample. A kernel is used for weighting the observations. Recall that, by
definition, one needs the conditional distribution F

Y |X in order to compute the regression
function. Indeed, for this purpose, the Nadaraya-Watson estimator applies the kernel density
estimation method to estimate the conditional density f

Y |X. This brings us to the following
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estimator of the regression function:2

r̂(x0) =
∑n
i=1Kh

(x0 − x
i
)y
i∑n

i=1Kh
(x0 − x

i
) , (4.24)

where K
h
(x) = 1

h
K(x), parameter h is the smoothing bandwidth, and K is a kernel function,

i.e., a non-negative, even function with
∫
K(u) du = 1. This is the empirical estimator of

r(x0) =
EX,Y

[
y K

h
(x0 − x)

]
EX

[
K
h
(x0 − x)

] . (4.25)

Now, let us investigate the behaviour of the estimator given in equation (4.24) in the context
of LBRC-C data. The objective is to show that both the bias and censoring must be taken
into account to correctly estimate the regression function. This might be achieved by applying
appropriate corrections for both bias and censoring.

Given the fact that, in presence of covariates, bias itself has two levels, i.e., the length bias
and the induced bias affecting the sampling distribution of the covariates, we study the effect
of bias in two separate steps: First, when both biases are ignored, and second, when one fails
to incorporate the covariate bias into the analysis. We do not consider the case where only
length bias is ignored as it is very improbable in practice that an analyst be aware of the
induced covariate bias but fails to adjust for the length bias itself. Recall that the induced
covariate bias is a result of the length-biased sampling scheme, so that information on the
existence of covariate bias requires the prior knowledge of length bias.

Following the same ideology as in previous sections, the discussion will be presented for Case
One and Case Two, separately.

4.3.2 Regression Estimation with Pure Length Bias

In the present subsection, before introducing the proper way of estimating the regression
function when data are length biased but no censoring is involved, we would like to highlight
the effect of ignoring the biases resulted from the specific sampling procedure applied. As
explained earlier, we will consider two distinct scenarios and evaluate the consequences of
each one separately. The reason for considering these two particular scenarios is that, based
on conventional approaches to regression analysis of LBRC-C data, these are, perhaps, among

2For simplicity, we discuss the univariate case, however, the concept remains the same for multivariate
case. For instance, for multivariate covariate X one might apply a product kernel, i.e., Kh1,...,hd

(x1, . . . , xd) =∏d
j=1 Khj

(xj).
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the most probable situations that might happen in practice.

1st Naïve Approach: Ignoring Both Length Bias and Covariate Bias

Suppose that both the length bias and the induced covariate bias are ignored, and the
estimator r̂(x0) is applied disregarding the biases. Consider, first, the numerator of equation

(4.24), multiplied by the reciprocal of the sample size n: 1
n

n∑
i=1

K
h
(x0− x

i
)y
i
. Since the data

are length biased, this expression, in fact, estimates E ∗
X,Ỹ |T

[y K
h
(x0 − x)]. Opening up the

last expression, we have that

E ∗
X,Ỹ |T

[
y K

h
(x0 − x)

]
=
∫
v K

h
(x0 − u) f ∗

X,Ỹ |T
(u, v) d(u, v)

= 1
µ

∫
u

∫
v
v2K

h
(x0 − u) f

Y |X(v | u) fX(u) dv du

= 1
µ
EX,Y

[
y2K

h
(x0 − x)

]
= 1
µ
EX

[
K
h
(x0 − x) E

Y |X(y2 | X = x)
]
.

In a similar way, the denominator of equation (4.24), 1
n

n∑
i=1

K
h
(x0 − x

i
), can be shown to

equal E ∗
X|T

[K
h
(x0 − x)], where

E ∗
X|T

[K
h
(x0 − x)] = 1

µ
EX

[
µ(x)K

h
(x0 − x)

]
. (4.26)

Now, if r̂naïve(x0) denotes the naïve estimator inspired by equation (4.24), i.e.,

r̂naïve(x0) :=
∑n
i=1Kh

(x0 − x
i
)y
i∑n

i=1Kh
(x0 − x

i
) , (4.27)

then, in fact, instead of r(x0) one estimates

EX,Y

[
y2K

h
(x0 − x)

]
EX

[
µ(x)K

h
(x0 − x)

] ,
which is, asymptotically, equal to

E
Y |X

[
y2 | X = x0

]
E
Y |X

[
y | X = x0

] .
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2nd Naïve Approach: Ignoring Covariate Bias

The next scenario to be considered is when takes into account the length bias correctly, but
ignores the induced covariate bias. Note that this is, perhaps, the most common mistake
that can occur in practice.

Taking care of the length bias but ignoring the covariate bias at the same time means that
in the numerator of equation (4.25), i.e.,

EX,Y

[
y K

h
(x0 − x)

]
=
∫

u

∫
v
v K

h
(x0 − u) f

Y |X(v | u)fX(u) dv du

f
Y |X has been correctly plugged in by properly reweighing the observed length-biased condi-
tional distribution f

Ỹ |
∗
X
, however, instead of fX, mistakenly, f ∗

X|T
has been used. This yields

the following:

∫
u

∫
v
vK

h
(x0 − u) f

Y |X(v | u) µ(u)
µ

fX(u) dv du

= 1
µ

∫
u

[∫
v
v f

Y |X(v | u) dv
]
µ(u)K

h
(x0 − u) fX(u) du

= 1
µ
EX

[
µ(x)2K

h
(x0 − x)

]
.

The denominator remains as in the previous case, expressed in equation (4.26). Consequently,
applying the naïve estimator r̂naïve(x0), defined by equation (4.27), results in the estimation
of

EX

[
µ(x)2K

h
(x0 − x)

]
EX

[
µ(x)K

h
(x0 − x)

] ,
instead of r(x0).

Proper Approach: The Corrected Estimator

To correct the estimation, one needs to consider the following estimator that can be easily
shown to be the right choice:

r̂
LB

(x0) =
∑n
i=1Kh

(x0 − x
i
)∑n

i=1 y
−1
i K

h
(x0 − x

i
)
.
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4.3.3 Regression Estimation with Length Bias and Right Censoring

When data are right censored, the situation is different since, apparently, for part of the
data the information about lifetime is only partially available. Nonetheless, we will show
that, surprisingly interesting, one can rely only on the failed portion of the data in order
to estimate the regression function even when some individuals are right censored. This is
because, first, based on equation (4.25), for computing r(x0) the unbiased joint distribution
of X, Y is needed. On the other hand, equation (4.14) illustrated that FX,Y may be expressed,
solely, by the biased joint distribution of the failed subjects F̃1.

However, one needs the survival function of the residual censoring C since as shown in
equation (4.14), F̃1 also depends on the residual censoring distribution. Recall that index 1
represented the failure, i.e., δ = 1. A slight modification of equation (4.13), provides that

f ∗
X,Ỹ ,δ|T

(x, y, δ = 1) =
fX,Y (x, y)

µ
ζ(y),

where ζ(y) was defined to be a function of the survival function of the residual censoring
time, i.e.,

ζ(y) =
∫ y

0
S
C

(r) dr =
∫ y

0
P(C > r) dr.

Therefore, one can write that

EX,Y

[
y K

h
(x0 − x)

]
=
∫

u,v

v K
h
(x0 − u) dFX,Y (u, v)

= µ
∫

u,v

v

ζ(v) Kh
(x0 − u) f ∗

X,Ỹ ,δ|T
(u, v, δ = 1) d(u, v)

= µE ∗
X,Ỹ ,δ|T

[
y

ζ(y)Kh
(x0 − x)1(δ = 1)

]
.

In a similar way, one can easily show that

EX[K
h
(x0 − x)] = EX,Y [K

h
(x0 − x)] = µE ∗

X,Ỹ ,δ|T

[
1

ζ(y)Kh
(x0 − x)1(δ = 1)

]
.

The last two equations suggest that the following estimator can actually estimate r(x0)
correctly:

r̂
LBRC

(x0) =

∑
i:δi=1

y
i
[ζ(y

i
)]−1K

h
(x0 − x

i
)∑

i:δi=1
[ζ(y

i
)]−1K

h
(x0 − x

i
)
.
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CHAPTER 5 VARIABLE SELECTION IN LBRC-C REGRESSION
SETTING

The problem of variable or feature selection in both statistics and machine learning is of
significant importance from the inferential as well as the computational perspectives [Sauer
et al., 2013, Chowdhury and Turin, 2020, Genuer et al., 2010a, Meyer et al., 2019]. Moreover,
from the inferential point of view, both of the so-called descriptive and predictive models
might benefit from variable selection, considerably. Also, variable selection might be applied
in both classification and regression problems. Examples of incentives to select a subset
of variables include (i) to detect the main risk factors responsible for developing a health
condition, (ii) to initiate appropriate preventive measures to avoid adverse outcomes of a
treatment, (iii) to reduce the variation of predictions due to rather small sample size compared
to the number of features, (iv) to gain interpretability, (v) to gain computational efficiency
and to reduce the training and testing time, (vi) to avoid obsolete model complexity, and
consequently, to reduce the chance of overfitting. Especially, due to new data collecting
technologies, high-dimensional data become more prevalent in numerous areas, in which case
variable selection may play a crucial role [Zhang et al., 2008]. For different applications of
variable selection, one may check Akarachantachote et al. [2014], Genuer et al. [2010b], Lu
and Petkova [2014], Meyer et al. [2019], among others. The aforementioned examples are
some of the most important purposes due to which variable selection might be performed.
Nonetheless, reasons for variable selection are not restricted to the items on this list.

5.1 Conditional and Unconditional Approaches to Variable Selection

The core topic of the current chapter is variable selection in the context of explicit regression
analysis (defined in Section 4.3) of LBRC-C data. More precisely, two methods of variable
selection in the context of length-biased, and right-censored time-to-event data are considered
and their properties in terms of selecting the correct model, defined later, are investigated in
detail. Both of the methods are based on the MLE.

A key aspect of the discussion in this chapter is that it was motivated by the classical
approaches to the regression analysis of time-to-event data, especially, the so-called AFT
models. Hence, modelling the survival function, or equivalently the distribution function,
is the center of attention. Additionally, due to the parametric nature of the analysis, it
is assumed that the response distribution belongs to a priori known family of parametric
distributions. Nonetheless, using the techniques provided in the previous chapter many of
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the results obtained in the present chapter can be modified to suit the non-parametric or
semi-parametric frameworks.

Once the parametric paradigm is considered, MLE becomes our central inferential machinery
Vapnik [1998]. The MLE is truly considered as the essence of inference in parametric statistics
for its distinctively excellent conceptual and technical properties, which can be checked in
many classical texts [Wilks, 1943, Lehmann, 1999, 1983, Lehmann and Casella, 1998, Casella
and Berger, 2002]. Besides its inferential power, it provides a very intuitive and naturally
justifiable tool for analysis in the parametric framework. To see this, one simply needs to
analyze and to understand the definition of the likelihood function. Nevertheless, it will be
shown that in case of length-biased sampling, basing estimation on likelihood requires paying
extra attention to the covariate bias induced by the sampling scheme.

Now, let us elaborate on the two approaches we consider. One, which is referred to as the
conventional approach, involves conditioning the likelihood function on the distribution of the
covariates, while the second employs the joint likelihood of the covariates and the response.
This second approach will be called the joint approach. These two criteria, differ in one
important respect as follows: The joint likelihood function fuses, properly, with the covariate
bias, whereas the conditional one fails to take this effect into account. While the joint
approach was initially proposed, by Bergeron [2006] and Bergeron et al. [2008], to estimate
the parameters in regression analysis of LBRC-C data, here in this work, we generalize it to
be applied to the problem of variable selection when data are LBRC-C.

It turns out that the question of the potential effects of the covariate bias had not received
much attention prior to Bergeron et al. [2008]. In fact, Begg and Gray [1987] seem to be the
only authors accounting for the covariate bias in the estimation of odds ratio in a prevalent
cohort case-control study. Nevertheless, the problem of parameter estimation as well as
variable selection, classification, and the rest of the problems considered in our research were
not studied, previously.

In terms of parameter estimation, Bergeron [2006] and Bergeron et al. [2008] thoroughly
investigated the implications of estimating parameters by means of the joint approach and
derived its distinctions with the conventional one. In particular, they showed that with
left truncation, estimating the parameter based on the conditional likelihood yields biased
estimations since it ignores the information carried by the biased covariates. Moreover, they
established that, in contrast, grounding the analysis in its joint counterpart incorporates this
information into the estimation and produces superior estimations. It appeared that the
conditional likelihood, besides generating biased estimations, negatively affects the efficiency
of the estimation procedure. The loss of efficiency becomes even more problematic when
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the sample size is small. In practice, there are countless occasions where training data is
extremely limited and, therefore, managing the resources at disposal turns to be crucial.

For the first time in the literature, the present work provides a novel method of selection
that generalizes the application of the joint likelihood to the feature selection problem in
the setting of interest, i.e., LBRC-C data. It is worth mentioning that besides variable
selection and regression, in general, classification of lifetimes in presence of length bias and
right censoring has not been studied in the literature either. Here, while an in-depth study
variable selection is provided, the classification problem is left for future research. In the
context of variable selection, our research, specifically, concludes that the joint approach is
the superior method, compared to the conventional one, in selecting the correct model, in the
sense explained later. The technical details are provided in the remainder of this chapter.

The final section of this chapter draws a comparison between the two approaches by a brief
simulation study, which confirms the theoretical expectations, especially, with small samples.
This section highlights the use of information criteria constructed based on the likelihoods
discussed earlier for selecting the optimal subset of the original variables. Particularly, special
attention is paid to the well-known AIC and BIC, introduced by Akaike [1974] and [Schwarz,
1978], respectively. The reason is that, firstly, both of these criteria are considered main-
stream choices for model selection (including variable selection), and hence, are very popular.
Secondly, they constitute a major base for many other criteria which were developed later in
order to improve the performance of the AIC and BIC in specific respects.

Despite being popular in practice, applying such criteria, like the AIC and BIC, swiftly
becomes expensive and inefficient as the dimension of the covariate vector increases. The
reason is that, as these criteria were initially created for model selection, they do not select
variable at the same time as they estimate the parameters, which means they must be
iteratively applied to each subset of the original variables, separately, in order to estimate
the parameters first, and only then different models, which are different subsets of features,
might be compared according to their likelihoods. Therefore, for higher dimensions, the
direction of focus should be switched towards methods that perform the estimation and
variable selection simultaneously. Examples of such criteria include the LASSO [Santosa
and Symes, 1986, Tibshirani, 1996], the Adaptive LASSO [Zou, 2006], the Smoothly Clipped
Absolute Deviation (SCAD) [Fan and Li, 2001], the Group LASSO [Yuan and Lin, 2006], and
the Elastic Net method introduced by [Zou and Hastie, 2005].

Before, formalizing the problem of variable selection in the next section, let us briefly intro-
duce the conditional and the joint likelihood. The conditional approach is, in fact, the one
which is predominantly used in the regression analysis of survival time. The core part of this
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approach is the fact that the parameter estimation is performed utilizing the conditional dis-
tribution of the response Y

i
, conditioned on the covariate X

i
. Let L

I
denote the conditional

likelihood function1 and {(x
i
, y
i
) : i = 1, 2, . . . , n} be a realized sample dataset. Then,

L
I
(θ) =

n∏
i=1

f(y
i
| x

i
; θ),

where f is a generic density and θ, the vector of free parameters. Similarly, one defines the
joint likelihood based on the joint distribution of Y

i
and X

i
as follows:

L
J
(θ) =

n∏
i=1

f(x
i
, y
i
; θ).

Note that these definitions are general and does not depend on specific distribution of data.
In the following section, the problem of variable selection is formalized in detail.

5.2 General Statement of the Variable Selection Problem

Consider the regression equation

Y = β0 + β1X1 + · · ·+ β
d
X
d

+ ε, (5.1)

where Y ∈ R is the response, X = (X1, . . . , Xd
) ∈ Rd is a vector of covariates, β =

(β0, . . . , βd) ∈ B ⊂ Rd+1 denotes the regression coefficients, and ε represents a suitable
error term independent from X. Hence, the regression function r

β
, which is a real-valued

linear function of β and X, has an explicit parametric form.

r
β
(X) = β0 + β1X1 + · · ·+ β

d
X
d
.

Suppose that the sample data provide a complete set of d covariates for each subject, i.e., a
vector X

i
= (X

i1, . . . , Xid
) is associated with each subject i. Here, the sample size is usually

assumed to be n, unless otherwise is specified. The regression model specified by equation
(5.1) is called a full model if none of X1, . . . , Xd

is excluded form the model. In a certain
sense, the full model is the most complex model one could possibly build with the data in
hand.2

1The subscript I in LI is for ignorance.
2Here, by complexity we mean number of the variables a model contains. This should not be confused

with the concept of complexity in VC theory.
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Assuming one-to-one correspondence between the set of functions r
β
and the parameter space

B, function r
β
can be represented uniquely by its parameter, in which case the problem of

variable selection could be formalized as follows: Denote I = {1, 2, . . . , d} and let β0 =
(β0

0, . . . ,β
0
d
) be the true regression coefficient vector, some of whose entries may possibly

be zero. Recall that B ⊂ Rd+1 is the coefficient space. For any β ∈ B define

N (β) := {j ∈ I| β
j
6= 0}.

In other words, N extracts indices of non-zero entries of each coefficient vector β, regardless
of its intercept β0. For example, if β = (3, 0,−8.1, 7.33), then, d = 3, I = {1, 2, 3}, and
N (β) = {2, 3}.

It is easy to see that N (β) provides a partition of I, i.e., N (β) and its complement I \N (β),
for any β ∈ B. Equivalently, N partitions B into 2d equivalence classes according to zero
and non-zero indices of coefficients. That is, for any α ∈ B, its equivalence class is

B
α

:= [α] = {β ∈ B : N (β) = N (α)} . (5.2)

Excluding the trivial, and obviously, uninteresting class of B0, where 0 denotes the d-
dimensional zero vector, leaves one with 2d − 1 classes of coefficients.

Variable (feature) selection in the context of regression problem (5.1) involves finding N (β0)
from the provided set of sample data. There is an important point worth mentioning here:
In the variable-selection literature, different criteria have been used in order to measure how
well a selection procedure performs. What criterion to pick for evaluation must be decided
based on the context and objective of the regression analysis. Further, we introduce a couple
of these criteria that are commonly used in variable selection problems.

The first set of criteria is motivated by prediction ability of a model when new input vectors
are given. Therefore, in this case the generalizability of a model is emphasized. Accordingly,
a model β ∈ B is said to be an overfitted model if N (β0) ⊂ N (β). That is, if an entry of the
overfitted β0 differs from zero, then the corresponding entry of β is non-zero too. Similarly,
β is called a fitted model if N (β0) = N (β), i.e., if β and β0 belong to the same equivalence
class of B induced by N . And lastly, β will be called underfitted if it is neither overfitted nor
fitted, i.e., there is at least one non-zero entry of β0 which has been set to zero in β [Guyon
and Yao, 1999, Aghababaei Jazi, 2019, Bozdogan and Haughton, 1998].

Later in this chapter, it will be demonstrated that variable selection based on L
J
is, consis-

tently, less susceptible to underfitting compared to the selection based on L
I
. This aspect

of the difference between the two procedures becomes more meaningful when the objective
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of the analysis is, e.g., to detect the true risk factors related to a condition or disease. This
is the setting where prediction of the survival time is not the main objective of the analysis,
but rather recognition of possibly influential factors on lifetime.

Shao [1993] provides another division of the parameter space, where B is divided into two
partitions of correct and incorrect models: Any β ∈ B that satisfies the inclusion N (β0) ⊆
N (β) is called a correct model. This is clearly equivalent to the union of the fitted and
overfitted models above. Subsequently, any model that is not a correct model is regarded as
incorrect, i.e., the set of underfitted models. In this setting, whose main concern is apparently
not to miss out on influential factors, our results on the difference between the conditional
and the joint approaches become even more highlighted since L

I
has a stronger tendency to

select incorrect models compared to L
J
.

5.3 Likelihood-Based Selection Procedure

As mentioned earlier, variable selection might be considered as a special case of model selec-
tion. This means that one may use model selection criteria for variable selection as well. For
example, the information-based, model selection criteria, such as the AIC, the BIC, as well as
their variants can, also, be applied to select a subset of the available variables. On the other
hand, there are criteria that have been developed specifically for variable selection, such as
the LASSO. In addition, both the variable and model selection criteria may be constructed
based on the MLE [Fan and Peng, 2004]. However, it is important to notice that the selection
procedure is different depending on whether a model or variable selection criterion is used.
In what follows, this difference is indicated, briefly.

A likelihood-based model selection criterion is, usually, comprised of two components: (i) The
so-called goodness-of-fit term, which is based on the (log-)likelihood function or a function
of it, and (ii) a regularization term, which is essentially a penalty on the model complexity.
Therefore, a generic model selection principle M, based on likelihood estimation is of the
following general form:

∀θ ∈ Θ : C (θ;D) := L
(
θ̂

MLE

)
− P (η, |θ|), (5.3)

where θ̂
MLE

is the MLE of θ, L is a function of the likelihood function, P (η, |θ|) a penalty
term, which may or may not depend on the sample size n, and |θ| represents the model
complexity, which is usually the dimension of the parameter θ. Note that, instead of β, the
model is represented by θ to emphasize that it does not necessarily need to be the regression
coefficient.
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When a set of candidate models ∆ ⊂ Θ is given, model selection employing the measure
(5.3) is equivalent to solving the following optimization problem:

arg max
θ∈∆
{C(θ;D)}. (5.4)

When such a criterion is used for variable selection, then each subset of the original d variables
constitute a model that corresponds to a certain equivalent class B

β
, defined by (5.2). After

solving problem (5.4), the equivalence class corresponding to the solution of (5.4) is used to
extract the non-zero coefficients. As one can see, this is a tedious procedure as solving the
optimization problem involves calculating C for every member of ∆. This is the reason for
our earlier claim that as the number of covariates increases, using information-based model
selection criteria, such as AIC or BIC, for variable selection becomes inefficient very quickly.

On the other hand, variable-selection-specific criteria perform the estimation and variable
selection at the same time, as a result of which, the necessity of iterating the calculation for
each individual subset of variables is eliminated. Variable selection criteria, also, posses two
components, i.e.,

C(β;D) := `(β;D)−
d∑
j=1
P
η
(|β

j
|),

where β = (β1, . . . , βd), `(β;D) is the log-likelihood of parameter β given data D = {z
i

:
i = 1, 2, . . . , n}, P

η
is a penalty function, possibly depending on n, and η > 0 is a tuning

parameter [Fan and Peng, 2004]. Here, we also solve an optimization problem defined as

arg max
β∈B
{C(β;D)}.

The criterion is fed by the full set of variables, immediately, but the penalty term is designed
in a way that some of the coefficients are forcibly shrank to zero, during the estimation step,
given the tuning parameter is tuned properly. Variable selection criteria has been studied and
fully explained in numerous articles and textbooks, so we skip further details in this work.
Interested reader may refer to James et al. [2013], Hastie et al. [2009], Desboulets [2018].

5.4 The Two Likelihoods and their Discrepancy Due to Bias

This section is devoted to a more detailed analysis of the conditional and the joint likelihoods
L
I
and L

J
. Particularly, we discuss the differences between the two and explain the problem

resulted from applying the wrong likelihood, i.e., the conditional one, in regression analysis
of LBRC-C data. Eventually, these distinctions will be used to show that this is an issue
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affecting not only parameter estimation, as correctly pointed out by Bergeron et al. [2008],
Bergeron [2006], but also spreads to variable selection (and presumably, classification) if
analysis is base on the MLE. First, the exact forms of L

I
and L

J
are derived. These are the

specific forms resulted from the data being length biased and right censored.

5.4.1 Derivation of the Conditional and Unconditional Likelihoods

Let us start from the case where there are no covariates in the sample data, i.e., the available
data are of the following form: {(Ã

i
, R̃

i
∧ C

i
, δ

i
) : i = 1, . . . , n}. Vardi [1989] derived the

likelihood under multiplicative censoring as follows:

L(θ) =
n∏
i=1


[
y
i
f
Y

(y
i
;θ)

µ(θ)

]δi

 ∫
v≥ai+ci

vf
Y

(v;θ)
µ(θ) dv


1−δi

 , (5.5)

where µ(θ) = E
Y

(y), i.e., the overall mean lifetime in the incident population. Vardi de-
scribed multiplicative sampling as follows. Let Ỹ1, . . . , Ỹn1+n2

be identically distributed ran-
dom variables and η1, . . . , ηn1

i.i.d.∼ U(0, 1). Then, we observe ξ1, . . . , ξn1
, Ỹ

n1+1, . . . , Ỹn1+n2
,

with ξ
i

= η
i
Ỹ
i
, i = 1, . . . , n1. In cross-sectional sampling context, this is equivalent to re-

cruiting n1 + n2 individuals into the study and censoring n1 of them immediately. On the
other hand, a more flexible approach would let all individuals remain in the study until they
have either failed or been censored. In fact, in contrast to the multiplicative censoring, this
allows for a random number of censored and failed subjects, i.e., n

c
and n

f
, respectively.

This is a more general setting and as mentioned in subsection 4.1.1, is the setting we have
adopted here.

It is known that length-biased sampling causes informative censoring; likewise, is multi-
plicative censoring as the censoring and survival times are clearly dependent, as shown in
subsection 4.1.1. Although, Vardi’s likelihood (5.5) correctly accounts for the informativeness
of censoring, it cannot be incautiously extended to the case with covariates, as we will see
shortly.

Now, let a vector of covariates
∗
X
i
is also provided for each data point in the sample, i.e.,

{(
∗
X
i
, Ã

i
, R̃

i
∧ C

i
, δ
i
) : i = 1, . . . , n}. As mentioned earlier, in regression analysis of LBRC-C

data, one would conventionally condition the likelihood function on
∗
X
i
. A naïve extension
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of Vardi’s likelihood to the new case, where covariates are also present, is as follows then:

L
I
(θ) =

n∏
i=1


[
y
i
f
Y

(y
i
| x

i
;θ)

µ(x
i
;θ)

]δi

 ∫
v≥ai+ci

vf
Y

(v | x
i
;θ)

µ(x
i
;θ) dv


1−δi

 , (5.6)

where µ(x
i
;θ) = E

Y |X(y | X = x
i
). The likelihood (5.6) seems to be a natural extension of

Vardi’s likelihood (5.5). However, the problem is that it ignores the information provided
by the sampling distribution of the covariates. This is, as claimed multiple times before, is
the main source of the problem. To understand this, we need to recall a fact, which was
discussed at the beginning of Chapter 3: While the generator assigns responses according
to the conditional distribution of the response, given the covariate, what is observed by the
learning machine is a set of examples coming from the joint distribution. This is aligned with
the form of each observation stated above, i.e., (

∗
X
i
, Ã

i
, R̃

i
∧ C

i
, δ
i
).

Therefore, it must be easy to see why one should use the joint likelihood, and not the con-
ditional one, in the first place. Now, one may wonder how this simple fact could possibly
be ignored in the regression analysis of LBRC-C data. As matter of fact, when there is no
covariate bias, as long as maximizing the likelihood function is concerned, the conditional
and joint likelihoods are equivalent, optimization-wise. That is, maximizing the conditional
likelihood provides the same result as maximizing the joint one. There is a subtle difference
between the unbiased and the biased cases that leads to this confusion. As we will clarify in
the following passages, when data are collected through the prevalent-cohort, cross-sectional
sampling design, due to the induced covariate bias, the two likelihoods are no longer equiva-
lent.

As the first step, check that the joint likelihood, based on observations, is

L
J
(θ) : =

n∏
i=1

f ∗
X,Ã,R̃∧C,δ|T

(x
i
, a

i
, r
i
∧ c

i
, δ
i
;θ)

=
n∏
i=1

[
f ∗

X,Ỹ |T
(x

i
, y
i
;θ)

]δi

 ∫
v≥ai+ci

f ∗
X,Ỹ |T

(x
i
, v;θ) dv


1−δi

=
n∏
i=1

[
f
Ỹ |
∗
X,T

(y
i
| x

i
; θ)

]δi

 ∫
v≥ai+ci

f
Ỹ |
∗
X,T

(v | x
i
;θ) dv


1−δi

f ∗
X|T

(x
i
; θ)

=
n∏
i=1

yifY |X(y
i
| x

i
;θ)

µ(x
i
;θ)

δi
 ∫
v≥ai+ci

vf
Y |X(v | x

i
;θ)

µ(x
i
;θ) dv


1−δi

f ∗
X|T

(x
i
; θ).

(5.7)
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Now, equations (5.6) and (5.7) imply

L
J
(θ) = L

I
(θ)

n∏
i=1

f ∗
X|T

(x
i
;θ), (5.8)

where f ∗
X|T

(x
i
;θ) is the density of the biased covariate. Clearly, L

J
is proportional to L

I
,

however, due to the induced covariate bias, f ∗
X|T

(x
i
;θ) is informative, i.e., it depends on the

parameter θ. When there is no bias, this last term does not depend on the parameter θ
and maximizing either of L

I
or L

J
provides the same result. In fact, for unbiased data, say

D = {(X
i
, A

i
, R

i
∧ C

i
, δ
i

: i = 1, 2, . . . , n}, holds the following:

L
J
(θ;D) = L

I
(θ;D)

n∏
i=1

fX(x
i
),

where the X does not depend on θ. This might be not readily obvious why the distribu-
tion of the covariates

∗
X is dependent on the parameter. Intuitively, this happens because

longer survivors, which are favored by the length-biased sampling procedure, bring in with
themselves those values of the covariates, which are highly associated with longer lifetimes.

Apart from this intuitive explanation, one can mathematically demonstrate the dependence
of f ∗

X
on θ as follows: Note that be definition, we have that

f ∗
X|T

(x;θ) = f(X = x | T ;θ)

= P(T | X = x;θ)f(X = x;θ)
P(T ;θ)

,

where f denotes a generic distribution. Note that the second term in the numerator, i.e.,
f(X = x;θ), is free from truncation T . In other words, it refers to the covariate distribution
in the incident population, and consequently, does not depend on θ either. Hence,

f ∗
X|T

(x;θ) =
P(T | X = x;θ) fX(x)

P(T ;θ)
.

Now, applying the law of total probability to the denominator, one obtains that

f ∗
X|T

(x;θ) =
P(T | X = x;θ)fX(x)∫
P(T | u;θ)fX(u) du

.

Recall that T represents the event Y ≥ A. Let τ be a large constant that covers the range of
possible lifetimes in the target population. Since Y and A are independent and A is uniformly
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distributed (stationarity assumption), one can check that

P(T | X = x;θ) = 1
τ
µ(x;θ).

Now, plugging the last expression in equation (5.9) yields

f ∗
X|T

(x;θ) =
1
τ
µ(x;θ)fX(x)

1
τ

∫
µ(u;θ)fX(u) du

=
µ(x;θ)fX(x)

µ(θ) ,

(5.9)

where µ(x;θ) = E
Y |X(y|x) and µ(θ) = EX[µ(x;θ)]. According to equation (5.9), the preva-

lence of the sampled covariates is proportional to the magnitude of µ(x;θ)
µ(θ) , which contains

information about the parameter θ. This information is, also, reflected in the likelihood
function as equations (5.8) and (5.9) imply that

L
J
(θ) = L

I
(θ)

n∏
i=1

µ(x
i
;θ)fX(x

i
)

µ(θ) , (5.10)

which provides the complete relation between the conditional and the joint likelihood func-
tions. Equation (5.10), clearly, shows the distinction between the conditional and joint
likelihoods and suggests that, despite the conventional regression approach, when there is no
covariate bias involved, L

I
and L

J
may lead to different outcomes if being employed as basis

for maximum-likelihood-based estimation for either parameter estimation or even variable
selection. Of course, this distinction is due to the particular sampling procedure we have
adopted.

Next, we give the joint likelihood in terms of the unbiased distribution of the covariates
as well. Although not very common in practice, this might be of interest in cases where
fX is known. Even if this information is not available, Bergeron [2006] provides a way for
estimating fX, empirically from the biased data. Hence, the following form might be useful
in either case. Notice that the next formula is the immediate result of replacing f ∗

X|T
, in

equation (5.7), with what equation (5.9) provided:

L
J
(θ) =

n∏
i=1


[
y
i
f
Y

(y
i
|x
i
;θ)fX(x

i
)

µ(θ)

]δi

 ∫
v≥ai+ci

vf
Y

(v|x
i
;θ)fX(x

i
)

µ(θ) dv


1−δi

 .
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To complete the discussion about the conditional and joint approaches, we will next derive the
corresponding log-likelihood functions. The reason is that the maximum likelihood estimates
are most often derived by maximizing the log-likelihood function rather than the likelihood
itself. This, especially, would come with significant computational advantages, compared to
directly using the likelihood function for both purposes, i.e., the estimation of the parameters
and selection of the optimal subset of covariates.

However, prior to extracting the log-likelihood functions, we would like to make a “formal”
remark. Although this point is of minor importance from the conceptual perspective, when
not properly specified, might be quite confusing. In the upcoming paragraphs, we discussion
this confusion swiftly.

Oftentimes in statistics and particularly in the MLE context, the objective function to be
maximized is neither the likelihood nor the log-likelihood function. Since only parameter-
dependent terms of the (log-)likelihood function are determinant of the final estimates of
the parameters one, usually, gets rid of the parameter-free terms. Nonetheless, authors
usually do not hesitate to refer to these modified versions of the (log-)likelihood functions as
“log-likelihood” or “likelihood” functions, without clearly clarifying that what is utilized as
the objective function for maximization is not, actually, the (log-)likelihood but a modified
(log-)likelihood function that is, optimization-wise, equivalent to the complete likelihood or
log-likelihood functions.In the next paragraph, which is devoted to the extraction of the
log-likelihood functions, we will try to avoid this confusion.

To extract the conditional and joint log-likelihood functions, firstly, notice that both L
I
and

L
J
have parameter-free terms that might be eliminated. The resulted functions do not equal

L
I
and L

J
, but are equivalent to them in terms of maximization over the parameter θ. Hence,

they will be denoted by L∗I and L∗J . That is,

L∗I,n(θ) =
n∏
i=1


[
f
Y

(y
i
|x
i
;θ)

µ(x
i
;θ)

]δi

 ∫
v≥ai+ci

f
Y

(v|x
i
;θ)

µ(x
i
;θ) dv


1−δi

 , (5.11)

and

L∗J,n(θ) =
n∏
i=1


[
f
Y

(y
i
|x
i
;θ)

µ(θ)

]δi

 ∫
v≥ai+ci

f
Y

(v|x
i
;θ)

µ(θ) dv


1−δi

 . (5.12)
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Accordingly, define `∗I,n(θ) := ln[L∗I,n(θ)] and `∗J,n(θ) := ln[L∗J,n(θ)], i.e.,

`∗I,n(θ) =
n∑
i=1

{
δ
i
ln f

Y
(y
i
|x
i
;θ) + (1− δ

i
) ln

[ ∫
v≥ai+ci

f
Y

(v|x
i
;θ) dv

]
− lnµ(x

i
;θ)

}
, (5.13)

and

`∗J,n(θ) =
n∑
i=1

{
δ
i
ln f

Y
(y
i
|x
i
;θ) + (1− δ

i
) ln

[ ∫
v≥ai+ci

f
Y

(v|x
i
;θ) dv

]}
− n lnµ(θ). (5.14)

Obviously, as mentioned before, the following hold:

arg max
θ

`∗I(θ) = arg max
θ
L∗I(θ) = arg max

θ
L
I
(θ),

arg max
θ

`∗J(θ) = arg max
θ
L∗J(θ) = arg max

θ
L
J
(θ).

As one may see in equations (5.11) and (5.12), µ(x
i
;θ) in L∗I,n is replaced with µ(θ) in L∗J,n.

Consequently, `∗I,n and `∗J,n differ from each other in their last terms, i.e., −
n∑
i=1

lnµ(x
i
;θ) is

changed to −n lnµ(θ), as equations (5.13) and (5.14) depict, and apart from this difference,
the rest is the same. For ease, let `∗∩,n denote the common part, i.e.,

`∗∩,n(θ) := δ
i
ln f

Y
(y
i
|x
i
;θ) + (1− δ

i
) ln

[ ∫
v≥ai+ci

f
Y

(v|x
i
;θ) dv

]
,

and then the simplified log-likelihoods can be expressed as

`∗I,n(θ) = `∗∩,n −
n∑
i=1

lnµ(x
i
;θ)

and
`∗J,n(θ) = `∗∩,n − n lnµ(θ). (5.15)

The difference between the last terms is, in fact, the responsible factor for the efficiency gain
in parameter estimation when the joint likelihood is applied in lieu of the conditional one.

Now, let us introduce, very briefly, a few characteristics of L
I
and L

J
, particularly, in con-

nection with parameter estimation. Although our interest lies in variable selection rather
than parameter estimation, a short discussion of these characteristics would be insightful to
understand the related aspects of the variable selection problem. This results are available
in Bergeron [2006].
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5.4.2 Conditional and Unconditional Estimation vs Selection

Now, returning back to the comparison of the two likelihoods, let `
I,n

and `
J,n

denote the
corresponding log-likelihood functions calculated through a sample of size n. Similarly, sup-
pose that θ̂

I,n
and θ̂

J,n
represent the parameter estimates under the conditional and joint

likelihoods, respectively.

Bergeron et al. [2008] discussed that L
I
results in efficiency loss in the estimation of θ, when

applied instead of L
J
. Section 3.2 of Bergeron et al. [2008] provides an analytical example

where θ̂
J,n

is 50% more efficient than its counterpart θ̂
I,n

. However, it was established that,
asymptotically, they provide identical estimates if identifiability is assumed. In particular, it
was demonstrated that

1
n

∣∣∣∣∣ ∂∂θ `I,n(θ)− ∂

∂θ
`
J,n

(θ)
∣∣∣∣∣ a.s.−−→ 0, as n→∞,

that is, θ̂
I,n

and θ̂
J,n

are asymptotically equivalent. Also, it was proved that θ̂
J,n

is an
asymptotic consistent estimator of θ, i.e.,

θ̂
J,n

a.s.−−→ θ, as n→∞.

Obviously, consistency of θ̂
J,n

, together with asymptotic equivalence of the two likelihoods,
guarantee that θ̂

I,n
, also, estimates θ, consistently.

To summarize, while both likelihoods provide asymptotically consistent estimators, the effi-
ciency is still a big concern since the estimation efficiency loss might be even more destructive
when only a small sample is available. And as it was mentioned earlier, this is a typical sce-
nario in many practical situations. In addition, an important point to note here is that
consistency in parameter estimation does not necessarily leads to variable selection consis-
tency. For a variable selection criterion to be consistent, the penalty term, mentioned earlier,
plays a crucial role. We will elaborate on this point later in this chapter.

5.4.3 Estimation of the Joint Likelihood

Equation (5.15) reveals an important point: In order to estimate `∗J,n(θ), one needs to estimate
the overall mean µ(θ), whose value cannot be directly extracted from prevalent subjects as
due to the length bias the overall mean in the prevalent population is biased upward. As
a result, In the next part, we focus on the estimation of µ(θ) from a sample of LBRC-C
data. Theoretically, there exist two approaches in order to estimate the incident overall
mean; albeit they impose different restrictions, practically speaking. One approach makes
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use of the distribution of the unbiased covariates, while the other one depends on the biased
distribution of the covariates.

First Approach

The incident overall mean µ(θ) was defined to be the expected value of the conditional mean
lifetimes under the unbiased distribution of the covariates, i.e.,

µ(θ) :=EX[µ(x;θ)]

=
∫
µ(u;θ)fX(u) du.

If the unbiased covariate distribution fX is available, µ(θ) can be estimated directly from
the definition. Unfortunately, in many practical scenarios, having this information is just too
unrealistic. On the other hand, we have already mentioned that fX can be estimated from
the biased data provided by Bergeron [2006]. Despite this possibility, we would take another
approach because estimating fX, according to Bergeron’s method, itself adds a considerable
amount of computation, and consequently, decreases the computational efficiency.

Second Approach

On the contrary, the second approach involves using the factorization of f ∗
X
, obtained in

equation (5.9). This way, one can estimate µ(θ) without having to, additionally, estimate
the distribution of the unbiased covariates. Notice that equation (5.9) can be rearranged as

fX(x)
µ(θ) =

f ∗
X

(x;θ)
µ(x;θ) , ∀x.

Integrating both sides yields

[µ(θ)]−1 =
∫ f ∗

X
(u;θ)

µ(u;θ) du = E ∗
X

[µ(x;θ)−1], ∀x,

which, in turn, suggests the following estimator for the overall mean:

µ̂(θ) :=
[

1
n

n∑
i=1

µ(x
i
;θ)−1

]−1

.
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The last equation gives rise to an estimator of `∗J,n defined by

̂̀∗
J,n(θ) := `∗∩,n(θ)− n ln µ̂(θ).

In other words, what we are able to do in practice is to estimate the joint log-likelihood, in
contrast to the typical setting of the MLE. However, in the parametric approach context, the
conditional mean µ(x;θ) is known and does not need to be estimated, which in turn, makes
it possible to calculate the conditional log-likelihood without needing to estimate it.

Now, what is left is to investigate how and why applying the unconditional approach in the
context of variable selection provides better results in terms of selecting the optimal subset
of the available variables.

5.5 Conditional and Unconditional Variable Selection

Albeit the simulation study in section 6 is based on using model selection criteria for variable
selection, we believe that the real effect of replacing L

I
with L

J
should be more visible in

the setting where actual variable selection criteria are used. Next, we discuss this point in
more detail.

With no loss of generality, assume that the free parameter θ consists of the regression co-
efficients only, i.e., θ = β. This is a reasonable assumption since our goal is to study the
effects of using the joint likelihood in variable selection, compared to the conditional one.
Before everything else, let us introduce the variable selection criteria we will consider here.
The following two criteria are constructed based on the conditional and unconditional ap-
proaches, respectively, and are supposed to be applied to a set of independent LBRC-C
training examples:

C
I
(β) := `∗I,n(β)− P (η,β), (5.16)

and
C
J
(β) := ̂̀∗

J,n(β)− P (η,β), (5.17)

with P (η,β) being a penalty term defined by

P (η,β) :=
d∑
j=1
P
η
(|β

j
|)

where P
η
is a suitable penalizing function, possibly depending on n, and η > 0 is a tuning

parameter. The penalty term P (η,β) must satisfy some certain conditions in order for the
selection criteria to work properly. Here, we assume that these conditions hold and skip
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discussing the details of necessary conditions a penalty term must satisfy as these technical
details are out of our interest in this note. One may refer to Antoniadis and Fan [2001] for
a detailed discussion of these criteria.

In order to select variables, one maximizes the criteria above over the parameter space B.
Here, we assume that the value chosen for the tuning parameter η is the same in both
criteria (5.16) and (5.17). The hypothesis of interest is that, with the same tuning parameter
η, criterion C

I
is more probable to select an incorrect or underfitted model, in comparison

with C
J
. In the sequel, we introduce and discuss a fact that we believe is, probably, one of the

key factors which may explain the correctness of the hypothesis. Note that what follows does
not prove the validity of the aforementioned hypothesis. Providing a rigorous mathematical
proof requires further investigation. Nevertheless, the simulation study provided in the next
chapter seems to be aligned with our hypothesis.

We state the following lemma for an arbitrary vector of free parameters, i.e., θ might include
not only the regression coefficients.

Proposition 1. Let `∗I,n(θ) and ̂̀∗J,n(θ) be as defined earlier. Then, for any given set of data
D and for any parameter θ ∈ Θ, holds the following:

`∗I,n(θ) ≤ ̂̀∗
J,n(θ), (5.18)

with equality happening if and only if µ(x1;θ) = µ(x2;θ) = · · · = µ(x
n
;θ), i.e., if all the

conditional means in the sample are the same.

Proof. To see that, denote M = {µ(x
i
;θ) : i = 1, . . . , n}, i.e., the set of all conditional

lifetimes corresponding to each subject in sample data. Let G, and H be the geometric and
the harmonic mean of M , respectively:

G =
[
n∏
i=1

µ(x
i
;θ)

] 1
n

, and H =
[

1
n

n∑
i=1

µ(x
i
;θ)−1

]−1

.

Recall that in our setting both G and H are non-negative. Both `∗I,n and ̂̀∗J,n can be rephrased
easily by means of G and H as follows:

`∗I,n(θ) = `∗∩,n(θ)−
n∑
i=1

lnµ(x
i
;θ)

= `∗∩,n(θ)− lnGn,
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and

̂̀∗
J,n(θ) = `∗∩,n(θ)− n ln µ̂(θ)

= `∗∩,n(θ)− lnHn.

This two equations, together with the well-known fact that 0 ≤ H ≤ G, imply inequality
(5.18), immediately.

Now, let us briefly discuss the impact of the employment of C
J
instead of C

I
. Since, for any

β ∈ B, we have that `∗I,n(β) ≤ ̂̀∗
J,n(β), when one maximizes these criteria, the penalty term

P (η,β) might appear to impose heavier penalties to compensate for smaller `∗I,n(β) in C
I
(β)

compared to ̂̀∗J,n(β) in C
J
(β). This heavier penalty may result in stronger shrinkage of the

coefficient β in the conditional criterion C
I
. Unfortunately, this is not enough to deduce that

C
I
is more probable to zero out coefficients in comparison to its joint counterpart.

While Proposition 1 point-wise information on the distinction between `∗I,n and ̂̀∗
J,n, i.e., at

each β ∈ B, what also needs to be investigated is possible geometrical differences between
the two functions form the global perspective. This question as well as some other important
questions regarding the effects of the joint approach on variable selection, in comparison to
the conditional one, are subject to further research in future.
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CHAPTER 6 A BRIEF SIMULATION STUDY

Now, let us consider selecting variable by applying model selection criteria, such as the AIC
and the BIC. Note that the AIC and BIC are essentially model selection criteria, but clearly
could be used for selecting variables too. All in all, variable selection is a special case of
model selection.

As we have already mentioned, in practice, using the likes of these two criteria for variable
selection in high-dimensional data is too wasteful. Nonetheless, it would be insightful to study
the distinctions between the behaviours of the considered conditional and joint likelihoods
in the context of variable selection by the AIC or BIC for the following reason: Studying
the BIC, for example, makes it possible to follow changes in the BIC values as different
combinations of variables are included in the model. This is not possible if one uses the
criteria designed specifically for variable selection like the LASSO or SCAD. The reason is
that, with these criteria, the selection and estimation take place simultaneously, as explained
earlier in this chapter.

In the simulation study, provided in subsection 6, we focus on the BIC for the reasons
discussed above.

In this numerical example, we illustrate how the choice of the likelihood function, i.e., con-
ditional or joint, would affect the output of the variable selection by the BIC. Further, let
BIC

I
and BIC

J
represent the BIC based on the conditional and joint likelihood, respectively.

6.1 Description of the Incident Population

Here, we assume that the failure time in the incident population follows an exponential
distribution, i.e., Y ∼ Exp(λ), λ > 0. In presence of covariates, instead of assuming a single
exponential distribution for the entire population, we deal with a mixture of exponential
failure times. In other words, given a covariate vector X, an exponential distribution Y |X ∼
Exp(λeXβ) is assumed to underlie the failure times; in other words, the parameter of the
distribution is dependent on the covariates.

To bold the effect of the likelihood on variable selection, we assume that there is no censoring
involved, since the difference in likelihoods is due to the length bias.

Suppose that the true model contains a two-dimensional covariate, i.e., attached to each
failure time Y

i
there is a vector X

i
= (X

i1
, X

i2
) of covariates. Since there is no censoring in-
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volved, each datum might be considered of the form (Y
i
,X

i
). Further, let X

ij
∼ Bernoulli(1

2),
j = 1, 2, and β be the vector of the regression coefficients.

6.2 Derivation of the Likelihoods

We derive `∗I,n and `∗J,n, whose general form was obtained in equations (5.13) and (5.14) for
the case of exponentially distributed data as described in the previous section. Recall that
θ denotes the vector of all parameters, regardless of being known or unknown. Thus, in the
case of exponential distribution θ = (β, λ).

Firstly, let us compute the overall mean µ(θ). Since µ(X
i
;θ) = (λeXiβ)−1, we have that

µ(θ) = EXi
[µ(x

i
;θ)] = λ−1

2d
∑

z∈{0,1}d

e−xβ, (6.1)

where d = dim(X
i
). For the sake of simulation we assumed that X

i
is of dimension two, and

hence, plugging d = 2 in equation (6.1) gives the overall survival time:

µ(θ) = 1
4λ (1 + e−β1 + e−β2 + e−β1−β2).

Following equation (3.13), the density of the length-biased survival time is given by

f
Yi

(y
i
|X∗i = x

i
;θ) = (λexiβ)2y

i
exp(−exiβλy

i
).

Notice that the right-hand side of the last equation equals the density of the Gamma dis-
tribution. It is well known that if Y

i
|X

i
∼ Exp(λeXiβ), then the length-biased sampling

distribution of the lifetimes conditioned on the biased covariate X∗i follows the Gamma dis-
tribution with shape parameter 2 and rate λeX∗i β, i.e., Ỹ

i
|X∗i ∼ Gamma(2, λeX∗i β).

Now, having the density, as well as the conditional and overall means µ(x
i
;θ) and µ(θ),

equation (5.9) gives the biased sampling distribution of the covariates as follows:

P(X∗i = x
i
) = e−xiβ

1 + e−β1 + e−β2 + e−β1−β2
, x

i
∈ {0, 1}2.

Finally, given some training data, consisting of n independently distributed observations, `∗I,n
and `∗J,n can be computed from equations (5.13) and (5.14) as follows:
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`∗I,n(θ) = 2n ln λ+
n∑
i=1

(2x
i
β − exiβλy

i
),

`∗J,n(θ) = 2n(ln 2 + lnλ) +
n∑
i=1

(x
i
β − exiβλy

i
)−

−
n∑
i=1

ln(1 + e−β1 + e−β2 + e−β1−β2).

6.3 Data Simulation Steps

In order to generate one dataset of size n we perform the following steps in the given order:

1. Generation of the Incident Population

(a) Let N is the incident population size. A large enough size must be chosen.
First, generate N covariates X

i
= (X

i1
, X

i2
), i = 1, 2, . . . , N , such that X

ij
∼

Bernoulli(1
2), for j = 1, 2.

(b) Next, fix a value β0 as the true regression coefficient, as well as λ the parameter
of the exponential distribution.

(c) Produce lifetimes Y
i
, i = 1, 2, . . . , N according to Y

i
|X

i
∼ Exp(λeXiβ

0).

(d) Finally, attach the covariates to their corresponding lifetimes to form the incident
population (Y

i
,X

i
), i = 1, 2, . . . , N .

2. Generation of the Truncation Times

(a) First, fix an appropriate value T 0 as the upper bound for the truncation time.

(b) As mentioned before, stationarity requires the truncation times to be uniformly
distributed. Hence, simulate a truncation time A

i
for each observation in the

population such that, A
i
∼ Unif(0, A0), i = 1, 2, . . . , N .

(c) Lastly, complete the generation of the incident population by adding the trunca-
tion times to their corresponding pairs obtained in (1-d) above. Now, each datum
is of the form (Y

i
,X

i
, A

i
).

3. Prevalent Population Extraction
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(a) Detect and separate the subjects for which holds Y
i
> A

i
. These subjects comprise

the prevalent population. The rest of the subjects are said to be left truncated
and will not be considered for sampling.

4. Recruiting Subjects (Sampling)

(a) Randomly, select n subjects from the prevalent cohort. Now, the selected samples
have the desired distribution and, hence, of the form (Ỹ

i
,
∗
X
i
, Ã

i
). See Figure 6.1

for and example of a simulated dataset.

Figure 6.1 Simulated Incident and Prevalent Populations. An example of a simulated population
according to the steps explained in this section is depicted. The horizontal line represents time in days. Zero
is, in fact, the moment when the first onset in the incident population appeared. Day 100 is the recruitment
time, showed by the vertical dashed line. Blue horizontal lines are subjects in the prevalent population, while
their union with light grey lines makes the incident population. For better visualization, subjects have been
sorted by the onset and with a slight vertical distance between each pair.

The procedure above, however, generates one sample set. For illustrating the probability of
choosing an incorrect model, we repeat these steps multiple times, for each sample size n, to
generate enough data. In our simulation, we have used 39 sample sizes, gradually growing
from small amounts to larger ones. For each individual sample size, 50 different datasets
have been generated. More numerical details are provided in later sections.
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6.4 Candidate Models

Denote the set of candidate models byM. Then, we have thatM = {M1,M2,M1,2}, where

M1 =
{
β ∈ B | N (β) = {1}

}
,

M2 =
{
β ∈ B | N (β) = {2}

}
,

M1,2 =
{
β ∈ B | N (β) = {1, 2}

}
.

We choose the true regression coefficients to belong to M1,2 to rule out the possibility of
overfitting by either criteria BIC

I
or BIC

J
. This way we give more chances to both criteria

to underfit as selecting an incorrect model is what we would like to measure and compare
between the two.

6.5 Numerical Results

Here, we present a summary of the numerical results obtained from variable selection using
the Bayesian information criterion (BIC), once based on the conditional likelihood `∗I,n and
then by the joint likelihood ̂̀∗

J,n. The simulation was implemented in the programming
language R.

In simulation, 39 sample sizes n = 50, 75, . . . , 1000, were used. For each n we generated
50 different length-biased datasets according to the procedure demonstrated earlier in this
section. In order to perform selection, the following steps were performed:

for each sample size n = 50, 75, . . . , 1000:

1. for each sample dataset D
n,r
, r = 1, 2, . . . , 50 :

(a) for each model inM:

i. estimate coefficients
ii. compute BIC

I

iii. compute BIC
J

(b) extract the optimal model by BIC
I

(c) extract the optimal model by BIC
J

2. calculate p
I,n

(percentage of incorrect models by BIC
I
)

3. calculate p
J,n

(percentage of incorrect models by BIC
J
)
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Figure 6.2 Incorrect Selections’ Percentages by the Conditional and Joint Approaches.

As sample size n gradually increases, the underfitting percentage for both conditional and
joint likelihoods approaches 0. Clearly, regardless of the value of n, variable selection using
the BIC

J
results in a less percentage of underfitting (the blue line) compared to that of the

BIC
I
(the orange line). Also, when n is smaller, the difference between the percentages is

slightly bigger.
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Table 6.1 Incorrect Selections’ Percentages by the Conditional and Joint Approaches

n p
I,n

p
J,n

50 74 58
75 60 56
100 62 52
125 62 50
150 60 48
175 52 46
200 42 40
225 34 28
250 32 30
275 38 26
300 44 28
325 38 28
350 26 14
375 28 16
400 24 12
425 34 16
450 20 12
475 20 18
500 22 16
525 28 20
550 16 06
575 22 12
600 18 08
625 18 12
650 12 04
675 08 02
700 08 0
725 20 08
750 22 14
775 12 06
800 06 06
825 10 04
850 12 06
875 10 02
900 08 04
925 10 02
950 08 0
975 08 06
1000 02 0



115

CHAPTER 7 A SURVEY OF LEARNING BY NEURAL NETWORKS

In Chapter 3, we have seen that the main problem of statistical learning theory is function
estimation from a limited amount of empirical data. Also, in Subsection 1.5.5, we mentioned
that there exist numerous function estimation methods, such as the MLE, SVMs, and many
others, which may be applied for the purpose of function estimation. The current chapter
focuses on one of the existing estimation tools from empirical data, called mapping neural
networks. A mapping neural network is a perceptron-type neural network, consisting of
multiple connected processing units or nodes, each of which being able to accomplish specific
types of simple computation. An appropriately chosen collection of nodes can approximate
certain classes of functions at any point of their domains with arbitrary precision. In other
words, a mapping neural network might, potentially, provide a concrete tool to solve the
main problem of learning. The mapping neural network’s capability to solve the learning
problem and, especially, their promising performance in several applications has brought
them a tremendous amount of attention.

Efficient use of the neural networks, generally, and in the realm of incomplete data, specif-
ically, requires a deep understanding of the fundamental aspects of the networks. To begin
with, a rigorous and systematic establishment of their mathematical foundations with re-
spect to learning from complete, i.i.d. data should be the very first step. The content of
this chapter can be viewed as an initial attempt to fulfil this first step. Therefore, firstly,
we investigate the mathematical genealogy of the mapping neural networks and, secondly,
provide the connection amongst the results that justify the networks’ estimation capability.
While our eventual objective is to study the mapping neural networks’ ability to learn from
biased and censored data, we restrict this note to the case of i.i.d. data for the time being
and leave this ultimate goal for future studies.

7.1 Function Representation and Related Problems

In 1900, at the International Congress of Mathematicians in Paris, David Hilbert presented 10
unsolved problems that he believed were some of the most fundamental problems of mathe-
matics to be tackled in the 20th century. Later, he published a list of 23 problems, including
those 10 introduced at the conference, which are currently known as Hilbert’s problems.
Some of these problems became part of the most inspirational questions for mathematicians
throughout the entire century and beyond. Subsequently, an immense amount of push and
power has been placed in order to shed some light on these problems. Luckily, these attempts
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paid off and resulted in some influential breakthroughs in other fields of science.

One such problem is the thirteenth problem, which triggered a tremendous amount of interest
amongst numerous mathematicians, which in turn, leads to the creation of a huge corpus of
works contributing to this problem and related issues, primarily, algebraic theory of functions.
We will see that the impacts did not remain limited to the horizons of algebraic theory of
functions but rather spread to other fields, such as functional analysis, topology, abstract
algebra, and etc. A variety of applications were, also, emerged as a result of the endeavours
carried out around the thirteenth problem.

In this section, we study the role of this problem and related issues in the analysis of one of
the most popular algorithms of learning, i.e., the mapping neural networks. In particular, we
investigate how their capability of function estimation might be justified from the theoretical
point of view. We also explore different attempts that have been made to either prove or
disprove Hilbert’s thirteenth problem.

Neural networks began to prosper mainly during the last decades of the previous century.
Nevertheless, one may trace their mathematical roots back to the very beginning of the 20th
century and, in some cases, even earlier. There are a series of mathematical findings that are
related to the computational structure of the mapping neural networks. These are valuable
facts, which can explain some less investigated aspects of the problem regarding the ability
of the mapping neural networks to solve the learning main problem. Here, we discuss the
relations among these events and try to connect the most important ones in a way that
facilitates shaping the skeleton of the neural networks.

To this end, we sometimes flash back to earlier periods of the development of mathematics,
which we suppose may help draw a more accurate picture of the flow of events in its entirety.
Throughout the chapter, the necessary technical details are introduced as the discussion
advances.

7.1.1 Hilbert’s Thirteenth Problem: The Original Statement

Hilbert, formulated the 13th problem under the title “Impossibility of the Solution of the
General Equation of the 7th Degree by Means of Functions of Only 2 Arguments”, according
to the English translation of his work [Hilbert, 1902] 1. Apparently, the problem deals with
the solutions of the following equation:

a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 = 0.
1The original work, in German language, was published earlier in Göttinger Nachrichten [Hilbert, 1900]

and was translated to English by Mary Frances Winston Newson.
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The problem of resolvents was not a new problem at that time and had been studied by many
mathematicians before Hilbert. However, what made Hilbert’s problem distinguished from
the preceding ones was perhaps the novel perspective to the possible solution of polynomial
equations. While the main interest lied in algebraic solvability of polynomial equations before
him, the thirteenth problem focuses on the complexity of the solutions in a certain sense. The
solvability problem involves answering the question about the existence of algebraic solutions
(also, called solutions in radicals): Assume the general polynomial equation of degree n, i.e.,

P
n
(x)[f(x)]n + P

n−1(x)[f(x)]n−1 + · · ·+ P1(x)[f(x)] + P0(x) = 0, (7.1)

where P
n
(x) 6= 0, and P0, . . . , Pn are known polynomials in x with integer or, equivalently,

rational coefficients, f(x) an unknown function of x, and x itself a complex or real variable.
Now, the question of algebraic solvability consists of determining whether the solutions of
equation (7.1) can be expressed by closed-form algebraic expressions over the field of rational
numbers; that is, by finite expressions in terms of the coefficients P0, . . . , Pn and algebraic
operations of addition, subtraction, multiplication, division, and rational exponentiation.

While equations up to degree 4, inclusive, can be solved in radicals, their counterparts of
higher degrees, generally, cannot. This was known long before Hilbert; for example, due to
the Abel-Ruffini theorem, which states that the general polynomials of degree 5 or higher
are not solvable by radicals. A similar but stronger result from Galois theory implies that
unsolvable polynomials of degree 5 or higher constitute an everywhere dense subset of the
polynomials of the corresponding degrees.

However, Hilbert’s concern was different in that the complexity of the solutions, in the sense
of the minimum number of arguments necessary for expressing the solutions, was the central
point of the problem. He stated the problem in connection with nomography [Hilbert, 1902].
A nomogram or nomograph is a tool, invented by Philbert Maurice d’Ocagne, for computing
functions and their roots by means of simple graphical methods. Especially, nomographic
tables could effectively solve the equations whose solutions could be expressed by functions
of maximum two variables. Therefore, it was important for the solutions of an equation to be
expressible by successive compositions of functions of maximum two variables in order to be
solvable by nomographic constructions. This was the motivation behind Hilbert’s thirteenth
problem.

Existence of algebraic solutions for equations of degree less than or equal to 4 implies that
one can reduce their solutions to compositions of bivariate functions. For equations of degree
five and higher, one can apply Tschirnhausen transformations, which readily transform the
equation to a form being solvable by (n− 4)-variate functions. Note that the transformation
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is carried out algebraically. Therefore, the solutions of the equations of degree 5 and 6 could
be immediately represented by functions relying on one and two variables, respectively.

So far, it was showed that all of the equations with degrees strictly less than seven are
solvable by functions of maximum two variables. So, the general equation of degree seven
is the smallest degree that cannot be solved by functions of maximum two variables, and
consequently, by nomographic tables (A Tschirnhausen transformation brings the number of
the needed variables down only to three). This was, in fact, the context which motivated
Hilbert to postulate his conjecture.

As we will see later, the original statement of the thirteenth problem by Hilbert can be
understood differently. This, actually, led to multiple speculations about the problem, each
of which has opened a new direction of viewing and tackling the problem. The following
formulation of the problem is due to the first English translation of Hilbert’s paper, which
was originally published in German [Hilbert, 1900].2 There, Hilbert mentions that it might
be impossible to rewrite the roots by a finite number of successive substitutions of functions
of only two arguments. Immediately, he tries to give a more precise formulation of the
problem, however, the main intention of him remains rather vague, particularly, the specific
assumptions and conditions he meant to impose over the functions in question. Seemingly,
continuity of the functions were added in later versions of the problem, whereas the earlier
ones mentioned that the functions were to be algebraic instead. For more details see Vitushkin
[2004], among others. Finally, here is the original statement of the problem by Hilbert:

“The general equation of the seventh degree, i.e., f 7 + xf 3 + yf 2 + zf + 1 = 0, is
not solvable with the help of any continuous functions of only two arguments.”

7.1.2 Functions of Three Variables Do Not Exist

The title of this subsection has been inspired by a question in the famous book Problems and
Theorems in Analysis I by George Pólya and Gabor Szegö, originally published in Berlin
in 1925. Questions 119 and 119a in the second part of the third chapter of the book deal
with possible representations of functions of 3 variables by means of functions of less than 3
variables [Pólya and Szegö, 1998].

More precisely, let f : R3 → R be an arbitrary function. Is it always possible to find
functions ϕ : R2 → R and ψ : R2 → R such that for every (x, y, z) ∈ R3, holds f(x, y, z) =
ψ(ϕ(x, y), z))? What if all the f, ϕ, and ψ assumed to be continuous?

2The translation [Hilbert, 1902], is due to Mary Frances Winston Newson, the first female American
mathematician who received a PhD in mathematics from a European university (University of Göttingen,
Germany).
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Before looking into the details of the question above, let us state one of the essential concepts
in our further discussion; the so-called superposition of functions:

Definition 13 (Superposition of Functions). Let f : Rd → R be an arbitrary function and
m be a natural such that 1 ≤ m < d. Then, f is said to be a superposition of functions of
maximum m variables if f can be written as

f(x1, . . . , xd) = g0(y(0,1), y(0,2), . . . , y(0,k0)),

where each argument of the function g0 can be decomposed by the recurrent formula

y(β0,...,βi)
= g(β0,...,βi)

(y(β0,...,βi,1), y(β0,...,βi,2), . . . , y(β0,...,βi,ki)
),

where i = 1, . . . , s, with s ∈ N, β0 = 0, β
j

= 1, 2, . . . , k
j−1, with kj−1 being the dimension of

the argument of g(β0,...,βj−1). Note that for any (β0, . . . , βi), we have that K
i
≤ m.

Example 7.1. Here, we provide three simple functions from Rd to R, where d equals 3, 3,
and 4, respectively, and give a superposition of each of them using functions of maximum
two variables.

1. Let f(a, b, c) = b. Define ϕ1(x, y) = x and ϕ2(x, y) = y. Then,

f(a, b, c) = ϕ1

(
ϕ2(a, b), c

)
.

2. If g(a, b, c) = abc, then define a simple function ϕ(x, y) = x, y, and consequently,
g(a, b, c) can be written as follows:

g(a, b, c) = ϕ
(
ϕ(a, b), c

)
.

3. Let
h(a, b, c, d) = −b+

√
b2 − 4ac

( 3
√
d+ a)c

.

Define

ϕ1(x, y) = xy, ϕ2(x, y) = x+ y, ϕ3(x) = 3
√
x,

ϕ4(x, y) = −x+
√
x2 − 4y, ϕ5(x, y) = xy, ϕ6(x) = x−1.
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f (x1, x2, x3, x4) = g0(y(0,1)︸ ︷︷ ︸, y(0,2)︸ ︷︷ ︸, y(0,3)︸ ︷︷ ︸)

︷ ︸︸ ︷
g(0,1)(y(0,1,1)︸ ︷︷ ︸, y(0,1,2)︸ ︷︷ ︸) ︷ ︸︸ ︷

g(0,2)(y(0,2,1)︸ ︷︷ ︸, y(0,2,2)︸ ︷︷ ︸, y(0,2,3)︸ ︷︷ ︸)

︷ ︸︸ ︷
g(0,3)(y(0,3,1)︸ ︷︷ ︸)

︷ ︸︸ ︷
g(0,1,1)(y(0,1,1,1)︸ ︷︷ ︸

x2

, y(0,1,1,2))︸ ︷︷ ︸
x4︷ ︸︸ ︷
g(0,1,2)(y(0,1,2,1)︸ ︷︷ ︸

x1

)

︷ ︸︸ ︷
g(0,2,1)(y(0,2,1,1)︸ ︷︷ ︸

x2

, y(0,2,1,2)︸ ︷︷ ︸
x3

)

︷ ︸︸ ︷
g(0,2,2)(y(0,2,2,1)︸ ︷︷ ︸

x1

, y(0,2,2,2)︸ ︷︷ ︸
x3

)

︷ ︸︸ ︷
g(0,2,3)(y(0,2,3,1)︸ ︷︷ ︸

x2

, y(0,2,3,2)︸ ︷︷ ︸
x3

, y(0,2,3,3)︸ ︷︷ ︸
x4

)

︷ ︸︸ ︷
g(0,3,1)(y(0,3,1,1)︸ ︷︷ ︸

x3

)

Figure 7.1 An Example of Superposition of Functions. Here is an example of superposition of a
function f , of 4 variables x1, x2, x3, x4, by means of functions of maximum 3 variables.

Then, we have that

h(a, b, c, d) = ϕ1

(
ϕ4

(
b, ϕ1(a, c)

)
, ϕ6

(
ϕ5

(
ϕ2

(
ϕ3(d), a

)
, c
)))

.

Now, returning to the question of the existence of functions of three variables, we start from
a simple case, where there is no assumption of continuity. It is not hard to see if discontinued
functions are also allowed, then any function of 3 variables can be written in the form of
superpositions of functions of 2 variables. More details may be found in Pólya and Szegö
[1998], Arnold [2009a].

A surprising point is that most of the earlier results on Hilbert’s 13th problem considered
somehow more restricted forms of superposition, e.g., allowing only single superpositions.
This is the reason why they all approved Hilbert’s conjecture. As Pólya and Szegö mention,
even a very simple function f(x, y, z) = xy+yz+zx cannot be expressed as a single superpo-
sition of bivariate functions. Probably, the most interesting result among this series of results
was the one obtained by A. G. Vitushkin, who succeeded to construct a polynomial for which
there is a neighbourhood of functions, under the metric induced by the uniform norm, non of
which can be decomposed by single superpositions of bivariate continuous functions in any
system of coordinates [Vitushkin, 1955].

There also can be other restrictions imposed on the form of functions employed in superposi-
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tions. For example, a closely related question to the one appeared in Pólya and Szegö’s book
could be obtained by replacing the continuity condition with being analytic. This question
has already been answered by Hilbert himself:

Not all analytic functions of 3 variables can be represented as superpositions of
analytic functions of two variables.

When the space of interest consists of continuous functions, Kolmogorov proved, in 1956,
that every continuous function defined on the d-dimensional unit interval Id = [0, 1]d, with
d ≥ 4, is a superposition of continuous functions of 3 variables. More precisely, he showed
that for any d ≥ 3, there exist real-valued, continuous functions φ

i
, ψ

i
, i = 1, 2, . . . , d, defined

on Id−1, such that any continuous, real-valued function f , defined on Id, can be represented
as follows:

f(x1, x2, . . . , xd) =
d∑
i=1

h
i

[
φ
i
(x1, . . . , xd−1), ψ

i
(x1, . . . , xd−1), x

d

]
, (7.2)

where h
i
s are continuous functions defined on I3 [Kolmogorov, 1961, Theorem 3].3 The details

of the proof provided by Kolmogorov are beyond the scope of our discussion, however, it is
worth noting that it is, particularly, interesting because of its topological nature. (Also, see
Arnold [2009b]).

Shortly after Kolmogorov proved the aforementioned result, i.e., the possibility of reducing
any continuous function of 3 or more variables to a superposition of continuous functions of
3 variables, his student, V. I. Arnold improved it slightly by proving that for the function f ,
defined in equation (7.2), we have that

f(x1, x2, . . . , xd) =
d∑
i=1

{
φ
i
[u
i
(x1, . . . , xd−1), x

d
]

+ ψ
i
[v
i
(x1, . . . , xd−1), x

d
] + χ

i
[w

i
(x1, . . . , xd−1), x

d
]
}
, (7.3)

where all functions φ
i
, ψ

i
, χ

i
, and u

i
, v
i
, w

i
are continuous and real-valued for i = 1, 2, . . . , d

[Arnold, 2009b].

The latter result, actually, answers the question posed by Pólya and Szegö, regarding the
“existence” of functions of three variables. In order to see that, it is enough to rewrite
equation (7.3) for n = 3:

3For d = 3, the result is trivial; the main interest lies in the cases with d ≥ 4.
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f(x1, x2, x3) =
3∑
i=1

{
φ
i
[u
i
(x1, x2), x3] + ψ

i
[v
i
(x1, x2), x3] + χ

i
[w

i
(x1, x2), x3].

}
, (7.4)

which means that any continuous function of three variables might be broken down to a sum
of 9 functions φ

i
, ψ

i
, χ

i
, i = 1, 2, 3, each of which being a single superposition of continuous

functions of 2 variables. Furthermore, all properties of f are perfectly determined by those
of the functions on the right-hand side of equations (7.3) and (7.4) [Arnold, 2009b, 1957].

Therefore, following the same wording as Pólya and Szegö, one may state that, essentially,
there is neither continuous nor discontinuous functions of three variables. In addition, equa-
tion (7.4) reveals the incorrectness of Hilbert’s conjecture in the 13th problem as well.

However, equation (7.4) was not in its “sharpest” form yet.4 Apparently, Kolmogorov was
not convinced that it was the end of the story. What if there are no continuous functions
of two variables either? Or, what if any arbitrary continuous, bivariate function might be
reduced to a superposition of continuous univariate functions?

7.1.3 Continuous Bivariate Functions Do Not Exist Either

There is a subtlety here which is specific to converting multivariate functions into univariate
ones. The problem is that most of the basic arithmetic operations are, in general, functions
of two variables. An example is the simple addition: g(x, y) = x + y.5 So, we have to keep
such nuances in mind and allow including simple arithmetic operations to our repository
of univariate functions. However, later we will see that one of the beauties the next Kol-
mogorov’s finding possesses is the fact that this violation of adding non-univariate functions
to our repository can be kept, indeed, as minimum as possible.

First, we would like to, quickly, mention another result, also belonging to Kolmogorov, before
moving onto the sharpest form of the representation theorem. In a sense, this result, also
proved in 1956, is weaker than the final one. It states that any continuous, real-valued
function, defined on Id, d ≥ 2, can be approximated by any desirable precision (in the
sense of the Chebyshev metric) by means of superpositions of univariate polynomials and
addition. Particularly, any continuous, bivariate function f(x, y) can be approximated by a

4A. G. Vitushkin in Vitushkin [2004] mentions an interesting point about A. N. Kolmogorov: “It was
in the character of Kolmogorov to carry any work to completion. Shortly thereafter, following the rule of
improving every result to its sharpest form, ...”

5Here, we are interested in the general case, i.e., where x and y are unrelated to each other. Of course, if
there is a relationship, say y = ϕ(x), then x+y happens to be a univariate function: g(x, y) = x+y = x+ϕ(x).
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superposition of the form
2∑
i=1

P
i
(y)Q[R

i
(y) + x],

where P
i
, Q, and R

i
s are suitable polynomials [Kolmogorov, 1961, Theorem 4].

From the mathematical analysis point of view, now, such a result is only of historical interest
as, firstly, it is weaker than the final representation theorem, and secondly, it is only an
“approximate” reply to the question of existence of continuous functions of two variables.

However, from the learning theory viewpoint, this is, conceptually, closer to what should be
implemented in the context of the mapping neural networks, for example. This is a very
important point and we will return to it later, in this chapter.

In fact, it did not take long for Kolmogorov to solve the problem completely and put an
end to a series of works and studies, exclusively focused on continuous functions, invoked by
Hilbert’s thirteenth problem. In 1957, he proved the strongest possible form of complexity
reduction for continuous functions in a nowadays-well-known result, commonly referred to as
the Kolmogorov-Arnold Representation/Superposition Theorem:

3.1.2 Kolmogorov-Arnold Representation Theorem. For any integer d ≥ 2, there
exists a family of certain continuous functions g

i,j
: I = [0, 1]→ R such that any continuous

function f : Id → R is representable in the form

f(x1, x2, . . . , xd) =
2d+1∑
i=1

h
i

[ d∑
j=1

g
i,j

(x
j
)
]
, (7.5)

with h
i
’s also being real-valued and continuous [Kolmogorov, 1991].

Now, consider the special case of d = 3, and let ξ
i
(u, v) = g

i,1(u) + g
i,2(v) and F

i
(u, v) =

h
i

[
u+ g

i,3(v)
]
. Then, equation (7.5) implies that

f(x1, x2, x3) =
7∑
i=1

F
i

[
ξ
i
(x1, x2), x3

]
, (7.6)

which is a slight improvement over equation (7.4), in terms of the total number of the terms
used in the conversion. While in equation (7.4) there are 9 functions φ

i
, ψ

i
, χ

i
, i = 1, 2, 3,

each of which being a single superpositions of bivariate functions, in equation (7.6) there are
only 7 such superpositions, i.e., F

i
, i = 1, . . . , 7.

Moreover, functions g
i,j
’s in equation (7.5) are certain functions, whose properties are usually
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well known. Note that g
i,j
’s are independent from f and only depend on d. As a result, all

properties of f might be thoroughly determined by those of the seven univariate functions
h
i
. (For more details see Kolmogorov [1991] and Arnold [2009b].)

Kolmogorov’s proof of theorem 7.1.3 is rather elementary but extremely elegant at the same
time. We shall skip the proof here since it does not serve the objective of the present work.

The following point is worth noting about Hilbert’s thirteenth problem and the solution
provided by the Kolmogorov-Arnold representation. This representation and the series of
preceding works, specifically, dealt with continuous functions. As it was mentioned earlier,
Hilbert’s problem can be viewed from different perspectives. We shall briefly discuss some
of these perspectives, in the current section, but in the meanwhile, we would like the reader
to remember that, despite the incredibly powerful, inspiring, and elegant results that Kol-
mogorov and Arnold obtained, their relation to Hilbert’s thirteenth problem should not be
overestimated. One may consider the thirteenth problem in settings other than continuous
functions, which might be important, also, from the practical point of view. What if stronger
restrictions, rather than continuity, are imposed on the family of the target functions or
those being used in the representation of the target functions? For example, providing a
computation-friendly solution to Hilbert’s 13th problem is yet to be studied.

Many of these aspects deserve investigation, especially, with respect to their applicability in
learning theory. Perhaps, it would be no exaggeration to say that Hilbert’s problem, in its
entirety, is still as attractive problem as in the beginning of the twentieth century. Next,
we briefly discuss some of the alternative settings, in which the thirteenth problem has been
considered before.

To the best of our knowledge, until recently, all of the results considering more restrictive
constraints (some of which being motivated by practice) on the family of functions to be
employed in the decomposition of a multivariate function have approved Hilbert’s conjecture.
As mentioned before, Hilbert himself mentioned in the statement of the thirteenth problem
that he had been aware of the impossibility of representing all analytic functions of 3 variables
by superpositions of analytic bivariate functions. More general results concerning analytic
functions were obtained by Ostrowski [1920], 6 who proved that a bivariate analytic function
of the particular form

f(x, y) =
∞∑
n=1

xn

ny

cannot be broken down to a finite superposition of infinitely differentiable univariate functions
6Unfortunately, an English translation of the article was not available to the author and Ostrowski’s result

mentioned here were extracted from Vitushkin and Khenkin [1967].



125

and algebraic functions of any number of variables.

Another related results belonging to Vitushkin [1954] illustrates that there exists a function of
d variables, which is p-time differentiable, that cannot be represented as a finite superposition
of d′-variate, p′-time differentiable functions provided that d

p
> d′

p′
. There are a couple of

interesting points about this result: First, the quotient of the number of variables over the
degree of differentiability, i.e., d

p
, might be regarded as a measure of complexity for a family of

functions. We shall elaborate on this shortly. Second, this result was obtained by applying the
theory of multidimensional variations, developed by Vitushkin, however, later Kolmogorov
arrived at the same result by estimating the number of elements in covering ε-nets of the
functional space of continuous and differentiable functions. Let F d

p denote the set of all
continuous functions defined on the unit d-dimensional interval Id, whose partial derivatives,
up to order p inclusive, are all continuous and bounded by a constant c. Also, suppose that
N
ε
(F d

p ) represents the minimum number of the elements in an ε-net covering the whole F d
p .

It turns out that
lim
ε→0

log{log[N
ε
(F d

p )]}
log(1

ε
) = d

p
,

which, in fact, suggests that d
p
is equivalent to ε-entropy that is also a complexity measure

of a functional space. We shall skip the details here but an interested reader may find an
easy-to-follow explanation of the related issues in Tikhomirov [1963].

Now, as was promised earlier in this section, to grasp the intuition, at least roughly, behind
the role of the ratio d

p
as a complexity measure for F d

p , imagine, for example, d = d′ and then
it should not be difficult to see why d

p
> d′

p′
conveys, in some sense, that F d

p is “massier” or
“denser” than F d′

p′ . Roughly, when the number of arguments is fixed, to achieve a smoother
function, one needs to impose more constraints on the function (in this case, smoothness
constraints), and hence, fewer number of functions will be able to satisfy these additional
conditions. [Kolmogorov, 1955, Vitushkin and Khenkin, 1967].

The next result, also belonging to Vitushkin, states that for arbitrary continuous functions
p
i
(x1, x2, . . . , xd)’s and continuously differentiable functions q

i
(x1, x2, . . . , xd), d ≥ 2, i =

1, 2, . . . , N , the set of superpositions of the form

N∑
i=1

p
i
(x1, x2, . . . , xd) fi

[
q
i
(x1, x2, . . . , xd)

]
,

where f
i
’s are arbitrary univariate continuous functions, is nowhere dense in the space of all

continuous functions of d variables [Vitushkin, 1964, Khenkin, 1964].

The last related result we would like to introduce here, dates back to 1951, a few years
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before Kolmogorov and Arnold proved the famous superposition theorem. Alexey Alexeevich
Milyutin, also a soviet mathematician, proved that the linear space of continuous, univariate
functions is isomorphic to the linear space of continuous functions of d variables, for an
arbitrary positive integer d. Furthermore, he succeeded to show that there does not exist
such an isomorphism if, additionally, one assumes that the smooth functions of one space are
restricted to be mapped only to those of the other space, i.e,. the smoothness of the functions
is preserved under the purportedly isomorphism. Unluckily, the paper was not published
because A. Pełczyński believed that the result was incorrect. Subsequently, this fascinating
result was not recognized until fifteen years later when G. M. Khenkin arrived at the same
result and learnt (possibly from Pełczyński) about Milyutin’s work. His curiosity forced him
to find the manuscript of Milyutin’s work, and after reading it carefully he realized that the
work was absolutely genuine and there were no mistakes! Khenkin himself then arranged the
publication of Milyutin’s paper in 1966 [Milyutin, 1966].

7.1.4 Generalizations of Kolmogorov’s Superposition

Although Kolmogorov tried to bring the representation theorem to its sharpest form (which
was accomplished to a reasonable extent), there have been several successful improvements
of the Kolmogorov-Arnold representation theorem, carried out by other mathematicians.

These modifications can be roughly classified in two subgroups: First, those results that,
technically, simplified the representation itself; that is, the right-hand side of equation (7.5).
Notable examples are the results achieved by George Lorentz and David Sprecher in sixties
and seventies, which considerably reduced the number of functions used in the superposition
[Lorentz, 1962, Sprecher, 1965, 1966, 1972].

The second subgroup includes different generalizations of the theorem, usually extension to
more general spaces. For example, Tikhomirov [1963] generalized the representation theorem
to the product metric spaces. A similar result was later obtained by Ostrand [1965].

In the following subsection, we will discuss some of these adjusted versions of the super-
position theorem with more details, because of their importance in building the theoretical
connection between the Kolmogorov-Arnold representation theorem and the theory of percep-
trons. But before moving further, we would like to conclude the current section by recalling
that the topics discussed in this section, including their related questions, have been attract-
ing an immense amount of attention over the past 150 years. Numerous mathematicians, as
well as other researchers, have contributed to the solution of these questions or simply to
extending our understanding of them, as a consequence of which, a lot of distinct perspec-
tives have been involved and a vast variety of results have been generated. Therefore, the
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author would like to acknowledge that the list of works, provided in this section, is far from
being comprehensive for the following reasons: The main objective of the current section is
merely to shed some light on the relation of a specific type of learning method, sometimes
referred to as the mapping neural networks, with the connected results mostly belonging to
mathematical analysis and approximation theory. We believe that the present condensed
introduction suffices to connect the dots and achieve this end.

Another concern relates to the applicability of the Kolmogorov-Arnold representation the-
orem, particularly, in a neural network. This is a general concern Unfortunately, functions
g
i,j
’s can hardly be considered as “well-behaved” enough for practical purposes. Despite

being continuous, they essentially suffer from a severe lack of smoothness. For instance,
one such function, which is actually used in Kolmogorov’s construction as one of g

i,j
’s, is the

Weierstrass function. Including such pathological functions makes this, theoretically, brilliant
result almost useless in practice.

As mentioned before, there have appeared several modified versions of the Kolmogorov-
Arnold Superposition theorem since its original introduction by Kolmogorov in 1957. Partic-
ularly, the first type of the modifications, i.e., those meant to simplify the structural form of
the representation of the function f (see subsection 7.1.4), are essential for convenience and
ease of implementation of the superposition theorem via networks. More precisely, it would
be hard to associate any practical benefits to the implementation of a network based on the
original statement of the Kolmogorov-Arnold representation theorem, without carrying out
certain adjustments. Note that, from the theoretical point of view, it is still possible to intro-
duce a perceptron with two internal layers that can compute exactly any continuous function
f : Id → R at an arbitrary point of its domain by merely using the Kolmogorov-Arnold
decomposition, nonetheless, as we will see later, realizing such a network in practice is far
from being straightforward. In other words, while, theoretically speaking, one can prove the
existence of the Kolmogorov-Arnold representation network, it is not clear if there is any
general recipe to implement such a network for solving real-world problems.

In the following paragraphs, we will briefly introduce the improved versions of the represen-
tation theorem:

First, Lorentz [1962] showed that the outer functions h
i
, i = 1, . . . , 2d + 1 in equation (7.5)

might be replaced with a single function. Sprecher [1965] simplified it further by establishing
that any function f : Id → R could be represented as

f(x1, x2, . . . , xd) =
2d+1∑
i=1

h
[ d∑
j=1

λijg(x
j

+ iε)
]
, (7.7)
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where h : R→ R is a continuous function, λ and ε are constants, g : R→ R is an increasing,
Hölder-continuous function. None of λ, ε, and g depends on f (see also Sprecher [1966]).

Two years later, Fridman [1967] showed that the inner functions in equation (7.5) could be
chosen to be Lipschitz-continuous, however, the number of the inner and outer functions were
identical to that of the original theorem by Kolmogorov. Eventually, in 1972, Sprecher himself
succeeded to improve his initial representation by providing a new formula with smoother
inner functions as follows: [Sprecher, 1972]

Sprecher’s Representation. For any integer d ≥ 2, there exists a constant λ 6= 0, and a
function g ∈ Lip(1) such that any continuous function f : Id → R might be represented in
the form

f(x1, x2, . . . , xd) =
2d+1∑
i=1

h
i

[ d∑
j=1

λj−1g(x
j

+ iε)
]
, (7.8)

where h
i
’s are continuous real-valued functions and ε is any non-zero constant.

Note that the functions h
i
can be replaced with a single continuous function h by adding a

suitable constant to each ξ
j

=
d∑
j=1

λj−1g(x
j

+ iε) [Sprecher, 1972, 1993].

Equations (7.7) and (7.8) provide relatively convenient settings for the approximation of the
function f through multilayer perceptrons. To see that, in the next subsection, we first give
a general account of the creation of the neural networks and explain the procedure based
on which a neural network functions. Then, in the next step, the adaptation of the neural
networks for estimating functional dependencies according to representation theorems will
be discussed.

7.2 Function Estimation by Neural Networks

The ultimate goal of this section is to trace the events leading up to the theories that connect
the Kolmogorov-Arnold superposition theorem and its later-adjusted versions with multilayer
perceptrons or neural networks. To this end, we have to consider various theoretical results
belonging to different branches of mathematics and learning theory. The creation and devel-
opment of the theory of neural networks has been significantly benefited from achievements
in several domains of mathematics. A considerable amount of these theories were developed
during 1960s and 1970s. To understand the interconnection amongst these results and, in
particular, with multilayer perceptrons (also, called neural networks), we will discuss them in
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parallel.

7.2.1 The First Learning Machine Was A Neural Model

In late 1950s and 1960s, almost at the same time as the superposition theorem was being built
and burnished, Frank Rosenblatt, an American psychologist, was busy with the creation of
the first learning machine, i.e., Rosenblatt’s perceptron.7 As a theoretical model, the idea of
perceptron had been around for years and was utilized for describing the process of learning in
living organisms. However, the novelty of Rosenblatt’s perceptron was in its implementation
as a computer program, which makes it the first artificial neural network came to existence.8

The perceptron was designed based on the McCulloch-Pitts model of a single neuron, which
takes a vector of input values and produces a binary output according to a simple relation

y = sgn[〈w,x〉 − b],

where w = (w1, . . . , wd),x = (x1, . . . , xd) ∈ Rd denote a vector of weights and inputs,
respectively, b ∈ R is a threshold value, and y ∈ {−1,+1} is the output (Figure 7.2).
This is perhaps the simplest model of pattern recognition learning machine that employs a
“caricature” model of a single unit to solve a biclassification problem.

Processing Unit
Input
x1
x2
...
x
d

Neuron

〈w,x〉 − b

Activation

sgn[〈w,x〉 − b]

Output

y

Figure 7.2 Rosenblatt’s Neural Unit. This figure shows a processing unit of Rosenblatt’s perceptron
based on the McCulloch-Pitts neuron model.

Let X ⊂ Rd be the set of all possible input vectors and define

h(x,w) := 〈x,w〉 − b.
7In fact, the systematic study of the problem of learning was born only after the advent of the first learning

machine by Rosenblatt.
8The term artificial neural network, however, appeared some years later for referring to a more complex

type of learning machine also inspired by the brain’s neural procedure of learning.
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Geometrically speaking, any point of X , not belonging to the hyperplane h(x,w) = 0, falls
into either of the following two subsets of the input space X :

X+ := {x ∈ X | h(x,w) > 0}

X− := {x ∈ X | h(x,w) < 0},

for a fixed vector w. Obviously, X+ and X− correspond to the previously mentioned outputs
y = +1 and y = −1, respectively. This is a simple pattern recognition problem and, hence, a
single unit is able to classify a set of vectors with binary labels.

Rosenblatt’s perceptron consisted of multiple units divided into several layers such that the
outputs of each layer were passed to another layer of units as inputs. The output of each
unit might have been transferred to multiple units in the next layer. The last layer, i.e., the
output layer, however had a single unit which generated the final label. See Figure 7.3 for
an example of a perceptron.

Learning in the context of the perceptron consists of finding an optimal set of values for all
weights w and thresholds b for each single neuron. Back in sixties it was not known how
to determine all those values, simultaneously, as backpropagation was introduced more than
two decades later. Rosenblatt’s solution to this problem was, first, fixing all the weights and
thresholds of the network except for those of the last neuron, which would be learnt from
data in an iterative manner. We will skip the details of the training procedure in Rosenblatt’s
perceptron for a reason we will state shortly, however the reader is referred to Vapnik [1995]
for a brief discussion, and to Rosenblatt [1962] for a full-length description. The reason
we have mentioned the perceptron model here is merely to emphasize that “learning from
examples” (or shortly, “learning”), as is understood in today’s modern theory of learning was
happening in Rosenblatt’s perceptron although partly.

While the perceptron might be regarded as the first actual learning machine, the mathemat-
ical analysis of learning was born, shortly after, just by the work of Novikoff in 1962. He
proved an upper bound for the number of mistakes the perceptron makes until it learns the
separating hyperplane. In other words, he showed that if the data is perfectly separable by
margin ρ > 0 and all input vectors are bounded, i.e., for every vector x in the sample data
it holds that ‖x‖ ≤ R, for some positive real R, then the maximum number of coefficient
corrections needed to be undertaken by the model in order to discover the optimal values of
the weights and thresholds is less than or equal to R2

ρ2 [Novikoff, 1962, 1963].

Despite the early promising achievements in the context of neural networks, several serious
limitations in terms of applicability of the perceptron remained unsolved. As mentioned
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Input
x1

x2

...

x
d

Internal (Hidden) Layers

Output

y

Figure 7.3 Rosenblatt’s Perceptron with Two Internal Layers. An example of Rosenblatt’s per-
ceptron is illustrated. This perceptron contains two internal (hidden) layers. The 1st one consists of three
processing units, while the 2nd one has five units. This perceptron processes a d-dimensional input vector x
and returns a real-valued output y.

earlier, particularly, a general procedure for determining the coefficients of the network was
yet to be found. The years following the emergence of the perceptron witnessed some advances
in the context of the neural networks but the next influential moment in the history of
the neural networks was probably the popularization of the gradient-based fitting methods,
called backpropagation, by Rumelhart et al. [1986b,a]. The invention of the backpropagation,
however, dates back to 1960s in control theory [Kelley, 1960, Bryson, 1962].9 The first
computer implementation of it was done by Linnainmaa [1970].

Note that with the activation function originally used in perceptron, i.e., the sign function it
was not possible to use gradient-based methods because of non-differentiability. This problem
was overcome in backpropagation by approximating the sign function by means of a sigmoidal
function such as hyperbolic tangent. Introduction of the sigmoidal functions as the activation
function, in fact, paved the way for using any gradient-based optimization technique such as
gradient descent.

Following the popularization of the backpropagation in the context of neural networks, scien-
tists’ interest in application of networks in different fields began to rise for the second time.
In fact, many researchers regard the second half of 1980s as the actual birth date of the

9Backpropagation was rediscovered, independently, by several people during 1960s and 1970s [Dreyfus,
1962, Linnainmaa, 1976, Parker, 1985, Werbos, 1994, Vapnik, 1995, Goodfellow et al., 2016].
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profound theoretical development of the neural networks. It was also at that time that the
American computer scientist, Hecht-Nielsen, pointed out for the first time the resemblance
of the machinery used for function approximation in the Kolmogorov-Arnold representation
theorem and the structure of a multilayer perceptron in Hecht-Nielsen [1987]. He interpreted
the improved version of the representation by Sprecher as a three-layer perceptron whose ac-
tivation functions were the inner and outer functions of the superposition. In an interesting
statement, in Hecht-Nielsen [1987], where he proved the existence of Kolmogorov’s mapping
neural network, he claimed that “in mathematical terms, no one has found a significant
use for it [Kolmogorov’s theorem]. The point of this paper is that this is not the case in
neurocomputing!” Nevertheless, Hecht-Nielsen himself expressed his dissatisfaction with the
theorem being nonconstructive, that is, while it guarantees the existence of such a network,
it does not provide a way to determine the outer functions: “The direct usefulness of this
result is doubtful, at least in the near term, ...”

Similar objections also came from other researchers. Girosi and Poggio [1989] regarded the
Kolmogorov-Arnold superposition theorem as irrelevant due to the inner and outer functions
being highly non-smooth, which makes them very difficult to be approximated, as well as
the outer function being dependent on the target function f . Later Kurková [1991] showed
that this problem can be overcome by approximating both the inner and outer functions by
means of specific combinations of sigmoidal functions.

Definition 14 (Sigmoidal Function). A continuous function σ : R→ I is said to be sigmoidal
if the following two conditions hold:

1. lim
x→−∞

σ(x) = 0, and

2. lim
x→∞

σ(x) = 1.

Kurková [1991] proved that the inner and outer functions can be approximated with an
arbitrary precision utilizing the following linear combinations of a sigmoidal function:

k∑
i=1

a
i
σ(b

i
x+ c

i
),

where a
i
, b
i
, c
i
∈ R, i = 1, . . . , k. This implies that any ordinary perceptron with the standard

sigmoidal functions might be used. Moreover, Kurková provided the exact number of units
needed in each hidden layer to obtain an approximation with the desired accuracy [Kurková,
1991, 1992].



133

A key technical point in the evolution of the mapping neural networks theory is turning
attention from representation to approximation. That is, all versions of the Kolmogorov-
Arnold representation theorem give an exact representation of the function f at any point x
in its domain. In contrast, Kurková talks about approximating the inner and outer functions,
which in turn leads to an approximation of f(x). This rotation is more than just a technical
adjustment: Considering the approximation question opens a new horizon in studying the
mapping neural networks whose central aim is to investigate the approximation abilities of
the neural network. Conceptually, it is a crucial turn from the learning theory perspective as
it is more aligned with the objective of the inverse problem of learning from examples opposed
to exact representation of a function which seems to be of more interest for mathematical
analysis.

Studying the approximation capability of multilayer perceptrons, nevertheless, had begun
before the aforementioned works of Kurková in 1991, 1992. There exist several results, com-
monly referred to as the universal approximation theorems, that address the approximation
abilities of multilayer feedforward neural networks with a variety of different conditions. Some
are stronger than the others in the sense that they imply the other ones, while there are other
ones that are not comparable and hold for different contexts. Below, we will give only the
ones that we believe are more relevant to our work:

Some of the earlier results are due to Cybenko and Hornik as follows. Cybenko [1988,
1989] settled the question of the approximation ability of the neural networks with two and
one internal layer, respectively. In particular, the latter demonstrated that any continuous
function f : Id → R can be arbitrarily well approximated, with respect to the uniform norm,
by a neural network with only one internal layer and a sigmoidal function as its activation
function. As a consequence, it was established that arbitrary decision regions, i.e., any
collection of compact, disjoint subsets of Rd, might be discriminated to a desired degree of
precision by means of continuous feedforward neural networks with solely one single internal
layer and any continuous sigmoidal activation function.

Surprisingly, at the same time but independently, a similar result to that of Cybenko [1989]
was obtained by Hornik et al. [1988, 1989]. However, they used very different approaches
in their proofs: while Cybenko made use of the Hahn-Banach theorem, Hornik proved it
applying the Stone-Weierstrass approximation theorem. Later, Hornik [1991] proved two
extended versions of his former result by replacing the sigmoidal activation function with
any bounded and nonconstant one. Let X ⊆ Rd and µ be a finite measure defined on X .



134

Also, let p be a positive real constant, and Lp(X ) be as follows:

Lp(X ) =
{
f : X → R

∣∣∣ ∫
X
|f |p dµ <∞

}
.

Hornik [1991] concluded the next two statements:

1. Any standard multilayer feedforward network with a single internal layer and arbitrary
bounded and nonconstant activation function is a universal approximator for an arbi-
trary function f ∈ Lp(X ), with respect to the corresponding Lp-norm, provided that a
sufficient number of units are available.

2. Any standard multilayer feedforward network with a single internal layer and arbitrary
continuous, bounded and nonconstant activation function is a uniformly universal ap-
proximator for an arbitrary function f ∈ Lp(X ), where X is a compact set, provided
that a sufficient number of units are available.

Additionally, Hornik [1991] studied general conditions necessary for ensuring that networks
with sufficiently smooth activation functions are capable of arbitrarily accurate approxima-
tion to a function and its derivatives.

Eventually, Leshno et al. [1993] succeeded to prove a vigorous extension of the result obtained
by Hornik [1991], which elegantly established the necessary and sufficient conditions for the
universal approximation property of multilayer perceptrons. The following definitions are
needed for the precise formulation of the theorem.

Note that in the following paragraphs, µ is a Lebesgue measure defined on the set X ⊆ Rd.
In addition, for any function f , the set of all its discontinuity points will be denoted by
Disc(f).

Definition 15 (Essentially Bounded Function). A real-valued function f defined almost
everywhere, with respect to µ, on X is said to be essentially bounded on X , if |f(x)| is bounded
almost everywhere on X . The set of all essentially bounded functions on X is denoted by
L∞(X ) and is equipped with the norm defined as

‖f‖
L∞(X ) := inf

{
λ | µ {x : |f(x)| ≥ λ} = 0

}
.

Definition 16 (Locally Essentially Bounded Function). A real-valued function f defined
almost everywhere, with respect to µ, on an open set X is said to be locally essentially
bounded on X , if for any point x ∈ X there exists a compact set K such that x ∈ K and
f ∈ L∞(K). The set of all such functions is denoted by L∞loc(X ).
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Necessity and Sufficiency for Universal Approximation [Leshno et al., 1993]. Let
Σ be the set of real-valued functions σ for which hold the following:

(i) Σ ⊆ L∞loc(R), and

(ii) µ(Disc(ϕ)) = 0, for any ϕ ∈ Σ.

Let σ ∈ Σ and
Σ∗ = span

{
σ (〈w,x〉+ θ) : w ∈ Rd, θ ∈ R

}
.

Then, Σ∗ is dense in C(Rd), if and only if σ is non-polynomial.

7.2.2 Numerical Implementation

Clearly, all the aforementioned results on the representation, and universal approximation
theorems are purely from the theoretical point of view, whose practical usefulness, undoubt-
edly, depends on the implementation algorithms used. However, since in the present discus-
sion, detailed numerical and programming aspects of the problem is not our primary concern
we restrict the scope of the discussion in what follows to only mentioning some major at-
tempts, almost all of which belong to the domain of shallow neural networks.

In 1990s numerical algorithms for implementing mapping neural networks based on the ad-
justed versions of the Kolmogorov-Arnold superposition started to appear. Sprecher [1996]
provides a numerical implementation of the inner function based on the network proposed
by Hecht-Nielsen [1987].10 The numerical implementation of the outer function was accom-
plished in Sprecher [1997].

Igelnik and Parikh [2003] made use of cubic splines for approximation of the both inner and
outer functions of Kolmogorov’s superposition. The authors claimed that using splines could
lead to the network architecture’s increased capability of adapting itself to data. The called
the network Kolmogorov’s Spline Network.

Braun and Griebel [2009] provided a constructive proof for the Kolmogorov-Arnold super-
position theorem, which used Hölder-continuous inner functions. They, also, proposed an
algorithm for implementing it. (Also, see Braun [2009].)

In recent years, there has been a lot of attention devoted to the deep neural networks, es-
pecially, after they emerged triumphant in numerous applications. As a result of this new

10Recall that Hecht-Nielsen existence theorem itself was based on earlier Sprecher’s improved version of
the superposition theorem.
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trend, some researchers began to exhibit interest in studying approximation capability and
computational complexity of deep neural networks alongside other aspects of deep networks
theory. One attractive question, for instance, regards the relation between the dimension
of the input space, size of the network, and the approximation accuracy of a deep neural
network. This problem has close connections with the notorious phenomenon called curse
of dimensionality. While studying the theory of the deep neural networks is well beyond
the scope of this thesis, below is provided a very short list of some related works, which we
believe can serve as a good point to start for an interested reader: Ait Gougam et al. [2008],
Eldan and Shamir [2016], Poggio et al. [2017], Yarotsky [2018], Petersen and Voigtlaender
[2018], Liu and Liang [2019], Ohn and Kim [2019], Chen et al. [2019], Montanelli and Yang
[2020].
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

8.1 Summary

This work has been dedicated to studying statistical learning from length-biased, right-
censored, with covariates (LBRC-C) data. To this end, we had to, first, review the founda-
tions of statistical learning theory, which was accomplished in Chapter 3. In particular, it
was established that the inferential infrastructure of statistical learning theory is built based
on an inductive principle of learning, called risk minimization. Two aspects of risk minimiza-
tion problem, i.e., the empirical risk minimization (ERM) and structural risk minimization
(SRM), were discussed. Finally, the necessary and sufficient conditions for reliable learning
were given.

In Chapter 4, foundations of weakly supervised learning from LBRC-C data were established.
Specifically, the following three major problems, in connection with biased and censored data,
were settled: First, the problem of learning the distribution function; second, the problem
of risk minimization, which indeed is the core of statistical learning theory, and finally,
estimating the non-explicit regression function in presence of length bias and right censoring.
All the aforementioned problems were solved to a satisfactory degree, although there are
some aspects that need further investigation in future.

In Chapter 5, we studied the problem of variable selection in the context of regression analysis
of LBRC-C data. Particularly, the implications of applying a theoretically-correct likelihood
function, i.e., the joint likelihood function, for variable selection were investigated. It was
discussed that when data are collected through a length-biased sampling scheme, then co-
variates suffer from an additional level of induced biased, which is imposed by the length
bias itself. It was hypothesized that due to ignoring this bias by the conditional approach,
one may end up with more incorrect models if likelihood-based selection criteria were to be
used. Although a thorough mathematical proof, either in favour of or against this hypothesis,
cannot be provided at the moment, a simulation study, provided in Chapter 6, supported it.

In the end, we surveyed the so-called mapping neural networks and their mathematical roots,
in order to figure out their capability of solving the main problem of statistical learning or
the problem of function estimation. It was observed that while the mapping neural networks
might be very strong estimators of a reasonably broad class of functions, they are not able to
solve the learning problem completely. In other words, like the classical parametric paradigm
of statistical inference, neural networks have no mechanism to control the model’s complexity
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(capacity) in accordance with the data in hand. As discussed in Chapter 3, capacity control
is a key factor in providing the reliability of a learning machine. As a result, the networks’
reliability for learning cannot be theoretically guaranteed unless a considerable amount of
prior information is available, based on which the network’s complexity might be regulated.
In practice, adjustments for complexity must be mainly done through “smart” heuristic
methods.

8.2 Some Challenges and Future Research

This section addresses a few questions, a couple of which, in the opinion of the authors,
compose some of today’s most challenging problems of data science and machine learning.
The majority of the discussions in this chapter are rather raw ideas and, therefore, require
further investigation.

8.2.1 Classification Under Length Bias and Censoring

An important question in patient-care management is to predict the risk of experiencing
a certain outcome, e.g., recurring a health condition, within a particular time frame, say
1 year. However, due to the specific properties of the electronic health records (EHR),
including length bias and censoring, most well-known learning techniques cannot be applied
naively. Several ad hoc approaches have been tried previously to adapt some machine learning
techniques to the electronic health records (EHR) data but these methods either involve
even further loss of information (e.g., by ignoring censored objects) or require the data to
be tweaked unnaturally (see Vock et al. [2016]). On the other hand, there have been several
successful treatments of right-censored data using, for instance, support vector machines,
decision trees, and random forests. see, e.g., Ishwaran et al. [2008], Shivaswamy et al. [2007],
Khan and Zubek [2008], Goldberg and Kosorok [2017], Luck et al. [2018], among others.

What is mostly missing in the literature is difficulties induced by left truncation. Hence, the
classification problem we are interested in is as follows: Suppose that we are provided with
length-biased, right-censored sample data D of the form

D = {(Ã
i
, R̃

i
∧ C

i
, δ
i
,
∗
X
i
) : i = 1, . . . , n}.

Also, assume that α > 0 is some real. Then, we would like to evaluate the stochastic indicator
function 1{Y≥α|A,X}(a,x) at any point (a,x). In other words, the goal is to predict whether a
certain terminating event will happen in a certain amount of time for any new subject, given
their current lifetime and covariates.
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Taking proper care of induced covariate bias might be a crucial factor in methods, whose
performance essentially relies on the characteristics of the input space. Examples of such
methods are all kinds of tree-based methods. The classification problem described above is a
special type of classification, i.e., a binary classification problem (also called biclassification)
as the response is a binary variable. Nevertheless, the generalization to multiple classes
should be straightforward. Once more, we would like to remind the reader that the novelty
of the method is in treating the length bias and the covariate bias induced by the sampling
scheme.

8.2.2 Causal Inference: Statistics vs. Machine Learning

The importance of causation lies in the fact that if one can rationalize phenomena in terms
of cause and effect, then it becomes possible to change the outcome by modifying the cause.
This is the core motivation of developing tools for causal inference in both statistics and
machine learning.

Causal inference has always been a major component of statistical inference since its emer-
gence. Before Fisher, the acceptable standard for inferring causal effects was conducting
controlled experiments, where researchers tried to minimize the differences between the treat-
ment and control arms as much as possible. However, in practice, it is very hard to achieve
this goal in most of the cases, as a result of which the effects of the treatment may not be
properly identified. Fisher was the first to come up with the idea of employing randomization
in assigning units to either control or treatment groups. Theoretically, this maximizes the
resemblance between the arms and cancels potential associations between the result of the
treatment and the grouping [Fisher, 1935].

The points that we would like to highlight about the causal inference in the aforementioned
statistical context are as follows: First, the randomized controlled trials (RCTs) are clearly
designed for experimental studies and cannot be used in observational studies. Second, the
problem is typically set in the language of testing hypothesis with the potential cause and
effect being presumed before the experiment starts. These points are important to us since
it turns out that they comprise, indeed, the primary distinction between the causal inference
in statistics and machine learning.

Compared to classical statistics, the problem of causality became an issue more recently.
Nevertheless, its vital importance has been acknowledged by several pioneering figures in
the domain [Pearl and Mackenzie, 2018, Schölkopf, 2019, Bengio, 2019, Peters et al., 2017].
The reason why causality is of interest in machine learning is that it might pave the way
to creation of the learning machines which can generalize the learnt skills from one task to
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another, without the need of being trained from scratch. This is probably the next step in
getting closer to actual artificial intelligence.

Interestingly, the problem of causality in the learning context is substantially different from
what we described in statistics. Namely, suppose that a sample set containing n realized
values of the random variables X and Y is given, i.e., {(x

i
, y
i
) : i = 1, 2, . . . , n}. The causal

problem is defined as to identify whether X causes Y or vice versa. In other words, the
problem of causation in machine learning involves detecting the right direction of the causal
relationship.

Before moving onto more detailed description of the problem, we would like to, swiftly, bring
a couple of subtle points to the reader’s attention. It is, also, worth mentioning that, although
such concerns might be regarded as of minor importance from the microscopic view, they
should not be ignored if the conceptual integrity of the theory is a concern.

The first issue is that, in contrast to the classical framework of causal inference in statistics,
seemingly, the problem of causality has been defined and understood differently by different
authors. In other words, it is difficult to give a consensual understanding of the causality
problem that is consistent throughout the literature. The second problem relates to the con-
ceptual legitimacy of the “causality” or “causation” being considered in some sources. (See,
e.g., the discussion on the relevance of time to causality in Peters et al. [2017]). Without
entering the details, we would like to clarify that, in the terminology adopted for the remain-
der, instead of “causality”, the terms explainability, precedence or dependency will be used
depending on the concept being addressed.

One of the approaches being used in order to identify the precedence direction, between X and
Y , is by comparing the variation between the marginal distribution of one of the variables
with the conditional distribution of the other variable given the first one. However, it is
possible to show that covariation is not generally capable of detecting the direction of the
dependency between two random variables. Consider the following regression:

Let Y = a + bX + ε, where a, b ∈ R, ε ∼ N(0, σ2
ε), and X ∼ N(0, 1). That is, Y|X=x ∼

N(a+ bx, σ2
ε). Then,

Y ∼ N(a, σ2
ε + b2)

and
X|Y=y ∼ N

(
b(y − a)
σ2
ε + b2 ,

σ2
ε

σ2
ε + b2

)
.
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Nevertheless, we have that

Var(Y )− Var(Y |X = x)
Var(Y ) = Var(X)− Var(X|Y = y)

Var(X) = b2

σ2
ε + b2 ,

which, clearly, means that variation cannot distinguish the precedence, i.e., X → Y from Y →
X. Note that X is ancillary for parameters of Y |X; X does not contain information about
the parameters of Y |X. In contrast, Y clearly contains information about the parameters
of X|Y . Therefore, precedence can be captured through information in X about Y |X and
information in Y about X|Y :

∂

∂θ
i

log p
θ
(x) = 0, for i = 1, 2, 3,

where θ = (θ1, θ2, θ3) = (a, b, σ2
ε). In our example, we have, in fact,

∂

∂θ
i

log p~θ(x, y) = ∂

∂θ
i

log p~θ(y|x), for i = 1, 2, 3. (8.1)

Now, recall the length-biased sampling design considered in the previous chapter: The sample
at disposal is not a representative sample of the population; in particular, the sampling
distribution of the covariates is biased. Consequently, one cannot rely on the information
contained in X about the conditional distribution of Y |X. In such a case equation (8.1) fails
to hold, even if X → Y .

In conclusion, the problem of identifying the direction of precedence or dependency in the
aforementioned setting remains open and requires further investigation.

X → Y

X Y |X

information

Y → X

Y X|Y

Figure 8.1 Precedence Detection by Information Content.
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8.2.3 Intrinsic Dimension

Today, availability of huge data is constantly becoming less of a privilege, enjoying which is
solely restricted to governments and few extremely reach organizations. Due to recent tech-
nology, particularly, the advent of advanced electronic hardware, storing data with thousands
or millions of variables is not a big deal anymore.

Therefore, developing techniques for big data analysis is a growing necessity in the related
fields. This need has been addressed in many different but related ways during the past
several decades. For instance, the very well-studied techniques of variable selection, feature
extraction methods of manifold learning, multidimensional scaling techniques, linear and
nonlinear methods of dimensionality reduction, and etc are all responses to this necessity
from different perspectives.

Despite having a lot of practical techniques for dealing with high-dimensional data in practice,
there is still a considerable amount of questions left to be answered. The very first question
is, does there exist a unifying theoretical framework that can formally define the intrinsic
dimensionality of data? Another important question is, what are other possible factors that
comprise the complexity of data? Or, how the intrinsic dimension of data is interrelated
with the complexity of a learning machine or a statistical model? From the practical point
of view, it would be phenomenally interesting and useful to design a learning machine that
is able to learn the intrinsic dimension of data in practice. And finally, one may ask all the
aforementioned questions in relation with biased data.
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